
Perl version 5.10.0 documentation - Unicode::Collate

Page 1http://perldoc.perl.org

NAME
Unicode::Collate - Unicode Collation Algorithm

SYNOPSIS
 use Unicode::Collate;

 #construct
 $Collator = Unicode::Collate->new(%tailoring);

 #sort
 @sorted = $Collator->sort(@not_sorted);

 #compare
 $result = $Collator->cmp($a, $b); # returns 1, 0, or -1.

 # If %tailoring is false (i.e. empty),
 # $Collator should do the default collation.

DESCRIPTION
This module is an implementation of Unicode Technical Standard #10
 (a.k.a. UTS #10) - Unicode
Collation Algorithm (a.k.a. UCA).

Constructor and Tailoring
The new method returns a collator object.

 $Collator = Unicode::Collate->new(
 UCA_Version => $UCA_Version,
 alternate => $alternate, # deprecated: use of 'variable' is
recommended.
 backwards => $levelNumber, # or \@levelNumbers
 entry => $element,
 hangul_terminator => $term_primary_weight,
 ignoreName => qr/$ignoreName/,
 ignoreChar => qr/$ignoreChar/,
 katakana_before_hiragana => $bool,
 level => $collationLevel,
 normalization => $normalization_form,
 overrideCJK => \&overrideCJK,
 overrideHangul => \&overrideHangul,
 preprocess => \&preprocess,
 rearrange => \@charList,
 table => $filename,
 undefName => qr/$undefName/,
 undefChar => qr/$undefChar/,
 upper_before_lower => $bool,
 variable => $variable,
);

UCA_Version

If the tracking version number of UCA is given,
 behavior of that tracking version is emulated
on collating.
 If omitted, the return value of UCA_Version() is used. UCA_Version() should
return the latest tracking version supported.

The supported tracking version: 8, 9, 11, or 14.

Perl version 5.10.0 documentation - Unicode::Collate

Page 2http://perldoc.perl.org

 UCA Unicode Standard DUCET (@version)

 8 3.1 3.0.1 (3.0.1d9)
 9 3.1 with Corrigendum 3 3.1.1 (3.1.1)
 11 4.0 4.0.0 (4.0.0)
 14 4.1.0 4.1.0 (4.1.0)

Note: Recent UTS #10 renames "Tracking Version" to "Revision."

alternate

-- see 3.2.2 Alternate Weighting, version 8 of UTS #10

For backward compatibility, alternate (old name) can be used
 as an alias for variable.

backwards

-- see 3.1.2 French Accents, UTS #10.

 backwards => $levelNumber or \@levelNumbers

Weights in reverse order; ex. level 2 (diacritic ordering) in French.
 If omitted, forwards at all
the levels.

entry

-- see 3.1 Linguistic Features; 3.2.1 File Format, UTS #10.

If the same character (or a sequence of characters) exists
 in the collation element table
through table,
 mapping to collation elements is overrided.
 If it does not exist, the mapping is
defined additionally.

 entry => <<'ENTRY', # for DUCET v4.0.0 (allkeys-4.0.0.txt)
0063 0068 ; [.0E6A.0020.0002.0063] # ch
0043 0068 ; [.0E6A.0020.0007.0043] # Ch
0043 0048 ; [.0E6A.0020.0008.0043] # CH
006C 006C ; [.0F4C.0020.0002.006C] # ll
004C 006C ; [.0F4C.0020.0007.004C] # Ll
004C 004C ; [.0F4C.0020.0008.004C] # LL
00F1 ; [.0F7B.0020.0002.00F1] # n-tilde
006E 0303 ; [.0F7B.0020.0002.00F1] # n-tilde
00D1 ; [.0F7B.0020.0008.00D1] # N-tilde
004E 0303 ; [.0F7B.0020.0008.00D1] # N-tilde
ENTRY

 entry => <<'ENTRY', # for DUCET v4.0.0 (allkeys-4.0.0.txt)
00E6 ; [.0E33.0020.0002.00E6][.0E8B.0020.0002.00E6] # ae ligature as
<a><e>
00C6 ; [.0E33.0020.0008.00C6][.0E8B.0020.0008.00C6] # AE ligature as
<A><E>
ENTRY

NOTE: The code point in the UCA file format (before ';') must be a Unicode code point
(defined as hexadecimal),
 but not a native code point.
 So 0063 must always denote U+0063,

but not a character of "\x63".

