
Perl version 5.10.0 documentation - perlfaq6

Page 1http://perldoc.perl.org

NAME
perlfaq6 - Regular Expressions ($Revision: 10126 $)

DESCRIPTION
This section is surprisingly small because the rest of the FAQ is
 littered with answers involving regular
expressions. For example,
 decoding a URL and checking whether something is a number are
handled
 with regular expressions, but those answers are found elsewhere in
 this document (in
perlfaq9: "How do I decode or create those %-encodings
 on the web" and perlfaq4: "How do I
determine whether a scalar is
 a number/whole/integer/float", to be precise).

How can I hope to use regular expressions without creating illegible and unmaintainable code?
Three techniques can make regular expressions maintainable and
 understandable.

Comments Outside the Regex

Describe what you're doing and how you're doing it, using normal Perl
 comments.

	 # turn the line into the first word, a colon, and the
	 # number of characters on the rest of the line
	 s/^(\w+)(.*)/ lc($1) . ":" . length($2) /meg;

Comments Inside the Regex

The /x modifier causes whitespace to be ignored in a regex pattern
 (except in a character
class), and also allows you to use normal
 comments there, too. As you can imagine,
whitespace and comments help
 a lot.

/x lets you turn this:

	 s{<(?:[^>'"]*|".*?"|'.*?')+>}{}gs;

into this:

	 s{ < # opening angle bracket
		 (?: # Non-backreffing grouping paren
			 [^>'"] * # 0 or more things that are neither > nor ' nor "
				 | # or else
			 ".*?" # a section between double quotes (stingy match)
				 | # or else
			 '.*?' # a section between single quotes (stingy match)
) + # all occurring one or more times
		 > # closing angle bracket
	 }{}gsx; # replace with nothing, i.e. delete

It's still not quite so clear as prose, but it is very useful for
 describing the meaning of each part
of the pattern.

Different Delimiters

While we normally think of patterns as being delimited with /
 characters, they can be delimited
by almost any character. perlre
 describes this. For example, the s/// above uses braces as

delimiters. Selecting another delimiter can avoid quoting the
 delimiter within the pattern:

	 s/\/usr\/local/\/usr\/share/g;	 # bad delimiter choice
	 s#/usr/local#/usr/share#g;		 # better

I'm having trouble matching over more than one line. What's wrong?
Either you don't have more than one line in the string you're looking
 at (probably), or else you aren't
using the correct modifier(s) on
 your pattern (possibly).

There are many ways to get multiline data into a string. If you want
 it to happen automatically while

Perl version 5.10.0 documentation - perlfaq6

Page 2http://perldoc.perl.org

reading input, you'll want to set $/
 (probably to '' for paragraphs or undef for the whole file) to
 allow
you to read more than one line at a time.

Read perlre to help you decide which of /s and /m (or both)
 you might want to use: /s allows dot to
include newline, and /m
 allows caret and dollar to match next to a newline, not just at the
 end of the
string. You do need to make sure that you've actually
 got a multiline string in there.

For example, this program detects duplicate words, even when they span
 line breaks (but not
paragraph ones). For this example, we don't need /s because we aren't using dot in a regular
expression that we want
 to cross line boundaries. Neither do we need /m because we aren't
 wanting
caret or dollar to match at any point inside the record next
 to newlines. But it's imperative that $/ be
set to something other
 than the default, or else we won't actually ever have a multiline
 record read in.

	 $/ = ''; 		 # read in more whole paragraph, not just one line
	 while (<>) {
		 while (/\b([\w'-]+)(\s+\1)+\b/gi) { 	 # word starts alpha
			 print "Duplicate $1 at paragraph $.\n";
		 }
	 }

Here's code that finds sentences that begin with "From " (which would
 be mangled by many mailers):

	 $/ = ''; 		 # read in more whole paragraph, not just one line
	 while (<>) {
		 while (/^From /gm) { # /m makes ^ match next to \n
		 print "leading from in paragraph $.\n";
		 }
	 }

Here's code that finds everything between START and END in a paragraph:

	 undef $/; 		 # read in whole file, not just one line or paragraph
	 while (<>) {
		 while (/START(.*?)END/sgm) { # /s makes . cross line boundaries
		 print "$1\n";
		 }
	 }

How can I pull out lines between two patterns that are themselves on different lines?
You can use Perl's somewhat exotic .. operator (documented in perlop):

	 perl -ne 'print if /START/ .. /END/' file1 file2 ...

If you wanted text and not lines, you would use

	 perl -0777 -ne 'print "$1\n" while /START(.*?)END/gs' file1 file2 ...

But if you want nested occurrences of START through END, you'll
 run up against the problem
described in the question in this section
 on matching balanced text.

Here's another example of using ..:

	 while (<>) {
		 $in_header = 1 .. /^$/;
		 $in_body = /^$/ .. eof;
	 # now choose between them
	 } continue {

