
Perl version 5.10.0 documentation - Locale::Maketext

Page 1http://perldoc.perl.org

NAME
Locale::Maketext - framework for localization

SYNOPSIS
 package MyProgram;
 use strict;
 use MyProgram::L10N;
 # ...which inherits from Locale::Maketext
 my $lh = MyProgram::L10N->get_handle() || die "What language?";
 ...
 # And then any messages your program emits, like:
 warn $lh->maketext("Can't open file [_1]: [_2]\n", $f, $!);
 ...

DESCRIPTION
It is a common feature of applications (whether run directly,
 or via the Web) for them to be "localized"
-- i.e., for them
 to a present an English interface to an English-speaker, a German
 interface to a
German-speaker, and so on for all languages it's
 programmed with. Locale::Maketext
 is a framework
for software localization; it provides you with the
 tools for organizing and accessing the bits of text and
text-processing
 code that you need for producing localized applications.

In order to make sense of Maketext and how all its
 components fit together, you should probably
 go
read Locale::Maketext::TPJ13, and then read the following documentation.

You may also want to read over the source for File::Findgrep
 and its constituent modules -- they
are a complete (if small)
 example application that uses Maketext.

QUICK OVERVIEW
The basic design of Locale::Maketext is object-oriented, and
 Locale::Maketext is an abstract base
class, from which you
 derive a "project class".
 The project class (with a name like
"TkBocciBall::Localize",
 which you then use in your module) is in turn the base class
 for all the
"language classes" for your project
 (with names "TkBocciBall::Localize::it",
"TkBocciBall::Localize::en",
 "TkBocciBall::Localize::fr", etc.).

A language class is
 a class containing a lexicon of phrases as class data,
 and possibly also some
methods that are of use in interpreting
 phrases in the lexicon, or otherwise dealing with text in that

language.

An object belonging to a language class is called a "language
 handle"; it's typically a flyweight object.

The normal course of action is to call:

 use TkBocciBall::Localize; # the localization project class
 $lh = TkBocciBall::Localize->get_handle();
 # Depending on the user's locale, etc., this will
 # make a language handle from among the classes available,
 # and any defaults that you declare.
 die "Couldn't make a language handle??" unless $lh;

From then on, you use the maketext function to access
 entries in whatever lexicon(s) belong to the
language handle
 you got. So, this:

 print $lh->maketext("You won!"), "\n";

...emits the right text for this language. If the object
 in $lh belongs to class "TkBocciBall::Localize::fr"
and
 %TkBocciBall::Localize::fr::Lexicon contains ("You won!"
 => "Tu as gagné!"), then the
above
 code happily tells the user "Tu as gagné!".

Perl version 5.10.0 documentation - Locale::Maketext

Page 2http://perldoc.perl.org

METHODS
Locale::Maketext offers a variety of methods, which fall
 into three categories:

Methods to do with constructing language handles.

maketext and other methods to do with accessing %Lexicon data
 for a given language
handle.

Methods that you may find it handy to use, from routines of
 yours that you put in %Lexicon
entries.

These are covered in the following section.

Construction Methods
These are to do with constructing a language handle:

$lh = YourProjClass->get_handle(...langtags...) || die "lg-handle?";

This tries loading classes based on the language-tags you give (like ("en-US", "sk",
"kon", "es-MX", "ja", "i-klingon"), and for the first class
 that succeeds, returns
YourProjClass::language->new().

If it runs thru the entire given list of language-tags, and finds no classes
 for those exact terms,
it then tries "superordinate" language classes.
 So if no "en-US" class (i.e.,
YourProjClass::en_us)
 was found, nor classes for anything else in that list, we then try
 its
superordinate, "en" (i.e., YourProjClass::en), and so on thru the other language-tags in the
given list: "es".
 (The other language-tags in our example list: happen to have no
superordinates.)

If none of those language-tags leads to loadable classes, we then
 try classes derived from
YourProjClass->fallback_languages() and
 then if nothing comes of that, we use classes
named by
 YourProjClass->fallback_language_classes(). Then in the (probably
 quite unlikely)
event that that fails, we just return undef.

$lh = YourProjClass->get_handle() || die "lg-handle?";

When get_handle is called with an empty parameter list, magic happens:

If get_handle senses that it's running in program that was
 invoked as a CGI, then it tries to
get language-tags out of the
 environment variable "HTTP_ACCEPT_LANGUAGE", and it
pretends that
 those were the languages passed as parameters to get_handle.

Otherwise (i.e., if not a CGI), this tries various OS-specific ways
 to get the language-tags for
the current locale/language, and then
 pretends that those were the value(s) passed to
get_handle.

Currently this OS-specific stuff consists of looking in the environment
 variables "LANG" and
"LANGUAGE"; and on MSWin machines (where those
 variables are typically unused), this
also tries using
 the module Win32::Locale to get a language-tag for whatever language/locale

is currently selected in the "Regional Settings" (or "International"?)
 Control Panel. I welcome
further
 suggestions for making this do the Right Thing under other operating
 systems that
support localization.

If you're using localization in an application that keeps a configuration
 file, you might consider
something like this in your project class:

 sub get_handle_via_config {
 my $class = $_[0];
 my $chosen_language = $Config_settings{'language'};
 my $lh;
 if($chosen_language) {
 $lh = $class->get_handle($chosen_language)
 || die "No language handle for \"$chosen_language\" or the
like";

Perl version 5.10.0 documentation - Locale::Maketext

Page 3http://perldoc.perl.org

 } else {
 # Config file missing, maybe?
 $lh = $class->get_handle()
 || die "Can't get a language handle";
 }
 return $lh;
 }

$lh = YourProjClass::langname->new();

This constructs a language handle. You usually don't call this
 directly, but instead let
get_handle find a language class to use
 and to then call ->new on.

