
Perl version 5.10.0 documentation - perldebug

Page 1http://perldoc.perl.org

NAME
perldebug - Perl debugging

DESCRIPTION
First of all, have you tried using the -w switch?

If you're new to the Perl debugger, you may prefer to read perldebtut, which is a tutorial introduction
to the debugger .

The Perl Debugger
If you invoke Perl with the -d switch, your script runs under the
 Perl source debugger. This works like
an interactive Perl
 environment, prompting for debugger commands that let you examine
 source
code, set breakpoints, get stack backtraces, change the values of
 variables, etc. This is so convenient
that you often fire up
 the debugger all by itself just to test out Perl constructs
 interactively to see what
they do. For example:

 $ perl -d -e 42

In Perl, the debugger is not a separate program the way it usually is in the
 typical compiled
environment. Instead, the -d flag tells the compiler
 to insert source information into the parse trees it's
about to hand off
 to the interpreter. That means your code must first compile correctly
 for the
debugger to work on it. Then when the interpreter starts up, it
 preloads a special Perl library file
containing the debugger.

The program will halt right before the first run-time executable
 statement (but see below regarding
compile-time statements) and ask you
 to enter a debugger command. Contrary to popular
expectations, whenever
 the debugger halts and shows you a line of code, it always displays the
 line
it's about to execute, rather than the one it has just executed.

Any command not recognized by the debugger is directly executed
 (eval'd) as Perl code in the
current package. (The debugger
 uses the DB package for keeping its own state information.)

Note that the said eval is bound by an implicit scope. As a
 result any newly introduced lexical
variable or any modified
 capture buffer content is lost after the eval. The debugger is a
 nice
environment to learn Perl, but if you interactively experiment using
 material which should be in the
same scope, stuff it in one line.

For any text entered at the debugger prompt, leading and trailing whitespace
 is first stripped before
further processing. If a debugger command
 coincides with some function in your own program, merely
precede the
 function with something that doesn't look like a debugger command, such
 as a leading ;
or perhaps a +, or by wrapping it with parentheses
 or braces.

Calling the debugger
There are several ways to call the debugger:

perl -d program_name

On the given program identified by program_name.

perl -d -e 0

Interactively supply an arbitrary expression using -e.

perl -d:Ptkdb program_name

Debug a given program via the Devel::Ptkdb GUI.

perl -dt threaded_program_name

Debug a given program using threads (experimental).

Perl version 5.10.0 documentation - perldebug

Page 2http://perldoc.perl.org

Debugger Commands
The interactive debugger understands the following commands:

h

Prints out a summary help message

h [command]

Prints out a help message for the given debugger command.

h h

The special argument of h h produces the entire help page, which is quite
long.

If the output of the h h command (or any command, for that matter) scrolls

past your screen, precede the command with a leading pipe symbol so
 that it's
run through your pager, as in

 DB> |h h

You may change the pager which is used via o pager=... command.

p expr

Same as print {$DB::OUT} expr in the current package. In particular,

because this is just Perl's own print function, this means that nested
 data
structures and objects are not dumped, unlike with the x command.

The DB::OUT filehandle is opened to /dev/tty, regardless of
 where STDOUT
may be redirected to.

x [maxdepth] expr

Evaluates its expression in list context and dumps out the result in a

pretty-printed fashion. Nested data structures are printed out
 recursively, unlike
the real print function in Perl. When dumping
 hashes, you'll probably prefer 'x
\%h' rather than 'x %h'.
 See Dumpvalue if you'd like to do this yourself.

The output format is governed by multiple options described under
Configurable Options.

If the maxdepth is included, it must be a numeral N; the value is
 dumped only
N levels deep, as if the dumpDepth option had been
 temporarily set to N.

V [pkg [vars]]

Display all (or some) variables in package (defaulting to main)
 using a data
pretty-printer (hashes show their keys and values so
 you see what's what,
control characters are made printable, etc.).
 Make sure you don't put the type
specifier (like $) there, just
 the symbol names, like this:

 V DB filename line

Use ~pattern and !pattern for positive and negative regexes.

This is similar to calling the x command on each applicable var.

X [vars]

Same as V currentpackage [vars].

y [level [vars]]

Display all (or some) lexical variables (mnemonic: mY variables)
 in the current
scope or level scopes higher. You can limit the
 variables that you see with vars
which works exactly as it does
 for the V and X commands. Requires the

