

NAME

```
IO::Uncompress::Gunzip - Read RFC 1952 files/buffers
SYNOPSIS
            use IO::Uncompress::Gunzip qw(gunzip $GunzipError) ;
            my $status = gunzip $input => $output [,OPTS]
                or die "gunzip failed: $GunzipError\n";
            my $z = new IO::Uncompress::Gunzip $input [OPTS]
                or die "gunzip failed: $GunzipError\n";
            $status = $z->read($buffer)
            $status = $z->read($buffer, $length)
            $status = $z->read($buffer, $length, $offset)
            $line = $z->getline()
            schar = sz->getc()
            schar = sz-sungetc()
            char = z->opened()
            $status = $z->inflateSync()
            $data = $z->trailingData()
            $status = $z->nextStream()
            $data = $z->getHeaderInfo()
            $z->tell()
            $z->seek($position, $whence)
            $z->binmode()
            $z->fileno()
            $z->eof()
```

\$GunzipError ;

\$z->close()

IO::File mode

```
<$z>
read($z, $buffer);
read($z, $buffer, $length);
read($z, $buffer, $length, $offset);
tell($z)
seek($z, $position, $whence)
binmode($z)
fileno($z)
eof($z)
close($z)
```

DESCRIPTION

This module provides a Perl interface that allows the reading of files/buffers that conform to RFC 1952.

For writing RFC 1952 files/buffers, see the companion module IO::Compress::Gzip.

Functional Interface

A top-level function, gunzip, is provided to carry out "one-shot" uncompression between buffers and/or files. For finer control over the uncompression process, see the *OO Interface* section.

```
use IO::Uncompress::Gunzip qw(gunzip $GunzipError) ;
gunzip $input => $output [,OPTS]
    or die "gunzip failed: $GunzipError\n";
```

The functional interface needs Perl5.005 or better.

gunzip \$input => \$output [, OPTS]

gunzip expects at least two parameters, \$input and \$output.

The \$input parameter

The parameter, \$input, is used to define the source of the compressed data.

It can take one of the following forms:

A filename

If the *\$input* parameter is a simple scalar, it is assumed to be a filename. This file will be opened for reading and the input data will be read from it.

A filehandle

If the *\$input* parameter is a filehandle, the input data will be read from it. The string '-' can be used as an alias for standard input.

A scalar reference

If \$input is a scalar reference, the input data will be read from \$\$input.

An array reference

If *\$input* is an array reference, each element in the array must be a filename.

The input data will be read from each file in turn.

The complete array will be walked to ensure that it only contains valid filenames before any data is uncompressed.

An Input FileGlob string

If <code>\$input</code> is a string that is delimited by the characters "<" and ">" <code>gunzip</code> will assume that it is an *input fileglob string*. The input is the list of files that match the fileglob.

If the fileglob does not match any files ...

See File::GlobMapper for more details.

If the *\$input* parameter is any other type, undef will be returned.

The \$output parameter

The parameter *soutput* is used to control the destination of the uncompressed data. This parameter can take one of these forms.

A filename

If the *\$output* parameter is a simple scalar, it is assumed to be a filename. This file will be opened for writing and the uncompressed data will be written to it.

A filehandle

If the *\$output* parameter is a filehandle, the uncompressed data will be written to it. The string '-' can be used as an alias for standard output.

A scalar reference

If <code>\$output</code> is a scalar reference, the uncompressed data will be stored in <code>\$\$output</code>.

An Array Reference

If *soutput* is an array reference, the uncompressed data will be pushed onto the array.

An Output FileGlob

If <code>\$output</code> is a string that is delimited by the characters "<" and ">" <code>gunzip</code> will assume that it is an *output fileglob string*. The output is the list of files that match the fileglob.

When soutput is an fileglob string, sinput must also be a fileglob string. Anything else is an error.

If the <code>\$output</code> parameter is any other type, <code>undef</code> will be returned.

Notes

When <code>\$input</code> maps to multiple compressed files/buffers and <code>\$output</code> is a single file/buffer, after uncompression <code>\$output</code> will contain a concatenation of all the uncompressed data from each of the input files/buffers.

Optional Parameters

Unless specified below, the optional parameters for gunzip, OPTS, are the same as those used with the OO interface defined in the *Constructor Options* section below.

AutoClose => 0|1

This option applies to any input or output data streams to gunzip that are filehandles.

If $\tt AutoClose$ is specified, and the value is true, it will result in all input and/or output filehandles being closed once <code>gunzip</code> has completed.

