
Perl version 5.10.0 documentation - File::Spec

Page 1http://perldoc.perl.org

NAME
File::Spec - portably perform operations on file names

SYNOPSIS
	 use File::Spec;

	 $x=File::Spec->catfile('a', 'b', 'c');

which returns 'a/b/c' under Unix. Or:

	 use File::Spec::Functions;

	 $x = catfile('a', 'b', 'c');

DESCRIPTION
This module is designed to support operations commonly performed on file
 specifications (usually
called "file names", but not to be confused with the
 contents of a file, or Perl's file handles), such as
concatenating several
 directory and file names into a single path, or determining whether a path
 is
rooted. It is based on code directly taken from MakeMaker 5.17, code
 written by Andreas König, Andy
Dougherty, Charles Bailey, Ilya
 Zakharevich, Paul Schinder, and others.

Since these functions are different for most operating systems, each set of
 OS specific routines is
available in a separate module, including:

	 File::Spec::Unix
	 File::Spec::Mac
	 File::Spec::OS2
	 File::Spec::Win32
	 File::Spec::VMS

The module appropriate for the current OS is automatically loaded by
 File::Spec. Since some
modules (like VMS) make use of facilities available
 only under that OS, it may not be possible to load
all modules under all
 operating systems.

Since File::Spec is object oriented, subroutines should not be called directly,
 as in:

	 File::Spec::catfile('a','b');

but rather as class methods:

	 File::Spec->catfile('a','b');

For simple uses, File::Spec::Functions provides convenient functional
 forms of these methods.

METHODS
canonpath

No physical check on the filesystem, but a logical cleanup of a
 path.

 $cpath = File::Spec->canonpath($path) ;

Note that this does *not* collapse x/../y sections into y. This
 is by design. If /foo on your system is
a symlink to /bar/baz,
 then /foo/../quux is actually /bar/quux, not /quux as a naive ../-removal would
give you. If you want to do this kind of
 processing, you probably want Cwd's realpath() function
to
 actually traverse the filesystem cleaning up paths like this.

catdir

Perl version 5.10.0 documentation - File::Spec

Page 2http://perldoc.perl.org

Concatenate two or more directory names to form a complete path ending
 with a directory. But
remove the trailing slash from the resulting
 string, because it doesn't look good, isn't necessary
and confuses
 OS/2. Of course, if this is the root directory, don't cut off the
 trailing slash :-)

 $path = File::Spec->catdir(@directories);

catfile

Concatenate one or more directory names and a filename to form a
 complete path ending with a
filename

 $path = File::Spec->catfile(@directories, $filename);

curdir

Returns a string representation of the current directory.

 $curdir = File::Spec->curdir();

devnull

Returns a string representation of the null device.

 $devnull = File::Spec->devnull();

rootdir

Returns a string representation of the root directory.

 $rootdir = File::Spec->rootdir();

tmpdir

Returns a string representation of the first writable directory from a
 list of possible temporary
directories. Returns the current directory
 if no writable temporary directories are found. The list of
directories
 checked depends on the platform; e.g. File::Spec::Unix checks $ENV{TMPDIR}

(unless taint is on) and /tmp.

 $tmpdir = File::Spec->tmpdir();

updir

Returns a string representation of the parent directory.

 $updir = File::Spec->updir();

no_upwards

Given a list of file names, strip out those that refer to a parent
 directory. (Does not strip symlinks,
only '.', '..', and equivalents.)

 @paths = File::Spec->no_upwards(@paths);

case_tolerant

Returns a true or false value indicating, respectively, that alphabetic
 case is not or is significant
when comparing file specifications.

 $is_case_tolerant = File::Spec->case_tolerant();

file_name_is_absolute

Takes as its argument a path, and returns true if it is an absolute path.

 $is_absolute = File::Spec->file_name_is_absolute($path);

Perl version 5.10.0 documentation - File::Spec

Page 3http://perldoc.perl.org

This does not consult the local filesystem on Unix, Win32, OS/2, or
 Mac OS (Classic). It does
consult the working environment for VMS
 (see "file_name_is_absolute" in File::Spec::VMS).

path

Takes no argument. Returns the environment variable PATH (or the local
 platform's equivalent) as
a list.

 @PATH = File::Spec->path();

join

join is the same as catfile.

splitpath

Splits a path in to volume, directory, and filename portions. On systems
 with no concept of
volume, returns '' for volume.

 ($volume,$directories,$file) = File::Spec->splitpath($path);
 ($volume,$directories,$file) = File::Spec->splitpath($path,
$no_file);

For systems with no syntax differentiating filenames from directories, assumes that the last file is
a path unless $no_file is true or a
 trailing separator or /. or /.. is present. On Unix, this means
that $no_file
 true makes this return ('', $path, '').

The directory portion may or may not be returned with a trailing '/'.

The results can be passed to catpath() to get back a path equivalent to
 (usually identical to) the
original path.

splitdir

The opposite of catdir().

 @dirs = File::Spec->splitdir($directories);

$directories must be only the directory portion of the path on systems that have the concept
of a volume or that have path syntax that differentiates
 files from directories.

Unlike just splitting the directories on the separator, empty
 directory names ('') can be returned,
because these are significant
 on some OSes.

catpath()

Takes volume, directory and file portions and returns an entire path. Under
 Unix, $volume is
ignored, and directory and file are concatenated. A '/' is
 inserted if need be. On other OSes,
$volume is significant.

 $full_path = File::Spec->catpath($volume, $directory, $file);

abs2rel

Takes a destination path and an optional base path returns a relative path
 from the base path to
the destination path:

 $rel_path = File::Spec->abs2rel($path) ;
 $rel_path = File::Spec->abs2rel($path, $base) ;

If $base is not present or '', then Cwd::cwd() is used. If $base is
 relative, then it is converted to
absolute form using rel2abs(). This means that it is taken to be relative to Cwd::cwd().

On systems with the concept of volume, if $path and $base appear to be
 on two different
volumes, we will not attempt to resolve the two
 paths, and we will instead simply return $path.
Note that previous
 versions of this module ignored the volume of $base, which resulted in

garbage results part of the time.

Perl version 5.10.0 documentation - File::Spec

Page 4http://perldoc.perl.org

On systems that have a grammar that indicates filenames, this ignores the $base filename as
well. Otherwise all path components are assumed to be
 directories.

If $path is relative, it is converted to absolute form using rel2abs().
 This means that it is taken to
be relative to Cwd::cwd().

No checks against the filesystem are made. On VMS, there is
 interaction with the working
environment, as logicals and
 macros are expanded.

Based on code written by Shigio Yamaguchi.

rel2abs()

Converts a relative path to an absolute path.

 $abs_path = File::Spec->rel2abs($path) ;
 $abs_path = File::Spec->rel2abs($path, $base) ;

If $base is not present or '', then Cwd::cwd() is used. If $base is relative,
 then it is converted to
absolute form using rel2abs(). This means that it
 is taken to be relative to Cwd::cwd().

On systems with the concept of volume, if $path and $base appear to be
 on two different
volumes, we will not attempt to resolve the two
 paths, and we will instead simply return $path.
Note that previous
 versions of this module ignored the volume of $base, which resulted in

garbage results part of the time.

On systems that have a grammar that indicates filenames, this ignores the $base filename as
well. Otherwise all path components are assumed to be
 directories.

If $path is absolute, it is cleaned up and returned using canonpath().

No checks against the filesystem are made. On VMS, there is
 interaction with the working
environment, as logicals and
 macros are expanded.

Based on code written by Shigio Yamaguchi.

For further information, please see File::Spec::Unix, File::Spec::Mac, File::Spec::OS2,
File::Spec::Win32, or File::Spec::VMS.

SEE ALSO
File::Spec::Unix, File::Spec::Mac, File::Spec::OS2, File::Spec::Win32, File::Spec::VMS,
File::Spec::Functions, ExtUtils::MakeMaker

AUTHOR
Currently maintained by Ken Williams <KWILLIAMS@cpan.org>.

The vast majority of the code was written by
 Kenneth Albanowski <kjahds@kjahds.com>,
 Andy
Dougherty <doughera@lafayette.edu>,
 Andreas König
<A.Koenig@franz.ww.TU-Berlin.DE>,
 Tim Bunce <Tim.Bunce@ig.co.uk>.
 VMS support by
Charles Bailey <bailey@newman.upenn.edu>.
 OS/2 support by Ilya Zakharevich
<ilya@math.ohio-state.edu>.
 Mac support by Paul Schinder <schinder@pobox.com>, and

Thomas Wegner <wegner_thomas@yahoo.com>.
 abs2rel() and rel2abs() written by Shigio
Yamaguchi <shigio@tamacom.com>,
 modified by Barrie Slaymaker <barries@slaysys.com>.

splitpath(), splitdir(), catpath() and catdir() by Barrie Slaymaker.

COPYRIGHT
Copyright (c) 2004 by the Perl 5 Porters. All rights reserved.

This program is free software; you can redistribute it and/or modify
 it under the same terms as Perl
itself.

