
Perl version 5.10.0 documentation - perlfaq9

Page 1http://perldoc.perl.org

NAME
perlfaq9 - Networking ($Revision: 8539 $)

DESCRIPTION
This section deals with questions related to networking, the internet,
 and a few on the web.

What is the correct form of response from a CGI script?
(Alan Flavell <flavell+www@a5.ph.gla.ac.uk> answers...)

The Common Gateway Interface (CGI) specifies a software interface between
 a program ("CGI
script") and a web server (HTTPD). It is not specific
 to Perl, and has its own FAQs and tutorials, and
usenet group,
 comp.infosystems.www.authoring.cgi

The CGI specification is outlined in an informational RFC:
 http://www.ietf.org/rfc/rfc3875

Other relevant documentation listed in: http://www.perl.org/CGI_MetaFAQ.html

These Perl FAQs very selectively cover some CGI issues. However, Perl
 programmers are strongly
advised to use the CGI.pm module, to take care
 of the details for them.

The similarity between CGI response headers (defined in the CGI
 specification) and HTTP response
headers (defined in the HTTP
 specification, RFC2616) is intentional, but can sometimes be confusing.

The CGI specification defines two kinds of script: the "Parsed Header"
 script, and the "Non Parsed
Header" (NPH) script. Check your server
 documentation to see what it supports. "Parsed Header"
scripts are
 simpler in various respects. The CGI specification allows any of the
 usual newline
representations in the CGI response (it's the server's
 job to create an accurate HTTP response based
on it). So "\n" written in
 text mode is technically correct, and recommended. NPH scripts are more

tricky: they must put out a complete and accurate set of HTTP
 transaction response headers; the
HTTP specification calls for records
 to be terminated with carriage-return and line-feed, i.e ASCII
\015\012
 written in binary mode.

Using CGI.pm gives excellent platform independence, including EBCDIC
 systems. CGI.pm selects an
appropriate newline representation
 ($CGI::CRLF) and sets binmode as appropriate.

My CGI script runs from the command line but not the browser. (500 Server Error)
Several things could be wrong. You can go through the "Troubleshooting
 Perl CGI scripts" guide at

	 http://www.perl.org/troubleshooting_CGI.html

If, after that, you can demonstrate that you've read the FAQs and that
 your problem isn't something
simple that can be easily answered, you'll
 probably receive a courteous and useful reply to your
question if you
 post it on comp.infosystems.www.authoring.cgi (if it's something to do
 with HTTP or
the CGI protocols). Questions that appear to be Perl
 questions but are really CGI ones that are
posted to comp.lang.perl.misc
 are not so well received.

The useful FAQs, related documents, and troubleshooting guides are
 listed in the CGI Meta FAQ:

	 http://www.perl.org/CGI_MetaFAQ.html

How can I get better error messages from a CGI program?
Use the CGI::Carp module. It replaces warn and die, plus the
 normal Carp modules carp, croak,
and confess functions with
 more verbose and safer versions. It still sends them to the normal
 server
error log.

 use CGI::Carp;
 warn "This is a complaint";
 die "But this one is serious";

Perl version 5.10.0 documentation - perlfaq9

Page 2http://perldoc.perl.org

The following use of CGI::Carp also redirects errors to a file of your choice,
 placed in a BEGIN block
to catch compile-time warnings as well:

 BEGIN {
 use CGI::Carp qw(carpout);
 open(LOG, ">>/var/local/cgi-logs/mycgi-log")
 or die "Unable to append to mycgi-log: $!\n";
 carpout(*LOG);
 }

You can even arrange for fatal errors to go back to the client browser,
 which is nice for your own
debugging, but might confuse the end user.

 use CGI::Carp qw(fatalsToBrowser);
 die "Bad error here";

Even if the error happens before you get the HTTP header out, the module
 will try to take care of this
to avoid the dreaded server 500 errors.
 Normal warnings still go out to the server error log (or
wherever
 you've sent them with carpout) with the application name and date
 stamp prepended.

How do I remove HTML from a string?
The most correct way (albeit not the fastest) is to use HTML::Parser
 from CPAN. Another mostly
correct
 way is to use HTML::FormatText which not only removes HTML but also
 attempts to do a little
simple formatting of the resulting plain text.

Many folks attempt a simple-minded regular expression approach, like s/<.*?>//g, but that fails in
many cases because the tags
 may continue over line breaks, they may contain quoted
angle-brackets,
 or HTML comment may be present. Plus, folks forget to convert
 entities--like < for
example.

Here's one "simple-minded" approach, that works for most files:

 #!/usr/bin/perl -p0777
 s/<(?:[^>'"]*|(['"]).*?\1)*>//gs

If you want a more complete solution, see the 3-stage striphtml
 program in

http://www.cpan.org/authors/Tom_Christiansen/scripts/striphtml.gz
 .

Here are some tricky cases that you should think about when picking
 a solution:

 B">

 <IMG SRC = "foo.gif"
	 ALT = "A > B">

 <!-- <A comment> -->

 <script>if (a<b && a>c)</script>

 <# Just data #>

 <![INCLUDE CDATA [>>>>>>>>>>>>]]>

If HTML comments include other tags, those solutions would also break
 on text like this:

 <!-- This section commented out.

