
Perl version 5.10.0 documentation - perlfaq4

Page 1http://perldoc.perl.org

NAME
perlfaq4 - Data Manipulation ($Revision: 10394 $)

DESCRIPTION
This section of the FAQ answers questions related to manipulating
 numbers, dates, strings, arrays,
hashes, and miscellaneous data issues.

Data: Numbers
Why am I getting long decimals (eg, 19.9499999999999) instead of the numbers I should be
getting (eg, 19.95)?

Internally, your computer represents floating-point numbers in binary.
 Digital (as in powers of two)
computers cannot store all numbers
 exactly. Some real numbers lose precision in the process. This is
a
 problem with how computers store numbers and affects all computer
 languages, not just Perl.

perlnumber shows the gory details of number representations and
 conversions.

To limit the number of decimal places in your numbers, you can use the
 printf or sprintf function. See
the Floating Point Arithmetic for more details.

	 printf "%.2f", 10/3;

	 my $number = sprintf "%.2f", 10/3;

Why is int() broken?
Your int() is most probably working just fine. It's the numbers that
 aren't quite what you think.

First, see the answer to "Why am I getting long decimals
 (eg, 19.9499999999999) instead of the
numbers I should be getting
 (eg, 19.95)?".

For example, this

	 print int(0.6/0.2-2), "\n";

will in most computers print 0, not 1, because even such simple
 numbers as 0.6 and 0.2 cannot be
presented exactly by floating-point
 numbers. What you think in the above as 'three' is really more like

2.9999999999999995559.

Why isn't my octal data interpreted correctly?
Perl only understands octal and hex numbers as such when they occur as
 literals in your program.
Octal literals in perl must start with a
 leading 0 and hexadecimal literals must start with a leading 0x.
 If
they are read in from somewhere and assigned, no automatic
 conversion takes place. You must
explicitly use oct() or hex() if you
 want the values converted to decimal. oct() interprets
hexadecimal (0x350),
 octal (0350 or even without the leading 0, like 377) and binary
 (0b1010)
numbers, while hex() only converts hexadecimal ones, with
 or without a leading 0x, such as 0x255,
3A, ff, or deadbeef.
 The inverse mapping from decimal to octal can be done with either the
 <%o>
or %O sprintf() formats.

This problem shows up most often when people try using chmod(), mkdir(), umask(), or
sysopen(), which by widespread tradition
 typically take permissions in octal.

	 chmod(644, $file); # WRONG
	 chmod(0644, $file); # right

Note the mistake in the first line was specifying the decimal literal 644, rather than the intended octal
literal 0644. The problem can
 be seen with:

	 printf("%#o",644); # prints 01204

Perl version 5.10.0 documentation - perlfaq4

Page 2http://perldoc.perl.org

Surely you had not intended chmod(01204, $file); - did you? If you
 want to use numeric literals
as arguments to chmod() et al. then please
 try to express them as octal constants, that is with a
leading zero and
 with the following digits restricted to the set 0..7.

Does Perl have a round() function? What about ceil() and floor()? Trig functions?
Remember that int() merely truncates toward 0. For rounding to a
 certain number of digits,
sprintf() or printf() is usually the
 easiest route.

	 printf("%.3f", 3.1415926535); # prints 3.142

The POSIX module (part of the standard Perl distribution)
 implements ceil(), floor(), and a
number of other mathematical
 and trigonometric functions.

	 use POSIX;
	 $ceil = ceil(3.5); # 4
	 $floor = floor(3.5); # 3

In 5.000 to 5.003 perls, trigonometry was done in the Math::Complex
 module. With 5.004, the
Math::Trig module (part of the standard Perl
 distribution) implements the trigonometric functions.
Internally it
 uses the Math::Complex module and some functions can break out from
 the real axis
into the complex plane, for example the inverse sine of
 2.

Rounding in financial applications can have serious implications, and
 the rounding method used
should be specified precisely. In these
 cases, it probably pays not to trust whichever system rounding
is
 being used by Perl, but to instead implement the rounding function you
 need yourself.

To see why, notice how you'll still have an issue on half-way-point
 alternation:

	 for ($i = 0; $i < 1.01; $i += 0.05) { printf "%.1f ",$i}

	 0.0 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.6 0.7 0.7
	 0.8 0.8 0.9 0.9 1.0 1.0

Don't blame Perl. It's the same as in C. IEEE says we have to do
 this. Perl numbers whose absolute
values are integers under 2**31 (on
 32 bit machines) will work pretty much like mathematical integers.
Other numbers are not guaranteed.

How do I convert between numeric representations/bases/radixes?
As always with Perl there is more than one way to do it. Below are a
 few examples of approaches to
making common conversions between number
 representations. This is intended to be
representational rather than
 exhaustive.

Some of the examples later in perlfaq4 use the Bit::Vector
 module from CPAN. The reason you
might choose Bit::Vector over the
 perl built in functions is that it works with numbers of ANY size,

that it is optimized for speed on some operations, and for at least
 some programmers the notation
might be familiar.

How do I convert hexadecimal into decimal

Using perl's built in conversion of 0x notation:

	 $dec = 0xDEADBEEF;

Using the hex function:

	 $dec = hex("DEADBEEF");

Using pack:

	 $dec = unpack("N", pack("H8", substr("0" x 8 . "DEADBEEF", -8)));

