
Perl version 5.10.0 documentation - perl590delta

Page 1http://perldoc.perl.org

NAME
perl590delta - what is new for perl v5.9.0

DESCRIPTION
This document describes differences between the 5.8.0 release and
 the 5.9.0 release.

Incompatible Changes
Hash Randomisation

Mainly due to security reasons, the "random ordering" of hashes
 has been made even more random.
Previously while the order of hash
 elements from keys(), values(), and each() was essentially random,
it was still repeatable. Now, however, the order varies between
 different runs of Perl.

Perl has never guaranteed any ordering of the hash keys, and the
 ordering has already changed
several times during the lifetime of
 Perl 5. Also, the ordering of hash keys has always been, and

continues to be, affected by the insertion order.

The added randomness may affect applications.

One possible scenario is when output of an application has included
 hash data. For example, if you
have used the Data::Dumper module to
 dump data into different files, and then compared the files to
see
 whether the data has changed, now you will have false positives since
 the order in which hashes
are dumped will vary. In general the cure
 is to sort the keys (or the values); in particular for
Data::Dumper to
 use the Sortkeys option. If some particular order is really
 important, use tied
hashes: for example the Tie::IxHash module
 which by default preserves the order in which the hash
elements
 were added.

More subtle problem is reliance on the order of "global destruction".
 That is what happens at the end
of execution: Perl destroys all data
 structures, including user data. If your destructors (the DESTROY

subroutines) have assumed any particular ordering to the global
 destruction, there might be problems
ahead. For example, in a
 destructor of one object you cannot assume that objects of any other
 class
are still available, unless you hold a reference to them.
 If the environment variable
PERL_DESTRUCT_LEVEL is set to a non-zero
 value, or if Perl is exiting a spawned thread, it will
also destruct
 the ordinary references and the symbol tables that are no longer in use.
 You can't call a
class method or an ordinary function on a class that
 has been collected that way.

The hash randomisation is certain to reveal hidden assumptions about
 some particular ordering of
hash elements, and outright bugs: it
 revealed a few bugs in the Perl core and core modules.

To disable the hash randomisation in runtime, set the environment
 variable PERL_HASH_SEED to 0
(zero) before running Perl (for more
 information see "PERL_HASH_SEED" in perlrun), or to disable
the feature
 completely in compile time, compile with -DNO_HASH_SEED (see INSTALL).

See "Algorithmic Complexity Attacks" in perlsec for the original
 rationale behind this change.

UTF-8 On Filehandles No Longer Activated By Locale
In Perl 5.8.0 all filehandles, including the standard filehandles,
 were implicitly set to be in Unicode
UTF-8 if the locale settings
 indicated the use of UTF-8. This feature caused too many problems,
 so
the feature was turned off and redesigned: see Core Enhancements.

Single-number v-strings are no longer v-strings before "=>"
The version strings or v-strings (see "Version Strings" in perldata)
 feature introduced in Perl 5.6.0 has
been a source of some confusion--
 especially when the user did not want to use it, but Perl thought it

knew better. Especially troublesome has been the feature that before
 a "=>" a version string (a "v"
followed by digits) has been interpreted
 as a v-string instead of a string literal. In other words:

	 %h = (v65 => 42);

has meant since Perl 5.6.0

