
Perl version 5.10.0 documentation - perldiag

Page 1http://perldoc.perl.org

NAME
perldiag - various Perl diagnostics

DESCRIPTION
These messages are classified as follows (listed in increasing order of
desperation):

 (W) A warning (optional).
 (D) A deprecation (optional).
 (S) A severe warning (enabled by default).
 (F) A fatal error (trappable).
 (P) An internal error you should never see (trappable).
 (X) A very fatal error (nontrappable).
 (A) An alien error message (not generated by Perl).

The majority of messages from the first three classifications above
(W, D & S) can be controlled using
the warnings pragma.

If a message can be controlled by the warnings pragma, its warning
category is included with the
classification letter in the description
below.

Optional warnings are enabled by using the warnings pragma or the -w
and -W switches. Warnings
may be captured by setting $SIG{__WARN__}
to a reference to a routine that will be called on each
warning instead
of printing it. See perlvar.

Severe warnings are always enabled, unless they are explicitly disabled
with the warnings pragma
or the -X switch.

Trappable errors may be trapped using the eval operator. See "eval" in perlfunc. In almost all cases,
warnings may be selectively
disabled or promoted to fatal errors using the warnings pragma.
See
warnings.

The messages are in alphabetical order, without regard to upper or
lower-case. Some of these
messages are generic. Spots that vary are
denoted with a %s or other printf-style escape. These
escapes are
ignored by the alphabetical order, as are all characters other than
letters. To look up your
message, just ignore anything that is not a
letter.

accept() on closed socket %s

(W closed) You tried to do an accept on a closed socket. Did you forget
to check the return
value of your socket() call? See "accept" in perlfunc.

Allocation too large: %lx

(X) You can't allocate more than 64K on an MS-DOS machine.

'%c' allowed only after types %s

(F) The modifiers '!', '<' and '>' are allowed in pack() or unpack() only
after certain types. See
"pack" in perlfunc.

Ambiguous call resolved as CORE::%s(), qualify as such or use &

(W ambiguous) A subroutine you have declared has the same name as a Perl
keyword, and
you have used the name without qualification for calling
one or the other. Perl decided to call
the builtin because the
subroutine is not imported.

To force interpretation as a subroutine call, either put an ampersand
before the subroutine
name, or qualify the name with its package.
Alternatively, you can import the subroutine (or
pretend that it's
imported with the use subs pragma).

To silently interpret it as the Perl operator, use the CORE:: prefix
on the operator (e.g.
CORE::log($x)) or declare the subroutine
to be an object method (see "Subroutine
Attributes" in perlsub or attributes).

