
Perl version 5.10.0 documentation - perlfaq8

Page 1http://perldoc.perl.org

NAME
perlfaq8 - System Interaction ($Revision: 10183 $)

DESCRIPTION
This section of the Perl FAQ covers questions involving operating
 system interaction. Topics include
interprocess communication (IPC),
 control over the user-interface (keyboard, screen and pointing

devices), and most anything else not related to data manipulation.

Read the FAQs and documentation specific to the port of perl to your
 operating system (eg, perlvms,
perlplan9, ...). These should
 contain more detailed information on the vagaries of your perl.

How do I find out which operating system I'm running under?
The $^O variable ($OSNAME if you use English) contains an indication of
 the name of the operating
system (not its release number) that your perl
 binary was built for.

How come exec() doesn't return?
Because that's what it does: it replaces your currently running
 program with a different one. If you
want to keep going (as is
 probably the case if you're asking this question) use system()
 instead.

How do I do fancy stuff with the keyboard/screen/mouse?
How you access/control keyboards, screens, and pointing devices
 ("mice") is system-dependent. Try
the following modules:

Keyboard

	 Term::Cap Standard perl distribution
	 Term::ReadKey CPAN
	 Term::ReadLine::Gnu CPAN
	 Term::ReadLine::Perl CPAN
	 Term::Screen CPAN

Screen

	 Term::Cap Standard perl distribution
	 Curses CPAN
	 Term::ANSIColor CPAN

Mouse

	 Tk CPAN

Some of these specific cases are shown as examples in other answers
 in this section of the perlfaq.

How do I print something out in color?
In general, you don't, because you don't know whether
 the recipient has a color-aware display device.
If you
 know that they have an ANSI terminal that understands
 color, you can use the
Term::ANSIColor module from CPAN:

	 use Term::ANSIColor;
	 print color("red"), "Stop!\n", color("reset");
	 print color("green"), "Go!\n", color("reset");

Or like this:

	 use Term::ANSIColor qw(:constants);
	 print RED, "Stop!\n", RESET;
	 print GREEN, "Go!\n", RESET;

Perl version 5.10.0 documentation - perlfaq8

Page 2http://perldoc.perl.org

How do I read just one key without waiting for a return key?
Controlling input buffering is a remarkably system-dependent matter.
 On many systems, you can just
use the stty command as shown in "getc" in perlfunc, but as you see, that's already getting you into

portability snags.

	 open(TTY, "+</dev/tty") or die "no tty: $!";
	 system "stty cbreak </dev/tty >/dev/tty 2>&1";
	 $key = getc(TTY);		 # perhaps this works
	 # OR ELSE
	 sysread(TTY, $key, 1);	 # probably this does
	 system "stty -cbreak </dev/tty >/dev/tty 2>&1";

The Term::ReadKey module from CPAN offers an easy-to-use interface that
 should be more efficient
than shelling out to stty for each key.
 It even includes limited support for Windows.

	 use Term::ReadKey;
	 ReadMode('cbreak');
	 $key = ReadKey(0);
	 ReadMode('normal');

However, using the code requires that you have a working C compiler
 and can use it to build and
install a CPAN module. Here's a solution
 using the standard POSIX module, which is already on your
systems
 (assuming your system supports POSIX).

	 use HotKey;
	 $key = readkey();

And here's the HotKey module, which hides the somewhat mystifying calls
 to manipulate the POSIX
termios structures.

	 # HotKey.pm
	 package HotKey;

	 @ISA = qw(Exporter);
	 @EXPORT = qw(cbreak cooked readkey);

	 use strict;
	 use POSIX qw(:termios_h);
	 my ($term, $oterm, $echo, $noecho, $fd_stdin);

	 $fd_stdin = fileno(STDIN);
	 $term = POSIX::Termios->new();
	 $term->getattr($fd_stdin);
	 $oterm = $term->getlflag();

	 $echo = ECHO | ECHOK | ICANON;
	 $noecho = $oterm & ~$echo;

	 sub cbreak {
		 $term->setlflag($noecho); # ok, so i don't want echo either
		 $term->setcc(VTIME, 1);
		 $term->setattr($fd_stdin, TCSANOW);
	 }

Perl version 5.10.0 documentation - perlfaq8

Page 3http://perldoc.perl.org

	 sub cooked {
		 $term->setlflag($oterm);
		 $term->setcc(VTIME, 0);
		 $term->setattr($fd_stdin, TCSANOW);
	 }

	 sub readkey {
		 my $key = '';
		 cbreak();
		 sysread(STDIN, $key, 1);
		 cooked();
		 return $key;
	 }

	 END { cooked() }

	 1;

How do I check whether input is ready on the keyboard?
The easiest way to do this is to read a key in nonblocking mode with the
 Term::ReadKey module from
CPAN, passing it an argument of -1 to indicate
 not to block:

	 use Term::ReadKey;

	 ReadMode('cbreak');

	 if (defined ($char = ReadKey(-1))) {
		 # input was waiting and it was $char
	 } else {
		 # no input was waiting
	 }

	 ReadMode('normal'); # restore normal tty settings

How do I clear the screen?
If you only have do so infrequently, use system:

	 system("clear");

If you have to do this a lot, save the clear string
 so you can print it 100 times without calling a program
100 times:

	 $clear_string = `clear`;
	 print $clear_string;

If you're planning on doing other screen manipulations, like cursor
 positions, etc, you might wish to
use Term::Cap module:

	 use Term::Cap;
	 $terminal = Term::Cap->Tgetent({OSPEED => 9600});
	 $clear_string = $terminal->Tputs('cl');

