
Perl version 5.10.0 documentation - perlfaq3

Page 1http://perldoc.perl.org

NAME
perlfaq3 - Programming Tools ($Revision: 10127 $)

DESCRIPTION
This section of the FAQ answers questions related to programmer tools
 and programming support.

How do I do (anything)?
Have you looked at CPAN (see perlfaq2)? The chances are that
 someone has already written a
module that can solve your problem.
 Have you read the appropriate manpages? Here's a brief index:

	 Basics	 perldata, perlvar, perlsyn, perlop, perlsub
	 Execution	 perlrun, perldebug
	 Functions	 perlfunc
	 Objects		 perlref, perlmod, perlobj, perltie
	 Data Structures	 perlref, perllol, perldsc
	 Modules		 perlmod, perlmodlib, perlsub
	 Regexes		 perlre, perlfunc, perlop, perllocale
	 Moving to perl5	 perltrap, perl
	 Linking w/C	 perlxstut, perlxs, perlcall, perlguts, perlembed
	 Various 	 http://www.cpan.org/misc/olddoc/FMTEYEWTK.tgz
			 (not a man-page but still useful, a collection
			 of various essays on Perl techniques)

A crude table of contents for the Perl manpage set is found in perltoc.

How can I use Perl interactively?
The typical approach uses the Perl debugger, described in the
 perldebug(1) manpage, on an "empty"
program, like this:

 perl -de 42

Now just type in any legal Perl code, and it will be immediately
 evaluated. You can also examine the
symbol table, get stack
 backtraces, check variable values, set breakpoints, and other
 operations
typically found in symbolic debuggers.

Is there a Perl shell?
The psh (Perl sh) is currently at version 1.8. The Perl Shell is a shell
 that combines the interactive
nature of a Unix shell with the power of
 Perl. The goal is a full featured shell that behaves as expected
for
 normal shell activity and uses Perl syntax and functionality for
 control-flow statements and other
things. You can get psh at
 http://sourceforge.net/projects/psh/ .

Zoidberg is a similar project and provides a shell written in perl,
 configured in perl and operated in
perl. It is intended as a login shell
 and development environment. It can be found at
http://zoidberg.sf.net/
 or your local CPAN mirror.

The Shell.pm module (distributed with Perl) makes Perl try commands
 which aren't part of the Perl
language as shell commands. perlsh from
 the source distribution is simplistic and uninteresting, but
may still
 be what you want.

How do I find which modules are installed on my system?
You can use the ExtUtils::Installed module to show all installed
 distributions, although it can take
awhile to do its magic. The
 standard library which comes with Perl just shows up as "Perl" (although

you can get those with Module::CoreList).

	 use ExtUtils::Installed;

Perl version 5.10.0 documentation - perlfaq3

Page 2http://perldoc.perl.org

	 my $inst = ExtUtils::Installed->new();
	 my @modules = $inst->modules();

If you want a list of all of the Perl module filenames, you
 can use File::Find::Rule.

	 use File::Find::Rule;

	 my @files = File::Find::Rule->file()->name('*.pm')->in(@INC);

If you do not have that module, you can do the same thing
 with File::Find which is part of the standard
library.

 use File::Find;
 my @files;

 find(
 sub {
 	 push @files, $File::Find::name
 		 if -f $File::Find::name && /\.pm$/
 	 },

 @INC
);

	 print join "\n", @files;

If you simply need to quickly check to see if a module is
 available, you can check for its
documentation. If you can
 read the documentation the module is most likely installed.
 If you cannot
read the documentation, the module might not
 have any (in rare cases).

	 prompt% perldoc Module::Name

You can also try to include the module in a one-liner to see if
 perl finds it.

	 perl -MModule::Name -e1

How do I debug my Perl programs?
(contributed by brian d foy)

Before you do anything else, you can help yourself by ensuring that
 you let Perl tell you about
problem areas in your code. By turning
 on warnings and strictures, you can head off many problems
before
 they get too big. You can find out more about these in strict
 and warnings.

	 #!/usr/bin/perl
	 use strict;
	 use warnings;

Beyond that, the simplest debugger is the print function. Use it
 to look at values as you run your
program:

	 print STDERR "The value is [$value]\n";

The Data::Dumper module can pretty-print Perl data structures:

	 use Data::Dumper qw(Dumper);

