Build awesome 3D apps using the
i0S native OpenGL ES library

Pro

OpenGL ES fori0S

Mike Smithwick

Apress-

www.it-ebooks.info

http://www.it-ebooks.info

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

N

Apress®

www.it-ebooks.info

http://www.it-ebooks.info

Contents at a Glance

About the AUthOrccccmiimmmnmsnns s iX
About the Technical REVIEWETcsssssssssassssassssnsssassssnsssassssassssnsssassssassssnsnses X
Acknowledgmentscccuussmissmsssmmssmmssmsns s s s s s s s Xi
Introduction ... ———————————— Xii
Chapter 1: Computer Graphics: From Then to NOW.........cccuusseemmenmnnnnssssssssssnens 1
Chapter 2: All That Math Jazz...........cccucmnsmmsmmmsnmmesmssmmssmssesmssmsasssassns 33
Chapter 3: Building a 3D World.........cccoiumnmmmmmmmssssnnmmssssssnsmssssssnsssssssssssssssnnnnns 51
Chapter 4: Turning On the Lightscccccnneemmmnnnesnmnmmssssnmmmssssnnssssssnssssns 91
Chapter 5: TeXtures.......cciummmmmmmsmmsmsmmsssmss s s s s ssansnsnss 133
Chapter 6: Will It Blend?ccccmnsemmsmmmsnmssanmsssssssssssssssssssssssssassssssssassssans 167
Chapter 7: Well-Rendered Miscellany.........ccccuseemmmnssssnsmmmssssnssmssssssssssssssnnnns 201
Chapter 8: Putting It All Togethercccuremrmnnsmnnnmsssesnmmsssssssnessssssan—m 245
Chapter 9: Performance ’'n’ Stuff ... 289
Chapter 10: OpenGL ES 2, Shaders, and.........c.cccermmmsmmnnmmssssnsnsmssssssnssssssnan 307
INAEX... corcisennnrnissnnnnnssssnnnnnsssssnnnesssssnnnnssssnnnnessssnnnnessssnnneessssnnneessssnnnsessnnnnnnss 341

www.it-ebooks.info

http://www.it-ebooks.info

Introduction

In 1985 I brought home a new shiny Commodore Amiga 1000, about one week after they were
released. Coming with a whopping 512K of memory, programmable colormaps, a Motorola 68K
CPU, and a modern multitasking operating system, it had “awesome” writ all over it.
Metaphorically speaking, of course. I thought it might make a good platform for an astronomy
program, as I could now control the colors of those star-things instead of having to settle for a
lame fixed color palette forced upon me from the likes of Hercules or the C64. So I coded up a 24-
line basic routine to draw a random star field, turned out the lights, and thought, “Wow! I bet I
could write a cool astronomy program for that thing!” Twenty-six years later I am still working on
it (I'll get it right one of these days). Back then my dream device was something I could slip into
my pocket, pull out when needed, and aim it as the sky to tell me what stars or constellations I
was looking at.

It’s called the iPhone.
I thought of it first.

As good as the iPhone is for playing music, making calls, or jumping Doodles, it really shines
when you get to the 3D stuff. After all, 3D is all around us—unless you are a pirate and have taken
to wearing an eye patch, in which case you'll have very limited depth perception. Arrrggghhh.

Plus 3D apps are fun to show off to people. They’ll “get it.” In fact, they’ll get it much more than,
say, that mulch buyer’s guide app all the kids are talking about. (Unless they show off their mulch
in 3D, but that would be a waste of a perfectly good dimension.)

So, 3D apps are fun to see, fun to interact with, and fun to program. Which brings me to this
book. I am by no means a guru in this field. The real gurus are the ones who can knock out a
couple of NVIDIA drivers before breakfast, 4-dimensional hypercube simulators by lunch, and
port Halo to a TokyoFlash watch before the evening’s Firefly marathon on SyFy. I can’t do that.
But I am a decent writer, have enough of a working knowledge of the subject to make me
harmless, and know how to spell “3D.” So here we are.

First and foremost this book is for experienced iOS programmers who want to at least learn a little
of the language of 3D. At least enough to where at the next game programmer’s cocktail party you
too can laugh at the quaternion jokes with the best of them.

www.it-ebooks.info

http://www.it-ebooks.info

INTRODUCTION

This book covers the basics in both theory of 3D and implementations using the industry
standard OpenGL ES toolkit for small devices. While iOS supports both flavors—version 1.x for
the easy way, and version 2.x for those who like to get where the nitty-is-gritty—I mainly cover
the former, except in the final chapter which serves as an intro to the latter and the use of
programmable shaders. And with the release of iOS 5, Apple has offered the 3D community a
whole lotta lovin’ with some significant additions to the graphics libraries.

Chapter 1 serves as an intro to OpenGL ES alongside the long and tortuous path of the history of
computer graphics. Chapter 2 is the math behind basic 3D rendering, whereas Chapters 3
through 8 lead you gently through the various issues all graphics programmers eventually come
across, such as how to cast shadows, render multiple OpenGL screens, add lens flare, and so on.
Eventually this works its way into a simple (S-I-M-P-L-E!) solar-system model consisting of the
sun, earth, and some stars—a traditional 3D exercise. Chapter 9 looks at best practices and
development tools, and Chapter 10 serves as a brief overview of OpenGL ES 2 and the use of
shaders.

So, have fun, send me some M&Ms, and while you're at it feel free to check out my own app in the
Appstore: Distant Suns 3 for both the iPhone and the iPad. Yup, that’s the same application that
started out on a Commodore Amiga 1000 in 1985 as a 24-line basic program that drew a couple
hundred random stars on the screen.

It’s bigger now.

www.it-ebooks.info

http://www.it-ebooks.info

Chapter

Computer Graphics: From
Then to Now

To predict the future and appreciate the present, you must understand
the past.

—Probably said by someone sometime

Computer graphics have always been the darling of the software world. Laypeople can
appreciate computer graphics more easily than, say, increasing the speed of a sort
algorithm by 3 percent or adding automatic tint control to a spreadsheet program. You
are likely to hear more people say “Cooooolllll!” at your nicely rendered image of Saturn
on your iPad than at a Visual Basic script in Microsoft Word (unless, of course, a Visual
Basic script in Microsoft Word can render Saturn, then that really would be cool). The
cool factor goes up even more so when said renderings are on a device you can carry
around in your back pocket. Let’s face it—Steve Jobs has made the life of art directors
on science-fiction films very difficult. After all, imagine how hard it must be to design a
prop that looks more futuristic than an iPad. (Even before the iPhone was available for
sale, the prop department at ABC’s LOST borrowed some of Apple’s screen
iconography for use in a two-way radio carried by a helicopter pilot.)

If you are reading this book, chances are you have an iOS-based device or are
considering getting one in the near future. If you have one, put it in your hand now and
consider what a miracle it is of 21st-century engineering. Millions of man-hours, billions
of dollars of research, centuries of overtime, plenty of all-nighters, and an abundance of
Jolt-drinking, T-shirt—-wearing, comic-book-loving engineers coding into the silence of
the night have gone into making that little glass and plastic miracle-box so you could
play DoodleJump when Mythbusters is in reruns.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now

Your First OpenGL ES Program

Some software how-to titles will carefully build up the case for their specific topic (“the
boring stuff”) only to get to the coding and examples (“the fun stuff”) by around page
655. Others will jump immediately into some exercises to address your curiosity and
save the boring stuff for a little later. This book will be of the latter category.

Note OpenGL ES is a 3D graphics standard based on the OpenGL library that emerged from
the labs of Silicon Graphics in 1992. It is widely used across the industry in everything from
pocketable machines running games up to supercomputers running fluid dynamics simulations
for NASA (and playing really, really fast games). The ES variety stands for Embedded Systems,
meaning small, portable, low-power devices. Unless otherwise noted, I'll use OpenGL and
OpenGL ES interchangeably.

When developing any apps for iOS, it is customary to let Xcode do the heavy lifting at
the beginning of any project via its various wizards. With Xcode (this book uses Xcode 4
as reference), you can easily create an example OpenGL ES project and then add on
your own stuff to eventually arrive at something someone might want to buy from the
App Store.

With Xcode 4 already running, go to File New New Project, and you should see
something that looks like Figure 1-1.

Choose a template for your new project:

B ios p—

N 27
SRS - R S — £ L—-
Framework & Library 9
Other . =
Document-Based Master-Detail [OpenGL Game] Page-Based
5'. Mac OS5 X Application Application Application
Application : :
resna
Framework & Library \t : :
Application Plug-in (5 - | N dliead
System Plug-in
Other Single View Tabbed Application Utility Application Empty Application
Application
2 OpenGL Game
£ P°
This template provides a starting point for an OpenGL ES-based game. It provides a view into
which you render your OpenGL ES scene, and a timer to allow you to animate the view.
(" Cancel) (" Next)
Cancel revious ([MNext)

Figure 1-1. Xcode project wizard

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now 3

Select the OpenGL Game template, and fill in the needed project data. It doesn’t matter
whether it is for the iPhone or iPad.

Now compile and run, making sure you have administrative privileges. If you didn’t break
anything by undue tinkering, you should see something like Figure 1-2.

N 5

Figure 1-2. Your first OpenGL ES project. Give yourself a high five.

The code will be examined later. And don’t worry, you’ll build stuff fancier than a couple
of rotating cubes. The main project will be to construct a simple solar-system simulator
based on some of the code used in Distant Suns 3. But for now, it’s time to get to the
boring stuff: where computer graphics came from and where it is likely to go.

A Spotty History of Computer Graphics

To say that 3D is all the rage today is at best an understatement. Although forms of “3D”
imagery go back to more than a century ago, it seems that it has finally come of age.
First let’s look at what 3D is and what it is not.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now

3D in Hollywood

In 1982 Disney released 7ron, the first movie to widely use computer graphics depicting
life inside a video game. Although the movie was a critical and financial flop (not unlike
the big-budget sequel released in 2011), it would eventually join the ranks of cult
favorites right up there with Showgirls and The Rocky Horror Picture Show. Hollywood
had taken the bite out of the apple, and there was no turning back.

Stretching back to the 1800s, what we call “3D” today was more commonly referred to
as stereo vision. Popular Victorian-era stereopticons would be found in many parlors of
the day. Consider this technology an early Viewmaster. The user would hold the
stereopticon up to their face with a stereo photograph slipped into the far end and see a
view of some distant land, but in stereo rather than a flat 2D picture. Each eye would see
only one half of the card, which carried two nearly identical photos taken only a couple
of inches apart.

Stereovision is what gives us the notion of a depth component to our field of view. Our
two eyes deliver two slightly different images to the brain that then interprets them in a
way that we understand as depth perception. A single image will not have that effect.
Eventually this moved to movies, with a brief and unsuccessful dalliance as far back as
19083 (the short L arrivée du Trainis said to have had viewers running from the theater to
avoid the train that was clearly heading their way) and a resurgence in the early 1950s,
with Bwana Devil/being perhaps the best known.

The original form of 3D movies generally used the “anaglyph” technique that required
the viewers to wear cheap plastic glasses with a red filter over one eye and a blue one
over the other. Polarizing systems were incorporated in the early 1950s and permitted
color movies to be seen in stereo, and they are still very much the same as today. Afraid
that television would kill off the movie industry, Hollywood needed some gimmick that
was impossible on television in order to keep selling tickets, but because both the
cameras and the projectors required were much too impractical and costly, the form fell
out of favor, and the movie industry struggled along just fine.

With the advent of digital projection systems in the 1990s and fully rendered films such
as 7oy Story, stereo movies and eventually television finally became both practical and
affordable enough to move it beyond the gimmick stage. In particular, full-length
animated features (7oy Story being the first) made it a no-brainer to convert to stereo. All
one needed to do was simply rerender the entire film but from a slightly different
viewpoint. This is where stereo and 3D computer graphics merge.

The Dawn of Computer Graphics

One of the fascinating things about the history of computer graphics, and computers in
general, is that the technology is still so new that many of the giants still stride among
us. It would be tough to track down whoever invented the buggy whip, but I’d know
whom to call if you wanted to hear firsthand how to program the Apollo Lunar Module
computers from the 1960s.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now

Computer graphics (frequently referred to as CG) come in three overall flavors: 2D for
user interface, 3D in real time for flight or other forms of simulation as well as games,
and 3D rendering where quality trumps speed for non-real-time use.

MIT

In 1961, an MIT engineering student named Ivan Sutherland created a system called
Sketchpad for his PhD thesis using a vectorscope, a crude light pen, and a custom-
made Lincoln TX-2 computer (a spin-off from the TX-2 group would become DEC).
Sketchpad’s revolutionary graphical user interface demonstrated many of the core
principles of modern Ul design, not to mention a big helping of object-oriented
architecture tossed in for good measure.

Note For a video of Sketchpad in operation, go to YouTube and search for Sketchpad or Ivan
Sutherland.

A fellow student of Sutherland’s, Steve Russell, would invent perhaps one of the biggest
time sinks ever made, the computer game. Russell created the legendary game of
Spacewar in 1962, which ran on the PDP-1, as shown in Figure 1-3.

Figure 1-3. The 1962 game of Spacewar resurrected at the Computer History Museum in Mountain View,
California, on a vintage PDP-1. Photo by Joi lfoh, licensed under the Creative Commons Attribution 2.0 Generic
license (http://creativecommons.org/licenses/by/2.0/deed.en).

By 1965, IBM would release what is considered the first widely used commercial

graphics terminal, the 2250. Paired with either the low-cost IBM-1130 computer or the
IBM S/340, the terminal was meant largely for use in the scientific community.

www.it-ebooks.info

5

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now

Perhaps one of the earliest known examples of computer graphics on television was the
use of a 2250 on the CBS news coverage of the joint Gemini 6 and Gemini 7 missions in
December 1965 (IBM built the Gemini’s onboard computer system). The terminal was
used to demonstrate several phases of the mission on live television from liftoff to
rendezvous. At a cost of about $100,000 in 1965, it was worth the equivalent of a very
nice home. See Figure 1-4.

e 28 o N
o:.c‘“ :
a® 8

a®s

e . .‘ l', g
B o -

Figure 1-4. IBM-2250 terminal from 1965. Courtesy NASA.

University of Utah

Recruited by the University of Utah in 1968 to work in its computer science program,
Sutherland naturally concentrated on graphics. Over the course of the next few years,
many computer graphics visionaries in training would pass through the university’s labs.

Ed Catmull, for example, loved classic animation but was frustrated by his inability to
draw—a requirement for artists back in those days as it would appear. Sensing that
computers might be a pathway to making movies, Catmull produced the first-ever
computer animation, which was of his hand opening and closing. This clip would find its
way into the 1976 film Future World.

During that time he would pioneer two major computer graphics innovations: texture
mapping and bicubic surfaces. The former could be used to add complexity to simple
forms by using images of texture instead of having to create texture and roughness
using discrete points and surfaces, as shown in Figure 1-5. The latter is used to
generate algorithmically curved surfaces that are much more efficient than the traditional
polygon meshes.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now

Figure 1-5. Saturn with and without texture

Catmull would eventually find his way to Lucasfilm and, later, Pixar and eventually serve
as president of Disney Animation Studios where he could finally make the movies he
wanted to see. Not a bad gig.

Many others of the top names in the industry would likewise pass through the gates of
University of Utah and the influence of Sutherland:

B John Warnock, who would be instrumental in developing a device-
independent means of displaying and printing graphics called
PostScript and the Portable Document Format (PDF) and would be
cofounder of Adobe.

B Jim Clark, founder of Silicon Graphics (SGl), which would supply
Hollywood with some of the best graphics workstations of the day and
create the 3D software development framework now known as
OpenGL. After SGI, he co-founded Netscape Communications, which
would lead us into the land of the World Wide Web.

B Jim Blinn, inventor of both bump mapping, which is an efficient way of
adding true 3D texture to objects, and environment mapping, which is
used to create really shiny things. Perhaps he would be best known
creating the revolutionary animations for NASA'’s Voyager project,
depicting their flybys of the outer planets, as shown in Figure 1-6
(compare that with Figure 1-7 using modern devices). Of Blinn,
Sutherland would say, “There are about a dozen great computer
graphics people, and Jim Blinn is six of them.” Blinn would later lead
the effort to create Microsoft’'s competitor to OpenGL, namely,
Direct3D.

www.it-ebooks.info

7

http://www.it-ebooks.info

8

CHAPTER 1: Computer Graphics: From Then to Now

Figure 1-6. Jim Blinn’s depiction of Voyager II's encounter with Saturn in August of 1981. Notice the streaks
formed of icy particles while crossing the ring plane. Courtesy NASA.

Figure 1-7. Compare Figure 71-6, using some of the best graphics computers and software at the time, with a
similar view of Saturn from Distant Suns 3 running on a $500 iPad.

Coming of Age in Hollywood

Computer graphics would really start to come into their own in the 1980s thanks both to
Hollywood and to machines that were increasingly powerful while at the same time
costing less. For example, the beloved Commodore Amiga that was introduced in 1985
cost less than $2,000, and it brought to the consumer market an advanced multitasking
operating system and color graphics that had been previously the domain of
workstations costing upwards of $100,000. See Figure 1-8.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now

Figure 1-8. Amiga 1000, circa 1985. Photo by Kaivv, licensed under the Creative Commons Aftribution 2.0 Generic
license (http://creativecommons.org/licenses/by/2.0/deed.en).

Compare this to the original black-and-white Mac that was released a scant 18 months
earlier for about the same cost. Coming with a very primitive OS, flat file system, and
1-bit display, it was fertile territory for the “religious wars” that broke out between the
various camps as to whose machine was better (wars that would also include the

Atari ST).

Note One of the special graphics modes on the original Amiga could compress 4,096 colors
into a system that would normally max out at 32. Called Hold and Modify (HAM mode), it was
originally included on one of the main chips for experimental reasons by designer Jay Miner.
Although he wanted to remove the admitted kludge that produced images with a lot of color
distortion, the results would have left a big empty spot on the chip. Considering that unused
chip landscape was something no self-respecting engineer could tolerate, he left it in, and to
Miner’s great surprise, people started using it.

A company in Kansas called NewTek pioneered the use of Amigas for rendering high-
quality 3D graphics when coupled with its special hardware named the Video Toaster.
Combined with a sophisticated 3D rendering software package called Lightwave 3D,
NewTek opened up the realm of cheap, network-quality graphics to anyone who had a
few thousand dollars to spend. This development opened the doors for elaborate
science-fiction shows such as Babylon 5 or Seaquestto be financially feasible
considering their extensive special effects needs.

During the 1980s, many more techniques and innovations would work their way into
common use in the CG community:

www.it-ebooks.info

9

http://www.it-ebooks.info

10

CHAPTER 1: Computer Graphics: From Then to Now

Loren Carpenter developed a technique to generate highly detailed
landscapes algorithmically using something called fractals. Carpenter
was hired by Lucasfilm to create a rendering package for a new
company named Pixar. The result was REYES, which stood for Render
Everything You Ever Saw.

Turner Whitted developed a technique called ray fracing that could
produce highly realistic scenes (at a significant CPU cost), particularly
when they included objects with various reflective and refractive
properties. Glass items were common subjects in various early ray-
tracing efforts, as shown in Figure 1-9.

Frank Crow developed the first practical method of anti-aliasing in
computer graphics. Aliasing is the phenomenon that generates jagged
edges because of the relatively poor resolution of the display. Crow’s
method would smooth out everything from lines to text, producing far
more natural and pleasing imagery. Note that one of Lucasfilm’s early
games was called Rescue on Fractalus. The bad guys were named
jaggies (another term for anti-aliasing).

Star Trek Il: The Wrath of Khan brought with it the first entirely
computer-generated sequence used to illustrate how a device called
the Genesis Machine could generate life on a lifeless planet. That one
simulation was called “the effect that wouldn’t die” because of its
groundbreaking techniques in flame and particle animation, along with
the use of fractal landscapes.

Figure 1-9. Saphisticated images such as this are within the range of hobbyists with programs
such as the apen source POV-Ray. Photo by Gilles Tran, 2006.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now 11

The 1990s brought the T1000 “liquid metal” terminator in 7Terminator 2: Judgment Day,
the first completely computer-generated full-length feature film of 7oy Story, believable
animated dinosaurs in Jurassic Park, and James Cameron’s Titanic, all of which helped
solidified CG as a common tool in the Hollywood director’s arsenal.

By the decade’s end, it would be hard to find any films that didn’t have computer
graphics as part of the production in either actual effects or in postproduction to help
clean up various scenes. New techniques are still being developed and applied in ever
more spectacular fashion, as in Disney’s delightful Up/or James Cameron’s beautiful
Avatar.

Now, once again, take out your i-device and realize what a little technological marvel it
is. Feel free to say “wow” in hushed, respectful tones.

Toolkits

All of the 3D wizardry referenced earlier would never have been possible without
software. Many CG software programs are highly specialized, and others are more
general purpose, such as OpenGL ES, the focus of this book. So, what follows are a few
of the many toolkits available.

OpenGL

Open Graphics Library (OpenGL) came out of the pioneering efforts of SGI, the maker of
high-end graphics workstations and mainframes. Its own proprietary graphics
framework, IRIS-GL, had grown into a de-facto standard across the industry. To keep
customers as competition increased, SGI opted to turn IRIS-GL into an open framework
so as to strengthen their reputation as the industry leader. IRIS-GL was stripped of non-
graphics-related functions and hardware-dependent features, renamed OpenGL, and
released in early 1992. As of this writing, version 4.1 is the most current one available.

As small handheld devices became more common, OpenGL for Embedded Systems
(OpenGL ES) was developed, which was a stripped-down version of the desktop
version. It removed many of the more redundant API calls while simplifying other
elements. making it run efficiently on lower-power CPUs. As a result, it has been widely
adopted across many platforms, such as Android, iOS, Nintendo 3DS, and BlackBerry
(OS 5.0 and newer).

There are two main flavors of OpenGL ES, 1.xand 2.x. Many devices support both. 1.x
is the higher-level variant, based on the original OpenGL specification. Version 2.x (yes, |
know it’s confusing) is targeted toward more specialized rendering chores that can be
handled by programmable graphics hardware.

Direct3D

Direct3D (D3D) is Microsoft’s answer to OpenGL and is heavily oriented toward game
developers. In 1995, Microsoft bought a small company called RenderMorphics that

www.it-ebooks.info

http://www.it-ebooks.info

12

CHAPTER 1: Computer Graphics: From Then to Now

specialized in creating a 3D framework named RealityLab for writing games. RealityLab
was turned into Direct3D and first released in the summer of 1996. Even though it was
proprietary to Windows-based systems, it has a huge user base across all of Microsoft’s
platforms: Windows, Windows 7 Mobile, and even Xbox. There are constant ongoing
debates between the OpenGL and Direct3D camps as to which is more powerful,
flexible, and easier to use. Other factors include how quickly hardware manufacturers
can update their drivers to support new features, ease of understanding (Direct3D uses
Microsoft’'s COM interface that can be very confusing for newcomers), stability, and
industry support.

The Other Guys

While OpenGL and Direct3D remain at the top of the heap when it comes to both
adoption and features, the graphics landscape is littered with numerous other
frameworks, many which are supported on today’s devices.

In the computer graphics world, graphics libraries come in two very broad flavors: low-
level rendering mechanisms represented by OpenGL and Direct3D and high-level
systems typically found in game engines that concentrate on resource management with
special extras that extend to common gameplay elements (sound, networking, scoring,
and so on). The latter are usually built on top of one of the former for the 3D portion. And
if done well, the higher-level systems might even be abstracted enough to make it
possible to work with both GL and D3D.

QuickDraw 3D

An example of a higher-level general-purpose library is QuickDraw 3D (QD3D). A 3D
sibling to Apple’s 2D QuickDraw (used in pre-OS-X days), QD3D had an elegant means
of generating and linking objects in an easy-to-understand hierarchical fashion (a scene-
graph). It likewise had its own file format for loading 3D models and a standard viewer
and was platform independent. The higher-level part of QD3D would calculate the scene
and determine how each object and, in turn, each piece of each object would be shown
on a 2D drawing surface. Underneath QD3D there was a very thin layer called RAVE that
would handle device-specific rendering of these bits.

Users could go with the standard version of RAVE, which would render the scene as
expected. But more ambitious users could write their own that would display the scene
in a more artistic fashion. For example, one company generated the RAVE output so as
to look like their objects were hand-painted on the side of a cave. It was very cool when
you could take this modern version of a cave drawing and spin it around. The plug-in
architecture also made QD3D highly portable to other machines. When potential users
balked at using QD3D since it had no hardware solution on PCs, a version of RAVE was
produced that would use the hardware acceleration available for Direct3D by actually
using its competitor as its rasterizer. Sadly, QD3D was almost immediately killed on the
second coming of Steve Jobs, who determined that OpenGL should be the 3D standard
for Macs in the future. This was an odd statement because QD3D was not a competitor
to the other but an add-on that made the lives of programmers much easier. After Jobs

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now 13

refused requests to make QD3D open source, the Quesa project was formed to re-
create as much as possible the original library, which is still being supported at the time
of this writing. And to nobody’s surprise, Quesa uses OpenGL as its rendering engine.

A disclaimer here: | wrote the RAVE/Direct3D layer of QD3D only to have the project
canceled a few days after going “gold master” (ready to ship).

OGRE

Another scene-graph system is Object-oriented Rendering Engine (OGRE). First
released in 2005, OGRE can use both OpenGL and Direct3D as the low-level rasterizing
solution, while offering users a stable and free toolkit used in many commercial
products. The size of the user community is impressive. A quick peek at the forums
shows more than 6,500 topics in the General Discussion section alone at the time of this
writing.

OpenSceneGraph

Recently released for iOS devices, OpenSceneGraph does roughly what QuickDraw 3D
did, by providing a means of creating your objects on a higher level, linking them
together, and performing scene management duties and extra effects above the
OpenGL layer. Other features include importing multiple file formats, text support,
particle effects (used for sparks, flames, or clouds), and the ability to display video
content in your 3D applications. Knowledge of OpenGL is highly recommended,
because many of the OSG functions are merely thin wrappers to their OpenGL
counterparts.

Unity3D

Unlike OGRE, QD3D, or OpenSceneGraph, Unity3D is a full-fledged game engine. The
difference lies in the scope of the product. Whereas the first two concentrated on
creating a more abstract wrapper around OpenGL, game engines go several steps
further, supplying most if not all of the other supporting functionality that games would
typically need such as sound, scripting, networked extensions, physics, user interface,
and score-keeping modules. In addition, a good engine will likely have tools to help
generate the assets and be platform independent.

Unity3D has all of these so would be overkill for many smaller projects. Also, being a
commercial product, the source is not available, and it is not free to use, costing a
modest amount (compared to other products in the past that could charge $100,000
or more).

And Still Others

Let’s not ignore A6, Adventure Game Studio, C4, Cinder, Cocos3d, Crystal Space, VTK,
Coin3D, SDL, QT, Delta3D, Glint3D, Esenthel, FlatRedBall, Horde3D, Irrlicht,

www.it-ebooks.info

http://www.it-ebooks.info

14

CHAPTER 1: Computer Graphics: From Then to Now

Leadwerks3D, Lightfeather, Raydium, Panda3D (from Disney Studios and CMU), Torque
(available for iOS), and many others. Although they’re powerful, one drawback of using
game engines is that more often than not, your world is executed in their environment.
So if you need a specific subtle behavior that is unavailable, you may be out of luck.
That brings me back to the topic of this book.

Back to the Waltz of the Two Cubes

Up through iOS4, Apple saw OpenGL as more of a general-purpose framework. But
starting with iOS5, they wanted to emphasize it as a perfect environment for game
development. That is why, for example, the project icon in the wizard is titled “OpenGL
Game,” where previously it was “OpenGL ES Application.” That also explains why the
example exercise pushes the better performing—»but considerably more cumbersome—
OpenGL ES 2 environment, while ignoring the easier version that is the subject of

this book.

Note Also starting with i0S5, Apple has added a number of special helper-objects in their
new GLKit framework that take over some of the common duties developers had to do
themselves early on. These tasks include image loading, 3D-oriented math operations, creating
a special OpenGL view, and managing special effects.

With that in mind, I’ll step into 2.0-land every once in a while, such as via the example
app described below, because that’s all we have for now. Detailed discussions of 2.0
will be reserved for the last chapter, because it really is a fairly advanced topic for the
scope of this book.

A Closer Look

The wizard produces six main files not including those of the plist and storyboards. Of
these, there are the two for the view controller, two for the application delegate, and two
mysterious looking things called shader.fsh and shader.vsh.

The shader files are unique to OpenGL ES 2.0 and are used to fine-tune the look of your
scenes. They serve as small and very fast programs that execute on the graphics card
itself, using their own unique language that resembles C. They give you the power to
specify exactly how light and texture should show up in the final image. Unfortunately,
OpenGL ES 2.0 requires shaders and hence a somewhat steeper learning curve, while
the easier and more heavily used version 1.1 doesn’t use shaders, settling for a few
standard lighting and shading effects (called a “fixed function” pipeline). The shader-
based applications are most likely going to be games where a visually rich experience is
as important as anything else, while the easier 1.1 framework is just right for simple
games, business graphics, educational titles, or any other apps that don’t need to have
perfect atmospheric modeling.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now 15

The application delegate has no active code in it, so we can ignore it. The real action
takes place in the viewController via three main sections. The first initializes things using
some of the standard view controller methods we all know and love, the second serves
to render and animate the image, and the third section manages these shader things.
Don’t worry if you don’t get it completely, because this example is merely intended to
give you a general overview of what a basic OpenGL ES program looks like.

Note All of these exercises are available on the Apress site, including additional bonus
exercises that may not be in the book.

You will notice that throughout all of the listings, various parts of the code are marked
with a numbered comment. The numbers correspond to the descriptions following the
listing and that highlight various parts of the code.

Listing 1-1. The initialization of the wizard-generated view controller.

#import "TwoCubesViewController.h"
#define BUFFER_OFFSET(i) ((char *)NULL + (i))

// Uniform index.
Enum //1

UNIFORM_MODELVIEWPROJECTION_MATRIX,
UNIFORM_NORMAL_MATRIX,
NUM_UNIFORMS

b

GLint uniforms[NUM_UNIFORMS];

// Attribute index.
enum

ATTRIB_VERTEX,
ATTRIB_NORMAL,
NUM_ATTRIBUTES

};
GLfloat gCubeVertexData[216] = /12
{
// Data layout for each line below is:
// positionX, positionY, positionZ, normalX, normalY, normalZ,
0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f,
0.5f, 0.5f, -0.5f, 1.0f, 0.0f, 0.0f,
0.5f, -0.5f, 0.5f, 1.0f, 0.0f, 0.0f,
0.5f, -0.5f, 0.5f, 1.0f, o.of, 0.0f,
0.5f, 0.5f, 0.5f, 1.0f, o.of, o.of,
0.5f, 0.5f, -0.5f, 1.0f, 0.0f, 0.0f,

0.5f, 0.5f, -0.5f,
-0.5f, 0.5f, -0.5f,
0.5f, 0.5, 0.5f,
0.5f, 0.5f, 0.5f,

[N
o
e
-
o
_h
-

[N eNeNe]
o
e
-

www.it-ebooks.info

http://www.it-ebooks.info

16 CHAPTER 1: Computer Graphics: From Then to Now

-0.5f, 0.5f, -0.5f, 0.0f, 1.0f,
-0.5f, 0.5f, 0.5f, o0.of, 1.0f,
-0.5f, 0.5f, -0.5f, -1.0f, o.of,
-0.5f, -0.5f, -0.5f, -1.0f, o0.0f,
-0.5f, 0.5f, 0.5f, -1.0f, o.of,
-0.5f, 0.5f, 0.5f, -1.0f, o.of,
-0.5f, -0.5f, -0.5f, -1.0f, o.o0f,
-0.5f, -0.5f, 0.5f, -1.0f, o.of,
-0.5f, -0.5f, -0.5f, 0.0f, -1.0f,
0.5f, -0.5f, -0.5f, o.of, -1.0f,
-0.5f, -0.5f, 0.5f, 0.0f, -1.0f,
-0.5f, -0.5f, 0.5f, 0.0f, -1.0f,
0.5f, -0.5f, -0.5f, 0.0f, -1.0f,
0.5f, -0.5f, 0.5f, 0.of, -1.0f,
0.5f, 0.5f, 0.5f, 0.0f, o0.0f,
-0.5f, 0.5f, 0.5f, 0.0f, o0.0f,
0.5f, -0.5f, 0.5f, 0.0f, 0.0f,
0.5f, -0.5f, 0.5f, 0.o0f, o0.0f,
-0.5f, 0.5f, 0.5f, 0.0f, 0.0f,
-0.5f, -0.5f, 0.5f, 0.0f, o0.0f,
0.5f, -0.5f, -0.5f, 0.0f, 0.0f,
-0.5f, -0.5f, -0.5f, 0.0f, 0.0f,
0.5f, 0.5f, -0.5f, 0.0f, o0.0f,
0.5f, 0.5f, -0.5f, 0.0f, o.o0f,
-0.5f, -0.5f, -0.5f, 0.0f, 0.0f,
-0.5f, 0.5f, -0.5f, 0.0f, o.0f,

s

@interface TwoCubesViewController () {
GLuint _program;

GLKMatrix4 _modelViewProjectionMatrix;
GLKMatrix3 _normalMatrix;
float _rotation;

GLuint _vertexArray;
GLuint _vertexBuffer;

}

cocooooo
o
=
<

cooooo
=3
-
<

-1.0f,
-1.0f

@property (strong, nonatomic) EAGLContext *context;
@property (strong, nonatomic) GLKBaseEffect *effect;

- (void)setupGL;
- (void)tearDownGL;

(BOOL)loadShaders;

- (BOOL)1inkProgram: (GLuint)prog;
- (BOOL)validateProgram: (GLuint)prog;
@end

(BOOL)compileShader: (GLuint *)shader type:(GLenum)type file:(NSString *)file;

www.it-ebooks.info

//3

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now 17

@implementation TwoCubesViewController

@synthesize context = _context;
@synthesize effect = _effect;

- (void)viewDidLoad

}

[super viewDidLoad];
self.context = [[EAGLContext alloc] initWithAPI:kEAGLRenderingAPIOpenGLES2]; //4

if (!self.context) {
NSLog(@"Failed to create ES context");

GLKView *view = (GLKView *)self.view; //5
view.context = self.context;
view.drawableDepthFormat = GLKViewDrawableDepthFormat24; //6
[self setupGL];
- (void)viewDidUnload
[super viewDidUnload];
[self tearDownGL];
if ([EAGLContext currentContext] == self.context) {
[EAGLContext setCurrentContext:nil];
self.context = nil;

}

- (void)didReceiveMemoryWarning

}

[super didReceiveMemoryWarning];
// Release any cached data, images, etc. that aren't in use.

(BOOL)shouldAutorotateToInterfaceOrientation: (UIInterfaceOrientation)interfaceOrientatio

n

{

// Return YES for supported orientations.

if ([[UIDevice currentDevice] userInterfaceldiom] == UIUserInterfaceIdiomPhone) {
return (interfaceOrientation != UIInterfaceOrientationPortraitUpsideDown);

} else {
return YES;

}

www.it-ebooks.info

http://www.it-ebooks.info

18 CHAPTER 1: Computer Graphics: From Then to Now

- (void)setupGL
{
[EAGLContext setCurrentContext:self.context]; /17

[self loadShaders];

self.effect = [[GLKBaseEffect alloc] init]; //8
self.effect.lighto.enabled = GL_TRUE; /79
self.effect.lighto.diffuseColor = GLKVector4Make(1.0f, 0.4f, 0.4f, 1.0f); //10
glEnable(GL_DEPTH_TEST); //11
glGenVertexArraysOES(1, & vertexArray); //12

glBindVertexArrayOES(_vertexArray);

glGenBuffers(1, & vertexBuffer); //13
glBindBuffer(GL_ARRAY BUFFER, vertexBuffer);
glBufferData(GL_ARRAY BUFFER,

sizeof(gCubeVertexData), gCubeVertexData, GL_STATIC DRAW); //14

glEnableVertexAttribArray(GLKVertexAttribPosition); //15

glVertexAttribPointer(GLKVertexAttribPosition, 3, GL_FLOAT, GL_FALSE, 24,
BUFFER_OFFSET(0));

glEnableVertexAttribArray(GLKVertexAttribNormal);

glVertexAttribPointer(GLKVertexAttribNormal, 3, GL_FLOAT, GL_FALSE, 24,
BUFFER_OFFSET(12));

glBindVertexArrayOES(0); //16
}

- (void)tearDownGL //17
[EAGLContext setCurrentContext:self.context];

glDeleteBuffers(1, & vertexBuffer);
glDeleteVertexArraysOES(1, & vertexArray);

self.effect = nil;
if (_program) {

glDeleteProgram(_program);
_program = 0;

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now 19

So, what is happening here?

In lines 1ff (the /fmeans “and the lines following”), some funky-looking
enums are defined. These hold “locations” of various parameters in
the shader code. We’'ll get to this later in the book.

Lines 2ff actually define the data used to describe the two cubes. You
will rarely have to define anything in code like this. Usually, primitive
shapes (spheres, cubes, and cones, for example) are generated on the
fly, while more complicated objects are loaded in from a file generated
by a 3D authoring tool.

Both cubes actually use the same dataset but just operate on it in a
slightly different fashion. There are six sections of data, one for each
face, with each line defining a vertex or corner of the face. The first
three numbers are the x, y and z values in space, and the second three
have the normal of the face (the normal being a line that specifies the
direction the face is aiming and that is used to calculate how the face
is illuminated). If the normal is facing a light source, it will be lit; if
away, it would be in shadow.

You will notice that the cube’s vertices are either 0.5 or -0.5. There is
nothing magical about this, merely defining the cube’s size as being
1.0 unit on a side.

The faces are actually made up of two triangles. The big-brother of
OpenGL ES can render four-sided faces, but not this version, which
can do only three sides. So we have to fake it. That is why there are
six vertices defined here: three for each triangle. Notice that two of the
points are repeated. That is not really necessary, because only four
unique vertices will do just fine.

Lines 3ff specify the matrices that are used to rotate and translate
(move) our objects. In this use, a matrix is a compact form of
trigonometric expressions that describe various transformations for
each object and how their geometry in 3 dimensions is eventually
mapped to a two-dimensional surface of our screens. In OpenGL ES
1.1, we rarely have to refer to the actual matrices directly because the
system keeps them hidden from us, while under 2.0, we see all of the
inner workings of the system and must handle the various
transformations ourselves. And it is not a pretty sight at times.

Line 4 allocates an OpenGL context. This is used to keep track of all of
our specific states, commands, and resources needed to actually
render something on the screen. This line actually allocates a context
for OpenGL ES 2, as specified via the parameter passed via
initWithAPI. Most of the time we’ll be using
KEAGLRenderingAPIOpenGLES].

www.it-ebooks.info

http://www.it-ebooks.info

20

CHAPTER 1: Computer Graphics: From Then to Now

In line 5, we grab the view object of this controller. What makes this
different is the use of a GLKView object, as opposed to the more
common UlView that you are probably familiar with. New to iOS5, the
GLKView takes the place of the much messier EAGLView. With the
former, it takes only a couple of lines of code to create a GLKView and
specify various properties, whereas in those dark and unforgiving days
before iOS5, it could take dozens of lines of code to do only basic
stuff. Besides making things easier to set up, the GLKView also
handles the duties of calling your update and refresh routines and
adds a handy snapshot feature to get screen grabs of your scene.

Line 6 states that we want our view to support full 24-bit colors.

Line 7 features the first 2.0-only call. As mentioned above, shaders are
little C-like programs designed to execute on the graphics hardware.
They exist in either a separate file, as in this exercise, or as some
people prefer, embedded in text strings in the main body of the code.

Line 8 illustrates another new feature in the GLKit: effect objects. The
effect objects are designed to hold some date and presentation
information, such as lighting, materials, images, and geometry that are
needed to create a special effect. On iOS5’s initial release, only two
effects were available, one to do reflections in objects and the other to
provide full panoramic images: Both are commonly used in graphics,
so they are welcomed by developers who would otherwise have to
code their own. | expect libraries of effects to eventually become
available, both from Apple and from third parties.

In this case, the example is using the “base effect” to render one of
the two cubes. You’d likely never use an effect class to draw just basic
geometry like this, but it demonstrates how the effect encapsulates a
miniature version of OpenGL ES 1.1. That is, it has a lot of the missing
functionality, mainly in lights and materials, that you’d otherwise have
to reimplement when porting 1.1 code over to 2.0.

Also a part of the setup of the effect, line 9 shows us how to turn on
the lights, followed by line 10, which actually specifies the color of the
light by using a four-component vector. The fields are ordered as red,
green, blue, and alpha. The colors are normalized between 0 and 1, so
here red is the main color, with green and blue both at only 40%. If
you guessed this is the color of the reddish cube, you’d be right. The
fourth component is alpha, which is used to specify transparency, with
1.0 being completely opaque.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now 21

Depth-testing is another important part of 3D worlds. It is used in line
11, in what is otherwise a very nasty topic, for occluding or blocking
stuff that is hidden behind other stuff. What depth-testing does is to
render each object on your screen with a depth component. Called a
z-buffer, this lets the system know, as it renders an object, whether
something is in front of that object. If so, the object (or pieces of it) is
not rendered. In earlier days, z-buffering was so slow and took up so
much extra memory that it was invoked only when absolutely
necessary, but nowadays there is rarely any reason not to use it,
except for some special rendering effects.

Lines 12f (the single fmeaning “the line following”) sets the system up
for something called Vertex Array Objects (VAOs). VAOs enable you to
cache your models and their attributes in the GPU itself, cutting down
a lot of overhead otherwise incurred by copying the data across the
bus for each frame. Up until iOS4, VAOs were available only on
OpenGL ES 2 implementations, but now both versions can use them.

Seen here, we first get a “name” (actually just a unique handle) used
to identify our array of data to the system. Afterwards, we take that
and “bind” it, which merely makes it the currently available array for
any calls that need one. It can be unbound, either by binding a new
array handle or by using 0. This process of naming and binding
objects is a common one used across all of OpenGL.

In lines 13ff, the same process is repeated, but this time on a vertex
buffer. The difference is that a vertex buffer is the actual data, and in
this case, it points to the statically defined data for the cube at the very
top of this file.

Line 14 supplies the cube’s data to the system now, specifying both
the size and the location of the data, which is then sent up to the
graphics subsystem.

Remember how both the 3D xyz coordinates of each corner were
embedded with the normals of the faces (the things that say where a
face is pointing)? You can actually embed almost any data in these
arrays, as long as the data format doesn’t change. Lines 15f tell the
system which data is which. The first line says that we’re using
GLKVertexAttribPosition data made up of three floating point values
(the x, y, and z components), offset by 0 bytes from the start of the
data supplied in line 14, and a total of 24 bytes long for each
structure. That means when it comes time to draw this cube, it will
grab three numbers from the very start of the buffer, jump 24 bytes,
grab the next three, and so on.

The normals are treated almost identical, except they are called
GLKVertexAttribNormal, and start at an offset of 12 bytes, or
immediately after the xyz data.

www.it-ebooks.info

http://www.it-ebooks.info

22

CHAPTER 1: Computer Graphics: From Then to Now

B Line 16 “closes” the vertex array object. Now, whenever we want to
draw one of these cubes, we can just bind this specific VAO and give
a draw command without having to supply the format and offset
information again.

B Finally, in line 17, the buffers are deleted.

