
Perl version 5.10.0 documentation - overload

Page 1http://perldoc.perl.org

NAME
overload - Package for overloading Perl operations

SYNOPSIS
 package SomeThing;

 use overload
	 '+' => \&myadd,
	 '-' => \&mysub;
	 # etc
 ...

 package main;
 $a = new SomeThing 57;
 $b=5+$a;
 ...
 if (overload::Overloaded $b) {...}
 ...
 $strval = overload::StrVal $b;

DESCRIPTION
Declaration of overloaded functions

The compilation directive

 package Number;
 use overload
	 "+" => \&add,
	 "*=" => "muas";

declares function Number::add() for addition, and method muas() in
 the "class" Number (or one of its
base classes)
 for the assignment form *= of multiplication.

Arguments of this directive come in (key, value) pairs. Legal values
 are values legal inside a &{ ...
 } call, so the name of a
 subroutine, a reference to a subroutine, or an anonymous subroutine
 will all
work. Note that values specified as strings are
 interpreted as methods, not subroutines. Legal keys
are listed below.

The subroutine add will be called to execute $a+$b if $a
 is a reference to an object blessed into the
package Number, or if $a is
 not an object from a package with defined mathemagic addition, but $b is
a
 reference to a Number. It can also be called in other situations, like $a+=7 , or $a++ . See MAGIC
AUTOGENERATION. (Mathemagical
 methods refer to methods triggered by an overloaded
mathematical
 operator.)

Since overloading respects inheritance via the @ISA hierarchy, the
 above declaration would also
trigger overloading of + and *= in
 all the packages which inherit from Number.

Calling Conventions for Binary Operations
The functions specified in the use overload ... directive are called
 with three (in one particular
case with four, see Last Resort)
 arguments. If the corresponding operation is binary, then the first
 two
arguments are the two arguments of the operation. However, due to
 general object calling
conventions, the first argument should always be
 an object in the package, so in the situation of 7+$a
, the
 order of the arguments is interchanged. It probably does not matter
 when implementing the
addition method, but whether the arguments
 are reversed is vital to the subtraction method. The
method can
 query this information by examining the third argument, which can take
 three different
values:

