
Perl version 5.10.0 documentation - Unicode::UCD

Page 1http://perldoc.perl.org

NAME
Unicode::UCD - Unicode character database

SYNOPSIS
 use Unicode::UCD 'charinfo';
 my $charinfo = charinfo($codepoint);

 use Unicode::UCD 'charblock';
 my $charblock = charblock($codepoint);

 use Unicode::UCD 'charscript';
 my $charscript = charscript($codepoint);

 use Unicode::UCD 'charblocks';
 my $charblocks = charblocks();

 use Unicode::UCD 'charscripts';
 my $charscripts = charscripts();

 use Unicode::UCD qw(charscript charinrange);
 my $range = charscript($script);
 print "looks like $script\n" if charinrange($range, $codepoint);

 use Unicode::UCD qw(general_categories bidi_types);
 my $categories = general_categories();
 my $types = bidi_types();

 use Unicode::UCD 'compexcl';
 my $compexcl = compexcl($codepoint);

 use Unicode::UCD 'namedseq';
 my $namedseq = namedseq($named_sequence_name);

 my $unicode_version = Unicode::UCD::UnicodeVersion();

DESCRIPTION
The Unicode::UCD module offers a simple interface to the Unicode
 Character Database.

charinfo
 use Unicode::UCD 'charinfo';

 my $charinfo = charinfo(0x41);

charinfo() returns a reference to a hash that has the following fields
 as defined by the Unicode
standard:

 key

 code code point with at least four hexdigits
 name name of the character IN UPPER CASE
 category general category of the character

Perl version 5.10.0 documentation - Unicode::UCD

Page 2http://perldoc.perl.org

 combining classes used in the Canonical Ordering Algorithm
 bidi bidirectional type
 decomposition character decomposition mapping
 decimal if decimal digit this is the integer numeric value
 digit if digit this is the numeric value
 numeric if numeric is the integer or rational numeric value
 mirrored if mirrored in bidirectional text
 unicode10 Unicode 1.0 name if existed and different
 comment ISO 10646 comment field
 upper uppercase equivalent mapping
 lower lowercase equivalent mapping
 title titlecase equivalent mapping

 block block the character belongs to (used in \p{In...})
 script script the character belongs to

If no match is found, a reference to an empty hash is returned.

The block property is the same as returned by charinfo(). It is
 not defined in the Unicode Character
Database proper (Chapter 4 of the
 Unicode 3.0 Standard, aka TUS3) but instead in an auxiliary
database
 (Chapter 14 of TUS3). Similarly for the script property.

Note that you cannot do (de)composition and casing based solely on the
 above decomposition and
lower, upper, title, properties,
 you will need also the compexcl(), casefold(), and casespec()
functions.

charblock
 use Unicode::UCD 'charblock';

 my $charblock = charblock(0x41);
 my $charblock = charblock(1234);
 my $charblock = charblock("0x263a");
 my $charblock = charblock("U+263a");

 my $range = charblock('Armenian');

With a code point argument charblock() returns the block the character
 belongs to, e.g. Basic
Latin. Note that not all the character
 positions within all blocks are defined.

See also Blocks versus Scripts.

If supplied with an argument that can't be a code point, charblock() tries
 to do the opposite and
interpret the argument as a character block. The
 return value is a range: an anonymous list of lists
that contain start-of-range, end-of-range code point pairs. You can test whether
 a code point is in a
range using the charinrange function. If the
 argument is not a known character block, undef is
returned.

charscript
 use Unicode::UCD 'charscript';

 my $charscript = charscript(0x41);
 my $charscript = charscript(1234);
 my $charscript = charscript("U+263a");

 my $range = charscript('Thai');

Perl version 5.10.0 documentation - Unicode::UCD

Page 3http://perldoc.perl.org

With a code point argument charscript() returns the script the
 character belongs to, e.g. Latin,
Greek, Han.

See also Blocks versus Scripts.

