

OpenGL Insights

© 2012 by Taylor & Francis Group, LLC

© 2012 by Taylor & Francis Group, LLC

OpenGL Insights

Edited by
Patrick Cozzi and Christophe Riccio

CRC Press
Taylor & Francis Group
Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

AN A K PETERS BOOK

© 2012 by Taylor & Francis Group, LLC

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2012 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20120508

International Standard Book Number-13: 978-1-4398-9377-7 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but
the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to
trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained.
If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical,
or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without
written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright
Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a
variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to
infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

© 2012 by Taylor & Francis Group, LLC

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2012 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed in the United States of America on acid-free paper
Version Date: 20120508

International Standard Book Number: 978-1-4398-9376-0 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but
the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to
trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained.
If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical,
or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without
written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright
Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a
variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to
infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the cre B ANRRY T Y1or & Francis Group, LLC

. g

To Jilda.

—Patrick

To my personal stylist
for unleashing my passion for graphics
with her passion for style.

—Christophe

© 2012 by Taylor & Francis Group, LLC

© 2012 by Taylor & Francis Group, LLC

Contents

Foreword XXi
Barthold Lichtenbelt

Preface XXiii
Tips XXVii
I Discovering 1

1 Teaching Computer Graphics Starting with Shader-Based
OpenGL 3
Edward Angel

1.1 Introduction 3
1.2 ABasicCourse i v it 4
1.3 Hello World in OpenGL: Old Style 4
1.4 Starting with Programmable Pipelines 6
1.5 HelloWorld: New Style 8
1.6 TheRestofthe Course 10
1.7 Conclusion 15
Bibliography oo 16
2 Transitioning Students to Post-Deprecation OpenGL 17
Mike Bailey
2.1 Introduction 17
2.2 Naming Shader Variables: Introduction 18
2.3 Naming Shader Variables: Details 18
2.4 Indexed Vertex Buffer Object C++ Class 20
2.5 GLSLProgram C++Class 23
2.6 Conclusion 26
Bibliography 26

vii

© 2012 by Taylor & Francis Group, LLC

OpenGL

OpenGL

viii Contents

openL 3 WebGL for OpenGL Developers 27
WebGL Patrick Cozzi and Scott Hunter
3.1 Introduction 27
3.2 TheBenefitsof WebGL 28
3.3 Security 34
3.4 DeployingShaders 36
3.5 TheJavaScriptLanguage 37
3.6 Resources v i e e 45
Bibliography 45
webGL 4 Porting Mobile Apps to WebGL 47
OpenGLES Ashraf Samy Hegab
4.1 Introduction 47
4.2 OpenGLacross Platforms 47
43 GettingStarted Lo 48
44 LoadingTextures. 51
4.5 Cameraand Matrices 53
46 Controls 54
4.7 Other Considerations 56
4.8 Maintenance e e e e 57
4.9 Conclusion e 58
Bibliography oo o 59
openGL 5 The GLSL Shader Interfaces 61
Christophe Riccio
5.1 Introduction 61
5.2 Variablesand Blocks 62
5.3 Locations i it e e e 64
5.4 Matching Interfaces oo Lo 68
5.5 Working with Semantics 77
5.6 Application-Side Validations for Debug Build Only 82
5.7 Conclusion 85
Bibliography 86
openGL 6 An Introduction to Tessellation Shaders 87
Philip Rideout and Dirk Van Gelder
6.1 Introduction 87
6.2 The New Shading Pipeline 90
6.3 Tessellatinga Teapot 99
6.4 TIsolinesand Spirals 102
6.5 Incorporating Other OpenGL Features 103
Bibliography 104

© 2012 by Taylor & Francis Group, LLC

Contents

7 Procedural Textures in GLSL 105 OpenGL
Stefan Gustavson WebGL
7.1 Introduction 105 OPenetes
7.2 Simple Functions L L L L. 107
7.3 Andaliasing Lo Lo L oo 108
74 PerlinNoise e 110
7.5 WorleyNoise 113
7.6 Animation 115
7.7 Texturelmages L. 115
7.8 Performance 118
7.9 Conclusion 119
Bibliography 119

8 OpenGL SC Emulation Based on OpenGL and OpenGL ES 121 openGL
Hwanyong Lee and Nakhoon Baek OpenGLES
8.1 Intoduction 121 OpencLsc
8.2 OpenGL SC Implementations 123
8.3 Design and Implementation 125
84 Results. 129
85 Conclusion 131
Bibliography oo 131

9 Mixing Graphics and Compute with Multiple GPUs 133 openaL
Alina Alt
9.1 Introduction 133
9.2 Graphics and Compute Interoperability on an AP Level 134
9.3 Graphics and Compute Interoperability on a System Level . . . 138
9.4 Conclusion 142
Bibliography o o 142

Il Rendering Techniques 143

10 GPU Tessellation: We Still Have a LOD of Terrain to Cover 145 OpenGL
Anténio Ramires Fernandes and Bruno Oliveira
10.1 Introduction 145
10.2 Rendering Terrains with OpenGL GPU Tessellation 146
10.3 A Simple Approach to Dynamic Level of Detail 149
10.4 Roughness: When Detail Matters 152
10.5 Crunching Numbers, or Is This All That Matters? 153
10.6 Conclusion 160
Bibliography 160

© 2012 by Taylor & Francis Group, LLC

X Contents

openGL 11 Antialiased Volumetric Lines Using Shader-Based Extrusion 163
WebGL Sébastien Hillaire
OpenGLES

11.1 Introduction 163
11.2 Andaliased Lines Using Postprocess Antialiasing 164
11.3 Andaliased Volumetric Lines Using Geometry Extrusion 165
11.4 Performance i 169
11.5 Conclusion 170
Bibliography oo 171

openGL 12 2D Shape Rendering by Distance Fields 173

WebGL Stefan Gustavson

OpenGLES

12.1 Introduction 173
12.2 Method Overview 0 v v it 174
12.3 Better Distance Fields 176
12.4 Distance Textures v v v v v v v e it 176
12.5 Hardware Accelerated Distance Transform 177
12.6 FragmentRendering 177
12.7 Special Effects oL oo 179
12.8 Performance 180
12.9 Shortcomings L L L 180
12.10Conclusion 181
Bibliography oo 182

webGL 13 Efficient Text Rendering in WebGL 183
Benjamin Encz
13.1 Introduction 183
13.2 Canvas-Based Font Rendering 184
13.3 Bitmap FontRendering 187
13.4 Comparison 190
13.5 Conclusion 194
Bibliography 194

openGL 14 Layered Textures Rendering Pipeline 195
Dzmitry Malyshau
14.1 Introduction 195
14.2 Layered Pipeline 197
143 Results 202
Bibliography 204

© 2012 by Taylor & Francis Group, LLC

Contents

Xi

15 Depth of Field with Bokeh Rendering

Charles de Rousiers and Matt Pettineo

15.1 Introduction
15.2 Depth of Field Phenomemon
153 Related Work
154 Algorithm Lo oo
155 Results oo e
15.6 Discussion e
15.7 Conclusion
Bibliography o

16 Shadow Proxies

17

18

Jochem van der Spek

16.1 Introduction
16.2 Anatomy of a Shadow Proxy
16.3 Setting Up the Pipeline
16.4 The ShadowProxy-Enabled Fragment Shader
16.5 Modulating the Shadow Volume
16.6 Performance
16.7 Conclusion and Future Work
Bibliography L oo

Bending the Pipeline

Real-Time Physically Based Deformation Using Transform
Feedback

Muhammad Mobeen Movania and Lin Feng

17.1 Introduction
17.2 Hardware Support and Evolution of Transform Feedback
17.3 The Mechanism of Transform Feedback
17.4 Mathematical Model
17.5 Implementation
17.6 Experimental Results and Comparisons
17.7 Conclusion
Bibliography

Hierarchical Depth Culling and Bounding-Box Management
on the GPU

Dzmitry Malyshau

18.1 Introduction
18.2 Pipeline

© 2012 by Taylor & Francis Group, LLC

205

205
206
208
209
214
216
216
217

219

219
221
223
224
226
227
228
228

229

231

231
232
233
234
238
244
245
245

247

247
248

OpenGL

OpenGL

OpenGL

OpenGL

xii Contents

18.3 Orderof Operations v ... 254
18.4 Experimental Resules.o oo 255
18.5 Conclusion and Future Work 257
Bibliography 257
19 Massive Number of Shadow-Casting Lights with Layered

