
Perl version 5.10.0 documentation - perlcompile

Page 1http://perldoc.perl.org

NAME
perlcompile - Introduction to the Perl Compiler-Translator

DESCRIPTION
Perl has always had a compiler: your source is compiled into an
internal form (a parse tree) which is
then optimized before being
run. Since version 5.005, Perl has shipped with a module
capable of
inspecting the optimized parse tree (B), and this has
been used to write many useful utilities, including
a module that lets
you turn your Perl into C source code that can be compiled into a
native
executable.

The B module provides access to the parse tree, and other modules
("back ends") do things with the
tree. Some write it out as
semi-human-readable text. Another traverses the parse tree to build a

cross-reference of which subroutines, formats, and variables are used
where. Another checks your
code for dubious constructs. Yet another back
end dumps the parse tree back out as Perl source,
acting as a source code
beautifier or deobfuscator.

Because its original purpose was to be a way to produce C code
corresponding to a Perl program,
and in turn a native executable, the B module and its associated back ends are known as "the

compiler", even though they don't really compile anything.
Different parts of the compiler are more
accurately a "translator",
or an "inspector", but people want Perl to have a "compiler
option" not an
"inspector gadget". What can you do?

This document covers the use of the Perl compiler: which modules
it comprises, how to use the most
important of the back end modules,
what problems there are, and how to work around them.

Layout
The compiler back ends are in the B:: hierarchy, and the front-end
(the module that you, the user of
the compiler, will sometimes
interact with) is the O module.

Here are the important back ends to know about, with their status
expressed as a number from 0
(outline for later implementation) to
10 (if there's a bug in it, we're very surprised):

B::Lint

Complains if it finds dubious constructs in your source code. Status:
6 (it works adequately,
but only has a very limited number of areas
that it checks).

B::Deparse

Recreates the Perl source, making an attempt to format it coherently.
Status: 8 (it works
nicely, but a few obscure things are missing).

B::Xref

Reports on the declaration and use of subroutines and variables.
Status: 8 (it works nicely, but
still has a few lingering bugs).

Using The Back Ends
The following sections describe how to use the various compiler back
ends. They're presented
roughly in order of maturity, so that the
most stable and proven back ends are described first, and the
most
experimental and incomplete back ends are described last.

The O module automatically enabled the -c flag to Perl, which
prevents Perl from executing your code
once it has been compiled.
This is why all the back ends print:

 myperlprogram syntax OK

before producing any other output.

