
Perl version 5.10.0 documentation - perlboot

Page 1http://perldoc.perl.org

NAME
perlboot - Beginner's Object-Oriented Tutorial

DESCRIPTION
If you're not familiar with objects from other languages, some of the
 other Perl object documentation 
may be a little daunting, such as perlobj, a basic reference in using objects, and perltoot, which

introduces readers to the peculiarities of Perl's object system in a
 tutorial way.

So, let's take a different approach, presuming no prior object
 experience. It helps if you know about 
subroutines (perlsub),
 references (perlref et. seq.), and packages (perlmod), so become
 familiar with 
those first if you haven't already.

If we could talk to the animals...
Let's let the animals talk for a moment:

    sub  Cow::speak  {
      print  "a  Cow goes  moooo!\n";
    }
    sub  Horse::speak  {
      print  "a  Horse  goes  neigh!\n";
    }
    sub  Sheep::speak  {
      print  "a  Sheep goes  baaaah!\n";
    }

    Cow::speak;
    Horse::speak;
    Sheep::speak;

This results in:

    a Cow goes  moooo!
    a Horse  goes  neigh!
    a Sheep goes  baaaah!

Nothing spectacular here. Simple subroutines, albeit from separate
 packages, and called using the 
full package name. So let's create
 an entire pasture:

    # Cow::speak,  Horse::speak,  Sheep::speak  as  before
    @pasture  = qw(Cow Cow Horse  Sheep Sheep);
    foreach  $animal  (@pasture)  {
      &{$animal."::speak"};
    }

This results in:

    a Cow goes  moooo!
    a Cow goes  moooo!
    a Horse  goes  neigh!
    a Sheep goes  baaaah!
    a Sheep goes  baaaah!

Wow. That symbolic coderef de-referencing there is pretty nasty.
 We're counting on no strict  
subs  mode, certainly not recommended
 for larger programs. And why was that necessary? Because 
the name of
 the package seems to be inseparable from the name of the subroutine we
 want to invoke
within that package.


