
Perl version 5.10.0 documentation - Digest::SHA

Page 1http://perldoc.perl.org

NAME
Digest::SHA - Perl extension for SHA-1/224/256/384/512

SYNOPSIS
In programs:

		 # Functional interface

	 use Digest::SHA qw(sha1 sha1_hex sha1_base64 ...);

	 $digest = sha1($data);
	 $digest = sha1_hex($data);
	 $digest = sha1_base64($data);

	 $digest = sha256($data);
	 $digest = sha384_hex($data);
	 $digest = sha512_base64($data);

		 # Object-oriented

	 use Digest::SHA;

	 $sha = Digest::SHA->new($alg);

	 $sha->add($data);		 # feed data into stream

	 $sha->addfile(*F);
	 $sha->addfile($filename);

	 $sha->add_bits($bits);
	 $sha->add_bits($data, $nbits);

	 $sha_copy = $sha->clone;	 # if needed, make copy of
	 $sha->dump($file);		 #	 current digest state,
	 $sha->load($file);		 #	 or save it on disk

	 $digest = $sha->digest;		 # compute digest
	 $digest = $sha->hexdigest;
	 $digest = $sha->b64digest;

From the command line:

	 $ shasum files

	 $ shasum --help

SYNOPSIS (HMAC-SHA)
		 # Functional interface only

	 use Digest::SHA qw(hmac_sha1 hmac_sha1_hex ...);

Perl version 5.10.0 documentation - Digest::SHA

Page 2http://perldoc.perl.org

	 $digest = hmac_sha1($data, $key);
	 $digest = hmac_sha224_hex($data, $key);
	 $digest = hmac_sha256_base64($data, $key);

ABSTRACT
Digest::SHA is a complete implementation of the NIST Secure Hash
 Standard. It gives Perl
programmers a convenient way to calculate
 SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512
message digests.
 The module can handle all types of input, including partial-byte
 data.

DESCRIPTION
Digest::SHA is written in C for speed. If your platform lacks a
 C compiler, you can install the
functionally equivalent (but much
 slower) Digest::SHA::PurePerl module.

The programming interface is easy to use: it's the same one found
 in CPAN's Digest module. So, if
your applications currently
 use Digest::MD5 and you'd prefer the stronger security of SHA,
 it's a
simple matter to convert them.

The interface provides two ways to calculate digests: all-at-once,
 or in stages. To illustrate, the
following short program computes
 the SHA-256 digest of "hello world" using each approach:

	 use Digest::SHA qw(sha256_hex);

	 $data = "hello world";
	 @frags = split(//, $data);

	 # all-at-once (Functional style)
	 $digest1 = sha256_hex($data);

	 # in-stages (OOP style)
	 $state = Digest::SHA->new(256);
	 for (@frags) { $state->add($_) }
	 $digest2 = $state->hexdigest;

	 print $digest1 eq $digest2 ?
		 "whew!\n" : "oops!\n";

To calculate the digest of an n-bit message where n is not a
 multiple of 8, use the add_bits() method.
For example, consider
 the 446-bit message consisting of the bit-string "110" repeated
 148 times,
followed by "11". Here's how to display its SHA-1
 digest:

	 use Digest::SHA;
	 $bits = "110" x 148 . "11";
	 $sha = Digest::SHA->new(1)->add_bits($bits);
	 print $sha->hexdigest, "\n";

Note that for larger bit-strings, it's more efficient to use the
 two-argument version add_bits($data,
$nbits), where $data is
 in the customary packed binary format used for Perl strings.

The module also lets you save intermediate SHA states to disk, or
 display them on standard output.
The dump() method generates
 portable, human-readable text describing the current state of

computation. You can subsequently retrieve the file with load()
 to resume where the calculation left
off.

To see what a state description looks like, just run the following:

	 use Digest::SHA;

Perl version 5.10.0 documentation - Digest::SHA

Page 3http://perldoc.perl.org

	 Digest::SHA->new->add("Shaw" x 1962)->dump;

As an added convenience, the Digest::SHA module offers routines to
 calculate keyed hashes using
the HMAC-SHA-1/224/256/384/512
 algorithms. These services exist in functional form only, and

mimic the style and behavior of the sha(), sha_hex(), and sha_base64() functions.

	 # Test vector from draft-ietf-ipsec-ciph-sha-256-01.txt

	 use Digest::SHA qw(hmac_sha256_hex);
	 print hmac_sha256_hex("Hi There", chr(0x0b) x 32), "\n";

NIST STATEMENT ON SHA-1
NIST was recently informed that researchers had discovered a way
 to "break" the current Federal
Information Processing Standard SHA-1
 algorithm, which has been in effect since 1994. The
researchers
 have not yet published their complete results, so NIST has not
 confirmed these findings.
However, the researchers are a reputable
 research team with expertise in this area.

