
Perl version 5.10.0 documentation - Pod::Escapes

Page 1http://perldoc.perl.org

NAME
Pod::Escapes -- for resolving Pod E<...> sequences

SYNOPSIS
 use Pod::Escapes qw(e2char);
 ...la la la, parsing POD, la la la...
 $text = e2char($e_node->label);
 unless(defined $text) {
 print "Unknown E sequence \"", $e_node->label, "\"!";
 }
 ...else print/interpolate $text...

DESCRIPTION
This module provides things that are useful in decoding
 Pod E<...> sequences. Presumably, it should
be used
 only by Pod parsers and/or formatters.

By default, Pod::Escapes exports none of its symbols. But
 you can request any of them to be
exported.
 Either request them individually, as with use Pod::Escapes qw(symbolname
symbolname2...);,
 or you can do use Pod::Escapes qw(:ALL); to get all
 exportable
symbols.

GOODIES
e2char($e_content)

Given a name or number that could appear in a E<name_or_num> sequence, this returns the
string that
 it stands for. For example, e2char('sol'), e2char('47'), e2char('0x2F'),
and e2char('057') all return "/",
 because E<sol>, E<47>, E<0x2f>,
 and E<057>, all
mean "/". If
 the name has no known value (as with a name of "qacute") or is
 syntactally invalid
(as with a name of "1/4"), this returns undef.

e2charnum($e_content)

Given a name or number that could appear in a E<name_or_num> sequence, this returns the
number of
 the Unicode character that this stands for. For example, e2char('sol'),
e2char('47'), e2char('0x2F'), and e2char('057') all return 47,
 because E<sol>, E
<47>, E<0x2f>,
 and E<057>, all mean "/", whose Unicode number is 47. If
 the name has no
known value (as with a name of "qacute") or is
 syntactally invalid (as with a name of "1/4"),
this returns undef.

$Name2character{name}

Maps from names (as in E<name>) like "eacute" or "sol"
 to the string that each stands for.
Note that this does not
 include numerics (like "64" or "x981c"). Under old Perl versions
 (before
5.7) you get a "?" in place of characters whose Unicode
 value is over 255.

$Name2character_number{name}

Maps from names (as in E<name>) like "eacute" or "sol"
 to the Unicode value that each stands
for. For example, $Name2character_number{'eacute'} is 201, and
$Name2character_number{'eacute'} is 8364. You get the correct
 Unicode value,
regardless of the version of Perl you're using --
 which differs from %Name2character's
behavior under pre-5.7 Perls.

Note that this hash does not
 include numerics (like "64" or "x981c").

$Latin1Code_to_fallback{integer}

For numbers in the range 160 (0x00A0) to 255 (0x00FF), this maps
 from the character code
for a Latin-1 character (like 233 for
 lowercase e-acute) to the US-ASCII character that best
aproximates
 it (like "e"). You may find this useful if you are rendering
 POD in a format that you
think deals well only with US-ASCII
 characters.

Perl version 5.10.0 documentation - Pod::Escapes

Page 2http://perldoc.perl.org

$Latin1Char_to_fallback{character}

Just as above, but maps from characters (like "\xE9", lowercase e-acute) to characters (like
"e").

$Code2USASCII{integer}

This maps from US-ASCII codes (like 32) to the corresponding
 character (like space, for 32).
Only characters 32 to 126 are
 defined. This is meant for use by e2char($x) when it senses

that it's running on a non-ASCII platform (where chr(32) doesn't
 get you a space -- but
$Code2USASCII{32} will). It's
 documented here just in case you might find it useful.

CAVEATS
On Perl versions before 5.7, Unicode characters with a value
 over 255 (like lambda or emdash) can't
be conveyed. This
 module does work under such early Perl versions, but in the
 place of each such
character, you get a "?". Latin-1
 characters (characters 160-255) are unaffected.

Under EBCDIC platforms, e2char($n) may not always be the
 same as chr(e2charnum($n)),
and ditto for $Name2character{$name} and chr($Name2character_number{$name}).

SEE ALSO
perlpod

perlpodspec

Text::Unidecode

COPYRIGHT AND DISCLAIMERS
Copyright (c) 2001-2004 Sean M. Burke. All rights reserved.

This library is free software; you can redistribute it and/or modify
 it under the same terms as Perl
itself.

This program is distributed in the hope that it will be useful, but
 without any warranty; without even the
implied warranty of
 merchantability or fitness for a particular purpose.

Portions of the data tables in this module are derived from the
 entity declarations in the W3C XHTML
specification.

Currently (October 2001), that's these three:

 http://www.w3.org/TR/xhtml1/DTD/xhtml-lat1.ent
 http://www.w3.org/TR/xhtml1/DTD/xhtml-special.ent
 http://www.w3.org/TR/xhtml1/DTD/xhtml-symbol.ent

AUTHOR
Sean M. Burke sburke@cpan.org