Weighting may vary depending on collation element table.
 So ensure the weights defined in
entry will be consistent with
 those in the collation element table loaded via table.

In DUCET v4.0.0, primary weight of C is 0E60
 and that of D is 0E6D. So setting primary weight
of CH to 0E6A
 (as a value between 0E60 and 0E6D)
 makes ordering as C < CH < D.
 Exactly
speaking DUCET already has some characters between C and D: small capital C (
U+1D04) with primary weight 0E64, c-hook/C-hook (U+0188/U+0187) with 0E65,
 and

Perl version 5.10.0 documentation - Unicode::Collate

Page 3http://perldoc.perl.org

c-curl (U+0255) with 0E69.
 Then primary weight 0E6A for CH makes CH
 ordered between
c-curl and D.

hangul_terminator

-- see 7.1.4 Trailing Weights, UTS #10.

If a true value is given (non-zero but should be positive),
 it will be added as a terminator
primary weight to the end of
 every standard Hangul syllable. Secondary and any higher
weights
 for terminator are set to zero.
 If the value is false or hangul_terminator key does
not exist,
 insertion of terminator weights will not be performed.

Boundaries of Hangul syllables are determined
 according to conjoining Jamo behavior in the
Unicode Standard
 and HangulSyllableType.txt.

Implementation Note:
 (1) For expansion mapping (Unicode character mapped
 to a sequence
of collation elements), a terminator will not be added
 between collation elements, even if
Hangul syllable boundary exists there.
 Addition of terminator is restricted to the next position

to the last collation element.

(2) Non-conjoining Hangul letters
 (Compatibility Jamo, halfwidth Jamo, and enclosed letters)
are not
 automatically terminated with a terminator primary weight.
 These characters may need
terminator included in a collation element
 table beforehand.

ignoreChar

ignoreName

-- see 3.2.2 Variable Weighting, UTS #10.

Makes the entry in the table completely ignorable;
 i.e. as if the weights were zero at all level.

Through ignoreChar, any character matching qr/$ignoreChar/
 will be ignored. Through
ignoreName, any character whose name
 (given in the table file as a comment) matches
qr/$ignoreName/
 will be ignored.

E.g. when 'a' and 'e' are ignorable,
 'element' is equal to 'lament' (or 'lmnt').

katakana_before_hiragana

-- see 7.3.1 Tertiary Weight Table, UTS #10.

By default, hiragana is before katakana.
 If the parameter is made true, this is reversed.

NOTE: This parameter simplemindedly assumes that any hiragana/katakana
 distinctions must
occur in level 3, and their weights at level 3 must be
 same as those mentioned in 7.3.1, UTS
#10.
 If you define your collation elements which violate this requirement,
 this parameter does
not work validly.

level

-- see 4.3 Form Sort Key, UTS #10.

Set the maximum level.
 Any higher levels than the specified one are ignored.

 Level 1: alphabetic ordering
 Level 2: diacritic ordering
 Level 3: case ordering
 Level 4: tie-breaking (e.g. in the case when variable is 'shifted')

 ex.level => 2,

If omitted, the maximum is the 4th.

normalization

-- see 4.1 Normalize, UTS #10.

If specified, strings are normalized before preparation of sort keys
 (the normalization is
executed after preprocess).

Perl version 5.10.0 documentation - Unicode::Collate

Page 4http://perldoc.perl.org

A form name Unicode::Normalize::normalize() accepts will be applied
 as
$normalization_form.
 Acceptable names include 'NFD', 'NFC', 'NFKD', and 'NFKC'.

See Unicode::Normalize::normalize() for detail.
 If omitted, 'NFD' is used.

normalization is performed after preprocess (if defined).

Furthermore, special values, undef and "prenormalized", can be used,
 though they are
not concerned with Unicode::Normalize::normalize().

If undef (not a string "undef") is passed explicitly
 as the value for this key,
 any
normalization is not carried out (this may make tailoring easier
 if any normalization is not
desired). Under (normalization => undef),
 only contiguous contractions are resolved;

e.g. even if A-ring (and A-ring-cedilla) is ordered after Z, A-cedilla-ring would be
primary equal to A.
 In this point, (normalization => undef, preprocess => sub {
NFD(shift) }) is not equivalent to (normalization => 'NFD').

