
Perl version 5.10.0 documentation - Thread

Page 1http://perldoc.perl.org

NAME
Thread - Manipulate threads in Perl (for old code only)

DEPRECATED
The Thread module served as the frontend to the old-style thread model,
 called 5005threads, that
was introduced in release 5.005. That model was
 deprecated, and has been removed in version 5.10.

For old code and interim backwards compatibility, the Thread module has
 been reworked to function
as a frontend for the new interpreter threads
 (ithreads) model. However, some previous functionality
is not available.
 Further, the data sharing models between the two thread models are completely

different, and anything to do with data sharing has to be thought differently.
 With ithreads, you must
explicitly share() variables between the
 threads.

You are strongly encouraged to migrate any existing threaded code to the new
 model (i.e., use the
threads and threads::shared modules) as soon as
 possible.

HISTORY
In Perl 5.005, the thread model was that all data is implicitly shared, and
 shared access to data has to
be explicitly synchronized. This model is called 5005threads.

In Perl 5.6, a new model was introduced in which all is was thread local and
 shared access to data
has to be explicitly declared. This model is called ithreads, for "interpreter threads".

In Perl 5.6, the ithreads model was not available as a public API; only as
 an internal API that was
available for extension writers, and to implement
 fork() emulation on Win32 platforms.

In Perl 5.8, the ithreads model became available through the threads
 module, and the 5005threads
model was deprecated.

In Perl 5.10, the 5005threads model was removed from the Perl interpreter.

SYNOPSIS
 use Thread qw(:DEFAULT async yield);

 my $t = Thread->new(\&start_sub, @start_args);

 $result = $t->join;
 $t->detach;

 if ($t->done) {
 $t->join;
 }

 if($t->equal($another_thread)) {
 # ...
 }

 yield();

 my $tid = Thread->self->tid;

 lock($scalar);
 lock(@array);
 lock(%hash);

Perl version 5.10.0 documentation - Thread

Page 2http://perldoc.perl.org

 my @list = Thread->list;

DESCRIPTION
The Thread module provides multithreading support for Perl.

FUNCTIONS
$thread = Thread->new(\&start_sub)

$thread = Thread->new(\&start_sub, LIST)

new starts a new thread of execution in the referenced subroutine. The
 optional list is
passed as parameters to the subroutine. Execution
 continues in both the subroutine
and the code after the new call.

Thread->new returns a thread object representing the newly created
 thread.

lock VARIABLE

lock places a lock on a variable until the lock goes out of scope.

If the variable is locked by another thread, the lock call will
 block until it's available.
lock is recursive, so multiple calls
 to lock are safe--the variable will remain locked
until the
 outermost lock on the variable goes out of scope.

Locks on variables only affect lock calls--they do not affect normal
 access to a
variable. (Locks on subs are different, and covered in a bit.)
 If you really, really want
locks to block access, then go ahead and tie
 them to something and manage this
yourself. This is done on purpose.
 While managing access to variables is a good thing,
Perl doesn't force
 you out of its living room...

If a container object, such as a hash or array, is locked, all the
 elements of that
container are not locked. For example, if a thread
 does a lock @a, any other thread
doing a lock($a[12]) won't
 block.

Finally, lock will traverse up references exactly one level. lock(\$a) is equivalent to
lock($a), while lock(\\$a) is not.

async BLOCK;

async creates a thread to execute the block immediately following
 it. This block is
treated as an anonymous sub, and so must have a
 semi-colon after the closing brace.
Like Thread->new, async
 returns a thread object.

Thread->self

The Thread->self function returns a thread object that represents
 the thread
making the Thread->self call.

Thread->list

Returns a list of all non-joined, non-detached Thread objects.

cond_wait VARIABLE

The cond_wait function takes a locked variable as
 a parameter, unlocks the
variable, and blocks until another thread
 does a cond_signal or cond_broadcast
for that same locked
 variable. The variable that cond_wait blocked on is relocked

after the cond_wait is satisfied. If there are multiple threads cond_waiting on the
same variable, all but one will reblock waiting
 to reaquire the lock on the variable. (So
if you're only using cond_wait for synchronization, give up the lock as soon as

possible.)

cond_signal VARIABLE

The cond_signal function takes a locked variable as a parameter and
 unblocks one
thread that's cond_waiting on that variable. If more than
 one thread is blocked in a