If supplied with an argument that can't be a code point, charscript() tries
 to do the opposite and
interpret the argument as a character script. The
 return value is a range: an anonymous list of lists
that contain start-of-range, end-of-range code point pairs. You can test whether a
 code point is in a
range using the charinrange function. If the
 argument is not a known character script, undef is
returned.

charblocks
 use Unicode::UCD 'charblocks';

 my $charblocks = charblocks();

charblocks() returns a reference to a hash with the known block names
 as the keys, and the code
point ranges (see charblock) as the values.

See also Blocks versus Scripts.

charscripts
 use Unicode::UCD 'charscripts';

 my $charscripts = charscripts();

charscripts() returns a reference to a hash with the known script
 names as the keys, and the code
point ranges (see charscript) as
 the values.

See also Blocks versus Scripts.

Blocks versus Scripts
The difference between a block and a script is that scripts are closer
 to the linguistic notion of a set of
characters required to present
 languages, while block is more of an artifact of the Unicode character

numbering and separation into blocks of (mostly) 256 characters.

For example the Latin script is spread over several blocks, such
 as Basic Latin, Latin 1
Supplement, Latin Extended-A, and Latin Extended-B. On the other hand, the Latin script
does not
 contain all the characters of the Basic Latin block (also known as
 the ASCII): it includes
only the letters, and not, for example, the digits
 or the punctuation.

For blocks see http://www.unicode.org/Public/UNIDATA/Blocks.txt

For scripts see UTR #24: http://www.unicode.org/unicode/reports/tr24/

Matching Scripts and Blocks
Scripts are matched with the regular-expression construct \p{...} (e.g. \p{Tibetan} matches
characters of the Tibetan script),
 while \p{In...} is used for blocks (e.g. \p{InTibetan} matches
any of the 256 code points in the Tibetan block).

Code Point Arguments
A code point argument is either a decimal or a hexadecimal scalar
 designating a Unicode character,
or U+ followed by hexadecimals
 designating a Unicode character. In other words, if you want a code

point to be interpreted as a hexadecimal number, you must prefix it
 with either 0x or U+, because a
string like e.g. 123 will
 be interpreted as a decimal code point. Also note that Unicode is not limited to
16 bits (the number of Unicode characters is
 open-ended, in theory unlimited): you may have more
than 4 hexdigits.

Perl version 5.10.0 documentation - Unicode::UCD

Page 4http://perldoc.perl.org

charinrange
In addition to using the \p{In...} and \P{In...} constructs, you
 can also test whether a code
point is in the range as returned by charblock and charscript or as the values of the hash returned
 by
charblocks and charscripts by using charinrange():

 use Unicode::UCD qw(charscript charinrange);

 $range = charscript('Hiragana');
 print "looks like hiragana\n" if charinrange($range, $codepoint);

general_categories
 use Unicode::UCD 'general_categories';

 my $categories = general_categories();

The general_categories() returns a reference to a hash which has short
 general category names
(such as Lu, Nd, Zs, S) as keys and long
 names (such as UppercaseLetter, DecimalNumber,
SpaceSeparator, Symbol) as values. The hash is reversible in case you need to go
 from the long
names to the short names. The general category is the
 one returned from charinfo() under the
category key.

bidi_types
 use Unicode::UCD 'bidi_types';

 my $categories = bidi_types();

The bidi_types() returns a reference to a hash which has the short
 bidi (bidirectional) type names
(such as L, R) as keys and long
 names (such as Left-to-Right, Right-to-Left) as values. The

hash is reversible in case you need to go from the long names to the
 short names. The bidi type is the
one returned from charinfo()
 under the bidi key. For the exact meaning of the various bidi classes

the Unicode TR9 is recommended reading:
 http://www.unicode.org/reports/tr9/tr9-17.html
 (as of
Unicode 5.0.0)

compexcl
 use Unicode::UCD 'compexcl';

 my $compexcl = compexcl("09dc");

The compexcl() returns the composition exclusion (that is, if the
 character should not be produced
during a precomposition) of the character specified by a code point argument.

