
www.it-ebooks.info

http://www.it-ebooks.info/

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.it-ebooks.info

http://www.it-ebooks.info/

iv

Contents at a Glance

■About the Authors .. x

■About the Technical Reviewer .. xi

■Acknowledgments ... xii

■Introduction .. xiii

■Chapter 1: Computer Graphics: From Then to Now .. 1
■Chapter 2: All That Math Jazz .. 25
■Chapter 3: From 2D to 3D: Adding One Extra Dimension 43
■Chapter 4: Turning on the Lights ... 77
■Chapter 5: Textures .. 115
■Chapter 6: Will It Blend? .. 149
■Chapter 7: Well-Rendered Miscellany .. 177
■Chapter 8: Putting It All Together .. 213
■Chapter 9: Performance ’n’ Stuff ... 247
■Chapter 10: OpenGL ES 2, Shaders, and… ... 259
■Index .. 287

www.it-ebooks.info

http://www.it-ebooks.info/

 xiii

Introduction

In 1985 I brought home a new shiny Commodore Amiga 1000, about one week after
they were released. Coming with a whopping 512K of memory, programmable
colormaps, a Motorola 68K CPU, and a modern multitasking operating system, it had
“awesome” writ all over it. Metaphorically speaking, of course. I thought it might
make a good platform for an astronomy program, as I could now control the colors of
those star-things instead of having to settle for a lame fixed color palette forced upon
me from the likes of Hercules or the C64. So I coded up a 24-line basic routine to
draw a random star field, turned out the lights, and thought, “Wow! I bet I could write
a cool astronomy program for that thing!” Twenty-six years later I am still working on
it and hope to get it right one of these days. Back then my dream device was
something I could slip into my pocket, pull out when needed, and aim it at the sky to
tell me what stars or constellations I was looking at.

It’s called a smartphone.

I thought of it first.

As good as these things are for playing music, making calls, or slinging birdies at
piggies, it really shines when you get to the 3D stuff. After all, 3D is all around us—
unless you are a pirate and have taken to wearing an eye patch, in which case you’ll
have very limited depth perception. Arrrggghhh.

Plus 3D apps are fun to show off to people. They’ll “get it.” In fact, they’ll get it much
more than, say, that mulch buyer’s guide app all the kids are talking about. (Unless
they show off their mulch in 3D, but that would be a waste of a perfectly good
dimension.)

So, 3D apps are fun to see, fun to interact with, and fun to program. Which brings me
to this book. I am by no means a guru in this field. The real gurus are the ones who
can knock out a couple of NVIDIA drivers before breakfast, 4-dimensional hypercube
simulators by lunch, and port Halo to a TokyoFlash watch before the evening’s Firefly
marathon on SyFy. I can’t do that. But I am a decent writer, have enough of a working
knowledge of the subject to make me harmless, and know how to spell “3D.” So here
we are.

www.it-ebooks.info

http://www.it-ebooks.info/

■ Introduction

xiv

First and foremost this book is for experienced Android programmers who want to at
least learn a little of the language of 3D. At least enough to where at the next game
programmer’s cocktail party you too can laugh at the quaternion jokes with the best
of them.

This book covers the basics in both theory of 3D and implementations using the
industry standard OpenGL ES toolkit for small devices. While Android can support
both flavors—version 1.x for the easy way, and version 2.x for those who like to get
where the nitty-is-gritty—I mainly cover the former, except in the final chapter which
serves as an intro to the latter and the use of programmable shaders.

Chapter 1 serves as an intro to OpenGL ES alongside the long and tortuous path of the
history of computer graphics. Chapter 2 is the math behind basic 3D rendering,
whereas Chapters 3 through 8 lead you gently through the various issues all graphics
programmers eventually come across, such as how to cast shadows, render multiple
OpenGL screens, add lens flare, and so on. Eventually this works its way into a simple
(S-I-M-P-L-E!) solar-system model consisting of the sun, earth, and some stars—a
traditional 3D exercise. Chapter 9 looks at best practices and development tools, and
Chapter 10 serves as a brief overview of OpenGL ES 2 and the use of shaders.

So, have fun, send me some M&Ms, and while you’re at it feel free to check out my
own app currently just in the Apple App Store: Distant Suns 3. Yup, that’s the same
application that started out on a Commodore Amiga 1000 in 1985 as a 24-line basic
program that drew a couple hundred random stars on the screen.

It’s bigger now.
–Mike Smithwick

www.it-ebooks.info

http://www.it-ebooks.info/

 1

 Chapter

Computer Graphics: From
Then to Now

To predict the future and appreciate the present, you must understand the past.

—Probably said by someone sometime

Computer graphics have always been the darling of the software world. Laypeople can appreciate
computer graphics more easily than, say, increasing the speed of a sort algorithm by 3 percent or
adding automatic tint control to a spreadsheet program. You are likely to hear more people say
“Coooool!” at your nicely rendered image of Saturn on your iPad than at a Visual Basic script in
Microsoft Word (unless, of course, a Visual Basic script in Microsoft Word can render Saturn; then that
really would be cool). The cool factor goes up even more when said renderings are on a device you
can carry around in your back pocket. Let’s face it—the folks in Silicon Valley are making the life of art
directors on science-fiction films very difficult. After all, imagine how hard it must be to design a prop
that looks more futuristic than a Samsung Galaxy Tab or an iPad. (Even before Apple’s iPhone was
available for sale, the prop department at ABC’s Lost borrowed some of Apple’s screen iconography for
use in a two-way radio carried by a mysterious helicopter pilot.)

If you are reading this book, chances are you have an Android-based device or are considering getting
one in the near future. If you have one, put it in your hand now and consider what a miracle it is of
21st-century engineering. Millions of work hours, billions of dollars of research, centuries of overtime,
plenty of all-nighters, and an abundance of Jolt-drinking, T-shirt–wearing, comic-book-loving
engineers coding into the silence of the night have gone into making that little glass and plastic
miracle-box so you can play Angry Birds when Mythbusters is in reruns.

1

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Computer Graphics: From Then to Now 2

Your First OpenGL ES Program
Some software how-to books will carefully build up the case for their specific topic (“the boring stuff”)
only to get to the coding and examples (“the fun stuff”) by around page 655. Others will jump
immediately into some exercises to address your curiosity and save the boring stuff for a little later.
This book will attempt to be of the latter category.

NOTE: OpenGL ES is a 3D graphics standard based on the OpenGL library that emerged from the
labs of Silicon Graphics in 1992. It is widely used across the industry in everything from
pocketable machines running games up to supercomputers running fluid dynamics simulations
for NASA (and playing really, really fast games). The ES variety stands for Embedded Systems,
meaning small, portable, low-power devices.

When installed, the Android SDK comes with many very good and concise examples ranging from Near
Field Communications (NFC) to UI to OpenGL ES projects. Our earliest examples will leverage those
that you will find in the wide-ranging ApiDemos code base. Unlike its Apple-lovin’ cousin Xcode, which
has a nice selection of project wizards that includes an OpenGL project, the Android dev system
unfortunately has very few. As a result, we have to start at a little bit of a disadvantage as compared to
the folks in Cupertino. So, you’ll need to create a generic Android project, which I am sure you already
know how to do. When done, add a new class named Square.java, consisting of the code in Listing
1–1. A detailed analysis follows the listing.

Listing 1–1. A 2D Square Using OpenGL ES

package book.BouncySquare;

import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.FloatBuffer;
import java.nio.IntBuffer;

import javax.microedition.khronos.opengles.GL10; //1
import javax.microedition.khronos.opengles.GL11;

/**
 * A vertex shaded square.
 */
class Square
{
 public Square()
 {
 float vertices[] = //2

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Computer Graphics: From Then to Now 3

 {
 -1.0f, -1.0f,
 1.0f, -1.0f,
 -1.0f, 1.0f,
 1.0f, 1.0f
 };

 byte maxColor=(byte)255;

 byte colors[] = //3
 {
 maxColor,maxColor, 0,maxColor,
 0, maxColor,maxColor,maxColor,
 0, 0, 0,maxColor,
 maxColor, 0,maxColor,maxColor
 };

 byte indices[] = //4
 {
 0, 3, 1,
 0, 2, 3
 };

 ByteBuffer vbb = ByteBuffer.allocateDirect(vertices.length * 4); //5
 vbb.order(ByteOrder.nativeOrder());
 mFVertexBuffer = vbb.asFloatBuffer();
 mFVertexBuffer.put(vertices);
 mFVertexBuffer.position(0);

 mColorBuffer = ByteBuffer.allocateDirect(colors.length);
 mColorBuffer.put(colors);
 mColorBuffer.position(0);

 mIndexBuffer = ByteBuffer.allocateDirect(indices.length);
 mIndexBuffer.put(indices);
 mIndexBuffer.position(0);

 }

 public void draw(GL10 gl) //6
 {
 gl.glFrontFace(GL11.GL_CW); //7
 gl.glVertexPointer(2, GL11.GL_FLOAT, 0, mFVertexBuffer); //8
 gl.glColorPointer(4, GL11.GL_UNSIGNED_BYTE, 0, mColorBuffer); //9
 gl.glDrawElements(GL11.GL_TRIANGLES, 6, //10

GL11.GL_UNSIGNED_BYTE, mIndexBuffer);
 gl.glFrontFace(GL11.GL_CCW); //11
 }

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Computer Graphics: From Then to Now 4

 private FloatBuffer mFVertexBuffer;
 private ByteBuffer mColorBuffer;
 private ByteBuffer mIndexBuffer;
}

Before I go on to the next phase, I’ll break down the code from Listing 1–1 that constructs a
polychromatic square:

 Java hosts several different OpenGL interfaces. The parent class is merely called
GL, while OpenGL ES 1.0 uses GL10, and version 1.1 is imported as GL11, shown
in line 1. You can also gain access to some extensions if your graphics hardware
supports them via the GL10Ext package, supplied by the GL11ExtensionPack.
The later versions are merely subclasses of the earlier ones; however, there are
still some calls that are defined as taking only GL10 objects, but those work if you
cast the objects properly.

 In line 2 we define our square. You will rarely if ever do it this way because many
objects could have thousands of vertices. In those cases, you’d likely import them
from any number of 3D file formats such as Imagination Technologies’ POD files,
3D Studio’s .3ds files, and so on. Here, since we’re describing a 2D square, it is
necessary to specify only x and y coordinates. And as you can see, the square is
two units on a side.

 Colors are defined similarly, but in this case, in lines 3ff, there are four
components for each color: red, green, blue, and alpha (transparency). These map
directly to the four vertices shown earlier, so the first color goes with the first
vertex, and so on. You can use floats or a fixed or byte representation of the
colors, with the latter saving a lot of memory if you are importing a very large
model. Since we’re using bytes, the color values go from 0 to 255, That means the
first color sets red to 255, green to 255, and blue to 0. That will make a lovely,
while otherwise blinding, shade of yellow. If you use floats or fixed point, they
ultimately are converted to byte values internally. Unlike its big desktop brother,
which can render four-sided objects, OpenGL ES is limited to triangles only. In
lines 4ff the connectivity array is created. This matches up the vertices to specific
triangles. The first triplet says that vertices 0, 3, and 1 make up triangle 0, while
the second triangle is comprised of vertices 0, 2, and 3.

 Once the colors, vertices, and connectivity array have been created, we may have
to fiddle with the values in a way to convert their internal Java formats to those
that OpenGL can understand, as shown in lines 5ff. This mainly ensures that the
ordering of the bytes is right; otherwise, depending on the hardware, they might
be in reverse order.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Computer Graphics: From Then to Now 5

 The draw method, in line 6, is called by SquareRenderer.drawFrame(),
covered shortly.

 Line 7 tells OpenGL how the vertices are ordering their faces. Vertex ordering can be
critical when it comes to getting the best performance out of your software. It helps to
have the ordering uniform across your model, which can indicate whether the triangles
are facing toward or away from your viewpoint. The latter ones are called backfacing
triangles the back side of your objects, so they can be ignored, cutting rendering time
substantially. So, by specifying that the front face of the triangles are GL_CW, or
clockwise, all counterclockwise triangles are culled. Notice that in line 11 they are
reset to GL_CCW, which is the default.

 In lines 8, 9, and 10, pointers to the data buffers are handed over to the renderer. The
call to glVertexPointer() specifies the number of elements per vertex (in this case
two), that the data is floating point, and that the “stride” is 0 bytes. The data can be
eight different formats, including floats, fixed, ints, short ints, and bytes. The latter
three are available in both signed and unsigned flavors. Stride is a handy way to let
you interleave OpenGL data with your own as long as the data structures are constant.
Stride is merely the number of bytes of user info packed between the GL data so the
system can skip over it to the next bit it will understand.

 In line 9, the color buffer is sent across with a size of four elements, with the RGBA
quadruplets using unsigned bytes (I know, Java doesn’t have unsigned anything, but
GL doesn’t have to know), and it too has a stride=0.

 And finally, the actual draw command is given, which requires the connectivity array.
The first parameter says what the format the geometry is in, in other words, triangles,
triangle lists, points, or lines.

 Line 11 has us being a good neighbor and resetting the front face ordering back to
GL_CCW in case the previous objects used the default value.

Now our square needs a driver and way to display its colorful self on the screen. Create another file
called SquareRenderer.java, and populate it with the code in Listing 1–2.

Listing 1–2. The Driver for Our First OpenGL Project

package book.BouncySquare;

import javax.microedition.khronos.egl.EGL10; //1
import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView; //2
import java.lang.Math;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Computer Graphics: From Then to Now 6

class SquareRenderer implements GLSurfaceView.Renderer
{
 public SquareRenderer(boolean useTranslucentBackground)
 {
 mTranslucentBackground = useTranslucentBackground;
 mSquare = new Square(); //3
 }

 public void onDrawFrame(GL10 gl) //4
 {

 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT); //5

 gl.glMatrixMode(GL10.GL_MODELVIEW); //6
 gl.glLoadIdentity(); //7
 gl.glTranslatef(0.0f,(float)Math.sin(mTransY), -3.0f); //8

 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY); //9
 gl.glEnableClientState(GL10.GL_COLOR_ARRAY);

 mSquare.draw(gl); //10

 mTransY += .075f;
 }

 public void onSurfaceChanged(GL10 gl, int width, int height) //11
 {
 gl.glViewport(0, 0, width, height); //12

 float ratio = (float) width / height;
 gl.glMatrixMode(GL10.GL_PROJECTION); //13
 gl.glLoadIdentity();
 gl.glFrustumf(-ratio, ratio, -1, 1, 1, 10); //14
 }

 public void onSurfaceCreated(GL10 gl, EGLConfig config) //15
 {
 gl.glDisable(GL10.GL_DITHER); //16

 gl.glHint(GL10.GL_PERSPECTIVE_CORRECTION_HINT, //17
 GL10.GL_FASTEST);

 if (mTranslucentBackground) //18
 {
 gl.glClearColor(0,0,0,0);
 }
 else
 {

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Computer Graphics: From Then to Now 7

 gl.glClearColor(1,1,1,1);
 }
 gl.glEnable(GL10.GL_CULL_FACE); //19
 gl.glShadeModel(GL10.GL_SMOOTH); //20
 gl.glEnable(GL10.GL_DEPTH_TEST); //21
 }
 private boolean mTranslucentBackground;
 private Square mSquare;
 private float mTransY;
 private float mAngle;
}

A lot of things are going on here:

 The EGL libraries in line 1 bind the OpenGL drawing surface to the system but are
buried within GLSurfaceview in this case, as shown in line 2. EGL is primarily
used for allocating and managing the drawing surfaces and is part of an OpenGL
ES extension, so it is platform independent.

 In line 3, the square object is allocated and cached.

 onDrawFrame() in line 4 is the root refresh method; this constructs the image
each time through, many times a second. And the first call is typically to clear the
entire screen, as shown in line 5. Considering that a frame can be constructed out
of several components, you are given the option to select which of those should
be cleared every frame. The color buffer holds all of the RGBA color data, while
the depth buffer is used to ensure that the closer items properly obscure the
further items.

 Lines 6 and 7 start mucking around with the actual 3D parameters; these details
will be covered later. All that is being done here is setting the values to ensure
that the example geometry is immediately visible.

 Next, line 8 translates the box up and down. To get a nice, smooth motion, the
actual translation value is based on a sine wave. The value mTransY is simply
used to generate a final up and down value that ranges from -1 to +1. Each time
through drawFrame(), the translation is increased by .075. Since we’re taking
the sine of this, it isn’t necessary to loop the value back on itself, because sine
will do that for us. Try increasing the value of mTransY to .3 and see what
happens.

 Lines 9f tells OpenGL to expect both vertex and color data.

 Finally, after all of this setup code, we can call the actual drawing routine of the
mSquare that you’ve seen before, as shown in line 10.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Computer Graphics: From Then to Now 8

 onSurfaceChanged(), here in line 11, is called whenever the screen changes
size or is created at startup. Here it is also being used to set up the viewing
frustum, which is the volume of space that defines what you can actually see. If
any of your scene elements lay outside of the frustum, they are considered
invisible so are clipped, or culled out, to prevent that further operations are done
on them.

 glViewport merely permits you to specify the actual dimensions and placement
of your OpenGL window. This will typically be the size of your main screen, with a
location 0.

 In line 13, we set the matrix mode. What this does is to set the current working
matrix that will be acted upon when you make any general-purpose matrix
management calls. In this case, we switch to the GL_PROJECTION matrix, which
is the one that projects the 3D scene to your 2D screen. glLoadIdentity()
resets the matrix to its initial values to erase any previous settings.

 Now you can set the actual frustum using the aspect ratio and the six clipping
planes: near/far, left/right, and top/bottom.

 In this final method of Listing 1–2, some initialization is done upon surface
creation line 15. Line 16 ensures that any dithering is turned off, because it
defaults to on. Dithering in OpenGL makes screens with limited color palettes look
somewhat nicer but at the expense of performance of course.

 glHint() in line 17 is used to nudge OpenGL ES to do what it thinks best by
accepting certain trade-offs: usually speed vs. quality. Other hintable settings
include fog and various smoothing options.

 Another one of the many states we can set is the color that the background
assumes when cleared. In this case, which is black, if the background is
translucent, or white, (all colors max out to 1), if not translucent. Go ahead and
change these later to see what happens.

 At last, the end of this listing sets some other handy modes. Line 19 says to cull
out faces (triangles) that are aimed away from us. Line 20 tells it to use smooth
shading so the colors blend across the surface. The only other value is GL_FLAT,
which, when activated, will display the face in the color of the last vertex drawn.
And line 21 enables depth testing, also known as z-buffering, covered later.

Finally, the activity file will need to be modified to look like Listing 1–3.

Listing 1–3. The Activity File

package book.BouncySquare;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Computer Graphics: From Then to Now 9

import android.app.Activity;
import android.opengl.GLSurfaceView;
import android.os.Bundle;
import android.view.WindowManager;
import book.BouncySquare.*;

public class BouncySquareActivity extends Activity
{
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,
 WindowManager.LayoutParams.FLAG_FULLSCREEN);
 GLSurfaceView view = new GLSurfaceView(this);
 view.setRenderer(new SquareRenderer(true));
 setContentView(view);
 }
}

Our activity file is little modified from the default. Here the GLSurfaceView is actually allocated and
bound to our custom renderer, SquareRenderer.

Now compile and run. You should see something that looks a little like Figure 1–1.

Figure 1–1. A bouncy square. If this is what you see, give yourself a high-five.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Computer Graphics: From Then to Now 10

Now as engineers, we all like to twiddle and tweak our creations, just to see what happens. So, let’s
change the shape of the bouncing-square-of-joy by replacing the first number in the vertices array
with -2.0, instead of -1.0. And replace maxcolor, the first value in the color array with a 0. That will
make the lower-left vertex stick out quite a ways and should turn it to green. Compile and stand back
in awe. You should have something like Figure 1–2.

Figure 1–2. After the tweakage

Don’t worry about the simplicity of this first exercise; you’ll build stuff fancier than a bouncing
rainbow-hued cube of Jell-O at some point. The main project will be to construct a simple solar-
system simulator based on some of the code used in Distant Suns 3. But for now, it’s time to get to the
boring stuff: where computer graphics came from and where they are likely to go.

NOTE: The Android emulator is notoriously buggy and notoriously slow. It is strongly
recommended that you do all of your OpenGL work on real hardware, especially as the exercises
get a little more complex. You will save yourself a lot of grief.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Computer Graphics: From Then to Now 11

A Spotty History of Computer Graphics
To say that 3D is all the rage today is at best an understatement. Although forms of “3D” imagery go
back to more than a century ago, it seems that it has finally come of age. First let’s look at what 3D is
and what it is not.

3D in Hollywood

In 1982 Disney released Tron, the first movie to widely use computer graphics depicting life inside a
video game. Although the movie was a critical and financial flop, it would eventually join the ranks of
cult favorites right up there with The Rocky Horror Picture Show. Hollywood had taken the bite out of
the apple, and there was no turning back.

Stretching back to the 1800s, what we call “3D” today was more commonly referred to as stereo
vision. Popular Victorian-era stereopticons would be found in many parlors of the day. Consider this
technology an early Viewmaster. The user would hold the stereopticon up to their face with a stereo
photograph slipped into the far end and see a view of some distant land, but in stereo rather than a flat
2D picture. Each eye would see only one half of the card, which carried two nearly identical photos
taken only a couple of inches apart.

Stereovision is what gives us the notion of a depth component to our field of view. Our two eyes
deliver two slightly different images to the brain that then interprets them in a way that we understand
as depth perception. A single image will not have that effect. Eventually this moved to movies, with a
brief and unsuccessful dalliance as far back as 1903 (the short L’arrivée du Train is said to have had
viewers running from the theater to avoid the train that was clearly heading their way) and a
resurgence in the early 1950s, with Bwana Devil being perhaps the best known.

The original form of 3D movies generally used the “anaglyph” technique that required the viewers to
wear cheap plastic glasses with a red filter over one eye and a blue one over the other. Polarizing
systems were incorporated in the early 1950s and permitted color movies to be seen in stereo, and
they are still very much the same as today. Afraid that television would kill off the movie industry,
Hollywood needed some gimmick that was impossible on television in order to keep selling tickets, but
because both the cameras and the projectors required were much too impractical and costly, the form
fell out of favor, and the movie industry struggled along just fine.

With the advent of digital projection systems in the 1990s and fully rendered films such as Toy Story,
stereo movies and eventually television finally became both practical and affordable enough to move it
beyond the gimmick stage. In particular, full-length 3D animated features (Toy Story being the first)
made it a no-brainer to convert to stereo. All one needed to do was simply rerender the entire film but
from a slightly different viewpoint. This is where stereo and 3D computer graphics merge.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Computer Graphics: From Then to Now 12

The Dawn of Computer Graphics

One of the fascinating things about the history of computer graphics, and computers in general, is that
the technology is still so new that many of the giants still stride among us. It would be tough to track
down whoever invented the buggy whip, but I know who to call if you wanted to hear firsthand how
the Apollo Lunar Module computers were programmed in the 1960s.

Computer graphics (frequently referred to as CG) come in three overall flavors: 2D for user interface,
3D in real time for flight or other forms of simulation as well as games, and 3D rendering where quality
trumps speed for non-real-time use.

MIT

In 1961, an MIT engineering student named Ivan Sutherland created a system called Sketchpad for his
PhD thesis using a vectorscope, a crude light pen, and a custom-made Lincoln TX-2 computer (a spin-
off from the TX-2 group would become DEC). Sketchpad’s revolutionary graphical user interface
demonstrated many of the core principles of modern UI design, not to mention a big helping of object-
oriented architecture tossed in for good measure.

NOTE: For a video of Sketchpad in operation, go to YouTube and search for Sketchpad or Ivan
Sutherland.

A fellow student of Sutherland’s, Steve Russell, would invent perhaps one of the biggest time sinks
ever made, the computer game. Russell created the legendary game of Spacewar in 1962, which ran
on the PDP-1, as shown in Figure 1–3.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Computer Graphics: From Then to Now 13

Figure 1–3. The 1962 game of Spacewar resurrected at the Computer History Museum in Mountain View,
California, on a vintage PDP-1. Photo by Joi Itoh, licensed under the Creative Commons Attribution 2.0 Generic
license (http://creativecommons.org/licenses/by/2.0/deed.en).

By 1965, IBM would release what is considered the first widely used commercial graphics terminal,
the 2250. Paired with either the low-cost IBM-1130 computer or the IBM S/340, the terminal was
meant largely for use in the scientific community.

Perhaps one of the earliest known examples of computer graphics on television was the use of a 2250
on the CBS news coverage of the joint Gemini 6 and Gemini 7 mannded space missions in December
1965 (IBM built the Gemini’s onboard computer system). The terminal was used to demonstrate
several phases of the mission on live television from liftoff to rendezvous. At a cost of about $100,000
in 1965, it was worth the equivalent of a nice home. See Figure 1–4.

Figure 1–4. IBM-2250 terminal from 1965. Courtesy NASA.

www.it-ebooks.info

http://creativecommons.org/licenses/by/2.0/deed.en
http://www.it-ebooks.info/

CHAPTER 1: Computer Graphics: From Then to Now 14

University of Utah

Recruited by the University of Utah in 1968 to work in its computer science program, Sutherland
naturally concentrated on graphics. Over the course of the next few years, many computer graphics
visionaries in training would pass through the university’s labs.

Ed Catmull, for example, loved classic animation but was frustrated by his inability to draw—a
requirement for artists back in those days as it would appear. Sensing that computers might be a
pathway to making movies, Catmull produced the first-ever computer animation, which was of his
hand opening and closing. This clip would find its way into the 1976 film Future World.

During that time he would pioneer two major computer graphics innovations: texture mapping and
bicubic surfaces. The former could be used to add complexity to simple forms by using images of
texture instead of having to create texture and roughness using discrete points and surfaces, as
shown in Figure 1–5. The latter is used to generate algorithmically curved surfaces that are much
more efficient than the traditional polygon meshes.

Figure 1–5. Saturn with and without texture

Catmull would eventually find his way to Lucasfilm and, later, Pixar and eventually serve as president
of Disney Animation Studios where he could finally make the movies he wanted to see. Not a bad gig.

Many others of the top names in the industry would likewise pass through the gates of University of
Utah and the influence of Sutherland:

 John Warnock, who would be instrumental in developing a device-independent
means of displaying and printing graphics called PostScript and the Portable
Document Format (PDF) and would be cofounder of Adobe.

 Jim Clark, founder of Silicon Graphics that would supply Hollywood with some of
the best graphics workstations of the day and create the 3D framework now
known as OpenGL. After SGI he cofounded Netscape Communications, which
would lead us into the land of the World Wide Web.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Computer Graphics: From Then to Now 15

 Jim Blinn, inventor of both bump mapping, which is an efficient way of adding
true 3D texture to objects, and environment mapping, which is used to create
really shiny things. Perhaps he would be best known creating the revolutionary
animations for NASA’s Voyager project, depicting flybys of the outer planets, as
shown in Figure 1–6 (compare that with Figure 1–7 using modern devices). Of
Blinn, Sutherland would say, “There are about a dozen great computer graphics
people, and Jim Blinn is six of them.” Blinn would later lead the effort to create
Microsoft’s competitor to OpenGL, namely, Direct3D.

Figure 1–6. Jim Blinn’s depiction of Voyager II’s encounter with Saturn in August of 1981. Notice the streaks
formed of icy particles while crossing the ring plane. Courtesy NASA.

Figure 1–7. Compare with Figure 1---6, using some of the best graphics computers and software at the time, with
a similar view of Saturn from Distant Suns 3 running on a $500 iPad.

Coming of Age in Hollywood

Computer graphics would really start to come into their own in the 1980s thanks both to Hollywood
and to machines that were increasingly powerful while at the same time costing less. For example, the
beloved Commodore Amiga that was introduced in 1985 cost less than $2,000, and it brought to the

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Computer Graphics: From Then to Now 16

consumer market an advanced multitasking operating system and color graphics that had been
previously the domain of workstations costing upwards of $100,000. See Figure 1–8.

Figure 1–8. Amiga 1000, circa 1985. Photo by Kaivv, licensed under the Creative Commons Attribution 2.0
Generic license (http://creativecommons.org/licenses/by/2.0/deed.en).

Compare this to the original black-and-white Mac that was released a scant 18 months earlier for about
the same cost. Coming with a very primitive OS, flat file system, and 1–bit display, it was fertile territory
for the “religious wars” that broke out between the various camps as to whose machine was better
(wars that would also include the Atari ST).

NOTE: One of the special graphics modes on the original Amiga could compress 4,096 colors
into a system that would normally max out at 32. Called Hold and Modify (HAM mode), it was
originally included on one of the main chips for experimental reasons by designer Jay Miner.
Although he wanted to remove the admitted kludge that produced images with a lot of color
distortion, the results would have left a big empty spot on the chip. Considering that unused chip
landscape was something no self-respecting engineer could tolerate, he left it in, and to Miner’s
great surprise, people started using it.

A company in Kansas called NewTek pioneered the use of Amigas for rendering high-quality 3D
graphics when coupled with its special hardware named the Video Toaster. Combined with a
sophisticated 3D rendering software package called Lightwave 3D, NewTek opened up the realm of
cheap, network-quality graphics to anyone who had a few thousand dollars to spend. This
development opened the doors for elaborate science-fiction shows such as Babylon 5 or Seaquest to
be financially feasible considering their extensive special effects needs.

www.it-ebooks.info

http://creativecommons.org/licenses/by/2.0/deed.en
http://www.it-ebooks.info/

CHAPTER 1: Computer Graphics: From Then to Now 17

During the 1980s, many more techniques and innovations would work their way into common use in
the CG community:

 Loren Carpenter developed a technique to generate highly detailed landscapes
algorithmically using something called fractals. Carpenter was hired by Lucasfilm
to create a rendering package for a new company named Pixar. The result was
REYES, which stood for Render Everything You Ever Saw.

 Turner Whitted developed a technique called ray tracing that could produce highly
realistic scenes (at a significant CPU cost), particularly when they included objects
with various reflective and refractive properties. Glass items were common
subjects in various early ray-tracing efforts, as shown in Figure 1–9.

 Frank Crow developed the first practical method of anti-aliasing in computer
graphics. Aliasing is the phenomenon that generates jagged edges (jaggies) because
of the relatively poor resolution of the display. Crow’s method would smooth out
everything from lines to text, making it look more natural and pleasing. Note that one
of Lucasfilm’s early games was called Rescue on Fractalus. The bad guys were
named jaggies.

 Star Trek II: The Wrath of Khan brought with it the first entirely computer-
generated sequence used to illustrate how a device called the Genesis Machine
could generate life on a lifeless planet. That one simulation was called “the effect
that wouldn’t die” because of its groundbreaking techniques in flame and particle
animation and fractal landscapes.

Figure 1–9. Sophisticated images such as this are within the range of hobbyists with programs such as the open
source POV-Ray. Photo by Gilles Tran, 2006.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Computer Graphics: From Then to Now 18

The 1990s brought the T1000 “liquid metal” terminator in Terminator 2: Judgment Day, the first
completely computer-generated full-length feature film of Toy Story, believable animated dinosaurs in
Jurassic Park, and James Cameron’s Titanic, all of which helped solidified CG as a common tool in the
Hollywood director’s arsenal.

By the decade’s end, it would be hard to find any films that didn’t have computer graphics as part of
the production in either actual effects or in postproduction to help clean up various scenes. New
techniques are still being developed and applied in ever more spectacular fashion, as in Disney’s
delightful Up! or James Cameron’s beautiful Avatar.

Now, once again, take out your i-device and realize what a little technological marvel it is. Feel free to
say “wow” in hushed, respectful tones.

Toolkits
All of the 3D wizardry referenced earlier would never have been possible without software. Many CG
software programs are highly specialized, and others are more general purpose, such as OpenGL ES,
the focus of this book. So, what follows are a few of the many toolkits available.

OpenGL

Open Graphics Library (OpenGL) came out of the pioneering efforts of Silicon Graphics (SGI), the maker
of high-end graphics workstations and mainframes. Its own proprietary graphics framework, IRIS-GL,
had grown into a de facto standard across the industry. To keep customers as competition increased,
SGI opted to turn IRIS-GL into an open framework so as to strengthen their reputation as the industry
leader. IRIS-GL was stripped of non-graphics-related functions and hardware-dependent features,
renamed OpenGL, and released in early 1992. As of this writing, version 4.1 is the most current.

As small handheld devices became more common, OpenGL for Embedded Systems (OpenGL ES) was
developed, which was a stripped-down version of the desktop version. It removed a lot of the more
redundant API calls and simplified other elements to make it run efficiently on the lower-power CPUs
in the market. As a result, it has been widely adopted across many platforms such as Android, iOS,
HP’s WebOS, Nintendo 3DS, and BlackBerry (OS 5.0 and newer).

There are two main flavors of OpenGL ES, 1.x and 2.x. Many devices support both. Version 1.x is the
higher-level variant, based on the original OpenGL specification. Version 2.x (yes, I know it’s confusing)
is targeted toward more specialized rendering chores that can be handled by programmable graphics
hardware.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Computer Graphics: From Then to Now 19

Direct3D

Direct3D (D3D) is Microsoft’s answer to OpenGL and is heavily oriented toward game developers. In
1995, Microsoft bought a small company called RenderMorphics that specialized in creating a 3D
framework named RealityLab for writing games. RealityLab was turned into Direct3D and first released
in the summer of 1996. Even though it was proprietary to Windows-based systems, it has a huge user
base across all of Microsoft’s platforms: Windows, Windows 7 Mobile, and even Xbox. There are
constant ongoing debates between the OpenGL and Direct3D camps as to which is more powerful,
flexible, and easier to use. Other factors include how quickly hardware manufacturers can update their
drivers to support new features, ease of understanding (Direct3D uses Microsoft’s COM interface that
can be very confusing for newcomers), stability, and industry support.

The Other Guys

While OpenGL and Direct3D remain at the top of the heap when it comes to both adoption and
features, the graphics landscape is littered with numerous other frameworks, many which are
supported on today’s devices.

In the computer graphics world, graphics libraries come in two very broad flavors: low-level rendering
mechanisms represented by OpenGL and Direct3D and high-level systems typically found in game
engines that concentrate on resource management with special extras that extend to common game-
play elements (sound, networking, scoring, and so on). The latter are usually built on top of one of the
former for the 3D portion. And if done well, the higher-level systems might even be abstracted enough
to make it possible to work with both GL and D3D.

QuickDraw 3D

An example of a higher-level general-purpose library is QuickDraw 3D (QD3D). A 3D sibling to Apple’s
2D QuickDraw, QD3D had an elegant means of generating and linking objects in an easy-to-
understand hierarchical fashion (a scene-graph). It likewise had its own file format for loading 3D
models and a standard viewer and was platform independent. The higher-level part of QD3D would
calculate the scene and determine how each object and, in turn, each piece of each object would be
shown on a 2D drawing surface. Underneath QD3D there was a very thin layer called RAVE that would
handle device-specific rendering of these bits.

Users could go with the standard version of RAVE, which would render the scene as expected. But
more ambitious users could write their own that would display the scene in a more artistic fashion. For
example, one company generated the RAVE output so as to look like their objects were hand-painted
on the side of a cave. It was very cool when you could take this modern version of a cave drawing and

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Computer Graphics: From Then to Now 20

spin it around. The plug-in architecture also made QD3D highly portable to other machines. When
potential users balked at using QD3D since it had no hardware solution on PCs, a version of RAVE was
produced that would use the hardware acceleration available for Direct3D by actually using its
competitor as its rasterizer. Sadly, QD3D was almost immediately killed on the second coming of Steve
Jobs, who determined that OpenGL should be the 3D standard for Macs in the future. This was an odd
statement because QD3D was not a competitor to the other but an add-on that made the lives of
programmers much easier. After Jobs refused requests to make QD3D open source, the Quesa project
was formed to re-create as much as possible the original library, which is still being supported at the
time of this writing. And to nobody’s surprise, Quesa uses OpenGL as its rendering engine.

A disclaimer here: I wrote the RAVE/Direct3D layer of QD3D only to have the project canceled a few
days after going “gold master” (ready to ship). Bah.

OGRE

Another scene-graph system is Object-oriented Rendering Engine (OGRE). First released in 2005, OGRE
can use both OpenGL and Direct3D as the low-level rasterizing solution, while offering users a stable
and free toolkit used in many commercial products. The size of the user community is impressive. A
quick peek at the forums shows more than 6,500 topics in the General Discussion section alone at the
time of this writing.

OpenSceneGraph

Recently released for iOS devices, OpenSceneGraph does roughly what QuickDraw 3D did, by
providing a means of creating your objects on a higher level, linking them together, and performing
scene management duties and extra effects above the OpenGL layer. Other features include importing
multiple file formats, text support, particle effects (used for sparks, flames, or clouds), and the ability
to display video content in your 3D applications. Knowledge of OpenGL is highly recommended,
because many of the OSG functions are merely thin wrappers to their OpenGL counterparts.

Unity3D

Unlike OGRE, QD3D, or OpenSceneGraph, Unity3D is a cross-platform full-fledged game engine that
runs on both Android and iOS. The difference lies in the scope of the product. Whereas the first two
concentrated on creating a more abstract wrapper around OpenGL, game engines go several steps
further, supplying most if not all of the other supporting functionality that games would typically need
such as sound, scripting, networked extensions, physics, user interface, and score-keeping modules.
In addition, a good engine will likely have tools to help generate the assets and be platform
independent.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Computer Graphics: From Then to Now 21

Unity3D has all of these so would be overkill for many smaller projects. Also, being a commercial
product, the source is not available, and it is not free to use but costs only a modest amount
(compared to other products in the past that could charge $100,000 or more).

And Still Others

Let’s not ignore A6, Adventure Game Studio, C4, Crystal Space, VTK, Coin3D, SDL, QT, Delta3D, Glint3D,
Esenthel, FlatRedBall, Horde3D, Irrlicht, Leadwerks3D, Lightfeather, Raydium, Panda3D (from Disney
Studios and CMU), Torque, and many others. Although they’re powerful, one drawback of using game
engines is that more often than not your world is executed in their environment. So, if you need a
specific subtle behavior that is unavailable, you may be out of luck.

OpenGL Architecture
Now since we’ve analyzed to death a simple OpenGL program, let’s take a brief look at what goes on
under the hood at the graphics pipeline.

The term pipeline is commonly used to illustrate how a tightly bound sequence of events relate to each
other, as illustrated in Figure 1–10. In the case of OpenGL ES, the process accepts a bunch of numbers
in one end and outputs something really cool-looking at the other end, be it an image of the planet
Saturn or the results of an MRI.

Figure 1–10. Basic overview of the OpenGL ES 1.x pipeline

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Computer Graphics: From Then to Now 22

 The first step is to take the data that describes some geometry along with
information on how to handle lighting, colors, materials, and textures and send it
into the pipeline.

 Next the data is moved and rotated, after which lighting on each object is
calculated and stored. The scene—say, a solar-system model—must then be
moved, rotated, and scaled based on the viewpoint you have set up. The
viewpoint takes the form of a frustrum, a rectangular cone of sorts, which limits
the scene to, ideally, a manageable level.

 Next the scene is clipped, meaning that only stuff that is likely to be visible is
actually processed. All of the other stuff is culled out as early as possible and
discarded. Much of the history of real-time graphics development has to do with
object culling techniques, some of which are very complex.

Let’s get back to the example of a solar system. If you are looking at the earth and the
moon is behind your viewpoint, there is no need whatsoever to process the moon data.
The clipping level does just this, both on an object level on one end and on a vertex
level on the other. Of course, if you can pre-cull objects on your own before submitting
to the pipeline, so much the better. Perhaps the easiest is to simply tell whether an
object is behind you making it completely skippable. Culling can also take place if the
object is just too far away to see or is completely obscured by other objects.

 The remaining objects are now projected against the “viewport,” a virtual display
of sorts.

 At this point is where rasterization takes place. Rasterization breaks apart the
image into fragments that are in effect single pixels.

 Now the fragments can have texture and fog effects applied to them. Additional
culling can likewise take place if the fog might obscure the more distant
fragments, for example.

 The final phase is where the surviving fragments are written to the frame buffer,
but only if they satisfy some last-minute operations. Here is where the fragment’s
alpha values are applied for translucency, along with depth tests to ensure that
the closest fragments are drawn in front of further ones and stencil tests used to
render to nonrectangular viewports.

And when this is done, you might actually see something that looks like that teapot shown in Figure 1–
11b.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Computer Graphics: From Then to Now 23

NOTE: The more you delve into computer graphics, the more you’ll see a little teapot popping up
here and there in examples in books all the way to television and movies (The Simpsons, Toy
Story). The legend of the teapot, sometimes called the Utah Teapot (everything can be traced
back to Utah), began with a PhD student named Martin Newell in 1975. He needed a challenging
shape but one that was otherwise a common object for his doctoral work. His wife suggested
their white teapot, at which point Newell laboriously digitized it by hand. When he released the
data into the public domain, it quickly achieved the status of being the ‘‘Hello World!’’ of graphics
programming. Even one of the early OpenGL ES examples from Apple’s developer web site had a
teapot demo. The original teapot now resides at the Computer History Museum in Mountain View,
California, just a few blocks from Google. See the left side of Figure 1--11.

Figure 1–11a, b. The actual teapot used by Newell, currently on display at the Computer History Museum in
Mountain View, California, on the left. Photo by Steve Baker. An example OpenGL application from Apple’s
developer site on the right.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Computer Graphics: From Then to Now 24

Summary
In this chapter, we covered a little bit of computer graphics history, a simple example program, and,
most importantly, the Utah Teapot. Next up is a deep and no doubt overly detailed look into the
mathematics behind 3D imagery.

www.it-ebooks.info

http://www.it-ebooks.info/

 25

 Chapter

All That Math Jazz

No book on 3D programming would be complete without at least one chapter on the mathematics
behind 3D transformations. If you care nothing about this, move on—there’s nothing to see here. After
all, doesn’t OpenGL take care of this stuff automatically? Certainly. But it is helpful to be familiar with
what’s going on inside, if nothing more but to understand the lingo of 3D-speak.

Let’s define some terminology first:

 Translation: Moving an object from its initial position (see Figure 2–1, left)

 Rotation: Rotating an object around a central point of origin (see Figure 2–1, right)

 Scaling: Changing the size of an object

 Transformation: All of the above

2

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: All That Math Jazz 26

Figure 2–1. Translation (left) and rotation (right)

2D Transformations
Without knowing it, you probably have used 2D transformations already in the form of simple
translations. If you create a UIImageView object and want to move it based on where the user is
touching the screen, you might grab its frame and update the x and y values of the origin.

Translations

You have two ways to visualize this process. The first is that the object itself is moving relative to a
common origin. This is called a geometric transformation. The second means to move the world origin
while the object stays stationary. This is called a coordinate transformation. In OpenGL ES, both
descriptions are commonly used together.

A translational operation can be expressed this way:

′ x = x + Tx ′ y = y + Ty

The original coordinates are x and y, while the translations, T, will move the points to a new location.
Simple enough. As you can tell, translations are naturally going to be very fast.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: All That Math Jazz 27

NOTE: Lowercase letters, such as xyz, are the coordinates, while uppercase letters, such as XYZ,
reference the axis.

Rotations

Now let’s take a look at rotations. In this case, we’ll rotate around the world origin at first to keep
things simple (see Figure 2–2).

Figure 2–2. Rotating around the common origin

Naturally things get more complicated while we have to dust off the high-school trig. So, the task at
hand is to find out where the corners of the square would be after an arbitrary rotation, a. Eyes are
glazing over across the land.

NOTE: By convention counterclockwise rotations are considered positive, while clockwise are
negative.

So, consider x and y as the coordinates of one of our square’s vertices, and the square is normalized.
Unrotated, any vertex would naturally map directly into our coordinate system of x and y. Fair enough.
Now we want to rotate the square by an angle a. Although its corners are still at the “same” location in

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: All That Math Jazz 28

the square’s own local coordinate system, they are different in ours, and if we’re wanting to actually
draw the object, we need to know the new coordinates of x’ and y’.

Now we can jump directly to the trusty rotation equations, because ultimately that’s what the code will
express:

)sin()cos(ayaxx −=′)cos()sin(' ayaxy +=

Doing a really quick sanity check, you can see that if a is 0 degrees (no rotation), x’ and y’ reduce to
the original x and y coordinates. If the rotation is 90 degrees, then sin(a)=1, cos(a)=0, so x’=-y, and
y'=x. It’s exactly as expected.

Mathematicians are always fond of expressing things in the most compact form possible. So, 2D
rotations can be “simplified” using matrix notation:

⎥
⎦

⎤
⎢
⎣

⎡ −
=

)cos()sin(
)sin()cos(

aa
aa

Ra

NOTE: One of the most overused words in Star Trek is matrix. Pattern-matrix here, buffer-matrix
there, ‘‘Number One, I have a headache-matrix and need to take a nap-matrix.’’ (And don’t get
me started on the use of protocol in 24.) Every self-respecting Star Trek drinking game (as if any
drinking game would be self-respecting) should use matrix in its selection of words. Unless one
of your friends has a drinking problem, in which case substitute matrix for rabid badger. I am
almost sure there was never a mention of badgers, rabid or otherwise, in the Star Trek pantheon.

Ra is shorthand for our 2D rotation matrix. Although matrices might look busy, they are actually pretty

straightforward and easy to code because they follow precise patterns. In this case, x and y can be
represented as a teeny matrix:

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡
y
x

aa
aa

y
x

)cos()sin(
)sin()cos(

'
'

Translations can also be encoded in a matrix form. Since translations are merely moving the point
around, the translated values of x and y come from adding the amount of movement to the point. What
if you wanted to do a rotation and a translation on the same object? The translation matrix requires
just a tiny bit of nonobvious thought. Which is the right one, the first or second shown here?

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: All That Math Jazz 29

T =
1 1
Tx Ty

⎡

⎣
⎢

⎤

⎦
⎥ or T =

1 0 0
0 1 0
Tx Ty 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

The answer is obviously the second one, or maybe it’s not so obvious. The first one ends up as the
following, which doesn’t make much sense:

′ x = x + yTx and y'= x + yTy

So, in order to create a matrix for translation, we need a third component for our 2D point, commonly
written as (x,y,1), as is the case in the second expression. Ignoring where the 1 comes from for a
moment, notice that this can be easily reduced to this:

′ x = x + Tx and ′ y = y + Ty

The value of 1 is not to be confused with a third dimension of z; rather, it is a means used to express
an equation of a line (in 2D space for this example) that is a slightly different from the slope/intercept
we learned in grade school. A set of coordinates in this form is called homogeneous coordinates, and
in this case it helps to create a 3x3 matrix that can now be combined or concatenated to other 3x3
matrices. Why would we want to do this? What if we wanted to do a rotation and translation together?
Two separate matrices could be used for each point, and that would work just fine. But instead, we
can precalculate a single matrix out of several using matrix multiplication (also known as
concatenation) that in turn represents the cumulative effect of the individual transformations. Not only
can this save some space, but it can substantially increase performance.

In Java2D, you will at some point stumble across java.awt.geom.AffineTransform. You can think of
this as transformations that can be decomposed into one or more of the following: rotation, translation,

shear, and scale. All of the possible 2D affine transformations can be expressed as ecyaxx ++=′

and y = bx + dy + f . That makes for a very nice matrix, a lovely one at that:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1
0
0

fe
dc
ba

T so x' y' 1][=
a b 0
c d 0
e f 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

x y 1][

The following is a simple code segment that shows how to use AffineTransform both for translation
and for scaling. As you can see, it is pretty straightforward.

public void paint(Graphics g)
{
 AffineTransform transform = new AffineTransform();
 transform.translate(5,5);

4
www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: All That Math Jazz 30

 transform.scale(2,2);
 Graphics2D g2d = (Graphics2D)g;
 g2d.setTransform(transform);
}
}

Scaling

Of the other two transforms, let’s just take a look at the scaling, or simple resizing, of an object:

x'= xSx and y = ySy

In matrix form, this becomes as follows:

S =
Sx 0 0
0 Sy 0
0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

With scaling, as with the other two transformations, the order is very important when applied to your
geometry. Say, for instance, you wanted to rotate and move your object. The results will clearly be
different depending on whether you do the translation first or last. The more common sequence is to
rotate the object first and then translate, as shown at the left in Figure 2–3. But if you invert the order,
you’ll get something like the image at the right in Figure 2–3. In both these instances, the rotation is
happening around the point of origin. If you wanted to rotate the object around its own origin, then the
first example is for you. If you meant for it to be rotated with everything else, the second works. (A
typical situation might have you translate the object to the world origin, rotate it, and translate it back.)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: All That Math Jazz 31

Figure 2–3. Rotation around the point of origin followed by a translation (left) vs. translation followed by rotation
(right)

So, what does this have to do with the 3D stuff? Simple! Most if not all of the principles can be applied
to 3D transformations and are more clearly illustrated with one less dimension.

3D Transformations
When moving everything you’ve learned to 3D space (also referred to as 3-space), you’ll see that, as in
2D, 3D transformations can likewise be expressed as a matrix and as such can be concatenated with
other matrices. The extra dimension of Z is now the depth of the scene going in and out of the screen.
OpenGL ES has +Z coming out
and –Z going in. Other systems may have that reversed or even have Z being the vertical, with Y now
assuming depth. I’ll stay with the OpenGL convention, as shown in Figure 2–4.

NOTE: Moving back and forth from one frame of reference to another is the quickest road to
insanity next to trying to figure out why Fox canceled Firefly. The classic 1973 book Principles of
Interactive Computer Graphics has Z going up and +Y going into the screen. In his book, Bruce
Artwick, the creator of Microsoft’s Flight Simulator, shows X and Y in the viewing plane but +Z
going into the screen. And yet another book has (get this!) Z going up, Y going right, and X
coming toward the viewer. There oughtta be a law….

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: All That Math Jazz 32

Figure 2–4. The z-axis comes toward the viewer.

First we’ll look at 3D transformation. Just as the 2D variety was merely adding the desired deltas to
the original location, the same thing goes for 3D. And the matrix that describes that would look like the
following:

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1
0100
0010
0001

zyx TTT

T so

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

11
0100
0010
0001

1
'
'
'

z
y
x

TTT
z
y
x

zyx

And of course that would yield the following:

′ x = x + Tx , ′ y = y + Ty and ′ z = z + Tz

Notice the extra 1 that’s been added; it’s the same as for the 2D stuff, so our point location is now in
homogeneous form.

So, let’s take a look at rotation. One can safely assume that if we were to rotate around the z-axis
(Figure 2–5), the equations would map directly to the 2D versions. Using the matrix to express this,
here is what we get (notice the new notation, where R(z,a) is used to make it clear which axis is being
addressed). Notice that z remains a constant because it is multiplied by 1:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: All That Math Jazz 33

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

=

1000
0100
00)cos()sin(
00)sin()cos(

),(
aa
aa

azR

Figure 2–5. Rotation around the z-axis

This looks almost exactly like its 2D counterpart but with z = z. But now we can also rotate around x
or y as well. For x we get the following:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

=

1000
0)cos()sin(0
0)sin()cos(0
0001

),(
aa
aa

axR

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: All That Math Jazz 34

And, of course, for y we get the following:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
=

1000
0)cos(0)sin(
0010
0)sin(0)cos(

),(
aa

aa

ayR

But what about multiple transformations on top of each other? Now we’re talking ugly. Fortunately,
you won’t have to worry too much about this because you can let OpenGL do the heavy lifting. That’s
what it’s for.

Assume we want to rotate around the y-axis first, followed by x and then z. The resulting matrix might
resemble the following (using a as the rotation around x, b for y, and c for z):

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++−
−

+−−

=

1000
0)cos()cos()cos()sin()cos()sin()sin()sin()sin()cos()cos()sin(
0)sin()cos()cos()cos()sin(
0)cos()sin()cos()sin()sin()sin()cos()sin()sin()sin()cos()cos(

bacabbccabcb
aacac

abcabcbcabcb

R

Simple, eh? No wonder why the mantra for 3D engine authors is optimize, optimize, optimize. In fact,
some of my inner loop in the original Amiga version of Distant Suns needed to be in 68K assembly. And
note that this doesn’t even include scaling or translation.

Now let’s get to the reason for this book: all of this can be done by the following three lines:

glRotatef(b,0.0,1.0,0.0);
glRotatef(a,1.0,0.0,0.0);
glRotatef(c,0.0,0.0,1.0);

NOTE: There are many functions in OpenGL ES 1.1 that are not available in 2.0. The latter is
oriented toward lower-level operations, sacrificing some of the ease-of-use utility routines for
flexibility and control. The transformation functions have vanished, leaving it up to developers to
calculate their own matrices. Fortunately, there are a number of different libraries to mimic these
operations and ease the transition tasks.

When dealing with OpenGL, this particular matrix is called the modelview because it is applied to
anything that you draw, which are either models or lights. There are two other types that we’ll deal
with a little later: the Projection and Texture matrices.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: All That Math Jazz 35

It bears repeating that the actual order of the rotations is absolutely critical when trying to get this
stuff to work. For example, a frequent task is to model an aircraft or spacecraft with a full six degrees
of freedom: three translational components and three rotational components. The rotational parts are
usually referred to as roll, pitch, and yaw (RPY). Roll would be rotations around the z-axis, pitch is
around the x-axis (in other words, aiming the nose up or down), and yaw, of course, is rotation around
the y-axis, moving the nose left and right. Figure 2–6 shows this at work in the Apollo spacecraft from
the moon landings in the 1960s. The proper sequence would be yaw, pitch, and roll, or rotation around
y, x, and finally z. (This requires 12 multiplications and 6 additions, while premultiplying the three
rotation matrices could reduce that to 9 multiplications and 6 additions.) The transformations would be
incremental, comprising the changes in the RPY angles since the last update, not the total ones from
the beginning. In the good ol’ days, round-off errors could compound distorting the matrix, leading to
very cool but otherwise unanticipated results (but still cool nonetheless).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: All That Math Jazz 36

Figure 2–6. Illustration of the Apollo’s frame of reference, its joystick, and artificial horizon

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: All That Math Jazz 37

Picture This: Projecting the Object onto the Screen

Whew, even after all of that we’re not quite done yet. Once you have performed all the rotations,
scaling, and translations of your objects, you still need to get them projected onto your screen.
Converting a 3D scene onto a 2D surface has troubled mankind since he sketched the first mammoth
on a cave wall. But it is actually quite easy to grasp, as opposed to transformations.

There are two main kinds of projections at work here: perspective and parallel. Perspective projection
is the way we see the 3D world on our 2D retina. Perspective views consist of vanishing points and
foreshortening. Vanishing points are where all parallel lines converge in the distance, providing the
perception of depth (think of railroad tracks heading toward the horizon). The result is that the closer
something is, the bigger it appears, and vice versa, as shown in Figure 2–7. The parallel variety, also
called orthographic projection, simply removes the effects of distance by effectively setting the z
component of each vertex to 0 (the location of our viewing plane), as shown in Figure 2–8.

Figure 2–7. Perspective projection

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: All That Math Jazz 38

Figure 2–8. Parallel projection

In perspective projection, the distance component, z, is used to scale what will ultimately be the
screen x and screen y values. So, the larger the z, or the distance away from the viewer, the smaller
the pieces are visually. What one needs is the dimension of the viewport (OpenGL’s version of your
window or display screen) and its center point, which is typically the origin of the XY plane.

This final phase involves setting up the viewing frustum. The frustum establishes six clipping planes
(top, bottom, left, right, near, and far) needed to precisely determine what should be visible to the user
and how it is projected onto their viewport, which is OpenGL’s version of your window or screen. This
acts something like a lens into your OpenGL virtual world. By changing the values, you can zoom in or
out and clip stuff really far away or not at all, as shown in Figures 2–9 and 2–10. The perspective
matrix is defined by these values.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: All That Math Jazz 39

Figure 2–9. Narrow bounds for the frustum give you a high-power lens.

Figure 2–10. Wider bounds are like a wide-angle lens.

With these boundaries established, the one final transformation is that to the viewport, OpenGL’s
version of your screen. This is the point where OpenGL is fed the screen’s dimensions, those of your
display area, and the origin, which is likely the lower-left corner of the screen. On small devices such
as a phone or tablet, you will likely fill up the entire screen and so will use the screen’s full width. But
should you want to place the image into a subwindow of the main display, you could simply pass
smaller values to the viewport. The law of similar triangles plays out here.

In Figure 2–11 we want to find what the projected x’ is, given the x of an arbitrary vertex on the
model. Consider two triangles, one formed by the corners CBA and the other smaller one by COA’

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: All That Math Jazz 40

(the O is for origin). The distance from C (where the eye is, to O is d). The distance from C to B is d+z.
So, just taking the ratio of those, as follows:

′ x
deye

= x
z + deye

 and
y '

deye

= y
z + deye

yields the following:

x'=
xdeye

z + deye

 and y'=
ydeye

z + deye

Figure 2–11. Mapping a vertex to the viewport using the Law of Similar Triangles

Figure 2–12 shows the final translations. Those can be added to x’ and y’:

x'=
xdeye

z + deye

+ Tx and y'=
ydeye

z + deye

+ Ty

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: All That Math Jazz 41

Figure 2–12. Projecting x and y onto the device’s screen. You can visualize this as either translating your device
to the object’s coordinates (left) or translating the object to the device’s coordinates (right).

And when the pixel dust settles, we have a nice matrixy form:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

′
′
′

1100
0000

00
00

1
z
y
x

d

Td
Td

z
y
x

y

x

Usually some final scaling is required—if, for example, the viewport is normalized. But that is left up
to you.

Now Do it Backward and in High Heels

Such was a quote allegedly given by Ginger Rogers on how she felt about dancing with the great Fred
Astaire. The response was that although he was very good, she had to do everything he did and do it
backward and in high heels. (Rogers apparently never actually said that, as its use has been traced
back to a gag line from the comic strip Frank and Ernest.)

So, what does this have to do with transformations? Say you wanted to tell whether someone picked
one of your objects by touching the screen. How do you know which of your objects has been

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: All That Math Jazz 42

selected? You must be able to do inverse transformations to “unmap” the screen coordinates back
into something recognizable within your 3D space. But since the z-value gets dropped in the process,
it will be necessary to search through your object list to find which was the most likely target.
Untransforming something requires you to do everything backward (and in high heels if you like that
sort of thing). And this is done in the following way:

1. Multiply your modelview matrix with your Projection matrix.

2. Invert the results.

3. Convert the screen coordinates of the touch point into the frame of reference for
your viewport.

4. Take the results of that and multiply it by the inverted matrix from step 2.

Don’t worry, that will be covered in more detail later in the book.

What About Quaternions?

Quaternions are hyper-complex numbers that can store the RPY information in a four-dimensional
vector-type thingie. They are very efficient in both performance and space and are commonly used to
model the instantaneous heading of an aircraft or spacecraft in flight simulation. They are a curious
creature with great properties but are reserved for later, because OpenGL doesn’t support them
directly.

Summary
In this chapter, you learned the basics of 3D mathematics. First the chapter covered 2D
transformations (rotation, translation, and scaling) and then 3D, with projection covered as well.
Although you will not likely need to code any transformations yourself, being familiar with this chapter
is key to understanding much of the OpenGL terminology later. My head hurts.

www.it-ebooks.info

http://www.it-ebooks.info/

 43

 Chapter

From 2D to 3D: Adding
One Extra Dimension

In the first two chapters, we covered the cool stuff and the math stuff (which could be either cool or
boring). Here in Chapter 3 we’ll move the bouncing cube example beyond a mere 2D version to a 3D
version (4D hypercubes are beyond the scope of this work). And during the process, more 3D theory
about projections, rotations, and the like will be slipped in for good measure. However, note that
OpenGL is not just for 3D but can easily be used to place 2D controls in front of your 3D visualization.

First, a Little More Theory
Remember that OpenGL ES objects are a collection of points in 3D space; that is, their location is
defined by three values. These values are joined together to form faces, which are flat surfaces that
look remarkably like triangles. The triangles are then joined together to form objects or pieces of
objects.

To get a bunch of numbers that form vertices, other numbers that form colors, and still other numbers
that combine the vertices and colors on the screen, it is necessary to tell the system about its graphic
environment. Such things as the location of the viewpoint, the window (or viewport) that will receive
the image, aspect ratios, and other bits of digital flotsam of sorts are needed to complete the 3D
circuit. More specifically, I’ll cover OpenGL’s coordinates, how they relate to the frustum, how objects
are clipped or culled from the scene, and the drawing to your device’s display.

NOTE: You’re probably wondering when we get to the cool planetary stuff. Soon, Grasshopper,
soon.

3

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: From 2D to 3D: Adding One Extra Dimension 44

OpenGL Coordinates

If you’ve done any sort of graphics at all on any system, you’ll be acquainted with the run-of-the-mill
X-Y coordinate system. X is always the horizontal axis, with right being positive, while Y is always the
vertical axis, with down being positive, placing the origin in the upper-left corner. Known as screen
coordinates, they are easily confused with math coordinates, which place the origin at the lower-left
corner and where, for Y, up is positive.

Now jumping to OpenGL 3D coordinates, we have a slightly different system using Cartesian
coordinates, the standard of expressing locations in space. Typically, for screen coordinates on 2D
displays, the origin is in the upper-left corner with +X going right and +Y going down. However,
OpenGL has the origin in the lower-left corner, with +Y going up. But now we add a third dimension,
expressed as Z. In this case, +Z is pointing toward you, as shown in Figure 3–1.

Figure 3–1. OpenGL ES 3D Cartesian coordinate system (image by Jorge Stolfi)

In fact, we have several kinds of coordinate systems, or spaces, in OpenGL, with each space being
transformed to the next:

 Object space, which is relative to each of your objects.

 Camera, or eye, space, local to your viewpoint.

 Projection, or clip, space, which is the 2D screen or viewport that displays the
final image.

 Tangent space, used for more advanced effects such as bump-mapping, which
will be covered later.

 Normalized device coordinates (NDCs), which express the xyz values normalized
from -1 to 1. That is, the value (or set of values) is normalized such that it fits
inside a cube 2 units on a side.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: From 2D to 3D: Adding One Extra Dimension 45

 Windows, or screen, coordinates, which are the final locations of your scene
when displayed in the actual screen (no doubt to wild applause).

Naturally the previous can be expressed in pipeline form, as shown in Figure 3–2.

Figure 3–2. Vertex transformation pipeline

Object, eye, and clip space are the three you usually have to worry about. For example, object
coordinates are generated with a local origin and then moved and rotated to eye space. If you have a
bunch of airplanes for a combat game, for example, each will have their own local origin. You should
be able to move the planes to any part of your world by moving, or translating, just the origin and
letting the rest of the geometry follow along. At this point, the visibility of objects is tested against the
viewing frustum, which is the volume of space that defines what the virtual camera can actually see. If
they lay outside the frustum, they are considered invisible and so are clipped, or culled out, so that no
further operations are done on them. As you may remember in Chapter 1, much of the work in
graphics engine design focuses on the clipping part of the engine, so as to dump as many of the
objects as early as possible to yield faster and more efficient systems.

And finally, after all of that, the screen-oriented portions of OpenGL are ready to convert, or project,
the remaining objects. And those objects are your planes, zeppelins, missiles, trucks on the road,
ships at sea, trebuchets, and anything else you want to stuff into your application.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: From 2D to 3D: Adding One Extra Dimension 46

NOTE: OpenGL doesn’t really define anything as ‘‘world space.’’ However, the eye coordinates
are the next best thing in that you can define everything in relation to your location.

Eye Coordinates

There is no magical eyepoint object in OpenGL. So, instead of moving your eyepoint, you move all of
the objects in relation to your eyepoint. And yes, that is easy to get confused, and you will find yourself
constantly changing the signs of values, drawing funny diagrams, and holding out your hand in weird
ways trying to figure out why your trebuchet is upside-down. While in eyepoint relative coordinates,
instead of moving away from an object, the object, in effect, is moving away from you. Imagine you
are making a video of a car rushing by. Under OpenGL, the car would be standing still; you and
everything around you would be moving by it. This is done largely with the glTranslate*() and
glRotate*() calls, as you will see later. It is at this point where OpenGL’s modelview matrix that was
referenced in the previous chapter comes into play. You may recall that the ModelView matrix handles
the basic 3D transformations (as opposed to the Projection matrix, which projects the 3D view onto the
2D space of your screen, or the Texture matrix, which helps apply images to your object). You will
refer to it frequently.

Viewing Frustum and the Projection Matrix

In geometry, a frustum is that portion of (typically) a pyramid or cone that results after being cut by
two parallel planes. In other words, think of the great Pyramid of Giza with the top third lopped off (not
that I am condoning the destruction of Egyptian antiquities). In graphics, the viewing frustum defines
the portion of the world that our virtual camera can actually see, as shown in Figure 3–3.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: From 2D to 3D: Adding One Extra Dimension 47

Figure 3–3. Viewing frustum

Unlike a number of things in OpenGL, the definition of the viewing frustum is very straightforward and
follows the conceptual figures closely by simply defining a volume, the viewing pyramid, in space. Any
objects that are whole or in part within the frustum may eventually find their way to the screen as long
as it is not obscured by anything closer.

The frustum also is used to specify your field-of-view (FOV), like your camera’s wide-angle vs.
telephoto lens. The larger the angle that the side planes form when compared to the center axis (that
is, how they fan out), the larger the FOV. And a larger FOV will allow more of your world to be visible
but can also result in lower frame rates.

Up to this point, the translations and rotations use the ModelView matrix, easily set using the call
gl.glMatrixMode(GL_MODELVIEW);. But now at this stage of the rendering pipeline, you will define
and work with the Projection matrix. This is done largely via the frustum definitions spelled out in the
section “Picture This” in Chapter 2. And it is also a surprisingly compact means of doing a lot of
operations.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: From 2D to 3D: Adding One Extra Dimension 48

The final steps to convert the transformed vertices to a 2D image are as follows:

1. A 3D point inside the frustum is mapped to a normalized cube to convert the XYZ
values to NDC. NDC stands for normalized device coordinates, which is an
intermediate system describing the coordinate space that lays inside the frustum
and is resolution independent. This is useful when it comes to mapping each vertex
and each object to your device’s screen, no matter what size or how many pixels it
has, be it a phone, tablet, or something new with completely different screen
dimesions. Once you have this form, the coordinates have “moved” but still retain
their relative relationships with each other. And of course, in NDC, they now fall into
values between -1 and 1. Note that internally the Z value is flipped. Now –Z is
coming toward you, while +Z is going away, but thankfully that great unplesantness
is all hidden.

2. These new NDCs are then mapped to the screen, taking into account the screen’s
aspect ratio and the “distance” the vertices are from the screen as specified by the
near clipping plane. As a result, the further things are, the smaller they are. Most of
the math is used for little more than determining the proportions of this or that
within the frustum.

The previous steps describe perspective projection, which is the way we normally view the world. That
is, the further things are, the smaller they appear. When those inherent distortions are removed, we
get orthographic projection. At that point, no matter how far an object is, it still displays the same size.
Orthographic renderings are typically used in mechanical drawings when any perspective distortion
would corrupt the intent of the original artwork.

NOTE: You will often need to directly address which matrix you are dealing with. The call to
gl.glMatrixMode() is used to specify the current matrix, which all subsequent operations
apply to until changed. Forgetting which matrix is the current one is an easy error to make.

Back to the Fun Stuff: Going Beyond the Bouncy
Square
Now we can go back to the example that was used in Chapter 1. Now that we’re getting seriously 3D,
several things will need to be added to handle the Z-dimension, including a larger dataset for the
cube’s geometry and color, methods of handing off that data to OpenGL, a more complex frustum
definition, any face-culling techniques if needed, and rotations instead of just the translations.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: From 2D to 3D: Adding One Extra Dimension 49

NOTE: Translation means to move an object around in your world up/down, left/right, and
forward/backward, while rotation means to rotate the object around any arbitrary axis. And both
are considered transformations.

Adding the Geometry

From Chapter 1, you’ll remember the data as defined in Listing 3–1. First is the location of the four
corners, the vertices, how the vertices connect together, and how they are colored.

Listing 3–1. Defining the 2D Square

float vertices[] =
 {
 -1.0f, -1.0f,
 1.0f, -1.0f,
 -1.0f, 1.0f,
 1.0f, 1.0f
 };

 byte maxColor=(byte)255;

 byte colors[] =
 {
 maxColor,maxColor, 0,maxColor,
 0, maxColor, maxColor,maxColor,
 0, 0, 0,maxColor,
 maxColor, 0, maxColor, maxColor
 };

 byte indices[] =
 {
 0, 3, 1,
 0, 2, 3
 };

Now this can be extended to include the z-components, starting with the extra vertices, as shown in
line 1 of Listing 3–2. Additional details of the code will be discussed after the listing.

Listing 3–2. Defining the 3D Cube

 float vertices[] =
 {
 -1.0f, 1.0f, 1.0f, //1

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: From 2D to 3D: Adding One Extra Dimension 50

 1.0f, 1.0f, 1.0f,
 1.0f, -1.0f, 1.0f,
 -1.0f, -1.0f, 1.0f,

 -1.0f, 1.0f,-1.0f,
 1.0f, 1.0f,-1.0f,
 1.0f, -1.0f,-1.0f,
 -1.0f, -1.0f,-1.0f
 };

 byte maxColor=(byte)255;

 byte colors[] = //2
 {
 maxColor,maxColor, 0,maxColor,
 0, maxColor,maxColor,maxColor,
 0, 0, 0,maxColor,
 maxColor, 0,maxColor,maxColor,

 maxColor, 0, 0,maxColor,
 0, maxColor, 0,maxColor,
 0, 0,maxColor,maxColor,
 0, 0, 0,maxColor
 };

 byte tfan1[] =
 {
 1,0,3,
 1,3,2,
 1,2,6,
 1,6,5,
 1,5,4,
 1,4,0

 };

 byte tfan2[] =
 {
 7,4,5,
 7,5,6,
 7,6,2,
 7,2,3,
 7,3,0,
 7,0,4
 };

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: From 2D to 3D: Adding One Extra Dimension 51

Line 1 extends the vertices to three dimensions, while the colors array, lines 2ff, do the same with
color.

Figure 3–4 shows the way the vertices are ordered. Under normal situations, you will never have to
define geometry in this fashion. You’ll likely load your objects from a file stored in one of the standard
3D data formats, such as those used by 3D Studio or Modeler 3D. And considering how complicated
such files can be, it is not recommended that you write your own because importers for most of the
major formats are available.

Figure 3–4. Notice the various axes: X going right, Y is up, and Z is toward the viewer.

The size of color array, as shown in line 2 of Listing 3–2, has been doubled because of the doubling of
the number of vertices; otherwise, they are identical to the ones in the first example except with some
different colors on the back faces.

Some new data is now needed to tell OpenGL in what order the vertices are to be used. With the
square, it was a no-brainer to order, or sequence, the data by hand so that the four vertices could
represent the two triangles. The cube makes this considerably more complicated. We could have
defined each of the six faces of the cube by separate vertex arrays, but that wouldn’t scale well for
more complex objects. And it would be less efficient than having to shove six sets of data through the
graphics hardware. Keeping all the data in a single array is the most efficient from both a memory and
a speed standpoint. So, then, how do we tell OpenGL the layout of the data? In this case, we’ll use the
drawing mode called triangle fans, as shown in Figure 3–5.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: From 2D to 3D: Adding One Extra Dimension 52

Figure 3–5. A triangle fan has one common point with all triangles.

There are many different ways data can be stored and presented to OpenGL ES. One format may be
faster but uses more memory, while another may use less memory but at the cost of a little extra
overhead. If you were to import data from one of the 3D files, chances are it is already optimized for
one of the approaches, but if you really want to hand-tune the system, you may at some point have to
repack the vertices into the format you prefer for your application.

Besides triangle fans, you will find other ways data can be stored or represented, called modes.

 Points and lines specify just that: points and lines. OpenGL ES can render your
vertices as merely points of definable sizes or can render lines between the points
to show the wireframe version. Use GL10.GL_POINTS and GL10.GL_LINES,
respectively.

 Line strips, GL10.GL_LINE_STRIP, are a way for OpenGL to draw a series of lines
in one shot, while line loops, GL10.GL_LINE_LOOP, are like line strips but will
always connect the first and last vertices together.

 Triangles, triangle strips, and triangle fans round out the list of OpenGL ES
primitives: GL10.GL_TRIANGLES, GL10.GL_TRIANGLE_STRIP, and
GL10.GL_TRIANGLE_FAN. OpenGL itself can handle additional modes such as
quads (faces with four vertices/sides), quad strips, and polygons.

NOTE: The term primitive denotes a fundamental shape or form of data in graphics systems.
Examples of primitives include cubes, spheres, and cones. The term can also be used for even
simpler shapes such as points, lines, and, in the case of OpenGL ES, triangles and triangle fans.

When using these low-level objects, you may recall that in the first example in Chapter 1, there was an
index, or connectivity, array to tell which vertices matched which triangle. When defining the triangle
arrays, called tfan1 and tfan2 in Listing 3–2, you use a similar approach except all sets of indices
start with the same vertex. So, for example, the first three numbers in the array tfan1 are 1, 0, and 3.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: From 2D to 3D: Adding One Extra Dimension 53

That means the first triangle is made up of vertices 1, 0, and 3, in that order. And so, back in the array
vertices, vertex 1 is located at x=1.0f, y=1.0f, and z=1.0f. Vertex 0 is the point at x=-1.0f, y=1.0f,
and z=1.0f, while the third corner of our triangle is located at x=-1.0, y=-1.0, and z=1.0. The upside is
that this makes it a lot easier to create the datasets because the actual order is now irrelevant, while
the downside is that it uses up a little more memory to store the additional information.

The cube can be divided up into two different triangle fans, which is why there are two index arrays.
The first incorporates the front, right, and top faces, while the second incorporates the back, bottom,
and left faces, as shown in Figure 3–6.

Figure 3–6. The first triangle fan shares vertex 1 as the common vertex.

Stitching It All Together

Now the rendering code must be modified to handle the new data. Listing 3–3 shows the rest of the
new constructor method, right under the data definitions in Listing 3–2. This will replicate much of
the Chapter 1 example except for using the triangle fans instead of the connectivity array and the two
calls to gl.glDrawArray(). This is needed because the cube is in two pieces that must be drawn
separately, one each for three faces or six triangles that define the two triangle fans.

Listing 3–3. The Rest of the Constructor Method

 ByteBuffer vbb = ByteBuffer.allocateDirect(vertices.length * 4);
 vbb.order(ByteOrder.nativeOrder());
 mFVertexBuffer = vbb.asFloatBuffer();
 mFVertexBuffer.put(vertices);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: From 2D to 3D: Adding One Extra Dimension 54

 mFVertexBuffer.position(0);

 mColorBuffer = ByteBuffer.allocateDirect(colors.length);
 mColorBuffer.put(colors);
 mColorBuffer.position(0);

 mTfan1 = ByteBuffer.allocateDirect(tfan1.length);
 mTfan1.put(tfan1);
 mTfan1.position(0);

 mTfan2 = ByteBuffer.allocateDirect(tfan2.length);
 mTfan2.put(tfan2);
 mTfan2.position(0);

NOTE: You’ll note that many of the OpenGL ES calls end in an f, such as gl.glScalef(),
gl.glRotatef(), and so on. The f means that the parameters passed are floats. The only other
parameter types in OpenGL ES that require their own special calls are fixed-point values, so
glScale would now be gl.glScalex(). Fixed point was useful for the older and slower
devices, but with more current hardware the floating-point calls are recommended. You will
notice that color arrays and other attributes can be collected as bytes, ints, longs, and so on. But
they don’t factor in to having a suite of dedicated API calls.

Listing 3–4 shows the updated draw method from the previous example. This is fundamentally the
same as the one in Chapter 1, but naturally it has our new friends, the triangle fans, instead of the
index array.

Listing 3–4. Updated draw Method

public void draw(GL10 gl)
 {
 gl.glVertexPointer(3, GL11.GL_FLOAT, 0, mFVertexBuffer);
 gl.glColorPointer(4, GL11.GL_UNSIGNED_BYTE, 0, mColorBuffer);

 gl.glDrawElements(gl.GL_TRIANGLE_FAN, 6 * 3, gl.GL_UNSIGNED_BYTE, mTfan1);
 gl.glDrawElements(gl.GL_TRIANGLE_FAN, 6 * 3, gl.GL_UNSIGNED_BYTE, mTfan2);
 }

Listing 3–5 shows a tweaked onDrawFrame from CubeRenderer.java.

Listing 3–5. The Mildly Revised onDrawFrame

public void onDrawFrame(GL10 gl)
 {
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: From 2D to 3D: Adding One Extra Dimension 55

 gl.glClearColor(0.0f,0.5f,0.5f,1.0f); //1

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glTranslatef(0.0f,(float)Math.sin(mTransY), -7.0f); //2
 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glEnableClientState(GL10.GL_COLOR_ARRAY);

 mCube.draw(gl);

 mTransY += .075f;
 }

No real dramatic changes here:

 In line 1, I’ve added gl.glClearColor to the mix. This specifies what color
should be used when the frame is cleared. The color here is a fetching shade of
teal blue.

 In line 2, the z-value in the translation has been upped to -7 just to make the
cube’s depiction is little more natural looking.

One final set of changes is shown in Listing 3–6, which defines the viewing frustum. There
is somewhat more information here so as to handle varying display sizes as well as making
the code a little more easily understood.

Listing 3–6. The New Frustum Code

public void onSurfaceChanged(GL10 gl, int width, int height)
 {
 gl.glViewport(0, 0, width, height);

 float aspectRatio;
 float zNear =.1f;
 float zFar =1000;
 float fieldOfView = 30.0f/57.3f; //1
 float size;

 gl.glEnable(GL10.GL_NORMALIZE);

 aspectRatio=(float)width/(float)height; //2

 gl.glMatrixMode(GL10.GL_PROJECTION); //3

 size = zNear * (float)(Math.tan((double)(fieldOfView/2.0f))); //4

 gl.glFrustumf(-size, size, -size /aspectRatio, //5
 size /aspectRatio, zNear, zFar);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: From 2D to 3D: Adding One Extra Dimension 56

 gl.glMatrixMode(GL10.GL_MODELVIEW); //6
 }

Here is what is happening:

 Line 1 defines the frustum with a given FOV, making a little more intuitive when
choosing values. The field of 30 degrees is converted to radians as the Java Math
libraries require, whereas OpenGL sticks to degrees.

 The aspect ratio in line 2 is based on the width divided by the height. So if the
width is 1024x768, the aspect ratio would be 1.33. This helps ensure that the
proportions of the image scale properly. Otherwise, were the view not to take care
of the aspect ratio, its objects would look plenty squashed.

 Next, line 3 ensures that the current matrix mode is set as the projection matrix.

 Line 4 has the duty of calculating a size value needed to specify the left/right and
top/bottom limits of the viewing volume, as shown in Figure 3–3. This can be
thought of as your virtual window into the 3D space. With the center of the screen
being the origin, you need to go from –size to +size in both dimensions. That is
why the field is divided by two—so for a 60-degree field, the window will go from
-30 degrees to +30 degrees. Multiplying size by zNear merely adds a scaling hint
of sorts. Finally, divide the bottom/top limits by the aspect ratio to ensure your
square will really be a square.

 Now we can feed those numbers into gl.glFrustum(), as shown in line 5,
followed by resetting the current matrix back to GL10.GL_MODELVIEW.

If it works right, you should see something that looks exactly like the original bouncy cube! Wait,
you’re not impressed? OK, if you’re going to be that way, let’s add some rotations to the thing.

Taking ’er Out for a Spin

Now it’s time to add some more interesting animation to the scene. We’re going to be spinning this
slowly besides bouncing it up and down. Add the following line to the bottom of gl.onDrawFrames():

 mAngle+=.4;

Right before the gl.glTranslatef() call, add the following:

 gl.glRotatef(mAngle, 0.0f, 1.0f, 0.0f);
 gl.glRotatef(mAngle, 1.0f, 0.0f, 0.0f);

And naturally add private float mAngle; to the bottom of the file with the other definitions.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: From 2D to 3D: Adding One Extra Dimension 57

Now run again. “Hey! Huh?” will be the mostly likely response. The cube doesn’t seem to be spinning,
but instead it’s rotating around your viewpoint (while bouncing at the same time), as shown in Figure
3–7. This illustrates one of the most confusing elements in basic 3D animation: getting the order of the
translations and rotations correct. (Remember the discussion in Chapter 2?)

Consider our cube. If you want to have a cube spinning in front of your face, which would be the
proper order? Rotate and then translate? Or translate and then rotate? Reaching way back to fifth-
grade math, you might remember learning something about addition and multiplication being
commutative. That is, the order of operations was not critical: a+b=b+a, or a*b=b*a. Well, 3D
transformations are not commutative (finally, a use for something I’d never thought I’d need!). That is,
rotation*translation is not the same as translation*rotation. See Figure 3–8.

The right side is what you are seeing right now in the rotating cube example. The cube is being
translated first and then rotated, but because the rotation takes place around the “world” origin (the
viewpoint’s location), you see it as if it’s spinning around your head.

Now to the obvious does-not-compute moment: are the rotations not placed before the translations in
the example code anyway?

Figure 3–7. Translation first, rotation second

So, this is what should be causing the sudden outbreak of furrowed brows across the land:

 gl.glRotatef(mAngle, 0.0f, 1.0f, 0.0f);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: From 2D to 3D: Adding One Extra Dimension 58

 gl.glRotatef(mAngle, 1.0f, 0.0f, 0.0f);

 gl.glTranslatef(0.0f, (float)(sinf(mTransY)/2.0f), z);

Figure 3–8. Rotation first or translation first?

However, in reality, the order of transformations is actually applied from last to first. Now put
gl.glTranslatef() ahead of the two rotations, and you should see something like Figure 3–9,
which is exactly what we wanted in the first place. Here is the code needed to do that:

 gl.glTranslatef(0.0f, (float)(sinf(mTransY)/2.0f), z);

 gl.glRotatef(mAngle, 0.0f, 1.0f, 0.0f);
 gl.glRotatef(mAngle, 1.0f, 0.0f, 0.0f);

There are two different ways to visualize transformation ordering: the local coordinate and the world
coordinate approach. Seeing things in the former, you move the objects to their final resting place and
then perform the rotations. Since the coordinate system is local, the object will rotate around its own
origin, making the previous sequence make sense when going from top to bottom. If you choose the
world approach, which is in effect what OpenGL is doing, you must perform the rotations first around
the object’s local axis before performing the translation. In that way, the transformations actually
happen from bottom to top. The net result is the same and so is the code, and both are confusing and
easily can get out of sequence. That is why you’ll see many a 3D guy or gal holding something at arm’s
length while moving themselves all around to help them figure out why their great-looking catapult
model is flying below the ground. I call this the 3D shuffle.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: From 2D to 3D: Adding One Extra Dimension 59

Figure 3–9. Making the cube spin

One final transformation command to be aware of right now is gl.glScale(), used for resizing the
model along all three axes. Let’s say you need to double the height of the cube. You would use the line
glScalef(1,2,1). Remember that the height is aligned with the Y-axis, while width and depth are X
and Z, which we don’t want to touch.

Now the question is, where would you put the line to ensure that the geometry of the cube is the only
thing affected, as in the left image in Figure 3–10, before or after the calls to gl.glRotatef() in
onDrawFrame()?

If you said after, such as this:

 gl.glTranslatef(0.0f, (GLfloat)(sinf(mTransY)/2.0f), z);

 gl.glRotatef(mAngle, 0.0, 1.0, 0.0);
 gl.glRotatef(mAngle, 1.0, 0.0, 0.0);

 gl.glScalef(1,2,1);

you’d be right. The reason why this works is that since the last transformation in the list is actually the
first to be executed, you must put scaling ahead of any other transformations if all you want to resize
the object’s geometry. Put it anywhere else, and you could end up with something like the image on
the right in Figure 3–10. So, what’s happening there? This was generated with the code snippet:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: From 2D to 3D: Adding One Extra Dimension 60

 gl.glTranslatef(0.0f, (float)(sinf(mTransY)/2.0f), z);

 gl.glScalef(1,2,1);

 gl.glRotatef(mAngle, 0.0f, 1.0f, 0.0f);
 gl.glRotatef(mAngle, 1.0f, 0.0f, 0.0f);

Figure 3–10. Scaling before the rotations have been executed (left) and scaling after the rotations (right)

The geometry is rotated first, and then the cube’s local axis is rotated, which no longer aligns with the
origin’s axis. Following that with scale, it is stretched out along the world’s Y-axis, instead of its own.
This would be as if you already started with a vertex list of a cube rotated partway and scaled it with
nothing else. So if you make the scaling at the very end, your entire world is scaled.

Tweaking the Values

Now some more fun comes when we can start playing with various values. This section will
demonstrate a number of the various principles that are not just relevant to OpenGL ES but found in
nearly every 3D toolkit you’re likely to stumble across.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: From 2D to 3D: Adding One Extra Dimension 61

Clipping Regions

With a working demo, we can have fun by tweaking some of values and observing the changes. First
we’ll change the far clipping plane in the frustum by changing the value of zFar from 1000 down to
6.0. Why? Remember that the cube’s local origin is 7.0 and its size is 2.0. So when facing straight at
us, the closest point would be 6.0 because each of the sides would straddle the origin with 1.0 on
each side. So, by changing the value of zFar to 6.0, the cube would be hidden when it is exactly
facing us. But portions will peek through, looking something like a piece of flotsam poking above the
water. The reason is that when it rotates, the corners are naturally going to be a little closer to the
viewing plane, as shown in Figure 3–11.

Figure 3–11. Peek-a-boo! The cube is clipped when any part of it lays farther away than zFar.

So, what happens when I move the near clipping plane farther away? Reset zFar to 1000 (a number
that is arbitrarily large enough to ensure we can see everything in our exercises), and set zNear from
.1 to 6.0. What do you think it will look like? It will be the opposite of the previous example. See Figure
3–12 for the results.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: From 2D to 3D: Adding One Extra Dimension 62

Figure 3–12. The zFar plane is reset, while the zNear plane is moved back to clip any part of the cube that is too
close.

Z-clipping such as this is very helpful when dealing with large and complicated worlds. You’d likely not
want all objects you might be “looking at” to be rendered, because most would likely be too far away
to really see. Setting zFar and zNear to limit the visibility distance could speed up the system.
However, this would not be the best substitute for preculling your objects before they get into the
pipeline.

Field of View

Remember that the viewer’s FOV can also be changed in the frustum settings. Go back to our bouncy
friend again and make sure your zNear and zFar settings are back to the normal values of .1 and
1000. Now change the z value in gl.onDrawFrame() to -20 and run again. The leftmost image in
Figure 3–13 is what you should see.

Next we’re going to zoom in. Go to setClipping() and change fieldOfView=10 degrees from 30
degrees. The results are depicted in the center image in Figure 3–13. Notice how the cube has no
apparent vanishing point or no perspective when compared to the rightmost image. You’ll see the
same effect when using a zoom lens on a camera, because the foreshortening effect is nonexistent,
making things look like an orthogonal projection.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: From 2D to 3D: Adding One Extra Dimension 63

Figure 3–13. Moving the object away (left) and then zooming in on it with a 10° FOV (center). The rightmost
image has the default FOV value set to 50°with the cube at only 4 units away.

Face Culling

Let’s go back to a line of code you might remember from a few pages ago:

 gl.glEnable(GL_CULL_FACE);

This enables backface culling, covered in Chapter 1, which means that the faces on the rear of an
object won’t be drawn, because they would never be seen anyway. It works best for convex objects
and primitives such as spheres or cubes. The system calculates the face normals for each triangle,
which serve as a means to tell whether a face is aimed toward us or away. By default, face windings
are counterclockwise. So if a CCW face is aimed toward us, it will be rendered while all others would
be culled out. You can change this behavior in two different ways should your data be nonstandard.
You can specify that front-facing triangles have clockwise ordering or that culling dumps the front
faces instead of the rear ones. To see this in action, add the following line to the
onSurfaceCreated() method: gl.glCullFace(GL10.GL_FRONT);.

Figure 3–14 shows the results by removing the front facing triangles to show only the back ones.

NOTE: gl.glEnable() is a frequent call and is used to change various states from eliminating
back faces, as shown earlier, to smoothing points (GL10.GL_POINT-SMOOTH) to performing
depth tests (GL10.GL_DEPTH_TEST).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: From 2D to 3D: Adding One Extra Dimension 64

Figure 3–14. The back faces are now visible, while the front ones are culled.

Building a Solar System
With these basic tools in our 3D arsenal, we can actually start in the main project of building a small
solar-system model. What makes a solar system so ideal is that it has a very basic simple shape,
several objects that must all move around each other, and a single light source. The reason why the
cube example was used at first is that the shape is about as elementary as you can get for 3D, so the
code was not full of extraneous geometry. When you get to something such as a sphere, much of the
code will go to creating just the object, as you will see.

Although OpenGL is a great low-level platform, it still leaves a lot to be desired when it comes to
anything remotely high level. As you saw in Chapter 1, when it comes to modeling tools, many
available third-party frameworks could ultimately be used to do the job, but for now we’re just going to
be sticking with basic OpenGL ES.

NOTE: Besides OpenGL itself, a popular helper toolkit called GL Utility Toolkit (GLUT) is available.
GLUT provides a portable API support for basic windowing UI tasks and management functions. It
can construct some basic primitives, including a sphere, so it can be very handy when doing
small projects. Unfortunately, as of this writing, there is no official GLUT library for Android, or
iOS for that matter, although a couple of efforts are currently in the works.

The first thing to do is to create a new project or import a previous one that establishes the usual
OpenGL framework that includes the renderer and geometric object. In this case, it is a sphere
described by Listing 3–7.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: From 2D to 3D: Adding One Extra Dimension 65

Listing 3–7. Building Our 3D Planet

package book.SolarSystem;

import java.util.*;
import java.nio.*;
import javax.microedition.khronos.opengles.GL10;

public class Planet
{
 FloatBuffer m_VertexData;
 FloatBuffer m_NormalData;
 FloatBuffer m_ColorData;

 float m_Scale;
 float m_Squash;
 float m_Radius;
 int m_Stacks, m_Slices;

 public Planet(int stacks, int slices, float radius, float squash)
 {
 this.m_Stacks = stacks; //1
 this.m_Slices = slices;
 this.m_Radius = radius;
 this.m_Squash=squash;

 init(m_Stacks,m_Slices,radius,squash,"dummy");
 }

 private void init(int stacks,int slices, float radius, float squash, String textureFile)
 {
 float[] vertexData;
 float[] colorData; //2
 float colorIncrement=0f;

 float blue=0f;
 float red=1.0f;
 int numVertices=0;
 int vIndex=0; //vertex index
 int cIndex=0; //color index

 m_Scale=radius;
 m_Squash=squash;

 colorIncrement=1.0f/(float)stacks; //3

 {
 m_Stacks = stacks;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: From 2D to 3D: Adding One Extra Dimension 66

 m_Slices = slices;

 //vertices

 vertexData = new float[3*((m_Slices*2+2) * m_Stacks)]; //4

 //color data

 colorData = new float[(4*(m_Slices*2+2) * m_Stacks)]; //5

 int phiIdx, thetaIdx;

 //latitude

 for(phiIdx=0; phiIdx < m_Stacks; phiIdx++) //6
 {
 //starts at -90 degrees (-1.57 radians) goes up to +90 degrees
 (or +1.57 radians)

 //the first circle
 //7
 float phi0 = (float)Math.PI * ((float)(phiIdx+0) *
 (1.0f/(float)(m_Stacks)) - 0.5f);

 //the next, or second one.
 //8
 float phi1 = (float)Math.PI * ((float)(phiIdx+1) *
 (1.0f/(float)(m_Stacks)) - 0.5f);

 float cosPhi0 = (float)Math.cos(phi0); //9
 float sinPhi0 = (float)Math.sin(phi0);
 float cosPhi1 = (float)Math.cos(phi1);
 float sinPhi1 = (float)Math.sin(phi1);

 float cosTheta, sinTheta;

 //longitude

 for(thetaIdx=0; thetaIdx < m_Slices; thetaIdx++) //10
 {
 //increment along the longitude circle each "slice"

 float theta = (float) (-2.0f*(float)Math.PI * ((float)thetaIdx) *
 (1.0/(float)(m_Slices-1)));
 cosTheta = (float)Math.cos(theta);
 sinTheta = (float)Math.sin(theta);

 //we're generating a vertical pair of points, such

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: From 2D to 3D: Adding One Extra Dimension 67

 //as the first point of stack 0 and the first point of stack 1
 //above it. This is how TRIANGLE_STRIPS work,
 //taking a set of 4 vertices and essentially drawing two triangles
 //at a time. The first is v0-v1-v2 and the next is v2-v1-v3. Etc.

 //get x-y-z for the first vertex of stack

 vertexData[vIndex+0] = m_Scale*cosPhi0*cosTheta; //11
 vertexData[vIndex+1] = m_Scale*(sinPhi0*m_Squash);
 vertexData[vIndex+2] = m_Scale*(cosPhi0*sinTheta);

 vertexData[vIndex+3] = m_Scale*cosPhi1*cosTheta;
 vertexData[vIndex+4] = m_Scale*(sinPhi1*m_Squash);
 vertexData[vIndex+5] = m_Scale*(cosPhi1*sinTheta);

 colorData[cIndex+0] = (float)red; //12
 colorData[cIndex+1] = (float)0f;
 colorData[cIndex+2] = (float)blue;
 colorData[cIndex+4] = (float)red;
 colorData[cIndex+5] = (float)0f;
 colorData[cIndex+6] = (float)blue;
 colorData[cIndex+3] = (float)1.0;
 colorData[cIndex+7] = (float)1.0;

 cIndex+=2*4; //13
 vIndex+=2*3; //14
 }

 blue+=colorIncrement; //15
 red-=colorIncrement;

 // create a degenerate triangle to connect stacks and maintain winding order

 //16
 vertexData[vIndex+0] = vertexData[vIndex+3] = vertexData[vIndex-3];

vertexData[vIndex+1] = vertexData[vIndex+4] = vertexData[vIndex-2];
vertexData[vIndex+2] = vertexData[vIndex+5] = vertexData[vIndex-1];

 }

 }
 m_VertexData = makeFloatBuffer(vertexData); //17
 m_ColorData = makeFloatBuffer(colorData);
}

OK, so it takes a lot of code to create something as basic as a sphere. Using the triangle lists is more
involved than using the quads in standard OpenGL, but that’s what we have to work with.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: From 2D to 3D: Adding One Extra Dimension 68

The basic algorithm is to calculate the boundaries of the stacks, two at a time as partners. Stacks are
parallel to the ground, the X-Z plane, and they form the boundaries of the triangle strip. So, stack A
and B are calculated and subdivided into triangles based on the number of slices around the circle.
The next time through will take stacks B and C and then rinse and repeat. Two boundary conditions
apply:

 The first and last stacks contain the two poles of our pseudo-planet, in which
case they are more of a triangle fan as opposed to a strip. However, we’ll treat
them as strips to simplify the code.

 The end of each strip must connect with the beginning to form a contiguous set of
triangles.

So, let’s break this down:

 In line 1 you see that the initialization routine uses the notion of stacks and slices
to define the resolution of the sphere. Having more slices and stacks means a
much smoother sphere but uses much more memory not to mention additional
processing time. Think of a slice as similar to an apple wedge, representing a
piece of the sphere from bottom to top. A stack is a slice that is lateral, defining
sections of latitude. See Figure 3–15.

The radius parameter is a form of a scaling factor. You could opt to normalize all
your objects and use glScalef(), but that does add extra CPU overhead, so in
this case radius is used as a form of prescaling. Squash is used to create a
flattened sphere necessary for Jupiter and Saturn. Since they both have very high
rates of revolution, they are flattened out a bit. Jupiter’s day is only about ten
hours, while its diameter is more than ten times the Earth’s. As a result, its polar
diameter is about 93 percent of the equatorial diameter. And Saturn is even more
flattened, with the polar diameter only 90 percent of the equatorial. The squash
value is the polar diameter as measured against the equatorial diameter. A value
of 1.0 means the object is perfectly spherical, whereas Saturn would have a
squash value of .90, or 90 percent.

 In line 2 I introduce a color array. Since we want something interesting to look at
until we get to the cool texture stuff in Chapter 5, let’s vary the colors from top to
bottom. The top is blue, and the bottom is red. The color increment calculated in
line 3 is merely the color deltas from stack to stack. Red starts at 1.0 and goes
down, while blue starts at 0.0 and goes up.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: From 2D to 3D: Adding One Extra Dimension 69

Figure 3–15. Stacks go up and down, slices go round and round, and faces are subdivided into triangle strips.

 Lines 4 and 5 allocate the memory for both the vertices and the colors. Later other
arrays will be needed to hold the texture coordinates and face normals needed for
lighting, but for now let’s keep things simple. Notice that we’re doing 32-bit
colors, as with the cube. Three values form the RGB triplet while the fourth is for
alpha (translucency) but is not needed in this example. The m_Slices*2 value
takes into account the fact that two triangles are needed for each face bound by
the slice and stack borders. Normally, this would be one square, but here it must
be two triangles. The +2 handles the fact that the first two vertices are also the
last vertices, so are duplicated. And of course, we need m_Stacks worth of all
this stuff.

 Line 6 starts the outer loop, going from the bottom-most stack (or the southern
polar regions of our planet or altitude of -90 degrees) and up to the northern pole,
at +90°.

Some Greek identifiers are used here for spherical coordinates. Phi is commonly
used for the latitude-like values, while theta is used for longitude.

 Lines 7 and 8 generate the latitude for the boundaries of a specific strip. For
starters, when phiIdx is 0, we want phi0 to be -90°, or -1.57 radians. The -.5
shoves everything down by 90°; otherwise, our values would go from 0 to 180°.

 In lines 9ff, some values are precalculated to minimize the CPU load.

 Lines 10ff form the inner loop, going from 0 to 360°, and defines the slices. The
math is similar, so there’s no need to go into extreme detail, except that we are
calculating the points on a circle via lines 11ff. Both m_Scale and m_Squash
come into play here. But for now, just assume that they are both 1.0 normalizing
the data.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: From 2D to 3D: Adding One Extra Dimension 70

Notice that vertex 0 and vertex 2 are addressed here. vertexData[0] is x, while
vertexData[2] is z—that handles the two components that are parallel to the
ground. Since vertex 1 is the same as y, it remains constant for each loop and is
consistent with it representing the latitude. Since we’re doing the loops in pairs,
the vertex specified by array elements 3, 4, and 5 covers the next higher stack
boundary.

In effect, we are generating pairs of points, namely, each point and its mate
immediately above it. And this is the format that OpenGL expects for the triangle
strips, as shown in Figure 3–16.

Figure 3–16. A triangle strip of six vertices

 In lines 12ff, the color array is generated, and as with the vertices, they are
generated in pairs. The red and blue components are stashed into the array here,
with no green for the time being. Line 13 increments the color index, taking into
account that we generating two four-element colors entries per loop.

 As with the color index, the vertex index is also incremented, as in line 14, but this
time only for three components.

 In lines 15ff, we increment the blue and decrement the red colors ensuring that
the bottom “pole” is solid red, while the top is solid blue.

 At the end of each strip, we need to create some “degenerate” triangles, as
shown in lines 16ff. The term degenerate specifies that the triangle actually
consists of three identical vertices. Practically, it is but a single point; logically, it
is a triangle that serves to connect the current stack.

 And finally, when all is said and done, the vertex and color data at lines 17f are
converted to byte arrays that OpenGL can understand at render time. Listing 3–8
is the helper function to do this.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: From 2D to 3D: Adding One Extra Dimension 71

Listing 3–8. Helper Function to Generate an Array of Floats That OpenGL Can Understand

protected static FloatBuffer makeFloatBuffer(float[] arr)
{
 ByteBuffer bb = ByteBuffer.allocateDirect(arr.length*4);
 bb.order(ByteOrder.nativeOrder());
 FloatBuffer fb = bb.asFloatBuffer();
 fb.put(arr);
 fb.position(0);
 return fb;
}

Now that the geometry is out of the way, we need to concentrate on the draw method. See Listing 3–9.

Listing 3–9. Rendering the Planet

public void draw(GL10 gl)
{

 gl.glFrontFace(GL10.GL_CW); //1
 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, m_VertexData); //2
 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);

 gl.glColorPointer(4, GL10.GL_FLOAT, 0, m_ColorData);
 gl.glEnableClientState(GL10.GL_COLOR_ARRAY);

 //3
 gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 0, (m_Slices+1)*2*(m_Stacks-1)+2);
}

You should now recognize many of the elements from the cube examples:

 First in line 1, we specify that the clockwise faces are to be the front ones.

 Lines 2ff submit the color and vertex data to the renderer, ensuring that it is
enabled to accept it.

 And finally (!!) we can now draw our little sphere. Oops, well, not quite yet, it is
still necessary to allocate it.

Now that the planet object is complete enough for this example, let’s do the driver. You can repurpose
the bouncing cube renderer by renaming it to something like SolarSystemRenderer, which would be
an instance of the GLSurfaceView.Renderer interface. Change the constructor to look like Listing
3–10. This will allocate the planet to a fairly coarse resolution of ten stacks and ten slices, with a
radius of 1.0 and a squash value of 1.0 (i.e., perfectly round). Make sure to declare mPlanet as well
and, of course, import the GL10 library.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: From 2D to 3D: Adding One Extra Dimension 72

Listing 3–10. Constructor to SolarSystemRenderer

public SolarSystemRenderer()
{
 mPlanet=new Planet(10,10,1.0f, 1.0f);
}

The top level refresh method, gl.onDrawFrame(), isn’t much different from the cube one, as shown
in Listing 3–11.

Listing 3–11. The Main Drawing Method, Located in SolarSystemRenderer

private float mTransY;
private float mAngle;

public void onDrawFrame(GL10 gl)
{
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
 gl.glClearColor(0.0f,0.0f,0.0f,1.0f);
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();

 gl.glTranslatef(0.0f,(float)Math.sin(mTransY), -4.0f);

 gl.glRotatef(mAngle, 1, 0, 0);
 gl.glRotatef(mAngle, 0, 1, 0);

 mPlanet.draw(gl);

 mTransY+=.075f;
 mAngle+=.4;
}

There’s nothing to exotic here as it is virtually identical to the counterpart for rendering the cube. Copy
over onSurfaceChanged() and onSurfaceCreated() from the cube’s code, while commenting out
initLighting() and initGeometry() for the time being. You should now be able to compile and
run it. Figure 3–17 should be the result.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: From 2D to 3D: Adding One Extra Dimension 73

Figure 3–17. The future planet Earth

While it is rotating, having no features at all, you’ll be hard-pressed to see the motion.

As with the previous examples, let’s play around with some of the parameters and see what happens.
First let’s change the number of stacks and slices, from 10 to 20, in the SolarSystemRenderer
constructor. You should see something like Figure 3–18.

Figure 3–18. The planet with double the stacks and slices

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: From 2D to 3D: Adding One Extra Dimension 74

If you want your curved objects to look smoother, there are generally three ways to accomplish it:

 Have as many triangles as possible.

 Use some special lighting and shading tools built into OpenGL.

 Use textures.

The next chapter will cover the second option. But for now, see how many slices and stacks it takes to
make a really smooth sphere. (It works best with an equal number of both.) It really starts looking
good at 100 each. For now, go back to 20 each.

If you want to look at the actual wireframe structure of the sphere, change
GL10.GL_TRIANGLE_STRIP in the planet’s draw method to GL10.GL_LINE_STRIP. And you may want
to change the background color to a medium gray to make the lines stand out better (Figure 3–19,
left). As an exercise, see what it takes to get the image on the right in Figure 3–19. Now ask yourself
why we’re not seeing triangles there but instead that funky spiral pattern. It is simply the way OpenGL
draws and connects line strips. We could have it render triangle outlines by specifying a connectivity
array. But for our ultimate goal, that is not necessary.

Figure 3–19. The planet In wireframe mode

On your own, change GL10.GL_LINE_STRIP to GL10.GL_POINTS. There you’ll see each of the
vertices rendered as a single dot.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: From 2D to 3D: Adding One Extra Dimension 75

Then try the frustum again. Set zNear from .1 to 3.2. (Why not 4? The distance of the object?) And
you’ll get Figure 3–20.

Figure 3–20. Someone is setting the zNear clipping plane too close.

And one final exercise: what would it take to get something that looks like Figure 3–21? (This is what
you would need for Jupiter and Saturn; because they spin so fast, they’re not spherical but rather
oblate-spheroids.)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: From 2D to 3D: Adding One Extra Dimension 76

Figure 3–21. What does it take to get this?

And lastly, for extra credit, make it bounce like the cube.

Summary
In this chapter, we started by turning the 2D cube into a 3D cube and then learned how to rotate and
translate it. We also learned about the viewing frustum and how it can be used to cull out objects and
zoom in and out of our scene. Lastly, we constructed a much more complicated object that will be the
root of the solar-system model. The next chapter will cover shading, lighting, and materials, and a
second object will be added.

www.it-ebooks.info

http://www.it-ebooks.info/

77

 Chapter

Turning On the Lights

You must be strong now. You must never give up. And when people [or code] make
you cry and you are afraid of the dark, don’t forget the light is always there.

—Author Unknown

Light is the first of painters. There is no object so foul that intense light will not
make it beautiful.

—Ralph Waldo Emerson

Everything’s shiny, Cap’n. Not to fret.

—Kaylee Frye, Firefly

This chapter will cover one of the single biggest topics for OpenGL ES: the process of illuminating,
shading, and coloring the virtual landscape. We touched on color in the previous chapter, but because
it is so integral to both lighting and shading, we will cover it more in depth here.

The Story of Light and Color
Without light, the world would be a dark place (duh). Without color, it would be hard to tell the
difference between stoplights.

We all take for granted the wondrous nature of light—from the soft and gentle illumination off the
morning mist to the ignition of a space shuttle’s main engines to the shy pale radiance of a full moon
on a snowy field in mid-winter. A lot has been written about the physics of light and its nature and

4

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Turning On the Lights 78

perception. It might take an artist a lifetime to fully understand how to take colored pigments
suspended in oil and to apply them on a canvas to create a believable rainbow at the base of a
waterfall. Such is the task of OpenGL ES when it comes to turning on the lights in our scenes.

Sans poetry, light is merely a portion of the full electromagnetic spectrum that our eyes are sensitive
to. The same spectrum also includes radio signals that our iPhones use, X-rays to aid a physician,
gamma rays sent out from a dying star billions of years ago, and microwaves that can be used to
reheat some pizza left over from Wii Bowling Night last Thursday.

Light is said to have four main properties: wavelength, intensity, polarization, and direction. The
wavelength determines the color that we perceive, or whether we can actually see anything in the first
place. The visible spectrum starts in the violet range, with wavelengths of around 380 nanometers, on
up to red, with a wavelength of around 780 nanometers. Immediately below is ultraviolet, and right
above the visible range you’ll find infrared, which we can’t directly see but can detect indirectly in the
form of heat.

The way we perceive colors from objects has to do with what wavelengths the object or its material
absorbs or otherwise interferes with the oncoming light. Besides absorption, it could be scattered
(giving us the blue of the sky or the red of the sunset), reflected, and refracted.

If someone says that their favorite color is white, they must mean that all colors are their favorite
because white is a summation of all colors of the visible spectrum. If it is black, they don’t like any
colors, because black is the absence of color. In fact, that is why you shouldn’t wear black on a nice
warm sunny day. Your clothing absorbs so much energy and reflects so little (in the form of light and
infrared) that some of that ultimately turns into heat.

NOTE: When the sun is straight overhead, it can deliver an irradiance of about 1 kilowatt for
every square meter. Of that, a little more than half is infrared, sensed as a very warm day, while
a little less than half is visible light, and a measly 32 watts are devoted to UV.

It is said that Aristotle developed the first known color theory. He considered four colors, each
corresponding to one of the four elements of air, earth, water, and fire.

However, as we look at the visible spectrum, you will notice a nice contiguous spread from violet on
one end to red on the other that has neither water nor fire in it. Nor will you see discrete values of red,
green, or blue, typically used nowadays to define the individual shades. In the early 19th century,
British polymath Thomas Young developed the tricolor model that uses three colors to simulate all
visible hues. Young proposed that the retina was made up of bundles of nerve fibers, which would
respond to varying intensities of red, green, or violet light. German scientist Hermann von Helmholtz
later expanded this theory in the mid-19th century.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Turning On the Lights 79

NOTE: Young was a particularly colorful fellow. (Someone had to say it.) Not only was he the
founder of the field of physiological optics, in his spare time he developed the wave theory of
light, including the invention of the classic double-slit experiment, which is a college physics
staple. But wait! There’s more! He also proposed the theory of capillary phenomena, was the first
to use the term energy in the modern sense, partially deciphered some of the Egyptian portion of
the Rosetta Stone, and devised an improved means of tuning musical instruments. The laddie
must have been seriously sleep-deprived.

Today, colors are most frequently described via red-green-blue (RGB) triplets and their relative
intensity. Each of the colors fades to black with zero intensity and shows varying hues as the intensity
increases, ultimately perceived as white. Because the three colors need to be added together to
produce the entire spectrum, this system is an additive model.

Besides the RGB model, printers use a subtractive mode known as CMYK, for cyan-magenta-yellow-
black (the key). Because the three colors cannot produce a really deep black, black is added as an
accent for deep shadows or graphic details.

Another common model is HSV for hue-saturation-value, and you will frequently find it as an
alternative to RGB in many graphics packages or color pickers. Developed in the 1970s specifically for
computer graphics, HSV depicts color as a 3D cylinder (Figure 4–1). Saturation goes from the inside
out, value goes from bottom to top, and hue goes around the edge. A variant on this is HSL,
substituting value for lightness. Figure 4–2 shows the Mac OS X color picker in its many versions.

Figure 4–1. HSV color wheel or cylinder (source: Wikipedia Commons)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Turning On the Lights 80

Figure 4–2. Apple’s OS-X standard color pickers-----RGB, CMYK, HSV, and the ever-popular Crayola model

Let There Be Light
In the real world, light comes at us from all sides and with all colors and, when combined, can create
the details and rich scenes of everyday life. OpenGL doesn’t attempt to duplicate anything like the
real-world lighting models, because those are very complex and time-consuming and generally
reserved for Disney’s rendering farms. But it can approximate it in a way that is certainly good enough
for real-time gaming action.

The lighting model used in OpenGL ES permits us to place several lights of varying types around our
scene. We can switch them on or off at will, specifying direction, intensity, colors, and so on. But that’s
not all, because we also need to describe various properties of our model and how it interacts with the
incoming light. Lighting defines the way light sources interact with objects and the materials those
objects are created with. Shading specifically determines the coloring of the pixel based on the
lighting and material. Notice that a white piece of paper will reflect light completely differently than a
pink, mirrored Christmas ornament. Taken together, these properties are bundled up into an object
called a material. Blending the material’s attributes and the light’s attributes together generates the
final scene.

The colors of OpenGL lights can consist of up to three different components:

 Diffuse

 Ambient

 Specular

Diffuse light can be said to come from one direction such as the sun or a flashlight. It hits an object
and then scatters off in all directions, producing a pleasant soft quality. When a diffuse light hits a

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Turning On the Lights 81

surface, the reflected amount is largely determined by the angle of incidence. It will be at its brightest
when directly facing the light but drops as it tilts further and further away.

Ambient light is that which comes from no particular direction, having been reflected off all the
surfaces that make up the environment. Look around the room you are in, and the light that is
bouncing off the ceiling, walls, and your furniture all combine to form the ambient light. If you are a
photographer, you know how important ambient lighting is to make a scene much more realistic than
a single point source can, particularly in portrait photography where you would have a soft “fill light”
to offset the brighter main light.

Specular light is that which is reflected off a shiny surface. It comes from a specific direction but
bounces off a surface in a much more directed fashion. It makes the hot spot that we’d see on a disco
ball or a newly cleaned and waxed car. It is at its brightest when the viewpoint is directly in line with
the source and falls off quickly as we move around the object.

When it comes to both diffuse and specular lighting, they are typically the same colors. But even
though we’re limited to the eight light objects, having different colors for each component actually
means that a single OpenGL “light” can act like three different ones at the same time. Out of the three,
you might consider having the ambient light be a different color, usually one that is opposing the main
coloring so as to make the scene more visually interesting. In the solar-system model, a dim blue
ambient light helps illuminate the dark side of a planet and lends a greater 3D quality to it.

NOTE: You don’t have to specify all three types for a given light. Diffuse usually works just fine in
simple scenes.

Back to the Fun Stuff (for a While)
We’re not done with the theory yet, but let’s get back to coding for a while. After that, I’ll cover more
on light and shading theory.

You saw in the previous examples how colors defined with the standard RGB version on a per-vertex
basis would let us see it without any lighting at all. Now we will create lights of various types and
position them around our so-called planet. OpenGL ES must support at least eight lights total, which is
the case for Android. But of course you can create more and add or remove them as needed. If you are
really picky, you can check at runtime for just how many lights a particular implementation of OpenGL
supports by using one of the many variants of glGet* to retrieve the values of this:

 ByteBuffer byteBuffer = ByteBuffer.allocateDirect(4);
 byteBuffer.order(ByteOrder.LITTLE_ENDIAN);
 IntBuffer intBuffer = byteBuffer.asIntBuffer();
 drawable.getGL().glGetIntegerv(GL10.GL_MAX_LIGHTS, intBuffer);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Turning On the Lights 82

NOTE: OpenGL ES has a number of utility functions, with glGet*() being one of the most
commonly used families. The glGet* calls let you inquire about the states of various
parameters, such as the current modelview matrix to the current line width. The exact call
depends on the type of data requested.

Let’s go back to the example code from Chapter 3, where you had a squashed red and blue planet
bouncing up and down, and make the following changes:

1. Change the earth’s squash value from the solar-system controller’s method
initGeometry(), from .7f to 1.0f to round out the sphere again, and change the resolution
(stacks and slices) to 20.

2. In Planet.java, comment out the line blue+=colorIncrment at the end of the init()
method.

What should you see? C’mon, no peeking. Cover up Figure 4–3 and guess. Got it? Now you can
compile and run. The image on the left in Figure 4–3 is what you should see. Now go back to the
initGeometry method and increase the number of slices and stacks to 100 each. That should yield
the image on the right. So, by simply changing a few numbers around, we have a crude lighting and
shading scheme. But this is only a fixed lighting scheme that breaks down the moment you want to
start moving things around. That’s when we let OpenGL do the heavy lifting.

Unfortunately, the process of adding lights is a little more complicated than just calling something like
glMakeAwesomeLightsDude(), as we will see.

Figure 4–3. Simulated lighting from below (left) and a higher polygon count to simulate shading (right)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Turning On the Lights 83

3. Go back to the onSurfaceCreated method in the solar-system renderer from
Chapter 3 and modify it to look like this:

 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
 gl.glDisable(GL10.GL_DITHER);
 gl.glHint(GL10.GL_PERSPECTIVE_CORRECTION_HINT, GL10.GL_FASTEST);
 gl.glEnable(GL10.GL_CULL_FACE);
 gl.glCullFace(GL10.GL_BACK);
 gl.glShadeModel(GL10.GL_SMOOTH);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glDepthMask(false);
 initGeometry(gl);
 initLighting(gl);
 }

4. And add to the renderers:

public final static int SS_SUNLIGHT = GL10.GL_LIGHT0;

5. Then add the code in Listing 4–1 to switch on the lights.

Listing 4–1. Initializing the Lights

private void initLighting(GL10 gl)
{
 float[] diffuse = {0.0f, 1.0f, 0.0f, 1.0f}; //1
 float[] pos = {0.0f, 10.0f, -3.0f, 1.0f}; //2
 gl.glLightfv(SS_SUNLIGHT, GL10.GL_POSITION, makeFloatBuffer(pos)); //3
 gl.glLightfv(SS_SUNLIGHT, GL10.GL_DIFFUSE, makeFloatBuffer(diffuse)); //4
 gl.glShadeModel(GL10.GL_FLAT); //5
 gl.glEnable(GL10.GL_LIGHTING); //6
 gl.glEnable(SS_SUNLIGHT); //7
}

This is what’s going on:

 The lighting components are in the standard RGBA normalized form. So in this
case, there is no red, no full green, and no blue. The final value of alpha should be
kept at 1.0 for now, because it will be covered in more detail later.

 Line 2 is the position of the light. It is at a y of +10 and a z of -3, the same for the
planet. So, it will be hovering above our sphere.

 In lines 3 and 4, we set the light’s position and the diffuse component to the
diffuse color. glLightfv() is a new call and is used to set various light-related
parameters. You can retrieve any of this data at a later time using
glGetLightfv(), which retrieves any of the parameters from a specific light.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Turning On the Lights 84

 In line 5 we specify a shading model. Flat means that a face is a single solid color,
while setting it to GL_SMOOTH will cause the colors to blend smoothly across the
face and from face to face.

 And finally, line 6 tells the system we want to use lighting, while line 7 enables
the one light we’ve created.

NOTE: The final parameter of glLightfv() takes an array of four GLfloat values; the fv suffix
means ‘‘float-vector.’’ There is also a glLightf() call to set single-value parameters.

Now compile and run. Eh? What’s that, you say? You see only a black thing about the size of the
super-massive black hole at the center of the galaxy M31? Oh yes, we forgot something, sorry. As
previously mentioned, OpenGL in all of its varieties still remains a relatively low-level library, so it is up
to the programmer to handle all sorts of housekeeping tasks that you’d expect a higher-level system to
manage (and it gets much worse on OpenGL ES 2.0). And once the lights are turned on, the predefined
vertex colors are ignored, so we get black. With that in mind, our sphere model needs an extra layer of
data to tell the system just how to light its facets, and that is done through an array of normals for
each vertex.

What is a vertex normal? Face normals are normalized vectors that are orthogonal (perpendicular) to a
plane or face. But in OpenGL, vertex normals are used instead because they provide for better shading
down the road. It sounds odd that a vertex can have a “normal” of its own. After all, what is the
“direction” of a vertex? It is actually quite simple conceptually, because vertex normals are merely the
normalized sum of the normals of the faces adjacent to the vertex. See Figure 4–4.

Figure 4–4. A face normal is illustrated on the right, while vertex normals for a triangle fan are on the left.

OpenGL needs all of this information to tell what “direction” the vertex is aiming at so it can calculate
just how much illumination is falling on it, if at all. It will be its brightest when aiming directly at the
light source and dim as it starts tilting away. This means we need to modify our planet generator to
create a normal array along with the vertex and color arrays, as shown in Listing 4–2.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Turning On the Lights 85

Listing 4–2. Adding the Normal Generator to Planet.java

 private void init(int stacks,int slices, float radius, float squash, String textureFile)
 {
 float[] vertexData;
 float[] colorData;
 float[] normalData;
 float colorIncrement=0f;

 float blue=0f;
 float red=1.0f;
 int numVertices=0;
 int vIndex=0; //Vertex index
 int cIndex=0; //Color index
 int nIndex =0; //Normal index

 m_Scale=radius;
 m_Squash=squash;

 colorIncrement=1.0f/(float)stacks;
 m_Stacks = stacks;
 m_Slices = slices;

 //Vertices
 vertexData = new float[3*((m_Slices*2+2) * m_Stacks)];

 //Color data
 colorData = new float[(4*(m_Slices*2+2) * m_Stacks)];

 // Normalize data
 normalData = new float [(3*(m_Slices*2+2)* m_Stacks)]; //1

 int phiIdx, thetaIdx;

 //Latitude
 for(phiIdx=0; phiIdx < m_Stacks; phiIdx++)
 {
 //Starts at -90 degrees (-1.57 radians) and goes up to +90 degrees
 (or +1.57 radians).
 //The first circle
 float phi0 = (float)Math.PI * ((float)(phiIdx+0) * (1.0f/(float)
 (m_Stacks)) - 0.5f);

 //The next, or second one.
 float phi1 = (float)Math.PI * ((float)(phiIdx+1) * (1.0f/(float)
 (m_Stacks)) - 0.5f);

 float cosPhi0 = (float)Math.cos(phi0);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Turning On the Lights 86

 float sinPhi0 = (float)Math.sin(phi0);
 float cosPhi1 = (float)Math.cos(phi1);
 float sinPhi1 = (float)Math.sin(phi1);

 float cosTheta, sinTheta;

 //Longitude
 for(thetaIdx=0; thetaIdx < m_Slices; thetaIdx++)
 {
 //Increment along the longitude circle each "slice."

 float theta = (float) (2.0f*(float)Math.PI * ((float)thetaIdx) *
 (1.0/(float)(m_Slices-1)));
 cosTheta = (float)Math.cos(theta);
 sinTheta = (float)Math.sin(theta);

 //We're generating a vertical pair of points, such
 //as the first point of stack 0 and the first point of stack 1
 //above it. This is how TRIANGLE_STRIPS work,
 //taking a set of 4 vertices and essentially drawing two triangles
 //at a time. The first is v0-v1-v2 and the next is v2-v1-v3, etc.

 //Get x-y-z for the first vertex of stack.

 vertexData[vIndex+0] = m_Scale*cosPhi0*cosTheta;
 vertexData[vIndex+1] = m_Scale*(sinPhi0*m_Squash);
 vertexData[vIndex+2] = m_Scale*(cosPhi0*sinTheta);

 vertexData[vIndex+3] = m_Scale*cosPhi1*cosTheta;
 vertexData[vIndex+4] = m_Scale*(sinPhi1*m_Squash);
 vertexData[vIndex+5] = m_Scale*(cosPhi1*sinTheta);

 colorData[cIndex+0] = (float)red;
 colorData[cIndex+1] = (float)0f;
 colorData[cIndex+2] = (float)blue;
 colorData[cIndex+4] = (float)red;
 colorData[cIndex+5] = (float)0f;
 colorData[cIndex+6] = (float)blue;
 colorData[cIndex+3] = (float)1.0;
 colorData[cIndex+7] = (float)1.0;

 // Normalize data pointers for lighting.
 normalData[nIndex + 0] = cosPhi0*cosTheta; //2
 normalData[nIndex + 1] = sinPhi0;
 normalData[nIndex + 2] = cosPhi0*sinTheta;

 normalData[nIndex + 3] = cosPhi1*cosTheta; //3

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Turning On the Lights 87

 normalData[nIndex + 4] = sinPhi1;
 normalData[nIndex + 5] = cosPhi1*sinTheta;

 cIndex+=2*4;
 vIndex+=2*3; nIndex+=2*3;
 }

 //Blue+=colorIncrement;
 red-=colorIncrement;

 //Create a degenerate triangle to connect stacks and maintain winding order.
 vertexData[vIndex+0] = vertexData[vIndex+3] = vertexData[vIndex-3];
 vertexData[vIndex+1] = vertexData[vIndex+4] = vertexData[vIndex-2];

 vertexData[vIndex+2] = vertexData[vIndex+5] = vertexData[vIndex-1];
 }
 m_VertexData = makeFloatBuffer(vertexData);
 m_ColorData = makeFloatBuffer(colorData);
 m_NormalData = makeFloatBuffer(normalData);

 }

 In line 1, the normal array is allocated the same as the vertex memory, a simple
array containing 3-components-per normal.

 Sections 2 and 3 generate the normal data. It doesn’t look like any fancy-schmancy
normal averaging scheme covered earlier, so what gives? Since we’re dealing with a
very simple symmetrical form of a sphere, the normals are identical to the vertices
without any scaling values (to ensure they are unit vectors—that is, of length 1.0).
Notice that the calculations for the vPtr values and the nPtrs are virtually the same as
a result.

NOTE: You’ll rarely need to actually generate your own normals. If you do any real work in
OpenGL ES, you’ll likely be importing models from third-party applications, such as 3D-Studio or
Strata. They will generate the normal arrays along with the others for you.

There’s one final step, and that is to modify the draw() method in Planet.java to look like Listing
4–3.

Listing 4–3. The New draw Routine

 public void draw(GL10 gl)
 {
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glEnable(GL10.GL_CULL_FACE);
 gl.glCullFace(GL10.GL_BACK);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Turning On the Lights 88

 gl.glNormalPointer(GL10.GL_FLOAT, 0, m_NormalData); //1
 gl.glEnableClientState(GL10.GL_NORMAL_ARRAY); //2

 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, m_VertexData);
 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);

 gl.glColorPointer(4, GL10.GL_FLOAT, 0, m_ColorData);
 gl.glEnableClientState(GL10.GL_COLOR_ARRAY);

 gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 0, (m_Slices+1)*2*(m_Stacks-1)+2);
 }

It’s not much different than the original, except with the addition of lines 1 and 2 for sending the
normal data to the OpenGL pipeline alongside the color and vertex information. If you have a very
simple model in which many of the vertices all share the same normal, you can dump the normal array
and use glNormal3f() instead, saving a little memory and CPU overhead in the process.

Let’s make one final tweak. For this example, ensure that the planet is allocated with the stack and
slice values set back to 10 (from 100 used at the end of Chapter 3). This makes it easier to see how
some of the lighting works. Now you can compile and run it for real, and if you get something similar
to Figure 4–5, relax and take a pause for a cool refreshing beverage.

Figure 4–5. Flat lighting

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Turning On the Lights 89

Now that you’re back, I am sure you’ve spotted something a little odd. Supposedly the geometry is
based on strips of triangles, so why are the faces those weird four-sided triangle things?

When set for flat shading, OpenGL picks up its illumination cue from only a single vertex, the last one
of the respective triangle. Now, instead of the strips being drawn from triangles in horizontal pairs,
think of them loosely coupled in vertical pairs, as you see in Figure 4–6.

Figure 4–6. ‘‘Stacked’’ triangle pairs

In Strip 0, Triangle 1 will be drawn using vertices 0, 1, and 2, with vertex 2 used for the shading.
Triangle 2 will use 2, 1, and 3. Lather, rinse, and repeat for the rest of the strip. Next for Strip 1,
Triangle 41 will be drawn with vertices 4, 0, and 5. But Triangle 42 will use vertices 5, 0, and 2, with
the same vertex as Triangle 1 for its shading. That is why the vertical pairs combine to form a “bent”
quadrilateral.

There are few reasons nowadays to use flat shading, so in initLighting(), swap out GL_FLAT for
GL_SMOOTH, and in glShadeModel(), change the light’s position by changing the following:

 float[] pos = {0.0f, 10.0f, -3.0f, 1.0f};

 to this:

 float[] pos = {0.0f, 5.0f, 0.0f, 1.0f};

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Turning On the Lights 90

This will show more of the illuminated side. And now you probably know the drill: compile, run, and
compare. Then for fun, decrease the sphere’s resolution from 20 slices and segments down to 5. Go
back to flat shading on this one, and then compare to smooth shading. See Figure 4–7. The rightmost
image in Figure 4–7 is particularly interesting, because the shading model starts to break down,
showing some artifacting along the face edges.

Figure 4–7. From left to right: smooth shading a sphere with 20 stacks and 20 slices; flat shading on a sphere of
only 5 stacks and slices; smooth shading

Fun with Light and Materials

Now, since we have a nice smooth sphere to play with, we can start tinkering with the other lighting
models and materials. But first a thought experiment: say you have a green sphere as shown earlier
but your diffuse light is red. What color will the sphere be? (Pause for the Jeopardy theme.) Ready?
Well, in the real world what would it be? Reddish green? Greenish red? A mauvy shade of pinky-
russet? Let’s try it and find out. Modify initLighting() again, as shown in Listing 4–4. Note that the
light vectors have been renamed to their specific colors to make it a little more readable.

Listing 4–4. Adding Some More Light Types and Materials

private void initLighting(GL10 gl)
{
 float[] diffuse = {0.0f, 1.0f, 0.0f, 1.0f};
 float[] pos = {0.0f, 5.0f, -3.0f, 1.0f};
 float[] white = {1.0f, 1.0f, 1.0f, 1.0f};
 float[] red={1.0f, 0.0f, 0.0f, 1.0f};
 float[] green={0.0f,1.0f,0.0f,1.0f};

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Turning On the Lights 91

 float[] blue={0.0f, 0.0f, 1.0f, 1.0f};
 float[] cyan={0.0f, 1.0f, 1.0f, 1.0f};
 float[] yellow={1.0f, 1.0f, 0.0f, 1.0f};
 float[] magenta={1.0f, 0.0f, 1.0f, 1.0f};
 float[] halfcyan={0.0f, 0.5f, 0.5f, 1.0f};

 gl.glLightfv(SS_SUNLIGHT, GL10.GL_POSITION, makeFloatBuffer(pos));
 gl.glLightfv(SS_SUNLIGHT, GL10.GL_DIFFUSE, makeFloatBuffer(green));

 gl.glMaterialfv(GL10.GL_FRONT_AND_BACK, GL10.GL_DIFFUSE, makeFloatBuffer(red)); //1

 gl.glShadeModel(GL10.GL_SMOOTH);
 gl.glEnable(GL10.GL_LIGHTING);
 gl.glEnable(SS_SUNLIGHT);
 gl.glLoadIdentity(); //2
}

If you see our old friend, the supermassive black hole from M31, you’ve done well. So, why is it black?
That’s simple; remember the discussion at the start of this chapter on colors and reflectance? A red
object looks red only when the lighting hitting it has a red component, precisely the way our green
light doesn’t. If you had a red balloon in a dark room and illuminated it with green light on it, it would
look black, because no green would come back to you. And if someone asks you what you’re doing
with a red balloon in a dark room, just growl “Physics!” Then tell them that they just wouldn’t
understand in a dismissive tone.

So, with this understanding, replace the red diffuse material with green in line 1. What should you get?
Right, the green sphere is illuminated again. But you may notice something really interesting. The
green now looks a little bit brighter than before adding the material. The image on the left in Figure 4–
8 shows it without any material specified, and the image on the right shows it with the green diffuse
material added.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Turning On the Lights 92

Figure 4–8. Without green material defined (left) and with it defined (right)

Let’s do one more experiment. Let’s make the diffuse light be a more traditional white. What should
now happen with the green? Red? How about blue? Since the white light has all those components,
the colored materials should all show up equally well. But if you see the black ball again, you changed
the material’s color, not the lighting.

Specular Lighting

Well, how about the specular stuff? Add the following line to the lights section:

gl.glLightfv(SS_SUNLIGHT,GL10.GL_SPECULAR, makeFloatBuffer(red));

To the material section, add this:

gl.glMaterialfv(GL10.GL_FRONT_AND_BACK, GL10.GL_SPECULAR, makeFloatBuffer(red));

And change the light’s position to the following:

 float[] pos={10.0f,0.0f,3.0f,1.0f};

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Turning On the Lights 93

NOTE: The first value to glMaterial* must always be GL_FRONT_AND_BACK. In normal
OpenGL, you’re permitted to have different materials on both sides of a face, but not so in
OpenGL ES. However, you still must use the front and back values in OpenGL ES, or materials
will not work properly.

Reset the diffuse material back to green. You should see something that looks like a big mess of
something yellowish-reddish. Shorthand for what’s happening is that there’s yet another value we can
use to play with the lighting. Called shininess, it specifies just how shiny the object’s surface is and
ranges from 0 to 128. The higher the value, the more focused the reflection will be, and hence the
shinier it appears. But since it defaults to 0, it spreads the specular wealth across the entire planet. It
overpowers the green so much that when mixed with the red, it shows up as yellow. So, in order to get
control of this mess, add this line:

 gl.glMaterialf(GL10.GL_FRONT_AND_BACK,GL10.GL_SHININESS, 5);

I’ll explain shortly the real math behind this, but for right now see what happens with the value of 5.
Next try 25, and compare it with Figure 4–9. Shininess values from 5 to 10 correspond roughly to
plastics; greater than that, and we get into serious metal territory.

Figure 4–9. Shininess set to 0, 5.0, and 25.0, respectively

Ambient Lighting

It’s time for some fun with the ambient lighting. Add the following line to initLighting(); then
compile and run:
 gl.glLightfv(SS_SUNLIGHT, GL10.GL_AMBIENT, makeFloatBuffer(blue));

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Turning On the Lights 94

Does it look like the image on the left in Figure 4–10? And what should you do to get the image on the
right? You need to add the following line:

 gl.glMaterialfv(GL10.GL_FRONT_AND_BACK, GL10.GL_AMBIENT, makeFloatBuffer(blue));

Figure 4–10. Blue ambient light only (left), both ambient light and ambient material (right)

Besides the ambient attribute for each light, you can also set a world ambient value. The light-based
values are variables, as are all of light parameters, so they vary as a function of the distance,
attenuation, and so on. The world value is a constant across your entire OpenGL ES universe and can
be set by adding the following to your initLighting() routine:

 float[] colorVector={r, g, b, a};
 gl.glLightModelfv(GL10.GL_LIGHT_MODEL_AMBIENT, makeFloatBuffer(colorVector));

The default value is a dim gray formed by a color with red=.2f, green=.2f, and blue=.2f. This helps
ensure that your objects are always visible no matter what. And while we’re at it, there is one other
value for glLightModelfv(), and that is defined by the parameter of GL_LIGHT_MODEL_TWO_SIDE.
The parameter is actually a boolean float. If it is 0.0, only one side will be illuminated; otherwise, both
will. The default is 0.0. And if for any reason you wanted to change which faces were front ones, you

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Turning On the Lights 95

may use glFrontFace() and specify the triangles ordered clockwise or counterclockwise represent
the front face. CCW is the default.

Taking a Step Back

So, what is actually happening here? Quite a lot, actually. There are three general shading models in
use for real-time computer graphics. OpenGL ES 1.1 uses two of those, both of which we’ve seen. The
first, the flat model, simply shades each triangle with one constant value. You’ve seen what that looks
like in Figure 4–5. And in the good ol’ days, this was a valid option, considering it was much faster
than any others. However, when the iPhone in your pocket is roughly the equivalent of a handheld Cray-
1, those kinds of speed tricks are really a thing of the past. The smooth model uses interpolative shading,
calculating the colors at each vertex and then interpolating them across the faces. The actual kind of
shading OpenGL uses is a special form of this called Gouraud shading. This is where the vertex
normals are generated based on normals of all the adjacent faces.

The third kind of shading is called Phong and is not used in OpenGL because of high CPU overhead.
Instead of interpolating color values across the face, it interpolates normals, generating a normal for
each fragment (that is, pixel). This helps remove some of the artifacting along edges defined by high
curvatures, which produce very sharp angles. Phong can diminish that effect, but so can using more
triangles to define your object.

There are numerous other models. Jim Blinn of the JPL/Voyager animations in the 1970s created a
modified form of Phong shading, now called the Blinn-Phong model. If the light source and viewer can
be treated as if they are at infinity, it can be less computationally intensive.

The Minnaert model tends to add a little more contrast to diffuse materials. Oren-Nayer adds a
“roughness” component to the diffuse model in order to match reality just a little bit better.

Emissive Materials

Still another significant parameter we need to cover here that factors into the final color is
GL_EMISSION. Unlike the diffuse, ambient, and specular bits, GL_EMISSION is for materials only and
specifies that a material is emissive in quality. An emissive object has its own internal light source
such as the sun, which will come in handy in the solar-system model. To see this in action, add the
following line to the other material code in initLighting() and remove the ambient material:

 gl.glMaterialfv(GL10.GL_FRONT_AND_BACK, GL10.GL_EMISSION, makeFloatBuffer(yellow));

Because the yellow is at full intensity, what do you expect to see? Probably like the image on the left
in Figure 4–11. Next cut the values down by half so you have this:

 float[] yellow={.5f, .5f, 0.0f, 1.0f};

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Turning On the Lights 96

Now what do you see? I’ll bet it looks something like the image on right in Figure 4–11.

Figure 4–11. A body with emissive material set to full intensity for the yellow (left); the same scene but with just
50 percent intensity (right)

Superficially, emissive materials may look just like the results of using ambient lighting. But unlike
ambient lights, only a single object in your scene will be affected. And as a side benefit, they don’t use
up additional light objects. However, if your emissive objects do represent real lights of any sort such
as the sun, putting a light object inside definitely adds another layer of authenticity to the scene.

One further note regarding materials: if your object has had the color vertices specified, like both our
cube and sphere have, those values can be used instead of setting materials. You must use
gl.glEnable(GL10.GL_COLOR_MATERIAL);. This will apply the vertex colors to the shading system,
instead of those specified by the glMaterial* calls.

Attenuation

In the real world, of course, light decreases the farther an object is from the light source. OpenGL ES

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Turning On the Lights 97

can model this factor as well using one or more of the following three attenuation factors:

 GL_CONSTANT_ATTENUATION

 GL_LINEAR_ATTENUATION

 GL_QUADRATIC_ATTENUATION

All three are combined to form one value that then figures into the total illumination of each vertex of
your model. They are set using gLightf (GLenum light, GLenum pname, GLfloat param),
where light is your light ID such as GL_LIGHT0, pname is one of the three attenuation parameters
listed earlier, and the actual value is passed using param.

Linear attenuation can be used to model attenuation caused by factors such as fog. The quadratic
attenuation models the natural falloff of light as the distance increases, which changes exponentially.
As the distance of the light doubles, the illumination is cut to one quarter of the previous amount.

Let’s just look at one, GL_LINEAR_ATTENUATION, for the time being. The math behind all three will be
unveiled in a moment. Add the following line to initLighting():

gl.glLightf(SS_SUNLIGHT, GL10.GL_LINEAR_ATTENUATION, .025f);

And just to make things a little clearer visually, ensure that the emissive material is turned off. What
do you see? Now increase the distance down the x-axis from 10 to 50 in the pos vector. Figure 4–12
illustrates the results.

Figure 4–12. The light’s x distance is 10 (left) and 50 (right), with a constant attenuation of 0.025.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Turning On the Lights 98

Spotlights

The standard lights default to an isotropic model; that is, they are like a desk light without a shade,
shining equally (and blindingly) in all directions. OpenGL provides three additional lighting parameters
that can turn the run-of-the-mill light into a directional light:

 GL_SPOT_DIRECTION

 GL_SPOT_EXPONENT

 GL_SPOT_CUTOFF

Since it is a directional light, it is up to you to aim it using the GL_SPOT_DIRCTION vector. It defaults
to 0,0,-1, pointing down the –z-axis, as shown in Figure 4–13. Otherwise, if you want to change it, you
would use a call similar to the following that aims it down the +x-axis:

GLfloat direction[]={1.0,0.0,0.0};

gl.glLightfv(GL10.GL_LIGHT0, GL10.GL_SPOT_DIRECTION, direction);

Figure 4–13. A spotlight aimed at the default direction

GL_SPOT_CUTOFF specifies the angle at which the spotlight’s beam fades to 0 intensity from the
center of the spotlight’s cone and is naturally half the angular diameter of the full beam. The default
value is 45 degrees, for a beam width of 90 degrees. And the lower the value, the narrower the beam.

The third and final spotlight parameter, GL_SPOT_EXPONENT, establishes the rate of drop-off of the
beam’s intensity, which is still another form of attenuation. OpenGL ES will take the cosine of the angle
formed by the beam’s center axis and that of an arbitrary vertex, Θ, and raise it to the power of
GL_SPOT_EXPONENT. Because its default is 0, the light’s intensity will be the same across all parts of
the illuminated region until the cutoff value is reached, and then it drops to zero.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Turning On the Lights 99

Light Parameters in Play

Table 4–1 summarizes the various light parameters covered in this section.

Table 4–1. All of the Possible Lighting Parameters for glLight* Calls in OpenGL ES 1.1

Name Purpose

GL_AMBIENT Sets the ambient component of a light

GL_DIFFUSE Sets the diffuse component of a light

GL_SPECULAR Sets the specular component of a light

GL_POSITION Sets the x,y,z coordinates of the light

GL_SPOT_DIRECTION Aims a spotlight

GL_SPOT_EXPONENT Specifies the rate of falloff from the center of a spotlight’s
beam

GL_SPOT_CUTOFF Specifies the angle from the center of a spotlight’s beam drops
to 0 intensity

GL_CONSTANT_ATTENUATION Specifies the constant attenuation factor

GL_LINEAR_ATTENUATION Specifies the linear component of the attenuation factor;
simulates fog or other natural phenomena

GL_QUADRATIC_ATTENUATION Specifies the quadratic portion of the attenuation factor,
simulating the normal decrease in intensity as a function of
distance

The Math Behind Shading

The diffuse shading model gives a very smooth look to objects, as you have seen. It uses something
called the Lambert lighting model. Lambert lighting states simply that the more directly aimed a
specific face is to the light source, the brighter it will be. The ground beneath your feet is going to be
brighter the higher the sun is in the sky. Or in the more obscure but precise technical version, the
reflective light increases from 0 to 1 as the angle, Θ, between the incident light, I, and the face’s
normal, N, decrease from 90 to 0 degrees based on cos (Θ). See Figure 4–14. Here’s a quickie thought
experiment: when Θ is 90 degrees,it is coming from the side; cos(90) is 0, so the reflected light along
N is naturally going to be 0. When it is coming straight down, parallel to N, cos(0) will be 1, so the
maximum amount will be reflected back. And this can be more formally expressed as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Turning On the Lights 100

Id =kdIi cos(Θ)

I d is the intensity of the diffuse reflection, is the intensity of the incoming ray of light, and k d

represents the diffuse reflectance that is loosely coupled to the roughness of the object’s material.
Loosely means that in a lot of real-world materials, the actual surface may be somewhat polished but
yet translucent, while the layers immediately underneath perform the scattering. Materials such as
this may have both strong diffuse and specular components. Also, each color band may have its own k
value in real life, so there would be one for red, green, and blue.

Figure 4–14. For a perfectly diffuse surface, the reflected intensity of an incoming beam will be the vertical
component of that beam, or cosine of the angle between the incoming beam and the surface normal.

Specular Reflections

As referenced earlier, specular reflections serve to give your model a shiny appearance besides the
more general diffuse surface. Few things are perfectly flat or perfectly shiny, and most lay somewhere
in between. In fact, the earth’s oceans are good specular reflectors, and on images of the earth from
long distances, the sun’s reflection can clearly be seen in the oceans.

Unlike a diffuse “reflection,” which is equal in all directions, a specular reflection is highly dependent
on the viewer’s angle. We’ve been taught that the angle of incidence=angle of reflectance. This is true

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Turning On the Lights 101

enough for the perfect reflector. But with the exception of mirrors, the nose of a ’51 Studebaker, or the
nicely polished forehead of that Cylon centurion right before he blasts you 150,000 years into the
past, few things are perfect reflectors. And as such, there will be a slight scattering of the
incoming ray; see Figure 4–15.

Figure 4–15. For a specular reflection, the incoming ray is scattered but only around the center of its reflected
counterpart.

The equation of the specular component can be expressed as follows:

Ispecular= W (q)I lightcosn Θ

where:

 I light is the intensity of the incoming ray.

W (q) is how reflective the surfaces is based on the angle of I light .

 n is the shininess factor (sound familiar?).

 Θ is the angle between the reflected ray and the ray hitting the eye.

This is actually based on what’s called the Fresnel Law of Reflection, which is where the W(q) value
comes from. Although W(q) is not directly used OpenGL ES 1.1 because it varies with the angle of
incidence and is therefore a little more complicated than the specular lighting model, it could be used

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Turning On the Lights 102

in a shader for version OpenGL ES 2.0. In that case, it would be particularly useful in doing reflections
off the water, for example. In its place is a constant that is based on the specular values from the
material setting.

The shininess factor, also called the specular exponent, is what we played with earlier. However, in
real life n can go far higher than the max of 128.

Attenuation

Now back to the three kinds of attenuation listed earlier: constant, linear, and quadratic. The total
attenuation is calculated as follows, where kc is the constant, k l is the linear value, kq is the

quadratic component, and d stands for the distance from the light and an arbitrary vertex:

k t= 1
k c+k ld +k qd2()

Summing It All Up

So, now you can see that there are many factors in play to merely generate the color and intensity of
that color for any of the vertices of any models in our scene. These include the following:

 Attenuation because of distance

 Diffuse lights and materials

 Specular lights and materials

 Spotlight parameters

 Ambient lights and materials

 Shininess

 Emissivity of the material

You can think of all of these as acting on the entire color vector or on each of the individual R, G, and B
components of the colors.

So, to spell it all out, the final vertex color will be as follows:

color = ambientworld model ambientmaterial + emissivematerial + intensitylight

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Turning On the Lights 103

where:

intensitylight = (attenuation factor)i(spotlight factor
i = 0

n −1
∑)i

ambient lightambientmaterial+cos(Θ)shininess specularlight specularmaterial[]

In other words, the color is equal to the some of the things not controlled by the lights added to the
intensity of all the lights once we take into account the attenuation, diffuse, specular, and spotlight
elements.

When calculated, these values act individually on each of the R, G, and B components of the colors in
question.

So, What’s This All For?

One reason why it is handy to understand what’s going on beneath the hood is that it helps make
OpenGL and related tools less mysterious. Just like when you learn a foreign language, say Klingon
(and if you, dear reader, are Klingon, majQa’ nuqDaq ‘oH puchpa’ ‘e’!), it ceases to be the mystery that
it once was; where growls were growls and snarls were snarls, now you might recognize them as a
lovely poem about fine tea.

And another reason is, as mentioned early on, all of these nice “high-level” tools are absent in OpenGL
ES 2.0. Most any of the earlier shading algorithms will have to be implemented by you in little bits o’
code that are called shaders. Fortunately, information on the most common shaders is available on the
Internet and, replicating the previous information, relatively straightforward.

More Fun Stuff
Now, armed with all of this photonic goodness, it’s time to get back to coding and introduce more than
one light. Secondary lights can make a surprisingly large difference in the authenticity of the scene for
little effort.

Go back to initLighting() and make it look like Listing 4–5. Here we add two more lights, named
SS_FILLLIGHT1 and SS_FILLLIGHT2, respectively. Add their definitions to the renderer’s class:

 public final static int SS_SUNLIGHT1 = GL10.GL_LIGHT1;

 public final static int SS_SUNLIGHT2 = GL10.GL_LIGHT2;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Turning On the Lights 104

Now compile and run. Do you see the image on the left in Figure 4–16? Here is where the Gouraud
shading model breaks down, as mentioned earlier, exposing the edges of the triangles. And what is
the solution? At this point, simply increase the number of slices and stacks from 20 to 50 each, and
you’ll get the much more pleasing image, shown on the right in Figure 4–16.

Listing 4–5. Adding Two Fill Lights

private void initLighting(GL10 gl)
{
 float[] posMain={5.0f,4.0f,6.0f,1.0f};
 float[] posFill1={-15.0f,15.0f,0.0f,1.0f};
 float[] posFill2={-10.0f,-4.0f,1.0f,1.0f};

 float[] white={1.0f,1.0f,1.0f,1.0f};
 float[] red={1.0f,0.0f,0.0f,1.0f};
 float[] dimred={.5f,0.0f,0.0f,1.0f};

 float[] green={0.0f,1.0f,0.0f,0.0f};
 float[] dimgreen={0.0f,.5f,0.0f,0.0f};
 float[] blue={0.0f,0.0f,1.0f,1.0f};
 float[] dimblue={0.0f,0.0f,.2f,1.0f};

 float[] cyan={0.0f,1.0f,1.0f,1.0f};
 float[] yellow={1.0f,1.0f,0.0f,1.0f};
 float[] magenta={1.0f,0.0f,1.0f,1.0f};
 float[] dimmagenta={.75f,0.0f,.25f,1.0f};

 float[] dimcyan={0.0f,.5f,.5f,1.0f};

 //Lights go here.

 gl.glLightfv(SS_SUNLIGHT, GL10.GL_POSITION, makeFloatBuffer(posMain));
 gl.glLightfv(SS_SUNLIGHT, GL10.GL_DIFFUSE, makeFloatBuffer(white));
 gl.glLightfv(SS_SUNLIGHT, GL10.GL_SPECULAR, makeFloatBuffer(yellow));

 gl.glLightfv(SS_FILLLIGHT1, GL10.GL_POSITION, makeFloatBuffer(posFill1));
 gl.glLightfv(SS_FILLLIGHT1, GL10.GL_DIFFUSE, makeFloatBuffer(dimblue));
 gl.glLightfv(SS_FILLLIGHT1, GL10.GL_SPECULAR, makeFloatBuffer(dimcyan));

 gl.glLightfv(SS_FILLLIGHT2, GL10.GL_POSITION, makeFloatBuffer(posFill2));
 gl.glLightfv(SS_FILLLIGHT2, GL10.GL_SPECULAR, makeFloatBuffer(dimmagenta));
 gl.glLightfv(SS_FILLLIGHT2, GL10.GL_DIFFUSE, makeFloatBuffer(dimblue));

 gl.glLightf(SS_SUNLIGHT, GL10.GL_QUADRATIC_ATTENUATION, .005f);

 //Materials go here.

 gl.glMaterialfv(GL10.GL_FRONT_AND_BACK, GL10.GL_DIFFUSE, makeFloatBuffer(cyan));

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Turning On the Lights 105

 gl.glMaterialfv(GL10.GL_FRONT_AND_BACK, GL10.GL_SPECULAR,
 makeFloatBuffer(white));

 gl.glMaterialf(GL10.GL_FRONT_AND_BACK, GL10.GL_SHININESS, 25);

 gl.glShadeModel(GL10.GL_SMOOTH);
 gl.glLightModelf(GL10.GL_LIGHT_MODEL_TWO_SIDE, 1.0f);

 gl.glEnable(GL10.GL_LIGHTING);
 gl.glEnable(SS_SUNLIGHT);
 gl.glEnable(SS_FILLLIGHT1);
 gl.glEnable(SS_FILLLIGHT2);

 gl.glLoadIdentity();
}

Figure 4–16. Three lights, one main and two fill. The left image has a low-resolution sphere, while the right
image is high-resolution.

In the previous examples, a number of new API calls were covered, which are summarized in Table 4–
2. Get to know them—they are your friends, and you’ll be using them a lot.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Turning On the Lights 106

Table 4–2. New API Calls Covered

Name Purpose

glGetLight Retrieves any of the parameters from a specific light

glLight* Sets the parameters for the lights

glLightModel Specifies the light model, either GL_LIGHT_MODEL_AMBIENT or
GL_LIGHT_MODEL_TWO_SIDE

glMaterialfv Defines the attributes for the current material

glNormal Assigns a single normal to an array of faces

glNormalPointer Specifies the current normal array for an object in the execute method

glShadeModel Either GL_FLAT or GL_SMOOTH

glPopMatrix Pops a matrix off the current stack

glPushMatrix Pushes a matrix on the current stack

Back to the Solar System
Now we have enough tools to get back to the solar-system project. Hold on, there is a lot of material to
cover here. In particular are some other aspects of OpenGL that have nothing to do with lighting or
materials but need to be addressed before the solar-system model gets much more complex.

First we need to add some new method declarations and instance variables to renderer class. See
Listing 4–6.

Listing 4–6. Preparing for the sun and earth.

 public final static int X_VALUE = 0;

 public final static int Y_VALUE = 1;

 public final static int Z_VALUE = 2;

 Planet m_Earth;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Turning On the Lights 107

 Planet m_Sun;
 float[] m_Eyeposition = {0.0f, 0.0f, 0.0f};

Next, a second object, in this case, our sun, needs to be generated, sized, and placed. And while we’re
at it, change the size of the earth to make it smaller than the sun. So, replace the initialization code in
the renderer’s constructor with Listing 4–7.

Listing 4–7. Add a second object and Initialize the Viewer’s Position

 m_Eyeposition[X_VALUE] = 0.0f; //1
 m_Eyeposition[Y_VALUE] = 0.0f;
 m_Eyeposition[Z_VALUE] = 5.0f;

 m_Earth = new Planet(50, 50, .3f, 1.0f); //2
 m_Earth.setPosition(0.0f, 0.0f, -2.0f); //3

 m_Sun = new Planet(50, 50,1.0f, 1.0f); //4
 m_Sun.setPosition(0.0f, 0.0f, 0.0f); //5

Here’s what’s going on:

 Our eyepoint, line 1, now has a well-defined location of +5 on the z-axis.

 In line 2, the earth’s diameter is reduced to .3.

 Initialize the earth’s location to be behind the sun from our standpoint, at z=-2, line 3.

 Now we can create the sun and place it at the exact center of our relatively fake
solar system, line 4 and 5.

initLighting() needs to look like in Listing 4–8, cleaned up from all of the mucking around in the
previous examples.

Listing 4–8. Expanded Lighting for the Solar System Model

private void initLighting(GL10 gl)
{
 float[] sunPos={0.0f, 0.0f, 0.0f, 1.0f};
 float[] posFill1={-15.0f, 15.0f, 0.0f, 1.0f};
 float[] posFill2={-10.0f, -4.0f, 1.0f, 1.0f};
 float[] white={1.0f, 1.0f, 1.0f, 1.0f};
 float[] dimblue={0.0f, 0.0f, .2f, 1.0f};
 float[] cyan={0.0f, 1.0f, 1.0f, 1.0f};
 float[] yellow={1.0f, 1.0f, 0.0f, 1.0f};
 float[] magenta={1.0f, 0.0f, 1.0f, 1.0f};
 float[] dimmagenta={.75f, 0.0f, .25f, 1.0f};
 float[] dimcyan={0.0f, .5f, .5f, 1.0f};

 //Lights go here.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Turning On the Lights 108

 gl.glLightfv(SS_SUNLIGHT, GL10.GL_POSITION, makeFloatBuffer(sunPos));
 gl.glLightfv(SS_SUNLIGHT, GL10.GL_DIFFUSE, makeFloatBuffer(white));
 gl.glLightfv(SS_SUNLIGHT, GL10.GL_SPECULAR, makeFloatBuffer(yellow));

 gl.glLightfv(SS_FILLLIGHT1, GL10.GL_POSITION, makeFloatBuffer(posFill1));
 gl.glLightfv(SS_FILLLIGHT1, GL10.GL_DIFFUSE, makeFloatBuffer(dimblue));
 gl.glLightfv(SS_FILLLIGHT1, GL10.GL_SPECULAR, makeFloatBuffer(dimcyan));

 gl.glLightfv(SS_FILLLIGHT2, GL10.GL_POSITION, makeFloatBuffer(posFill2));
 gl.glLightfv(SS_FILLLIGHT2, GL10.GL_SPECULAR, makeFloatBuffer(dimmagenta));
 gl.glLightfv(SS_FILLLIGHT2, GL10.GL_DIFFUSE, makeFloatBuffer(dimblue));

 //Materials go here.

 gl.glMaterialfv(GL10.GL_FRONT_AND_BACK, GL10.GL_DIFFUSE, makeFloatBuffer(cyan));
 gl.glMaterialfv(GL10.GL_FRONT_AND_BACK, GL10.GL_SPECULAR, makeFloatBuffer(white));

 gl.glLightf(SS_SUNLIGHT, GL10.GL_QUADRATIC_ATTENUATION,.001f);
 gl.glMaterialf(GL10.GL_FRONT_AND_BACK, GL10.GL_SHININESS, 25);
 gl.glShadeModel(GL10.GL_SMOOTH);
 gl.glLightModelf(GL10.GL_LIGHT_MODEL_TWO_SIDE, 0.0f);

 gl.glEnable(GL10.GL_LIGHTING);
 gl.glEnable(SS_SUNLIGHT);
 gl.glEnable(SS_FILLLIGHT1);
 gl.glEnable(SS_FILLLIGHT2);
}

Naturally, the top-level execute method has to be completely overhauled, along with the addition of a
small utility function, as shown in Listing 4–9.

Listing 4–9. New rendering Methods

static float angle = 0.0f;

private void onDrawFrame(GL10 gl)
{
 float paleYellow[]={1.0f, 1.0f, 0.3f, 1.0f}; //1
 float white[]={1.0f, 1.0f, 1.0f, 1.0f};
 float cyan[]={0.0f, 1.0f, 1.0f, 1.0f};
 float black[]={0.0f, 0.0f, 0.0f, 0.0f}; //2

 float orbitalIncrement= 1.25f; //3
 float[] sunPos={0.0f, 0.0f, 0.0f, 1.0f};

 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Turning On the Lights 109

 gl.glClearColor(0.0f,0.0f,0.0f,1.0f);
 gl.glPushMatrix(); //4

 gl.glTranslatef(-m_Eyeposition[X_VALUE], -m_Eyeposition[Y_VALUE],-
 m_Eyeposition[Z_VALUE]);
 //5

 gl.glLightfv(SS_SUNLIGHT, GL10.GL_POSITION, makeFloatBuffer(sunPos)); //6
 gl.glMaterialfv(GL10.GL_FRONT_AND_BACK, GL10.GL_DIFFUSE, makeFloatBuffer(cyan));
 gl.glMaterialfv(GL10.GL_FRONT_AND_BACK, GL10.GL_SPECULAR, makeFloatBuffer(white));

 gl.glPushMatrix(); //7
 angle+=orbitalIncrement; //8
 gl.glRotatef(angle, 0.0f, 1.0f, 0.0f); //9
 executePlanet(m_Earth, gl); //10
 gl.glPopMatrix(); //11

 gl.glMaterialfv(GL10.GL_FRONT_AND_BACK, GL10.GL_EMISSION, makeFloatBuffer(paleYellow));
 //12
 gl.glMaterialfv(GL10.GL_FRONT_AND_BACK, GL10.GL_SPECULAR, makeFloatBuffer(black)); //13
 executePlanet(m_Sun, gl); //14

 gl.glMaterialfv(GL10.GL_FRONT_AND_BACK, GL10.GL_EMISSION, makeFloatBuffer(black)); //15

 gl.glPopMatrix(); //16

}

 private void executePlanet(Planet m_Planet, GL10 gl)
{
 float posX, posY, posZ;
 posX = m_Planet.m_Pos[0]; //17
 posY = m_Planet.m_Pos[1];
 posZ = m_Planet.m_Pos[2];

 gl.glPushMatrix();
 gl.glTranslatef(posX, posY, posZ); //18
 m_Planet.draw(gl); //19
 gl.glPopMatrix();
}

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Turning On the Lights 110

Here’s what’s going on:

 Line 1 creates a lighter shade of yellow. This just colors the sun a slightly more
accurate hue.

 We need a black color to “turn off” some of the material characteristics if needed,
as in line 2.

 In line 3, the orbital increment is needed to get the earth to orbit the sun.

 glPushMatrix() in line 4 is a new API call. When combined with
glPopMatrix(), it helps isolate the transformations for one part of the world
from another part. In this case, the first glPushMatrix actually prevents the
following call to glTranslate() from adding new translations upon itself. You
could dump the glPush/PopMatrix pair and put the glTranslate out of
onDrawFrame(), into the initialization code, just as long as it is called only once.

 The translation in line 5 ensures that the objects are “moved away” from our
eyepoint. Remember that everything in an OpenGL ES world effectively revolves
around the eyepoint. I prefer to have a common origin that doesn’t rely on
viewer’s location, and in this case, it is the position of the sun, as expressed in
offsets from the eyepoint.

 Line 6 merely enforces the sun’s location as being at the origin.

 Ooh! Another glPushMatrix() in line 7. This ensures that any transformations
on the earth don’t affect the sun.

 Lines 8 and 9 get the earth to orbit the sun. How? In line 10, a little utility function
is called. That performs any transitions and moves an object away from the origin
if need be. As you recall, the transformations can be thought of being last
called/first used. So, the translation in executePlanets() is actually performed
first, followed by the glRotation. Note that this method will have the earth
orbiting in a perfect circle, whereas in reality, no planets will have a perfectly
circular orbit, so glTranslation will be used.

 glPopMatrix() in line 11 dumps any of the transformations unique to the earth.

 Line 12 sets the sun’s material to be emissive. Note that the calls to
glMaterialfv are not bound to any specific object. They set the current material
used by all following objects only until the next calls are made. Line 13 turns off
any specular settings used for the Earth.

 Line 14 calls our utility again, this time with the sun.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Turning On the Lights 111

 The emissive material attribute is switched off, here in line 15, followed by
another glPopMatrix(). Note that every time you do use a push matrix, it must
be paired with a pop. OpenGL ES can handle stacks up to 16 deep. Also, since
there are three kinds of matrices in use in OpenGL (the Modelview, Projection, and
Texture), make sure that you are pushing/popping the proper stack. You can
ensure this by remembering to use glMatrixMode().

 Now in executePlanet(), line 17 gets the planet’s current position so line 18
can translate the planet to the proper position. In this case, it never actually
changes, because we’re letting glRotatef() handle the orbital duties.
Otherwise, the xyz would constantly change as a factor of time.

 Finally, call the planet’s own drawing routine in line 19.

To Planet.java, add the following line to the instance variables:

 public float[] m_Pos = {0.0f, 0.0f, 0.0f};

And after the execute method, add the code in Listing 4–10, defining the new methods.

Listing 4–10. The Setter for m_Pos

public void setPosition(float x, float y, float z)
{
 m_Pos[0] = x;
 m_Pos[1] = y;
 m_Pos[2] = z;
}

And while you’re at it, let’s turn down the gray in the background. It’s supposed to be space, and
space isn’t gray. Go back to the renderer, onDrawFrame(), and change the call to glClearColor to
read as follows:

 gl.glClearColor(0.0f,0.0f, 0.0f, 1.0f);

Now compile and run. You should see something like Figure 4–17.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Turning On the Lights 112

Figure 4–17. What’s happening in the middle?

There’s something odd here. When running, you should see the earth come out from behind the sun on
the left side, orbit toward us to cross in front of the sun, and then move away to repeat the orbit again.
So, why don’t we see the earth in front of the sun in the middle image (Figure 4–17)?

In all graphics, computer or otherwise, the order of drawing plays a big role. If you’re painting a
portrait, you draw the background first. If you are generating a little solar system, well, the sun should
be drawn first (er, maybe not…or not always).

Rendering order, or depth sorting, and how to determine what objects occlude other objects has
always been a big part of computer graphics. Before the sun was added, render order was irrelevant,
because there was only a single object. But as the world gets a lot more complicated, you’ll find that
there are two general ways this problem is solved.

The first is called the painter’s algorithm. This means simply to draw the farthest objects first. This is
very easy in something as simple as one sphere orbiting another. But what happens when you have
very complicated 3D immersive worlds like World of Warcraft or Second Life? These would actually
use a variant of painter’s algorithm, but with some precomputed information ahead of time that
determines all possible orders of occlusion. That information is then used to form a binary space
partitioning (BSP) tree. Any place in the 3D world can be mapped to an element in the tree, which can
then be traversed to fetch the optimum order for viewer’s location. This is very fast in execution but
complicated to set up. Fortunately, it is way overkill for our simple universe. The second means of
depth sorting isn’t sorting at all but actually uses the z component of each individual pixel. A pixel on
the screen has an x and y value, but it can also have a z value as well, even though the Viewsonic in
front of me is a flat 2D surface. As one pixel is ready to draw on top of another, the z values are

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Turning On the Lights 113

compared, and the closer of the two wins out. Called z-buffering, it is very simple and straightforward
but can chew up extra CPU time and graphics memory for very complicated scenes. I prefer the latter,
and OpenGL makes z-buffering very easy to implement.

In method OnSurfaceCreated, find:

 gl.glDepthMask(false);

 and replace with

 gl.glDepthMask(true);

If it works right, you should now see the earth eclipsing the sun when in front or being hidden while in
back. See Figure 4–18.

Figure 4–18. Using the z-buffer

And the Banding Played On
Under Android, the GLSurfaceView object does not default to “true” 32-bit color—that is, 8 bits each
for red, green, blue, and alpha. Instead, it chooses a somewhat lower-quality mode called “RGB565,”
which uses only 16 bits per pixel, or 5 bits for red, 6 for green, and 5 for blue. With a lower-resolution
color mode such as this, you will likely get the “banding” artifacts on smoothly shaded objects, as
illustrated by the image on the left in Figure 4–19. This happens simply because not enough colors are

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Turning On the Lights 114

available. However, you can direct GLSurfaceView to use higher resolution modes, resulting in the
image on the right in Figure 4–19. Use the following code in the onCreate() handler in the activity
object:

 GLSurfaceView view = new GLSurfaceView(this);
 view.setEGLConfigChooser(8,8,8,8,16,0); //The new line
 view.setRenderer(new SolarSystemRenderer());
 setContentView(view);

The new line (view.setEGLConfigChooser(8,8,8,8,16,0) tells the view to use 8 bits per color, in addition
to 16 bits for depth, or z-buffering, which was described above. The final value is for a stencil that will
be covered in Chapter 7.

Figure 4–19. 16-bit color on the left, 32-bit color on the right.

Be careful about automatically using the 32-bit color modes because some older devices do not
support them and could crash as a result. It is advised that you check for which modes are available
before using anything other than the default. This can be done by creating a custom “ColorChooser”
object that will enumerate all possible modes. And yes, it is a pain, and a lot of code. An example will
be available on the web site.

Summary
This chapter covered the various approaches to lighting and shading the scene, along with the
mathematical algorithms used to determine the color at each vertex. You also studied diffuse,
specular, emissive, and ambient lighting along with various parameters having to do with turning the
lights into spotlights. The solar-system model was updated to support multiple objects and to use z-
buffering to handle object occlusion properly.

www.it-ebooks.info

http://www.it-ebooks.info/

 115

 Chapter

Textures

The true worth of a man is not to be found in man himself, but in the colours and
textures that come alive in others.

—Albert Schweitzer

People would be a rather dull bunch without texture to their lives. Removing those interesting little
foibles and eccentricities would remove a little of the sheen in our daily wanderings, be they odd but
beguiling little habits or unexpected talents. Imagine the high-school janitor who happens to be an
excellent ballroom dancer, the famous comedian who must wear only new white socks every day, the
highly successful game engineer who’s afraid to write letters by hand—all can make us smile and add
just a little bit of wonder through the day. And so it is when creating artificial worlds. The visual
perfection that computers can generate might be pretty, but it just doesn’t feel right if you want to
create a sense of authenticity to your scenes. That’s where texturing comes in.

Texture makes that which is perfect become that which is real. The American Heritage Dictionary
describes it this way: “The distinctive physical composition or structure of something, especially with
respect to the size, shape, and arrangement of its parts.” Nearly poetic, huh?

In the world of 3D graphics, texturing is as vital as lighting in creating compelling images and can be
incorporated with surprisingly little effort nowadays. Much of the work in the graphics chip industry is
rooted in rending increasingly detailed textures at higher rates than each previous generation of
hardware.

Because texturing in OpenGL ES is such a vast topic, this chapter will be confined to the basics, with
more advanced topics and techniques reserved for the next chapter. So with that in mind, let’s get
started.

5

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Textures 116

The Language of Texturing
Say you wanted to create an airstrip in a game you’re working on. How would you do that? Simple,
take a couple of black triangles, stretch them really long. Bang! Now you’ve got your landing strip! Not
so fast there, sport. What about the lines painted down the center of the strip? How about a bunch of
small white faces? That could work. But don’t forget those yellow chevrons at the very end. Well, add
a bunch of additional faces, and color them yellow. And don’t forget about the numbers. How about the
curved lines leading to the tarmac? Pretty soon you might be up to hundreds of triangles, but that still
wouldn’t help with the oil spots, repairs, skid marks, or roadkill. Now it starts getting complicated.
Getting all of the fine detail could require thousands if not tens of thousands of faces. Meanwhile, your
buddy, Arthur, is also creating a strip. You are comparing notes, telling him about polygon counts and
that you haven’t even gotten to the roadkill yet. And Arthur says all he needed was a couple of
triangles and one image. You see, he used texturemaps, and using texturemaps can create a highly
detailed surface such as an airstrip, brick walls, armor, clouds, creaky weathered wooden doors, a
cratered terrain on a distant planet, or a the rusting exterior of a ’56 Buick.

In the early days of computer graphics, texturing, or texture mapping, used up two of the most
precious resources: CPU cycles and memory. It was used sparingly, and all sorts of little tricks were
done to save on both resources. With memory now virtually free (when compared to 20 years ago) and
with modern chips having seemingly limitless speed, using textures is no longer a decision one should
ever have to stay up all night and struggle with.

All About Textures (Mostly)

Textures come in two broad types: procedural and image. Procedural textures are generated on the fly
based on some algorithm. There are “equations” for wood, marble, asphalt, stone, and so on. Nearly
any kind of material can be reduced to an algorithm and hence drawn onto an object, as shown in
Figure 5–1.

Figure 5–1. The chalice on the left is polished gold, while on the right uses a procedural texture to look like gold
ore, while the cone looks like marble.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Textures 117

Procedural textures are very powerful because they can produce an infinite variety of scalable patterns
that can be enlarged to reveal increasingly more detail, as shown in Figure 5–2. Otherwise, this would
require a massive static image.

Figure 5–2. Close-up on the goblet at the right in Figure 5----1. Notice the fine detailing that would need a very
large image to accomplish.

The 3D rendering application Strata Design 3D-SE, which was used for the previous images, supports
both procedural and image-based textures. Figure 5–3 shows the dialog used to specify the
parameters of the gold ore texture depicted in Figure 5–2.

Figure 5–3. All of the possible settings used to produce the gold ore texture in Figure 5----2

6
www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Textures 118

Procedural textures, and to a lesser degree, image textures, can be classified in a spectrum of
complexity from random to structured. Random, or stochastic textures, can be thought of as “looking
like noise,” like a fine-grained material such as sand, dust, gravel, the grain in paper, and so on. Near
stochastic could be flames, grass, or the surface of a lake. On the other hand, structured textures have
broad recognizable features and patterns. A brick wall, wicker basket, plaid, or herd of geckos would
be structured.

Image Textures

As referenced earlier, image textures are just that. They can serve duty as a surface or material
texture such as mahogany wood, steel plating, or leaves scattered across the ground. If done right,
these can be seamlessly tiled to cover a much larger surface than the original image would suggest.
And because they come from real life, they don’t need the sophisticated software used for the
procedural variety. Figure 5–4 shows the chalice scene, but this time with wood textures, mahogany
for the chalice, and alder for the cone, while the cube remains gold.

Figure 5–4. Using real-world image textures

Besides using image textures as materials, they can be used as pictures themselves in your 3D world.
A rendered image of a Galaxy Tab can have a texture dropped into where the screen is. A 3D city could
use real photographs for windows on the buildings, for billboards, or for family photos in a living room.

OpenGL ES and Textures

When OpenGL ES renders an object, such as the mini-solar system in Chapter 4, it draws each triangle
and then lights and colorizes it based on the three vertices that make up each face. Afterward, it
merrily goes about to the next one. A texture is nothing more than an image. As you learned earlier, it
can be generated on the fly to handle context-sensitive details (such as cloud patterns), or it can be a
.jpg, .png, or anything else. It is made up of pixels, of course, but when operating as a texture, they

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Textures 119

are called texels. You can think of an OpenGL ES texture as a bunch of little colored “faces” (the
texels), each of the same size and stitched together in one sheet of, say, 256 such “faces” on a side.
Each face is the same size as each other one and can be stretched or squeezed so as to work on
surfaces of any size or shape. They don’t have corner geometry to waste memory storing xyz values,
can come in a multitude of lovely colors, and give a lot of bang for the buck. And of course they are
extraordinarily versatile.

Like your geometry, textures have their own coordinate space. Where geometry denotes locations of
its many pieces using the trusty Cartesian coordinates known as x, y, and z, textures use s and t. The
process that applies a texture to some geometric object is called UV mapping. (s and t are used only
for OpenGL world, whereas others use u and v. Go figure.)

So, how is this applied? Say you have a square tablecloth that you must make fit a rectangular table.
You need to attach it firmly along one side and then tug and stretch it along the other until it just barely
covers the table. You can attach just the four corners, but if you really want it to “fit,” you can attach
other parts along the edge or even in the middle. That’s a little how a texture is fitted to a surface.

Texture coordinate space is normalized; that is, both s and t range from 0 to 1. They are unitless
entities, abstracted so as not to rely on either the dimensions of the source or the destination. So, the
face to be textured will carry around with its vertices s and t values that lay between 0.0 to 1.0, as
shown in Figure 5–5.

Figure 5–5. Texture coordinates go from 0 to 1.0, no matter what the texture is.

In the most elementary example, we can apply a rectangular texture to a rectangular face and be done
with it, as illustrated in Figure 5–5. But what if you wanted only part of the texture? You could supply a
.png that had only the bit you wanted, which is not very convenient if you wanted to have many
variants of the thing. However, there’s another way. Merely change the s and t coordinates of the

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Textures 120

destination face. Let’s say all you wanted was the upper-left quarter of the Easter Island statue I call
Hedly. All you need to do is to change the coordinates of the destination, and those coordinates are
based on the proportion of the image section you want, as shown in Figure 5–6. That is, because you
want the image to be cropped halfway down the S-axis, the s coordinate will no longer go from 0 to 1
but instead from 0 to .5. And the t coordinate would then would go from .5 to 1.0. If you wanted the
lower-left corner, you’d use the same 0 to .5 ranges as the s coordinate.

Also note that the texture coordinate system is resolution independent. That is, the center of an image
that is 512 on a side would be (.5,.5), just as it would be for an image 128 on a side.

Figure 5–6. Clipping out a portion of the texture by changing the texture coordinates

Textures are not limited to rectilinear objects. With careful selections of the st coordinates on your
destination face, you can do some of the more colorful shapes depicted in Figure 5–7.

Figure 5–7. Mapping an image to unusual shapes

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Textures 121

If you keep the image coordinates the same across the vertices of your destination, the image’s
corners will follow those of the destination, as shown in Figure 5–8.

Figure 5–8. Distorting images can give a 3D effect on 2D surfaces.

Textures can also be tiled so as to replicate patterns that depict wallpaper, brick walls, sandy
beaches, and so on, as shown in Figure 5–9. Notice how the coordinates actually go beyond the upper
limit of 1.0. All that does is to start the texture repeating so that, for example, an s of .6 equals an s of
1.6, 2.6, and so on.

Figure 5–9. Tiled images are useful for repeated patterns such as those used for wallpaper or brick walls.

Besides the tiling model shown in Figure 5–9, texture tiles can also be “mirrored,” or clamped. Both
are mechanisms for dealing with s and t outside of the 0 to 1.0 range.

Mirrored tiling is like repeat but merely flips columns/rows of alternating images, as shown in Figure
5–10a. Clamping an image means that the last row or column of texels repeats, as shown in Figure 5–
10b. Clamping looks like a total mess with my sample image but is useful when the image has a
neutral border. In that case, you can prevent any image repetition on either or both axes if s or v
exceeds its normal bounds.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Textures 122

Figure 5–10. The left (a) shows a mirrored-repeat for just the S axis, while the right texture (b) is clamped.

NOTE: The problem with the right edge on the image at the right in Figure 5--10 suggests that
textures designed to be clamped should have a 1-pixel-wide border to match the colors of the
object to which they are bound----unless you think it’s really cool, then of course, that trumps
nearly everything.

OpenGL ES, as you know by now, doesn’t do quadrilaterals—that is, faces with four sides (as opposed
to its big desktop brother). So, we have to fabricate them using two triangles, giving us structures
such as the triangle strips and fans that we experimented with in Chapter 3. Applying textures to this
“fake” quadrilateral is a simple affair. One triangle has texture coordinates of (0,0), (1,0), and (0,1),
while the other has coordinates of (1,0), (1,1), and (0,1). It should make more sense if you study Figure
5–11.

Figure 5–11. Placing a texture across two faces

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Textures 123

And finally, let’s take a look at how a single texture can be stretched across a whole bunch of faces,
as shown in Figure 5–12, and then we can do the fun stuff and see whether it’s for real.

Figure 5–12. Stretching a texture across many faces

Image Formats

OpenGL ES supports many different image formats, and I’m not talking about .png vs. .jpg, but I
mean the form and layout in memory. The standard is 32 bits, which assigns 8 bits of memory each
for red, green, blue, and alpha. Referred to as RGBA, it is the standard used for most of the
exercises. It is also the “prettiest” because it provides more than 16 million colors and
translucency. However, you can often get away with 16-bit or even 8-bit images. In doing that, you
can save a lot of memory and crank up the speed quite a bit, with careful selection of images. See
Table 5–1 for some of the more popular formats.

Table 5–1. Some of the More Popular Image Formats

Format Details

RGBA 8 bits/channel, including alpha.

RGB 8 bits/channel, no alpha.

ALPHA A single 8-bit channel used for stencils.

LUMINANCE A single 8-bit channel for grayscale images.

RGB565 16 bits total: 5 for red, 6 for green, and 5 for blue. The
green is given a little more color fidelity because the eye is
more sensitive to that than to either red or blue.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Textures 124

RGBA4444 16 bits, 4 for each channel.

RGBA5551 5 bits per color channel, and 1 for alpha.

Also a format requirement of sorts is that, generally, OpenGL can use only texture images that are
power-of-two on a side. Some systems can get around that, such as iOS with certain limitations, but
for the time being, just stick with the standard.

So, with all of this stuff out of the way, time to start coding.

Back to the Bouncy Square One
Let’s take a step back and create the generic bouncy square again, which we first did in Chapter 1.
We’ll apply a texture to it and then manipulate it to show off some of the tricks detailed earlier, such
as repeating, animating, and distortion.

Feel free to recycle that first project.

Next comes the actual creation of the texture. This will read in an image file of any type that Android
supports and convert it to a format that OpenGL can use.

Before we start, one additional step is required. Android needs to be notified about the image file that
will be used as the texture. This can be accomplished by adding the image file hedly.png to
/res/drawable folder. If the drawable folder doesn’t exist, you may create it now and add it to the
project. We will be storing texture information in integer array. Add the following line to Square.java:

 private int[] textures = new int[1];

Add the following imports:

 import android.graphics.*;celar
 import android.opengl.*;

Next add the Listing 5–1 to Square.java to create texture.

Listing 5–1. Creating an OpenGL Texture

public int createTexture(GL10 gl, Context contextRegf, int resource)

 {
 Bitmap image = BitmapFactory.decodeResource(contextRegf.getResources(),
 resource); // 1
 gl.glGenTextures(1, textures, 0); // 2
 gl.glBindTexture(GL10.GL_TEXTURE_2D, textures[0]); // 3

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Textures 125

 GLUtils.texImage2D(GL10.GL_TEXTURE_2D, 0, image, 0); // 4

 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MIN_FILTER,
 GL10.GL_LINEAR); // 5a

 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MAG_FILTER,
 GL10.GL_LINEAR); // 5b

 image.recycle(); //6
 return resource;
 }

So let’s break this down:

 Line 1 loads the Android bitmap, letting the loader handle any image format that
Android can read in. Table 5–2 lists the supported formats.

 glGenTextures() in line 2 gets an unused texture “name,” which in reality is
just a number. This ensures that each texture you use has a unique identifier. If
you want to reuse identifiers, then you’d call glDeleteTextures().

 After that, the texture is bound to the current 2D texture in the next line,
exchanging the new texture for the previous one. In OpenGL ES, there is only one
of these texture targets, so it must always be GL_TEXTURE_2D, whereas grown-
up OpenGL has several. See Table 5–3 for all available parameters. Binding also
makes this texture active, because only one texture is active at a time. This also
directs OpenGL where to put any of the new image data. See table 5–2.

 Here in line 4, GLUtils an Android utility class that binds OpenGL ES, and the
Android APIs is used. This utility specifies the 2D texture image for the bitmap that
we created in line 1. The image (texture) is created internally in its native format
based on the bitmap created.

 Finally, lines 5a and 5b, set some parameters that are required on the Android.
Without them, the texture has a default “filter” value that is unnecessary at this
time. The min and max filters tell the system how to handle a texture under
certain circumstances where it has to be either shrunk down or enlarged to fit a
given polygon. Table 5–3 shows the available types of parameters in OpenGL ES.

 And to be a good neighbor, line 6 tells Android to explicitly recycle the bitmap
because bitmaps can take up a whopping lot of memory.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Textures 126

Table 5–2. The Image Formats Supported by Android

Format Extensions

Portable Network Graphic .png

Joint Photographic Experts Group (JPEG) .jpg, .jpeg

Graphic Interchange Format (GIF) .gif

Windows Bitmap Format (DIB) .bmp, .BMPf

Table 5–3. All of the GL_TEXTURE Parameters for glTexParameter* Calls in OpenGL ES 1.1

Name Purpose

GL_TEXTURE_MIN_FILTER Sets the minification type (see Table 5–4)

GL_TEXTURE_MAG_FILTER Sets the magnification type (see Table 5–5)

GL_TEXTURE_WRAP_S Specifies how textures are to be wrapped in the S
direction, GL_CLAMP or GL_REPEAT

GL_TEXTURE_WRAP_T Specifies how textures are to be wrapped in the T
direction, GL_CLAMP or GL_REPEAT

Before we call createTexture method, we need to get the context and the resource ID of the image
(headly.png). To get the context, modify the onCreate() method in BouncySquareActivity.java
from this:

 view.setRenderer(new SquareRenderer(true));

to the following:

 view.setRenderer(new SquareRenderer(true, this.getApplicationContext()));

This will also require changing the constructor definition in SquareRenderer.java to the following:

public SquareRenderer(boolean useTranslucentBackground, Context context) {
 mTranslucentBackground = useTranslucentBackground;
 this.context = context; //1
 this.mSquare = new Square();
}

You’ll need to add the following import:

 import android.content.Context;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Textures 127

And add an instance variable to support the new context. The context is used a little later when the
image is loaded and converted to an OpenGL-compatible texture.

Now, to get the resource ID, add following to in the onSurfaceCreated() method in
SquareRenderer.java:

int resid = book.BouncySquare.R.drawable.hedly; //1

 mSquare.createTexture(gl, this.context, resid); //2

 Line 1 gets the resource of the image (hedly.png) that we added in the drawable
folder. Of course, you can use any image you want.

 In Line 2, we use the object of Square class and call the createTexture()
method with the correct context and the resource ID of the image.

And then adding the following to the interface’s instance variables in Square.java:

 public FloatBuffer mTextureBuffer;
 float[] textureCoords =
 {
 0.0f, 0.0f,
 1.0f, 0.0f,
 0.0f, 1.0f,
 1.0f, 1.0f
 };

This defines the texture coordinates. Now create the textureBuffer similar to vertBuffer we
created in Chapter 1 in the square’s constructor.

 ByteBuffer tbb = ByteBuffer.allocateDirect(textureCoords.length * 4);

 tbb.order(ByteOrder.nativeOrder());

 mTextureBuffer = tbb.asFloatBuffer();

 mTextureBuffer.put(textureCoords);

 mTextureBuffer.position(0);

My image, hedly.png, is the photo of one of the mysterious huge stone heads on Easter Island in the
Pacific. For ease of testing, use a power-of-two (POT) image that is 32 bits and RGBA.

NOTE: By default, OpenGL requires each row of texels in the image data to be aligned on a 4-
byte boundary. Our RGBA textures adhere to that; for other formats, consider using the call

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Textures 128

glPixelStorei(GL_PACK_ALIGNMENT,x), where x can be 1, 2, 4, or 8 bytes for alignment. Use 1
to cover all cases.

Note that there is usually a size limitation for textures, which depends on the actual graphics hardware
used. You can find out how big a texture a particular platform can use by calling the following, where
maxSize is an integer that compensates at runtime:

 gl.glGetIntegerv(GL10.GL_MAX_TEXTURE_SIZE,maxSize);

Finally, the draw() routine needs to be modified, as shown in Listing 5–2. Most of this you have seen
before. I’ve migrated the glEnableClientState() calls from the renderer module down here to
make the square object now more contained.

Listing 5–2. Render the Geometry with the Texture

public void draw(GL10 gl)
 {
 gl.glVertexPointer(2, GL10.GL_FLOAT, 0, mFVertexBuffer);
 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glColorPointer(4, GL10.GL_UNSIGNED_BYTE, 0, mColorBuffer);
 gl.glEnableClientState(GL10.GL_COLOR_ARRAY);

 gl.glEnable(GL10.GL_TEXTURE_2D); //1
 gl.glEnable(GL10.GL_BLEND); //2

 gl.glBlendFunc(GL10.GL_ONE, GL10.GL_SRC_COLOR); //3
 gl.glBindTexture(GL10.GL_TEXTURE_2D, textures[0]); //4

 gl.glTexCoordPointer(2, GL10.GL_FLOAT,0, mTextureBuffer); //5
 gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY); //6

 gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 0, 4); //7

 gl.glDisableClientState(GL10.GL_COLOR_ARRAY);
 gl.glDisableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glDisableClientState(GL10.GL_TEXTURE_COORD_ARRAY); //8
 }

So, what’s going on here?

 In line 1, the GL_TEXTURE_2D target is enabled. Desktop OpenGL supports 1D and
3D textures but not ES.

 Here in line 2 is where blending can be enabled. Blending is where color and the
destination color are blended (mixed) according to some equation that is switched
on in line 3.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Textures 129

 The blend function determines how the source and destination pixels/fragments
are mixed together. The most common form is where the source overwrites the
destination, but others can create some interesting effects. Since this is such a
large topic, it will be covered a little later.

 Line 4 ensures that the texture we want is the current one.

 Here in line 5 is where the texture coordinates are handed off to the hardware.

 And just as you had to tell the client to handle the colors and vertices, you need to
do the same for the texture coordinates here in line 6.

 Line 7 you’ll recognize, but this time besides drawing the colors and the
geometry, it now takes the information from the current texture (the
texture_2d), matches up the four texture coordinates to the four corners
specified by the vertices[] array (each vertex of the textured object needs to
have a texture coordinate assigned to it), and blends it using the values specified
in line 3.

 Finally, disable the client state for texture in the same way it was disabled for
color and vertices.

If everything works right, you should see something like the image on the left in Figure 5–13. Notice how
the texture is also picking up the colors from the vertices? Comment out the line glColorPointer(4,
GL10.GL_UNSIGNED_BYTE, 0, mColorBuffer) , and you should now see the image on the right in
Figure 5–13. If you don’t see any image, double-check your file and ensure that it really is a power-of-
two in size, such as 128x128 or 256x256.

Figure 5–13. Applying texture to the bouncy square. The left uses the vertex colors; the right does not.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Textures 130

What’s that you say? The texture is upside-down? This could very well be a problem depending on
how the respective OS treats bitmaps. OpenGL wants the lower-left corner to be the origin, whereas
some image formats or drivers elect to have the upper-left corner instead. There are two main ways to
get around this: You can elect to change the code, or you can supply a preflipped image. Because this
is a very simple project, I’d elect just to flip the graphic with an image editor.

So now we can replicate some of the examples in the first part of this chapter. The first is to pick out
only a portion of the texture to display. Change textureCoords to the following:

float[] textureCoords =

{
 0.0f, 0.0f,
 0.5f, 0.0f,
 0.0f, 0.5f,
 0.5f, 0.5f
};

Did you get Figure 5–14?

Figure 5–14. Cropping the image using s and t coordinates

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Textures 131

The mapping of the texture coordinates to the real geometric coordinates looks like Figure 5–15.
Spend a few minutes to understand what is happening here if you’re not quite clear yet. Simply put,
there’s a one-to-one mapping of the texture coordinates in their array with that of the geometric
coordinates.

Figure 5–15. The texture coordinates have a one-to-one mapping with the geometric ones.

Now change the texture coordinates to the following. Can you guess what will happen? (Figure 5–16):

 float[] textureCoords =

{
 0.0f, 2.0f,
 2.0f, 2.0f,
 0.0f, 0.0f,
 2.0f, 0.0f
};

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Textures 132

Figure 5–16. Repeating the image is convenient when you need to do repetitive patterns such as wallpaper.

Now let’s distort the texture by changing the vertex geometry, and to make things visually clearer,
restore the original texture coordinates to turn off the repeating:

 float vertices[] =
 {
 -1.0f, -0.7f,
 1.0f, -0.30f,
 -1.0f, 0.70f,
 1.0f, 0.30f,
 };

This should pinch the right side of the square and take the texture with it, as shown in Figure 5–17.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Textures 133

Figure 5–17. Pinching down the right side of the polygon

Armed with all of this knowledge, what would happen if you changed the texture coordinates
dynamically? Add the following code to draw()—anywhere should work out.

 textureCoords[0]+=texIncrease;

 textureCoords[2]+=texIncrease;

 textureCoords[4]+=texIncrease;

 textureCoords[6]+=texIncrease;

 textureCoords[1]+=texIncrease;

 textureCoords[3]+=texIncrease;

 textureCoords[5]+=texIncrease;

 textureCoords[7]+=texIncrease;

And make both textureCoords and texIncrease instance variables.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Textures 134

This will increase the texture coordinates just a little from frame to frame. Run and stand in awe. This
is a really simple trick to get animated textures. A marquee in a 3D world might use this. You could
create a texture that was like a strip of movie film with a cartoon character doing something and
change the s and t values to jump from frame to frame like a little flipbook. Another is to create a
texture-based font. Since OpenGL has no native font support, it’s up to us, the long suffering engineers
of the world, to add it in ourselves. Sigh. This could be done by placing of the characters of the desired
font onto a single mosaic texture and then selecting them by careful use of texture coordinates.

Mipmaps

Mipmaps are a means of specifying multiple levels of detail for a given texture. That can help in two
ways: it can smooth out the appearance of a textured object as its distance to the viewpoint varies,
and it can save resource usage when textured objects are far away.

For example, in Distant Suns, I may use a texture for Jupiter that is 1024x512. But that would be a
waste of both memory and CPU if Jupiter was so far away that it was only a few pixels across. Here is
where mipmapping can come into play. So, what is a mipmap?

From the Latin phrase “multum in parvo” (literally: much in little), a mipmap is a family of textures of
varying levels of detail. Your root image might be 128 on a side, but when a part of a mipmap, it would
have textures that were also 64, 32, 16, 8, 4, 2, and 1 pixel on a side, as shown in Figure 5–18.

Figure 5–18. Hedly the head, the mipmapped edition

Go back to the original exercise for this chapter, the bouncy square with the texture, and you’ll be
putting mipmapping through the test.

First, create a family of textures from 1x1 on up to 256x256, making each texture twice the size of the
previous while coloring them different colors. The colors enable you to easily tell when one image
changes to another. Add them to your project under /res/drawable/, and then in
SquareRendered.java in onSurfaceCreated(), swap out the single call to createTexture()
with Listing 5–3. Note that the last parameter is finally used, which is the level of detail index. Use 0

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Textures 135

for the default if you have only a single image as earlier. Anything above 0 will be the rest of the
mipmap family of images. So, the first one is of Hedly, and the rest I used are colored squares to make
it really easy to see the different images when they pop in and out. Note that if you do generate
mipmaps manually like this, you need to specify images for each and every level, and they must be the
right dimensions, so you can’t skip the 1, 2, and 4 pixel images just to save a couple lines of code.
Otherwise, nothing will show. And make sure the original image is 256 on a side so that there is an
unbroken chain from 1 to 256 of images.

To make it easy to turn on or off mipmapping, I’ve added the following instance variable to
Square.java.

 public boolean m_UseMipmapping = true;

Add Listing 5–3 to the onSurfaceCreated() method in SquareRenderer.java.

Listing 5–3. Setting Up a Custom Prefiltered Mipmap

 int resid = book.BouncySquare.R.drawable.hedly256;
 mSquare.createTexture(gl, this.context, resid, true);

 if (mSquare.m_UseMipmapping)
 {
 resid = book.BouncySquare.R.drawable.mipmap128;
 mSquare.createTexture(gl, this.context, resid, false);
 resid = book.BouncySquare.R.drawable.mipmap64;
 mSquare.createTexture(gl, this.context, resid, false);
 resid = book.BouncySquare.R.drawable.mipmap32;
 mSquare.createTexture(gl, this.context, resid, false);
 resid = book.BouncySquare.R.drawable.mipmap16;
 mSquare.createTexture(gl, this.context, resid, false);
 resid = book.BouncySquare.R.drawable.mipmap8;
 mSquare.createTexture(gl, this.context, resid, false);
 resid = book.BouncySquare.R.drawable.mipmap4;
 mSquare.createTexture(gl, this.context, resid, false);
 resid = book.BouncySquare.R.drawable.mipmap2;
 mSquare.createTexture(gl, this.context, resid, false);
 resid = book.BouncySquare.R.drawable.mipmap1;
 mSquare.createTexture(gl, this.context, resid, false);
 }

After this, createTexture() in Square.java needs to be replaced with the contents of Listing 5–4.

Listing 5–4. Generate the Mipmap Chain

 private int[] textures = new int[1];
 static int level = 0;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Textures 136

 public int createTexture(GL10 gl, Context contextRegf, int resource, boolean
 imageID)

 {

 Bitmap tempImage = BitmapFactory.decodeResource(
 contextRegf.getResources(), resource); // 1

 if (imageID == true) {
 gl.glGenTextures(1, textures, 0);
 gl.glBindTexture(GL10.GL_TEXTURE_2D, textures[0]);
 }

 GLUtils.texImage2D(GL10.GL_TEXTURE_2D, level, tempImage, 0); // 4
 level++;

 if (m_UseMipmapping == true) {
 gl.glTexParameterx(GL10.GL_TEXTURE_2D,
 GL10.GL_TEXTURE_MIN_FILTER,
 GL10.GL_LINEAR_MIPMAP_NEAREST);
 gl.glTexParameterx(GL10.GL_TEXTURE_2D,
 GL10.GL_TEXTURE_MAG_FILTER,
 GL10.GL_LINEAR_MIPMAP_NEAREST);
 } else {
 gl.glTexParameterf(GL10.GL_TEXTURE_2D,
 GL10.GL_TEXTURE_MIN_FILTER,
 GL10.GL_LINEAR);
 gl.glTexParameterf(GL10.GL_TEXTURE_2D,
 GL10.GL_TEXTURE_MAG_FILTER,
 GL10.GL_LINEAR);
 }

 tempImage.recycle();// 6
 return resource;
 }

Naturally onDrawFrame() also needs some changes as well. Add following instance variables to
SquareRenderer.java:

 float z = 0.0f;

 boolean flipped=false;

 float delz_value=.040f;

 float delz = 0.0f;

 float furthestz=-20.0f;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Textures 137

 static float rotAngle=0.0f;

Now, use Listing 5–5 in place of the current onDrawFrame(). This will causes the z value to oscillate
back and forth so you can observe mipmapping in action.

Listing 5–5. onDrawFrame() with Varying z Values

 public void onDrawFrame(GL10 gl) {

 gl.glClear(GL11.GL_COLOR_BUFFER_BIT | GL11.GL_DEPTH_BUFFER_BIT);

 gl.glMatrixMode(GL11.GL_MODELVIEW);
 gl.glLoadIdentity();

 if(z<furthestz)
 {
 if(!flipped)
 {
 delz=delz_value;
 flipped=true;
 } else {
 flipped=false;
 }
 } else if(z > -.01f) {
 if(!flipped) {
 delz=-delz_value;
 flipped=true;
 } else {
 flipped=false;
 }
 }
 z=z+delz;

 gl.glTranslatef(0.0f, (float) (Math.sin(mTransY) / 2.0f), z);
 gl.glRotatef(rotAngle, 0, 0, 1.0f);
 rotAngle+=.5f;

 mSquare.draw(gl);

 mTransY += .15f;
 }

Finally, ensure that the call glColorPonter() is removed from the square’s draw() method.

If that compiles and runs OK, you should see something like Figure 5–19, with the different colors
popping in and out as OpenGL ES selects which one is the best for a given distance.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Textures 138

Figure 5–19. Different images for each mipmap level pop in and out depending on the distance to the eyepoint.

It is possible to have OpenGL generate the mipmaps for you, as illustrated in the next section.

Filtering

An image, when used as a texture, may exhibit various artifacting depending on its content and final
size when projected onto the screen. Very detailed images might be seen with an annoying
shimmering effect. However, it is possible to dynamically modify an image to minimize these effects
through a process called filtering.

Let’s say you have a texture that is 128x128, but the texture face is 500 pixels on a side. What should
you see? Obviously the image’s original pixels, now called texels, are going to be much larger than any
of the screen pixels. This is a process referred to as magnification. Conversely, you could have a case
where the texels are much smaller than a pixel, and that is called minification. Filtering is the process
used to determine how to correlate a pixel’s color with the underlying texel, or texels. Tables 5–4 and
5–5 show the possible variants of this.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Textures 139

Table 5–4. Texture Filter Types in OpenGL ES for Minification

Name Purpose

GL_LINEAR Smooths texturing using the four nearest texels closest to the
center of the pixel being textured

GL_LINEAR_MIPMAP_LINEAR Similar to GL_LINEAR but uses the two nearest mipmaps closest
to the rendered pixel

GL_LINEAR_MIPMAP_NEAREST Similar to GL_LINEAR but uses the one nearest mipmap closest
to the rendered pixel

GL_NEAREST Returns the nearest texel value to the pixel being rendered

GL_NEAREST_MIPMAP_NEAREST Similar to GL_NEAREST but uses the texel from the nearest
mipmap

Table 5–5. Texture Filter Types in OpenGL ES for Magnification

Name Purpose

GL_LINEAR Smooths texturing using the four nearest texels closest to the
center of the pixel being textured

GL_NEAREST Returns the nearest texel value to the pixel being rendered

There are three main approaches to filtering:

 Point sampling (called in OpenGL lingo): A pixel’s color is based on the texel that is
nearest to the pixel’s center. This is the simplest, the fastest, and naturally yields
the least satisfactory image.

 Bilinear sampling, otherwise called just linear A pixel’s coloring is based on a
weighted average of a 2x2 array of texels nearest to the pixel’s center. This can
smooth out an image considerably.

 Trilinear sampling: This requires mipmaps and takes the two closest mipmap
levels to the final rendering on the screen, performs a bilinear selection on each,
and then takes a weighted average of the two individual values.

You can see this in action by taking another look at the first exercise. To your mipmapping experiment,
add the following lines to the very end of createTexture() while removing the initialization lines
that created all of the previous mipmap images (except image #0, of course):

 gl.glHint(GL11.GL_GENERATE_MIPMAP,GL10.GL_NICEST);
 gl.glTexParameterf(GL10.GL_TEXTURE_2D,GL11.GL_GENERATE_MIPMAP,GL10.GL_TRUE);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Textures 140

The second call, already referenced in the previous section, will automatically create a mipmap out of
your only image handed off to the renderer. And make sure that createTexture() is being called
only once, because there is no need to use our own custom images for the various levels of detail. The
first call to glHint() tells the system to use whatever algorithm it has to generate the nicest-looking
images. You can also choose GL_FASTEST and GL_DONT_CARE. The latter will select what it thinks
might be the best for this case.

In Figure 5–20, the image on the left shows a close-up of Hedly with the filtering off, while on the
right, it is switched on.

Figure 5–20. The left side has all filtering turned off. The right side has bilinear filtering turned on.

OpenGL Extensions

Even though OpenGL is a standard, it was designed with extensibility in mind, letting various hardware
manufacturers add their own special sauce to the 3D soup using extension strings. In OpenGL,
developers can poll for possible extensions and then use them if they exist. To get a look at this, use
the following line of code:

 String extentionList=gl.glGetString(GL10.GL_EXTENSIONS);

This will return a space-separated list of the various extra options in Android for OpenGL ES, looking
something like this (from Android 2.3):

 GL_OES_byte_coordinates GL_OES_fixed_point GL_OES_single_precision
 GL_OES_read_format GL_OES_compressed_paletted_texture GL_OES_draw_texture
 GL_OES_matrix_get GL_OES_query_matrix GL_OES_EGL_image
 GL_OES_compressed_ETC1_RGB8_texture GL_ARB_texture_compression
 GL_ARB_texture_non_power_of_two GL_ANDROID_user_clip_plane
 GL_ANDROID_vertex_buffer_object GL_ANDROID_generate_mipmap

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Textures 141

This can be helpful to find custom features that one phone might have over another. One possibility
would be the use of a special image compression format called PVRTC, custom only to devices that
use the PowerVR class of graphics chips. PVRTC is closely bound to the PowerVR hardware in a way
that can improve both rendering and loading times. Devices such as the Samsung Galaxy S, Motorola’s
Droid X, the BlackBerry playbook, and the all iOS devices as of this writing can take advantage of
PVRTC. Non-PowerVR devices, such as those that use the Ardreno or Tegra cores, may have their own
special format as well.

You can tell whether your device supports PVRTC, should the
string GL_IMG_texture_compression_pvrtc show up in the previous extension list. Other GPUs
may have similar formats, so you would be encouraged to check in with the developer forums and
SDKs if you want to go the custom route.

Finally, More Solar System Goodness
Now we can go back to our solar-system model from the previous chapter and add a texture to the
earth so that it can really look like the earth. Make the similar changes to
SolarSystemActivity.java as we did for BouncySquareActivity.java earlier by modifying the
setter to this:

 view.setRenderer(new SolarSystemRenderer(this.getApplicationContext());

Also modify the constructor in SolarSystemRenderer.java to handle the passed context.

 import android.content.Context;

 public Context myContext;
 public SolarSystemRenderer(Context context)
 {
 this.myContext = context;
 }

We need to store the context in a public variable because we will be passing this to init() function
when creating image texture. Next, examine Planet.java, and swap out the init() for Listing 5–6;
the changes have been highlighted. And for the earth’s texture, many examples are available. Just do
a search on Google. Or you might want to check NASA first at http://maps.jpl.nasa.gov/.

Listing 5–6. Modified Sphere Generator with Texture Support Added

 private void init(int stacks,int slices, float radius, float squash, GL10 gl,
 Context context, boolean imageId, int resourceId) // 1
 {
 float[] vertexData;
 float[] normalData;

www.it-ebooks.info

http://maps.jpl.nasa.gov/
http://www.it-ebooks.info/

CHAPTER 5: Textures 142

 float[] colorData;
 float[] textData=null;

 float colorIncrement=0f;

 float blue=0f;
 float red=1.0f;

 int vIndex=0; //vertex index
 int cIndex=0; //color index
 int nIndex=0; //normal index
 int tIndex=0; //texture index

 if(imageId == true)
 createTexture(gl, context, resourceId); //2

 m_Scale=radius;
 m_Squash=squash;

 colorIncrement=1.0f/(float)stacks;

 m_Stacks = stacks;
 m_Slices = slices;

 //Vertices

 vertexData = new float[3*((m_Slices*2+2) * m_Stacks)];

 //Color data

 colorData = new float[(4*(m_Slices*2+2) * m_Stacks)];

 //Normal pointers for lighting

 normalData = new float[3*((m_Slices*2+2) * m_Stacks)];

 if(imageId == true) //3
 textData = new float [2 * ((m_Slices*2+2) * (m_Stacks))];

 int phiIdx, thetaIdx;

 //Latitude

 for(phiIdx=0; phiIdx < m_Stacks; phiIdx++)
 {
 //Starts at -1.57 and goes up to +1.57 radians.

 ///The first circle.

 float phi0 = (float)Math.PI * ((float)(phiIdx+0) *
 (1.0f/(float)(m_Stacks)) - 0.5f);

 //The next, or second one.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Textures 143

 float (float) float

 float m_Stacks

 float cosPhi0 = (float)Math.cos(phi0);
 float sinPhi0 = (float)Math.sin(phi0);
 float cosPhi1 = (float)Math.cos(phi1);
 float sinPhi1 = (float)Math.sin(phi1);

 float cosTheta, sinTheta;

 //Longitude

 for(thetaIdx=0; thetaIdx < m_Slices; thetaIdx++)
 {

 //Increment along the longitude circle each "slice."

 float theta = (float) (2.0f*(float)Math.PI *
 ((float)thetaIdx) * (1.0/(float)(m_Slices-1)));
 cosTheta = (float)Math.cos(theta);
 sinTheta = (float)Math.sin(theta);

 //We're generating a vertical pair of points, such
 //as the first point of stack 0 and the first point of
 //stack 1 above it. This is how TRIANGLE_STRIPS work,
 //taking a set of 4 vertices and essentially drawing two
 //triangles at a time. The first is v0-v1-v2, and the next
 //is v2-v1-v3, etc.

 //Get x-y-z for the first vertex of stack.

 vertexData[vIndex] = m_Scale*cosPhi0*cosTheta;
 vertexData[vIndex+1] = m_Scale*(sinPhi0*m_Squash);
 vertexData[vIndex+2] = m_Scale*(cosPhi0*sinTheta);

 vertexData[vIndex+3] = m_Scale*cosPhi1*cosTheta;
 vertexData[vIndex+4] = m_Scale*(sinPhi1*m_Squash);
 vertexData[vIndex+5] = m_Scale*(cosPhi1*sinTheta);

 //Normal pointers for lighting

 normalData[nIndex+0] = (float)(cosPhi0 * cosTheta);
 normalData[nIndex+2] = cosPhi0 * sinTheta;
 normalData[nIndex+1] = sinPhi0;

 //Get x-y-z for the first vertex of stack N.

 normalData[nIndex+3] = cosPhi1 * cosTheta;
 normalData[nIndex+5] = cosPhi1 * sinTheta;
 normalData[nIndex+4] = sinPhi1;

 if(textData != null) //4

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Textures 144

 {

 float texX = (float)thetaIdx *
 (1.0f/(float)(m_Slices-1));
 textData [tIndex + 0] = texX;
 textData [tIndex + 1] = (float)(phiIdx+0) *
 (1.0f/(float)(m_Stacks));
 textData [tIndex + 2] = texX;
 textData [tIndex + 3] = (float)(phiIdx+1) *
 (1.0f/(float)(m_Stacks));
 }

 colorData[cIndex+0] = (float)red;
 colorData[cIndex+1] = (float)0f;
 colorData[cIndex+2] = (float)blue;
 colorData[cIndex+4] = (float)red;
 colorData[cIndex+5] = (float)0f;
 colorData[cIndex+6] = (float)blue;
 colorData[cIndex+3] = (float)1.0;
 colorData[cIndex+7] = (float)1.0;

 cIndex+=2*4;
 vIndex+=2*3;
 nIndex+=2*3;

 if(textData!=null) //5
 tIndex+= 2*2;

 blue+=colorIncrement;
 red-=colorIncrement;

 //Degenerate triangle to connect stacks and maintain
 //winding order.

 vertexData[vIndex+0] = vertexData[vIndex+3] =
 vertexData[vIndex-3];
 vertexData[vIndex+1] = vertexData[vIndex+4] =
 vertexData[vIndex-2];
 vertexData[vIndex+2] = vertexData[vIndex+5] =
 vertexData[vIndex-1];

 normalData[nIndex+0] = normalData[nIndex+3] =
 normalData[nIndex-3];
 normalData[nIndex+1] = normalData[nIndex+4] =
 normalData[nIndex-2];
 normalData[nIndex+2] = normalData[nIndex+5] =
 normalData[nIndex-1];

 if(textData!= null) //6
 {
 textData [tIndex + 0] = textData [tIndex + 2] =
 textData [tIndex -2];
 textData [tIndex + 1] = textData [tIndex + 3] =
 textData [tIndex -1];

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Textures 145

 }
 }
 }

 m_Pos[0]= 0.0f;
 m_Pos[1]= 0.0f;
 m_Pos[2]= 0.0f;

 m_VertexData = makeFloatBuffer(vertexData);
 m_NormalData = makeFloatBuffer(normalData);
 m_ColorData = makeFloatBuffer(colorData);

 if(textData!= null)
 m_TextureData = makeFloatBuffer(textData);
 }

So, here is what’s happening:

 A GL object, context, image ID, and resource ID for the image are added to the end
of the parameter list in line 1.

 In line 2, the texture is created.

 In lines 3ff, the coordinate array for the texture is allocated.

 Next, calculate the texture coordinates in lines 4ff. Since the sphere has x slices
and y stacks and the coordinate space goes only from 0 to 1, we need to advance
each value by increments of 1/m_slices for s and 1/m_stacks for t. Notice that
this covers two pairs of coordinates, one above the other, matching the layout of
the triangle-strips that also produces stacked pairs of coordinates.

 In line 5, advance the coordinate array to hold the next set of values.

 And finally, some loose threads are tied together in preparation for going to the
next stack up in line 6.

Make sure to add the following to the instance data:

 FloatBuffer m_TextureData;

Copy over the createTexture() method from the first example to Planet.java, and make the
changes as needed. Feel free to remove the mipmap support if you like, but there’s no harm in leaving
it in, It’s just not essential for this exercise. Make sure that glTexParameterf() has
GL10.GL_LINEAR as the params.

For an earth texture, note that this will wrap around the entire sphere model, so not just any image will
do, and as such it should resemble Figure 5–21.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Textures 146

Figure 5–21. Textures typically fill out the entire frame, edge to edge. Planets use a Mercator projection (a
cylindrical map).

Once you’ve found a suitable .png, add it to your project under /res/drawable-nodpi/, and hand it
off to the planet object when allocated. Since you don’t need a texture for the sun, you can just pass a
0 as resource ID. So we can set false as imageId for sun’s planet object but true for the earth. Next
we modify the planet’s constructor to look like Listing 5–7.

Listing 5–7. Adding Several New Parameters for Planet.java

public Planet(int stacks, int slices, float radius, float squash, GL10 gl, Context
context, boolean imageId, int resourceId)
 {
 this.m_Stacks = stacks;
 this.m_Slices = slices;
 this.m_Radius = radius;
 this.m_Squash = squash;
 init(m_Stacks,m_Slices,radius,squash, gl, context, imageId, resourceId);
 }

Naturally, initGeometry() needs to be changed to support the extra parameters, as shown in Listing
5–8.

Listing 5–8. initGeometry() Passes New Parameters to Planet.java

private void initGeometry(GL10 gl) {
 int resid;
m_Eyeposition[X_VALUE] = 0.0f;
m_Eyeposition[Y_VALUE] = 0.0f;
m_Eyeposition[Z_VALUE] = 10.0f;

resid = com.SolarSystem.R.drawable.earth_light;
m_Earth = new Planet(50, 50, .3f, 1.0f, gl, myContext, true, resid);
m_Earth.setPosition(0.0f, 0.0f, -2.0f);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Textures 147

m_Sun = new Planet(50, 50, 1.0f, 1.0f, gl, myContext, false, 0);
m_Sun.setPosition(0.0f, 0.0f, 0.0f);
}

And of course we’ll need to update the draw() method in Planet.java, as shown in Listing 5–9.

Listing 5–9. Ready to Handle the New Texture

 public void draw(GL10 gl)
 {
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glEnable(GL10.GL_CULL_FACE);
 gl.glCullFace(GL10.GL_BACK);

 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glEnableClientState(GL10.GL_NORMAL_ARRAY);
 gl.glEnableClientState(GL10.GL_COLOR_ARRAY);

 if(m_TextureData != null)
 {
 gl.glEnable(GL10.GL_TEXTURE_2D); //1
 gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY);
 gl.glBindTexture(GL10.GL_TEXTURE_2D, textures[0]);
 gl.glTexCoordPointer(2, GL10.GL_FLOAT, 0, m_TextureData);
 }

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, m_VertexData);
 gl.glNormalPointer(GL10.GL_FLOAT, 0, m_NormalData);
 gl.glColorPointer(4, GL10.GL_FLOAT, 0, m_ColorData);

gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 0, (m_Slices+1)*2*(m_Stacks-1)+2);

 gl.glDisable(GL10.GL_BLEND);
 gl.glDisable(GL10.GL_TEXTURE_2D);
 gl.glDisableClientState(GL10.GL_TEXTURE_COORD_ARRAY);

 }

In lines 1ff, you’ll recognize the same calls from the example with the square. First enable texture
support, then call a glBindTexture() to ensure the current texture is made available, then alert the
system to expect an array of texture coordinates, and then hand it the data.

Compile and run, and ideally you’ll see something like Figure 5–22.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Textures 148

NOTE: It is not uncommon to come across emulator bugs in the Android environment (such as
when this example was being prepared). If you see something that you didn’t expect and it defies
any logical explanation, then try running the code on hardware and see what happens.

Figure 5–22. Sun and the Earth

Summary
This chapter served as a basic introduction to textures and their uses. The following topics were
covered: basic texture theory, how texture coordinates are expressed, mipmaps for greater fidelity,
and how textures may be filtered to smooth them out. The solar-system model was updated so that
the earth now really looks like the earth using a texture map. Table 5–7 summarizes all of the new API
calls covered. In the next chapter, we’ll continue with textures, putting to use the Android’s multiple
texture units, along with blending techniques.

www.it-ebooks.info

http://www.it-ebooks.info/

 149

 Chapter

Will It Blend?

Yes! It blends!

—Tom Dickson, owner of the Blendtec blender company

In 2006, Tom Dickson posted a goofy video to YouTube illustrating how tough his company’s blenders
were by blending some marbles into powder. Since then his frequent videos have been viewed more
than 100 million times and have featured blendings of everything from a Tiki torch and a laser pointer
to a Justin Bieber doll and a new camcorder. Tom’s kind of blending has nothing to do with our kind of
blending, though, unless the sadistic and unmerciful pulverization of a couple of Android touchpad and
phones count. After all, they are OpenGL ES devices: devices that have their own form of blending,
albeit not nearly as destructive. (Yes, it’s a stretch.)

Blending plays an important role in OpenGL ES applications. It is the process used to create
translucent objects that can be used for something as simple as a window to something as
complicated as a pond. Other uses include the addition of atmospherics such as fog or smoke, the
smoothing out of aliased lines, and the simulation of various sophisticated lighting effects. OpenGL ES
2.0 has a complex mechanism that uses small modules called shaders to do specialized blending
effects, among other things. But before shaders, there were blending functions, which are not nearly
as versatile but considerably easier to use.

In this chapter, you’ll learn the basics of blending functions and how to apply them for both color and
alpha blending. After that, you’ll use a different kind of blending involving multiple textures, used for
far more sophisticated effects such as shadowing. Finally, I’ll figure out how we can apply these
effects in the solar-system project.

6

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Will It Blend? 150

Alpha Blending
You have no doubt noticed the color quadruplet of “RGBA.” As mentioned earlier, the A part is the
alpha channel, and it is traditionally used for specifying translucency in an image. In a bitmap used for
texturing, the alpha layer forms an 8-bit image of sorts, which can be translucent in one section,
transparent in another, and completely opaque in a third. If an object isn’t using texturing but instead
has its color specified via its vertices, lighting, or overall global coloring, alpha will let the entire object
or scene have translucent properties. A value of 1.0 means the object or pixel is completely opaque,
while 0 means it is completely invisible.

For alpha to work as with any blending model, you work with both a source and a destination image.
Because this topic is best understood through examples, we’re going to start with the first one now.

Grab your Chapter 1 exercise, and then use Listing 6–1 in place of the original methods. Solid squares
of colors are used here first instead of textured ones, because it makes for a simpler example.

Listing 6–1. The New and Improved onDrawFrame() Method

 public void onDrawFrame(GL10 gl)
 {
 gl.glClearColor(0.0f,0.0f,0.0f,1.0f); //1
 gl.glClear(GL11.GL_COLOR_BUFFER_BIT | GL11.GL_DEPTH_BUFFER_BIT);

 gl.glMatrixMode(GL11.GL_MODELVIEW);
 gl.glEnableClientState(GL11.GL_VERTEX_ARRAY);

 //SQUARE 1

 gl.glLoadIdentity();
 gl.glTranslatef(0.0f,(float)Math.sin(mTransY), -3.0f); //2
 gl.glColor4f(0.0f, 0.0f, 1.0f, 1.0f);
 mSquare.draw(gl);

 //SQUARE 2

 gl.glLoadIdentity(); //3
 gl.glTranslatef((float)(Math.sin(mTransY)/2.0f),0.0f, -2.9f);
 gl.glColor4f(1.0f, 0.0f, 0.0f, 1.0f);
 mSquare.draw(gl);

 mTransY += .075f;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Will It Blend? 151

And as before, let’s take a close look at the code:

 In lines 1ff, the buffer is cleared to black, making it easier to see any blending
later.

 In lines 2ff we can draw one square that is moved up and down and then back by
3 units, while given a blue color. Because there is no coloring-per-vertex, this call
to glColor4f() will set the entire square to blue. However, notice the last
component of 1.0. That is the alpha, and it will be addressed shortly. And
immediately following gl.glColor4f() is the call to actually draw the square.

 Lines 3ff address the second square, coloring it red and moving it left and right.
Moving it away by 2.9 instead of 3.0 units ensures that the red square will be in
front of the blue one.

If all works, you should have something that looks like Figure 6–1.

Figure 6–1. The blue square goes up and down; the red one goes left and right.

It’s not much to look at, but this will be the framework for the next several experiments. The first will
switch on the default blending function.

As with so many other OpenGL features, turn blending on with the call
gl.glEnable(GL10.GL_BLEND). Add that anywhere before the first call to mSquare.draw().
Recompile, and what do you see? Nothing, or at least nothing has changed. It still looks like Figure 6–1.
That’s because there’s more to blending than saying “Blend, you!” We must specify a blending function

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Will It Blend? 152

as well, which describes how the source colors (as expressed via its fragments, or pixels) mix with
those at the destination. The default, of course, is when the source fragments always replace those at
the destination, when depth cueing is off. As a matter of fact, proper blending can be assured only
when z-buffering is switched off.

Blending Functions

To change the default blending, we must resort to using glBlendFunc(), which comes with two
parameters. The first tells just what to do with the source, and the second, the destination. To picture
what goes on, note that all that ultimately happens is that each of the RGBA source components is
added, subtracted, or whatever, with each of the destination components. That is, the source’s red
channel is mixed with the destination’s red channel, the source’s green with the destination’s green,
and so on. This is usually expressed the following way: call the source RGBA values Rs, Gs, Bs, and As,
and call the destination values Rd, Gd, Bd, and Ad. But we also need both source and destination
blending factors, expressed as Sr, Sg, Sb, Sa, and Dr, Dg, Db, and Da. (It’s not as complicated as it
seems, really). And here’s the formula for the final composite color:

In other words, multiply the source color by its blending factor and add it to the destination color
multiplied by its blending factor.

One of the most common forms of blending is to overlay a translucent face on top of stuff that has
already been drawn—that is, the destination. As before, that can be a simulated windowpane, a
heads-up display for a flight simulator, or other graphics that just might look nicer when mixed with
the existing imagery. (The latter is used a lot in Distant Suns for a number of the elements such as the
constellation names, the outlines, and so on.) Depending on the purpose, you may want the overlay to
be nearly opaque, using an alpha approaching 1.0, or very tenuous, with an alpha approaching 0.0.

In this basic blending task, the source’s colors are first multiplied by the alpha value, its blending
factor. So, if the source red is maxed out at 1.0 and the alpha is 0.75, the result is derived by simply
multiplying 1.0 by 0.75. The same would be used for both green and blue. On the other hand, the
destination colors are multiplied by 1.0 minus the source’s alpha. Why? That effectively yields a
composite color that can never exceed the maximum value of 1.0; otherwise, all sorts of color
distortion could happen. Or imagine it this way: the source’s alpha value is the proportion of the color
“width” of 1.0 that the source is permitted to fill. The leftover space then becomes 1.0 minus the
source’s alpha. The larger the alpha, the greater the proportion of the source color that can be used,
with an increasingly smaller proportion reserved for the destination color. So, as the alpha approaches
1.0, the greater the amount of the source color is copied to the frame buffer, replacing the destination
color.

(R,G,B) = ((Rs* Sr) + (Rd * Dr),(Gs* Sg) + (Gd* Dg),(Bs* Sb) + (Bd* Db))

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Will It Blend? 153

NOTE: In these examples, normalized color values are used because they make it much
easier to follow the process instead of using unsigned bytes, which would express the
colors from 0 to 255.

Now we can examine that in the next example. To set up the blending functions described earlier, you
would use the following call:

 gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA);

The GL_SRC_ALPHA and GL_ONE_MINUS_SRC_ALPHA are the blending factors described earlier. And
remember that the first parameter is the source’s blending, the object being written at present. Place
that line immediately after where you enable blending. And to the red colors, compile and run. Do you
see Figure 6–2?

Figure 6–2. The red square has an alpha of .5, the blue, 1.0.

So, what’s happening? The blue has an alpha of 1.0, so each blue fragment completely replaces
anything in the background. Then the red with an alpha of .5 means that 50 percent of the red is
written to the destination. The black area will be a dim red, but only 50 percent of the specified value
of 1.0 given in glColor4f(). So far, so good. Now on top of the blue, 50 percent of the red value is
mixing with a 50 percent blue value:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Will It Blend? 154

Blended color=Color Source*Alpha of source + (1.0-Alpha of Source)*Color of the destination.
Or looking at each component based on the values in the previous example:

Red=1.0*0.5+(1.0-0.5)*0.0

Green=0.0*0.5+(1.0-0.5)*0.0

Blue=0.0*0.5+(1.0-0.5)*1.0

So, the final color of the fragment’s pixels should be 0.5,0.0,0.5, or magenta. Now the red and
resulting magenta are a little on the dim side. What would you do if you wanted to make this much
brighter? It would be nice if there were a means of blending the full intensities of the colors. Would
you use alpha values of 1.0? Nope. Why? Well, with blue as the destination and a source alpha of 1.0,
the earlier blue channel equation would be 0.0*1.0+(1.0-1.0)*1.0. And that equals 0, while the red
would be 1.0, or solid. What you would want is to have the brightest red when writing to the black
background, and the same for the blue. For that you would use a blending function that writes both
colors at full intensity, such as GL_ONE. That means the following:

 gl.glBlendFunc(GL10.GL_ONE, GL10.GL_ONE);

Going back to the equations using the source triplet of red=1, green=0, blue=0, and destination of
red=0, green=0, blue=1 (with alpha defaulting to 1.0), the calculations would be as follows:

Red=1*1+0*1

Green=0* (1+(0-0)*1

Blue=0*1+(1-0)*1

And that yields a color in which red=1, green=0, and blue=1. And that my friends, is magenta (see
Figure 6–3).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Will It Blend? 155

Figure 6–3. Blending full intensities of red and blue

Now it’s time for another experiment of sorts. Take the code from the previous example, set both
alphas to 0.5, and reset the blend function to the traditional values for transparency:

 gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA);

After you run this modified code, take note of the combined color, and notice that the further square is
blue at -4.0 away and is also the first to be rendered, with the red one as the second. Now reverse the
order of the colors that are drawn, and run. What’s wrong? You should get something like Figure 6–4.

Figure 6–4. The left is drawn with blue first, while the one on the right, red first.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Will It Blend? 156

The intersections are slightly different colors. This shows one of the mystifying gotchas in OpenGL: as
with most any 3D framework, the blending will be slightly different depending on the order of the
faces and colors when rendered. In this case, it is actually quite simple to figure out what’s going on.
In the image on the left in Figure 6–4, the blue square is drawn first with an alpha of .5. So, even
though the blue color triplet is defined as 0,0,1, the alpha value will knock that down to 0,0,.5 as it is
written to the frame buffer. Now add the red square with similar properties. Naturally the red will write
to the black part of the frame buffer in the same manner as the blue, so the final value will be .5,0,0.
But note what happens when red writes on top of the blue. Since the blue is already at half of its
intensity, the blending function will cut that down even further, to .25, as a result of the destination
part of the blending function, (1.0-Source alpha)*blue+destination, or (1.0-.5).5+0, or .25. The final
color is then .5,0,.25. With the lower intensity of the blue, it contributes less to the composite color,
leaving red to dominate. Now in the image on the right in Figure 6–4, the order is reversed, so the blue
dominates with a final color of .25,0,.5.

Table 6–1 has all of the allowable OpenGL ES blending factors, although not all are supported by both
source and destination. As you can see, there is ample room for tinkering, with no set rules of what
creates the best-looking effect. This will be highly reliant on your individual tastes and needs. It is a lot
of fun to try different values, though. Make sure to fill the background with a dim gray, because some
of the combinations will just yield black when written to a black background.

Table 6–1. The Source and Destination Blending Values; Note That Not All Are Available to Both Channels

Blend Factor Description

GL_ZERO Multiplies the operand by 0.

GL_ONE Multiplies the operand by 1.

GL_SRC_COLOR Multiplies the operand by the four components of the source color
(destination only).

GL_ONE_MINUS_SRC_COLOR Multiplies the operand by (1.0 - source colors) (destination only).

GL_DST_COLOR Multiplies the operand by the four components of the destination
color (source only).

GL_ONE_MINUS_DST_COLOR Multiplies the operand by the 1.0 – destination colors (source
only).

GL_SRC_ALPHA Multiplies the operand by the source alpha.

GL_ONE_MINUS_SRC_ALPHA Multiplies the operand by (1.0 - source alpha).

GL_DST_ALPHA Multiplies the operand by the destination alpha.

GL_ONE_MINUS_DST_ALPHA Multiplies the operand by (1.0-destination alpha).

GL_SRC_ALPHA_SATURATE Special mode for older graphics implementations to help anti-
aliasing. You’ll likely never use it. (Source only.)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Will It Blend? 157

And one final method here that might be really handy in some blending operations is that of
glColorMask(). This function lets you block one or more color channels from being written to the
destination. To see this in action, modify the red square’s colors to be 1,1,0,1; set the two blend
functions back to GL_ONE; and comment out the line
gl.glBlendEquation(GL10.GL_FUNC_SUBTRACT);. You should see something like the image on
the left in Figure 6–5 when run. The red square is now yellow and, when blended with blue, yields
white at the intersection. Now add the following line:

gl.glColorMask(true, false, true, true);

The preceding line masks, or turns off, the green channel when being drawn to the frame buffer. When
run, you should see image on the right in Figure 6–5, which looks remarkably like Figure 6–3. And as a
matter of fact, logically they are identical.

Figure 6–5. The left doesn’t use glColorMask, so all colors are in play, while the right masks off the green
channel.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Will It Blend? 158

Multicolor Blending

Now we can spend a few minutes looking at the effect of blending functions when the squares are
defined with individual colors for each vertex. Add in Listing 6–2 to the constructor for the square. The
first color set defines yellow, magenta, and cyan. The complementary colors to the standard red-
green-blue are specified in the second set.

Listing 6–2. Vertex Colors for the Two Squares

 float squareColorsYMCA[] =
{
 1.0f, 1.0f, 0.0f, 1.0f,
 0.0f, 1.0f, 1.0f, 1.0f,
 0.0f, 0.0f, 0.0f, 1.0f,
 1.0f, 0.0f, 1.0f, 1.0f
};

 float squareColorsRGBA[] =

{
 1.0f, 0.0f, 0.0f, 1.0f,
 0.0f, 1.0f, 0.0f, 1.0f,
 0.0f, 0.0f, 1.0f, 1.0f,
 1.0f, 1.0f, 1.0f, 1.0f
};

Assign the first color array to the first square (which has been the blue one up until now) and the
second to the former red square. I do this in SquareRenderer.java and pass the color arrays in via
the square’s constructor. Of course, now we need two squares, one for each color set instead of just
the one. And don’t forget to enable the use of the color array.

You should be familiar enough now to know what to do. Also, notice that the arrays are now
normalized as a bunch of floats as opposed to the previously used unsigned bytes, so you’ll have to
tweak the calls to glColorPointer(). The solution is left up to the student (I always wanted to say
that). With the blending disabled, you should see the leftmost image in Figure 6–6, and when enabled
using the traditional function for transparency, the middle image in Figure 6–6 should be the result.
What? It isn’t? You say it still looks like the first figure? Why would that be?

Look back at the color arrays. Notice how the last value in each row, alpha, is at its maximum.
Remember that with this blending mode, anything of the destination values are multiplied by (1.0 –
source alpha), or rather, 0.0, so that the source color reigns supreme as shown in a previous example.
One solution to seeing some real transparency would be to use the following:

 gl.glBlendFunc(GL10.GL_ONE, GL10.GL_ONE);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Will It Blend? 159

This works because it ditches the alpha channel altogether. If you want alpha with the “standard”
function, merely change the 1.0 values to something else, such as .5, and change the blend function to
the following:

 gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA);

And the result is the rightmost image in Figure 6–6.

Figure 6–6. No blending, GL_ONE blending, and alpha blending, respectively

Texture Blending
Now, with fear and trembling, we can approach the blending of textures. Initially this seems much like
the alpha blending described earlier, but all sorts of interesting things can be done by using
multitexturing.

First let’s rework the previous code to support two textures at once and do vertex blending. You’ll have
to modify Square.draw() and in createImage() from the Chapter 5 examples. The square will also
need to support texture coordinates as well, and each instance of the square will need their own
unique texture. The rightmost image in Figure 6–7 is what you should get if you disable blending. The
center one can be generated if you activate the colors from the previous exercise and enable blending
using the GL_ONE functions from earlier in this chapter.

So, how was the right image generated?

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Will It Blend? 160

Using a single bitmap and colorizing it is a common practice to save memory. If you are doing some UI
components in the OpenGL layer, consider using a single image, and colorize it using these
techniques. You might ask why is it a solid red as opposed to merely being tinted red, allowing for
some variation in colors. What is happening here is that the vertex’s colors are being multiplied by the
colors of each fragment. For the red, I’ve used the RGB triplet of 1.0,0.0,0.0. So when each fragment is
being calculated in a channel-wise multiplication, the green and blue channels are going to be
multiplied by 0, so they are completely filtered out, leaving just the red. If you wanted to let some of
the other colors leak through, you would specify the vertices to lean toward a more neutral tone, with
the desired tint color being a little higher than the others, such as 1.0, 0.7,0.7.

Figure 6–7. On the left, only the textures are displayed. In the center, they’re blended with color, and in the one
on the right, solid red.

You can also add translucency to textures quite easily, Figure 6–8. To enable this, I’ll introduce a small
simplifying factor here. You can colorize the textured face by one single color by simply using
glColor4f() and eliminate the need to create the vertex color array altogether. So, for the second
square, the closest one, color it using glColor4f(1, 1, 1, .75), and make sure to reset the
coloring for the first square; otherwise, it will darken with the second one. Also, ensure that blending
is turned on and that the blending function uses the SRC_ALPHA/ONE_MINUS_SRC_ALPHA
combination.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Will It Blend? 161

Figure 6–8. The image on the left has an alpha of .5, while on the right, .75.

Multitexturing

So now we’ve covered blending for colors and mixed mode with textures and colors, but what about
two textures together to make a third? Such a technique is called multitexturing. Multitexturing can be
used for layering one texture on top of another while performing certain mathematical operations.
More sophisticated applications include simple image processing. But let’s go for the low-hanging fruit
first.

Multitexturing requires the use of texture combiners and texture units. Texture combiners let you
combine and manipulate textures that are bound to one of the hardware’s texture units, the specific
part of the graphics chip that wraps an image around an object. If you anticipate using combiners in a
big way, you might want to verify the supported total by
gl.glGetIntegerv(GL10.GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS, numberTextureUnits),
where numberTextureUnits is defined as a int.

To set up a pipeline to handle multitexturing, we need to tell OpenGL what textures to use and how to
mix them together. The process isn’t that much different (in theory at least) than defining the blend
functions when dealing with the alpha and color blending operations previously. It does involve heavy
use of the glTexEnvf() call, another one of OpenGL’s wildly overloaded methods. (If you don’t
believe me, check out its official reference page on the OpenGL site.) This sets up the texture
environment that defines each stage of the multitexturing process.

Figure 6–9 illustrates the combiner chain. Each combiner refers to the previous texture fragment (P0
or Pn) or the incoming fragment for the first combiner. It then takes a fragment from a “source”

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Will It Blend? 162

texture (S0 in the figure), combines it with P0, and hands it off to the next combiner if needed, C1, and
the cycle repeats.

Figure 6–9. The texture combiner chain

The best way to tackle this topic is like any others: go to the code. In the following example, two
textures are loaded together, bound to their respective texture units, and merged into a single output
texture. Several different kinds of methods used to combine the two images are tried with the results
of each shown and examined in depth.

First off, we revisit our old friend Square.draw(). We’re back to only a single texture, going up and
down. The color support has also been turned off. So, you should have something like Listing 6–3. And
make sure you are still loading a second texture.

Listing 6–3. Square.draw() Revisited, Modified for Multitexture Support

 public void draw(GL10 gl)
 {
 gl.glEnable(GL10.GL_TEXTURE_2D);
 gl.glBindTexture(GL10.GL_TEXTURE_2D,mTexture0);
 gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Will It Blend? 163

 gl.glFrontFace(GL11.GL_CW);
 gl.glVertexPointer(2, GL11.GL_FLOAT, 0, mFVertexBuffer);
 gl.glColorPointer(4, GL11.GL_FLOAT, 0, mColorBuffer);

 gl.glClientActiveTexture(GL10.GL_TEXTURE0); //1
 gl.glTexCoordPointer(2, GL10.GL_FLOAT,0,mTextureCoords);

 gl.glClientActiveTexture(GL10.GL_TEXTURE1); //2
 gl.glTexCoordPointer(2, GL10.GL_FLOAT,0,mTextureCoords);

 multiTexture(gl,mTexture0,mTexture1); //3

 gl.glDrawElements(GL11.GL_TRIANGLES, 6, GL11.GL_UNSIGNED_BYTE, mIndexBuffer);
 gl.glFrontFace(GL11.GL_CCW);
 }

There is a new call here, shown in lines 1 and 2. It’s glClientActiveTexture(), which sets what
texture unit to operate on. This is on the client side, not the hardware side of things, and indicates
which texture unit is to receive the texture coordinate array. Don’t get this confused with
glActiveTexture(), used in Listing 6–4, that actually turns a specific texture unit on. Line 3 is the
call to the method that configures the texture units.

This is a very simple default case. The fancy stuff comes later.

Listing 6–4. Setting Up the Texture Combiners

 public void multiTexture(GL10 gl, int tex0, int tex1)
 {
 float combineParameter= GL10.GL_MODULATE; //1

 // Set up the First Texture.
 gl.glActiveTexture(GL10.GL_TEXTURE0); //2
 gl.glBindTexture(GL10.GL_TEXTURE_2D, tex0); //3

 // Set up the Second Texture.
 gl.glActiveTexture(GL10.GL_TEXTURE1);
 gl.glBindTexture(GL10.GL_TEXTURE_2D, tex1);

 // Set the texture environment mode for this texture to combine.
 gl.glTexEnvf(GL10.GL_TEXTURE_ENV, GL10.GL_TEXTURE_ENV_MODE,
 combineParameter); //4
 }

 Line 1 specifies what the combiners should do. Table 6–1 lists all the possible
values available.

 glActiveTexture() in line 2makes active a specific hardware texture unit.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Will It Blend? 164

 Line 3 should not be a mystery, because you have seen it before. In this example,
the first texture is bound a specific hardware texture unit. The following two lines
do the same for the second texture.

 Now tell the system what to do with the textures in the final line. In the table, P is
previous, S is source, subscript a is alpha, and c is color and is used only when
color and alpha have to be considered separately.

Table 6–2. Possible Values for GL_TEXTURE_ENV_MODE

Texture Mode Function

 GL_ADD (component-wise addition of the RGBA values from the two texture fragments,
S being source, P being the previous)

 GL_BLEND (C is constant color set by GL_TEXTURE_ENV_COLOR)

 GL_COMBINE See the discussion after the table

 GL_DECAL

 GL_MODULATE

 GL_REPLACE Output color =

Now compile and run. Your display should superficially resemble the results of
Figure 6–10.

Figure 6–10. Hedly is the ‘‘previous’’ texture on the left, while the Jackson Pollack-ish painting is the ‘‘source.’’
When using GL_MODULATE, the results are on the right.

Pn + Sn

Pn (1− Sn) + Sn ×C

Pn × (1− San) + (Scn × San)

Pn × Sn

Sn

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Will It Blend? 165

Now it’s time to play with other combiner settings. Try GL_ADD for the combineParameter in Listing
63 replacing GL_MODULATE. Then follow this by GL_BLEND and GL_DECAL. The results are shown in
Figure 6–11. For addition, notice how the white part of the overlay texture is opaque. Because white is
1.0 for all three colors, it will always yield a 1.0 color so as to block out anything underneath. For the
nonwhite shades, you should see a little of the Hedly texture poke through. GL_BLEND, in the middle
image of Figure 6–11 is not quite as obvious. Why cyan splats in place of the red? Simple. Say the red
value is 1.0, its highest. Consider the equation for GL_BLEND:

Output=

The first section would be zero for red, since red’s value of 1 is subtracted by the one in the equation,
and by gosh, the second one would be too, providing that the default environment color of black is
used. Consider the green channel. Assume that the background image has a value of .5 for green, the
“previous” color, while keeping the splat color (the source) of solid red (so no blue or green in the
splat). Now the first section of the equation becomes .5*(1.0-0.0), or .5. That is, the .5 value for green
in the previous texture, Hedly, is multiplied against “1-minus-green” in the source texture. Since both
the green and blue channels in the source’s red splats would be 0.0, this means that the combination
of green and blue without any red gives a cyan shading because cyan is the inverse of red. And if you
look really close at the middle image in Figure 6–11, you can just make out a piece of Hedly poking
through. The same holds true for the magenta and yellow splats. In the rightmost image in Figure 6–
11, GL_DECAL is used and can serve many of the same duties that decals for plastic models had,
namely, the application of signs or symbols that would block out anything behind it. So for decals,
typically the alpha channel would be set to 1.0 for the actual image part of the texture, while it would
be 0.0 for any part that was not of the desired image. Typically the background would be black, and on
your paint program you would have it generate an alpha channel based on luminosity or for the part of
the image that has a nonzero color. In the case of the splat, because the background was white, I had
to invert the colors first to turn it black, generate the mask, and merge it with the normal positive
image. Some alpha that is slightly less than 1 was generated for the green channel, and as a result,
you can see a little part of Hedly showing through.

Pn (1− Sn) + Sn ×C

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Will It Blend? 166

Figure 6–11. On the left GL_ADD was used, GL_BLEND for the center, and GL_DECAL on the right

One final task would be to animate the second texture. You will need create a duplicate set of
textureCoordinates, mTextureCoods0, and mTextureCoords1, one for each texture, as we can
no longer share them. Next expose the “raw” coordinates used to generate the Java byte buffers in
the constructor. That way, we can modify them in the Square.draw() method. Then add the
following to draw() to update only the coordinates for the decal texture:

 for(i=0;i<8;i++)
 {
 mTextureCoordsAnimated[i]+=.01;
 }

 mTextureCoords1.position(0);
 mTextureCoords1.put(mTextureCoordsAnimated);

mTextureCoords1.position() is called to reset the buffer’s internal pointer. Otherwise, the following
call to put() will append the data the next time through and overrun the buffers.

An effect like this could be used to animate rain or snow in a cartoon-like setting or a cloud layer
surrounding a planet. The latter would be cool if you had two additional textures one for the upper
deck of clouds and one for the lower, moving at different rates.

As mentioned earlier, the environment parameter GL_COMBINE needs an additional family of settings
to get working, because it lets you operate on a much more precise level with the combiner equations.
If you were to do nothing more than just use GL_COMBINE, it defaults to GL_MODULATE, so you’d see
no difference between the two. The use of Arg0 and Arg1 represent the input sources, which are the

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Will It Blend? 167

texture combiners. They’re are set up by using something like the following line, where
GL_SOURCE0_RGB, is argument 0 or Arg0 referenced in Table 6–3:

 gl.glTexEnvf(GL10.GL_TEXTURE_ENV, GL10.GL_SOURCE0_RGB, GL10.GL_TEXTURE);

And similarly you’d use GL_SOURCE1_RGB for Arg1:

 gl.glTexEnvf(GL10.GL_TEXTURE_ENV, GL10.GL_SOURCE1_RGB, GL10.GL_TEXTURE);

Table 6–3. Possible Values for GL_COMBINE_RGB and GL_COMBINE_ALPHA Parameters

 GL_COMBINE_* Function

 GL_REPLACE Arg0

 GL_MODULATE Arg0 * Arg1 (the default)

 GL_ADD Arg0 + Arg1

 GL_ADD_SIGNED Arg0 + Arg1-0.5

 GL_INTERPOLATE Arg0 * Arg2 + Arg1 * (1-Arg2)

 GL_SUBTRACT Arg0 – Arg1

 GL_DOT3_RGB 4*(((Arg0red-.5)*(Arg1red-.5))+((Arg0green-.5)*(Arg1green-.5))+

((Arg0blue-.5)*(Arg1blue-.5))) (GL_COMBINE_RGB only)

GL_DOT3_RGBA Same as above, but with alpha added (GL_COMBINE_RGBA only)

Mapping with Bumps

You can do many extremely sophisticated things with textures; bump mapping is just one. So what
follows is a discussion of exactly what “bumps” are and why anyone should be concerned with
mapping them.

As previously pointed out, much of the challenge in computer graphics is to make complicated-looking
visuals using clever hacks behind the scene. Bump mapping is just one of those tricks, and in OpenGL
ES 1.1, it can be implemented with texture combiners.

Just as textures were “tricks” to layer complexity to a simple face, bump mapping is a technique to
add a third dimension to the texture. It’s used to generate a roughness to the overall surface of an
object, giving some surprisingly realistic highlights when illuminated. It might be used to simulate
waves on a lake, the surface of a tennis ball, or a planetary surface.

Roughness of an object’s surface is perceived by the way it plays with both light and shadow. For
example, consider a full moon vs. a gibbous moon, as shown in Figure 6–12. The moon is full when
the sun is directly in front of it, and as a result, the surface is little more than varying shades of gray.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Will It Blend? 168

No shadows whatsoever are visible. It’s not much different from you looking at the ground facing away
from the sun. Around the shadow of your head the surface looks flat. Now, if the light source is moved
to the side of things, suddenly all sorts of details pop out. The image on the right in Figure 6–12 shows
a gibbous moon that has the sun toward the left, the moon’s eastern limb. It’s a completely different
story, isn’t it?

Figure 6–12. Relatively little detail shows on the left, while with oblique lighting, a lot more shows on the right.

Understanding how highlights and shadows work together is absolutely critical to the training of fine
artists and illustrators.

Adding real surface displacement to replicate the entire lunar surface would likely require many
gigabytes of data and is out of the question for the current generation of small handheld devices from
both a memory and CPU standpoint. Thus enters the rather elegant hack of bump mapping to the
center stage.

You might remember that back in Chapter 4 that you had to add an array of “face normals” to the
sphere model. Normals are merely vectors that are perpendicular to the face that show the direction
the face is pointing. It is the angle of the normal to any of the light sources that largely determines just
how bright or dark the face will be. And the more directly oriented the face is toward the light, the
brighter it will be. So, what if you had a compact way to encode normals not on a face-by-face basis,
as a model might have relatively few faces, but on, say, a pixel-by-pixel basis? And what if you could
combine that encoded normal array with a real image texture and process it in a way that could
brighten or darken a pixel from the image, based on the direction of incoming light?

This brings us back to the texture combiners. In Table 6–3, notice the last two combiner types:
GL_DOT3_RGB and GL_DOT3_RGBA. Now, reach back, way back to your high-school geometry classes.
Remember the dot product of two vectors? Both the dot products and cross products were those

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Will It Blend? 169

things that you scorned with the whine “Teacherrrrr?? Why do I need to know this?” Well, now you are
going to get your answer.

The dot product is the length of a vector based on the angle of two other vectors. Still not following?
Consider the diagram on the left in Figure 6–13. The dot product is the “amount” of the normal vector
that is aiming toward the light, and that value is used to directly illuminate the face. In the diagram on
the right in Figure 6–13, the face is at a right angle to the direction of the sun, so it is not illuminated.

Figure 6–13. On the left, the face is illuminated; not so on the right.

With this in mind, the “cheat” that bump mapping uses is as follows. Take the actual texture you want
to use, and add a special second companion texture to it. This second texture encodes normal
information in place of the RGB colors. So, instead of using floats that are 4 bytes each, it uses 1-byte
values for the xyz of normal vectors that conveniently fit inside a single 4-byte pixel. Since the vectors
usually don’t have to be super-accurate, the 8-bit resolution is just fine and is very memory efficient.
So, these normals are generated in a way to map directly to the vertical features you want highlighted.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Will It Blend? 170

Because normals can have negative values as well as positive (negative when pointing away from the
sun), the xyz values are centered in the range of 0 to 1. That is, -127 to +127 must be mapped to
anywhere between 0 and 1. So, the “red” component, which is typically the x part of the vector, would
be calculated as follows:

And of course this is similar for the green and blue bits.

Now look at the formula expressed in the GL_DOT3_RGB entry of Table 6–3. This takes the RGB triplet
as the vector and returns its length. N is the normal vector, and L is the light vector, so the length is
solved as follows:

So if the face is aimed directly toward the light along the x-axis, the normal’s red would be 1.0, and
the light’s red or x value would also be 1.0. The green and blue bits would be .5, which is the encoded
form of 0. Plugging that into the previous equation would look like this:

length= 4 × (.25+0+0) =1.0

This is exactly what we’d expect. And if the normal is pointing up and away from the surface in the z
direction, encoded in the blue byte, the answer should be 0 because the normals are largely aimed up
away from the texture’s X and Y planes. The image on the left in Figure 6–14 shows a bit of our earth
map, while the image on the right shows its corresponding normal map.

Figure 6–14. The left side is our image; the right is the matching normal map.

red = (x +1) /2.0

length = 4 × ((Rn − .5) × (Rl − .5) + (Gn − .5) × (Gl − .5) + (Bn − .5) × (Bl − .5))

length = 4 × ((1n − .5) × (1l − .5) + (.5n − .5) × (.5l − .5) + (.5n − .5) × (.5l − .5))

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Will It Blend? 171

And why is the normal map primarily purple? The straight-up vector pointing away from the earth’s
surface is encoded such that the red=.5, green=.5, and blue=1.0. (Keep in mind that .5 is actually 0.)

When the texture combiner is set to the DOT3 mode, it uses the normal and a lighting vector to
determine the intensity of each texel. That value is then used to modulate the color of the real image
texture.

Now it’s time to recycle the previous multitexture project. This time, the second texture needs to be
composed of the bump map available from the Apress site. Following that, the combiners are set up to
handle the normal map and any leftover animation from past exercises.

Load in the normal map for this example, and then add the new routine, multiTextureBumpMap(),
as shown in Listing 6–5.

Listing 6–5. Setting Up the Combiners for Bump Mapping

static float lightAngle=0.0f;
 public void multiTextureBumpMap(GL10 gl, int mainTexture, int normalTexture)
 {
 float x,y,z;

 lightAngle+=.3f; //1

 if(lightAngle>180)
 lightAngle=0;

 // Set up the light vector.
 x = (float) Math.sin(lightAngle * (3.14159 / 180.0f)); //2
 y = 0.0f;
 z = (float) Math.cos(lightAngle * (3.14159 / 180.0f));

 // Half shifting to have a value between 0.0f and 1.0f.
 x = x * 0.5f + 0.5f; //3
 y = y * 0.5f + 0.5f;
 z = z * 0.5f + 0.5f;

 gl.glColor4f(x, y, z, 1.0f); //4

 //The color and normal map are combined.
 gl.glActiveTexture(GL10.GL_TEXTURE0); //5
 gl.glBindTexture(GL10.GL_TEXTURE_2D, mainTexture);

 gl.glTexEnvf(GL10.GL_TEXTURE_ENV, GL10.GL_TEXTURE_ENV_MODE, GL11.GL_COMBINE);//6
 gl.glTexEnvf(GL10.GL_TEXTURE_ENV, GL11.GL_COMBINE_RGB, GL11.GL_DOT3_RGB); //7
 gl.glTexEnvf(GL10.GL_TEXTURE_ENV, GL11.GL_SRC0_RGB, GL11.GL_TEXTURE); //8
 gl.glTexEnvf(GL10.GL_TEXTURE_ENV, GL11.GL_SRC1_RGB, GL11.GL_PREVIOUS); //9

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Will It Blend? 172

 // Set up the Second Texture, and combine it with the result of the Dot3
 combination.

 gl.glActiveTexture(GL10.GL_TEXTURE1); //10
 gl.glBindTexture(GL10.GL_TEXTURE_2D, normalTexture);

 gl.glTexEnvf(GL10.GL_TEXTURE_ENV, GL10.GL_TEXTURE_ENV_MODE, GL10.GL_MODULATE); //11
}

The preceding operation takes place using two stages. The first blends the bump, or normal map with
the primary color, which is established using the glColor4f() call. The second takes the results of
that and combines it with the color image using our old friend GL_MODULATE.

So let’s examine it piece by piece:

 In line 1 we define lightAngle that will cycle between 0 and 180 degrees
around the texture to show how the highlights look under varying lighting
conditions.

 Calculate the xyz values of the light vector in line 2.

 In line 3, the xyz components need to be scaled to match those of the bump map.

 Now color the fragments using the light vector components in line 4.

 Set and bind the bump map first, which is tex0 in line 5f.

 GL_COMBINE in line 6 tells the system to expect a combining type to follow.

 In line 7, we specify that we’re going to combine just the RGB values using
GL_DOT3_RGB operations (GL_DOT3_RGBA includes the alpha, but is not needed
here).

 Here we set up “stage 0,” the first of two stages. The source of the first bit of
data is specified in line 8. This says to use the texture from the current texture
unit (GL_TEXTURE0) as the source for the bump map assigned in line 5.

 Then we have to tell it to blend with the previous color—in this case, that which
was set via glColor() in line 4. For stage 0, GL_PREVIOUS is the same as
GL_PRIMARY_COLOR, because there is no previous texture to use.

 Now set up stage 1 in line 10 and the following line. The argument, tex1, is the
color image.

 Now all we want to do is combine the image with the bump map, which is what
line 11 does.

My source texture is selected so that you can easily see the results. When started, the light should
move from left to right and illuminate the edges of the land masses, as shown in Figure 6–15.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Will It Blend? 173

Figure 6–15. Bumpmapped North America at morning, noon, and evening, respectively

Looks pretty cool, eh? But can we apply this to a spinning sphere? Give it a shot and recycle the solar-
system model from the end of the previous chapter. To make the fine detail of the bump map more
easily seen, the sun is dropped in lieu of a somewhat larger image for the earth. So, we’ll load the
bump map, move the earth to the center of the scene, tweak the lighting, and add the combiner
support.

Underneath where you allocate the main image, add the following:

 if(imageId == true)
 {
 m_BumpmapID = createTexture(gl, context, imageId, resourceId);
 }

And add this:

 int m_BumpmapID;

Now make sure this is called with the new parameter in init() located in the solar system’s
controller object.

Use Listing 6–6 as the new draw() method to be placed in Planet.java and called from the
bumpmappingController’s executePlanet() routine. This mainly sets things up for the texture
combiners and calls multiTextureBumpMap in Listing 6–6.

Listing 6–6. The Modified Execute for Bump Mapping

 public void draw(GL10 gl)
 {
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glEnable(GL10.GL_CULL_FACE);
 gl.glCullFace(GL10.GL_BACK);
 gl.glEnable(GL10.GL_LIGHTING);

 gl.glFrontFace(GL10.GL_CW);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Will It Blend? 174

 gl.glEnable(GL10.GL_TEXTURE_2D);
 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, m_VertexData);

 gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY);
 gl.glClientActiveTexture(GL10.GL_TEXTURE0);

 gl.glBindTexture(GL10.GL_TEXTURE_2D, textures[0]);

 gl.glTexCoordPointer(2, GL10.GL_FLOAT, 0, m_textureData);

 gl.glClientActiveTexture(GL10.GL_TEXTURE1);
 gl.glTexCoordPointer(2, GL10.GL_FLOAT,0,m_textureData);

 gl.glMatrixMode(GL10.GL_MODELVIEW);

 gl.glEnableClientState(GL10.GL_NORMAL_ARRAY);
 gl.glNormalPointer(GL10.GL_FLOAT, 0, m_NormalData);

 gl.glColorPointer(4, GL10.GL_UNSIGNED_BYTE, 0, m_ColorData);
 multiTextureBumpMap(gl, m_BumpmapID, textures[0]);
 gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 0, (m_Slices+1)*2*(m_Stacks-1)+2);

 }

The method multiTextureBumpMap() is identical to the previous one except for the light vector
calculations that can be removed (up through line 4), so merely copy that over to your planet object.

Now go to where you initialize the lights in your solar-system controller, and comment out the call to
create the specular material. Bump mapping and specular reflections don’t get along too well.

Listing 6–7 is the new execute routine; likewise for the controller. This dumps the sun, moves the
earth into the center of things, and places the main light off to the left.

Listing 6–7. Replace the Old execute() Routine with This

 private void execute(GL10 gl) {
 float posFill1[]={-8.0f, 0.0f, 7.0f, 1.0f};
 float cyan[]={0.0f, 1.0f, 1.0f, 1.0f};
 float orbitalIncrement=0.5f;
 float sunPos[]={0.0f, 0.0f, 0.0f, 1.0f};

 gl.glLightfv(SS_FILLLIGHT1, GL10.GL_POSITION, makeFloatBuffer(posFill1));

 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glClearColor(0.0f, 0.25f, 0.35f, 1.0f);
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Will It Blend? 175

 gl.glPushMatrix();

 gl.glTranslatef(-m_Eyeposition[X_VALUE],-m_Eyeposition[Y_VALUE],-
 m_Eyeposition[Z_VALUE]);
 gl.glLightfv(SS_SUNLIGHT, GL10.GL_POSITION, makeFloatBuffer(sunPos));

 gl.glEnable(SS_FILLLIGHT1);
 gl.glEnable(SS_FILLLIGHT2);

 gl.glPushMatrix();

 angle+=orbitalIncrement;
 gl.glRotatef(angle, 0.0f, 1.0f, 0.0f);
 executePlanet(m_Earth, gl);
 gl.glPopMatrix();
 gl.glPopMatrix();
 }

If you now see something like Figure 6–16, you may officially pat yourself on the back.

Figure 6–16. The bumpy earth

OK, now for an experiment. Move the light’s position so that it comes in from the right instead of the
left. Figure 6–17 is the unexpected result. What’s going on here? Now the mountains look like valleys.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Will It Blend? 176

Figure 6–17. Huh?

What’s happening is that we are going where no combiner has gone before. By sticking in our own
lighting, the effect of the simulated lighting as provided by the light vector is removed. With our light
on the left, it just happens to look good mainly by luck. Bump mapping here works OK if the lighting of
your scene is relatively static. It doesn’t like multiple light sources. In fact, the pseudo-lighting effect
specified via the light vector is ignored in lieu of the “real” light sources. Furthermore, if you turn off
those sources, the light vector ignores any of the shading on the object altogether. In this case, you
would see the entire planet lighten up and darken because that’s what is happening to the texture
itself, because it is merely a 2D surface. If part of it is lit, all is lit. So, what’s a GL nerd to do? Shaders
my friend. Shaders. And that is where OpenGL ES 2.0 and the Android extensions come in.

Summary
In this chapter, you learned about the blending capabilities supplied by OpenGL ES 1. Blending has its
own unique language as expressed through the blending functions and combiners. You’ve learned
about translucency, including how and when to apply it. Also covered were some of the neat tricks
available by using both blending and textures for animation and bump mapping. In the next chapter, I’ll
start to apply some of these tricks and show others that can make for a more interesting 3D universe.

www.it-ebooks.info

http://www.it-ebooks.info/

177

 Chapter

Well-Rendered Miscellany

If we knew what it was we were doing, it would not be called research,
would it?

—Albert Einstein

When starting this chapter, I tried to find a suitable quote about miscellany. Unfortunately, all I could
find were collections of miscellaneous quotes. But the one by Albert Einstein is a real gem and can
almost apply because you, dear reader, are conducting research—research in how to make richer,
more involving, and fun software.

In books like this, sometimes it’s hard to make clean classifications of a particular topic, and we just
have to dump a lot things into a single chapter when they might not warrant a chapter of their own.
So, here I’m going to cover some classic presentation and rendering tricks, whether they can be
applied to the solar-system project or, so at the end you’ll exclaim “So, that’s how they do that!”

Frame Buffer Objects
Usually referred to as FBOs, you can think of frame buffer objects as simply rendering surfaces. Up
until now, you’ve been using one and probably didn’t know it; the EGL context that your scene renders
to via the GLSurfaceView object is an FBO. What you probably didn’t know is that you can have
multiple screens at the same time. As before, we’ll start off with the old standard, our bouncing slab of
rainbow-hued Jell-O, and then see where it can go from there.

7

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Well-Rendered Miscellany 178

Hedley Buffer Objects

You know the drill by this time: find the exercise from Chapter 5, with the original 2D bouncing
textured square (Figure 5-13), and use this as a reference. As most of the code is ultimately changed, I
suggest creating a new project from scratch. The activity file will be the standard default one. We need
to create a separate object just for the FBO support; call this FBOController.java. It will cover both
initialization and execution of the FBO. It should look like Listing 7–1, minus a few utility functions that
you should have elsewhere to save space. Those are noted in the description.

Listing 7–1. The Frame Buffer Object Controller

 public class FBOController
{
 public Context context;
 int[] m_FBO1 = new int[3];
 int[] m_FBOTexture = new int[1];
 public String TAG = "FBO Controller";
 int[] originalFBO = new int[1];
 int[] depthBuffer = new int[1];
 int m_ImageTexture;
 static float m_TransY = 0.0f;
 static float m_RotX = 0.0f;
 static float m_RotZ = 0.0f;
 static float m_Z = -1.5f;
 int[] m_DefaultFBO = new int[1];
 int m_Counter=0;
 boolean m_FullScreen = false;

 public int init(GL10 gl, Context contextRegf,int resource, int width,
 int height)
 {
 GL11ExtensionPack gl11ep = (GL11ExtensionPack) gl; //1

 //Cache the original FBO, and restore it later.

 gl11ep.glGetIntegerv(GL11ExtensionPack.GL_FRAMEBUFFER_BINDING_OES, //2

 makeIntBuffer(originalFBO));

 gl11ep.glGenRenderbuffersOES(1, makeIntBuffer(depthBuffer)); //3
 gl11ep.glBindRenderbufferOES(GL11ExtensionPack.GL_RENDERBUFFER_OES,

 depthBuffer[0]);

 gl11ep.glRenderbufferStorageOES(GL11ExtensionPack.GL_RENDERBUFFER_OES,
 GL11ExtensionPack.GL_DEPTH_COMPONENT16, width, height);

 //Make the texture to render to.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Well-Rendered Miscellany 179

 gl.glGenTextures(1, m_FBOTexture, 0); //4
 gl.glBindTexture(GL10.GL_TEXTURE_2D, m_FBOTexture[0]);

 gl.glTexImage2D(GL10.GL_TEXTURE_2D, 0, GL10.GL_RGB, width, height, 0,
 GL10.GL_RGB, GL10.GL_UNSIGNED_SHORT_5_6_5,null);

 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MIN_FILTER,

 GL10.GL_LINEAR);
 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MAG_FILTER,

 GL10.GL_LINEAR);
 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_WRAP_S,

 GL10.GL_CLAMP_TO_EDGE);
 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_WRAP_T,

 GL10.GL_CLAMP_TO_EDGE);

 //Now create the actual FBO.

 gl11ep.glGenFramebuffersOES(1, m_FBO1,0); //5

 gl11ep.glBindFramebufferOES(GL11ExtensionPack.GL_FRAMEBUFFER_OES,
 m_FBO1[0]);

 // Attach the texture to the FBO. //6
 gl11ep.glFramebufferTexture2DOES(GL11ExtensionPack.GL_FRAMEBUFFER_OES,
 GL11ExtensionPack.GL_COLOR_ATTACHMENT0_OES,
 GL10.GL_TEXTURE_2D,

 m_FBOTexture[0], 0);

 // Attach the depth buffer we created earlier to our FBO. //7
 gl11ep.glFramebufferRenderbufferOES
 (GL11ExtensionPack.GL_FRAMEBUFFER_OES,
 GL11ExtensionPack.GL_DEPTH_ATTACHMENT_OES,
 GL11ExtensionPack.GL_RENDERBUFFER_OES, depthBuffer[0]);

 // Check that our FBO creation was successful.

 gl11ep.glCheckFramebufferStatusOES
 (GL11ExtensionPack.GL_FRAMEBUFFER_OES);

 int uStatus =

 gl11ep.glCheckFramebufferStatusOES(GL11ExtensionPack.GL_FRAMEBUFFER_OES);

 if(uStatus != GL11ExtensionPack.GL_FRAMEBUFFER_COMPLETE_OES)
 return 0;

 gl11ep.glBindFramebufferOES(GL11ExtensionPack.GL_FRAMEBUFFER_OES, //8

 originalFBO[0]);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Well-Rendered Miscellany 180

 m_ImageTexture = createTexture(gl,contextRegf,resource); //9

 return 1;
 }

 public int getFBOName()
 return m_FBO1[0];

 public int getTextureName()
 return m_FBOTexture[0];

 public void draw(GL10 gl)
 {
 GL11ExtensionPack gl11 = (GL11ExtensionPack) gl;

 float squareVertices[] = //10
 {
 -0.5f, -0.5f, 0.0f,
 0.5f, -0.5f, 0.0f,
 -0.5f, 0.5f, 0.0f,
 0.5f, 0.5f, 0.0f
 };

 float fboVertices[] =
 {
 -0.5f, -0.75f, 0.0f,
 0.5f, -0.75f, 0.0f,
 -0.5f, 0.75f, 0.0f,
 0.5f, 0.75f, 0.0f
 };

 float textureCoords1[] =
 {
 0.0f, 0.0f,
 1.0f, 0.0f,
 0.0f, 1.0f,
 1.0f, 1.0f
 };

 if((m_Counter%250)==0) //11
 {
 if(m_FullScreen)
 m_FullScreen=false;
 else
 m_FullScreen=true;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Well-Rendered Miscellany 181

 gl.glDisable(GL10.GL_CULL_FACE);
 gl.glEnable(GL10.GL_DEPTH_TEST);

 if(m_DefaultFBO[0] == 0) //12
 {
 gl11.glGetIntegerv(GL11ExtensionPack.GL_FRAMEBUFFER_BINDING_OES,
 makeIntBuffer(m_DefaultFBO));
 }

 gl.glDisableClientState(GL10.GL_COLOR_ARRAY | GL10.GL_DEPTH_BUFFER_BIT);

 gl.glEnable(GL10.GL_TEXTURE_2D);

 //Draw to the off-screen FBO first.

 if(!m_FullScreen) //13
 gl11.glBindFramebufferOES(GL11ExtensionPack.GL_FRAMEBUFFER_OES,
 m_FBO1[0]);

 gl.glClearColor(0.0f, 0.0f, 1.0f, 1.0f);
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT|GL10.GL_DEPTH_BUFFER_BIT);

 gl.glPushMatrix();

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();

 gl.glTranslatef(0.0f, (float)(Math.sin(m_TransY)/2.0f),m_Z);

 gl.glRotatef(m_RotZ, 0.0f, 0.0f, 1.0f);

 gl.glBindTexture(GL10.GL_TEXTURE_2D,m_ImageTexture); //14

 gl.glTexCoordPointer(2, GL10.GL_FLOAT,0, makeFloatBuffer(textureCoords1));
 gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY);

 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, makeFloatBuffer(squareVertices));
 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);

 gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 0, 4);

 gl.glPopMatrix();

 //Now draw the offscreen frame buffer into another framebuffer.

 if(!m_FullScreen) //15
 {
 gl.glPushMatrix();

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Well-Rendered Miscellany 182

 gl11.glBindFramebufferOES(GL11ExtensionPack.GL_FRAMEBUFFER_OES,

m_DefaultFBO[0]);

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();

 gl.glTranslatef(0.0f, (float)(Math.sin(m_TransY)/2.0f), m_Z);
 gl.glRotatef(m_RotX, 1.0f, 0.0f, 0.0f);

 gl.glBindTexture(GL10.GL_TEXTURE_2D, m_FBOTexture[0]);

 gl.glClearColor(1.0f, 0.0f, 0.0f, 1.0f);
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);

 gl.glTexCoordPointer(2, GL10.GL_FLOAT, 0,
 makeFloatBuffer(textureCoords1));
 gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY);

 gl.glVertexPointer(3, GL10.GL_FLOAT, 0,
 makeFloatBuffer(fboVertices));
 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 0, 4);

 gl.glPopMatrix();
 }

 m_TransY += 0.025f;
 m_RotX+=1.0f;
 m_RotZ+=1.0f;
 m_Counter++;
 }

 //createTexture(), makeFloatBuffer() and makeIntBuffer() removed for clarity. //16

}

You should recognize the pattern here, because creating FBOs is a lot like many of the other OpenGL
objects. You generate a “name,” bind it, and then create and modify the object. In this case, there is
an awful lot of creatin’ and modifyin’ going on. So, let’s break it down:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Well-Rendered Miscellany 183

 In line 1, we get something called GL11ExtensionPack. The extension pack is
an officially recognized set of extra API calls that are not required for a particular
version of OpenGL ES to be approved. These can be added at the discretion of the
GPU vendors, but they still must follow specs for the various extra features. An
example of this has to do with—ta-da!—frame buffer objects! Originally FBOs
were part of OpenGL ES 2.0, but they were so darned useful, it was decided to
open them up to 1.1 users as well. All API calls and definitions have the suffix of
OES. Since FBOs are part of the normal 2.0 spec, those calls do not need OES.

 Line 2 gets the current FBO, which most likely will be the normal screen. It’s
cached so it can be restored later.

 Since we’re creating out own private FBO, we need to handle all of the setup
ourselves, which includes creating and adding a depth buffer to our target. Line 3
and the one following generate a new buffer name, bind it, and then allocate
storage.

 At this point in lines 4ff, we need to allocate a texture image and have it linked up
to our frame buffer. This is the interface required to camouflage our FBO so that it
looks just like any other texture to OpenGL. Here we can also set up some of the
normal texture settings for edge conditions and use bilinear filtering.

 Up until now we’ve merely created the depth buffer and image interface. In lines
5f, we actually create the frame buffer object and attach the previous bits to it.

 Line 6 attaches the texture first. Notice the use of GL_COLOR_ATTACHMENT0_OES.
The texture bit actually holds the color information, so it is called the color
attachment.

 In Line 7, we do the same for the depth buffer, using
GL_DEPTH_ATTACHMENT_OES. And remember that in OpenGL ES we have only
three types of buffer attachments: depth, color, and stencil. The latter does things
such as blocking rendering in a certain part of the screen and will be covered
later in this chapter. The adult version of OpenGL adds a fourth kind,
GL_DEPTH_STENCIL_ATTACHMENT.

 Line 8 restores the previous FBO, and line 9 generates the actual texture of our
Easter Island friend, Hedly, for use in the bouncy square.

The next step is to move on to the draw method, and we’ll see how the FBOs are swapped in and out
as needed.

 In lines 10ff, you’ll immediately recognize the standard square data, with the
addition of vertices for the FBO.

 Lines 11ff are needed to allow us to swap between the FBO as the full-screen
texture and the normal original screen.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Well-Rendered Miscellany 184

 Next we cache the main screen’s FBO again in lines 12f, as was done in the
create method.

 Line 13 is where we actually tell OpenGL to use our new FBO. Following that is the
standard code to manage the transformations, and so on, that should make you
feel at home.

 In line 14, we bind the Hedly image and then set up the vertices and texture
coordinate, followed by glDrawArray().

 Now the fun begins. In Lines 15ff, the FBO is the “new” texture that can now be
bound into the main screen. First the original screen’s FBO is bound, followed by
another set of transformation calls, along with another glClear(). To make
things really obvious, the main screen is cleared to red, while the FBO’s
background is cleared to blue.

So, that’s merely creating an FBO. You’ll see that it is a fairly no-frills piece of code, using the built-in
functions available in both OpenGL ES 1 and 2. And yes, it does seem a little overly complicated, but
it’s easily wrapped with a helper function.

But we’re still not quite done, because we now have to rejigger the driver to use both FBOs. The first
part of the rejiggering process is to see whether your device can actually support frame buffer objects.
For this we can harken back to the discussion in Chapter 5 about using the extension enumerator. For
this case, the following code will work, with thanks to the OpenGL ES working group for standardizing
these sorts of things.

 private boolean checkIfContextSupportsExtension(GL10 gl, String extension)
 {
 String extensions = " " + gl.glGetString(GL10.GL_EXTENSIONS) + " ";
 return extensions.indexOf(" " + extension + " ") >= 0;
 }

Now make the follow calls to where your initialization code is located, such as onSurfaceChanged():

 m_FBOSupported=checkIfContextSupportsExtension(gl,"GL_OES_framebuffer_object");

 if(m_FBOSupported)
{
 int resid = book.BouncyCube1.R.drawable.hedly;

 m_FBOController = new FBOController();
 m_FBOController.init(gl, this.context, resid, width, height);
}

You should be able to run it and see it in all of its gaudy glory. If you intend to stare at it for an
extended period of time, your doctor’s permission may be necessary. The leftmost image in Figure 7–1

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Well-Rendered Miscellany 185

is where the new secondary FBO becomes the primary rendering surface, while the other surface is
now nested within.

Feel free to try and do a third or fourth FBO with different images and colors.

Figure 7–1. On the left, just Hedly is spinning. Both Hedly and his window are now spinning counterclockwise in
the middle. And on the right, the frame is spinning end over end.

Sun Buffer Objects

You can do a lot of fun and bizarre things with buffer objects, equivalent to having 3D superpowers.
For example, you could simulate some animations on a little model of a TV set. You could show
multiple views of the same data in a reflection of a puddle on the ground or the rearview mirror in a
car. Better yet, put one OpenGL frame animating a scene on the sun in our solar-system simulator. It’s
not particularly realistic, but it’s pretty cool.

I’ll leave this up to the student this time around, but I used Chapter 5’s final project for starters. You
can also just download it from the website.

I hope you get something like Figure 7–2, with Hedly bouncing up and down on the sun.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Well-Rendered Miscellany 186

Figure 7–2. Using an off-screen FBO to animate texture on another one

Lens Flare
We’ve all seen it. Those ghostly, glowing gossamer lights dancing around television scenes or invading
an image whenever a camera is aimed toward the sun. This happens as the sun’s light merrily
bounces around to and fro in the camera’s optics, causing numerous secondary images. These can be
seen both as a bright broad haze and as many smaller artifacts. Figure 7–3 (left) illustrates this with
an image from the Apollo 14 moon landing mission in 1971. The flare obscures most of the lunar
module. Even the iPhone has the similar issues, as demonstrated with the image on the right in Figure
7–3. Even though the Hasselblad cameras that were used on the moon were the best in the world, we
couldn’t beat lens flare. Unfortunately, it has become one of the more common clichés in computer
graphics, used as a tool that shouts “Hey! This is not a fake computer image, because it has lens
flare!” However, lens flares do have their uses, especially in the arena of space simulations because
the fake imagery frequently looks at the fake sun. In that case, both consciously and subconsciously,
you’d expect some visual cue that you were looking at something very, very, very bright. It also helps
give an extra sense of depth to the image. The flare is generated in the optics that are really near the
user while the target is a bazillion miles away.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Well-Rendered Miscellany 187

Figure 7–3. On the left is a view on the moon from Apollo 14, and a Motorola Xoom image is on the right.

Depending on the specific optics and their various internal coatings, the flares can take many different
forms, but they usually end up being just of bunch of ghostly polygons of varying sizes and hues. In the
next exercise, we’ll create a simple lens flare project that will illustrate using 2D images in a 3D
environment. Because there is a lot of code for the setup, I will highlight only the key bits here. You
will need to go to www.apress.com to get the full project.

Geometrically, lens flares are generally pretty simple because of their symmetry. They exhibit two
main characteristics: all lens flares require a very bright light source, and they’ll lie along a diagonal
line going through the center of the screen, as shown in Figure 7–4.

Figure 7–4. Lens flares are caused by the inner reflections of a bright light source within a camera’s lens.

www.it-ebooks.info

http://www.apress.com
http://www.it-ebooks.info/

CHAPTER 7: Well-Rendered Miscellany 188

Since flare images are 2D, how do we put them in a 3D space? Going back to the original sample, the
bouncy square was also 2D object. But displaying it relied on some defaults as to how the object was
mapped to the screen. Here we get a little more specific.

Remember in Chapter 3 where I spoke of perspective vs. orthographic projections? The former is the
way we perceive the dimensionality of objects; the latter is used when precise sizes and shapes are
required, eliminating the distortion that perspective adds to the scene. So, when drawing 2D objects,
you will generally want to ensure that their visual dimensions are untouched by any of the 3D-ness of
the rest of your world.

When it comes to generating your lens flares, you will need a small collection of different shapes to
represent some of the mechanics of the actual lens. The hexagonal or pentagonal images are those of
the iris used to vary the intensity of the incoming light; see Figure 7–5. They will also exhibit different
tints as a result of the various coatings used to protect the lenses or filter out unwanted wavelengths.

Figure 7–5. A six-blade iris (image by Dave Fischer)

The following steps are needed to generate the flare set:

1. Import the various images.

2. Detect where on the screen the source object is.

3. Create the imaginary vector that goes through the center of the screen so as to hold
the individual pieces of art.

4. Add a dozen or more images, with random sizes, colors, and translucency,
scattered up and down the vector.

5. Support touch dragging to test it in all different positions.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Well-Rendered Miscellany 189

I started with the standard template and added support for touching and dragging the visuals. You will
notice that there is no more 3D sun object. It is now a glowy 2D texture that is rendered at the current
position of a user’s finger, as demonstrated in Listing 7–2.

Listing 7–2. The Top-Level onDrawFrame()

 public void onDrawFrame(GL10 gl)
 {
 CGPoint centerRelative = new CGPoint();
 CGPoint windowDefault = new CGPoint();
 CGSize windowSize = new CGSize();
 float cx,cy;
 float aspectRatio

 gl.glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);

 DisplayMetrics display = context.getResources().getDisplayMetrics(); //1
 windowSize.width = display.widthPixels;
 windowSize.height = display.heightPixels;

 cx=windowSize.width/2.0f;
 cy=windowSize.height/2.0f;

 aspectRatio=cx/cy;

 centerRelative.x = m_PointerLocation.x-cx;
 centerRelative.y =(cy-m_PointerLocation.y)/aspectRatio;

 CT.renderTextureAt(gl, centerRelative.x, centerRelative.y, windowSize, //2
 m_FlareSource, 3.0f, 1.0f, 1.0f, 1.0f, 1.0f);

 m_LensFlare.execute(gl, windowSize, m_PointerLocation); //3
 }

There are three lines to take note of here:

 Lines 1ff get the center of the screen and creates the information needed to track
the flare source (the sun) with the pointer (your finger).

 In line 2, the flare’s source object, usually the sun, is rendered.

 Line 3 calls the helper routine that draws the actual lens flare.

The next bit in Listing 7–3 draws a 2D texture to the screen. You will find this very handy and will use
it frequently for displaying things like text or HUD-like graphics on your screen. In short, this draws a
rectangular object, just like the bouncy square. To make it 2D, it uses a new call called glOrthof()
when setting up the projection matrix.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Well-Rendered Miscellany 190

Listing 7–3. Rendering a 2D Texture

 public void renderTextureAt(GL10 gl, float postionX, float postionY, //1
 CGSize windowsSize, int textureId, float size, float r, float g, float b,

 float a)
 {

 float scaledX, scaledY;
 float zoomBias = .1f;

 float scaledSize;

 float squareVertices[] =
 {
 -1.0f, -1.0f, 0.0f,
 1.0f, -1.0f, 0.0f,
 -1.0f, 1.0f, 0.0f,
 1.0f, 1.0f, 0.0f

};

 float textureCoords[] =
 {
 0.0f, 0.0f,
 1.0f, 0.0f,
 0.0f, 1.0f,
 1.0f, 1.0f
 };

 float aspectRatio = windowsSize.height / windowsSize.width;

 scaledX = (float) (2.0f * postionX / windowsSize.width); // 2
 scaledY = (float) (2.0f * postionY / windowsSize.height);

 gl.glDisable(GL10.GL_DEPTH_TEST); // 3
 gl.glDisable(GL10.GL_LIGHTING);

 gl.glMatrixMode(GL10.GL_PROJECTION); // 4
 gl.glPushMatrix();
 gl.glLoadIdentity();

 gl.glOrthof(-1.0f, 1.0f, -1.0f * aspectRatio, 1.0f * aspectRatio, -1.0f, 1.0f); // 5

 gl.glMatrixMode(GL10.GL_MODELVIEW); // 6
 gl.glLoadIdentity();

 gl.glTranslatef(scaledX, scaledY, 0); // 7

 scaledSize = zoomBias * size; // 8

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Well-Rendered Miscellany 191

 gl.glScalef(scaledSize, scaledSize, 1); // 9

 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, makeFloatBuffer(squareVertices));
 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);

 gl.glEnable(GL10.GL_TEXTURE_2D); // 10
 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_ONE, GL10.GL_ONE_MINUS_SRC_COLOR);
 gl.glBindTexture(GL10.GL_TEXTURE_2D, textureId); // 11
 gl.glTexCoordPointer(2, GL10.GL_FLOAT, 0, makeFloatBuffer(textureCoords));
 gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY);

 gl.glColor4f(r, g, b, a);

 gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 0, 4);

 gl.glMatrixMode(GL10.GL_PROJECTION); // 12
 gl.glPopMatrix();

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glPopMatrix();
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glEnable(GL10.GL_LIGHTING);
 gl.glDisable(GL10.GL_BLEND);
 }

So, here is what’s going on:

 In line 1, the position is the origin of the texture in pixels relative to the center of
the texture, which is converted to normalized values later. The size is relative and
needs to be played with to find the most appropriate. The final parameters are the
colors and alpha. If you don’t want any coloring, pass 1.0 for all of the values.
Following this line, you’ll recognize our old friends, the vertices and texture
coordinates.

 Line 2 converts the pixel locations to relative values based on the width and
height of the frame. The values are scaled by 2 because our viewport will be 2
units wide and high, going from -1 to 1 in each direction. These are the values
eventually passed on to glTranslatef().

 Next, line 3 turns off the any depth testing, just to be safe, along with the lighting,
because the flares have to be calculated apart from the actual lighting in the
scene.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Well-Rendered Miscellany 192

 Since we’re going to use orthographic projection, let’s reset the GL_PROJECTION
matrix to the identity (the default) in lines 4ff. Remember that any time you want
to touch a specific matrix, you need to specify which one ahead of time. The
glPushMatrix() lets us tinker with the projection matrix without messing up
anything prior in the chain of events.

 Line 5 is the heart of this routine. glOrthof() is a new call and sets up the
orthographic matrix. In effect, it specifies a box. In this case, the box’s width and
depth go all from -1 to 1, while the height is scaled a little extra using the aspect
ratio to compensate for it being a nonsquare display. This is why the scaledX
and scaledY values were multiplied by 2.

 Next, set the modelview matrix to its identity in lines 6f, followed by the call to
glTranslatef() in line 7.

 Line 8 determines how to scale the collection of flares based on the field of view
for our scene, followed by line 9 that performs the actual scaling. This is relative
and depends on the magnification ranges you want to deal with. Right now, pinch
to zoom is not implemented, so this stays constant. The zoomBias affects all the
elements, which makes it easy to scale everything at once.

 Lines 10ff set up the blending function using the most common of the choices.
This causes each of the reflections to blend in a very believable way, especially
when they start stacking up in the center.

 Now in lines 11ff, the texture is tinted, bound, and finally drawn.

 And again, be a good neighbor and pop the matrices so they won’t affect anything
else. And reset a bunch of other junk.

Note that this is a very inefficient routine. Normally you would batch up the draw operations in a way
that would avoid all of the state changes that have high overhead. (Performance issues like this are
covered in Chapter 9.)

I created a Flare.java for the individual flares, and the LensFlare parent object to handle setting
up the vector, contain each of the individual images, and place them when ready. The main loop from
LensFlare.java in Listing 7–4 should need very little explanation at this point. It merely calculates
the start of the flare vector and then enumerates through the flare array to execute each entity.

Listing 7–4. The Execute Loop for the Entire Lens Flare Effect from LensFlare.java

 public void execute(GL10 gl,CGSize size, CGPoint source)
 {
 int i;
 float cx,cy;
 float aspectRatio;

 cx=(float) (size.width/2.0f);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Well-Rendered Miscellany 193

 cy=(float) (size.height/2.0f);

 aspectRatio=cx/cy;

 startingOffsetFromCenterX = cx-source.x;
 startingOffsetFromCenterY = (source.y-cy)/aspectRatio;

 offsetFromCenterX = startingOffsetFromCenterX;
 offsetFromCenterY = startingOffsetFromCenterY;

 deltaX = (float) (2.0f * startingOffsetFromCenterX);
 deltaY = (float) (2.0f * startingOffsetFromCenterY);

 for (i = 23; i >= 0; i--)
 {
 offsetFromCenterX -= deltaX * myFlares[i].getVectorPosition();
 offsetFromCenterY -= deltaY * myFlares[i].getVectorPosition();

 myFlares[i].renderFlareAt(gl, m_Flares[i], offsetFromCenterX,

offsetFromCenterY, size, this.context);
 }
 counter++;
 }

Finally, each of the individual flare images must be loaded on initialization and added into an NSArray.
A couple of lines follow:

 resid = book.lensflare.R.drawable.hexagonblur;
 m_Flares[0] = myFlares[0].init(gl, context, resid, .5f, .05f-ff, 1.0f, .73f,
 .30f, .4f);

 resid = book.lensflare.R.drawable.glow;
 m_Flares[1] = myFlares[1].init(gl, context, resid, 0.5f, .05f-ff, 1.0f, .73f,
 .50f, .4f);

This demo has 24 such objects. Figure 7–6 shows the result.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Well-Rendered Miscellany 194

Figure 7–6. Simple lens flare

Unfortunately, there is one big gotcha in the lens flare biz. What happens if your light source goes
behind something else? If it is a regular and known entity such as a round sphere in the center of the
scene, it is pretty easy to figure out. But if it is a random object at a random place, it becomes much
more difficult. Then what happens if the source is only partially eclipsed? Reflections will then dim and
flicker out only when the entire object is hidden. The solution is left for you for the time being.

Reflective Surfaces
Another effect that is rapidly becoming a bit of a visual cliché, albeit still a cool one, is that of a
mirrored surface underneath part of or the entire scene. Mac-heads see that every time they look at
the Dock, for example, with the happy little icons dancing their jig-of-joy up and down, in effect saying
“Look here! look here!” Underneath you will see a faint little reflection. It’s the same for many third-
party apps, of course, led by Apple’s own designs and examples. See Figure 7–7.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Well-Rendered Miscellany 195

Figure 7–7. Reflections in Distant Suns. (Yes, it is a gratuitous plug.)

Google has just started to get into the act with its marketplace, displaying some of the books and
movie images with a little reflection underneath as well. This will introduce the next topic, which is
about both stencils and reflections, because the two are frequently tied together. In this case we’ll be
creating a reflecting surface, a (stage) beneath our object, do a mirror image of the object, and use the
stencil to clip the reflection along the edges of the stage.

Besides the “color” buffer (that is, the image buffer) and the depth buffer, OpenGL also has something
called a stencil buffer.

The stencil format can be either 8 bits or 1 bit and is typically the latter.

Adding a stencil is a snap in Android and takes us back to the onCreate() method of the activity file,
where the GLSurfaceView is initialized. The default format of the OpenGL surface is RGB565, with a
16-bit depth buffer and no stencil buffer. The latter can be addressed by the following of code with
setEGLConfigChooser() call, with the final parameter specifying a 1-bit stencil.

 GLSurfaceView view = new GLSurfaceView(this);

 view.setEGLConfigChooser(8,8,8,8,16,1);
 view.setRenderer(new CubeRenderer(true));

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Well-Rendered Miscellany 196

Essentially, you render something to the stencil buffer as you would to any other, but in this case, any
pixel and its value are used to determine how to render future images to the screen. The most
common case is that any later image drawn to the stencil area will be rendered as it normally would,
whereas anything outside of the stencil area is not rendered. These behaviors can be modified, of
course, keeping with OpenGL’s philosophy of making everything more flexible than the vast majority of
engineers would use, let alone understand. Still, it can be very handy at times. We’ll stay with the
simple function for the time being (Listing 7–5).

Listing 7–5. The Stencil Is Generated like a Normal Screen Object

 public void renderToStencil(GL10 gl)
 {
 gl.glEnable(GL10.GL_STENCIL_TEST); //1
 gl.glStencilFunc(GL10.GL_ALWAYS,1, 0xFFFFFFFF); //2
 gl.glStencilOp(GL10.GL_REPLACE, GL10.GL_REPLACE, GL10.GL_REPLACE); //3

 renderStage(gl); //4

 gl.glStencilFunc(GL10.GL_EQUAL, 1, 0xFFFFFFFF); //5
 gl.glStencilOp(GL10.GL_KEEP, GL10.GL_KEEP,GL10.GL_KEEP); //6
 }

So, you establish your stencil the following way:

 Enable the stencil as done in line 1.

 In line 2 we specify the comparison function used whenever something is writing
to the stencil buffer. Since we clear it each time through, it will be all zeros. The
function GL_ALWAYS says that every write will pass the stencil test, which is what
we want when constructing the stencil itself. The value of 1 is called the
reference value, which is used to perform additional tests for fine-tuning the
behavior, but it is way out of the scope of this text. The final value is a mask for
the bit planes to access. Since we’re not concerned about it, let’s just turn them
all on.

 Line 3 specifies what to do when a stencil test succeeds or fails. The first
parameter pertains if the stencil test fails, the second pertains if the stencil
passes but the depth test fails, and the third pertains if both succeed. Since we
are living in 3D space here, having the stencil tests coupled to depth testing
recognizes that there may be situations in which one overrules the other. Some of
the subtleties in the use of the stencil buffer can get quite complicated. In this
case, set all three to GL_REPLACE. Table 7–1 shows all the other permissible
values.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Well-Rendered Miscellany 197

Line 4 calls our rendering function, pretty much as you would normally call it. In
this case, it is writing both to the stencil buffer and to one of the color channels at
the same time, so we can get a glint of sorts off of our new shiny stage or
platform. Meanwhile, in the stencil buffer, the background will remain zeros,
while the image will produce stencil pixels that are greater than 0, so it permits
image data to write to it later.

Lines 5 and 6 prepare the buffer now for normal use. Line 5 says that if the value
in the currently addressed stencil pixel is 1, keep it unchanged as given in line 6.
Otherwise, pass the fragment through to be processed as if the stencil buffer
wasn’t there (although it may still be ignored if it fails the depth test). So, for any
stencil pixel that is 0, the test will fail, and the incoming fragment will be locked
out.

Table 7–1. Possible Values for glStencilOp()

Op Type Action

GL_KEEP Keeps the current value.

GL_ZERO Sets the stencil buffer value to 0.

GL_REPLACE Sets the stencil buffer value to ref, as specified by glStencilFunc().

GL_INCR Increments the current stencil buffer value. Clamps to the maximum
representable unsigned value.

GL_INCR_WRAP Increments the current stencil buffer value. Wraps stencil buffer value to zero
when incrementing the maximum representable unsigned value.

GL_DECR Decrements the current stencil buffer value. Clamps to 0.

GL_DECR_WRAP Decrements the current stencil buffer value. Wraps stencil buffer value to the
maximum representable unsigned value when decrementing a stencil buffer
value of zero.

GL_INVERT Bitwise inverts the current stencil buffer value.

As you can see, the stencil buffer is a very powerful instrument with a lot of subtlety. But any more
extravagant use is reserved for future books as yet unnamed.

Now it’s time for the renderStage() method, as shown in Listing 7–6.

Listing 7–6. Rendering the Reflective Area to the Stencil Buffer Only

 public void renderStage(GL10 gl)
 {
 float[] flatSquareVertices =
 {
 -1.0f, 0.0f, -1.0f,
 1.0f, 0.0f, -1.0f,

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Well-Rendered Miscellany 198

 -1.0f, 0.0f, 1.0f,
 1.0f, 0.0f, 1.0f
 };

 FloatBuffer vertexBuffer;

 float[] colors=
 {
 1.0f, 0.0f, 0.0f, 0.5f,
 1.0f, 0.0f, 0.0f, 1.0f,
 0.0f, 0.0f, 0.0f, 0.0f,
 0.5f, 0.0f, 0.0f, 0.5f
 };

 FloatBuffer colorBuffer;

 gl.glFrontFace(GL10.GL_CW);
 gl.glPushMatrix();
 gl.glTranslatef(0.0f,-2.0f,mOriginZ);
 gl.glScalef(2.5f,1.5f,2.0f);

 gl.glVertexPointer(3, GL11.GL_FLOAT,
 0,makeFloatBuffer(flatSquareVertices));
 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);

 gl.glColorPointer(4, GL11.GL_FLOAT, 0,makeFloatBuffer(colors));

 gl.glEnableClientState(GL10.GL_COLOR_ARRAY);

 gl.glDepthMask(false); //1
 gl.glColorMask(true,false,false, true); //2
 gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP,0, 4); //3
 gl.glColorMask(true,true,true,true); //4
 gl.glDepthMask(true); //5

 gl.glPopMatrix();
 }

 In line 1, writing to the depth buffer is disabled, and line 2 disables the green and
blue color channels, so only the red one will be used. That is how the reflected
area gets its little red highlight.

 Now we can draw the image to the stencil buffer in line 3.

 Lines 4 and 5 reset the masks.

At this point, the onDrawFrame() routine has to be modified, yet again. And if you can keep your
peepers open, check out Listing 7–7 for the cruel and unvarnished truth. Sorry for repeating so much

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Well-Rendered Miscellany 199

of the previous code, but it’s much easier than saying “…and after the bit about squirrel trebuchets
add such-and-such a line….”

Listing 7–7. The Reflection onDrawFrame() Method
 public void onDrawFrame(GL10 gl)
 {
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT | //1
 GL10.GL_STENCIL_BUFFER_BIT);
 gl.glClearColor(0.0f,0.0f,0.0f,1.0f);

 renderToStencil(gl); //2

 gl.glEnable(GL10.GL_CULL_FACE);
 gl.glCullFace(GL10.GL_BACK);

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();

 gl.glPushMatrix();

 gl.glEnable(GL10.GL_STENCIL_TEST); //3
 gl.glDisable(GL10.GL_DEPTH_TEST);

 //Flip the image.

 gl.glTranslatef(0.0f,((float)(Math.sin(-mTransY)/2.0f)-2.5f),mOriginZ); //4
 gl.glRotatef(mAngle, 0.0f, 1.0f, 0.0f);

 gl.glScalef(1.0f, -1.0f, 1.0f); //5
 gl.glFrontFace(GL10.GL_CW);

 gl.glEnable(GL10.GL_BLEND); //6
 gl.glBlendFunc(GL10.GL_ONE, GL10.GL_ONE_MINUS_SRC_COLOR);

 mCube.draw(gl); //7

 gl.glDisable(GL10.GL_BLEND);

 gl.glPopMatrix();

 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glDisable(GL10.GL_STENCIL_TEST);

 //Now the main image.

 gl.glPushMatrix();
 gl.glScalef(1.0f, 1.0f, 1.0f); //8

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Well-Rendered Miscellany 200

 gl.glFrontFace(GL10.GL_CCW);

 gl.glTranslatef(0.0f,(float)(1.5f*(Math.sin(mTransY)/2.0f)+2.0f),mOriginZ);

 gl.glRotatef(mAngle, 0.0f, 1.0f, 0.0f);

 mCube.draw(gl);

 gl.glPopMatrix();

 mTransY+=.075f;
 mAngle+=.4f;
 }

And here’s the breakdown:

 In line 1, GL_STENCIL_BUFFER_BIT is added to glClear(), which means it
must be rebuilt each frame, as shown in line 2 of Listing 7–6. This will actually
create the stenciled region, poking the hole that we’ll draw through next.

 Enable the stencil test in line 3.

 Here in lines 4 and 5 the reflection is drawn. First translate it down a little,
subtracting 1.5, to ensure that it is below the real object. And then it’s a simple
matter of “scaling” the y-axis to -1.0, which has the effect of flipping it upside-
down. You will need to change the front face to clockwise at this point; otherwise,
you’ll see the back faces only.

 We want to make the lower image translucent instead of the full intensity, as we’d
expect. In lines 6f, blend is enabled and uses the most common blending function
of GL_ONE and GL_ONE_MINUS_SRC_COLOR covered in Chapter 6.

 In line 7 we can draw our object, the cube in this case.

 Since scale was touched to invert the image, in line 8 scale is reset to the default.
The translation has been modified with a couple of other small values. This shifts
it up a little bit just to get extra clearance for the inverted cube.

And now the test: Figure 7–8 is what you should see.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Well-Rendered Miscellany 201

Figure 7–8. Using stencils to create reflections

Coming of the Shadows
Shadow casting has always been a bit of a black art in OpenGL, and it still is to a certain extent.
However, with faster CPUs and GPUs, many tricks of the trade that were previously the subject of a
grad student’s paper can finally step out of theory into the warm glow of real-world deployment.
Rigorous solutions to shadow casting are still the domain of the non-real-time rendering that
Hollywood employs, but basic shadows, under limited conditions, are available to full-motion
rendering. With thanks to the various hardware manufacturers that have added both shadow and
lighting support to their GPUs, our 3D universes look richer than ever before because few elements in
computer graphics can add more realism than carefully managed shadows. (Ask any lighting director
on a Hollywood movie.) And don’t forget the per-pixel support via the use of shaders in OpenGL ES 2,
which can let a programmer delicately shade every corner of every spooky castle in Blow Up
Everything 3.

There are many ways to cast shadows, or at least shadow-looking things. Perhaps the simplest is to
have a prerendered shadow blob: a bitmap that looks like a shadow on the ground, cast by your
object. It’s cheap, fast, but extremely limited. At the other extreme is the full-blown render-everything-
you-can-ever-see software that eats GPUs by the handful for lunch. In between the two, you’ll find
shadow mapping, shadow volumes, and projection shadows.

Shadow Mapping

At one time, one of the most popular forms of shadow casting was through the use of shadow
mapping frequently employed in games. Although it is a bit of a bother to set up, not to mention
describe, the theory is pretty simple...considering.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Well-Rendered Miscellany 202

Shadow mapping requires two snapshots of the scene. One is from the light’s point of view, and the
other is from that of the camera’s. When rendered from the light, the image will, by definition, see
everything illuminated by itself. The color information is ignored, but the depth information is
preserved, so we end up with a map of the visible fragments and their relative distances. Now take a
shot from the camera’s viewpoint. By comparing the two images, we can find out what bits the
camera sees that the light cannot. Those bits are in shadow.

In practice, of course, it is a little more complicated than that.

Shadow Volumes

Shadow volumes are used for determining what part of your scene is illuminated and what is not by
making very clever use of certain properties of the stencil buffer. What makes this technique so
powerful is that it permits shadows to be cast across arbitrary geometric shapes as opposed to
projection shadows (discussed later), which really works only for the simplified case of the shadow
being thrown against a flat surface.

When a scene is rendered using the shadow volume technique, the stencil buffer will be left in a state
in which any part of the resulting image that is shaded will have a corresponding stencil pixel that is
greater than zero, while any part that is illuminated will have a zero. See Figure 7–9.

Figure 7–9. Shadow volumes showing the corresponding values in the stencil buffer: 0 for any parts that are
illuminated, >0 for regions in shadow

This is done in three stages. The first pass is to render the image only with ambient light so that the
shaded parts of the scene can still be visible. Next is the pass that writes only to the stencil buffer, and
the final stage writes the normal image with full illumination. However, only the nonstenciled pixels

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Well-Rendered Miscellany 203

can be written to the illuminated areas, while they’re blocked from writing to the shaded parts, leaving
just the original ambient pixels visible.

Going back to the mysterious glStencilOp() function used in the reflectance exercise earlier, we
can now make use of those weird GL_INCR and GL_DECR operations. GL_INCR can increase the count
in a stencil pixel by one, and GL_DECR will reduce the count by one, both operations triggered under
certain conditions.

The term shadow volume comes from the following example: imagine it’s a foggy night. You take a
bright light such as one of your car’s headlights and shine it into the mist. Now do some shadow
puppetry in the beam. You’ll still see part of the beam going around your poorly done shadow of the
state of Iowa and wandering off into the distance. We’re not interested in that part. What we want is
the darkened part of the beam, which is the shadow that is cast by your hands. That is the shadow
volume.

In your OpenGL scene, assume you have one light source and a few occluders. These cast shadows
upon anything behind them, be it a sphere, cone, or bust of Woodrow Wilson. As you look from the
side, you will see objects that are shaded and those that are illuminated. Now draw a vector from any
fragment, illuminated or not, to your camera. If the fragment is illuminated, the vector must, by
definition, travel through an even number of walls of your shadow volumes: one when it goes into the
shaded volume and one when it comes out (of course, ignoring the special case for a vector on the
edge of a scene that might not have to pass through any shaded regions). For a fragment inside one of
the volumes, the vector will have to pass through an odd number of walls; the single extra wall that
makes it odd comes from its own volume of residence.

Now back to stencils. The shadow volumes are generated to look like any other geometry but are
drawn only to the stencil, making them invisible since the color buffers are all switched off. The depth
buffer is used so that the volume’s walls will be rendered in the stencil only if it is closer than the real
geometry. This trick lets the shadow trace the profiles of arbitrary objects without having to do
complicated and fussy calculations of intersecting planes against spheres or Easter Island statues. It
merely uses the depth buffer to do pixel-by-pixel tests to decide where shadow ends. So, when the
volume is rendered to the stencil, each side of each “cone” of the shadow will affect the stencil in a
different way. The side facing us will increment the value in the stencil buffer by one, while the other
side will decrement it. So, any regions on the other side of the volume that are illuminated will match
part of the stencil mask in which all of the pixels are set to zero, because the vector must go through
the same number of faces going in as going out. Any part that is in shade will have a corresponding
stencil value of one.

That is why shadow volumes were never chosen for this exercise.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Well-Rendered Miscellany 204

Blob Shadows

Blob shadows are a total cheat. It simply assumes that there is no real direct light source, so the
object’s shadow is little more than a blob underneath, as shown in Figure 7–10. As you can see, this
won’t work too well if our occluder (the shadow casting thing) is a giant man-eating burrito.

Figure 7–10. A blob shadow texture that is placed under all objects

Projection Shadows

Projection shadows are the “easiest” of the dynamic shadows algorithms to implement, but that also
means they come with many restrictions—namely, that projection shadows work best when casting a
shadow on a large flat surface, as shown in Figure 7–11. Also, shadows cannot be cast on arbitrary
objects. As with the other approaches, the basic process is to take a snapshot of sorts from the light’s
point of view and one from the camera’s. The light’s view is squashed down flat on the plane, painted
a suitable shadowy color (aka dark), followed by the occluder being rendered on top.

Figure 7–11. Projection of a shadow on a flat plane that is then “reprojected” out to poke the viewer’s eye

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Well-Rendered Miscellany 205

The shaded area is calculated by using the intersection of the vectors and the plane, which travel from
the light source by way of each of the vertices. Each point on the plane forms a “new” object that can
then be transformed, as anything else on the plane would be. Listing 7–11 shows how this is coded.

Let’s start again with the basic bouncy cube demo (even though much of it will be changed for the
shadow code, it’ll still serve as a working template), but we’ll swap in different controller code. Listing
7–8 covers some of the initialization parameters you need to add first.

Listing 7–8. The Initialization Stuff to Add to the Renderer

 float mSpinX=-1.0f;
 float mSpinY=0.0f;
 float mSpinZ=0.0f;

 float mWorldY=-1.0f;
 float mWorldZ=-20.0f;

 float mWorldRotationX=35.0f;
 float mWorldRotationY=0.0f;
 float mLightRadius=2.5f;

These simply set up the lighting, lookangle, and animation of the scene.

Listing 7–9 covers the onDrawFrame() method.

Listing 7–9. The onDrawFrame() Method for Projected Shadows

 public void onDrawFrame(GL10 gl)
 {
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
 gl.glClearColor(0.0f,0.0f,0.0f,1.0f);

 gl.glEnable(GL10.GL_DEPTH_TEST);

 updateLightPosition(gl); //1

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();

 gl.glTranslatef(0.0f,mWorldY,mWorldZ); //2
 gl.glRotatef(mWorldRotationX, 1.0f, 0.0f, 0.0f);
 gl.glRotatef(mWorldRotationY, 0.0f, 1.0f, 0.0f);

 renderStage(gl); //3

 gl.glDisable(GL10.GL_DEPTH_TEST); //4

 calculateShadowMatrix(); //5

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Well-Rendered Miscellany 206

 drawShadow(gl,true); //6

 gl.glShadeModel(GL10.GL_SMOOTH);

 gl.glTranslatef(0.0f,(float)(Math.sin(mTransY)/2.0)+mMinY, 0.0f); //7

 gl.glRotatef(mSpinZ, 0.0f, 0.0f, 1.0f);
 gl.glRotatef(mSpinY, 0.0f, 1.0f, 0.0f);
 gl.glRotatef(mSpinX, 1.0f, 0.0f, 0.0f);

 gl.glEnable(GL10.GL_DEPTH_TEST); //8
 gl.glFrontFace(GL10.GL_CCW);

 mCube.draw(gl); //9

 gl.glDisable(GL10.GL_BLEND);

 mFrameNumber++;

 mSpinX+=.4f; //10
 mSpinY+=.6f;
 mSpinZ+=.9f;

 mTransY+=.075f;
 }

So, what’s going on here?

 Line 1 will cause the light to spin around the cube, dynamically changing the
shadows.

 Lines 2ff aims your eyepoint.

 We recycle the stage from the previous exercise, in the third line.

 We need to disable the depth test when actually drawing the shadow (Line 4);
otherwise, there will be all sorts of z contention that generates cool but useless
flickering.

 Line 5 calls the routine to generate the shadow’s matrix (detailed later), followed
by line 6, which actually draws the shadow using the cleverly named method
drawShadow().

 Lines 7ff positions and rotates the occluder, our cube.

 Line 8f safely turns on the depth testing again, after which we can safely draw the
cube in line 9.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Well-Rendered Miscellany 207

 And in the last bit, lines 10ff, the cube’s position and attitude are updated for the
next go around.

Before moving on to the next step, check out the following code snippet from renderStage() that
describes the stage’s geometry:

 float[] flatSquareVertices =
 {
 -1.0f, -0.01f, -1.0f,
 1.0f, -0.01f, -1.0f,
 -1.0f, -0.01f, 1.0f,
 1.0f, -0.01f, 1.0f
 };

Note the tiny negative y value. That is a quick hack to fix a problem called z-fighting, in which pixels
from co-planer objects may or may not share the same depth value. The result is two faces flickering
at one moment; face A is the frontmost, and the next, the pixels of face B, now think they are
frontmost. (Note that hardware may show it differently than the emulator. This is yet another reason to
always test on hardware.) If you look hard enough in almost any real-time 3D software, you will likely
see some z’s fighting in the background. See Figure 7–12.

Figure 7–12. Z-fighting between the platform and the shadow

Now we get to the real fun stuff, actually calculating and drawing the shadow. Listing 7–10 shows how
the matrix is generated, while Listing 7–11 draws the squashed shadow.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Well-Rendered Miscellany 208

Listing 7–10. Calculating the Shadow Matrix

 public void calculateShadowMatrix()
 {
 float[] shadowMat_local =
 {
 mLightPosY, 0.0f, 0.0f, 0.0f,
 -mLightPosX, 0.0f, -mLightPosZ, -1.0f,
 0.0f, 0.0f, mLightPosY, 0.0f,
 0.0f, 0.0f, 0.0f, mLightPosY
 };

 for (int i=0;i<16;i++)
 {
 mShadowMat[i] = shadowMat_local[i];
 }
 }

This is actually a simplified version of the more generalized matrix given by the following:

dotp − l[0]p[0] −l[1]p[0] −l[2]p[0] −l[3]p[0]
−l[0]p[1] dotp − l[1]p[1] −l[2]p[1] −l[3]p[1]
−l[0]p[2] −l[1]p[2] dotp − l[2]p[2] −l[3]p[2]
−l[0]p[3] −l[1]p[3] −l[2]p[3] dotp − l[3]p[3]

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

dotp is the dot product between the light vector and the normal to the plane, l is the position of the
light, and p is the plane (the “stage” in my code). Since our platform is in the x/z plane, the plane
equation looks like p=[0,1,0,0], or otherwise, p[0]=p[2]=p[3]=0. This means most of the terms in the
matrix get zeroed out. Once the matrix is generated, multiplying it by the existing modelview matrix
maps the points to your local space along with everything else. Got that? Neither did I, except it seems
to work.

Listing 7–11 performs all of the needed transformations for the shadow and renders through the
occluder itself, the cube.

Listing 7–11. The drawShadow() Routine

 public void drawShadow(GL10 gl,boolean wireframe)
 {
 FloatBuffer vertexBuffer;

 gl.glPushMatrix();

 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glRotatef(mWorldRotationX, 1.0f, 0.0f, 0.0f); //1
 gl.glRotatef(mWorldRotationY, 0.0f, 1.0f, 0.0f);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Well-Rendered Miscellany 209

 gl.glMultMatrixf(makeFloatBuffer(mShadowMat)); //2

 //Place the shadows.

 gl.glTranslatef(0.0f,(float)(Math.sin(mTransY)/2.0)+mMinY, 0.0f); //3

 gl.glRotatef((float)mSpinZ,0.0f,0.0f,1.0f);
 gl.glRotatef((float)mSpinY,0.0f,1.0f,0.0f);
 gl.glRotatef((float)mSpinX,1.0f,0.0f,0.0f);

 //Draw them.

 if(mFrameNumber>150) //4
 mCube.drawShadow(gl,true);
 else
 mCube.drawShadow(gl,false);

 gl.glDisable(GL10.GL_BLEND);

 gl.glPopMatrix();
 }

 First rotate everything to world space, just as we have done before, in line 1.

 Line 2 multiplies the shadow matrix with the current Modelview matrix.

 Lines 3ff perform the same transformations and rotations on the shadow as on
the actual cube.

 And in lines 4ff, the cube renders its own shadow. The two calls there will cause
the shadow to flip between solid and wireframe, as shown in Figure 7–13.

Listing 7–12 covers the drawShadow() method in Cube.java.

Listing 7–12. Drawing the Shadow

 public void drawShadow(GL10 gl,boolean wireframe)
 {
 gl.glDisableClientState(GL10.GL_COLOR_ARRAY); //1
 gl.glDisableClientState(GL10.GL_NORMAL_ARRAY);

 gl.glEnable(GL10.GL_BLEND); //2
 gl.glBlendFunc(GL10.GL_ZERO,GL10.GL_ONE_MINUS_SRC_ALPHA);

 gl.glColor4f(0.0f,0.0f,0.0f,0.3f);

 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glVertexPointer(3, GL10.GL_FLOAT, 0,makeFloatBuffer(mVertices)); //3

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Well-Rendered Miscellany 210

 if(wireframe)
 {
 gl.glLineWidth(3.0f); //4
 gl.glDrawElements(GL10.GL_LINES, 6 * 3,GL10.GL_UNSIGNED_BYTE, mTfan1);
 gl.glDrawElements(GL10.GL_LINES, 6 * 3,GL10.GL_UNSIGNED_BYTE, mTfan2);
 }
 else
 {
 gl.glDrawElements(GL10.GL_TRIANGLE_FAN,6*3,GL10.GL_UNSIGNED_BYTE,mTfan1);
 gl.glDrawElements(GL10.GL_TRIANGLE_FAN,6*3,GL10.GL_UNSIGNED_BYTE,mTfan2);
 }
 }

This will draw either a wireframe shadow, to show how it is composed, or the more traditonal solid
model.

 We first turn off the color and normal arrays in the first line, because they are not
needed here.

 Blending is activated in lines 2ff, so the 0.3 alpha value will keep the shadow from
being pure black.

 Here in the third line, the cube’s own vertices are reused, so there is no need to
have special geometry for the shadow. That means that you can get a very
accurate representation of even the most complex models.

 Line 4 shows the wireframe code, The line is set to be 3 pixels wide, and
glDrawElements() is called with using the GL_LINES type instead of
GL_TRIANGLE_FAN.

Now it’s time to update the light’s position, as in Listing 7–13.

Listing 7–13. Updating the Light’s Position

 private void updateLightPosition(GL10 gl)
 {
 mLightAngle +=1.0f; //in degrees

 mLightPosX = (float) (mLightRadius * Math.cos(mLightAngle/57.29f));
 mLightPosY = mLightHight;
 mLightPosZ = (float) (mLightRadius * Math.sin(mLightAngle/57.29f));

 mLightPos[1] = mLightPosY;

 mLightPos[0]=mLightPosX;
 mLightPos[2]=mLightPosZ;

 gl.glLightfv(GL10.GL_LIGHT0, GL10.GL_POSITION, makeFloatBuffer(mLightPos));

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Well-Rendered Miscellany 211

 }

This updates the light’s position one degree each refresh. The y-value is fixed, so the light traces its
little orbit in the x/z plane.

After it’s compiled, do you see something like Figure 7–13?

Figure 7–13. The left and middle images have the solid shadow; the right has the wireframe.

And what’s to stop you from having multiple lights? See Figure 7–14, with two lights side by side.

Figure 7–14. The cube with multiple lights

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Well-Rendered Miscellany 212

In all of these images, the background is black. Change the coloring of the background and run. What’s
going on in Figure 7–15?

Figure 7–15. Surprise! The shadow is not clipped to the platform.

What’s happening here is that we were cheating when it came to clipping the shadow against the
platform. With the background black, the part of the shadow that rendered off the platform was
invisible. But now as the background is brightened, you can see the full shadow. What happens if you
need a light background in the first place? Easy—just use stencils to clip around the platform.

Summary
In this chapter, we covered a number of extra tricks to add more realism to an OpenGL ES scene. First
were frame buffer objects that let you draw to multiple OpenGL frames and merge them together. Next
came lens flares that can add visual drama to outdoor scenes, followed by reflections that are heavily
used by Apple in a lot of its UI design including CoverFlow. We ended with one of the many ways
shadows can be cast against a background using shadow projection. Next, some of these tricks will be
applied to our little solar-system project.

www.it-ebooks.info

http://www.it-ebooks.info/

 213

 Chapter

Putting It All Together

A single lifetime, even though entirely devoted to the sky, would not be enough for
the investigation of so vast a subject.

—Seneca, Roman philosopher

Well, now we’ve made it all the way up to Chapter 8. This is when we can take what was learned from
the exercises up to this point and slap it together into a more complete solar-system model (although
it’s still missing things like comets, killer asteroids, neutrinos, and trans-Neptunian objects). And
afterward, I hope you will say, “Wow! That’s kinda cool!”

This chapter will be very code heavy, because the model requires both a number of new routines and
modifications to existing projects. And as with some of the listings in Chapter 7, I will not present
entire code files because of their length and to avoid repetition, or just to get to sleep earlier (gosh, it’s
2:45 a.m. right now); therefore, you are encouraged to fetch the full projects, as well as any necessary
data files, from the Apress site to ensure that you have fully functional examples. Complete the set, I
always say.

A few new tricks will also be tossed in for good measure, such as how to integrate the standard
Android widgets and the use of quaternions. Note that although a lot of the following code is based on
previous exercises, there are likely some small tweaks needed to integrate it into the larger package,
so unfortunately this won’t simply be a cut-and-paste situation.

Revisiting the Solar System

If you want to fill in the code yourself, I recommend fetching the Chapter 5 variant of the solar-system
model, and not the Chapter 7 one, which was used merely as a surface for displaying dynamic
textures on 3D objects and won’t be used here in that way.

8

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Putting It All Together 214

This first exercise will be to add some navigational elements to the show so that you can move your
eyepoint around the earth.

But first we need to resize our models to make a slightly more realistic presentation. As of right now, it
looks like the earth is about a third the size of the sun and only a few thousand miles away.
Considering that it is a pleasant summer day here in Northern California and the earth is anything but a
burnt cinder, I bet the model is wrong. Well, let’s make it right. This will be done in the
initGeometry() method in your solar-system controller. And while we’re at it, the type of
m_Eyeposition will be changed to upgrade it to a slightly more objectified object customized for 3D
operations. The new routine is in Listing 8–1. Make sure to add a texture for the sun’s surface while
you are at it; otherwise, nasty things may happen.

Listing 8–1. Resizing the Objects for the Solar System

 private void initGeometry(GL10 gl)
 {
 // Let 1.0=1 million miles.
 // The sun's radius=.4.
 // The earth's radius=.04 (10x larger to make it easier to see).

 m_Eyeposition[X_VALUE] = 0.0f;
 m_Eyeposition[Y_VALUE] = 0.0f;
 m_Eyeposition[Z_VALUE] = 93.25f;

 m_Earth = new Planet(48, 48, .04f, 1.0f, gl, myAppcontext, true,
 book.SolarSystem.R.drawable.earth);
 m_Earth.setPosition(0.0f, 0.0f, 93.0f);

 m_Sun = new Planet(48, 48, 0.4f, 1.0f, gl, myAppcontext, false, 0);
 m_Sun.setPosition(0.0f, 0.0f, 0.0f);
 }

The scale of our model is set at 1 unit=1 million miles (1.7m kilometers or 8.3m furlongs, or 3.52e+9
cubits). The sun has a radius of 400,000 miles, or .4 in these units. That means the earth’s radius would
be .004, but I’ve increased it by 10 times, to .04, to make it a little easier to deal with. Because the earth’s
default position is along the +z-axis, let’s put the eye position right behind the earth, only a quarter
million miles away, at “93.25.” And in the execute method for the solar-system object, remove
glRotatef() so that the earth will now stay fixed. That makes things a lot simpler for the time being.
Change the field of view from 50 degrees to 30; also, set zFar in setClipping to be 2000 (to handle
future objects). You should ultimately get something that looks like Figure 8–1. Since the sun is actually
behind the earth from our viewpoint, I cranked up the specular lighting for SS_FILLLIGHT1.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Putting It All Together 215

Figure 8–1. Our home on a tiny screen

“All well and good, code-boy!” you must be muttering under your breath. “But now we’re stuck in
space!” True enough, so that means the next step is to add a navigational element. And that means
(cue dramatic music) we’ll be adding quaternions.

What Are These Quaternion Things Anyway?

On October 16, 1843, in Dublin, Irish mathematician Sir William Hamilton was taking a stroll by the
Royal Canal when he had a sudden flash of mathematical inspiration. He’d been working on ways to
meaningfully multiply and divide two points in space and suddenly saw the formula for quaternions in

his mind: i2 = j2 = k 2 = ijk = −1. Impressive, huh?

He was so excited that he couldn’t resist the temptation to carve it into the stonework of the Brougham
Bridge he had just come to (no doubt nestled in between lesser graffiti like “Eamon loves Fiona, 1839”
or “Patrick O’Callahan rulz!”). Radically new ways to look at physics and geometry descended directly
from this insight. The classic Maxwell’s equations in electromagnetic theory were described entirely
through the use of quaternions, for example. As newer methods of dealing with similar situations
came about, quaternions were shunted aside until the late 20th century, when they found a significant
role in 3D computer graphics, in navigation of the Apollo spacecraft to the moon, and in other areas
that rely heavily on rotations in space. Because of their compact nature, they could describe a
direction vector, and hence a 3D rotation, more efficiently than the standard 3x3 matrix. Not only that,
but they provided a much superior means of concatenating a series of rotations on top of each other.
So, what does this mean?

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Putting It All Together 216

In Chapter 2, we covered the traditional 3D transformation math using matrices. If you wanted to
rotate an object 32° around the z-axis, you would instruct OpenGL ES to perform a rotation via the
command glRotatef(32,0,0,1). Similar commands would be executed for the x- and y-axes as
well. But what if you wanted a funky sort of rotation that an airplane might make when banking to the
left? How would that be described in the glRotatef() format? Using the more traditional way, you
would generate separate matrices for the three rotations and then multiply them in order of yaw
(rotation around the y-axis), pitch (rotation around the x-axis), and roll around the z-axis. That’s a lot of
math merely to aim toward one direction. But if this is for a flight simulator, your banking motion will
constantly update to new rolls and headings, incrementally. That would mean you’d have to calculate
the three matrices each time for the deltas of your trajectory since the last frame and not absolute
values from some starting point.

In the early days of computers, when floating-point calculations were expensive and shortcuts were
regularly invoked for performance reasons, round-off errors were common and would likely build up
over time, causing the current matrices to be “out of square.” However, quaternions were brought to
the rescue because they had a couple of very compelling properties.

The first is that a quaternion can represent a rotation of an object in space roughly equivalent to how
glRotate() works but by using fractional axis values. It’s not a direct one-to-one correlation,
because you still need to go about some of that math stuff to convert attitudes to and from a
quaternion.

The second and more important property derives from the fact that an arc on a sphere can be
described by two quaternions, one at each endpoint. And any point between them on the arc can
also be described by a quaternion simply by interpolating the distance from one endpoint to the
other by using spherical geometry, as shown in Figure 8–2. That is, if you were going through an arc
of 60°, you could find an intermediate quaternion, say, 20° from the starting point, by tracing a third of
the way along the arc. In the next frame, if you were to jump to 20.1°, you merely add a teeny-tiny
more of that arc to your current quaternion instead of having to go through the tedious process of
generating the three matrices each time and multiplying them together. This process is called
slerping, where slerp stands for spherical linear interpolation. Because an axis/angle pair does not rely
on a cumulative summation of all previous ones like when using matrices but on an instantaneous
value, there is no error buildup as a result of the former.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Putting It All Together 217

Figure 8–2. An intermediate quaternion; Q1.5 on a sphere can be interpolated from two others, Q1 and Q2

Slerp is used to provide those smooth animations of a viewpoint’s “camera” when going from one
point to another. It can be part of a flight simulator, a space simulator, or the view from a chase car for
a racing game. And naturally they are used in real flight guidance systems as well.

So, now with that bit of background, we’re going to use quaternions to help move the earth around.

Moving Things in 3D

Since we are not animating the earth currently, we need a way to move it around so that we can
investigate it from all ends. With that in mind, since the earth is our target of interest, we’ll set up a
situation in which the eye point will effectively hover over the earth directed by pinch and move
gestures.

The first step is to add gesture recognizers, which come through Android’s onTouchEvent() call.
You’ll need to support both pinch and drag functions. Pinch is to zoom in and out, while pan lets you
drag the planet around underneath you, always keeping it centered. More sophisticated motions such
as momentum-swipe, or “flings,” are left up to you to implement, which unfortunately can get a little
messy.

The code is structured a little differently. The core module that has traditionally been an
implementation of GLSurfaceView.Renderer is now a GLSurfaceView subclass called
SolarSystemView. The renderer is now the new SolarSystem object. The former primarily serves as
an event sink for the pinch and drag events, while the latter handles the main update loop and serves
as a container for any solar-systemy type of objects.

Here in the new SolarSystemView, we’ll need only the pinch and pan gestures. You use the
onTouchEvent() to handle all touch events, initialize some values, and decide whether you are doing
a pinch or drag function. To your view controller’s onTouchEvent() method, add Listing 8–2.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Putting It All Together 218

Listing 8–2. Handling Pinch and Drag Events

 public boolean onTouchEvent(MotionEvent ev)
 {
 boolean retval = true;

 switch (ev.getAction() & MotionEvent.ACTION_MASK)
 {
 case MotionEvent.ACTION_DOWN:
 m_Gesture = DRAG; //1
 break;

 case MotionEvent.ACTION_UP:
 case MotionEvent.ACTION_POINTER_UP:
 m_Gesture = NONE; //2
 m_LastTouchPoint.x = ev.getX();
 m_LastTouchPoint.y = ev.getY();
 break;

 case MotionEvent.ACTION_POINTER_DOWN:
 m_OldDist = spacing(ev); //3

 midPoint(m_MidPoint, ev);
 m_Gesture = ZOOM;
 m_LastTouchPoint.x = m_MidPoint.x;
 m_LastTouchPoint.y = m_MidPoint.y;
 m_CurrentTouchPoint.x=m_MidPoint.x;
 m_CurrentTouchPoint.y=m_MidPoint.y;

 break;

 case MotionEvent.ACTION_MOVE:
 if (m_Gesture == DRAG) //4
 {
 retval = handleDragGesture(ev);
 }
 else if (m_Gesture == ZOOM)
 {
 retval = handlePinchGesture(ev);
 }
 break;
 }

 return retval;
 }

Here’s the breakdown:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Putting It All Together 219

 Section 1 handles the your finger touching the display, or the first finger for a
multitouch event. Initialize the motion type, m_Gesture, to DRAG.

 Section 2 handles when a motion is done.

 Section 3 takes care of pinch-to-zoom functions. m_MidPoint is used to
determine what point on the screen to zoom in to. This is not needed here
because we’ll only zoom into the earth in the center of the screen, but it’s nice
reference code nonetheless.

 Finally in section 4, the proper gesture actions are called.

Next we need to add the two handlers, handleDragGesture() and handlePinchGesture(), as
shown in Listing 8–3.

Listing 8–3. The Two Handlers for the Gesture Recognizers

 final PointF m_CurrentTouchPoint = new PointF();
 PointF m_MidPoint = new PointF();
 PointF m_LastTouchPoint = new PointF();
 static int m_GestureMode = 0;
 static int DRAG_GESTURE = 1;
 static int PINCH_GESTURE = 2;

 public boolean handleDragGesture(MotionEvent ev)
 {
 m_LastTouchPoint.x = m_CurrentTouchPoint.x;
 m_LastTouchPoint.y = m_CurrentTouchPoint.y;

 m_CurrentTouchPoint.x = ev.getX();
 m_CurrentTouchPoint.y = ev.getY();

 m_GestureMode = DRAG_GESTURE;
 m_DragFlag = 1;

 return true;
 }

 public boolean handlePinchGesture(MotionEvent ev)
 {
 float minFOV = 5.0f;
 float maxFOV = 100.0f;
 float newDist = spacing(ev);

 m_Scale = m_OldDist/newDist;

 if (m_Scale > m_LastScale)
 {
 m_LastScale = m_Scale;
 }
 else if (m_Scale <= m_LastScale)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Putting It All Together 220

 {
 m_LastScale = m_Scale;
 }

 m_CurrentFOV = m_StartFOV * m_Scale;
 m_LastTouchPoint = m_MidPoint;
 m_GestureMode = PINCH_GESTURE;

 if (m_CurrentFOV >= minFOV && m_CurrentFOV <= maxFOV)
 {
 mRenderer.setFieldOfView(m_CurrentFOV);
 return true;
 }
 else
 return false;
 }

Both of these are pretty basic. handleDragGesture() sets keeps track of the current and previous
touch points, used when determining the speed of a drag operation. The larger the deltas between the
two, the faster the screen’s animation should be. handlePinchGesture() does the same for the
pinch-to-zoom operations. m_OldDist and newDist are the previous and new distances between the
two pinch-fingers. The difference determines how much to change the field of view. Compressing the
figures zooms in, while spreading them out zooms out to a maximum of 100 degrees.

The gestures are then processed in the onDrawFrame() method, as shown in Listing 8–4.

Listing 8–4. Processing the New Pinch and Drag States

 public void onDrawFrame(GL10 gl)
 {
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
 gl.glClearColor(0.0f, 0.0f, 0.0f, 1.0f);

 if (m_GestureMode == PINCH_GESTURE && m_PinchFlag == 1) //1
 {
 setClipping(gl, origwidth, origheight);
 m_PinchFlag = 0;
 }
 else if (m_GestureMode == DRAG_GESTURE && m_DragFlag == 1) //2
 {
 setHoverPosition(gl, 0, m_CurrentTouchPoint, m_LastTouchPoint, m_Earth);

 m_DragFlag = 0;
 }

 execute(gl);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Putting It All Together 221

In section 1, the pinch is processed only if a new gesture was detected and flagged via m_PinchFlag,
which is reset after processing. Without this, the zoom would continue for each successive call to
onDrawFrame(). The view frustum is updated each time via setClipping() using the
m_FieldOfView value, because that mechanism actually determines the magnification of the view.
Section 2 is the same for drag gestures. In this case, setHoverPosition() is called with the current
and previous touch points. This also has a toggle in it via m_DragFlag, which turns off any further
drag processing until a new event is detected. Otherwise, you’ll get a drift in your viewpoint even if
your finger isn’t moving.

And if you want to see the pinch-zoom in action right now, comment out the line
setHoverPosition() in the previous listing, and then compile and run.

You should be able to zoom in and out from the earth model, as shown in Figure 8–3.

Figure 8–3. Zooming in and out using pinch gestures

Now we’re going to do the rotation support, which includes those quaternion things. This perhaps the
most involved of any of the exercises up to this point. We’ll need a number of helper routines to aim
your viewpoint and to move it in “orbit” around the earth. So, let’s start at the top and work down.
Listing 8–5 is the heart of the “hover mode.”

Listing 8–5. Sets a New Hover Position Around the Earth

 public void setHoverPosition(GL10 gl, int nFlags, PointF location,
 PointF prevLocation, Planet m_Planet)
 {
 double dx;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Putting It All Together 222

 double dy;
 Quaternion orientation = new Quaternion(0, 0, 0, 1.0);
 Quaternion tempQ;
 Vector3 offset = new Vector3(0.0f, 0.0f, 0.0f);
 Vector3 objectLoc = new Vector3(0.0f, 0.0f, 0.0f);
 Vector3 vpLoc = new Vector3(0.0f, 0.0f, 0.0f);
 Vector3 offsetv = new Vector3(0.0f, 0.0f, 0.0f);
 Vector3 temp = new Vector3(0.0f, 0.0f, 0.0f);
 float reference = 300.0f;
 float scale = 2.0f;
 float matrix3[][] = new float[3][3];
 boolean debug = false;

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();

 orientation = Miniglu.gluGetOrientation(); //1

 vpLoc.x = m_Eyeposition[0]; //2
 vpLoc.y = m_Eyeposition[1];
 vpLoc.z = m_Eyeposition[2];

 objectLoc.x = m_Planet.m_Pos[0]; //3
 objectLoc.y = m_Planet.m_Pos[1];
 objectLoc.z = m_Planet.m_Pos[2];

 offset.x = (objectLoc.x - vpLoc.x); //4
 offset.y = (objectLoc.y - vpLoc.y);
 offset.z = (objectLoc.z - vpLoc.z);

 offsetv.z = temp.Vector3Distance(objectLoc, vpLoc); //5

 dx = (double) (location.x - prevLocation.x);
 dy = (double) (location.y - prevLocation.y);

 float multiplier;

 multiplier = origwidth / reference;

 gl.glMatrixMode(GL10.GL_MODELVIEW);

 // Rotate around the X-axis.

 float c, s; //6
 float rad = (float) (scale * multiplier * dy / reference)/2.0;

 s = (float) Math.sin(rad * .5);
 c = (float) Math.cos(rad * .5);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Putting It All Together 223

 temp.x = s;
 temp.y = 0.0f;
 temp.z = 0.0f;

 Quaternion tempQ1 = new Quaternion(temp.x, temp.y, temp.z, c);

 tempQ1 = tempQ1.mulThis(orientation);

 // Rotate around the Y-axis.

 rad = (float) (scale * multiplier * dx / reference); //7

 s = (float) Math.sin(rad * .5);
 c = (float) Math.cos(rad * .5);

 temp.x = 0.0f;
 temp.y = s;
 temp.z = 0.0f;

 Quaternion tempQ2 = new Quaternion(temp.x, temp.y, temp.z, c);

 tempQ2 = tempQ2.mulThis(tempQ1);

 orientation=tempQ2;

 matrix3 = orientation.toMatrix(); //8

 matrix3 = orientation.tranposeMatrix(matrix3); //9
 offsetv = orientation.Matrix3MultiplyVector3(matrix3, offsetv);

 m_Eyeposition[0] = (float)(objectLoc.x + offsetv.x); //10
 m_Eyeposition[1] = (float)(objectLoc.y + offsetv.y);
 m_Eyeposition[2] = (float)(objectLoc.z + offsetv.z);

 lookAtTarget(gl, m_Planet); //11
 }

I bet you’re wondering just what’s going on here?

 First we get the cached quaternion from a new helper class that we’ll create a
little later. The quaternion is the current orientation of our eyepoint in line 1,
which we’ll need along with the viewpoint’s xyz location from the solar-system
object in Line 2.

 Lines 3ff get the target’s location. In this case, the target is merely the earth. With
that in hand, we need to find the offset of our eye point from the earth’s center
and then calculate that distance, as in lines 4ff.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Putting It All Together 224

 Line 5 takes the screen coordinates of the previous and current drags, so we
know just how much we moved since the last time.

 Lines 6ff create a fractional rotation in radians for each new position of the drag
operation around the X-axis. This is then multiplied by the actual orientation
quaternion (recovered in line 1) to ensure that the new orientation from each
touch position is preserved. The 2.0 divisor scales back the vertical motions;
otherwise, they’d be much to fast. This represents the cumulative rotations of the
eye point. The three values of scale, multiplier, and reference are all arbitrary.
Scale is fixed and was used for some fine-tuning to ensure things moved at just
the right speed that ideally will match that of your finger. The multiplier is handy
for orientation changes because it is a scaling factor that is based on the screen’s
current width and a reference value that is also arbitrary.

Another quaternion encapsulating rotation around the Y-axis is generated in much
the same way in lines 7ff. That is multiplied with the previous one for the final
rotation. Line 8 then converts that to a traditional matrix.

 Lines 9f use the transpose of the matrix against the offset value to arrive at the
new location in space and is stored in m_Eyeposition. Since we’re going from
the local coordinates of the earth to world coordinates we take the transpose to,
in effect, reverse the operation.

 Even though our eyepoint is moved to a new position, we still need to actually aim
it back at the hover target, the earth, as done in line 11 via lookAtTarget().

Now we need to create a few of the aforementioned helper routines that will help cinch everything
together.

In normal OpenGL, I’ve mentioned the existence of a utility library called GLUT. Unfortunately, there is
no complete GLUT library for Android as of this writing, although there are a few incomplete versions
out there. I have put them into a file called Miniglu.java, available from the Apress site with this
project.

NOTE: Android has a very small but official suite of GLU routines located in
android.opengl.GLU, but it didn’t have all that I needed.

Listing 8–6 contains the Miniglu version of gluLookAt(), a hyper-useful utility that does just what it
says: aims your lookangle. You pass it the location of your eyepoint, the thing you want to look at, and
an up vector to specify roll angles. Naturally, straight up would be equal to no roll whatsoever. But you
still need to supply it.

Listing 8–6. Looking at Anything Using gluLookAt

 static Quaternion m_Quaternion = new Quaternion(0, 0, 0, 1);

 public static void gluLookAt(GL10 gl, float eyex, float eyey, float eyez,
 float centerx, float centery, float centerz, float upx,

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Putting It All Together 225

 float upy, float upz)
{
 Vector3 up = new Vector3(0.0f, 0.0f, 0.0f); //1
 Vector3 from = new Vector3(0.0f, 0.0f, 0.0f);
 Vector3 to = new Vector3(0.0f, 0.0f, 0.0f);
 Vector3 lookat = new Vector3(0.0f, 0.0f, 0.0f);
 Vector3 axis = new Vector3(0.0f, 0.0f, 0.0f);
 float angle;

 lookat.x = centerx; //2
 lookat.y = centery;
 lookat.z = centerz;

 from.x = eyex;
 from.y = eyey;
 from.z = eyez;

 to.x = lookat.x;
 to.y = lookat.y;
 to.z = lookat.z;

 up.x = upx;
 up.y = upy;
 up.z = upz;

 Vector3 temp = new Vector3(0, 0, 0); //3
 temp = temp.Vector3Sub(to, from);
 Vector3 n = temp.normalise(temp);

 temp = temp.Vector3CrossProduct(n, up);
 Vector3 v = temp.normalise(temp);

 Vector3 u = temp.Vector3CrossProduct(v, n);

 float[][] matrix;

 matrix = temp.Matrix3MakeWithRows(v, u, temp.Vector3Negate(n));

 m_Quaternion = m_Quaternion.QuaternionMakeWithMatrix3(matrix); //4

 m_Quaternion.printThis("GluLookat:");

 axis = m_Quaternion.QuaternionAxis();
 angle = m_Quaternion.QuaternionAngle();

 gl.glRotatef((float) angle * DEGREES_PER_RADIAN, (float) axis.x,
 (float) axis.y, (float) axis.z); //5

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Putting It All Together 226

 }

Here’s what’s going on:

 As referenced earlier, we need to grab points or vectors to fully describe our
position in space and that of the target, as in lines 1ff. The up vector is local to
your eye point, and it is typically just a unit vector pointing up the y-axis. You
could modify this if you wanted to do banking rolls. The Vector3 objects are part
of a small math library associated with this project. Many such libraries exist,
however.

 In lines 2ff, the terms passed through in discrete values are mapped to Vector3
objects that can then be used with the vector math libraries. Why instead of
vectors in? The official GLUT libraries don’t use vector objects, so this matches
the existing standard.

 Lines 3ff generate three new vectors, two using cross products. This ensures
everything is both normalized and the axis squared.

 Some examples of gluLookAt() generate a matrix. Here, quaternions are used
instead. In line 4, the quaternion is created by our new vectors and is used to get
the axis/angle parameters that glRotatef() likes to use, as in line 5. Note that
the resulting quaternion is cached via a global that can be picked up later if the
instantaneous attitude is needed via gluGetOrientation(). It’s clumsy, but it
works. In real life, you probably wouldn’t want to do this, because it assumes only
a single viewpoint in your entire world. In reality, you might want to have more
than one—if, for example, you wanted two simultaneous displays showing your
object from two different vantage points.

Finally, we can take a look at the resulting image. You should now be able to spin our fair little world
to your heart’s content (see Figure 8–4). The little yellow blotch that sometimes shows is the sun.

Figure 8–4. The hover mode lets you rotate the earth at will.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Putting It All Together 227

So, that’s part one of today’s exercise. Remember those lens flare things from Chapter 7? Now we can
put them to use.

Adding Some Flare

From Chapter 7, grab the three source files from the lens flare exercise, and add them to your project
along with the artwork. These will be the CreateTexture.java helper library, Flare.java for each
of the reflections, and LensFlare.java. This will also require some substantial tweaks to the
renderer object, mainly in the execute routine.

Something like a lens flare effect has all sorts of small side issues that will be addressed. Namely, if
the flare’s source object, in the case the sun, goes behind the earth, the flare itself should vanish.
Also, note that it won’t vanish immediately but will actually fade out. There are a couple of new utility
routines that need to be added before the flare itself can be rendered.

First make sure to initialize the LensFlare object in your onSurfaceCreated() handler:

int resid;
resid = book.SolarSystem.R.drawable.gimpsun3;
m_FlareSource = CT.createTexture(gl, myAppcontext, true, resid);
m_LensFlare.createFlares(gl, myAppcontext);

Now is time to just dump any image utilities over into their own routine. It is called
CreateTexture.java. This will help support the preceding call. The .png file can be whatever you
want that will replace the current 3D sun model. We want this so that we can draw a flat bitmap of the
sun where the spherical model would normally render as it has in the past. The reason is that we can
finely control the look of our star to make it more closely resemble how the eye might perceive this.
The stark yellow ball, while technically more accurate, just doesn’t look right because any optical
receptor to this would add all sorts of various distortions, reflections, and highlights (lens flares, for
example). Shaders could be employed that mathematically model the optics of the eye, but that’s a lot
of work for a fuzzy ball-like-thing for the time being. You can download my own artwork from the
Apress site if you choose. Or just copy something to suit your own tastes. Figure 8–5 is what I am
using. Interesting enough, this image fools my own eyes enough to make my brain think that I am
actually looking at something too bright, because it causes all sorts of eyestrain when I stare at it.

This uses a technique called billboarding, which takes a flat 2D texture and keeps it aimed toward the
viewer no matter where they are. It permits complex and fairly random organic objects (things called
trees I think) to be easily depicted while using only simple textures. As your viewpoint changes, the
billboard objects rotate to compensate.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Putting It All Together 228

Figure 8–5. The sun image used to give a more authentic-looking glow

Both the lens flare manager, which I call LensFlare.java, and the individual Flare.java objects need
to be modified. To the execute method of LensFlare.java I’ve added two new parameters.
execute() should now look like this:

 public void execute(GL10 gl,CGSize size, CGPoint source, float scale, float alpha)

The new scale parameter is a single value that will increase or decrease the size of the entire flare
chain, needed when you zoom in or out of the scene, and alpha is used to dim the entire flare as the
sun starts sliding behind the earth. Both parameters will likewise need to be added to the individual
flare object’s execute method and then used to twiddle with the size and alpha parameters passed to
CreateTexture’s renderTextureAt() method, as follows:

 public void renderFlareAt(GL10 gl, int textureID, float x, float y, CGSize size,
 Context context, float scale, float alpha)
 {
 CreateTexture ct = new CreateTexture();
 ct.renderTextureAt(gl, x, y, 0f, size, textureID, m_Size*scale,
 m_Red*alpha, m_Green*alpha, m_Blue*alpha, m_Alpha);
 }

The next listing, Listing 8–7, covers two other Miniglu calls. First there is gluGetScreenLocation(),
which returns the 2D coordinates on your screen of a 3D object. It’s little more than a front end to
gluProject(), which maps, or projects, 3D points against its viewport. Even though these might be
“canned” routines, it is still instructive to see how they work. They are used here to get the position of
the sun to place the 2D bill boarded artwork. Later they can be used to place other 2D items in the sky,
such as the constellation names.

Listing 8–7. gluProject() and gluGetScreenCoords()

 public static boolean gluProject(float objx, float objy, float objz,
 float[] modelMatrix, float[] projMatrix, int[] viewport,float[] win)
 {
 float[] in = new float[4];
 float[] out = new float[4];

 in[0] = objx; //1

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Putting It All Together 229

 in[1] = objy;
 in[2] = objz;
 in[3] = 1.0f;

 gluMultMatrixVector3f (modelMatrix, in, out); //2

 gluMultMatrixVector3f (projMatrix, out, in);

 if (in[3] == 0.0f)
 in[3] = 1.0f;

 in[0] /= in[3];
 in[1] /= in[3];
 in[2] /= in[3];

 /* Map x, y and z to range 0-1 */

 in[0] = in[0] * 0.5f + 0.5f; //3
 in[1] = in[1] * 0.5f + 0.5f;
 in[2] = in[2] * 0.5f + 0.5f;

 /* Map x,y to viewport */

 win[0] = in[0] * viewport[2] + viewport[0];
 win[1] = in[1] * viewport[3] + viewport[1];
 win[2] = in[3];

 return (true);
 }

 public static void gluGetScreenLocation(GL10 gl, float xa, float ya, float za,
 float screenRadius, boolean render, float[] screenLoc)
 {
 float[] mvmatrix = new float[16];
 float[] projmatrix = new float[16];
 int[] viewport = new int[4];
 float[] xyz = new float[3];

 GL11 gl11 = (GL11) gl;

 gl11.glGetIntegerv(GL11.GL_VIEWPORT, viewport, 0); // 4
 gl11.glGetFloatv(GL11.GL_MODELVIEW_MATRIX, mvmatrix, 0);
 gl11.glGetFloatv(GL11.GL_PROJECTION_MATRIX, projmatrix, 0);

 gluProject(xa, ya, za, mvmatrix, projmatrix, viewport,xyz);

 xyz[1]=viewport[3]-xyz[1]; //5

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Putting It All Together 230

 screenLoc[0] = xyz[0];
 screenLoc[1] = xyz[1];
 screenLoc[2] = xyz[2];
 }

Let’s examine the code a bit closer:

 Lines 1ff map the object coordinates to an array that will then be multiplied by the
modelMatrix (supplied as one of the arguments).

 At lines 2ff, the multiplication is done via another GLUT helper routine that I added
because it was quicker to write than to track down. First the modelview matrix
and then the projection matrix operate on our object’s xyz coordinates.
(Remember, the first transform in the list is the last to be executed.) Note that the
first call to gluMultMatrixVector3f() passes the “in” array, followed by the
“out,” while the second one passes the two arrays in reverse order. There’s
nothing clever here—the second instance reverses the use of the two just to
recycle the existing arrays.

 In lines 3ff, the resulting values of the earlier calculations are normalized and then
mapped against the screen’s dimensions, giving us the final values.

 We’d likely never to have to call gluProject() directly; instead, the caller is
gluGetScreenLocation(), which merely gets the needed matrices in lines 4ff,
passes them on to gluProject(), and retrieves the screen coordinates. Because
of the inversion of the y-axis that OpenGL ES does, we need to uninvert it in line 5.

The execute() routine in the SolarSystem renderer must be modified quite a bit to manage the
calling and placement of the lens flare, while along with an enhanced executePlanet() adds some
new parameters to actually identify where the flare should be located on the screen. Both are provided
in Listing 8–8.

Listing 8–8. Execute with Lens Flare Support

 public void execute(GL10 gl)
 {
 float[] paleYellow = { 1.0f, 1.0f, 0.3f, 1.0f };
 float[] white = { 1.0f, 1.0f, 1.0f, 1.0f };
 float[] black = { 0.0f, 0.0f, 0.0f, 0.0f };
 float[] sunPos = { 0.0f, 0.0f, 0.0f, 1.0f };
 float sunWidth=0.0f;
 float sunScreenLoc[]=new float[4]; //xyz and radius
 float earthScreenLoc[]=new float[4]; //xyz and radius

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glShadeModel(GL10.GL_SMOOTH);

 gl.glEnable(GL10.GL_LIGHTING);
 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Putting It All Together 231

 gl.glPushMatrix();

 gl.glTranslatef(-m_Eyeposition[X_VALUE], -m_Eyeposition[Y_VALUE], //1
 -m_Eyeposition[Z_VALUE]);

 gl.glLightfv(SS_SUNLIGHT, GL10.GL_POSITION, makeFloatBuffer(sunPos));
 gl.glEnable(SS_SUNLIGHT);

 gl.glMaterialfv(GL10.GL_FRONT_AND_BACK, GL10.GL_EMISSION,
 makeFloatBuffer(paleYellow));

 executePlanet(m_Sun, gl, false,sunScreenLoc); //2

 gl.glMaterialfv(GL10.GL_FRONT_AND_BACK, GL10.GL_EMISSION,makeFloatBuffer(black));

 gl.glPopMatrix();

 if ((m_LensFlare != null) && (sunScreenLoc[Z_INDEX] > 0.0f)) //3
 {
 CGPoint centerRelative = new CGPoint();
 CGSize windowSize = new CGSize();
 float sunsBodyWidth=44.0f; //About the width of the sun's body
 // within the glare in the bitmap,
 in pixels.
 float cx,cy;
 float aspectRatio;
 float scale=0f;

 DisplayMetrics display =
 myAppcontext.getResources().getDisplayMetrics();
 windowSize.width = display.widthPixels;
 windowSize.height = display.heightPixels;

 cx=windowSize.width/2.0f;
 cy=windowSize.height/2.0f;

 aspectRatio=cx/cy; //4

 centerRelative.x = sunScreenLoc[X_INDEX]-cx;
 centerRelative.y =(cy-sunScreenLoc[Y_INDEX])/aspectRatio;

 scale=CT.renderTextureAt(gl, centerRelative.x, centerRelative.y, 0f,
 windowSize,
 m_FlareSource,sunScreenLoc[RADIUS_INDEX], 1.0f,1.0f, 1.0f, 1.0f); //5

 sunWidth=scale*windowSize.width*sunsBodyWidth/256.0f; //6
 }

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Putting It All Together 232

 gl.glEnable(SS_FILLLIGHT2);

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glPushMatrix();

 gl.glTranslatef(-m_Eyeposition[X_VALUE], -m_Eyeposition[Y_VALUE], //7
 -m_Eyeposition[Z_VALUE]);

 gl.glMaterialfv(GL10.GL_FRONT_AND_BACK, GL10.GL_DIFFUSE,
 makeFloatBuffer(white));

 gl.glMaterialfv(GL10.GL_FRONT_AND_BACK, GL10.GL_SPECULAR,
 makeFloatBuffer(white));

 executePlanet(m_Earth, gl, true,earthScreenLoc); //8

 gl.glPopMatrix();

 if ((m_LensFlare != null) && (sunScreenLoc[Z_INDEX] > 0)) //9
 {
 float scale = 1.0f;
 float delX = origwidth / 2.0f - sunScreenLoc[X_INDEX];
 float delY = origheight / 2.0f - sunScreenLoc[Y_INDEX];
 float grazeDist = earthScreenLoc[RADIUS_INDEX] + sunWidth;
 float percentVisible = 1.0f;
 float vanishDist = earthScreenLoc[RADIUS_INDEX] - sunWidth;

 float distanceBetweenBodies = (float) Math.sqrt(delX * delX + delY * delY);

 if ((distanceBetweenBodies > vanishDist)&& (distanceBetweenBodies
 < grazeDist)) //10
 {
 percentVisible=(float) ((distanceBetweenBodies - vanishDist) /sunWidth);

 if (percentVisible > 1.0) //11
 percentVisible = 1.0f;
 else if (percentVisible < 0.3)
 percentVisible = .5f;
 }
 else if (distanceBetweenBodies > grazeDist)
 {
 percentVisible = 1.0f;
 }
 else
 {
 percentVisible = 0.0f;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Putting It All Together 233

 scale = STANDARD_FOV / m_FieldOfView; //12
 CGPoint source = new CGPoint();
 source.x = sunScreenLoc[X_INDEX];
 source.y = sunScreenLoc[Y_INDEX];
 CGSize winsize = new CGSize();
 winsize.width = origwidth;
 winsize.height = origheight;

 if (percentVisible > 0.0)
 {
 m_LensFlare.execute(gl, winsize, source, scale, percentVisible);
 }
 }
 }

OK, now for the chalk talk:

 You’ll notice that two identical glTranslatef() calls are made. The first one in
line 1 sets things up for line 2 results. But we need to pop it off the stack when
our custom sun image is rendered in line 5. It needs to be called again in line 7,
when the earth is drawn to the screen.

 In line 2 it looks like we’re rendering the sun. But not really. This is to extract the
location on the main screen that the sun would actually draw to. The third
parameter, render, if false, will have the routine just return the screen location
and expected radius but not actually draw the sun.

 Line 3 decides whether we should draw both the new sun and lens flare object if
the sun is likely to be visible based on its z-coordinate. If z is negative, it is behind
us, so we can skip it altogether.

 The aspectRatio in line 4 handles nonsquare viewports, which means almost all
of them. Afterward we calculate the location of the sun’s expected billboard
image based on the center of the screen.

 The new renderToTextureAt() call now puts the sun’s billboard up on the
screen, as shown in m_FlareSource in line 5. sunScreenLoc{RADIUS_INDEX]
is one of the values fetched from executePlanet() and corresponds to what the
size of the actual 3D image would likely be. The returned value of scale hints at
what the final bitmap was sized at, as a percent of the screen. This is used in line
6 to calculate the actual width of the “hot spot” in the sun’s bitmap, since the
center image of the sun’s body will naturally be far smaller than the bitmap’s
dimensions.

 Again in line 7 we perform the translation, since the previous one was lost when
the matrix was popped. Followed by line 8 that renders the earth, but in this case,
passes a render flag of true. However, it still gets the screen location info, in this
case, merely to get the dimensions of the image so we know when to start
blanking out the lens flare.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Putting It All Together 234

 Then we come down to where the flare is actually rendered starting with lines 9ff.
Most of the code here largely handles one basic effect: what happens when the
sun goes behind the earth? Naturally, the flare will vanish, but it won’t pop in or
out instantly because the sun has a finite diameter. So, values such as the
grazeDist and vanishDist tell us when the sun first intersects the earth,
starting the dimming process, and when it is finally covered completely, blanking
out the flare altogether. Using the earth’s screen x and y values as well as those
for the sun, it becomes an easy matter to specify a fade function.

 Any value that falls between the vanishDist and grazeDist values specifies
what percentage of dimming should be done, as in line 10, while lines 11ff
actually calculate the value. Notice the line:

else if(percentVisible<0.3)
 percentVisible=0.5f

Extra credit: what does this do and why?

 Lines 12ff calculate the size of the flare and its corresponding elements. As you
zoom in with a decreasing field of view—that is, a higher-power lens—the sun’s
image will increase and the flare should as well.

The last bit to this exercise is to take a look at executePlanet(), as in Listing
8–9.

Listing 8–9. ExecutePlanet() Modified to Get the Screen Coordinates

 public void executePlanet(Planet planet, GL10 gl, Boolean render,float[] screenLoc)
 {
 Vector3 planetPos = new Vector3(0, 0, 0);
 float temp;
 float distance;
 float screenRadius;

 gl.glPushMatrix();

 planetPos.x = planet.m_Pos[0];
 planetPos.y = planet.m_Pos[1];
 planetPos.z = planet.m_Pos[2];

 gl.glTranslatef((float) planetPos.x, (float) planetPos.y,(float) planetPos.z);

 if (render)
 {
 planet.draw(gl); //1
 }

 Vector3 eyePosition = new Vector3(0, 0, 0);

 eyePosition.x = m_Eyeposition[X_VALUE];
 eyePosition.y = m_Eyeposition[Y_VALUE];

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Putting It All Together 235

 eyePosition.z = m_Eyeposition[Z_VALUE];

 distance = (float) planetPos.Vector3Distance(eyePosition, planetPos);

 float fieldWidthRadians = (m_FieldOfView /DEGREES_PER_RADIAN) / 2.0f;
 temp = (float) ((0.5f * origwidth) / Math.tan(fieldWidthRadians));

 screenRadius = temp * getRadius(planet) / distance;

 if(screenLoc!=null) //2
 {
 Miniglu.gluGetScreenLocation(gl, (float) planetPos.x, (float) -planetPos.y,
 (float) planetPos.z, (float) screenRadius, render,screenLoc);
 }

 screenLoc[RADIUS_INDEX]=screenRadius;

 gl.glPopMatrix();
 angle += .5f;
 }

In this final bit, line 1 draws the planet as normal, if and only if the render flag is true. Otherwise, it
just fetches the screen location and dimension, as in line 2, so that we can draw it ourselves.

That should do it. I am sure you’ll be able to compile with no errors or warnings, because you’re just
that good. And because you are just that good, you will likely be rewarded with the images in Figure
8–6. And feel free to play with ambient light and specular lighting as I have done. The effect might not
be very realistic, but it looks very nice.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Putting It All Together 236

Figure 8–6. Look, Ma! Lens flare!

Seeing Stars

Most of the new code needed for the next exercise is mainly for loading and managing all of the new
data. Because this is a book on OpenGL and not XML or data structures or how to effectively type in
code from a book, I’ll dispense with still more tedious listings of stuff you might already know.

Of course, no solar-system model would be complete without some nice stars in the background. Up
to this point, all of the examples have been small enough to print their entirety here in the text, but
now that will change just a bit as we add a simple star field in the background. The difference is
largely in the database required that you will need to fetch from the Apress web site, because it will
contain just over 500 stars down to a magnitude of 4.0 as well as an additional database containing
constellation outlines and names for a number of the more prominent groupings.

Besides the triangular faces that OpenGL ES uses for creating solid models, you can also specify that
each vertex of your model be rendered as a point image of a given magnitude and size, providing your
Android device can support multipixel point representations. At this point, part of the uglier side of
Android’s business model starts showing through.

What Google is doing with Android is simple: trying to establish it as the preeminent mobile operating
system in the world. And to do so, Google makes it free and permits manufacturers to modify it to their

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Putting It All Together 237

heart’s content. As a result, dreaded fragmentation quickly sneaks in. Superficially, consumers
shouldn’t have to worry about this because they have a huge selection of phones to choose from. But
from a developer’s side, it makes writing software to work on hundreds if not thousands of devices a
nightmare because each device can have its own little quirks. And in the long run, this does affect
consumers because developers may opt not to support a specific family of devices, or if they do, they
might suffer release delays and cost increases to ensure their latest title will work on everything. And
nowhere are such differences felt more than in graphics support.

There are many different manufactures of graphics processing units. Vivante, maker of the GC860,
supplies chips to Marvell; AMD sends its GPUs to Toshiba, and PowerVR sells to Apple and Samsung.
What makes it worse is that each specific model of GPU will likely have more capabilities than
previous generations from the same manufacturer. This means you will likely have to code to the
lowest common denominator by leaving out cool features that more recent devices might support, or
you might have to roll your own if you really need a specific feature to work across all platforms. Or, as
a third approach, you might have to code only to specific devices, leaving others out of the equation.
For the most part, Apple has managed to navigate around these waters with their iOS devices, while
Microsoft (which used the “Android” method for older Windows Mobile phones) now shies away from
fragmentation by ensuring their Windows Mobile 7 licensees adhere to very strict set of specifications.
As a result, selection of your target machines is critical.

Now back to the stars. So, what makes this so special? Simple. Not all devices can support OpenGL’s
GL_POINTS rendering greater than a single pixel in size. Or those that do may not support rounded
anti-aliased points. The former could almost work, but for only the previous generation of low-
resolution screens, say, 75 DPI or so. But now with the newer high-resolution displays (such as
Apple’s Retina display), a single pixel is so small as to be nearly invisible, making it imperative to show
stars made up as a collection of pixels. Such was the case with the development of this exercise, as
you will soon see. But first, to the stars.

NOTE: Price or manufacturer of a device seem to have little bearing on the 3D capabilities they
support. For example, the first-generation Motorola Xoom could do fat points, but only square
ones. The Kindle Fire does wide lines, but only single-pixel points, while a cheap no-name device
does both fat lines and points.

The stellar database for this first bit was compiled from my Distant Suns data into Apple’s plist XML
file format. That was then tweaked a little to make parsing it easer for demo purposes. The same
approach was used for the constellation data. When loaded, it was drawn very much as previous
objects, such as the sphere, but instead of specifying GL_TRANGLE_STRIPS, GL_POINTS were used.
Listing 8–10 shows the execute() method for the stars.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Putting It All Together 238

Listing 8–10. Rendering the Stars

 public void execute(GL10 gl)
 {
 int len;
 float[] pointSize = new float[2];
 GL11 gl11 = (GL11) gl;

 gl.glDisable(GL10.GL_LIGHTING); ` //1
 gl.glDisable(GL10.GL_TEXTURE_2D);
 gl.glDisable(GL10.GL_DEPTH_TEST);

 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glEnableClientState(GL10.GL_COLOR_ARRAY); //2

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glBlendFunc(GL10.GL_ONE, GL10.GL_ONE_MINUS_DST_ALPHA);
 gl.glEnable(GL10.GL_BLEND);

 gl.glColorPointer(4, GL10.GL_FLOAT, 0, m_ColorData);
 gl.glVertexPointer(3,GL10.GL_FLOAT, 0, m_VertexData);

 gl.glEnable(GL10.GL_POINT_SMOOTH); //3
 gl.glPointSize(5.0f);

 gl.glDrawArrays(GL10.GL_POINTS,0,totalElems/4); ` //4

 gl.glDisableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glDisableClientState(GL10.GL_COLOR_ARRAY);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glEnable(GL10.GL_LIGHTING);
 }

And now for the rest of the story:

 Line 1 is essential to rendering any object that is self-illuminating or that you just
want visible all of the time. In this case, the stars are in the former category,
while various identifiers such as constellation names and outlines are in the
latter. Turning off the lights ensures that they will be visible no matter what. (In
earlier exercises, the sun was rendered as an emissive object but was still left as
an illuminated one just to get a slight gradient across the surface that looked very
nice.)

 Colors in line 2 are being used to specify the intensity of a star’s magnitude. A
more sophisticated system would encode both the star’s real color and
luminosity, but here we’re just doing the simple stuff.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Putting It All Together 239

NOTE: A star’s magnitude is its apparent brightness; the larger the value, the dimmer the star is.
The brightest star in the sky next to the sun, of course, is Sirius, at a visual magnitude of -1.46.
The dimmest stars visible to the naked eye are about magnitude 6.5. Binoculars top out at about
10th magnitude, while the Hubble Space Telescope reaches way out to magnitude 31.5. Each
whole number is a difference of about 2.5 times in actual brightness, so a star of magnitude 3 is
about 2.5 times brighter than one that is magnitude 4.

 Hard edged stars are not that interesting to look at, so lines 3f turn on anti-
aliasing for points and ensure that the points are big enough to be visible.

 Line 4 draws the arrays as usual but makes use of the GL_POINT rendering style
instead of GL_TRIANGLES used for solid bodies.

Let’s go back to line 3. Remember the discussion about different devices and GPUs having different
features available or not? Here is one such case. In the development of this exercise, the hardware
used was a first generation of a Motorola Droid. As it turned out, it did not support multipixel points, so
each star was but a single pixel on a very high-resolution screen. The solution would be to use “point
sprites,” a way to assign small bitmaps to each point drawn. OpenGL ES can support this also but, as
said before, only on certain devices. Sigh. Or as the official OpenGL documentation states:

Only size 1 is guaranteed to be supported; others depend on the implementation.

If larger points are supported, without any further modifications they will be drawn as squares. Here is
where you want to turn on GL_POINT_SMOOTHING. If implemented, it will attempt to create rounded
points. However, the sizes allowed for point smoothing is implementation dependent. You can check

that out by the following call:

 float[] pointSize = new float[2];

 gl11.glGetFloatv(GL10.GL_SMOOTH_POINT_SIZE_RANGE, makeFloatBuffer(pointSize));

If point smoothing is not available, pointSize will show 0.0f, 0.0f. However, smoothed points are not
necessarily nice-looking points. For better points yet, turn on blending. Then the system will anti-alias
the images. However, this “depends on the implementation.” Sigh.

Figure 8–7 shows the differences between the three possibilities.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Putting It All Together 240

Figure 8–7. From left to right, a close-up on an 8---pixel-wide unsmoothed point, with smoothing, and with
smoothing and blending

Ultimately you will have to handle your own point rendering if you want to reach the largest possible
audience.

Seeing Lines

Of course, there is much more to the sky then stars and planets. There are the constellations. As with
the stars earlier, you will have to fetch the constellation database from the Apress site. This contains
data for 17 different constellations. The data includes the common name and line data to form the
constellation outlines. In this case, the setup is virtually identical to the stars, as described earlier, but
instead of drawing a point array, we draw a line array:

 gl.glDrawArrays(GL10.GL_LINE_STRIP,0,numVertices);

As with points (depending on implementation), lines may also be drawn larger than single-pixel
widths. The following call will do the trick:

 gl.glLineWidth(lineWidth);

However, line widths greater than 1, all in unison now, depend on the implementation.

You should be able to check for available line widths by calling this:

 int[] pointSize = new int[2];
 gl11.glGetIntegerv(GL10.GL_ALIASED_LINE_WIDTH_RANGE, makeIntBuffer(pointSize));

Lines of widths greater than 1 depend on the implementation, although it seems like more devices
permit wide lines than wide pixels.

One problem in the OpenGL ES implementations of lines is that anti-aliased lines (smooth) are not
supported as opposed to the desktop version. This means that any lines you draw using the standard
technique will look most unpleasant on older, lower-resolution displays. But as higher DPIs become
available, anti-aliasing is less necessary. But if you still want to consider it, one trick commonly used
is to draw the lines as really thin polygons and use texture mapping, which can be anti-aliased and
can add things such as dotted lines to the picture. Cumbersome? You bet. Works? Pretty well. Another
way in the OpenGL ES universe is use something called multitexture anti-aliasing. However, this will
depend on the implementation!

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Putting It All Together 241

MSAA creates two OpenGL rendering surfaces. One is what we see, and the other is twice the size and
hidden from view. The blending of the two smooths out all images in the entire screen and can look
quite good, although at the expense of performance and memory usage. Figure 8–8 shows a
comparison of the two.

Figure 8–8. Without MSAA on the left; with it enabled on the right

Seeing Text

For all of the capabilities of OpenGL, text support is not one of them. A long-standing nuisance, the
only way to really do text right is to use textures with the text on them. After all, that is what any text is
to begin with: just a bunch of little textures.

The easiest way to do things if you have very small text needs is to prerender the text blocks and
import them just as other textures. If you have a lot of text, you can generate them on the fly as each
string is needed. This is a nice approach if you want to use a wide variety of fonts. Overall, the best
way is to use something called a texture atlas (also called a sprite sheet).

When used in conjunction with text rendering, a texture atlas will take all of the characters associated
with your desired font and store them on a single bitmap, as shown in Figure 8–9. To draw the text,
we use techniques previously employed in the lens flare to render 2D bitmaps.

Figure 8–9. Times New Roman, the texture atlas edition

1
www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Putting It All Together 242

Taking the texture atlas and using fractional texture mapping (see Chapter 5’s Figure 5-6), the letters
can be combined into any string needed on the fly. Since OpenGL doesn’t natively support any sort of
font handling, we either have to roll out own font manager or look to third parties. Fortunately, since
this problem is so pervasive, a number of kind souls have created tools and libraries to and make them
freely available. Figure 8–9 was generated with a very nice PC-based tool called CBFG and may be
downloaded from www.codehead.co.uk/cbfg/.

This includes the tool along with drop-in C++ and Java readers, the latter being used in this example.
To create and initialize for font usage, use the following code:

 m_TexFont = new TexFont(context, gl);
 m_TexFont.LoadFont("TimesNewRoman.bff", gl);

Listing 8–11 shows how to use this. The excerpt comes from Outline.java in the example code.

Listing 8–11. Writing Text to an OpenGL View

 public void renderConstName(GL10 gl, String name, int x, int y, float r, float g,
 float b)
 {
 gl.glDisable(GL10.GL_LIGHTING);
 gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA);
 gl.glEnable(GL10.GL_BLEND);

 if(name!=null)
 {
 m_TexFont.SetPolyColor(r, g, b);
 m_TexFont.PrintAt(gl, name.toUpperCase(), x, y);
 }
 }

Now that we have the lines, points, and text up, what should we see? Ah, the question is what will we
see (Figure 8–10). After all, it will depend on the implementation.

www.it-ebooks.info

http://www.codehead.co.uk/cbfg/
http://www.it-ebooks.info/

CHAPTER 8: Putting It All Together 243

Figure 8–10. Invisible one-pixel stars on the left; the way to do things on the right

Seeing Buttons

Of course, any app that doesn’t have a means to interact with it is usually called a demo. But here our
little demo will in fact gain both a simple user-interface and HUD graphics.

When it comes to adding UI elements to your Android app, I have some very good news: the phrase
“depends on implementation” will not be found. Adding simple control elements is very easy. Of
course, you’d normally not use an OpenGL display as mere background for an app, and UI elements
should still be isolated in their own space in general; it all depends on your goals. With that in mind, a
simple UI panel can be added as demonstrated with Listing 8–12 in SolarSystemActivity and
should look something like Figure 8–11.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Putting It All Together 244

Listing 8–12. Adding UI to the Sky

 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,
 WindowManager.LayoutParams.FLAG_FULLSCREEN);
 mGLSurfaceView = new SolarSystemView(this);
 setContentView(mGLSurfaceView);
 mGLSurfaceView.requestFocus();
 mGLSurfaceView.setFocusableInTouchMode(true);

 ll = new LinearLayout(this);
 ll.setOrientation(VERTICAL_ORIENTATION);
 b_name = new Button(this);
 b_name.setText("names");
 b_name.setBackgroundDrawable(getResources().getDrawable(
 book.SolarSystem.R.drawable.bluebuttonbig));
 ll.addView(b_name);

 b_line = new Button(this);
 b_line.setText("lines");
 b_line.setBackgroundDrawable(getResources().getDrawable
 (book.SolarSystem.R.drawable.greenbuttonbig));
 ll.addView(b_line, 1);

 b_lens_flare = new Button(this);
 b_lens_flare.setText("lens flare");
 b_lens_flare.setBackgroundDrawable(getResources().getDrawable
 (book.SolarSystem.R.drawable.redbuttonbig));
 ll.addView(b_lens_flare);

 this.addContentView(ll, new LayoutParams(LayoutParams.WRAP_CONTENT,
 LayoutParams.WRAP_CONTENT));

 b_name.setOnClickListener(new Button.OnClickListener() {

 @Override
 public void onClick(View v) {
 if (name_flag == false)
 name_flag = true;
 else if (name_flag == true)
 name_flag = false;
 Log.d(TAG, "b_name clicked");
 }
 });

 b_line.setOnClickListener(new Button.OnClickListener() {

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Putting It All Together 245

 @Override
 public void onClick(View v) {
 if (line_flag == false)
 line_flag = true;
 else if (line_flag == true)
 line_flag = false;
 Log.d(TAG, "b_line clicked");
 }
 });

 b_lens_flare.setOnClickListener(new Button.OnClickListener() {

 @Override
 public void onClick(View v) {
 if (lens_flare_flag == false)
 lens_flare_flag = true;
 else if (lens_flare_flag == true)
 lens_flare_flag = false;
 Log.d(TAG, "b_lensflare clicked");
 }
 });

Figure 8–11. Putting UI components on top of an OpenGL screen

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Putting It All Together 246

If you do expect to have a lot of UI elements, you might want to consider creating all of them in
OpenGL. This is particularly helpful if you plan on supporting multiple platforms, because OpenGL skips
all of the platform specific toolkits, although it makes the initial job somewhat more tedious. Games
are the applications that can benefit most from such an approach, particularly since they usually have
highly customized UIs. A well-written OpenGL-only application might take only a few days to port from
one platform to another as compared to a few months. Distant Suns on the iPhone uses a mix of the
two, mainly to see how they can complement each other. I used all OpenGL for the little time-setting
widget in Figure 8–12, while using standard UI components for everything else.

Figure 8–12. Distant Suns with custom date wheel on the left side yet with a standard UIKit toolbar at the same
time

Summary
In this chapter, we took many of the tricks learned in previous chapters and combined them into a
more complete and more attractive (read: less lame) solar-system model, depending on
implementation. A one-planet solar system is not that impressive as it stands. So, I’ll leave it up to you,
dear reader, to add the moon, add some other planets, and get the earth to revolve around the sun.

We added lens flare from Chapter 7 and point and line objects for the stars and constellation outlines,
inserted text into an OpenGL environment, and mixed both OpenGL views and standard Android
controls on the same screen.

I also pointed out how the graphics subsystem is the one that can vary most from device to device,
causing much pain, anguish, gnashing of teeth, and rending of garments. In the next chapter, we’ll
look into optimization tricks, and following that, OpenGL ES 2.0 and how that might be applied to
enhancing our earth model.

www.it-ebooks.info

http://www.it-ebooks.info/

247

 Chapter

Performance ’n’ Stuff

An ounce of performance is worth pounds of promises.

—Mae West

I’m so fast that last night I turned off the light switch in my hotel room and was in bed
before the room was dark.

—Muhammad Ali

When dealing with 3D worlds, performance is nearly always an issue because of the intensive
mathematics required for even simple scenes. If all you want to render is an animated spinning
triangle with adorable robots festooned upon its visage, then not to worry, but if you want to display
the universe, then you’ll always be concerned about performance.

Up until now, the exercises have been presented in a way to be reasonably clear (I hope) but not
necessarily efficient. And unfortunately, efficient code is rarely the clearest and easily understood. So
now, we’re going to start looking at the slightly messier stuff and see how it can be integrated into
your applications.

In the trade, these tips are called best practices. Some may be obvious, but others are not.

Vertex Buffer Objects
The two main arenas of performance enhancements are minimizing the data transfer to and from the
graphics hardware and minimizing data itself. Vertex buffer objects (VBOs) are part of the former
process. When you generated your geometry and sent it merrily along to be displayed, the usual
process was to tell the system where to find each of the needed blocks of data, enabling which data to

9

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Performance ’n’ Stuff 248

use (vertex, normals, colors, and texture coordinates), and then drawing it. Each time
glDrawArrays() or glDrawElements() is called, all of the data must be packed up and shipped
over to the graphics processing unit (GPU). Each data transfer takes a finite amount of time, and
obviously performance could be increased if, say, some of the data could be cached on the GPU itself.
VBOs are a means of allocating commonly used data on the GPU that can then be called for display
without having to resubmit the data each time.

The process of creating and using VBOs should be familiar to you because it mimics that used for
textures. First generate a “name,” then allocate space for the data, then load the data, and then use
glBindBuffer() whenever you want to use said data. Another practice I’ll cover at the same time is
that of interleaving the data, illustrated in Figure 9–1, which I’ll do first before submitting it to the VBO.
This may or may not make much difference, but if the drivers and GPU are optimized for data locality,
interleaved arrays could help.

Figure 9–1. Data ordering. The VBO example uses the top format, while the bottom illustrates data interleaving.

In my own tests I found the difference to be negligible. But still, keep interleaving in mind
for your projects; it can’t hurt to design for it because future hardware might make better
use of it. Refer to Listing 9–1 to see how the planet’s geometry can interleaved.

Listing 9–1. Creating an Interleaved Array

 private void createInterleavedData()
 {
 int i;
 int j;
 float[] interleavedArray;
 int size;

 size=NUM_XYZ_ELS+NUM_NXYZ_ELS+NUM_RGBA_ELS+NUM_ST_ELS;

 interleavedArray=new float[size*m_NumVertices];

 for(i=0;i<m_NumVertices;i++)
 {
 j=i*size;

 //Vertex data

 interleavedArray[j+0]=m_VertexData.get();
 interleavedArray[j+1]=m_VertexData.get();

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Performance ’n’ Stuff 249

 interleavedArray[j+2]=m_VertexData.get();

 //Normal data

 interleavedArray[j+3]=m_NormalData.get();
 interleavedArray[j+4]=m_NormalData.get();
 interleavedArray[j+5]=m_NormalData.get();

 //cColor data

 interleavedArray[j+6]=m_ColorData.get();
 interleavedArray[j+7]=m_ColorData.get();
 interleavedArray[j+8]=m_ColorData.get();
 interleavedArray[j+9]=m_ColorData.get();

 //Texture coordinates

 interleavedArray[j+10]=m_TextureData.get();
 interleavedArray[j+11]=m_TextureData.get();
 }

 m_InterleavedData=makeFloatBuffer(interleavedArray);

 m_VertexData.position(0);
 m_NormalData.position(0);
 m_ColorData.position(0);
 m_TextureData.position(0);
 }

This is all pretty self-explanatory, but note the final four lines. They reset the internal counters for the
FloatBuffer objects, needed if you want to use any of the individual arrays of data elsewhere.

Listing 9–2 shows how I created a VBO out of the planetary data. Since most planets are generally the
same shape, roundish, it is possible to cache one model of the sphere on the CPU and use it for any
planet or moon, short of Demos or Hyperion or Nix or Miranda…or any of the smaller moons that look
more like moldy potatoes. Hear that, Phobos? I’m talkin’ to you!

Listing 9–2. Creating a VBO for the Planet Model

 public void createVBO(GL10 gl)
 {
 int size=NUM_XYZ_ELS+NUM_NXYZ_ELS+NUM_RGBA_ELS+NUM_ST_ELS;

 createInterleavedData();

 GLES11.glGenBuffers(1,m_VertexVBO,0); //1
 GLES11.glBindBuffer(GL11.GL_ARRAY_BUFFER, m_VertexVBO[0]); //2

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Performance ’n’ Stuff 250

 GLES11.glBufferData(GLES11.GL_ARRAY_BUFFER,size*FLOAT_SIZE*m_NumVertices, //3
 m_InterleavedData,GLES11.GL_STATIC_DRAW);
 }

Simple, eh? Note that VBOs didn’t come along until OpenGL ES 1.1, which is why the GLES11 modifier
is needed.

 Line 1 generates the name for the buffer. Since we are dealing with just a single
dataset, we need only one.

 Next we bind it in line 2, making this the current VBO. To unbind it, you can bind a
0.

 The data from the interleaved array can now be sent over to the GPU in line 3. The
first parameter is the time of data, which can be either a GL_ARRAY_BUFFER or a
GL_ELEMENT_ARRAY_BUFFER. The former is used to pass the vertex data (which
includes color and normal information), and the latter is used for passing an index
connectivity array. But since we are using triangle strips, the index data is not
needed.

So, how do we use VBOs? Very easily. Take a look at Listing 9–3.

Listing 9–3. Rendering the Planet Using VBOs

 public void draw(GL10 gl)
 {
 int startingOffset;
 int i;
 int maxDuplicates=10; //1
 boolean useVBO=true; //2

 int stride=(NUM_XYZ_ELS+NUM_NXYZ_ELS+NUM_RGBA_ELS //3
 +NUM_ST_ELS)*FLOAT_SIZE;

 GLES11.glEnable(GLES11.GL_CULL_FACE);
 GLES11.glCullFace(GLES11.GL_BACK);
 GLES11. glDisable (GLES11.GL_BLEND);
 GLES11.glDisable(GLES11.GL_TEXTURE_2D);

 if(useVBO) //4
 {
 GLES11.glBindBuffer(GL11.GL_ARRAY_BUFFER, m_VertexVBO[0]); //5

 GLES11.glEnableClientState(GL10.GL_VERTEX_ARRAY); //6

 GLES11.glVertexPointer(NUM_XYZ_ELS,GL11.GL_FLOAT,stride,0);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Performance ’n’ Stuff 251

 GLES11.glEnableClientState(GL11.GL_NORMAL_ARRAY);
 GLES11.glNormalPointer(GL11.GL_FLOAT,stride,NUM_XYZ_ELS*FLOAT_SIZE);

 GLES11.glEnableClientState(GL11.GL_TEXTURE_COORD_ARRAY);

 GLES11.glTexCoordPointer(2,GL11.GL_FLOAT,stride,
 (NUM_XYZ_ELS+NUM_NXYZ_ELS+NUM_RGBA_ELS)*FLOAT_SIZE);

 GLES11.glEnable(GL11.GL_TEXTURE_2D);
 GLES11.glBindTexture(GL11.GL_TEXTURE_2D, m_TextureIDs[0]);

 }
 else
 {
 GLES11.glBindBuffer(GL11.GL_ARRAY_BUFFER,0); //7

 m_InterleavedData.position(0);

 GLES11.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 GLES11.glVertexPointer(NUM_XYZ_ELS,GL11.GL_FLOAT,stride,m_InterleavedData);

 m_InterleavedData.position(NUM_XYZ_ELS);

 GLES11.glEnableClientState(GL11.GL_NORMAL_ARRAY);
 GLES11.glNormalPointer(GL11.GL_FLOAT,stride,m_InterleavedData);

 m_InterleavedData.position(NUM_XYZ_ELS+NUM_NXYZ_ELS+NUM_RGBA_ELS);

 GLES11.glEnableClientState(GL11.GL_TEXTURE_COORD_ARRAY);
 GLES11.glTexCoordPointer(2,GL11.GL_FLOAT,stride,m_InterleavedData);
 GLES11.glEnable(GL11.GL_TEXTURE_2D);
 GLES11.glBindTexture(GL11.GL_TEXTURE_2D, m_TextureIDs[0]);
 }

 for(i=0;i<maxDuplicates;i++) //8
 {
 GLES11.glTranslatef(0.0f,0.2f,0.0f);
 GLES11.glDrawArrays(GL11.GL_TRIANGLE_STRIP, 0,
 (m_Slices+1)*2*(m_Stacks-1)+2);
 }

 GLES11.glDisable(GL11.GL_BLEND);
 GLES11.glDisable(GL11.GL_TEXTURE_2D);
 GLES11.glDisableClientState(GL11.GL_TEXTURE_COORD_ARRAY);
 GLES11.glBindBuffer(GL11.GL_ARRAY_BUFFER,0);

 m_VerticesPerUpdate=maxDuplicates*m_NumVertices;
 }

6
www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Performance ’n’ Stuff 252

Rendering the VBOs is pretty straightforward, with only a single “huh?” in the process. I’ve
decided to prepend all of the calls with the GLES11 prefix just for looks. Not all routines
need it.

 Lines 1 and 2 let you configure the routine for testing purposes. maxDuplicates
is the number of times the planet will be rendered. useVBO can turn off the VBO
processing and use just the interleaved data for performance comparisons.

 Remember that the stride value, in line 3, indicates the number of bytes from
vertex to vertex in an arbitrary array. This is essential for doing interleaved data,
so the same array can be used for both vertex location and colors, for example.
The stride just tells the system how many bytes to skip over before it finds the
next vertex.

 Line 4 will turn on the actual VBO setup code. Line 5 binds it in the same way a
texture is bound, making it the current object to use, until another is bound or this
one is unbound with glBindBuffer(GL_ARRAY_BUFFER, 0);.

 Lines 6ff enable the various data buffers as has been done in previous draw()
methods. The one major difference can be seen in the final argument to the
various glEnable*Pointer() calls. Under normal use, you pass a pointer or
reference to them. However, when using VBOs, the various “pointers” to the data
blocks are the offset from the first element, which always starts at an “address”
of zero instead of one in the app’s own address space. This means that in our
case, the vertex pointer starts at an address of 0, while the normals are right after
the vertices, and the colors are texture coordinates follow the normals. These
values are expressed in bytes from the start of data.

 Line 7 highlights the other section. Here we use just the interleaved data and pass
it to the pointer routines in the more traditional way. This permits you to see what,
if any, performance enhancement you get from the interleaved data.

 The section following line 8 loops through maxDuplicates calls to
glDrawArrays(). The value of 10 works pretty well.

When it comes to optimizing code, I am one who needs to be convinced that a specific trick will work.
Otherwise, I might spend a lot of time doing something that increases the frame rate by .23 percent. A
game programmer might find that a badge of honor, but I feel that it steals either an optional new
feature or a bug fix away from my users by diverting attention to something that probably won’t make
much difference. So, I developed a simple test program given by the previous listings.

The program simply draws ten planet Earths and rotates them, as shown in Figure 9–2. The spheres
are created with 100 stacks and 100 slices, giving them 20,200 vertices each. I use the same instance,

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Performance ’n’ Stuff 253

so I have to load the GPU only once at program startup. Without VBOs, the same model would be
loaded ten times.

Figure 9–2. Giant computer-generated sow bug. Or ten planet Earths stacked on top of each other.

You can now add a frame-rate calculator to your onDrawFrame() handler and see what happens. My
own setup uses a first-gen Motorola Xoom, and what follows are some basic tests that should give me
a decent idea as to how the Xoom/Java platform performs when compared to others of a similar price
range.

NOTE: My own setup uses the first-gen Motorola Xoom that harbors an NVIDIA Tegra 2 GPU. As
of this writing, all of Apple’s iOS devices use the PowerVR family of chips made by Imagination
Technologies; it’s the same for Samsung’s Galaxy Tab and Blackberry’s Playbook. It might be
worth your while to go to the developer’s section of the manufacturer of your GPU. Both
Imagination Tech and NVIDIA have excellent notes, SDKs, and demos that can take full advantage
of their respective hardware.

The baseline configuration had texturing turned on, three lights, 32-bit color with depth buffer,
blending on with the eyepoint at 5 units away, and the field of view set to 30 degrees. The results were
quite surprising, as shown in Table 9–1.

Table 9–1. Frame-Rate Comparison on a Motorola Xoom

Configuration Frames/Second

Baseline 6.15

No VBO or interleaved data 5.45

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Performance ’n’ Stuff 254

Interleaved data only 4.75

Noninterleaved data 5.45

No texturing 6.30

Only a single light 13.25

No depth-buffering 6.15

16-bit colors 6.40

Wireframe 7.40

Points 6.70

Eyepoint twice as far 6.25

Xoom loaded down with graphic apps 6.15

In this case, the single largest CPU sink is the lighting, because the frame rate doubled by merely
turning off two of the three lights. In Chapter 10, you’ll see what really goes into managing lighting
under the hood, and this will make a little more sense. Turning off depth buffering and texturing had
virtually no effect as did dropping down to 16-bit color from 32 bits.

Another really surprising result is that the interleave data format seems to actually reduce
performance! Opting to use the separate discrete buffers for each datatype, the “old way” speeds
things up a little. Moving the eyepoint away reduced the number of pixels to process but barely added
anything to the frame rate. This suggests that the GPU is nowhere near being pixel-bound and that the
main performance culprit is the actual vertex calculations. Chances are that Java might certainly be
playing a big role in this. As a partial solution to language-related issues, Android also comes with a
native development kit (NDK).

The NDK was designed to let developers put their performance-critical code below the Java layer, into
C or C++, using JNI to move back and forth between the two worlds. (Performance-critical might
include image processing or large system modeling.) OpenGL will be optimized for whatever level you
use, so chances are in a pure OpenGL comparison you’ll see little improvement. Outside of that, even a
quick search on the Web shows many developers creating tests comparing the two environments, and
nearly all show dramatic increases in performance of 30 times or more for mathematically intensive
tasks. But of course, you mileage may vary because of driver, OS, GPU, or compiler issues.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Performance ’n’ Stuff 255

Batching
Batch as much as possible operations that rely on the same state, because changing the system state
(by using the glEnable() and glDisable() calls) is costly. OpenGL does not check internally to see
whether a specific feature is already in the state you want. In the exercises in this book, I would
frequently set states more often than I likely needed to, so as to ensure the behavior is easily
predictable. But for commercial, performance-intensive apps, try to remove any redundant calls in the
release build.

Also, batch your drawing calls as much as possible.

Textures
A few of the texture optimization tricks have already been addressed, such as mipmapping. Others are
just plain common sense: textures take a whopping lot of memory. Make them as small as possible
and reuse them if needed. Also, set any image parameters ahead of loading them, because they act as
a hint to tell OpenGL how to optimize the information before shipping up to the hardware.

Draw the opaque textures first, and avoid having a translucent OpenGL ES screen.

Sprite Sheets
Sprite sheets (or texture atlases) were briefly referenced in Chapter 8 when covering displaying text in
an OpenGL environment. Figure 9–3 illustrates what a sprite sheet looks like when used for rendering
text to the screen.

Figure 9–3. Sprite sheet for 24-point Copperplate

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Performance ’n’ Stuff 256

This particular image was created using a free tool called LabelAtlasCreator for the Mac, as opposed to
the CBFG tool used in Chapter 8. Besides the image file, it will generate a handy XML file in Apple’s
plist format that contains all of the placement details that are easy to convert to texture space.

But don’t stop at fonts, because sprite sheets can also be applied any time you have a family of
likeminded images. Switching from one texture to another can cause a lot of unneeded overhead,
whereas a sprite sheet acts as a form of texture batching, saving a lot of GPU time. Check out the OS
X–compatible Zwoptex tool or TexturePacker, which is used for general-purpose images.

Texture Uploads
Copying textures to the GPU can be very expensive, because they must reformatted by the chip before
they can be used. This can cause stuttering in the display for larger textures. Therefore, make sure to
load them at the very start with glTexImage2D. Some GPU manufacturers, such as Imagination
Technologies, maker of the chips used in Apple’s products, have their own proprietary image formats
fine-tuned for their own hardware. Of course, in the increasingly fragmented Android marketplace, you
will have to sniff out what chips your users have at runtime and handle any special needs at that time.

Mipmaps
Always make sure to use mipmaps for anything other than 2D unscaled images. Yes, they do use a
little more memory, but the smaller mipmaps can save a lot of cycles for your objects when far away.
It is recommended that you use GL_LINEAR_MIPMAP_NEAREST because it is faster than
GL_LINEAR_MIPMAP_LINEAR (reference Table 5-3), albeit with a little less image fidelity.

Fewer Colors
Other recommendations might include lower-resolution color formats. A lot of imagery
would look almost as good at only 16 bits vs. 32, especially if there is no alpha mask.
Android’s default format is the ever-popular RGB565, which means it has 5 bits red, 6 bits
for green, and 5 bits for blue. (The green color is given a boost because our eyes are most
sensitive to it.) Other 16-bit formats include RGBA5551 or RBGA4444. On Distant Suns, my
grayscale constellation artwork is only 8 bits, cutting memory usage by 75 percent. Should
I want it tinted to match a specific theme, I let OpenGL do the work. With the proper tool
and careful tweaking, some 16-bit textures are almost indistinguishable from the 32-
bitters.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Performance ’n’ Stuff 257

Figure 9–4 illustrates four of these formats created by TexturePacker, with the highest to
lowest quality going from left to right. Image 1 shows the true-color texture we’ve been
using, sometimes called RGBA8888. Image 2 uses the default RGB565 format that still
looks quite good, considering. Image 3 in Figure 9–4 uses RGBA5551, allocating a 1-bit
alpha channel (notice how much a difference the extra bit for green makes when compared
to the previous texture), and image 4 is the lowest quality, using RGBA4444. TexturePacker
also supports the PVRTC file types referenced in Chapter 5.

NOTE: An alternate (and free) tool is available from Imagination Technologies Ltd., the maker of
the PowerVR chips. It does the same texture modes as TexturePacker but doesn’t create sprite
sheets, like TexturePacker does. Note that it uses X11 as the UI that is skinned to look like
Windows NT. Go to www.imgtec.com and look for PowerVR Insider Utilities under the
developer’s section. Look for PVRTexTool.

The images that work best when compressed are those with color palettes that rely heavily
on one or two parts of the spectrum. The more varied your colors, the harder it will be
minimize the artifacting. The image of Hedly works better than the Earth’s texture map,
because the former is largely grays and greens, while the latter is composed of greens,
browns, grays (for the polar regions), and blue.

 Figure 9–4. Texture 1, 32 bit; texture 2, RGB565; texture 3, RGBA555; texture 4, RGBA:4444

www.it-ebooks.info

http://www.imgtec.com
http://www.it-ebooks.info/

CHAPTER 9: Performance ’n’ Stuff 258

Other Tips to Remember
The following are some useful tips to keep in mind:

 Even though multisample anti-aliasing can be very useful in smoothing out your
images, it means sudden death in the performance department, cutting frame
rates by 30 percent or more. So, you must really need to use it.

 Avoid using GL_ALPHA_TEST. This was never covered, but it can also kill
performance as much as MSAA.

 When going to background, make sure to stop the animation and delete any easily
re-created resources.

 Any calls that return information from the system (mainly the glGet* family of
calls) query the state of the system, including the easily overlooked
glGetError(). Many of these will force any previous commands to execute
before state information can be retrieved.

 Use as few lights as possible, going down to only a single light (the sun) by
turning off the fill and the ambient lights.

Do not access the frame buffer from the CPU. Calls such as glReadPixels()
should be avoided because they will force the frame buffer to flush all queued
commands.

The preceding tips represent only the most basic recommended practices. There are many more
arcane tricks the real graphics gurus have in their utility belts that a simple Google search will likely
reveal.

Summary
This chapter described the basic tricks and best practices you can use to make your OpenGL app really
perform. VBOs will cut down on the saturation of the bus by keeping commonly used geometry on the
GPU. Reducing the state changing and glGet* calls to a minimum can also yield a substantial
improvement in rendering speed.

In Chapter 10, you’ll learn a little about OpenGL ES 2.0 and those mysterious shader things that are all
the rage these days with the kids.

www.it-ebooks.info

http://www.it-ebooks.info/

 259

 Chapter

OpenGL ES 2, Shaders,
and…

Her angel’s face, As the great eye of heaven shined bright, And made a sunshine in
the shady place.

—Edmund Spenser

There are two different versions of the OpenGL ES graphics library on your Android devices. This book
has largely dealt with the higher-level one, known as OpenGL ES 1, sometimes referred to as 1.1, or
1.x. The second version is a rather confusingly named OpenGL ES 2. The first one is by far the easier of
the two; it comes with all sorts of helper libraries doing much of the 3D mathematics and all of the
lighting, coloring, and shading on your behalf. Version 2 eschews all of those niceties and is
sometimes referred to as the “programmable function” version vs. the other’s “fixed function” design.
This is generally sneered at by the true pixel-jockeys who prefer more control over their imagery,
usually reserved for immersive 3D game environments where every little visual footnote is
emphasized. For that, OpenGL ES 2 was released.

Version 1 is relatively close to the desktop variety of OpenGL, making porting applications, particularly
vintage ones, a little less painful than having a badger gnaw your face off. The things that were left out
were done so to keep the footprint small on limited-resource devices and to ensure performance was
as good as could be.

Version 2 defenestrated compatibility altogether and concentrated on performance-oriented features
aimed primarily at entertainment software. Among the things left out were glRotate(),
glTranslate(), matrix stack operations, and so on. But what we got in return are some delightful
little morsels such as a programmable-pipeline via the use of shaders. Fortunately, Android comes
with its own matrix and vector libraries (android.opengl.Matrix), which should make any code
migration a little easier.

This topic is much too large to cover in a single chapter (it’s usually relegated to entire books), but
what follows is a general overview that should give you a good feel about shaders and their use and
whether they’re something you’d want to tackle at some point.

10

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: OpenGL ES 2, Shaders, and… 260

Shaded Pipelines
If you have had a passing familiarity with OpenGL or Direct3D, the mere mention of the term shaders
might give you the shivers. They seem like a mysterious talisman belonging to the most secretive
circles of graphics priesthood.

Not so.

The “fixed function” pipeline of version 1 refers to the lighting and coloring of the vertices and
fragments. For example, you are permitted to have up to eight lights, and each light has various
properties. The lights illuminate surfaces, each with their own properties called materials. Combining
the two, we get a fairly nice, but constrained, general-purpose lighting model. But what if you wanted
to do something different? What if you wanted to have a surface fade to transparency depending on its
relative illumination? What if you wanted to accurately model shadows of, say, the rings of Saturn,
thrown upon its cloud decks, or the pale luminescent light you get right before sunrise? All of those
would be next to impossible given the limitations of the fixed-function model, especially the final one
because the lighting equations are quite complicated once you start taking into consideration the
effect of moisture in the atmosphere, backscattering, and so on. Well, a programmable pipeline that
lets you model those precise equations without using any tricks such as texture combiners is exactly
what version 2 gives us.

Shady Triangles
I’m going to start with the Android example projects that should have been installed when you
installed Eclipse and the Android SDK. You should find them in a directory such as
samples/android-10. Look for the massive ApiDemo. When compiled, it will give you a lengthy
menu demonstrating everything from NFC to notification. Scroll down to the graphics section, and
navigate to the OpenGL ES/OpenGL ES2.0 demo. This displays a simple spinning and textured triangle,
as shown in Figure 10–1.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: OpenGL ES 2, Shaders, and… 261

Figure 10–1. The Android SDK example of shaders in action

So, how is this done?

The pipeline architecture of ES 2 permits you to have two different access points in the geometric
processing, as shown in Figure 10–2. The first hands over to your control each vertex along with the
various attributes (for example, xyz coordinates, colors, opacity) information. This is called the vertex
shader. At this point it is up to you to determine what this vertex should look like and how it should be
rendered along with the supplied attributes. When done, the vertex is handed back to the hardware,
rasterized with the data you calculated, and passed on as 2D bits to your fragment (or pixel) shader. It
is here where you can combine the textures as needed, do any final processing, and pass it back to
the system to eventually be rendered in the frame buffer.

If this sounds to you like a lot of work for each fragment of each object in your scene roaring along at
60 fps, you are right. But fundamentally, shaders are small programs that are actually loaded and run
on the graphics hardware itself and, as a result, are very fast.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: OpenGL ES 2, Shaders, and… 262

Figure 10–2. Overview of OpenGL ES 2 architecture

Shader Structure
Both vertex and fragment shaders are similar in structure and look a little like a small C program. The
entry point is always called main() as in C, while the syntax is likewise very C-ish as well.

The shader language, called GLSL (not to be confused with its Direct3d counterpart, HLSL), contains a
rich set of built-in functions that belong to one of three main categories:

 Math operations oriented toward graphics processing such as matrix, vector, trig,
derivative, and logic functions

 Texture sampling

 Small helper utilities such as modulo, comparisons, and valuators

Values are passed to and from shaders in the following types:

 Uniforms, which are values passed from the calling program. These might include
the matrices for transformations, or projection. They are available in both the
vertex and fragment shaders and must be declared as the same type in each
place.

 Varying variables (yes, it is a dumb-sounding name), which are variables defined
in the vertex shader that are passed on to the fragment shader.

Variables may be defined both as the usual numeric primitives or as graphics-oriented types based on
vectors and matrices, as shown in Table 10–1.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: OpenGL ES 2, Shaders, and… 263

Table 10–1. Variable Types Allowed by GLSL

Class Type Description

Primitives float, int, bool Standard definitions apply.

Vectors int, ivec2, ivec3, ivec4,

float, vec2, vec3, vec4

bool, bvec2, bvec3, bvec4

Float, int, and bools are “one-dimensional
vectors.” Boolean vectors hold only bool
values in their components.

Matrices mat2, mat3, mat4 No Boolean matrices here.

In addition to these, you can supply modifiers to define the precision of int-based and float-based
types. These can be highp (24 bit), mediump (16 bit), or lowp (10 bit), with highp being the default. All
transformations must all be done in highp, while colors need only mediump. (It beats me why there is
no precision qualifier for bools, though.)

Any basic types can be declared as constant variables, such as const float x=1.0.

Structures are also allowed and look just like their C counterparts.

Restrictions
Since shaders reside on the GPU, they naturally have a number of restrictions to them limiting their
complexity. They may be limited by “instruction count,” number of uniforms permitted (typically 128),
number of temporary variables, and depth of loop nesting. Unfortunately, on OpenGL ES, there is no
real way to fetch these limits from the hardware, so you can only be aware that they exist and keep
your shaders as small as possible.

There are also differences between the vertex and fragment shaders. For example, highp support is
optional on the fragment shader, whereas it is mandatory on the vertex shader. Bah.

Back to the Spinning Triangle
So, now let’s jump back to the triangle example and break down how a basic OpenGL ES 2 program is
structured. As you’ll see, the process of generating a shader is not unlike generating most any other
application. You have your basic compile, link, and load sequence. Listing 10–1 demonstrates the first
part of that process, compiling the thing.

NOTE: The code in Listing 10--1 comes from the Android example called
GLES20TriangleRenderer.java in the ApiDemo package.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: OpenGL ES 2, Shaders, and… 264

Listing 10–1. Compiling a Shader

 private int createProgram(String vertexSource, String fragmentSource) { //1
 int vertexShader = loadShader(GLES20.GL_VERTEX_SHADER, vertexSource); //2
 if (vertexShader == 0) {
 return 0;
 }

 int pixelShader = loadShader(GLES20.GL_FRAGMENT_SHADER, fragmentSource);
 if (pixelShader == 0) {
 return 0;
 }

 int program = GLES20.glCreateProgram(); //3
 if (program != 0) {
 GLES20.glAttachShader(program, vertexShader); //4
 GLES20.glAttachShader(program, pixelShader);
 GLES20.glLinkProgram(program); //5
 int[] linkStatus = new int[1];
 GLES20.glGetProgramiv(program, GLES20.GL_LINK_STATUS, linkStatus, 0); //6
 if (linkStatus[0] != GLES20.GL_TRUE) {
 Log.e(TAG, "Could not link program: ");
 Log.e(TAG, GLES20.glGetProgramInfoLog(program));
 GLES20.glDeleteProgram(program);
 program = 0;
 }
 }
 return program; //7
 }

private int loadShader(int shaderType, String source) {
 int shader = GLES20.glCreateShader(shaderType); //8
 if (shader != 0) {
 GLES20.glShaderSource(shader, source); //9
 GLES20.glCompileShader(shader); //10
 int[] compiled = new int[1];
 GLES20.glGetShaderiv(shader, GLES20.GL_COMPILE_STATUS, compiled, 0);//11
 if (compiled[0] == 0) {
 Log.e(TAG, "Could not compile shader " + shaderType + ":");
 Log.e(TAG, GLES20.glGetShaderInfoLog(shader));
 GLES20.glDeleteShader(shader);
 shader = 0;
 }
 }
 return shader; //12
 }

In the preceding example, createProgram() is called from your onSurfaceCreated() method,
where much of a given application’s initialization is done. So, let’s trace what’s going on:

 In the argument list of createProgram(), as shown in line 1, strings of the
actual executable code from both shaders are passed. You can do it this way or
have them read in as a text file. Listing 10–2 has both shaders and will be
discussed a little later.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: OpenGL ES 2, Shaders, and… 265

 Lines 2ff call loadShader() for both programs and return their respective
handles.

 Line 3 creates an empty program object. This hosts the two shaders and performs
compatibility checking.

 Lines 4f attach both shaders to the program.

 Linking occurs in line 5. It is advised to check for any possible errors as done in
the lines following. More than just an error code, the GLSL returns very good
messages as to what uniform might be missing or unused, for example:

ERROR: 0:19: Use of undeclared identifier 'normalX'

 If all works, we can return the program in line 7.

 loadShader(), defined in Lines 8ff, performs the actual compile. It first takes the
raw source text and creates a shader of the specified type, (either vertex or
fragment) using glCreateShader(). This returns an empty object that is then
bound to the source text via glShaderSource() in Line 9.

 Line 10 compiles the actual shader, lines 11ff do error checking just as before,
while line 12 returns the validated and compiled object.

If you want any further checks of your shader code, you can “validate” it with
glValidateProgram(). Validation is a way for the OpenGL implementers to return information about
any aspects of your code, such as recommended improvements. You would use this primarily during
the development process.

The shaders are now ready for use. You can specify which one to use at any time while passing values
back and forth between them and your calling code. This will be covered a little later. For now, let’s
take a close-up look at the two demo shaders. The author of this example elected to actually define
the shader text as a large static strings. Others opt for reading them from a file. But in this case I have
reformatted them from the original strings to make them more readable. Listing 10–2 covers the first
half of the shader pair.

Listing 10–2. The Vertex Shader

 uniform mat4 uMVPMatrix; //1
 attribute vec4 aPosition; //2
 attribute vec2 aTextureCoord;
 varying vec2 vTextureCoord //3
 void main //4
 {
 gl_Position = uMVPMatrix * aPosition; //5
 vTextureCoord = aTextureCoord; //6
 }

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: OpenGL ES 2, Shaders, and… 266

Now for a closer look:

 Line 1 defines a 4x4 model/view/perspective matrix uniform passed in from the
calling program. It is really a matter of style if you want to perform the actual
transformations in a shader or up at a higher level. And note that uniforms must
be actually used within the shader, not just declared; otherwise, your calling
program will fail if it tries to reference it.

 Lines 2f declare the attributes that we also specify in the calling code. Remember
that attributes are arrays of data mapping directly to each vertex and are available
only in the vertex shader. In this case, they are the vertex (referred by to the term
position) and its corresponding texture coordinates. The shader is called once for
each vertex.

 Line 3 declares a varying variable of the texture coordinates.

 As with good ol’ C, the entry point is a main(), as shown in line 4.

 In line 5, the position (vertex) is multiplied by the matrix. You can do this either in
the shaders or up in the calling software, which is the more traditional route.

 And finally, line 6 merely copies the texture coordinate to its varying counterpart
so it can be picked up by the fragment shader.

Now the real magic happens in the fragment shader, as shown in Listing 10–3.

Listing 10–3. The Fragment Shader

 precision mediump float; //1
 varying vec2 vTextureCoord; //2

 uniform sampler2D sTexture; //3

 void main()
 {
 gl_FragColor = texture2D(sTexture, vTextureCoord); //4
 }

 You can specify the precision of the shader via line 1, as referenced earlier.

 The varying vTextureCoord is declared in line 2. All varyings must be declared
in both shaders; otherwise, it will generate an error. Furthermore, varyings in the
fragment shader are read-only, while they are read/write in the vertex shader.

 Line 3 declares a sampler2D object. Samplers are built-in uniforms used to pass
the texture information into the fragment shader. Other samplers include
sampler1D and sampler3D.

 gl_FragColor in line 4 is a built-in variable and is used to pass the final color of
the fragment back to the system for display. In this case, we’re just passing back
the color of the texture at the specific point as defined by vTextureCoord. If you
wanted to do any fancier stuff, you’d do it here. For example, you could strip out
the blue and green components, leaving only the red layer to display, add motion
blur, or demonstrate atmospheric backscattering.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: OpenGL ES 2, Shaders, and… 267

Before we can use the shaders, we need to get the “position,” or handles of the uniforms and
attributes inside shaders right after we create the program as described previously. These are used to
hand off any data from the calling methods to the GPU. Listing 10–4 shows the process as used in
onSurfaceCreated() for the spinning triangle.

Listing 10–4. Getting the Handles to the Uniforms and Attributes

 public void onSurfaceCreated(GL10 glUnused, EGLConfig config)
 {
 mProgram = createProgram(mVertexShader, mFragmentShader); //1
 if (mProgram == 0) {
 return;
 }
 maPositionHandle = GLES20.glGetAttribLocation(mProgram, "aPosition"); //2
 if (maPositionHandle == -1) {
 throw new RuntimeException("Could not get attrib location for aPosition");
 }
 maTextureHandle = GLES20.glGetAttribLocation(mProgram, "aTextureCoord"); //3
 if (maTextureHandle == -1) {
 throw new RuntimeException("Could not get attrib location for
 aTextureCoord");
 }

 muMVPMatrixHandle = GLES20.glGetUniformLocation(mProgram, "uMVPMatrix"); //4
 if (muMVPMatrixHandle == -1) {
 throw new RuntimeException("Could not get attrib location for uMVPMatrix");
 }
 }

Lines 1, 2, and 3 get the handles for the attributes using their actual names from inside the shader.
Line 4 gets the handle of the matrix’s uniform. All four handles are saved for use in the main
processing loop of our calling program. The GL10 interface that is passed in is ignored in lieu of the
GLES20 class’s static methods instead.

NOTE: You can either get the locations of the objects as defined by OpenGL or set them yourself
before linking. The latter method lets you ensure that similar uniforms or attributes all leverage
the same handle across the entire family of shaders in your code.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: OpenGL ES 2, Shaders, and… 268

The only thing left now is to execute a shader program and pass any data through to it. Listing 10–5
shows the triangle’s entire onDrawFrame() method to demonstrate this.

Listing 10–5. Calling and Using the Shaders

 public void onDrawFrame(GL10 glUnused) //1
 {
 GLES20.glClearColor(0.0f, 0.0f, 1.0f, 1.0f); //2
 GLES20.glClear(GLES20.GL_DEPTH_BUFFER_BIT | GLES20.GL_COLOR_BUFFER_BIT);
 GLES20.glUseProgram(mProgram); //3

 GLES20.glActiveTexture(GLES20.GL_TEXTURE0); //4
 GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, mTextureID); //5

 mTriangleVertices.position(TRIANGLE_VERTICES_DATA_POS_OFFSET); //6
 GLES20.glVertexAttribPointer(maPositionHandle, 3, GLES20.GL_FLOAT, false, //7
 TRIANGLE_VERTICES_DATA_STRIDE_BYTES, mTriangleVertices);
 GLES20.glEnableVertexAttribArray(maPositionHandle); //8

 mTriangleVertices.position(TRIANGLE_VERTICES_DATA_UV_OFFSET); //9
 GLES20.glVertexAttribPointer(maTextureHandle, 2, GLES20.GL_FLOAT, false,//10
 TRIANGLE_VERTICES_DATA_STRIDE_BYTES, mTriangleVertices);
 GLES20.glEnableVertexAttribArray(maTextureHandle); //11

 long time = SystemClock.uptimeMillis() % 4000L;
 float angle = 0.090f * ((int) time);
 Matrix.setRotateM(mMMatrix, 0, angle, 0, 0, 1.0f); //12
 Matrix.multiplyMM(mMVPMatrix, 0, mVMatrix, 0, mMMatrix, 0);
 Matrix.multiplyMM(mMVPMatrix, 0, mProjMatrix, 0, mMVPMatrix, 0);

 GLES20.glUniformMatrix4fv(muMVPMatrixHandle, 1, false, mMVPMatrix, 0); //13
 GLES20.glDrawArrays(GLES20.GL_TRIANGLES, 0, 3); //14
 }

Now, let’s break this down:

 The argument to onDrawFrame() is the GL10 object. But since this is an OpenGL
ES2 application, the GL10 handle is ignored in lieu of the static functions.

 Lines 2f are just the standard stuff to clear the screen.

 In Line 3 is where the fun begins. glUseProgram() switches on whatever shader
you might want at the time. You can have as many as you need and freely jump
between them.

 The texture we want to pass to the fragment shader is specified in line 4 and
picked up by the sampler2D object. This code represents the actual texture unit
used on the GPU.

 Line 5 binds your local texture handle to this unit.

 Line 6 prepares the actual triangle vertex array object for use by setting its
internal position index to the point at which the actual vertex xyz values start.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: OpenGL ES 2, Shaders, and… 269

 Now we can finally hand off something to the shader, as illustrated in line 7. In
this case, the vertex data is sent down to the shader via
glVertexAtttribPointer(), which takes the handle of the position attribute,
maPosition; the type of data, stride; and a pointer to said data. Line 8 then
enables the use of the array.

 Lines 9, 10, and 11 do the same to the texture coordinates.

 Lines 12ff perform the rotations and projection, using the Android’s own Matrix
libraries (android.opengl.Matrix) since OpenGL ES 2 does not have the
glRotate/glTranslate/glScale functions. Otherwise, you’d need to write your
own math libs.

 We can now take the results of the previous matrix operations and pass them
onto the vertex shader using glUniformMatrix4fv() and the matrix handle we
picked up earlier.

 And now in the last line, we call our old friend glDrawArrays().

So, there you have it. A “simple” shader-based program. That wasn’t so bad, was it? Now we can
revisit our lame solar-system model and show how shaders might be used to make it a little less lame.

Earth at Night
You’re familiar with the daylight image used for the earth’s surface (Figure 10–3, left), but you may
have also seen a similar image of the earth at night (Figure 10–3, right). What would be neat is if we
could show the night texture on the dark side of the earth, instead of just a dark version of the regular
texture map.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: OpenGL ES 2, Shaders, and… 270

Figure 10–3. The daytime earth vs. the nighttime earth

Under OpenGL 1.1 this would be very tricky if not impossible to accomplish. The algorithm should be
relatively simple: render the earth twice, once with the day image and once with the night. Then vary
the daylight-side alpha channel of the texture of the day-side earth based on the illumination. When
illumination reaches 0, it is completely transparent, and the night portion shows through. However,
under OpenGL ES 2, you can code the shaders very easily to match the algorithm almost exactly. (You
could also render the earth once and supply the two textures at the same time. This technique is
covered in the next exercise).

The program is structured like any one of the previous ones, with an “activity” file, a renderer, and in
this case the Planet object.

The first example is all well and good, you’re probably thinking, “But how do we actually command
OpenGL to use the 2.x stuff vs. the 1.x?” Listing 10–6 has the answer.

First we need to detect whether the device actually has support for OpenGL ES 2. The new ones most
assuredly will, but older ones perhaps not. The iPhone never got it until iOS 3.0. That is done via the
getSystemService() method that retrieves a configuration info packet. If that passes, a simple call
to GLSurfaceView().setEGLContextClientVersion(2) does the trick.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: OpenGL ES 2, Shaders, and… 271

Listing 10–6. Invoking OpenGL ES 2

 private boolean detectOpenGLES20()
 {
 ActivityManager am =
 (ActivityManager) getSystemService(Context.ACTIVITY_SERVICE);

 ConfigurationInfo info = am.getDeviceConfigurationInfo();
 return (info.reqGlEsVersion >= 0x20000);
 }

 protected void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 GLSurfaceView view = new GLSurfaceView(this);

 if (detectOpenGLES20())
 {
 view.setEGLContextClientVersion(2);
 view.setEGLConfigChooser(8,8,8,8,16,1);
 view.setRenderer(new SolarSystemRendererES2(this));

 setContentView(view);
 }
 }

Next the earth needs to be generated the usual way. This instance will use 50 slices and 50 stacks,
along with fetching the two textures, as shown in Listing 10–7.

