
Perl version 5.10.0 documentation - perl571delta

Page 1http://perldoc.perl.org

NAME
perl571delta - what's new for perl v5.7.1

DESCRIPTION
This document describes differences between the 5.7.0 release and the
 5.7.1 release.

(To view the differences between the 5.6.0 release and the 5.7.0
 release, see perl570delta.)

Security Vulnerability Closed
(This change was already made in 5.7.0 but bears repeating here.)

A potential security vulnerability in the optional suidperl component
 of Perl was identified in August
2000. suidperl is neither built nor
 installed by default. As of April 2001 the only known vulnerable

platform is Linux, most likely all Linux distributions. CERT and
 various vendors and distributors have
been alerted about the vulnerability.
 See
http://www.cpan.org/src/5.0/sperl-2000-08-05/sperl-2000-08-05.txt
 for more information.

The problem was caused by Perl trying to report a suspected security
 exploit attempt using an
external program, /bin/mail. On Linux
 platforms the /bin/mail program had an undocumented feature
which
 when combined with suidperl gave access to a root shell, resulting in
 a serious compromise
instead of reporting the exploit attempt. If you
 don't have /bin/mail, or if you have 'safe setuid scripts',
or if
 suidperl is not installed, you are safe.

The exploit attempt reporting feature has been completely removed from
 all the Perl 5.7 releases (and
will be gone also from the maintenance
 release 5.6.1), so that particular vulnerability isn't there
anymore.
 However, further security vulnerabilities are, unfortunately, always
 possible. The suidperl
code is being reviewed and if deemed too risky
 to continue to be supported, it may be completely
removed from future
 releases. In any case, suidperl should only be used by security
 experts who
know exactly what they are doing and why they are using
 suidperl instead of some other solution such
as sudo
 (see http://www.courtesan.com/sudo/).

Incompatible Changes
Although "you shouldn't do that", it was possible to write code that
 depends on Perl's hashed
key order (Data::Dumper does this). The new
 algorithm "One-at-a-Time" produces a different
hashed key order.
 More details are in Performance Enhancements.

The list of filenames from glob() (or <...>) is now by default sorted
 alphabetically to be
csh-compliant. (bsd_glob() does still sort platform
 natively, ASCII or EBCDIC, unless
GLOB_ALPHASORT is specified.)

Core Enhancements
AUTOLOAD Is Now Lvaluable

AUTOLOAD is now lvaluable, meaning that you can add the :lvalue attribute
 to AUTOLOAD
subroutines and you can assign to the AUTOLOAD return value.

PerlIO is Now The Default
IO is now by default done via PerlIO rather than system's "stdio".
 PerlIO allows "layers" to be
"pushed" onto a file handle to alter the
 handle's behaviour. Layers can be specified at open
time via 3-arg
 form of open:

 open($fh,'>:crlf :utf8', $path) || ...

or on already opened handles via extended binmode:

 binmode($fh,':encoding(iso-8859-7)');

The built-in layers are: unix (low level read/write), stdio (as in
 previous Perls), perlio
(re-implementation of stdio buffering in a
 portable manner), crlf (does CRLF <=> "\n"

Perl version 5.10.0 documentation - perl571delta

Page 2http://perldoc.perl.org

translation as on Win32,
 but available on any platform). A mmap layer may be available if

platform supports it (mostly UNIXes).

Layers to be applied by default may be specified via the 'open' pragma.

See Installation and Configuration Improvements for the effects
 of PerlIO on your architecture
name.

File handles can be marked as accepting Perl's internal encoding of Unicode
 (UTF-8 or
UTF-EBCDIC depending on platform) by a pseudo layer ":utf8" :

 open($fh,">:utf8","Uni.txt");

Note for EBCDIC users: the pseudo layer ":utf8" is erroneously named
 for you since it's not
UTF-8 what you will be getting but instead
 UTF-EBCDIC. See perlunicode, utf8, and

http://www.unicode.org/unicode/reports/tr16/ for more information.
 In future releases this
naming may change.

File handles can translate character encodings from/to Perl's internal
 Unicode form on
read/write via the ":encoding()" layer.

File handles can be opened to "in memory" files held in Perl scalars via:

 open($fh,'>', \$variable) || ...

Anonymous temporary files are available without need to
 'use FileHandle' or other module via

 open($fh,"+>", undef) || ...

That is a literal undef, not an undefined value.

The list form of open is now implemented for pipes (at least on UNIX):

 open($fh,"-|", 'cat', '/etc/motd')

creates a pipe, and runs the equivalent of exec('cat', '/etc/motd') in
 the child process.

The following builtin functions are now overridable: chop(), chomp(),
 each(), keys(), pop(),
push(), shift(), splice(), unshift().

Formats now support zero-padded decimal fields.

Perl now tries internally to use integer values in numeric conversions
 and basic arithmetics (+
- * /) if the arguments are integers, and
 tries also to keep the results stored internally as
integers.
 This change leads into often slightly faster and always less lossy
 arithmetics.
(Previously Perl always preferred floating point numbers
 in its math.)

The printf() and sprintf() now support parameter reordering using the %\d+\$ and *\d+\$
syntaxes. For example

 print "%2\$s %1\$s\n", "foo", "bar";

will print "bar foo\n"; This feature helps in writing
 internationalised software.

Unicode in general should be now much more usable. Unicode can be
 used in hash keys,
Unicode in regular expressions should work now,
 Unicode in tr/// should work now (though tr///
seems to be a
 particularly tricky to get right, so you have been warned)

The Unicode Character Database coming with Perl has been upgraded
 to Unicode 3.1. For
more information, see http://www.unicode.org/ ,
 and
http://www.unicode.org/unicode/reports/tr27/

For developers interested in enhancing Perl's Unicode capabilities:
 almost all the UCD files
are included with the Perl distribution in
 the lib/unicode subdirectory. The most notable

