
Perl version 5.10.0 documentation - Hash::Util::FieldHash

Page 1http://perldoc.perl.org

NAME
Hash::Util::FieldHash - Support for Inside-Out Classes

SYNOPSIS
 ### Create fieldhashes
 use Hash::Util qw(fieldhash fieldhashes);

 # Create a single field hash
 fieldhash my %foo;

 # Create three at once...
 fieldhashes \ my(%foo, %bar, %baz);
 # ...or any number
 fieldhashes @hashrefs;

 ### Create an idhash and register it for garbage collection
 use Hash::Util::FieldHash qw(idhash register);
 idhash my %name;
 my $object = \ do { my $o };
 # register the idhash for garbage collection with $object
 register($object, \ %name);
 # the following entry will be deleted when $object goes out of scope
 $name{$object} = 'John Doe';

 ### Register an ordinary hash for garbage collection
 use Hash::Util::FieldHash qw(id register);
 my %name;
 my $object = \ do { my $o };
 # register the hash %name for garbage collection of $object's id
 register $object, \ %name;
 # the following entry will be deleted when $object goes out of scope
 $name{id $object} = 'John Doe';

FUNCTIONS
Hash::Util::FieldHash offers a number of functions in support of The Inside-out Technique of
class construction.

id

 id($obj)

Returns the reference address of a reference $obj. If $obj is
 not a reference, returns $obj.

This function is a stand-in replacement for Scalar::Util::refaddr, that is, it returns
 the reference
address of its argument as a numeric value. The only
 difference is that refaddr() returns
undef when given a
 non-reference while id() returns its argument unchanged.

id() also uses a caching technique that makes it faster when
 the id of an object is requested
often, but slower if it is needed
 only once or twice.

id_2obj

 $obj = id_2obj($id)

If $id is the id of a registered object (see register), returns
 the object, otherwise an undefined
value. For registered objects this
 is the inverse function of id().

Perl version 5.10.0 documentation - Hash::Util::FieldHash

Page 2http://perldoc.perl.org

register

 register($obj)
 register($obj, @hashrefs)

In the first form, registers an object to work with for the function id_2obj(). In the second
form, it additionally marks the given
 hashrefs down for garbage collection. This means that
when the object
 goes out of scope, any entries in the given hashes under the key of
id($obj) will be deleted from the hashes.

It is a fatal error to register a non-reference $obj. Any non-hashrefs
 among the following
arguments are silently ignored.

It is not an error to register the same object multiple times with
 varying sets of hashrefs. Any
hashrefs that are not registered yet
 will be added, others ignored.

Registry also implies thread support. When a new thread is created,
 all references are
replaced with new ones, including all objects.
 If a hash uses the reference address of an
object as a key, that
 connection would be broken. With a registered object, its id will
 be
updated in all hashes registered with it.

idhash

 idhash my %hash

Makes an idhash from the argument, which must be a hash.

An idhash works like a normal hash, except that it stringifies a reference used as a key
differently. A reference is stringified
 as if the id() function had been invoked on it, that is, its

reference address in decimal is used as the key.

idhashes

 idhashes \ my(%hash, %gnash, %trash)
 idhashes \ @hashrefs

Creates many idhashes from its hashref arguments. Returns those
 arguments that could be
converted or their number in scalar context.

fieldhash

 fieldhash %hash;

Creates a single fieldhash. The argument must be a hash. Returns
 a reference to the given
hash if successful, otherwise nothing.

A fieldhash is, in short, an idhash with auto-registry. When an
 object (or, indeed, any
reference) is used as a fieldhash key, the
 fieldhash is automatically registered for garbage
collection with
 the object, as if register $obj, \ %fieldhash had been called.

fieldhashes

 fieldhashes @hashrefs;

Creates any number of field hashes. Arguments must be hash references.
 Returns the
converted hashrefs in list context, their number in scalar
 context.

DESCRIPTION
A word on terminology: I shall use the term field for a scalar
 piece of data that a class associates with
an object. Other terms that
 have been used for this concept are "object variable", "(object) property",

"(object) attribute" and more. Especially "attribute" has some currency
 among Perl programmer, but
that clashes with the attributes pragma. The
 term "field" also has some currency in this sense and
doesn't seem
 to conflict with other Perl terminology.