OpenGL Rendering 259
Daniel Rakos
19.1 Introduction 259
19.2 Traditional Shadow Map Rendering in OpenGL 260
19.3 Our Shadow Map Generation Algorithm 263
19.4 Performance 265
19.5 Advanced Techniques 275
19.6 Limitations v v v v v e e e e e 276
19.7 Conclusion e 277
Bibliography o 278

openGL 20 Efficient Layered Fragment Buffer Techniques 279
Pyarelal Knowles, Geoff Leach, and Fabio Zambetta
20.1 Introduction 279
20.2 Related Work 281
20.3 The Linked-List LFB 282
20.4 TheLinearized LFB 283
20.5 PerformanceResults 286
20.6 Conclusion 290
Bibliography 290

openGL 21 Programmable Vertex Pulling 293
Daniel Rakos
21.1 Introduction 293
21.2 Implementation oL 294
21.3 Performance 296
21.4 Application L L 298
21.5 Limitations v v vt i e e e e e e e e e e 299
21.6 Conclusion 300
Bibliography 300

22 Octree-Based Sparse Voxelization Using the GPU Hardware

OpenGL Rasterizer 303
Cyril Crassin and Simon Green
22.1 Introduction 303
222 PreviousWork 304

© 2012 by Taylor & Francis Group, LLC

Contents xiii

22.3 Unrestricted Memory Accessin GLSL 305
22.4 Simple Voxelization Pipeline 306
22.5 Sparse Voxelization into an Octree 312
22.6 Conclusion e 317
Bibliography 317

IV Performance 321

23 Performance Tuning for Tile-Based Architectures 323 webGL
Bruce Merry OpenGLES
23.1 Introduction 323
23.2 Backgroundo Lo 324
23.3 Clearing and Discarding the Framebuffer 326
23.4 Incremental Frame Updates 328
23.5 Flushing L L 329
23.6 Latency 330
23.7 Hidden SurfaceRemoval 332
23.8 Blending 333
23.9 Muldsampling L Lo 333
23.10Performance Profiling L oL 334
23.118ummaryo 335
Bibliography oo 335

24 Exploring Mobile vs. Desktop OpenGL Performance 337 oOpenGL
Jon McCaffrey WebGL
24.1 Introduction 337 OpencLEs
24.2 Important Differences and Constraints 338
24.3 Reducing Memory Bandwidth 341
24.4 Reducing Fragment Workload 345
24.5 Vertex Shading L L oo 349
24.6 Conclusion 350
Bibliography o o 351

25 Improving Performance by Reducing Calls to the Driver 353 openGL
Sébastien Hillaire
25.1 Introduction 353
25.2 Efficient OpenGL States Usage 354
25.3 Batchingand Instancing Lo 357
25.4 Conclusion 362
Bibliography 362

© 2012 by Taylor & Francis Group, LLC

Xiv Contents

openGL 26 Indexing Multiple Vertex Arrays 365
WebGL Arnaud Masserann
OpenGLES 26.1 Introduction 365
26.2 TheProblem 365
26.3 AnAlgorithm L Lo 368
26.4 Vertex Comparison Methods 369
26.5 Performance 371
26.6 Conclusion 373
Bibliography oo 373
openGL 27 Multi-GPU Rendering on NVIDIA Quadro 375
Shalini Venkataraman
27.1 Introduction 375
27.2 Previous Scaling Approaches o000 376
27.3 Targeting a Specific GPU for Rendering 377
27.4 Optimized Data Transfer between GPUs 382
27.5 Application Structure for Muld-GPU L. 383
27.6 Parallel Rendering Methodologies 385
27.7 Conclusion e 388
Bibliography oo 388
V Transfers 389
openGL 28 Asynchronous Buffer Transfers 391
Ladislav Hrabcak and Arnaud Masserann
28.1 Introduction 391
28.2 BufferObjects 392
283 Upload 398
284 Download 402
285 Copy .« v v e 405
28.6 Multithreading and Shared Contexts 405
28.7 UsageScenarioo 408
28.8 Conclusion 413
Bibliography 414
openGL 29 Fermi Asynchronous Texture Transfers 415
Shalini Venkataraman
29.1 Introduction 415
29.2 OpenGL Command Buffer Execution 417

© 2012 by Taylor & Francis Group, LLC

Contents

XV

29.3 Current Texture Transfer Approaches
29.4 GPU Asynchronous Texture Transfers
29.5 Implementation Details
29.6 Resultsand Analysis L.
29.7 Conclusion
Bibliography

30 WebGL Models: End-to-End
Won Chun

30.1 Introduction
30.2 Lifeofa3DModel
30.3 ACoherentWhole
30.4 Key Improvements
30.5 Conclusion
Bibliography o

31 In-Game Video Capture with Real-Time Texture Compression
Brano Kemen

31.1 Introduction
31.2 Overview of DXT Compression
31.3 DXT Compression Algorithms
31.4 Transformation to YUV Style Color Spaces
31.5 Comparison
31.6 Using Real-Time DXT Compression for Procedural Content and

Video Capture
31.7 Conclusion
Bibliography

32 An OpenGL-Friendly Geometry File Format and Its Maya
Exporter
Adrien Herubel and Venceslas Biri

32.1 Introduction
32.2 Manifesto
32.3 The DroneFormat.
32.4 Writing a Maya File Translator
325 Results e
32.6 Conclusion
Bibliography

© 2012 by Taylor & Francis Group, LLC

418
421
423
425
429
430

431

431
432
441
447
452
452

455

455
456
456
458
460

462
465
466

467

467
468
469
474
477
479
479

WebGL

OpenGL

OpenGL
OpenGLES

XVi Contents

VI Debugging and Profiling 481
33 ARB_debug_output: A Helping Hand for Desperate
OpenGL Developers 483
Anténio Ramires Fernandes and Bruno Oliveira
33.1 Introduction 483
33.2 Exposing the Extension 484
33.3 Usinga Callback Function 484
33.4 Sorting Through the Cause of Events 485
33.5 Accessingthe MessageLog 486
33.6 Adding Custom User EventstotheLog 487
33.7 Controlling the Event Output Volume 488
33.8 Preventing Impact on the Final Release 488
33.9 Clash of the Titans: Implementation Strategies 489
33.10Further Thoughts on Debugging 491
33.11Conclusion 491
Bibliography L L 492
openGL 34 The OpenGL Timer Query 493
Christopher Lux
34.1 Introduction 493
34.2 Measuring OpenGL Execution Times 495
34.3 Conclusion 501
Bibliography 502
openGL 35 A Real-Time Profiling Tool 503
Lionel Fuentes
35.1 Introduction 503
35.2 Scope and Requirements 504
35.3 DesignoftheTool 505
35.4 Implementation 507
35.5 Usingthe Profiler 510
35.6 Conclusions 512
Bibliography 512
webGL 36 Browser Graphics Analysis and Optimizations 513
Chris Dirks and Omar A. Rodriguez
36.1 Introduction 513
36.2 The Stagesof Bloom 514
36.3 Overheadof Bloom 515
36.4 Analyzing WebGL Applications 516
36.5 Analysis Workflow on Windows 519

© 2012 by Taylor & Francis Group, LLC

Contents XVii

36.6 Optimized Bloom 522
36.7 Conclusion L 526
Bibliography 526

37 Performance State Tracking 527 openGL
Aleksandar Dimitrijevic
37.1 Introduction 527
37.2 Power Consumption Policies 528
37.3 P-State Tracking Using NVAPL 528
37.4 P-State Tracking UsingADL 532
37.5 Conclusion 533
Bibliography o o 534

38 Monitoring Graphics Memory Usage 535 openGL
Aleksandar Dimitrijevic¢
38.1 Introduction 535
38.2 Graphics Memory Allocation 536
38.3 Querying Memory Status on NVIDIA Cards 537
38.4 Querying Memory Statuson AMD Cards 538
38.5 Conclusion 540
Bibliography 540

VIl Software Design 541

39 The ANGLE Project: Implementing OpenGLES 2.0 on Direct3D 543 webaL
Daniel Koch and Nicolas Capens OpenGLES
39.1 Introduction 543
39.2 Backgroundo 543
39.3 Implementation 544
394 Future Worko 568
39.5 Conclusion 568
39.6 SourceCode 569
Bibliography 569

40 ScenelS: A WebGL-Based Scene Graph Engine 571 webGL
Lindsay Kay
40.1 Introduction 571
40.2 Effciently Abstracting WebGL. 572
40.3 Optimizing the Scene 578

© 2012 by Taylor & Francis Group, LLC

XViii Contents

404 Picking 580
40.5 Conclusion 581
Bibliography 581
webGL 41 Features and Design Choices in SpiderGL 583
Marco Di Benedetto, Fabio Ganovelli, and Francesco Banterle
41.1 Introduction 583
41.2 Library Architecture L Lo oL 584
41.3 Representing3D Objects 585
41.4 Direct Access to WebGL Object State 590
41.5 WebGLObject Wrappers L. 598
41.6 Conclusion e 602
Bibliography oo 603
webGL 42 Multimodal Interactive Simulations on the Web 605
Tansel Halic, Woojin Ahn, Suvranu De
42.1 Introduction 605
42.2 II-SoFMIS Design and Definitions of Modules 606
42.3 Framework Implementation 607
424 RenderingModule L o L. 609
42.5 Simulation Module Lo L. 611
42.6 HardwareModule 613
42.7 Case Study: LAGB Simulator 614
42.8 Conclusion 619
Bibliography 619
openGL 43 A Subset Approach to Using OpenGL and OpenGL ES 621
OpenGLES Jesse Barker and Alexandros Frantzis
43.1 Introduction 621
43.2 Making Legacy Code Modern 622
43.3 Keeping Code Maintainable across API Variants 626
43.4 What if I Need a Specific Piece of Functionality? 633
43,5 Conclusion 633
Bibliography 634
openGL 44 The Build Syndrome 635
OpenGLES Jochem van der Spek and Daniel Dekkers
441 Introduction 635
44.2 Using Utility Libraries 637
44.3 OpenGL Agnosticism 640
44.4 Configuration Spaces 642
44,5 Metabuildsand CMake 643

© 2012 by Taylor & Francis Group, LLC

Contents

XiX

44.6 CMake and the Configuration Space
44.7 CMake and Platform Specifics
44.8 Conclusion
Bibliography Lo

About the Contributors

Index

© 2012 by Taylor & Francis Group, LLC

644
648
654
654

657

673

© 2012 by Taylor & Francis Group, LLC

Foreword

Barthold Lichtenbelt

OpenGL is not a single APT anymore. OpenGL has involved into a family of APIs,
with OpenGL, OpenGL ES, and WebGL being closely related siblings that enable
application developers to write and deploy graphics applications on a wide variety of
platforms and operating systems. OpenGL has become an ecosystem; 3D graphics is
truly everywhere now. OpenGL is the cross platform 3D API for desktop machines
and work stations. OpenGL ES is the 3D API for mobile devices, like tablets and
cell phones, and embedded platforms from settop boxes to cars. WebGL ties this all
together by providing a pervasive 3D API in browsers, based on OpenGL ES, that
run on any platform. It doesnt stop with graphics. Combining the use of OpenGL
with a compute API like OpenCL or CUDA enables the creation of amazing visual
computing applications on the desktop.

It is Khronos’ job to provide APIs that serve their targeted developers, their mar-
kets, and their platforms, while encouraging silicon vendors to innovate underneath
the APL Because the power consumption budget, hardware gate budget, and cost
budget is larger for desktop GPUs than it is for mobile GPUs, the 3D API reflects
this. Hence, OpenGL will generally be the first to expose leading edge functionality,
on desktop platforms. The focus for OpenGL ES is to provide maximum function-
ality with the most optimal hardware and power budget for mobile and embedded
devices. WebGL has a unifying focus; the goal for WebGL is to provide the same
functionality everywhere, regardless of whether the underlying platform is capable
of OpenGL 4.2 or OpenGL ES 2.0. This is fundamental to achieving the browser
vision of “write once, deploy everywhere.” It is exciting to see WebGL provide ac-
cess to the GPU, and therefore hardware accelerated 3D rendering, everywhere. The
HTMLS5 standard provides a rich set of APIs to develop web applications. WebGL
is leading the way to do so in a hardware accelerated way within HTML5. This
will truly transform the type of web applications that will be available to us to enjoy,
precisely because WebGL integrates into the HTML5 standard.

XXi

© 2012 by Taylor & Francis Group, LLC

XXii Foreword

Given the widespread adoption of OpenGL and OpenGL ES across all flavors of
Linux and Windows, as well as iOS and Android, these APIs are serving a real need.
The adoption of WebGL by almost all browser vendors underscores its importance
as a web API for 3D graphics. Exquisite graphics applications have been developed
using the OpenGL family of APIs. Of course there is much more to developing a
great graphics application than the API. The ability to debug GPU code, to measure
and optimize performance of graphics code to push the GPU to its limits, to use the
right rendering technique given the underlying GPU, and to deploy that code to a
wide variety of devices, are all critical factors to success.