This parameter defaults to 0.

```
BinModeOut => 0 | 1
```

When writing to a file or filehandle, set binmode before writing to the file. Defaults to 0.

```
Append => 0|1
```

TODO

```
MultiStream => 0|1
```

If the input file/buffer contains multiple compressed data streams, this option will uncompress the whole lot as a single data stream.

Defaults to 0.

TrailingData => \$scalar

Returns the data, if any, that is present immediately after the compressed data stream once uncompression is complete.

This option can be used when there is useful information immediately following the compressed data stream, and you don't know the length of the compressed data stream.

If the input is a buffer, trailingData will return everything from the end of the compressed data stream to the end of the buffer.

If the input is a filehandle, trailingData will return the data that is left in the filehandle input buffer once the end of the compressed data stream has been reached. You can then use the filehandle to read the rest of the input file.

Don't bother using trailingData if the input is a filename.

If you know the length of the compressed data stream before you start uncompressing, you

can avoid having to use trailingData by setting the InputLength option.

Examples

To read the contents of the file file1.txt.gz and write the compressed data to the file file1.txt

```
use strict ;
use warnings ;
use IO::Uncompress::Gunzip qw(gunzip $GunzipError) ;
my $input = "file1.txt.gz";
my $output = "file1.txt";
gunzip $input => $output
or die "gunzip failed: $GunzipError\n";
```

To read from an existing Perl filehandle, \$input, and write the uncompressed data to a buffer, \$buffer.

```
use strict ;
use warnings ;
use IO::Uncompress::Gunzip qw(gunzip $GunzipError) ;
use IO::File ;
my $input = new IO::File "<file1.txt.gz"
    or die "Cannot open 'file1.txt.gz': $!\n" ;
my $buffer ;
gunzip $input => \$buffer
    or die "gunzip failed: $GunzipError\n";
```

To uncompress all files in the directory "/my/home" that match "*.txt.gz" and store the compressed data in the same directory

```
use strict ;
use warnings ;
use IO::Uncompress::Gunzip qw(gunzip $GunzipError) ;
gunzip '</my/home/*.txt.gz>' => '</my/home/#1.txt>'
or die "gunzip failed: $GunzipError\n";
```

and if you want to compress each file one at a time, this will do the trick

```
use strict ;
use warnings ;
use IO::Uncompress::Gunzip qw(gunzip $GunzipError) ;
for my $input ( glob "/my/home/*.txt.gz" )
{
    my $output = $input;
    $output = $input;
    $output =~ s/.gz// ;
    gunzip $input => $output
        or die "Error compressing '$input': $GunzipError\n";
}
```

OO Interface Constructor

The format of the constructor for IO::Uncompress::Gunzip is shown below

Returns an IO::Uncompress::Gunzip object on success and undef on failure. The variable \$GunzipError will contain an error message on failure.

If you are running Perl 5.005 or better the object, z, returned from IO::Uncompress::Gunzip can be used exactly like an *IO::File* filehandle. This means that all normal input file operations can be carried out with z. For example, to read a line from a compressed file/buffer you can use either of these forms

```
$line = $z->getline();
$line = <$z>;
```

The mandatory parameter *\$input* is used to determine the source of the compressed data. This parameter can take one of three forms.

A filename

If the *\$input* parameter is a scalar, it is assumed to be a filename. This file will be opened for reading and the compressed data will be read from it.

A filehandle

If the *\$input* parameter is a filehandle, the compressed data will be read from it. The string '-' can be used as an alias for standard input.

A scalar reference

If \$input is a scalar reference, the compressed data will be read from \$\$output.

Constructor Options

The option names defined below are case insensitive and can be optionally prefixed by a '-'. So all of the following are valid

```
-AutoClose
-autoclose
AUTOCLOSE
autoclose
```

OPTS is a combination of the following options:

```
AutoClose => 0|1
```

This option is only valid when the *\$input* parameter is a filehandle. If specified, and the value is true, it will result in the file being closed once either the close method is called or the IO::Uncompress::Gunzip object is destroyed.

This parameter defaults to 0.

```
MultiStream => 0|1
```

Allows multiple concatenated compressed streams to be treated as a single compressed stream. Decompression will stop once either the end of the file/buffer is reached, an error is encountered (premature eof, corrupt compressed data) or the end of a stream is not immediately followed by the start of another stream.

This parameter defaults to 0.

Prime => \$string

This option will uncompress the contents of \$string before processing the input file/buffer.

This option can be useful when the compressed data is embedded in another file/data structure and it is not possible to work out where the compressed data begins without having to read the first few bytes. If this is the case, the uncompression can be *primed* with these bytes using this option.

Transparent => 0|1

If this option is set and the input file/buffer is not compressed data, the module will allow reading of it anyway.

