
www.it-ebooks.info

http://www.it-ebooks.info

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.it-ebooks.info

http://www.it-ebooks.info

iv

Contents at a Glance

■About the Author ... ix

■About the Technical Reviewer ... x

■Acknowledgments .. xi

■Introduction ... xii

■Chapter 1: Computer Graphics: From Then to Now .. 1
■Chapter 2: All That Math Jazz .. 33

■Chapter 3: Building a 3D World .. 51

■Chapter 4: Turning On the Lights ... 91

■Chapter 5: Textures .. 133

■Chapter 6: Will It Blend? .. 167

■Chapter 7: Well-Rendered Miscellany .. 201

■Chapter 8: Putting It All Together .. 245

■Chapter 9: Performance ’n’ Stuff ... 289

■Chapter 10: OpenGL ES 2, Shaders, and… ... 307
■Index… .. 341

www.it-ebooks.info

http://www.it-ebooks.info

xii

Introduction

In 1985 I brought home a new shiny Commodore Amiga 1000, about one week after they were
released. Coming with a whopping 512K of memory, programmable colormaps, a Motorola 68K
CPU, and a modern multitasking operating system, it had “awesome” writ all over it.
Metaphorically speaking, of course. I thought it might make a good platform for an astronomy
program, as I could now control the colors of those star-things instead of having to settle for a
lame fixed color palette forced upon me from the likes of Hercules or the C64. So I coded up a 24-
line basic routine to draw a random star field, turned out the lights, and thought, “Wow! I bet I
could write a cool astronomy program for that thing!” Twenty-six years later I am still working on
it (I’ll get it right one of these days). Back then my dream device was something I could slip into
my pocket, pull out when needed, and aim it as the sky to tell me what stars or constellations I
was looking at.

It’s called the iPhone.

I thought of it first.

As good as the iPhone is for playing music, making calls, or jumping Doodles, it really shines
when you get to the 3D stuff. After all, 3D is all around us—unless you are a pirate and have taken
to wearing an eye patch, in which case you’ll have very limited depth perception. Arrrggghhh.

Plus 3D apps are fun to show off to people. They’ll “get it.” In fact, they’ll get it much more than,
say, that mulch buyer’s guide app all the kids are talking about. (Unless they show off their mulch
in 3D, but that would be a waste of a perfectly good dimension.)

So, 3D apps are fun to see, fun to interact with, and fun to program. Which brings me to this
book. I am by no means a guru in this field. The real gurus are the ones who can knock out a
couple of NVIDIA drivers before breakfast, 4-dimensional hypercube simulators by lunch, and
port Halo to a TokyoFlash watch before the evening’s Firefly marathon on SyFy. I can’t do that.
But I am a decent writer, have enough of a working knowledge of the subject to make me
harmless, and know how to spell “3D.” So here we are.

First and foremost this book is for experienced iOS programmers who want to at least learn a little
of the language of 3D. At least enough to where at the next game programmer’s cocktail party you
too can laugh at the quaternion jokes with the best of them.

www.it-ebooks.info

http://www.it-ebooks.info

■ INTRODUCTION

 xiii

This book covers the basics in both theory of 3D and implementations using the industry
standard OpenGL ES toolkit for small devices. While iOS supports both flavors—version 1.x for
the easy way, and version 2.x for those who like to get where the nitty-is-gritty—I mainly cover
the former, except in the final chapter which serves as an intro to the latter and the use of
programmable shaders. And with the release of iOS 5, Apple has offered the 3D community a
whole lotta lovin’ with some significant additions to the graphics libraries.

Chapter 1 serves as an intro to OpenGL ES alongside the long and tortuous path of the history of
computer graphics. Chapter 2 is the math behind basic 3D rendering, whereas Chapters 3
through 8 lead you gently through the various issues all graphics programmers eventually come
across, such as how to cast shadows, render multiple OpenGL screens, add lens flare, and so on.
Eventually this works its way into a simple (S-I-M-P-L-E!) solar-system model consisting of the
sun, earth, and some stars—a traditional 3D exercise. Chapter 9 looks at best practices and
development tools, and Chapter 10 serves as a brief overview of OpenGL ES 2 and the use of
shaders.

So, have fun, send me some M&Ms, and while you’re at it feel free to check out my own app in the
Appstore: Distant Suns 3 for both the iPhone and the iPad. Yup, that’s the same application that
started out on a Commodore Amiga 1000 in 1985 as a 24-line basic program that drew a couple
hundred random stars on the screen.

It’s bigger now.

www.it-ebooks.info

http://www.it-ebooks.info

1Chapter

Computer Graphics: From
Then to Now

To predict the future and appreciate the present, you must understand
the past.

-----Probably said by someone sometime

Computer graphics have always been the darling of the software world. Laypeople can
appreciate computer graphics more easily than, say, increasing the speed of a sort
algorithm by 3 percent or adding automatic tint control to a spreadsheet program. You
are likely to hear more people say ‘‘Cooooolllll!’’ at your nicely rendered image of Saturn
on your iPad than at a Visual Basic script in Microsoft Word (unless, of course, a Visual
Basic script in Microsoft Word can render Saturn, then that really would be cool). The
cool factor goes up even more so when said renderings are on a device you can carry
around in your back pocket. Let’s face it-----Steve Jobs has made the life of art directors
on science-fiction films very difficult. After all, imagine how hard it must be to design a
prop that looks more futuristic than an iPad. (Even before the iPhone was available for
sale, the prop department at ABC’s LOST borrowed some of Apple’s screen
iconography for use in a two-way radio carried by a helicopter pilot.)

If you are reading this book, chances are you have an iOS-based device or are
considering getting one in the near future. If you have one, put it in your hand now and
consider what a miracle it is of 21st-century engineering. Millions of man-hours, billions
of dollars of research, centuries of overtime, plenty of all-nighters, and an abundance of
Jolt-drinking, T-shirt---wearing, comic-book-loving engineers coding into the silence of
the night have gone into making that little glass and plastic miracle-box so you could
play DoodleJump when Mythbusters is in reruns.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now 2

Your First OpenGL ES Program
Some software how-to titles will carefully build up the case for their specific topic (‘‘the
boring stuff’’) only to get to the coding and examples (‘‘the fun stuff’’) by around page
655. Others will jump immediately into some exercises to address your curiosity and
save the boring stuff for a little later. This book will be of the latter category.

Note OpenGL ES is a 3D graphics standard based on the OpenGL library that emerged from
the labs of Silicon Graphics in 1992. It is widely used across the industry in everything from
pocketable machines running games up to supercomputers running fluid dynamics simulations
for NASA (and playing really, really fast games). The ES variety stands for Embedded Systems,
meaning small, portable, low-power devices. Unless otherwise noted, I’ll use OpenGL and
OpenGL ES interchangeably.

When developing any apps for iOS, it is customary to let Xcode do the heavy lifting at
the beginning of any project via its various wizards. With Xcode (this book uses Xcode 4
as reference), you can easily create an example OpenGL ES project and then add on
your own stuff to eventually arrive at something someone might want to buy from the
App Store.

With Xcode 4 already running, go to File New New Project, and you should see
something that looks like Figure 1-1.

Figure 1-1. Xcode project wizard

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now 3

Select the OpenGL Game template, and fill in the needed project data. It doesn’t matter
whether it is for the iPhone or iPad.

Now compile and run, making sure you have administrative privileges. If you didn’t break
anything by undue tinkering, you should see something like Figure 1-2.

Figure 1-2. Your first OpenGL ES project. Give yourself a high five.

The code will be examined later. And don’t worry, you’ll build stuff fancier than a couple
of rotating cubes. The main project will be to construct a simple solar-system simulator
based on some of the code used in Distant Suns 3. But for now, it’s time to get to the
boring stuff: where computer graphics came from and where it is likely to go.

A Spotty History of Computer Graphics
To say that 3D is all the rage today is at best an understatement. Although forms of ‘‘3D’’
imagery go back to more than a century ago, it seems that it has finally come of age.
First let’s look at what 3D is and what it is not.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now 4

3D in Hollywood
In 1982 Disney released Tron, the first movie to widely use computer graphics depicting
life inside a video game. Although the movie was a critical and financial flop (not unlike
the big-budget sequel released in 2011), it would eventually join the ranks of cult
favorites right up there with Showgirls and The Rocky Horror Picture Show. Hollywood
had taken the bite out of the apple, and there was no turning back.

Stretching back to the 1800s, what we call ‘‘3D’’ today was more commonly referred to
as stereo vision. Popular Victorian-era stereopticons would be found in many parlors of
the day. Consider this technology an early Viewmaster. The user would hold the
stereopticon up to their face with a stereo photograph slipped into the far end and see a
view of some distant land, but in stereo rather than a flat 2D picture. Each eye would see
only one half of the card, which carried two nearly identical photos taken only a couple
of inches apart.

Stereovision is what gives us the notion of a depth component to our field of view. Our
two eyes deliver two slightly different images to the brain that then interprets them in a
way that we understand as depth perception. A single image will not have that effect.
Eventually this moved to movies, with a brief and unsuccessful dalliance as far back as
1903 (the short L’arrivée du Train is said to have had viewers running from the theater to
avoid the train that was clearly heading their way) and a resurgence in the early 1950s,
with Bwana Devil being perhaps the best known.

The original form of 3D movies generally used the ‘‘anaglyph’’ technique that required
the viewers to wear cheap plastic glasses with a red filter over one eye and a blue one
over the other. Polarizing systems were incorporated in the early 1950s and permitted
color movies to be seen in stereo, and they are still very much the same as today. Afraid
that television would kill off the movie industry, Hollywood needed some gimmick that
was impossible on television in order to keep selling tickets, but because both the
cameras and the projectors required were much too impractical and costly, the form fell
out of favor, and the movie industry struggled along just fine.

With the advent of digital projection systems in the 1990s and fully rendered films such
as Toy Story, stereo movies and eventually television finally became both practical and
affordable enough to move it beyond the gimmick stage. In particular, full-length
animated features (Toy Story being the first) made it a no-brainer to convert to stereo. All
one needed to do was simply rerender the entire film but from a slightly different
viewpoint. This is where stereo and 3D computer graphics merge.

The Dawn of Computer Graphics
One of the fascinating things about the history of computer graphics, and computers in
general, is that the technology is still so new that many of the giants still stride among
us. It would be tough to track down whoever invented the buggy whip, but I’d know
whom to call if you wanted to hear firsthand how to program the Apollo Lunar Module
computers from the 1960s.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now 5

Computer graphics (frequently referred to as CG) come in three overall flavors: 2D for
user interface, 3D in real time for flight or other forms of simulation as well as games,
and 3D rendering where quality trumps speed for non-real-time use.

MIT
In 1961, an MIT engineering student named Ivan Sutherland created a system called
Sketchpad for his PhD thesis using a vectorscope, a crude light pen, and a custom-
made Lincoln TX-2 computer (a spin-off from the TX-2 group would become DEC).
Sketchpad’s revolutionary graphical user interface demonstrated many of the core
principles of modern UI design, not to mention a big helping of object-oriented
architecture tossed in for good measure.

Note For a video of Sketchpad in operation, go to YouTube and search for Sketchpad or Ivan
Sutherland.

A fellow student of Sutherland’s, Steve Russell, would invent perhaps one of the biggest
time sinks ever made, the computer game. Russell created the legendary game of
Spacewar in 1962, which ran on the PDP-1, as shown in Figure 1-3.

Figure 1-3. The 1962 game of Spacewar resurrected at the Computer History Museum in Mountain View,
California, on a vintage PDP-1. Photo by Joi Itoh, licensed under the Creative Commons Attribution 2.0 Generic
license (http://creativecommons.org/licenses/by/2.0/deed.en).

By 1965, IBM would release what is considered the first widely used commercial
graphics terminal, the 2250. Paired with either the low-cost IBM-1130 computer or the
IBM S/340, the terminal was meant largely for use in the scientific community.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now 6

Perhaps one of the earliest known examples of computer graphics on television was the
use of a 2250 on the CBS news coverage of the joint Gemini 6 and Gemini 7 missions in
December 1965 (IBM built the Gemini’s onboard computer system). The terminal was
used to demonstrate several phases of the mission on live television from liftoff to
rendezvous. At a cost of about $100,000 in 1965, it was worth the equivalent of a very
nice home. See Figure 1-4.

Figure 1-4. IBM-2250 terminal from 1965. Courtesy NASA.

University of Utah
Recruited by the University of Utah in 1968 to work in its computer science program,
Sutherland naturally concentrated on graphics. Over the course of the next few years,
many computer graphics visionaries in training would pass through the university’s labs.

Ed Catmull, for example, loved classic animation but was frustrated by his inability to
draw-----a requirement for artists back in those days as it would appear. Sensing that
computers might be a pathway to making movies, Catmull produced the first-ever
computer animation, which was of his hand opening and closing. This clip would find its
way into the 1976 film Future World.

During that time he would pioneer two major computer graphics innovations: texture
mapping and bicubic surfaces. The former could be used to add complexity to simple
forms by using images of texture instead of having to create texture and roughness
using discrete points and surfaces, as shown in Figure 1-5. The latter is used to
generate algorithmically curved surfaces that are much more efficient than the traditional
polygon meshes.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now 7

Figure 1-5. Saturn with and without texture

Catmull would eventually find his way to Lucasfilm and, later, Pixar and eventually serve
as president of Disney Animation Studios where he could finally make the movies he
wanted to see. Not a bad gig.

Many others of the top names in the industry would likewise pass through the gates of
University of Utah and the influence of Sutherland:

 John Warnock, who would be instrumental in developing a device-
independent means of displaying and printing graphics called
PostScript and the Portable Document Format (PDF) and would be
cofounder of Adobe.

 Jim Clark, founder of Silicon Graphics (SGI), which would supply
Hollywood with some of the best graphics workstations of the day and
create the 3D software development framework now known as
OpenGL. After SGI, he co-founded Netscape Communications, which
would lead us into the land of the World Wide Web.

 Jim Blinn, inventor of both bump mapping, which is an efficient way of
adding true 3D texture to objects, and environment mapping, which is
used to create really shiny things. Perhaps he would be best known
creating the revolutionary animations for NASA’s Voyager project,
depicting their flybys of the outer planets, as shown in Figure 1-6
(compare that with Figure 1-7 using modern devices). Of Blinn,
Sutherland would say, ‘‘There are about a dozen great computer
graphics people, and Jim Blinn is six of them.’’ Blinn would later lead
the effort to create Microsoft’s competitor to OpenGL, namely,
Direct3D.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now 8

Figure 1-6. Jim Blinn’s depiction of Voyager II’s encounter with Saturn in August of 1981. Notice the streaks
formed of icy particles while crossing the ring plane. Courtesy NASA.

Figure 1-7. Compare Figure 1-6, using some of the best graphics computers and software at the time, with a
similar view of Saturn from Distant Suns 3 running on a $500 iPad.

Coming of Age in Hollywood
Computer graphics would really start to come into their own in the 1980s thanks both to
Hollywood and to machines that were increasingly powerful while at the same time
costing less. For example, the beloved Commodore Amiga that was introduced in 1985
cost less than $2,000, and it brought to the consumer market an advanced multitasking
operating system and color graphics that had been previously the domain of
workstations costing upwards of $100,000. See Figure 1-8.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now 9

Figure 1-8. Amiga 1000, circa 1985. Photo by Kaivv, licensed under the Creative Commons Attribution 2.0 Generic
license (http://creativecommons.org/licenses/by/2.0/deed.en).

Compare this to the original black-and-white Mac that was released a scant 18 months
earlier for about the same cost. Coming with a very primitive OS, flat file system, and
1-bit display, it was fertile territory for the ‘‘religious wars’’ that broke out between the
various camps as to whose machine was better (wars that would also include the
Atari ST).

Note One of the special graphics modes on the original Amiga could compress 4,096 colors
into a system that would normally max out at 32. Called Hold and Modify (HAM mode), it was
originally included on one of the main chips for experimental reasons by designer Jay Miner.
Although he wanted to remove the admitted kludge that produced images with a lot of color
distortion, the results would have left a big empty spot on the chip. Considering that unused
chip landscape was something no self-respecting engineer could tolerate, he left it in, and to
Miner’s great surprise, people started using it.

A company in Kansas called NewTek pioneered the use of Amigas for rendering high-
quality 3D graphics when coupled with its special hardware named the Video Toaster.
Combined with a sophisticated 3D rendering software package called Lightwave 3D,
NewTek opened up the realm of cheap, network-quality graphics to anyone who had a
few thousand dollars to spend. This development opened the doors for elaborate
science-fiction shows such as Babylon 5 or Seaquest to be financially feasible
considering their extensive special effects needs.

During the 1980s, many more techniques and innovations would work their way into
common use in the CG community:

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now 10

 Loren Carpenter developed a technique to generate highly detailed
landscapes algorithmically using something called fractals. Carpenter
was hired by Lucasfilm to create a rendering package for a new
company named Pixar. The result was REYES, which stood for Render
Everything You Ever Saw.

 Turner Whitted developed a technique called ray tracing that could
produce highly realistic scenes (at a significant CPU cost), particularly
when they included objects with various reflective and refractive
properties. Glass items were common subjects in various early ray-
tracing efforts, as shown in Figure 1-9.

 Frank Crow developed the first practical method of anti-aliasing in
computer graphics. Aliasing is the phenomenon that generates jagged
edges because of the relatively poor resolution of the display. Crow’s
method would smooth out everything from lines to text, producing far
more natural and pleasing imagery. Note that one of Lucasfilm’s early
games was called Rescue on Fractalus. The bad guys were named
jaggies (another term for anti-aliasing).

 Star Trek II: The Wrath of Khan brought with it the first entirely
computer-generated sequence used to illustrate how a device called
the Genesis Machine could generate life on a lifeless planet. That one
simulation was called ‘‘the effect that wouldn’t die’’ because of its
groundbreaking techniques in flame and particle animation, along with
the use of fractal landscapes.

Figure 1-9. Sophisticated images such as this are within the range of hobbyists with programs
such as the open source POV-Ray. Photo by Gilles Tran, 2006.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now 11

The 1990s brought the T1000 ‘‘liquid metal’’ terminator in Terminator 2: Judgment Day,
the first completely computer-generated full-length feature film of Toy Story, believable
animated dinosaurs in Jurassic Park, and James Cameron’s Titanic, all of which helped
solidified CG as a common tool in the Hollywood director’s arsenal.

By the decade’s end, it would be hard to find any films that didn’t have computer
graphics as part of the production in either actual effects or in postproduction to help
clean up various scenes. New techniques are still being developed and applied in ever
more spectacular fashion, as in Disney’s delightful Up! or James Cameron’s beautiful
Avatar.

Now, once again, take out your i-device and realize what a little technological marvel it
is. Feel free to say ‘‘wow’’ in hushed, respectful tones.

Toolkits
All of the 3D wizardry referenced earlier would never have been possible without
software. Many CG software programs are highly specialized, and others are more
general purpose, such as OpenGL ES, the focus of this book. So, what follows are a few
of the many toolkits available.

OpenGL
Open Graphics Library (OpenGL) came out of the pioneering efforts of SGI, the maker of
high-end graphics workstations and mainframes. Its own proprietary graphics
framework, IRIS-GL, had grown into a de-facto standard across the industry. To keep
customers as competition increased, SGI opted to turn IRIS-GL into an open framework
so as to strengthen their reputation as the industry leader. IRIS-GL was stripped of non-
graphics-related functions and hardware-dependent features, renamed OpenGL, and
released in early 1992. As of this writing, version 4.1 is the most current one available.

As small handheld devices became more common, OpenGL for Embedded Systems
(OpenGL ES) was developed, which was a stripped-down version of the desktop
version. It removed many of the more redundant API calls while simplifying other
elements. making it run efficiently on lower-power CPUs. As a result, it has been widely
adopted across many platforms, such as Android, iOS, Nintendo 3DS, and BlackBerry
(OS 5.0 and newer).

There are two main flavors of OpenGL ES, 1.x and 2.x. Many devices support both. 1.x
is the higher-level variant, based on the original OpenGL specification. Version 2.x (yes, I
know it’s confusing) is targeted toward more specialized rendering chores that can be
handled by programmable graphics hardware.

Direct3D
Direct3D (D3D) is Microsoft’s answer to OpenGL and is heavily oriented toward game
developers. In 1995, Microsoft bought a small company called RenderMorphics that

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now 12

specialized in creating a 3D framework named RealityLab for writing games. RealityLab
was turned into Direct3D and first released in the summer of 1996. Even though it was
proprietary to Windows-based systems, it has a huge user base across all of Microsoft’s
platforms: Windows, Windows 7 Mobile, and even Xbox. There are constant ongoing
debates between the OpenGL and Direct3D camps as to which is more powerful,
flexible, and easier to use. Other factors include how quickly hardware manufacturers
can update their drivers to support new features, ease of understanding (Direct3D uses
Microsoft’s COM interface that can be very confusing for newcomers), stability, and
industry support.

The Other Guys
While OpenGL and Direct3D remain at the top of the heap when it comes to both
adoption and features, the graphics landscape is littered with numerous other
frameworks, many which are supported on today’s devices.

In the computer graphics world, graphics libraries come in two very broad flavors: low-
level rendering mechanisms represented by OpenGL and Direct3D and high-level
systems typically found in game engines that concentrate on resource management with
special extras that extend to common gameplay elements (sound, networking, scoring,
and so on). The latter are usually built on top of one of the former for the 3D portion. And
if done well, the higher-level systems might even be abstracted enough to make it
possible to work with both GL and D3D.

QuickDraw 3D
An example of a higher-level general-purpose library is QuickDraw 3D (QD3D). A 3D
sibling to Apple’s 2D QuickDraw (used in pre-OS-X days), QD3D had an elegant means
of generating and linking objects in an easy-to-understand hierarchical fashion (a scene-
graph). It likewise had its own file format for loading 3D models and a standard viewer
and was platform independent. The higher-level part of QD3D would calculate the scene
and determine how each object and, in turn, each piece of each object would be shown
on a 2D drawing surface. Underneath QD3D there was a very thin layer called RAVE that
would handle device-specific rendering of these bits.

Users could go with the standard version of RAVE, which would render the scene as
expected. But more ambitious users could write their own that would display the scene
in a more artistic fashion. For example, one company generated the RAVE output so as
to look like their objects were hand-painted on the side of a cave. It was very cool when
you could take this modern version of a cave drawing and spin it around. The plug-in
architecture also made QD3D highly portable to other machines. When potential users
balked at using QD3D since it had no hardware solution on PCs, a version of RAVE was
produced that would use the hardware acceleration available for Direct3D by actually
using its competitor as its rasterizer. Sadly, QD3D was almost immediately killed on the
second coming of Steve Jobs, who determined that OpenGL should be the 3D standard
for Macs in the future. This was an odd statement because QD3D was not a competitor
to the other but an add-on that made the lives of programmers much easier. After Jobs

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now 13

refused requests to make QD3D open source, the Quesa project was formed to re-
create as much as possible the original library, which is still being supported at the time
of this writing. And to nobody’s surprise, Quesa uses OpenGL as its rendering engine.

A disclaimer here: I wrote the RAVE/Direct3D layer of QD3D only to have the project
canceled a few days after going ‘‘gold master’’ (ready to ship).

OGRE
Another scene-graph system is Object-oriented Rendering Engine (OGRE). First
released in 2005, OGRE can use both OpenGL and Direct3D as the low-level rasterizing
solution, while offering users a stable and free toolkit used in many commercial
products. The size of the user community is impressive. A quick peek at the forums
shows more than 6,500 topics in the General Discussion section alone at the time of this
writing.

OpenSceneGraph
Recently released for iOS devices, OpenSceneGraph does roughly what QuickDraw 3D
did, by providing a means of creating your objects on a higher level, linking them
together, and performing scene management duties and extra effects above the
OpenGL layer. Other features include importing multiple file formats, text support,
particle effects (used for sparks, flames, or clouds), and the ability to display video
content in your 3D applications. Knowledge of OpenGL is highly recommended,
because many of the OSG functions are merely thin wrappers to their OpenGL
counterparts.

Unity3D
Unlike OGRE, QD3D, or OpenSceneGraph, Unity3D is a full-fledged game engine. The
difference lies in the scope of the product. Whereas the first two concentrated on
creating a more abstract wrapper around OpenGL, game engines go several steps
further, supplying most if not all of the other supporting functionality that games would
typically need such as sound, scripting, networked extensions, physics, user interface,
and score-keeping modules. In addition, a good engine will likely have tools to help
generate the assets and be platform independent.

Unity3D has all of these so would be overkill for many smaller projects. Also, being a
commercial product, the source is not available, and it is not free to use, costing a
modest amount (compared to other products in the past that could charge $100,000
or more).

And Still Others
Let’s not ignore A6, Adventure Game Studio, C4, Cinder, Cocos3d, Crystal Space, VTK,
Coin3D, SDL, QT, Delta3D, Glint3D, Esenthel, FlatRedBall, Horde3D, Irrlicht,

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now 14

Leadwerks3D, Lightfeather, Raydium, Panda3D (from Disney Studios and CMU), Torque
(available for iOS), and many others. Although they’re powerful, one drawback of using
game engines is that more often than not, your world is executed in their environment.
So if you need a specific subtle behavior that is unavailable, you may be out of luck.
That brings me back to the topic of this book.

Back to the Waltz of the Two Cubes
Up through iOS4, Apple saw OpenGL as more of a general-purpose framework. But
starting with iOS5, they wanted to emphasize it as a perfect environment for game
development. That is why, for example, the project icon in the wizard is titled ‘‘OpenGL
Game,’’ where previously it was ‘‘OpenGL ES Application.’’ That also explains why the
example exercise pushes the better performing-----but considerably more cumbersome-----
OpenGL ES 2 environment, while ignoring the easier version that is the subject of
this book.

Note Also starting with iOS5, Apple has added a number of special helper-objects in their
new GLKit framework that take over some of the common duties developers had to do
themselves early on. These tasks include image loading, 3D-oriented math operations, creating
a special OpenGL view, and managing special effects.

With that in mind, I’ll step into 2.0-land every once in a while, such as via the example
app described below, because that’s all we have for now. Detailed discussions of 2.0
will be reserved for the last chapter, because it really is a fairly advanced topic for the
scope of this book.

A Closer Look
The wizard produces six main files not including those of the plist and storyboards. Of
these, there are the two for the view controller, two for the application delegate, and two
mysterious looking things called shader.fsh and shader.vsh.

The shader files are unique to OpenGL ES 2.0 and are used to fine-tune the look of your
scenes. They serve as small and very fast programs that execute on the graphics card
itself, using their own unique language that resembles C. They give you the power to
specify exactly how light and texture should show up in the final image. Unfortunately,
OpenGL ES 2.0 requires shaders and hence a somewhat steeper learning curve, while
the easier and more heavily used version 1.1 doesn’t use shaders, settling for a few
standard lighting and shading effects (called a ‘‘fixed function’’ pipeline). The shader-
based applications are most likely going to be games where a visually rich experience is
as important as anything else, while the easier 1.1 framework is just right for simple
games, business graphics, educational titles, or any other apps that don’t need to have
perfect atmospheric modeling.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now 15

The application delegate has no active code in it, so we can ignore it. The real action
takes place in the viewController via three main sections. The first initializes things using
some of the standard view controller methods we all know and love, the second serves
to render and animate the image, and the third section manages these shader things.
Don’t worry if you don’t get it completely, because this example is merely intended to
give you a general overview of what a basic OpenGL ES program looks like.

Note All of these exercises are available on the Apress site, including additional bonus
exercises that may not be in the book.

You will notice that throughout all of the listings, various parts of the code are marked
with a numbered comment. The numbers correspond to the descriptions following the
listing and that highlight various parts of the code.

Listing 1-1. The initialization of the wizard-generated view controller.

#import "TwoCubesViewController.h"

#define BUFFER_OFFSET(i) ((char *)NULL + (i))

// Uniform index.
Enum //1
{
 UNIFORM_MODELVIEWPROJECTION_MATRIX,
 UNIFORM_NORMAL_MATRIX,
 NUM_UNIFORMS
};
GLint uniforms[NUM_UNIFORMS];

// Attribute index.
enum
{
 ATTRIB_VERTEX,
 ATTRIB_NORMAL,
 NUM_ATTRIBUTES
};

GLfloat gCubeVertexData[216] = //2
{
 // Data layout for each line below is:
 // positionX, positionY, positionZ, normalX, normalY, normalZ,
 0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f,
 0.5f, 0.5f, -0.5f, 1.0f, 0.0f, 0.0f,
 0.5f, -0.5f, 0.5f, 1.0f, 0.0f, 0.0f,
 0.5f, -0.5f, 0.5f, 1.0f, 0.0f, 0.0f,
 0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f,
 0.5f, 0.5f, -0.5f, 1.0f, 0.0f, 0.0f,

 0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f,
 -0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f,
 0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f,
 0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f,

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now 16

 -0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f,
 -0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f,

 -0.5f, 0.5f, -0.5f, -1.0f, 0.0f, 0.0f,
 -0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f,
 -0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f,
 -0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f,
 -0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f,
 -0.5f, -0.5f, 0.5f, -1.0f, 0.0f, 0.0f,

 -0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f,
 0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f,
 -0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f,
 -0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f,
 0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f,
 0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f,

 0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f,
 -0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f,
 0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f,
 0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f,
 -0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f,
 -0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f,

 0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f,
 -0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f,
 0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f,
 0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f,
 -0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f,
 -0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f
};

@interface TwoCubesViewController () {
 GLuint _program;

 GLKMatrix4 _modelViewProjectionMatrix; //3
 GLKMatrix3 _normalMatrix;
 float _rotation;

 GLuint _vertexArray;
 GLuint _vertexBuffer;
}
@property (strong, nonatomic) EAGLContext *context;
@property (strong, nonatomic) GLKBaseEffect *effect;

- (void)setupGL;
- (void)tearDownGL;

- (BOOL)loadShaders;
- (BOOL)compileShader:(GLuint *)shader type:(GLenum)type file:(NSString *)file;
- (BOOL)linkProgram:(GLuint)prog;
- (BOOL)validateProgram:(GLuint)prog;
@end

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now 17

@implementation TwoCubesViewController

@synthesize context = _context;
@synthesize effect = _effect;

- (void)viewDidLoad
{
 [super viewDidLoad];

 self.context = [[EAGLContext alloc] initWithAPI:kEAGLRenderingAPIOpenGLES2]; //4

 if (!self.context) {
 NSLog(@"Failed to create ES context");
 }

 GLKView *view = (GLKView *)self.view; //5
 view.context = self.context;
 view.drawableDepthFormat = GLKViewDrawableDepthFormat24; //6

 [self setupGL];
}

- (void)viewDidUnload
{
 [super viewDidUnload];

 [self tearDownGL];

 if ([EAGLContext currentContext] == self.context) {
 [EAGLContext setCurrentContext:nil];
 }

self.context = nil;
}

- (void)didReceiveMemoryWarning
{
 [super didReceiveMemoryWarning];
 // Release any cached data, images, etc. that aren't in use.
}

-
(BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)interfaceOrientatio
n
{
 // Return YES for supported orientations.
 if ([[UIDevice currentDevice] userInterfaceIdiom] == UIUserInterfaceIdiomPhone) {
 return (interfaceOrientation != UIInterfaceOrientationPortraitUpsideDown);
 } else {
 return YES;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now 18

- (void)setupGL
{
 [EAGLContext setCurrentContext:self.context]; //7

 [self loadShaders];

 self.effect = [[GLKBaseEffect alloc] init]; //8
 self.effect.light0.enabled = GL_TRUE; //9
 self.effect.light0.diffuseColor = GLKVector4Make(1.0f, 0.4f, 0.4f, 1.0f); //10

 glEnable(GL_DEPTH_TEST); //11

 glGenVertexArraysOES(1, &_vertexArray); //12
 glBindVertexArrayOES(_vertexArray);

 glGenBuffers(1, &_vertexBuffer); //13
 glBindBuffer(GL_ARRAY_BUFFER, _vertexBuffer);
 glBufferData(GL_ARRAY_BUFFER,
sizeof(gCubeVertexData), gCubeVertexData, GL_STATIC_DRAW); //14

 glEnableVertexAttribArray(GLKVertexAttribPosition); //15
 glVertexAttribPointer(GLKVertexAttribPosition, 3, GL_FLOAT, GL_FALSE, 24,
BUFFER_OFFSET(0));
 glEnableVertexAttribArray(GLKVertexAttribNormal);
 glVertexAttribPointer(GLKVertexAttribNormal, 3, GL_FLOAT, GL_FALSE, 24,
BUFFER_OFFSET(12));

 glBindVertexArrayOES(0); //16
}

- (void)tearDownGL //17
{
 [EAGLContext setCurrentContext:self.context];

 glDeleteBuffers(1, &_vertexBuffer);
 glDeleteVertexArraysOES(1, &_vertexArray);

 self.effect = nil;

 if (_program) {
 glDeleteProgram(_program);
 _program = 0;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now 19

So, what is happening here?

 In lines 1ff (the ff means ‘‘and the lines following’’), some funky-looking
enums are defined. These hold ‘‘locations’’ of various parameters in
the shader code. We’ll get to this later in the book.

 Lines 2ff actually define the data used to describe the two cubes. You
will rarely have to define anything in code like this. Usually, primitive
shapes (spheres, cubes, and cones, for example) are generated on the
fly, while more complicated objects are loaded in from a file generated
by a 3D authoring tool.

Both cubes actually use the same dataset but just operate on it in a
slightly different fashion. There are six sections of data, one for each
face, with each line defining a vertex or corner of the face. The first
three numbers are the x, y and z values in space, and the second three
have the normal of the face (the normal being a line that specifies the
direction the face is aiming and that is used to calculate how the face
is illuminated). If the normal is facing a light source, it will be lit; if
away, it would be in shadow.

You will notice that the cube’s vertices are either 0.5 or -0.5. There is
nothing magical about this, merely defining the cube’s size as being
1.0 unit on a side.

The faces are actually made up of two triangles. The big-brother of
OpenGL ES can render four-sided faces, but not this version, which
can do only three sides. So we have to fake it. That is why there are
six vertices defined here: three for each triangle. Notice that two of the
points are repeated. That is not really necessary, because only four
unique vertices will do just fine.

 Lines 3ff specify the matrices that are used to rotate and translate
(move) our objects. In this use, a matrix is a compact form of
trigonometric expressions that describe various transformations for
each object and how their geometry in 3 dimensions is eventually
mapped to a two-dimensional surface of our screens. In OpenGL ES
1.1, we rarely have to refer to the actual matrices directly because the
system keeps them hidden from us, while under 2.0, we see all of the
inner workings of the system and must handle the various
transformations ourselves. And it is not a pretty sight at times.

 Line 4 allocates an OpenGL context. This is used to keep track of all of
our specific states, commands, and resources needed to actually
render something on the screen. This line actually allocates a context
for OpenGL ES 2, as specified via the parameter passed via
initWithAPI. Most of the time we’ll be using
kEAGLRenderingAPIOpenGLES1.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now 20

 In line 5, we grab the view object of this controller. What makes this
different is the use of a GLKView object, as opposed to the more
common UIView that you are probably familiar with. New to iOS5, the
GLKView takes the place of the much messier EAGLView. With the
former, it takes only a couple of lines of code to create a GLKView and
specify various properties, whereas in those dark and unforgiving days
before iOS5, it could take dozens of lines of code to do only basic
stuff. Besides making things easier to set up, the GLKView also
handles the duties of calling your update and refresh routines and
adds a handy snapshot feature to get screen grabs of your scene.

 Line 6 states that we want our view to support full 24-bit colors.

 Line 7 features the first 2.0-only call. As mentioned above, shaders are
little C-like programs designed to execute on the graphics hardware.
They exist in either a separate file, as in this exercise, or as some
people prefer, embedded in text strings in the main body of the code.

 Line 8 illustrates another new feature in the GLKit: effect objects. The
effect objects are designed to hold some date and presentation
information, such as lighting, materials, images, and geometry that are
needed to create a special effect. On iOS5’s initial release, only two
effects were available, one to do reflections in objects and the other to
provide full panoramic images: Both are commonly used in graphics,
so they are welcomed by developers who would otherwise have to
code their own. I expect libraries of effects to eventually become
available, both from Apple and from third parties.

In this case, the example is using the ‘‘base effect’’ to render one of
the two cubes. You’d likely never use an effect class to draw just basic
geometry like this, but it demonstrates how the effect encapsulates a
miniature version of OpenGL ES 1.1. That is, it has a lot of the missing
functionality, mainly in lights and materials, that you’d otherwise have
to reimplement when porting 1.1 code over to 2.0.

 Also a part of the setup of the effect, line 9 shows us how to turn on
the lights, followed by line 10, which actually specifies the color of the
light by using a four-component vector. The fields are ordered as red,
green, blue, and alpha. The colors are normalized between 0 and 1, so
here red is the main color, with green and blue both at only 40%. If
you guessed this is the color of the reddish cube, you’d be right. The
fourth component is alpha, which is used to specify transparency, with
1.0 being completely opaque.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now 21

 Depth-testing is another important part of 3D worlds. It is used in line
11, in what is otherwise a very nasty topic, for occluding or blocking
stuff that is hidden behind other stuff. What depth-testing does is to
render each object on your screen with a depth component. Called a
z-buffer, this lets the system know, as it renders an object, whether
something is in front of that object. If so, the object (or pieces of it) is
not rendered. In earlier days, z-buffering was so slow and took up so
much extra memory that it was invoked only when absolutely
necessary, but nowadays there is rarely any reason not to use it,
except for some special rendering effects.

 Lines 12f (the single f meaning ‘‘the line following’’) sets the system up
for something called Vertex Array Objects (VAOs). VAOs enable you to
cache your models and their attributes in the GPU itself, cutting down
a lot of overhead otherwise incurred by copying the data across the
bus for each frame. Up until iOS4, VAOs were available only on
OpenGL ES 2 implementations, but now both versions can use them.

Seen here, we first get a ‘‘name’’ (actually just a unique handle) used
to identify our array of data to the system. Afterwards, we take that
and ‘‘bind’’ it, which merely makes it the currently available array for
any calls that need one. It can be unbound, either by binding a new
array handle or by using 0. This process of naming and binding
objects is a common one used across all of OpenGL.

 In lines 13ff, the same process is repeated, but this time on a vertex
buffer. The difference is that a vertex buffer is the actual data, and in
this case, it points to the statically defined data for the cube at the very
top of this file.

 Line 14 supplies the cube’s data to the system now, specifying both
the size and the location of the data, which is then sent up to the
graphics subsystem.

 Remember how both the 3D xyz coordinates of each corner were
embedded with the normals of the faces (the things that say where a
face is pointing)? You can actually embed almost any data in these
arrays, as long as the data format doesn’t change. Lines 15f tell the
system which data is which. The first line says that we’re using
GLKVertexAttribPosition data made up of three floating point values
(the x, y, and z components), offset by 0 bytes from the start of the
data supplied in line 14, and a total of 24 bytes long for each
structure. That means when it comes time to draw this cube, it will
grab three numbers from the very start of the buffer, jump 24 bytes,
grab the next three, and so on.

The normals are treated almost identical, except they are called
GLKVertexAttribNormal, and start at an offset of 12 bytes, or
immediately after the xyz data.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now 22

 Line 16 ‘‘closes’’ the vertex array object. Now, whenever we want to
draw one of these cubes, we can just bind this specific VAO and give
a draw command without having to supply the format and offset
information again.

 Finally, in line 17, the buffers are deleted.

If your head hurts, it’s understandable. This is a lot of fussing around to draw a couple of
cubes. But a visual world is a rich one, and needs a lot of stuff to define it. And we’re far
from done yet. But the principles remain the same.

Showing the Scene
In Listing 1-2, we can now actually draw the data to the screen and see some pretty
pictures. This uses two different approaches to display things. The first hides everything
under the new GLKit available from iOS5 and beyond. It hides all of the shaders and
other stuff that OpenGL ES 2 normally exposes, and does so under the new
GLKBaseEffect class. The second way is just straight 2.0 stuff. Together, the both of
them show how the two different approaches can be part of the same rendering loop.
But remember, using the effects classes to render a simple cube is overkill, sort of like
hopping in the car to drive 6 feet to the mailbox.

Note Apple has pitched the use of GLKBaseEffect as a means to get 1.1 users to port their
code to 2.0, because it has lights, materials, and other features that 2.0 doesn’t have. But it
really doesn’t work well for a simple migration because it has far too many limitations to host
the entire 1.1 environment of most OpenGL apps.

Listing 1-2. Rendering the scene to the display.

- (void)update //1
{
 //2
 float aspect = fabsf(self.view.bounds.size.width / self.view.bounds.size.height);
 GLKMatrix4 projectionMatrix =
GLKMatrix4MakePerspective(GLKMathDegreesToRadians(65.0f), aspect, 0.1f, 100.0f);

 self.effect.transform.projectionMatrix = projectionMatrix; //3

 GLKMatrix4 baseModelViewMatrix = //4
 GLKMatrix4MakeTranslation(0.0f, 0.0f, -4.0f);
 baseModelViewMatrix = //5
 GLKMatrix4Rotate(baseModelViewMatrix, _rotation, 0.0f, 1.0f, 0.0f);

 // Compute the model view matrix for the object rendered with GLKit.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now 23

 GLKMatrix4 modelViewMatrix = //6
 GLKMatrix4MakeTranslation(0.0f, 0.0f, -1.5f);

 modelViewMatrix = //7
 GLKMatrix4Rotate(modelViewMatrix, _rotation, 1.0f, 1.0f, 1.0f);

 modelViewMatrix = //8
 GLKMatrix4Multiply(baseModelViewMatrix, modelViewMatrix);

 self.effect.transform.modelviewMatrix = modelViewMatrix; //9

 // Compute the model view matrix for the object rendered with ES2.

 modelViewMatrix =
 GLKMatrix4MakeTranslation(0.0f, 0.0f, 1.5f); //10
 modelViewMatrix =
 GLKMatrix4Rotate(modelViewMatrix, _rotation, 1.0f, 1.0f, 1.0f);
 modelViewMatrix =
 GLKMatrix4Multiply(baseModelViewMatrix, modelViewMatrix);

 _normalMatrix = //11
 GLKMatrix3InvertAndTranspose(GLKMatrix4GetMatrix3(modelViewMatrix),
NULL);

 //12
 _modelViewProjectionMatrix = GLKMatrix4Multiply(projectionMatrix, modelViewMatrix);

 _rotation += self.timeSinceLastUpdate * 0.5f; //13
}

- (void)glkView:(GLKView *)view drawInRect:(CGRect)rect
{
 glClearColor(0.65f, 0.65f, 0.65f, 1.0f); //14
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 glBindVertexArrayOES(_vertexArray); //15

 // Render the object with GLKit.

 [self.effect prepareToDraw]; //16

 glDrawArrays(GL_TRIANGLES, 0, 36); //17

 // Render the object again with ES2.

 glUseProgram(_program); //18

 glUniformMatrix4fv(uniforms[UNIFORM_MODELVIEWPROJECTION_MATRIX], 1, 0,
_modelViewProjectionMatrix.m);
 glUniformMatrix3fv(uniforms[UNIFORM_NORMAL_MATRIX], 1, 0, _normalMatrix.m);

 glDrawArrays(GL_TRIANGLES, 0, 36); //19
}

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now 24

Let’s take a look at what’s going on here:

 Line 1, the start of the update method, is actually one of the delegate
calls from the new GLKViewController object. This supports frame-rate
hints, as in, ‘‘I’d love to have my new game Dangerous Poodles update
at 100 fps, if you can do so please.’’ It will also let you know what its
real frame rate is, the number of frames since starting the session, and
it handles pause and resume functions.

 In line 2, besides defining the objects to show, we need to define the
viewing frustum. This simply specifies how big of a swath of area you
want to see in your world. Think of it as a camera’s zoom lens, where
you can zoom in or out. This then gets converted into a projection-
matrix, similar to a transformation matrix that we saw earlier. This
encapsulates the information to project your object up against you
device’s display.

Note that the first value supplied to GLKMatrix4MakePerspective is 65,
meaning that we want our ‘‘lens’’ to have a 65 degree field-of-view.

This is generated using one of the many new math library calls that
also form a part of the GLKit. The calls include support for vectors,
matrices, and quaternions (covered later), exclusively for 3D scene
manipulation.

 The GLKBaseEffect used to contain one of the cubes needs to be told
to use this matrix in line 3.

 Line 4 generates a translation matrix. This describes how to move, or
translate, your object through space. In this case, the -4 value moves it
away from our eyepoint by 4 units. By default, the OpenGL coordinate
system has the X-axis, left and right, the Y-axis up and down, and the
Z-axis, forward and back. We are looking towards ---Z.

The matrix, baseModelViewMatrix, gets its name from OpenGL’s
‘‘ModelView’’ matrix, which the one invoked more frequently than any
others.

By applying it first, we are actually moving our entire world away by 4
units. Below we add separate motions to the individual cubes.

 Now we want to rotate the cube. Line 5 shows that transformations
can be concatenated by multiplying them together. Here we reuse the
baseModelView matrix from the previous line.

 ‘‘What?’’ you are no doubt asking, ‘‘another one of these silly matrix
things?’’ Even seemingly simple motions sometimes require a
convoluted assortment of rotations and translations. Here in line 6 the
cube is moved -1.5 units away from its own origin. That’s why neither
is actually centered in the screen but orbit around an invisible
something.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now 25

 Line 7 applies a rotation to each axis of the cube’s world. The rotation
value is updated each time through this loop.

 Line 8 applies the baseModelViewMatrix done earlier to this one
moving it away from our eyepoint. This combined matrix is then
assigned to the GLKBaseEffect object along with the projection matrix
in line 9.

 In line 10, much of the same is repeated for the OpenGL ES 2-only
code block that draws the blue cube. Lines 10ff, are exactly like lines
6, 7, and 8, except the translation is in a positive direction, not a
negative one.

 Now, in line 11, we need another matrix, this one for the face normals
described earlier. Normals are generally at their happiest when exactly
1 unit in length, otherwise known as being ‘‘normalized.’’ This
counteracts any distortions the previous transformation matrices might
otherwise introduce.

 Line 12 combines the model view matrix with the projection matrix
done earlier.

 In line 13, the rotational value is bumped up a bit. Multiplying it against
the value timeSinceLastUpdate ensures that the rotation rates are
smooth.

 The second method, drawInRect(), is the one that actually renders the
objects. Lines 14f clear the screen’s background. Here glClearColor()
is set to display 65% values of all three colors, to give the light gray
you see. glClear() actually performs the clearing operation but only on
buffers you specify-----in this case, the ‘‘color buffer,’’ which is the main
one, and the depth buffer, which holds the z-values for hidden surface
removal.

 In line 15, we can finally use the VAO created way back in the day.
Binding it to the system means to use the collection of stuff previously
uploaded to the GPU.

 The first cube rendered is the one managed by the GLKBaseEffect
object. Line 16 tells it to prepare to render, and line 17 actually
commands it to do so.

 Now in lines 18ff, we start using the shader stuff for the other cube.
glUseProgram() tells it to use the two mysterious shader files,
Shader.fsh and Shader.vsh, which had previously been loaded, while
the two glUniform calls hand off the model view and the projection
matrices to them.

 Now a second call to glDrawArrays() in line 19, and that does it!

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now 26

The only other section is that which handles the loading and using of the shaders. This
process is to load them first in memory, compile, and then link them. If all works as
planned, they can be turned on with the call to glUseProgram() above.

One of the files, Shader.vsh, intercepts the vertices as the hardware starts processing
them, while the other, Shader.fsh, in effect lets you play with each individual pixel before
it’s sent to the display hardware.

Tweak and Tweak Some More
Whenever I learn some new technology, I start tweaking the values to see what
happens. If it happens the way I expect, I feel as if I’ve just acquired a new super-power.
So, let’s play here.

Let’s tweak a couple of the values just for kicks. First, go to the gCubeVertexData a few
pages up, and change the very first value from 0.0 to 1.0. What do you think you’ll see?
How about Figure 1-10?

Figure 1-10. With one vertex moved out.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now 27

What About the Shaders?
Here is not the place to get into a detailed breakdown of shader design and the
language, but let’s remove a little of the mystery by playing with those as well. Listing 1-
3 is the vertex shader.

Listing 1-3. Shader.vsh that preprocesses the vertices.

attribute vec4 position;
attribute vec3 normal;

varying lowp vec4 colorVarying;

uniform mat4 modelViewProjectionMatrix;
uniform mat3 normalMatrix;

void main()
{
 vec3 eyeNormal = normalize(normalMatrix * normal);
 vec3 lightPosition = vec3(0.0, 0.0, 1.0); //1
 vec4 diffuseColor = vec4(0.4, 0.4, 1.0, 1.0);

 float nDotVP = max(0.0, dot(eyeNormal, normalize(lightPosition)));

 colorVarying = diffuseColor * nDotVP;

 gl_Position = modelViewProjectionMatrix * position; //2
}

Here in the vertex shader is where the light is hidden for this particular cube; the values
are the x, y, and z values. Change the middle value to 5.0, which will move it way above
the scene but will affect only the blue cube.

In line 2, gl_Position is predefined object that carries the position of the current vertex.
Add in the following line to the end: gl_Position.x*=.5;. Figure 1-11a shows the result.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now 28

Figure 1-11a,b. Changing the vertical scaling in the vertex shader on the left, and coloring in the fragment shader
on the right.

Now for a quick look at the fragment shader, in Listing 1-3. This does absolutely nothing
and is merely a pass-through shader. However, it is here where you can intercept the
calls to each of the ‘‘fragments,’’ something like pixels at this level. Add the line
gl_FragColor.g=1.0; at the end. This will add green to every pixel in the image, looking
something like Figure 1-11b. See? That wasn’t so hard was it? Now you can proudly go
out and tell your friends that you’ve been programming shaders all day and watch the
garlands pile up around your feet.

Listing 1-3. The fragment shader.

varying lowp vec4 colorVarying;

void main()
{
 gl_FragColor = colorVarying;
}

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now 29

Finally, we are done with the very first example. Yes, for the 3D newcomers out there, it
was likely too much information too soon. But I have a theory that if the first thing you do
in the morning is to eat a cold frog, the rest of the day is bound to be much better.
Consider this first example a cold frog, at least until Chapter 7 that is.

OpenGL Architecture
Now since we’ve analyzed to death a ‘‘simple’’ OpenGL program, let’s take a brief look
at what goes on under the hood at the graphics pipeline.

The term pipeline is commonly used to illustrate how a tightly bound sequence of events
relate to each other, as illustrated in Figure 1-12. In the case of OpenGL ES, the process
accepts a bunch of numbers in one end and outputs something really cool-looking at
the other end, be it an image of the planet Saturn or the results of an MRI.

Geometry and textureOpenGL application

Lighting, transform, scale, etcVertex data

Clipping3D Geometry

Fog and texture

Fragment

Stencil, alpha, z-tests, blendingFramebuffer

“Hey, that’s really cool!”Eyeballs

Projection

Rasterization

“2D” Geometry

Per-fragment operations

Figure 1-12. Basic overview of the OpenGL ES 1.x pipeline

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now 30

 The first step is to take the data that describes some geometry along
with information on how to handle lighting, colors, materials, and
textures and send it into the pipeline.

 Next the data is moved and rotated, after which lighting on each
object is calculated and stored. The scene-----say, a solar-system
model-----must then be moved, rotated, and scaled based on the
viewpoint you have set up. The viewpoint takes the form of a frustrum,
a rectangular cone of sorts, which limits the scene to, ideally, a
manageable level.

Next the scene is clipped, meaning that only stuff that is likely to be
visible is actually processed. All of the other stuff is culled out as early
as possible and discarded. Much of the history of real-time graphics
development has to do with object culling techniques, some of which
are very complex.

Let’s get back to the example of a solar system. If you are looking at
the Earth and the Moon is behind your viewpoint, there is no need
whatsoever to process the Moon data. The clipping level does just
this, both on an object level on one end and on a vertex level on the
other. Of course, if you can pre-cull objects on your own before
submitting to the pipeline, so much the better. Perhaps the easiest is
to simply tell whether an object is behind you, making it completely
skippable. Culling can also take place if the object is just too far away
to see or is completely obscured by other objects.

 The remaining objects are now projected against the ‘‘viewport,’’ a
virtual display of sorts.

 At this point is where rasterization takes place. Rasterization breaks
apart the image into fragments that are in effect single pixels.
Fragments are pixels bundled with additional information such as
texture and fog, in preparation for the next step.

 Now the fragments can have texture and fog effects applied to them.
Additional culling can likewise take place if the fog might obscure the
more distant fragments, for example.

 The final phase is where the surviving fragments are written to the
frame buffer, but only if they satisfy some last-minute operations. Here
is where the fragment’s alpha values are applied for translucency,
along with depth tests to ensure that the closest fragments are drawn
in front of further ones and stencil tests used to render to
nonrectangular viewports.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now 31

Now to compare things, Figure 1-13 shows the pipeline for OpenGL ES 2. Somewhat
simpler in design, but it can be considerably more cumbersome to code for.

Geometry and textureOpenGL application

Vertex ShaderVertex data

Rasterizer

“Hey, that’s even cooler!”

Fragment

Framebuffer

Eyeballs

Fragment Shader

Depth and Blending

Per-fragment operations

Figure 1-13. Basic overview of the OpenGL ES 2.x pipeline

When this is done, and all the rasters have been rasterized, the vertices shaded, and the
colors blended, you might actually see something that looks like that teapot shown in
Figure 1-14.

Note The more you delve into computer graphics, the more you’ll see a little teapot popping
up here and there in examples in books all the way to television and movies (The Simpsons,
Toy Story). The legend of the teapot, sometimes called the Utah Teapot (everything can be
traced back to Utah), began with a PhD student named Martin Newell in 1975. He needed a
challenging shape but one that was otherwise a common object for his doctoral work. His wife
suggested their white teapot, at which point Newell laboriously digitized it by hand. When he
released the data into the public domain, it quickly achieved the status of being the “Hello
World!” of graphics programming. Even one of the early OpenGL ES examples from Apple’s
developer web site had a teapot demo. The original teapot now resides at the Computer History
Museum in Mountain View, California, just a few blocks from Google. See the upper left image
of Figure 1-14.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now 32

Figure 1-14. Upper left, the actual teapot used by Newell, currently on display at the Computer History Museum
in Mountain View, California. Photo by Steve Baker. An example OpenGL application from Apple’s developer site
on the right. The green teapot at the lower left is by Hay Kranen.

Summary
In this chapter, we covered a little bit of computer graphics history, a basic example
program, and, most importantly, the Utah Teapot. Next up is a deep and no doubt overly
detailed look into the mathematics behind 3D imagery.

www.it-ebooks.info

http://www.it-ebooks.info

2Chapter

All That Math Jazz
No book on 3D programming would be complete without at least one chapter on the
mathematics behind 3D transformations. If you care nothing about this, move on-----
there’s nothing to see here. After all, doesn’t OpenGL take care of this stuff
automatically? Certainly. But it is helpful to be familiar with what’s going on inside, if
only to understand the lingo of 3D-speak.

Let’s define some terminology first:

 Translation: Moving an object from its initial position
(see Figure 2-1, left)

 Rotation: Rotating an object around a central point of origin (see
Figure 2-1, right)

 Scaling: Changing the size of an object

 Transformation: All of the above

Figure 2-1. Translation (left) and rotation (right)

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 2: All That Math Jazz 34

2D Transformations
Without knowing it, you probably have used 2D transformations already in the form of
simple translations. If you create a UIImageView object and want to move it based on
where the user is touching the screen, you might grab its frame and update the x and y
values of the origin.

Translations
You have two ways to visualize this process. The first is having the object itself move
relative to a common origin. This is called a geometric transformation. The second is
having the world origin move while the object stays stationary. This is called a
coordinate transformation. In OpenGL ES, both descriptions are commonly used
together.

A translational operation can be expressed this way:

xTxx +=′ Tyy +=′

The original coordinates are x and y, while the translations, T, will move the points to
a new location. Simple enough. As you can tell, translations are naturally going to be
very fast.

Note Lowercase letters, such as xyz, are the coordinates, while uppercase letters, such as
XYZ, reference the axis.

Rotations
Now let’s take a look at rotations. In this case, we’ll rotate around the world origin at first
to keep things simple. (See Figure 2-2.)

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 2: All That Math Jazz 35

Figure 2-2. Rotating around the common origin

Naturally things get more complicated while we have to dust off the high school trig. The
task at hand is to find out where the corners of the square would be after an arbitrary
rotation, a. Eyes are glazing over across the land.

Note By convention counterclockwise rotations are considered positive, while clockwise are
negative.

So, consider x and y as the coordinates of one of our square’s vertices, and the square
is normalized. Unrotated, any vertex would naturally map directly into our coordinate
system of x and y. Fair enough. Now we want to rotate the square by an angle a.
Although its corners are still at the ‘‘same’’ location in the square’s own local coordinate
system, they are different in ours, and if we’re wanting to actually draw the object, we
need to know the new coordinates of x’ and y’.

Now we can jump directly to the trusty rotation equations, because ultimately that’s
what the code will express:

)sin()cos(ayaxx −=′)cos()sin(' ayaxy +=

Doing a really quick sanity check, you can see that if a is 0 degrees (no rotation), x’ and
y’ reduce to the original x and y coordinates. If the rotation is 90 degrees, then sin(a)=1,
cos(a)=0, so x’=-y, and y'=x. It’s exactly as expected.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 2: All That Math Jazz 36

Mathematicians are always fond of expressing things in the most compact form
possible. So 2D rotations can be ‘‘simplified’’ using matrix notation:

⎥
⎦

⎤
⎢
⎣

⎡ −
=

)cos()sin(
)sin()cos(

aa
aa

Ra

Note One of the most overused words in Star Trek is matrix. Pattern-matrix here, buffer-
matrix there—“Number One, I have a headache-matrix and need to take a nap-matrix.” (And
don’t get me started on the use of protocol in 24.) Every self-respecting Star Trek drinking
game (as if any drinking game would be self-respecting) should use matrix in its selection of
words.

Ra is shorthand for our 2D rotation matrix. Although matrices might look busy, they are
actually pretty straightforward and easy to code because they follow precise patterns. In
this case, x and y can be represented as a teeny matrix:

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡
y
x

aa
aa

y
x

)cos()sin(
)sin()cos(

'
'

Translations can also be encoded in a matrix form. Because translations are merely
moving the point around, the translated values of x and y come from adding the amount
of movement to the point. What if you wanted to do a rotation and a translation on the
same object? The translation matrix requires just a tiny bit of nonobvious thought. Which
is the right one, the first or second shown here?

⎥
⎦

⎤
⎢
⎣

⎡
=

yx TT
T

11
 or

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
1
010
001

yx TT
T

The answer is obviously the second one, or maybe it’s not so obvious. The first one
ends up as the following, which doesn’t make much sense:

xyTxx +=′ and yyTxy +='

So, to create a matrix for translation, we need a third component for our 2D point,
commonly written as (x,y,1), as is the case in the second expression. Ignoring where the
1 comes from for a moment, notice that this can be easily reduced to the following:

xTxx +=′ and yTyy +=′

The value of 1 is not to be confused with a third dimension of z; rather, it is a means
used to express an equation of a line (in 2D space for this example) that is slightly
different from the slope/intercept we learned in grade school. A set of coordinates in this

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 2: All That Math Jazz 37

form is called homogeneous coordinates, and in this case it helps to create a 3x3 matrix
that can now be combined or concatenated to other 3x3 matrices.

Why would we want to do this? What if we wanted to do a rotation and translation
together? Two separate matrices could be used for each point, and that would work just
fine. But instead, we can precalculate a single matrix out of several using matrix
multiplication (also known as concatenation) that in turn represents the cumulative effect
of the individual transformations. Not only can this save some space, but it can
substantially increase performance.

In Core Animation and Core Graphics, you will see a number of transformation methods
with affine in their names. You can think of those as transformations (in this case, 2D)
that can be decomposed into one or more of the following: rotation, translation, shear,
and scale. All of the possible 2D affine transformations can be expressed as

′ x = ax + cy + e and ′ y = bx + dy + f . That makes for a very nice matrix, a lovely one
at that:

T =
a b 0
c d 0
e f 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
 so

x '
y '
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
a b 0
c d 0
e f 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

x
y
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Now take a look at the structure CGAffineTransform:

struct CGAffineTransform {
 CGFloat a;
 CGFloat b;
 CGFloat c;
 CGFloat d;
 CGFloat tx; //translation in x
 CGFloat ty; //translation in y
};

Look familiar?

Scaling
Of the other two transforms, let’s just take a look at the scaling, or simple resizing, of an
object:

x'= xSx and
′ y = ySy

In matrix form, this becomes as follows:

⎥
⎥
⎥⎦

⎤
⎢
⎢
⎢⎣

⎡
=

100
00
00

y

x

S
S

S

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 2: All That Math Jazz 38

With scaling, as with the other two transformations, the order is very important when
applied to your geometry. Say, for example, you wanted to rotate and move your object.
The results will clearly be different depending on whether you do the translation first or
last. The more common sequence is to rotate the object first and then translate, as
shown in Figure 2-3 (left). But if you invert the order, you’ll get something like Figure 2-3
(right). In both these instances, the rotation is happening around the point of origin. If
you wanted to rotate the object around its own origin, the first example is for you. If you
meant for it to be rotated with everything else, the second works. (A typical situation
might have you translate the object to the world origin, rotate it, and translate it back.)

Figure 2-3. Rotation around the point of origin followed by a translation (left) vs. translation followed by rotation
(right)

So, what does this have to do with the 3D stuff? Simple! Most if not all of the principles
can be applied to 3D transformations and are more clearly illustrated with one less
dimension.

3D Transformations
When moving everything you’ve learned to 3D space (also referred to as 3-space), you’ll
see that, as in 2D, 3D transformations can be expressed as a matrix and as such can be
concatenated with other matrices. The extra dimension of z is now the depth of the
scene going in and out of the screen. OpenGL ES has +z coming out and ---z going in.
Other systems might have that reversed or even have Z being the vertical, with y now
assuming depth. I’ll stay with the OpenGL convention, as shown in Figure 2-4.

4
www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 2: All That Math Jazz 39

Note Moving back and forth from one frame of reference to another is the quickest road to
insanity next to trying to figure out why Fox canceled Firefly. The classic 1973 book Principles
of Interactive Computer Graphics has z going up and +y going into the screen. In his book,
Bruce Artwick, the creator of Microsoft’s Flight Simulator, shows x and y in the viewing plane
but +z going into the screen. And yet another book has (get this!) z going up, y going right, and
x coming toward the viewer. There oughtta be a law….

Figure 2-4. The z-axis comes toward the viewer.

First we’ll look at 3D transformation. Just as the 2D variety was merely adding the
desired deltas to the original location, the same thing goes for 3D. And the matrix that
describes that would look like the following:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1
0100
0010
0001

zyx TTT

T so

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

11
0100
0010
0001

1
'
'
'

z
y
x

TTT
z
y
x

zyx

And of course that would yield the following:

xTxx +=′ , yTyy +=′ and zTzz +=′

Notice the extra 1 that’s been added; it’s the same as for the 2D stuff, so our point
location is now in homogeneous form.

So, let’s take a look at rotation. One can safely assume that if we were to rotate around
the Z-axis (Figure 2-5), the equations would map directly to the 2D versions. Using the

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 2: All That Math Jazz 40

matrix to express this, here is what we get (notice the new notation, where R(z,a) is used
to make it clear which axis is being addressed). Notice that z remains a constant
because it is multiplied by 1:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

=

1000
0100
00)cos()sin(
00)sin()cos(

),(
aa
aa

azR

Figure 2-5. Rotation around the z-axis

This looks almost exactly like its 2D counterpart but with ′ z = z . But now we can also
rotate around x or y as well. For x we get the following:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

=

1000
0)cos()sin(0
0)sin()cos(0
0001

),(
aa
aa

axR

And, of course, for y we get the following:

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 2: All That Math Jazz 41

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
=

1000
0)cos(0)sin(
0010
0)sin(0)cos(

),(
aa

aa

ayR

But what about multiple transformations on top of each other? Now we’re talking ugly.
Fortunately, you won’t have to worry too much about this because you can let OpenGL
do the heavy lifting. That’s what it’s for.

Assume we want to rotate around the y-axis first, followed by x and then z. The resulting
matrix might resemble the following (using a as the rotation around x, b for y, and c
for z):

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++−
−

+−−

=

1000
0)cos()cos()cos()sin()cos()sin()sin()sin()sin()cos()cos()sin(
0)sin()cos()cos()cos()sin(
0)cos()sin()cos()sin()sin()sin()cos()sin()sin()sin()cos()cos(

bacabbccabcb
aacac

abcabcbcabcb

R

Simple, eh? No wonder why the mantra for 3D engine authors is optimize, optimize,
optimize. In fact, some of my inner loop in the original Amiga version of Distant Suns
needed to be in 68K assembly. And note that this doesn’t even include scaling or
translation.

Now let’s get to the reason for this book: all of this can be done by the following three
lines:

glRotatef(b,0.0,1.0,0.0);
glRotatef(a,1.0,0.0,0.0);
glRotatef(c,0.0,0.0,1.0);

Note There are many functions in OpenGL ES 1.1 that are not available in 2.0. The latter is
oriented toward lower-level operations, sacrificing some of the ease-of-use utility routines for
flexibility and control. The transformation functions have vanished, leaving it up to the
developer to calculate their own matrices. Fortunately, there are a number of different libraries
to mimic these operations. One such library was released by Apple’s introduction of iOS 5.
Called the ES Framework API (and described in Apple’s official OpenGL ES 2.0 Programming
Guide), it’s designed to ease the transition to OpenGL ES 2.0.

When dealing with OpenGL, this particular matrix is called the Modelview because it is
applied to anything that you draw, which are either models or lights. There are two other
types that we’ll deal with a little later: the Projection and Texture matrices.

It bears repeating that the actual order of the rotations is absolutely critical when trying
to get this stuff to work. For example, a frequent task is to model an aircraft or

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 2: All That Math Jazz 42

spacecraft with a full six degrees of freedom: three translational components and three
rotational components. The rotational parts are usually referred to as roll, pitch, and yaw
(RPY). Roll would be rotations around the z-axis, pitch is around the x (in other words,
aiming the nose up or down), and yaw is rotation around the y-axis, moving the nose left
and right. Figure 2-6a, b, and c show this at work in the Apollo spacecraft from the
moon landings in the 1960s. The proper sequence would be yaw, pitch, and roll, or
rotation around y, x, and finally z. (This requires 12 multiplications and 6 additions, while
premultiplying the three rotation matrices could reduce that down to 9 multiplications
and 6 additions.) The transformations would be incremental, comprising the changes in
the RPY angles since the last update, not the total ones from the beginning. In the good
ol’ days, round-off errors could compound distorting the matrix, leading to very cool but
otherwise unanticipated results (but still cool nonetheless).

FOR TRAINING PURPOSES ONLY

+Z

D

C

B

A SM RCS MOTOR (4 SETS)

ENGINE LOCATION

S PS
+ YAW

+Y
+ ROLL

- ROLL+ PITCH
-Z

+ ROLL

- PITCH

+X

- ROLL

- YAW

- Y

6532

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 2: All That Math Jazz 43

PUSH TO TALK SWITCH PARAMETERS

ROTATION CONTROL

ROTATION CONTROL PARAMETERS

HARD STOP
DIRECT SWITCH ACTUATION
SOFT STOP
BREAKOUT SWITCH ACTUATION
CONTROLLER LOCK TO ARM

DISPLACEMENT
 11 5±0.50
 ≈11 0º
 10±1º
 1.5± 0.5º
 50.0º

TRAVEL PRIOR TO SWITCH ACTUATION
TRAVEL TO HARDSTOP
MAXIMUM TORQUE

8.0° MIN
25.0° MAX
 1.0 POUND INCHES Zc

Xc

+ YAW Yc
+ PITCH

PITCH PIVOT
(PALM CENTER)

4.0’

ROLL PIVOT
YAW PIVOT

110º

SCS-2100D

ROLL
+ANGULAR VELOCITY-
+ATTITUDE ERROR-

FLIGHT DIRECTOR ATTITUDE INDICATOR

ROLL INDEXPITCH & YAW
INDEX

NOTE:
ALL POLARITIES INDICATE
VEHICLE DYNAMICS YAW

+ATTITUDE ERROR-
+ANGULAR VELOCITY-

ROLL TOTAL
ATTITUDE SCALE

SCS-2100D

- P
I
T
C
H

-

+

ATTITUDE
ERROR

ANGULAR
VELOCITY

+

EULER ATTITUDE ON BALL
PITCH - q = 014º
YAW - y = 034º
ROLL - f = 330º

Figure 2-6. Illustration of the Apollo’s frame of reference, its joystick, and artificial horizon

Picture This: Projecting the Object onto the Screen
Whew, even after all of that we’re not quite done yet. Once you have performed all the
rotations, scaling, and translations of your objects, you still need to get them projected
onto your screen. Converting a 3D scene onto a 2D surface has troubled mankind since

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 2: All That Math Jazz 44

he sketched the first mammoth on a cave wall. But it is actually quite easy to grasp, as
opposed to transformations.

There are two main kinds of projections at work here: perspective and parallel.
Perspective projection is the way we see the 3D world on our 2D retina. Perspective
views consist of vanishing points and foreshortening. Vanishing points are where all
parallel lines converge in the distance, providing the perception of depth (think of
railroad tracks heading toward the horizon). The result is that the closer something is,
the bigger it appears, and vice versa, as shown in Figure 2-7. The parallel variety, also
called orthographic projection, simply removes the effects of distance by effectively
setting the z component of each vertex to 0 (the location of our viewing plane), as
shown in Figure 2-8.

Figure 2-7. Perspective projection

Figure 2-8. Parallel projection

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 2: All That Math Jazz 45

In perspective projection, the distance component, z, is used to scale what will
ultimately be the screen x and screen y values. So, the larger the z, or the distance away
from the viewer, the smaller the pieces are visually. What one needs is the dimension of
the viewport (OpenGL’s version of your window or display screen) and its center point,
which is typically the origin of the XY plane.

This final phase involves setting up the viewing frustum. The frustum establishes six
clipping planes (top, bottom, left, right, near, and far) needed to precisely determine
what should be visible to the user and how it is projected onto their viewport, which is
OpenGL’s version of your window or screen. This acts something like a lens into your
OpenGL virtual world. By changing the values, you can zoom in or out and clip stuff
really far away or not at all, as shown in Figures 2-9 and 2-10. The perspective matrix is
defined by these values.

Figure 2-9. Narrow bounds for the frustum give you a high-power lens.

Figure 2-10. Wider bounds are like a wide-angle lens.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 2: All That Math Jazz 46

With these boundaries established, the one final transformation is that to the viewport,
OpenGL’s version of your screen. This is the point where OpenGL is fed the screen’s
dimensions, those of your display area, and the origin, which is likely the lower-left
corner of the screen. On small devices such as the iPhone or iPad, you will likely fill up
the entire screen and so will use the screen’s width. But should you want to place the
image into a subwindow of the main display, you could simply pass smaller values to the
viewport. The law of similar triangles plays out here.

In Figure 2-11 we want to find what the projected x’ is, given the x of an arbitrary vertex
on the model. Consider two triangles, one formed by the corners CBA and the other
smaller one by COA’ (the O is for origin). The distance from C (where the eye is, to O is
d). The distance from C to B is d+z. So, just taking the ratio of those, as follows:

eyeeye dz
x

d
x

+
=′

 and
eyeeye dz

y
d
y

+
='

yields the following:

eye

eye

dz
xd

x
+

=' and
eye

eye

dz
yd

y
+

=' =

Figure 2-11. Mapping a vertex to the viewport using the Law of Similar Triangles

Figure 2-12 shows the final translations. Those can be added to x’ and y’:

x
eye

eye T
dz

xd
x +

+
=' and y

eye

eye T
dz

yd
y +

+
='

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 2: All That Math Jazz 47

Figure 2-12. Projecting x and y onto the device’s screen. You can visuallize this as either translating the iPhone
(or iPad) to the object’s coordinates (left) or translating the object to the iPhone’s coordinates (bright.

And when the pixel dust settles, we have a nice matrixy form:

⎥
⎥
⎥
⎥
⎦

⎤
⎢
⎢
⎢
⎢
⎣

⎡
⎥
⎥
⎥
⎥
⎦

⎤
⎢
⎢
⎢
⎢
⎣

⎡

=
⎥
⎥
⎥
⎥
⎦

⎤
⎢
⎢
⎢
⎢
⎣

⎡

′
′
′

1100
0000

00
00

1
z
y
x

d

Td
Td

z
y
x

y

x

Usually, some final scaling is required------for example, if the viewport is normalized. But
that is left up to you.

Now Do it Backward and in High Heels
Such was a quote allegedly given by Ginger Rogers on how she felt about dancing with
the great Fred Astaire. The response was that although he was very good, she had to do
everything he did and do it backward and in high heels. (Rogers apparently never
actually said that; its use has been traced back to a gag line from the comic strip Frank
and Ernest.)

So, what does this have to do with transformations? Say you wanted to tell whether
someone picked one of your objects by touching the screen. How do you know which of
your objects has been selected? You must be able to do inverse transformations to
‘‘unmap’’ the screen coordinates back into something recognizable within your 3D
space. But because the z-value gets dropped in the process, it will be necessary to

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 2: All That Math Jazz 48

search through your object list to find which was the most likely target. Untransforming
something requires you to do everything backward. And this is done in the following
way:

1. Multiply your Modelview matrix with your Projection matrix.

2. Invert the results.

3. Convert the screen coordinates of the touch point into the frame of
reference for your viewport.

4. Take the results of that and multiply it by the inverted matrix from
step 2.

Don’t worry, this will be covered in more detail later in the book.

MATH IN ACTION

Let’s prove that the previous math stuff really is what’s going on in OpenGL ES.

Add the following code somewhere in your Chapter 1 exercise so that you know it will be called—after
OpenGL has been initialized, of course. The best place is at the top of the drawFrame method:

GLfloat mvmatrix[16];

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity(); //1
 glGetFloatv(GL_MODELVIEW_MATRIX,mvmatrix);
 glRotatef(30, 1.0, 0.0, 0.0); //2
 glGetFloatv(GL_MODELVIEW_MATRIX,mvmatrix); //3
 glRotatef(60, 1.0, 0.0, 0.0); //4
 glGetFloatv(GL_MODELVIEW_MATRIX,mvmatrix); //5

Put breakpoints after each call to glGetFloatv() and run.

Line 1 simply initializes the matrix to an unrotated state. Advance to line 2 after fetching the contents of
the current matrix and then examine them in the debugger. You should see something like this:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
0100
0010
0001

Line 2 rotates the matrix 30 degrees around the x-axis. (I’ll cover glRotatef() in the next chapter.) Go to
line 4 and do the same. What do you see?

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 2: All That Math Jazz 49

What About Quaternions?
Quaternions are hyper-complex entities that can store the RPY information in a four-
dimensional vector-type thingie. They are very efficient in both performance and space
and are commonly used to model the instantaneous heading of an aircraft or spacecraft
in flight simulation. They are a curious creature with great properties but are reserved
for later.

GLKit and iOS5
Starting with iOS5, Apple introduced the GLKit, a collection of objects and helper
functions that can make OpenGL a little easier to handle. Among those is an extensive
math library with nearly 150 calls to handle vectors, matrices, and quaternions. OpenGL
ES 1.x has wrappers around the transformations, hiding much of the inner workings,
while OpenGL ES 2 does not. Up until the introduction of GLKit, hardy coders all across
this fair land had to roll-their-own or find other places to get the needed math libraries.
Apple added these both to make the lives of ES 2 coders a little better and to make it
easier to manage ports from 1.1.

Summary
In this chapter, you learned the basics of 3D mathematics. First the chapter covered 2D
transformations (rotation, translation, and scaling), and then 3D, with projection covered
as well. Although you will not likely need to code any transformations yourself, being
familiar with this chapter is key to understanding much of the OpenGL terminology later.
My head hurts.

www.it-ebooks.info

http://www.it-ebooks.info

3Chapter

Building a 3D World
In the first two chapters, we covered the cool stuff and the math stuff (which could be
either cool or boring). We went over Xcode’s OpenGL ES 2 template just to give you a
taste of the structure and design principles of a ‘‘simple’’ OpenGL app. Here in Chapter
3, we’ll take a step back, examine a very simple 2D application at first, and then migrate
it one step at a time to 3D. (4D hypercubes are beyond the scope of this work.) And
during the process, more 3D theory about projections, rotations, and the like will be
slipped in for good measure.

A Little More Theory
Remember that OpenGL ES objects are a collection of points in 3D space; that is, their
location is defined by three values. These values are joined together to form faces,
which are flat surfaces, that are triangles. The triangles are then joined together to form
objects or pieces of objects.

To get a bunch of numbers that form vertices, other numbers that form colors, and still
other numbers that combine the vertices and colors on the screen, it is necessary to tell
the system about its graphic environment. Such things as the location of the viewpoint,
the window (or viewport) that will receive the image, aspect ratios, and other bits of
digital flotsam of sorts are needed to complete the 3D circuit. More specifically, I’ll cover
OpenGL’s coordinates, how they relate to the frustum, how objects are clipped or culled
from the scene, and drawing to your device’s display.

OpenGL Coordinates
If you’ve done any sort of graphics at all on any system, you’ll be acquainted with the
run-of-the-mill X-Y coordinate system. X is always the horizontal axis, with right being
positive, while Y is always the vertical axis, with down being positive, placing the origin
in the upper-left corner. Known as screen coordinates, they are easily confused with
math coordinates, which place the origin at the lower-left corner and where, for Y, up is
positive. Fortunately, Apple’s rendering framework, Quartz 2D, bucks tradition and uses

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Building a 3D World 52

math coordinates (although that can be adjusted as needed by using some of the Core
Graphics transformation routines).

Now jumping to OpenGL 3D coordinates, we have a slightly different system using
Cartesian coordinates, the standard of expressing locations in space. Going back to the
math coordinates, OpenGL has the origin in the lower-left corner, with +Y going up. But
now we add a third dimension expressed as Z. In this case, +Z is pointing out toward
you, as shown in Figure 3-1.

Figure 3-1. OpenGL ES 3D Cartesian coordinate system (image by Jorge Stolfi)

In fact, we have several kinds of coordinate systems, or spaces, in OpenGL, with each
space being transformed to the next:

 Object space, which is relative to each of your objects.

 Camera (or eye) space, local to your viewpoint.

 Projection (or clip) space, which is the 2D screen or viewport that
displays the final image.

 Normalized device coordinates (NDCs), which express the xyz values
normalized from -1 to 1. That is, a value or set of values are
normalized such that they fit inside a cube 2 units on a side.

 Windows (or screen) coordinates, which are the final locations of your
scene when displayed in the actual screen.

These coordinate systems can be expressed in pipeline form, as shown in Figure 3-2.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Building a 3D World 53

ModelView Matrix

Object Coordinates

Projection Matrix

Eye Coordinates

Divide by w

Clip Coordinates

Viewport Transform

Normalized Device Coordinates

Window Coordinates

“Awesome!”

Vertex Data

Figure 3-2. Vertex transformation pipeline

Object, eye, and clip space are the three you usually have to worry about. For example,
object coordinates are generated with a local origin and then moved and rotated to eye
space. If you have a bunch of airplanes for a combat game, for example, each will have
its own local origin. You should be able to move the planes to any part of your world by
moving, or translating, only the origin and letting the rest of the geometry just tag along
for the ride. At this point, the visibility of objects is tested against the viewing frustum,
which is the volume of space that defines what the virtual camera can actually see. If
they lay outside the frustum, they are considered invisible and are clipped, or culled out,
so that no further operations are done on them. As you may remember in Chapter 1,
much of the work in graphics engine design focuses on the clipping part of the engine,
to dump as many of the objects as early as possible yielding faster and more efficient
systems.

And finally, after all that, the screen-oriented portions of OpenGL are ready to convert,
or project, the remaining objects. And those objects are your planes, zeppelins, missiles,
trucks on the road, ships at sea, squirrel trebuchets, and anything else you might want
to stuff into your game.

Note OpenGL doesn’t really define anything as “world space.” However, the eye coordinates
are the next best thing, in that you can define everything in relation to your location.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Building a 3D World 54

Eye Coordinates
There is no magical viewpoint object in OpenGL. So, instead of moving your viewpoint,
you move all of the objects in relation to yourself. And yes, that is easy to get confused
as you will find yourself constantly changing the signs of values. So, instead of moving
away from an object, the object, in effect, is moving away from you. Imagine you are
making a video of a car rushing by you. Under OpenGL, the car would be standing still;
you and everything around you would be moving by it. This is done largely with the
glTranslate*() and glRotate*() calls in OpenGL ES 1, or direct use of matrices in
OpenGL ES 2, as you will see later. It is at this point where OpenGL’s modelview matrix,
referenced in previous chapters, comes into play. The modelview matrix handles the
basic 3D transformations (as opposed to the projection matrix, which projects the 3D
view onto the 2D space of your screen, or the texture matrix, which helps apply images
to your object). You will refer to it frequently.

From here on out, assume that I am talking about OpenGL ES 1, unless otherwise
specified.

Viewing Frustum and the Projection Matrix
In geometry, a frustum is that portion of (typically) a pyramid or cone that results after
being cut by two parallel planes. In other words, think of the great Pyramid of Giza with
the top third lopped off (not that I am condoning the destruction of Egyptian antiquities).
In graphics, the viewing frustum defines the portion of the world that our virtual camera
can actually see, as shown in Figure 3-3.

Figure 3-3. Viewing frustum

Unlike a number of things in OpenGL, the definition of the viewing frustum is very
straightforward and follows the conceptual figures closely by simply defining a volume,
sometimes called a ‘‘viewing pyramid,’’ in space. Any objects that are whole or in part

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Building a 3D World 55

within the frustum may eventually find their way to the screen (if not obscured by a
closer object).

The frustum also is used to specify your field of view (FOV), like your camera’s wide-
angle vs. telephoto lens. The larger the angle that the side planes form when compared
to the center axis (that is, how they fan out), the larger the FOV. And a larger FOV will
allow more of your world to be visible while a smaller one lets you concentrate on a
smaller area.

Up to this point, the translations and rotations use the modelview matrix, easily set using
the call glMatrixMode(GL_MODELVIEW);. But now at this stage of the rendering pipeline,
you will define and work with the projection matrix (specified in Listing 1-2 in Chapter 1).
This is done largely via the frustum definitions spelled out in the section ‘‘Picture This’’ in
Chapter 2. And it is also a surprisingly compact means of doing a lot of operations.

The final steps to convert the transformed vertices to a 2D image are as follows:

1. A 3D point inside the frustum is mapped to a normalized cube to
convert the XYZ values to NDC. NDC stands for normalized device
coordinates, which is an intermediate system describing the coordinate
space that lies inside the frustum. This is useful when it comes to
mapping each vertex and each object to your device’s screen, no matter
what size or how many pixels it has, be it an iPhone, iPad, or something
new with completely different screen dimesions. Once you have this
form, the coordinates have ‘‘moved’’ but still retain their relative
relationships with each other. And of course, in ndc, they now fall into
values between -1 and 1. Note that internally the Z value is flipped. Now
---Z is coming toward you, while +Z is going away, but thankfully that
great unplesantness is all hidden.

2. These new NDCs are then mapped to the screen, taking into account
the screen’s aspect ratio and the ‘‘distance’’ the vertices are from the
screen as specified by the near clipping plane. As a result, the further
things are, the smaller they are. Most of the math is used for little more
than determining the proportions of this or that within the frustum.

The preceding steps describe perspective projection, which is the way we normally view
the world. That is, the further things are, the smaller they appear. When those inherent
distortions are removed, we get orthographic projection. At that point, no matter how far
an object is, it still displays the same size. Orthographic renderings are typically used in
mechanical drawings when any perspective distortion would corrupt the intent of the
original artwork.

Note You will often need to directly address which matrix you are dealing with. The call to
glMatrixMode() is used to specify the current matrix, which all subsequent operations apply
to. Forgetting which matrix is the current one is an easy error to make.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Building a 3D World 56

Back to the Fun Stuff: A Simpler Demo
When Xcode 4.2 was released (along with the iOS5 SDK), it changed the default project
of the OpenGL wizard. Previously it produced an OpenGL ES 1 app showing a very
simple 2D scene of a flat bouncing square, compared to the two 3D cubes rotating
around a common center in the OpenGL ES 2 environment. The former was an ideal
project to leverage early on because it was far less fussy than the later one, as
described in Chapter 1. So we’ll use the original demo and variants from here on out as
a foundation project of sorts, starting from a known and easily understood codebase as
a launchpad to bigger and better things.

The easiest way is to either fetch the source from the Apress site or take the example
from Chapter 1 and copy the material from Listings 3-1 and 3-2 over the viewcontroller
content in Chapter 1.

Listing 3-1. The header for the Listing 3-2.

#import <UIKit/UIKit.h>
#import <GLKit/GLKit.h>

@interface BouncySquareViewController : GLKViewController //1

@end

Listing 3-2. The classic bouncing square demo with iOS5 modifications.

#import "BouncySquareViewController.h"

@interface BouncySquareViewController ()
{

}

@property (strong, nonatomic) EAGLContext *context;
@property (strong, nonatomic) GLKBaseEffect *effect;

@end

@implementation BouncySquareViewController

@synthesize context = _context;
@synthesize effect = _effect;

- (void)viewDidLoad
{
 [super viewDidLoad];

 self.context = [[EAGLContext alloc] initWithAPI:kEAGLRenderingAPIOpenGLES1]; //2

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Building a 3D World 57

 if (!self.context)
 {
 NSLog(@"Failed to create ES context");
 }

 GLKView *view = (GLKView *)self.view;
 view.context = self.context; //3
 view.drawableDepthFormat = GLKViewDrawableDepthFormat24;

[EAGLContext setCurrentContext:self.context];

}

#pragma mark - GLKView and GLKViewController delegate methods

- (void)glkView:(GLKView *)view drawInRect:(CGRect)rect //4
{
 static int counter=0;

 static const GLfloat squareVertices[] = { //5
 -0.5, -0.33,
 0.5, -0.33,
 -0.5, 0.33,
 0.5, 0.33,
 };

 static const GLubyte squareColors[] = { //6
 255, 255, 0, 255,
 0, 255, 255, 255,
 0, 0, 0, 0,
 255, 0, 255, 255,
 };

 static float transY = 0.0;

 glClearColor(0.5, 0.5, 0.5, 1.0); //7
 glClear(GL_COLOR_BUFFER_BIT);

 glMatrixMode(GL_PROJECTION); //8
 glLoadIdentity(); //9
 glMatrixMode(GL_MODELVIEW); //10
 glLoadIdentity(); //11
 glTranslatef(0.0, (GLfloat)(sinf(transY)/2.0), 0.0); //12

 transY += 0.075f;

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Building a 3D World 58

 glVertexPointer(2, GL_FLOAT, 0, squareVertices); //13
 glEnableClientState(GL_VERTEX_ARRAY);
 glColorPointer(4, GL_UNSIGNED_BYTE, 0, squareColors);
 glEnableClientState(GL_COLOR_ARRAY);

 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4); //14

 if(!(counter%100)); //15
 NSLog(@"FPS: %d\n",self.framesPerSecond);

 counter++;
}

@end

You’ll recognize a number of similar elements here from Chapter 1, but in a more
compact form. All OpenGL ES 2 code has been removed for clarity.

 Line 1 defines our viewcontroller as a subclass of GLKViewController

 In line 2, the API is initialized, with OpenGL ES 1 as the chosen
approach, by passing it the kEAGLRenderingAPIOpenGLES1 flag. The
context is returned and fed to the GLKView.

 Lines 3ff bind the context that was fetched in line 2. Then the current
context is set. Without that being set, OpenGL will fail on many calls
coming up.

 The drawInRect() method in line 4 is a delegate call from
GLKViewController. All of the geometry and attributes are specified
here for clarity.

 Line 5 creates an array of vertices. Because this a 2D demo without
lighting, only two values are needed for each vertex. Line 6 is our color
array, using the standard RGBA format. One color for each of the four
vertices.

 Lines 7f are identical to the first exercise, filling in the background with
a medium gray.

 Line 8 sets the current matrix to be a projection matrix, and line 9
initializes it with an ‘‘identity matrix.’’

 Lines 10 and 11 do the same for the modelview.

 Instead of generating a matrix of our own and modifying it directly, as
in Chapter 1, ES 1 handles those kind of housekeeping chores for us.
So here in line 12, glTranslatef() moves the square along only the Z-
axis (hence the middle value) using a sin function. Using a sin gives it a
nice smooth motion that slows up at either end.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Building a 3D World 59

 Lines 13ff are similar to those in setupGL() in Listing 1-1, in that they
tell OpenGL how much data we have of what type and where it can be
found. glVertexPoint() hands off a pointer to the vertex array (see lines
5ff) and says that it has only two float values. Then the call
glEnableClientState(GL_VERTEX_ARRAY) tells the system to make use
of the vertex data. The next two lines do the same thing for the color
array.

 Now draw things in line 14, and give us some metrics in line 15.

If it works, you should see something like Figure 3-4.

Figure 3-4. And the square goes bounce!

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Building a 3D World 60

Going Beyond the Bouncy Square
Now let’s change the preceding example to add a third dimension. Because we’re
getting seriously 3D here, several things will need to be added to handle the Z
dimension, including a larger dataset for the cube’s geometry and color, methods of
handing off that data to OpenGL, the frustum definition, any face culling techniques if
needed, and rotations instead of just the translations.

Note Translation means to move an object around in your world up/down, left/right, and
forward/backward, while rotation means to rotate the object and any arbitrary axis. Both are
considered transformations.

Adding the Geometry
Now we need to double the number of vertices from the above example and extend
them to support the extra z-value as shown in line 1 of Listing 3-3. You’ll notice that all
of the vertices are either .5 or -.5. Previously values for the Y-axis were -0.33 to 0.33.
That compensated for the aspect ratio of the screen, stretching out the image so that
the square really does look square. In this exercise, the viewing frustum will be added,
which will enable us to specify the aspect ratio so that we don’t have to compensate for
non-square screens.

Following that, the color array is likewise doubled in size (lines 2ff). Then we need to
specify how the vertices are all tied together so as to make 6 square faces out of 12
triangles. That is done via two additional arrays called tfan1 and tfan2. The numbers are
indices into the vertex array, telling the system how to tie which points together in a form
known as a ‘‘triangle fan.’’ This will be covered shortly. So you will now be modifying the
bouncy square app, either by using the original or just making a copy.

Note You can rename an Xcode 4 project by going to the root of the project and renaming
the project name at the very top of the tree. Unfortunately, it doesn’t get everything like source
files or references in the .xib files, so you’ll still have to change those manually.

When ready, swap out the 2D data definitions in drawInRect()for the 3D-ified versions
shown in Listing 3-3.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Building a 3D World 61

Listing 3-3. Defining the 3D Cube

static const GLfloat cubeVertices[] = //1
{
 -0.5, 0.5, 0.5, //vertex 0
 0.5, 0.5, 0.5, // v1
 0.5,-0.5, 0.5, // v2
 -0.5,-0.5, 0.5, // v3

 -0.5, 0.5,-0.5, // v4
 0.5, 0.5,-0.5, // v5
 0.5,-0.5,-0.5, // v6
 -0.5,-0.5,-0.5, // v7
};

static const GLubyte cubeColors[] = { //2
 255, 255, 0, 255,
 0, 255, 255, 255,
 0, 0, 0, 0,
 255, 0, 255, 255,

 255, 255, 0, 255,
 0, 255, 255, 255,
 0, 0, 0, 0,
 255, 0, 255, 255,
 };

static const GLubyte tfan1[6 * 3] = //3
{
 1,0,3,
 1,3,2,
 1,2,6,
 1,6,5,
 1,5,4,
 1,4,0
};

static const GLubyte tfan2[6 * 3] = //4
{
 7,4,5,
 7,5,6,
 7,6,2,
 7,2,3,
 7,3,0,
 7,0,4
};

Figure 3-5 shows the way the vertices are ordered. Under normal situations, you will
never have to define geometry in this fashion. You’ll likely load your objects from a file
stored in one of the standard 3D data formats, such as those used by 3D Studio or
Modeler 3D. And considering how complicated such files can be, it is not recommended
that you write your own because importers for most of the major formats are available.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Building a 3D World 62

Figure 3-5. Notice the various axes: X going right, Y is up, and Z is toward the viewer.

Some new data is now needed to tell OpenGL in what order the vertices are to be used.
With the square it was a no-brainer to order, or sequence, the data by hand so that the
four vertices could represent the two triangles. The cube makes this considerably more
complicated. We could have defined each of the six faces of the cube by separate
vertex arrays, but that wouldn’t scale well for more complex objects. And it would be
less efficient than having to shove six sets of data through the graphics hardware. Thus,
keeping all the data in a single array is the most efficient from both a memory and a
performance standpoint. So, how do we tell OpenGL the layout of the data? In this case,
we’ll use the drawing mode called triangle fans, as shown in Figure 3-6. A triangle fan is
a set of triangles that share a common vertex.

Figure 3-6. A triangle fan has one common point with all triangles.

Data can be stored and presented to OpenGL ES in many different ways. One format
may be faster but uses more memory, while another may use less memory but at the
cost of a little extra overhead. If you were to import data from one of the 3D files,

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Building a 3D World 63

chances are it is already optimized for one of the approaches, but if you really want to
hand-tune the system, you may at some point have to repack the vertices into the
format you prefer for your application.

Besides triangle fans, you will find other ways data can be stored or represented, called
modes.

 Points and lines specify just that: points and lines. OpenGL ES can
render your vertices as merely points of definable sizes or can render
lines between the points to show the wireframe version (gl.h defines
these by GL_POINTS and GL_LINES, respectively).

 Line strips, GL_LINE_STRIP, are a way for OpenGL to draw a series of
lines in one shot, while line loops, GL_LINE_LOOP, are like line strips but
will always connect the first and last vertices together.

 Triangles, triangle strips, and triangle fans round out the list of OpenGL
ES primitives: GL_TRIANGLES, GL_TRIANGLE_STRIP, and GL_TRIANGLE_
FAN. Desktop OpenGL itself can handle additional modes such as
quads (faces with four vertices/sides), quad strips, and polygons.

Note The term primitive denotes a fundamentally basic shape or form of data in graphics
systems. Examples of primitives include cubes, spheres, and cones. The term can also be used
for even simpler shapes such as points, lines, and, in the case of OpenGL ES, triangles and
triangle fans.

When using elements, you will need to tell OpenGL what vertices are drawn when, using
index, or connectivity, arrays. These will tell the pipeline the exact order the vertices
need to be processed for each element, demonstrated in lines 3 and 4 in Listing 3-3. So,
for example, the first three numbers in the array tfan1 are 1, 0, and 3. That means the
first triangle is made up of vertices 1, 0, and 3, in that order. Therefore, back in the array
cubeVertices, vertex 1 is located at x=0.5, y=0.5, and z=0.5. Vertex 0 is the point at x=-
0.5, y=0.5, and z=0.5, while the third corner of our triangle is located at x=-0.5, y=-0.5,
and z=0.5. The upside is that this makes it a lot easier to create the datasets because
the actual order is now irrelevant, while the downside is that it uses up a little more
memory to store the additional information.

The cube can be divided up into two different triangle fans, which is why there are two
index arrays. The first incorporates the front, right, and top faces, while the second
incorporates the back, bottom, and left faces, as shown in Figure 3-7.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Building a 3D World 64

Figure 3-7. The first triangle fan shares vertex 1 as the common vertex.

Stitching It All Together
Now the rendering code must be modified to handle the new data. Listing 3-4 shows the
rest of the drawInRect() method, right under the data definitions given in Listing 3-3. This
will replicate much of the earlier example, complete with motion. The major difference is
to be found in two calls to glDrawArray() because the cube is in two pieces, one each
for of the three faces or six triangles that define the two triangle fans.

Note You’ll note that many of the OpenGL ES calls end in an f, such as glScalef(),
glRotatef(), and so on. The f means that the parameters passed are floats, or GLfloat.
The only other parameter types in OpenGL ES are fixed-point values, so glScale would now
be glScalex(). Fixed point was useful for the older and slower devices, but with more
current hardware, Apple recommends staying with floats.

The obsolete lines from the previous example have been commented out but left in
place to more clearly show the differences.

Listing 3-4. The rest of the drawInRect method for the Bouncy Cube

static GLfloat transY = 0.0;
static GLfloat z=-2.0; //1

 glClearColor(0.5, 0.5, 0.5, 1.0); //2
 glClear(GL_COLOR_BUFFER_BIT);

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Building a 3D World 65

glEnable(GL_CULL_FACE); //3
glCullFace(GL_BACK);

// glMatrixMode(GL_PROJECTION); //4
// glLoadIdentity();

glMatrixMode(GL_MODELVIEW); //5
glLoadIdentity();

//glTranslatef(0.0, (GLfloat)(sinf(transY)/2.0), 0.0);

glTranslatef(0.0, (GLfloat)(sinf(transY)/2.0), z); //6
transY += 0.075f;

//glVertexPointer(2, GL_FLOAT, 0, squareVertices);

glVertexPointer(3, GL_FLOAT, 0, cubeVertices); //7
glEnableClientState(GL_VERTEX_ARRAY);
glColorPointer(4, GL_UNSIGNED_BYTE, 0, cubeColors); //8
glEnableClientState(GL_COLOR_ARRAY);

// glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);

glDrawElements(GL_TRIANGLE_FAN, 6 * 3, GL_UNSIGNED_BYTE, tfan1); //9
glDrawElements(GL_TRIANGLE_FAN, 6 * 3, GL_UNSIGNED_BYTE, tfan2);

if(!(counter%100))
 NSLog(@"FPS: %d\n",self.framesPerSecond);

 counter++;
}

The following changes have been made:

 A z value has been added in at line 1. For the time being, this will be
static because the animation remains only up and down. A negative
value means that the object has moved away from us, as if it has
moved deeper into the screen.

 Clear the background to the medium gray once again in line 2.

 Because we never want to process or draw anything that is not
absolutely necessary, it is possible to just eliminate a bunch of the
triangles that are ‘‘facing away’’ from the viewer, as on line 3. Face
culling is used to remove the otherwise invisible faces. For our cube,
the only triangles we need to see are the ones actually facing us, and
that is determined by the winding, or the order, of the vertices for the
face. If the winding is counterclockwise, it is facing us and should be
visible; otherwise, it is culled. This may sound like a substitute for face
normals, and, yes, it is when it comes to backface elimination, or
culling. But normals are still needed to determine illumination striking
a face.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Building a 3D World 66

Note “Windingness” is based on the direction the vertices describe. The first triangle formed
by vertices 1, 0, and 3 is facing us because the vertices are ordered counterclockwise. All
triangles in the first fan are counterclockwise.

 In line 4, the projection matrix initialization is turned off, leaving only
the modelview matrix to be modified. Projection will be handled below.

 In line 5, only the modelview is set as the current matrix, in case
someone else changed it elsewhere.

 In line 6, the final coordinate of the original glTranslatef() call,
which had been fixed at 0 because it wasn’t needed, is now changed
to z (-2.0).

 The original squareVertices pointer is replaced by cubeVertices in
line 7.

 Line 8 replaces the squareColors with cubeColors.

 The original glDrawArrays() is removed to be replaced by two calls to
glDrawElements() on line 9, one for each of the triangle fans. Of note,
the second argument is for the number of elements in the tFan
connectivity arrays: six vertices times three elements on each vertex.
OpenGL will take the connectivity arrays, tfan1 and tfan2; look up
each vertex in the vertex pointer array (line 7); and render the object.

You should be able to get a compile at this point, but you won’t see anything because
the viewing frustum has yet to be defined. The default far clip plane is -1.0, meaning that
anything further than that will be culled, that is, not be visible. If you substitute -1.5 for z,
in place of -2.0, the ‘‘cube’’ is moved closer and should be partially visible. Although it
looks like the whole thing, it is actually just the closest face poking through. Change the
z to -1.500001, and it vanishes. It’s not going to look like much of a cube right now,
because only a portion of it will be poking through. Also, because the frustum is not
defined, the square viewport is stretched out when being adapted to fill the window.
(The coordinate -1.5 is where the origin of the cube needs to be to ensure the closest
face is at -1.0.) Now move it back to -2.0.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Building a 3D World 67

Defining the Frustum
The last step we need is to specify details on how the vertices are mapped to our screen
using glFrustumf(), as in Listing 3-5. If you’ll recall, the frustum is made of six planes
that enclose the volume that specifies what we can see, something like a camera’s lens.

Listing 3-5. Creating the viewing frustum, added to the View Controller file

-(void)setClipping
{
 float aspectRatio;
 const float zNear = .1; //1
 const float zFar = 1000; //2
 const float fieldOfView = 60.0; //3
 GLfloat size;

 CGRect frame = [[UIScreen mainScreen] bounds]; //4

//Height and width values clamp the fov to the height; flipping it would make it
relative to the width.

//So if we want the field-of-view to be 60 degrees, similar to that of a wide
angle lens, it will be

//based on the height of our window and not the width. This is important to
know when rendering
// to a non-square screen.

 aspectRatio=(float)frame.size.width/(float)frame.size.height; //5
 //Set the OpenGL projection matrix.

 glMatrixMode(GL_PROJECTION); //6
 glLoadIdentity();

 size = zNear * tanf(GLKMathDegreesToRadians (fieldOfView) / 2.0); //7

 glFrustumf(-size, size, -size /aspectRatio, size /aspectRatio, zNear, zFar); //8
 glViewport(0, 0, frame.size.width, frame.size.height); //9

 //Make the OpenGL ModelView matrix the default.

 glMatrixMode(GL_MODELVIEW); //10
}

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Building a 3D World 68

Here is what is happening:

 Lines 1 and 2 specify the distances of the near and far clipping planes.
These two values say that anything further than 1,000 or closer than .1
will be filtered out. (‘‘A thousand what?’’ you might ask. Just a
thousand; the units can be up to you. They could be light-years or
cubits, it doesn’t matter.)

 Line 3 sets the field of view to 60 degrees.

 Lines 4 and 5 calculate the aspect ratio of the final screen. Its height
and width values clamp the FOV to the height; flipping it would make it
relative to the width. So if we want the field-of-view to be 60 degrees,
similar to that of a wide-angle lens, it will be based on the height of our
window and not the width. This is important to know when rendering
to a non-square screen.

 Because the frustum affects the projection matrix, we need to ensure
that it is activated instead of the modelview matrix, in line 6.

 Line 7 has the duty of calculating a size value needed to specify the
left/right and top/bottom limits of the viewing volume, as shown in
Figure 3-3. This can be thought of as your virtual window into the 3D
space. With the center of the screen being the origin, you need to go
from ----size to +size in both dimensions. That is why the field is divided
by two------the window will go from -30 degrees to +30 degrees.
Multiplying size by zNear merely adds a scaling hint of sorts. Finally,
divide the bottom/top limits by the aspect ratio to ensure your square
will really be a square.

 Now in line 8, we can plug those values into glFrustumf(); and in line
9, pass the actual pixel dimension of the viewport.

 Don’t forget to reset the matrix mode back to modelview just to be a
good neighbor, as in line 10.

SetClipping() needs to be called only once at the start unless you want to change the
‘‘power’’ of your lens. More complex situations might need to vary the zNear/zFar values
to handle variances in depth or to use a different field of view to zoom in on a specific
target. But you can add it into viewDidLoad() with the following two lines:

 [EAGLContext setCurrentContext:self.context];

 [self setClipping];

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Building a 3D World 69

Any OpenGL call must have a current context to work, so it needs to be set ahead of
everything else, hence the extra line ahead of setClipping(). If it works right, you should
see something that looks exactly like the original bouncy cube! Wait, you’re not
impressed? OK, let’s add some rotations to the thing.

Taking ’er Out for a Spin
Now it’s time to add some more interesting animation to the scene. We’re going to be
spinning this slowly besides bouncing it up and down. To the top of drawInRect(), add
the following:

static GLfloat spinX=0;
static GLfloat spinY=0;

Next add the following lines to the bottom of drawInRect ():

 spinY+=.25;
 spinX+=.25;

And right before the glTranslatef() call, add the following:

 glRotatef(spinY, 0.0, 1.0, 0.0);
 glRotatef(spinX, 1.0, 0.0, 0.0);

Now run again. ‘‘Hey! Huh?’’ will be the mostly likely response. The cube doesn’t seem
to be spinning, but instead it’s rotating around your viewpoint (while bouncing at the
same time), as shown in Figure 3-8. This illustrates one of the most confusing elements
in basic 3D animation: getting the order of the translations and rotations correct.
(Remember the discussion in Chapter 2?)

Consider our cube. If you want to have a cube spinning in front of your face, which
would be the proper order? Rotate and then translate? Or translate and then rotate?
Reaching way back to fifth-grade math, you might remember learning something about
addition and multiplication being commutative. That is, the order of operations was not
critical: a+b=b+a, or a*b=b*a. Well, 3D transformations are not commutative (finally, a
use for something I’d never thought I’d use!). That is, rotation*translation is not the same
as translation*rotation. See Figure 3-9.

The right side is what you are seeing right now in the rotating cube example. The cube is
being translated first and then rotated, but because the rotation takes place around the
‘‘world’’ origin (the viewpoint’s location), you see it as if it’s spinning around your head.

Now to the obvious does-not-compute moment: are the rotations not placed before the
translations in the example code anyway?

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Building a 3D World 70

Figure 3-8. Translation first, rotation second

Here is what should be causing the sudden outbreak of furrowed brows across the land:

 glRotatef(spinY, 0.0, 1.0, 0.0);
 glRotatef(spinX, 1.0, 0.0, 0.0);

glTranslatef(0.0, (GLfloat)(sinf(transY)/2.0), z);

Figure 3-9. Rotation first or translation first?

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Building a 3D World 71

However, in reality, the order of transformations is actually applied from last to first. Now
put glTranslatef() ahead of the two rotations, and you should see something like
Figure 3-10, which is exactly what we wanted in the first place. Here is the code needed
to do that:

glTranslatef(0.0, (GLfloat)(sinf(transY)/2.0), z);

glRotatef(spinY, 0.0, 1.0, 0.0);
glRotatef(spinX, 1.0, 0.0, 0.0);

Figure 3-10. Making the cube spin

You can visualize transformation ordering in two different ways: the local coordinate or
the world coordinate approach. Seeing things in the former, you move the objects to
their final resting place and then perform the rotations. Because the coordinate system
is local, the object will rotate around its own origin, making the previous sequence make
sense when going from top to bottom. If you choose the world approach, which is in
effect what OpenGL ES is doing, you must perform the rotations first around the object’s
local axis before performing the translation. In that way, the transformations actually
happen from bottom to top. The net result is the same and so is the code, and both are
confusing and easily can get out of sequence. That is why you’ll see many a 3D guy or
gal holding something at arm’s length while moving themselves all around to help them
figure out why their great-looking catapult model is flying below the ground. This is
called the 3D shuffle. And just to make things more confusing, this is only for OpenGL
ES 1. The reason being is that the transformations are queued up until the rendering
pass is done, and then processed from the first transformation call to the last. While in
ES 2, you must perform all of the transforms yourself, in which case they are done

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Building a 3D World 72

immediately as called. Following is the same transformation sequence, but in OpenGL
ES 2:

 baseModelViewMatrix = GLKMatrix4Scale(baseModelViewMatrix,scale,scale,scale);
 baseModelViewMatrix = GLKMatrix4Rotate(baseModelViewMatrix, _rotation, 1.0, 0.5,
0.0);
 modelviewMatrix = GLKMatrix4MakeTranslation(0.0, offset, -6.0);
 modelviewMatrix = GLKMatrix4Multiply(modelviewMatrix, baseModelViewMatrix);

One final transformation command to be aware of right now is glScalef(), used for
resizing the model along all three axes. Let’s say you need to double the height of the
cube. You would use the line glScalef(1,2,1). Remember that the height is aligned with
the Y-axis, while width and depth are X and Z, which we don’t want to touch.

Now the question is, where would you put the line to ensure that the geometry of the
cube is the only thing affected, as in Figure 3-11 (left), before or after the calls to
glRotatef() in drawInRect()?

If you said after-----as in the following example:

glTranslatef(0.0, (GLfloat)(sinf(transY)/2.0), z);

glRotatef(spinY, 0.0, 1.0, 0.0);
glRotatef(spinX, 1.0, 0.0, 0.0);
glScalef(1,2,1);

-----you’d be right. The reason why this works is that because the last transformation in
the list is actually the first to be executed, you must put scaling ahead of any other
transformations if all you want is to resize the object’s geometry. Put it anywhere else,
and you could end up with something like Figure 3-11 (right). So, what’s happening
there? The following was generated with the code snippet:

glTranslatef(0.0, (GLfloat)(sinf(transY)/2.0), z);

glScalef(1,2,1);

glRotatef(spinY, 0.0, 1.0, 0.0);
glRotatef(spinX, 1.0, 0.0, 0.0);

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Building a 3D World 73

Figure 3-11. Scaling before the rotations have been executed (left) and scaling after the rotations (right)

The geometry is rotated first, and then the cube’s local axis is rotated, which no longer
aligns with the origin’s axis. Following that with scale, it is stretched out along the
world’s y-axis, instead of its own. This would be as if you already started with a vertex
list of a cube rotated partway and scaled it with nothing else. So if you make the scaling
at the very end, your entire world is scaled.

Tweaking the Values
Now some more fun comes when we can start playing with various values. This section
will demonstrate a number of the various principles that are not just relevant to OpenGL
ES but found in nearly every 3D toolkit you’re likely to stumble across.

Clipping Regions

With a working demo, we can have fun by tweaking some of values and observing the
changes. First we’ll change the far clipping plane in the frustum by changing the value of

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Building a 3D World 74

zFar from 1000 down to 1.5. Why? Remember that the cube’s local origin is 2.0 and its
size is 1.0. So when facing straight at us, the closest point would be 2.5 because each
of the sides would straddle the origin with .5 on each side. So, by changing the value of
zFar to 1.5, the cube would be hidden when it is exactly facing us. But portions will peek
through, looking something like a piece of flotsam poking above the water. The reason is
that when it rotates, the corners are naturally going to be a little closer to the viewing
plane, as shown in Figure 3-12.

So, what happens when I move the near clipping plane farther away? Reset zFar back
to 1000 (a number that is arbitrarily large enough to ensure we can see everything) and
set zNear from .1 to 1.5. What do you think it will look like? It will be the opposite of the
previous example. See Figure 3-13 for the results.

Figure 3-12. Peek-a-boo! The cube is clipped when any part of it is farther away than zFar.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Building a 3D World 75

Figure 3-13. The zFar plane is reset, while the zNear plane is moved back to clip any part of the cube that is
too close.

Using Z-axis clipping such as this is very helpful when dealing with large and
complicated worlds. You’d likely not want all objects you might be ‘‘looking at’’ to be
rendered, because many could be too far away to really see. Setting zFar and zNear to
limit the visibility distance could speed up the system. However, this would not be the
best substitute for preculling your objects before they get into the pipeline.

Field of View

Remember that the viewer’s FOV can also be changed in the frustum settings. Go back
to our bouncy friend again and make sure your zNear and zFar settings are back to the
normal values of .1 and 1000. Now change the z value in drawInRect() to -20 and run
again. Figure 3-14 (left) is what you should see.

Next we’re going to zoom in. Go to setClipping() and change fieldOfView =5 degrees
from 60 degrees. The results are depicted in Figure 3-14 (center). Notice how the cube
has no apparent vanishing point or no perspective when compared to Figure 3-14 (right).

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Building a 3D World 76

Figure 3-14a,b,c. Moving the object away (left) and then zooming in on it (center). The rightmost image has the
default FOV value set to 60 degrees with the cube at only 2 units away.

Face Culling

Let’s go back to the code you might remember from a few pages ago:

 glEnable(GL_CULL_FACE);
 glCullFace(GL_BACK);

As mentioned, the first line tells OpenGL to prepare to do face culling, while the second
instructs which face is to be culled. In this case, the triangles facing away from us don’t
need to be rendered.

Note glEnable() is a frequent call and is used to change various states, from eliminating
back faces, as shown earlier, to smoothing points (GL_POINT-SMOOTH), to performing depth
tests (GL_DEPTH_TEST). It can also affect performance if you use it a lot. Best practice is to
minimize use of glEnable() as much as possible.

Now replace GL_BACK with GL_FRONT, and run the program. See Figure 3-15.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Building a 3D World 77

Figure 3-15. The back faces are now visible, while the front ones are culled.

Building a Solar System
With these basic tools in our 3D arsenal, we can actually start in the main project,
building a small example solar system. What makes a solar system so ideal is that it has
a very basic simple shape, several objects that must all move around each other in a
hierarchical fashion, and a single light source. The reason why the cube example was
used at first is that the shape is about as elementary as you can get for 3D, ensuring that
the code was not full of extraneous geometry. When you get to something such as a
sphere, most of the code will go to creating just the object, as you will see.

Although OpenGL is a great low-level platform, it still leaves a lot to be desired when it
comes to anything remotely high level. As you saw in Chapter 1, when it comes to
modeling tools, many available third-party frameworks could ultimately be used to do
the job, but for now we’re just going to be sticking with basic OpenGL ES.

Note Besides OpenGL itself, a popular helper toolkit called GL Utility Toolkit (GLUT) is
available. GLUT provides a portable API support for basic windowing UI tasks and management
functions. It can construct some basic primitives, including a sphere, so it can be very handy
when doing small projects. Unfortunately, as of this writing, there is no official GLUT library for
iOS, although a couple of efforts are currently in the works.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Building a 3D World 78

The first thing to do is create a new project derived from the bouncy square example.
But instead of building up all the geometry in drawInRect(), you can create a new object
called Planet and initialize the data, as in Listing 3-6a for the header and Listing 3-6b for
the init method.

Listing 3-6a. Building our 3D Planet

#import <Foundation/Foundation.h>
#import <OpenGLES/ES1/gl.h>

@interface Planet : NSObject
{

@private
 GLfloat *m_VertexData;
 GLubyte *m_ColorData;

 GLint m_Stacks, m_Slices;
 GLfloat m_Scale;
 GLfloat m_Squash;

}
- (bool)execute;
- (id) init:(GLint)stacks slices:(GLint)slices radius:(GLfloat)radius squash:(GLfloat)
squash;

@end

Listing 3-6b. 3D Sphere generator

- (id) init:(GLint)stacks slices:(GLint)slices radius:(GLfloat)radius squash:(GLfloat)
squash
{
 unsigned int colorIncrment=0; //1
 unsigned int blue=0;
 unsigned int red=255;

 m_Scale=radius;
 m_Squash=squash;

 colorIncrment=255/stacks; //2

 if ((self = [super init]))
 {
 m_Stacks = stacks;
 m_Slices = slices;
 m_VertexData = nil;

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Building a 3D World 79

 //Vertices

 GLfloat *vPtr = m_VertexData =
 (GLfloat*)malloc(sizeof(GLfloat) * 3 * ((m_Slices*2+2) * (m_Stacks))); //3

 //Color data

 GLubyte *cPtr = m_ColorData=
 (GLubyte*)malloc(sizeof(GLubyte) * 4 * ((m_Slices *2+2) * (m_Stacks))); //4

 unsigned int phiIdx, thetaIdx;

 //latitude

 for(phiIdx=0; phiIdx < m_Stacks; phiIdx++) //5
 {
 //Starts at -1.57 goes up to +1.57 radians.

 //The first circle.
 //6
 float phi0 = M_PI * ((float)(phiIdx+0) * (1.0/(float)(m_Stacks)) - 0.5);

 //The next, or second one.
 //7
 float phi1 = M_PI * ((float)(phiIdx+1) * (1.0/(float)(m_Stacks)) - 0.5);
 float cosPhi0 = cos(phi0); //8
 float sinPhi0 = sin(phi0);
 float cosPhi1 = cos(phi1);
 float sinPhi1 = sin(phi1);

 float cosTheta, sinTheta;

//longitude

 for(thetaIdx=0; thetaIdx < m_Slices; thetaIdx++) //9
 {
 //Increment along the longitude circle each "slice."

 float theta = 2.0*M_PI * ((float)thetaIdx) * (1.0/(float)(m_Slices -
1));
 cosTheta = cos(theta);
 sinTheta = sin(theta);

 //We're generating a vertical pair of points, such
 //as the first point of stack 0 and the first point of stack 1
 //above it. This is how TRIANGLE_STRIPS work,
 //taking a set of 4 vertices and essentially drawing two triangles
 //at a time. The first is v0-v1-v2 and the next is v2-v1-v3, and so on.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Building a 3D World 80

//Get x-y-z for the first vertex of stack.

 vPtr [0] = m_Scale*cosPhi0 * cosTheta; //10
 vPtr [1] = m_Scale*sinPhi0*m_Squash;

vPtr [2] = m_Scale*cosPhi0 * sinTheta;

//The same but for the vertex immediately above the
previous one.

 vPtr [3] = m_Scale*cosPhi1 * cosTheta;
 vPtr [4] = m_Scale*sinPhi1*m_Squash;
 vPtr [5] = m_Scale* cosPhi1 * sinTheta;

 cPtr [0] = red; //11
 cPtr [1] = 0;
 cPtr [2] = blue;
 cPtr [4] = red;
 cPtr [5] = 0;
 cPtr [6] = blue;
 cPtr [3] = cPtr[7] = 255;

 cPtr += 2*4; //12

 vPtr += 2*3;

 }

 blue+=colorIncrment; //13
 red-=colorIncrment;
 }
 }

 return self;
}

Okay, so it takes a lot of code to create something as basic as a sphere. Using the
triangle lists is more involved than using the quads in standard OpenGL, but that’s what
we have to work with.

The basic algorithm divides the sphere into stacks and slices. Stacks are the lateral
pieces while slices are vertical. The boundaries of the stacks are generated two at a time
as partners. These form the boundaries of the triangle strip. So, stack A and B are
calculated and subdivided into triangles based on the number of slices around the
circle. The next time through, take stacks B and C and rinse and repeat. Two boundary
conditions apply:

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Building a 3D World 81

 The first and last stacks contain the two poles, in which case they are
more of a triangle fan, as opposed to a strip, but we treat them as
strips to simplify the code.

 Make sure that the end of each strip connects with the beginning to
form a contiguous set of triangles.

So, let’s break this down:

 The initialization routine uses the notion of stacks and slices to define
the resolution of the sphere. Having more slices and stacks means a
much smoother sphere but uses much more memory along with
additional processing time. Think of a slice as similar to an apple
wedge, representing a piece of the sphere from bottom to top. A stack
is a slice that is lateral, defining sections of latitude. See Figure 3-16.

The radius parameter is a form of scale. You could opt to normalize all
your objects and use glScalef(), but that does add extra CPU
overhead, so in this case radius is used as a form of prescaling. And
squash is used to create a flattened sphere, necessary for Jupiter and
Saturn. Both have very high rates of revolution. (Jupiter’s day is only
about 10 hours, while its diameter is more than 10 times the Earth’s.)
As a result, its polar diameter is about 93 percent of the equatorial
diameter. And Saturn is even more flattened, with the polar diameter
only 90 percent of the equatorial.

 Because we want something interesting to look at until we get to the
cool texture stuff in Chapter 5, let’s vary the colors from top to bottom.
The top is blue, and the bottom is red. The colorIncrement is merely
the color delta from stack to stack. Red starts at 255, and blue starts
at 0, using unsigned chars.

Figure 3-16. Stacks go up and down, slices go round and round, and faces are subdivided into triangle
strips.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Building a 3D World 82

 Lines 3 and 4 allocate the memory for both the vertices and the colors.
Later other arrays will be needed to hold the texture coordinates and
face normals needed for lighting, but for now, let’s keep things simple.
Notice that we’re doing 32-bit colors, as with the cube. Three bytes
are for the RGB triplet, while the fourth is for alpha (translucency) but is
not needed in this example.

 Line 5 starts the outer loop, going from the bottom-most stack (or the
southern polar regions of our planet or altitude of -90 degrees) and up
to the northern pole, at +90 degrees.

Some Greek identifiers are used here for spherical coordinates. Phi is
commonly used for the latitude-like points, while theta is used for
longitude.

 Lines 6 and 7 generate the latitude for the boundaries of a specific
strip. For starters, when phiIdx is 0, we want phi0 to be -90 degrees,
or -1.57. The -.5 shoves everything down by 90 degrees; otherwise,
our values would go from 0 to 180 degrees.

 In lines 8ff, some values are precalculated to minimize the CPU load.

 Line 9 is the inner loop, going from 0 to 360 degrees, and defines the
slices. The math is similar, so no need to go into extreme detail,
except that we are calculating the points on a circle, via line 10. Both
m_Scale and m_Squash come into play here. But for now, just assume
that they are both 1.0, so the sphere is normalized.

Notice that vertex 0 and vertex 2 are addressed here. Vertex 0 is x,
while vertex 2 is z-----which are parallel to the ground, the X-Z plane.
Since vertex 1 is the same as y, it remains constant for each loop and
of course represents the latitude. Since we’re doing the loops in pairs,
vertices 3, 4, and 5 cover up the
next loop.

In effect, we are generating pairs of points, namely, each point and its
mate immediately above it. And this is the format that GL expects for
the triangle strips, as shown in Figure 3-17.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Building a 3D World 83

Figure 3-17. A triangle strip of six vertices

 In line 11, the color array is generated, and as with the vertices, they
are generated in pairs. The green component is ignored for now.

 At lines 12f, the color array pointer and vertex array pointers are
incremented.

 And finally in line 13, we increment the blue and decrement the red.

Now that the geometry is out of the way, we need to concentrate on the execute
method. See Listing 3-7.

Listing 3-7. Rendering the Planet

- (bool)execute
{
 glMatrixMode(GL_MODELVIEW); //1
 glEnable(GL_CULL_FACE); //2
 glCullFace(GL_BACK); //3

 glEnableClientState(GL_VERTEX_ARRAY); //4
 glEnableClientState(GL_COLOR_ARRAY); //5

 glVertexPointer(3, GL_FLOAT, 0, m_VertexData); //6

 glColorPointer(4, GL_UNSIGNED_BYTE, 0, m_ColorData); //7
 glDrawArrays(GL_TRIANGLE_STRIP, 0, (m_Slices +1)*2*(m_Stacks-1)+2); //8

 return true;
}

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Building a 3D World 84

You should now recognize many of the elements from the cube examples.

 First, in line 1, tell the system that we want to work with the
GL_MODELVIEW matrix (the one that supports the transformation
information).

 Lines 2 and 3 are identical to the ones used previously to cull out the
back of the sphere that we cannot see.

 Lines 4 and 5 are again familiar and tell OpenGL to accept both vertex
and color information.

 Next we supply the vertex data in line 6 and the color data in line 7.

 Line 8 does the heavy lifting in drawing the arrays, both color and
vertices.

Now that the planet object is complete enough for this example, let’s do the driver. First,
create a new Objective-C object and call it something like
OpenGLSolarSystemController. Now add the code from Listing 3-8a and 3-8b to
initialize the object and universe.

Listing 3-8a. Initializing your universe: the header

#import <Foundation/Foundation.h>
#import <GLKit/GLKit.h>
#import "Planet.h"

@interface OpenGLSolarSystemController : NSObject
{
 Planet *m_Earth;
}

-(void)execute;
-(id)init;
-(void)initGeometry;

@end

Listing 3-8b. Initializing your universe: the rest of the stuff

-(id)init
{
 [self initGeometry];

 return self;
}

-(void)initGeometry
{
 m_Earth=[[Planet alloc] init:10 slices:10 radius:1.0 squash:1.0];
}

The earth model here is initialized at fairly low resolution: 10 stacks high, 10 slices
around.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Building a 3D World 85

Listing 3-9 shows the master execute method. As with the cube, we translate the earth
on the Z-axis and rotate it around the y-axis.

Listing 3-9. Master execute method

-(void)execute
{
 static GLfloat angle=0;

 glLoadIdentity();
 glTranslatef(0.0, -0.0, -3.0);

 glRotatef(angle,0.0,1.0,0.0);

 [m_Earth execute];

 angle+=.5;
}

For the final steps, go to the window’s viewcontroller and change viewDidLoad() to
Listing 3-10.

Listing 3-10. The new viewDidLoad() method

- (void)viewDidLoad
{
 [super viewDidLoad];

 self.context = [[EAGLContext alloc] initWithAPI:kEAGLRenderingAPIOpenGLES1];

 if (!self.context)
 {
 NSLog(@"Failed to create ES context");
 }

 GLKView *view = (GLKView *)self.view;
 view.context = self.context;
 view.drawableDepthFormat = GLKViewDrawableDepthFormat24;

 m_SolarSystem=[[OpenGLSolarSystemController alloc] init];

 [EAGLContext setCurrentContext:self.context];

 [self setClipping];
}

Now change the drawInRect() method to the one in Listing 3-11.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Building a 3D World 86

Listing 3-11. The new drawInRect for the Solar System

- (void)glkView:(GLKView *)view drawInRect:(CGRect)rect
 {

 glClearColor(0.0,0.0, 0.0, 1.0);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 [m_SolarSystem execute];
}

Finally, add in setClipping() (used in the previous exercise), making sure you’ve reset the
FOV to 50 or 60 degrees; modify the headers as needed; and compile. You should see
something like Figure 3-18.

Figure 3-18. The future planet Earth

It is actually rotating but, because it has no features at all, you’ll be hard-pressed to see
the motion.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Building a 3D World 87

As with the previous examples, let’s play around with some of the parameters and see
what happens. First let’s change the number of stacks and slices, from 10 to 20, in the
initGeometry method. You should see something like Figure 3-19.

Figure 3-19. The planet with double the stacks and slices

If you want your curved objects to look smoother, there are generally three ways:

 Have as many triangles as possible.

 Use some special lighting and shading tools built into OpenGL.

 Use textures.

The next chapter will cover the second option. But for now, see how many slices and
stacks it takes to make a really smooth sphere. (It works best with an equal number of
both.) It really starts looking good at 100 each. For now, go back to 10 each when
finished with this exercise.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Building a 3D World 88

If you want to look at the actual wireframe structure of the sphere, in Planet.m, change
GL_TRIANGLE_STRIP in the execute method to GL_LINE_STRIP. And you may want to
change the background color to a medium gray to make the lines stand out better
(Figure 3-20, left). As an exercise, see what it takes to get Figure 3-20 (right). Now ask
yourself why we’re not seeing triangles there instead of that funky spiral pattern. It is
simply the way OpenGL draws and connects line strips. We could have it render triangle
outlines by specifying a connectivity array. But for our ultimate goal, that is not
necessary.

Figure 3-20. The planet In wireframe mode

On your own, change GL_LINE_STRIP to GL_POINTS. There you’ll see each of the vertices
rendered as a single dot.

Then try the frustum again. Set zNear from .1 to 2.15. (Why not 3? The distance of the
object?) And you’ll get Figure 3-21.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Building a 3D World 89

Figure 3-21. Someone is setting the zNear clipping plane too close.

And one final exercise: what would it take to get something that looks like Figure 3-22?
(This is what you would need for Jupiter and Saturn; because they spin so fast, they are
not spherical but rather oblate-spheroids.)

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Building a 3D World 90

Figure 3-22. What does it take to get this?

And lastly, for extra credit, make it bounce like the cube.

Summary
In this chapter, we started by generating a 2D square, turned it into a 3D cube, and then
learned how to rotate and translate it. We also learned about the viewing frustum and
how it can be used to cull out objects and zoom in and out of our scene. Lastly, we
constructed a much more complicated object that will be the root of the solar-system
model. The next chapter will cover shading, lighting, and materials, and a second object
will be added.

www.it-ebooks.info

http://www.it-ebooks.info

4Chapter

Turning On the Lights

You must be strong now. You must never give up. And when people [or
code] make you cry and you are afraid of the dark, don’t forget the light
is always there.

-----Author Unknown

Light is the first of painters. There is no object so foul that intense light
will not make it beautiful.

-----Ralph Waldo Emerson

Everything’s shiny, Cap’n. Not to fret.

-----Kaylee Frye, Firefly

This chapter will cover perhaps the single biggest topic for OpenGL ES: the process of
illuminating, shading, and coloring the virtual landscape. We touched on color in the
previous chapter, but because it is so integral to both lighting and shading, we will cover
it more in depth here. For those of you reading the quaint paper version of this book,
yes, I know, it is odd to have a chapter on colors in a monochrome form. However, the
ebook version is in color.

The Story of Light and Color
Without light, the world would be a dark place (duh). Without color, it would be hard to
tell the difference between stoplights.

We all take for granted the wondrous nature of light-----from the soft and gentle
illumination off the morning mist to the ignition of a space shuttle’s main engines to the
shy pale radiance of a full moon on a snowy field in mid-winter. A lot has been written
about the physics of light and its nature and perception. It might take an artist a lifetime

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Turning On the Lights 92

to fully understand how to take colored pigments suspended in oil and to apply them on
a canvas to create a believable rainbow at the base of a waterfall. Such is the task of
OpenGL ES when it comes to turning on the lights in our scenes.

Sans poetry, light is merely a portion of the full electromagnetic spectrum that our eyes
are sensitive to. The same spectrum also includes radio signals that our iPhones use, X-
rays to aid a physician, gamma rays sent out from a dying star billions of years ago, and
microwaves that can be used to reheat some pizza left over from Wii Bowling Night last
Thursday.

Light is said to have four main properties: wavelength, intensity, polarization, and
direction. The wavelength determines the color that we perceive, or whether we can
actually see anything in the first place. The visible spectrum starts in the violet range,
with wavelengths of around 380 nanometers, on up to red, with a wavelength of around
780 nanometers. Immediately below is ultraviolet, and right above the visible range you’ll
find infrared, which we can’t directly see but can detect indirectly in the form of heat.

The way we perceive colors from objects has to do with what wavelengths the object or
its material absorbs or otherwise interferes with the oncoming light. Besides absorption,
it could be scattered (giving us the blue of the sky or the red of the sunset), reflected,
and refracted.

If someone says that their favorite color is white, they must mean that all colors are their
favorite because white is a summation of all colors of the visible spectrum. If it is black,
they don’t like any colors, because black is the absence of color. In fact, that is why you
shouldn’t wear black on a nice warm sunny day. Your clothing absorbs so much energy
(in the form of light and infrared) that some of that ultimately turns into heat.

Note When the sun is straight overhead, it can deliver an irradiance of about 1 kilowatt for
every square meter. Of that, a little more than half is infrared, sensed as a very warm day,
while a little less than half is visible light, and a measly 32 watts are devoted to UV.

It is said that Aristotle developed the first known color theory. He considered four colors,
each corresponding to one of the four elements of air, earth, water, and fire.

However, as we look at the visible spectrum, you will notice a nice contiguous spread
from violet on one end to red on the other that has neither water nor fire in it. Nor will
you see discrete values of red, green, or blue, typically used nowadays to define the
individual shades. In the early 19th century, British polymath Thomas Young developed
the tricolor model that uses three colors to simulate all visible hues. Young proposed
that the retina was made up of bundles of nerve fibers, which would respond to varying
intensities of red, green, or violet light. German scientist Hermann von Helmholtz later
expanded this theory in the mid-19th century.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Turning On the Lights 93

Note Young was a particularly colorful fellow. (Someone had to say it.) Not only was he the
founder of the field of physiological optics, in his spare time he developed the wave theory of
light, including the invention of the classic double-slit experiment, which is a college physics
staple. But wait! There’s more! He also proposed the theory of capillary phenomena, was the
first to use the term energy in the modern sense, partially deciphered some of the Egyptian
portion of the Rosetta Stone, and devised an improved means of tuning musical instruments.
The laddie must have been seriously sleep-deprived.

Today, colors are most frequently described via red-green-blue (RGB) triplets and their
relative intensity. Each of the colors fades to black with zero intensity and shows varying
hues as the intensity increases, ultimately perceived as white. Because the three colors
need to be added together to produce the entire spectrum, this system is an additive
model.

Besides the RGB model, printers use a subtractive mode known as CMYK, for cyan-
magenta-yellow-black (the key). Because the three primaries cannot produce a really
deep black, black is added as an accent for deep shadows or graphic details.

Another common model is HSV for hue-saturation-value, and you will frequently find it
as an alternative to RGB in many graphics packages or color pickers. Developed in the
1970s specifically for computer graphics, HSV depicts color as a 3D cylinder (Figure 4-
1). Saturation goes from the inside out, value goes from bottom to top, and hue goes
around the edge. A variant on this is HSL, substituting value for lightness. Figure 4-2
shows the Mac OS X color picker in its many versions.

Figure 4-1. HSV color wheel or cylinder (source: Wikipedia Commons)

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Turning On the Lights 94

Figure 4-2. OS X’s standard color pickers-----RGB, CMYK, HSV, and the ever-popular Crayola model

Let There Be Light
In the real world, light comes at us from all sides and with all colors and, when
combined, can create the details and rich scenes of everyday life. OpenGL doesn’t
attempt to duplicate anything like the real-world lighting models, because those are very
complex and time-consuming and generally reserved for Disney’s rendering farms. But it
can approximate it in a way that is certainly good enough for real-time gaming action.

The lighting model used in OpenGL ES 1 permits us to place several lights of varying
types around our scene. We can switch them on or off at will, specifying direction,
intensity, colors, and so on. But that’s not all, because we also need to describe various
properties of our model and how it interacts with the incoming light. Lighting defines the
way light sources interact with objects and the materials those objects are created with.
Shading specifically determines the coloring of the pixel based on the lighting and
material. Notice that a white piece of paper will reflect light completely differently than a
pink, mirrored Christmas ornament. Taken together, these properties are bundled up
into an object called a material. Blending the material’s attributes and the light’s
attributes together generates the final scene.

Note OpenGL ES 2 has no lights whatsoever, leaving that up to the programmer via the use
of shaders. The GLKit framework, new in iOS5, adds a few lights via the GLKBaseEffect object,
but that is not meant to be a general-purpose substitute for version 1.

The colors of OpenGL lights can consist of up to three different components:

 Diffuse

 Ambient

 Specular

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Turning On the Lights 95

Diffuse light can be said to come from one direction such as the sun or a flashlight. It
hits an object and then scatters off in all directions, producing a pleasant soft quality.
When a diffuse light hits a surface, the reflected amount is largely determined by the
angle of incidence. It will be at its brightest when directly facing the light but drops as it
tilts further and further away.

Ambient light is that which comes from no particular direction, having been reflected off
all the surfaces that make up the environment. Look around the room you are in, and the
light that is bouncing off the ceiling, walls, and your furniture all combine to form the
ambient light. If you are a photographer, you know how important ambient lighting is to
make a scene much more realistic than a single point source can, particularly in portrait
photography where you would have a soft ‘‘fill light’’ to offset the brighter main light.

Specular light is that which is reflected off a shiny surface. It comes from a specific
direction but bounces off a surface in a much more directed fashion. It makes the hot
spot that we’d see on a disco ball or a newly cleaned and waxed car. It is at its brightest
when the viewpoint is directly in line with the source and falls off quickly as we move
around the object.

When it comes to both diffuse and specular lighting, they are typically the same colors.
But even though we’re limited to the eight light objects, having different colors for each
component actually means that a single OpenGL ‘‘light’’ can act like three different ones
at the same time. Out of the three, you might consider having the ambient light be a
different color, usually one that is opposing the main coloring so as to make the scene
more visually interesting. In the solar-system model, a dim blue ambient light helps
illuminate the dark side of a planet and lends a greater 3D quality to it.

Note You don’t have to specify all three types for a given light. Diffuse usually works just
fine in simple scenes.

Back to the Fun Stuff (for a While)
We’re not done with the theory yet, but let’s get back to coding for a while. After that, I’ll
cover more on light and shading theory.

You saw in the previous examples how colors defined with the standard RGB version on
a per-vertex basis would let us see our world without any lighting at all. Now we will
create lights of various types and position them around our so-called planet. OpenGL
ES must support at least eight lights total, which is the case for iOS. But of course you
can create more and add or remove them as needed. If you are really picky, you can
check at runtime for just how many lights a particular implementation of OpenGL
supports by using one of the many variants of glGet* to retrieve the values of this:

int numLights;
glGetIntegerv(GL_MAX_LIGHTS,&numLights);

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Turning On the Lights 96

Note OpenGL ES has a number of utility functions, with glGet*() being one of the most
commonly used. The glGet* calls let you inquire about the states of various parameters, such
as the current modelview matrix to the current line width. The exact call depends on the type
of data requested. Be careful about using these calls too frequently, particularly in production
code, because they are very inefficient.

Let’s go back to the example code from Chapter 3, where you had a squashed red and
blue planet, and make the following changes:

1. Ensure that the squash value is 1.0, and the planet is made up of 10
stacks and 10 slices.

2. In Planet.m, comment out the line blue+=colorIncrment at the end of
the init() method.

What should you see? C’mon, no peeking. Cover up Figure 4-3 and guess. Got it? Now
you can compile and run. Figure 4-3 (left) is what you should see. Now go back to the
initGeometry method and increase the number of slices and stacks to 100 each. That
should yield Figure 4-3 (right). So, by simply changing a few numbers around, we have a
crude lighting and shading scheme. But this is only a fixed lighting scheme that breaks
down the moment you want to start moving things around. That’s when we let OpenGL
do the heavy lifting.

Unfortunately, the process of adding lights is a little more complicated than just calling
something like glMakeAwesomeLightsDude(), as we will see.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Turning On the Lights 97

Figure 4-3. Simulated lighting from below (left) and a higher polygon count to simulate shading (right)

1. Create a new header to hold some of the systemwide values, and call it
OpenGLSolarSystem.h. For now, it should contain just the following two
lines:

#import <OpenGLES/ES1/gl.h>
#define SS_SUNLIGHT GL_LIGHT0 //GL uses GL_LIGHTx

2. Add #import "OpenGLSolarSystem.h" to the top of the solar-system view
controller.

3. Add the code in Listing 4-1, and call it from your viewDidLoad() method
in the viewcontroller where all of the other initializers reside. And make
sure to set the current context; otherwise, you’ll not see a thing.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Turning On the Lights 98

Listing 4-1. Initializing the lights

-(void)initLighting
{
 GLfloat diffuse[]={0.0,1.0,0.0,1.0}; //1
 GLfloat pos[]={0.0,10.0,0.0,1.0}; //2

 glLightfv(SS_SUNLIGHT,GL_POSITION,pos); //3
 glLightfv(SS_SUNLIGHT,GL_DIFFUSE,diffuse); //4

 glShadeModel(GL_FLAT); //5

 glEnable(GL_LIGHTING); //6
 glEnable(SS_SUNLIGHT); //7
}

This is what’s going on:

 The lighting components are in the standard RGBA normalized form.
So in this case, there is no red, maximum green, and no blue. The final
value of alpha should be kept at 1.0 for now, because it will be
covered in more detail later.

 Line 2 specifies the position of the light. It is at a y of +10 so, it will be
hovering above our sphere.

 In lines 3 and 4, we set the light’s position and the diffuse component
to the diffuse color. glLightfv() is a new call and is used to set
various light-related parameters. You can retrieve any of this data at a
later time using glGetLightfv(), which retrieves any of the parameters
from a specific light.

 In line 5 we specify a shading model. Flat means that a face is a single
solid color, while setting it to GL_SMOOTH will cause the colors to blend
smoothly across the face and from face to face.

 And finally, line 6 tells the system we want to use lighting, while line 7
enables the one light we’ve created.

Note The final parameter of glLightfv() takes an array of four GLfloat values; the fv
suffix means “float-vector.” There is also a glLightf() call to set single-value parameters.

Now compile and run. Eh? What’s that, you say? You see only a black thing about the
size of the super-massive black hole at the center of the galaxy M31? Oh yes, we forgot
something, sorry. As previously mentioned, OpenGL in all of its varieties still remains a
relatively low-level library, so it is up to the programmer to handle all sorts of
housekeeping tasks that you’d expect a higher-level system to manage (and it gets
much worse on OpenGL ES 2.0). And once the lights are turned on, the predefined
vertex colors are ignored, so we get black. With that in mind, our sphere model needs
an extra layer of data to tell the system just how to light its facets, and that is done
through an array of normals for each vertex.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Turning On the Lights 99

What is a vertex normal? Face normals are normalized vectors that are orthogonal
(perpendicular) to a plane or face. But in OpenGL, vertex normals are used instead
because they provide for better shading down the road. It sounds odd that a vertex can
have a ‘‘normal’’ of its own. After all, what is the ‘‘direction’’ of a vertex? It is actually
quite simple conceptually, because vertex normals are merely the normalized sum of the
normals of the faces adjacent to the vertex. See Figure 4-4.

Figure 4-4. A face normal is illustrated on the right, while vertex normals for a triangle fan are on the left.

OpenGL needs all of this information to tell what ‘‘direction’’ the vertex is aiming at so it
can calculate just how much illumination is falling on it, if at all. It will be its brightest
when aiming directly at the light source and dims as it starts tilting away. This means we
need to modify our planet generator to create a normal array along with the vertex and
color arrays, as shown in Listing 4-2.

Listing 4-2. Adding the normal generator to planet.m

- (id) init:(GLint)stacks slices:(GLint)slices radius:(GLfloat)radius squash:(GLfloat)
squash
{
 unsigned int colorIncrment=0;
 unsigned int blue=0;
 unsigned int red=255;
 int numVertices=0;

 m_Scale=radius;
 m_Squash=squash;

 colorIncrment=255/stacks;

 if ((self = [super init]))
 {
 m_Stacks = stacks;
 m_Slices = slices;
 m_VertexData = nil;

 // Vertices

 GLfloat *vPtr = m_VertexData =
 (GLfloat*)malloc(sizeof(GLfloat) * 3 * ((m_Slices*2+2) * (m_Stacks)));

3
www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Turning On the Lights 100

 // Color data

 GLubyte *cPtr = m_ColorData =
 (GLubyte*)malloc(sizeof(GLubyte) * 4 * ((m_Slices*2+2) * (m_Stacks)));

 // Normal pointers for lighting.

 GLfloat *nPtr = m_NormalData = //1

(GLfloat*)malloc(sizeof(GLfloat) * 3 * ((m_Slices*2+2) *
(m_Stacks)));

 unsigned int phiIdx, thetaIdx;

 // Latitude

 for(phiIdx=0; phiIdx < m_Stacks; phiIdx++)
 {
 // Starts at -1.57 and goes up to +1.57 radians.

 // The first circle.

 float phi0 = M_PI * ((float)(phiIdx+0) * (1.0/(float)(m_Stacks)) - 0.5);

 // The next, or second one.

 float phi1 = M_PI * ((float)(phiIdx+1) * (1.0/(float)(m_Stacks)) - 0.5);
 float cosPhi0 = cos(phi0);
 float sinPhi0 = sin(phi0);
 float cosPhi1 = cos(phi1);
 float sinPhi1 = sin(phi1);

 float cosTheta, sinTheta;

 // Longitude

 for(thetaIdx=0; thetaIdx < m_Slices; thetaIdx++)
 {
 // Increment along the longitude circle each "slice."

 float theta = 2.0*M_PI * ((float)thetaIdx) * (1.0/(float)(m_Slices-1));
 cosTheta = cos(theta);
 sinTheta = sin(theta);

 // We're generating a vertical pair of points, such
 // as the first point of stack 0 and the first point of stack 1
 // above it. This is how TRIANGLE_STRIPS work,
 // taking a set of 4 vertices and essentially drawing two triangles
 // at a time. The first is v0-v1-v2 and the next is v2-v1-v3, etc.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Turning On the Lights 101

 // Get x-y-z for the first vertex of stack.

 vPtr[0] = m_Scale*cosPhi0 * cosTheta;
 vPtr[1] = m_Scale*sinPhi0*m_Squash;
 vPtr[2] = m_Scale*cosPhi0 * sinTheta;

 // The same but for the vertex immediately above
 // the previous one

 vPtr[3] = m_Scale*cosPhi1 * cosTheta;
 vPtr[4] = m_Scale*sinPhi1*m_Squash;
 vPtr[5] = m_Scale* cosPhi1 * sinTheta;

 // Normal pointers for lighting.

 nPtr[0] = cosPhi0 * cosTheta; //2
 nPtr[1] = sinPhi0;

nPtr[2] = cosPhi0 * sinTheta;

 nPtr[3] = cosPhi1 * cosTheta; //3
nPtr[4] = sinPhi1;
nPtr[5] = cosPhi1 * sinTheta;

 cPtr[0] = red;
 cPtr[1] = 0;
 cPtr[2] = blue;
 cPtr[4] = red;
 cPtr[5] = 0;
 cPtr[6] = blue;
 cPtr[3] = cPtr[7] = 255;

 cPtr += 2*4;
 vPtr += 2*3;
 nPtr +=2*3; //4

 }

 blue+=colorIncrment;
 red-=colorIncrment;
 }

 numVertices=(vPtr-m_VertexData)/6;
 }

 return self;
}

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Turning On the Lights 102

What’s happening here:

 In line 1, the normal array is allocated with one three-component
normal per vertex. (And while you’re at it, don’t forget to add the
instance variable GLfloat *m_NormalData; to Planet.h.)

 Lines 2ff and 3ff generate the normal data. It doesn’t look like any
fancy-schmancy normal averaging scheme covered earlier, so what
gives? Since we’re dealing with a very simple symmetrical form of a
sphere, the normals are identical to the vertices without any scaling
values (to ensure they are unit vectors-----that is, of length 1.0). Notice
that the calculations for the vPtr values and the nPtrs are virtually the
same as a result.

 And as with the other two pointers, nPtr is incremented.

Note You’ll rarely need to actually generate your own normals. If you do any real work in
OpenGL ES, you’ll likely be importing models from third-party applications, such as 3D-Studio
or Strata. They will generate the normal arrays along with the others for you. More will be
covered on this later.

Add the following to the planet’s interface in Planet.h:

GLfloat *m_NormalData;

The final step is to modify the execute() method in Planet.m to look like Listing 4-3.

Listing 4-3. Supporting lighting in the Planet Execute routine

- (bool)execute
{
 glMatrixMode(GL_MODELVIEW);
 glEnable(GL_CULL_FACE);
 glCullFace(GL_BACK);

 glEnableClientState(GL_NORMAL_ARRAY); //1
 glEnableClientState(GL_VERTEX_ARRAY);
 glEnableClientState(GL_COLOR_ARRAY);

 glVertexPointer(3, GL_FLOAT, 0, m_VertexData);
 glNormalPointer(GL_FLOAT, 0, m_NormalData); //2

 glColorPointer(4, GL_UNSIGNED_BYTE, 0, m_ColorData);
 glDrawArrays(GL_TRIANGLE_STRIP, 0, (m_Slices+1)*2*(m_Stacks-1)+2);

 return true;
}

It’s not much different than the original, except with the addition of lines 1 and 2 for
sending the normal data to the OpenGL pipeline alongside the color and vertex
information. If you have a very simple model in which many of the vertices all share the

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Turning On the Lights 103

same normal, you can dump the normal array and use glNormal3f() instead, saving a
little memory and CPU overhead in the process.

Let’s make one final tweak. For this example, ensure that the planet is allocated with the
stack and slice values set back to 10 each This makes it easier to see how some of the
lighting works. Now you can compile and run it for real, and if you get something similar
to Figure 4-5, relax and take a pause for a cool refreshing beverage.

Figure 4-5. Flat lighting

Now that you’re back, I am sure you’ve spotted something a little odd. Supposedly the
geometry is based on strips of triangles, so why are the faces those weird four-sided
triangle things?

When set for flat shading, OpenGL picks up its illumination cue from only a single vertex,
the last one of the respective triangle. Now, instead of the strips being drawn from
triangles in horizontal pairs, think of them loosely coupled in vertical pairs, as you see in
Figure 4-6.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Turning On the Lights 104

Figure 4-6. ‘‘Stacked’’ triangle pairs

In Strip 0, Triangle 1 will be drawn using vertices 0, 1, and 2, with vertex 2 used for the
shading. Triangle 2 will use 2, 1, and 3. Lather, rinse, and repeat for the rest of the strip.
Next for Strip 1, Triangle 41 will be drawn with vertices 4, 0, and 5. But Triangle 42 will
use vertices 5, 0, and 2, with the same vertex as Triangle 1 for its shading. That is why
the vertical pairs combine to form a ‘‘bent’’ quadrilateral.

There are few reasons nowadays to use flat shading, so in initLighting(), swap out
GL_FLAT for GL_SMOOTH.

And now you probably know the drill: compile, run, and compare. Then for fun, decrease
the sphere’s resolution from 10 slices and segments down to 5. Go back to flat shading
on this one, and then compare to smooth shading. See Figure 4-7a, b, and c. Figure 4-
7c is particularly interesting because the shading model starts to break down, showing
some artifacting along the face edges. Now reset the sphere’s resolution back up to 20
or 30 to make it nice and smooth for the next section.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Turning On the Lights 105

Figure 4-7. From left to right, smooth shading a sphere with 20 stacks and 20 slices, flat shading on a sphere of
only 5 stacks and slices, followed by smooth shading

Fun with Light and Materials
Now, since we have a nice smooth sphere to play with, we can start tinkering with the
other lighting models and materials. But first a thought experiment: say you have a
green sphere as shown earlier but your diffuse light is red. What color will the sphere
be? (Pause for the Jeopardy theme.) Ready? Well, in the real world what would it be?
Reddish green? Greenish red? A mauvy shade of pinky russet? Let’s try it and find out.
Modify initLighting() again, as shown in Listing 4-4. Note that the light vectors have
been renamed to their specific colors to make it a little more readable.

Listing 4-4. Adding Some More Light Types and Materials

-(void)initLighting
{
 GLfloat pos[]={0.0,3.0,0.0,1.0};

 GLfloat white[]={1.0,1.0,1.0,1.0};
 GLfloat red[]={1.0,0.0,0.0,1.0};
 GLfloat green[]={0.0,1.0,0.0,1.0};
 GLfloat blue[]={0.0,0.0,1.0,1.0};

 GLfloat cyan[]={0.0,1.0,1.0,1.0};
 GLfloat yellow[]={1.0,1.0,0.0,1.0};
 GLfloat magenta[]={1.0,0.0,1.0,1.0};

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Turning On the Lights 106

 GLfloat halfcyan[]={0.0,.5,.5,1.0};

 //Lights go here.

 glLightfv(SS_SUNLIGHT,GL_POSITION,pos);
 glLightfv(SS_SUNLIGHT,GL_DIFFUSE,green);

 //Materials go here.

 glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, red); // 1

 glShadeModel(GL_SMOOTH);

 glEnable(GL_LIGHTING);
 glEnable(SS_SUNLIGHT);

 glLoadIdentity();
}

If you see our old friend, the supermassive black hole from M31, you’ve done well. So,
why is it black? That’s simple; remember the discussion at the start of this chapter on
colors and reflectance? A red object looks red only when the lighting hitting it has a red
component, precisely the way our green light doesn’t. If you had a red balloon in a dark
room and illuminated it with green light on it, it would look black, because no green
would come back to you. And if someone asks you what you’re doing with a red balloon
in a dark room, just growl ‘‘Physics!’’ Then tell them that they just wouldn’t understand in
a dismissive tone.

So, with this understanding, replace the red diffuse material with green in line 1. What
should you get? Right, the green sphere is illuminated again. But you may notice
something really interesting. The green now looks a little bit brighter than before adding
the material. Figure 4-8 (left) shows it without any material specified, and Figure 4-8
(right) shows it with the green diffuse material added.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Turning On the Lights 107

Figure 4-8. Without green material defined (left) and with it defined (right)

Let’s do one more experiment. Let’s make the diffuse light be a more traditional white.
What should now happen with the green? Red? How about blue? Since the white light
has all those components, the colored materials should all show up equally well. But if
you see the black ball again, you changed the material’s color, not the lighting.

Specular Lighting
Well, how about the specular stuff? Add the following line to the lights section:

glLightfv(SS_SUNLIGHT,GL_SPECULAR,red);

To the material section, add this:

glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, red);

And change the light’s position to the following:

GLfloat pos[]={10.0,3.0,0.0,1.0};

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Turning On the Lights 108

Note The first value to glMaterial* must always be GL_FRONT_AND_BACK. In normal
OpenGL, you’re permitted to have different materials on both sides of a face, but not so in
OpenGL ES. However, you still must use the front and back values in OpenGL ES, or materials
will not work properly.

Reset the diffuse material back to green. You should see something that looks like a big
mess of something yellowish-reddish. Shorthand for what’s happening is that there’s yet
another value we can use to play with the lighting. Called shininess, it specifies just how
shiny the object’s surface is and ranges from 0 to 128. The higher the value, the more
focused the reflection will be, and hence the shinier it appears. But since it defaults to 0,
it spreads the specular wealth across the entire planet. It overpowers the green so much
that when mixed with the red, it shows up as yellow. So, in order to get control of this
mess, add this line:

glMaterialf(GL_FRONT_AND_BACK,GL_SHININESS, 5);

I’ll explain shortly the real math behind this, but for right now see what happens with the
value of 5. Next try 25, and compare it with Figure 4-9. Shininess values from 5 to 10
correspond roughly to plastics; greater than that, and we get into serious metal territory.

Figure 4-9. Shininess set to 0, 5.0, and 25.0, respectively (left to right)

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Turning On the Lights 109

Ambient Lighting
It’s time for some fun with the ambient lighting. Add the following line to initLighting()
then compile and run:

glLightfv(SS_SUNLIGHT,GL_AMBIENT,blue);

Does it look like Figure 4-10 (left)? And what should you do to get the image in Figure 4-
10 (right)? You need to add the following line:

glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, blue);

Figure 4-10. Blue ambient light only (left), both ambient light and ambient material (right)

Besides the ambient attribute for each light, you can also set a world ambient value. The
light-based values are variables, as are all of light parameters, so they vary as a function
of the distance, attenuation, and so on. The world value is a constant across your entire
OpenGL ES universe and can be set as follows:

GLfloat colorVector[4]={r,g,b,a};

glLightModelfv(GL_LIGHT_MODEL_AMBIENT,colorVector);

s
www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Turning On the Lights 110

The default value is a dim gray formed by a color with red=.2, green=.2, and blue=.2.
This helps ensure that your objects are always visible no matter what. And while we’re at
it, there is one other value for glLightModelfv(), and that is defined by the parameter of
GL_LIGHT_MODEL_TWO_SIDE. The parameter is actually a Boolean float. If it is 0.0, only one
side will be illuminated; otherwise, both will. The default is 0.0. And if for any reason you
wanted to change which faces were front ones, you may use glFrontFace() and specify
the triangles ordered clockwise or counterclockwise represent the front face. CCW is the
default.

Taking a Step Back
So, what is actually happening here? Quite a lot, actually. There are three general
shading models in use for real-time computer graphics. OpenGL ES 1 uses two of
those, both of which we’ve seen. The first, the flat model, simply shades each triangle
with one constant value. You’ve seen that that looks like in Figure 4-5. And in the good
ol’ days, this was a valid option, considering it was much faster than any others.
However, when the iPhone in your pocket is roughly the equivalent of a handheld Cray-1
(minus about 3 tons and liquid cooling), those kinds of speed tricks are really a thing of
the past. The smooth model uses interpolative shading, calculating the colors at each
vertex and then interpolating them across the faces. The actual kind of shading OpenGL
uses is a special form of this called Gouraud shading. This is why the vertex normals are
generated based on normals of all the adjacent faces.

The third kind of shading is called Phong and is not used in OpenGL because of high
CPU overhead. Instead of interpolating color values across the face, it interpolates
normals, generating a normal for each fragment (that is, pixel). This helps remove some
of the artifacting along edges defined by high curvatures, which produce very sharp
angles. Phong can diminish that effect, but so can using more triangles to define your
object.

There are numerous other models. Jim Blinn of the JPL-Voyager animations in the 1970s
created a modified form of Phong shading, now called the Blinn-Phong model. If the
light source and viewer can be treated as if they are at infinity, it can be less
computationally intensive.

The Minnaert model tends to add a little more contrast to diffuse materials. Oren-Nayer
adds a ‘‘roughness’’ component to the diffuse model in order to match reality just a little
bit better.

Emissive Materials
Still another significant parameter we need to cover here that factors into the final color
is GL_EMISSION. Unlike the diffuse, ambient, and specular bits, GL_EMISSION is for
materials only and specifies that a material is emissive in quality. An emissive object has
its own internal light source such as the sun, which will come in handy in the solar-
system model. To see this in action, add the following line to the other material code in
initLighting() and remove the ambient material:

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Turning On the Lights 111

 glMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION, yellow);

Because the yellow is at full intensity, what do you expect to see? Probably Figure 4-
11a. Next cut the values down by half so you have this:

 GLfloat yellow[]={.5,.5,0.0,1.0};

Now what do you see? I’ll bet it looks something like Figure 4-11 (right).

Figure 4-11. A body with emissive material set to full intensity for the yellow (left); the same scene but with just
50 percent intensity (right)

Superficially, emissive materials may look just like the results of using ambient lighting.
But unlike ambient lights, only a single object in your scene will be affected. And as a
side benefit, they don’t use up additional light objects. However, if your emissive objects
do represent real lights of any sort such as the sun, putting a light object inside definitely
adds another layer of authenticity to the scene.

One further note regarding materials: if your object has had the color vertices specified,
as both our cube and sphere have, those values can be used instead of setting
materials. You must call glEnable(GL_COLOR_MATERIAL). This will apply the vertex colors
to the shading system, instead of those specified by the glMaterial calls.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Turning On the Lights 112

Attenuation
In the real world, of course, light decreases the further an object is from the light source.
OpenGL ES can model this factor as well using one or more of the following three
attenuation factors:

 GL_CONSTANT_ATTENUATION

 GL_LINEAR_ATTENUATION

 GL_QUADRATIC_ATTENUATION

All three are combined to form one value that then figures into the total illumination of
each vertex of your model. They are set using gLightf(GLenum light, GLenum pname,
GLfloat param), where light is your light ID such as GL_LIGHT0, pname is one of the three
attenuation parameters listed earlier, and the actual value is passed using param.

Linear attenuation can be used to model attenuation caused by factors such as fog. The
quadratic attenuation models the natural falloff of light as the distance increases, which
changes exponentially. As the distance of the light doubles, the illumination is cut to one
quarter of the previous amount.

Let’s just look at one, GL_LINEAR_ATTENUATION, for the time being. The math behind all
three will be unveiled in a moment. Add the following line to initLighting():

 glLightf(SS_SUNLIGHT,GL_LINEAR_ATTENUATION,.025);

And just to make things a little clearer visually, ensure that the emissive material is
turned off. What do you see? Now increase the distance down the X-axis from 10 to 50
in the pos vector. Figure 4-12 illustrates the results.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Turning On the Lights 113

Figure 4-12. The light’s x distance is 10 (left) and 50 (right), with a constant attenuation of 0.025.

Spotlights
The standard lights default to an isotropic model; that is, they are like a desk light
without a shade, shining equally (and blindingly) in all directions. OpenGL provides three
additional lighting parameters that can turn the run-of-the-mill light into a directional
light:

 GL_SPOT_DIRECTION

 GL_SPOT_EXPONENT

 GL_SPOT_CUTOFF

Since it is a directional light, it is up to you to aim it using the GL_SPOT_DIRCTION vector. It
defaults to 0,0,-1, pointing down the ---Z-axis, as shown in Figure 4-13. Otherwise, if you
want to change it, you would use a call similar to the following that aims it down the +X-
axis:

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Turning On the Lights 114

GLfloat direction[]={1.0,0.0,0.0};

glLightfv(GL_LIGHT0, GL_SPOT_DIRECTION, direction);

Figure 4-13. A spotlight aimed at the default direction

GL_SPOT_CUTOFF specifies the angle at which the spotlight’s beam fades to 0 intensity
from the center of the spotlight’s cone and is naturally half the angular diameter of the
full beam. The default value is 45 degrees, for a beam width of 90 degrees. And the
lower the value, the narrower the beam.

The third and final spotlight parameter, GL_SPOT_EXPONENT, establishes the rate of drop-
off of the beam’s intensity, which is still another form of attenuation. OpenGL ES will
take the cosine of the angle formed by the beam’s center axis and that of an arbitrary
vertex, Θ, and raise it to the power of GL_SPOT_EXPONENT. Because its default is 0, the
light’s intensity will be the same across all parts of the illuminated region until the cutoff
value is reached, and then it drops to zero.

Light Parameters in Play
Table 4-1 summarizes the various light parameters covered in this section.

Table 4-1. All of the Possible Lighting Parameters for glLight*() Calls in OpenGL ES 1.1

Name Purpose

GL_AMBIENT Sets the ambient component of a light

GL_DIFFUSE Sets the diffuse component of a light

GL_SPECULAR Sets the specular component of a light

GL_POSITION Sets the x,y,z coordinates of the light

GL_SPOT_DIRECTION Aims a spotlight

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Turning On the Lights 115

Name Purpose

GL_SPOT_EXPONENT Specifies the rate of falloff from the center of a
spotlight’s beam

GL_SPOT_CUTOFF Specifies the angle from the center of a spotlight’s
beam and drops to 0 intensity

GL_CONSTANT_ATTENUATION Specifies the constant of the attenuation factor

GL_LINEAR_ATTENUATION Specifies the linear component of the attenuation
factor; simulates fog or other natural phenomena

GL_QUADRATIC_ATTENUATION Specifies the quadratic portion of the attenuation
factor, simulating the normal decrease in intensity as
a function of distance

The Math Behind Shading
The diffuse shading model gives a very smooth look to objects, as you have seen. It
uses something called the Lambert lighting model. Lambert lighting states simply that
the more directly aimed a specific face is to the light source, the brighter it will be. The
ground beneath your feet is going to be brighter the higher the sun is in the sky. Or in
the more obscure but precise technical version, the reflective light increases from 0 to 1
as the angle, Θ, between the incident light, I, and the face’s normal, N, decrease from 90
to 0 degrees based on cos (Θ). See Figure 4-14. Here’s a quickie thought experiment:
when Θ is 90 degrees, it is coming from the side; cos(90) is 0, so the reflected light
along N is naturally going to be 0. When it is coming straight down, parallel to N, cos(0)
will be 1, so the maximum amount will be reflected back. And this can be more formally
expressed as follows:

Id =kdIi cos(Θ)

Id is the intensity of the diffuse reflection, Ii is the intensity of the incoming ray of light,
and kd represents the diffuse reflectance that is loosely coupled to the roughness of the
object’s material. Loosely means that in a lot of real-world materials, the actual surface
may be somewhat polished but yet translucent, while the layers immediately underneath
perform the scattering. Materials such as this may have both strong diffuse and specular
components. Also, each color band may have its own k value in real life, so there would
be one for red, green, and blue.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Turning On the Lights 116

Figure 4-14. For a perfectly diffuse surface, the reflected intensity of an incoming beam will be the vertical
component of that beam, or cosine of the angle between the incoming beam and the surface normal.

Specular Reflections
As referenced earlier, specular reflections serve to give your model a shiny appearance
besides the more general diffuse surface. Few things are perfectly flat or perfectly shiny,
and most lay somewhere in between. In fact, the earth’s oceans are good specular
reflectors, and on images of the earth from long distances, the sun’s reflection can
clearly be seen in the oceans.

Unlike a diffuse ‘‘reflection,’’ which is equal in all directions, a specular reflection is
highly dependent on the viewer’s angle. We’ve been taught that the angle of
incidence=angle of reflectance. This is true enough for the perfect reflector. But with the
exception of mirrors, the nose of a ’51 Studebaker, or the nicely polished forehead of
that Cylon centurion right before he blasts you 150,000 years into the past, few things
are perfect reflectors. And as such, there will be a slight scattering of the incoming ray;
see Figure 4-15.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Turning On the Lights 117

Figure 4-15. For a specular reflection, the incoming ray is scattered but only around the center of its reflected
counterpart.

The equation of the specular component can be expressed as follows:

I specular = W (q)I light cosn Θ

where:

 I light is the intensity of the incoming ray.

W (q) is how reflective the surfaces is based on the angle of I light .

 n is the shininess factor (sound familiar?).

 Θ is the angle between the reflected ray and the ray hitting the eye.

This is actually based on what’s called the Fresnel Law of Reflection, which is where the
W(q) value comes from. Although W(q) is not directly used by OpenGL ES 1 because it
varies with the angle of incidence and is therefore a little more complicated than the
specular lighting model, it could be used in a shader for version OpenGL ES 2. In that
case, it would be particularly useful in doing reflections off the water, for example. In its
place is a constant that is based on the specular values from the material setting.

The shininess factor, also called the specular exponent, is what we played with earlier.
However, in real life n can go far higher than the max of 128.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Turning On the Lights 118

Attenuation
Now back to the three kinds of attenuation listed earlier: constant, linear, and quadratic.
The total attenuation is calculated as follows, where kc is the constant, kl is the linear
value, kq is the quadratic component, and d stands for the distance from the light and

an arbitrary vertex:

kt= 1
kc+kld +kqd2()

Summing It All Up
So, now you can see that there are many factors in play to merely generate the color
and intensity of that color for any of the vertices of any models in our scene. These
include the following:

 Attenuation because of distance

 Diffuse lights and materials

 Specular lights and materials

 Spotlight parameters

 Ambient lights and materials

 Shininess

 Emissivity of the material

You can think of all of these as acting on the entire color vector or on each of the
individual R, G, and B components of the colors.

So, to spell it all out, the final vertex color will be as follows:

where:

ambient lightambient material+cos(Θ)shininess specularlight specularmaterial[]
In other words, the color is equal to the some of the things not controlled by the lights
added to the intensity of all the lights once we take into account the attenuation, diffuse,
specular, and spotlight elements.

color = ambient world model ambientmaterial + emissivematerial + intensity light

intensitylight = (attenuation factor)i(spotlight factor
i = 0

n −1
∑)i

+

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Turning On the Lights 119

When calculated, these values act individually on each of the R, G, and B components
of the colors in question.

What’s This All For?
One reason why it is handy to understand what’s going on beneath the hood is that it
helps make OpenGL and related tools less mysterious. Just like when you learn a
foreign language, say Klingon (and if you, dear reader, are Klingon, majQa’ nuqDaq ‘oH
puchpa’ ‘e’!), it ceases to be the mystery that it once was; where growls were growls
and snarls were snarls, now you might recognize it as a lovely poem about fine tea.

And another reason is, as mentioned early on, all of these nice ‘‘high-level’’ tools are
absent in OpenGL ES 2.0. Most any of the earlier shading algorithms will have to be
implemented by you in little bits o’ code that are called shaders. Fortunately, information
on the most common shaders is available on the Internet and, replicating the previous
information, relatively straightforward.

More Fun Stuff
Now, armed with all of this photonic goodness, it’s time to get back to coding and
introduce more than one light. Secondary lights can make a surprisingly large difference
in the authenticity of the scene for little effort.

Go back to initLighting() and make it look like Listing 4-5. Here we add two more
lights, named SS_FILLLIGHT1 and SS_FILLLIGHT2, respectively. Add their definitions to
the header file:

#define SS_FILLLIGHT1 GL_LIGHT1
#define SS_FILLLIGHT2 GL_LIGHT2

Now compile and run. Do you see Figure 4-16 (left)? Here is where the Gouraud shading
model breaks down, as mentioned earlier, exposing the edges of the triangles. And what
is the solution? At this point, simply increase the number of slices and stacks from 20 to
50 each, and you’ll get the much more pleasing image, shown in Figure 4-16 (right).

Listing 4-5. Adding Two Fill Lights

-(void)initLighting
{
 GLfloat posMain[]={5.0,4.0,6.0,1.0};
 GLfloat posFill1[]={-15.0,15.0,0.0,1.0};
 GLfloat posFill2[]={-10.0,-4.0,1.0,1.0};

 GLfloat white[]={1.0,1.0,1.0,1.0};
 GLfloat red[]={1.0,0.0,0.0,1.0};
 GLfloat dimred[]={.5,0.0,0.0,1.0};

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Turning On the Lights 120

 GLfloat green[]={0.0,1.0,0.0,0.0};
 GLfloat dimgreen[]={0.0,.5,0.0,0.0};
 GLfloat blue[]={0.0,0.0,1.0,1.0};
 GLfloat dimblue[]={0.0,0.0,.2,1.0};

 GLfloat cyan[]={0.0,1.0,1.0,1.0};
 GLfloat yellow[]={1.0,1.0,0.0,1.0};
 GLfloat magenta[]={1.0,0.0,1.0,1.0};
 GLfloat dimmagenta[]={.75,0.0,.25,1.0};

 GLfloat dimcyan[]={0.0,.5,.5,1.0};

 //Lights go here.

 glLightfv(SS_SUNLIGHT,GL_POSITION,posMain);
 glLightfv(SS_SUNLIGHT,GL_DIFFUSE,white);
 glLightfv(SS_SUNLIGHT,GL_SPECULAR,yellow);

 glLightfv(SS_FILLLIGHT1,GL_POSITION,posFill1);
 glLightfv(SS_FILLLIGHT1,GL_DIFFUSE,dimblue);
 glLightfv(SS_FILLLIGHT1,GL_SPECULAR,dimcyan);

 glLightfv(SS_FILLLIGHT2,GL_POSITION,posFill2);
 glLightfv(SS_FILLLIGHT2,GL_SPECULAR,dimmagenta);
 glLightfv(SS_FILLLIGHT2,GL_DIFFUSE,dimblue);

 glLightf(SS_SUNLIGHT,GL_QUADRATIC_ATTENUATION,.005);

 //Materials go here.

 glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, cyan);
 glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, white);

 glMaterialf(GL_FRONT_AND_BACK,GL_SHININESS,25);

 glShadeModel(GL_SMOOTH);
 glLightModelf(GL_LIGHT_MODEL_TWO_SIDE,0.0);

 glEnable(GL_LIGHTING);
 glEnable(SS_SUNLIGHT);
 glEnable(SS_FILLLIGHT1);
 glEnable(SS_FILLLIGHT2);

 glLoadIdentity();
}

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Turning On the Lights 121

Figure 4-16. Three lights, one main and two fill. The left-hand image has a low-resolution sphere, whereas the
one on the right is high-resolution.

In the previous examples, a number of new API calls were covered, which are
summarized in Table 4-2. Get to know them-----they are your friends, and you’ll be using
them a lot.

Table 4-2. New API Calls Covered

Name Purpose

glGetLight Retrieves any of the parameters from a specific light

glLight* Sets the parameters for the lights

glLightModel Specifies the light model, either GL_LIGHT_MODEL_AMBIENT
or GL_LIGHT_MODEL_TWO_SIDE

glMaterialfv Defines the attributes for the current material

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Turning On the Lights 122

Continued

Name Purpose

glNormal Assigns a single normal to an array of faces

glNormalPointer Specifies the current normal array for an object in the
execute method

glShadeModel Either GL_FLAT or GL_SMOOTH

glPopMatrix Pops a matrix off the current stack

glPushMatrix Pushes a matrix on the current stack

Back to the Solar System
Now we have enough tools to get back to the solar-system project. Hold on, there is a
lot of material to cover here. In particular are some other aspects of OpenGL that have
nothing to do with lighting or materials but need to be addressed before the solar-
system model gets much more complex.

First we need to add some new method declarations and instance variables to
OpenGLSolarSystemController.h. See Listing 4-6.

Listing 4-6. Header additions to support the Solar System

#import <Foundation/Foundation.h
#import <GLKit/GLKit.h>
#import “OpenGLSolarSystem.h”
#import "Planet.h"

#define X_VALUE 0
#define Y_VALUE 1
#define Z_VALUE 2

@interface OpenGLSolarSystemController : NSObject
{
 Planet *m_Earth;
 Planet *m_Sun;
 GLfloat m_Eyeposition[3];
}

-(void)execute;
-(void)executePlanet:(Planet *)planet;
-(id)init;
-(void)initGeometry;

@end

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Turning On the Lights 123

Next, a second object, in this case, our sun, needs to be generated, sized, and placed.
And while we’re at it, change the size of the earth to make it smaller than the sun. So,
replace the initGeometry() method in OpenGLSolarSystemController with Listing 4-7.

Listing 4-7. Add a second object and initialize the viewer’s position

-(void)initGeometry
{
 m_Eyeposition[X_VALUE]=0.0; //1
 m_Eyeposition[Y_VALUE]=0.0;
 m_Eyeposition[Z_VALUE]=5.0;

 m_Earth=[[Planet alloc] init:50 slices:50 radius:.3 squash:1.0]; //2
 [m_Earth setPositionX:0.0 Y:0.0 Z:-2.0]; //3

 m_Sun=[[Planet alloc] init:50 slices:50 radius:1.0 squash:1.0]; //4
 [m_Sun setPositionX:0.0 Y:0.0 Z:0.0];
}

Here’s what’s going on:

 Our eyepoint now has a well-defined location of +5 on the Z-axis as
defined in line 1ff.

 In line 2, the earth’s diameter is reduced to .3.

 And in line 3 we initialize the earth’s location to be behind the sun from
our standpoint, at z=-2.

 Now we can create the sun and place it at the exact center of our
relatively fake solar system.

InitLighting() needs to look like Listing 4-8, cleaned up from all of the mucking around
in the previous examples.

Listing 4-8. Expanded lighting for the Solar-System model

-(void)initLighting
{
 GLfloat sunPos[]={0.0,0.0,0.0,1.0};
 GLfloat posFill1[]={-15.0,15.0,0.0,1.0};
 GLfloat posFill2[]={-10.0,-4.0,1.0,1.0};

 GLfloat white[]={1.0,1.0,1.0,1.0};
 GLfloat dimblue[]={0.0,0.0,.2,1.0};

 GLfloat cyan[]={0.0,1.0,1.0,1.0};
 GLfloat yellow[]={1.0,1.0,0.0,1.0};
 GLfloat magenta[]={1.0,0.0,1.0,1.0};
 GLfloat dimmagenta[]={.75,0.0,.25,1.0};

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Turning On the Lights 124

 GLfloat dimcyan[]={0.0,.5,.5,1.0};

 //Lights go here.

 glLightfv(SS_SUNLIGHT,GL_POSITION,sunPos);
 glLightfv(SS_SUNLIGHT,GL_DIFFUSE,white);
 glLightfv(SS_SUNLIGHT,GL_SPECULAR,yellow);

 glLightfv(SS_FILLLIGHT1,GL_POSITION,posFill1);
 glLightfv(SS_FILLLIGHT1,GL_DIFFUSE,dimblue);
 glLightfv(SS_FILLLIGHT1,GL_SPECULAR,dimcyan);

 glLightfv(SS_FILLLIGHT2,GL_POSITION,posFill2);
 glLightfv(SS_FILLLIGHT2,GL_SPECULAR,dimmagenta);
 glLightfv(SS_FILLLIGHT2,GL_DIFFUSE,dimblue);

 //Materials go here.

 glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, cyan);
 glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, white);

 glLightf(SS_SUNLIGHT,GL_QUADRATIC_ATTENUATION,.001);

 glMaterialf(GL_FRONT_AND_BACK,GL_SHININESS,25);

 glShadeModel(GL_SMOOTH);
 glLightModelf(GL_LIGHT_MODEL_TWO_SIDE,0.0);

 glEnable(GL_LIGHTING);
 glEnable(SS_SUNLIGHT);
 glEnable(SS_FILLLIGHT1);
 glEnable(SS_FILLLIGHT2);
}

Naturally, the top-level execute method solar-system controller has to be completely
overhauled, along with the addition of a small utility function, as shown in Listing 4-9.

Listing 4-9. Solar-System execute methods

-(void)execute
{
 GLfloat paleYellow[]={1.0,1.0,0.3,1.0}; //1
 GLfloat white[]={1.0,1.0,1.0,1.0};
 GLfloat cyan[]={0.0,1.0,1.0,1.0};
 GLfloat black[]={0.0,0.0,0.0,0.0}; //2
 static GLfloat angle=0.0;
 GLfloat orbitalIncrement=1.25; //3
 GLfloat sunPos[3]={0.0,0.0,0.0,1.0};

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Turning On the Lights 125

 glPushMatrix(); //4

 glTranslatef(-m_Eyeposition[X_VALUE],-m_Eyeposition[Y_VALUE], //5

-m_Eyeposition[Z_VALUE]);

 glLightfv(SS_SUNLIGHT,GL_POSITION,sunPos); //6
 glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, cyan);
 glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, white);

 glPushMatrix(); //7

 angle+=orbitalIncrement; //8

 glRotatef(angle,0.0,1.0,0.0); //9

 [self executePlanet:m_Earth]; //10

 glPopMatrix(); //11

 glMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION, paleYellow); //12
 glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, black); //13

 [self executePlanet:m_Sun]; //14

 glMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION, black); //15

 glPopMatrix(); //16
}

-(void)executePlanet:(Planet *)planet
{
 GLfloat posX, posY, posZ;

 GLfloat angle=0;

 glPushMatrix();

 [planet getPositionX:&posX Y:&posY Z:&posZ]; //17

 glTranslatef(posX,posY,posZ); //18

 [planet execute]; //19

 glPopMatrix();
}

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Turning On the Lights 126

Here’s what’s going on:

 Line 1 creates a lighter shade of yellow. This just colors the sun a
slightly more accurate hue.

 We need a black color to ‘‘turn off’’ some of the material
characteristics if needed, as in line 2.

 In line 3, the orbital increment is needed to get the earth to orbit the
sun.

 glPushMatrix() in line 4 is a new API call. When combined with
glPopMatrix(), it helps isolate the transformations for one part of the
world from another part. In this case, the first glPushMatrix() actually
prevents the following call to glTranslate() from adding new
translations upon itself. You could dump the glPush/PopMatrix pair
and put the glTranslate() out of execute(), into the initialization
code, just as long as it is called only once.

 The translation in line 5 ensures that the objects are ‘‘moved away’’
from our eyepoint. Remember that everything in an OpenGL ES world
effectively revolves around the eyepoint. I prefer to have a common
origin that doesn’t rely on viewer’s location, and in this case, it is the
position of the sun as expressed in offsets from the eyepoint.

 Line 6 merely enforces the sun’s location as being at the origin.

 Ooh! Another glPushMatrix() in line 7. This ensures that any
transformations on the earth don’t affect the sun.

 Lines 8 and 9 get the earth to orbit the sun. How? In line 10 a little
utility function is called. That performs any transitions and moves an
object away from the origin if need be. As you recall, the
transformations can be thought of being last called/first used. So, the
translation in executePlanets() is actually performed first, followed by
the glRotation(). Note that this method will have the earth orbiting in
a perfect circle, whereas in reality, no planets will have a perfectly
circular orbit, so glTranlsation() will be used.

 glPopMatrix() in line 11 dumps any of the transformations unique to
the earth.

 Line 12 sets the sun’s material to be emissive. Note that the calls to
glMaterialfv() are not bound to any specific object. They set the
current material used by all following objects only until the next calls
are made. Line 13 turns off any specular settings used for the earth.

 Line 14 calls our utility again, this time with the sun.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Turning On the Lights 127

 The emissive material attribute is switched off, here in line 15, followed
by another glPopMatrix(). Note that every time you do use a push
matrix, it must be paired with a pop. OpenGL ES can handle stacks up
to 16 deep. Also, since there are three kinds of matrices in use in
OpenGL (the modelview, projection, and texture), make sure that you
are pushing/popping the proper stack. You can ensure this by
remembering to use glMatrixMode().

 Now in executePlanet(), line 17 gets the planet’s current position so
line 18 can translate the planet to the proper position. In this case, it
never actually changes, because we’re letting glRotatef() handle the
orbital duties. Otherwise, the xyz would constantly change as a factor
of time.

 Finally, call the planet’s own execute routine in line 19.

We’re almost done. Planet.h (Listing 4-10) and Planet.m (Listing 4-11) need to be
modified to hold some state information. Note that I am very old-school and prefer to
write my own setter/getters.

Listing 4-10. Modifications to Planet.h to support the Solar-System model

#import <Foundation/Foundation.h>
#import <OpenGLES/ES1/gl.h>

@interface Planet : NSObject
{

@private
 GLfloat *m_VertexData;
 GLubyte *m_ColorData;
 GLfloat *m_NormalData;
 GLint m_Stacks, m_Slices;
 GLfloat m_Scale;
 GLfloat m_Squash;
 GLfloat m_Angle;
 GLfloat m_Pos[3];
 GLfloat m_RotationalIncrement;
}

-(bool)execute;
-(id) init:(GLint)stacks slices:(GLint)slices radius:(GLfloat)radius squash:(GLfloat)
squash;
-(void)getPositionX:(GLfloat *)x Y:(GLfloat *)y Z:(GLfloat *)z;
-(void)setPositionX:(GLfloat)x Y:(GLfloat)y Z:(GLfloat)z;
-(GLfloat)getRotation;
-(void)setRotation:(GLfloat)angle;
-(GLfloat)getRotationalIncrement;
-(void)setRotationalIncrement:(GLfloat)inc;
-(void)incrementRotation;

@end

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Turning On the Lights 128

To Planet.m add the following initialization code at the very end of the init() method:

 m_Angle=0.0;
 m_RotationalIncrement=0.0;

 m_Pos[0]=0.0;
 m_Pos[1]=0.0;
 m_Pos[2]=0.0;

And after the execute method, add the code in Listing 4-11, defining the new methods.

Listing 4-11. Modifications to Planet.m

-(void)getPositionX:(GLfloat *)x Y:(GLfloat *)y Z:(GLfloat *)z
{
 *x=m_Pos[0];
 *y=m_Pos[1];
 *z=m_Pos[2];
}

-(void)setPositionX:(GLfloat)x Y:(GLfloat)y Z:(GLfloat)z
{
 m_Pos[0]=x;
 m_Pos[1]=y;
 m_Pos[2]=z;
}

-(GLfloat)getRotation
{
 return m_Angle;
}

-(void)setRotation:(GLfloat)angle
{
 m_Angle=angle;
}

-(void)incrementRotation
{
 m_Angle+=m_RotationalIncrement;
}

-(GLfloat)getRotationalIncrement
{
 return m_RotationalIncrement;
}

-(void)setRotationalIncrement:(GLfloat)inc
{
 m_RotationalIncrement=inc;
}

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Turning On the Lights 129

And while you’re at it, let’s turn down the gray in the background. It’s supposed to be
space, and space isn’t gray. Go to OpenGLSolarSystemViewController and the main
drawInRect() routine and change the call to glClearColor to read as follows:

 glClearColor(0.0,0.0, 0.0, 1.0);

Now compile and run. You should see something like Figure 4-17.

Figure 4-17. What’s happening in the middle?

There’s something odd here. When running, you should see the earth come out from
behind the sun on the left side, orbit toward us to cross in front of the sun, and then
move away to repeat the orbit again. But what is happening when it should be in front of
the sun in Figure 4-17 (center)?

In all graphics, computer or otherwise, the order of drawing plays a big role. If you’re
painting a portrait, you draw the background first. If you are generating a little solar
system, the sun should be drawn first (er, maybe not…or not always).

Rendering order, or depth sorting, and how to determine what objects occlude other
objects has always been a big part of computer graphics. Before the sun was added,
render order was irrelevant, because there was only a single object. But as the world
gets a lot more complicated, you’ll find that there are two general ways this problem is
solved.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Turning On the Lights 130

The first is called the painter’s algorithm. This means simply to draw the furthest objects
first. This is very easy in something as simple as one sphere orbiting another. But what
happens when you have very complicated 3D immersive worlds like World of Warcraft or
Second Life? These would actually use a variant of painter’s algorithm, but with some
precomputed information ahead of time that determines all possible orders of occlusion.
That information is then used to form a binary space partitioning (BSP) tree. Any place in
the 3D world can be mapped to an element in the tree, which can then be traversed to
fetch the optimum order for viewer’s location. This is very fast in execution but
complicated to set up. Fortunately, it is way overkill for our simple universe. The second
means of depth sorting isn’t sorting at all but actually uses the z component of each
individual pixel. A pixel on the screen has an x and y value, but it can also have a z value
as well, even though the Viewsonic in front of me is a flat 2D surface. As one pixel is
ready to draw on top of another, the z values are compared, and the closer of the two
wins out. Called z-buffering, it is very simple and straightforward but can chew up extra
CPU time and graphics memory for very complicated scenes. I prefer the latter, and
OpenGL makes z-buffering very easy to implement, but GLKit makes it easier. As this
book was being written, iOS5 was announced, and with great delight, I was able to
gleefully delete about 1½ pages of code and comments to replace them with a single
line to add somewhere to your view controller’s initialization code:

glEnable(GL_DEPTH_TEST);

The GLKViewController manages all of setup code now, and Apple’s wizard produced
code defaults to a depth buffer using:

view.drawableDepthFormat = GLKViewDrawableDepthFormat24;

You can select to have no buffer, one that’s 16 bits or 24 bits of resolution. The extra 8
bits is reserved for use by stencils, which will be covered later.

If it works right, you should now see the earth eclipsing the sun when in front or being
hidden while in back. See Figure 4-18.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Turning On the Lights 131

Figure 4-18. Using the z-buffer

Summary
This chapter covered the various approaches to lighting and shading the scene, along
with the mathematical algorithms used to determine the color at each vertex. You also
studied diffuse, specular, emissive, and ambient lighting along with various parameters
having to do with turning the lights into spotlights. The solar-system model was updated
to support multiple objects and to use z-buffering to handle object occlusion properly.

www.it-ebooks.info

http://www.it-ebooks.info

5Chapter

Textures

The true worth of a man is not to be found in man himself but in the
colours and textures that come alive in others.

-----Albert Schweitzer

People would be a rather dull bunch without texture in their lives. Removing those
interesting little foibles and eccentricities would remove a little of the sheen in our daily
wanderings, be they odd but beguiling little habits or unexpected talents. Imagine the
high-school janitor who happens to be an excellent ballroom dancer, the famous
comedian who must wear only new white socks every day, the highly successful game
engineer who’s afraid to write letters by hand-----all can make us smile and add just a little
bit of wonder through the day. And so it is when creating artificial worlds. The visual
perfection that computers can generate might be pretty, but it just doesn’t feel right
if you want to create a sense of authenticity to your scenes. That’s where texturing
comes in.

Texture makes that which is perfect become that which is real. The American Heritage
Dictionary describes it this way: ‘‘The distinctive physical composition or structure of
something, especially with respect to the size, shape, and arrangement of its parts.’’
Nearly poetic, huh?

In the world of 3D graphics, texturing is as vital as lighting in creating compelling images
and can be incorporated with surprisingly little effort nowadays. Much of the work in the
graphics chip industry is rooted in rendering increasingly detailed textures at higher
rates than each previous generation of hardware.

Because texturing in OpenGL ES is such a vast topic, this chapter will be confined to the
basics, with more advanced topics and techniques reserved for the next chapter. With
that in mind, let’s get started.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Textures 134

The Language of Texturing
Say you wanted to create an airstrip in a game you’re working on. How would you do
that? Simple, take a couple of black triangles and stretch them really long. Bang! You’ve
got your landing strip! Not so fast there, sport. What about the lines painted down the
center of the strip? How about a bunch of small white faces? That could work. But don’t
forget those yellow chevrons at the very end. Well, add a bunch of additional faces and
color them yellow. And don’t forget about the numbers. How about the curved lines
leading to the tarmac? Pretty soon you might be up to hundreds of triangles, but that
still wouldn’t help with the oil spots, repairs, skid marks, and roadkill. Now it starts
getting complicated. Getting all of the fine detail could require thousands if not tens of
thousands of faces. Meanwhile, your buddy, Arthur, is also creating a strip. You are
comparing notes, telling him about polygon counts, and you haven’t even gotten to the
roadkill yet. Arthur says all he needed was a couple of triangles and one image. You see,
he used texture maps, and using texture maps can create a highly detailed surface such
as an airstrip, brick walls, armor, clouds, creaky weathered wooden doors, a cratered
terrain on a distant planet, or the rusting exterior of a ’56 Buick.

In the early days of computer graphics, texturing (or texture mapping) used up two of the
most precious resources: CPU cycles and memory. Texture mapping was used
sparingly, and all sorts of little tricks were done to save on both resources. With memory
now virtually free (compared to 20 years ago) and with modern chips having seemingly
limitless speed, using textures is no longer a decision one should ever have to stay up all
night and struggle with.

All About Textures (Mostly)
Textures come in two broad types: procedural and image. Procedural textures are
generated on the fly based on some algorithm. There are ‘‘equations’’ for wood, marble,
asphalt, stone, and so on. Nearly any kind of material can be reduced to an algorithm
and hence drawn onto an object, as shown in Figure 5-1.

Figure 5-1. A golden chalice (left). By using procedural texture mapping (right), the chalice can be made up of
gold ore instead, while the cone uses a marble map.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Textures 135

Procedural textures are very powerful because they can produce an infinite variety of
scalable patterns that can be enlarged to reveal increasingly more detail, as shown in
Figure 5-2. Otherwise, this would require a massive static image.

Figure 5-2. Close-up on the goblet from Figure 5-1 (right). Notice the fine detailing that would need a very large
image to accomplish.

The 3D rendering application Strata Design 3D-SE, which was used for the images in
Figure 5-2, supports both procedural and image-based textures. Figure 5-3 shows the
dialog used to specify the parameters of the gold ore texture depicted in Figure 5-2.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Textures 136

Figure 5-3. All of the possible settings used to produce the gold ore texture in Figure 5-2.

Procedural textures, and to a lesser degree image textures, can be classified in a
spectrum of complexity from random to structured. Random, or stochastic textures, can
be thought of as ‘‘looking like noise,’’ like a fine-grained material such as sand, dust,
gravel, the grain in paper, and so on. Near stochastic could be flames, grass, or the
surface of a lake. On the other hand, structured textures have broad recognizable
features and patterns. A brick wall, wicker basket, plaid, or herd of geckos would be
structured.

Image Textures
As referenced earlier, image textures are just that. They can serve as a surface or
material texture such as mahogany wood, steel plating, or leaves scattered across the
ground. If done right, these can be seamlessly tiled to cover a much larger surface than
the original image would suggest. And because they come from real life, they don’t need
the sophisticated software used for the procedural variety. Figure 5-4 shows the chalice

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Textures 137

scene, but this time with wood textures, mahogany for the chalice, and alder for the
cone, while the cube remains gold.

Figure 5-4. Using real-world image textures

Besides using image textures as materials, they can be used as pictures themselves in
your 3D world. A rendered image of an iPad can have a texture dropped into where the
screen is. A 3D city could use real photographs for windows on the buildings, for
billboards, or for family photos in a living room.

OpenGL ES and Textures
When OpenGL ES renders an object, such as the mini solar system in Chapter 4, it
draws each triangle and then lights and colorizes them based on the three vertices that
make up each face. Afterward it merrily goes to the next one, singing a jaunty little tune
no doubt. A texture is nothing more than an image. As you learned earlier in the chapter,
it can be generated on the fly to handle context-sensitive details (such as cloud
patterns), or it can be a JPEG, PNG, or anything else. It is made up of pixels, of course,
but when operating as a texture, they are called texels. You can think of an OpenGL ES
texture as a bunch of little colored ‘‘faces’’ (the texels), each of the same size and
stitched together in one sheet of, say, 256 such faces on a side. Each face is the same
size as each other one and can be stretched or squeezed so as to work on surfaces of
any size or shape. They don’t have corner geometry to waste memory storing xyz
values, can come in a multitude of lovely colors, and give a lot of bang for the buck. And
of course they are extraordinarily versatile.

Like your geometry, textures have their own coordinate space. Where geometry denotes
locations of its many pieces using the trusty Cartesian coordinates known as x, y, and z,
textures use s and t. The process that applies a texture to some geometric object is
called UV mapping. (s and t are used only for OpenGL world, whereas others use u and
v. Go figure.)

So, how is this applied? Say you have a square tablecloth that you must make fit a
rectangular table. You need to attach it firmly along one side and then tug and stretch it
along the other until it just barely covers the table. You can attach just the four corners,

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Textures 138

but if you really want it to ‘‘fit,’’ you can attach other parts along the edge or even in the
middle. That’s a little how a texture is fitted to a surface.

Texture coordinate space is normalized; that is, both s and t range from 0 to 1. They are
unitless entities, abstracted so as not to rely on either the dimensions of the source or
the destination. So, the face to be textured will carry around with its vertices s and t
values that lay between 0.0 to 1.0, as shown in Figure 5-5.

Figure 5-5. Texture coordinates go from 0 to 1.0, no matter what the texture is.

In the most elementary example, we can apply a rectangular texture to a rectangular
face and be done with it, as illustrated in Figure 5-5. But what if you wanted only part of
the texture? You could supply a PNG that had only the bit you wanted, which is not very
convenient if you wanted to have many variants of the thing. However, there’s another
way. Merely change the s and t coordinates of the destination face. Let’s say all you
wanted was the upper-left quarter of the Easter Island statue I call Hedly. All you need to
do is change the coordinates of the destination, and those coordinates are based on the
proportion of the image section you want, as shown in Figure 5-6. That is, because you
want the image to be cropped halfway down the s-axis, the s coordinate will no longer
go from 0 to 1 but instead from 0 to .5. And the t coordinate would then go from .5 to
1.0. If you wanted the lower-left corner, you’d use the same 0 to .5 ranges as the s
coordinate.

Also note that the texture coordinate system is resolution independent. That is, the
center of an image that is 512 on a side would be (.5,.5), just as it would be for an image
128 on a side.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Textures 139

Figure 5-6. Clipping out a portion of the texture by changing the texture coordinates

Textures are not limited to rectilinear objects. With careful selections of the st
coordinates on your destination face, you can do some of the more colorful shapes
depicted in Figure 5-7.

Figure 5-7. Mapping an image to unusual shapes

If you keep the image coordinates the same across the vertices of your destination, the
image’s corners will follow those of the destination, as shown in Figure 5-8.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Textures 140

Figure 5-8. Distorting images can give a 3D effect on 2D surfaces.

Textures can also be tiled so as to replicate patterns that depict wallpaper, brick walls,
sandy beaches, and so on, as shown in Figure 5-9. Notice how the coordinates actually
go beyond the upper limit of 1.0. All that does is to start the texture repeating so that, for
example, an s of .6 equals an s of 1.6, 2.6, and so on.

Figure 5-9. Tiled images are useful for repeated patterns such as those used for wallpaper or brick walls.

Besides the tiling model shown in Figure 5-9, texture tiles can also be ‘‘mirrored,’’ or
clamped, which is a mechanism for dealing with s and t when outside of the 0 to 1.0
range.

Mirrored tiling repeats textures as above, but also flips columns/rows of alternating
images, as shown in Figure 5-10 (left). Clamping an image means that the last row or
column of texels repeats, as shown in Figure 5-10 (right). Clamping looks like a total
mess with my sample image but is useful when the image has a neutral border. In that
case, you can prevent any image repetition on either or both axes if s or v exceeds its
normal bounds.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Textures 141

Figure 5-10. A mirrored-repeat for just the s-axis (left), the texture clamped (right)

Note The problem with the right edge in Figure 5-10 suggests that textures designed to be
clamped should have a 1-pixel-wide border to match the colors of the object to which they are
bound. Unless you think it’s really cool, then of course that trumps nearly everything.

OpenGL ES, as you know by now, doesn’t do quadrilaterals-----that is, faces with four
sides (as opposed to its big desktop brother). So, we have to fabricate them using two
triangles, giving us structures such as the triangle strips and fans that we experimented
with in Chapter 3. Applying textures to this ‘‘fake’’ quadrilateral is a simple affair. One
triangle has texture coordinates of (0,0), (1,0), and (0,1), while the other has coordinates
of (1,0), (1,1), and (0,1). It should make more sense if you study Figure 5-11.

Figure 5-11. Placing a texture across two faces

And finally, let’s take a look at how a single texture can be stretched across a whole
bunch of faces, as shown in Figure 5-12, and then we can get back to the fun stuff.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Textures 142

Figure 5-12. Stretching a texture across many faces

Image Formats
OpenGL ES supports many different image formats, and I’m not talking about PNG vs.
JPEG, but I mean the form and layout in memory. The standard is 32 bits, which assigns
8 bits of memory each for red, green, blue, and alpha. Referred to as RGBA, it is the
standard used for most of the exercises. It is also the ‘‘prettiest’’ because it provides
more than 16 million colors and translucency. However, you can often get away with 16-
bit or even 8-bit images. In doing that, you can save a lot of memory and crank up the
speed quite a bit, with careful selection of images. See Table 5-1 for some of the more
popular formats.

Table 5-1. Some of the More Popular Image Formats

Format Details

RGBA 8 bits per channel, including alpha.

RGB 8 bits per channel, no alpha.

ALPHA A single 8-bit channel used for stencils.

LUMINANCE A single 8-bit channel for grayscale images.

RGB565 16 bits total: 5 for red, 6 for green, and 5 for blue. The green is given a little more
color fidelity because the eye is more sensitive to that than to either red or blue.

RGBA4444 16 bits, 4 for each channel.

RGBA5551 5 bits per color channel, and 1 for alpha.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Textures 143

Also a format requirement of sorts is that, generally, OpenGL can use only texture
images that are power-of-two on a side. Some systems can get around that, such as
iOS with certain limitations, but for the time being, just stick with the standard.

So, with all of this stuff out of the way, it’s time to start coding.

Back to the Bouncy Square One
Let’s take a step back and fetch the generic bouncy square again example again, which
we first worked on in Chapter 3. We’ll apply a texture to it and then manipulate it to
show off some of the tricks detailed in this chapter, such as repeating, animating, and
distortion.

Previous to iOS 5, programmers needed to create their own texture conversion code or
use code supplied by Apple, which took nearly 40 lines of Core Graphics to convert a
.png to OpenGL compatible format. Now we have two nice shiney new toys to play with
called GLKTexture, and GLKTextureInfo.

In your view controller add Listing 5-1.

Listing 5-1. Loading and converting a texture to OpenGL format.

-(GLKTextureInfo *)loadTexture:(NSString *)filename
{
 NSError *error;
 GLKTextureInfo *info;

 NSString *path=[[NSBundle mainBundle]pathForResource:filename ofType:NULL];

 info=[GLKTextureLoader textureWithContentsOfFile:path options:NULL error:&error];

 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S,GL_REPEAT);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T,GL_REPEAT);

 return info;
}

Table 5-2. All the GL_TEXTURE Parameters for glTexParameter* Calls in OpenGL ES 1.1

Name Purpose

GL_TEXTURE_MIN_FILTER Sets the minification type (see Table 5-3)

GL_TEXTURE_MAG_FILTER Sets the magnification type (see Table 5-4)

GL_TEXTURE_WRAP_S Specifies how textures are to be wrapped in the S direction,
GL_CLAMP or GL_REPEAT

GL_TEXTURE_WRAP_T Specifies how textures are to be wrapped in the T direction,
GL_CLAMP or GL_REPEAT

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Textures 144

This can now be initialized from viewDidLoad() using the following:

[EAGLContext setCurrentContext:self.context];
m_Texture=[self loadTexture:@"hedly.png"];

The two texture parameters specify how to handle repeating textures, covered below.
My image, hedly.png, is the photo of one of the mysterious huge stone heads on Easter
Island in the Pacific. For ease of testing, use a power-of-two (POT) image, 32 bits,
RGBA.

Note By default, OpenGL requires each row of texels in the image data to be aligned on a 4-
byte boundary. Our RGBA textures adhere to that; for other formats, consider using the call
glPixelStorei(GL_PACK_ALIGNMENT,x), where x can be 1, 2, 4, or 8 bytes for
alignment. Use 1 to cover all cases.

Note that there is usually a size limitation for textures, which depends on the actual
graphics hardware used. On both the first- and second-generation iPhones (the original
and 3G) and iPod/Touch devices, textures were limited to no larger than 1024 1024
because of using the Power VR MBX platform. On all others, the newer PowerVR SGX is
used, which doubles the max size of textures to 2048 2048. You can find out how big a
texture a particular platform can use by calling the following, where maxSize is an
integer, and then compensate at runtime:

glGetIntegerv(GL_MAX_TEXTURE_SIZE,&maxSize);

Now change the drawInRect() routine, as shown in Listing 5-2. Most of this you have
seen before, with the new stuff detailed below. And while you’re at it, go ahead and add
GLKTextureInfo *m_Texture to the header.

Listing 5-2. Render the geometry with the texture

- (void)glkView:(GLKView *)view drawInRect:(CGRect)rect
{

 static const GLfloat squareVertices[] =
 {
 -0.5f, -0.33f,
 0.5f, -0.33f,
 -0.5f, 0.33f,
 0.5f, 0.33f,
 };

 static const GLubyte squareColors[] = {
 255, 255, 0, 255,
 0, 255, 255, 255,
 0, 0, 0, 0,
 255, 0, 255, 255,
 };

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Textures 145

 static const GLfloat textureCoords[] = //1
 {
 0.0, 0.0,
 1.0, 0.0,
 0.0, 1.0,
 1.0, 1.0
 };

 static float transY = 0.0f;

 glClearColor(0.5f, 0.5f, 0.5f, 1.0f);
 glClear(GL_COLOR_BUFFER_BIT);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glTranslatef(0.0f, (GLfloat)(sinf(transY)/2.0f), 0.0f);

 transY += 0.075f;

 glVertexPointer(2, GL_FLOAT, 0, squareVertices);
 glEnableClientState(GL_VERTEX_ARRAY);
 glColorPointer(4, GL_UNSIGNED_BYTE, 0, squareColors);
 glEnableClientState(GL_COLOR_ARRAY);

 glEnable(GL_TEXTURE_2D); //2
 glEnable(GL_BLEND); //3
 glBlendFunc(GL_ONE, GL_SRC_COLOR); //4
 glBindTexture(GL_TEXTURE_2D,m_Texture.name); //5
 glTexCoordPointer(2, GL_FLOAT,0,textureCoords); //6
 glEnableClientState(GL_TEXTURE_COORD_ARRAY); //7

 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4); //8

 glDisableClientState(GL_COLOR_ARRAY);
 glDisableClientState(GL_VERTEX_ARRAY);

 glDisableClientState(GL_TEXTURE_COORD_ARRAY); //9
}

So, what’s going on here?

 The texture coordinates are defined here in lines 1ff. Notice that as
referenced earlier they are all between 0 and 1. We’ll play with these
values a little later.

 In line 2, the GL_TEXTURE_2D target is enabled. Desktop OpenGL
supports 1D and 3D textures but not ES.

 Here is where blending can be enabled. Blending is where the source
color of the image and the destination color of the background are
blended (mixed) according to some equation that is switched on in
line 4.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Textures 146

The blend function determines how the source and destination
pixels/fragments are mixed together. The most common form is where
the source overwrites the destination, but others can create some
interesting effects. Because this is such a large topic, it deserves its
own chapter, which as it turns out is Chapter 6.

 Line 5 ensures that the texture we want is the current one. Like the
other OpenGL objects, textures are assigned a ‘‘name,’’ (a unique
integer ID number), which will be referenced until it’s deleted.

 Line 6 is where the texture coordinates are handed off to the
hardware.

 And just as you had to tell the client to handle the colors and vertices,
you need to do the same for the texture coordinates here in line 7.

 Line 8 you’ll recognize, but this time besides drawing the colors and
the geometry, it now takes the information from the current texture,
matches up the four texture coordinates to the four corners specified
by the squareVertices[] array (each vertex of the textured object
needs to have a texture coordinate assigned to it), and blends it using
the values specified in line 4.

 Finally, disable the client state for texture, line 9, the same way it was
disabled for color and vertices.

If everything works right, you should see something like Figure 5-13a. You don’t you
say? It’s upside down? Depending on the format used, your texture could very well be
inverted, with its internal origin in the upper-left corner instead of the lower left. The fix is
easy for this. Change loadTexture to look like:

-(GLKTextureInfo *)loadTexture:(NSString *)filename
{
 NSError *error;
 GLKTextureInfo *info;
 NSDictionary *options=[NSDictionary dictionaryWithObjectsAndKeys:
 [NSNumber numberWithBool:YES],
 GLKTextureLoaderOriginBottomLeft,nil];

 NSString *path=[[NSBundle mainBundle]pathForResource:filename ofType:NULL];

 info=[GLKTextureLoader textureWithContentsOfFile:path options:options error:&error];

 glBindTexture(GL_TEXTURE_2D, info.name);

 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S,GL_REPEAT);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T,GL_REPEAT);

 return info;
}

What you’re telling the loader to do is to flip the origin of the texture to anchor it at the
bottom left of the screen. Now does it look like 5-13 (left)?

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Textures 147

Notice how the texture is also picking up the colors from the vertices? Comment out the
line glEnableClientState(GL_COLOR_ARRAY) in drawInRect(), and you should now see
Figure 5-13 (right). If you don’t see any image, double-check your file and ensure that it
really is a power-of-two in size, such as 128 128 or 256 256.

Figure 5-13. Applying texture to the bouncy square. Using vertex colors (left) and not (right).

So, now we can replicate some of the examples in the first part of this chapter. The first
is to pick out only a portion of the texture to display. Change textureCoords in
drawInRect to the following:

static GLfloat textureCoords[] =
{
 0.0, 0.5,
 0.5, 0.5,
 0.0, 1.0,
 0.5, 1.0
};

Did you get Figure 5-14?

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Textures 148

Figure 5-14. Cropping the image using s and t coordinates

The mapping of the texture coordinates to the real geometric coordinates looks like
Figure 5-15. Spend a few minutes to understand what is happening here if you’re not
quite clear yet. Simply put, there’s a one-to-one mapping of the texture coordinates in
their array with the geometric coordinates in theirs.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Textures 149

Figure 5-15. The texture coordinates have a one-to-one mapping with the geometric ones.

Now change the texture coordinates to the following. Can you guess what will happen
(Figure 5-16)?

static GLfloat textureCoords[] =
{
 0.0, 0.0,
 2.0, 0.0,
 0.0, 2.0,
 2.0, 2.0
};

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Textures 150

Figure 5-16. Repeating the image is convenient when you need to do repetitive patterns such as wallpaper.

Now let’s distort the texture by changing the vertex geometry, and to make things
visually clearer, restore the original texture coordinates to turn off the repeating:

static const GLfloat squareVertices[] =
 {
 -0.5f, -0.33f,
 0.5f, -0.15f,
 -0.5f, 0.33f,
 0.5f, 0.15f,
 };

This should pinch the right side of the square and take the texture with it, as shown in
Figure 5-17.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Textures 151

Figure 5-17. Pinching down the right side of the polygon

Armed with all of this knowledge, what would happen if you changed the texture
coordinates dynamically? Add the following code to drawInRect-----anywhere should
work:

 static float texIncrease=0.01;
 textureCoords[0]+=texIncrease;
 textureCoords[2]+=texIncrease;
 textureCoords[4]+=texIncrease;
 textureCoords[6]+=texIncrease;
 textureCoords[1]+=texIncrease;
 textureCoords[3]+=texIncrease;
 textureCoords[5]+=texIncrease;
 textureCoords[7]+=texIncrease;

This will increase the texture coordinates just a little from frame to frame. Run, and stand
in awe. This is a really simple trick to get animated textures. A marquee in a 3D world
might use this. You could create a texture that was like a strip of movie film with a
cartoon character doing something and change the s and t values to jump from frame to
frame like a little flip book. Another is to create a texture-based font. Because OpenGL

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Textures 152

has no native font support, it’s up to us, the long-suffering engineers of the world, to add
it ourselves. Sigh. This could be done by placing the characters of the desired font onto
a single mosaic texture, called a ‘‘font atlas,’’ and then selecting them by carefully using
texture coordinates.

Mipmaps
Mipmaps are a means of specifying multiple levels of detail for a given texture. That can
help in two ways: it can smooth out the appearance of a textured object as its distance
to the viewpoint varies, and it can save resource usage when textured objects are far
away.

For example, in Distant Suns, I may use a texture for Jupiter that is 1024 512. But that
would be a waste of both memory and CPU if Jupiter was so far away that it was only a
few pixels across. Here is where mipmapping can come into play. So, what is a
mipmap?

From the Latin phrase ‘‘multum in parvo’’ (literally: ‘‘much in little’’), a mipmap is a family
of textures of varying levels of detail. Your root image might be 128 on a side, but when
a part of a mipmap, it would have textures that were also 64, 32, 16, 8, 4, 2, and 1 pixel
on a side, as shown in Figure 5-18.

Figure 5-18. Hedly the head, the mipmapped edition

In iOS5, switching on mipmapping is done by adding only one additional parameter to
the GLKTextureLoader:textureWithContentsOfFile() call. So swap in the options
dictionary in place of the previous one, as follows:

NSDictionary *options=[NSDictionary dictionaryWithObjectsAndKeys:
 [NSNumber
numberWithBool:YES],GLKTextureLoaderOriginBottomLeft,
 [NSNumber
numberWithBool:TRUE],GLKTextureLoaderGenerateMipmaps,nil];

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Textures 153

Naturally, drawInRect() also needs some changes. Swap out your old drawInRect() for
the new and improved version in Listing 5-5. This will cause the z value to oscillate back
and forth.

Listing 5-5. Subsitute this for your drawInRect.

- (void)glkView:(GLKView *)view drawInRect:(CGRect)rect
{
 static int counter=1;
 static float direction=-1.0;
 static float transZ=-1.0;
 static GLfloat rotation=0;
 static bool initialized=NO;

 static const GLfloat squareVertices[] =
 {
 -0.5f, -0.5f,-0.5f,
 0.5f, -0.5f,-0.5f,
 -0.5f, 0.5f,-0.5f,
 0.5f, 0.5f,-0.5f
 };

 static GLfloat textureCoords[] =
 {
 0.0, 0.0,
 1.0, 0.0,
 0.0, 1.0,
 1.0, 1.0
 };

 glClearColor(0.5f, 0.5f, 0.5f, 1.0f);
 glClear(GL_COLOR_BUFFER_BIT);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glTranslatef(0.0f,0.0f,transZ);
 glRotatef(rotation,0.0,0.0,1.0);

 glVertexPointer(3, GL_FLOAT, 0, squareVertices);
 glEnableClientState(GL_VERTEX_ARRAY);

 glEnable(GL_TEXTURE_2D);
 glEnable(GL_BLEND);

 glTexCoordPointer(2, GL_FLOAT,0,textureCoords);
 glEnableClientState(GL_TEXTURE_COORD_ARRAY);

 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Textures 154

 glTranslatef(0.0f,0.5f,0.0f);

 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);

 glTranslatef(0.0f,-1.0f,0.0f);

 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR_MIPMAP_NEAREST);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR_MIPMAP_NEAREST);

 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);

 glDisableClientState(GL_VERTEX_ARRAY);

 glDisableClientState(GL_TEXTURE_COORD_ARRAY);

 if(!(counter%100))
 {
 if(direction==1.0)
 direction=-1.0;
 else
 direction=1.0;
 }

 transZ+=(.10*direction);

 rotation += 1.0;
 counter++;
}

Grab a copy of setClipping() and move it over here, then call it from your initialzation
code in viewDidLoad().

If that compiles and runs OK, you should see something like Figure 5-19.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Textures 155

Figure 5-19. Two images, both mipmapped, but one’s better looking. What gives?

You’ve probably noticed that the two images look a little different. The top image is
shimmery, and the bottom image is noticably smoother, making it easier to look at. That
brings me to the topic of filtering.

Filtering
An image, when used as a texture, may exhibit various artifacting depending on its
content and final size when projected onto the screen. Very detailed images might be
seen with an annoying shimmering effect. However, it is possible to dynamically modify
an image to minimize these effects through a process called filtering. Filtering is typically
used in conjunction with mipmapping because the former can make use of the latter’s
multiple images.

Let’s say you have a texture that is 128 128 but the texture face is 500 pixels on a side.
What should you see? Obviously the image’s original pixels, now called texels, are going
to be much larger than any of the screen pixels. This is a process referred to as
magnification. Conversely, you could have a case where the texels are much smaller

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Textures 156

than a pixel, and that is called minification. Filtering is the process used to determine
how to correlate a pixel’s color with the underlying texel, or texels. Tables 5-3 and 5-4,
respectively, show the possible variants of this.

Table 5-3. Texture Filter Types in OpenGL ES for Minification

Name Purpose

GL_LINEAR Smooths texturing using the four nearest texels closest to the
center of the pixel being textured

GL_LINEAR_MIPMAP_LINEAR Similar to GL_LINEAR but uses the two nearest mipmaps closest
to the rendered pixel

GL_LINEAR_MIPMAP_NEAREST Similar to GL_LINEAR but uses the one nearest mipmap closest to
the rendered pixel

GL_NEAREST Returns the nearest texel value to the pixel being rendered

GL_NEAREST_MIPMAP_NEAREST Similar to GL_NEAREST but uses the texel from the nearest
mipmap

Table 5-4. Texture Filter Types in OpenGL ES for Magnification

Name Purpose

GL_LINEAR Smooths texturing using the four nearest texels closest to the center of the pixel
being textured

GL_NEAREST Returns the nearest texel value to the pixel being rendered

There are three main approaches to filtering:

 Point sampling (called nearest in OpenGL lingo): A pixel’s color is
based on the texel that is nearest to the pixel’s center. This is the
simplest, is the fastest, and naturally yields the least satisfactory
image.

 Bilinear sampling, otherwise called just linear: A pixel’s coloring is
based on a weighted average of a 2 2 array of texels nearest to the
pixel’s center. This can smooth out an image considerably.

 Trilinear sampling: Requires mipmaps and takes the two closest
mipmap levels to the final rendering on the screen, performs a bilinear
selection on each, and then takes a weighted average of the two
individual values.

It’s the trilinear sampling that you saw in action in the previous exercise, and it results in
a pretty dramatic increase in perceived image quality.

Figure 5-20a shows a close-up of Hedly with the filtering off, while Figure 5-20b has it
switched on. If you go back and look at the mipmap code, you’ll see that both images

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Textures 157

are actually using filtering. The shimmery one on top is using the GL_LINEAR and the
GL_NEAREST filtering. The bottom is doing the same but using the additional
information that the mipmaps provide. Just for kicks, you might want to do comparisons
of some of the other settings. For example, which is better: GL_NEAREST or
GL_LINEAR?

Filtering might eventually go the way of 8-bit coloring as the retina-level displays
become more common.

One more thing: if you look really closely at the bottom image, you might actually see it
swap to another texture size. It’s subtle, but it’s there.

Figure 5-20. All filtering turned off (left), bilinear filtering turned on (right)

OpenGL Extensions and PVRTC Compression
Even though OpenGL is a standard, it was designed with extensibility in mind, letting
various hardware manufacturers add their own special sauce to the 3D soup using
extension strings. In OpenGL, developers can poll for possible extensions and then use
them if they exist. To get a look at this, use the following line of code:

char *extentionList=glGetString(GL_EXTENSIONS);

This will return a space-separated list of the various extra options in iOS for OpenGL ES,
looking something like this (from iOS 4.3):

GL_OES_blend_equation_separate GL_OES_blend_func_separate GL_OES_blend_subtract
GL_OES_compressed_paletted_texture GL_OES_depth24 GL_OES_draw_texture
GL_OES_fbo_render_mipmap GL_OES_framebuffer_object GL_OES_mapbuffer
GL_OES_matrix_palette GL_OES_packed_depth_stencil GL_OES_point_size_array
GL_OES_point_sprite GL_OES_read_format GL_OES_rgb8_rgba8 GL_OES_stencil_wrap
GL_OES_stencil8 GL_OES_texture_mirrored_repeat GL_OES_vertex_array_object
GL_EXT_blend_minmax GL_EXT_discard_framebuffer GL_EXT_read_format_bgra
GL_EXT_texture_filter_anisotropic GL_EXT_texture_lod_bias
GL_APPLE_framebuffer_multisample GL_APPLE_texture_2D_limited_npot
GL_APPLE_texture_format_BGRA8888 GL_APPLE_texture_max_level GL_IMG_read_format
GL_IMG_texture_compression_pvrtc

The last line, in bold, points out that iOS can handle a special compressed texture
format called PVRTC used by the brand of graphics processing units (GPUs) in iOS
devices. The first two generations of iPhones and iPod/Touches used a PowerVR MBX

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Textures 158

chip, while the later ones use the more powerful PowerVR SGX GPU. The advantage of
the later ones is that it can accept highly compressed textures in their own format and
display them on the fly. This can save substantial memory while increasing framerate, by
compressing textures down as small as 1/16th uncompressed size.

Of course, this comes with one main caveat: images must have a square power-of-two
(POT) form. The compression works best on photographic type of images as opposed to
contrasty graphics.

Note Another interesting extra feature is found in the string GL_APPLE_texture_
2D_limited_npot GL. NPOT means “nonpower-of-two.” Remember that more recent
versions of iOS can use NPOT images? So if you have reason to use an NPOT image, check the
extensions beforehand and handle the results accordingly.

Here we’re going to generate and import a PVRTC. First you will have to compress your
existing files down to the PVR format using the a nice little tool that Imagination
Technologies, the manufacturer of the PowerVR graphics chips, used in all iOS devices.

You can fetch it at www.imgtec.com. Look for PowerVR Insider Utilities under the
developer’s section. It is called PVRTexTool.

Note Apple also supplies a texture convertor called texturetool. While it is only a command-
line based tool, it is very powerful in its own right and could be used to handle large batch jobs
if you had a lot of files to compress at once.

Do not be alarmed when you launch it! It might look like Windows NT, but there is
nothing wrong with your picture. It actually uses the X11 windowing platform that makes
it usable across many different operation systems.

To convert a texture to PVRTC, simply load it into the editor, and select the Encode
Current Texture button. That will open up a new dialog that will let you select which 3D
platform you want to encode to; in this case, select the OpenGL ES 1.x tab. Select either
the PVRTC 2BPP or PVRTC 4BPP button in the Compressed Formats section, and then
the encode button on the bottom.

That’s it!

Table 5-5 shows the formats generated by the tool. Even though you have a selection of
only two, four are possible depending on whether the source bitmap has alpha or not.
The 2BPP format means two bits-per-pixel while 4BPP means, well you guessed it, four-
bits-per-pixel.

Many other image formats supported as well, and those are covered in Chapter 9 in the
discussion on performance issues.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Textures 159

Table 5-5. The Four PVR Formats Generated by PVRTexTool

Format Compression Details

GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG 8:1 4 bits/pixel with alpha

GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG 6:1 4 bits/pixel no alpha

GL_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG 16:1 2 bits/pixel with alpha

GL_COMPRESSED_RGB_PVRTC_2BPPV1_IMG 12:1 2 bits/pixel no alpha

Say you have a 512 512 PNG texture that will consume 1 MB of memory. The least
compression using PVRTexTool will take less than 200 KB. The greatest compression
format, 2 bits/pixel with alpha, would be a mere 64 KB.

PVRTC textures are also readable by GLKTextureLoader() but will fail to load if you
specify GLKTextureLoaderGenerateMipmaps in the option dictionary. However, you can
use PVRTexTool to embed a mipmap chain in the host file for you. Because the
compression is a lossy one, you can see the various resolution files pop in and out when
using the preceding code, more readily than the sharper images.

Note Because PVRTC is hardware specific, Apple has issued a precautionary note to not
necessarily rely on PVRTC support in future devices. This simply means that Apple may at
some point use a different GPU manufacturer that is not likely to support another company’s
format.

More Solar System Goodness
Now we can go back to our solar-system model from the previous chapter and add a
texture to the Earth so that it can really look like the Earth. Examine Planet.m, and swap
out init() for Listing 5-6.

Listing 5-6. Modified sphere generator with texture support added

-(id) init:(GLint)stacks slices:(GLint)slices radius:(GLfloat)radius //1
 squash:(GLfloat) squash textureFile:(NSString *)textureFile
{
 unsigned int colorIncrment=0;
 unsigned int blue=0;
 unsigned int red=255;
 int numVertices=0;

 if(textureFile!=nil)
 m_TextureInfo=[self loadTexture:textureFile]; //2

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Textures 160

 m_Scale=radius;
 m_Squash=squash;

 colorIncrment=255/stacks;

 if ((self = [super init]))
 {
 m_Stacks = stacks;
 m_Slices = slices;
 m_VertexData = nil;

 m_TexCoordsData = nil;

 //Vertices

 GLfloat *vPtr = m_VertexData =
 (GLfloat*)malloc(sizeof(GLfloat) * 3 * ((m_Slices*2+2) *
 (m_Stacks)));

 //Color data

 GLubyte *cPtr = m_ColorData =
 (GLubyte*)malloc(sizeof(GLubyte) * 4 * ((m_Slices*2+2) *
 (m_Stacks)));

 //Normal pointers for lighting

 GLfloat *nPtr = m_NormalData = (GLfloat*)
 malloc(sizeof(GLfloat) * 3 * ((m_Slices*2+2) * (m_Stacks)));

 GLfloat *tPtr=nil; //3

 if(textureFile!=nil)
 {
 tPtr=m_TexCoordsData =
 (GLfloat *)malloc(sizeof(GLfloat) * 2 * ((m_Slices*2+2) *
 (m_Stacks)));
 }

 unsigned int phiIdx, thetaIdx;

 //Latitude

 for(phiIdx=0; phiIdx < m_Stacks; phiIdx++)
 {
 //Starts at -1.57 goes up to +1.57 radians.

 //The first circle

 float phi0 = M_PI * ((float)(phiIdx+0) * (1.0/(float)
 (m_Stacks)) - 0.5);

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Textures 161

 //The second one

 float phi1 = M_PI * ((float)(phiIdx+1) * (1.0/(float)
(m_Stacks)) - 0.5);
 float cosPhi0 = cos(phi0);
 float sinPhi0 = sin(phi0);
 float cosPhi1 = cos(phi1);
 float sinPhi1 = sin(phi1);

 float cosTheta, sinTheta;

 //Longitude

 for(thetaIdx=0; thetaIdx < m_Slices; thetaIdx++)
 {
 //Increment along the longitude circle each "slice."

 float theta = -2.0*M_PI * ((float)thetaIdx) *
 (1.0/(float)(m_Slices-1));
 cosTheta = cos(theta);
 sinTheta = sin(theta);

 //We're generating a vertical pair of points, such
 //as the first point of stack 0 and the first point
 // of stack 1above it. This is how TRIANGLE_STRIPS work,
 //taking a set of 4 vertices and essentially drawing
 // two triangles at a time. The first is v0-v1-v2 and
the next is
 // v2-v1-v3 etc. Get x-y-z for the first vertex of
stack.

 vPtr[0] = m_Scale*cosPhi0 * cosTheta;
 vPtr[1] = m_Scale*sinPhi0*m_Squash;
 vPtr[2] = m_Scale*(cosPhi0 * sinTheta);

 //The same but for the vertex immediately above the
previous one.

 vPtr[3] = m_Scale*cosPhi1 * cosTheta;
 vPtr[4] = m_Scale*sinPhi1*m_Squash;
 vPtr[5] = m_Scale*(cosPhi1 * sinTheta);

 //Normal pointers for lighting.

 nPtr[0] = cosPhi0 * cosTheta;
 nPtr[2] = cosPhi0 * sinTheta;
 nPtr[1] = sinPhi0;

 nPtr[3] = cosPhi1 * cosTheta;
 nPtr[5] = cosPhi1 * sinTheta;
 nPtr[4] = sinPhi1;

 if(tPtr!=nil) //4
 {
 GLfloat texX = (float)thetaIdx *

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Textures 162

 (1.0f/(float)(m_Slices-1));
 tPtr[0] = texX;
 tPtr[1] = (float)(phiIdx+0) *
 (1.0f/(float)(m_Stacks));
 tPtr[2] = texX;
 tPtr[3] = (float)(phiIdx+1) *
 (1.0f/(float)(m_Stacks));
 }

 cPtr[0] = red;
 cPtr[1] = 0;
 cPtr[2] = blue;
 cPtr[4] = red;
 cPtr[5] = 0;
 cPtr[6] = blue;
 cPtr[3] = cPtr[7] = 255;

 cPtr += 2*4;
 vPtr += 2*3;
 nPtr += 2*3;

 if(tPtr!=nil) //5
 tPtr += 2*2;
 }

 blue+=colorIncrment;
 red-=colorIncrment;

 // Degenerate triangle to connect stacks and maintain winding
order.

 vPtr[0] = vPtr[3] = vPtr[-3];
 vPtr[1] = vPtr[4] = vPtr[-2];
 vPtr[2] = vPtr[5] = vPtr[-1];

 nPtr[0] = nPtr[3] = nPtr[-3];
 nPtr[1] = nPtr[4] = nPtr[-2];
 nPtr[2] = nPtr[5] = nPtr[-1];

 if(tPtr!=nil)
 {
 tPtr[0] = tPtr[2] = tPtr[-2]; //6
 tPtr[1] = tPtr[3] = tPtr[-1];
 }

 }

 numVertices=(vPtr-m_VertexData)/6;
 }

 m_Angle=0.0;
 m_RotationalIncrement=0.0;

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Textures 163

 m_Pos[0]=0.0;
 m_Pos[1]=0.0;
 m_Pos[2]=0.0;

 return self;
}

So, here is what’s happening:

 A file name for the image is added to the end of the parameter list in
line 1. Remember to add it also to init’s declaration in Planet.h.

 In line 2, the texture is created and GLKTextureInfo is returned.

 In lines 3ff, the coordinates for the texture are allocated.

 Starting at line 4, calculate the texture coordinates. Because the
sphere has x slices and y stacks and the coordinate space goes only
from 0 to 1, we need to advance each value by increments of
1/m_slices for s and 1/m_stacks for t. Notice that this covers two pairs
of coordinates, one above the other, matching the layout of the
triangle strips that also produces stacked pairs of coordinates.

 In line 5, advance the pointer to the coordinate array to hold the next
set of values.

 And finally, line 6 ties up some loose threads in preparation for going
to the next stack in the loop.

Next, update Planet.h by adding the following to the interface:

#import <GLKit/GLKit.h>

Also add the following:

GLKTextureInfo *m_TextureInfo;
GLfloat *m_TexCoordsData;

Copy over the loadTexture() method from the first example to the planet object, and
modify the header as needed. Feel free to remove the mipmap support if you like, but
there’s no harm in leaving it in; it’s just not essential for this exercise.

For an earth texture, note that this will wrap around the entire sphere model, so not just
any image will do; as such, it should resemble Figure 5-21. You can get the one I use for
this exercise, which is available from the Apress website. Or you might want to check
NASA first at http://maps.jpl.nasa.gov/.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Textures 164

Figure 5-21. Textures typically fill out the entire frame, edge to edge. Planets use a Mercator projection (a
cylindrical map).

When you’ve found a suitable image, add it to your project and hand it off to the planet
object when allocated back in your solar system’s controller. Because you don’t need a
texture for the sun, you can just pass a nil pointer. And of course we’ll need to update
the execute() method, as shown in Listing 5-7.

Listing 5-7. Ready to handle the new texture

-(bool)execute
{
 glMatrixMode(GL_MODELVIEW);
 glEnable(GL_CULL_FACE);
 glCullFace(GL_BACK);
 glFrontFace(GL_CW);

 glEnableClientState(GL_NORMAL_ARRAY);
 glEnableClientState(GL_VERTEX_ARRAY);
 glEnableClientState(GL_COLOR_ARRAY);

 if(m_TexCoordsData!=nil)
 {
 glEnable(GL_TEXTURE_2D);
 glEnableClientState(GL_TEXTURE_COORD_ARRAY);

 if(m_TextureInfo!=0)
 glBindTexture(GL_TEXTURE_2D, m_TextureInfo.name);

 glTexCoordPointer(2, GL_FLOAT, 0, m_TexCoordsData);
 }

 glMatrixMode(GL_MODELVIEW);

 glVertexPointer(3, GL_FLOAT, 0, m_VertexData);
 glNormalPointer(GL_FLOAT, 0, m_NormalData);

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Textures 165

 glColorPointer(4, GL_UNSIGNED_BYTE, 0, m_ColorData);
 glDrawArrays(GL_TRIANGLE_STRIP, 0, (m_Slices+1)*2*(m_Stacks-1)+2);

 glDisable(GL_BLEND);
 glDisable(GL_TEXTURE_2D);
 glDisableClientState(GL_TEXTURE_COORD_ARRAY);

 return true;
}

The main difference here is the addition of code to enable texturing, to set the current
texture, and to hand off the pointer to OpenGL.

Compile and run, and ideally you’ll see something like Figure 5-22.

Figure 5-22. Sun and Earth

If you examine the actual artwork used for this exercise, you’ll notice that it is fairly
bright but low in contrast. The main reason is that the real oceans are actually quite dark
and it just did not look right under the lighting condition.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Textures 166

Summary
This chapter served as an introduction to textures and their uses. It covered basic
texture theory, how texture coordinates are expressed, how mipmaps can be used for
greater fidelity, and how textures can be filtered to smooth them out. The solar-system
model was updated so that earth now really looks like the earth using a texture map. In
the next chapter, we’ll continue with textures, putting to use the iPhone’s multiple
texture units, along with blending techniques.

www.it-ebooks.info

http://www.it-ebooks.info

6Chapter

Will It Blend?

Yes! It blends!

-----Tom Dickson, owner of the Blendtec blender company

In 2006, Tom Dickson posted a goofy video to YouTube illustrating how tough his
company’s blenders were by blending some marbles into powder. Since then, his
frequent videos have been viewed more than 100 million times and have featured
blendings of everything from a tiki torch and a laser pointer to a Justin Bieber doll and a
new camcorder. Tom’s kind of blending has nothing to do with our kind of blending,
though, unless the sadistic and unmerciful pulverization of a couple of iPads and an
iPhone 4 count. After all, they are OpenGL ES devices-----devices that have their own
form of blending, albeit not nearly as destructive. (Yes, it’s a stretch.)

Blending plays an important role in OpenGL ES applications. It is the process used to
create translucent objects that can be used for something as simple as a window to
something as complicated as a pond. Other uses include the addition of atmospherics
such as fog or smoke, the smoothing out of aliased lines, and the simulation of various
sophisticated lighting effects. OpenGL ES 2 has a complex mechanism that uses small
modules called shaders to do specialized blending effects among other things. But
before shaders there were blending functions, which were not nearly as versatile but
considerably easier to use.

In this chapter, you’ll learn the basics of blending functions and how to apply them for
both color and alpha blending. After that, you’ll use a different kind of blending involving
multiple textures, used for far more sophisticated effects such as shadowing. Finally, I’ll
show how we can apply these effects in the solar-system project.

Alpha Blending
You have no doubt noticed the color quadruplet of RGBA. As mentioned earlier, the A
part is the alpha channel, and it is traditionally used for specifying translucency in an
image. In a bitmap used for texturing, the alpha layer forms an image of sorts, which can
be translucent in one section, transparent in another, and completely opaque in a third.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Will It Blend? 168

If an object isn’t using texturing but instead has its color specified via its vertices,
lighting, or overall global coloring, alpha will let the entire object or scene have
translucent properties. A value of 1.0 means the object or pixel is completely opaque,
while 0 means it is completely invisible.

For alpha to work, as with any blending model, you work with both a source image and
a destination image. Because this topic is best understood through examples, we’re
going to start with the first one now.

First let’s go back to the original bouncy square exercise from Chapter 3. Then use
Listing 6-1 in place of the original drawInRect() method, making sure you call
setClipping in your initializer as before. Solid squares of colors are used here first,
instead of textured ones, because it makes for a simpler example.

Listing 6-1. The new drawInRect() method

(void)glkView:(GLKView *)view drawInRect:(CGRect)rect
{

static const GLfloat squareVertices[] = //1
{
 -0.5, -0.5, 0.0,
 0.5, -0.5, 0.0,
 -0.5, 0.5, 0.0,
 0.5, 0.5, 0.0
 };

 static float transY = 0.0;

 glClearColor(0.0, 0.0, 0.0, 1.0); //2

 glClear(GL_COLOR_BUFFER_BIT);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();

 //Do square one bouncing up and down.

 glTranslatef(0.0, (GLfloat)(sinf(transY)/2.0), -4.0); //3

 glVertexPointer(3, GL_FLOAT, 0, squareVertices);
 glEnableClientState(GL_VERTEX_ARRAY);

 //SQUARE 1

 glColor4f(0.0, 0.0,1.0,1.0); //4

 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);

 //SQUARE 2

 glColor4f(1.0, 0.0,0.0, .5); //5

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Will It Blend? 169

 glLoadIdentity();
 glTranslatef((GLfloat)(sinf(transY)/2.0),0.0, -3.0); //6

 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4); //7

 transY += 0.075; //8
}

(void)setClipping
{
 float aspectRatio;
 const float zNear = .01;
 const float zFar = 100;
 const float fieldOfView =30.0;
 GLfloat size;

 CGRect frame = [[UIScreen mainScreen] bounds];

 //h/w clamps the fov to the height; flipping it would make it relative to the width.

 aspectRatio=(float)frame.size.height/(float)frame.size.width;

 //Set the OpenGL projection matrix.

 glMatrixMode(GL_PROJECTION);

 size = zNear * tanf((fieldOfView/57.3)/ 2.0);

 glFrustumf(-size, size, -size *aspectRatio,
 size *aspectRatio, zNear, zFar);

 glViewport(0, 0, frame.size.width, frame.size.height);

 //Make the OpenGL modelview matrix the default.

 glMatrixMode(GL_MODELVIEW);
}

And as before, let’s take a close look at the code:

You should now recognize the bouncy square’s coordinates. And in
this case, the z component is added to make a 3D bouncy square.

Of course, in line 2, the buffer is cleared. But make the background
black instead of the default gray.

In line 3 the square is moved back by 4 units.

Because there is no coloring per vertex, this call to glColor4f() in line
4 will set the entire square to blue. However, notice the last
component of 1.0. That is the alpha, and it will be addressed shortly.
Immediately following gColor4f() is the call to actually draw the
square.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Will It Blend? 170

 But we want two squares to show how they can blend. So in line 5, the
color is changed to red and is given an alpha of .5, half that of the blue
one.

 Following that is a translation of only 3 units in line 6, and as a result,
the red square will be larger because it is closer. Also, notice that the x
value is now being translated. Instead of the up and down movement
of the blue square, the closer red one will move left and right.

 And in line 7, the red square is rendered. Because there is no depth
buffer being used right now, the only reason why the red square
covers the blue one is that it is drawn after the blue square.

 In line 8 the value of the translation is cut down so as to decrease the
motion, making it a little easier to catch the blending effects when
turned on.

If all works, you should have something that looks like Figure 6-1.

Figure 6-1. The blue square goes up and down; the red one goes left and right.

w
www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Will It Blend? 171

It’s not much to look at, but this will be the framework for the next several experiments.
The first will switch on the default blending function.

As with so many other OpenGL features, you turn blending on with the call
glEnable(GL_BLEND). Add that anywhere before the first call to glDrawArray().
Recompile, and what do you see? Nothing, or at least nothing has changed. It still looks
like Figure 6-1. That’s because there’s more to blending than saying shaking your fist at
the monitor shouting ‘‘Blend!’’ We must specify a blending function as well, which
describes how the source colors (as expressed via its fragments or pixels) mix with
those at the destination. The default, of course, is when the source fragments always
replace those at the destination, when depth cueing is off. As a matter of fact, blending
can take place only when z-buffering is switched off.

Blending Functions
To change the default blending, we must resort to using glBlendFunc(), which comes
with two parameters. The first tells just what to do with the source, and the second
specifies what to do with the destination. To picture what goes on, note that all that’s
ultimately happening is that each of the RGBA source components is added, subtracted,
or whatever, with each of the destination components. That is, the source’s red channel
is mixed with the destination’s red channel, the source’s green is mixed with the
destination’s green, and so on. This is usually expressed the following way: call the
source RGBA values Rs, Gs, Bs, and As, and call the destination values Rd, Gd, Bd, and
Ad. But we also need both source and destination blending factors, expressed as Sr,
Sg, Sb, and Sa and Dr, Dg, Db, and Da. (It’s not as complicated as it seems, really.) And
here’s the formula for the final composite color:

))*()*(),*()*(),*()*((),,(DbBdSbBsDgGdSgGsDrRdSrRsBGR +++=

In other words, multiply the source color by its blending factor and add it to the
destination color multiplied by its blending factor.

One of the most common forms of blending is to overlay a translucent face on top of
stuff that has already been drawn-----that is, the destination. As before, that can be a
simulated window pane, a heads-up display for a flight simulator, or other graphics that
might just look nicer when mixed with the existing imagery. (The latter is used a lot in
Distant Suns for a number of the elements such as the constellation names, the outlines,
and so on.) Depending on the purpose, you may want the overlay to be nearly opaque,
using an alpha approaching 1.0, or very tenuous, with an alpha approaching 0.0.

In this basic blending task, the source’s colors are first multiplied by the alpha value, its
blending factor. So if the source red is maxed out at 1.0 and the alpha is 0.75, the result
is derived by simply multiplying 1.0 by 0.75. The same would be used for both green and
blue. On the other hand, the destination colors are multiplied by 1.0 minus the source’s
alpha. Why? That effectively yields a composite color that can never exceed the
maximum value of 1.0; otherwise, all sorts of color distortion could happen. Or imagine it
this way: the source’s alpha value is the proportion of the color ‘‘width’’ of 1.0 that the
source is permitted to fill. The leftover space then becomes 1.0 minus the source’s
alpha. The larger the alpha, the greater the proportion of the source color that can be

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Will It Blend? 172

used, with an increasingly smaller proportion reserved for the destination color. So as
the alpha approaches 1.0, the greater the amount of the source color that is copied to
the frame buffer, replacing the destination color.

Note In these examples, normalized color values are used because they make it much easier
to follow the process instead of using unsigned bytes, which would express the colors from 0
to 255.

Now we can examine that in the next example. To set up the blending functions
described earlier, you would use the following call:

 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

GL_SRC_ALPHA and GL_ONE_MINUS_SRC_ALPHA are the blending factors described earlier.
And remember that the first parameter is the source’s blending, the object being written
currently. Place that line immediately after where you enable blending. And to the red
colors, compile and run. Do you see Figure 6-2?

Figure 6-2. The red square has an alpha of .5, and the blue has an alpha of 1.0.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Will It Blend? 173

So, what’s happening? The blue has an alpha of 1.0, so each blue fragment completely
replaces anything in the background. Then the red with an alpha of .5 means that 50
percent of the red is written to the destination. The black area will be a dim red but only
50 percent of the specified value of 1.0 given in glColor4f(). So far, so good. Now on
top of the blue, 50 percent of the red value is mixing with a 50 percent blue value:

Blended color=Color Source*Alpha of source + (1.0-Alpha of Source)*Color of
the destination

Or looking at each component based on the values in the earlier red square example,
here are the calculations:

Red=1.0*0.5+(1.0-0.5)*0.0

Green=0.0*0.5+(1.0-0.5)*0.0

Blue=0.0*0.5+(1.0-0.5)*1.0

So, the final color of the fragment’s pixels should be 0.5,0.0,0.5, or magenta. Now, the
red and resulting magenta are a little on the dim side. What would you do if you wanted
to make this much brighter? It would be nice if there were a means of blending the full
intensities of the colors. Would you use alpha values of 1.0? Nope. Why? Well, with blue
as the destination and a source alpha of 1.0, the preceding blue channel equation would
be 0.0*1.0+(1.0-1.0)*1.0. And that equals 0, while the red would be 1.0, or solid. What
you would want is to have the brightest red when writing to the black background, and
the same for the blue. For that you would use a blending function that writes both colors
at full intensity, such as GL_ONE. That means the following:

glBlendFunc(GL_ONE, GL_ONE);

Going back to the equations using the source triplet of red=1, green=0, blue=0 and the
destination of red=0, green=0, blue=1 (with alpha defaulting to 1.0), the calculations
would be as follows:

Red=1*1+0*1

Green=0* (1+(0-0)*1

Blue=0*1+(1-0)*1

And that yields a color in which red=1, green=0, blue=1. And that my friends, is
magenta, as shown in Figure 6-3.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Will It Blend? 174

Figure 6-3. Blending full intensities of red and blue

Now it’s time for another experiment of sorts. Take the code from the previous example,
set both alphas to 0.5, and reset the blend function back to the traditional values for
transparency:

 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

After you run this modified code, take note of the combined color, and notice that the
further square is blue at -4.0 away and is also the first to be rendered, with the red one
as the second. Now reverse the order of the colors that are drawn, and run. What’s
wrong? You should get something like Figure 6-4.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Will It Blend? 175

Figure 6-4. The left is drawn with blue first (left), while the one on the right is drawn with red first (right).

The intersections are slightly different colors. This shows one of the mystifying gotchas
in OpenGL: like with most 3D frameworks, the blending will be slightly different
depending on the order of the faces and colors when rendered. In this case, it is actually
quite simple to figure out what’s going on. In Figure 6-4 (left), the blue square is drawn
first with an alpha of .5. So, even though the blue color triplet is defined as 0,0,1, the
alpha value will knock that down to 0,0,.5 while it is written to the frame buffer. Now add
the red square with similar properties. Naturally, the red will write to the black part of the
frame buffer in the same manner as the blue, so the final value will be .5,0,0. But note
what happens when red writes on top of the blue. Since the blue is already at half of its
intensity, the blending function will cut that down even further, to .25, as a result of the
destination part of the blending function, (1.0-Source alpha)*blue+destination, or (1.0-
.5).5+0, or .25. The final color is then .5,0,.25. With the lower intensity of the blue, it
contributes less to the composite color, leaving red to dominate. Now in Figure 6-4
(right), the order is reversed, so the blue dominates with a final color of .25,0,.5.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Will It Blend? 176

Table 6-1 has all of the allowable OpenGL ES blending factors, although not all are
supported by both source and destination. As you can see, there is ample room for
tinkering, with no set rules of what creates the best-looking effect. This will be highly
reliant on your individual tastes and needs. It is a lot of fun to try different values,
though. Make sure to fill the background with a dim gray, because some of the
combinations will just yield black when written to a black background.

Table 6-1. The Source and Destination Blending Values; Note That Not All Are Available to Both Channels

Blend Factor Description

GL_ZERO Multiplies the operand by 0.

GL_ONE Multiplies the operand by 1.

GL_SRC_COLOR Multiplies the operand by the four components of the source
color (destination only).

GL_ONE_MINUS_SRC_COLOR Multiplies the operand by (1.0 – source colors) (destination only).

GL_DST_COLOR Multiplies the operand by the four components of the destination
color (source only).

GL_ONE_MINUS_DST_COLOR Multiplies the operand by the 1.0 – destination colors
(source only).

GL_SRC_ALPHA Multiplies the operand by the source alpha.

GL_ONE_MINUS_SRC_ALPHA Multiplies the operand by (1.0 – source alpha).

GL_DST_ALPHA Multiplies the operand by the destination alpha.

GL_ONE_MINUS_DST_ALPHA Multiplies the operand by (1.0 – destination alpha).

GL_SRC_ALPHA_SATURATE Special mode for older graphics implementations to help anti-
aliasing. You’ll likely never use it. (Source only.)

In Chapter 5, we took a look at the GL extensions that OpenGL ES on iOS devices
supported. Several of those are for more sophisticated blending solutions such as
GL_OES_blend_equation_separate, GL_OES_blend_func_separate,
GL_OES_blend_subtract, and GL_EXT_blend_minmax. These values are used with the
methods glBlendEquation() and glBlendEquationSeparate().

Look back at the default blending equation, where the final color is determined by a
source value+a dest value. But what if you wanted the source to subtract the destination
instead of add? Calling glBlendEquation(GL_FUNC_SUBTRACT) will do the job. Add that
line right below glBlendFunc(), ensure both squares have an alpha of .5, and reset the
colors back to the original with red in front, compile and run. The results may be slightly
nonobvious, as in Figure 6-5 (left). What is happening is that the operation really is
‘‘subtracting’’ blue from the red source, but there is no blue component in the red

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Will It Blend? 177

square’s color. The math yields a final color with red=.5, green=0, and blue=-.25. But
because negative colors do not occur in this plane of existence (or at least in San Jose,
California), the system clamps the blue component to 0. The result is a solid red where
the intersection is. So, in order to see something here, the front square needs to be
drawn with some blue already. So, change red’s color to be 1,0,1, or magenta. Now
when run, Figure 6-5 (right) is the result, because the blue destination can subtract from
the blue in the source, leaving a positive value that the system understands. And in this
case the value of the intersection is .5,0,.25, which is why we don’t have a pure red but
more of a magenta-ish red. Try importing it into a paint program, and verify the actual
colors using the eyedropper function.

Figure 6-5a,b. On the left, no blending takes place using the subtract operation, while it succeeds on the right.

There are still two other function calls in the extended set, and they are
glBlendEquationSeparateOES() and glBlendFuncSeparateOES(). These functions allow
you to modify the RGB channels separately from alpha. The OES suffix specifies that
these are extensions to OpenGL ES (but only for 1.1 of OpenGL-----they are standard in
2.0, so you don’t need the OES at the end), and are defined in glext.h. One way in which
this is useful is to counteract the effects rendering order that Figure 6-4 illustrates.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Will It Blend? 178

And one final method here that might be really handy in some blending operations is
that of glColorMask(). This function lets you block one or more color channels from
being written to the destination. To see this in action, modify the red square’s colors to
be 1,1,0,1; set the two blend functions back to GL_ONE; and comment out the line
glBlendEquation(GL_FUNC_SUBTRACT);. You should see something like Figure 6-6 (left)
when run. The red square is now yellow and, when blended with blue, yields white at the
intersection. Now add the following line:

glColorMask(GL_TRUE, GL_FALSE, GL_TRUE, GL_TRUE);

The preceding line masks, or turns off, the green channel when being drawn to the
frame buffer. When run, you should see Figure 6-6 (right), which looks remarkably like
Figure 6-3. And as a matter of fact, logically they are identical.

Figure 6-6. The left one doesn’t use glColorMask, so all colors are in play, while the right one masks off the
green channel.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Will It Blend? 179

Multicolor Blending
Now we can spend a few minutes looking at the effect of blending functions when the
squares are defined with individual colors for each vertex. Add Listing 6-2 to the
venerable drawInRect(). The first color set defines yellow, magenta, and cyan (the three
complementary colors to the standard red-green-blue specified in the second set).

Listing 6-2. Vertex Colors for the Two Squares

static const GLfloat squareColorsYMCA[] =
{
 1.0, 1.0, 0, 1.0,
 0, 1.0, 1.0, 1.0,
 0, 0, 0, 1.0,
 1.0, 0, 1.0, 1.0,
};

 static const GLfloat squareColorsRGBA[] =
{
 1.0, 0, 0, 1.0,
 0, 1.0, 0, 1.0,
 0, 0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0,
 };

Assign the first color array to the first square (which has been the blue one up until now),
and assign the second to the former red square. And don’t forget to enable the use of
the color array. You should be familiar enough now to know what to do. Also, notice that
the arrays are now normalized as a bunch of GLfloats as opposed to the previously
used unsigned bytes, so you’ll have to tweak the calls to glColorPointer(). The solution
is left up to the reader (I’ve always wanted to say that). With the blending disabled, you
should see Figure 6-7 (left), and when enabled using the traditional function for
transparency, Figure 6-7 (center) should be the result. What? It isn’t? You say it still
looks like the first figure? Why would that be?

Look back at the color arrays. Notice how the last value in each row, alpha, is at its
maximum of 1.0. Remember that with this blending mode, any of the destination values
are multiplied by: (1.0 ---- source alpha), or rather, 0.0, so that the source color reigns
supreme as you saw in a previous example. One solution to seeing some real
transparency would be to use the following:

glBlendFunc(GL_ONE, GL_ONE);

This works because it ditches the alpha channel altogether. If you want alpha with the
‘‘standard’’ function, merely change the 1.0 values to something else, such as .5. And
the result is Figure 6-7 (right).

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Will It Blend? 180

Figure 6-7. No blending (left), GL_ONE blending (center), alpha blending (right), respectively

Texture Blending
Now, with fear and trembling, we can approach the blending of textures. Initially this
seems much like the earlier alpha blending, but all sorts of interesting things can be
done by using multitexturing.

First let’s rework the earlier code to support two textures at once and do vertex
blending. Listing 6-3 merges some of the code from Chapter 5 with the framework from
this chapter’s examples.

Listing 6-3. The drawInRect() Method Rejiggered to Support Two Textured Squares

- (void)glkView:(GLKView *)view drawInRect:(CGRect)rect
{

static const GLfloat squareVertices[] =
{
 -0.5, -0.5, 0.0,
 0.5, -0.5, 0.0,
 -0.5, 0.5, 0.0,
 0.5, 0.5, 0.0
 };

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Will It Blend? 181

static const GLfloat squareColorsYMCA[] =
{
 1.0, 1.0, 0, 1.0,
 0, 1.0, 1.0, 1.0,
 0, 0, 0, 1.0,
 1.0, 0, 1.0, 1.0,
};

 static const GLfloat squareColorsRGBA[] =
{
 1.0, 0, 0, 1.0,
 0, 1.0, 0, 1.0,
 0, 0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0,
 };

 static GLfloat textureCoords[] =
 {
 0.0, 0.0,
 1.0, 0.0,
 0.0, 1.0,
 1.0, 1.0
 };

 static float transY = 0.0;

 glMatrixMode(GL_PROJECTION);

 glLoadIdentity();

 [self setClipping];

 glClearColor(0.0, 0.0,0.0, 1.0);

 glClear(GL_COLOR_BUFFER_BIT);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();

 //Set up for using textures.
 glEnable(GL_TEXTURE_2D);
 glBindTexture(GL_TEXTURE_2D,m_Texture0.name);
 glTexCoordPointer(2, GL_FLOAT,0,textureCoords);
 glEnableClientState(GL_TEXTURE_COORD_ARRAY);

 //Do square one bouncing up and down.

 glTranslatef(0.0, (GLfloat)(sinf(transY)/2.0), -4.0);

 glVertexPointer(3, GL_FLOAT, 0, squareVertices);
 glEnableClientState(GL_VERTEX_ARRAY);

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Will It Blend? 182

 //glEnable(GL_BLEND);

 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

 //SQUARE 1

 //glEnableClientState(GL_COLOR_ARRAY);

 glColorPointer(4, GL_FLOAT, 0, squareColorsYMCA);

 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);

 //SQUARE 2

 glLoadIdentity();
 glTranslatef((GLfloat)(sinf(transY)/2.0),0.0, -3.0);

 glColorPointer(4, GL_FLOAT, 0, squareColorsRGBA);
 glBindTexture(GL_TEXTURE_2D,m_Texture1.name);

 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);

 transY += 0.075f;
}

In addition to this, make sure to add loadTexture() from the Chapter 5 examples, and
initialize it in the usual place. Because we need two different textures, initialize the first
as m_Texture0 and the second as m_Texture1. You will likely notice that while I have both
blending and color stuff, I commented out some lines just for this first run-through to
ensure that the basic stuff is working. If it’s working, you should see something like
Figure 6-8 (left). And if that works, unleash the vertex colors by uncommenting
glEnableClientState(GL_COLOR_ARRAY) and glEnable(GL_BLEND), which should yield
Figure 6-8 (center). And for Figure 6-8 (right), the Golden Gate Bridge is colored with a
solid red. I shall let you, dear reader, figure out how to do this.

Using a single bitmap and colorizing it is a common practice to save memory. If you are
doing some UI components in the OpenGL layer, consider using a single image, and
colorize it using these techniques. You might ask why is it a solid red as opposed to
merely being tinted red, allowing for some variation in colors. What is happening here is
that the vertex’s colors are being multiplied by the colors of each fragment. For the red,
I’ve used the RGB triplet of 1.0,0.0,0.0. So when each fragment is being calculated in a
channel-wise multiplication, the green and blue channels are going to be multiplied by 0,
so they are completely filtered out, leaving just the red. If you wanted to let some of the
other colors leak through, you would specify the vertices to lean toward a more neutral
tone, with the desired tint color being a little higher than the others, such as 1.0,0.7,0.7.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Will It Blend? 183

Figure 6-8. On the left, only the textures are displayed. In the center, they’re blended with color, and for the one
on the right they’re solid red.

You can also add translucency to textures quite easily. To enable this, I’ll introduce a
small simplifying factor here. You can colorize the textured face by using a single color
by simply using glColor4f() and eliminate the need to create the vertex color array.
Setting the alpha to less than 1.0 results in the see-through texture, as shown in
Figure 6-9.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Will It Blend? 184

Figure 6-9. The image on the left has an alpha of .5, while the figure on the right has an alpha of .75.

Multitexturing
So now we’ve covered blending for colors and mixed mode with textures and colors,
but what about combining two textures to make a third? Such a technique is called
multitexturing. Multitexturing can be used for layering one texture on top of another
while performing certain mathematical operations. More sophisticated applications
include simple image processing. But let’s go for the low-hanging fruit first.

Multitexturing requires the use of texture combiners and texture units. Texture
combiners let you combine and manipulate textures that are bound to one of the
hardware’s texture units, the specific part of the graphics chip that wraps an image
around an object. Before the iPhone 3GS, you had only two texture units to deal with,
which was a limitation of the PowerVR MBX graphics chip from Imagination
Technologies. When the 3GS came out, Apple switched to using the more powerful SGX
chip, which increased that to a total of eight texture units. If you anticipate using
combiners in a big way, you might want to verify the supported total by

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Will It Blend? 185

glGetIntegerv(GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS, &numberTextureUnits), where
numberTextureUnits is defined as a GLint.

To set up a pipeline to handle multitexturing, we need to tell OpenGL what textures to
use and how to mix them together. The process isn’t that much different (in theory at
least) than defining the blend functions when dealing with the alpha and color blending
operations previously. It does involve heavy use of the glTexEnvf() call, another one of
OpenGL’s wildly overloaded methods. (If you don’t believe me, check out its official
reference page on the OpenGL site.) This sets up the texture environment that defines
each stage of the multitexturing process.

Figure 6-10 illustrates the combiner chain. Each combiner refers to the previous texture
fragment (P0 or Pn) or the incoming fragment for the first combiner. It then takes a
fragment from a ‘‘source’’ texture (called S0), combines it with P0, and hands it off to the
next combiner if needed (called C1); then the cycle repeats.

Figure 6-10. The texture combiner chain

The best way to tackle this topic is like any others: go to the code. In the following
example, two textures are loaded together, bound to their respective texture units, and
merged into a single output texture. Several kinds of methods used to combine the two
images are tried with the results of each shown and examined in depth.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Will It Blend? 186

First, we revisit our old friend, drawInRect(). We’re back to only a single texture, going
up and down. The color support has also been stripped out. So, you should have
something like Listing 6-4. And make sure that you are still loading a second texture.

Listing 6-4. drawInRect() Revisited, Modified for Multitexture Support

- (void)glkView:(GLKView *)view drawInRect:(CGRect)rect
{
 static const GLfloat squareVertices[] =
 {
 -0.5, -0.5, 0.0,
 0.5, -0.5, 0.0,
 -0.5, 0.5, 0.0,
 0.5, 0.5, 0.0
 };

 static GLfloat textureCoords[] =
 {
 0.0, 0.0,
 1.0, 0.0,
 0.0, 1.0,
 1.0, 1.0
 };

 static float transY = 0.0;

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();

 [self setClipping];

 glClearColor(0.0, 0.0,0.0, 1.0);

 glClear(GL_COLOR_BUFFER_BIT);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();

 //Set up for using textures.

 glEnable(GL_TEXTURE_2D);
 glEnableClientState(GL_VERTEX_ARRAY);
 glVertexPointer(3, GL_FLOAT, 0, squareVertices);

 glEnableClientState(GL_TEXTURE_COORD_ARRAY);
 glClientActiveTexture(GL_TEXTURE0); //1
 glTexCoordPointer(2, GL_FLOAT,0,textureCoords);

 glClientActiveTexture(GL_TEXTURE1); //2
 glTexCoordPointer(2, GL_FLOAT,0,textureCoords);

 glLoadIdentity();
 glTranslatef(0.0, (GLfloat)(sinf(transY)/2.0), -2.5);

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Will It Blend? 187

 [self multiTexture:m_Texture0.name tex1:m_Texture1.name];

 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);

 transY += 0.075f;
}

There is a new call here shown in lines 1 and 2, glClientActiveTexture(), which sets
what texture unit to operate on. This is on the client side, not the hardware side of
things, and indicates which texture unit is to receive the texture coordinate array. Don’t
get this confused with glActiveTexture(), used in Listing 6-5 below, that actually turns
a specific texture unit on.

The other additional method we need is multiTexture, shown in Listing 6-5. This is a
very simple default case. The fancy stuff comes later.

Listing 6-5. Sets Up the Texture Combiners

-(void)multiTexture:(GLuint)tex0 tex1:(GLuint)tex1
{
 GLfloat combineParameter=GL_MODULATE; //1

 // Set up the first texture.

 glActiveTexture(GL_TEXTURE0); //2
 glBindTexture(GL_TEXTURE_2D, tex0); //3

 // Set up the second texture.

 glActiveTexture(GL_TEXTURE1);
 glBindTexture(GL_TEXTURE_2D, tex1);

 // Set the texture environment mode for this texture to combine.

 glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, combineParameter); //4
}

Here’s what is going on:

 Line 1 specifies what the combiners should do. Table 6-2 lists all the
possible values.

 glActiveTexture() makes active a specific hardware texture unit in
line 2.

 Line 3 should not be a mystery, because you have seen it before. In
this example, the first texture is bound to a specific hardware texture
unit. The following two lines do the same for the second texture.

 Now tell the system what to do with the textures in line 4. Table 6-2
lists all the possible parameters. (In the table, P is previous, S is
source, subscript a is alpha, and c is color and is used only when color
and alpha have to be considered separately.)

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Will It Blend? 188

Table 6-2. Possible Values for GL_TEXTURE_ENV_MODE

Texture Mode Function

 GL_ADD nn SP + (component-wise addition of the RGBA values from the

two texture fragments, with S being source, P being the previous)

 GL_BLEND CSSP nnn ×+−)1((C is constant color set by

GL_TEXTURE_ENV_COLOR)

 GL_COMBINE described below

 GL_DECAL)()1(ancnann SSSP ×+−×

 GL_MODULATE
nn SP ×

 GL_REPLACE Output color = nS

Now compile and run. Your display should superficially resemble the results of
Figure 6-11.

Figure 6-11. Hedly is the ‘‘previous’’ texture on the left, while the Jackson Pollack-ish painting is the ‘‘source.’’
When using GL_MODULATE, the results are on the right.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Will It Blend? 189

Now it’s time to play with other combiner settings. Try GL_ADD for the texture mode,
followed by GL_BLEND and GL_DECAL. My results are shown in Figure 6-12. For addition,
notice how the white part of the overlay texture is opaque. Because white is 1.0 for all
three colors, it will always yield a 1.0 color so as to block out anything underneath. For
the nonwhite shades, you should see a little of the Hedly texture poke through.
GL_BLEND, as shown in Figure 6-12 (center), is not quite as obvious. Why cyan splats in
place of the red? Simple. Say the red value is 1.0, its highest. Consider the equation for
GL_BLEND:

Output= CSSP nnn ×+−)1(

The first section would be zero for red, because red’s value of 1 is subtracted by the 1 in
the equation, and by gosh, the second one would be too, providing that the default
environment color of black is used. Consider the green channel. Assume that the
background image has a value of .5 for green, the ‘‘previous’’ color, while keeping the
splat color (the source) of solid red (so no blue or green in the splat). Now the first
section of the equation becomes .5*(1.0-0.0), or .5. That is, the .5 value for green in the
previous texture, Hedly, is multiplied against ‘‘1- minus-green’’ in the source texture.
Because both the green and blue channels in the source’s red splats would be 0.0, the
combination of green and blue without any red gives a cyan shading, because cyan is
the inverse of red. And if you look really closely at Figure 6-12 (center), you can just
make out a piece of Hedly poking through. The same holds true for the magenta and
yellow splats. In Figure 6-12 (right), GL_DECAL is used and can serve many of the same
duties that decals for plastic models had, namely, the application of signs or symbols
that would block out anything behind it. So for decals, typically the alpha channel would
be set to 1.0 for the actual image part of the texture, while it would be 0.0 for any part
that was not of the desired image. Typically the background would be black, and on
your paint program you would have it generate an alpha channel based on luminosity or
for the part of the image that has a nonzero color. In the case of the splat, because the
background was white, I had to invert the colors first to turn it black, generate the mask,
and merge it with the normal positive image. The image actually used is the
rgb_splats_masked.256.color.png file you can find in the project download. Some alpha
that is slightly less than 1 was generated for the green channel, and as a result, you can
see a little part of Hedly showing through.

Note On older pre-iPhone 3GS/pre-iPod touch third-generation devices, Apple lists a number
of caveats in its OpenGL ES programming guide. If you want to ensure your creation will work
on earlier devices, you should check it out.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Will It Blend? 190

Figure 6-12. On the left, GL_ADD was used, GL_BLEND was added for the center, and GL_DECAL was added on
the right.

One further task would be to animate the second texture. Add the following to
drawInRect():

 for(i=0;i<8;i++)
 {
 textureCoords2[i]+=.01;
 }

Then make a duplicate of the original textureCoords array, and name it
textureCoords2. The latter coordinates are specific to the second texture, so modify the
second call to glTexCoordPointer() to use the new data. And finally, declare the index i
somewhere. You should see texture 2 scrolling wildly on top of texture 1.

An effect like this could be used to animate rain or snow in a cartoonlike setting or a
cloud layer surrounding a planet. The latter would be cool if you had two additional
textures, one for the upper deck of clouds and one for the lower, moving at different
rates.

As mentioned, the environment parameter GL_COMBINE needs an additional family of
settings to get working, because it lets you operate on a much more precise level with
the combiner equations. If you were to do nothing more than just using GL_COMBINE, it
defaults to GL_MODULATE, so you’d see no difference between the two. Using Arg0 and
Arg1 means the input sources are set up by using something like the following line,
where GL_SOURCE0_RGB is the argument 0 or Arg0, referenced in Table 6-3:

glTexEnvf(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_TEXTURE);

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Will It Blend? 191

And similarly you’d use GL_SOURCE1_RGB for Arg1.

Table 6-3. Possible Values for GL_COMBINE_RGB and GL_COMBINE_ALPHA Parameters

 GL_COMBINE_* Function

GL_REPLACE Arg0

GL_MODULATE Arg0 * Arg1 (the default)

GL_ADD Arg0 + Arg1

GL_ADD_SIGNED Arg0 + Arg1-0.5

GL_INTERPOLATE Arg0 * Arg2 + Arg1 * (1-Arg2)

GL_SUBTRACT Arg0 – Arg1

GL_DOT3_RGB 4*(((Arg0red-.5)*(Arg1red-.5))+((Arg0green-.5)*(Arg1green-.5))+
((Arg0blue-.5)*(Arg1blue-.5))) (GL_COMBINE_RGB only)

GL_DOT3_RGBA Same as above, but with alpha added (GL_COMBINE_RGBA only)

Mapping with Bumps
You can do many extremely sophisticated things with textures; bump mapping is just
one. So, what follows is a discussion of exactly what ‘‘bumps’’ are and why anyone
should be concerned with mapping them.

As previously pointed out, much of the challenge in computer graphics is to make
complicated-looking visuals using clever hacks behind the scenes. Bump mapping is
just one of those tricks, and in OpenGL ES 1, it can be implemented with texture
combiners.

Just as textures were ‘‘tricks’’ to layer complexity to a simple face, bump mapping is a
technique to add a third dimension to the texture. It’s used to generate a roughness to
the overall surface of an object, giving some surprisingly realistic highlights when
illuminated. It might be used to simulate waves on a lake, the surface of a tennis ball, or
a planetary surface.

Roughness to an object’s surface is perceived by the way it plays with both light and
shadow. For example, consider a full moon vs. a gibbous moon, as shown in Figure 6-
13. The moon is full when the sun is directly in front of it, and as a result, the surface is
little more than varying shades of gray. No shadows whatsoever are visible. It’s not
much different than you looking at the ground facing away from the sun. Around the
shadow of your head the surface looks flat. Now, if the light source is moved to the side
of things, suddenly all sorts of details pop out. Figure 6-13 (right) shows a gibbous moon
that has the sun toward the left, the moon’s eastern limb. It’s a completely different
story, isn’t it?

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Will It Blend? 192

Figure 6-13. Relatively little detail shows on the left, while with oblique lighting, a lot more shows on the right.

Understanding how highlights and shadows work together is absolutely critical to the
training of fine artists and illustrators.

Adding real surface displacement to replicate the entire lunar surface would likely
require many gigabytes of data and is out of the question for the current generation of
small handheld devices from both a memory and a CPU standpoint. Thus enters the
rather elegant hack of bump mapping to the center stage.

If you remember in Chapter 4 on lighting, you had to add an array of ‘‘face normals’’ to
the sphere model. Normals are merely vectors that are perpendicular to the face that
show the direction the face is pointing. It is the angle of the normal to any of the light
sources that largely determines just how bright or dark the face will be. And the more
directly oriented the face is toward the light, the brighter it will be. So, what if you had a
compact way to encode normals not on a face-by-face basis, because a model might
have relatively few faces, but on, say, a pixel-by-pixel basis? And what if you could
combine that encoded normal array with a real image texture and process it in a way
that could brighten or darken a pixel from the image, based on the direction of incoming
light?

This brings us back to the texture combiners. In Table 6-3, notice the last two combiner
types: GL_DOT3_RGB and GL_DOT3_RGBA. Now, reach back, way back to your high-school
geometry classes. Remember the dot product of two vectors? Both the dot products
and cross products were those things that you scorned with the whine ‘‘Teacherrrrr??
Why do I need to know this?’’ Well, now you are going to get your answer.

The dot product is the length of a vector based on the angle of two other vectors. Still
not following? Consider Figure 6-14 (left). The dot product is the ‘‘amount’’ of the normal
vector that is aiming toward the light, and that value is used to directly illuminate the
face. In Figure 6-14 (right), the face is at a right angle to the direction of the sun, so it is
not illuminated.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Will It Blend? 193

Figure 6-14. On the left (left), the face is illuminated, which is not the case on the right (right).

With this in mind, the ‘‘cheat’’ that bump mapping uses is as follows. Take the actual
texture you want to use, and add a special second companion texture to it. This second
texture encodes normal information in place of the RGB colors. So, instead of using
floats that are 4 bytes each, it uses 1-byte values for the xyz of normal vectors that
conveniently fit inside a single 4-byte pixel. Since the vectors usually don’t have to be
super accurate, the 8-bit resolution is just fine and is very memory efficient. So, these
normals are generated in a way to map directly to the vertical features you want
highlighted.

Because normals can have negative values as well as positive (negative when pointing
away from the sun), the xyz values are centered in the range of 0 to 1. That is, -127 to
+127 must be mapped to anywhere between 0 and 1. So, the ‘‘red’’ component, which
is typically the x part of the vector, would be calculated as follows:

 0.2/)1(+= xred

And of course this is similar for the green and blue bits.

Now look at the formula expressed in the GL_DOT3_RGB entry of Table 6-3. This takes the
RGB triplet as the vector and returns its length. N is the normal vector, and L is the light
vector, so the length is solved as follows:

))5.()5.()5.()5.()5.()5.((4 −×−+−×−+−×−×= lnlnln BBGGRRlength

So if the face is aimed directly toward the light along the x-axis, the normal’s red would
be 1.0, and the light’s red or x value would also be 1.0. The green and blue bits would
be .5, which is the encoded form of 0. Plugging that into the earlier equation would look
like this:

))5.5(.)5.5(.)5.5(.)5.5(.)5.1()5.1((4 −×−+−×−+−×−×= lnlnlnlength

0.1)0025(.4 =++×=length

This is exactly what we’d expect. And if the normal is pointing up and away from the
surface in the z direction, encoded in the blue byte, the answer should be 0 because the
normals are largely aimed up away from the texture’s X and Y planes. Figure 6-15 (left)

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Will It Blend? 194

shows a bit of our earth map, while Figure 6-15 (right) shows its corresponding normal
map.

Figure 6-15. The left side is our image; the right is the matching normal map.

And why is the normal map primarily purple? The straight-up vector pointing away from
the earth’s surface is encoded such that red=.5, green=.5, and blue=1. (Keep in mind
that .5 is actually 0.)

When the texture combiner is set to the DOT3 mode, it uses the normal and a lighting
vector to determine the intensity of each texel. That value is then used to modulate the
color of the real image texture.

Now it’s time to recycle the previous multitexture project. We’ll need to add a second
texture composed of the bump map, available from the Apress site, and change the way
the combiners are set.

To the viewDidLoad() method, load the normal map for this example into m_Texture0,
followed by the companion earth texture as m_Texture1. Then add the new routine,
MultiTextureBumpMap(), as shown in Listing 6-6.

Listing 6-6. Setting Up the Combiners for Bump Mapping

-(void)multiTextureBumpMap:(GLuint)tex0 tex1:(GLuint)tex1
{
 GLfloat x,y,z;
 static float lightAngle=0.0;

 lightAngle+=1.0; //1

 if(lightAngle>180)
 lightAngle=0;

 // Set up the light vector.

 x = sin(lightAngle * (3.14159 / 180.0)); //2
 y = 0.0;

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Will It Blend? 195

 z = cos(lightAngle * (3.14159 / 180.0));

 // Half shifting to have a value between 0.0 and 1.0.

 x = x * 0.5 + 0.5; //3
 y = y * 0.5 + 0.5;
 z = z * 0.5 + 0.5;

 glColor4f(x, y, z, 1.0); //4

 //The color and normal map are combined.

 glActiveTexture(GL_TEXTURE0); //5
 glBindTexture(GL_TEXTURE_2D, tex0);

 glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE); //6
 glTexEnvf(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_DOT3_RGB); //7
 glTexEnvf(GL_TEXTURE_ENV, GL_SRC0_RGB, GL_TEXTURE); //8
 glTexEnvf(GL_TEXTURE_ENV, GL_SRC1_RGB, GL_PREVIOUS); //9

 // Set up the Second Texture, and combine it with the result of the Dot3
combination.

 glActiveTexture(GL_TEXTURE1); //10
 glBindTexture(GL_TEXTURE_2D, tex1);

 glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); //11

 }

The preceding operation takes place using two stages. The first blends the bump map
with the primary color, which is established using the glColor4f call. The second takes
the results of that and combines it with the color image using our old friend GL_MODULATE.

So, let’s examine it piece by piece:

 In line 1 we define lightAngle that will cycle between 0 and 180
degrees around the texture to show how the highlights look under
varying lighting conditions.

 Calculate the xyz values of the light vector in lines 2ff.

 In line 3, the xyz components need to be scaled to match those of the
bump map.

 Line 4 colors the fragments using the light vector components.

 Lines 5f set and bind the bump map first, which is tex0.

 GL_COMBINE in line 6 tells the system to expect a combining type to
follow.

 In line 7, we specify that we’re going to combine just the RGB values
using GL_DOT3_RGB operations (GL_DOT3_RGBA includes the alpha but is
not needed here).

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Will It Blend? 196

 Here we set up ‘‘stage 0,’’ the first of two stages. The source of the
first bit of data is specified in line 8. This says to use the texture from
the current texture unit (GL_TEXTURE0) as the source for the bump map
assigned in line 5.

 Then line 9 tells it to blend with the previous color-----in this case,
that which was set via glColor() in line 4. For stage 0, GL_PREVIOUS
is the same as GL_PRIMARY_COLOR, because there is no previous texture
to use.

 Now set up stage 1 in line 10 and the following line. The argument,
tex1, is the color image.

 Now all we want to do is combine the image with the bump map,
which is what line 11 does.

Now all you have to do is to call the new method in place of multTexture() used in the
previous exercise. My source texture is selected so that you can easily see the results.
When started, the light should move from left to right and illuminate the edges of the
land masses, as shown in Figure 6-16.

Figure 6-16. Bump-mapped North America at morning, noon, and evening, respectively

Looks pretty cool, eh? But can we apply this to a spinning sphere? Give it a shot and
recycle the solar-system model from the end of the previous chapter. To make the fine
detail of the bump map more easily seen, the sun is dropped in lieu of a somewhat
larger image for the earth. So, we’ll load the bump map, move the earth to the center of
the scene, tweak the lighting, and add the combiner support.

So first off, add a new parameter to the init method of Planet.m for the bump map so
that it looks like the following line, and call it where you generate the earth object:

-(id) init:(GLint)stacks slices:(GLint)slices radius:(GLfloat)radius
squash:(GLfloat)squash textureFile:(NSString *)textureFile bumpmapFile:(NSString
*)bumpmapFile

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Will It Blend? 197

Underneath where you allocate the main image, add the following:

if(bumpmapFile!=nil)
 m_BumpMapInfo=[self loadTexture:bumpmapFile];

And to the header add this:

GLKTextureInfo *m_BumpMapInfo;

Exchange the initGeometry() call in your solar-system view controller for Listing 6-7:

-(void)initGeometry
{
 m_Eyeposition[X_VALUE]=0.0;
 m_Eyeposition[Y_VALUE]=0.0;
 m_Eyeposition[Z_VALUE]=3.0;

 m_Earth=[[Planet alloc] init:50 slices:50 radius:1.0 squash:1.0

textureFile:@"earth_light.png" bumpmapFile:@"earth_normal_hc.png"];
 [m_Earth setPositionX:0.0 Y:0.0 Z:0.0];
}

Meanwhile, use Listing 6-8 as the new execute() method to be placed in Planet.m and
called from the bump mapping controller’s executePlanet() routine. This mainly sets
things up for the texture combiners and calls multiTextureBumpMap().

Listing 6-8. The Modified Execute in Planet.m that Calls multiTextureBumpMap() for Bump Mapping

-(bool)execute
{
 glMatrixMode(GL_MODELVIEW);
 glEnable(GL_CULL_FACE);
 glCullFace(GL_BACK);
 glEnable(GL_LIGHTING);

 glFrontFace(GL_CW);

 glEnable(GL_TEXTURE_2D);
 glEnableClientState(GL_VERTEX_ARRAY);
 glVertexPointer(3, GL_FLOAT, 0, m_VertexData);

 glEnableClientState(GL_TEXTURE_COORD_ARRAY);
 glClientActiveTexture(GL_TEXTURE0);

 glBindTexture(GL_TEXTURE_2D, m_TextureInfo.name);

 glTexCoordPointer(2, GL_FLOAT, 0, m_TexCoordsData);

 glClientActiveTexture(GL_TEXTURE1);
 glTexCoordPointer(2, GL_FLOAT,0,m_TexCoordsData);

 glMatrixMode(GL_MODELVIEW);

 glEnableClientState(GL_NORMAL_ARRAY);
 glNormalPointer(GL_FLOAT, 0, m_NormalData);

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Will It Blend? 198

 glColorPointer(4, GL_UNSIGNED_BYTE, 0, m_ColorData);

 [self multiTextureBumpMap:m_BumpMapInfo.name tex1:m_TextureInfo.name];

 glDrawArrays(GL_TRIANGLE_STRIP, 0, (m_Slices+1)*2*(m_Stacks-1)+2);

 return true;
}

Make sure to copy over multiTextureBumpMap() from the previous exercise to Planet.m.

Now go to where you initialize the lights in your solar-system controller, and comment
out the call to create the specular material. Bump mapping and specular reflections
don’t get along too well.

And to your solar-system’s controller replace its current execute() and executePlanet()
methods with listing 6-9. This dumps the sun, moves the earth into the center of things,
and places the main light off to the left.

Listing 6-9. The New Execute Routine that Places the Earth in the Center

-(void)execute
{
 GLfloat posFill1[]={-8.0,0.0,5.0,1.0};
 GLfloat cyan[]={0.0,1.0,1.0,1.0};
 static GLfloat angle=0.0;
 GLfloat orbitalIncrement=.5;
 GLfloat sunPos[4]={0.0,0.0,0.0,1.0};

 glLightfv(SS_FILLLIGHT1,GL_POSITION,posFill1);

 glEnable(GL_DEPTH_TEST);

 glClearColor(0.0, 0.25f, 0.35f, 1.0);
 glClear(GL_COLOR_BUFFER_BIT);

 glPushMatrix();

 glTranslatef(-m_Eyeposition[X_VALUE],-m_Eyeposition[Y_VALUE],-
 m_Eyeposition[Z_VALUE]);
 glLightfv(SS_SUNLIGHT,GL_POSITION,sunPos);

 glEnable(SS_FILLLIGHT1);
 glDisable(SS_FILLLIGHT2);

 glPushMatrix();

 angle+=orbitalIncrement;

 [self executePlanet:m_Earth];

 glPopMatrix();

 glPopMatrix();
}

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Will It Blend? 199

-(void)executePlanet:(Planet *)planet
{
 GLfloat posX, posY, posZ;
 static GLfloat angle=0.0;

 glPushMatrix();

 [planet getPositionX:&posX Y:&posY Z:&posZ];

 glTranslatef(posX,posY,posZ);

 glRotatef(angle,0.0,1.0,0.0);

 [planet execute];

 glPopMatrix();

 angle+=.4;
}

If you now see something like Figure 6-17, you may officially pat yourself on the back.

Figure 6-17. The bumpy Earth

OK, now for an experiment. Move the light’s position so that it comes in from the right
instead of the left. Figure 6-18 is the unexpected result. What’s going on here? Now the
mountains look like valleys.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Will It Blend? 200

Figure 6-18. Huh?

What’s happening is that we are going where no combiner has gone before. By sticking
in our own lighting, the effect of the simulated lighting as provided by the light vector is
removed. With our light on the left, it just happens to look good mainly by luck. Bump
mapping here works OK if the lighting of your scene is relatively static. It doesn’t like
multiple light sources. In fact, the pseudolighting effect specified via the light vector is
ignored in lieu of the ‘‘real’’ light sources. Furthermore, if you turn off those sources, the
light vector ignores any of the shading on the object altogether. In this case, you would
see the entire planet lighten up and darken because that’s what is happening to the
texture itself, because it is merely a 2D surface. If part of it is lit, all is lit. So, what’s a GL
nerd to do? Shaders my friend. Shaders. And that is where OpenGL ES 2 and the iOS 5
extensions come into play; they are covered in Chapter 10.

Summary
In this chapter, you learned about the blending capabilities supplied by OpenGL ES 1.
Blending has its own unique language as expressed through the blending functions and
combiners. You’ve learned about translucency, how and when to apply it. Also covered
were some of the neat tricks available by using both blending and textures for animation
and bump mapping. In the next chapter, I’ll start to apply some of these tricks and show
others that can make for a more interesting 3D universe.

www.it-ebooks.info

http://www.it-ebooks.info

7Chapter

Well-Rendered Miscellany

If we knew what it was we were doing, it would not be called research,
would it?

-----Albert Einstein

When starting this chapter, I tried to find a suitable quote about miscellany.
Unfortunately, all I could find were collections of miscellaneous quotes. But the one by
Albert Einstein is a real gem and can almost apply because you, dear reader, are
conducting research-----research in how to make richer, more involving and fun software.
The products and tools that Apple releases are fun to use-----to the point of almost being
playful, charming, and wondrous. If vacuuming the house was as much fun as using an
iPad, we’d all win awards from Good Housekeeping magazine.

In books like this, sometimes it’s hard to make clean classifications of a particular topic.
So, we just have to dump a lot things into a single chapter when they might not warrant
a chapter of their own. So here I’m going to cover some classic presentation and
rendering tricks, whether they can be applied to the solar-system project or not, that
integrate UIKit elements with OpenGL windows and user interaction with components in
your scenes.

Frame Buffer Objects
Usually referred to as FBOs, you can think of frame buffer objects as simply rendering
surfaces. Up until now, you’ve been using one and you probably didn’t know it; the
EAGL context that your scene renders to is an FBO. What you probably didn’t know is
that you can have multiple screens at the same time. As before, we’ll start off with the
old standard, and then see where it can go from there.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Well-Rendered Miscellany 202

Hedley Buffer Objects
You know the drill by this time: find the exercise from Chapter 5, with the original 2D
textured square filled. This will serve as our basic framework as usual.

You’ll have to create a separate object that encapsulates the new FBO. Call it
FBOController and populate it with Listing 7-1 and Listing 7-2.

Listing 7-1. The header for FBOController.h

#import <Foundation/Foundation.h>
#import <UIKit/UIKit.h>
#import <GLKit/GLKit.h>

@interface FBOController : NSObject
{
 GLuint m_Texture;
 GLuint m_FBO1;
}

-(GLint)getFBOName;
-(GLuint)getTextureName;
-(id)initWidth:(float)width height:(float)height;

@end

Listing 7-2. The main body of FBController.m

#import <OpenGLES/ES1/gl.h>
#import <OpenGLES/ES1/glext.h>
#import "FBOController.h"

@implementation FBOController

-(id)initWidth:(float)width height:(float)height
{
 GLint originalFBO;
 GLuint depthBuffer;

 //Cache the original FBO, and restore it later.

 glGetIntegerv(GL_FRAMEBUFFER_BINDING_OES, &originalFBO); //1

 glGenRenderbuffersOES(1, &depthBuffer); //2
 glBindRenderbufferOES(GL_RENDERBUFFER_OES, depthBuffer);

 glRenderbufferStorageOES(GL_RENDERBUFFER_OES, //3
 GL_DEPTH_COMPONENT16_OES, width, height);

 //Make the texture to render to.

 glGenTextures(1, &m_Texture); //4
 glBindTexture(GL_TEXTURE_2D, m_Texture);

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Well-Rendered Miscellany 203

 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0,
 GL_RGB, GL_UNSIGNED_SHORT_5_6_5, 0);

 glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
 glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
 glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
 glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

 //Now create the actual FBO.

 glGenFramebuffersOES(1, &m_FBO1); //5
 glBindFramebufferOES(GL_FRAMEBUFFER_OES, m_FBO1);

 // Attach the texture to the FBO.

 glFramebufferTexture2DOES(GL_FRAMEBUFFER_OES, //6
 GL_COLOR_ATTACHMENT0_OES, GL_TEXTURE_2D, m_Texture, 0);

 // Attach the depth buffer we created earlier to our FBO.

 glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES, //7
 GL_DEPTH_ATTACHMENT_OES, GL_RENDERBUFFER_OES, depthBuffer);

 // Check that our FBO creation was successful.

 glCheckFramebufferStatusOES(GL_FRAMEBUFFER_OES); //8

 GLuint uStatus = glCheckFramebufferStatusOES(GL_FRAMEBUFFER_OES);

 if(uStatus != GL_FRAMEBUFFER_COMPLETE_OES)
 {
 NSLog(@ "ERROR: Failed to initialise FBO");
 return 0;
 }

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 glBindFramebufferOES(GL_FRAMEBUFFER_OES, originalFBO); //9

 return self;
}

-(GLint)getFBOName //10
{
 return m_FBO1;
}

-(GLuint)getTextureName //11
{
 return m_Texture;
}

@end

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Well-Rendered Miscellany 204

You should recognize the pattern here, because creating FBOs is a lot like many of the
other OpenGL objects. So, let’s break it down:

 FBOs, as with many of the OpenGL objects, use ‘‘names’’ as handles
to uniquely identify them. In line 1, we’re getting the original frame
buffer object that serves as the main screen. The idea is to be a good
neighbor and restore it at the very end. Otherwise, the wrong one
could be used.

 Line 2 has us generating a name for our depth buffer. Then it is bound
to the system as our current render buffer. If this is the first time that
object has been bound, OpenGL will allocate it minus the image
memory and then use that allocated memory in all subsequent
bindings.

 In line 3 we actually allocated the memory for the buffer’s image data.
Since images require large blocks of memory, they should never be
allocated until needed. That is why the bind and the allocation
operations are usually kept separate.

 At this point in lines 4ff, we need to allocate a texture image and have
it linked up to our frame buffer. This is the interface required to
camouflage our FBO so it looks just like any other texture to OpenGL.

Here we can also set up some of the normal texture settings for edge
conditions and use bilinear filtering.

 Up until now we’ve merely created the depth buffer and image
interface. In line 5, we actually create the frame buffer object and
attach the previous bits to it.

 Line 6 attaches the texture first. Notice the use of
GL_COLOR_ATTACHMENT0_OES.The texture bit actually holds the color
information, so it is called the color attachment.

 In line 7, we do the same for the depth buffer, using
GL_DEPTH_ATTACHMENT_OES. And remember that in OpenGL ES we have
only three types of buffer attachments: depth, color, and stencil. The
latter does things such as blocking rendering in a certain part of the
screen. The adult version of OpenGL adds a fourth kind,
GL_DEPTH_STENCIL_ATTACHMENT.

 Line 8 does a quick error check.

 As referenced earlier, we need to restore the original FBO for our main
screen, in line 9.

 And finally, lines 10 and 11 provide some getters so we can use the
new FBO.

So, that’s merely creating an FBO. You’ll see that it is a fairly no-frills piece of code,
using the built-in functions available in both OpenGL ES 1 and 2. And yes, it does seem
a little overly complicated, but it’s easily wrapped with a helper function.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Well-Rendered Miscellany 205

But we’re still not quite done, because we now have to rejigger drawInRect() to use
both FBOs.

To the end of the viewDidLoad() method, add the following lines:

 m_FBOHeight=480;
 m_FBOWidth=320;

 m_FBOController=[[FBOController alloc]initWidth:m_FBOWidth height:m_FBOHeight];

Then modify the header as needed. The first line caches the original FBO so that it can
be restored properly as needed.

Now add the new drawInRect() method shown in Listing 7-3.

Listing 7-3. The new drawInRect(), renders to both FBOs

- (void)glkView:(GLKView *)view drawInRect:(CGRect)rect
{
 static const GLfloat squareVertices[] =
 {
 -0.5, -0.5, 0.0,
 0.5, -0.5, 0.0,
 -0.5, 0.5, 0.0,
 0.5, 0.5, 0.0
 };

 static const GLfloat fboVertices[] = //1
 {
 -0.5, -0.75, 0.0,
 0.5, -0.75, 0.0,
 -0.5, 0.75, 0.0,
 0.5, 0.75, 0.0
 };

 static GLfloat textureCoords1[] =
 {
 0.0, 0.0,
 1.0, 0.0,
 0.0, 1.0,
 1.0, 1.0
 };

 static float transY = 0.0;
 static float rotZ = 0.0;
 static float z = -1.5;

 if(m_DefaultFBO==0)
 glGetIntegerv(GL_FRAMEBUFFER_BINDING_OES, &m_DefaultFBO); //2

 glDisableClientState(GL_COLOR_ARRAY|GL_DEPTH_BUFFER_BIT);

 //Draw to the off-screen FBO first.

 glBindFramebufferOES(GL_FRAMEBUFFER_OES, [m_FBOController getFBOName]); //3

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Well-Rendered Miscellany 206

 glClearColor(0.0, 0.0, 1.0, 1.0);
 glClear(GL_COLOR_BUFFER_BIT);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();

 glTranslatef(0.0, (GLfloat)(sinf(transY)/2.0), z);
 glRotatef(rotZ, 0, 0, 1.0); //4

 glEnable(GL_TEXTURE_2D);
 glBindTexture(GL_TEXTURE_2D, m_Texture.name);

 glTexCoordPointer(2, GL_FLOAT,0,textureCoords1);
 glEnableClientState(GL_TEXTURE_COORD_ARRAY);

 glVertexPointer(3, GL_FLOAT, 0, squareVertices);
 glEnableClientState(GL_VERTEX_ARRAY);

 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4); //5

 glBindFramebufferOES(GL_FRAMEBUFFER_OES, m_DefaultFBO); //6
 glLoadIdentity();

 glTranslatef(0.0, (GLfloat)(sinf(transY)/2.0),z);

 glBindTexture(GL_TEXTURE_2D, [m_FBOController getTextureName]); //7

 glClearColor(1.0, 0.0, 0.0, 1.0); //8
 glClear(GL_COLOR_BUFFER_BIT);

 glTexCoordPointer(2, GL_FLOAT,0,textureCoords1);
 glEnableClientState(GL_TEXTURE_COORD_ARRAY);

 glVertexPointer(3, GL_FLOAT, 0, fboVertices); //9
 glEnableClientState(GL_VERTEX_ARRAY);

 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);

 transY += 0.075;
 rotZ+=1.0;
}

 In line 1, the vertices for the FBO are specified, not much different
from those for the bouncing image.

 In line 2, we fetch and save the default FBO, the one used for the main
display. And if you haven’t done it yet, this should be declared as a
GLint m_Default_FBO.

 Line 3 is where we actually tell OpenGL to use our new FBO using a
bind method not unlike those used for basic texture mapping.
Following that is the standard setup code to manage the
transformations and so on.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Well-Rendered Miscellany 207

 Line 4 adds a small rotation for some extra dynamic goodness.

 glDrawArray() at line 5 does just what it always does, but because the
new FBO is bound to the system, its writes are redirected to that FBO
instead of the main screen.

 Lines 6ff switch us over to the main FBO we’ve always used before.
glLoadIdentity() erases any built-up transformations for the subview.

 glBindTexture() in line 7 is the heart of the magic. Instead of binding
a ‘‘normal’’ texture as was done to the secondary FBO right after line
3, we now bind the FBO itself via its access texture. Anywhere
textures can be used, our special FBO-texture can also be used.

 Notice that glClearColor in line 8 clears the background to red, while
the secondary FBO shown earlier used blue. It’s all the more blindingly
nauseating to make the different objects stand out.

 Line 9 uses the new set of vertices. The original set drew a square for
the textured block, but the new set draws a rectangle with the
proportions of the normal screen so that it looks like a tiny and
hyperactive version of the former. This is followed by the second
glDrawArrays(), incrementing the rotation and translation values.

You should be able to run it and see it in all of its gaudy glory. If you intend to stare at it
for an extended period of time, your doctor’s permission will be necessary. Figure 7-1
(left) is the result.

Now, it’s time to tweak. Put a second rotation of the main FBO this time around. Add it
right before the second glTranslation() call, rotating in the same direction, and you
should see Figure 7-1 (center). And what would you do to see Figure 7-1 (right)?

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Well-Rendered Miscellany 208

Figure 7-1. On the left, just Hedly is spinning. Both Hedly and his window are now spinning counterclockwise in
the middle. And on the right, the frame is spinning end over end.

Sun Buffer Objects
There are a lot of fun and bizarre things you can do with this equivalent to having 3D
superpowers. For example, you could simulate some animations on a little model of a
TV set. You could show multiple views of the same data in a reflection of a puddle on
the ground or the rearview mirror in a car. Better yet, put one OpenGL frame animating a
scene on the sun in our solar-system simulator. It’s not particularly realistic, but it’s
pretty cool.

Much of this is going to be left to the student this time around. I used Chapter 5’s final
projects for starters. You’ll need to add the FBController object and initialize it in a
different drawInRect() method taken from the previous exercise. The latter is in addition
to the execute() method used in the solar system. I’ll give you drawInRect(), as shown
in Listing 7-4, and leave the rest up to you.

Listing 7-4. Changes needed to drawInRect()

- (void)glkView:(GLKView *)view drawInRect:(CGRect)rect
{
 static const GLfloat squareVertices[] = //1
 {
 -0.15f, -0.5, 0.0,
 -0.15f, 0.5, 0.0,
 0.15f, -0.5, 0.0,
 0.15f, 0.5, 0.0
 };

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Well-Rendered Miscellany 209

 static GLfloat textureCoords1[] =
 {
 0.0, 0.0,
 0.0, 1.0,
 1.0, 0.0,
 1.0, 1.0
 };

 static const GLubyte squareColors[] = {
 255, 0, 255, 255,
 255, 255, 0, 255,
 0, 255, 255, 255,
 0, 0, 0, 0,
 };

 static float transY = 0.0;

 glBindFramebufferOES(GL_FRAMEBUFFER_OES, [m_FBOController getFBOName]);

 glPushMatrix();

 glDisable(GL_LIGHTING); //2

 glClearColor(1.0, 1.0, 1.0, 1.0);
 glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();

 glTranslatef(0.0, (GLfloat)(sinf(transY)/2.0), -2.5);

 glEnable(GL_TEXTURE_2D);
 glBindTexture(GL_TEXTURE_2D, m_Hedly);

// glColorPointer(4, GL_UNSIGNED_BYTE, 0, squareColors); //3
// glEnableClientState(GL_COLOR_ARRAY);

 glTexCoordPointer(2, GL_FLOAT,0,textureCoords1);
 glEnableClientState(GL_TEXTURE_COORD_ARRAY);

 glVertexPointer(3, GL_FLOAT, 0, squareVertices);
 glEnableClientState(GL_VERTEX_ARRAY);

 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);

 glPopMatrix();

 glBindFramebufferOES(GL_FRAMEBUFFER_OES, m_DefaultFBO);

 glEnable(GL_LIGHTING);
 transY += 0.075;
}

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Well-Rendered Miscellany 210

This differs from the previous version of drawInRect() as follows:

 In line 1 we need to change the square dimensions of the ‘‘square’’ to
compensate for the short but wide shape of the sun’s texture
geometry; otherwise, the image would be highly distorted.

 Line 2 disables the lighting so that the full image can be seen no
matter what.

 Lines 3f were commented out to turn off the coloring, making the
image of Hedly more visible.

I hope you get something like Figure 7-2, with Hedly bouncing up and down on the sun.

Figure 7-2. Using an off-screen FBO to animate texture on another one

Pretty slick, eh?

Lens Flare
We’ve all seen it. Those ghostly, glowing gossamer lights dancing around television
scenes or invading an image whenever a camera is aimed toward the sun. This happens
as the sun’s light merrily bounces around to and fro in the camera’s optics, causing
numerous secondary images. These can be seen both as a bright broad haze and as
many smaller artifacts. Figure 7-3a illustrates this with an image from the Apollo 14
moon landing mission in 1971. The flare obscures most of the lunar module. Even the
iPhone has the similar issues, as demonstrated with Figure 7-3b. Even though the
Hasselblad cameras that were used on the moon were the best in the world, we couldn’t
beat lens flare. Unfortunately, it has become one of the more common clichés in
computer graphics, used as a tool that shouts ‘‘Hey! This is not a fake computer image,
because it has lens flare!’’ However, lens flares do have their uses, especially in the
arena of space simulations because the fake imagery frequently looks at the fake sun. In
that case, both consciously and subconsciously, you’d expect some visual cue that you
were looking at something very, very, very bright. It also helps give an extra sense of
depth to the image. The flare is generated in the optics that are really near the user while
the target is a bazillion miles away.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Well-Rendered Miscellany 211

Figure 7-3. On the left is a view on the moon from Apollo 14, and an iPhone 4 image is on the right.

Depending on the specific optics and their various internal coatings, the flares can take
many different forms, but they usually end up being just of bunch of ghostly polygons of
varying sizes and hues. In the next exercise, we’ll create a simple lens flare project that
will illustrate using 2D images in a 3D environment. Because there is a lot of code for the
setup, I will only highlight the key bits here. You will need to go to www.apress.com to get
the full project.

Geometrically, lens flares are generally pretty simple because of their symmetry. They
exhibit two main characteristics: all lens flares require a very bright light source, and
they’ll lie along a diagonal line going through the center of the screen, as shown in
Figure 7-4.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Well-Rendered Miscellany 212

Figure 7-4. Lens flares are caused by the inner reflections of a bright light source within a camera’s lens.

Since flare images are 2D, how do we put them in a 3D space? Going back to the
original sample, the bouncy square was also 2D object. But displaying it relied on some
defaults as to how the object was mapped to the screen. Here we get a little more
specific.

Remember in Chapter 3, where I spoke of perspective vs. orthographic projections? The
former is the way we perceive the dimensionality of objects; the latter is used when
precise sizes and shapes are required, eliminating the distortion that perspective adds to
the scene. So, when drawing 2D objects, you will generally want to ensure that their
visual dimensions are untouched by any of the 3D-ness of the rest of your world.

When it comes to generating your lens flares, you will need a small collection of different
shapes to represent some of the mechanics of the actual lens. The hexagonal or
pentagonal images are those of the iris used to vary the intensity of the incoming light;
see Figure 7-5. They will also exhibit different tints as a result of the various coatings
used to protect the lenses or filter out unwanted wavelengths.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Well-Rendered Miscellany 213

Figure 7-5. A six-blade iris (image by Dave Fischer)

The following steps are needed to generate the flare set:

1. Import the various images.

2. Detect where on the screen the source object is.

3. Create the imaginary vector that goes through the center of the screen
so as to hold the individual pieces of art.

4. Add a dozen or more images, with random sizes, colors, and
translucency, scattered up and down the vector.

5. Support touch dragging to test it in all different positions.

I started with the standard template and added support for touching and dragging the
visuals. Following that, the sun image is loaded at startup and is drawn in drawInRect()
at the current position of a user’s finger, as demonstrated in Listing 7-5.

Listing 7-5. The top-level drawInRect()

- (void)glkView:(GLKView *)view drawInRect:(CGRect)rect
{
 GLfloat cx,cy;
 CGPoint centerRelative;
 CGRect frame = [[UIScreen mainScreen] bounds];

 glClearColor(0.0, 0.0, 0.0, 1.0);
 glClear(GL_COLOR_BUFFER_BIT);

 cx=(frame.size.width/2.0); //1

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Well-Rendered Miscellany 214

 cy=(frame.size.height/2.0);

 centerRelative=CGPointMake(m_PointerLocation.x-cx,cy-m_PointerLocation.y);
 //2
 [[OpenGLCreateTexture getObject]renderTextureAt:centerRelative name:m_FlareSource
 size:3.0 r:1.0 g:1.0 b:1.0 a:1.0];
 //3
 [m_LensFlare execute:[[UIScreen mainScreen]applicationFrame]
source:m_PointerLocation];
}

I put the helper routines for creating and rendering a texture on their own module,
renderTextureAt(), which is covered in Listing 7-6. However, there are three lines to
take note of:

 Lines 1ff get the center of the screen and creates the information
needed to track the flare source (the sun) with the pointer.

 In line 2, the flare’s source object, usually the sun, is rendered.

 Line 3 calls the helper routine that draws our 2D sun graphic in
the sky.

Listing 7-6. Rendering a 2D texture

-(void)renderTextureAt:(CGPoint)position name:(GLuint)name
 size:(GLfloat)size r:(GLfloat)r g:(GLfloat)g b:(GLfloat)b a:(GLfloat)a; //1
{
 float scaledX,scaledY;
 GLfloat zoomBias=.1;
 GLfloat scaledSize;

 static const GLfloat squareVertices[] =
 {
 -1.0, -1.0, 0.0,
 1.0, -1.0, 0.0,
 -1.0, 1.0, 0.0,
 1.0, 1.0, 0.0,
 };

 static GLfloat textureCoords[] =
 {
 0.0, 0.0,
 1.0, 0.0,
 0.0, 1.0,
 1.0, 1.0
 };

 CGRect frame = [[UIScreen mainScreen] bounds];
 float aspectRatio=frame.size.height/frame.size.width;

 scaledX=2.0*position.x/frame.size.width; //2
 scaledY=2.0*position.y/frame.size.height;

 glDisable(GL_DEPTH_TEST); //3

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Well-Rendered Miscellany 215

 glDisable(GL_LIGHTING);

 glMatrixMode(GL_PROJECTION); //4
 glPushMatrix();
 glLoadIdentity();

 glOrthof(-1,1,-1.0*aspectRatio,1.0*aspectRatio, -1, 1); //5

 glMatrixMode(GL_MODELVIEW); //6
 glLoadIdentity();

 glTranslatef(scaledX,scaledY,0); //7

 scaledSize=zoomBias*size; //8

 glScalef(scaledSize,scaledSize, 1); //9

 glVertexPointer(3, GL_FLOAT, 0, squareVertices);
 glEnableClientState(GL_VERTEX_ARRAY);

 glEnable(GL_TEXTURE_2D); //10
 glEnable(GL_BLEND);
 glBlendFunc(GL_ONE,GL_ONE_MINUS_SRC_COLOR);
 glBindTexture(GL_TEXTURE_2D,name);
 glTexCoordPointer(2, GL_FLOAT,0,textureCoords);
 glEnableClientState(GL_TEXTURE_COORD_ARRAY);

 glColor4f(r,g,b,a); //11

 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);

 glMatrixMode(GL_PROJECTION); //12
 glPopMatrix();

 glMatrixMode(GL_MODELVIEW);
 glPopMatrix();

 glEnable(GL_DEPTH_TEST);
 glEnable(GL_LIGHTING);
}

So, here is what’s going on:

 In line 1, the position is the origin of the texture in pixels relative to the
center, which is converted to normalized values later. The size is
relative and needs to be played with to find the most appropriate. The
final parameters are the colors and alpha. If you don’t want any
coloring, pass 1.0 for all of the values. Following this line, you’ll
recognize our old friends, the vertices and texture coordinates.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Well-Rendered Miscellany 216

 Line 2 converts the pixel locations to relative values based on the
width and height of the frame. The values are scaled by 2 because our
viewport will be 2 units wide and high, going from -1 to 1 in each
direction. These are the values eventually passed on to
glTranslatef().

 Next, turn off the any depth testing, just to be safe, along with the
lighting, because the flares have to be calculated apart from the actual
lighting in the scene.

 Since we’re going to use orthographic projection, let’s reset the
GL_PROJECTION to the identity in line 4. Remember that any time to
want to touch a specific matrix, you need to specify which one ahead
of time. The glPushMatrix() method lets us tinker with the projection
matrix without messing up anything prior in the chain of events.

 Line 5 is the heart of this routine. glOrthof() is a new call and sets up
the orthographic matrix. In effect, it specifies a box. In this case, the
box’s width and depth go all from -1 to 1, while the height is scaled a
little extra using the aspect ratio to compensate for it being a
nonsquare display. This is why the scaledX and scaledY values were
multiplied by 2.

 Next, set the identify matrix of the modelview, in lines 6f, followed by
the call to glTranslatef() in line 7.

 Line 8 determines how to scale the collection of flares based on the
field of view for our scene, followed by line 9 that performs the actual
scaling. This is relative and depends on the magnification ranges you
want to deal with. Right now, pinch-to-zoom is not implemented, so
this stays constant. The zoomBias affects all the elements, which
makes it easy to scale everything at once.

 Lines 10ff set up the blending function using the most common of the
choices. This causes each of the reflections to blend in a very
believable way, especially when they start stacking up in the center.

 Now set the color and draw the object.

 And again, be a good neighbor and pop the matrices so they won’t
affect anything else.

I created a flare object for the individual flares, and I created a LensFlare parent object
to handle setting up the vector, contain each of the individual images, and place them
when ready. The main loop from LensFlare.mm in Listing 7-7 should need very little
explanation at this point. It merely calculates the start of the flare vector and then
enumerates through the array to execute each entity.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Well-Rendered Miscellany 217

Listing 7-7. The execute loop for the entire lens flare effect

-(void)execute:(CGRect)frame source:(CGPoint)source
{
 CGPoint position;
 NSEnumerator *e;
 Flare *object;

 static GLfloat deltaX=40,deltaY=40;
 static GLfloat offsetFromCenterX,offsetFromCenterY;
 static GLfloat startingOffsetFromCenterX,startingOffsetFromCenterY;

 int numElements;
 GLfloat cx,cy;

 static int counter=0;

 e=[m_Flares objectEnumerator];

 cx=(frame.size.width/2.0);
 cy=(frame.size.height/2.0);

 startingOffsetFromCenterX=cx-source.x;
 startingOffsetFromCenterY=source.y-cy;

 offsetFromCenterX=startingOffsetFromCenterX;
 offsetFromCenterY=startingOffsetFromCenterY;

 numElements=[m_Flares count];

 deltaX=2.0*startingOffsetFromCenterX;
 deltaY=2.0*startingOffsetFromCenterY;

 while (object = [e nextObject])
 {
 position=CGPointMake(offsetFromCenterX,offsetFromCenterY);

 [object renderFlareAt:position];

 offsetFromCenterX-=deltaX*[object getVectorPosition];
 offsetFromCenterY-=deltaY*[object getVectorPosition];
 }

 counter++;
}

Finally, each of the individual flare images must be loaded on initialization and added
into an NSArray. A couple of lines follow:

[m_Flares addObject:[[Flare alloc]init:@"hexagon_blur.png"
 size:1.0 vectorPosition:(.05-ff) r:1.0 g:0.73 b:0.30 a:.4]];
[m_Flares addObject:[[Flare alloc]init:@"glow.png"
 size:1.5 vectorPosition:(.055-ff) r:1.0 g:0.73 b:0.50 a:.4]];

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Well-Rendered Miscellany 218

This demo has 24 such objects. Figure 7-6 shows the result.

Figure 7-6. Simple lens flare

Unfortunately, there is one big gotcha in the lens flare biz. What happens if your light
source goes behind something else? If it is a regular and known entity such as a round
sphere in the center of the scene, it is pretty easy to figure out. But if it is a random
object at a random place, it becomes much more difficult. Then what happens if the
source is only partially eclipsed? Reflections will then dim and flicker out only when the
entire object is hidden. The solution is left for you for the time being.

Stencils Reflective Surfaces
Another effect that is rapidly becoming a bit of a visual cliché, albeit still a cool one, is
that of a mirrored surface underneath part or all of the scene. We Mac-heads see that
every time we look at the Dock, for example, with the happy little icons dancing their jig-
of-joy up and down, in effect saying ‘‘Look here! look here!’’ in their little squeaky voices.
Underneath you will see a faint little reflection. It’s the same for many third-party apps,
of course, led by Apple’s own designs and examples. See Figure 7-7.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Well-Rendered Miscellany 219

Figure 7-7. Reflections in Distant Suns. (Yes, it is a gratuitous plug.)

Of course, Apple’s examples were implemented in Core Graphics, but the principles are
the same: it’s a big fat hack! But so is most everything in graphics as we try to simulate
the real world through whatever means necessary, and making a reflective surface of
this type is no different.

This will introduce the next topic, which is about both stencils and reflections. Besides
the ‘‘color’’ buffer (that is, the image buffer) and the depth buffer, OpenGL also has
something called a stencil buffer.

In the pre-iOS5 days, creating a stencil buffer required another dozen-or-so lines of
code. That has since been collapsed to only a single line, a mere trifle of code. In your
viewDidLoad(), when the context is created, add:

view.drawableStencilFormat=GLKViewDrawableStencilFormat8;

The stencil format can be either 8 bits or none.

Next let’s create the routines that will generate the actual stencil. Add Listing 7-8 to your
view controller, and call renderToStencil() from your main draw loop.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Well-Rendered Miscellany 220

Essentially, you render something to the stencil buffer as you would to any other, but in
this case, any pixel and its value are used to determine how to render future images to
the screen. The most common case is that any later image drawn to the stencil area will
be rendered as it normally would, whereas anything outside of the stencil area is not
rendered. These behaviors can be modified, of course, keeping with OpenGL’s
philosophy of making everything more flexible than the vast majority of engineers would
use, let alone understand. Still, it can be very handy at times. We’ll stay with the simple
function for the time being.

Listing 7-8. The stencil is generated like a normal screen object

-(void)renderToStencil
{
 glEnable(GL_STENCIL_TEST); //1
 glStencilFunc(GL_ALWAYS,1, 0xffffffff); //2

 glStencilOp(GL_REPLACE, GL_REPLACE, GL_REPLACE); //3

 [self renderStage]; //4

 glStencilFunc(GL_EQUAL, 1, 0xffffffff); //5
 glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP); //6
}

So, you establish your stencil the following way:

 Enable the stencil as done in line 1.

 Here in line 2 we specify the comparison function used whenever
something is writing to the stencil buffer. Since we clear it each time
through, it will be all zeros. The function GL_ALWAYS says that every
write will pass the stencil test, which is what we want when
constructing the stencil. The value of 1 is called the reference value.
Since you can have any value from 0 to 255, it is possible to have a
stencil behave differently based on the reference value supplied and
how the stencil-op is set. The final value is a mask for the bit planes to
access. Since we’re not concerned about it, let’s just turn them all on.

 Line 3 specifies what to do when a stencil test succeeds or fails. The
first parameter pertains if the stencil test fails; the second, if the stencil
passes but the depth test fails; and the third, if both succeed. Since
we are living in 3D space here, having the stencil tests coupled to
depth testing recognizes that there may be situations in which one
overrules the other. Some of the subtleties in the use of the stencil
buffer can get quite complicated. In this case, set all three to
GL_REPLACE. Table 7-1 shows all the other permissible values.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Well-Rendered Miscellany 221

 Line 4 calls our rendering function, pretty much as you would normally
call it. In this case, it is writing both to the stencil buffer and to one of
the color channels at the same time, so we can get a glint of sorts off
of our new shiny stage or platform. Meanwhile, in the stencil buffer, the
background will remain zeros, while the image will produce stencil
pixels that are greater than 0, so it permits image data to write to it
later.

 Lines 5 and 6 prepare the buffer now for normal use. Line 5 says that if
the value in the currently addressed stencil pixel is 1, keep it
unchanged as given in line 6. Otherwise, pass the fragment through to
be processed as if the stencil buffer wasn’t there (although it may still
be ignored if it fails the depth test). So, any stencil pixel that is 0, the
test will fail, and the incoming fragment will be locked out.

Table 7-1. Possible values for glStencilOp()

Op Type Action

GL_KEEP Keeps the current value.

GL_ZERO Sets the stencil buffer value to 0.

GL_REPLACE Sets the stencil buffer value to ref, as specified by glStencilFunc.

GL_INCR Increments the current stencil buffer value. Clamps to the
maximum representable unsigned value.

GL_INCR_WRAP Increments the current stencil buffer value. Wraps stencil buffer
value to zero when incrementing the maximum representable
unsigned value.

GL_DECR Decrements the current stencil buffer value. Clamps to 0.

GL_DECR_WRAP Decrements the current stencil buffer value. Wraps stencil buffer
value to the maximum representable unsigned value when
decrementing a stencil buffer value of zero.

GL_INVERT Bitwise inverts the current stencil buffer value.

As you can see, the stencil buffer is a very powerful instrument with a lot of subtlety. But
any more extravagant use is reserved for future books as yet unnamed.

Now it’s time for the renderStage() method, as shown in Listing 7-9.

Listing 7-9. Rendering the reflective area to the stencil buffer only

-(void)renderStage
{
 static const GLfloat flatSquareVertices[] =
 {
 -0.5, 0.0, -.5f,

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Well-Rendered Miscellany 222

 0.5, 0.0, -.5f,
 -0.5, 0.0, 0.5,
 0.5, 0.0, 0.5
 };

 static const GLubyte colors[] =
 {
 255, 0, 0, 128,
 255, 0, 0, 255,
 0, 0, 0, 0,
 128, 0, 0, 128
 };

 glFrontFace(GL_CW);
 glPushMatrix();
 glTranslatef(0.0,-1.0,-3.0);
 glScalef(2.5,1.5,2.0);

 glVertexPointer(3, GL_FLOAT, 0, flatSquareVertices);
 glEnableClientState(GL_VERTEX_ARRAY);

 glColorPointer(4, GL_UNSIGNED_BYTE, 0, colors);

 glDepthMask(GL_FALSE); //1
 glColorMask(GL_TRUE, GL_FALSE, GL_FALSE, GL_TRUE); //2
 glDrawArrays(GL_TRIANGLE_STRIP,0, 4); //3
 glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); //4
 glDepthMask(GL_TRUE); //5

 glPopMatrix();
}

 In line 1, writing to the depth buffer is disabled, and line 2 disables the
green and blue color channels, so only the red one will be used. That
is how the reflected area gets its little red highlight.

 Now we can draw the image to the stencil buffer in line 3.

 Lines 4 and 5 reset the masks.

At this point, the drawInRect() routine has to be modified, yet again. Yawn…. And if you
can keep your peepers open, check out Listing 7-10 for the cruel and unvarnished truth.
Sorry for repeating so much of the previous code, but it’s much easier than saying
‘‘…and after the line about squirrel trebuchets add such-and-such a line….’’

Listing 7-10. The reflection drawInRect() method

- (void)glkView:(GLKView *)view drawInRect:(CGRect)rect
{
 static GLfloat z=-3.0;
 static GLfloat spinX=0;
 static GLfloat spinY=0;

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Well-Rendered Miscellany 223

static const GLfloat cubeVertices[] =
{
 -0.5, 0.5, 0.5,
 0.5, 0.5, 0.5,
 0.5,-0.5, 0.5,
 -0.5,-0.5, 0.5,

 -0.5, 0.5,-0.5,
 0.5, 0.5,-0.5,
 0.5,-0.5,-0.5,
 0.5,-0.5,-0.5,
};

static const GLubyte cubeColors[] =
{
 255, 0, 0, 255,
 0, 255, 0, 255,
 0, 0, 0, 0,
 0, 0, 255, 255,

 255, 255, 0, 255,
 0, 255, 255, 255,
 0, 0, 0, 0,
 255, 0, 255, 255,
};

static const GLubyte tfan1[6 * 3] =
{
 1,0,3,
 1,3,2,
 1,2,6,
 1,6,5,
 1,5,4,
 1,4,0
};

static const GLubyte tfan2[6 * 3] =
{
 7,4,5,
 7,5,6,
 7,6,2,
 7,2,3,
 7,3,0,
 7,0,4
};

 static float transY = 0.0;

 glClearColor(0.0, 0.5, 0.7f, 1.0);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT); //1

 //Render to the stencil first.

 [self renderToStencil]; //2

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Well-Rendered Miscellany 224

 glEnable(GL_CULL_FACE);
 glCullFace(GL_BACK);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();

 glPushMatrix();

 glEnable(GL_STENCIL_TEST); //3
 glDisable(GL_DEPTH_TEST);

 glVertexPointer(3, GL_FLOAT, 0, cubeVertices);
 glEnableClientState(GL_VERTEX_ARRAY);
 glColorPointer(4, GL_UNSIGNED_BYTE, 0, cubeColors);
 glEnableClientState(GL_COLOR_ARRAY);

 glEnableClientState(GL_NORMAL_ARRAY);

 //Flip the image.

 glTranslatef(0.0,((GLfloat)(sinf(-transY)/2.0)-1.5),z); //4
 glRotatef(spinY, 0.0, 1.0, 0.0);

 glScalef(1.0, -1.0, 1.0); //5
 glFrontFace(GL_CW);

 glEnable(GL_BLEND); //6
 glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_COLOR);

 glDrawElements(GL_TRIANGLE_FAN, 6 * 3, GL_UNSIGNED_BYTE, tfan1); //7
 glDrawElements(GL_TRIANGLE_FAN, 6 * 3, GL_UNSIGNED_BYTE, tfan2);

 glPopMatrix();

 glDisable(GL_BLEND); //8
 glEnable(GL_DEPTH_TEST);
 glDisable(GL_STENCIL_TEST);

 //Do the main image.

 glPushMatrix();
 glScalef(1.0, 1.0, 1.0); //9
 glFrontFace(GL_CCW);

 glTranslatef(0.0, (GLfloat)1.5*(sinf(transY)/2.0)+0.5,z);

 glRotatef(spinY, 0.0, 1.0, 0.0);

 glDrawElements(GL_TRIANGLE_FAN, 6 * 3, GL_UNSIGNED_BYTE, tfan1);
 glDrawElements(GL_TRIANGLE_FAN, 6 * 3, GL_UNSIGNED_BYTE, tfan2);

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Well-Rendered Miscellany 225

 glPopMatrix();

 spinY+=.25;
 transY += 0.075;
}

And here’s the breakdown:

 In line 1, GL_STENCIL_BUFFER_BIT is added to glClear().

 Line 2 calls the new method renderToStencil(), which is back in
Listing 7-9. This will actually create the stenciled region, poking the
hole that we’ll draw through next.

 Enable the stencil test in line 3.

 Here in lines 4 and 5 the reflection is drawn. First translate it down a
little, subtracting 1.5, to ensure that it is below the real cube. And then
it’s a simple matter of ‘‘scaling’’ the y-axis to -1.0 to flip it upside-
down. You will need to change the front face to clockwise at this point;
otherwise, you’ll see the back faces only.

 We want to make the lower image translucent instead of the full
intensity, as we’d expect. In line 6f, blend is enabled and uses the
most common blending function of GL_ONE and
GL_ONE_MINUS_SRC_COLOR covered in Chapter 6.

 In lines 7ff we see that the inverted object is drawn exactly the same
way as the original. When done, the blending is switched off in line 8
so that it doesn’t affect the rendering of the primary cube. At the same
time, stencil is switched off while depth test is switched back on.

 Since scale was touched to invert the image, in line 9 scale is reset to
the default. The translation has been modified with a couple of other
small values. This shifts it up a little bit just to get extra clearance for
the inverted cube.

And now the test. Figure 7-8 is what you should see.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Well-Rendered Miscellany 226

Figure 7-8. Using stencils to create reflections

Coming of the Shadows
Shadow casting has always been a bit of a black art in OpenGL, and it still is to a certain
extent. However, with faster CPUs and GPUs, many tricks of the trade that were
previously more the subject of a grad student’s paper can finally step out of theory into
the warm glow of real-world deployment. Rigorous solutions to shadow casting are still
the domain of the non-real-time rendering that Hollywood employs, but basic shadows,
under limited conditions, are available to full-motion rendering. With thanks to the
various hardware manufacturers that have added both shadow and lighting support to
their GPUs, our 3D universes look richer than ever before because few elements in
computer graphics can add more realism than carefully managed shadows. (Ask any
lighting director on a Hollywood movie.) And don’t forget the per-pixel support via the
use of shaders in OpenGL ES 2, which can let a programmer delicately shade every
corner of every spooky castle in Blow Up Everything 3.

There are many ways to cast shadows, or at least shadow-looking things. Perhaps the
simplest is to have a prerendered shadow texture: a bitmap that looks like a shadow on
the ground, cast by your object, which is then moved around as it moves. It’s cheap,
fast, but extremely limited. On the other extreme is the full-blown render-everything-you-
can-ever-see software that eats GPUs by the handful for lunch. In between the two,
you’ll find shadow mapping, shadow volumes, and projection shadows.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Well-Rendered Miscellany 227

Shadow Mapping
At one time, one of the most popular forms of shadow casting was through the use of
shadow mapping frequently employed in games. Although it is a bit of a bother to set
up, not to mention describe, the theory is pretty simple...considering.

Shadow mapping requires two snapshots of the scene. One is from the light’s point of
view, and the other is from that of the camera’s. When rendered from the light, the
image will, by definition, see everything illuminated by itself. The color information is
ignored, but the depth information is preserved, so we end up with a map of the visible
fragments and their relative distances. Now take a shot from the camera’s viewpoint. By
comparing the two images, we can find out what bits the camera sees that the light
cannot. Those bits are in shadow.

In practice, of course, it is a little more complicated than that.

Shadow Volumes
Shadow volumes are used for determining what part of your scene is illuminated and
what is not by making very clever use of certain properties of the stencil buffer. What
makes this technique so powerful is that it permits shadows to be cast across arbitrary
geometric shapes as opposed to projection shadows (discussed later), which really
works only for the simplified case of the shadow being thrown against a flat surface.

When a scene is rendered using the shadow volume technique, the stencil buffer will be
left in a state in which any part of the resulting image that is shaded will have a
corresponding stencil pixel that is greater than zero, while any part that is illuminated will
have a zero. See Figure 7-9.

Figure 7-9. Shadow volumes showing the corresponding values in the stencil buffer: 0 for any parts that are
illuminated, >0 for regions in shadow

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Well-Rendered Miscellany 228

This is done in three stages. The first pass is to render the image only with ambient light
so that the shaded parts of the scene can still be visible. Next is the pass that writes
only to the stencil buffer, and the final stage writes the normal image with full
illumination. However, only the nonstenciled pixels can be written to the illuminated
areas, while they’re blocked from writing to the shaded parts, leaving just the original
ambient pixels visible. In practice, this is a little more complicated.

Going back to the mysterious glStencilOp() function used in the reflectance exercise
earlier, we can now make use of those weird GL_INCR and GL_DECR operations. GL_INCR
can increase the count in a stencil pixel by one, and GL_DECR will reduce the count by
one, both operations triggered under certain conditions.

The term shadow volume comes from the following example: imagine it’s a foggy night.
You take a bright light such as one of your car’s headlights and shine it into the mist.
Now do some shadow puppetry in the beam. You’ll still see part of the beam going
around your poorly done shadow of the state of Iowa and wander off into the distance.
We’re not interested in that part. What we want is the darkened part of the beam, which
is the shadow that is cast by your hands. That is the shadow volume.

In your OpenGL scene, assume you have one light source and a few occluders. These
cast shadows upon anything behind them, be it a sphere, cone, or bust of Woodrow
Wilson. As you look from the side, you will see objects that are shaded and those that
are illuminated. Now draw a vector from any fragment, illuminated or not, to your
camera. If the fragment is illuminated, the vector must, by definition, travel through an
even number of walls of your shadow volumes: one when it goes into the shaded
volume and one when it comes out (of course, ignoring the special case for a vector on
the edge of a scene that might not have to pass through any shaded regions). For a
fragment inside one of the volumes, the vector will have to pass through an odd number
of walls; the single extra wall that makes it odd comes from its own volume of residence.
Got it? Wait, it gets better.

Now back to stencils. The shadow volumes are generated to look like any other
geometry but are drawn only to the stencil, making them invisible since the color buffers
are all switched off. The depth buffer is used so that the volume’s walls will be rendered
in the stencil only if it is closer than the real geometry. This trick lets the shadow trace
the profiles of arbitrary objects without having to do complicated and fussy calculations
of intersecting planes against spheres or Easter Island statues. It merely uses the depth
buffer to do pixel-by-pixel tests to decide where shadow ends. So, when the volume is
rendered to the stencil, each side of each ‘‘cone’’ of the shadow will affect the stencil in
a different way. The side facing us will increment the value in the stencil buffer by one,
while the other side will decrement it. So, any regions on the other side of the volume
that are illuminated will match a part of the stencil mask in which all of the pixels are set
to zero, because the vector must go through the same number of faces going in as
going out. Any part that is in shade will have a corresponding stencil value of one.

Got that? That is why shadow volumes were never chosen for the exercise.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Well-Rendered Miscellany 229

Blob Shadows
Blob shadows are a total cheat. It simply assumes that there is no real direct light
source, so the object’s shadow is little more than a blob underneath, as shown in Figure
7-10. As you can see, this won’t work too well if our occluder (the shadow casting thing)
is a giant man-eating burrito.

Figure 7-10. A blob shadow texture that is placed under all objects

Projection Shadows
Projection shadows are the ‘‘easiest’’ of the dynamic shadows algorithms to implement,
but of course that also means they come with many restrictions, namely, that projection
shadows work best when casting a shadow on a large flat surface, as shown in Figure
7-11. Also, shadows cannot be cast on arbitrary objects. As with the other approaches,
the basic process is to take a snapshot of sorts from the light’s point of view and one
from the camera’s. The light’s view is squashed down flat on the plane, painted a
suitable shadowy color (aka dark), followed by the occluder being rendered on top.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Well-Rendered Miscellany 230

Figure 7-11. Projection of a shadow on a flat plane that is then ‘‘reprojected’’ out to poke the viewer’s eye

The shaded area is calculated by using the intersection of the vectors and the plane,
which travel from the light source by way of each of the vertices. Each point on the
plane forms a ‘‘new’’ object that can then be transformed, as anything else on the plane
would be. Listing 7-15 shows how this is coded.

Let’s start again with the basic bouncy cube demo (even though much of it will be
changed for the shadow code, it’ll still serve as a working template), but we’ll swap in
new view controller code. Listing 7-11 covers some of the initialization parameters.

Listing 7-11. The initialization stuff to add to the view controller

- (void)viewDidLoad
{
 [super viewDidLoad];

//Normal wizard-produced code deleted for clarity.

 m_WorldRotationX=35.0; //1
 m_WorldRotationY=0.0;

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Well-Rendered Miscellany 231

 m_SpinX=0.0;
 m_SpinY=0.0;
 m_SpinZ=0.0;

 m_WorldZ=-6.0; //2
 m_WorldY=-1.0;

 m_LightRadius=2.5; //3

 [(EAGLView *)self.view setContext:context];
}

 In lines 1f, the world rotations are set up; 90º will have you looking
straight down in the scene, while 0º will have you looking straight on
the side.

 The world locations for the scene are established in lines 2f.
Decreasing z will move the scene further away; increasing z moves it
closer. Decreasing y will move it down on the screen, and increasing it
will move it up.

 m_LightRadius in line 3 means the radius of the circle that the light
moves above the scene.

The drawInRect() method is covered in Listing 7-12. The most immediate change you’ll
notice is that the geometry and color arrays are nowhere to be found. Actually, I have
now moved them up to the top of the file as globally defined data. That made it a little
easier to break the rendering stuff into smaller bits. Interestingly enough, a lot of
OpenGL geometric descriptions are kept in .h files-----really, really, really big .h files.
Apple actually recommends this approach for some tasks and uses it in its OpenGL
example that draws the infamous teapot. That file is more than 3,000 lines long.

Listing 7-12. The drawInRect() method for projected shadows

- (void)glkView:(GLKView *)view drawInRect:(CGRect)rect
{
 int lightsOnFlagTrigger=300; //1
 bool lightsOnFlag=true;
 static int frameNumber=0;
 GLfloat minY=2.0;
 static GLfloat transY=0.0;

 m_TransY=(GLfloat)(sinf(transY)/2.0)+minY; //2

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glClearColor(0.0, 0.0, 0.0, 1.0);

 glEnable(GL_DEPTH_TEST);

 [self updateLightPosition]; //3

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Well-Rendered Miscellany 232

 glDisable(GL_LIGHTING); //4

 glLoadIdentity();

 glTranslatef(0.0,m_WorldY,m_WorldZ); //5

 [self drawPlatform:0.0 y:0.0 z:0.0]; //6

 if(frameNumber>(lightsOnFlagTrigger/2)) //7
 lightsOnFlag=false;
 else
 lightsOnFlag=true;

 if(frameNumber>lightsOnFlagTrigger)
 frameNumber=0;

 [self drawLight: GL_LIGHT0]; //8

 glDisable(GL_DEPTH_TEST); //9

 [self calculateShadowMatrix]; //10

 if(lightsOnFlag)
 [self drawShadow]; //11

 glShadeModel(GL_SMOOTH);

 glEnableClientState(GL_VERTEX_ARRAY); //12
 glVertexPointer(3, GL_FLOAT, 0, m_CubeVertices);

 glEnableClientState(GL_COLOR_ARRAY);
 glColorPointer(4, GL_UNSIGNED_BYTE, 0, m_CubeColors);

 glRotatef(m_WorldRotationX, 1.0, 0.0, 0.0); //13
 glRotatef(m_WorldRotationY, 0.0, 1.0, 0.0);

 glTranslatef(0.0,m_TransY, 0.0); //14

 glRotatef(m_SpinZ, 0.0, 0.0, 1.0); //15
 glRotatef(m_SpinY, 0.0, 1.0, 0.0);
 glRotatef(m_SpinX, 1.0, 0.0, 0.0);

 glEnable(GL_DEPTH_TEST); //16
 glFrontFace(GL_CCW);

 glDrawElements(GL_TRIANGLE_FAN, 6 * 3, GL_UNSIGNED_BYTE, m_Tfan1);
 glDrawElements(GL_TRIANGLE_FAN, 6 * 3, GL_UNSIGNED_BYTE, m_Tfan2);

 glDisable(GL_BLEND);
 glEnable(GL_LIGHTING);

 transY+=.1; //17
 frameNumber++;

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Well-Rendered Miscellany 233

 m_SpinX+=.4f;
 m_SpinY+=.6f;
 m_SpinZ+=.9f;

 return;
}

So, what’s going on here? Well, sit a spell, and I’ll tell you:

 Lines 1f are used to turn the light on and off so as to take before and
after comparisons.

 Line 2 just generates the bounce factor. Since we need it twice, I
pulled it out of the call to glTranslate() where it used to be.

 The light’s position is updated at line 3 and is detailed later.

 In line 4, the lighting is turned off briefly because it can affect the way
the shadows are rendered.

 Line 5 translates the scene to mWorldY and mWorldZ coordinates.

 The platform, or stage, is drawn in line 6.

 Lines 7ff toggle the light on and off every few seconds to show the
scene with and without the shadow.

 In line 8, the drawLight() routine (Listing 7-13) is called to place a little
floating ball in orbit around our scene.

 We need to disable the depth test when actually drawing the shadow,
in line 9, otherwise, there will be all sorts of z contention that generates
cool but useless flickering.

 Line 10 calls the routine to generate the shadow’s matrix (detailed
later), followed by line 11, which actually draws the shadow.

 Finally, we can start managing the occluder in line 12, the thing that
actually causes the shadow to be thrown.

 Line 13 is used to aim our eye point down to center the scene since
we are floating up above it.

 Now we get to the bouncy part-----nothing really new in line 14.

 Lines 15ff add the extra spins. Note that the shadow generator also
has the identical rotational code.

 Line 16 safely turns on the depth testing again, after which we can
draw the two triangle fans as well.

 Lines 17ff handles some of the animation parameters, and then the
buffer is updated to the screen.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Well-Rendered Miscellany 234

OK, take a deep breath-----we have more to cover. Listing 7-13 demonstrates the new
drawLight() routine, while Listing 7-14 demonstrates drawPlatform(). The meat of the
exercise is Listing 7-15, calculating the shadow’s matrix, and Listing 7-16, drawing the
shadow. Are you tingling yet? I know I am.

Listing 7-13. The modified drawLight() routine

-(void)drawLight:(int)lightNumber
{
 static GLbyte lampVertices[]={0,0,0}; //1

 glDisableClientState(GL_COLOR_ARRAY);

 glEnable(GL_POINT_SMOOTH); //2

 glPointSize(5.0); //3
 glLightfv(lightNumber, GL_POSITION, iLightPos); //4
 glPushMatrix();

 glRotatef(m_WorldRotationX, 1.0, 0.0, 0.0); //5
 glRotatef(m_WorldRotationY, 0.0, 1.0, 0.0);

 glTranslatef(iLightPosX, iLightPosY, iLightPosZ); //6

 glColor4f(1.0, 1.0, 0, 1.0); //7
 glVertexPointer(3, GL_BYTE, 0, lampVertices); //8
 glDrawArrays(GL_POINTS, 0,1);

 glPopMatrix();

 glEnableClientState(GL_COLOR_ARRAY);
}

The preceding code will draw a round dot to the screen, showing where the light source
is located at any moment.

 Since we want only a single point to draw, we can specify a single
vertex at the origin in line 1.

 GL_POINT_SMOOTH is something new. It tells OpenGL that any points it
draws should be round. Without this, the light would be rendered as a
square.

 Line 3 is another new call that tells the system that the point is to be 5
pixels across. The maximum size can vary on different devices but can
typically go up to 64 or 128 pixels in diameter.

 Now we can set the absolute position of the actual light here in line 4.

 Lines 5ff rotate the lamp in world space, while line 6 translates it.

 The color is set to yellow via line 7, while lines 8ff supply the vertex
and then draw it via glDrawArrays().

But wait, there’s more!

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Well-Rendered Miscellany 235

We need to add a floor or platform underneath the cube that the shadow will render up
against, as shown in Listing 7-14.

Listing 7-14. The drawPlatform() routine that renders a floor beneath the cube

-(void)drawPlatform:(float)x y:(float)y z:(float)z
{
 static const GLfloat platformVertices[] = //1
 {
 -1.0,-0.01,-1.0,
 1.0,-0.01,-1.0,
 -1.0,-0.01, 1.0,
 1.0,-0.01, 1.0
 };

 static const GLubyte platformColors[] =
 {
 128, 128, 128, 255,
 128, 0, 255, 255,
 64, 64, 64, 0,
 255, 64, 128, 255
 };

 GLfloat scale=1.5; //2

 glEnable(GL_DEPTH_TEST);
 glShadeModel(GL_SMOOTH);
 glDisable(GL_CULL_FACE); //3
 glVertexPointer(3, GL_FLOAT, 0, platformVertices);
 glEnableClientState(GL_VERTEX_ARRAY);
 glColorPointer(4, GL_UNSIGNED_BYTE, 0, platformColors);
 glEnableClientState(GL_COLOR_ARRAY);

 glPushMatrix();

 glRotatef(m_WorldRotationX, 1.0, 0.0, 0.0); //4
 glRotatef(m_WorldRotationY, 0.0, 1.0, 0.0);

 glTranslatef(x,y,z);

 glScalef(scale,scale,scale); //5

 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);

 glEnable(GL_CULL_FACE);

 glPopMatrix();
}

This merely draws the square base object that the shadow is projected against.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Well-Rendered Miscellany 236

 Nothing special here in line 1, but instead of describing the square in
the x-y plane as we’ve done before, it is in the x-z plane and y=0. Oh,
wait! There is something special. Notice the y coordinates. Instead of
being a sane value like 0.0, they are a slight negative value, of -0.01.
That is a quick hack to fix a problem called ‘‘z fighting,’’ in which pixels
from co-planer objects may or may not share the same depth value.
The result is two faces flickering at one moment; face A is the
frontmost, and the next, the pixels of face B, now think they are
frontmost. (Note that it shows only on hardware. It will look fine in the
simulator.) If you look hard enough in almost any real-time 3D
software, you will likely see some z’s fighting in the background.
Figure 7-12.

In this case, the fix is to drop the y of the platform down just a tad, to
be below the shadow. This fix doesn’t always work, because it
depends on the environment, the scale of things you’re dealing with,
and so on. Another workaround is to use the call glPolygonOffset().
But that again is no assurance of success. Sometimes you just have to
try to see what works.

 Since the platform’s coordinates are normalized, we need to scale
them up a bit to make it usable, as in line 2.

 Line 3 turns off face culling. The reason is that since the platform is a
single square and we could go under it easily enough, we need to see
both sides of the same faces.

 Line 4 is the same here as elsewhere; it merely rotates the platform
into world space.

 Line 5 does the actual scaling; place it as the first transformation to be
executed. (Remember, the transformation stack can be thought of as a
FIFO: the first transformation in is the first to be executed. If the
scaling was after another transformation, it would scale things off-
center from the desired result.)

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Well-Rendered Miscellany 237

Figure 7-12. Z-fighting between the platform and the shadow

Now we get to the real fun stuff, actually calculating and drawing the shadow. Listing
7-15 shows how the matrix is generated, while Listing 7-16 draws the squashed
shadow.

Listing 7-15. Calculating the shadow matrix

-(void)calculateShadowMatrix
{
 GLfloat shadowMat_local[16] =
 {
 iLightPosY, 0.0, 0.0, 0.0,
 -iLightPosX, 0.0, -iLightPosZ, -1.0,
 0.0, 0.0, iLightPosY, 0.0,
 0.0, 0.0, 0.0, iLightPosY
 };

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Well-Rendered Miscellany 238

 for (int i=0;i<16;i++)
 {
 iShadowMat[i] = shadowMat_local[i];
 }
}

This is actually a simplified version of the more generalized matrix given by the following:

 [dotp-l[0]*p[0], -l[1]*p[0], -l[2]*p[0], -l[3]*p[0],
 -l[0]*p[1], dotp-l[1]*p[1], -l[2]*p[1], -l[3]*p[1],
 -l[0]*p[2], -l[1]*p[2], dotp-l[2]*p[2], -l[3]*p[2],
 -l[0]*p[3], -l[1]*p[3], -l[2]*p[3], dotp-l[3]*p[3]]

dotp is the dot-product between the light vector and the normal to the plane, l is the
position of the light, and p is the plane (the ‘‘platform’’ in my code). Since our platform is
in the x/z plane, the plane equation looks like p=[0,1,0,0], or otherwise, p[0]=p[2]=p[3]=0.
This means most of the terms in the matrix get zeroed out. Once the matrix is
generated, multiplying it by the existing Modelview matrix maps the points to your local
space along with everything else.

Listing 7-16. The tweaked drawShadow() routine

- (void)drawShadow
{
 glPushMatrix();

 glRotatef(m_WorldRotationX, 1.0, 0.0, 0.0); //1
 glRotatef(m_WorldRotationY, 0.0, 1.0, 0.0);

 glMultMatrixf(iShadowMat); //2

 //Place the shadows.

 glTranslatef(0.0,m_TransY, 0.0); //3

 glRotatef(m_SpinZ, 0.0, 0.0, 1.0); //4
 glRotatef(m_SpinY, 0.0, 1.0, 0.0);
 glRotatef(m_SpinX, 1.0, 0.0, 0.0);

 //Draw them.

 glDisableClientState(GL_COLOR_ARRAY);

 glEnable(GL_BLEND); //5
 glBlendFunc(GL_ZERO,GL_ONE_MINUS_SRC_ALPHA);

 glColor4f(0.0, 0.0, 0.0, .3); //6

 glEnableClientState(GL_VERTEX_ARRAY);
 glVertexPointer(3, GL_FLOAT, 0, m_CubeVertices); //7

 glDrawElements(GL_TRIANGLE_FAN, 6 * 3, GL_UNSIGNED_BYTE, m_Tfan1);
 glDrawElements(GL_TRIANGLE_FAN, 6 * 3, GL_UNSIGNED_BYTE, m_Tfan2);

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Well-Rendered Miscellany 239

 // glLineWidth(3.0); //8
 // glDrawElements(GL_LINES, 6 * 3, GL_UNSIGNED_BYTE, m_Tfan1);
 // glDrawElements(GL_LINES, 6 * 3, GL_UNSIGNED_BYTE, m_Tfan2);

 glDisable(GL_BLEND);

 glPopMatrix();
}

First rotate everything to world space, just as we have done before in
line 1.

Line 2 multiplies the shadow matrix with the current Modelview matrix.

Lines 3 and 4ff perform the same transformations and rotations on the
shadow as on the actual cube.

Next we can add a little blending to the shadow in lines 5ff and 6. The
alpha value is set to .3. The higher the value, the darker the shadow,
with it being solid black, of course, when the alpha is at 1.0.

In lines 7ff we render the geometry just as with the actual cube, except
now it’s distorted to look like it’s stretched out along the surface.

Now it’s time to update the light’s position, as in Listing 7-17.

Listing 7-17. Updating the light’s position

- (void)updateLightPosition
{
 iLightAngle += (GLfloat)1.0; //in degrees

 iLightPosX = m_LightRadius * cos(iLightAngle/57.29);
 iLightPosY = 4.0;
 iLightPosZ = m_LightRadius * sin(iLightAngle/57.29);

 iLightPos[0] = iLightPosX;
 iLightPos[1] = iLightPosY;
 iLightPos[2] = iLightPosZ;
}

This updates the light’s position one degree each refresh. The y-value is fixed, so the
light traces its little orbit in the x/z plane. In addition to all of the previous, make sure to
add the standard setClipping() routine we’ve used in the past and call it from
viewDidLoad().

And to top it off, Listing 7-18 is the header for this project.

Listing 7-18. The header for the shadow casting exercise

#import <UIKit/UIKit.h>
#import <GLKit/GLKit.h>
#import <OpenGLES/EAGL.h>

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Well-Rendered Miscellany 240

#import <OpenGLES/ES1/gl.h>
#import <OpenGLES/ES1/glext.h>
#import <OpenGLES/ES2/gl.h>
#import <OpenGLES/ES2/glext.h>

@interface ShadowCastingViewController : GLKViewController
{
 EAGLContext *context;
 GLuint program;

 GLfloat m_WorldRotationX;
 GLfloat m_WorldRotationY;

 GLfloat m_LightRadius;

 /** Angle of the light. */
 GLfloat iLightAngle;

 /** X coordinate of the light */
 GLfloat iLightPosX;

 /** Y coordinate of the light */
 GLfloat iLightPosY;
 GLfloat iLightPosZ;
 GLfloat iLightPos[4];

 GLfloat m_WorldZ;
 GLfloat m_WorldY;

 GLfloat m_TransY;
 GLfloat m_SpinX;
 GLfloat m_SpinY;
 GLfloat m_SpinZ;

 GLfloat iShadowMat[16];
}

@property (readonly, nonatomic, getter=isAnimating) BOOL animating;
@property (nonatomic) NSInteger animationFrameInterval;

-(void)drawPlatform:(float)x y:(float)y z:(float)z;
-(void)drawLight:(int)lightNumber;
-(void)updateLightPosition;
-(void)drawShadow;
-(void)calculateShadowMatrix;
-(void)setClipping;
-(void)startAnimation;
-(void)stopAnimation;
-(void)viewDidLoad;
-(void)viewDidUnload;
-(void)applicationWillResignActive:(NSNotification *)notification;
-(void)applicationDidBecomeActive:(NSNotification *)notification;
-(void)applicationWillTerminate:(NSNotification *)notification;
-(void)dealloc;
-(void)didReceiveMemoryWarning;

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Well-Rendered Miscellany 241

-(void)viewWillAppear:(BOOL)animated;
-(void)viewWillDisappear:(BOOL)animated;

@end

After it’s compiled, do you see something like Figure 7-13 (the final image is left to you,
dear reader, to generate).

Figure 7-13. The left and middle images are from the side; the rightmost image is looking down from above.

And as with our other exercises, tweaking is mandatory.

It’s one thing to see the nice dark shadow, but it’s another thing to actually see how the
shadow is composed. Go to drawShadow() and replace the calls to glDrawElements()
with the following:

 glLineWidth(3.0);
 glDrawElements(GL_LINES, 6 * 3, GL_UNSIGNED_BYTE, m_Tfan1);
 glDrawElements(GL_LINES, 6 * 3, GL_UNSIGNED_BYTE, m_Tfan2);

glLineWidth(3.0) is a new call, and when lines are drawn, this specifies how wide they
should be, with 1.0 being the default. Figure 7-14 now shows the flattened image in
wireframe mode.

v
www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Well-Rendered Miscellany 242

Figure 7-14. Showing the shadow in wireframe mode. The cube has been removed in the rightmost image to
show the wireframe more clearly.

You can also have multiple lights. Figure 7-15 shows two side-by-side lights.

Figure 7-15. The cube with multiple lights

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Well-Rendered Miscellany 243

In all of these images, the background is black. Change the coloring of the background
and run. What’s going on in Figure 7-16?

Figure 7-16. Surprise! The shadow is not clipped to the platform.

What’s happening here is that we were cheating when it comes to clipping the shadow
against the platform. With the background black, the part of the shadow that rendered
off the platform was invisible. But now as the background is brightened, you can see the
full shadow. What happens if you need a light background in the first place? Use
stencils to clip around the platform, blanking out any extra part of the shadow that we
don’t need, similarly to the earlier reflection exercise.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Well-Rendered Miscellany 244

Summary
In this chapter, we covered a number of extra tricks to add more realism to an OpenGL
ES scene. First were frame buffer objects that let you draw to multiple OpenGL frames
and merge them together. Next came lens flares that can add visual drama to outdoor
scenes, followed by reflections and stencils that are heavily used by Apple in a lot of its
UI design. We ended with one of the many ways shadows can be cast against a
background using shadow projection. Next, some of these tricks will be applied to our
little solar-system project.

www.it-ebooks.info

http://www.it-ebooks.info

8Chapter

Putting It All Together

A single lifetime, even though entirely devoted to the sky, would not be
enough for the investigation of so vast a subject.

 -----Seneca, Roman philosopher

Well, now we’ve made it all the way up to Chapter 8. This is when we can take what was
learned from the exercises up to this point and slap it together into a more complete
solar-system model. And afterward, I hope you will say, ‘‘Wow! That’s kinda cool!’’

This chapter will be very code heavy, because the model requires both a number of new
routines and modifications to existing projects. So, as with Chapter 7 I’ll be breaking
with the style of the previous chapters and will not present entire code files because of
their length or to avoid repetition; therefore, you are encouraged to fetch the full
projects, as well as some data files, from the Apress site to ensure that you have fully
functional examples. A few new tricks will also be tossed in for good measure such as
how to integrate the standard iPhone UIKit and the use of quaternions. Note that
although a lot of the following code is based on previous exercises, there are likely some
small tweaks needed to integrate it into the larger package, so unfortunately this won’t
simply be a cut-and-paste situation.

But What About a Retina Display?
Yes, I know, everything looks better on a Retina display, so let’s tell OpenGL how to
handle the higher resolution before we do anything else. Oh, wait. We don’t have to do
that anymore. Pre-iOS 5, it was necessary to tell the OpenGL view object how to size
itself using the setContentScaleFactor instance variable. It would be 1.0 for the old-
school displays, or 2.0 for Retina. Under the GLKit, that kind of housekeeping is no
longer needed. However, you will still need to grab the actual dimensions of the view
when it comes time to set the glViewPort() when setting the viewing frustum, as follows,
remembering that the view here is actually the GLKView subclassed from the UIView.

glViewport(0, 0, view.drawableWidth, view.drawableHeight);

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Putting It All Together 246

Using the ‘‘drawable’’ fields is recommended by Apple, although the more traditional
way, using the frame of the mainScreen, should still be valid if you are creating a display
to be the size of the screen.

Revisiting the Solar System
Go back to Chapter 5 and get the solar-system model that was used as the final project.
The Chapter 7 model was used as a surface for displaying dynamic textures on 3D
objects, but that won’t be used here in that way.

So, the first thing to tackle is resizing our models to make a slightly more realistic
presentation. As of right now, it looks like the earth is about a third the size of the sun
and only a few thousand miles (or furlongs if you care) away. Considering that it is a
pleasant fall day here in Northern California and the earth is anything but a burnt cinder,
I bet the model is wrong. Well, let’s make it right. This will be done in the initGeometry()
method in your solar-system controller. And while we’re at it, the type of m_Eyeposition
will be changed to upgrade it to a slightly more objectified object customized for 3D
operations. The new routine is in Listing 8-1. Make sure to add a texture for the sun’s
surface while you are at it; otherwise, nasty things might happen.

Listing 8-1. Resizing the objects for the solar system

-(void)initGeometry
{
 //Let 1.0=1 million miles.
 // The sun's radius=.4.
 // The earth's radius=.04 (10x larger to make it easier to see).

 m_Eyeposition.x=0;
 m_Eyeposition.y=0;
 m_Eyeposition.z=93.25;

 m_Earth=[[Planet alloc] init:48 slices:48 radius:0.04
 squash:1.0 textureFile:@"earth_light.png"];

 [m_Earth setPositionX:0.0 Y:0.0 Z:93.0];

 m_Sun=[[Planet alloc] init:48 slices:48 radius:0.4
 squash:1.0 textureFile:@"sun_surface.png"];
}

m_Eyeposition is now defined as a new GLKVector3 object.

Note The new iOS5 vector classes are very well thought out, because they use unions to
support xyz values, rgb, stp (for texture coordinates), and the ever popular array format, float
v[3]. Similar conventions are used for the other container classes as well.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Putting It All Together 247

The scale of our model is set at 1 unit=1 million miles (1.7m kilometers or 8.3m furlongs).
The sun has a radius of 400,000 miles, or .4 in these units. That means earth’s radius
would be .004, but I’ve increased it by 10 times, to .04, to make it a little easier to deal
with. Because earth’s default position is along the +Z-axis, let’s put the eye position
right behind the earth, only a quarter million miles away, at ‘‘93.25.’’ And in the execute
method for the solar-system object, remove glRotatef() so that the earth will now
stay fixed. That makes things a lot simpler for the time being. Make sure to modify the
headers as needed. Go to your friend, setClipping(), and change the field of view from
50 degrees to 30; also, set zFar=2000 (to handle future objects). You should ultimately
get something that looks like Figure 8-1. Because the sun is actually behind the earth
from our viewpoint, I cranked up the specular lighting for SS_FILLLIGHT1.

Figure 8-1. Our home on a tiny screen

‘‘All well and good, code-boy!’’ you must be muttering under your breath. ‘‘But now
we’re stuck in space!’’ True enough, so that means the next step is to add a navigational
element. And that means (cue dramatic music) we’ll be adding quaternions.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Putting It All Together 248

What Are These Quaternion Things Anyway?
On October 16, 1843, in Dublin, Irish mathematician Sir William Hamilton was taking a
stroll by the Royal Canal when he had a sudden flash of mathematical inspiration. He’d
been working on ways to meaningfully multiply and divide two points in space and

suddenly saw the formula for quaternions in his mind: 1222 −==== ijkkji .
Impressive, huh?

He was so excited that he couldn’t resist the temptation to carve it into the stonework of
the Brougham Bridge he had just come to (no doubt nestled in between lesser graffiti
like ‘‘Eamon loves Fiona, 1839’’ or ‘‘Patrick O’Callahan rulz!’’). Radically new ways to
look at physics and geometry descended directly from this insight. For example, the
classic Maxwell’s equations in electromagnetic theory were described entirely through
the use of quaternions. As newer methods of dealing with similar situations came about,
quaternions were shunted aside until the late 20th century, when they found a significant
role in 3D computer graphics, in navigation of the Apollo spacecraft to the moon, and in
other areas that rely heavily on rotations in space. Because of their compact nature, they
could describe a direction vector, and hence a 3D rotation, more efficiently than the
standard 3x3 matrix. Not only that, but they provided much superior means of
concatenating a series of rotations on top of each other. So, what does this mean?

In Chapter 2, we covered the traditional 3D transformation math using matrices. If you
wanted to rotate an object 32° around the z-axis, you would instruct OpenGL ES to
perform a rotation via the command glRotation(32,0,0,1). Similar commands would be
executed for the x- and y-axes as well. But what if you wanted a funky sort of rotation
that an airplane might make when banking to the left? How would that be described in
the glRotatef() format? Using the more traditional way, you would generate separate
matrices for the three rotations and then multiply them in order of yaw (rotation around
the Y-axis), pitch (rotation around the X-axis), and roll around the Z-axis. That’s a lot of
math to aim toward one direction. But if this is for a flight simulator, your banking motion
will constantly update to new rolls and headings, incrementally. That would mean you’d
have to calculate the three matrices each time for the deltas of your trajectory since the
last frame and not absolute values from some starting point.

In the early days of computers, when floating-point calculations were expensive and
shortcuts were regularly invoked for performance reasons, round-off errors were
common and would likely build up over time, causing the current matrices to be ‘‘out of
square.’’ However, quaternions were brought to the rescue because they had a couple
of very compelling properties. The first is that a quaternion can represent a rotation of an
object in space roughly equivalent to how glRotatef() works but by using fractional axis
values. It’s not a direct one-to-one correlation, because you still need to go about some
of that math stuff to convert attitudes to and from a quaternion. The second and more
important property derives from the fact that an arc on a sphere can be described by
two quaternions, one at each endpoint. And any point between them on the arc can also
be described by a quaternion merely by interpolating the distance from one endpoint to
the other by using spherical geometry, as shown in Figure 8-2. That is, if you were going
through an arc of 60°, you could find an intermediate quaternion, say, 20° from the
starting point by tracing a third of the way along the arc. In the next frame, if you were to

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Putting It All Together 249

jump to 20.1°, you merely add a teeny-tiny more of that arc to your current quaternion
instead of having to go through the tedious process of generating the three matrices
each time and multiplying them together. This process is called slerping, where slerp
stands for spherical linear interpolation. Because an axis/angle pair does not rely on a
cumulative summation of all previous ones like when using matrices but on an
instantaneous value, there is no error buildup as a result of the former.

Figure 8-2. An intermediate quaternion; Q1.5 on a sphere can be interpolated from two others, Q1 and Q2.

Slerp is used to provide those smooth animations of a viewpoint’s ‘‘camera’’ when going
from one point to another. It can be part of a flight simulator, a space simulator, or the
view from a chase car for a racing game. And naturally they are used in real flight
guidance systems as well.

So, now with that bit of background, we’re going to use quaternions to help move the
earth around.

Moving Things in 3D
Since we are not animating the earth currently, there needs to be a way to move it
around so we can investigate it from all ends. With that in mind, since the earth is our
target of interest, we’ll set up a situation in which the eye point will effectively hover over
the earth directed by pinch and drag gestures.

The first step is to add gesture recognizers, which have been available on the iPad from
day one but available on the other devices only since iOS 4.

Note For a “real” application, you might consider whether the convenience of gesture
recognizers is worth cutting off the first-generation iOS users who are limited to iOS 3.x.

If you are new enough to iOS programming, you might not have come across gesture
recognizers. In brief, they handle the tedium of determining what kind of touch gesture
the user has made, something the developer had to do early on. It could get plenty
messy, especially when taking care of rotation gestures. Swipe, tap, pinch, and pan

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Putting It All Together 250

gestures are also handled. However, they did leave out momentum swipes, the kind of
action that can keep a list scrolling for a while after you’ve lifted your finger.

Here we’ll need only the pinch and pan gestures. To your view controller’s
viewDidLoad() method, add Listing 8-2.

Listing 8-2. Allocating the gesture recognizers

UIPinchGestureRecognizer *pinchGesture =
 [[UIPinchGestureRecognizer alloc]initWithTarget:self
 action:@selector(handlePinchGesture:)];

 [self.view addGestureRecognizer:pinchGesture];

 UIPanGestureRecognizer *panGesture =
 [[UIPanGestureRecognizer alloc]initWithTarget:self
 action:@selector(handlePanGesture:)];
 [self.view addGestureRecognizer:panGesture];

Next we need to add the two handlers, handlePanGesture() and handlePinchGesture(),
shown in Listing 8-3.

Listing 8-3. The Two Handlers for the Gesture Recognizers

- (IBAction)handlePanGesture:(UIPanGestureRecognizer *)sender
{
 static CGPoint prevLocation;
 CGPoint translate = [sender translationInView:self.view];

 UIGestureRecognizerState state;

 state=sender.state;

 if(state==UIGestureRecognizerStateBegan)
 {
 prevLocation=translate;
 [m_SolarSystem lookAtTarget];
 }
 else if(state==UIGestureRecognizerStateChanged)
 {
 CGPoint currlocation =translate;

 m_PointerLocation=CGPointMake(currlocation.x, currlocation.y);

 [self setHoverPosition:0 location:currlocation prevLocation:prevLocation];

 prevLocation=currlocation;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Putting It All Together 251

- (IBAction)handlePinchGesture:(UIGestureRecognizer *)sender
{
 static float startFOV=0.0;
 CGFloat factor = [(UIPinchGestureRecognizer *)sender scale];
 UIGestureRecognizerState state;

 state=sender.state;

 if(state==UIGestureRecognizerStateBegan)
 {
 startFOV=[m_SolarSystem getFieldOfView];
 }
 else if(state==UIGestureRecognizerStateChanged)
 {
 float minFOV=5.0;
 float maxFOV=75.0;
 float currentFOV;

 currentFOV=startFOV*factor;

 if((currentFOV>=minFOV) && (currentFOV<=maxFOV))
 [m_SolarSystem setFieldOfView:currentFOV];
 }
}

handlePanGesture() calculates the difference in the touch location from the previous call
as a finger is dragged across the screen. It feeds those differences to
setHoverPosition(), which will then move your eye point to a new position over the
earth. Add CGPoint m_PointerLocation to the header.

The other handler, handlePinchGesture(), handles pinches. The
UIPinchGestureRecognizer() returns a simple magnification value starting with
1.0 when the gesture begins. As the gesture continues, the state changes to
UIGestureRecognizerStateChanged, and the scale value increases for an expanding
pinch to indicate a zoom-in operation or decreases when the person is zooming out.
Here it is necessary to cache the starting field of view of the display, because each scale
value is cumulative vs. a delta from the previous event. That way, we’re scaling up the
original value each time as opposed to rescaling the field of view, which would be done
if we only had the deltas to play with. Otherwise, our FOV would jump in successively
larger jumps. Also, notice that I did place limits to the range of values of the FOV, from
5° to 75°.

It is now necessary to add to your solar-system handler the instance variable float
m_FieldOfView, along with the accessor methods in Listing 8-4, and initialize it to 30°.

Listing 8-4. Accessors for m_FieldOfView in the Solar-System Controller

-(float)getFieldOfView
{
 return m_FieldOfView;
}

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Putting It All Together 252

-(void)setFieldOfView:(float)fov
{
 m_FieldOfView=fov;

 [self setClipping];
}

Then move setClipping() from the view controller to the solar-system
controller, and swap out the autovariable fieldOfView for m_FieldOfView, making sure
to initialize it to something like 30° at program startup and to call setClipping() at object
creation, as used to be done in the view controller. Reinitializing the projection matrix is
now necessary, because setClipping() will be called repeatedly during the pinch-to-
zoom operations, and we don’t want them to build on each other. Otherwise, the view
quickly gets wacky.

Finally, you need to add two stubs, which will prevent a crash should you accidentally
do a drag operation. This will be filled in for the next task. To your view controller, add:

-(void)setHoverPosition:(unsigned)nFlags location:(CGPoint)location
 prevLocation:(CGPoint)prevLocation
{

}

To the solar-system controller, add:

-(void)lookAtTarget
{

}

If all works as designed, you should be able to zoom in and out from the earth model, as
shown in Figure 8-3.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Putting It All Together 253

Figure 8-3. Zooming in and out using pinch gestures

Now we’re going to do the rotation support, which includes those quaternion things.
To the solar-system controller, add Listing 8-5 (and you can also get rid of the
lookAtTarget() stub). The helper function getPosition() for m_Earth is added in Listing
8-7, so don’t fret if you get the red dots-of-doom from 8-5.

Listing 8-5. New helper routines for the solar-system controller

-(GLKVector3)getTargetLocation
{
 return [m_Earth getPosition];
}

-(void)lookAtTarget
{
 GLKVector3 targetLocation=[m_Earth getPosition];

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Putting It All Together 254

 gluLookAt(m_Eyeposition.x,m_Eyeposition.y,m_Eyeposition.z,
 targetLocation.x,targetLocation.y,targetLocation.z,
 0.0,1.0,0.0);
}

-(GLKVector3)getEyeposition
{
 return m_Eyeposition;
}

-(void)setEyeposition:(GLKVector3)loc
{
 m_Eyeposition=loc;

}

In normal OpenGL, I’ve mentioned the existence of a utility library called GLUT.
Unfortunately, there is no complete GLUT library for iOS as of this writing, so I’ve had to
create my own where I stuff most any basic 3D utility method. With that in mind, create
a new object called miniglu.mm (the ‘‘mm’’ suffix lets the Objective C compiler
understand straight C code mixed with ObjC), add the the contents of Listing 8-6, and
add static GLKQuaternion m_Quaternion to the top of the file. And make sure to add
miniglu.h where needed.

This is kept as generic-C because GLUT is meant to be as portable as possible.

Listing 8-6. Two routines for miniGLU.mm

void gluLookAt(GLfloat eyex, GLfloat eyey, GLfloat eyez,
 GLfloat centerx, GLfloat centery, GLfloat centerz,
 GLfloat upx, GLfloat upy, GLfloat upz)
{
 GLKVector3 up; //1
 GLKVector3 from,to;
 GLKVector3 lookat;
 GLKVector3 axis;
 float angle;

 lookat.x=centerx; //2
 lookat.y=centery;
 lookat.z=centerz;

 from.x=eyex;
 from.y=eyey;
 from.z=eyez;

 to.x=lookat.x;
 to.y=lookat.y;
 to.z=lookat.z;

 up.x=upx;
 up.y=upy;
 up.z=upz;

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Putting It All Together 255

 GLKVector3 temp = GLKVector3Subtract(to,from); //3
 GLKVector3 n=GLKVector3Normalize(temp);

 temp = GLKVector3CrossProduct(n,up);
 GLKVector3 v=GLKVector3Normalize(temp);

 GLKVector3 u = GLKVector3CrossProduct(v,n);

 m_Quaternion= //4

GLKQuaternionMakeWithMatrix3(GLKMatrix3MakeWithRows(v,u,GLKVector3Negate(n)));

 axis=GLKQuaternionAxis(m_Quaternion);
 angle=GLKQuaternionAngle(m_Quaternion);

 glRotatef(angle*57.29, axis.x, axis.y, axis.z); //5
}

GLKQuaternion gluGetOrientation()
{
 return m_Quaternion;
}

Before we continue, gluLookAt() will need some, er, a lot of explanation. gluLookAt()
does exactly what its name implies. You pass it the location of your eye point, the thing
you want to look at, and an up vector to specify roll angles. Naturally, straight up would
be equal to no roll whatsoever. But you still need to supply it.

Let’s take a closer look:

 As referenced earlier, we need to grab points or vectors to fully describe
our position in space and that of the target, as in lines 1ff. The up vector
is local to your eye point, and it is typically just a unit vector pointing up
the y-axis. You could modify this if you wanted to do banking rolls.

 In lines 2ff, the terms passed through in discrete values are mapped to
GLKVector3 objects. Why instead of vectors in? The official GLUT
libraries don’t use vector objects, so this matches the existing standard.

 Lines 3ff generate three new vectors, two using cross products. This
ensures everything is both normalized and the axis squared.

 Some examples of gluLookAt() generate a matrix. Here, quaternions are
used instead. In line 4, the quaternion is created by our new vectors and
is used to get the axis/angle parameters that glRotatef() likes to use,
as in line 5. Note that the resulting quaternion is cached via a global that
can be picked up later if the instantaneous attitude is needed via
gluGetOrientation(). It’s clumsy, but it works. In real life, you probably
wouldn’t want to do this, because it assumes only a single viewpoint in
your entire world. In reality, you might want to have more than one-----if,
for example, you wanted two simultaneous displays showing your
object from two different vantage points.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Putting It All Together 256

Now you can make some tweaks to Planet.mm. Since we’re using the new vector/point
objects, the instance variable, m_Pos, will be converted from a simple array to a
GLKVector3 type. Listing 8-7 shows those changes, and remember to change its
definition in the header as well and the initialization line in the initialization routine.

Listing 8-7. Some small helper functions for Planet.mm

-(GLKVector3)getPosition
{
 return m_Pos;
}

-(void)setPosition:(GLKVector3)position
{
 m_Pos=position;
}

-(void)getPositionX:(GLfloat *)x Y:(GLfloat *)y Z:(GLfloat *)z
{
 *x=m_Pos.x;
 *y=m_Pos.y;
 *z=m_Pos.z;
}

-(void)setPositionX:(GLfloat)x Y:(GLfloat)y Z:(GLfloat)z
{
 m_Pos.x=x;
 m_Pos.y=y;
 m_Pos.z=z;
}

Next is the heart of this hover stuff. Replace the stub for setHoverPostion() in the view
controller with the code from Listing 8-8 and add miniglu.h.

Listing 8-8. Adding the view’s rotation code

-(void)setHoverPosition:(unsigned)nFlags location:(CGPoint)location
prevLocation:(CGPoint)prevLocation
{
 int dx;
 int dy;
 GLKQuaternion orientation,tempQ;
 GLKVector3 offset,objectLoc,vpLoc;
 GLKVector3 offsetv=GLKVector3Make(0.0,0.0,0.0);

 float reference=300;
 float scale=4.0;
 GLKMatrix3 matrix3;

 CGRect frame = [[UIScreen mainScreen] bounds];

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Putting It All Together 257

 orientation=gluGetOrientation(); //1

 vpLoc=[m_SolarSystem getEyeposition]; //2

 objectLoc=[m_SolarSystem getTargetLocation]; //3

 offset.x=(objectLoc.x-vpLoc.x);
 offset.y=(objectLoc.y-vpLoc.y);
 offset.z=(objectLoc.z-vpLoc.z);

 offsetv.z=GLKVector3Distance(objectLoc,vpLoc); //4

 dx=location.x-prevLocation.x; //5
 dy=location.y-prevLocation.y;

 float multiplier;

 multiplier=frame.size.width/reference;

 glMatrixMode(GL_MODELVIEW);

 float c,s;
 float rad=scale*multiplier*dy/reference;

 s=sinf(rad*.5); //6
 c=cosf(rad*.5);

 tempQ=GLKQuaternionMake(s,0.0,0.0,c); //Rotate around the X-axis.
 orientation=GLKQuaternionMultiply(tempQ,orientation);

 rad=scale*multiplier*dx/reference;

 s=sinf(rad*.5);
 c=cosf(rad*.5);

 tempQ=GLKQuaternionMake(0.0,s,0.0,c); //Rotate around the Y-axis.
 orientation=GLKQuaternionMultiply(tempQ,orientation);

 matrix3=GLKMatrix3MakeWithQuaternion(orientation);

 matrix3=GLKMatrix3Transpose(matrix3); //7
 offsetv=GLKMatrix3MultiplyVector3(matrix3, offsetv);

 vpLoc.x=objectLoc.x+offsetv.x; //8
 vpLoc.y=objectLoc.y+offsetv.y;
 vpLoc.z=objectLoc.z+offsetv.z;

 [m_SolarSystem setEyeposition:vpLoc];

 [m_SolarSystem lookAtTarget]; //9
}

So, what’s going on here?

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Putting It All Together 258

 First we get the cached quaternion from miniGLU, in line 1, along with
the viewpoint’s xyz location from the solar-system object in line 2.
Since that hasn’t been added yet, feel free to add that now. It is simply
a getter for the already existing m_Eyeposition object in the solar-
system controller.

 Line 3 gets the target’s location. In this case, the target is merely earth.
With that in hand, we need to find the offset of our eye point from the
earth’s center and then calculate that distance, as in line 4.

 Line 5 takes the screen coordinates of the previous and current
positions, so we know just how much we moved since the last time.

 Lines 6ff create a fractional rotation for each new position of the touch.
Using the actual orientation quaternion (recovered in line 1) ensures
that the new orientation from each touch position is preserved,
representing the cumulative rotations of the eye point. The three
values of scale, multiplier, and reference are all arbitrary. Scale is fixed
and was used for some fine-tuning to ensure things moved at just the
right speed that ideally will match that of your finger. The multiplier is
handy for orientation changes because it is a scaling factor that is
based on the screen’s current width and a reference value that is also
arbitrary.

Those are then multiplied against the x and y deltas and passed into
the quaternion that is used to generate the final matrix, as in line 7.

 Line 7 takes the new matrix and multiplies it against the offset vector
to transform it to the new position, while lines 8ff actually perform the
translation to the new position and updates the solar-system
controller.

 And finally, earth is reentered in line 9.

Ready? Ha-ha! Not quite. In initLighting(), ensure that glShadeModel() is set to
GL_SMOOTH, check that the fill light 2 is disabled, and, most importantly, delete the line
that attenuates the sunlight.

And of course, make sure to modify the headers as needed, but you probably already
know that. We hope you will now be able to move the earth around at will. You should
see something akin to Figure 8-4. And notice that you should see the sun, albeit much
smaller now, pop in and out.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Putting It All Together 259

Figure 8-4. The hover mode lets you rotate the arth at will.

So, that’s part one of today’s exercise. Remember those lens flare things from Chapter
7? Now we can put them to use.

Adding Some Flare
From Chapter 7, grab the four source files from the lens flare exercise, and add them to
your project along with the artwork. This will require some substantial updates to your
main execute method in the solar-system controller, mainly for managing the lens flare
object in terms of both positioning and highlighting.

Something like a lens flare effect has all sorts of small issues that will be addressed.
Namely, if the flare’s source object, in the case the sun, goes behind the earth, the flare
itself should vanish. Also note that it won’t vanish immediately but will actually fade out.
There are a couple of new utility routines that need to be added before the flare itself
can be rendered.

For starters, though, you’ll need to allocate both the lens flare object and a new texture
object for rendering the sun. Add the following two lines to the init routine of the solar-
system controller:

m_LensFlare=[[LensFlare alloc]init];

m_FlareSource= m_FlareSource=[[OpenGLCreateTexture
getObject]loadTexture:@"gimp_sun3.png"];

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Putting It All Together 260

Now is the time to dump any image utilities over into their own routine. I’ve created
OpenGLCreateTexture for this and have moved loadTexture() from the solar-system
controller to here. This will help support the above call. The .png file can be whatever
you want that will replace the current 3D sun model. What we want this for is to draw a
flat bitmap of the sun where the spherical model would normally render as it has done in
the past. The reason is that we can finely control the look of our star to make it resemble
more closely how the eye might perceive this. The stark yellow ball, while technically
more accurate, just doesn’t look right because any optical receptor to this would add all
sorts of various distortions, reflections, and highlights (lens flares, for example). Shaders
could be employed that mathematically model the optics of the eye, for example, but
that’s a lot of work for a fuzzy ball-like-thing for the time being. You can download my
own artwork from the Apress site if you choose. Or just copy something to suit your own
tastes. Figure 8-5 is what I am using with translucent background. Interesting enough,
this image fools my own eyes enough to make my brain think that I am actually looking
at something too bright, because it causes all sorts of eyestrain when I stare at it.

This uses a technique called billboarding, which takes a flat 2D texture and keeps it
aimed toward the viewer no matter what where they are. It permits complex and fairly
random organic objects (things called trees I think) to be easily depicted while using only
simple textures. As your viewpoint changes, the billboard objects rotate to compensate.

Figure 8-5. The sun image used to give a more authentic-looking glow

Add the following to the interface definition for the solar-system controller:

 LensFlare *m_LensFlare;
 GLKTextureInfo *m_FlareSource;

Next, move the createTexture module created in Chapter 7 over, and add it to this
project in its own file, such as OpenGLCreateTexture.mm. This way, texture generation is
no longer confined to the planet object but accessible by anyone. When done, add the
contents of Listing 8-9 for a more flexible rendering routine. What this does is draw a
rectangular texture to the screen in orthographic mode. This means they would be
unaffected by perspective. That way, you can draw textures near the viewpoint or way in
the background behind other stuff and still count on them being the same size no matter
what. Something like this is very handy when drawing text labels, for example, to the
screen. Since OpenGL has no native text support, any labels must be drawn as any

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Putting It All Together 261

other texture. Also, UI elements can be drawn to the GL layer as well using these
techniques.

Listing 8-9. A more flexible 2D texture renderer to support the addition of lens flares

-(void)renderTextureAt:(CGPoint)position name:(GLuint)name
 size:(GLfloat)size r:(GLfloat)r g:(GLfloat)g b:(GLfloat)b a:(GLfloat)a; //1
{

 float scaledX,scaledY;
 GLfloat zoomBias=.1;
 GLfloat scaledSize;

 static const GLfloat squareVertices[] =
 {
 -1.0f, -1.0f, 0.0,
 1.0f, -1.0f, 0.0,
 -1.0f, 1.0f, 0.0,
 1.0f, 1.0f, 0.0,
 };

 static GLfloat textureCoords[] =
 {
 0.0, 0.0,
 1.0, 0.0,
 0.0, 1.0,
 1.0, 1.0
 };

 CGRect frame = [[UIScreen mainScreen] bounds];
 float aspectRatio=frame.size.height/frame.size.width;

 scaledX=2.0*position.x/frame.size.width;
 scaledY=(2.0*position.y/frame.size.height)*aspectRatio;

 glDisable(GL_DEPTH_TEST);
 glDisable(GL_LIGHTING); //2

 glDisable(GL_CULL_FACE);
 glDisableClientState(GL_COLOR_ARRAY);

 glMatrixMode(GL_PROJECTION);
 glPushMatrix();
 glLoadIdentity();

 glOrthof(-1,1,-1.0*aspectRatio,1.0*aspectRatio, -1, 1); //3

 glMatrixMode(GL_MODELVIEW);
 glPushMatrix();
 glLoadIdentity();

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Putting It All Together 262

 glTranslatef(scaledX,scaledY,0);

 scaledSize=zoomBias*size;

 glScalef(scaledSize,scaledSize, 1);

 glVertexPointer(3, GL_FLOAT, 0, squareVertices);
 glEnableClientState(GL_VERTEX_ARRAY);

 glEnable(GL_TEXTURE_2D);
 glEnable(GL_BLEND);
 glBlendFunc(GL_ONE,GL_ONE_MINUS_SRC_COLOR);
 glBindTexture(GL_TEXTURE_2D,name);
 glTexCoordPointer(2, GL_FLOAT,0,textureCoords);
 glEnableClientState(GL_TEXTURE_COORD_ARRAY);

 glColor4f(r,g,b,a);

 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);

 glMatrixMode(GL_PROJECTION);
 glPopMatrix();

 glMatrixMode(GL_MODELVIEW);
 glPopMatrix();

 glEnable(GL_DEPTH_TEST);
 glEnable(GL_LIGHTING);
}

 A few notes are needed for this:

 What this routine does, as evidenced by its parameter list in line 1, is
to draw a texture to a specific screen-relative position. The name
parameter is merely its OpenGL ES handle. The color values can be
used to tint the image in whatever way you want. Otherwise, most of
the code resembles the original bouncy square demo from the first
chapter, with some exceptions, of course.

 Lines 2ff turn off the lighting, because we don’t want it to affect our
images at this level. Likewise, face culling is switched off to ensure
that this block is actually rendered just in case another routine
specified the windingness to be different from what we have here. And
to be safe, ensure that the color array client state is disabled.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Putting It All Together 263

 glOrthof() in line 3 is a new routine that changes the projection matrix
otherwise set up in setClipping(). Here you establish a viewing
volume with the six sides similar to setting the viewing frustum
elsewhere. However, the zNear and zFar planes are a bit different. In
orthographic projection mode, the depth of your space is mapped
linearly, so a z of .5 is going to interpreted a lot differently than a
similar z value when in perspective mode. So, mixing the two can have
unexpected results if you are relying on depth buffering to manage
proper z-culling. If you want to ensure your 2D object is always visible,
then set zNear to 0 and the depth value to 0.

Setting ortho’s windows from -1 to 1 means that any 2D objects drawn
to the screen will use normalized coordinates, instead of traditional
screen coordinates. So something placed at 0,0 will be exactly in the
center of the screen. renderTextureAt() uses values based on actual
pixel positioning, but those are converted to the normalized ortho
coordinates when actually going out to the screen.

Note In this routine, a lot of necessary state calls are made all to ensure that the image will
render as expected, but they come with a fairly high overhead. You want to change the state as
little as possible if speed is critical. This illustrates one of the issues with a state machine such
as OpenGL, because it holds a particular state until explicitly changed elsewhere. That means
you shouldn’t expect a state to be what you really need, forcing lengthy and frequently
redundant code blocks to ensure you get what you want. A lot of optimizing tricks can be
employed to minimize state changes. One easy way would be to batch the texture calls
together as much as possible and then call the state routines only once for each batch
operation.

Both the lens flare manager, which I call LensFlare.mm, and the individual flare object
need to be modified. To the execute method of LensFlare.mm I’ve added two new
parameters. execute() should now look like this:

-(void)execute:(CGRect)frame source:(CGPoint)source scale:(float)scale
alpha:(float)alpha

scale sizes the various individual flare objects, and alpha sets their translucency. These
get passed on to the actual flare object when called. The flare’s own execute routine is
actually called renderFlareAt() and should look like this:

-(void)renderFlareAt:(CGPoint)position scale:(float)scale alpha:(float)alpha
{
 [[OpenGLCreateTexture getObject]renderTextureAt:position
 name:m_Name size:m_Size*scale r:m_Red*alpha g:m_Green*alpha b:m_Blue*alpha a:alpha];
}

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Putting It All Together 264

And from the lens flare object, ensure that renderFlareAt() is called with the new
parameters.

Another three helper routines we need are gluGetScreenLocation(), gluProject(), and
gluMultMatrixVector3f(), which will return the screen coordinates of a specified 3D
point by mimicking exactly what is happening inside OpenGL. With this we can get the
screen location of the sun needed to aim the flare in the proper direction. One end will
lead right to the sun, while the other will mirror that. To achieve this, add Listing 8-10 to
miniGLU.

Listing 8-10. Gets the screen coordinates of a given 3D location

GLint gluProject(GLfloat objx, GLfloat objy, GLfloat objz,
 const GLfloat modelMatrix[16],
 const GLfloat projMatrix[16],
 const GLint viewport[4],
 GLfloat *winx, GLfloat *winy, GLfloat *winz)
{
 float in[4];
 float out[4];

 in[0]=objx; //1
 in[1]=objy;
 in[2]=objz;
 in[3]=1.0;

 gluMultMatrixVector3f (modelMatrix, in, out); //2

 gluMultMatrixVector3f (projMatrix, out, in);

 if (in[3] == 0.0)
 in[3]=1;

 in[0] /= in[3];
 in[1] /= in[3];
 in[2] /= in[3];

 /* Map x, y and z to range 0-1 */

 in[0] = in[0] * 0.5 + 0.5; //3
 in[1] = in[1] * 0.5 + 0.5;
 in[2] = in[2] * 0.5 + 0.5;

 /* Map x,y to viewport */
 in[0] = in[0] * viewport[2] + viewport[0];
 in[1] = in[1] * viewport[3] + viewport[1];

 *winx=in[0];
 *winy=in[1];
 *winz=in[3];

 return(GL_TRUE);
}

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Putting It All Together 265

void gluGetScreenLocation(GLfloat xa,GLfloat ya,GLfloat za,GLfloat *sx, GLfloat
*sy,GLfloat *sz)
{
 GLfloat mvmatrix[16];
 GLfloat projmatrix[16];
 GLfloat x,y,z;
 GLint viewport[4];

 glGetIntegerv(GL_VIEWPORT,viewport); //4
 glGetFloatv(GL_MODELVIEW_MATRIX,mvmatrix);
 glGetFloatv(GL_PROJECTION_MATRIX,projmatrix);

 gluProject(xa,ya,za,mvmatrix,projmatrix,viewport,&x,&y,&z);

 y=viewport[3]-y; //5

 *sx=x;
 *sy=y;

 if(sz!=NULL)
 *sz=z;

 float scale=[[UIScreen mainScreen] scale]; //6

 *sx/=scale;
 *sy/=scale;
}

void gluMultMatrixVector3f(const GLfloat matrix[16], const GLfloat in[4],GLfloat out[4])
{
 int i;

 for (i=0; i<4; i++)
 {
 out[i] =
 in[0] * matrix[0*4+i] +
 in[1] * matrix[1*4+i] +
 in[2] * matrix[2*4+i] +
 in[3] * matrix[3*4+i];
 }
}

In gluProject() we supply the needed matrices along with the desired xyz coordinates
we’re investigating, and it returns the screen xyz (yes, z) of the point’s projected
location.

 Lines 1ff map the object coordinates to an array that will then be
multiplied by the modelMatrix (supplied as one of the arguments).

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Putting It All Together 266

 The multiplication is done via another GLUT helper routine at lines 2ff.
First the projection matrix and then the model matrix operate on our
object’s xyz coordinates. (Remember, the first transform in the list is
the last to be executed.) Note that the first call to
gluMultMatrixVector3f() passes the ‘‘in’’ array, followed by the ‘‘out,’’
while the second one passes the two arrays in reverse order. There’s
nothing clever here-----the second instance reverses the use of the two
just to recycle the existing arrays.

 In lines 3ff, the resulting values of the earlier calculations are
normalized and then mapped against the screen’s dimensions, giving
us the final values.

 We’d likely never to have to call gluProject() directly; instead, the
caller is gluGetScreenLocation(), which merely gets the needed
matrices in lines 4ff, passes them on to gluProject(), and retrieves
the screen coordinates. Because of the inversion of the Y-axis that
OpenGL ES does, we need to uninvert it in line 5.

 And one final tweak comes courtesy of the Retina display, in line 6.
The de facto screen dimensions on the iPhone are 320x480. What the
scale value is used for is to scale up any screen coordinates to handle
the higher resolution. Scale would be 1 on any pre-Retina devices,
while it would be 2 otherwise.

The execute() routine in the SolarSystemController must be modified quite a bit to
manage the calling and placement of the lens flare, while along with an executePlanet()
adds some new parameters to actually identify where the flare should be located on the
screen. Both are given in Listing 8-11.

Listing 8-11. The modified execute() and executePlanet() methods

-(void)execute
{
 float earth_sx,earth_sy,earth_sz,earth_sr;
 float sun_sx,sun_sy,sun_sz,sun_sr;
 GLfloat paleYellow[]={1.0,1.0,0.3,1.0};
 GLfloat white[]={1.0,1.0,1.0,1.0};
 GLfloat cyan[]={0.0,1.0,1.0,1.0};
 GLfloat black[]={0.0,0.0,0.0,0.0};
 GLfloat sunPos[4]={0.0,0.0,0.0,1.0};

 [self setClipping];

 glMatrixMode(GL_MODELVIEW);
 glShadeModel(GL_SMOOTH);
 glEnable(GL_LIGHTING);
 glEnable(GL_BLEND);
 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Putting It All Together 267

 glPushMatrix();

 glTranslatef(-m_Eyeposition.x,-m_Eyeposition.y,-m_Eyeposition.z); //1

 glLightfv(SS_SUNLIGHT,GL_POSITION,sunPos);
 glEnable(SS_SUNLIGHT);

 glMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION, paleYellow);

 [self executePlanet:m_Sun sx:&sun_sx sy:&sun_sy sz:&sun_sz //2
 screenRadius:&sun_sr render:FALSE];

 glMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION, black);

 glPopMatrix();

 if((m_LensFlare!=NULL) && (sun_sz>0)) //3
 {
 float sunWidth=75; //4

 sunWidth*=(sun_sr/5.0);

 [[OpenGLCreateTexture getObject]renderTextureInRect: //5
 CGRectMake(sun_sx-sunWidth/2.0, sun_sy-sunWidth/2.0,sunWidth,sunWidth)
 name:m_FlareSource.name depth:-10 r:1.0 g:1.0 b:1.0 a:1.0];
 }

 glEnable(SS_FILLLIGHT2);

 glMatrixMode(GL_MODELVIEW);
 glPushMatrix();

 glTranslatef(-m_Eyeposition.x,-m_Eyeposition.y,-m_Eyeposition.z); //6

 glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, cyan);
 glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, white);

 [self executePlanet:m_Earth sx:&earth_sx sy:&earth_sy sz:&earth_sz //7
 screenRadius:&earth_sr render:TRUE];

 glPopMatrix();

 if((m_LensFlare!=NULL) && (sun_sz>0)) //8
 {
 float scale=1.0;
 CGRect frame = [[UIScreen mainScreen] bounds];
 float delX=frame.size.width/2.0-sun_sx;
 float delY=frame.size.height/2.0-sun_sy;
 float grazeDist=earth_sr+sun_sr;
 float percentVisible=1.0;
 float vanishDist=earth_sr-sun_sr;

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Putting It All Together 268

 float distanceBetweenBodies=sqrt(delX*delX+delY*delY);

 if((distanceBetweenBodies>vanishDist) && (distanceBetweenBodies<grazeDist))
 {
 percentVisible=(distanceBetweenBodies-vanishDist)/(2.0*sun_sr);

 if(percentVisible>1.3) //9
 percentVisible=1.3;
 else if(percentVisible<0.2)
 percentVisible=1.3;
 }
 else if(distanceBetweenBodies>grazeDist)
 {
 percentVisible=1.0;
 }
 else
 {
 percentVisible=0.0;
 }

 scale=STANDARD_FOV/m_FieldOfView;

 if(percentVisible>0.0)
 [m_LensFlare execute:[[UIScreen mainScreen]applicationFrame] //10
 source:CGPointMake(sun_sx,sun_sy) scale:scale alpha:percentVisible];
 }
}
 //11
-(void)executePlanet:(Planet *)planet sx:(float *)sx sy:(float *)sy sz:(float *)sz
 screenRadius:(float *)screenRadius render:(BOOL)render
{
 static GLfloat angle=0.0;
 GLKVector3 planetPos;
 float temp;
 float distance;
 CGRect frame = [[UIScreen mainScreen] bounds];

 glPushMatrix();

 planetPos=[planet getPosition];

 glTranslatef(planetPos.x,planetPos.y,planetPos.z);

 if(render)
 [planet execute]; //12

 distance=GLKVector3Distance(m_Eyeposition, planetPos);
 temp=(0.5*frame.size.width)/tanf(GLKMathDegreesToRadians(m_FieldOfView)/2.0);
 screenRadius=temp[planet getRadius]/distance;

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Putting It All Together 269

 gluGetScreenLocation(planetPos.x,-planetPos.y,planetPos.z,sx,sy,sz); //13

 glPopMatrix();

 angle+=.5;
}

In addition to the previous, add the following to the header:

#define STANDARD_FOV 30.0 //in degrees

OK, now for the chalk talk:

You’ll notice that two identical glTranslatef() calls are made. The
first one in line 1 sets things up for line 2 results. But we need to pop it
off the stack when our custom sun image is rendered in line 4. It needs
to be called again in line 6, when the earth is drawn to the screen.

In line 2 it looks like we’re rendering the sun. But not really. This is to
extract the location on the main screen that the sun would actually
draw to. The last parameter, render, will have the routine just return
the screen location and expected radius but not actually draw the sun.

Line 3 decides whether we should draw the new sun if a lens flare
object has been created and if the sun is likely to be visible based on
its z-coordinate. If z is negative, then it is behind us, so we can skip it
altogether.

Lines 4f figure out how large to render the new texture. Naturally we
can’t use just the radius, because the texture is considerably larger to
handle the main image plus the glow. The various values used are
rather arbitrary in calculating the sunWidth, but they balance out
nicely.

The call to renderTextureInRect() in line 5 makes sure that the sun’s
rect is centered by subtracting half of sunWidth from the screen x and
screen y locations.

As a side effect of the way this is drawn, depth cueing doesn’t work
very well, so z-buffering cannot be used. By drawing it as the first
item, we are assured that the closer objects will properly write over
any part of the image as needed.

Line 6 is a repeat of the first line, but this time used to render the earth
in line 7. Got that? Note that we get the earth’s screen x and y values,
along with the radius as we did for the sun earlier.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Putting It All Together 270

 Then we come down to where the flare is actually rendered starting
with lines 8ff. Most of the code here largely handles one basic effect:
what happens when the sun goes behind the earth. Naturally, the lens
flare will vanish, but it won’t pop in or out instantly because the sun
has a finite diameter. So, values such as the grazeDist and vanishDist
tell us when the sun first intersects the earth, starting the dimming
process, and when it is finally covered completely, blanking out the
flare images. Using the earth’s screen x and y values as well as those
for the sun, it becomes an easy matter to specify a fade function.

 Lines 9ff actually determine the brightness of the flares.
percentVisible is ‘‘full’’ brightness at 1.0 but can actually be a little
more, because it multiplies the colors of the flare by this number.
Since not all colors would be maxed out at 1.0, I can actually go a little
higher. But why? When the sun goes behind the earth, one might
expect the final beams of light to be refracted by the atmosphere just a
tad, magnifying the brightness for one short and, in this case, barely
visible flash. (You get extra credit if you want to make it one of the
fabled green flashes.)

 The flare’s execute method is called in line 10. The sun’s screen x and
screen y values serve as the sourceLocation parameter that causes
the lens flare.

 We also need an updated executePlanet() to return the new values
used to place the sun and the flare images, as in line 11.

 One of the enhancements is in line 12, where we can block the actual
rendering of the body if all we’re interested in are their screen
parameters.

 And finally (it’s about time, eh?), we have the call to the new
gluGetScreenLocation helper function, line 13, in miniGLU.mm, covered
earlier.

To the planet object, add a getter routine for the radius that, in this case, is identical to
the m_Scale variable:

-(float)getRadius
{
 return m_Scale;
}

That should do it. I am sure you’ll be able to compile with no errors or warnings,
because you’re just that good. And because you are just that good, you will likely be
rewarded with the images in Figure 8-6. And feel free to play with ambient light and
specular lighting as I have done. The effect might not be very realistic, but it looks
very nice.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Putting It All Together 271

Figure 8-6. Look, Ma! Lens flare!

Seeing Stars
Of course, no solar-system model would be complete without some nice stars in the
background, would it? Up to this point all of the examples have been small enough to
print their entirety here in the text, but now that will change just a bit as we add a simple
star field in the background. The difference is largely in the database required that you
will need to fetch from the Apress web site, because it will contain just over 500 stars
down to a magnitude of 4.0 as well as an additional database containing constellation
outlines and names for a number of the more prominent groupings.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Putting It All Together 272

Note A star’s magnitude is its apparent brightness; the larger the value, the dimmer the star
is. The brightest star in the sky is Sirius, at a visual magnitude of -1.46. The dimmest stars
visible to the naked eye are about magnitude 6.5. Binoculars top out at about 10th magnitude,
while the Hubble Space Telescope reaches way out to magnitude 31.5. Each whole number is
a difference of about 2.5 times in actual brightness, so a star of magnitude 3 is about 2.5 times
brighter than one that is magnitude 4.

Besides the triangular faces that OpenGL ES uses for creating solid models, you can
also specify that each vertex of your model be rendered as a point image of a given
magnitude and size. This proves a natural fit for our own little star field. Since this will
eventually be paired up with a number of constellation outlines, let’s create a new object
that will support both kinds of data, as shown in Listings 8-12a and 8-12b. And while
you’re at it, ensure you have OpenGLOutlines.h and .mm from the site.

Listing 8-12a. The Constellation Collection header

#import <Foundation/Foundation.h>
#import "OpenGLOutlines.h"
#import "OpenGLStars.h"

@interface OpenGLConstellations : NSObject
{
 OpenGLOutlines *m_Outlines;
 OpenGLStars *m_Stars;

}

-(void)execute:(BOOL)constOutlinesOn names:(BOOL)constNamesOn;

@end

Listing 8-12b. The Constellation Collection body

#import "OpenGLConstellations.h"

@implementation OpenGLConstellations

- (id)init
{
 self = [super init];

 if (self)
 {
 m_Outlines=[[OpenGLOutlines alloc]init];
 m_Stars=[[OpenGLStars alloc]init];
 }

 return self;
}

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Putting It All Together 273

-(void)execute:(BOOL)constOutlinesOn names:(BOOL)constNamesOn
{
 [m_Outlines execute: constOutlinesOn showNames: constNamesOn];
 [m_Stars execute];
}

@end

Not much to that one. So, let’s go on to the star object itself, as shown in Listings 8-13a,
8-13b, and 8-13c. This will use a method of data ‘‘interleaving’’ that Apple recommends
for the purpose of increasing performance.

Listing 8-13a. The Star Container header

#import <Foundation/Foundation.h>
#import <OpenGLES/ES1/gl.h>
#import <OpenGLES/ES1/glext.h>

struct starData //1
{
 GLfloat x;
 GLfloat y;
 GLfloat z;
 GLfloat mag;
 GLfloat r,g,b,a;
 GLint hdnum;
};

@interface OpenGLStars : NSObject
{
 struct starData *m_Data;
 int m_TotalStars;
}

-(void)execute;
-(void)init:(NSString *)filename;
-(id)init;

@end

Listing 8-13b. The Star Container body

#import "OpenGLUtils.h"
#import "OpenGLSolarSystem.h"
#import "OpenGLStars.h"
#import "miniGLU.h"

@implementation OpenGLStars

- (id)init
{
 self = [super init];

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Putting It All Together 274

 if (self)
 {
 [self init:@"stars"];
 }

 return self;
}

-(void)init:(NSString *)filename
{
 NSArray *fatData;
 NSDictionary *dict;
 NSNumber *ra,*dec;
 starData *sd;
 float mag;
 float x,y,z;
 int i,j;

 m_TotalStars=0;

 NSString *thePath = [[NSBundle mainBundle] pathForResource:filename
 ofType:@"plist"];

 fatData = [[NSArray alloc] initWithContentsOfFile:thePath]; //2

 m_TotalStars=[fatData count];

 m_Data=(struct starData *)malloc([fatData count]*sizeof(struct starData));

 for(i=0;i<m_TotalStars;i++)
 {
 dict=(NSDictionary *)[fatData objectAtIndex:i];

 ra=(NSNumber *)[dict objectForKey:@"ra"]; //3
 dec=(NSNumber *)[dict objectForKey:@"dec"];

 [[OpenGLUtils getObject]sphereToRectTheta:[ra floatValue]/DEGREES_PER_RADIAN
 phi:[dec floatValue]/DEGREES_PER_RADIAN radius:STANDARD_RADIUS
 xprime:&x yprime:&y zprime:&z];

 //Create nice compressed data array.

 sd=(struct starData *)&m_Data[i];

 sd->x=x;
 sd->y=y;
 sd->z=z;
 sd->mag=[[dict objectForKey:@"mag"]floatValue];

 mag=1.0-sd->mag/4.0; //4

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Putting It All Together 275

 if(mag<.2)
 mag=.2;
 else if(mag>1.0)
 mag=1.0;

 sd->r=sd->g=sd->b=mag;

 sd->a=1.0;
 sd->hdnum=[[dict objectForKey:@"hdnum"]longValue];
 }
}

-(void)execute
{
 int len;
 GLfloat pointSize[2];

 glDisable(GL_LIGHTING); //5
 glDisable(GL_TEXTURE_2D);
 glDisable(GL_DEPTH_TEST);

 glEnableClientState(GL_VERTEX_ARRAY);
 glEnableClientState(GL_COLOR_ARRAY);

 glMatrixMode(GL_MODELVIEW);
 glBlendFunc(GL_ONE, GL_ONE_MINUS_DST_ALPHA);
 glEnable(GL_BLEND);

 len=sizeof(struct starData);

 glColorPointer(4, GL_FLOAT, len, &m_Data->r); //6
 glVertexPointer(3,GL_FLOAT,len,m_Data);

 glGetFloatv(GL_SMOOTH_POINT_SIZE_RANGE,pointSize); //7
 glEnable(GL_POINT_SMOOTH);
 glPointSize(3.0);

 glDrawArrays(GL_POINTS,len,m_TotalStars); //8

 glDisableClientState(GL_VERTEX_ARRAY);
 glDisableClientState(GL_COLOR_ARRAY);
 glEnable(GL_DEPTH_TEST);
 glEnable(GL_LIGHTING);
}

@end

The stars are initially stored as a plist. That’s not very efficient but works well for a small
dataset. In Distant Suns, my stars are stored in a tightly packed binary file, which is nice
for my 300,000-star database.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Putting It All Together 276

 In line 1 of Listing 8-13a, we define a structure for each star. Its
position is in rectangular coordinates since that is what OpenGL
expects, followed by a magnitude, colors, and something called the
hdnum. The magnitude value in this structure is normalized and used in
the RGBA fields. Because stars can actually be different colors-----red
giants and yellow dwarfs, for example-----these values could encode
their true shades were we going to do that.

The hdnum is the identifier for stars in the ‘‘Henry Draper Catalog,’’
which covers most stars down to about magnitude 10. As with the
colors, it is not used here except for possible testing and debugging.

 Next we jump to Listing 8-13b where we read in the data from the plist
in line 2.

 Lines 3ff fetch the locations of each star and, using a helper function
(Listing 8-14), convert the spherical coordinates to rectangular.

 Line 4 and the following lines take in the actual magnitude value and
convert it to a normalized shade of gray, clamping the values from .2
to 1.0 and ensuring that the dimmest stars will still be visible.

 Now on to the execute method where lines 5ff disable stuff that might
otherwise interfere with our renderings. The depth test is turned off to
minimize interference of the points with the constellation outlines. We
could have left z-buffering on and drawn the constellations lines a little
bit behind the stars but at a slight loss of performance.

 The calls to set the color and vertex pointers in lines 6f make use of
the stride parameter. Since the colors are in a format that OpenGL
already understands (the RGBA quadruplet in floats), there is no need
to have to extract them into their own array. So, all we need to do is to
pass a pointer to the address of the first component (which happens
to be red) and a value that tells the system how large the structure is
so it knows where to pick up each successive color or vertex element
in the case of vertex data.

 Lines 7ff tell the system how to render the points, both size and style.
Size is specified by glPointSize() with a value of 3.0 pixels, which
seems to work for both the standard and Retina displays. We can also
have points that are either square or rounded. Since I don’t know of
any square stars last I checked, we can use rounded points by
enabling GL_POINT_SMOOTH capabilities. And if we really want really
nicely anti-aliased points, then blending needs to be activated for
those to work. Figure 8-7 shows the difference between the three
styles.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Putting It All Together 277

Note If you want to draw really big stars, there is a limit to the maximum size that varies
from machine to machine. You can check the size range using the glGetFloatv() call, in
line 7. The simulator shows a range from .1 to 511 pixels, while the iPad 1 shows it as 1 to
511. Note that single pixel points are almost impossible to see on the Retina display.

Figure 8-7. From left to right, a close-up on an 8-pixel-wide unsmoothed point, with
smoothing, and with smoothing and blending

 In line 8 we can finally draw the stars, followed by just some basic
cleanup stuff.

I decided to add a utilities object, because the project gets a little more complicated.
Create OpenGLUtils as a singleton, and add the contents of Listing 14.

Listing 8-14. A helper function to convert spherical coordinates to rectangular added to OpenGLUtils

#import "OpenGLSolarSystem.h"
#import "OpenGLUtils.h"

static OpenGLUtils *m_Singleton;

@implementation OpenGLUtils

+(OpenGLUtils *)getObject
{
 @synchronized(self)
 {
 if(m_Singleton==nil)
 {
 [[self alloc]init];
 }
 }

 return m_Singleton;
}

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Putting It All Together 278

+(id)allocWithZone:(NSZone *)zone
{
 @synchronized(self)
 {
 if (m_Singleton == nil)
 {
 m_Singleton = [super allocWithZone:zone];

 return m_Singleton; // Assignment and return on first alUI.
 }
 }
 return nil; //On subsequent allocation attempts, return nil.
}

-(void)sphereToRectTheta:(float)theta phi:(float)phi radius:(float)radius
 xprime:(float *)xprime yprime:(float *)yprime zprime:(float *)zprime
{
 float cos_theta,sin_theta,cos_phi,sin_phi;

 phi=RADIANS_PER_90_DEGREES-phi; /* phi is to be measured starting from the z-
axis. */

 sin_theta=sin(theta);
 cos_theta=cos(theta);

 sin_phi=sin(phi);
 cos_phi=cos(phi);

 *xprime=(float)(radius*cos_theta*sin_phi);
 *yprime=(float)(radius*cos_phi);
 zprime=(float)-1.0(radius*sin_theta*sin_phi);
}

@end

Now we can go ahead and concentrate on drawing outlines for some of the major
constellations. As with the stars, you need to fetch the data file, outlines.plist from
Apress. First we’ll cover the rendering of the names to the screen.

Unfortunately, for all that OpenGL gives us, text support is not one of them. Thus, it is
up to us, the long-suffering engineers, to implement our own text manager. There are
three ways to do this. The first is to write text out as a collection of vectors, but that’s a
poor solution because it looks terrible along with being a CPU hog. The second is to
generate a texture for each text string, while the third is to generate a ‘‘font atlas’’ (also
known as sprite sheets). Font atlases are used to contain multiple related images on a
single bitmap, with each image plucked out as needed. For text, this would have all
possible characters jammed together along with reference data specifying the location
of each character. The second way, generating a texture, is easier to implement, but font
atlases are far more flexible, because it will let you put up arbitrary lines of text. I vote for
the easy one. With this in mind, I can introduce you to the OpenGLText manager in
Listings 8-15a and 8-15b.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Putting It All Together 279

Listing 8-15a. The header for creating a label texture

#import <Foundation/Foundation.h>

@interface OpenGLText : NSObject
{
 GLuint m_Name;
 NSUInteger m_Width;
 NSUInteger m_Height;
 GLfloat m_MaxS;
 GLfloat m_MaxT;
}

-(id)initWithText:(NSString*)string size:(CGSize)size
alignment:(UITextAlignment)alignment font:(UIFont*)font;
-(void)renderAtPoint:(CGPoint)point depth:(CGFloat)depth red:(float)red
green:(float)green blue:(float)blue alpha:(float)alpha;

-(void)drawAtPoint:(CGPoint)point depth:(GLfloat)depth red:(GLfloat)red
green:(GLfloat)green blue:(GLfloat)blue alpha:(GLfloat)alpha tname:(GLuint)tname;

@end

Listing 8-15b. The body for creating a label texture

#import "OpenGLSolarSystem.h"
#import "OpenGLText.h"
#import "OpenGLCreateTexture.h"

@implementation OpenGLText

-(id)initWithText:(NSString*)string size:(CGSize)size
alignment:(UITextAlignment)alignment font:(UIFont*)font //1
{
 NSUInteger width;
 NSUInteger height;
 NSUInteger i;
 CGContextRef context;
 void* data;
 CGColorSpaceRef colorSpace;
 GLint saveName;

 glEnable(GL_TEXTURE_2D);

 width = size.width;

 if((width != 1) && (width & (width - 1))) //2
 {
 i = 1;

 while(i < width)
 i *= 2;

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Putting It All Together 280

 width = i;
 }
 height = size.height;

 if((height != 1) && (height & (height - 1)))
 {
 i = 1;

 while(i < height)
 i *= 2;

 height = i;
 }

 colorSpace = CGColorSpaceCreateDeviceGray(); //3

 data = calloc(height, width); //4

 context = CGBitmapContextCreate(data, width, height, 8, width, colorSpace,
 kCGImageAlphaNone);

 CGColorSpaceRelease(colorSpace);

 CGContextSetGrayFillColor(context, 1.0, 1.0); //5

 UIGraphicsPushContext(context); //6

 [string drawInRect:CGRectMake(0, 0, size.width, size.height) withFont:font
 lineBreakMode:UILineBreakModeWordWrap alignment:alignment];

 UIGraphicsPopContext();

 glGenTextures(1, &m_Name); //7
 glGetIntegerv(GL_TEXTURE_BINDING_2D, &saveName);

 glBindTexture(GL_TEXTURE_2D, m_Name);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);

 glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE, width, height, 0, //8
 GL_LUMINANCE, GL_UNSIGNED_BYTE, data);

 glBindTexture(GL_TEXTURE_2D, saveName); //9

 m_Width=width;
 m_Height=height;
 m_MaxS=size.width/(float)width;
 m_MaxT=size.height/(float)height;

 CGContextRelease(context);
 free(data);

 return self;
}

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Putting It All Together 281

-(void)renderAtPoint:(CGPoint)point depth:(CGFloat)depth red:(float)red
green:(float)green

blue:(float)blue alpha:(float)alpha
{

 float scale;

 int boxRect[4];

 glBindTexture(GL_TEXTURE_2D,m_Name);

 glEnable(GL_BLEND);
 glBlendFunc(GL_ONE,GL_ONE_MINUS_SRC_ALPHA);

 glDisable(GL_DEPTH_TEST);
 glEnable(GL_TEXTURE_2D);
 glDisable(GL_LIGHTING);

 glColor4f(red, green, blue, alpha);

 boxRect[0]=0;
 boxRect[1]=0;
 boxRect[2]=m_Width;
 boxRect[3]=m_Height;

 scale=[[UIScreen mainScreen] scale]; //10

 glTexParameteriv(GL_TEXTURE_2D, GL_TEXTURE_CROP_RECT_OES,(GLint *)boxRect); //11

 glDrawTexfOES(point.x*scale, (480-point.y)*scale, depth, m_Width,m_Height); //12

 glDisable(GL_TEXTURE_2D);
 glEnable(GL_DEPTH_TEST);
 glDisable(GL_BLEND);
 glEnable(GL_LIGHTING);
}

@end

Here’s what is happening:

 The parameters in line 1 include the string, its size as determined by using
the ever-so-handy sizeWithFont() method of NSString, the alignment, and
the UIFont.

 Here in lines 2ff, the size of the desired texture is upped to be power-of-two
(POT) needed for older devices. You can check the APPLE_texture_2D_
limited_npot extension. If it exists, any size textures will work.

 We need to first use CoreGraphics to generate a bitmap with the desired
text, in line 3, and then convert it to an OpenGL ES texture. Lines 4ff now
allocate memory for the actual data and then create a new bitmap context
with the data block.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Putting It All Together 282

 Setting the fill color in line 5 ensures that the filled text characters are visible.

 Lines 6ff push the new context on the stack, write the text to that context,
and then pop it back off.

 Now the OpenGL texture is created in the standard way with lines 7ff
preparing the way and line 8 actually generating texture itself. Note that to
be a good neighbor, the new texture’s name is only temporarily bound, and
the previously bound texture is restored in line 9.

Jumping down to renderAtPoint(), the only other method in this object, we use a
slightly different and more simple form of drawing a texture to the screen with
glDrawTexfOES(). While Apple supports this, remember that the OES suffix says that
there is no guarantee that this call will be available on other OpenGL ES implantations,
so use at your own risk. Moreover, you can’t do any transformations on it either.

 glDrawTexfOES() doesn’t recognize the contentScaleFactor used to
get OpenGL ES to recognize a high-resolution Retina display. So, we
must scale things up manually in line 10.

 glDrawTexfOES() brings in a new texture parameter in line 11,
GL_TEXTURE_CROP_RECT_OES using the supplied boxRect. This lets you
clip only part of the texture to use for display. Here we’re saying that
we want the entire content.

 And finally the label is drawn to the buffer. Notice how the scale factor
is used in both x and y in line 12.

Now for the loader/renderer for the outlines themselves. Because of the length of the
rest of the code and because a lot of it resembles the star module, only excerpts will be
used here to highlight the noteworthy parts.

When read from the plist, the data for each constellation’s outline is converted to an
array of floats that OpenGL will understand and then store back in the original
dictionaries as an NSData object. That way, the original data is kept around if need be
while being easily linked with the OpenGL representation of the same data, as shown in
Listing 8-16, also in OpenGLOutlines.

Listing 8-16. Allocating the vertex buffers

coordArray=[dict objectForKey:@"coordinates"];
numpoints=[coordArray count];
numbytes=numpoints*3*sizeof(GLfloat);

data=(GLfloat *)malloc(numbytes);

for(j=0;j<numpoints;j++)
{

 coords=[coordArray objectAtIndex:j];

 ra=(NSNumber *)[coords objectForKey:@"ra"];
 dec=(NSNumber *)[coords objectForKey:@"dec"];

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Putting It All Together 283

 [[OpenGLUtils getObject]sphereToRectTheta:15.0*[ra floatValue]/DEGREES_PER_RADIAN
 phi:[dec floatValue]/DEGREES_PER_RADIAN radius:STANDARD_RADIUS
 xprime:&x yprime:&y zprime:&z];

 index=j*3;

 data[index+0]=x;
 data[index+1]=y;
 data[index+2]=z;
}

 nsdata=[[NSData alloc]initWithBytes:data length:numbytes];

 [dict setObject:nsdata forKey:@"binarydata"];

As with point sizes, OpenGL will likewise let you vary the width of the lines using
glLineWidth(), which takes a GLfloat as a parameter. glLineWidth() doesn’t know
about Retina scaling, so if you want to have the lines look the same across platforms,
make sure to double the width when appropriate.

One final thing to add: allocation and invocation. In the solar-system controller, allocate
the constellation object, the container for the stars, lines and names, and invoke it. (I’ll
let you figure out when and where.) The Boolean parameters switch on the particular
displayable, needed for when the UI is added:

 [m_Constellations execute:TRUE names:m_TRUE];

Now we’re ready to see something. With a little luck and perseverance, you might have
something that looks like Figure 8-8.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Putting It All Together 284

Figure 8-8. Our one-planet solar system

Cool, eh? And of course, if you don’t see the above, recheck all of your code, and feel
free to cheat by just getting the entire project from Apress. Of course it’s missing the
clouds, but those will be handled a little later.

At this stage, a small problem arises as OpenGL ES shows off a slightly uglier side of
things. Examine the lines closely on your emulator or on a non-Retina device. They don’t
look particularly good, do they? Anti-aliasing of lines was something the OpenGL ES
standards committee apparently felt they could leave out, even though it is standard in
the desktop libraries.

Note The simulator can generate anti-aliased lines, but not so when run on real hardware.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Putting It All Together 285

Why? Beats me. But the smooth lines we take for granted on desktops are absent on
the handhelds. The Retina display makes anti-aliasing pretty much moot simply because
of its resolution. However, on non-Retina devices, including the iPad (as of this writing),
it still looks pretty rough. There are a couple of workarounds, one more of a hack than
the other. The first and more hacky of the two, dumps the normal OpenGL lines support
and substitutes really long and thin textured objects, because they can be smoothed
out. A nice side effect is that (with a little extra work) you can get dotted lines as well.
The less hacky version, but a lot easier to do, is to use a feature found in iOS 4 and
after: multisampled anti-aliasing (MSAA to its friends).

Multisampling as a means toward anti-aliasing requires the addition of a special
multisample frame buffer object. Your image is initially written to the special buffer in a
resolution that is higher than your final display. It is then ‘‘resolved’’ into a smaller buffer,
with the final pixels representing blended versions of the originals. Typically the
multisampling buffer is four times larger than the final one; that is, each of the final pixels
is generally a weighted average of the four pixels in the former (not unlike texture filtering
covered in Chapter 5). This is also called full-screen anti-aliasing, because that is exactly
what it does. The benefits are a smoother image; the drawbacks include a performance
hit and extra memory used for the off-screen buffer. Figure 8-9 (left) shows one of our
lines with no MSAA, while Figure 8-9 (right) shows it with MSAA turned on.

Figure 8-9. Multisample anti-aliasing, before (left) and after (right)

Another nice addition in iOS5’s GLKit is support for MSAA that is built into GLKView.
Previously, it took about 40 lines of code, but now all you need to do is to add the
following to viewDidLoad() in your view controller:

view.drawableMultisample=GLKViewDrawableMultisample4X;

Adding a UI
Of course, any app that doesn’t have a means to interact with it is usually called a
demo. But here our little demo will in fact gain both a simple user-interface and HUD
graphics.

When it comes to adding UI elements to your OpenGL app, I have some very good
news. Because the GLKView is a subclass of UIView, you can treat it like any other view
object. This means you can create and add any other UIView object, hence practically
any UIKit controls, as subviews to your 3D scene. This also means you have full access
to animation properties of the views as well, to create a truly fluid interface. Figure 8-10
shows a quick UI I added to the example to turn on and off various objects along with an
animated sweep that goes across the screen. The buttons are UIButtons with custom
imagery, the text is a UILabel, and the green lines sweep across the screen like some
sort of radar sequence.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Putting It All Together 286

And surprisingly, the performance generally holds up. So, it has two things going for it.
The downside is that it will lock you even more into the iOS universe. Considering that
OpenGL ES is an industry standard, you might want to consider the implications of
mixing the standard with nonstandard objects. In fact, many authors eschew any
Objective-C and iOS-specific stuff as much as they can, rolling their own UI within the
OpenGL world. That way, ports to other devices can be reduced to days, instead of
months.

Figure 8-10. Adding interface elements to the solar system

In Distant Suns I have a date/time widget on the left side of the screen that lets users
very quickly advance forward or backward in time (Figure 8-11). That was completely
rendered in the OpenGL layer, largely to see whether I could do it. It looks and works
very well, while the bottom and top toolbars are standard issue UIKit models.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Putting It All Together 287

Figure 8-11. Distant Suns with custom date wheel on the left side yet with a standard UIKit toolbar at the same
time

Early on, Apple did caution about mixing the two worlds for performance reasons, in
particular when the practice was to use an NSTimer to drive the rendering loop. With the
addition of CADisplayLink with iOS 3.1, things got much better. There are a number of
other best practices to keep in mind:

 Disable any OpenGL rendering loops if the view is hidden or the app is
pushed to the background.

 Disable any OpenGL view if performing full-screen core animations.

 The simpler the dialog windows, the less of a performance hit on the
OpenGL graphics.

 Use transparency sparingly, in particular if your OpenGL view is
on top.

See? Sometimes the easy way can be the best way.

Summary
In this chapter, we took many of the tricks learned in previous chapters and combined
them into a more complete and more attractive solar-system model. A one-planet solar
system is not that impressive as it stands. So, I’ll leave it up to you, dear reader, to add
the moon, add some other planets, and get the earth to revolve around the sun.

Furthermore, we covered several other topics and tricks in past that I couldn’t get
around to adding to the project. For example, FBOs could be used to insert a secondary
view of the earth from a different angle in the screen.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Putting It All Together 288

However, we did add lens flare, point and line objects, made the application support
high-res Retina displays, and covered full-screen anti-aliasing and the mixing of both
OpenGL views and standard iOS controls.

In the next chapter, we’ll look into optimization tricks and using Apple’s own tools to find
bottlenecks in OpenGL ES applications.

www.it-ebooks.info

http://www.it-ebooks.info

9Chapter

Performance ’n’ Stuff

An ounce of performance is worth pounds of promises.

------Mae West

I'm so fast that last night I turned off the light switch in my hotel room
and was in bed before the room was dark.

------Muhammad Ali

When dealing with 3D worlds, performance is nearly always an issue because of the
intensive mathematics required for even simple scenes. If all you want to render is a
bouncing cube, then not to worry, but if you want to display the universe, you’ll always
be concerned about performance.

Up until now, the exercises have been presented in a way to be reasonably clear (I hope)
but not necessarily efficient. And unfortunately, efficient code is rarely the clearest and
most easily understood. So now, we’re going to start looking at the slightly messier stuff
and see how it can be integrated into your applications.

In its manual on OpenGL ES, Apple has a section called ‘‘Best Practices.’’ I’ll cover
those in detail in this chapter followed by a look at some of the tools Apple provides
developers specifically for analyzing and debugging OpenGL programs.

Vertex Buffer Objects
The two main arenas of performance enhancements are minimizing the data transfer to
and from the graphics hardware and minimizing data itself. Vertex buffer objects (VBOs)
are part of the former process. When you generated your geometry and sent it merrily
along to be displayed, the usual process was to tell the system where to find each of the
needed blocks of data, enabling which data to use (vertex, normals, colors, and texture
coordinates) and then drawing it. Each time glDrawArrays() or glDrawElements() is
called, all of the data must be packed up and shipped to the graphics processing unit

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 9: Performance ’n’ Stuff 290

(GPU). Each data transfer takes a finite amount of time, and performance could be
increased if, say, some of the data could be cached on the GPU itself. Vertex buffer
objects are a means of allocating commonly used data on the GPU that can then be
called to be displayed without having to resubmit it each time.

The process of creating and using VBOs should be familiar to you because it mimics the
process used for textures: first generate a ‘‘name,’’ allocate space for the data, load the
data, and then use glBindBuffer() whenever you want to use it.

Listing 9-1 shows how I created a VBO out of the planetary data. Since most planets are
generally the same shape, that is, roundish, it is possible to cache one model of the
sphere on the CPU and use it for any planet or moon, short of Phobos or Deimos or
Hyperion or Nix or Miranda….

Listing 9-1. Creating a VBO for the Planet Model

-(void)createVBO
{
 int numXYZElements=3;
 int numNormalElements=3;
 int numColorElements=4;
 int numTextureCoordElements=2;
 long totalXYZBytes;
 long totalNormalBytes;
 long totalTexCoordinateBytes;
 int numBytesPerVertex;

 glGenBuffers(1, &m_VBO_SphereDataName); //1
 glBindBuffer(GL_ARRAY_BUFFER,m_VBO_SphereDataName);

 numBytesPerVertex=numXYZElements; //2

 if(m_UseNormals)
 numBytesPerVertex+=numNormalElements;

 if(m_UseTexture)
 numBytesPerVertex+=numTextureCoordElements;

 numBytesPerVertex*=sizeof(GLfloat);
 //3
 glBufferData(GL_ARRAY_BUFFER, numBytesPerVertex*m_NumVertices, 0, GL_STATIC_DRAW);
 //4
 GLubyte *vboBuffer=(GLubyte *)glMapBufferOES(GL_ARRAY_BUFFER, GL_WRITE_ONLY_OES);
 //5
 totalXYZBytes=numXYZElements*m_NumVertices*sizeof(GLfloat);
 totalNormalBytes=numNormalElements*m_NumVertices*sizeof(GLfloat);
 totalTexCoordinateBytes=numTextureCoordElements*m_NumVertices*sizeof(GLfloat);

 memcpy(vboBuffer,m_VertexData,totalXYZBytes); //6

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 9: Performance ’n’ Stuff 291

 if(m_UseNormals)
 {
 vboBuffer += totalXYZBytes;
 memcpy(vboBuffer,m_NormalData,totalNormalBytes);
 }

 if(m_UseTexture)
 {
 vboBuffer += totalNormalBytes;
 memcpy(vboBuffer,m_TexCoordsData,totalTexCoordinateBytes);
 }

 glUnmapBufferOES(GL_ARRAY_BUFFER); //7

 m_TotalXYZBytes=totalXYZBytes;
 m_TotalNormalBytes=totalNormalBytes;
}

Here’s what’s going on:

 First we need to generate a name for this VBO in line 1, in a manner
similar to textures.

 Next, tally up the size of each vertex in the lines 2ff. And in this case a
vertex is the summation of its coordinates, texture coordinates, and
the normal vector, as required. The total is now multiplied by the total
number of vertices.

 Line 3 actually allocates the memory on the GPU. This can be deleted
by using glDeleteBuffer() when your object is no longer needed. The
final parameter is a hint to the driver saying that the data is never
expected to change. If you expect to update it, then use
GL_DYNAMIC_DRAW. Don’t be surprised if you see no change between the
two, because the current driver could very well ignore it.

 Line 4 starts the process of uploading the data to the cache. This can
be done a couple of ways: via memory mapping or a direct upload.
Here we use memory mapping by calling glMapBufferOES(). This
returns a pointer to a memory-mapped portion of the GPU’s data
storage inside the application’s address space. The other method uses
the more traditional glBufferData(). The advantage of the former is
that it can prevent an extra memory copy on part of your application
that would otherwise be necessary to join multiple components
together into one big array for uploading.

 Now calculate the total number of bytes for each data type. Both the
normals and the xyz coordinates require the same memory each, while
we’re using only 2D texture coordinates.

 The magic starts in lines 6ff where it is possible to copy the individual
buffers one at a time by merely using memcpy().

 glUnmapBufferOES() in line 7 forces the actual copy action to execute.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 9: Performance ’n’ Stuff 292

So, how do we use VBOs? Very easily. Take a look at the executeVBO() method in
Listing 9-2.

Listing 9-2. Rendering the Planet Using VBOs

-(bool)executeVBO
{
 int i;
 static int counter=0;

 glBindBuffer(GL_ARRAY_BUFFER, m_VBO_SphereDataName); //1

 glMatrixMode(GL_MODELVIEW);
 glDisable(GL_CULL_FACE); //2
 glEnable(GL_BLEND);
 glEnable(GL_DEPTH_TEST);

 glEnableClientState(GL_VERTEX_ARRAY); //3

 if(m_UseNormals)
 glEnableClientState(GL_NORMAL_ARRAY);

 glVertexPointer(3,GL_FLOAT,0,(GLvoid*)(char*)0); //4
 glNormalPointer(GL_FLOAT,0,(const GLvoid*)(char*)(0+m_TotalXYZBytes));
 glTexCoordPointer(2,GL_FLOAT,0,
 (const GLvoid*)((char*)(m_TotalXYZBytes+m_TotalNormalBytes)));

 if(m_UseTexture)
 {
 if(m_TexCoordsData!=nil)
 {
 glEnable(GL_TEXTURE_2D);
 glEnableClientState(GL_TEXTURE_COORD_ARRAY);

 if(m_TextureID!=0)
 glBindTexture(GL_TEXTURE_2D, m_TextureID);

 }
 }
 else
 glDisableClientState(GL_TEXTURE_COORD_ARRAY);
 //5
 glDrawArrays(GL_TRIANGLE_STRIP, 0, (m_Slices+1)*2*(m_Stacks-1)+2);

 glDisable(GL_BLEND);
 glDisable(GL_TEXTURE_2D);

 return true;
}

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 9: Performance ’n’ Stuff 293

Rendering the VBOs is pretty straightforward, with only a single ‘‘huh?’’ in the process.

 Line 1 binds it, in the same way a texture is bound. This simply makes
it the current object in use, until another is bound or this one is
unbound with glBindBuffer(GL_ARRAY_BUFFER, 0);.

 Face culling is disabled in line 2 for testing purposes, so we know all
faces are being rendered and not just the front-facing ones.

 Lines 3ff enable the various data buffers as has been done in previous
execute() methods.

 Lines 4ff are the different ones. When using VBOs, the various pointers
to the data blocks are the offset from the first element, which always
starts at ‘‘address’’ of zero instead one in the app’s own address
space. So, the vertex pointer starts at address of 0, while the normals
are right after the vertices, and the texture coordinates are right after
the normals.

 The array is now drawn in line 5 just as before.

When it comes to optimizing code, I am one who needs to be convinced that a specific
trick will work. Otherwise, I might spend a lot of time doing something that increases the
frame rate by .23 percent. A game programmer might find that a badge of honor, but I
feel that it steals an optional new feature, or bug fix away from my users by diverting my
attention on something that would never be noticed. So, I developed a simple test
program to try the various techniques described here. The previous two listings are from
that effort.

Once you’re sure that the VBO operates as planned, have the program draw multiple
earths on top of each other. The following lines will render 10 additional planets while
rotating them at the same time:

for(i=0;i<10;i++)
{
 glTranslatef(0.0, 0.01, 0.0);
 glDrawArrays(GL_TRIANGLE_STRIP, 0, (m_Slices+1)*2*(m_Stacks-1)+2);
}

And generate the spheres with 200 stacks and 200 slices, giving them a total of 80,400
vertices, which yields more than 2.5MB of data. I use the same instance, so I have to
load the GPU only once at program startup. Without VBOs, the same model would be
loaded 11 times. See Figure 9-1.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 9: Performance ’n’ Stuff 294

Figure 9-1. Giant computer-generated sow bug. Or 11 planet earths stacked on top of each other.

When it comes to testing the frame rate in examples like this, Apple has supplied an
incredibly simple but powerful new tool with the iOS 5 dev install. Called OpenGL ES
Performance Detective, as shown in Figure 9-2, it can link up to any of your apps on
your device and give you the frame rate. If the rate is slow, it will analyze it for you and
let you know whether it is an OpenGL issue and, if so, will recommend possible
solutions.

Using this tool, it told me that on my iPad 2 the example was running about 9.5 frames
per second (FPS) when not using VBOs but jumped almost 50 percent to 13.5 FPS.
Interestingly enough, there was virtually no detectable increase on my iPad 1, which
hovered at only about 2.5 FPS, while on both an iPhone 3GS and iPhone 4, the VBO
frame rate was just slightly less than when not using VBOs (2.0 vs. 2.3). The
Performance Detective is telling me that the frame rate is the performance bottleneck,
while suggesting that I limit the data.

Note All of the devices, from the iPhone 3GS to the iPad 1, use the same GPU from
Imagination Technologies, the PowerVR SGX-535, while the iPad 2 uses the dual-core SGX
545MP. So if your app’s limitation is OpenGL related, it would likely run about the same on any
machine that uses the same GPUs.

All of these tests are relative to each other, because the example is fully contrived and
may not reflect your own situation.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 9: Performance ’n’ Stuff 295

Figure 9-2. Performance Detective

Interleaved Data
Another recommended trick is to use interleaved data as opposed to sequential arrays.
Remember the example from Chapter 8 when creating the stellar importer? There’s not
much difference here. You can take the individual buffers and weave them together so
that each vertex’s data is in one contiguous structure, as shown in Figure 9-3.

Figure 9-3. Data ordering. The VBO example uses the top format, while the bottom illustrates data interleaving.

In my own tests I found the difference to be negligible. But still, keep interleaving in mind
for your projects, and it can’t hurt to design for it because future hardware might make
better use of it.

Batching
Batch as many operations as possible that rely on the same state, because changing
the system state (by using the glEnable() and glDisable() calls) is costly. OpenGL
does not check internally to see whether a specific feature is already in the state you
want. In the exercises in this book, I would frequently set states more often than I likely

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 9: Performance ’n’ Stuff 296

needed to, just to ensure the behavior is easily predictable. But for commercial,
performance-intensive apps, try to remove any redundant calls in the release build.

Also, batch your drawing calls as much as possible.

Textures
A few of the texture optimization tricks have already been addressed, such as
mipmapping in Chapter 5 and making use of PVRTC textures. Others are just plain
common sense: textures take a whopping lot of memory. Make them as small as
possible and reuse them if needed. Also, set any image parameters ahead of loading
them, because they act as a hint to tell OpenGL how to optimize the information before
shipping up to the hardware.

Draw the opaque textures first, and avoid having a translucent OpenGL ES screen.

As a fairly simple example of how texturing can affect frame rates, the previous VBO
example gained about a 25-percent increase when I dumped the texture altogether.

Sprite Sheets
Sprite sheets (or texture atlases or font atlases) were briefly referenced in Chapter 8
when covering displaying text in an OpenGL environment. Figure 9-4 illustrates what a
sprite sheet looks like when used for rendering text to the screen.

Figure 9-4. Sprite sheet for 24-point Copperplate

This particular image was created using a free tool called LabelAtlasCreator. Besides the
image file, it will generate a handy plist that contains all of the placement details that are
easy to convert to texture space. Another one is the Java-based Hiero that can do fonts
with gradients. However, it is very slow. Perhaps the most robust one is ‘‘Angelcode-
Bitmap Font Generator,’’ for Microsoft Windows only, but it seems to be pretty popular.
The latter two tools generate a font metrics file in the .font format. It’s much less handy
than a .plist, but there are some free parsers floating about to handle it.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 9: Performance ’n’ Stuff 297

But don’t stop at fonts, because sprite sheets can also be applied anytime you have a
family of likeminded images. Switching from one texture to another can cause a lot of
unneeded overhead, whereas a sprite sheet acts as a form of texture batching, saving a
lot of GPU time. Check out the OS-X compatible Zwoptex tool, or TexturePacker, used
for general-purpose images.

Texture Uploads
Copying textures to the GPU can be very expensive, because they must reformatted by
the chip before they can be used. This can cause stuttering in the display for larger
textures. Therefore, make sure to load them up at the very start with glTexImage2D.

Mipmaps
Always make sure to use mipmaps for anything other than 2D unscaled images. Yes,
they do use a little more memory, but the smaller mipmaps can save a lot of cycles for
your objects when far away. It is recommended that you use GL_LINEAR_MIPMAP_NEAREST
because it is faster than GL_LINEAR_MIPMAP_LINEAR (albeit with a little less image fidelity).

Fewer Colors
Other recommendations might include lower-resolution color formats. A lot of imagery
would look almost as good at only 16 bits vs. 32, especially if there is no alpha mask.
Popular formats include RGBA5551 or RBGA4444, and RGB565. The latter assigns 6
bits for green because our eyes are more sensitive to green as opposed to red or blue.

On Distant Suns, my grayscale constellation artwork is only 8 bits, cutting memory
usage by 75 percent. Should I want it tinted to match a specific theme, I let OpenGL do
the work. With the proper tool and careful tweaking, some 16-bit textures are almost
indistinguishable from the 32-bitters.

Figure 9-5 illustrates four of these formats created by TexturePacker, with the highest to
lowest quality going from left to right. The first image is the true color one we’ve been
using, sometimes called ‘‘RGBA8888.’’ Next is RGB565, which still looks quite good
considering. The third one is RGBA5551, allocating a 1-bit alpha channel (notice how
much a difference the extra bit for green makes when compared to the previous texture),
and the rightmost image is the lowest quality one, RGB4444. TexturePacker also
supports the PVRTC file types referenced in Chapter 5.

Note An alternate (and free) tool is available from Imagination Technologies, the maker of
the PowerVR chips. It does the same texture modes as TexturePacker but doesn’t create sprite
sheets, as TexturePacker does. It uses X11 as the UI that is skinned to look like Windows-NT.
Go to www.imgtec.com and look for PowerVR Insider Utilities under the developer’s section.
Look for PVRTexTool.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 9: Performance ’n’ Stuff 298

The images that work best when compressed are those with color palettes that rely
heavily on one or two parts of the spectrum. The more varied your colors, the harder it
will be minimize the artifacting. The image of Hedly works better than the earth’s texture
map, because the former is largely grays and greens, while the latter is composed of
greens, browns, grays (for the polar regions), and blue.

 Figure 9-5. Texture (from left ot right): 32 bit, RGB565, RGBA5551, and RGBA:4444

Other Tips to Remember
The following are some useful tips to keep in mind:

 Even though multisample antialiasing can be very useful in smoothing
out your images, it means sudden death in the performance
department, cutting frame rates by 30 percent or more. So, you must
really, really need to use it.

 Avoid using GL_ALPHA_TEST. This was never covered, but it can also kill
performance as much as MSAA.

 When going to background, make sure to stop the animation and
delete any easily re-created resources.

 Minimize the use of any calls that return information from the system,
such as the glGet* family of methods, especially glGetError(). Many
of these will force any previous commands to execute before state
information can be retrieved.

 Use as few lights as possible. Going down to only a single light (the
sun), by turning off the fill and the ambient lights, increased frame
rates by as much as 30 percent on my iPad 2.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 9: Performance ’n’ Stuff 299

A lot of the literature will recommend turning off ‘‘compile for thumb’’
in your build settings. The ‘‘thumb’’ that they are talking about is a
special 16-bit instruction set that the ARM processor can use to make
your executable smaller. It applies only to older devices, including
iPhones 1 and 3G and the first two generations of the iPod touch. So,
you will not likely see any improvement on the more recent units.

Do not access the frame buffer from the CPU. Calls such as
glReadPixels() should be avoided because they force the frame
buffer to flush all queued commands.

OpenGL Analyzer
Without a doubt, Xcode’s profiling application, Instruments, is one of the most powerful
debugging tools I have ever seen. And with Xcode 4, it is better than ever, adding a lot
of new tools for OpenGL ES applications. (I’ve already talked about Performance
Detective, but that is a separate application so not part of the actual Instruments
package covered here.)

You may already be familiar with some of the tools in the Instruments bulging toolbox for
tracking memory use, file I/O bottlenecks, and even WiFi activity. But the new OpenGL
ES analyzer should become your BFF------best (software) friend forever------for both the
depth and the breadth of the information it provides.

This will by no means be a comprehensive examination of the OpenGL ES Analyzer
within Instruments but will highlight some of its many features.

The analyzer uses Apple’s in-depth knowledge of the hardware and software both to
study the inner workings of OpenGL and to see how your application makes use of it, as
well as using an expert system to sniff out problems and possible cures. It hooks into
every call within OpenGL, tracking timing, duration, backtrace information, parameter
correctness, and much more. Note that only iPhones from 3GS and beyond and the
third-generation iPod/touch will work with the new tools.

Note As opposed to many of the tools within Instruments, the OpenGL analyzer will not work
on the simulator.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 9: Performance ’n’ Stuff 300

You start Instruments by using the Profile menu item or the build/run selection on the
editor window, as shown in Figure 9-6. If you don’t see the micrometer icon, just click
and hold on whatever the button is showing at that time.

Figure 9-6. The Instruments launch button from Xcode

Instruments will now display the palette of various tools available for iOS. Select the one
for OpenGL ES Analysis, as shown in Figure 9-7; then stand back and be amazed.

Figure 9-7. Launching the OpenGL ES analysis tool

When the tool has launched, you’ll be presented with the screen in Figure 9-8.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 9: Performance ’n’ Stuff 301

Figure 9-8. The main instruments screen at startup

The following describes briefly what you’re looking at:

1. Record/Stop button

2. OpenGL instrument inspector

3. The target selector

4. Track pane

5. Extended detail

6. Additional context-sensitive settings

7. Detail pane

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 9: Performance ’n’ Stuff 302

Record/Stop
The Record/Stop button will start and end a recording session. When depressed, it will
launch your app and start all of the pretty little squiggly tracks looking like a fancy-pants
EKG machine. Click it again, and it will terminate your session. You can now have the
option to save it or wipe it out by starting a new session. If all you want is to pause a
session so that you can examine some specific data, the Pause button will do the trick.
The Repeat UI Input button is used only for flexing desktop apps and not those on iOS
devices. See Figure 9-9.

Figure 9-9. The Pause/Record/Repeat UI buttons and target selector

Note The Repeat UI button is particulary interesting because it is used to automate user
interaction. You can record a session and then have Instruments repeat it over and over for
stress testing or to find that elusive bug that only shows up every once–in-a-while.

Instrument Inspector
Clicking the ‘‘i’’ button on the upper-right corner of the Analyzer’s window will launch its
inspector, as shown in Figure 9-10. It will let you set what specific items you want to
observe such as the number of lines rendered or redundant state changes. (Remember
the recommendation earlier about minimizing state changes? This will help you fix that.)

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 9: Performance ’n’ Stuff 303

Figure 9-10. The inspector for the OpenGL analyzer

The inspector will let you select what kinds of traces you can record. Each item selected
will add a new track to the track window. The colors are the ones used to distinguish
each trace from the others, while the symbols are used only if you choose a track style
of Line Graph in the Track Display section near the bottom.

The Configure button will flip the page to a larger list of statistics. These are all the ones
to list in the detail pane. Since not all would work as graphs, you have more selections
to choose from.

As of this writing, you have the following kinds of traces you can collect and, unless
noted, are not cumulative but per frame only (and in most cases, the fewer the better):

 #Batches: The number of calls to the various batch routines such as
glDrawArrays() or glDrawElements().

 #Disables: The number of calls to glDisable().

 #Enables: The number of calls to glEnable().

 #Flushes: The number of times glFlush() is called.

 #GL & Platform Calls: The total instantaneous number of API calls to
both OpenGL and iOS per frame.

 #GL calls: Same as previous but OpenGL calls only.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 9: Performance ’n’ Stuff 304

 #Lines Rendered: The number of line primitives rendered.

 #Platform Calls: The total instantaneous number of iOS calls per
frame.

 #Points Rendered: The number of point primitives rendered. For my
test case, it shows 880,000 on my iPad 1, affectionately called
Newton. (Think about it.) You can also equate those to vertices
processed.

 #Redundant State Changes: As mentioned previously, the total count
per frame of unnecessary state changes. I am currently showing only
19. Your goal would be to get this value down to 0.

 #Render Passes: The handle to track multipass rendering.

 #Texture Uploads: The number of textures uploaded to the hardware.

 #Triangles Rendered: The total number of triangle primitives rendered.
My test app is currently showing a total of 879,978 triangles per frame
racing along 3 FPS on my iPad 1. Of course, things like triangle counts
are only relative because they can vary wildly depending on size and
direction.

Target Selector
When launched from Xcode, your running app will appear here. It will also let you select
any device or any other apps under development.

Track Display
The displayed traces are the ones selected from the inspector’s panel in the section
‘‘Frame Statistics to Observe.’’ You can stack the displays or overlay them one on top of
the other. And clicking and dragging the little transparent wedge thing along the time
scale will display the actual values of any of the traces at a specific time, as shown in
Figure 9-11.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 9: Performance ’n’ Stuff 305

Figure 9-11. Picking data from the track pane

Extended Detail
This pane will display any extra details that might be available, such as stack traces,
sample statistics, recommendations, and so on. Currently, in Figure 9-8 (item 5), for
example, it is showing that a call to glMaterialfv() is passing the wrong parameter-----a
value that is valid on OpenGL but is unused on ES. That’s scary cool.

It can also point out many of the hints or nudges that Performance Detective can show,
sounding like a disappointed aunt tsk-tsking if you’re missing a chance to use a VBO or
if textures are not optimized.

Additional Context-Sensitive Settings
Depending on what tool you’ve selected, you’ll see a collection of additional controls to
help fine-tune the display and how OpenGL operates. The Overrides section will let you
turn on or off various parts of the pipeline. And you will usually receive many warnings in
the process, of the ‘‘Are you really sure you want to do this?’’ variety.

Detailed Pane
This is a frighteningly detailed look at various statistics and traces. The selector in the
toolbar contains several options:

 API Expert: Displays things that Instruments thinks could be slowing
up execution. When running with the OpenGL ES tool, this will point
out many of the issues covered previously such as mipmap usage,
textures that could be compacted, and so on, with very wordy but
helpful tips on what to fix.

 Frame Statistics: Lists version of the data displayed in the track pane,
along with other data that cannot be easily shown in a graph format.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 9: Performance ’n’ Stuff 306

 Trace: Shows every OpenGL call made and supplies a call stack in the
detail pane on the right.

 Call Tree: Aggregates the stack traces so it can display them as call
trees by queue.

 Api Statistics: Shows cumulative usage metrics not covered
elsewhere. Fields covered for each OpenGL API call include number of
times it’s been called, total time in each call in microseconds, and
average time (also in microseconds). My app is showing that over a
period of five minutes, glDrawArrays() have been called 3,369 times,
with an average time of 67,174 µsecs. PresentFrameBuffer() in the
EAGLContext has only 306 calls, but a whopping amount of time, with
the average time of 83,561,776 µsecs.

Summary
In this chapter, you learned about the basic tricks and best practices to make your
OpenGL app really perform. Vertex buffer objects will cut down saturation of the bus by
keeping commonly used geometry on the GPU. Reducing the state changing and glGet*
calls to a minimum can also yield a substantial improvement in rendering speed.

After that, you learned a little about the OpenGL ES analyzer that is new in the Xcode 4
release of Instruments; it acts a little like an MRI machine for your code, making visible
that which was once hidden.

In the final chapter, you’ll learn a little about OpenGL ES 2.0 and those mysterious
shader things that are all the rage these days.

www.it-ebooks.info

http://www.it-ebooks.info

10Chapter

OpenGL ES 2, Shaders,
and…

Her angel’s face, As the great eye of heaven shined bright, And made a
sunshine in the shady place.

-----Edmund Spenser

There are two different versions of the OpenGL ES graphics library on your iOS devices.
This book has largely dealt with the higher-level one, known as OpenGL ES 1,
sometimes referred to as 1.1 or 1.x. The second version is a rather confusingly named
OpenGL ES 2. The first one is by far the easier of the two; it comes with all sorts of
helper libraries doing much of the 3D mathematics and all of the lighting, coloring, and
shading on your behalf. ES 2 eschews all of those niceties and is sometimes referred to
as the ‘‘programmable function’’ version (vs. ES 1’s ‘‘fixed function’’ design, which is
generally sneered at by the true pixel-jockeys who prefer more control over their
imagery, usually for immersive 3D game environments where every little visual footnote
is emphasized). For that, OpenGL ES 2 was released.

In this chapter, we’ll just touch ever so briefly on shaders, just enough to give you a
general feel for them. Afterward, I’ll go into some more of the GLKit goodness not
covered in previous chapters.

Version 1 is relatively close to the desktop variety of OpenGL, making porting
applications, particularly vintage ones, a little less painful than having a badger gnaw
your face off. The things that were left out were done so to keep the footprint small on
limited-resource devices and to ensure performance was as good as could be.

Version 2 defenestrated compatibility altogether and concentrated on performance and
flexibility-oriented features aimed primarily at entertainment-oriented software. Among
the things left out were glRotatef(), glTranslatef(), matrix stack operations, and so
on. But what we got in return are some delightful little morsels such as a programmable
pipeline via the use of shaders. And the loss of the transformation methods have been

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: OpenGL ES 2, Shaders, and... 308

replaced with the new iOS5 GLKit math libraries, so the learning curve is just a little less
steep now.

As to be expected, version 2 is way too large to cover in a single chapter, so what
follows is a general overview that should give you a good feel for the topic and whether
it is something you’d want to tackle at some point.

Shaded Pipelines
If you have had a passing familiarity with OpenGL or Direct3D, the mere mention of the
term shaders might give you the shivers. They seem like a mysterious talisman
belonging to the innermost circles of graphics priesthood.

Not so.

The ‘‘fixed function’’ pipeline of version 1 refers to the lighting and coloring of the
vertices and fragments. For example, you are permitted to have up to eight lights, and
each light has various properties. The lights illuminate surfaces, each with their own
properties called materials. Combining the two, we get a fairly nice, but constrained,
general-purpose lighting model. But what if you wanted to do something different? What
if you wanted to have a surface fade to transparency depending on its relative
illumination? The darker, the more transparent? What if you wanted to accurately model
shadows of, say, the rings of Saturn, thrown upon its cloud decks, or the pale
luminescent light you get right before sunrise? All of those would be next to impossible
given the limitations of the fixed-function model, especially the final one, because the
lighting equations are quite complicated once you start taking into consideration the
effect of moisture in the atmosphere, backscattering, and so on. Well, a programmable
pipeline that lets you model those precise equations without using any tricks such as
texture combiners is exactly what version 2 gives us.

Back to Where We Started
Let’s go back to the very first example given in Chapter 1, the two cubes. You have
already tweaked one of the shaders and lived to tell about it, but now we can go a little
deeper.

The pipeline architecture of ES 2 permits you to have different access points in the
geometric processing, as shown in Figure 10-1. The first hands you each vertex along
with the various attributes (for example, xyz coordinates, colors, and opacity). This is
called the vertex shader, and you have already played with one in the first chapter. At
this point, it is up to you to determine what this vertex should look like and how it should
be rendered with the supplied attributes and the state of your 3D world. When done, the
vertex is handed back to the hardware, rasterized with the data you calculated, and
passed on as 2D fragments to your fragment shader. It is here where you can combine
the textures as needed, do any final processing, and hand it back to eventually be
rendered in the frame buffer.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: OpenGL ES 2, Shaders, and... 309

If this sounds like a lot of work for each fragment of each object in your scene roaring
along at 60 fps, you are right. But fundamentally, shaders are small programs that are
actually loaded and run on the graphics hardware itself and, as a result, are very,
very fast.

Geometry and textureOpenGL application

Lighting, transform, scale, etcVertex shader

Texture, shading

Generate Fragments

Stencil, alpha, z-tests, blendingFramebuffer

"Hey, that's really cool!"Eyeballs

Rasterization

Fragment Shader

Figure 10-1. Overview of OpenGL ES 2 architecture

Shader Structure
Both vertex and fragment shaders are similar in structure and look a little like a small C
program. The entry point is always called main() as in C (and Objective-C), while the
syntax is likewise very C-ish.

The shader language, called GLSL (not to be confused with its Direct3d counterpart,
HLSL), contains a rich set of built-in functions that belong to one of three main
categories:

Math operations oriented toward graphics processing such as matrix,
vector, trig, derivative, and logic functions

Texture sampling

Small helper utilities such as modulo, comparisons, and valuators

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: OpenGL ES 2, Shaders, and... 310

Values are passed to and from shaders in the following types:

 Uniforms, which are values passed from the calling program. These
might include the matrices for transformations or projection. They are
available in both the vertex and fragment shaders, and they must be
declared as the same type in each place.

 Varying variables (yes, it is a dumb-sounding name), which are
variables defined in the vertex shader that are passed on to the
fragment shader.

Variables may be defined as the usual numeric primitives or as graphics-oriented types
based on vectors and matrices, as shown in Table 10-1.

Table 10-1. Variable Types Allowed by GLSL

Class Type Description

Primitives float, int, bool You really don’t need me to define these now,
do you?

Vectors int, ivec2, ivec3, ivec4,

float, vec2, vec3, vec4

bool, bvec2, bvec3, bvec4

Float, int, and bools are “one-dimensional
vectors.” Boolean vectors hold only bool values
in their components.

Matrices mat2, mat3, mat4 Nope, no Boolean matrices here.

In addition to these types, you can supply modifiers to define the precision of int- and
float-based types. These can be highp (24 bit), mediump (16 bit), or lowp (10 bit), with
highp being the default. All transformations must be done in highp, while colors need
only mediump. (It beats me why there is no precision qualifier for bools, though.)

Any basic types can be declared as constant variables, such as const float x=1.0.

Structures are also allowed and look just like their C counterparts.

Restrictions
Since shaders reside on the GPU, they naturally have a number of restrictions to them,
limiting their complexity. They may be limited by ‘‘instruction count,’’ number of uniforms
permitted (typically 128), number of temporary variables, and depth of loop nesting.
Unfortunately, on OpenGL ES, there is no real way to fetch these limits from the
hardware, so you can only be aware that they exist and keep your shaders as small as
possible.

There are also differences between the vertex and fragment shaders. For example,
highp support is optional, whereas it is mandatory on the vertex shader. Bah.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: OpenGL ES 2, Shaders, and... 311

Back to the Spinning Cubes
So, now let’s jump back to the original example of the dueling cubes and break down
how a basic OpenGL ES 2 program is structured. As you’ll see, the process of
generating a shader is not unlike generating most any other application. You have your
basic compile, link, and load sequence. Listing 10-1 demonstrates the first part of that
process, compiling the thing. In Apple’s example, all of these steps are placed in a view
controller, but they can go anywhere.

Listing 10-1. Compiling a Shader

- (BOOL)compileShader:(GLuint *)shader //1
type:(GLenum)type file:(NSString *)file

{
 GLint status;
 const GLchar *source;

 source = (GLchar *)[[NSString stringWithContentsOfFile:file
 encoding:NSUTF8StringEncoding error:nil] UTF8String];

 if (!source)
 {
 NSLog(@"Failed to load vertex shader");
 return NO;
 }

 *shader = glCreateShader(type); //2

 glShaderSource(*shader, 1, &source, NULL); //3
 glCompileShader(*shader); //4

#if defined(DEBUG)

 GLint logLength;
 glGetShaderiv(*shader, GL_INFO_LOG_LENGTH, &logLength); //5

 if (logLength > 0)
 {
 GLchar *log = (GLchar *)malloc(logLength);
 glGetShaderInfoLog(*shader, logLength, &logLength, log); //6
 NSLog(@"Shader compile log:\n%s", log);
 free(log);
 }

#endif

 glGetShaderiv(*shader, GL_COMPILE_STATUS, &status); //7

 if (status == 0)
 {
 glDeleteShader(*shader); //8
 return NO;
 }

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: OpenGL ES 2, Shaders, and... 312

 return YES;
}

When you get away from all of the error handling code, the process boils down to
creating a shader, passing in the source, and compiling.

 In the argument list of line 1, an address is passed to receive the newly
generated shader’s. handle. A type value is also supplied, which can
be either GL_VERTEX_SHADER or GL_FRAGMENT_SHADER. And finally a file
name is specified. You don’t need to supply a shader from a file,
because others may actually specify the shader as static strings
defined inside the body of the code.

 In line 2, glCreateShader() generates an empty shader object and
returns its handle.

 Line 3 passes the source of the shader to the newly created object,
because its real job is to contain the text strings used to define the
shader.

 Next we compile the thing in line 4.

 Now we should check the compilation status. Since there is no means
to debug shaders when on the GPU, a nice error management system
has been provided that can send back fairly detailed strings to the
calling program. Line 5 gets the length of the string, while 6 gets the
actual contents. For example, in Shader.vsh, I supplied a variable that
was never defined and received the following:

ERROR: 0:19: Use of undeclared identifier 'normalX'

 But instead of using a string to determine what to do, you can also get
a numerical error of either GL_TRUE if the compile was actually
successful or GL_FALSE if otherwise, as shown in line 7. And if not,
delete the shader, as in line 8.

The next step in the process is to link the program, as shown in Listing 10-2.
glLinkProgram() is the only call of any significance, with the rest being error handling.

Listing 10-2. Linking the Newly Created Shader Program

- (BOOL)linkProgram:(GLuint)prog
{
 GLint status;
 glLinkProgram(prog);

#if defined(DEBUG)
 GLint logLength;

 glGetProgramiv(prog, GL_INFO_LOG_LENGTH, &logLength);

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: OpenGL ES 2, Shaders, and... 313

 if (logLength > 0)
 {
 GLchar *log = (GLchar *)malloc(logLength);
 glGetProgramInfoLog(prog, logLength, &logLength, log);
 NSLog(@"Program link log:\n%s", log);
 free(log);
 }
#endif

 glGetProgramiv(prog, GL_LINK_STATUS, &status);

 if (status == 0)
 {
 return NO;
 }

 return YES;
}

After linking, it is customary to ‘‘validate’’ the program. Validation is a way for the
OpenGL implementors to return information about any aspects of your code, such as
recommended improvements. You would use this primarily during the development
process, as shown in Listing 10-3. And as before, it is largely error handling.

Listing 10-3. Program Validation

- (BOOL)validateProgram:(GLuint)prog
{
 GLint logLength, status;

 glValidateProgram(prog);
 glGetProgramiv(prog, GL_INFO_LOG_LENGTH, &logLength);

 if (logLength > 0)
 {
 GLchar *log = (GLchar *)malloc(logLength);
 glGetProgramInfoLog(prog, logLength, &logLength, log);
 NSLog(@"Program validate log:\n%s", log);
 free(log);
 }

 glGetProgramiv(prog, GL_VALIDATE_STATUS, &status);

 if (status == 0)
 {
 return NO;
 }

 return YES;
}

The final routine, loadShaders(), as shown in Listing 10-4, ties together the three
routines from earlier and binds our attributes and parameters to the program. That way,
we can pass an array of vertex information or parameters and specify their names on
both sides of the fence.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: OpenGL ES 2, Shaders, and... 314

Listing 10-4. Loading the Shaders and Resolving Parameters

- (BOOL)loadShaders
{
 GLuint vertShader, fragShader;
 NSString *vertShaderPathname, *fragShaderPathname;

 _program = glCreateProgram(); //1

 vertShaderPathname = [[NSBundle mainBundle]
 pathForResource:@"Shader" ofType:@"vsh"];

 if (![self compileShader:&vertShader //2
 type:GL_VERTEX_SHADER file:vertShaderPathname])
 {
 NSLog(@"Failed to compile vertex shader");
 return NO;
 }

 fragShaderPathname = [[NSBundle mainBundle] pathForResource:@"Shader"
 ofType:@"fsh"];

 if (![self compileShader:&fragShader
 type:GL_FRAGMENT_SHADER file:fragShaderPathname])
 {
 NSLog(@"Failed to compile fragment shader");
 return NO;
 }

 glAttachShader(_program, vertShader); //3
 glAttachShader(_program, fragShader);

 glBindAttribLocation(_program, ATTRIB_VERTEX, "position"); //4
 glBindAttribLocation(_program, ATTRIB_NORMAL, "normal");

 if (![self linkProgram:_program]) //5
 {
 NSLog(@"Failed to link program: %d", _program);

 if (vertShader)
 {
 glDeleteShader(vertShader);
 vertShader = 0;
 }

 if (fragShader)
 {
 glDeleteShader(fragShader);
 fragShader = 0;
 }

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: OpenGL ES 2, Shaders, and... 315

 if (_program)
 {
 glDeleteProgram(_program);
 _program = 0;
 }

 return NO;
 }

 uniforms[UNIFORM_MODELVIEWPROJECTION_MATRIX] = //6
 glGetUniformLocation(_program, "modelViewProjectionMatrix");

 uniforms[UNIFORM_NORMAL_MATRIX] =
 glGetUniformLocation(_program, "normalMatrix");

 if (vertShader) //7
 {
 glDetachShader(_program, vertShader);
 glDeleteShader(vertShader);
 }

 if (fragShader)
 {
 glDetachShader(_program, fragShader);
 glDeleteShader(fragShader);
 }

 return YES;
}

Here’s what’s happening:

 Line 1 generates a program handle and creates an empty program
object. You keep this handle around and use it to specify which
program you want to use for a specific piece of geometry, because
you can have multiple programs and swap them back and forth as
needed.

 Now the shaders are compiled in lines 2ff.

 Lines 3f bind the specific shader to the new program object. Each
program object must have one vertex and one fragment shader.

 In lines 4ff, we bind whatever attributes we want to the program. In the
actual vertex shader code, you can see attributes by those names
defined for use:

attribute vec4 position;
attribute vec3 normal;

The names can be nearly anything you want; there is nothing special
about the use of position or normal.

 Line 5 links both shaders.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: OpenGL ES 2, Shaders, and... 316

 Besides binding the attributes to named entities in the shaders, you
can also do the same with uniforms, as demonstrated in lines 6 and 7.
Remember that uniforms are merely values passed from the calling
program. (They differ from attributes in that attributes are mapped
one-to-one with each vertex.) In this case, we are supplying two
matrices and naming them modelViewProjectionMatrix and
normalMatrix. Looking again in the vertex shader, you can see the
following:

uniform mat4 modelViewProjectionMatrix;
uniform mat3 normalMatrix;

 Lines 7ff support a memory optimization quark. Once linked, the
shader code is copied into the program, so the shader objects as we
have them are no longer needed. Since they use reference counts,
glDetachShader() serves to decrease the count by one, and, of
course, when 0, they can be safely deleted.

 As a side effect, if you change the shader in anyway, it will have to be
relinked before the changes take effect. And in case you may have to
relink things, the driver may hold onto some cached information to use
later. Otherwise, the detach/delete process can aid the driver in
reusing the cached memory.

As you can see, the actual calls required are pretty minimal, but Apple’s demo includes
all of the error handling as well, which is why it was retained.

Now with that out of the way, we can look at the two shaders. Listing 10-5 is the vertex
shader, Shader.vsh. Note that the shaders pairs share the same prefix, with the vertex
shader having a suffix of vsh while the fragment shader uses fsh.

Listing 10-5. The Demo’s Vertex Shader

attribute vec4 position; //1
attribute vec3 normal;

varying lowp vec4 colorVarying; //2

uniform mat4 modelViewProjectionMatrix; //3
uniform mat3 normalMatrix;

void main()
{
 vec3 normalDirection = normalize(normalMatrix * normal); //4
 vec3 lightPosition = vec3(0.0, 0.0, 1.0); //5
 vec4 diffuseColor = vec4(0.4, 0.4, 1.0, 1.0); //6

 float nDotVP = max(0.0, dot(eyeNormal, normalize(lightPosition))); //7

 colorVarying = diffuseColor * nDotVP; //8

 gl_Position = modelViewProjectionMatrix * position; //9
}

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: OpenGL ES 2, Shaders, and... 317

Here’s a closer look:

 Lines 1f declare the attributes that we specified in the calling code.
Remember that attributes are arrays of data mapping directly to each
vertex and are available only in the vertex shader.

 In line 2, a varying vector variable is declared. This will be used to pass
color information down to the fragment shader.

 Lines 3f declare two uniforms that were originally specified in
loadShaders() earlier.

 In Line 4, the normal is multiplied by the normalMatrix. You can’t use
the Modelview matrix in this case, because normals do not need to be
translated, and any scaling done in the Modelview would distort the
normal. As it turns out, you can use the inverse and transposed
Modelview matrix for the normals. With that in hand, the result is
normalized.

 Lines 5 supplies the position of the light, while line 6 supplies the
default color. Normally you wouldn’t embed that data inside a shader,
but it is likely done this way just as a convenience.

 Now, in line 7, the dot product of the normal (now called eyeNormal)
and the position of the light is taken to produce the angle between the
two. The max() function ensures that the return value is clamped to be
>=0 to handle any negative values.

 Now by simply multiplying the dot product by the diffuse color, as
shown in line 7, we get the luminosity of a face relative to the local
position of the light. The closer the normal aims toward the light, the
brighter it should be. As it aims away from the light, it will get darker,
finally going to 0.

 gl_Position is a predefined varying in GLSL and is used to pass the
transformed vertex’s position back to the driver.

The fragment shader in this example is the most basic there is. It simply passes the
color info from the vertex shader through and untouched. gl_FragColor is another
predefined varying, and it is here where any final calculations would be made, as shown
in Listing 10-6.

Listing 10-6. The Simplest Fragment Shader

varying lowp vec4 colorVarying;

void main()
{
 gl_FragColor = colorVarying;
}

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: OpenGL ES 2, Shaders, and... 318

Now we’re ready to use our shaders, which turn out to be surprisingly straightforward.
First, glUseProgram() sets the current program, followed by the glUniform* functions
that pass the values from your app to the shaders on the card. The attributes are usually
supplied at the same time as the geometry, via the use of calls such as
glVertexAtttribPointer().

One additional note regarding this example is to be found in its setupGL() method. This
was briefly touched upon in Chapter 1 but now is a good time to take a little closer look
at how the data is actually passed to the GPU in an OpenGL ES 2 program. Vertex array
objects (VAOs), not to be confused with vertex buffer objects, represent a collection of
information that describes a specific state of your scene. As with other objects,
creating/using VAOs follows the same path: generate a unique ID, bind it, fill it up, and
then unbind it until needed. Many VAOs can be generated that haul about the pointers of
the geometry and attributes different aspects of your world. In the cube example,
consider Listing 10-7. After the VAO ID is generated and bound as the current VAO, a
vertex buffer object is created for the interleaved geometric data. Afterward, the VAO is
notified about how the VBO data is organized, and in this case, just the position and
normals are addressed.

Listing 10-7. Creating the Vertex Array Object

 glGenVertexArraysOES (1, &_vertexArray);
 glBindVertexArrayOES(_vertexArray);

 glGenBuffers(1, &_vertexBuffer);
 glBindBuffer(GL_ARRAY_BUFFER, _vertexBuffer);
 glBufferData(GL_ARRAY_BUFFER, sizeof(gCubeVertexData), gCubeVertexData,
 GL_STATIC_DRAW);

 glEnableVertexAttribArray(GLKVertexAttribPosition);
 glVertexAttribPointer(GLKVertexAttribPosition, 3, GL_FLOAT, GL_FALSE, 24,
 BUFFER_OFFSET(0));
 glEnableVertexAttribArray(GLKVertexAttribNormal);
 glVertexAttribPointer(GLKVertexAttribNormal, 3, GL_FLOAT, GL_FALSE, 24,
 BUFFER_OFFSET(12));

 glBindVertexArrayOES(0);

When it comes time to draw, the VAO handle is set to be the current one, and the
normal glDrawArray() routine is called.

Earth at Night
Let’s start with our earth model and see how shaders can be used to make it more
interesting. You’re familiar with the image used for the earth’s surface, as shown in
Figure 10-2 (left), but you may have also seen a similar image of the earth at night, as
shown in Figure 10-2 (right). What would be neat is if we could show the night texture on
the dark side of the earth, instead of just a dark version of the regular texture map.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: OpenGL ES 2, Shaders, and... 319

Figure 10-2. The daytime earth (left) vs. the nighttime earth (right)

Under OpenGL 1.1, this would be very tricky to accomplish if at all. The algorithm should
be relatively simple: render two spheres of exactly the same dimensions. One has the
night image, and the other has the day image. Vary the daylight-side alpha channel of
the texture of the day-side earth based on the illumination. When illumination reaches 0,
it is completely transparent, and the night portion shows through. However, under
OpenGL ES 2, you can code the shaders very easily to match the algorithm almost
exactly.

So, I started with the cube template from Apple and dumped the cube stuff and added
Planet.mm and Planet.h files. setupGL() was changed to Listing 10-8. Notice the loading
of the two textures and two shader programs.

Listing 10-8. Setting Up to Show Earth at Night

- (void)setupGL
{
 int planetSize=20;

 [EAGLContext setCurrentContext:self.context];

 [self loadShaders:&m_NightsideProgram shaderName:@"nightside"];
 [self loadShaders:&m_DaysideProgram shaderName:@"dayside"];

 float aspect = fabsf(self.view.bounds.size.width / self.view.bounds.size.height);
 m_ProjectionMatrix = GLKMatrix4MakePerspective(GLKMathDegreesToRadians(65.0f),
 aspect, 0.1f, 100.0f);

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: OpenGL ES 2, Shaders, and... 320

 glEnable(GL_DEPTH_TEST);

 m_EyePosition=GLKVector3Make(0.0,0.0,65.0);

 m_WorldModelViewMatrix=GLKMatrix4MakeTranslation(-m_EyePosition.x,-m_EyePosition.y,-
 m_EyePosition.z);

 m_Sphere=[[Planet alloc] init:planetSize slices:planetSize radius:10.0f squash:1.0f
 textureFile:NULL];
 [m_Sphere setPositionX:0.0 Y:0.0 Z:0.0];

 m_EarthDayTexture=[self loadTexture:@"earth_light.png"];
 m_EarthNightTexture=[self loadTexture:@"earth_night.png"];

 m_LightPosition=GLKVector3Make(100.0, 10,100.0); //behind the earth

}

In loadShaders() I merely added one more attribute, namely, texCoord, or the texture
coordinates. These are recovered in the fragment shader:

 glBindAttribLocation(*program, ATTRIB_VERTEX, "position");
 glBindAttribLocation(*program, ATTRIB_NORMAL, "normal");
 glBindAttribLocation(*program, GLKVertexAttribTexCoord0, "texCoord");

I also pass the light’s position as a uniform, instead of hard-coding it in the vertex
shader. This is set up in a couple of steps:

 First, add it to the shader: uniform vec3 lightPosition;.

 Then in loadShaders(), you fetch its ‘‘location’’ using
glGetUniformLocation(). That merely returns a unique ID for this
session that is then used when setting or getting data from the shader.

 The light’s position can then be set by using this:

 glUniform3fv(uniforms[UNIFORM_LIGHT_POSITION],1,m_LightPosition.v);

Then change the call to add two parameters so that it can be called with different shader
names, and add a pointer to a progam handle. And remember to change the code to
support the parameters instead of the temp variables:

- (BOOL)loadShaders:(GLuint *)program shaderName:(NSString *)shaderName

Now in Listing 10-9, both sides of the earth are drawn, with the night side going first,
while the daylight side goes second. The programs are swapped as needed.