Perl version 5.10.0 documentation - Hash::Util::FieldHash

Page 3http://perldoc.perl.org

In Perl, an object is a blessed reference. The standard way of associating
 data with an object is to
store the data inside the object's body, that is,
 the piece of data pointed to by the reference.

In consequence, if two or more classes want to access an object they must agree on the type of
reference and also on the organization of
 data within the object body. Failure to agree on the type
results in
 immediate death when the wrong method tries to access an object. Failure
 to agree on data
organization may lead to one class trampling over the
 data of another.

This object model leads to a tight coupling between subclasses.
 If one class wants to inherit from
another (and both classes access
 object data), the classes must agree about implementation details.

Inheritance can only be used among classes that are maintained together,
 in a single source or not.

In particular, it is not possible to write general-purpose classes
 in this technique, classes that can
advertise themselves as "Put me
 on your @ISA list and use my methods". If the other class has
different
 ideas about how the object body is used, there is trouble.

For reference Name_hash in Example 1 shows the standard implementation of
 a simple class Name
in the well-known hash based way. It also demonstrates
 the predictable failure to construct a common
subclass NamedFile
 of Name and the class IO::File (whose objects must be globrefs).

Thus, techniques are of interest that store object data not in
 the object body but some other place.

The Inside-out Technique
With inside-out classes, each class declares a (typically lexical)
 hash for each field it wants to use.
The reference address of an
 object is used as the hash key. By definition, the reference address
 is
unique to each object so this guarantees a place for each field that
 is private to the class and unique
to each object. See Name_id in Example 1 for a simple example.

In comparison to the standard implementation where the object is a
 hash and the fields correspond to
hash keys, here the fields correspond
 to hashes, and the object determines the hash key. Thus the
hashes
 appear to be turned inside out.

The body of an object is never examined by an inside-out class, only
 its reference address is used.
This allows for the body of an actual
 object to be anything at all while the object methods of the class

still work as designed. This is a key feature of inside-out classes.

Problems of Inside-out
Inside-out classes give us freedom of inheritance, but as usual there
 is a price.

Most obviously, there is the necessity of retrieving the reference
 address of an object for each data
access. It's a minor inconvenience,
 but it does clutter the code.

More important (and less obvious) is the necessity of garbage
 collection. When a normal object dies,
anything stored in the
 object body is garbage-collected by perl. With inside-out objects,
 Perl knows
nothing about the data stored in field hashes by a class,
 but these must be deleted when the object
goes out of scope. Thus
 the class must provide a DESTROY method to take care of that.

In the presence of multiple classes it can be non-trivial
 to make sure that every relevant destructor is
called for
 every object. Perl calls the first one it finds on the
 inheritance tree (if any) and that's it.

A related issue is thread-safety. When a new thread is created,
 the Perl interpreter is cloned, which
implies that all reference
 addresses in use will be replaced with new ones. Thus, if a class
 tries to
access a field of a cloned object its (cloned) data will
 still be stored under the now invalid reference
address of the
 original in the parent thread. A general CLONE method must
 be provided to re-establish
the association.

Solutions
Hash::Util::FieldHash addresses these issues on several
 levels.

The id() function is provided in addition to the
 existing Scalar::Util::refaddr(). Besides its

Perl version 5.10.0 documentation - Hash::Util::FieldHash

Page 4http://perldoc.perl.org

short name
 it can be a little faster under some circumstances (and a
 bit slower under others).
Benchmark if it matters. The
 working of id() also allows the use of the class name
 as a generic
object as described further down.

The id() function is incorporated in id hashes in the sense
 that it is called automatically on every key
that is used with
 the hash. No explicit call is necessary.

The problems of garbage collection and thread safety are both
 addressed by the function
register(). It registers an object
 together with any number of hashes. Registry means that when
the
 object dies, an entry in any of the hashes under the reference
 address of this object will be
deleted. This guarantees garbage
 collection in these hashes. It also means that on thread
 cloning the
object's entries in registered hashes will be
 replaced with updated entries whose key is the cloned
object's
 reference address. Thus the object-data association becomes
 thread-safe.

Object registry is best done when the object is initialized
 for use with a class. That way, garbage
collection and thread
 safety are established for every object and every field that is
 initialized.