If there is a composition exclusion for the character, true is
 returned. Otherwise, false is returned.

casefold
 use Unicode::UCD 'casefold';

 my $casefold = casefold("00DF");

The casefold() returns the locale-independent case folding of the
 character specified by a code point
argument.

If there is a case folding for that character, a reference to a hash
 with the following fields is returned:

Perl version 5.10.0 documentation - Unicode::UCD

Page 5http://perldoc.perl.org

 key

 code code point with at least four hexdigits
 status "C", "F", "S", or "I"
 mapping one or more codes separated by spaces

The meaning of the status is as follows:

 C common case folding, common mappings shared
 by both simple and full mappings
 F full case folding, mappings that cause strings
 to grow in length. Multiple characters are separated
 by spaces
 S simple case folding, mappings to single characters
 where different from F
 I special case for dotted uppercase I and
 dotless lowercase i
 - If this mapping is included, the result is
 case-insensitive, but dotless and dotted I's
 are not distinguished
 - If this mapping is excluded, the result is not
 fully case-insensitive, but dotless and dotted
 I's are distinguished

If there is no case folding for that character, undef is returned.

For more information about case mappings see
 http://www.unicode.org/unicode/reports/tr21/

casespec
 use Unicode::UCD 'casespec';

 my $casespec = casespec("FB00");

The casespec() returns the potentially locale-dependent case mapping
 of the character specified by a
code point argument. The mapping
 may change the length of the string (which the basic Unicode
case
 mappings as returned by charinfo() never do).

If there is a case folding for that character, a reference to a hash
 with the following fields is returned:

 key

 code code point with at least four hexdigits
 lower lowercase
 title titlecase
 upper uppercase
 condition condition list (may be undef)

The condition is optional. Where present, it consists of one or
 more locales or contexts, separated
by spaces (other than as
 used to separate elements, spaces are to be ignored). A condition
 list
overrides the normal behavior if all of the listed conditions are
 true. Case distinctions in the condition
list are not significant.
 Conditions preceded by "NON_" represent the negation of the condition.

Note that when there are multiple case folding definitions for a
 single code point because of different
locales, the value returned by
 casespec() is a hash reference which has the locales as the keys and

hash references as described above as the values.

Perl version 5.10.0 documentation - Unicode::UCD

Page 6http://perldoc.perl.org

A locale is defined as a 2-letter ISO 3166 country code, possibly
 followed by a "_" and a 2-letter ISO
language code (possibly followed
 by a "_" and a variant code). You can find the lists of those codes,

see Locale::Country and Locale::Language.

A context is one of the following choices:

 FINAL The letter is not followed by a letter of
 general category L (e.g. Ll, Lt, Lu, Lm, or Lo)
 MODERN The mapping is only used for modern text
 AFTER_i The last base character was "i" (U+0069)

For more information about case mappings see
 http://www.unicode.org/unicode/reports/tr21/

namedseq()
 use Unicode::UCD 'namedseq';

 my $namedseq = namedseq("KATAKANA LETTER AINU P");
 my @namedseq = namedseq("KATAKANA LETTER AINU P");
 my %namedseq = namedseq();

If used with a single argument in a scalar context, returns the string
 consisting of the code points of
the named sequence, or undef if no
 named sequence by that name exists. If used with a single
argument in
 a list context, returns list of the code points. If used with no
 arguments in a list context,
returns a hash with the names of the
 named sequences as the keys and the named sequences as
strings as
 the values. Otherwise, returns undef or empty list depending
 on the context.

(New from Unicode 4.1.0)

Unicode::UCD::UnicodeVersion
Unicode::UCD::UnicodeVersion() returns the version of the Unicode
 Character Database, in other
words, the version of the Unicode
 standard the database implements. The version is a string
 of
numbers delimited by dots ('.').

Implementation Note
The first use of charinfo() opens a read-only filehandle to the Unicode
 Character Database (the
database is included in the Perl distribution).
 The filehandle is then kept open for further queries. In
other words,
 if you are wondering where one of your filehandles went, that's where.

BUGS
Does not yet support EBCDIC platforms.

AUTHOR
Jarkko Hietaniemi