In the case of (normalization => "prenormalized"),
 any normalization is not
performed, but
 non-contiguous contractions with combining characters are performed.

Therefore (normalization => 'prenormalized', preprocess => sub {
NFD(shift) }) is equivalent to (normalization => 'NFD').
 If source strings are finely
prenormalized, (normalization => 'prenormalized') may save time for
normalization.

Except (normalization => undef), Unicode::Normalize is required (see also CAVEAT
).

overrideCJK

-- see 7.1 Derived Collation Elements, UTS #10.

By default, CJK Unified Ideographs are ordered in Unicode codepoint order
 but CJK
Unified Ideographs (if UCA_Version is 8 to 11, its range is U+4E00..U+9FA5; if
UCA_Version is 14, its range is U+4E00..U+9FBB)
 are lesser than CJK Unified
Ideographs Extension (its range is U+3400..U+4DB5 and U+20000..U+2A6D6).

Through overrideCJK, ordering of CJK Unified Ideographs can be overrided.

ex. CJK Unified Ideographs in the JIS code point order.

 overrideCJK => sub {
 my $u = shift; # get a Unicode codepoint
 my $b = pack('n', $u); # to UTF-16BE
 my $s = your_unicode_to_sjis_converter($b); # convert
 my $n = unpack('n', $s); # convert sjis to short
 [$n, 0x20, 0x2, $u]; # return the collation element
 },

ex. ignores all CJK Unified Ideographs.

 overrideCJK => sub {()}, # CODEREF returning empty list

 # where ->eq("Pe\x{4E00}rl", "Perl") is true
 # as U+4E00 is a CJK Unified Ideograph and to be ignorable.

If undef is passed explicitly as the value for this key,
 weights for CJK Unified Ideographs are
treated as undefined.
 But assignment of weight for CJK Unified Ideographs
 in table or entry
is still valid.

overrideHangul

-- see 7.1 Derived Collation Elements, UTS #10.

By default, Hangul Syllables are decomposed into Hangul Jamo,
 even if (normalization =
> undef).
 But the mapping of Hangul Syllables may be overrided.

This parameter works like overrideCJK, so see there for examples.

Perl version 5.10.0 documentation - Unicode::Collate

Page 5http://perldoc.perl.org

If you want to override the mapping of Hangul Syllables,
 NFD, NFKD, and FCD are not
appropriate,
 since they will decompose Hangul Syllables before overriding.

If undef is passed explicitly as the value for this key,
 weight for Hangul Syllables is treated as
undefined
 without decomposition into Hangul Jamo.
 But definition of weight for Hangul
Syllables
 in table or entry is still valid.

preprocess

-- see 5.1 Preprocessing, UTS #10.

If specified, the coderef is used to preprocess
 before the formation of sort keys.

ex. dropping English articles, such as "a" or "the".
 Then, "the pen" is before "a pencil".

 preprocess => sub {
 my $str = shift;
 $str =~ s/\b(?:an?|the)\s+//gi;
 return $str;
 },

preprocess is performed before normalization (if defined).

rearrange

-- see 3.1.3 Rearrangement, UTS #10.

Characters that are not coded in logical order and to be rearranged.
 If UCA_Version is equal
to or lesser than 11, default is:

 rearrange => [0x0E40..0x0E44, 0x0EC0..0x0EC4],

If you want to disallow any rearrangement, pass undef or []
 (a reference to empty list) as the
value for this key.

If UCA_Version is equal to 14, default is [] (i.e. no rearrangement).

According to the version 9 of UCA, this parameter shall not be used;
 but it is not
warned at present.

table

-- see 3.2 Default Unicode Collation Element Table, UTS #10.

You can use another collation element table if desired.

The table file should locate in the Unicode/Collate directory
 on @INC. Say, if the filename is
Foo.txt,
 the table file is searched as Unicode/Collate/Foo.txt in @INC.

By default, allkeys.txt (as the filename of DUCET) is used.
 If you will prepare your own table
file, any name other than allkeys.txt
 may be better to avoid namespace conflict.

