
Perl version 5.10.0 documentation - perlguts

Page 1http://perldoc.perl.org

NAME
perlguts - Introduction to the Perl API

DESCRIPTION
This document attempts to describe how to use the Perl API, as well as
 to provide some info on the
basic workings of the Perl core. It is far
 from complete and probably contains many errors. Please
refer any
 questions or comments to the author below.

Variables
Datatypes

Perl has three typedefs that handle Perl's three main data types:

 SV Scalar Value
 AV Array Value
 HV Hash Value

Each typedef has specific routines that manipulate the various data types.

What is an "IV"?
Perl uses a special typedef IV which is a simple signed integer type that is
 guaranteed to be large
enough to hold a pointer (as well as an integer).
 Additionally, there is the UV, which is simply an
unsigned IV.

Perl also uses two special typedefs, I32 and I16, which will always be at
 least 32-bits and 16-bits long,
respectively. (Again, there are U32 and U16,
 as well.) They will usually be exactly 32 and 16 bits long,
but on Crays
 they will both be 64 bits.

Working with SVs
An SV can be created and loaded with one command. There are five types of
 values that can be
loaded: an integer value (IV), an unsigned integer
 value (UV), a double (NV), a string (PV), and
another scalar (SV).

The seven routines are:

 SV* newSViv(IV);
 SV* newSVuv(UV);
 SV* newSVnv(double);
 SV* newSVpv(const char*, STRLEN);
 SV* newSVpvn(const char*, STRLEN);
 SV* newSVpvf(const char*, ...);
 SV* newSVsv(SV*);

STRLEN is an integer type (Size_t, usually defined as size_t in config.h) guaranteed to be large
enough to represent the size of
 any string that perl can handle.

In the unlikely case of a SV requiring more complex initialisation, you
 can create an empty SV with
newSV(len). If len is 0 an empty SV of
 type NULL is returned, else an SV of type PV is returned with
len + 1 (for
 the NUL) bytes of storage allocated, accessible via SvPVX. In both cases
 the SV has
value undef.

 SV *sv = newSV(0); /* no storage allocated */
 SV *sv = newSV(10); /* 10 (+1) bytes of uninitialised storage
allocated */

To change the value of an already-existing SV, there are eight routines:

 void sv_setiv(SV*, IV);

Perl version 5.10.0 documentation - perlguts

Page 2http://perldoc.perl.org

 void sv_setuv(SV*, UV);
 void sv_setnv(SV*, double);
 void sv_setpv(SV*, const char*);
 void sv_setpvn(SV*, const char*, STRLEN)
 void sv_setpvf(SV*, const char*, ...);
 void sv_vsetpvfn(SV*, const char*, STRLEN, va_list *, SV **, I32, bool
 *);
 void sv_setsv(SV*, SV*);

Notice that you can choose to specify the length of the string to be
 assigned by using sv_setpvn,
newSVpvn, or newSVpv, or you may
 allow Perl to calculate the length by using sv_setpv or by
specifying
 0 as the second argument to newSVpv. Be warned, though, that Perl will
 determine the
string's length by using strlen, which depends on the
 string terminating with a NUL character.

The arguments of sv_setpvf are processed like sprintf, and the
 formatted output becomes the
value.

sv_vsetpvfn is an analogue of vsprintf, but it allows you to specify
 either a pointer to a variable
argument list or the address and length of
 an array of SVs. The last argument points to a boolean; on
return, if that
 boolean is true, then locale-specific information has been used to format
 the string, and
the string's contents are therefore untrustworthy (see perlsec). This pointer may be NULL if that
information is not
 important. Note that this function requires you to specify the length of
 the format.

The sv_set*() functions are not generic enough to operate on values
 that have "magic". See Magic
Virtual Tables later in this document.

All SVs that contain strings should be terminated with a NUL character.
 If it is not NUL-terminated
there is a risk of
 core dumps and corruptions from code which passes the string to C
 functions or
system calls which expect a NUL-terminated string.
 Perl's own functions typically add a trailing NUL
for this reason.
 Nevertheless, you should be very careful when you pass a string stored
 in an SV to a
C function or system call.

To access the actual value that an SV points to, you can use the macros:

 SvIV(SV*)
 SvUV(SV*)
 SvNV(SV*)
 SvPV(SV*, STRLEN len)
 SvPV_nolen(SV*)

which will automatically coerce the actual scalar type into an IV, UV, double,
 or string.

In the SvPV macro, the length of the string returned is placed into the
 variable len (this is a macro, so
you do not use &len). If you do
 not care what the length of the data is, use the SvPV_nolen macro.

Historically the SvPV macro with the global variable PL_na has been
 used in this case. But that can
be quite inefficient because PL_na must
 be accessed in thread-local storage in threaded Perl. In any
case, remember
 that Perl allows arbitrary strings of data that may both contain NULs and
 might not
be terminated by a NUL.

Also remember that C doesn't allow you to safely say foo(SvPV(s, len),
 len);. It might work
with your compiler, but it won't work for everyone.
 Break this sort of statement up into separate
assignments:

 SV *s;
 STRLEN len;
 char * ptr;
 ptr = SvPV(s, len);
 foo(ptr, len);

