
Perl version 5.10.0 documentation - diagnostics

Page 1http://perldoc.perl.org

NAME
diagnostics, splain - produce verbose warning diagnostics

SYNOPSIS
Using the diagnostics pragma:

 use diagnostics;
 use diagnostics -verbose;

 enable diagnostics;
 disable diagnostics;

Using the splain standalone filter program:

 perl program 2>diag.out
 splain [-v] [-p] diag.out

Using diagnostics to get stack traces from a misbehaving script:

 perl -Mdiagnostics=-traceonly my_script.pl

DESCRIPTION
The diagnostics Pragma

This module extends the terse diagnostics normally emitted by both the
 perl compiler and the perl
interpreter (from running perl with a -w switch or use warnings), augmenting them with the more

explicative and endearing descriptions found in perldiag. Like the
 other pragmata, it affects the
compilation phase of your program rather
 than merely the execution phase.

To use in your program as a pragma, merely invoke

 use diagnostics;

at the start (or near the start) of your program. (Note that this does enable perl's -w flag.) Your whole

compilation will then be subject(ed :-) to the enhanced diagnostics.
 These still go out STDERR.

Due to the interaction between runtime and compiletime issues,
 and because it's probably not a very
good idea anyway,
 you may not use no diagnostics to turn them off at compiletime.
 However, you
may control their behaviour at runtime using the disable() and enable() methods to turn them off and
on respectively.

The -verbose flag first prints out the perldiag introduction before
 any other diagnostics. The
$diagnostics::PRETTY variable can generate nicer
 escape sequences for pagers.

Warnings dispatched from perl itself (or more accurately, those that match
 descriptions found in
perldiag) are only displayed once (no duplicate
 descriptions). User code generated warnings a la
warn() are unaffected,
 allowing duplicate user messages to be displayed.

This module also adds a stack trace to the error message when perl dies.
 This is useful for
pinpointing what caused the death. The -traceonly (or
 just -t) flag turns off the explanations of
warning messages leaving just
 the stack traces. So if your script is dieing, run it again with

 perl -Mdiagnostics=-traceonly my_bad_script

to see the call stack at the time of death. By supplying the -warntrace
 (or just -w) flag, any warnings
emitted will also come with a stack
 trace.