In addition, if the input file/buffer does contain compressed data and there is non-compressed data immediately following it, setting this option will make this module treat the whole file/buffer as a single data stream.

This option defaults to 1.

BlockSize => \$num

When reading the compressed input data, IO::Uncompress::Gunzip will read it in blocks of \$num bytes.

This option defaults to 4096.

InputLength => \$size

When present this option will limit the number of compressed bytes read from the input file/buffer to \$size. This option can be used in the situation where there is useful data directly after the compressed data stream and you know beforehand the exact length of the compressed data stream.

This option is mostly used when reading from a filehandle, in which case the file pointer will be left pointing to the first byte directly after the compressed data stream.

This option defaults to off.

Append => 0|1

This option controls what the read method does with uncompressed data.

If set to 1, all uncompressed data will be appended to the output parameter of the ${\tt read}$ method.

If set to 0, the contents of the output parameter of the read method will be overwritten by the uncompressed data.

Defaults to 0.

Strict => 0|1

This option controls whether the extra checks defined below are used when carrying out the decompression. When Strict is on, the extra tests are carried out, when Strict is off they are not.

The default for this option is off.

- 1 If the FHCRC bit is set in the gzip FLG header byte, the CRC16 bytes in the header must match the crc16 value of the gzip header actually read.
- 2 If the gzip header contains a name field (FNAME) it consists solely of ISO 8859-1 characters.
- 3 If the gzip header contains a comment field (FCOMMENT) it consists solely of ISO 8859-1 characters plus line-feed.
- 4 If the gzip FEXTRA header field is present it must conform to the sub-field structure as defined in RFC 1952.

- 5 The CRC32 and ISIZE trailer fields must be present.
- 6 The value of the CRC32 field read must match the crc32 value of the uncompressed data actually contained in the gzip file.
- 7 The value of the ISIZE fields read must match the length of the uncompressed data actually read from the file.

ParseExtra => 0 | 1 If the gzip FEXTRA header field is present and this option is set, it will force the module to check that it conforms to the sub-field structure as defined in RFC 1952.

If the Strict is on it will automatically enable this option.

Defaults to 0.

Examples

TODO

Methods

read

Usage is

\$status = \$z->read(\$buffer)

Reads a block of compressed data (the size the the compressed block is determined by the Buffer option in the constructor), uncompresses it and writes any uncompressed data into *\$buffer*. If the Append parameter is set in the constructor, the uncompressed data will be appended to the *\$buffer* parameter. Otherwise *\$buffer* will be overwritten.

Returns the number of uncompressed bytes written to buffer, zero if eof or a negative number on error.

read

Usage is

```
$status = $z->read($buffer, $length)
$status = $z->read($buffer, $length, $offset)
$status = read($z, $buffer, $length)
$status = read($z, $buffer, $length, $offset)
```

Attempt to read \$length bytes of uncompressed data into \$buffer.

The main difference between this form of the read method and the previous one, is that this one will attempt to return *exactly slength* bytes. The only circumstances that this function will not is if end-of-file or an IO error is encountered.

Returns the number of uncompressed bytes written to \$buffer, zero if eof or a negative number on error.

getline

Usage is

\$line = \$z->getline()
\$line = <\$z>

Reads a single line.

This method fully supports the use of of the variable \$/ (or \$INPUT_RECORD_SEPARATOR or \$RS when English is in use) to determine what constitutes an end of line. Paragraph mode, record mode and file slurp mode are all supported.

getc

Usage is

char = sz->getc()

Read a single character.

ungetc

Usage is

\$char = \$z->ungetc(\$string)

inflateSync

Usage is

\$status = \$z->inflateSync()

TODO

getHeaderInfo

Usage is

\$hdr = \$z->getHeaderInfo();
@hdrs = \$z->getHeaderInfo();

This method returns either a hash reference (in scalar context) or a list or hash references (in array context) that contains information about each of the header fields in the compressed data stream(s).

Name

The contents of the Name header field, if present. If no name is present, the value will be undef. Note this is different from a zero length name, which will return an empty string.

Comment

The contents of the Comment header field, if present. If no comment is present, the value will be undef. Note this is different from a zero length comment, which will return an empty string.

tell

Usage is

\$z->tell() tell \$z

Returns the uncompressed file offset.

eof

Usage is

\$z->eof(); eof(\$z);

Returns true if the end of the compressed input stream has been reached.

seek

```
$z->seek($position, $whence);
seek($z, $position, $whence);
```

Provides a sub-set of the seek functionality, with the restriction that it is only legal to seek forward in the input file/buffer. It is a fatal error to attempt to seek backward.

The $\$ merce parameter takes one the usual values, namely SEEK_SET, SEEK_CUR or SEEK_END.

