
Perl version 5.10.0 documentation - perldebtut

Page 1http://perldoc.perl.org

NAME
perldebtut - Perl debugging tutorial

DESCRIPTION
A (very) lightweight introduction in the use of the perl debugger, and a
 pointer to existing, deeper
sources of information on the subject of debugging
 perl programs.

There's an extraordinary number of people out there who don't appear to know
 anything about using
the perl debugger, though they use the language every
 day. This is for them.

use strict
First of all, there's a few things you can do to make your life a lot more
 straightforward when it comes
to debugging perl programs, without using the
 debugger at all. To demonstrate, here's a simple script,
named "hello", with
 a problem:

	 #!/usr/bin/perl

	 $var1 = 'Hello World'; # always wanted to do that :-)
	 $var2 = "$varl\n";

	 print $var2;
	 exit;

While this compiles and runs happily, it probably won't do what's expected,
 namely it doesn't print
"Hello World\n" at all; It will on the other hand do
 exactly what it was told to do, computers being a bit
that way inclined. That
 is, it will print out a newline character, and you'll get what looks like a
 blank
line. It looks like there's 2 variables when (because of the typo)
 there's really 3:

	 $var1 = 'Hello World';
	 $varl = undef;
	 $var2 = "\n";

To catch this kind of problem, we can force each variable to be declared
 before use by pulling in the
strict module, by putting 'use strict;' after the
 first line of the script.

Now when you run it, perl complains about the 3 undeclared variables and we
 get four error
messages because one variable is referenced twice:

 Global symbol "$var1" requires explicit package name at ./t1 line 4.
 Global symbol "$var2" requires explicit package name at ./t1 line 5.
 Global symbol "$varl" requires explicit package name at ./t1 line 5.
 Global symbol "$var2" requires explicit package name at ./t1 line 7.
 Execution of ./hello aborted due to compilation errors.

Luvverly! and to fix this we declare all variables explicitly and now our
 script looks like this:

	 #!/usr/bin/perl
	 use strict;

	 my $var1 = 'Hello World';
	 my $varl = undef;
	 my $var2 = "$varl\n";

	 print $var2;
	 exit;

Perl version 5.10.0 documentation - perldebtut

Page 2http://perldoc.perl.org

We then do (always a good idea) a syntax check before we try to run it again:

	 > perl -c hello
	 hello syntax OK

And now when we run it, we get "\n" still, but at least we know why. Just
 getting this script to compile
has exposed the '$varl' (with the letter 'l')
 variable, and simply changing $varl to $var1 solves the
problem.

Looking at data and -w and v
Ok, but how about when you want to really see your data, what's in that
 dynamic variable, just before
using it?

	 #!/usr/bin/perl
	 use strict;

	 my $key = 'welcome';
	 my %data = (
		 'this' => qw(that),
		 'tom' => qw(and jerry),
		 'welcome' => q(Hello World),
		 'zip' => q(welcome),
);
	 my @data = keys %data;

	 print "$data{$key}\n";
	 exit;

Looks OK, after it's been through the syntax check (perl -c scriptname), we
 run it and all we get is a
blank line again! Hmmmm.

One common debugging approach here, would be to liberally sprinkle a few print
 statements, to add a
check just before we print out our data, and another just
 after:

	 print "All OK\n" if grep($key, keys %data);
	 print "$data{$key}\n";
	 print "done: '$data{$key}'\n";

And try again:

	 > perl data
	 All OK

	 done: ''

After much staring at the same piece of code and not seeing the wood for the
 trees for some time, we
get a cup of coffee and try another approach. That
 is, we bring in the cavalry by giving perl the '-d'
switch on the command
 line:

	 > perl -d data
	 Default die handler restored.

	 Loading DB routines from perl5db.pl version 1.07
	 Editor support available.

Perl version 5.10.0 documentation - perldebtut

Page 3http://perldoc.perl.org

	 Enter h or `h h' for help, or `man perldebug' for more help.

	 main::(./data:4): my $key = 'welcome';

Now, what we've done here is to launch the built-in perl debugger on our
 script. It's stopped at the first
line of executable code and is waiting for
 input.

Before we go any further, you'll want to know how to quit the debugger: use
 just the letter 'q', not the
words 'quit' or 'exit':

	 DB<1> q
	 >

That's it, you're back on home turf again.

help
Fire the debugger up again on your script and we'll look at the help menu. There's a couple of ways of
calling help: a simple 'h' will get the summary help list, '|h' (pipe-h) will pipe the help through your
pager (which is (probably 'more' or 'less'), and finally, 'h h' (h-space-h) will give you the entire help
screen. Here is the summary page:

D1h

 List/search source lines: Control script execution:
 l [ln|sub] List source code T Stack trace
 - or . List previous/current line s [expr] Single step [in expr]
 v [line] View around line n [expr] Next, steps over subs
 f filename View source in file <CR/Enter> Repeat last n or s
 /pattern/ ?patt? Search forw/backw r Return from
subroutine
 M Show module versions c [ln|sub] Continue until
position
 Debugger controls: L List
break/watch/actions
 o [...] Set debugger options t [expr] Toggle trace [trace
expr]
 <[<]|{[{]|>[>] [cmd] Do pre/post-prompt b [ln|event|sub] [cnd] Set
breakpoint
 ! [N|pat] Redo a previous command B ln|* Delete a/all
breakpoints
 H [-num] Display last num commands a [ln] cmd Do cmd before line
 = [a val] Define/list an alias A ln|* Delete a/all actions
 h [db_cmd] Get help on command w expr Add a watch
expression
 h h Complete help page W expr|* Delete a/all watch
exprs
 |[|]db_cmd Send output to pager ![!] syscmd Run cmd in a
subprocess
 q or ^D Quit R Attempt a restart
 Data Examination: expr Execute perl code, also see: s,n,t expr
 x|m expr Evals expr in list context, dumps the result or lists
methods.
 p expr Print expression (uses script's current package).
 S [[!]pat] List subroutine names [not] matching pattern
 V [Pk [Vars]] List Variables in Package. Vars can be ~pattern or
!pattern.

