
Perl version 5.10.0 documentation - perldebguts

Page 1http://perldoc.perl.org

NAME
perldebguts - Guts of Perl debugging

DESCRIPTION
This is not the perldebug(1) manpage, which tells you how to use
the debugger. This manpage
describes low-level details concerning
the debugger's internals, which range from difficult to
impossible
to understand for anyone who isn't incredibly intimate with Perl's guts.
Caveat lector.

Debugger Internals
Perl has special debugging hooks at compile-time and run-time used
to create debugging
environments. These hooks are not to be confused
with the perl -Dxxx command described in perlrun,
which is
usable only if a special Perl is built per the instructions in the INSTALL podpage in the Perl
source tree.

For example, whenever you call Perl's built-in caller function
from the package DB, the arguments
that the corresponding stack
frame was called with are copied to the @DB::args array. These

mechanisms are enabled by calling Perl with the -d switch.
Specifically, the following additional
features are enabled
(cf. "$^P" in perlvar):

Perl inserts the contents of $ENV{PERL5DB} (or BEGIN {require
 'perl5db.pl'} if not
present) before the first line of your program.

Each array @{"_<$filename"} holds the lines of $filename for a
file compiled by Perl. The
same is also true for eval ed strings
that contain subroutines, or which are currently being
executed.
The $filename for eval ed strings looks like (eval 34) .
Code assertions in
regexes look like (re_eval 19) .

Values in this array are magical in numeric context: they compare
equal to zero only if the line
is not breakable.

Each hash %{"_<$filename"} contains breakpoints and actions keyed
by line number.
Individual entries (as opposed to the whole hash)
are settable. Perl only cares about Boolean
true here, although
the values used by perl5db.pl have the form
"$break_condition\0$action" .

The same holds for evaluated strings that contain subroutines, or
which are currently being
executed. The $filename for eval ed strings
looks like (eval 34) or (re_eval 19) .

Each scalar ${"_<$filename"} contains "_<$filename" . This is
also the case for
evaluated strings that contain subroutines, or
which are currently being executed. The
$filename for eval ed
strings looks like (eval 34) or (re_eval 19) .

After each require d file is compiled, but before it is executed,
DB::postponed(*{"_<$filename"}) is called if the subroutine DB::postponed exists.
Here, the $filename is the expanded name of
the require d file, as found in the values of
%INC.

After each subroutine subname is compiled, the existence of $DB::postponed{subname}
is checked. If this key exists, DB::postponed(subname) is called if the DB::postponed
subroutine
also exists.

A hash %DB::sub is maintained, whose keys are subroutine names
and whose values have
the form filename:startline-endline . filename has the form (eval 34) for
subroutines defined inside eval s, or (re_eval 19) for those within regex code assertions.

When the execution of your program reaches a point that can hold a
breakpoint, the
DB::DB() subroutine is called if any of the variables $DB::trace , $DB::single , or
$DB::signal is true. These variables
are not local izable. This feature is disabled when
executing
inside DB::DB() , including functions called from it unless $^D & (1<<30) is true.

