
Perl version 5.10.0 documentation - XSLoader

Page 1http://perldoc.perl.org

NAME
XSLoader - Dynamically load C libraries into Perl code

VERSION
Version 0.08

SYNOPSIS
 package YourPackage;
 use XSLoader;

 XSLoader::load 'YourPackage', $YourPackage::VERSION;

DESCRIPTION
This module defines a standard simplified interface to the dynamic
 linking mechanisms available on
many platforms. Its primary purpose is
 to implement cheap automatic dynamic loading of Perl
modules.

For a more complicated interface, see DynaLoader. Many (most)
 features of DynaLoader are not
implemented in XSLoader, like for
 example the dl_load_flags, not honored by XSLoader.

Migration from DynaLoader
A typical module using DynaLoader starts like this:

 package YourPackage;
 require DynaLoader;

 our @ISA = qw(OnePackage OtherPackage DynaLoader);
 our $VERSION = '0.01';
 bootstrap YourPackage $VERSION;

Change this to

 package YourPackage;
 use XSLoader;

 our @ISA = qw(OnePackage OtherPackage);
 our $VERSION = '0.01';
 XSLoader::load 'YourPackage', $VERSION;

In other words: replace require DynaLoader by use XSLoader, remove DynaLoader from
@ISA, change bootstrap by XSLoader::load. Do not
 forget to quote the name of your package
on the XSLoader::load line,
 and add comma (,) before the arguments ($VERSION above).

Of course, if @ISA contained only DynaLoader, there is no need to have
 the @ISA assignment at all;
moreover, if instead of our one uses the
 more backward-compatible

 use vars qw($VERSION @ISA);

one can remove this reference to @ISA together with the @ISA assignment.

If no $VERSION was specified on the bootstrap line, the last line becomes

 XSLoader::load 'YourPackage';

Perl version 5.10.0 documentation - XSLoader

Page 2http://perldoc.perl.org

Backward compatible boilerplate
If you want to have your cake and eat it too, you need a more complicated
 boilerplate.

 package YourPackage;
 use vars qw($VERSION @ISA);

 @ISA = qw(OnePackage OtherPackage);
 $VERSION = '0.01';
 eval {
 require XSLoader;
 XSLoader::load('YourPackage', $VERSION);
 1;
 } or do {
 require DynaLoader;
 push @ISA, 'DynaLoader';
 bootstrap YourPackage $VERSION;
 };

The parentheses about XSLoader::load() arguments are needed since we replaced use
XSLoader by require, so the compiler does not know that a function XSLoader::load() is
present.

This boilerplate uses the low-overhead XSLoader if present; if used with
 an antic Perl which has no
XSLoader, it falls back to using DynaLoader.

Order of initialization: early load()
Skip this section if the XSUB functions are supposed to be called from other
 modules only; read it
only if you call your XSUBs from the code in your module,
 or have a BOOT: section in your XS file
(see "The BOOT: Keyword" in perlxs).
 What is described here is equally applicable to the DynaLoader
interface.

A sufficiently complicated module using XS would have both Perl code (defined
 in YourPackage.pm)
and XS code (defined in YourPackage.xs). If this
 Perl code makes calls into this XS code, and/or this
XS code makes calls to
 the Perl code, one should be careful with the order of initialization.

The call to XSLoader::load() (or bootstrap()) has three side effects:

if $VERSION was specified, a sanity check is done to ensure that the
 versions of the .pm and
the (compiled) .xs parts are compatible;

the XSUBs are made accessible from Perl;

if a BOOT: section was present in the .xs file, the code there is called.

Consequently, if the code in the .pm file makes calls to these XSUBs, it is
 convenient to have XSUBs
installed before the Perl code is defined; for
 example, this makes prototypes for XSUBs visible to this
Perl code.
 Alternatively, if the BOOT: section makes calls to Perl functions (or
 uses Perl variables)
defined in the .pm file, they must be defined prior to
 the call to XSLoader::load() (or
bootstrap()).

The first situation being much more frequent, it makes sense to rewrite the
 boilerplate as

 package YourPackage;
 use XSLoader;
 use vars qw($VERSION @ISA);

 BEGIN {
 @ISA = qw(OnePackage OtherPackage);

Perl version 5.10.0 documentation - XSLoader

Page 3http://perldoc.perl.org

 $VERSION = '0.01';

 # Put Perl code used in the BOOT: section here

 XSLoader::load 'YourPackage', $VERSION;
 }

 # Put Perl code making calls into XSUBs here

The most hairy case
If the interdependence of your BOOT: section and Perl code is
 more complicated than this (e.g., the
BOOT: section makes calls to Perl
 functions which make calls to XSUBs with prototypes), get rid of
the BOOT:
 section altogether. Replace it with a function onBOOT(), and call it like
 this:

 package YourPackage;
 use XSLoader;
 use vars qw($VERSION @ISA);

 BEGIN {
 @ISA = qw(OnePackage OtherPackage);
 $VERSION = '0.01';
 XSLoader::load 'YourPackage', $VERSION;
 }

 # Put Perl code used in onBOOT() function here; calls to XSUBs are
 # prototype-checked.

 onBOOT;

 # Put Perl initialization code assuming that XS is initialized here

DIAGNOSTICS
Can't find '%s' symbol in %s

(F) The bootstrap symbol could not be found in the extension module.

Can't load '%s' for module %s: %s

(F) The loading or initialisation of the extension module failed.
 The detailed error follows.

Undefined symbols present after loading %s: %s

(W) As the message says, some symbols stay undefined although the
 extension module was
correctly loaded and initialised. The list of undefined
 symbols follows.

XSLoader::load('Your::Module', $Your::Module::VERSION)

(F) You tried to invoke load() without any argument. You must supply
 a module name, and
optionally its version.

LIMITATIONS
To reduce the overhead as much as possible, only one possible location
 is checked to find the
extension DLL (this location is where make install
 would put the DLL). If not found, the search for
the DLL is transparently
 delegated to DynaLoader, which looks for the DLL along the @INC list.

In particular, this is applicable to the structure of @INC used for testing
 not-yet-installed extensions.
This means that running uninstalled extensions
 may have much more overhead than running the

Perl version 5.10.0 documentation - XSLoader

Page 4http://perldoc.perl.org

same extensions after make install.

BUGS
Please report any bugs or feature requests via the perlbug(1) utility.

SEE ALSO
DynaLoader

AUTHORS
Ilya Zakharevich originally extracted XSLoader from DynaLoader.

CPAN version is currently maintained by Sébastien Aperghis-Tramoni <sebastien@aperghis.net>.

Previous maintainer was Michael G Schwern <schwern@pobox.com>.

COPYRIGHT
This program is free software; you can redistribute it and/or modify
 it under the same terms as Perl
itself.