Finally, field hashes incorporate all these functions in one
 package. Besides automatically calling the
id() function
 on every object used as a key, the object is registered with
 the field hash on first use.
Classes based on field hashes
 are fully garbage-collected and thread safe without further
 measures.

More Problems
Another problem that occurs with inside-out classes is serialization.
 Since the object data is not in its
usual place, standard routines
 like Storable::freeze(), Storable::thaw() and
Data::Dumper::Dumper() can't deal with it on their own. Both Data::Dumper and Storable
provide the necessary hooks to
 make things work, but the functions or methods used by the hooks

must be provided by each inside-out class.

A general solution to the serialization problem would require another
 level of registry, one that that
associates classes and fields.
 So far, the functions of Hash::Util::FieldHash are unaware of

any classes, which I consider a feature. Therefore Hash::Util::FieldHash
 doesn't address the
serialization problems.

The Generic Object
Classes based on the id() function (and hence classes based on idhash() and fieldhash())
show a peculiar behavior in that
 the class name can be used like an object. Specifically, methods
 that
set or read data associated with an object continue to work as
 class methods, just as if the class
name were an object, distinct from
 all other objects, with its own data. This object may be called
 the
generic object of the class.

This works because field hashes respond to keys that are not references
 like a normal hash would
and use the string offered as the hash key.
 Thus, if a method is called as a class method, the field
hash is presented
 with the class name instead of an object and blithely uses it as a key.
 Since the
keys of real objects are decimal numbers, there is no
 conflict and the slot in the field hash can be
used like any other.
 The id() function behaves correspondingly with respect to non-reference

arguments.

Two possible uses (besides ignoring the property) come to mind.
 A singleton class could be
implemented this using the generic object.
 If necessary, an init() method could die or ignore calls
with
 actual objects (references), so only the generic object will ever exist.

Another use of the generic object would be as a template. It is
 a convenient place to store
class-specific defaults for various
 fields to be used in actual object initialization.

Usually, the feature can be entirely ignored. Calling object
 methods as class methods normally leads
to an error and isn't used
 routinely anywhere. It may be a problem that this error isn't
 indicated by a
class with a generic object.

Perl version 5.10.0 documentation - Hash::Util::FieldHash

Page 5http://perldoc.perl.org

How to use Field Hashes
Traditionally, the definition of an inside-out class contains a bare
 block inside which a number of
lexical hashes are declared and the
 basic accessor methods defined, usually through
Scalar::Util::refaddr.
 Further methods may be defined outside this block. There has to be
 a
DESTROY method and, for thread support, a CLONE method.

When field hashes are used, the basic structure remains the same.
 Each lexical hash will be made a
field hash. The call to refaddr
 can be omitted from the accessor methods. DESTROY and CLONE
methods
 are not necessary.

If you have an existing inside-out class, simply making all hashes
 field hashes with no other change
should make no difference. Through
 the calls to refaddr or equivalent, the field hashes never get to

see a reference and work like normal hashes. Your DESTROY (and
 CLONE) methods are still
needed.

To make the field hashes kick in, it is easiest to redefine refaddr
 as

 sub refaddr { shift }

instead of importing it from Scalar::Util. It should now be possible
 to disable DESTROY and
CLONE. Note that while it isn't disabled,
 DESTROY will be called before the garbage collection of
field hashes,
 so it will be invoked with a functional object and will continue to
 function.

It is not desirable to import the functions fieldhash and/or fieldhashes into every class that is
going to use them. They
 are only used once to set up the class. When the class is up and running,

these functions serve no more purpose.

If there are only a few field hashes to declare, it is simplest to

 use Hash::Util::FieldHash;

early and call the functions qualified:

 Hash::Util::FieldHash::fieldhash my %foo;

Otherwise, import the functions into a convenient package like HUF or, more general, Aux

 {
 package Aux;
 use Hash::Util::FieldHash ':all';
 }

and call

 Aux::fieldhash my %foo;

as needed.

Garbage-Collected Hashes
Garbage collection in a field hash means that entries will "spontaneously"
 disappear when the object
that created them disappears. That must be
 borne in mind, especially when looping over a field hash.
If anything
 you do inside the loop could cause an object to go out of scope, a
 random key may be
deleted from the hash you are looping over. That
 can throw the loop iterator, so it's best to cache a
consistent snapshot
 of the keys and/or values and loop over that. You will still have to
 check that a
cached entry still exists when you get to it.