Due to advances in computing power, NIST already planned to phase
 out SHA-1 in favor of the larger
and stronger hash functions (SHA-224,
 SHA-256, SHA-384 and SHA-512) by 2010. New
developments should use
 the larger and stronger hash functions.

ref. http://www.csrc.nist.gov/pki/HashWorkshop/NIST%20Statement/Burr_Mar2005.html

PADDING OF BASE64 DIGESTS
By convention, CPAN Digest modules do not pad their Base64 output.
 Problems can occur when
feeding such digests to other software that
 expects properly padded Base64 encodings.

For the time being, any necessary padding must be done by the user.
 Fortunately, this is a simple
operation: if the length of a Base64-encoded
 digest isn't a multiple of 4, simply append "=" characters
to the end
 of the digest until it is:

	 while (length($b64_digest) % 4) {
		 $b64_digest .= '=';
	 }

To illustrate, sha256_base64("abc") is computed to be

	 ungWv48Bz+pBQUDeXa4iI7ADYaOWF3qctBD/YfIAFa0

which has a length of 43. So, the properly padded version is

	 ungWv48Bz+pBQUDeXa4iI7ADYaOWF3qctBD/YfIAFa0=

EXPORT
None by default.

EXPORTABLE FUNCTIONS
Provided your C compiler supports a 64-bit type (e.g. the long
 long of C99, or __int64 used by
Microsoft C/C++), all of these
 functions will be available for use. Otherwise, you won't be able
 to
perform the SHA-384 and SHA-512 transforms, both of which require
 64-bit operations.

Functional style

sha1($data, ...)

sha224($data, ...)

sha256($data, ...)

Perl version 5.10.0 documentation - Digest::SHA

Page 4http://perldoc.perl.org

sha384($data, ...)

sha512($data, ...)

Logically joins the arguments into a single string, and returns
 its SHA-1/224/256/384/512
digest encoded as a binary string.

sha1_hex($data, ...)

sha224_hex($data, ...)

sha256_hex($data, ...)

sha384_hex($data, ...)

sha512_hex($data, ...)

Logically joins the arguments into a single string, and returns
 its SHA-1/224/256/384/512
digest encoded as a hexadecimal string.

sha1_base64($data, ...)

sha224_base64($data, ...)

sha256_base64($data, ...)

sha384_base64($data, ...)

sha512_base64($data, ...)

Logically joins the arguments into a single string, and returns
 its SHA-1/224/256/384/512
digest encoded as a Base64 string.

It's important to note that the resulting string does not contain
 the padding characters typical
of Base64 encodings. This omission is
 deliberate, and is done to maintain compatibility with
the family of
 CPAN Digest modules. See PADDING OF BASE64 DIGESTS for details.

OOP style

new($alg)

Returns a new Digest::SHA object. Allowed values for $alg are
 1, 224, 256, 384, or 512. It's
also possible to use common string
 representations of the algorithm (e.g. "sha256",
"SHA-384"). If
 the argument is missing, SHA-1 will be used by default.

Invoking new as an instance method will not create a new object;
 instead, it will simply reset
the object to the initial state
 associated with $alg. If the argument is missing, the object
 will
continue using the same algorithm that was selected at creation.

reset($alg)

This method has exactly the same effect as new($alg). In fact, reset is just an alias for new.

hashsize

Returns the number of digest bits for this object. The values are
 160, 224, 256, 384, and 512
for SHA-1, SHA-224, SHA-256, SHA-384,
 and SHA-512, respectively.

algorithm

Returns the digest algorithm for this object. The values are 1,
 224, 256, 384, and 512 for
SHA-1, SHA-224, SHA-256, SHA-384, and
 SHA-512, respectively.

clone

Returns a duplicate copy of the object.

add($data, ...)

Logically joins the arguments into a single string, and uses it to
 update the current digest
state. In other words, the following
 statements have the same effect:

	 $sha->add("a"); $sha->add("b"); $sha->add("c");

Perl version 5.10.0 documentation - Digest::SHA

Page 5http://perldoc.perl.org

	 $sha->add("a")->add("b")->add("c");
	 $sha->add("a", "b", "c");
	 $sha->add("abc");

The return value is the updated object itself.

add_bits($data, $nbits)

add_bits($bits)

Updates the current digest state by appending bits to it. The
 return value is the updated object
itself.

The first form causes the most-significant $nbits of $data
 to be appended to the stream. The
$data argument is in the
 customary binary format used for Perl strings.

The second form takes an ASCII string of "0" and "1" characters as
 its argument. It's
equivalent to

	 $sha->add_bits(pack("B*", $bits), length($bits));

So, the following two statements do the same thing:

	 $sha->add_bits("111100001010");
	 $sha->add_bits("\xF0\xA0", 12);

addfile(*FILE)

Reads from FILE until EOF, and appends that data to the current
 state. The return value is the
updated object itself.

addfile($filename [, $mode])

Reads the contents of $filename, and appends that data to the current
 state. The return value
is the updated object itself.

