
Perl version 5.10.0 documentation - bignum

Page 1http://perldoc.perl.org

NAME
bignum - Transparent BigNumber support for Perl

SYNOPSIS
 use bignum;

 $x = 2 + 4.5,"\n";			 # BigFloat 6.5
 print 2 ** 512 * 0.1,"\n";		 # really is what you think it is
 print inf * inf,"\n";			 # prints inf
 print NaN * 3,"\n";			 # prints NaN

 {
 no bignum;
 print 2 ** 256,"\n";		 # a normal Perl scalar now
 }

 # for older Perls, note that this will be global:
 use bignum qw/hex oct/;
 print hex("0x1234567890123490"),"\n";
 print oct("01234567890123490"),"\n";

DESCRIPTION
All operators (including basic math operations) are overloaded. Integer and
 floating-point constants
are created as proper BigInts or BigFloats,
 respectively.

If you do

 use bignum;

at the top of your script, Math::BigFloat and Math::BigInt will be loaded
 and any constant number will
be converted to an object (Math::BigFloat for
 floats like 3.1415 and Math::BigInt for integers like
1234).

So, the following line:

 $x = 1234;

creates actually a Math::BigInt and stores a reference to in $x.
 This happens transparently and behind
your back, so to speak.

You can see this with the following:

 perl -Mbignum -le 'print ref(1234)'

Don't worry if it says Math::BigInt::Lite, bignum and friends will use Lite
 if it is installed since it is faster
for some operations. It will be
 automatically upgraded to BigInt whenever necessary:

 perl -Mbignum -le 'print ref(2**255)'

This also means it is a bad idea to check for some specific package, since
 the actual contents of $x
might be something unexpected. Due to the
 transparent way of bignum ref() should not be
necessary, anyway.

Since Math::BigInt and BigFloat also overload the normal math operations,
 the following line will still
work:

Perl version 5.10.0 documentation - bignum

Page 2http://perldoc.perl.org

 perl -Mbignum -le 'print ref(1234+1234)'

Since numbers are actually objects, you can call all the usual methods from
 BigInt/BigFloat on them.
This even works to some extent on expressions:

 perl -Mbignum -le '$x = 1234; print $x->bdec()'
 perl -Mbignum -le 'print 1234->copy()->binc();'
 perl -Mbignum -le 'print 1234->copy()->binc->badd(6);'
 perl -Mbignum -le 'print +(1234)->copy()->binc()'

(Note that print doesn't do what you expect if the expression starts with
 '(' hence the +)

You can even chain the operations together as usual:

 perl -Mbignum -le 'print 1234->copy()->binc->badd(6);'
 1241

Under bignum (or bigint or bigrat), Perl will "upgrade" the numbers
 appropriately. This means that:

 perl -Mbignum -le 'print 1234+4.5'
 1238.5

will work correctly. These mixed cases don't do always work when using
 Math::BigInt or
Math::BigFloat alone, or at least not in the way normal Perl
 scalars work.

If you do want to work with large integers like under use integer;, try use bigint;:

 perl -Mbigint -le 'print 1234.5+4.5'
 1238

There is also use bigrat; which gives you big rationals:

 perl -Mbigrat -le 'print 1234+4.1'
 12381/10

The entire upgrading/downgrading is still experimental and might not work
 as you expect or may even
have bugs. You might get errors like this:

 Can't use an undefined value as an ARRAY reference at
 /usr/local/lib/perl5/5.8.0/Math/BigInt/Calc.pm line 864

This means somewhere a routine got a BigFloat/Lite but expected a BigInt (or
 vice versa) and the
upgrade/downgrad path was missing. This is a bug, please
 report it so that we can fix it.

You might consider using just Math::BigInt or Math::BigFloat, since they
 allow you finer control over
what get's done in which module/space. For
 instance, simple loop counters will be Math::BigInts
under use bignum; and
 this is slower than keeping them as Perl scalars:

 perl -Mbignum -le 'for ($i = 0; $i < 10; $i++) { print ref($i); }'

Please note the following does not work as expected (prints nothing), since
 overloading of '..' is not
yet possible in Perl (as of v5.8.0):

 perl -Mbignum -le 'for (1..2) { print ref($_); }'

Perl version 5.10.0 documentation - bignum

Page 3http://perldoc.perl.org

Options
bignum recognizes some options that can be passed while loading it via use.
 The options can
(currently) be either a single letter form, or the long form.
 The following options exist:

a or accuracy

This sets the accuracy for all math operations. The argument must be greater
 than or equal to
zero. See Math::BigInt's bround() function for details.

	 perl -Mbignum=a,50 -le 'print sqrt(20)'

Note that setting precision and accurary at the same time is not possible.

p or precision

This sets the precision for all math operations. The argument can be any
 integer. Negative values
mean a fixed number of digits after the dot, while
 a positive value rounds to this digit left from the
dot. 0 or 1 mean round to
 integer. See Math::BigInt's bfround() function for details.

	 perl -Mbignum=p,-50 -le 'print sqrt(20)'

Note that setting precision and accurary at the same time is not possible.

t or trace

This enables a trace mode and is primarily for debugging bignum or
 Math::BigInt/Math::BigFloat.

l or lib

Load a different math lib, see MATH LIBRARY.

	 perl -Mbignum=l,GMP -e 'print 2 ** 512'

Currently there is no way to specify more than one library on the command
 line. This means the
following does not work:

	 perl -Mbignum=l,GMP,Pari -e 'print 2 ** 512'

This will be hopefully fixed soon ;)

hex

Override the built-in hex() method with a version that can handle big
 integers. Note that under Perl
older than v5.9.4, this will be global
 and cannot be disabled with "no bigint;".

oct

Override the built-in oct() method with a version that can handle big
 integers. Note that under Perl
older than v5.9.4, this will be global
 and cannot be disabled with "no bigint;".

v or version

This prints out the name and version of all modules used and then exits.

	 perl -Mbignum=v

Methods
Beside import() and AUTOLOAD() there are only a few other methods.

Since all numbers are now objects, you can use all functions that are part of
 the BigInt or BigFloat
API. It is wise to use only the bxxx() notation, and not
 the fxxx() notation, though. This makes it
possible that the underlying object
 might morph into a different class than BigFloat.

Caveats
But a warning is in order. When using the following to make a copy of a number,
 only a shallow copy
will be made.

