
Perl version 5.10.0 documentation - perldsc

Page 1http://perldoc.perl.org

NAME
perldsc - Perl Data Structures Cookbook

DESCRIPTION
The single feature most sorely lacking in the Perl programming language
 prior to its 5.0 release was
complex data structures. Even without direct
 language support, some valiant programmers did
manage to emulate them, but
 it was hard work and not for the faint of heart. You could occasionally

get away with the $m{$AoA,$b} notation borrowed from awk in which the
 keys are actually more like
a single concatenated string "AoAb", but
 traversal and sorting were difficult. More desperate
programmers even
 hacked Perl's internal symbol table directly, a strategy that proved hard
 to develop
and maintain--to put it mildly.

The 5.0 release of Perl let us have complex data structures. You
 may now write something like this
and all of a sudden, you'd have an array
 with three dimensions!

 for $x (1 .. 10) {
	 for $y (1 .. 10) {
	 for $z (1 .. 10) {
		 $AoA[$x][$y][$z] =
		 $x ** $y + $z;
	 }
	 }
 }

Alas, however simple this may appear, underneath it's a much more
 elaborate construct than meets
the eye!

How do you print it out? Why can't you say just print @AoA? How do
 you sort it? How can you pass
it to a function or get one of these back
 from a function? Is it an object? Can you save it to disk to
read
 back later? How do you access whole rows or columns of that matrix? Do
 all the values have to
be numeric?

As you see, it's quite easy to become confused. While some small portion
 of the blame for this can be
attributed to the reference-based
 implementation, it's really more due to a lack of existing
documentation with
 examples designed for the beginner.

This document is meant to be a detailed but understandable treatment of the
 many different sorts of
data structures you might want to develop. It
 should also serve as a cookbook of examples. That way,
when you need to
 create one of these complex data structures, you can just pinch, pilfer, or
 purloin a
drop-in example from here.

Let's look at each of these possible constructs in detail. There are separate
 sections on each of the
following:

* arrays of arrays

* hashes of arrays

* arrays of hashes

* hashes of hashes

* more elaborate constructs

But for now, let's look at general issues common to all
 these types of data structures.

REFERENCES
The most important thing to understand about all data structures in Perl
 -- including multidimensional
arrays--is that even though they might
 appear otherwise, Perl @ARRAYs and %HASHes are all internally
one-dimensional. They can hold only scalar values (meaning a string,
 number, or a reference). They
cannot directly contain other arrays or
 hashes, but instead contain references to other arrays or

Perl version 5.10.0 documentation - perldsc

Page 2http://perldoc.perl.org

hashes.

You can't use a reference to an array or hash in quite the same way that you
 would a real array or
hash. For C or C++ programmers unused to
 distinguishing between arrays and pointers to the same,
this can be
 confusing. If so, just think of it as the difference between a structure
 and a pointer to a
structure.

You can (and should) read more about references in the perlref(1) man
 page. Briefly, references are
rather like pointers that know what they
 point to. (Objects are also a kind of reference, but we won't be
needing
 them right away--if ever.) This means that when you have something which
 looks to you like
an access to a two-or-more-dimensional array and/or hash,
 what's really going on is that the base
type is
 merely a one-dimensional entity that contains references to the next
 level. It's just that you can
use it as though it were a
 two-dimensional one. This is actually the way almost all C
 multidimensional
arrays work as well.

 $array[7][12]			 # array of arrays
 $array[7]{string}			 # array of hashes
 $hash{string}[7]			 # hash of arrays
 $hash{string}{'another string'}	 # hash of hashes

Now, because the top level contains only references, if you try to print
 out your array in with a simple
print() function, you'll get something
 that doesn't look very nice, like this:

 @AoA = ([2, 3], [4, 5, 7], [0]);
 print $AoA[1][2];
 7
 print @AoA;
 ARRAY(0x83c38)ARRAY(0x8b194)ARRAY(0x8b1d0)

That's because Perl doesn't (ever) implicitly dereference your variables.
 If you want to get at the thing
a reference is referring to, then you have
 to do this yourself using either prefix typing indicators, like
${$blah}, @{$blah}, @{$blah[$i]}, or else postfix pointer arrows,
 like $a->[3], $h->{fred},
or even $ob->method()->[3].

COMMON MISTAKES
The two most common mistakes made in constructing something like
 an array of arrays is either
accidentally counting the number of
 elements or else taking a reference to the same memory location

repeatedly. Here's the case where you just get the count instead
 of a nested array:

 for $i (1..10) {
	 @array = somefunc($i);
	 $AoA[$i] = @array;	 # WRONG!
 }

That's just the simple case of assigning an array to a scalar and getting
 its element count. If that's
what you really and truly want, then you
 might do well to consider being a tad more explicit about it,
like this:

 for $i (1..10) {
	 @array = somefunc($i);
	 $counts[$i] = scalar @array;
 }

Here's the case of taking a reference to the same memory location
 again and again:

 for $i (1..10) {
	 @array = somefunc($i);