By default, $filename is simply opened and read; no special modes
 or I/O disciplines are used.
To change this, set the optional $mode
 argument to one of the following values:

	 "b"	 read file in binary mode

	 "p"	 use portable mode

The "p" mode is handy since it ensures that the digest value of $filename will be the same
when computed on different operating
 systems. It accomplishes this by internally translating
all newlines
 in text files to UNIX format before calculating the digest; on the other
 hand, binary
files are read in raw mode with no translation whatsoever.

For a fuller discussion of newline formats, refer to CPAN module File::LocalizeNewlines. Its
"universal line separator" regex forms
 the basis of addfile's portable mode processing.

dump($filename)

Provides persistent storage of intermediate SHA states by writing
 a portable, human-readable
representation of the current state to $filename. If the argument is missing, or equal to the
empty
 string, the state information will be written to STDOUT.

load($filename)

Returns a Digest::SHA object representing the intermediate SHA
 state that was previously
dumped to $filename. If called as a
 class method, a new object is created; if called as an
instance
 method, the object is reset to the state contained in $filename.
 If the argument is
missing, or equal to the empty string, the state
 information will be read from STDIN.

digest

Returns the digest encoded as a binary string.

Perl version 5.10.0 documentation - Digest::SHA

Page 6http://perldoc.perl.org

Note that the digest method is a read-once operation. Once it
 has been performed, the
Digest::SHA object is automatically reset
 in preparation for calculating another digest value.
Call $sha->clone->digest if it's necessary to preserve the
 original digest state.

hexdigest

Returns the digest encoded as a hexadecimal string.

Like digest, this method is a read-once operation. Call $sha->clone->hexdigest if it's
necessary to preserve
 the original digest state.

This method is inherited if Digest::base is installed on your
 system. Otherwise, a functionally
equivalent substitute is used.

b64digest

Returns the digest encoded as a Base64 string.

Like digest, this method is a read-once operation. Call $sha->clone->b64digest if it's
necessary to preserve
 the original digest state.

This method is inherited if Digest::base is installed on your
 system. Otherwise, a functionally
equivalent substitute is used.

It's important to note that the resulting string does not contain
 the padding characters typical
of Base64 encodings. This omission is
 deliberate, and is done to maintain compatibility with
the family of
 CPAN Digest modules. See PADDING OF BASE64 DIGESTS for details.

HMAC-SHA-1/224/256/384/512

hmac_sha1($data, $key)

hmac_sha224($data, $key)

hmac_sha256($data, $key)

hmac_sha384($data, $key)

hmac_sha512($data, $key)

Returns the HMAC-SHA-1/224/256/384/512 digest of $data/$key,
 with the result encoded as a
binary string. Multiple $data
 arguments are allowed, provided that $key is the last argument
 in
the list.

hmac_sha1_hex($data, $key)

hmac_sha224_hex($data, $key)

hmac_sha256_hex($data, $key)

hmac_sha384_hex($data, $key)

hmac_sha512_hex($data, $key)

Returns the HMAC-SHA-1/224/256/384/512 digest of $data/$key,
 with the result encoded as a
hexadecimal string. Multiple $data
 arguments are allowed, provided that $key is the last
argument
 in the list.

hmac_sha1_base64($data, $key)

hmac_sha224_base64($data, $key)

hmac_sha256_base64($data, $key)

hmac_sha384_base64($data, $key)

hmac_sha512_base64($data, $key)

Returns the HMAC-SHA-1/224/256/384/512 digest of $data/$key,
 with the result encoded as a
Base64 string. Multiple $data
 arguments are allowed, provided that $key is the last argument

in the list.

It's important to note that the resulting string does not contain
 the padding characters typical

Perl version 5.10.0 documentation - Digest::SHA

Page 7http://perldoc.perl.org

of Base64 encodings. This omission is
 deliberate, and is done to maintain compatibility with
the family of
 CPAN Digest modules. See PADDING OF BASE64 DIGESTS for details.

SEE ALSO
Digest, Digest::SHA::PurePerl

The Secure Hash Standard (FIPS PUB 180-2) can be found at:

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf

The Keyed-Hash Message Authentication Code (HMAC):

http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf

AUTHOR
	 Mark Shelor	 <mshelor@cpan.org>

ACKNOWLEDGMENTS
The author is particularly grateful to

	 Gisle Aas
	 Chris Carey
	 Jim Doble
	 Julius Duque
	 Jeffrey Friedl
	 Robert Gilmour
	 Brian Gladman
	 Adam Kennedy
	 Andy Lester
	 Alex Muntada
	 Steve Peters
	 Chris Skiscim
	 Martin Thurn
	 Gunnar Wolf
	 Adam Woodbury

for their valuable comments and suggestions.

COPYRIGHT AND LICENSE
Copyright (C) 2003-2007 Mark Shelor

This library is free software; you can redistribute it and/or modify
 it under the same terms as Perl
itself.

perlartistic