If your head hurts, it’s understandable. This is a lot of fussing around to draw a couple of
cubes. But a visual world is a rich one, and needs a lot of stuff to define it. And we’re far
from done yet. But the principles remain the same.

Showing the Scene

In Listing 1-2, we can now actually draw the data to the screen and see some pretty
pictures. This uses two different approaches to display things. The first hides everything
under the new GLKit available from iOS5 and beyond. It hides all of the shaders and
other stuff that OpenGL ES 2 normally exposes, and does so under the new
GLKBaseEffect class. The second way is just straight 2.0 stuff. Together, the both of
them show how the two different approaches can be part of the same rendering loop.
But remember, using the effects classes to render a simple cube is overkill, sort of like
hopping in the car to drive 6 feet to the mailbox.

Note Apple has pitched the use of GLKBaseEffect as a means to get 1.1 users to port their
code to 2.0, because it has lights, materials, and other features that 2.0 doesn’t have. But it
really doesn’t work well for a simple migration because it has far too many limitations to host
the entire 1.1 environment of most OpenGL apps.

Listing 1-2. Rendering the scene to the display.
- (void)update //1
{

//2
float aspect = fabsf(self.view.bounds.size.width / self.view.bounds.size.height);
GLKMatrix4 projectionMatrix =

GLKMatrix4MakePerspective(GLKMathDegreesToRadians(65.0f), aspect, 0.1f, 100.0f);

self.effect.transform.projectionMatrix = projectionMatrix; /73

GLKMatrix4 baseModelViewMatrix = //4
GLKMatrix4MakeTranslation(0.0f, 0.0f, -4.0f);

baseModelViewMatrix = //5

GLKMatrix4Rotate(baseModelViewMatrix, _rotation, 0.0f, 1.0f, 0.0f);

// Compute the model view matrix for the object rendered with GLKit.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now 23

GLKMatrix4 modelViewMatrix = /16
GLKMatrix4MakeTranslation(0.0f, 0.0f, -1.5f);

modelViewMatrix = /17
GLKMatrix4Rotate(modelViewMatrix, rotation, 1.0f, 1.0f, 1.0f);

modelViewMatrix = //8
GLKMatrix4Multiply(baseModelViewMatrix, modelViewMatrix);

self.effect.transform.modelviewMatrix = modelViewMatrix; /79

// Compute the model view matrix for the object rendered with ES2.

modelViewMatrix =

GLKMatrix4MakeTranslation(0.0f, 0.0f, 1.5f); //10
modelViewMatrix =

GLKMatrix4Rotate(modelViewMatrix, rotation, 1.0f, 1.0f, 1.0f);
modelViewMatrix =

GLKMatrix4Multiply(baseModelViewMatrix, modelViewMatrix);
_normalMatrix = //11
GLKMatrix3InvertAndTranspose(GLKMatrix4GetMatrix3(modelViewMatrix),
NULL);

//12
_modelViewProjectionMatrix = GLKMatrix4Multiply(projectionMatrix, modelViewMatrix);

_rotation += self.timeSincelastUpdate * 0.5f; //13

}
- (void)glkView: (GLKView *)view drawInRect:(CGRect)rect
{

glClearColor(0.65f, 0.65f, 0.65f, 1.0f); //14
glClear(GL_COLOR BUFFER BIT | GL_DEPTH BUFFER_BIT);

glBindVertexArrayOES(_vertexArray); //15

// Render the object with GLKit.

[self.effect prepareToDraw]; //16

glDrawArrays (GL_TRIANGLES, 0, 36); //11

// Render the object again with ES2.

glUseProgram(_program); //18

glUniformMatrix4fv(uniforms[UNIFORM_MODELVIEWPROJECTION MATRIX], 1, o,
_modelViewProjectionMatrix.m);

glUniformMatrix3fv(uniforms[UNIFORM_NORMAL_MATRIX], 1, 0, _normalMatrix.m);

glDrawArrays (GL_TRIANGLES, 0, 36); //19

www.it-ebooks.info

http://www.it-ebooks.info

24 CHAPTER 1: Computer Graphics: From Then to Now

Let’s take a look at what’s going on here:

Line 1, the start of the update method, is actually one of the delegate
calls from the new GLKViewController object. This supports frame-rate
hints, as in, “I'd love to have my new game Dangerous Poodles update
at 100 fps, if you can do so please.” It will also let you know what its
real frame rate is, the number of frames since starting the session, and
it handles pause and resume functions.

In line 2, besides defining the objects to show, we need to define the
viewing frustum. This simply specifies how big of a swath of area you
want to see in your world. Think of it as a camera’s zoom lens, where
you can zoom in or out. This then gets converted into a projection-
matrix, similar to a transformation matrix that we saw earlier. This
encapsulates the information to project your object up against you
device’s display.

Note that the first value supplied to GLKMatrix4dMakePerspective is 65,
meaning that we want our “lens” to have a 65 degree field-of-view.

This is generated using one of the many new math library calls that
also form a part of the GLKit. The calls include support for vectors,
matrices, and quaternions (covered later), exclusively for 3D scene
manipulation.

The GLKBaseEffect used to contain one of the cubes needs to be told
to use this matrix in line 3.

Line 4 generates a frans/ation matrix. This describes how to move, or
translate, your object through space. In this case, the -4 value moves it
away from our eyepoint by 4 units. By default, the OpenGL coordinate
system has the X-axis, left and right, the Y-axis up and down, and the
Z-axis, forward and back. We are looking towards —Z.

The matrix, baseModelViewMatrix, gets its name from OpenGL’s
“ModelView” matrix, which the one invoked more frequently than any
others.

By applying it first, we are actually moving our entire world away by 4
units. Below we add separate motions to the individual cubes.

Now we want to rotate the cube. Line 5 shows that transformations
can be concatenated by multiplying them together. Here we reuse the
baseModelView matrix from the previous line.

“What?” you are no doubt asking, “another one of these silly matrix
things?” Even seemingly simple motions sometimes require a
convoluted assortment of rotations and translations. Here in line 6 the
cube is moved -1.5 units away from its own origin. That’s why neither
is actually centered in the screen but orbit around an invisible
something.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now 25

Line 7 applies a rotation to each axis of the cube’s world. The rotation
value is updated each time through this loop.

Line 8 applies the baseModelViewMatrix done earlier to this one
moving it away from our eyepoint. This combined matrix is then
assigned to the GLKBaseEffect object along with the projection matrix
in line 9.

In line 10, much of the same is repeated for the OpenGL ES 2-only
code block that draws the blue cube. Lines 10ff, are exactly like lines
6, 7, and 8, except the translation is in a positive direction, not a
negative one.

Now, in line 11, we need another matrix, this one for the face normals
described earlier. Normals are generally at their happiest when exactly
1 unit in length, otherwise known as being “normalized.” This
counteracts any distortions the previous transformation matrices might
otherwise introduce.

Line 12 combines the model view matrix with the projection matrix
done earlier.

In line 13, the rotational value is bumped up a bit. Multiplying it against
the value timeSincelLastUpdate ensures that the rotation rates are
smooth.

The second method, drawInRect(), is the one that actually renders the
objects. Lines 14f clear the screen’s background. Here glClearColor()
is set to display 65% values of all three colors, to give the light gray
you see. glClear() actually performs the clearing operation but only on
buffers you specify—in this case, the “color buffer,” which is the main
one, and the depth buffer, which holds the z-values for hidden surface
removal.

In line 15, we can finally use the VAO created way back in the day.
Binding it to the system means to use the collection of stuff previously
uploaded to the GPU.