Returns 1 on success, 0 on failure.

binmode

Usage is

\$z->binmode
binmode \$z ;

This is a noop provided for completeness.

opened

\$z->opened()

Returns true if the object currently refers to a opened file/buffer.

autoflush

```
my $prev = $z->autoflush()
my $prev = $z->autoflush(EXPR)
```

If the zz object is associated with a file or a filehandle, this method returns the current autoflush setting for the underlying filehandle. If EXPR is present, and is non-zero, it will enable flushing after every write/print operation.

If \$z is associated with a buffer, this method has no effect and always returns undef.

Note that the special variable \$ | cannot be used to set or retrieve the autoflush setting.

input_line_number

```
$z->input_line_number()
$z->input_line_number(EXPR)
```

Returns the current uncompressed line number. If EXPR is present it has the effect of setting the line number. Note that setting the line number does not change the current position within the file/buffer being read.

The contents of \$ / are used to to determine what constitutes a line terminator.

fileno

```
$z->fileno()
fileno($z)
```

If the \$z object is associated with a file or a filehandle, this method will return the underlying file descriptor.

If the z object is is associated with a buffer, this method will return undef.

close

```
$z->close() ;
close $z ;
```

Closes the output file/buffer.

For most versions of Perl this method will be automatically invoked if the IO::Uncompress::Gunzip object is destroyed (either explicitly or by the variable with the reference to the object going out of scope). The exceptions are Perl versions 5.005 through 5.00504 and 5.8.0. In these cases, the close method will be called automatically, but not until global destruction of all live objects when the program is terminating.

Therefore, if you want your scripts to be able to run on all versions of Perl, you should call close explicitly and not rely on automatic closing.

Returns true on success, otherwise 0.

If the AutoClose option has been enabled when the IO::Uncompress::Gunzip object was created, and the object is associated with a file, the underlying file will also be closed.

nextStream

Usage is

my \$status = \$z->nextStream();

Skips to the next compressed data stream in the input file/buffer. If a new compressed data stream is found, the eof marker will be cleared and \$. will be reset to 0.

Returns 1 if a new stream was found, 0 if none was found, and -1 if an error was encountered.

trailingData

Usage is

my \$data = \$z->trailingData();

Returns the data, if any, that is present immediately after the compressed data stream once uncompression is complete. It only makes sense to call this method once the end of the compressed data stream has been encountered.

This option can be used when there is useful information immediately following the compressed data stream, and you don't know the length of the compressed data stream.

If the input is a buffer, trailingData will return everything from the end of the compressed data stream to the end of the buffer.

If the input is a filehandle, trailingData will return the data that is left in the filehandle input buffer once the end of the compressed data stream has been reached. You can then use the filehandle to read the rest of the input file.

Don't bother using trailingData if the input is a filename.

If you know the length of the compressed data stream before you start uncompressing, you can avoid having to use trailingData by setting the InputLength option in the constructor.

Importing

No symbolic constants are required by this IO::Uncompress::Gunzip at present.

:all

Imports gunzip and \$GunzipError. Same as doing this

use IO::Uncompress::Gunzip qw(gunzip \$GunzipError) ;

EXAMPLES SEE ALSO

Compress::Zlib, IO::Compress::Gzip, IO::Compress::Deflate, IO::Uncompress::Inflate, IO::Compress::RawDeflate, IO::Uncompress::RawInflate, IO::Compress::Bzip2, IO::Uncompress::Bunzip2, IO::Compress::Lzop, IO::Uncompress::UnLzop, IO::Compress::Lzf, IO::Uncompress::UnLzf, IO::Uncompress::AnyInflate, IO::Uncompress::AnyUncompress

Compress::Zlib::FAQ

File::GlobMapper, Archive::Zip, Archive::Tar, IO::Zlib

For RFC 1950, 1951 and 1952 see http://www.faqs.org/rfcs/rfc1950.html, http://www.faqs.org/rfcs/rfc1951.html and http://www.faqs.org/rfcs/rfc1952.html

The *zlib* compression library was written by Jean-loup Gailly *gzip*@prep.ai.mit.edu and Mark Adler madler@alumni.caltech.edu.

The primary site for the *zlib* compression library is *http://www.zlib.org*.

The primary site for gzip is http://www.gzip.org.

AUTHOR

This module was written by Paul Marquess, pmqs@cpan.org.

MODIFICATION HISTORY

See the Changes file.

COPYRIGHT AND LICENSE

Copyright (c) 2005-2007 Paul Marquess. All rights reserved.

This program is free software; you can redistribute it and/or modify it under the same terms as Perl itself.