
Perl version 5.10.0 documentation - perlcall

Page 1http://perldoc.perl.org

NAME
perlcall - Perl calling conventions from C

DESCRIPTION
The purpose of this document is to show you how to call Perl subroutines
 directly from C, i.e., how to
write callbacks.

Apart from discussing the C interface provided by Perl for writing
 callbacks the document uses a
series of examples to show how the
 interface actually works in practice. In addition some techniques
for
 coding callbacks are covered.

Examples where callbacks are necessary include

* An Error Handler

You have created an XSUB interface to an application's C API.

A fairly common feature in applications is to allow you to define a C
 function that will be
called whenever something nasty occurs. What we
 would like is to be able to specify a Perl
subroutine that will be
 called instead.

* An Event Driven Program

The classic example of where callbacks are used is when writing an
 event driven program
like for an X windows application. In this case
 you register functions to be called whenever
specific events occur,
 e.g., a mouse button is pressed, the cursor moves into a window or a

menu item is selected.

Although the techniques described here are applicable when embedding
 Perl in a C program, this is
not the primary goal of this document.
 There are other details that must be considered and are
specific to
 embedding Perl. For details on embedding Perl in C refer to perlembed.

Before you launch yourself head first into the rest of this document,
 it would be a good idea to have
read the following two documents - perlxs and perlguts.

THE CALL_ FUNCTIONS
Although this stuff is easier to explain using examples, you first need
 be aware of a few important
definitions.

Perl has a number of C functions that allow you to call Perl
 subroutines. They are

 I32 call_sv(SV* sv, I32 flags);
 I32 call_pv(char *subname, I32 flags);
 I32 call_method(char *methname, I32 flags);
 I32 call_argv(char *subname, I32 flags, register char **argv);

The key function is call_sv. All the other functions are
 fairly simple wrappers which make it easier to
call Perl subroutines in
 special cases. At the end of the day they will all call call_sv
 to invoke the Perl
subroutine.

All the call_* functions have a flags parameter which is
 used to pass a bit mask of options to Perl.
This bit mask operates
 identically for each of the functions. The settings available in the
 bit mask are
discussed in FLAG VALUES.

Each of the functions will now be discussed in turn.

call_sv

call_sv takes two parameters, the first, sv, is an SV*.
 This allows you to specify the Perl
subroutine to be called either as a
 C string (which has first been converted to an SV) or a
reference to a
 subroutine. The section, Using call_sv, shows how you can make
 use of
call_sv.

Perl version 5.10.0 documentation - perlcall

Page 2http://perldoc.perl.org

call_pv

The function, call_pv, is similar to call_sv except it
 expects its first parameter to be a C char*
which identifies the Perl
 subroutine you want to call, e.g., call_pv("fred", 0). If the

subroutine you want to call is in another package, just include the
 package name in the
string, e.g., "pkg::fred".

call_method

The function call_method is used to call a method from a Perl
 class. The parameter
methname corresponds to the name of the method
 to be called. Note that the class that the
method belongs to is passed
 on the Perl stack rather than in the parameter list. This class
can be
 either the name of the class (for a static method) or a reference to an
 object (for a
virtual method). See perlobj for more information on
 static and virtual methods and Using
call_method for an example
 of using call_method.

call_argv

call_argv calls the Perl subroutine specified by the C string
 stored in the subname
parameter. It also takes the usual flags
 parameter. The final parameter, argv, consists of
a NULL terminated
 list of C strings to be passed as parameters to the Perl subroutine.
 See
Using call_argv.

All the functions return an integer. This is a count of the number of
 items returned by the Perl
subroutine. The actual items returned by the
 subroutine are stored on the Perl stack.

As a general rule you should always check the return value from
 these functions. Even if you are
expecting only a particular number of
 values to be returned from the Perl subroutine, there is nothing
to
 stop someone from doing something unexpected--don't say you haven't
 been warned.

FLAG VALUES
The flags parameter in all the call_* functions is a bit mask
 which can consist of any combination of
the symbols defined below,
 OR'ed together.

G_VOID
Calls the Perl subroutine in a void context.

This flag has 2 effects:

1. It indicates to the subroutine being called that it is executing in
 a void context (if it executes
wantarray the result will be the
 undefined value).

2. It ensures that nothing is actually returned from the subroutine.

The value returned by the call_* function indicates how many
 items have been returned by the Perl
subroutine - in this case it will
 be 0.

G_SCALAR
Calls the Perl subroutine in a scalar context. This is the default
 context flag setting for all the call_*
functions.

This flag has 2 effects:

1. It indicates to the subroutine being called that it is executing in a
 scalar context (if it executes
wantarray the result will be false).

2. It ensures that only a scalar is actually returned from the subroutine.
 The subroutine can, of
course, ignore the wantarray and return a
 list anyway. If so, then only the last element of the
list will be
 returned.

The value returned by the call_* function indicates how many
 items have been returned by the Perl
subroutine - in this case it will
 be either 0 or 1.

