
Perl version 5.10.0 documentation - bigrat

Page 1http://perldoc.perl.org

NAME
bigrat - Transparent BigNumber/BigRational support for Perl

SYNOPSIS
 use bigrat;

 print 2 + 4.5,"\n";			 # BigFloat 6.5
 print 1/3 + 1/4,"\n";			 # produces 7/12

 {
 no bigrat;
 print 1/3,"\n";			 # 0.33333...
 }

 # Note that this will make hex() and oct() be globally overriden:
 use bigrat qw/hex oct/;
 print hex("0x1234567890123490"),"\n";
 print oct("01234567890123490"),"\n";

DESCRIPTION
All operators (including basic math operations) are overloaded. Integer and
 floating-point constants
are created as proper BigInts or BigFloats,
 respectively.

Other than bignum, this module upgrades to Math::BigRat, meaning that
 instead of 2.5 you will get
2+1/2 as output.

Modules Used
bigrat is just a thin wrapper around various modules of the Math::BigInt
 family. Think of it as the
head of the family, who runs the shop, and orders
 the others to do the work.

The following modules are currently used by bignum:

 Math::BigInt::Lite (for speed, and only if it is loadable)
 Math::BigInt
 Math::BigFloat
 Math::BigRat

Math Library
Math with the numbers is done (by default) by a module called
 Math::BigInt::Calc. This is equivalent to
saying:

	 use bigrat lib => 'Calc';

You can change this by using:

 use bignum lib => 'GMP';

The following would first try to find Math::BigInt::Foo, then
 Math::BigInt::Bar, and when this also fails,
revert to Math::BigInt::Calc:

	 use bigrat lib => 'Foo,Math::BigInt::Bar';

Using lib warns if none of the specified libraries can be found and Math::BigInt did fall back to one of
the default libraries.
 To supress this warning, use try instead:

Perl version 5.10.0 documentation - bigrat

Page 2http://perldoc.perl.org

 use bignum try => 'GMP';

If you want the code to die instead of falling back, use only instead:

 use bignum only => 'GMP';

Please see respective module documentation for further details.

Sign
The sign is either '+', '-', 'NaN', '+inf' or '-inf'.

A sign of 'NaN' is used to represent the result when input arguments are not
 numbers or as a result of
0/0. '+inf' and '-inf' represent plus respectively
 minus infinity. You will get '+inf' when dividing a positive
number by 0, and
 '-inf' when dividing any negative number by 0.

Methods
Since all numbers are not objects, you can use all functions that are part of
 the BigInt or BigFloat API.
It is wise to use only the bxxx() notation, and not
 the fxxx() notation, though. This makes you
independed on the fact that the
 underlying object might morph into a different class than BigFloat.

inf()

A shortcut to return Math::BigInt->binf(). Useful because Perl does not always
 handle bareword
inf properly.

NaN()

A shortcut to return Math::BigInt->bnan(). Useful because Perl does not always
 handle bareword
NaN properly.

e

	 # perl -Mbigrat=e -wle 'print e'

Returns Euler's number e, aka exp(1).

PI

	 # perl -Mbigrat=PI -wle 'print PI'

Returns PI.

bexp()

	 bexp($power,$accuracy);

Returns Euler's number e raised to the appropriate power, to
 the wanted accuracy.

Example:

	 # perl -Mbigrat=bexp -wle 'print bexp(1,80)'

bpi()

	 bpi($accuracy);

Returns PI to the wanted accuracy.

Example:

	 # perl -Mbigrat=bpi -wle 'print bpi(80)'

upgrade()

Perl version 5.10.0 documentation - bigrat

Page 3http://perldoc.perl.org

Return the class that numbers are upgraded to, is in fact returning $Math::BigInt::upgrade.

in_effect()

	 use bigrat;

	 print "in effect\n" if bigrat::in_effect;	 # true
	 {
	 no bigrat;
	 print "in effect\n" if bigrat::in_effect;	 # false
	 }

Returns true or false if bigrat is in effect in the current scope.

This method only works on Perl v5.9.4 or later.

MATH LIBRARY
Math with the numbers is done (by default) by a module called

Cavaet
But a warning is in order. When using the following to make a copy of a number,
 only a shallow copy
will be made.

 $x = 9; $y = $x;
 $x = $y = 7;

If you want to make a real copy, use the following:

	 $y = $x->copy();

Using the copy or the original with overloaded math is okay, e.g. the
 following work:

 $x = 9; $y = $x;
 print $x + 1, " ", $y,"\n"; # prints 10 9

but calling any method that modifies the number directly will result in both the original and the copy
being destroyed:

 $x = 9; $y = $x;
 print $x->badd(1), " ", $y,"\n"; # prints 10 10

 $x = 9; $y = $x;
 print $x->binc(1), " ", $y,"\n"; # prints 10 10

 $x = 9; $y = $x;
 print $x->bmul(2), " ", $y,"\n"; # prints 18 18

Using methods that do not modify, but testthe contents works:

 $x = 9; $y = $x;
 $z = 9 if $x->is_zero(); # works fine

See the documentation about the copy constructor and = in overload, as
 well as the documentation in
BigInt for further details.