If undef is passed explicitly as the value for this key,
 no file is read (but you can define
collation elements via entry).

A typical way to define a collation element table
 without any file of table:

 $onlyABC = Unicode::Collate->new(
 table => undef,
 entry => << 'ENTRIES',
0061 ; [.0101.0020.0002.0061] # LATIN SMALL LETTER A
0041 ; [.0101.0020.0008.0041] # LATIN CAPITAL LETTER A
0062 ; [.0102.0020.0002.0062] # LATIN SMALL LETTER B
0042 ; [.0102.0020.0008.0042] # LATIN CAPITAL LETTER B
0063 ; [.0103.0020.0002.0063] # LATIN SMALL LETTER C
0043 ; [.0103.0020.0008.0043] # LATIN CAPITAL LETTER C
ENTRIES
);

Perl version 5.10.0 documentation - Unicode::Collate

Page 6http://perldoc.perl.org

If ignoreName or undefName is used, character names should be
 specified as a comment
(following #) on each line.

undefChar

undefName

-- see 6.3.4 Reducing the Repertoire, UTS #10.

Undefines the collation element as if it were unassigned in the table.
 This reduces the size of
the table.
 If an unassigned character appears in the string to be collated,
 the sort key is made
from its codepoint
 as a single-character collation element,
 as it is greater than any other
assigned collation elements
 (in the codepoint order among the unassigned characters).
 But,
it'd be better to ignore characters
 unfamiliar to you and maybe never used.

Through undefChar, any character matching qr/$undefChar/
 will be undefined. Through
undefName, any character whose name
 (given in the table file as a comment) matches
qr/$undefName/
 will be undefined.

ex. Collation weights for beyond-BMP characters are not stored in object:

 undefChar => qr/[^\0-\x{fffd}]/,

upper_before_lower

-- see 6.6 Case Comparisons, UTS #10.

By default, lowercase is before uppercase.
 If the parameter is made true, this is reversed.

NOTE: This parameter simplemindedly assumes that any lowercase/uppercase
 distinctions
must occur in level 3, and their weights at level 3 must be
 same as those mentioned in 7.3.1,
UTS #10.
 If you define your collation elements which differs from this requirement,
 this
parameter doesn't work validly.

variable

-- see 3.2.2 Variable Weighting, UTS #10.

This key allows to variable weighting for variable collation elements,
 which are marked with an
ASTERISK in the table
 (NOTE: Many punction marks and symbols are variable in allkeys.txt).

 variable => 'blanked', 'non-ignorable', 'shifted', or
'shift-trimmed'.

These names are case-insensitive.
 By default (if specification is omitted), 'shifted' is adopted.

 'Blanked' Variable elements are made ignorable at levels 1
through 3;
 considered at the 4th level.

 'Non-Ignorable' Variable elements are not reset to ignorable.

 'Shifted' Variable elements are made ignorable at levels 1
through 3
 their level 4 weight is replaced by the old level
 1 weight.
 Level 4 weight for Non-Variable elements is
0xFFFF.

 'Shift-Trimmed' Same as 'shifted', but all FFFF's at the 4th
level
 are trimmed.

Perl version 5.10.0 documentation - Unicode::Collate

Page 7http://perldoc.perl.org

Methods for Collation
@sorted = $Collator->sort(@not_sorted)

Sorts a list of strings.

$result = $Collator->cmp($a, $b)

Returns 1 (when $a is greater than $b)
 or 0 (when $a is equal to $b)
 or -1 (when $a is lesser
than $b).

$result = $Collator->eq($a, $b)

$result = $Collator->ne($a, $b)

$result = $Collator->lt($a, $b)

$result = $Collator->le($a, $b)

$result = $Collator->gt($a, $b)

$result = $Collator->ge($a, $b)

They works like the same name operators as theirs.

 eq : whether $a is equal to $b.
 ne : whether $a is not equal to $b.
 lt : whether $a is lesser than $b.
 le : whether $a is lesser than $b or equal to $b.
 gt : whether $a is greater than $b.
 ge : whether $a is greater than $b or equal to $b.

$sortKey = $Collator->getSortKey($string)

-- see 4.3 Form Sort Key, UTS #10.

Returns a sort key.

You compare the sort keys using a binary comparison
 and get the result of the comparison of
the strings using UCA.

 $Collator->getSortKey($a) cmp $Collator->getSortKey($b)

 is equivalent to

 $Collator->cmp($a, $b)

$sortKeyForm = $Collator->viewSortKey($string)

Converts a sorting key into its representation form.
 If UCA_Version is 8, the output is slightly
different.

 use Unicode::Collate;
 my $c = Unicode::Collate->new();
 print $c->viewSortKey("Perl"),"\n";

 # output:
 # [0B67 0A65 0B7F 0B03 | 0020 0020 0020 0020 | 0008 0002 0002 0002
 | FFFF FFFF FFFF FFFF]
 # Level 1 Level 2 Level 3
 Level 4

Methods for Searching
DISCLAIMER: If preprocess or normalization parameter is true
 for $Collator, calling these
methods (index, match, gmatch, subst, gsubst) is croaked,
 as the position and the length might
differ
 from those on the specified string.
 (And rearrange and hangul_terminator parameters are

Perl version 5.10.0 documentation - Unicode::Collate

Page 8http://perldoc.perl.org

neglected.)

The match, gmatch, subst, gsubst methods work
 like m//, m//g, s///, s///g, respectively,
 but
they are not aware of any pattern, but only a literal substring.

$position = $Collator->index($string, $substring[, $position])

($position, $length) = $Collator->index($string, $substring[, $position])

If $substring matches a part of $string, returns
 the position of the first occurrence of the
matching part in scalar context;
 in list context, returns a two-element list of
 the position and the
length of the matching part.

If $substring does not match any part of $string,
 returns -1 in scalar context and
 an
empty list in list context.

e.g. you say

 my $Collator = Unicode::Collate->new(normalization => undef, level
 => 1);
 # (normalization => undef) is
REQUIRED.
 my $str = "Ich muß studieren Perl.";
 my $sub = "MÜSS";
 my $match;
 if (my($pos,$len) = $Collator->index($str, $sub)) {
 $match = substr($str, $pos, $len);
 }

and get "muß" in $match since "muß"
 is primary equal to "MÜSS".

$match_ref = $Collator->match($string, $substring)

($match) = $Collator->match($string, $substring)

If $substring matches a part of $string, in scalar context, returns a reference to the first
occurrence of the matching part
 ($match_ref is always true if matches,
 since every
reference is true);
 in list context, returns the first occurrence of the matching part.

If $substring does not match any part of $string,
 returns undef in scalar context and
 an
empty list in list context.

e.g.

 if ($match_ref = $Collator->match($str, $sub)) { # scalar context
	 print "matches [$$match_ref].\n";
 } else {
	 print "doesn't match.\n";
 }

 or

 if (($match) = $Collator->match($str, $sub)) { # list context
	 print "matches [$match].\n";
 } else {
	 print "doesn't match.\n";
 }

@match = $Collator->gmatch($string, $substring)

If $substring matches a part of $string, returns
 all the matching parts (or matching count
in scalar context).

If $substring does not match any part of $string,
 returns an empty list.

Perl version 5.10.0 documentation - Unicode::Collate

Page 9http://perldoc.perl.org

$count = $Collator->subst($string, $substring, $replacement)

If $substring matches a part of $string,
 the first occurrence of the matching part is
replaced by $replacement
 ($string is modified) and return $count (always equals to 1).

$replacement can be a CODEREF,
 taking the matching part as an argument,
 and returning a
string to replace the matching part
 (a bit similar to s/(..)/$coderef->($1)/e).

$count = $Collator->gsubst($string, $substring, $replacement)

If $substring matches a part of $string,
 all the occurrences of the matching part is
replaced by $replacement
 ($string is modified) and return $count.

$replacement can be a CODEREF,
 taking the matching part as an argument,
 and returning a
string to replace the matching part
 (a bit similar to s/(..)/$coderef->($1)/eg).

e.g.

 my $Collator = Unicode::Collate->new(normalization => undef, level
 => 1);
 # (normalization => undef) is
REQUIRED.
 my $str = "Camel donkey zebra came\x{301}l CAMEL horse
cAm\0E\0L...";
 $Collator->gsubst($str, "camel", sub { "$_[0]" });

 # now $str is "Camel donkey zebra came\x{301}l
CAMEL horse cAm\0E\0L...";
 # i.e., all the camels are made bold-faced.

Other Methods
%old_tailoring = $Collator->change(%new_tailoring)

Change the value of specified keys and returns the changed part.