$lh->init();

This is called by ->new to initialize newly-constructed language handles.
 If you define an init
method in your class, remember that it's usually
 considered a good idea to call
$lh->SUPER::init in it (presumably at the
 beginning), so that all classes get a chance to
initialize a new object
 however they see fit.

YourProjClass->fallback_languages()

get_handle appends the return value of this to the end of
 whatever list of languages you
pass get_handle. Unless
 you override this method, your project class
 will inherit
Locale::Maketext's fallback_languages, which
 currently returns ('i-default', 'en',
 'en-US').
 ("i-default" is defined in RFC 2277).

This method (by having it return the name
 of a language-tag that has an existing language
class)
 can be used for making sure that get_handle will always manage to construct a
language
 handle (assuming your language classes are in an appropriate
 @INC directory). Or
you can use the next method:

YourProjClass->fallback_language_classes()

get_handle appends the return value of this to the end
 of the list of classes it will try using.
Unless
 you override this method, your project class
 will inherit Locale::Maketext's
fallback_language_classes,
 which currently returns an empty list, ().
 By setting this to
some value (namely, the name of a loadable
 language class), you can be sure that
get_handle will always manage to construct a language
 handle.

The "maketext" Method
This is the most important method in Locale::Maketext:

 $text = $lh->maketext(I<key>, ...parameters for this phrase...);

This looks in the %Lexicon of the language handle
 $lh and all its superclasses, looking
 for an entry
whose key is the string key. Assuming such
 an entry is found, various things then happen, depending
on the
 value found:

If the value is a scalarref, the scalar is dereferenced and returned
 (and any parameters are ignored).

If the value is a coderef, we return &$value($lh, ...parameters...).

If the value is a string that doesn't look like it's in Bracket Notation,
 we return it (after replacing it with a
scalarref, in its %Lexicon).

If the value does look like it's in Bracket Notation, then we compile
 it into a sub, replace the string in
the %Lexicon with the new coderef,
 and then we return &$new_sub($lh, ...parameters...).

Bracket Notation is discussed in a later section. Note
 that trying to compile a string into Bracket
Notation can throw
 an exception if the string is not syntactically valid (say, by not
 balancing brackets
right.)

Perl version 5.10.0 documentation - Locale::Maketext

Page 4http://perldoc.perl.org

Also, calling &$coderef($lh, ...parameters...) can throw any sort of
 exception (if, say, code in that sub
tries to divide by zero). But
 a very common exception occurs when you have Bracket
 Notation text
that says to call a method "foo", but there is no such
 method. (E.g., "You have [quatn,_1,ball]." will
throw an exception
 on trying to call $lh->quatn($_[1],'ball') -- you presumably meant
 "quant".)
maketext catches these exceptions, but only to make the
 error message more readable, at which
point it rethrows the exception.

An exception may be thrown if key is not found in any
 of $lh's %Lexicon hashes. What happens if a
key is not found,
 is discussed in a later section, "Controlling Lookup Failure".

Note that you might find it useful in some cases to override
 the maketext method with an "after
method", if you want to
 translate encodings, or even scripts:

 package YrProj::zh_cn; # Chinese with PRC-style glyphs
 use base ('YrProj::zh_tw'); # Taiwan-style
 sub maketext {
 my $self = shift(@_);
 my $value = $self->maketext(@_);
 return Chineeze::taiwan2mainland($value);
 }

Or you may want to override it with something that traps
 any exceptions, if that's critical to your
program:

 sub maketext {
 my($lh, @stuff) = @_;
 my $out;
 eval { $out = $lh->SUPER::maketext(@stuff) };
 return $out unless $@;
 ...otherwise deal with the exception...
 }

Other than those two situations, I don't imagine that
 it's useful to override the maketext method. (If

you run into a situation where it is useful, I'd be
 interested in hearing about it.)

$lh->fail_with or $lh->fail_with(PARAM)

$lh->failure_handler_auto

These two methods are discussed in the section "Controlling
 Lookup Failure".

Utility Methods
These are methods that you may find it handy to use, generally
 from %Lexicon routines of yours
(whether expressed as
 Bracket Notation or not).

$language->quant($number, $singular)

$language->quant($number, $singular, $plural)

$language->quant($number, $singular, $plural, $negative)

This is generally meant to be called from inside Bracket Notation
 (which is discussed later), as
in

 "Your search matched [quant,_1,document]!"

It's for quantifying a noun (i.e., saying how much of it there is,
 while giving the correct form of
it). The behavior of this method is
 handy for English and a few other Western European
languages, and you
 should override it for languages where it's not suitable. You can feel
 free
to read the source, but the current implementation is basically
 as this pseudocode describes:

 if $number is 0 and there's a $negative,

Perl version 5.10.0 documentation - Locale::Maketext

Page 5http://perldoc.perl.org

 return $negative;
 elsif $number is 1,
 return "1 $singular";
 elsif there's a $plural,
 return "$number $plural";
 else
 return "$number " . $singular . "s";
 #
 # ...except that we actually call numf to
 # stringify $number before returning it.

So for English (with Bracket Notation) "...[quant,_1,file]..." is fine (for 0 it returns "0
files",
 for 1 it returns "1 file", and for more it returns "2 files", etc.)