Garbage collection can be confusing when keys are created in a field hash
 from normal scalars as
well as references. Once a reference is used with
 a field hash, the entry will be collected, even if it

Perl version 5.10.0 documentation - Hash::Util::FieldHash

Page 6http://perldoc.perl.org

was later overwritten
 with a plain scalar key (every positive integer is a candidate). This
 is true even if
the original entry was deleted in the meantime. In fact,
 deletion from a field hash, and also a test for
existence constitute use in this sense and create a liability to delete the entry when
 the reference
goes out of scope. If you happen to create an entry
 with an identical key from a string or integer, that
will be collected
 instead. Thus, mixed use of references and plain scalars as field hash
 keys is not
entirely supported.

EXAMPLES
The examples show a very simple class that implements a name, consisting
 of a first and last name
(no middle initial). The name class has four
 methods:

* init()

An object method that initializes the first and last name to its
 two arguments. If called as a
class method, init() creates an
 object in the given class and initializes that.

* first()

Retrieve the first name

* last()

Retrieve the last name

* name()

Retrieve the full name, the first and last name joined by a blank.

The examples show this class implemented with different levels of
 support by
Hash::Util::FieldHash. All supported combinations
 are shown. The difference between
implementations is often quite
 small. The implementations are:

* Name_hash

A conventional (not inside-out) implementation where an object is
 a hash that stores the field
values, without support by Hash::Util::FieldHash. This implementation doesn't allow

arbitrary inheritance.

* Name_id

Inside-out implementation based on the id() function. It needs
 a DESTROY method. For
thread support a CLONE method (not shown)
 would also be needed. Instead of
Hash::Util::FieldHash::id() the
 function Scalar::Util::refaddr could be used
with very little
 functional difference. This is the basic pattern of an inside-out
 class.

* Name_idhash

Idhash-based inside-out implementation. Like Name_id it needs
 a DESTROY method and
would need CLONE for thread support.

* Name_id_reg

Inside-out implementation based on the id() function with explicit
 object registry. No
destructor is needed and objects are thread safe.

* Name_idhash_reg

Idhash-based inside-out implementation with explicit object registry.
 No destructor is needed
and objects are thread safe.

* Name_fieldhash

FieldHash-based inside-out implementation. Object registry happens
 automatically. No
destructor is needed and objects are thread safe.

These examples are realized in the code below, which could be copied
 to a file Example.pm.

Perl version 5.10.0 documentation - Hash::Util::FieldHash

Page 7http://perldoc.perl.org

Example 1
 use strict; use warnings;

 {
 package Name_hash; # standard implementation: the object is a hash

 sub init {
 my $obj = shift;
 my ($first, $last) = @_;
 # create an object if called as class method
 $obj = bless {}, $obj unless ref $obj;
 $obj->{ first} = $first;
 $obj->{ last} = $last;
 $obj;
 }

 sub first { shift()->{ first} }
 sub last { shift()->{ last} }

 sub name {
 my $n = shift;
 join ' ' => $n->first, $n->last;
 }

 }

 {
 package Name_id;
 use Hash::Util::FieldHash qw(id);

 my (%first, %last);

 sub init {
 my $obj = shift;
 my ($first, $last) = @_;
 # create an object if called as class method
 $obj = bless \ my $o, $obj unless ref $obj;
 $first{ id $obj} = $first;
 $last{ id $obj} = $last;
 $obj;
 }

 sub first { $first{ id shift()} }
 sub last { $last{ id shift()} }

 sub name {
 my $n = shift;
 join ' ' => $n->first, $n->last;
 }

 sub DESTROY {
 my $id = id shift;

Perl version 5.10.0 documentation - Hash::Util::FieldHash

Page 8http://perldoc.perl.org

 delete $first{ $id};
 delete $last{ $id};
 }

 }

 {
 package Name_idhash;
 use Hash::Util::FieldHash;

 Hash::Util::FieldHash::idhashes(\ my (%first, %last));

 sub init {
 my $obj = shift;
 my ($first, $last) = @_;
 # create an object if called as class method
 $obj = bless \ my $o, $obj unless ref $obj;
 $first{ $obj} = $first;
 $last{ $obj} = $last;
 $obj;
 }

 sub first { $first{ shift()} }
 sub last { $last{ shift()} }

 sub name {
 my $n = shift;
 join ' ' => $n->first, $n->last;
 }

 sub DESTROY {
 my $n = shift;
 delete $first{ $n};
 delete $last{ $n};
 }

 }

 {
 package Name_id_reg;
 use Hash::Util::FieldHash qw(id register);

 my (%first, %last);

 sub init {
 my $obj = shift;
 my ($first, $last) = @_;
 # create an object if called as class method
 $obj = bless \ my $o, $obj unless ref $obj;
 register($obj, \ (%first, %last));
 $first{ id $obj} = $first;
 $last{ id $obj} = $last;

Perl version 5.10.0 documentation - Hash::Util::FieldHash

Page 9http://perldoc.perl.org

 $obj;
 }

 sub first { $first{ id shift()} }
 sub last { $last{ id shift()} }

 sub name {
 my $n = shift;
 join ' ' => $n->first, $n->last;
 }
 }

 {
 package Name_idhash_reg;
 use Hash::Util::FieldHash qw(register);

 Hash::Util::FieldHash::idhashes \ my (%first, %last);

 sub init {
 my $obj = shift;
 my ($first, $last) = @_;
 # create an object if called as class method
 $obj = bless \ my $o, $obj unless ref $obj;
 register($obj, \ (%first, %last));
 $first{ $obj} = $first;
 $last{ $obj} = $last;
 $obj;
 }

 sub first { $first{ shift()} }
 sub last { $last{ shift()} }

 sub name {
 my $n = shift;
 join ' ' => $n->first, $n->last;
 }
 }

 {
 package Name_fieldhash;
 use Hash::Util::FieldHash;

 Hash::Util::FieldHash::fieldhashes \ my (%first, %last);

 sub init {
 my $obj = shift;
 my ($first, $last) = @_;
 # create an object if called as class method
 $obj = bless \ my $o, $obj unless ref $obj;
 $first{ $obj} = $first;
 $last{ $obj} = $last;
 $obj;
 }

Perl version 5.10.0 documentation - Hash::Util::FieldHash

Page 10http://perldoc.perl.org

 sub first { $first{ shift()} }
 sub last { $last{ shift()} }

 sub name {
 my $n = shift;
 join ' ' => $n->first, $n->last;
 }
 }

 1;

To exercise the various implementations the script below can
 be used.

It sets up a class Name that is a mirror of one of the implementation
 classes Name_hash, Name_id,
..., Name_fieldhash. That determines
 which implementation is run.

The script first verifies the function of the Name class.

In the second step, the free inheritability of the implementation
 (or lack thereof) is demonstrated. For
this purpose it constructs
 a class called NamedFile which is a common subclass of Name and
 the
standard class IO::File. This puts inheritability to the test
 because objects of IO::File must be
globrefs. Objects of NamedFile
 should behave like a file opened for reading and also support the
name()
 method. This class juncture works with exception of the Name_hash
 implementation, where
object initialization fails because of the
 incompatibility of object bodies.

Example 2
 use strict; use warnings; $| = 1;

 use Example;

 {
 package Name;
 use base 'Name_id'; # define here which implementation to run
 }

 # Verify that the base package works
 my $n = Name->init(qw(Albert Einstein));
 print $n->name, "\n";
 print "\n";

 # Create a named file handle (See definition below)
 my $nf = NamedFile->init(qw(/tmp/x Filomena File));
 # use as a file handle...
 for (1 .. 3) {
 my $l = <$nf>;
 print "line $_: $l";
 }
 # ...and as a Name object
 print "...brought to you by ", $nf->name, "\n";
 exit;

 # Definition of NamedFile
 package NamedFile;
 use base 'Name';

Perl version 5.10.0 documentation - Hash::Util::FieldHash

Page 11http://perldoc.perl.org

 use base 'IO::File';

 sub init {
 my $obj = shift;
 my ($file, $first, $last) = @_;
 $obj = $obj->IO::File::new() unless ref $obj;
 $obj->open($file) or die "Can't read '$file': $!";
 $obj->Name::init($first, $last);
 }
 __END__

GUTS
To make Hash::Util::FieldHash work, there were two changes to perl itself.
PERL_MAGIC_uvar was made avalaible for hashes,
 and weak references now call uvar get magic
after a weakref has been
 cleared. The first feature is used to make field hashes intercept
 their keys
upon access. The second one triggers garbage collection.

