
Perl version 5.10.0 documentation - perl581delta

Page 1http://perldoc.perl.org

NAME
perl581delta - what is new for perl v5.8.1

DESCRIPTION
This document describes differences between the 5.8.0 release and
the 5.8.1 release.

If you are upgrading from an earlier release such as 5.6.1, first read
the perl58delta, which describes
differences between 5.6.0 and
5.8.0.

In case you are wondering about 5.6.1, it was bug-fix-wise rather
identical to the development release
5.7.1. Confused? This timeline
hopefully helps a bit: it lists the new major releases, their maintenance

releases, and the development releases.

 New Maintenance Development

 5.6.0 2000-Mar-22
 5.7.0 2000-Sep-02
 5.6.1 2001-Apr-08
 5.7.1 2001-Apr-09
 5.7.2 2001-Jul-13
 5.7.3 2002-Mar-05
 5.8.0 2002-Jul-18
 5.8.1 2003-Sep-25

Incompatible Changes
Hash Randomisation

Mainly due to security reasons, the "random ordering" of hashes
has been made even more random.
Previously while the order of hash
elements from keys(), values(), and each() was essentially random,
it was still repeatable. Now, however, the order varies between
different runs of Perl.

Perl has never guaranteed any ordering of the hash keys, and the
ordering has already changed
several times during the lifetime of
Perl 5. Also, the ordering of hash keys has always been, and

continues to be, affected by the insertion order.

The added randomness may affect applications.

One possible scenario is when output of an application has included
hash data. For example, if you
have used the Data::Dumper module to
dump data into different files, and then compared the files to
see
whether the data has changed, now you will have false positives since
the order in which hashes
are dumped will vary. In general the cure
is to sort the keys (or the values); in particular for
Data::Dumper to
use the Sortkeys option. If some particular order is really
important, use tied
hashes: for example the Tie::IxHash module
which by default preserves the order in which the hash
elements
were added.

More subtle problem is reliance on the order of "global destruction".
That is what happens at the end
of execution: Perl destroys all data
structures, including user data. If your destructors (the DESTROY

subroutines) have assumed any particular ordering to the global
destruction, there might be problems
ahead. For example, in a
destructor of one object you cannot assume that objects of any other
class
are still available, unless you hold a reference to them.
If the environment variable
PERL_DESTRUCT_LEVEL is set to a non-zero
value, or if Perl is exiting a spawned thread, it will
also destruct
the ordinary references and the symbol tables that are no longer in use.
You can't call a
class method or an ordinary function on a class that
has been collected that way.

The hash randomisation is certain to reveal hidden assumptions about
some particular ordering of
hash elements, and outright bugs: it
revealed a few bugs in the Perl core and core modules.

To disable the hash randomisation in runtime, set the environment
variable PERL_HASH_SEED to 0