Listing 10-9. The drawInRect() Method to Handle This Situation

- (void)glkView:(GLKView *)view drawInRect:(CGRect)rect
{
 GLfloat gray=0.0;
 static int frame=0;

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: OpenGL ES 2, Shaders, and... 321

 glClearColor(gray,gray,gray, 1.0f);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 //nightside

 [self useProgram:m_NightsideProgram];

 [m_Sphere setBlendMode:PLANET_BLEND_MODE_SOLID];
 [m_Sphere execute:m_EarthNightTexture.name];

 //dayside

 [self useProgram:m_DaylightProgram];

 [m_Sphere setBlendMode:PLANET_BLEND_MODE_FADE];
 [m_Sphere execute:m_EarthDayTexture.name];

 //atmosphere

 glCullFace(GL_FRONT);
 glEnable(GL_CULL_FACE);
 glFrontFace(GL_CW);

 frame++;
}

On the day side of the earth, I use the program m_DaysideProgram, while on the night
side, I use another one, called m_NightsideProgram. Both use the identical vertex shader,
as shown in Listing 10-10.

Listing 10-10. The Vertex Shader for Both the Day and Night Sides of the Earth

attribute vec4 position;
attribute vec3 normal;
attribute vec2 texCoord; //1

varying vec2 v_texCoord;

varying lowp vec4 colorVarying;

uniform mat4 modelViewProjectionMatrix;
uniform mat3 normalMatrix;
uniform vec3 lightPosition; //2

void main()
{
 v_texCoord=texCoord; //3

 vec3 eyeNormal = normalize(normalMatrix * normal);
 vec4 diffuseColor = vec4(1.0, 1.0, 1.0, 1.0);

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: OpenGL ES 2, Shaders, and... 322

 float nDotVP = max(0.0, dot(normalDirection, normalize(lightPosition)));

 colorVarying = diffuseColor * nDotVP;

 gl_Position = modelViewProjectionMatrix * position;
}

This is almost identical to Apple’s template, but we’ve added a couple of things:

 Line 1 serves to pass an additional attribute, namely, the texture
coordinates for each vertex. This is then passed straight through to the
fragment shader via line 3 using the v_texCoord varying.

 In line 2 is the new uniform you may recall in the view controller’s code
that holds the position of the light.

Listing 10-11 shows the fragment shader for the daylight side of the earth, while Listing
10-12 does the same but for the night side.

Listing 10-11. The Fragment Shader for the Daylight Side of the Earth

varying lowp vec4 colorVarying; //1

precision mediump float;
varying vec2 v_texCoord; //2
uniform sampler2D s_texture; //3

void main()
{
 gl_FragColor = texture2D(s_texture, v_texCoord)*colorVarying; //4
}

You can see how simple these are for such beautiful results:

 Line 1 picks up the varying variable, colorVarying, from the vertex
shader.

 Line 2 does the same for the texture coordinates, followed by line 3
that has the texture. The sampler2D, as shown in line 3, is a built-in
uniform variable that points out which texture unit is being used.

 Finally, in line 4, the built-in function texture2D extracts the value from
the texture referenced by s_texture at the coordinates of v_texCoord.
That value is then multiplied by colorVarying, the ‘‘real’’ color of the
fragment. The less the colorVarying is, the darker the color becomes.

Listing 10-12 shows how to do the night side of the earth.

Listing 10-12. Rendering the Night Side

varying lowp vec4 colorVarying;

precision mediump float;
varying vec2 v_texCoord;
uniform sampler2D s_texture;

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: OpenGL ES 2, Shaders, and... 323

void main()
{
 vec4 newColor;

 newColor=1.0-colorVarying; //1

 gl_FragColor = texture2D(s_texture, v_texCoord)*newColor; //2
}

Here in line 1, we’re merely taking the opposite of what was in the day-side shader. As
the color increases because of the sun, the dark-side texture fades to nothing. This
might be overkill, because the night-side texture would be washed out by the other, but
the lights are just a little too visible after the terminator for my taste.

There’s one final thing to do, and that is to modify your planet object so as to be
drawable with a vertex array object. Yes, it’s yet another interminable listing, as shown in
Listing 10-13. The data must first be packed into more efficient interleaved form,
referenced in Chapter 9. Afterward, a VAO is generated as a wrapper of sorts.

Listing 10-13. Creating a VAO for the Planet

-(void)createInterleavedData
{
 int i;
 GLfloat *vtxPtr;
 GLfloat *norPtr;
 GLfloat *colPtr;
 GLfloat *textPtr;
 int xyzSize;
 int nxyzSize;
 int rgbaSize;
 int textSize;

 struct VAOInterleaved *startData;

 int structSize=sizeof(struct VAOInterleaved);
 long allocSize=structSize*m_NumVertices;

 m_InterleavedData=(struct VAOInterleaved *)malloc(allocSize); //1

 startData=m_InterleavedData;

 vtxPtr=m_VertexData;
 norPtr=m_NormalData;
 colPtr=m_ColorData;
 textPtr=m_TexCoordsData;

 xyzSize=sizeof(GLfloat)*NUM_XYZ_ELS;
 nxyzSize=sizeof(GLfloat)*NUM_NXYZ_ELS;
 rgbaSize=sizeof(GLfloat)*NUM_RGBA_ELS;
 textSize=sizeof(GLfloat)*NUM_ST_ELS;

 for(i=0;i<m_NumVertices;i++) //2
 {

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: OpenGL ES 2, Shaders, and... 324

 memcpy(&startData->xyz,vtxPtr,xyzSize); //geometry
 memcpy(&startData->nxyz,norPtr,nxyzSize); //normals
 memcpy(&startData->rgba,colPtr,rgbaSize); //colors
 memcpy(&startData->st,textPtr,textSize); //texture coords

 startData++;

 vtxPtr+=NUM_XYZ_ELS;
 norPtr+=NUM_NXYZ_ELS;
 colPtr+=NUM_RGBA_ELS;
 textPtr+=NUM_ST_ELS;
 }
}

-(void)createVAO
{
 GLuint numBytesPerXYZ,numBytesPerNXYZ,numBytesPerRGBA;
 GLuint structSize=sizeof(struct VAOInterleaved);

 [self createInterleavedData];

 //note that the context is set in the in the parent object

 glGenVertexArraysOES(1, &m_VertexArrayName);
 glBindVertexArrayOES(m_VertexArrayName);

 numBytesPerXYZ=sizeof(GL_FLOAT)*NUM_XYZ_ELS;
 numBytesPerNXYZ=sizeof(GL_FLOAT)*NUM_NXYZ_ELS;
 numBytesPerRGBA=sizeof(GL_FLOAT)*NUM_RGBA_ELS;

 glGenBuffers(1, &m_VertexBufferName);
 glBindBuffer(GL_ARRAY_BUFFER, m_VertexBufferName);

 glBufferData(GL_ARRAY_BUFFER, sizeof(struct VAOInterleaved)*m_NumVertices,
m_InterleavedData, GL_STATIC_DRAW);

 glEnableVertexAttribArray(GLKVertexAttribNormal);
 glVertexAttribPointer(GLKVertexAttribNormal, NUM_NXYZ_ELS, GL_FLOAT, GL_FALSE,

structSize, BUFFER_OFFSET(numBytesPerXYZ));

 glEnableVertexAttribArray(GLKVertexAttribColor);
 glVertexAttribPointer(GLKVertexAttribColor, NUM_RGBA_ELS, GL_FLOAT,

GL_FALSE, structSize, BUFFER_OFFSET(numBytesPerNXYZ+numBytesPerXYZ));

 glEnableVertexAttribArray(GLKVertexAttribTexCoord0);

 glVertexAttribPointer(GLKVertexAttribTexCoord0,NUM_ST_ELS, GL_FLOAT, GL_FALSE,
 structSize,

BUFFER_OFFSET(numBytesPerNXYZ+numBytesPerXYZ+numBytesPerRGBA));
}

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: OpenGL ES 2, Shaders, and... 325

 In line 1 allocate an array of structures to carry each of the
components. Here the structure is defined in Planet.h :

struct VAOInterleaved
{
 GLfloat xyz[NUM_XYZ_ELS];
 GLfloat nxyz[NUM_NXYZ_ELS];
 GLfloat rgba[NUM_RGBA_ELS];
 GLfloat st[NUM_ST_ELS];
};

 Lines 2ff scan through all the data and copy it to the interleaved array.

 Down in the next method, the VAO is created. Much like the earlier
example for the cubes, the only new elements are the addition of the
texture coordinates and the RGBA color data to the mix.

Now with that out of the way, check the results in Figure 10-3.

Figure 10-3. Illuminating the darkness one texel at a time

But What About Specular Reflections?
Just as any other shiny thing (and the earth is shiny in the blue parts), you might expect
to see some sort of reflections of the sun in the water. Well, you’d be right. Figure 10-4
shows a real image of the earth, and right in the middle is the reflection of the sun. Let’s
try it on our own earth.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: OpenGL ES 2, Shaders, and... 326

Figure 10-4. Earth seen from space as it reflects the sun

Naturally we are going to have to write our own specular reflection shader (or in this
case, add it to the existing daylight shader).

Swap the old vertex shader for Listing 10-14, and swap the fragment shader for the one
in Listing 10-15. Here I precalculate the specular information along with normal diffuse
coloring, but the two are kept separate until the fragment shader. The reason is that not
all parts of the earth are reflective, so the land masses shouldn’t get the specular
treatment.

Listing 10-14. Vertex Shader for the Secular Reflection

attribute vec4 position;
attribute vec3 normal;
attribute vec2 texCoord;

varying vec2 v_texCoord;

varying lowp vec4 colorVarying;
varying lowp vec4 specularColorVarying; //1

uniform mat4 modelViewProjectionMatrix;
uniform mat3 normalMatrix;
uniform vec3 lightPosition;
uniform vec3 eyePosition;

void main()
{
 float shininess=100.0;
 float balance=.75;

 vec3 normalDirection = normalize(normalMatrix * normal); //2
 vec3 eyeNormal = normalize(eyePosition);

 vec3 lightDirection;

 float specular=0.0;

 v_texCoord=texCoord;

 eyeNormal = normalize(normalMatrix * normal);

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: OpenGL ES 2, Shaders, and... 327

 vec4 diffuseColor = vec4(1.0, 1.0, 1.0, 1.0);

 lightDirection=normalize(lightPosition);

 float nDotVP = max(0.0, dot(normalDirection,lightDirection));

 float nDotVPReflection = dot(reflect(-lightDirection,normalDirection),eyeNormal); //3

 specular = pow(max(0.0,nDotVPReflection),shininess)*.75; //4
 specularColorVarying=vec4(specular,specular,specular,0.0); //5

 colorVarying = diffuseColor * nDotVP;

 gl_Position = modelViewProjectionMatrix * position;
}

Here’s what is going on:

 Line 1 declares a varying variable to hand the specular illumination off
to the fragment shader.

 Next, in line 2, we get a normalized normal transformed by the
normalmatrix (yup, still sounds funny), which is needed to get the
proper specular value.

 We now need to get the dot product of the reflection of the light and
the normalized normal multiplied normally by the normalmatrix in an
normal fashion. See line 3. Notice the use of the reflect() method,
which is another one of the niceties in the shader language. Reflect
generates a reflected vector based on the negative light direction and
the local normal. That is then dotted with the eyeNormal.

 In Line 4 that dot value is taken and used to generate the actual
specular component. You will also see our old friend shininess, and
just as in version 1 of OpenGS ES, the higher the value, the narrower
the reflection.

 Since we can consider the sun’s color just to be white, the
specular color in line 5 can be made to have all its components
set to the same value.

Now the fragment shader can be used to refine things even further, as shown in Listing
10-15.

Listing 10-15. The Fragment Shader That Handles the Specular Reflection

precision mediump float;

varying lowp vec4 colorVarying;
varying lowp vec4 specularColorVarying; //1

uniform mat4 modelViewProjectionMatrix;
uniform mat3 normalMatrix;
uniform vec3 lightPosition;

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: OpenGL ES 2, Shaders, and... 328

varying vec2 v_texCoord;
uniform sampler2D s_texture;

void main()
{
 vec4 finalSpecular=vec4(0,0,0,1);
 vec4 surfaceColor;
 float halfBlue;

 surfaceColor=texture2D(s_texture, v_texCoord);

 halfBlue=0.5*surfaceColor[2]; //2

 if(halfBlue>1.0) //3
 halfBlue=1.0;

 if((surfaceColor[0]<halfBlue) && (surfaceColor[1]<halfBlue)) //4
 finalSpecular=specularColorVarying;

 gl_FragColor = surfaceColor*colorVarying+colorVarying*finalSpecular; //5
}

The main task here is to determine which fragments represent sea and which do not. It’s
pretty easy: the blue stuff is water (powerful wet stuff, that water!), and everything that
isn’t, isn’t.

 First in line 1, we pick up the specularColorVarying variable.

 In line 2, we pick up the blue component and divide it by half,
clamping in line 3, since no color can actually go above full intensity.

 Line 4 does the filtering. If the red and green components were both
less than half that of the blue, then it’s a pretty safe bet that we can
draw the specular glint over the water, instead of some place like
Chad.

 The specular piece is now added to the fragment color in the last line,
after first multiplying it with the colorVarying, because that will
modulate it with everything else.

Figure 10-5 shows the results.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: OpenGL ES 2, Shaders, and... 329

Figure 10-5. A close-up on the right of the earth/water interface

Bring in the Clouds
So, it certainly seems as if something else is missing. Oh, yeah. Those cloud things.
Well, we’re in luck because shaders can very easily manage that as well. Available in the
downloadable project files I’ve added a cloud map of the entire earth, as shown in
Figure 10-6. The land masses are a little hard to see, but in the lower right is Australia,
while in the left half you can barely see South America. So, our job is to overlay it on top
of the color landscape map and drop out all of the low-contrast bits.

Figure 10-6. Full-earth cloud patterns

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: OpenGL ES 2, Shaders, and... 330

Not only are we going to add clouds to our model, but we’ll also see how to handle
multitexturing using shaders, as in, how does one tell a shader to use more than one
texture? Remember the lesson about texture units in Chapter 6? They come in really
handy right now, because that is where the textures are stored, ready for the fragment
shader to pick them up. Normally, for a single texture, the system defaults in a way that
no additional setup is needed, save for the normal call to glBindTexture(). However, if
you want to use more than one, there is some setup required. The steps are as follows:

1. Load the new texture in your main program.

2. Add a second uniform sampler2D to your fragment shader to support a
second texture and pick it up via glGetUniformLocation().

3. Tell the system which texture unit to use with which sampler.

4. Activate and bind the desired textures to the specified TUs while in the
main loop, drawInRect().

Now to a few specifics: you already know how to load textures. That is, of course, a no-
brainer. So, in step 2, you will want to add something like the following to the fragment
shader, the same one used for the previous couple of exercises:

uniform sampler2D cloud_texture;

And to loadShaders():

 uniforms[UNIFORM_SAMPLER1] = glGetUniformLocation(*program, "cloud_texture");
 uniforms[UNIFORM_SAMPLER0] = glGetUniformLocation(*program, "s_texture");

Step 3 is added in the view controller’s setupGL(). The glUniform1i() call takes the
‘‘location’’ of the uniform in the fragment shader for the first argument and takes the
actual TU number in the second. So, in this case, sampler0 is bound to texture unit 0,
while sampler1 goes to texture unit 1. Since a single texture always defaults to TU0, as
well as the first sampler, the setup code is not needed.

 glUseProgram(m_DaysideProgram);
 glUniform1i(uniforms[UNIFORM_SAMPLER0],0);
 glUniform1i(uniforms[UNIFORM_SAMPLER1],1);

 glUseProgram(m_NightsideProgram);
 glUniform1i(uniforms[UNIFORM_SAMPLER0],0);
 glUniform1i(uniforms[UNIFORM_SAMPLER1],1);

When running the main loop, in step 4, you can do the following:

 glActiveTexture(GL_TEXTURE0);
 glBindTexture(GL_TEXTURE_2D,m_EarthNightTexture.name);

 glActiveTexture(GL_TEXTURE1);
 glBindTexture(GL_TEXTURE_2D,m_EarthCloudTexture.name);

 [self useProgram:m_NightsideProgram];

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: OpenGL ES 2, Shaders, and... 331

 [m_Sphere setBlendMode:PLANET_BLEND_MODE_SOLID];
 [m_Sphere execute:m_EarthNightTexture.name];

glActiveTexture() specifies what TU to use followed by a call to bind the texture.
Afterward, the program can be used to the desired effect.

The cloud-luv'n fragment should now look something like Listing 10-16 to perform the
actual blending.

Listing 10-16. Blends a Second Texture with Clouds on Top of the Others

precision mediump float;

varying lowp vec4 colorVarying;
varying lowp vec4 specularColorVarying;

uniform mat4 modelViewProjectionMatrix;
uniform mat3 normalMatrix;
uniform vec3 lightPosition;

varying vec2 v_texCoord;
uniform sampler2D s_texture;
uniform sampler2D cloud_texture; //1

void main()
{
 vec4 finalSpecular=vec4(0,0,0,1);
 vec4 surfaceColor;
 vec4 cloudColor;

 float halfBlue; //a value used to detect a mainly blue fragment.

 surfaceColor=texture2D(s_texture, v_texCoord);
 cloudColor=texture2D(cloud_texture, v_texCoord); //2

 halfBlue=0.5*surfaceColor[2];

 if(halfBlue>1.0)
 halfBlue=1.0;

 if((surfaceColor[0]<halfBlue) && (surfaceColor[1]<halfBlue))
 finalSpecular=specularColorVarying;

 if(cloudColor[0]>0.15) //3
 {
 cloudColor[3]=1.0;
 gl_FragColor=(cloudColor*1.3+surfaceColor*.4)*colorVarying;
 }
 else
 gl_FragColor=(surfaceColor+finalSpecular)*colorVarying;
}

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: OpenGL ES 2, Shaders, and... 332

Here’s what is happening:

 Line 1 is merely declaring the new cloud_texture.

 In Line 2, we pick up the cloud color from the cloud sampler object.

 The new color is filtered and merged with the earth’s surface image,
lines 3ff. The numbers used are quite arbitrary, but they give the best
image. Naturally much of the finer detail will have to be cut out to
ensure the colored land masses show through.

Since the clouds are grayscale objects, I need to pick up only a single
color to test, because the normal RGB values are identical. So, I opted
to handle all texels brighter than .20. Then I ensure that the alpha
channel is 1.0 and combine all three components. The cloudColor is
given a slight boost with the 1.3 multiplier, while the underlying surface
uses only .4, so as to emphasize the clouds a little more while still
making them relatively opaque.

I hope you’ll see something like Figure 10-7. Now it’s starting to look like a real planet.

Figure 10-7. Putting it all together

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: OpenGL ES 2, Shaders, and... 333

This is just one very simple example of using a shader. When it comes to space themes,
for example, you might generate a hazy atmosphere around a planet or 3D volumetric
textures to simulate galaxies or nebula. If only I had another ten chapters….

More Fun and Games with GLKit
As mentioned previously, the introduction of the GLKit in iOS 5 was largely designed to
make working in OpenGL ES a little easier. The kit supplied new functionality in four
areas, three of which you already have dealt with and are very handy in either version 1
or 2:

 GLKView and GLKViewController (hiding some of the messiness when
dealing with the drawing surface)

 Texture management

 Math libraries (rich and standardized math API)

 Effects (standard means to encapsulate shader-based effects)

Of the four, the latter two were specifically targeted to make working with OpenGL ES 2
a little easier. It’s the final one, however, that adds a little bit of extra flash that we’re
going to cover now.

GLKEffects
The GLKEffects library was created as a way to manage shader-based effects. At the
time of this writing, GLKit comes with two prebuilt effects classes, and I am sure we’ll
see more. The core to this is the GLKBaseEffects class. GLKBaseEffects incorporates,
and to use Apple’s term ‘‘mimics,’’ much of what OpenGL ES 1 users had to leave
behind when making the jump to 2. This includes the following:

 The basic lighting model from OpenGL ES 1, but with only three lights
at a time though, vs. 8 or more under version 1.

 Materials, using the GLKEffectPropertyMaterial class

 Support for materials and all of their respective qualities

 Fog

 Multitexturing

These are the two subclasses:

 GLKReflectionMap: Turns an object into a shiny toy

 GLKSkyboxEffect: Creates a 360-degree panorama

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: OpenGL ES 2, Shaders, and... 334

Both the reflection and skybox are standard effects used often in games and elsewhere.
The skybox is very useful in flight simulators so you can look anywhere and be
immersed in the artificial world.

GLKReflectionMap
Sometimes called environment mapping, reflection mapping is used to make an object
look like it is made out of the most polished metal or glass. Because it is cool-looking
and relatively easy, it is commonly found in games and elsewhere.

The reflection effect largely comes from having a fixed texture with some geometry
moving or rotating underneath. That means the texture coordinates for the reflective
surfaces will vary dynamically to counteract any motion the underlying object might
have.

The texture most commonly used as the ‘‘environment’’ typically comes in the form of
what’s called a cube map. A cube map is simply a texture that can be subdivided into
six squares and then reassembled in cube form around the reflecting object. Why a
cube instead of a sphere? Less fuss, mainly, unless you like fuss and want a reflected
texture as pure and distortion free as possible, but creating a cube texture is easier than
a full 360-degree spherical texture.

Think of what a cube made out of paper would look like unfolded, using Hedly and his
pals as the subject, as shown Figure 10-8.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: OpenGL ES 2, Shaders, and... 335

Figure 10-8. Hedly and his friends. They’re a quiet bunch.

So, how is a cube map used? First, get used to adding a third component to the texture
coordinates, which specifies the face of the cube to use. Cube mapping makes a
number of assumptions:

 The environment in the reflection very far away, so no parallax will be
visible.

 The discontinuities are largely difficult to notice unless you know what
you’re looking for.

 The object cannot reflect any part of itself, unless you use some
special image maps to compensate.

 You have a curved surface, because cube maps don’t look right in a
flat surface like a mirror.

To draw an object with a reflection/cube map, OpenGL will draw a ray from your
viewpoint, bounce it off the target, and figure out where it hits on the cube map. The
intersection point on the object specifies what texture coordinates are to be used, and
the intersection on the cube map picks out what texel to use and which of the six faces
was hit.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: OpenGL ES 2, Shaders, and... 336

With that in mind, let’s add cube map to the earth using GLKReflectionMapEffect.

You can start again with the standard template project and then add Planet.mm to it.
You will need to modify both the view controller and the planet code. First, let’s handle
your setupGL() method in the view controller by substituting Listing 10-17 for the
template code.

Listing 10-17. Setting Up Your Reflection Map

-(NSString *)imagePath:(NSString *)image
{
 return [[NSBundle mainBundle] pathForResource:image ofType:NULL];
}

- (void)setupGL
{
 int planetSize=50;

 NSArray *images = [[NSMutableArray alloc] initWithObjects: //1
 [self imagePath:@"hedly1.png"],
 [self imagePath:@"hedly2.png"],
 [self imagePath:@"hedly3.png"],
 [self imagePath:@"hedly4.png"],
 [self imagePath:@"hedly5.png"],
 [self imagePath:@"hedly6.png"],
 nil];

[EAGLContext setCurrentContext:self.context];

 NSDictionary *options=
 [NSDictionary dictionaryWithObjectsAndKeys:
 [NSNumber numberWithBool:YES],GLKTextureLoaderOriginBottomLeft,nil];

GLKTextureInfo *info= //2
 [GLKTextureLoader cubeMapWithContentsOfFiles:images options:options error:nil];

 self.effect = [[GLKReflectionMapEffect alloc] init]; //3
 self.effect.light0.enabled = GL_TRUE;
 self.effect.light0.diffuseColor = GLKVector4Make(1.0f, 1.0f, 1.0f, 1.0f);
 self.effect.light0.specularColor = GLKVector4Make(1.0f, 1.0f, 1.0f, 1.0f);
 self.effect.material.shininess = 15.0f;
 self.effect.lightingType = GLKLightingTypePerPixel;

 self.effect.textureCubeMap.name =info.name;

 self.effect.light0.position=GLKVector4Make(-5.0f, 5.0f, 10.0f, 1.0);

 glEnable(GL_DEPTH_TEST);

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: OpenGL ES 2, Shaders, and... 337

 m_Eyeposition.x=0.0;
 m_Eyeposition.y=0.0;
 m_Eyeposition.z=5.0;

 m_Earth=[[Planet alloc] init:planetSize slices:planetSize //4
 radius:.5f squash:1.0f
 textureFile:@"earth_light.png"];

 [m_Earth setPositionX:0.0 Y:0.0 Z:-3.0];
}

Bet you want to know what’s going on here?

 The six-sided cube map is specified by creating an array of the six
images in lines 1ff.

 Line 2 generates the GLKTextureInfo object and uses its cube map
support to fetch the six needed files.

 The new effects object is allocated in line 3. After that, the lighting,
materials, and position info are filled in, not at all unlike good old’
OpenGL ES 1.

 And finally, the earth is generated just like before, in line 4.

Now we need the update() and drawInRect() methods, as shown in Listing 10-18.

Listing 10-18. Updating the Effect

- (void)update
{
 GLfloat scale=2.0;
 float aspect = fabsf(self.view.bounds.size.width / self.view.bounds.size.height);//1

 GLKMatrix4 projectionMatrix =

GLKMatrix4MakePerspective(GLKMathDegreesToRadians(65.0f), aspect, 0.1f, 100.0f);

 self.effect.transform.projectionMatrix = projectionMatrix;

 GLKMatrix4 baseModelViewMatrix = GLKMatrix4Identity;
 GLKMatrix4 modelViewMatrix = GLKMatrix4Identity;

 baseModelViewMatrix = GLKMatrix4Scale(baseModelViewMatrix,scale,scale,scale); //2
 baseModelViewMatrix = GLKMatrix4Rotate(baseModelViewMatrix, _rotation, 0.0, 0.5,
 0.0f);
 modelViewMatrix = GLKMatrix4MakeTranslation(0.0, 0.0, -3.0);
 modelViewMatrix = GLKMatrix4Multiply(modelViewMatrix, baseModelViewMatrix);

 self.effect.transform.modelviewMatrix = modelViewMatrix;
 self.effect.matrix=GLKMatrix3Identity; //3

 _rotation+=0.03;
}

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: OpenGL ES 2, Shaders, and... 338

- (void)glkView:(GLKView *)view drawInRect:(CGRect)rect
{
 GLfloat gray=0.2;

 glClearColor(gray,gray,gray, 1.0f);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 [self.effect prepareToDraw]; //4
 [m_Earth execute:self.effect];
}

In the update() function, you’ll see how we now need to rely on the matrixy functions
from the new math library; there’s no glRotatef() or glTranslatef(), glPushMatrix(),
or glPopMatrix() in this universe.

 Lines 1ff specify the projection matrix, what would normally be given
over to glFrustum() in the alternate universe of version 1.

 Line 2 and those following create the matrices we need for the
transformations, ultimately assigning the final modelViewMatrix object
to the transform field of the effect’s own GLKEffectPropertyTransform
object. GLKEffectPropertyTransform contains both the Modelview and
normal matrix.

 Not only does the ‘‘effect’’ have its own transformation matrix, it can
also have an additional matrix to handle specific components of that
effect. In this case, line 3 highlights this extra matrix. The Modelview
matrix is for the geometry of the effect, just like it is in version 1, but
this new one can be used to transform other things. In this case, it
could be used to rotate the cube map. Setting it to the identity keeps
the cube map static, letting just the earth model rotate.

 When ready, call the prepareToDraw() method of the effect’s class,
and it will apply the new settings, after which you may render the
object itself, with the results shown in Figure 10-9.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: OpenGL ES 2, Shaders, and... 339

Figure 10-9. Reflection mapping the earth

For complicated objects such as the earth model, you would be better off using a more
simple cube map. The most basic ones typically would show a horizon, ground, and sky,
usually produced by different gradients.

Summary
In this final chapter, you learned a little about OpenGL ES 2, the programmable pipeline
version of ES; learned how and where shaders fit it in; and used them to add some extra
detail to the earth. (For extra credit, try porting the rest of the simulator to version 2.) The
final exercise used the OpenGL ES 2----exclusive GLKit effects objects to create a cube
map and a shiny earth, rounding out the GLKit introduction. I advise watching the
superb presentation of the GLKit by Apple from the 2011-WWDC . iTunes has all of the
talks online.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: OpenGL ES 2, Shaders, and... 340

Throughout this book, you’ve learned basic 3D theory, both in the math involved and in
the overall principles. I’d like to think it’s given you a basic understanding of the topic,
even knowing that the book could be many times larger, considering that we’ve barely
touched 3D graphics.

The Khronos Group, the keepers of all things officially OpenGL, has published several
extensive books on the subject. Affectionately known by the color of their covers,
there’s the Red Book (the official programming guide), the Blue Book, (tutorials and
reference), the Orange Book (shading language), the Green Book (Open GL on the Mac),
and the Sort-of-Purplish Book (OpenGL ES 2). There are also numerous other third-party
books that get much deeper than I’ve been able to go. Likewise, there are many web
sites dedicated to OpenGL tutorials; nehe.gamedev.net is by far one of the best with
nearly 50 different tutorials as of this writing.

And as you’re going over the work of other authors, be it from other books or on the
web, just remember that this book is the one that gave you the sun, the earth, and the
stars. Not many others can claim that.

www.it-ebooks.info

http://www.it-ebooks.info

341

341

Index

Numbers and Special
Characters
2D transformations, math for, 34–38

 rotations, 34–37
 scaling, 37–38
 translations, 34

3D in Hollywood, 4
3D motion, 249–259
3D shuffle, 71
3D transformations, math for, 38–49

 GLKit, 49
 inverse transformations, 47–48
 projecting object onto screen, 43–47
 quaternions, 49

3D worlds, 51–90
 clipping regions, 73–75
 coordinates for

 eye coordinates, 54
 OpenGL coordinates, 51–53

 face culling, 76–77
 FOV in, 75–76
 frustum

 creating, 67–69
 defined, 54–55

 geometry for, 60–63
 simple demo of, 56–59
 solar system example, 77–90
 spinning, 69–73

A
Adding interface, 286
alpha, 82
alpha blending, 167–179

 functions, 178
 multicolor, 178–179

ambient lighting, 109–110
anaglyph technique, 4

angle of incidence, 95, 116–117
angle of reflectance, 116
API Expert, 305
Api Statistics, 306
APIs (Application Programming Interfaces),

OpenGL ES, and textures, 137–141
APPLE_texture_2D_limited_npot extension,

281
Application Programming Interfaces (APIs),

OpenGL ES, and textures, 137–141
attenuation, 112–113, 118

B
backface elimination, 65
baseModelViewMatrix, 22–25
batching, 295–296
bilinear sampling, 156
billboarding, 260
binary space partitioning (BSP), 130
blending, 167–200

 alpha, 167–179
 blending functions, 171–178
 multicolor blending, 178–179

 texture, 180–200
 mapping with bumps, 191–200
 multitexturing, 184–200

Blinn, Jim, 7
Blinn-Phong model, 110
blob shadows, 229
bouncy square example, 143–159

 filtering, 155–157
 mipmaps, 152–155
 OpenGL ES API extensions and PVRTC,

157–159
BSP (binary space partitioning), 130
buffer-matrix, 36
buffer objects

 frame. See FBOs

www.it-ebooks.info

http://www.it-ebooks.info

■ Index 342

 Hedley
 overview, 202–207
 sun buffer objects, 208–210

bumps, mapping with, 191–200

C
CADisplayLink, 287
Call Tree, 306
Carpenter, Loren, 10
Cartesian coordinates, 52
Catmull, Ed, 6–7
CGPoint m_PointerLocation, 251
Clark, Jim, 7
clipping, regions, 73–75
clouds, over earth at night, 329
CMYK mode, 93–94
color

 components in lighting, 94–95
 factors in, 118–119
 formats, 297–298
 and light, 91–94

color. glLightfv() method, 98
colorIncrement, 81
COM interface, 12
computer graphics

 analysis of OpenGL program, 14–29
 shaders, 27–29
 showing scene in display, 22–26
 tweaking values, 26

 development of, 4–11
 in Hollywood, 8–11
 MIT, 5–6
 University of Utah, 6–7

 history of, 3–4
 OpenGL architecture, 29–31
 opening OpenGL ES project, 2–3
 toolkits, 11–14

 Direct3D, 11–12
 OGRE, 13
 OpenGL, 11
 OpenSceneGraph, 13
 others, 13–14
 QuickDraw 3D, 12–13
 Unity3D, 13

Controller file, 67
coordinate transformation, 34
coordinates

 eye coordinates, 54
 OpenGL coordinates, 51–53

CoreGraphics, 281
creating lights, 95–104
Crow, Frank, 10
cube map, 334–339
cubeColors, 61, 65–66
cubeVertices array, 61, 63, 65–66

D
depth sorting, 129–130
Detailed pane, for OpenGL analyzer, 305–306
development of computer graphics, 4–11

 in Hollywood, 8–11
 at MIT, 5–6
 at University of Utah, 6–7

diffuse reflectance, 115
Direct3D, 11–12
displays

 Retina, 245–246
 showing scenes in, 22–26

drawFrame method, 48
drawInRect() method, 58, 69, 85, 147, 179, 186,

210, 222, 320, 337
drawLight() method, 232–234, 240
drawShadow() method, 232, 238, 240–241

E
EAGLView, 20
earth, at night

 clouds, 329
 overview, 318
 specular reflections, 325–328

effects, lens flare, 259–270
emissive materials, 110–111
execute() file, 102, 126
execute method, 83, 85, 88, 122, 124, 128
execute() method, 164, 197, 208, 247, 259, 266,

270, 273, 276, 293
executePlanet() method, 127, 197–198, 266–

268, 270
executePlanets() method, 126
executeVBO() method, 292
Extended Detail pane, for OpenGL analyzer, 305
eye coordinates, 54

F
face culling, of 3D objects, 76–77

www.it-ebooks.info

http://www.it-ebooks.info

■ Index 343

face normals, 65, 82, 99
FBController object, 208
FBOController, 202, 205–206, 209
FBOs (Frame Buffer Objects), 201–243

 Hedley
 overview, 202–207
 sun buffer objects, 208–210

 lens flares, 210–218
 reflective surfaces, 218–225
 shadows, 226–243

 blob, 229
 mapping, 227
 projection, 229–243
 volumes, 227–228

field of view (FOV), 55, 75–76
filtering, 155–157
float m_FieldOfView variable, 251
formats, color, 297–298
FOV (field of view), 55, 75–76
FPS (frames per second), 294
Frame Buffer Objects. See FBOs
Frame Statistics, 304, 306
frames per second (FPS), 294
Fresnel Law of Reflection, 117
frustum

 creating, 67–69
 defined, 54–55

G
gColor4f() method, 169
geometry, for 3D worlds, 60–63
getPosition() method, 253, 256, 268
GL Utility Toolkit (GLUT), 77
glActiveTexture() method, 187, 195, 330–331
GL_ADD, 188–191
GL_ALPHA_TEST, 298
GL_ALWAYS function, 220
GL_AMBIENT parameter, 109, 114
GL_APPLE_texture_2D_limited_npot GL. NPOT,

158
GL_BACK, 65, 76, 83
glBindBuffer() method, 290, 292–293
glBindTexture() method, 202, 206–207, 209,

215, 330
GL_BLEND, 171, 182, 188–190
glBlendEquation() method, 176, 178
glBlendEquationSeparate() method, 176
glBlendEquationSeparateOES() method, 177
glBlendFunc() method, 171–174, 176, 179, 182

glBlendFuncSeparateOES() method, 177
glBufferData() method, 290–291
glClear() method, 25
glClearColor() method, 25, 129
glClientActiveTexture() method, 186–187, 197
glColor() method, 196
glColor4f() method, 168–169, 173, 183, 195
GL_COLOR_ATTACHMENT0_OES, 203–204
glColorMask() method, 177–178
glColorPointer() method, 179, 182, 198
GL_COMBINE, 188, 190–191, 195
GL_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG,

159
GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG,

159
GL_COMPRESSED_RGB_PVRTC_2BPPV1_IMG,

159
GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG,

159
GL_CONSTANT_ATTENUATION, 112, 115
glCreateShader() method, 312
GL_DECAL, 188–190
GL_DECR type, 221, 228
glDeleteBuffer() method, 291
GL_DEPTH_ATTACHMENT_OES, 203–204
GL_DEPTH_STENCIL_ATTACHMENT, 204
glDetachShader() method, 315–316
GL_DIFFUSE parameter, 98, 106, 114, 120, 124–

125
glDisable() method, 292, 295, 303
GL_DOT3_RGB, 191–193, 195–196
GL_DOT3_RGBA, 191–192, 196
glDrawArray() method, 171, 207
glDrawArrays() method, 25, 66, 207, 209, 222,

234, 289, 292, 303, 306
glDrawElements() method, 66, 224, 232, 238–

239, 241, 289, 303
glDrawTexfOES() method, 281–282
GL_DST_ALPHA, 176
GL_DST_COLOR, 176
GL_EMISSION, 110–111, 125
glEnable() method, 76, 171, 181–182, 186, 197–

198, 292, 295, 303
glEnableClientState, 145, 147, 153, 164, 168,

181–182, 186, 197
glEnableClientState(GL_VERTEX_ARRAY)

method, 58–59, 65, 83
glEnable(GL_COLOR_MATERIAL) method, 111
GLenum light, 112
GLenum pname, 112
GLenum type file, 16, 311

www.it-ebooks.info

http://www.it-ebooks.info

■ Index 344

GL_EXT_blend_minmax, 176
GLfloat, 98–99, 102, 106, 109, 114, 120, 123, 125,

128
glFlush() method, 303
gl_FragColor, 317, 322–323, 328, 331
GL_FRAGMENT_SHADER file, 312, 314
GL_FRONT, 76
GL_FRONT_AND_BACK, 106–109, 111, 120,

124–125
glFrontFace() method, 110
glFrustum() method, 338
glFrustumf() method, 67
glGet*, 95–96
glGetError() method, 298
glGetFloatv() method, 48, 265, 275, 277
glGetIntegerv, 185
glGetLight, 121
glGetLightfv() method, 98
glGetUniformLocation() method, 315, 320, 330
GL_INCR type, 221, 228
GL_INTERPOLATE, 191
GL_INVERT type, 221
GLKBaseEffect class, 16, 18, 22, 24–25, 94
GLKBaseEffects class, 333
GL_KEEP type, 220–221
GLKEffectPropertyMaterial class, 333
GLKEffectPropertyTransform object, 338
GLKEffects library, 333–334
GLKit tool, 333–339

 GLKEffects library, 333–334
 GLKReflectionMap class, 334–339
 overview, 49

GLKMatrix4MakePerspective, 22, 24
GLKQuaternion m_Quaternion, 254
GLKReflectionMap class, 333–339
GLKReflectionMapEffect, 336
GLKSkyboxEffect class, 333
GLKTexture, 143
GLKTextureInfo object, 143–144, 146, 163, 337
GLKTextureLoader() method, 143, 146, 152, 159
GLKTextureLoaderGenerateMipmaps, 152, 159
GLKVector3 objects, 255
GLKVector3 type, 256
GLKVertexAttribNormal, 18, 21
GLKVertexAttribPosition, 18, 21
GLKView class, 20, 245, 285, 320, 333, 338
GLKViewController object, 24, 333
glLight*, 114, 121
glLightfv() method, 98
glLightModel, 121
glLightModelfv, 109–110

GL_LIGHT_MODEL_TWO_SIDE, 110, 120–121,
124

GL_LINEAR, 153–154, 156–157
GL_LINEAR_ATTENUATION, 112, 115
GL_LINEAR_MIPMAP_LINEAR, 156
GL_LINEAR_MIPMAP_NEAREST, 156
GL_LINE_LOOP, 63
GL_LINES, 63
GL_LINE_STRIP, 63, 88
glLineWidth() method, 283
glLinkProgram() method, 312
glLoadIdentity() method, 206–207, 209, 215,

224, 232
glMakeAwesomeLightsDude() method, 96
glMapBufferOES() method, 290–291
glMaterial*, 108
glMaterialfv, 106–107, 109, 111, 120–121, 124–

126
glMaterialfv() method, 305
glMatrixMode() method, 55, 127
glMatrixMode(GL_MODELVIEW) method, 55
GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS,

185
GL_MODELVIEW, 55, 57, 65, 67, 83–84
GL_MODULATE, 187–188, 190–191, 195
GL_NEAREST, 153, 156–157
GL_NEAREST_MIPMAP_NEAREST, 156
glNormal, 122
glNormal3f, 103
glNormalPointer, 102, 122
GL_OES_blend_equation_separate, 176
GL_OES_blend_func_separate, 176
GL_OES_blend_subtract, 176
GL_ONE, 172–174, 176, 178–180, 182
GL_ONE_MINUS_SRC_ALPHA, 172, 174, 176,

182
GL_ONE_MINUS_SRC_COLOR, 215, 224–225
glOrthof() method, 215–216, 261, 263
GL_POINTS, 63, 88
GL_POINT_SMOOTH, 275–276
glPolygonOffset() method, 236
glPopMatrix, 122, 125–127
gl_Position, 316–317, 322, 327
GL_POSITION parameter, 98, 106, 114, 120,

124–125
GL_PREVIOUS, 195–196
GL_PRIMARY_COLOR, 196
GL_PROJECTION, 215–216
glPushMatrix, 122, 125–126, 209, 216, 222, 224,

234–235, 238

www.it-ebooks.info

http://www.it-ebooks.info

■ Index 345

GL_QUADRATIC_ATTENUATION, 112, 115, 120,
124

GL_REPLACE function, 188, 191, 220–221
glRotate() method, 54, 248, 307, 338
glRotatef() method, 64, 72
glRotatef () method, 125, 127
glRotatef() method, 247, 255
glRotation() method, 126, 248
glScale() method, 72
glScalef() method, 64, 81
glScalex() method, 64
glShadeModel, 98, 106, 120, 122, 124
glShadeModel() method, 258, 266
GL_SMOOTH, 258, 266, 275
GL_SOURCE0_RGB, 190
GL_SPECULAR parameter, 107, 114, 120, 124–

125
GL_SPOT_CUTOFF, 113–115
GL_SPOT_DIRCTION, 113
GL_SPOT_DIRECTION, 113–114
GL_SPOT_EXPONENT, 113–115
GL_SRC_ALPHA, 172, 174, 176, 182
GL_SRC_COLOR, 176
glStencilOp() function, 220–221, 228
glTexCoordPointer() method, 181, 186, 190,

197
glTexEnvf() method, 185, 187, 190, 195
GL_TEXTURE_2D, 143, 145–146, 153–154, 164–

165
GL_TEXTURE_CROP_RECT_OES, 281–282
GLTextureInfo, 143
GL_TEXTURE_MAG_FILTER, 143, 153–154
GL_TEXTURE_MIN_FILTER, 143, 153–154
GL_TEXTURE_WRAP_S, 143, 146
GL_TEXTURE_WRAP_T, 143, 146
glTranlsation, 126
glTranslate() method, 233, 307, 338
glTranslatef() method, 58, 66, 71, 209, 216, 224,

234, 238, 267, 269
glTranslation() method, 207
GL_TRIANGLE_FAN, 63, 65
GL_TRIANGLES, 63
GL_TRIANGLE_STRIP, 58, 63, 65, 83, 88
gluGetScreenLocation() method, 264–266,

269–270
gluLookAt() method, 254–255
gluMultMatrixVector3f() method, 264–266
glUnmapBufferOES() method, 291
gluProject() method, 264–266
glUseProgram() method, 25–26, 318, 330
GLUT (GL Utility Toolkit), 77

glVertexPoint() method, 59
GL_VERTEX_SHADER file, 312, 314
glViewPort() method, 245
GL_ZERO type, 176, 221, 238
Gouraud shading, 110, 119
GPU (graphics processing unit), 289
grazeDist value, 267–268, 270
Greek identifiers, 82

H
handlePanGesture() method, 250–251
handlePinchGesture() method, 250–251
Hasselblad cameras, 210
Hedley buffer objects

 overview, 202–207
 sun, 208–210

history of computer graphics, 3–4
Hollywood, computer graphics development at,

8–11
homogeneous coordinates, 37
HSV color wheel, 93

I, J
image formats, 142–143
image textures, 136–137
init() method, 78, 84–85, 96, 128, 159–160, 163,

196
initGeometry() method, 84, 87, 96, 122–123,

246
initLighting() method, 98, 104–105, 109–110,

112, 119, 123
InitLighting() method, 123
initWithAPI, 17, 19
inspectors, instrument, for OpenGL analyzer,

302–304
instrument inspector, for OpenGL analyzer,

302–304
intensity of color, factors in, 118–119
interferes, 92
interleaved data, 295
interpolative shading, 110
inverse transformations, 47–48

K
kEAGLRenderingAPIOpenGLES1 flag, 56, 58, 85

www.it-ebooks.info

http://www.it-ebooks.info

■ Index 346

L
Lambert lighting model, 115
lens flares, 210–218, 259–270
LensFlare object, 214, 216
LensFlare.mm, 263
light parameters, 114–115
lighting

 and color, 91–94
 color components in, 94–95
 creating and positioning lights, 95–104
 math behind shading, 115–116
 with other materials, 105–115

 ambient lighting, 109–110
 attenuation, 112–113
 emissive materials, 110–111
 light parameters, 114–115
 shading models, 110
 specular lighting, 107–108
 spotlights, 113–114

 secondary lights, 119–122
 in solar-system model, 122
 specular reflections, 116–119

 attenuation, 118
 benefits of understanding, 119
 factors in color and intensity, 118–119

Line Graph in the Track Display section, 303
loadShaders() method, 313–314, 317, 319–320,

330
loadTexture() method, 143–144, 146, 159, 163,

182, 197, 259–260
lookAtTarget() method, 250, 252–253, 257

M
magnification, 143, 155
main() method, 309, 316–317, 321–323, 326,

328, 331
mapping

 with bumps, 191–200
 shadow, 227

materials, and lighting, 105–115
 ambient lighting, 109–110
 attenuation, 112–113
 emissive materials, 110–111
 light parameters, 114–115
 shading models, 110
 specular lighting, 107–108
 spotlights, 113–114

math behind shading, 115–116
math coordinates, 51–52

math for transformations, 33–49
 2D transformations, 34–38

 rotations, 34–37
 scaling, 37–38
 translations, 34

 3D transformations, 38–49
 GLKit, 49
 inverse transformations, 47–48
 projecting object onto screen, 43–47
 quaternions, 49

max() method, 317
maxSize, 144
m_Eyeposition type, 246, 254, 258, 267–268
m_FieldOfView, 251–252, 268
minification, 143, 156
miniGLU, 254, 258, 264, 270, 273
Minnaert model, 110
mipmaps, 152–155, 297
MIT, computer graphics development at, 5–6
modelMatrix, 264–265
modelview, 24, 54–55, 58, 66, 68
modelViewMatrix, 41, 48, 238–239, 337–338
modelViewProjectionMatrix, 315–316, 321–322,

326–327, 331
motion, 3D, 249–259
m_Pos variable, 256
MSAA (multisampled anti-aliasing), 285
m_Scale variable, 78, 80, 82, 270
m_Squash, 78, 80, 82
m_Texture0, 181–182, 187, 194
multicolor blending, 178–179
multisampled anti-aliasing (MSAA), 285
multiTexture, 187
multiTextureBumpMap() method, 194
MultiTextureBumpMap() method, 194
multiTextureBumpMap() method, 197–198
multitexturing, 180, 184–200
multTexture() method, 196

N
NewTek, 9
nonstenciled pixels, 228
normalized vectors, 99
normalMatrix, 315–317, 321, 326–327, 331
nPtrs value, 102
NSData object, 282

O
Objective-C object, 84

www.it-ebooks.info

http://www.it-ebooks.info

■ Index 347

OGRE, 13
OpenGL

 analysis of, 14–29
 shaders, 27–29
 showing scene in display, 22–26
 tweaking values, 26

 analyzer, 299–306
 context-sensitive settings, 305
 Detailed pane, 305–306
 Extended Detail pane, 305
 instrument inspector, 302–304
 Record/stop button, 302
 Target Selector pane, 304
 Track Display pane, 304

 architecture, 29–31
 coordinates, 51–53
 ES API

 extensions, and PVRTC, 157–159
 and textures, 137–141

 Game template, 3
 general discussion, 11
 lights, 94
 opening projects, 2–3

OpenGLCreateTexture.mm file, 260
OpenGLCreateTexture:renderTextureInRect()

method, 269
OpenGLOutlines, 272, 282
OpenGLSolarSystemController, 84–85, 122–123
OpenGLSolarSystem.h file, 97, 122
OpenGLSolarSystemViewController, 129
opening OpenGL ES project, 2–3
OpenSceneGraph, 13
Oren-Nayer, 110
orthogonal, 99
orthographic projection, 44, 55
outlines.plist file, 278

P
painter's algorithm, 130
parallel projection, 44
parameters, light, 114–115
pattern-matrix, 36
percentVisible, 267–268, 270
performance, 289–306

 OpenGL analyzer, 299–306
 context-sensitive settings, 305
 Detailed pane, 305–306
 Extended Detail pane, 305
 instrument inspector, 302–304

 Record/stop button, 302
 Target Selector pane, 304
 Track Display pane, 304

 VBOs, 289–299
 batching, 295–296
 color formats, 297–298
 interleaved data, 295
 mipmaps, 297
 sprite sheets, 296–297
 textures, 296–297
 tips on, 298–299

Performance Detective, 294–295, 299, 305
perspective projection, 44–45, 55
phiIdx, 79, 82
Phong shading, 110
physiological optics, 93
pipelines, shaded, 308, 318

 restrictions on shaders, 310, 318
 shader structure, 309–310
 two cubes example, 308–309

Planet object, 78, 83–84, 88
Planet.h file, 163
Planet.m file, 96, 99, 102, 127–128
point sampling, 156
pos vector, 112
positioning lights, 95–104
POT (power-of-two), 143–144, 147, 158
PowerVR graphics, 158
PowerVR Texture Compression (PVRTC), 157–

159, 297
prepareToDraw() method, 338
primitive, 63
projecting object onto screen, 43–47
projection shadows, 229–243
PVRTC (PowerVR Texture Compression), 157–

159, 297
PVRTexTool, 158–159

Q
quaternions, 49, 248–249
QuickDraw 3D, 12–13

R
rasterization, 30
Record/stop button, for OpenGL analyzer, 302
red, green, blue, and alpha (RGBA), 142
red-green-blue (RGB), 93
reflect() method, 327

www.it-ebooks.info

http://www.it-ebooks.info

■ Index 348

reflections, specular, 325–328
reflective surfaces, 218–225
regions, clipping, 73–75
render parameter, 260, 263, 267–269, 276
renderAtPoint() method, 279, 281–282
renderFlareAt() method, 263–264
rendering, FBOs, 201–243

 Hedley, 202–207
 lens flares, 210–218
 reflective surfaces, 218–225
 shadows, 226–243

rendering order, 129
renderStage() method, 221
renderTextureAt() method, 261, 263
renderToStencil() method, 219–220, 223, 225
Retina displays, 245–246
RGB (red-green-blue), 93
RGBA (red, green, blue, and alpha), 142
roll, pitch, and yaw (RPY), 42
rotation matrix, 36
rotations, 34–37
RPY (roll, pitch, and yaw), 42

S
scaledX value, 214–216
scaledY value, 214–216
scaling, 37–38
scenes, showing in display, 22–26
screen, projecting object onto, 43–47
secondary lights, 119–122
setClipping() method, 69, 75, 86, 154, 239–240,

247, 252, 263, 266
setHoverPosition() method, 250–252, 256
setHoverPostion() method, 256
setupGL() method, 59, 318–319, 330, 336
shaders, 27–29, 307–340

 earth at night, 318
 clouds, 329
 specular reflections, 325–328

 GLKit tool, 333–339
 GLKEffects library, 333–334
 GLKReflectionMap class, 334–339

 pipelines, 308–318
 restrictions on shaders, 310–318
 shader structure, 309–310
 two cubes example, 308–309

shading
 math behind, 115–116
 models of, 110

 overview, 94
shadow volume, 227–228
shadows, 226–243

 blob, 229
 mapping, 227
 projection, 229–243
 volumes, 227–228

shininess, 108, 117
showing scene in display, 22–26
sizeWithFont() method, 281
slerping, 249
so glScale, 64
solar system example, 77–90
solar system model, 245–288

 3D motion, 249–259
 lens flare effect, 259–270
 lighting in, 122
 quaternions, 248–249
 Retina display, 245–246
 stars, 271–285
 textures, 159–165
 UI, 285–287

SolarSystemController, 266
specular exponent, 117
specular lighting, 107–108
specular reflections, 116–119, 325–328

 attenuation, 118
 benefits of understanding, 119
 factors in color and intensity, 118–119

specularColorVarying variable, 326–328, 331
spherical linear interpolation, 249
spinning, 3D objects, 69–73
spotlights, 113–114
sprite sheets, 278, 296–297
squareColors, 57–58, 66
SS_FILLLIGHT1, 119–120, 124
SS_FILLLIGHT2, 119–120, 124
stars, for solar system model, 271–285
sun buffer objects, 208–210
surfaces, reflective, 218–225

T
Target Selector pane, for OpenGL analyzer, 304
texels, 137, 140, 144, 155–156
texture blending, 180–200

 mapping with bumps, 191–200
 multitexturing, 184–200

texture combiners, 184, 191–192, 197
texture environment, 185, 187

www.it-ebooks.info

http://www.it-ebooks.info

■ Index 349

texture units, 184–185
textureCoords, 145, 147, 149, 151, 153, 190
textureCoords2, 190
textures, 133, 166, 296

 bouncy square example, 143–159
 filtering, 155–157
 mipmaps, 152–155
 OpenGL ES API extensions and PVRTC,

157–159
 description of, 134–136
 image, 136–137
 image formats, 142–143
 OpenGL ES API and, 137–141
 solar system model, 159–165
 uploading, 297

tFan, 66
tiling model, 140
timeSinceLastUpdate, 23, 25
toolkits, 11–14

 Direct3D, 11–12
 OGRE, 13
 OpenGL, 11
 OpenSceneGraph, 13
 others, 13–14
 QuickDraw 3D, 12–13
 Unity3D, 13

Track Display pane, for OpenGL analyzer, 304
transformations, 60
translating, 53
translation matrix, 24, 60
translations, 34
triangle fans, 62–64, 66
triangle pairs, 104
trilinear sampling, 156
tweaking values, 26

U
UIButtons, 285
UIImageView object, 34
UIs (User Interfaces), for solar system model,

285–287
UIView object, 20, 285
unitless entities, 138
Unity3D, 13
University of Utah, 6–7
update() method, 337–338
User Interfaces (UIs), for solar system model,

285–287

V
values, tweaking, 26
vanishDist value, 267–268, 270
VAOs (vertex array objects), 21, 318
VBOs (Vertex Buffer Objects), 289–299

 batching, 295–296
 color formats, 297–298
 interleaved data, 295
 mipmaps, 297
 sprite sheets, 296–297
 textures, 296–297
 tips on, 298–299

vertex array objects (VAOs), 21, 318
vertex buffer, 21
Vertex Buffer Objects. See VBOs
vertex shader, 308, 310–311, 314, 316–317,

320–322, 326
viewcontroller, 15, 56, 58, 85, 250, 252, 256
viewDidLoad() method, 68, 85, 97, 154, 194,

205, 230, 239–240, 250
viewing frustum, 24
viewport, 45–48
volumes, shadow, 227–228
von Helmholtz, Hermann, 92
vPtr value, 99, 101–102

W
Warnock, John, 7
Whitted, Turner, 10
WiFi activity, 299
winding, 65
windingness, 66

X, Y
xyz coordinates, 265–266

Z
Z-axis, 58, 75, 85
z-buffering, 130–131
zFar, 67, 74–75
zNear, 67–68, 74–75, 88–89

zoomBias affects, 216

www.it-ebooks.info

http://www.it-ebooks.info

 i

Pro OpenGL ES for iOS

■ ■ ■

Mike Smithwick

www.it-ebooks.info

http://www.it-ebooks.info

Pro OpenGL ES for iOS
Copyright © 2011 by Mike Smithwick

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or
scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer
system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is
permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and
permission for use must always be obtained from Springer. Permissions for use may be obtained through
RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective
Copyright Law.

ISBN-13 (pbk): 978-1-4302-3840-9

ISBN-13 (electronic): 978-1-4302-3841-6

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial
fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

President and Publisher: Paul Manning
Lead Editor: Richard Carey
Technical Reviewer: Leila Muhtasib
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Morgan Ertel, Jonathan

Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie,
Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing,
Matt Wade, Tom Welsh

Coordinating Editor: Corbin Collins
Copy Editor: Kim Wimpsett
Production Support: Patrick Cunningham
Indexer: BIM Indexing & Proofreading Services
Artist: SPI Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–
eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code.

www.it-ebooks.info

http://www.it-ebooks.info

To a couple of the greatest parents in the world, who always supported me, never flinching at my
wacky requests such as sending me back to see an Apollo launch or buying a telescope.

.

www.it-ebooks.info

http://www.it-ebooks.info

 v

Contents

■About the Author ... ix
■About the Technical Reviewer ... x
■Acknowledgments .. xi
■Introduction ... xii

■Chapter 1: Computer Graphics: From Then to Now .. 1

Your First OpenGL ES Program ... 2
A Spotty History of Computer Graphics .. 3

3D in Hollywood ... 4
The Dawn of Computer Graphics .. 4

MIT ... 5
University of Utah .. 6
Coming of Age in Hollywood .. 8

Toolkits ... 11
OpenGL .. 11
Direct3D ... 11
The Other Guys .. 12

Back to the Waltz of the Two Cubes ... 14
A Closer Look ... 14

OpenGL Architecture ... 29
Summary .. 32

www.it-ebooks.info

http://www.it-ebooks.info

■ CONTENTS

vi

■Chapter 2: All That Math Jazz .. 33
2D Transformations .. 34

Translations ... 34
Rotations ... 34
Scaling ... 37

3D Transformations .. 38
Picture This: Projecting the Object onto the Screen .. 43
Now Do it Backward and in High Heels ... 47
What About Quaternions? .. 49
GLKit and iOS5 ... 49

Summary .. 49

■Chapter 3: Building a 3D World .. 51
A Little More Theory ... 51

OpenGL Coordinates .. 51
Eye Coordinates ... 54
Viewing Frustum and the Projection Matrix .. 54

Back to the Fun Stuff: A Simpler Demo .. 56
Going Beyond the Bouncy Square .. 60

Adding the Geometry ... 60
Stitching It All Together ... 64

Building a Solar System ... 77
Summary .. 90

■Chapter 4: Turning On the Lights ... 91
The Story of Light and Color ... 91
Let There Be Light .. 94
Back to the Fun Stuff (for a While) ... 95

Fun with Light and Materials ... 105
The Math Behind Shading ... 115
Specular Reflections .. 116

More Fun Stuff .. 119
Back to the Solar System ... 122
Summary .. 131

■Chapter 5: Textures .. 133
The Language of Texturing ... 134

All About Textures (Mostly) .. 134
Image Textures .. 136
OpenGL ES and Textures ... 137
Image Formats... 142

Back to the Bouncy Square One ... 143
Mipmaps .. 152
Filtering ... 155
OpenGL Extensions and PVRTC Compression .. 157

www.it-ebooks.info

http://www.it-ebooks.info

■ CONTENTS

 vii

More Solar System Goodness ... 159
Summary .. 166

■Chapter 6: Will It Blend? .. 167
Alpha Blending ... 167

Blending Functions .. 171
Multicolor Blending.. 178

Texture Blending .. 180
Multitexturing .. 184
Mapping with Bumps ... 191

Summary .. 200

■Chapter 7: Well-Rendered Miscellany .. 201
Frame Buffer Objects .. 201

Lens Flare .. 210
Stencils Reflective Surfaces .. 218
Coming of the Shadows ... 226

Summary .. 244

■Chapter 8: Putting It All Together .. 245
But What About a Retina Display? .. 245
Revisiting the Solar System .. 246

What Are These Quaternion Things Anyway? .. 248
Moving Things in 3D .. 249
Adding Some Flare .. 259
Seeing Stars .. 271
Adding a UI .. 285

Summary .. 287

■Chapter 9: Performance ’n’ Stuff ... 289
Vertex Buffer Objects .. 289

Interleaved Data .. 295
Batching .. 295

Textures .. 296
Sprite Sheets ... 296
Texture Uploads ... 297
Mipmaps .. 297
Fewer Colors.. 297
Other Tips to Remember .. 298

OpenGL Analyzer .. 299
Summary .. 306

■Chapter 10: OpenGL ES 2, Shaders, and… ... 307
Shaded Pipelines .. 308

Back to Where We Started ... 308
Shader Structure ... 309
Restrictions .. 310

www.it-ebooks.info

http://www.it-ebooks.info

■ CONTENTS

viii

Back to the Spinning Cubes ... 311
Earth at Night .. 318

But What About Specular Reflections? .. 325
Bring in the Clouds .. 329

More Fun and Games with GLKit .. 333
GLKEffects ... 333
GLKReflectionMap ... 334

Summary .. 339

■Index .. 341

www.it-ebooks.info

http://www.it-ebooks.info

 ix

About the Author

Mike Smithwick’s slow descent into programming computers began
when he first got a little 3-bit plastic DigiComp 1 computer in 1963
(http://en.wikipedia.org/wiki/Digi-Comp_I). Not too long before
that, he got interested in planetariums. Eventually he graduated to
programming NASA flight simulator graphics through the 1980s. But
what he really wanted to do was become a syndicated cartoonist
(really!). Failing to get any syndication deals, he wrote and sold the
popular Distant Suns planetarium program for the Commodore
Amiga, old-school Mac, and Microsoft Windows while selling
himself as a contract programmer on the side, working for Apple,
3DO, Sense-8, and Epyx. Eventually he landed a “real” job at
Live365, working on client software Windows and Windows Mobile
6, TiVo, Symbian (ahhh…Symbian…), and iPhone. After 13 short

years he decided to go back to the dark side of contracting, writing, and working on Distant Suns
for the iPhone after it became modest success in the App Store. Sometimes late at night, he thinks
he can hear his Woz-autographed Apple II sobbing for attention from the garage. He may be
contacted via www.distantsuns.com, lazyastronomer on AIM, and @distantsuns or
@lazyastronomer on Twitter.

www.it-ebooks.info

http://www.it-ebooks.info

x

About the Technical Reviewer

Leila Muhtasib has been passionate about programming since she
wrote her first program on MS-DOS. Since then, she's graduated
with a Computer Science degree from the University of Maryland,
College Park. Fascinated by mobile technology and its increasing
ubiquity, she has been programming iPhone applications since the
first SDK was released. She is now a Senior Software Engineer and
Tech Lead of a mobile development team at Cisco Systems.

www.it-ebooks.info

http://www.it-ebooks.info

 xi

Acknowledgments

Thanks to Corbin Collins and Richard Carey, my long-suffering editors, for putting up with a first-
time author, someone who clearly needs to read Writing iOS Books for Beginners.

And to Leila Muhtasib, my tech editor, who was every bit as good as I thought she would be.

And to Matthew Moodie and Mark Beckner for approving the schedule slippage so I could add in
iOS 5 content, ensuring that the book wasn’t obsolete on its release day.

And, of course, to Steve Jobs for never compromising and for producing insanely great tools that
make work fun and make fun “funner.”

www.it-ebooks.info

http://www.it-ebooks.info

	Cover
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction

	Computer Graphics: From Then to Now
	Your First OpenGL ES Program
	A Spotty History of Computer Graphics
	3D in Hollywood

	The Dawn of Computer Graphics
	MIT
	University of Utah
	Coming of Age in Hollywood

	Toolkits
	OpenGL
	Direct3D
	The Other Guys

	Back to the Waltz of the Two Cubes
	A Closer Look

	OpenGL Architecture
	Summary

	All That Math Jazz
	2D Transformations
	Translations
	Rotations
	Scaling

	3D Transformations
	Picture This: Projecting the Object onto the Screen
	Now Do it Backward and in High Heels
	What About Quaternions?
	GLKit and iOS5

	Summary

	Building a 3D World
	A Little More Theory
	OpenGL Coordinates
	Eye Coordinates
	Viewing Frustum and the Projection Matrix

	Back to the Fun Stuff: A Simpler Demo
	Going Beyond the Bouncy Square
	Adding the Geometry
	Stitching It All Together

	Building a Solar System
	Summary

	Turning On the Lights
	The Story of Light and Color
	Let There Be Light
	Back to the Fun Stuff (for a While)
	Fun with Light and Materials
	The Math Behind Shading
	Specular Reflections

	More Fun Stuff
	Back to the Solar System
	Summary

	Textures
	The Language of Texturing
	All About Textures (Mostly)
	Image Textures
	OpenGL ES and Textures
	Image Formats

	Back to the Bouncy Square One
	Mipmaps
	Filtering
	OpenGL Extensions and PVRTC Compression

	More Solar System Goodness
	Summary

	Will It Blend?
	Alpha Blending
	Blending Functions
	Multicolor Blending

	Texture Blending
	Multitexturing
	Mapping with Bumps

	Summary

	Well-Rendered Miscellany
	Frame Buffer Objects
	Lens Flare
	Stencils Reflective Surfaces
	Coming of the Shadows

	Summary

	Putting It All Together
	But What About a Retina Display?
	Revisiting the Solar System
	What Are These Quaternion Things Anyway?
	Moving Things in 3D
	Adding Some Flare
	Seeing Stars
	Adding a UI

	Summary

	Performance ’n’ Stuff
	Vertex Buffer Objects
	Interleaved Data
	Batching

	Textures
	Sprite Sheets
	Texture Uploads
	Mipmaps
	Fewer Colors
	Other Tips to Remember

	OpenGL Analyzer
	Summary

	OpenGL ES 2, Shaders, and…
	Shaded Pipelines
	Back to Where We Started
	Shader Structure
	Restrictions

	Back to the Spinning Cubes
	Earth at Night
	But What About Specular Reflections?
	Bring in the Clouds

	More Fun and Games with GLKit
	GLKEffects
	GLKReflectionMap

	Summary

	Index
	Numbers and Special Characters
	A
	B
	C
	D
	E
	F
	G
	H
	I, J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X, Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