The PERL_MAGIC_uvar interface for hashes
PERL_MAGIC_uvar get magic is called from hv_fetch_common and hv_delete_common through
the function hv_magic_uvar_xkey, which
 defines the interface. The call happens for hashes with
"uvar" magic
 if the ufuncs structure has equal values in the uf_val and uf_set
 fields. Hashes are
unaffected if (and as long as) these fields
 hold different values.

Upon the call, the mg_obj field will hold the hash key to be accessed.
 Upon return, the SV* value in
mg_obj will be used in place of the
 original key in the hash access. The integer index value in the first
parameter will be the action value from hv_fetch_common, or -1
 if the call is from
hv_delete_common.

This is a template for a function suitable for the uf_val field in
 a ufuncs structure for this call. The
uf_set and uf_index
 fields are irrelevant.

 IV watch_key(pTHX_ IV action, SV* field) {
 MAGIC* mg = mg_find(field, PERL_MAGIC_uvar);
 SV* keysv = mg->mg_obj;
 /* Do whatever you need to. If you decide to
 supply a different key newkey, return it like this
 */
 sv_2mortal(newkey);
 mg->mg_obj = newkey;
 return 0;
 }

Weakrefs call uvar magic
When a weak reference is stored in an SV that has "uvar" magic, set
 magic is called after the
reference has gone stale. This hook can be
 used to trigger further garbage-collection activities
associated with
 the referenced object.

How field hashes work
The three features of key hashes, key replacement, thread support,
 and garbage collection are
supported by a data structure called
 the object registry. This is a private hash where every object
 is
stored. An "object" in this sense is any reference (blessed or
 unblessed) that has been used as a field
hash key.

The object registry keeps track of references that have been used as
 field hash keys. The keys are
generated from the reference address
 like in a field hash (though the registry isn't a field hash). Each

value is a weak copy of the original reference, stored in an SV that
 is itself magical (

Perl version 5.10.0 documentation - Hash::Util::FieldHash

Page 12http://perldoc.perl.org

PERL_MAGIC_uvar again). The magical structure
 holds a list (another hash, really) of field hashes
that the reference
 has been used with. When the weakref becomes stale, the magic is
 activated and
uses the list to delete the reference from all field
 hashes it has been used with. After that, the entry is
removed from
 the object registry itself. Implicitly, that frees the magic structure
 and the storage it has
been using.

Whenever a reference is used as a field hash key, the object registry
 is checked and a new entry is
made if necessary. The field hash is
 then added to the list of fields this reference has used.

The object registry is also used to repair a field hash after thread
 cloning. Here, the entire object
registry is processed. For every
 reference found there, the field hashes it has used are visited and
 the
entry is updated.

Internal function Hash::Util::FieldHash::_fieldhash
 # test if %hash is a field hash
 my $result = _fieldhash \ %hash, 0;

 # make %hash a field hash
 my $result = _fieldhash \ %hash, 1;

_fieldhash is the internal function used to create field hashes.
 It takes two arguments, a hashref
and a mode. If the mode is boolean
 false, the hash is not changed but tested if it is a field hash. If
 the
hash isn't a field hash the return value is boolean false. If it
 is, the return value indicates the mode of
field hash. When called with
 a boolean true mode, it turns the given hash into a field hash of this

mode, returning the mode of the created field hash. _fieldhash
 does not erase the given hash.

Currently there is only one type of field hash, and only the boolean
 value of the mode makes a
difference, but that may change.

AUTHOR
Anno Siegel (ANNO) wrote the xs code and the changes in perl proper
 Jerry Hedden (JDHEDDEN)
made it faster

COPYRIGHT AND LICENSE
Copyright (C) 2006-2007 by (Anno Siegel)

This library is free software; you can redistribute it and/or modify
 it under the same terms as Perl
itself, either Perl version 5.8.7 or,
 at your option, any later version of Perl 5 you may have available.

