
Perl version 5.10.0 documentation - perlform

Page 1http://perldoc.perl.org

NAME
perlform - Perl formats

DESCRIPTION
Perl has a mechanism to help you generate simple reports and charts. To
facilitate this, Perl helps
you code up your output page close to how it
will look when it's printed. It can keep track of things like
how many
lines are on a page, what page you're on, when to print page headers,
etc. Keywords are
borrowed from FORTRAN: format() to declare and write()
to execute; see their entries in perlfunc.
Fortunately, the layout is
much more legible, more like BASIC's PRINT USING statement. Think of it

as a poor man's nroff(1).

Formats, like packages and subroutines, are declared rather than
executed, so they may occur at any
point in your program. (Usually it's
best to keep them all together though.) They have their own
namespace
apart from all the other "types" in Perl. This means that if you have a
function named
"Foo", it is not the same thing as having a format named
"Foo". However, the default name for the
format associated with a given
filehandle is the same as the name of the filehandle. Thus, the default

format for STDOUT is named "STDOUT", and the default format for filehandle
TEMP is named
"TEMP". They just look the same. They aren't.

Output record formats are declared as follows:

 format NAME =
 FORMLIST
 .

If the name is omitted, format "STDOUT" is defined. A single "." in column 1 is used to terminate a
format. FORMLIST consists of a sequence of lines, each of which may be one of three types:

1. A comment, indicated by putting a '#' in the first column.

2. A "picture" line giving the format for one output line.

3. An argument line supplying values to plug into the previous picture line.

Picture lines contain output field definitions, intermingled with
literal text. These lines do not undergo
any kind of variable interpolation.
Field definitions are made up from a set of characters, for starting
and
extending a field to its desired width. This is the complete set of
characters for field definitions:

 @ start of regular field
 ^ start of special field
 < pad character for left adjustification
 | pad character for centering
 > pad character for right adjustificat
 # pad character for a right justified numeric field
 0 instead of first #: pad number with leading zeroes
 . decimal point within a numeric field
 ... terminate a text field, show "..." as truncation evidence
 @* variable width field for a multi-line value
 ^* variable width field for next line of a multi-line value
 ~ suppress line with all fields empty
 ~~ repeat line until all fields are exhausted

Each field in a picture line starts with either "@" (at) or "^" (caret),
indicating what we'll call,
respectively, a "regular" or "special" field.
The choice of pad characters determines whether a field is
textual or
numeric. The tilde operators are not part of a field. Let's look at
the various possibilities in
detail.

