
Perl version 5.10.0 documentation - perlebcdic

Page 1http://perldoc.perl.org

NAME
perlebcdic - Considerations for running Perl on EBCDIC platforms

DESCRIPTION
An exploration of some of the issues facing Perl programmers
 on EBCDIC based computers. We do
not cover localization, internationalization, or multi byte character set issues other
 than some
discussion of UTF-8 and UTF-EBCDIC.

Portions that are still incomplete are marked with XXX.

COMMON CHARACTER CODE SETS
ASCII

The American Standard Code for Information Interchange is a set of
 integers running from 0 to 127
(decimal) that imply character interpretation by the display and other system(s) of computers. The
range 0..127 can be covered by setting the bits in a 7-bit binary digit, hence the set is sometimes
referred to as a "7-bit ASCII". ASCII was described by the American National Standards Institute
document ANSI X3.4-1986. It was also described by ISO 646:1991 (with localization for currency
symbols). The full ASCII set is given in the table below as the first 128 elements. Languages that can
be written adequately with the characters in ASCII include English, Hawaiian, Indonesian, Swahili and
some Native American languages.

There are many character sets that extend the range of integers
 from 0..2**7-1 up to 2**8-1, or 8 bit
bytes (octets if you prefer).
 One common one is the ISO 8859-1 character set.

ISO 8859
The ISO 8859-$n are a collection of character code sets from the International Organization for
Standardization (ISO) each of which adds characters to the ASCII set that are typically found in
European languages many of which are based on the Roman, or Latin, alphabet.

Latin 1 (ISO 8859-1)
A particular 8-bit extension to ASCII that includes grave and acute accented Latin characters.
Languages that can employ ISO 8859-1 include all the languages covered by ASCII as well as
Afrikaans, Albanian, Basque, Catalan, Danish, Faroese, Finnish, Norwegian, Portuguese, Spanish,
and Swedish. Dutch is covered albeit without the ij ligature. French is covered too but without the oe
ligature. German can use ISO 8859-1 but must do so without German-style
 quotation marks. This set
is based on Western European extensions to ASCII and is commonly encountered in world wide web
work.
 In IBM character code set identification terminology ISO 8859-1 is
 also known as CCSID 819
(or sometimes 0819 or even 00819).

EBCDIC
The Extended Binary Coded Decimal Interchange Code refers to a large collection of slightly different
single and multi byte coded character sets that are different from ASCII or ISO 8859-1 and typically
run on host computers. The EBCDIC encodings derive from 8 bit byte extensions of Hollerith punched
card encodings.
 The layout on the cards was such that high bits were set for the
 upper and lower
case alphabet characters [a-z] and [A-Z], but there
 were gaps within each latin alphabet range.

Some IBM EBCDIC character sets may be known by character code set identification numbers
(CCSID numbers) or code page numbers. Leading
 zero digits in CCSID numbers within this
document are insignificant.
 E.g. CCSID 0037 may be referred to as 37 in places.

13 variant characters
Among IBM EBCDIC character code sets there are 13 characters that
 are often mapped to different
integer values. Those characters
 are known as the 13 "variant" characters and are:

 \ [] { } ^ ~ ! # | $ @ `

Perl version 5.10.0 documentation - perlebcdic

Page 2http://perldoc.perl.org

0037
Character code set ID 0037 is a mapping of the ASCII plus Latin-1 characters (i.e. ISO 8859-1) to an
EBCDIC set. 0037 is used in North American English locales on the OS/400 operating system that
runs on AS/400 computers. CCSID 37 differs from ISO 8859-1 in 237 places, in other words they
agree on only 19 code point values.

1047
Character code set ID 1047 is also a mapping of the ASCII plus Latin-1 characters (i.e. ISO 8859-1)
to an EBCDIC set. 1047 is used under Unix System Services for OS/390 or z/OS, and OpenEdition
for VM/ESA. CCSID 1047 differs from CCSID 0037 in eight places.

POSIX-BC
The EBCDIC code page in use on Siemens' BS2000 system is distinct from
 1047 and 0037. It is
identified below as the POSIX-BC set.

Unicode code points versus EBCDIC code points
In Unicode terminology a code point is the number assigned to a
 character: for example, in EBCDIC
the character "A" is usually assigned
 the number 193. In Unicode the character "A" is assigned the
number 65.
 This causes a problem with the semantics of the pack/unpack "U", which
 are supposed to
pack Unicode code points to characters and back to numbers.
 The problem is: which code points to
use for code points less than 256?
 (for 256 and over there's no problem: Unicode code points are
used)
 In EBCDIC, for the low 256 the EBCDIC code points are used. This
 means that the
equivalences

	 pack("U", ord($character)) eq $character
	 unpack("U", $character) == ord $character

will hold. (If Unicode code points were applied consistently over
 all the possible code points,
pack("U",ord("A")) would in EBCDIC
 equal A with acute or chr(101), and unpack("U", "A") would equal
65, or non-breaking space, not 193, or ord "A".)

Remaining Perl Unicode problems in EBCDIC
Many of the remaining seem to be related to case-insensitive matching:
 for example,
/[\x{131}]/ (LATIN SMALL LETTER DOTLESS I) does
 not match "I" case-insensitively, as
it should under Unicode.
 (The match succeeds in ASCII-derived platforms.)

The extensions Unicode::Collate and Unicode::Normalized are not
 supported under EBCDIC,
likewise for the encoding pragma.

Unicode and UTF
UTF is a Unicode Transformation Format. UTF-8 is a Unicode conforming
 representation of the
Unicode standard that looks very much like ASCII.
 UTF-EBCDIC is an attempt to represent Unicode
characters in an EBCDIC
 transparent manner.

Using Encode
Starting from Perl 5.8 you can use the standard new module Encode
 to translate from EBCDIC to
Latin-1 code points

	 use Encode 'from_to';

	 my %ebcdic = (176 => 'cp37', 95 => 'cp1047', 106 => 'posix-bc');

	 # $a is in EBCDIC code points
	 from_to($a, $ebcdic{ord '^'}, 'latin1');
	 # $a is ISO 8859-1 code points