Listing 10–7. Initializing the Earth

 private void initGeometry(GL10 glUnused)
 {

String extensions = GLES20.glGetString(GL10.GL_EXTENSIONS);

 m_DayTexture=createTexture(glUnused, m_Context,

book.SolarSystem.R.drawable.earth_light);
 m_NightTexture=createTexture(glUnused, m_Context,

book.SolarSystem.R.drawable.earth_night);

 m_Earth = new Planet(50, 50, 1.0f, 1.0f, glUnused, myAppcontext,true,-1);
 }

The onSurfaceCreated() method loads and initializes two sets of shaders while calling
initGeometry(), as shown in Listing 10–8.

Listing 10–8. Loading the Shaders

 public void onSurfaceCreated(GL10 glUnused, EGLConfig config)
 {
 int program;

 m_DaysideProgram=createProgram(m_DaySideVertexShader,m_DaySideFragmentShader);
 m_NightsideProgram=createProgram
 (m_NightSideVertexShader,m_NightSideFragmentShader);

 initGeometry(glUnused);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: OpenGL ES 2, Shaders, and… 272

 Matrix.setLookAtM(m_WorldMatrix, 0, 0, 5f, -2, 0f, 0f, 0f, 0.0f, 1.0f, 0.0f);
 }

createProgram() is not much different from the previous example, but it has more uniforms and
attributes to handle. Below, a new attribute for the normals is supplied so that we can handle lighting.
In this example, we’re binding a specific identifier to each attribute so that we can be assured that
both sets of shaders use the same value. It can make things just a bit easier at times. And this must be
done before linking.

 GLES20. glBindAttribLocation(*program, ATTRIB_VERTEX, "aPosition");
 GLES20. glBindAttribLocation(*program, ATTRIB_NORMAL, "aNormal");
 GLES20. glBindAttribLocation(*program, ATTRIB_TEXTURE0_COORDS, "aTextureCoord");

And there are two new uniforms to handle in addition to the one for the model/view/projection matrix.
Unlike the previous example, we still must get the locations after linking, so there is no assurance that
their locations will be in the same places in other instances of the programs unless the programs have
identical sets of variables. Here I cache all uniform handles into a single array that should work with
both sets of shaders. The new uniforms are for the normal matrix and the light position. (For very
simple models, you could actually hard-code the light’s position in the vertex shader itself.)

m_UniformIDs[UNIFORM_MVP_MATRIX]=GLES20.glGetUniformLocation(program,
"uMVPMatrix") ;

m_UniformIDs[UNIFORM_NORMAL_MATRIX]=GLES20.glGetUniformLocation(program,
 "uNormalMatrix");
m_UniformIDs[UNIFORM_LIGHT_POSITION]=GLES20.glGetUniformLocation(program,

"uLightPosition");;

So, the process to adding a new uniform is as follows:

1. Declare it in the shader (i.e., uniform vec3 lightPosition;).

2. Fetch its “location” using glGetUniformLocation(). That merely returns a
unique ID for this session that is then used when setting or getting data from the
shader. (Or use glBindAttribLocation to assign specific location values.)

3. Use one of the many glUniform*() calls to dynamically set the values.

Naturally, the sphere generator will have to be modified a little as well. Leveraging off of the
interleaved data example in the previous chapter, the new draw() method will look something like
Listing 10–9.

Listing 10–9. OpenGL ES 2 Compatible Draw Method in Planet.java

 public void draw(GL10 gl,int vertexLocation,int normalLocation, //1
int colorLocation, int textureLocation,int textureID)

 {
 //Overrides any default texture that may have been supplied at creation time.

 if(textureID>=0) //2
 {
 GLES20.glActiveTexture(GLES20.GL_TEXTURE0);
 GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, textureID);
 }
 else if(m_Texture0>=0)
 {

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: OpenGL ES 2, Shaders, and… 273

 GLES20.glActiveTexture(GLES20.GL_TEXTURE0);
 GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, m_Texture0);
 }

 GLES20.glEnable(GLES20.GL_CULL_FACE);
 GLES20.glCullFace(GLES20.GL_BACK);

 m_InterleavedData.position(0); //3

 GLES20.glVertexAttribPointer(vertexLocation, 3, GLES20.GL_FLOAT,

false,m_Stride, m_InterleavedData);
 GLES20.glEnableVertexAttribArray(vertexLocation);

 m_InterleavedData.position(NUM_XYZ_ELS);

 if(normalLocation>=0)
 {
 GLES20.glVertexAttribPointer(normalLocation, 3, GLES20.GL_FLOAT,

 false,m_Stride, m_InterleavedData);
 GLES20.glEnableVertexAttribArray(normalLocation);
 }

 m_InterleavedData.position(NUM_XYZ_ELS+NUM_NXYZ_ELS);

 if(colorLocation>=0)
 {
 GLES20.glVertexAttribPointer(colorLocation, 4, GLES20.GL_FLOAT,
 false,m_Stride, m_InterleavedData);
 GLES20.glEnableVertexAttribArray(colorLocation);
 }

 m_InterleavedData.position(NUM_XYZ_ELS+NUM_NXYZ_ELS+NUM_RGBA_ELS);

 GLES20.glVertexAttribPointer(textureLocation, 2, GLES20.GL_FLOAT,

false,m_Stride, m_InterleavedData);
 GLES20.glEnableVertexAttribArray(textureLocation);

 GLES20.glDrawArrays(GLES20.GL_TRIANGLE_STRIP, 0, (m_Slices+1)*2*(m_Stacks-1)+2);
 }

As with other routines, we ignore the GL10 object passed to this and use the GLES20 static calls
instead.

 In line 1, notice all of the additional arguments. These allow the handles, or
locations, of the various attributes to be passed through and used here.

 Lines 2ff permit us to use a texture defined at object creation or swap in another
at runtime.

 Lines 3ff set the attribute pointers the standard way as demonstrated earlier.
After each pointer is set for a specific kind of data, the interleaved index is
advanced to the start of the next data block.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: OpenGL ES 2, Shaders, and… 274

Next we can look at the actual shaders, specifically, the vertex first in Listing 10–10. As with the
previous ones, these shaders have been reformatted for readability. Note that for this and the next
example, the day and night-side vertex shaders are identical.

Listing 10–10. Vertex Shader for the Day and Night Sides

 attribute vec4 aPosition;
 attribute vec3 aNormal; //1
 attribute vec2 aTextureCoord;
 varying vec2 vTextureCoord;
 varying lowp vec4 colorVarying;
 uniform vec3 uLightPosition; //2
 uniform mat4 uMVPMatrix;
 uniform mat3 uNormalMatrix; //3

 void main()
 {

 vTextureCoord = aTextureCoord;
 vec3 normalDirection = normalize(uNormalMatrix * aNormal);//4
 float nDotVP = max(0.0, dot(normalDirection, normalize(uLightPosition)));
 vec4 diffuseColor = vec4(1.0, 1.0, 1.0, 1.0);
 colorVarying = diffuseColor * nDotVP;
 gl_Position = uMVPMatrix * aPosition; //5

 }

We have three new parameters to worry about here, not to mention the lighting.

 Line 1 is the normal attribute for this vertex, needed of course for the lighting
solutions.

 Line 2 supplies the light’s position via a uniform.

 And line 3 supports a matrix for the normals. Why is there a separate matrix for
normals when they should be just like the vertices? Under most cases, they are,
but the normals will break down under certain conditions, such as when scaling
your geometry unevenly in just a single direction. So, to isolate it from those
situations, a separate matrix is needed.

 Lines 4ff do the lighting calculations. First the normal is normalized (I always get a
kick out of saying that) and when multiplied by the normal’s matrix produces the
normalized normal direction. Normally.

After that we take the dot product of the normal’s direction and the normalized
light position. That gives us the intensity of the light on a given vertex.

After that a diffuse color is defined. It is set to all ones, since the sunlight is
defined as white. (Hint, setting it to red really looks cool.) The diffused color is
multiplied by the intensity, and the final result is then passed on to the fragment
shader.

 Line 5 handles the final position of the vertex by multiplying the original vertex by
the model/view/projection matrix. gl_Position is a built-in varying just for this
purpose and needs not be declared.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: OpenGL ES 2, Shaders, and… 275

The fragment shaders for both sides are different since the dark side will be handling the illumination
differently than the daylight side. Listing 10–11 is the fragment shader for the day side.

Listing 10–11. Fragment Shader for the Daylight Side of Earth

 varying lowp vec4 colorVarying;
 precision mediump float;
 varying vec2 vTextureCoord;
 uniform sampler2D sTexture;
 void main()
 {
 gl_FragColor = texture2D(sTexture, vTextureCoord)*colorVarying;
 }

This should look identical to the triangle’s shader, except with the addition of colorVarying. Here the
output derived from the sTexture is multiplied by the color for the final result.

However, things are a little more interesting on the night side, as shown in Listing 10–12.

Listing 10–12. Fragment Shader for the Night Side of the Earth

 varying lowp vec4 colorVarying;
 precision mediump float;
 varying vec2 vTextureCoord;
 uniform sampler2D sTexture;
 void main()
 {
 vec4 newColor;
 newColor=1.0-colorVarying;
 gl_FragColor = texture2D(sTexture, vTextureCoord)*newColor;
 }

You’ll notice that the parameters are the same as the other shader, but we get a couple of extra lines
of code to calculate the coloring for the night side. Since we can do a dissolve from one texture to
another based on illumination, it stands to reason that the coloring of the night side would be 1.0-
daylight coloring. The nice vector libraries of the GLSL make math operations like these very simple to
do.

Listing 10–13 shows the onDrawFrame() to finalize all of the operations.

Listing 10–13. Putting It All Together
 public void onDrawFrame(GL10 glUnused)
 {

 GLES20.glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
 GLES20.glClear(GLES20.GL_DEPTH_BUFFER_BIT | GLES20.GL_COLOR_BUFFER_BIT);

 m_Angle+=0.20;

 Matrix.setRotateM(m_MMatrix, 0,m_Angle, 0, 1.0f, 0.0f); //1
 Matrix.multiplyMM(m_MVMatrix, 0, m_WorldMatrix, 0, m_MMatrix, 0);
 Matrix.multiplyMM(m_MVPMatrix, 0, m_ProjMatrix, 0, m_MVMatrix, 0);

 m_NormalMatrix[0]=m_MVMatrix[0]; //2

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: OpenGL ES 2, Shaders, and… 276

 m_NormalMatrix[1]=m_MVMatrix[1];
 m_NormalMatrix[2]=m_MVMatrix[2];
 m_NormalMatrix[3]=m_MVMatrix[4];
 m_NormalMatrix[4]=m_MVMatrix[5];
 m_NormalMatrix[5]=m_MVMatrix[6];
 m_NormalMatrix[6]=m_MVMatrix[8];
 m_NormalMatrix[7]=m_MVMatrix[9];
 m_NormalMatrix[8]=m_MVMatrix[10];

 GLES20.glUseProgram(m_NightsideProgram); //3
 checkGlError("glUseProgram:nightside");

 GLES20.glUniformMatrix4fv(m_UniformIDs[UNIFORM_MVP_MATRIX], 1, false,
 m_MVPMatrix, 0);
 GLES20.glUniformMatrix3fv(m_UniformIDs[UNIFORM_NORMAL_MATRIX], 1, false,
 m_NormalMatrix,0);
 GLES20.glUniform3fv(m_UniformIDs[UNIFORM_LIGHT_POSITION], 1, m_LightPosition,0);

 m_Earth.setBlendMode(m_Earth.PLANET_BLEND_MODE_FADE); //4
 m_Earth.draw(glUnused,ATTRIB_VERTEX,ATTRIB_NORMAL,-1,

ATTRIB_TEXTURE0_COORDS,m_NightTexture);
 checkGlError("glDrawArrays");

 GLES20.glUseProgram(m_DaysideProgram); //5
 checkGlError("glUseProgram:dayside");

 GLES20.glUniformMatrix4fv(m_UniformIDs[UNIFORM_MVP_MATRIX], 1, false,
 m_MVPMatrix, 0);
 GLES20.glUniformMatrix3fv(m_UniformIDs[UNIFORM_NORMAL_MATRIX], 1, false,
 m_NormalMatrix,0);
 GLES20.glUniform3fv(m_UniformIDs[UNIFORM_LIGHT_POSITION], 1, m_LightPosition,0);

 m_Earth.draw(glUnused,ATTRIB_VERTEX,ATTRIB_NORMAL,-1,
 ATTRIB_TEXTURE0_COORDS,m_DayTexture);
 checkGlError("glDrawArrays");
 }

Here’s what’s going on:

 Lines 1ff perform the expected rotations, first on the Y-axis, multiplied by the
world matrix and then the projection matrix.

 Lines 2ff are a bit of a cheat. Remember what I said a little earlier about needing a
normal matrix? In the reduced case, we can just use the modelview matrix, or at
least part of it. Since the normal matrix is only 9x9 (eschewing translation
components), we slice it out the rotational part of the larger 4x4 modelview
matrix.

 Now the night-side part of the program is switched in, as shown in line 3.
Afterward, the uniforms are populated.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: OpenGL ES 2, Shaders, and… 277

Line 4 sets a blend mode similar to the ones from OpenGL ES 1.1. In this case we
nudge the system to actually recognize that alpha is to be used to actually
manage translucency. The lower the alpha, the more translucent this one
fragment. Right after that, the dark side is drawn.

Line 5 now switches us over to the daylight program and does much of the same
stuff.

Figure 10–4 should be the result. You can see now how easy it is to do very subtle effects, such as
illumination from a full moon or reflection of the sun in the ocean.

Figure 10–4. Illuminating the darkness one fragment at a time

Bring in the Clouds
So, it certainly seems as if something else is missing. Oh, yeah. Those cloud things. Well, we’re in luck
because shaders can very easily manage that as well. Available in the downloadable project files, I’ve
added a cloud map of the entire earth, as shown in Figure 10–5. The land masses are a little hard to
see, but in the lower right is Australia, while in the left half you should be able to make out South
America. So, our job is to overlay it on top of the color landscape map and drop out all of the dark bits.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: OpenGL ES 2, Shaders, and… 278

Figure 10–5. Full-earth cloud patterns

Not only are we going to add clouds to our model, we’ll also see how to handle multitexturing using
shaders, as in, how does one tell a single shader to use more than one texture? Remember the lesson
about texture units in Chapter 6? They come in really handy right now, because that is where the
textures are stored, ready for the fragment shader to pick them up. Normally, for a single texture, the
system defaults in a way that no additional setup is needed, save for the normal call to
glBindTexture(). However, if you want to use more than one, there is some setup required. The
steps are as follows:

1. Load the new texture in your main program.

2. Add a second uniform sampler2D to your fragment shader to support a second
texture and pick it up via glGetUniformLocation().

3. Tell the system which texture unit to use with which sampler.

4. Activate and bind the desired textures to the specified TUs while in the main loop.

Now to a few specifics: you already know how to load textures; that is, of course, a no-brainer. So for
step 2, you will want to add something like the following to the fragment shader, the same one used
for the previous couple of exercises:

 uniform sampler2D sCloudTexture;

And to createProgram():

m_UniformIDs[UNIFORM_SAMPLER0] = GLES20.glGetUniformLocation(program, "sTexture");

m_UniformIDs[UNIFORM_SAMPLER1] = GLES20.glGetUniformLocation(program, "sCloudTexture");

Step 3 is added to onSurfaceCreated(). The glUniform1i() call takes the location of the uniform
in the fragment shader for the first argument and takes the actual texture-unit ID in the second. So in
this case, sampler0 is bound to texture unit 0, while sampler1 goes to texture unit 1. Since a single
texture always defaults to TU0 as well as the first sampler, the setup code is not universally needed.

 GLES20.glUseProgram(m_DaysideProgram);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: OpenGL ES 2, Shaders, and… 279

 GLES20.glUniform1i(m_UniformIDs[UNIFORM_SAMPLER0],0);
 GLES20.glUniform1i(m_UniformIDs[UNIFORM_SAMPLER1],1);

 GLES20.glUseProgram(m_NightsideProgram);
 GLES20.glUniform1i(m_UniformIDs[UNIFORM_SAMPLER0],0);
 GLES20.glUniform1i(m_UniformIDs[UNIFORM_SAMPLER1],1);

When running the main loop in onDrawFrame(), in step 4, you can do the following to turn on both
textures:

 GLES20.glActiveTexture(GLES20.GL_TEXTURE0);
 GLES20.glBindTexture(GLES20.GL_TEXTURE_2D,m_NightTexture);

 GLES20.glActiveTexture(GLES20.GL_TEXTURE1);
 GLES20.glBindTexture(GLES20.GL_TEXTURE_2D,m_CloudTexture);

 GLES20.glUseProgram(m_NightsideProgram);

glActiveTexture() specifies what TU to use followed by a call to bind the texture. Afterward, the
program can be used to the desired effect.

The cloud-lovin’ fragment should now look something like Listing 10–14 to perform the actual
blending.

Listing 10–14. Blending a Second Texture with Clouds on Top of the Others

 varying lowp vec4 colorVarying;
 precision mediump float;
 varying vec2 vTextureCoord;
 uniform sampler2D sTexture;
 uniform sampler2D sCloudTexture; //1

 void main()
 {
 vec4 cloudColor;
 vec4 surfaceColor;
 cloudColor=texture2D(sCloudTexture, vTextureCoord); //2
 surfaceColor=texture2D(sTexture, vTextureCoord);

 if(cloudColor[0]>0.2) //3
 {
 cloudColor[3]=1.0;
 gl_FragColor=(cloudColor*1.3+surfaceColor*.4)*colorVarying;
 }
 else
 gl_FragColor = texture2D(sTexture, vTextureCoord)*colorVarying;
 }

z
www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: OpenGL ES 2, Shaders, and… 280

Here’s what is happening:

 Line 1 merely declares the new cloud texture.

 In line 2, we pick up the cloud color from the cloud sampler object.

 The new color is filtered and merged with the earth’s surface image in lines 3ff.
Since the clouds are neutral in color, all we need to do is to analyze one color
component, red in this case. If it is brighter than a given value, then blend it with
the earth’s surface texture. The numbers used are quite arbitrary and can be
tweaked based on your taste. Naturally, much of the finer detail will have to be
cut out to ensure the colored landmasses show through.

The cloudColor is given a slight boost with the 1.3 multiplier while the
underlying surface is uses only .4 so as to emphasize the clouds a little more,
while still making them relatively opaque.

Below threshold of .2, just send back the surface coloring.

Since the clouds are grayscale objects, I need to pick up only a single color to
test, because the normal RGB values are identical. So, I opted to handle all texels
brighter than .2. Then I ensure that the alpha channel is 1.0 and combine all three
components together.

Ideally you’ll see something like Figure 10–6. Now that’s what I call a planet!

Figure 10–6. Adding cloud cover to the earth

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: OpenGL ES 2, Shaders, and… 281

But What About Specular Reflections?
Just as any other shiny thing (and the earth is shiny in the blue parts), you might expect to see
reflections of the sun in the water. Well, you’d be right. Figure 10–7 shows a real image of earth, and
right in the middle is the reflection of the sun. Let’s try it on our own earth.

Figure 10–7. Earth seen from space as it reflects the sun

Naturally we are going to have to write our own specular reflection shader, or, in this case, add it to
the existing daylight shader.

Listing 10–15 is for the daylight vertex shader. We’ll just do the one side, but a full moon would likely
have a similar effect on the night side. Here I precalculate the specular information along with normal
diffuse coloring, but the two are kept separate until the fragment shader because not all parts of the
earth are reflective, so the landmasses shouldn’t get the specular treatment.

Listing 10–15. Daylight Vertex Shader for the Specular Reflection

 attribute vec4 aPosition;
 attribute vec3 aNormal;
 attribute vec2 aTextureCoord;
 varying vec2 vTextureCoord;
 varying lowp vec4 colorVarying;
 varying lowp vec4 specularColorVarying; //1
 uniform vec3 uLightPosition;
 uniform vec3 uEyePosition;
 uniform mat4 uMVPMatrix;
 uniform mat3 uNormalMatrix;

 void main()
 {

 float shininess=25.0;
 float balance=.75;
 float specular=0.0;
 vTextureCoord = aTextureCoord;
 vec3 normalDirection = normalize(uNormalMatrix * aNormal);
 vec3 lightDirection = normalize(uLightPosition);
 vec3 eyeNormal = normalize(uEyePosition);
 vec4 diffuseColor = vec4(1.0, 1.0, 1.0, 1.0);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: OpenGL ES 2, Shaders, and… 282

 float nDotVP = max(0.0, dot(normalDirection, lightDirection));
 //2
 float nDotVPReflection = dot(reflect(-
 lightDirection,normalDirection),eyeNormal);
 specular = pow(max(0.0,nDotVPReflection),shininess)*balance; //3
 specularColorVarying=vec4(specular,specular,specular,0.0); //4
 colorVarying = diffuseColor * nDotVP*1.3;
 gl_Position = uMVPMatrix * aPosition;

 }

 Line 1 declares a varying variable to hand the specular illumination off to the
fragment shader.

 We now need to get the dot product of the reflection of the light and the
normalized normal multiplied normally by the normalmatrix in a normal fashion.
Line 2. Notice the use of the reflect() method, which is another one of the
niceties in the shader language. reflect() generates a reflected vector based
on the negative light direction and the local normal. That is then dotted with the
eyeNormal.

 In line 3, the previous dot product is taken and used to generate the actual
specular component. You will also see our old friend shininess, and just as in
version 1 of OpenGS ES, the higher the value, the narrower and “hotter” the
reflection.

 Since we can consider the sun’s color just to be white, the specular color in line 4
can have all its components set to the same value.

Now the fragment shader can be used to refine things even further, as shown in Listing 10–16.

Listing 10–16. The Fragment Shader That Handles the Specular Reflection

 varying lowp vec4 colorVarying;
 varying lowp vec4 specularColorVarying; //1
 precision mediump float;
 varying vec2 vTextureCoord;
 uniform sampler2D sTexture;
 uniform sampler2D sCloudTexture;

 void main()
 {
 vec4 finalSpecular=vec4(0,0,0,1);

 vec4 cloudColor;
 vec4 surfaceColor;
 float halfBlue;

 cloudColor=texture2D(sCloudTexture, vTextureCoord);
 surfaceColor=texture2D(sTexture, vTextureCoord);

 halfBlue=0.5*surfaceColor[2]; //2

 if(halfBlue>1.0) //3
 halfBlue=1.0;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: OpenGL ES 2, Shaders, and… 283

 if((surfaceColor[0]<halfBlue) && (surfaceColor[1]<halfBlue)) //4
 finalSpecular=specularColorVarying;

 if(cloudColor[0]>0.2)
 {
 cloudColor[3]=1.0;
 gl_FragColor=(cloudColor*1.3+surfaceColor*.4)*colorVarying;
 }
 else
 gl_FragColor=(surfaceColor+finalSpecular)*colorVarying; //5
 }

The main task here is to determine which fragments represent sea and which do not. It’s pretty easy;
the blue stuff is water (powerful wet stuff that water!) and everything that isn’t isn’t.

 In line 1, we pick up the specularColorVarying variable.

 In line 2, we pick up the blue component and divide it by half, clamping it in line 3,
since no color can actually go above full intensity.

 Line 4 does the filtering. If the red and green components were both less than half
that of the blue, it’s a pretty safe bet that we can draw the specular glint on top of
the water, instead of some place like Chad.

 The specular piece is now added to the fragment color in the last line, after first
multiplying it with the colorVarying, because that will modulate it with
everything else.

Figure 10–8 shows the results sans clouds, and Figure 10–9 shows the results with clouds.

Figure 10–8. A close-up on the right of the earth/water interface

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: OpenGL ES 2, Shaders, and… 284

Figure 10–9. The completed earth, for now at least

This is just a single and very simple example of using shaders to enhance the realism of any scene you
render. When it comes to space themes, for example, you might generate a hazy atmosphere around a
planet or 3D volumetric textures to simulate galaxies or nebula. If only I had another ten chapters….

If you want to go ahead and reproduce the entire Chapter 8 project for extra credit with lens flare,
widgets, and so on, feel free to do so.

Summary
In this final chapter, you learned a little about OpenGL ES 2, the programmable pipeline version of ES,
saw how and where shaders fit it in, and used them to add some extra detail to the earth. For extra
credit, however, see about porting the rest of the simulator to version 2.

Throughout this book, you’ve learned basic 3D theory, both in the math involved and in the overall
principles. I’d like to think that it’s given you a basic feel or understanding of the topic, even knowing
that the book could be many times larger, considering that we’ve barely touched 3D graphics.

The Khronos Group, the keepers of all things officially OpenGL, has published several extensive books
on the subject. Affectionately known by the color of their cover, they have the Red Book (the official
programming guide), the Blue Book, (tutorials and reference), the Orange Book (shading language), the
Green Book, (Open GL on the Mac), and the Sort-of-Purplish Book (OpenGL ES 2). There are also

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: OpenGL ES 2, Shaders, and… 285

numerous other third-party books that get much deeper then I’ve been able to go. Likewise, there are
many sites on the Web dedicated to OpenGL tutorials; http://nehe.gamedev.net is by far one of
the best with nearly 50 different tutorials as of this writing. And NVidia has a series of excellent guru-
level books free for the downloading called GPU Gems. These cover things from rendering water
caustics to waving fields of grass. They’re certainly worth a look.

And as you’re going over the work of other authors, be it from other books or on the Web, just
remember that this book is the one that gave you the sun, the earth, and the stars. Not many others
can claim that.

www.it-ebooks.info

http://nehe.gamedev.net
http://www.it-ebooks.info/

287

Index

Symbols and Numbers
2D graphics, moving to 3D graphics from, 48–63

 geometry, 49–53
 rendering code, 53–63

2D transformations, 26–31
 rotations, 27–29
 scaling, 30–31
 translations, 26

3D graphics, 43–76
 moving from 2D graphics to, 48–63

 geometry, 49–53
 rendering code, 53–63

 solar system model, 64–76
 theory, 43–48

 coordinates, 43–46
 viewing frustum and Projection matrix,

46–48
3D movies, 11
3D shuffle, 58
3D transformations, 31–42

 inverse, 41–42
 projecting object onto screen, 37–41
 quaternions, 42

A
AffineTransform() method, 29
alpha blending, 150–159

 functions for, 152–157
 multicolor, 158–159

ambient lighting, 81, 93–95
am.getDeviceConfigurationInfo() method, 271
angle of incidence, 81, 100–101
angle of reflectance, 100
ApiDemo package, 263

arbitrary vertex, 98
array vertices, 53
attenuation

 overview, 97–98
 for specular reflections, 104

B
banding artifacts, 113–114
batching operations, 255
bb.asFloatBuffer() method, 71
bb.order.ByteOrder.nativeOrder() method, 71
binary space partitioning (BSP), 114
BitmapFactory.decodeResource.contextRegf.getR

esources() method, 124
blending, 149–176

 alpha blending, 150–159
 functions for, 152–157
 multicolor, 158–159

 texture blending, 159–176
 mapping with bumps, 167–176
 multitexturing, 161–167

b_lens_flare.setBackgroundDrawable.getResourc
es() method, 244

b_line.setBackgroundDrawable.getResources()
method, 244

blob shadows, 204
b_name.setBackgroundDrawable.getResources()

method, 244
bouncy square example, 124–141

 filtering, 138–140
 mipmaps, 134–138
 OpenGL extensions, 140–141

BSP (binary space partitioning), 112
bumps, mapping with, 167–176
Button.OnClickListener() method, 244–245

www.it-ebooks.info

http://www.it-ebooks.info/

■ INDEX

288

buttons, in solar system example, 243–246
byteBuffer.asIntBuffer() method, 81

C
calculateShadowMatrix() method, 205, 208
CCW face, 63
CGPoint() method, 189, 231–233
CGSize() method, 189, 231–233
clipping, regions, 61–62
clockwise rotations, 27
clouds, for earth at night example, 277–280
CMYK (cyan-magenta-yellow-black), 79–80
color array, 51, 68–70
color attachment, 183
color index, 65, 70
colors, using fewer, 256–257
colorVarying, 274–275, 279, 281–283
COM interface, 19
combineParameter, 163–165
computer graphics

 exercise with, 2–10
 history of, 11–18

 in Hollywood, 11–12, 15–18
 at MIT, 12–13
 at University of Utah, 14–15

 OpenGL architecture, 21–22
 toolkits for, 18–21

 Direct3D API, 19
 OGRE graphics engine, 20
 OpenSceneGraph API, 20
 QuickDraw 3D API, 20
 Unity3D game engine, 20–21

concatenation, 29
context.getResources() method, 189
contextRegf.getResources() method, 136
coordinate transformation, 26
coordinates

 eye, 46
 OpenGL, 44–45

counterclockwise rotations, 27
createImage() method, 159
createInterleavedData() method, 248–249
createProgram() method, 264, 272, 278

createTexture() method, 124–127, 134–138, 140,
142, 145, 181

CreateTexture() method, 228
CubeRenderer.java, 54
culling, face, 63
cyan-magenta-yellow-black (CMYK), 79–80

D
degenerate triangles, 70
DIB (Windows Bitmap Format), 126
diffuse light, 80
diffuse reflectance, 100
Direct3D API, 19
draw() method, 87, 129, 137, 147, 173, 252,

272
drawable.getGL() method, 81
drawShadow() method, 206, 208–209

E
earth at night example, 269–284

 clouds for, 277–280
 specular reflections in, 281–284

emissive materials, 95–96
ev.getX() method, 218–219
ev.getY() method, 218–219
execute() method, 110, 174, 228, 230, 237
executePlanet() method, 111, 173, 230,

233–234
extensions, for OpenGL, 140–141
eye coordinates, 46

F
face culling, 63
FBOController() method, 184
FBOController.java, 178
field of view (FOV), 46, 62
fill lighting, 103–105
filtering, textures, 138–140
FloatBuffer objects, 249
formats, for textures, 123–124
FOV (field of view), 47, 62
fragment shader, 261
frame buffer objects, 178–185

www.it-ebooks.info

http://www.it-ebooks.info/

■ INDEX

289

 hedley buffer objects, 178–185
 sun buffer objects, 185

Fresnel Law of Reflection, 101
frustum, 38–39, 43, 45–48, 55–56, 61–62, 75–76
functions, for alpha blending, 152–157
fv suffix, 84

G
geometric transformation, 26
geometry, 49–53
getFBOName() method, 180
getSystemService() method, 270
getTextureName() method, 180
getWindow() method, 9, 244
GIF (Graphic Interchange Format), 126
GL object, 145
GL Utility Toolkit (GLUT), 64
GL10.GL_DEPTH_TEST, 63
GL10.GL_LINE_LOOP, 52
GL10.GL_LINES, 52
GL10.GL_LINE_STRIP, 52, 74
GL10.GL_MODELVIEW, 55–56, 72
GL10.GL_POINT-SMOOTH, 63
GL10.GL_POINTS, 52, 74
GL10.GL_TRIANGLE_FAN, 52
GL10.GL_TRIANGLES, 52
GL10.GL_TRIANGLE_STRIP, 52, 71, 74
GL11ExtensionPack, 178–183
glActiveTexture() method, 163, 279
GL_ADD, 164–167
GL_ADD_SIGNED, 167
GL_ALPHA_TEST, 258
GL_ALWAYS function, 196
GL_AMBIENT parameter, 93–94, 99
GL_ARRAY_BUFFER, 249–252
glBindAttribLocation, 272
glBindBuffer() method, 248
glBindTexture() method, 147, 278
GL_BLEND, 151, 164–166
glBlendFunc() method, 152
glClear() method, 184, 200
glClientActiveTexture() method, 163
glColor() method, 172
glColor4f, 150–1, 153, 160, 171–172

GL_COLOR_ATTACHMENT0_OES, 179, 183
glColorMask() method, 157
glColorPointer() method, 139, 158
GL_CONSTANT_ATTENUATION, 97, 99
glCreateProgram() method, 264
glCreateShader() method, 265
GL_DECAL, 164–166
GL_DECR, 197, 203
GL_DECR_WRAP, 197
glDeleteTextures() method, 125
GL_DEPTH_ATTACHMENT_OES, 179, 183
GL_DEPTH_STENCIL_ATTACHMENT, 183
GL_DIFFUSE parameter, 83, 91, 99, 104,

108–109
glDisable() method, 255
GL_DOT3_RGB, 167, 171–172
GL_DOT3_RGBA, 167–168, 172
glDrawArray() method, 184
glDrawArrays() method, 248, 252, 269
glDrawElements() method, 210, 248
GL_ELEMEN_ARRAY_BUFFER, 250
GL_EMISSION, 95, 109
glEnable() method, 255
glEnableClientState() method, 128
glEnable*Pointer() method, 252
GLES20TriangleRenderer.java, 263
GL_FLAT, 83, 89, 106
gl_FragColor, 266, 275, 279, 283
glFrontFace() method, 95
glGenTextures() method, 125
glGet*() method, 82
glGetError() method, 258
glGetLight method, 106
glGetLightfv() method, 83
glGetUniformLocation() method, 272, 278
gl.glClearColor, 54, 71
gl.glDrawArray() method, 53
gl.glEnable() method, 63
gl.glEnable method, 83, 87, 91, 96, 105, 108
gl.glFrustum() method, 56
gl.glLoadIdentity() method, 6, 55, 72, 91, 105, 137, 150,

181–182, 190, 199, 205, 222
gl.glMatrixMode() method, 48

www.it-ebooks.info

http://www.it-ebooks.info/

■ INDEX

290

gl.glPopMatrix() method, 109, 175, 181–182, 191,
198–200, 209, 231–232, 235

gl.glPushMatrix() method, 109, 175, 181, 190
198–199, 208, 231–232, 234

gl.glRotatef() method, 54, 59
gl.glScale() method, 59
gl.glScalef() method, 54
gl.glScalex() method, 54
gl.glTranslatef() method, 56, 58
glHint() method, 8, 140
GL_INCR, 197, 203
GL_INTERPOLATE, 167
GL_INVERT, 197
GL_KEEP, 196–197
glLight* method, 99, 106
glLightf() method, 84
glLightfv() method, 83–84
glLightModel method, 106
glLightModelfv, 94
GL_LINEAR_ATTENUATION, 97, 99
GL_LINES type, 210
glMakeAwesomeLightsDude() method, 82
glMaterialfv method, 91–92, 94–95, 104–106,

108–110
glMatrixMode() method, 111
GL_MODULATE, 163–167, 172
glNormal method, 106
glNormal3f, 88
glNormalPointer method, 88, 106
gl.onDrawFrame() method, 62, 72
gl.onDrawFrames() method, 56
GL_ONE_MINUS_SRC_COLOR, 191, 199–200
glOrthof() method, 189, 192
glPopMatrix method, 106, 109–111
glPopMatrix() method, 110–111
glPopMatrix method, 113
gl_Position, 265, 274, 282
GL_POSITION parameter, 83, 91, 99, 104,

108–109
GL_PREVIOUS, 171–172
GL_PRIMARY_COLOR, 172
GL_PROJECTION, 190–192
glPushMatrix() method, 106, 109–110, 192
GL_QUADRATIC_ATTENUATION, 97, 99, 104, 108

glReadPixels() method, 258
GL_REPLACE, 164, 167, 196–197
glRotate() method, 46, 216, 259
glRotatef() method, 111, 214–216, 226
glScalef() method, 68
glShadeModel() method, 83, 89, 91, 105–106,

108
glShaderSource() method, 265
GL_SMOOTH, 83–84, 89, 91, 105–106, 108–109
GL_SOURCE0_RGB, 167
GL_SPECULAR parameter, 92, 99, 104–105, 108–109
GL_SPOT_CUTOFF, 98–99
GL_SPOT_DIRECTION, 98–99
GL_SPOT_EXPONENT, 98–99
GL_STENCIL_BUFFER_BIT, 199–200
glStencilFunc() method, 197
glStencilOp() method, 197, 203
GL_SUBTRACT, 167
GLSurfaceView() method, 270
GLSurfaceView object, 113, 177
GLSurfaceView.Renderer interface, 71
glTexEnvf() method, 161
GL_TEXTURE_MAG_FILTER, 125–126, 136
GL_TEXTURE_MIN_FILTER, 125–126, 136
GL_TEXTURE_WRAP, 126
glTranslate() method, 46, 110, 259
glTranslatef() method, 191–192, 233
gluGetOrientation() method, 226
gluGetScreenCoords() method, 228
gluGetScreenLocation() method, 228, 230
gluLookAt() method, 224, 226
glUniform() method, 272
glUniformMatrix4fv() method, 268–269, 276
gluProject() method, 228, 230
glUseProgram() method, 268
GLUT (GL Utility Toolkit), 64
glValidateProgram() method, 265
glVertexAtttribPointer() method, 269
glVertexPointer() method, 5
GL_ZERO, 197, 209
Gouraud shading, 95, 104
GPU (graphics processing unit), 248, 250, 253–

254, 256, 258
Graphic Interchange Format (GIF), 127

www.it-ebooks.info

http://www.it-ebooks.info/

■ INDEX

291

graphics processing unit (GPU), 247, 248, 252–
254, 257

H
handleDragGesture() method, 219–220
handlePinchGesture() method, 219–220
hedley buffer objects, 177–183
hedly.png, 124, 127
Hollywood, history of computer graphics in

 3D movies, 11
 overview, 15–18

homogeneous form, 32
HSV color wheel, 79

I
image textures, 118
image.recycle() method, 125
init() method, 82, 173
initGeometry() method, 72, 82–83, 146, 214, 271
initLighting() method, 72, 89–90, 94–95, 97, 103–104
InitLighting() method, 107
interferes, 78
interpolative shading, 95
inverse 3D transformations, 41–42

J
java.awt.geom.AffineTransform, 29
JPEG (Joint Photographic Experts Group), 126

L
Lambert lighting model, 99
lens flares, 212

 overview, 186–188
 in solar system example, 227–235

LensFlare object, 227
LensFlare.java, 192
lighting, 80

 ambient lighting, 93–95
 attenuation, 96–97
 and banding artifacts, 113–114
 and emissive materials, 95–96
 fill, 103–105
 math for, 99–100

 models for, 95
 overview, 77–81
 parameters for, 99
 solar system project, 106–113
 specular lighting, 92–93
 specular reflections, 100–103
 spotlights, 98

lines, in solar system example, 240–241
loadShaders() method, 265
lookAtTarget() method, 224

M
main() method, 262, 266, 274–275, 279, 281–282
makeFloatBuffer() method, 182
makeIntBuffer() method, 182
mapping, with bumps, 165–173
Massachusetts Institute of Technology (MIT), 10–

11
materials, 260
mathematics, 25–42

 coordinates, 44
 for lighting, 99–100
 transformations

 2D, 26–31
 3D, 31–42

matrix multiplication, 29
maxDuplicates, 250–252
mGLSurfaceView.requestFocus() method, 244
Miniglu.gluGetOrientation() method, 222
mipmaps

 optimizing performance for, 256
 overview, 134–138

MIT (Massachusetts Institute of Technology), 12–
13

models, for lighting, 95
modelview matrix, 42, 192
mosaic texture, 134
Motorola Xoom, 253
movies, 3D, 11
m_Quaternion.QuaternionAngle() method, 225
m_Quaternion.QuaternionAxis() method, 225
m_Scale, 65–67, 69
m_Slices*2 value, 69
mSquare.draw() method, 151

www.it-ebooks.info

http://www.it-ebooks.info/

■ INDEX

292

m_Squash, 65, 67, 69
multicolor blending, alpha blending, 161–167
multiTexture, 163, 165
multiTextureBumpMap() method, 171, 174
multitexturing, texture blending, 160–165
myAppcontext.getResources() method, 231
myFlares[i].getVectorPosition() method, 193

N
name.toUpperCase() method, 242
native development kit (NDK), 254
NDC (normalized device coordinates), 48
NDK (native development kit), 254
NFC (Near Field Communications), 2
normalized device coordinates (NDC), 48
NSArray, 193

O
OGRE graphics engine, 20
onCreate() method, 114, 126, 195
onDrawFrame() method, 54, 59, 62, 72, 74, 111, 136,

189, 198–199, 205, 220–221, 268, 275, 279
onSurfaceChanged() method, 8, 72, 184
onSurfaceCreated() method, 63, 72, 83, 134–135,

227, 264, 267, 271, 278
onTouchEvent() method, 217
OpenGL

 coordinates, 44–45
 extensions for, 140–141
 and textures, 118–123

OpenSceneGraph API, 20
orientation.toMatrix() method, 223
orthographic projection, 37, 48

P
parallel projection, 37
parameters, for lighting, 99
PDF (Portable Document Format), 14
performance, 247–258

 batching operations, 255
 for textures, 255–256
 tips for, 258
 using fewer colors, 256–257

 using mipmaps, 256
 using sprite sheets, 255–256
 and vertex buffer objects, 247–254

performance-critical, 254
perspective matrix, 38
perspective projection, 37, 48
phong shading, 95
physiological optics, 79
Planet object, 270
PointF() method, 219
Portable Document Format (PDF), 12
position() method, 166
POT (power-of-two), 124, 127, 129
PowerVR class, 141
prerendered shadow blob, 201
primitives, 52
projecting, object onto screen, 37–41
Projection matrix, 42, 46–48
projection shadows, 204–212
put() method, 166
PVRTC file, 257

Q
quaternions, 42, 215–217
QuickDraw 3D API, 19–20

R
radius parameter, 68
red-green-blue (RGB), 79–81, 159, 165–167, 169
reflect() method, 282
reflective surfaces, 194–200
rendering

 code, 53–63
 spinning, 56–60
 tweaking values, 60–63

 lens flare, 186–194
 reflective surfaces, 194–200
 shadows, 201–212

 blob shadows, 204
 projection shadows, 204–211
 shadow mapping, 201–202
 shadow volumes, 202–203

www.it-ebooks.info

http://www.it-ebooks.info/

■ INDEX

293

renderStage() method, 197, 207
renderTextureAt() method, 228
renderToTextureAt() method, 233
restrictions, for shaders, 263
RGB (red-green-blue), 79–81, 160, 167–172
RGB565 format, 256
RGBA5551 format, 256
Rogers, Ginger, 41
roll, pitch, and yaw (RPY), 35
rotations, 27–29, 49, 57
RPY (roll, pitch, and yaw), 35

S
sampler2D object, 266, 268
scaledX value, 190, 192
scaledY value, 190, 192
scaling, 30–31
screen coordinates, 44
screens, projecting object onto, 37–41
sequence, 51, 58
setClipping() method, 62, 221
setEGLConfigChooser() method, 195
setHoverPosition() method, 221
SGI (Silicon Graphics), 18
shader language, 262, 282
shaders, 260–263

 restrictions for, 263
 structure of, 262–263
 triangle example, 260–269

shading, 80
shadows, 201–212

 blob shadows, 204
 projection shadows, 204–212
 shadow mapping, 201–202
 shadow volumes, 202–203

shininess, 93, 101–102
Silicon Graphics (SGI), 16
slices, 65–66, 68–69, 71, 73–74
solar system example, 141–147, 213–246

 buttons in, 243–246
 lens flare in, 227–235
 lines in, 240–241
 moving things in 3D, 217–227
 overview, 213–215

 and quaternions, 215–217
 stars in, 236–240
 text in, 241–242

solar system model, 64–76
solar system project, 106–113
SolarSystem object, 217
SolarSystemRenderer() method, 71–73, 114
SolarSystemRenderer.this.getApplicationContext()

method, 141
specular exponent, 102
specular lighting, 81, 92–93
specular reflections, 100–103

 attenuation, 102
 in earth at night example, 281–284

spinning, 56–60
spotlights, 98
sprite sheets, and performance, 255–256
Square class, 127
Square() method, 2, 6, 126
Square.draw() method, 159, 162, 166
SquareRenderer.drawFrame() method, 5
squash value, 68, 71
stacks, 65, 67–68, 71, 73–74
stars, in solar system example, 236–240
sTexture, 266, 275, 278–279, 282
structure, of shaders, 262–263
sun buffer objects, 185
SystemClock.uptimeMillis() method, 268

T
tbb.asFloatBuffer() method, 127
tbb.order.ByteOrder.nativeOrder() method, 127
tempImage.recycle() method, 136
texels, 119, 121, 127, 138–139
text, in solar system example, 241–242
texture blending, 159–176

 mapping with bumps, 167–176
 multitexturing, 161–167

textureBuffer, 127
textureCoords, 127, 130–131, 133
TexturePacker, 256–257
textures, 115–148

 bouncy square example, 124–141
 filtering, 138–140

www.it-ebooks.info

http://www.it-ebooks.info/

■ INDEX

294

 mipmaps, 134–138
 OpenGL extensions, 140–141

 formats for, 123–124
 image textures, 118
 and OpenGL ES, 118–123
 optimizing performance for, 255–256
 overview, 116–118
 solar system example, 141–147

theory, for 3D graphics, 43–48
 coordinates, 44–46
 viewing frustum and Projection matrix, 46–

48
this.getApplicationContext() method, 126
tips, for performance, 258
toolkits, for computer graphics, 18–21

 Direct3D API, 19
 OGRE graphics engine, 20
 OpenSceneGraph API, 20
 QuickDraw 3D API, 19–20
 Unity3D game engine, 20–21

transformations, 46, 49, 57–59
translating, 45
translations, 26, 49, 57
triangle example, of shaders, 260–269
triangle fans, 51–54

U
UIImageView object, 26
uniform sampler2D, 266, 275, 278–279, 282
uniforms, 262
Unity3D game engine, 20–21
University of Utah, history of computer graphics

at, 14–15
useVBO, 250, 252

V
values, tweaking, 60–63

 clipping regions, 61–62

 face culling, 63
 FOV, 62

varying variables, 262, 266, 282
vbb.asFloatBuffer() method, 3, 53
vbb.order.ByteOrder.nativeOrder() method, 3, 53
VBOs (vertex buffer objects), and performance,

247–254
vertBuffer, 127
vertex buffer objects (VBOs), and performance,

247–253
vertex index, 65, 70
vertex normal, 84
Vertex Shader, 265, 274, 281
vertex transformation pipeline, 45
vertexData, 65–67, 70
vertices, 53
viewport, 38–42
vTextureCoord, 265–266, 274–275, 279, 281–282

W
Windows Bitmap Format (DIB), 127

X
XML file, 237, 256

Y
Young, Thomas, 78

Z
z-axis, 32–33, 35, 98, 107
zFar, 55, 61–62
zNear, 55–56, 61–62, 75
zoomBias, 190, 192

www.it-ebooks.info

http://www.it-ebooks.info/

 i

Pro OpenGL ES for
Android

■ ■ ■

Mike Smithwick

Mayank Verma

www.it-ebooks.info

http://www.it-ebooks.info/

i

Pro OpenGL ES for Android

Copyright © 2012 by Mike Smithwick and Mayank Verma

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted
from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied
specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of
the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of
the Publisher's location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to
prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-4002-0
ISBN-13 (electronic): 978-1-4302-4003-7

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and
to the benefit of the trademark owner, with no intention of infringement of the trademark.

The images of the Android Robot (01 / Android Robot) are reproduced from work created and shared by Google and
used according to terms described in the Creative Commons 3.0 Attribution License. Android and all Android and
Google-based marks are trademarks or registered trademarks of Google, Inc., in the U.S. and other countries. Apress
Media, L.L.C. is not affiliated with Google, Inc., and this book was written without endorsement from Google, Inc.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be
made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Richard Carey
Technical Reviewer: Leila Muhtasib
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Morgan Ertel, Jonathan Gennick,

Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson, Jeffrey
Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Corbin Collins
Copy Editor: Kim Wimpsett, Linda Seifert
Compositor: Mac,PS
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

www.it-ebooks.info

mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code/
http://www.it-ebooks.info/

To a couple of the greatest parents in the world, who always supported me, never flinching at my wacky requests
such as sending me back to see an Apollo launch or buying a telescope.

–Mike Smithwick

www.it-ebooks.info

http://www.it-ebooks.info/

 v

Contents

■About the Authors . .. x
■About the Technical Reviewer . .. xi
■Acknowledgments xii
■Introduction .. xiii

■CHAPTER 1: Computer Graphics: From Then to Now .
.. 1 Your First OpenGL ES Program .
..2
A Spotty History of Computer Graphics ...11

3D in Hollywood ...11
The Dawn of Computer Graphics12

MIT ..12
University of Utah ..14
Coming of Age in Hollywood ...15

Toolkits18
OpenGL ..18
Direct3D ...19
The Other Guys ..19

QuickDraw 3D ...19
OGRE20
OpenSceneGraph ..20
Unity3D ..20

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

vi

And Still Others ...21
OpenGL Architecture ...21
Summary ...24

■CHAPTER 2: All That Math Jazz .. 25
2D Transformations ..26

Translations ...26
Rotations ..27
Scaling ...30

3D Transformations ..31
Picture This: Projecting the Object onto the Screen ..37
Now Do it Backward and in High Heels ...41
What About Quaternions? ..42

Summary ...42
■CHAPTER 3: From 2D to 3D: Adding One Extra Dimension 43
First, a Little More Theory ...43

OpenGL Coordinates ..44
Eye Coordinates ...46
Viewing Frustum and the Projection Matrix ...46

Back to the Fun Stuff: Going Beyond the Bouncy Square ...48
Adding the Geometry ...49
Stitching It All Together ...53

Taking ’er Out for a Spin ...56
Tweaking the Values ...60

Building a Solar System ...64
Summary ...76

■CHAPTER 4: Turning on the Lights ... 77
The Story of Light and Color ...77
Let There Be Light ...80
Back to the Fun Stuff (for a While) ..81

Fun with Light and Materials ...90
Specular Lighting ..92
Ambient Lighting ...93
Taking a Step Back ...95
Emissive Materials ..95

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

 vii

Attenuation ..97
Spotlights ..99
Light Parameters in Play ...101

The Math Behind Shading ..101
Specular Reflections ..102

Attenuation ..104
Summing It All Up ...104
So, What’s This All For? ..105

More Fun Stuff ...105
Back to the Solar System ..108

And the Banding Played On ...114
Summary ...114

■CHAPTER 5: Textures ... 115
The Language of Texturing ...116

All About Textures (Mostly) ...116
Image Textures ...118
OpenGL ES and Textures ...119
Image Formats ..124

Back to the Bouncy Square One ...125
Mipmaps ...136
Filtering ...140
OpenGL Extensions ...142

Finally, More Solar System Goodness ...143
Summary ...151

■CHAPTER 6: Will It Blend? .. 149
Alpha Blending ..149

Blending Functions ..151
Multicolor Blending ..157

Texture Blending ...159
Multitexturing ..160

GL_BLEND ...163
GL_COMBINE ..163

GL_MODULATE ..163
Mapping with Bumps ...165

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

viii

Summary ...173
■CHAPTER 7: Well-Rendered Miscellany .. 177

Frame Buffer Objects ..177
Hedley Buffer Objects ..177
Sun Buffer Objects ...184

Lens Flare ...185
Reflective Surfaces ...192
Coming of the Shadows ..198

Shadow Mapping ..199
Shadow Volumes ...199
Blob Shadows ...201
Projection Shadows ..201

Summary ...210
■CHAPTER 8: Putting It All Together .. 213

Revisiting the Solar System ...213
What Are These Quaternion Things Anyway? ..215
Moving Things in 3D ..216
Adding Some Flare ...225
Seeing Stars ..233
Seeing Lines ..237
Seeing Text ..237
Seeing Buttons ...239

Summary ...242
■CHAPTER 9: Performance ’n’ Stuff ...247
Vertex Buffer Objects ..247
Batching ..253
Textures ..253
Sprite Sheets ..254
Texture Uploads ..254
Mipmaps ...255
Fewer Colors ...255
Other Tips to Remember ...257
Summary ...257

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

 ix

■CHAPTER 10: OpenGL ES 2, Shaders, and…... 259
Shaded Pipelines ..260

Shady Triangles ...260
Shader Structure ..262
Restrictions ..263

Back to the Spinning Triangle ...263
Earth at Night ..269

Bring in the Clouds ..277
But What About Specular Reflections? ..281

Summary ...284
■Index .. 287

www.it-ebooks.info

http://www.it-ebooks.info/

x

About the Authors

Mike Smithwick’s slow descent into programming computers
began when he first got a little 3-bit plastic DigiComp 1 computer in
1963 (http://en.wikipedia.org/wiki/Digi-Comp_I). Not
too long before that, he got interested in planetariums. Eventually
he graduated to programming NASA flight simulator graphics
through the 1980s. But what he really wanted to do was become a
syndicated cartoonist (really!). Failing to get any syndication deals,
he wrote and sold the popular Distant Suns planetarium program
for the Commodore Amiga, old-school Mac, and Microsoft Windows
while selling himself as a contract programmer on the side,
working for Apple, 3DO, Sense-8, and Epyx. Eventually he landed a
“real” job at Live365, working on client software Windows and
Windows Mobile 6, TiVo, Symbian (ahhh … Symbian …), and

iPhone. After 13 short years he decided to go back to the dark side of contracting, writing, and
working on Distant Suns for mobile devices after it became modest success in the App Store.
Sometimes late at night, he thinks he can hear his Woz-autographed Apple II sobbing for attention
from the garage. He may be contacted via www.distantsuns.com, lazyastronomer on AIM, and
@distantsuns or @lazyastronomer on Twitter.

Mayank Verma completed his master’s degree in computer
science from Arizona State University in 2008. During the program,
he published several research papers in the area of security. Since
then, he has been working as a software developer specializing in
software application design and development. Mayank is
passionate about mobile application development and became
interested in Android programming when the platform was first
launched by Google. When he’s is not working on Android projects,
he spends his spare time reading technical blogs, researching,
analyzing, and testing mobile applications, and hacking gadgets.
He can be contacted at verma.mayank@gmail.com.

www.it-ebooks.info

http://en.wikipedia.org/wiki/Digi-Comp_I
http://www.distantsuns.com
mailto:verma.mayank@gmail.com
http://www.it-ebooks.info/

 xi

About the Technical Reviewer

Leila Muhtasib has been passionate about
programming since she wrote her first program on MS-
DOS. Since then, she's graduated with a Computer
Science degree from the University of Maryland, College
Park. Fascinated by mobile technology and its
increasing ubiquity, she has been programming mobile
apps since the first Android SDK was released. She is
now a Senior Software Engineer and Tech Lead of a
mobile development team at Cisco Systems.

www.it-ebooks.info

http://www.it-ebooks.info/

xii

Acknowledgments

Thanks to Corbin Collins and Richard Carey, our long-suffering editors, for putting up
with first-time authors, who clearly need to read Writing Android Books for
Beginners. And to Leila Muhtasib, our tech editor, who was every bit as good as we
thought she would be.

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction

	Computer Graphics: From Then to Now
	Your First OpenGL ES Program
	A Spotty History of Computer Graphics
	3D in Hollywood
	The Dawn of Computer Graphics
	MIT
	University of Utah
	Coming of Age in Hollywood

	Toolkits
	OpenGL
	Direct3D
	The Other Guys
	QuickDraw 3D
	OGRE
	OpenSceneGraph
	Unity3D
	And Still Others

	OpenGL Architecture
	Summary

	All That Math Jazz
	2D Transformations
	Translations
	Rotations
	Scaling

	3D Transformations
	Picture This: Projecting the Object onto the Screen
	Now Do it Backward and in High Heels
	What About Quaternions?

	Summary

	From 2D to 3D: Adding One Extra Dimension
	First, a Little More Theory
	OpenGL Coordinates
	Eye Coordinates
	Viewing Frustum and the Projection Matrix

	Back to the Fun Stuff: Going Beyond the Bouncy Square
	Adding the Geometry
	Stitching It All Together
	Taking ’er Out for a Spin
	Tweaking the Values

	Building a Solar System
	Summary

	Turning On the Lights
	The Story of Light and Color
	Let There Be Light
	Back to the Fun Stuff (for a While)
	Fun with Light and Materials
	Specular Lighting
	Ambient Lighting
	Taking a Step Back
	Emissive Materials
	Attenuation
	Spotlights
	Light Parameters in Play

	The Math Behind Shading
	Specular Reflections
	Attenuation
	Summing It All Up
	So, What’s This All For?

	More Fun Stuff
	Back to the Solar System
	And the Banding Played On
	Summary

	Textures
	The Language of Texturing
	All About Textures (Mostly)
	Image Textures
	OpenGL ES and Textures
	Image Formats

	Back to the Bouncy Square One
	Mipmaps
	Filtering
	OpenGL Extensions

	Finally, More Solar System Goodness
	Summary

	Will It Blend?
	Alpha Blending
	Blending Functions
	Multicolor Blending

	Texture Blending
	Multitexturing
	Mapping with Bumps

	Summary

	Well-Rendered Miscellany
	Frame Buffer Objects
	Hedley Buffer Objects
	Sun Buffer Objects

	Lens Flare
	Reflective Surfaces
	Coming of the Shadows
	Shadow Mapping
	Shadow Volumes
	Blob Shadows
	Projection Shadows

	Summary

	Putting It All Together
	Revisiting the Solar System
	What Are These Quaternion Things Anyway?
	Moving Things in 3D
	Adding Some Flare
	Seeing Stars
	Seeing Lines
	Seeing Text
	Seeing Buttons
	Summary

	Performance ’n’ Stuff
	Vertex Buffer Objects
	Batching
	Textures
	Sprite Sheets
	Texture Uploads
	Mipmaps
	Fewer Colors
	Other Tips to Remember
	Summary

	OpenGL ES 2, Shaders, and…
	Shaded Pipelines
	Shady Triangles
	Shader Structure
	Restrictions

	Back to the Spinning Triangle
	Earth at Night
	Bring in the Clouds
	But What About Specular Reflections?

	Summary

	Index
	Symbols and Numbers
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