But for "directory", you'd want "[quant,_1,directory,directories]"
 so that our
elementary quant method doesn't think that the
 plural of "directory" is "directorys". And you
might find that the
 output may sound better if you specify a negative form, as in:

 "[quant,_1,file,files,No files] matched your query.\n"

Remember to keep in mind verb agreement (or adjectives too, in
 other languages), as in:

 "[quant,_1,document] were matched.\n"

Because if _1 is one, you get "1 document were matched".
 An acceptable hack here is to do
something like this:

 "[quant,_1,document was, documents were] matched.\n"

$language->numf($number)

This returns the given number formatted nicely according to
 this language's conventions.
Maketext's default method is
 mostly to just take the normal string form of the number
 (applying
sprintf "%G" for only very large numbers), and then
 to add commas as necessary. (Except that
we apply tr/,./.,/ if $language->{'numf_comma'} is true;
 that's a bit of a hack that's useful
for languages that express
 two million as "2.000.000" and not as "2,000,000").

If you want anything fancier, consider overriding this with something
 that uses
Number::Format, or does something else
 entirely.

Note that numf is called by quant for stringifying all quantifying
 numbers.

$language->sprintf($format, @items)

This is just a wrapper around Perl's normal sprintf function.
 It's provided so that you can
use "sprintf" in Bracket Notation:

 "Couldn't access datanode [sprintf,%10x=~[%s~],_1,_2]!\n"

returning...

 Couldn't access datanode Stuff=[thangamabob]!

$language->language_tag()

Currently this just takes the last bit of ref($language), turns
 underscores to dashes, and
returns it. So if $language is
 an object of class Hee::HOO::Haw::en_us,
$language->language_tag()
 returns "en-us". (Yes, the usual representation for that language

tag is "en-US", but case is never considered meaningful in
 language-tag comparison.)

You may override this as you like; Maketext doesn't use it for
 anything.

$language->encoding()

Currently this isn't used for anything, but it's provided
 (with default value of

Perl version 5.10.0 documentation - Locale::Maketext

Page 6http://perldoc.perl.org

(ref($language) && $language->{'encoding'})) or "iso-8859-1"
) as a sort
of suggestion that it may be useful/necessary to
 associate encodings with your language
handles (whether on a
 per-class or even per-handle basis.)

Language Handle Attributes and Internals
A language handle is a flyweight object -- i.e., it doesn't (necessarily)
 carry any data of interest, other
than just being a member of
 whatever class it belongs to.

A language handle is implemented as a blessed hash. Subclasses of yours
 can store whatever data
you want in the hash. Currently the only hash
 entry used by any crucial Maketext method is "fail", so
feel free to
 use anything else as you like.

Remember: Don't be afraid to read the Maketext source if there's
 any point on which this
documentation is unclear. This documentation
 is vastly longer than the module source itself.

LANGUAGE CLASS HIERARCHIES
These are Locale::Maketext's assumptions about the class
 hierarchy formed by all your language
classes:

You must have a project base class, which you load, and
 which you then use as the first
argument in
 the call to YourProjClass->get_handle(...). It should derive
 (whether directly or
indirectly) from Locale::Maketext.
 It doesn't matter how you name this class, although
assuming this
 is the localization component of your Super Mega Program,
 good names for
your project class might be
 SuperMegaProgram::Localization, SuperMegaProgram::L10N,

SuperMegaProgram::I18N, SuperMegaProgram::International,
 or even
SuperMegaProgram::Languages or SuperMegaProgram::Messages.

Language classes are what YourProjClass->get_handle will try to load.
 It will look for them by
taking each language-tag (skipping it
 if it doesn't look like a language-tag or locale-tag!),
turning it to
 all lowercase, turning dashes to underscores, and appending it
 to YourProjClass .
"::". So this:

 $lh = YourProjClass->get_handle(
 'en-US', 'fr', 'kon', 'i-klingon', 'i-klingon-romanized'
);

will try loading the classes YourProjClass::en_us (note lowercase!), YourProjClass::fr,
YourProjClass::kon,
 YourProjClass::i_klingon
 and YourProjClass::i_klingon_romanized. (And
it'll stop at the
 first one that actually loads.)

I assume that each language class derives (directly or indirectly)
 from your project class, and
also defines its @ISA, its %Lexicon,
 or both. But I anticipate no dire consequences if these
assumptions
 do not hold.

Language classes may derive from other language classes (although they
 should have "use
Thatclassname" or "use base qw(...classes...)").
 They may derive from the project
 class. They
may derive from some other class altogether. Or via
 multiple inheritance, it may derive from
any mixture of these.

I foresee no problems with having multiple inheritance in
 your hierarchy of language classes.
(As usual, however, Perl will
 complain bitterly if you have a cycle in the hierarchy: i.e., if
 any
class is its own ancestor.)

ENTRIES IN EACH LEXICON
A typical %Lexicon entry is meant to signify a phrase,
 taking some number (0 or more) of parameters.
An entry
 is meant to be accessed by via
 a string key in $lh->maketext(key, ...parameters...),
 which
should return a string that is generally meant for
 be used for "output" to the user -- regardless of
whether
 this actually means printing to STDOUT, writing to a file,
 or putting into a GUI widget.

Perl version 5.10.0 documentation - Locale::Maketext

Page 7http://perldoc.perl.org

While the key must be a string value (since that's a basic
 restriction that Perl places on hash keys),
the value in
 the lexicon can currently be of several types:
 a defined scalar, scalarref, or coderef. The
use of these is
 explained above, in the section 'The "maketext" Method', and
 Bracket Notation for
strings is discussed in the next section.

While you can use arbitrary unique IDs for lexicon keys
 (like "_min_larger_max_error"), it is often

useful for if an entry's key is itself a valid value, like
 this example error message:

 "Minimum ([_1]) is larger than maximum ([_2])!\n",

Compare this code that uses an arbitrary ID...

 die $lh->maketext("_min_larger_max_error", $min, $max)
 if $min > $max;

...to this code that uses a key-as-value:

 die $lh->maketext(
 "Minimum ([_1]) is larger than maximum ([_2])!\n",
 $min, $max
) if $min > $max;

The second is, in short, more readable. In particular, it's obvious
 that the number of parameters you're
feeding to that phrase (two) is
 the number of parameters that it wants to be fed. (Since you see
 _1
and a _2 being used in the key there.)

Also, once a project is otherwise
 complete and you start to localize it, you can scrape together
 all the
various keys you use, and pass it to a translator; and then
 the translator's work will go faster if what
he's presented is this:

 "Minimum ([_1]) is larger than maximum ([_2])!\n",
 => "", # fill in something here, Jacques!

rather than this more cryptic mess:

 "_min_larger_max_error"
 => "", # fill in something here, Jacques

I think that keys as lexicon values makes the completed lexicon
 entries more readable:

 "Minimum ([_1]) is larger than maximum ([_2])!\n",
 => "Le minimum ([_1]) est plus grand que le maximum ([_2])!\n",

Also, having valid values as keys becomes very useful if you set
 up an _AUTO lexicon. _AUTO
lexicons are discussed in a later
 section.

I almost always use keys that are themselves
 valid lexicon values. One notable exception is when the
value is
 quite long. For example, to get the screenful of data that
 a command-line program might
return when given an unknown switch,
 I often just use a brief, self-explanatory key such as
"_USAGE_MESSAGE". At that point I then go
 and immediately to define that lexicon entry in the

ProjectClass::L10N::en lexicon (since English is always my "project
 language"):

 '_USAGE_MESSAGE' => <<'EOSTUFF',
 ...long long message...
 EOSTUFF

and then I can use it as:

Perl version 5.10.0 documentation - Locale::Maketext

Page 8http://perldoc.perl.org

 getopt('oDI', \%opts) or die $lh->maketext('_USAGE_MESSAGE');

Incidentally,
 note that each class's %Lexicon inherits-and-extends
 the lexicons in its superclasses.
This is not because these are
 special hashes per se, but because you access them via the maketext
method, which looks for entries across all the %Lexicon hashes in a language class and all its
ancestor classes.
 (This is because the idea of "class data" isn't directly implemented
 in Perl, but is
instead left to individual class-systems to implement
 as they see fit..)

Note that you may have things stored in a lexicon
 besides just phrases for output: for example, if your
program
 takes input from the keyboard, asking a "(Y/N)" question,
 you probably need to know what
the equivalent of "Y[es]/N[o]" is
 in whatever language. You probably also need to know what
 the
equivalents of the answers "y" and "n" are. You can
 store that information in the lexicon (say, under
the keys
 "~answer_y" and "~answer_n", and the long forms as
 "~answer_yes" and "~answer_no",
where "~" is just an ad-hoc
 character meant to indicate to programmers/translators that
 these are not
phrases for output).

Or instead of storing this in the language class's lexicon,
 you can (and, in some cases, really should)
represent the same bit
 of knowledge as code in a method in the language class. (That
 leaves a tidy
distinction between the lexicon as the things we
 know how to say, and the rest of the things in the
lexicon class
 as things that we know how to do.) Consider
 this example of a processor for responses
to French "oui/non"
 questions:

 sub y_or_n {
 return undef unless defined $_[1] and length $_[1];
 my $answer = lc $_[1]; # smash case
 return 1 if $answer eq 'o' or $answer eq 'oui';
 return 0 if $answer eq 'n' or $answer eq 'non';
 return undef;
 }

...which you'd then call in a construct like this:

 my $response;
 until(defined $response) {
 print $lh->maketext("Open the pod bay door (y/n)? ");
 $response = $lh->y_or_n(get_input_from_keyboard_somehow());
 }
 if($response) { $pod_bay_door->open() }
 else { $pod_bay_door->leave_closed() }

Other data worth storing in a lexicon might be things like
 filenames for language-targetted resources:

 ...
 "_main_splash_png"
 => "/styles/en_us/main_splash.png",
 "_main_splash_imagemap"
 => "/styles/en_us/main_splash.incl",
 "_general_graphics_path"
 => "/styles/en_us/",
 "_alert_sound"
 => "/styles/en_us/hey_there.wav",
 "_forward_icon"
 => "left_arrow.png",
 "_backward_icon"
 => "right_arrow.png",
 # In some other languages, left equals
 # BACKwards, and right is FOREwards.

Perl version 5.10.0 documentation - Locale::Maketext

Page 9http://perldoc.perl.org

 ...

You might want to do the same thing for expressing key bindings
 or the like (since hardwiring "q" as
the binding for the function
 that quits a screen/menu/program is useful only if your language
 happens
to associate "q" with "quit"!)

BRACKET NOTATION
Bracket Notation is a crucial feature of Locale::Maketext. I mean
 Bracket Notation to provide a
replacement for the use of sprintf formatting.
 Everything you do with Bracket Notation could be done
with a sub block,
 but bracket notation is meant to be much more concise.

Bracket Notation is a like a miniature "template" system (in the sense
 of Text::Template, not in the
sense of C++ templates),
 where normal text is passed thru basically as is, but text in special
 regions
is specially interpreted. In Bracket Notation, you use square brackets ("[...]"),
 not curly braces ("{...}")
to note sections that are specially interpreted.

For example, here all the areas that are taken literally are underlined with
 a "^", and all the in-bracket
special regions are underlined with an X:

 "Minimum ([_1]) is larger than maximum ([_2])!\n",
 ^^^^^^^^^ XX ^^^^^^^^^^^^^^^^^^^^^^^^^^ XX ^^^^

When that string is compiled from bracket notation into a real Perl sub,
 it's basically turned into:

 sub {
 my $lh = $_[0];
 my @params = @_;
 return join '',
 "Minimum (",
 ...some code here...
 ") is larger than maximum (",
 ...some code here...
 ")!\n",
 }
 # to be called by $lh->maketext(KEY, params...)

In other words, text outside bracket groups is turned into string
 literals. Text in brackets is rather more
complex, and currently follows
 these rules:

Bracket groups that are empty, or which consist only of whitespace,
 are ignored. (Examples:
"[]", "[]", or a [and a] with returns
 and/or tabs and/or spaces between them.

Otherwise, each group is taken to be a comma-separated group of items,
 and each item is
interpreted as follows:

An item that is "_digits" or "_-digits" is interpreted as
 $_[value]. I.e., "_1" becomes with $_[1],
and "_-3" is interpreted
 as $_[-3] (in which case @_ should have at least three elements in it).

Note that $_[0] is the language handle, and is typically not named
 directly.

An item "_*" is interpreted to mean "all of @_ except $_[0]".
 I.e., @_[1..$#_]. Note that this
is an empty list in the case
 of calls like $lh->maketext(key) where there are no
 parameters
(except $_[0], the language handle).

Otherwise, each item is interpreted as a string literal.

The group as a whole is interpreted as follows:

If the first item in a bracket group looks like a method name,
 then that group is interpreted like
this:

Perl version 5.10.0 documentation - Locale::Maketext

Page 10http://perldoc.perl.org

 $lh->that_method_name(
 ...rest of items in this group...
),

If the first item in a bracket group is "*", it's taken as shorthand
 for the so commonly called
"quant" method. Similarly, if the first
 item in a bracket group is "#", it's taken to be shorthand
for
 "numf".

If the first item in a bracket group is the empty-string, or "_*"
 or "_digits" or "_-digits", then that
group is interpreted
 as just the interpolation of all its items:

 join('',
 ...rest of items in this group...
),

Examples: "[_1]" and "[,_1]", which are synonymous; and
 "[,ID-(,_4,-,_2,)]", which
compiles as join "", "ID-(", $_[4], "-", $_[2], ")".

Otherwise this bracket group is invalid. For example, in the group
 "[!@#,whatever]", the first
item "!@#" is neither the empty-string,
 "_number", "_-number", "_*", nor a valid method name;
and so
 Locale::Maketext will throw an exception of you try compiling an
 expression containing
this bracket group.

Note, incidentally, that items in each group are comma-separated,
 not /\s*,\s*/-separated. That
is, you might expect that this
 bracket group:

 "Hoohah [foo, _1 , bar ,baz]!"

would compile to this:

 sub {
 my $lh = $_[0];
 return join '',
 "Hoohah ",
 $lh->foo($_[1], "bar", "baz"),
 "!",
 }

But it actually compiles as this:

 sub {
 my $lh = $_[0];
 return join '',
 "Hoohah ",
 $lh->foo(" _1 ", " bar ", "baz"), # note the <space> in " bar "
 "!",
 }

In the notation discussed so far, the characters "[" and "]" are given
 special meaning, for opening and
closing bracket groups, and "," has
 a special meaning inside bracket groups, where it separates items
in the
 group. This begs the question of how you'd express a literal "[" or
 "]" in a Bracket Notation
string, and how you'd express a literal
 comma inside a bracket group. For this purpose I've adopted
"~" (tilde)
 as an escape character: "~[" means a literal '[' character anywhere
 in Bracket Notation (i.e.,
regardless of whether you're in a bracket
 group or not), and ditto for "~]" meaning a literal ']', and "~,"
meaning
 a literal comma. (Altho "," means a literal comma outside of
 bracket groups -- it's only inside
bracket groups that commas are special.)

And on the off chance you need a literal tilde in a bracket expression,
 you get it with "~~".

Perl version 5.10.0 documentation - Locale::Maketext

Page 11http://perldoc.perl.org

Currently, an unescaped "~" before a character
 other than a bracket or a comma is taken to mean just
a "~" and that
 character. I.e., "~X" means the same as "~~X" -- i.e., one literal tilde,
 and then one
literal "X". However, by using "~X", you are assuming that
 no future version of Maketext will use "~X"
as a magic escape sequence.
 In practice this is not a great problem, since first off you can just
 write
"~~X" and not worry about it; second off, I doubt I'll add lots
 of new magic characters to bracket
notation; and third off, you
 aren't likely to want literal "~" characters in your messages anyway,
 since
it's not a character with wide use in natural language text.

Brackets must be balanced -- every openbracket must have
 one matching closebracket, and vice
versa. So these are all invalid:

 "I ate [quant,_1,rhubarb pie."
 "I ate [quant,_1,rhubarb pie[."
 "I ate quant,_1,rhubarb pie]."
 "I ate quant,_1,rhubarb pie[."

Currently, bracket groups do not nest. That is, you cannot say:

 "Foo [bar,baz,[quux,quuux]]\n";

If you need a notation that's that powerful, use normal Perl:

 %Lexicon = (
 ...
 "some_key" => sub {
 my $lh = $_[0];
 join '',
 "Foo ",
 $lh->bar('baz', $lh->quux('quuux')),
 "\n",
 },
 ...
);

Or write the "bar" method so you don't need to pass it the
 output from calling quux.

I do not anticipate that you will need (or particularly want)
 to nest bracket groups, but you are
welcome to email me with
 convincing (real-life) arguments to the contrary.

AUTO LEXICONS
If maketext goes to look in an individual %Lexicon for an entry
 for key (where key does not start with
an underscore), and
 sees none, but does see an entry of "_AUTO" => some_true_value,
 then we
actually define $Lexicon{key} = key right then and there,
 and then use that value as if it had been
there all
 along. This happens before we even look in any superclass %Lexicons!

(This is meant to be somewhat like the AUTOLOAD mechanism in
 Perl's function call system -- or,
looked at another way,
 like the AutoLoader module.)

I can picture all sorts of circumstances where you just
 do not want lookup to be able to fail (since
failing
 normally means that maketext throws a die, although
 see the next section for greater control
over that). But
 here's one circumstance where _AUTO lexicons are meant to
 be especially useful:

As you're writing an application, you decide as you go what messages
 you need to emit. Normally
you'd go to write this:

 if(-e $filename) {
 go_process_file($filename)
 } else {

Perl version 5.10.0 documentation - Locale::Maketext

Page 12http://perldoc.perl.org

 print qq{Couldn't find file "$filename"!\n};
 }

but since you anticipate localizing this, you write:

 use ThisProject::I18N;
 my $lh = ThisProject::I18N->get_handle();
 # For the moment, assume that things are set up so
 # that we load class ThisProject::I18N::en
 # and that that's the class that $lh belongs to.
 ...
 if(-e $filename) {
 go_process_file($filename)
 } else {
 print $lh->maketext(
 qq{Couldn't find file "[_1]"!\n}, $filename
);
 }

Now, right after you've just written the above lines, you'd
 normally have to go open the file
ThisProject/I18N/en.pm, and immediately add an entry:

 "Couldn't find file \"[_1]\"!\n"
 => "Couldn't find file \"[_1]\"!\n",

But I consider that somewhat of a distraction from the work
 of getting the main code working -- to say
nothing of the fact
 that I often have to play with the program a few times before
 I can decide exactly
what wording I want in the messages (which
 in this case would require me to go changing three lines
of code:
 the call to maketext with that key, and then the two lines in
 ThisProject/I18N/en.pm).

However, if you set "_AUTO => 1" in the %Lexicon in,
 ThisProject/I18N/en.pm (assuming that English
(en) is
 the language that all your programmers will be using for this
 project's internal message keys),
then you don't ever have to
 go adding lines like this

 "Couldn't find file \"[_1]\"!\n"
 => "Couldn't find file \"[_1]\"!\n",

to ThisProject/I18N/en.pm, because if _AUTO is true there,
 then just looking for an entry with the key
"Couldn't find
 file \"[_1]\"!\n" in that lexicon will cause it to be added,
 with that value!

Note that the reason that keys that start with "_"
 are immune to _AUTO isn't anything generally
magical about
 the underscore character -- I just wanted a way to have most
 lexicon keys be autoable,
except for possibly a few, and I
 arbitrarily decided to use a leading underscore as a signal
 to
distinguish those few.

CONTROLLING LOOKUP FAILURE
If you call $lh->maketext(key, ...parameters...),
 and there's no entry key in $lh's class's %Lexicon, nor

in the superclass %Lexicon hash, and if we can't auto-make key (because either it starts with a "_", or
because none
 of its lexicons have _AUTO => 1,), then we have
 failed to find a normal way to
maketext key. What then
 happens in these failure conditions, depends on the $lh object's
 "fail"
attribute.

If the language handle has no "fail" attribute, maketext
 will simply throw an exception (i.e., it calls die,
mentioning
 the key whose lookup failed, and naming the line number where
 the calling
$lh->maketext(key,...) was.

If the language handle has a "fail" attribute whose value is a
 coderef, then $lh->maketext(key

Perl version 5.10.0 documentation - Locale::Maketext

Page 13http://perldoc.perl.org

,...params...) gives up and calls:

 return $that_subref->($lh, $key, @params);

Otherwise, the "fail" attribute's value should be a string denoting
 a method name, so that
$lh->maketext(key,...params...) can
 give up with:

 return $lh->$that_method_name($phrase, @params);

The "fail" attribute can be accessed with the fail_with method:

 # Set to a coderef:
 $lh->fail_with(\&failure_handler);

 # Set to a method name:
 $lh->fail_with('failure_method');

 # Set to nothing (i.e., so failure throws a plain exception)
 $lh->fail_with(undef);

 # Get the current value
 $handler = $lh->fail_with();

Now, as to what you may want to do with these handlers: Maybe you'd
 want to log what key failed for
what class, and then die. Maybe
 you don't like die and instead you want to send the error message

to STDOUT (or wherever) and then merely exit().

Or maybe you don't want to die at all! Maybe you could use a
 handler like this:

 # Make all lookups fall back onto an English value,
 # but only after we log it for later fingerpointing.
 my $lh_backup = ThisProject->get_handle('en');
 open(LEX_FAIL_LOG, ">>wherever/lex.log") || die "GNAARGH $!";
 sub lex_fail {
 my($failing_lh, $key, $params) = @_;
 print LEX_FAIL_LOG scalar(localtime), "\t",
 ref($failing_lh), "\t", $key, "\n";
 return $lh_backup->maketext($key,@params);
 }

Some users have expressed that they think this whole mechanism of
 having a "fail" attribute at all,
seems a rather pointless complication.
 But I want Locale::Maketext to be usable for software projects
of any
 scale and type; and different software projects have different ideas
 of what the right thing is to
do in failure conditions. I could simply
 say that failure always throws an exception, and that if you want
to be
 careful, you'll just have to wrap every call to $lh->maketext in an eval { }. However, I want
programmers to reserve the right (via
 the "fail" attribute) to treat lookup failure as something other
than
 an exception of the same level of severity as a config file being
 unreadable, or some essential
resource being inaccessible.

One possibly useful value for the "fail" attribute is the method name
 "failure_handler_auto". This is a
method defined in the class
 Locale::Maketext itself. You set it with:

 $lh->fail_with('failure_handler_auto');

Then when you call $lh->maketext(key, ...parameters...) and
 there's no key in any of those lexicons,
maketext gives up with

Perl version 5.10.0 documentation - Locale::Maketext

Page 14http://perldoc.perl.org

 return $lh->failure_handler_auto($key, @params);

But failure_handler_auto, instead of dying or anything, compiles
 $key, caching it in

 $lh->{'failure_lex'}{$key} = $complied

and then calls the compiled value, and returns that. (I.e., if
 $key looks like bracket notation, $compiled
is a sub, and we return
 &{$compiled}(@params); but if $key is just a plain string, we just
 return that.)

The effect of using "failure_auto_handler"
 is like an AUTO lexicon, except that it 1) compiles $key
even if
 it starts with "_", and 2) you have a record in the new hashref
 $lh->{'failure_lex'} of all the keys
that have failed for
 this object. This should avoid your program dying -- as long
 as your keys aren't
actually invalid as bracket code, and as
 long as they don't try calling methods that don't exist.

"failure_auto_handler" may not be exactly what you want, but I
 hope it at least shows you that
maketext failure can be mitigated
 in any number of very flexible ways. If you can formalize exactly

what you want, you should be able to express that as a failure
 handler. You can even make it default
for every object of a given
 class, by setting it in that class's init:

 sub init {
 my $lh = $_[0]; # a newborn handle
 $lh->SUPER::init();
 $lh->fail_with('my_clever_failure_handler');
 return;
 }
 sub my_clever_failure_handler {
 ...you clever things here...
 }

HOW TO USE MAKETEXT
Here is a brief checklist on how to use Maketext to localize
 applications:

Decide what system you'll use for lexicon keys. If you insist,
 you can use opaque IDs (if you're
nostalgic for catgets),
 but I have better suggestions in the
 section "Entries in Each Lexicon",
above. Assuming you opt for
 meaningful keys that double as values (like "Minimum ([_1]) is

larger than maximum ([_2])!\n"), you'll have to settle on what
 language those should be in. For
the sake of argument, I'll
 call this English, specifically American English, "en-US".

Create a class for your localization project. This is
 the name of the class that you'll use in the
idiom:

 use Projname::L10N;
 my $lh = Projname::L10N->get_handle(...) || die "Language?";

Assuming you call your class Projname::L10N, create a class
 consisting minimally of:

 package Projname::L10N;
 use base qw(Locale::Maketext);
 ...any methods you might want all your languages to share...

 # And, assuming you want the base class to be an _AUTO lexicon,
 # as is discussed a few sections up:

 1;

Create a class for the language your internal keys are in. Name
 the class after the
language-tag for that language, in lowercase,
 with dashes changed to underscores. Assuming
your project's first
 language is US English, you should call this Projname::L10N::en_us.
 It

Perl version 5.10.0 documentation - Locale::Maketext

Page 15http://perldoc.perl.org

should consist minimally of:

 package Projname::L10N::en_us;
 use base qw(Projname::L10N);
 %Lexicon = (
 '_AUTO' => 1,
);
 1;

(For the rest of this section, I'll assume that this "first
 language class" of
Projname::L10N::en_us has
 _AUTO lexicon.)

Go and write your program. Everywhere in your program where you would say:

 print "Foobar $thing stuff\n";

instead do it thru maketext, using no variable interpolation in
 the key:

 print $lh->maketext("Foobar [_1] stuff\n", $thing);

If you get tired of constantly saying print $lh->maketext,
 consider making a functional
wrapper for it, like so:

 use Projname::L10N;
 use vars qw($lh);
 $lh = Projname::L10N->get_handle(...) || die "Language?";
 sub pmt (@) { print($lh->maketext(@_)) }
 # "pmt" is short for "Print MakeText"
 $Carp::Verbose = 1;
 # so if maketext fails, we see made the call to pmt

Besides whole phrases meant for output, anything language-dependent
 should be put into the
class Projname::L10N::en_us,
 whether as methods, or as lexicon entries -- this is discussed
 in
the section "Entries in Each Lexicon", above.

Once the program is otherwise done, and once its localization for
 the first language works
right (via the data and methods in
 Projname::L10N::en_us), you can get together the data for
translation.
 If your first language lexicon isn't an _AUTO lexicon, then you already
 have all the
messages explicitly in the lexicon (or else you'd be
 getting exceptions thrown when you call
$lh->maketext to get
 messages that aren't in there). But if you were (advisedly) lazy and are

using an _AUTO lexicon, then you've got to make a list of all the phrases
 that you've so far
been letting _AUTO generate for you. There are very
 many ways to assemble such a list. The
most straightforward is to simply
 grep the source for every occurrence of "maketext" (or calls

to wrappers around it, like the above pmt function), and to log the
 following phrase.

You may at this point want to consider whether your base class (Projname::L10N), from which
all lexicons inherit from (Projname::L10N::en,
 Projname::L10N::es, etc.), should be an _AUTO
lexicon. It may be true
 that in theory, all needed messages will be in each language class;
 but
in the presumably unlikely or "impossible" case of lookup failure,
 you should consider whether
your program should throw an exception,
 emit text in English (or whatever your project's first
language is),
 or some more complex solution as described in the section
 "Controlling Lookup
Failure", above.

Submit all messages/phrases/etc. to translators.

(You may, in fact, want to start with localizing to one other language
 at first, if you're not sure
that you've properly abstracted the
 language-dependent parts of your code.)

Translators may request clarification of the situation in which a
 particular phrase is found. For
example, in English we are entirely happy
 saying "n files found", regardless of whether we
mean "I looked for files,
 and found n of them" or the rather distinct situation of "I looked for

Perl version 5.10.0 documentation - Locale::Maketext

Page 16http://perldoc.perl.org

something else (like lines in files), and along the way I saw n
 files." This may involve rethinking
things that you thought quite clear:
 should "Edit" on a toolbar be a noun ("editing") or a verb
("to edit")? Is
 there already a conventionalized way to express that menu option, separate

from the target language's normal word for "to edit"?

In all cases where the very common phenomenon of quantification
 (saying "N files", for any
value of N)
 is involved, each translator should make clear what dependencies the
 number
causes in the sentence. In many cases, dependency is
 limited to words adjacent to the
number, in places where you might
 expect them ("I found the-?PLURAL N
 empty-?PLURAL
directory-?PLURAL"), but in some cases there are
 unexpected dependencies ("I
found-?PLURAL ..."!) as well as long-distance
 dependencies "The N directory-?PLURAL could
not be deleted-?PLURAL"!).

Remind the translators to consider the case where N is 0:
 "0 files found" isn't exactly
natural-sounding in any language, but it
 may be unacceptable in many -- or it may condition
special
 kinds of agreement (similar to English "I didN'T find ANY files").

Remember to ask your translators about numeral formatting in their
 language, so that you can
override the numf method as
 appropriate. Typical variables in number formatting are: what to

use as a decimal point (comma? period?); what to use as a thousands
 separator (space?
nonbreaking space? comma? period? small
 middot? prime? apostrophe?); and even whether
the so-called "thousands
 separator" is actually for every third digit -- I've heard reports of
 two
hundred thousand being expressible as "2,00,000" for some Indian
 (Subcontinental)
languages, besides the less surprising "200 000",
 "200.000", "200,000", and "200'000". Also,
using a set of numeral
 glyphs other than the usual ASCII "0"-"9" might be appreciated, as via
tr/0-9/\x{0966}-\x{096F}/ for getting digits in Devanagari script
 (for Hindi, Konkani,
others).

The basic quant method that Locale::Maketext provides should be
 good for many languages.
For some languages, it might be useful
 to modify it (or its constituent numerate method)
 to
take a plural form in the two-argument call to quant
 (as in "[quant,_1,files]") if
 it's all-around
easier to infer the singular form from the plural, than
 to infer the plural form from the singular.

But for other languages (as is discussed at length
 in Locale::Maketext::TPJ13), simple quant/
numerify is not enough. For the particularly problematic
 Slavic languages, what you may
need is a method which you provide
 with the number, the citation form of the noun to quantify,
and
 the case and gender that the sentence's syntax projects onto that
 noun slot. The method
would then be responsible for determining
 what grammatical number that numeral projects
onto its noun phrase,
 and what case and gender it may override the normal case and gender

with; and then it would look up the noun in a lexicon providing
 all needed inflected forms.

You may also wish to discuss with the translators the question of
 how to relate different
subforms of the same language tag,
 considering how this reacts with get_handle's
treatment of
 these. For example, if a user accepts interfaces in "en, fr", and
 you have
interfaces available in "en-US" and "fr", what should
 they get? You may wish to resolve this by
establishing that "en"
 and "en-US" are effectively synonymous, by having one class

zero-derive from the other.

For some languages this issue may never come up (Danish is rarely
 expressed as "da-DK",
but instead is just "da"). And for other
 languages, the whole concept of a "generic" form may
verge on
 being uselessly vague, particularly for interfaces involving voice
 media in forms of
Arabic or Chinese.

Once you've localized your program/site/etc. for all desired
 languages, be sure to show the
result (whether live, or via
 screenshots) to the translators. Once they approve, make every

effort to have it then checked by at least one other speaker of
 that language. This holds true
even when (or especially when) the
 translation is done by one of your own programmers.
Some
 kinds of systems may be harder to find testers for than others,
 depending on the
amount of domain-specific jargon and concepts
 involved -- it's easier to find people who can
tell you whether
 they approve of your translation for "delete this message" in an
 email-via-Web
interface, than to find people who can give you
 an informed opinion on your translation for

Perl version 5.10.0 documentation - Locale::Maketext

Page 17http://perldoc.perl.org

"attribute value"
 in an XML query tool's interface.

SEE ALSO
I recommend reading all of these:

Locale::Maketext::TPJ13 -- my The Perl
 Journal article about Maketext. It explains many important
concepts
 underlying Locale::Maketext's design, and some insight into why
 Maketext is better than the
plain old approach of having message catalogs that are just databases of sprintf formats.

File::Findgrep is a sample application/module
 that uses Locale::Maketext to localize its messages.
For a larger
 internationalized system, see also Apache::MP3.

I18N::LangTags.

Win32::Locale.

RFC 3066, Tags for the Identification of Languages,
 as at http://sunsite.dk/RFC/rfc/rfc3066.html

RFC 2277, IETF Policy on Character Sets and Languages
 is at http://sunsite.dk/RFC/rfc/rfc2277.html
-- much of it is
 just things of interest to protocol designers, but it explains
 some basic concepts, like
the distinction between locales and
 language-tags.

The manual for GNU gettext. The gettext dist is available in
ftp://prep.ai.mit.edu/pub/gnu/ -- get
 a recent gettext tarball and look in its "doc/" directory,
there's
 an easily browsable HTML version in there. The
 gettext documentation asks lots of questions
worth thinking
 about, even if some of their answers are sometimes wonky,
 particularly where they
start talking about pluralization.

The Locale/Maketext.pm source. Obverse that the module is much
 shorter than its documentation!

COPYRIGHT AND DISCLAIMER
Copyright (c) 1999-2004 Sean M. Burke. All rights reserved.

This library is free software; you can redistribute it and/or modify
 it under the same terms as Perl
itself.

This program is distributed in the hope that it will be useful, but
 without any warranty; without even the
implied warranty of
 merchantability or fitness for a particular purpose.

AUTHOR
Sean M. Burke sburke@cpan.org

