
Perl version 5.10.0 documentation - perlfaq7

Page 1http://perldoc.perl.org

NAME
perlfaq7 - General Perl Language Issues ($Revision: 10100 $)

DESCRIPTION
This section deals with general Perl language issues that don't
 clearly fit into any of the other
sections.

Can I get a BNF/yacc/RE for the Perl language?
There is no BNF, but you can paw your way through the yacc grammar in
 perly.y in the source
distribution if you're particularly brave. The
 grammar relies on very smart tokenizing code, so be
prepared to
 venture into toke.c as well.

In the words of Chaim Frenkel: "Perl's grammar can not be reduced to BNF.
 The work of parsing perl
is distributed between yacc, the lexer, smoke
 and mirrors."

What are all these $@%&* punctuation signs, and how do I know when to use them?
They are type specifiers, as detailed in perldata:

	 $ for scalar values (number, string or reference)
	 @ for arrays
	 % for hashes (associative arrays)
	 & for subroutines (aka functions, procedures, methods)
	 * for all types of that symbol name. In version 4 you used them like
	 pointers, but in modern perls you can just use references.

There are couple of other symbols that you're likely to encounter that aren't
 really type specifiers:

	 <> are used for inputting a record from a filehandle.
	 \ takes a reference to something.

Note that <FILE> is neither the type specifier for files
 nor the name of the handle. It is the <> operator
applied
 to the handle FILE. It reads one line (well, record--see "$/" in perlvar) from the handle FILE in
scalar context, or all lines
 in list context. When performing open, close, or any other operation
 besides
<> on files, or even when talking about the handle, do not use the brackets. These are correct:
eof(FH), seek(FH, 0,
 2) and "copying from STDIN to FILE".

Do I always/never have to quote my strings or use semicolons and commas?
Normally, a bareword doesn't need to be quoted, but in most cases
 probably should be (and must be
under use strict). But a hash key
 consisting of a simple word (that isn't the name of a defined

subroutine) and the left-hand operand to the => operator both
 count as though they were quoted:

	 This is like this
	 ------------ ---------------
	 $foo{line} $foo{'line'}
	 bar => stuff 'bar' => stuff

The final semicolon in a block is optional, as is the final comma in a
 list. Good style (see perlstyle)
says to put them in except for
 one-liners:

	 if ($whoops) { exit 1 }
	 @nums = (1, 2, 3);

	 if ($whoops) {
		 exit 1;
	 }

Perl version 5.10.0 documentation - perlfaq7

Page 2http://perldoc.perl.org

	 @lines = (
	 "There Beren came from mountains cold",
	 "And lost he wandered under leaves",
);

How do I skip some return values?
One way is to treat the return values as a list and index into it:

	 $dir = (getpwnam($user))[7];

Another way is to use undef as an element on the left-hand-side:

	 ($dev, $ino, undef, undef, $uid, $gid) = stat($file);

You can also use a list slice to select only the elements that
 you need:

	 ($dev, $ino, $uid, $gid) = (stat($file))[0,1,4,5];

How do I temporarily block warnings?
If you are running Perl 5.6.0 or better, the use warnings pragma
 allows fine control of what warning
are produced.
 See perllexwarn for more details.

	 {
	 no warnings; # temporarily turn off warnings
	 $a = $b + $c; # I know these might be undef
	 }

Additionally, you can enable and disable categories of warnings.
 You turn off the categories you want
to ignore and you can still
 get other categories of warnings. See perllexwarn for the
 complete details,
including the category names and hierarchy.

	 {
	 no warnings 'uninitialized';
	 $a = $b + $c;
	 }

If you have an older version of Perl, the $^W variable (documented
 in perlvar) controls runtime
warnings for a block:

	 {
	 local $^W = 0; # temporarily turn off warnings
	 $a = $b + $c; # I know these might be undef
	 }

Note that like all the punctuation variables, you cannot currently
 use my() on $^W, only local().

What's an extension?
An extension is a way of calling compiled C code from Perl. Reading perlxstut is a good place to learn
more about extensions.

Why do Perl operators have different precedence than C operators?
Actually, they don't. All C operators that Perl copies have the same
 precedence in Perl as they do in
C. The problem is with operators that C
 doesn't have, especially functions that give a list context to
everything
 on their right, eg. print, chmod, exec, and so on. Such functions are
 called "list operators"
and appear as such in the precedence table in perlop.

