
Perl version 5.10.0 documentation - enc2xs

Page 1http://perldoc.perl.org

NAME
enc2xs -- Perl Encode Module Generator

SYNOPSIS
 enc2xs -[options]
 enc2xs -M ModName mapfiles...
 enc2xs -C

DESCRIPTION
enc2xs builds a Perl extension for use by Encode from either
 Unicode Character Mapping files (.ucm)
or Tcl Encoding Files (.enc).
 Besides being used internally during the build process of the Encode

module, you can use enc2xs to add your own encoding to perl.
 No knowledge of XS is necessary.

Quick Guide
If you want to know as little about Perl as possible but need to
 add a new encoding, just read this
chapter and forget the rest.

0. Have a .ucm file ready. You can get it from somewhere or you can write
 your own from
scratch or you can grab one from the Encode distribution
 and customize it. For the UCM
format, see the next Chapter. In the
 example below, I'll call my theoretical encoding myascii,
defined
 in my.ucm. $ is a shell prompt.

 $ ls -F
 my.ucm

1. Issue a command as follows;

 $ enc2xs -M My my.ucm
 generating Makefile.PL
 generating My.pm
 generating README
 generating Changes

Now take a look at your current directory. It should look like this.

 $ ls -F
 Makefile.PL My.pm my.ucm t/

The following files were created.

 Makefile.PL - MakeMaker script
 My.pm - Encode submodule
 t/My.t - test file

1.1.

If you want *.ucm installed together with the modules, do as follows;

 $ mkdir Encode
 $ mv *.ucm Encode
 $ enc2xs -M My Encode/*ucm

2. Edit the files generated. You don't have to if you have no time AND no
 intention to give it to
someone else. But it is a good idea to edit
 the pod and to add more tests.

3. Now issue a command all Perl Mongers love:

 $ perl Makefile.PL
 Writing Makefile for Encode::My

Perl version 5.10.0 documentation - enc2xs

Page 2http://perldoc.perl.org

4. Now all you have to do is make.

 $ make
 cp My.pm blib/lib/Encode/My.pm
 /usr/local/bin/perl /usr/local/bin/enc2xs -Q -O \
 -o encode_t.c -f encode_t.fnm
 Reading myascii (myascii)
 Writing compiled form
 128 bytes in string tables
 384 bytes (75%) saved spotting duplicates
 1 bytes (0.775%) saved using substrings

 chmod 644 blib/arch/auto/Encode/My/My.bs
 $

The time it takes varies depending on how fast your machine is and
 how large your encoding
is. Unless you are working on something big
 like euc-tw, it won't take too long.

5. You can "make install" already but you should test first.

 $ make test
 PERL_DL_NONLAZY=1 /usr/local/bin/perl -Iblib/arch -Iblib/lib \
 -e 'use Test::Harness qw(&runtests $verbose); \
 $verbose=0; runtests @ARGV;' t/*.t
 t/My....ok
 All tests successful.
 Files=1, Tests=2, 0 wallclock secs
 (0.09 cusr + 0.01 csys = 0.09 CPU)

6. If you are content with the test result, just "make install"

7. If you want to add your encoding to Encode's demand-loading list
 (so you don't have to "use
Encode::YourEncoding"), run

 enc2xs -C

to update Encode::ConfigLocal, a module that controls local settings.
 After that, "use Encode;"
is enough to load your encodings on demand.

The Unicode Character Map
Encode uses the Unicode Character Map (UCM) format for source character
 mappings. This format is
used by IBM's ICU package and was adopted
 by Nick Ing-Simmons for use with the Encode module.
Since UCM is
 more flexible than Tcl's Encoding Map and far more user-friendly,
 this is the
recommended format for Encode now.

A UCM file looks like this.

 #
 # Comments
 #
 <code_set_name> "US-ascii" # Required
 <code_set_alias> "ascii" # Optional
 <mb_cur_min> 1 # Required; usually 1
 <mb_cur_max> 1 # Max. # of bytes/char
 <subchar> \x3F # Substitution char
 #
 CHARMAP
 <U0000> \x00 |0 # <control>

Perl version 5.10.0 documentation - enc2xs

Page 3http://perldoc.perl.org

 <U0001> \x01 |0 # <control>
 <U0002> \x02 |0 # <control>

 <U007C> \x7C |0 # VERTICAL LINE
 <U007D> \x7D |0 # RIGHT CURLY BRACKET
 <U007E> \x7E |0 # TILDE
 <U007F> \x7F |0 # <control>
 END CHARMAP

Anything that follows # is treated as a comment.

The header section continues until a line containing the word
 CHARMAP. This section has a
form of <keyword> value, one
 pair per line. Strings used as values must be quoted.
Barewords are
 treated as numbers. \xXX represents a byte.

Most of the keywords are self-explanatory. subchar means
 substitution character, not
subcharacter. When you decode a Unicode
 sequence to this encoding but no matching
character is found, the byte
 sequence defined here will be used. For most cases, the value
here is
 \x3F; in ASCII, this is a question mark.

CHARMAP starts the character map section. Each line has a form as
 follows:

 <UXXXX> \xXX.. |0 # comment
 ^ ^ ^
 | | +- Fallback flag
 | +-------- Encoded byte sequence
 +-------------- Unicode Character ID in hex

The format is roughly the same as a header section except for the
 fallback flag: | followed by
0..3. The meaning of the possible
 values is as follows:

|0

Round trip safe. A character decoded to Unicode encodes back to the
 same byte
sequence. Most characters have this flag.

|1

Fallback for unicode -> encoding. When seen, enc2xs adds this
 character for the
encode map only.

|2

Skip sub-char mapping should there be no code point.

|3

Fallback for encoding -> unicode. When seen, enc2xs adds this
 character for the
decode map only.

And finally, END OF CHARMAP ends the section.

When you are manually creating a UCM file, you should copy ascii.ucm
 or an existing encoding which
is close to yours, rather than write
 your own from scratch.

When you do so, make sure you leave at least U0000 to U0020 as
 is, unless your environment is
EBCDIC.

CAVEAT: not all features in UCM are implemented. For example,
 icu:state is not used. Because of
that, you need to write a perl
 module if you want to support algorithmical encodings, notably
 the
ISO-2022 series. Such modules include Encode::JP::2022_JP, Encode::KR::2022_KR, and
Encode::TW::HZ.