The first cube rendered is the one managed by the GLKBaseEffect
object. Line 16 tells it to prepare to render, and line 17 actually
commands it to do so.

Now in lines 18ff, we start using the shader stuff for the other cube.
glUseProgram() tells it to use the two mysterious shader files,
Shader.fsh and Shader.vsh, which had previously been loaded, while
the two glUniform calls hand off the model view and the projection
matrices to them.

Now a second call to glDrawArrays() in line 19, and that does it!

www.it-ebooks.info

http://www.it-ebooks.info

26

CHAPTER 1: Computer Graphics: From Then to Now

The only other section is that which handles the loading and using of the shaders. This
process is to load them first in memory, compile, and then link them. If all works as
planned, they can be turned on with the call to glUseProgram() above.

One of the files, Shader.vsh, intercepts the vertices as the hardware starts processing
them, while the other, Shader.fsh, in effect lets you play with each individual pixel before
it’s sent to the display hardware.

Tweak and Tweak Some More

Whenever | learn some new technology, | start tweaking the values to see what
happens. If it happens the way | expect, | feel as if I’'ve just acquired a new super-power.
So, let’s play here.

Let’s tweak a couple of the values just for kicks. First, go to the gCubeVertexData a few
pages up, and change the very first value from 0.0 to 1.0. What do you think you’ll see?
How about Figure 1-107?

—

Figure 1-10. With one vertex moved out.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now 27

What About the Shaders?

Here is not the place to get into a detailed breakdown of shader design and the
language, but let’s remove a little of the mystery by playing with those as well. Listing 1-
3 is the vertex shader.

Listing 7-3. Shader.vsh that preprocesses the vertices.

attribute vec4 position;
attribute vec3 normal;

varying lowp vec4 colorVarying;

uniform mat4 modelViewProjectionMatrix;
uniform mat3 normalMatrix;

void main()
vec3 eyeNormal = normalize(normalMatrix * normal);

vec3 lightPosition = vec3(0.0, 0.0, 1.0); //1
vec4 diffuseColor = vec4(0.4, 0.4, 1.0, 1.0);

float nDotVP = max(0.0, dot(eyeNormal, normalize(lightPosition)));
colorVarying = diffuseColor * nDotVP;

gl Position = modelViewProjectionMatrix * position; /12

}

Here in the vertex shader is where the light is hidden for this particular cube; the values
are the x, y, and z values. Change the middle value to 5.0, which will move it way above
the scene but will affect only the blue cube.

In line 2, gl_Position is predefined object that carries the position of the current vertex.
Add in the following line to the end: gl_Position.x*=.5;. Figure 1-11a shows the result.

www.it-ebooks.info

http://www.it-ebooks.info

28 CHAPTER 1: Computer Graphics: From Then to Now

Figure 1-11a,b. Changing the vertical scaling in the vertex shader on the left, and coloring in the fragment shader
on the right.

Now for a quick look at the fragment shader, in Listing 1-3. This does absolutely nothing
and is merely a pass-through shader. However, it is here where you can intercept the
calls to each of the “fragments,” something like pixels at this level. Add the line
gl_FragColor.g=1.0; at the end. This will add green to every pixel in the image, looking
something like Figure 1-11b. See? That wasn’t so hard was it? Now you can proudly go
out and tell your friends that you’ve been programming shaders all day and watch the
garlands pile up around your feet.

Listing 1-3. The fragment shader.
varying lowp vec4 colorVarying;
void main()

gl FragColor = colorVarying;

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now 29

Finally, we are done with the very first example. Yes, for the 3D newcomers out there, it
was likely too much information too soon. But | have a theory that if the first thing you do
in the morning is to eat a cold frog, the rest of the day is bound to be much better.
Consider this first example a cold frog, at least until Chapter 7 that is.

OpenGL Architecture

Now since we’ve analyzed to death a “simple” OpenGL program, let’s take a brief look
at what goes on under the hood at the graphics pipeline.

The term pipeline is commonly used to illustrate how a tightly bound sequence of events
relate to each other, as illustrated in Figure 1-12. In the case of OpenGL ES, the process
accepts a bunch of numbers in one end and outputs something really cool-looking at
the other end, be it an image of the planet Saturn or the results of an MRI.

OpenGL application Geometry and texture
v
Vertex data Lighting, transform, scale, etc
v
3D Geometry Clipping
v
“2D” Geometry Projection
v
Fragment Rasterization
v
Per-fragment operations Fog and texture
v
Framebuffer Stencil, alpha, z-tests, blending
Y
Eyeballs “Hey, that’s really cool!”

Figure 1-12. Basic overview of the OpenGL ES 1x pipeline

www.it-ebooks.info

http://www.it-ebooks.info

30 CHAPTER 1: Computer Graphics: From Then to Now

B The first step is to take the data that describes some geometry along
with information on how to handle lighting, colors, materials, and
textures and send it into the pipeline.

B Next the data is moved and rotated, after which lighting on each
object is calculated and stored. The scene—say, a solar-system
model—must then be moved, rotated, and scaled based on the
viewpoint you have set up. The viewpoint takes the form of a frustrum,
a rectangular cone of sorts, which limits the scene to, ideally, a
manageable level.

Next the scene is clipped, meaning that only stuff that is likely to be
visible is actually processed. All of the other stuff is culled out as early
as possible and discarded. Much of the history of real-time graphics
development has to do with object culling techniques, some of which
are very complex.

Let’s get back to the example of a solar system. If you are looking at
the Earth and the Moon is behind your viewpoint, there is no need
whatsoever to process the Moon data. The clipping level does just
this, both on an object level on one end and on a vertex level on the
other. Of course, if you can pre-cull objects on your own before
submitting to the pipeline, so much the better. Perhaps the easiest is
to simply tell whether an object is behind you, making it completely
skippable. Culling can also take place if the object is just too far away
to see or is completely obscured by other objects.

B The remaining objects are now projected against the “viewport,” a
virtual display of sorts.

B At this point is where rasterization takes place. Rasterization breaks
apart the image into fragments that are in effect single pixels.
Fragments are pixels bundled with additional information such as
texture and fog, in preparation for the next step.

B Now the fragments can have texture and fog effects applied to them.
Additional culling can likewise take place if the fog might obscure the
more distant fragments, for example.

B The final phase is where the surviving fragments are written to the
frame buffer, but only if they satisfy some last-minute operations. Here
is where the fragment’s alpha values are applied for translucency,
along with depth tests to ensure that the closest fragments are drawn
in front of further ones and stencil tests used to render to
nonrectangular viewports.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Computer Graphics: From Then to Now

Now to compare things, Figure 1-13 shows the pipeline for OpenGL ES 2. Somewhat
simpler in design, but it can be considerably more cumbersome to code for.

OpenGL application

Vertex data

Fragment

Per-fragment operations

Framebuffer

Eyeballs

Geometry and texture

v

Vertex Shader

v

Rasterizer

v

Fragment Shader

v

Depth and Blending

v

“Hey, that’s even cooler!”

Figure 1-13. Basic overview of the OpenGL ES 2.x pipeline

When this is done, and all the rasters have been rasterized, the vertices shaded, and the
colors blended, you might actually see something that looks like that teapot shown in

Figure 1-14.

Note The more you delve into computer graphics, the more you’ll see a little teapot popping
up here and there in examples in books all the way to television and movies (The Simpsons,
Toy Story). The legend of the teapot, sometimes called the Utah Teapot (everything can be
traced back to Utah