
Perl version 5.10.0 documentation - perlfilter

Page 1http://perldoc.perl.org

NAME
perlfilter - Source Filters

DESCRIPTION
This article is about a little-known feature of Perl called source filters. Source filters alter the program
text of a module
 before Perl sees it, much as a C preprocessor alters the source text of
 a C program
before the compiler sees it. This article tells you more
 about what source filters are, how they work,
and how to write your
 own.

The original purpose of source filters was to let you encrypt your
 program source to prevent casual
piracy. This isn't all they can do, as
 you'll soon learn. But first, the basics.

CONCEPTS
Before the Perl interpreter can execute a Perl script, it must first
 read it from a file into memory for
parsing and compilation. If that
 script itself includes other scripts with a use or require
 statement,
then each of those scripts will have to be read from their
 respective files as well.

Now think of each logical connection between the Perl parser and an
 individual file as a source
stream. A source stream is created when
 the Perl parser opens a file, it continues to exist as the
source code
 is read into memory, and it is destroyed when Perl is finished parsing
 the file. If the
parser encounters a require or use statement in
 a source stream, a new and distinct stream is
created just for that
 file.

The diagram below represents a single source stream, with the flow of
 source from a Perl script file on
the left into the Perl parser on the
 right. This is how Perl normally operates.

 file -------> parser

There are two important points to remember:

1. Although there can be any number of source streams in existence at any
 given time, only
one will be active.

2. Every source stream is associated with only one file.

A source filter is a special kind of Perl module that intercepts and
 modifies a source stream before it
reaches the parser. A source filter
 changes our diagram like this:

 file ----> filter ----> parser

If that doesn't make much sense, consider the analogy of a command
 pipeline. Say you have a shell
script stored in the compressed file trial.gz. The simple pipeline command below runs the script
without
 needing to create a temporary file to hold the uncompressed file.

 gunzip -c trial.gz | sh

In this case, the data flow from the pipeline can be represented as follows:

 trial.gz ----> gunzip ----> sh

With source filters, you can store the text of your script compressed and use a source filter to
uncompress it for Perl's parser:

 compressed gunzip
 Perl program ---> source filter ---> parser

Perl version 5.10.0 documentation - perlfilter

Page 2http://perldoc.perl.org

USING FILTERS
So how do you use a source filter in a Perl script? Above, I said that
 a source filter is just a special
kind of module. Like all Perl
 modules, a source filter is invoked with a use statement.

Say you want to pass your Perl source through the C preprocessor before
 execution. You could use
the existing -P command line option to do
 this, but as it happens, the source filters distribution comes
with a C
 preprocessor filter module called Filter::cpp. Let's use that instead.

Below is an example program, cpp_test, which makes use of this filter.
 Line numbers have been
added to allow specific lines to be referenced
 easily.

 1: use Filter::cpp;
 2: #define TRUE 1
 3: $a = TRUE;
 4: print "a = $a\n";

When you execute this script, Perl creates a source stream for the
 file. Before the parser processes
any of the lines from the file, the
 source stream looks like this:

 cpp_test ---------> parser

Line 1, use Filter::cpp, includes and installs the cpp filter
 module. All source filters work this
way. The use statement is compiled
 and executed at compile time, before any more of the file is read,
and
 it attaches the cpp filter to the source stream behind the scenes. Now
 the data flow looks like this:

 cpp_test ----> cpp filter ----> parser

As the parser reads the second and subsequent lines from the source
 stream, it feeds those lines
through the cpp source filter before
 processing them. The cpp filter simply passes each line through
the
 real C preprocessor. The output from the C preprocessor is then
 inserted back into the source
stream by the filter.

 .-> cpp --.
 | |
 | |
 | <-'
 cpp_test ----> cpp filter ----> parser

The parser then sees the following code:

 use Filter::cpp;
 $a = 1;
 print "a = $a\n";

Let's consider what happens when the filtered code includes another
 module with use:

 1: use Filter::cpp;
 2: #define TRUE 1
 3: use Fred;
 4: $a = TRUE;
 5: print "a = $a\n";

The cpp filter does not apply to the text of the Fred module, only
 to the text of the file that used it (
cpp_test). Although the use
 statement on line 3 will pass through the cpp filter, the module that
 gets
included (Fred) will not. The source streams look like this
 after line 3 has been parsed and before line
4 is parsed:

