
Perl version 5.10.0 documentation - perldata

Page 1http://perldoc.perl.org

NAME
perldata - Perl data types

DESCRIPTION
Variable names

Perl has three built-in data types: scalars, arrays of scalars, and
 associative arrays of scalars, known
as "hashes". A scalar is a single string (of any size, limited only by the available memory),
 number, or
a reference to something (which will be discussed
 in perlref). Normal arrays are ordered lists of
scalars indexed
 by number, starting with 0. Hashes are unordered collections of scalar values
indexed by their associated string key.

Values are usually referred to by name, or through a named reference.
 The first character of the
name tells you to what sort of data
 structure it refers. The rest of the name tells you the particular

value to which it refers. Usually this name is a single identifier,
 that is, a string beginning with a letter
or underscore, and
 containing letters, underscores, and digits. In some cases, it may
 be a chain of
identifiers, separated by :: (or by the slightly
 archaic '); all but the last are interpreted as names of
packages,
 to locate the namespace in which to look up the final identifier
 (see "Packages" in perlmod
for details). It's possible to substitute
 for a simple identifier, an expression that produces a reference

to the value at runtime. This is described in more detail below
 and in perlref.

Perl also has its own built-in variables whose names don't follow
 these rules. They have strange
names so they don't accidentally
 collide with one of your normal variables. Strings that match

parenthesized parts of a regular expression are saved under names
 containing only digits after the $
(see perlop and perlre).
 In addition, several special variables that provide windows into
 the inner
working of Perl have names containing punctuation characters
 and control characters. These are
documented in perlvar.

Scalar values are always named with '$', even when referring to a
 scalar that is part of an array or a
hash. The '$' symbol works
 semantically like the English word "the" in that it indicates a
 single value is
expected.

 $days		 # the simple scalar value "days"
 $days[28]		 # the 29th element of array @days
 $days{'Feb'}	 # the 'Feb' value from hash %days
 $#days		 # the last index of array @days

Entire arrays (and slices of arrays and hashes) are denoted by '@',
 which works much like the word
"these" or "those" does in English,
 in that it indicates multiple values are expected.

 @days		 # ($days[0], $days[1],... $days[n])
 @days[3,4,5]	 # same as ($days[3],$days[4],$days[5])
 @days{'a','c'}	 # same as ($days{'a'},$days{'c'})

Entire hashes are denoted by '%':

 %days		 # (key1, val1, key2, val2 ...)

In addition, subroutines are named with an initial '&', though this
 is optional when unambiguous, just
as the word "do" is often redundant
 in English. Symbol table entries can be named with an initial '*',

but you don't really care about that yet (if ever :-).

Every variable type has its own namespace, as do several
 non-variable identifiers. This means that
you can, without fear
 of conflict, use the same name for a scalar variable, an array, or
 a hash--or, for
that matter, for a filehandle, a directory handle, a
 subroutine name, a format name, or a label. This
means that $foo
 and @foo are two different variables. It also means that $foo[1]
 is a part of @foo,
not a part of $foo. This may seem a bit weird,
 but that's okay, because it is weird.

