
Perl version 5.10.0 documentation - perlfaq5

Page 1http://perldoc.perl.org

NAME
perlfaq5 - Files and Formats ($Revision: 10126 $)

DESCRIPTION
This section deals with I/O and the "f" issues: filehandles, flushing,
 formats, and footers.

How do I flush/unbuffer an output filehandle? Why must I do this?
Perl does not support truly unbuffered output (except insofar as you
 can syswrite(OUT, $char,
1)), although it does support is "command
 buffering", in which a physical write is performed after
every output
 command.

The C standard I/O library (stdio) normally buffers characters sent to
 devices so that there isn't a
system call for each byte. In most stdio
 implementations, the type of output buffering and the size of
the
 buffer varies according to the type of device. Perl's print() and write() functions normally
buffer output, while syswrite()
 bypasses buffering all together.

If you want your output to be sent immediately when you execute print() or write() (for instance,
for some network protocols),
 you must set the handle's autoflush flag. This flag is the Perl
 variable $|
and when it is set to a true value, Perl will flush the
 handle's buffer after each print() or write().
Setting $|
 affects buffering only for the currently selected default filehandle.
 You choose this handle
with the one argument select() call (see "$|" in perlvar and "select" in perlfunc).

Use select() to choose the desired handle, then set its
 per-filehandle variables.

	 $old_fh = select(OUTPUT_HANDLE);
	 $| = 1;
	 select($old_fh);

Some modules offer object-oriented access to handles and their
 variables, although they may be
overkill if this is the only thing you
 do with them. You can use IO::Handle:

	 use IO::Handle;
	 open my($printer), ">", "/dev/printer"); # but is this?
	 $printer->autoflush(1);

or IO::Socket (which inherits from IO::Handle):

	 use IO::Socket;		 # this one is kinda a pipe?
	 my $sock = IO::Socket::INET->new('www.example.com:80');

	 $sock->autoflush();

You can also flush an IO::Handle object without setting autoflush. Call the flush method to
flush the buffer yourself:

	 use IO::Handle;
	 open my($printer), ">", "/dev/printer");
	 $printer->flush; # one time flush

How do I change, delete, or insert a line in a file, or append to the beginning of a file?
(contributed by brian d foy)

The basic idea of inserting, changing, or deleting a line from a text
 file involves reading and printing
the file to the point you want to
 make the change, making the change, then reading and printing the
rest
 of the file. Perl doesn't provide random access to lines (especially
 since the record input

Perl version 5.10.0 documentation - perlfaq5

Page 2http://perldoc.perl.org

separator, $/, is mutable), although modules
 such as Tie::File can fake it.

A Perl program to do these tasks takes the basic form of opening a
 file, printing its lines, then closing
the file:

	 open my $in, '<', $file or die "Can't read old file: $!";
	 open my $out, '>', "$file.new" or die "Can't write new file: $!";

	 while(<$in>)
		 {
		 print $out $_;
		 }

 close $out;

Within that basic form, add the parts that you need to insert, change,
 or delete lines.

To prepend lines to the beginning, print those lines before you enter
 the loop that prints the existing
lines.

	 open my $in, '<', $file or die "Can't read old file: $!";
	 open my $out, '>', "$file.new" or die "Can't write new file: $!";

	 print "# Add this line to the top\n"; # <--- HERE'S THE MAGIC

	 while(<$in>)
		 {
		 print $out $_;
		 }

 close $out;

To change existing lines, insert the code to modify the lines inside
 the while loop. In this case, the
code finds all lowercased
 versions of "perl" and uppercases them. The happens for every line, so
 be
sure that you're supposed to do that on every line!

	 open my $in, '<', $file or die "Can't read old file: $!";
	 open my $out, '>', "$file.new" or die "Can't write new file: $!";

	 print "# Add this line to the top\n";

	 while(<$in>)
		 {
		 s/\b(perl)\b/Perl/g;
		 print $out $_;
		 }

 close $out;

To change only a particular line, the input line number, $., is
 useful. First read and print the lines up
to the one you want to
 change. Next, read the single line you want to change, change it, and
 print it.
After that, read the rest of the lines and print those:

	 while(<$in>) # print the lines before the change

