
Perl version 5.10.0 documentation - ExtUtils::CBuilder

Page 1http://perldoc.perl.org

NAME
ExtUtils::CBuilder - Compile and link C code for Perl modules

SYNOPSIS
 use ExtUtils::CBuilder;

 my $b = ExtUtils::CBuilder->new(%options);
 $obj_file = $b->compile(source => 'MyModule.c');
 $lib_file = $b->link(objects => $obj_file);

DESCRIPTION
This module can build the C portions of Perl modules by invoking the
 appropriate compilers and
linkers in a cross-platform manner. It was
 motivated by the Module::Build project, but may be
useful for other
 purposes as well. However, it is not intended as a general
 cross-platform interface to
all your C building needs. That would
 have been a much more ambitious goal!

METHODS
new

Returns a new ExtUtils::CBuilder object. A config parameter
 lets you override
Config.pm settings for all operations performed
 by the object, as in the following example:

 # Use a different compiler than Config.pm says
 my $b = ExtUtils::CBuilder->new(config =>
 { ld => 'gcc' });

A quiet parameter tells CBuilder to not print its system()
 commands before executing
them:

 # Be quieter than normal
 my $b = ExtUtils::CBuilder->new(quiet => 1);

have_compiler

Returns true if the current system has a working C compiler and
 linker, false otherwise. To
determine this, we actually compile and
 link a sample C library.

compile

Compiles a C source file and produces an object file. The name of the
 object file is returned.
The source file is specified in a source
 parameter, which is required; the other parameters
listed below are
 optional.

object_file

Specifies the name of the output file to create. Otherwise the object_file()
method will be consulted, passing it the name of the source file.

include_dirs

Specifies any additional directories in which to search for header
 files. May be given as
a string indicating a single directory, or as
 a list reference indicating multiple
directories.

extra_compiler_flags

Specifies any additional arguments to pass to the compiler. Should be
 given as a list
reference containing the arguments individually, or if
 this is not possible, as a string
containing all the arguments
 together.

The operation of this method is also affected by the archlibexp, cccdlflags, ccflags,
optimize, and cc
 entries in Config.pm.

Perl version 5.10.0 documentation - ExtUtils::CBuilder

Page 2http://perldoc.perl.org

link

Invokes the linker to produce a library file from object files. In
 scalar context, the name of the
library file is returned. In list
 context, the library file and any temporary files created are

returned. A required objects parameter contains the name of the
 object files to process,
either in a string (for one object file) or
 list reference (for one or more files). The following
parameters are
 optional:

lib_file

Specifies the name of the output library file to create. Otherwise
 the lib_file()
method will be consulted, passing it the name of
 the first entry in objects.

module_name

Specifies the name of the Perl module that will be created by linking.
 On platforms that
need to do prelinking (Win32, OS/2, etc.) this is a
 required parameter.

extra_linker_flags

Any additional flags you wish to pass to the linker.

On platforms where need_prelink() returns true, prelink()
 will be called automatically.

The operation of this method is also affected by the lddlflags, shrpenv, and ld entries in
Config.pm.

link_executable

Invokes the linker to produce an executable file from object files. In
 scalar context, the name
of the executable file is returned. In list
 context, the executable file and any temporary files
created are
 returned. A required objects parameter contains the name of the
 object files to
process, either in a string (for one object file) or
 list reference (for one or more files). The
optional parameters are
 the same as link with exception for

exe_file

Specifies the name of the output executable file to create. Otherwise
 the exe_file()
method will be consulted, passing it the name of the
 first entry in objects.

object_file

 my $object_file = $b->object_file($source_file);

Converts the name of a C source file to the most natural name of an
 output object file to
create from it. For instance, on Unix the
 source file foo.c would result in the object file foo.o.

lib_file

 my $lib_file = $b->lib_file($object_file);

Converts the name of an object file to the most natural name of a
 output library file to create
from it. For instance, on Mac OS X the
 object file foo.o would result in the library file
foo.bundle.

exe_file

 my $exe_file = $b->exe_file($object_file);

Converts the name of an object file to the most natural name of an
 executable file to create
from it. For instance, on Mac OS X the
 object file foo.o would result in the executable file foo,
and
 on Windows it would result in foo.exe.

prelink

On certain platforms like Win32, OS/2, VMS, and AIX, it is necessary
 to perform some actions
before invoking the linker. The ExtUtils::Mksymlists module does this, writing files used

Perl version 5.10.0 documentation - ExtUtils::CBuilder

Page 3http://perldoc.perl.org

by the
 linker during the creation of shared libraries for dynamic extensions.
 The names of any
files written will be returned as a list.

Several parameters correspond to ExtUtils::Mksymlists::Mksymlists()
 options, as
follows:

 Mksymlists() prelink() type
 -------------|-------------------|-------------------
 NAME | dl_name | string (required)
 DLBASE | dl_base | string
 FILE | dl_file | string
 DL_VARS | dl_vars | array reference
 DL_FUNCS | dl_funcs | hash reference
 FUNCLIST | dl_func_list | array reference
 IMPORTS | dl_imports | hash reference
 VERSION | dl_version | string

Please see the documentation for ExtUtils::Mksymlists for the
 details of what these
parameters do.

need_prelink

Returns true on platforms where prelink() should be called
 during linking, and false
otherwise.

extra_link_args_after_prelink

Returns list of extra arguments to give to the link command; the arguments
 are the same as
for prelink(), with addition of array reference to the
 results of prelink(); this reference is indexed
by key prelink_res.

TO DO
Currently this has only been tested on Unix and doesn't contain any of
 the Windows-specific code
from the Module::Build project. I'll do
 that next.

HISTORY
This module is an outgrowth of the Module::Build project, to which
 there have been many
contributors. Notably, Randy W. Sims submitted
 lots of code to support 3 compilers on Windows and
helped with various
 other platform-specific issues. Ilya Zakharevich has contributed
 fixes for OS/2;
John E. Malmberg and Peter Prymmer have done likewise
 for VMS.

AUTHOR
Ken Williams, kwilliams@cpan.org

COPYRIGHT
Copyright (c) 2003-2005 Ken Williams. All rights reserved.

This library is free software; you can redistribute it and/or
 modify it under the same terms as Perl
itself.

SEE ALSO
perl(1), Module::Build(3)