 $Collator = Unicode::Collate->new(level => 4);

 $Collator->eq("perl", "PERL"); # false

 %old = $Collator->change(level => 2); # returns (level => 4).

 $Collator->eq("perl", "PERL"); # true

 $Collator->change(%old); # returns (level => 2).

 $Collator->eq("perl", "PERL"); # false

Not all (key,value)s are allowed to be changed.
 See also
@Unicode::Collate::ChangeOK and @Unicode::Collate::ChangeNG.

In the scalar context, returns the modified collator
 (but it is not a clone from the original).

 $Collator->change(level => 2)->eq("perl", "PERL"); # true

 $Collator->eq("perl", "PERL"); # true; now max level is 2nd.

 $Collator->change(level => 4)->eq("perl", "PERL"); # false

$version = $Collator->version()

Returns the version number (a string) of the Unicode Standard
 which the table file used by
the collator object is based on.
 If the table does not include a version line (starting with
@version),
 returns "unknown".

Perl version 5.10.0 documentation - Unicode::Collate

Page 10http://perldoc.perl.org

UCA_Version()

Returns the tracking version number of UTS #10 this module consults.

Base_Unicode_Version()

Returns the version number of UTS #10 this module consults.

EXPORT
No method will be exported.

INSTALL
Though this module can be used without any table file,
 to use this module easily, it is recommended
to install a table file
 in the UCA format, by copying it under the directory
 <a place in
@INC>/Unicode/Collate.

The most preferable one is "The Default Unicode Collation Element Table"
 (aka DUCET), available
from the Unicode Consortium's website:

 http://www.unicode.org/Public/UCA/

 http://www.unicode.org/Public/UCA/latest/allkeys.txt (latest version)

If DUCET is not installed, it is recommended to copy the file
 from
http://www.unicode.org/Public/UCA/latest/allkeys.txt
 to <a place in @INC>/Unicode/Collate/allkeys.txt

manually.

CAVEATS
Normalization

Use of the normalization parameter requires the Unicode::Normalize
 module (see
Unicode::Normalize).

If you need not it (say, in the case when you need not
 handle any combining characters),

assign normalization => undef explicitly.

-- see 6.5 Avoiding Normalization, UTS #10.

Conformance Test

The Conformance Test for the UCA is available
 under http://www.unicode.org/Public/UCA/.

For CollationTest_SHIFTED.txt,
 a collator via Unicode::Collate->new() should be
used;
 for CollationTest_NON_IGNORABLE.txt, a collator via Unicode::Collate->
new(variable => "non-ignorable", level => 3).

Unicode::Normalize is required to try The Conformance Test.

AUTHOR, COPYRIGHT AND LICENSE
The Unicode::Collate module for perl was written by SADAHIRO Tomoyuki,

<SADAHIRO@cpan.org>. This module is Copyright(C) 2001-2005,
 SADAHIRO Tomoyuki. Japan. All
rights reserved.

This module is free software; you can redistribute it and/or
 modify it under the same terms as Perl
itself.

The file Unicode/Collate/allkeys.txt was copied directly
 from
http://www.unicode.org/Public/UCA/4.1.0/allkeys.txt.
 This file is Copyright (c) 1991-2005 Unicode, Inc.
All rights reserved.
 Distributed under the Terms of Use in http://www.unicode.org/copyright.html.

SEE ALSO
Unicode Collation Algorithm - UTS #10

Perl version 5.10.0 documentation - Unicode::Collate

Page 11http://perldoc.perl.org

http://www.unicode.org/reports/tr10/

The Default Unicode Collation Element Table (DUCET)

http://www.unicode.org/Public/UCA/latest/allkeys.txt

The conformance test for the UCA

http://www.unicode.org/Public/UCA/latest/CollationTest.html

http://www.unicode.org/Public/UCA/latest/CollationTest.zip

Hangul Syllable Type

http://www.unicode.org/Public/UNIDATA/HangulSyllableType.txt

Unicode Normalization Forms - UAX #15

http://www.unicode.org/reports/tr15/