This book explores the OpenGL ecosystem in depth. It provides debugging
and performance tips, rendering techniques, clever tricks, software development, and
porting advice, as well as best practices written by experts in various areas of the
OpenGL ecosystem, to help you build the perfect graphics application. These experts
have put in effort and time to share their OpenGL insights with us because they
passionately believe in the OpenGL ecosystem and want to share that passion with
us. This includes Patrick Cozzi and Christophe Riccio, who have done an amazing
job editing and putting OpenGL Insights together. Thank you for sharing!

—Barthold Lichtenbelt
Khronos OpenGL ARB working group chair
Director of Tegra graphics software for NVIDIA

© 2012 by Taylor & Francis Group, LLC

Preface

Sometimes I wish I had been involved in computer graphics 40 years ago when the
field was unfolding with early research in visible surfaces and shading. There were
many fundamental problems to solve, and the forthcoming solutions would have a
great impact.

However, I'm grateful for the time we live in; the foundations of modeling, ren-
dering, and animation are well established. Hardware-accelerated rendering is avail-
able on practically all devices. As developers, we are now capable of reaching an
immense number of users with captivating, real-time graphics.

In part, we have the swiftness and availability of rendering APIs, including
OpenGL, OpenGL ES, and WebGL, to thank. Frequent OpenGL specification
updates coupled with drivers exposing these new features make OpenGL the API
of choice for cross-platform desktop developers seeking access to recent GPU capa-
bilities. With the explosion of smartphones and tablets, OpenGL ES is /e API for
hardware-accelerated rendering on iOS and Android. Even more recently, WebGL
has rapidly emerged to provide truly zero-footprint hardware-accelerated 3D graphics
on web pages.

With the widespread use of OpenGL, OpenGL ES, and WebGL, we recognize
the need for developers using these APIs to learn from each other and go well beyond
the basics. To this end, we have created the OpenGL Insights series, with this first vol-
ume containing contributions from developers, vendors, researchers, and educators.
It is both a celebration of the breadth of the OpenGL family of APIs and a collection
of deep, experienced-backed articles on practical and future-looking techniques.

Breadth is demonstrated through the diversity of topics—from using OpenGL
in the classroom to recent extensions, optimizing for mobile devices, and designing
WebGL libraries. Depth is realized by the deep corners into which many chapters
take us, for example, asynchronous buffer and texture transfers, performance state
tracking, and programmable vertex pulling.

XXiii

© 2012 by Taylor & Francis Group, LLC

XXiV Preface

It is our passion for these APIs and the passionate surrounding developer com-
munity that motivated us to start this series. In our day, there may be fewer funda-
mental problems to solve, but the breadth and complexity of the problems we solve
is astonishing. It is an outstanding time to be an OpenGL developer.

—Patrick Cozzi
February 2012

First of all, I would like to thank Patrick, who asked me to join him on this project. I
still remember that night when, after seeing a great movie at the cinema, Somewhere,
I received his email. There was really only one answer I could possibly give, but I
certainly tried to fool myself that it could be otherwise: “Oh, let’s think this through.”
That hesitation lasted no longer than five seconds. The rest was just a lot of work
and a lot of learning in the process.

Despite our differences in culture and background, Patrick and I were connected
by a shared vision: we wanted to make a good book revealing, without preconception,
the views of the entire OpenGL community, embracing everyone who shares our
passion for the graphics variety that the OpenGL ecosystem can provide.

The OpenGL specifications are the foundation of OpenGL, but they are far
from enough to understand its potential and limitations. With a dictionary and a
grammar manual we can know a lot about a language, but it is still not enough
for us to write poetry. I hope OpenGL Insights will bring a little bit of the secret
ingredient—experience—so that we can improve the everyday life of the OpenGL
programmer and lead to the creation of more efficient development and graphics
software.

If you enjoy this book and share the belief that it takes the contribution of ev-
eryone to build real-time graphics, don't hesitate to contact us. We look forward to
hearing from you and learning from your experiences in a future volume.

—Christophe Riccio
February 2012

Acknowledgments. Significant effort is required to get a community-based book
like this off the ground. We are grateful to have had a lot of help on everything
from our book proposal to getting the word out to authors. For these tasks, we
thank Quarup Barreirinhas (Google), Henrik Bennetsen (Katalabs), Eric Haines (Au-
todesk), Jon Leech (Khronos Group), Barthold Lichtenbelt (NVIDIA), Jon McCaf-
frey (NVIDIA), Tom Olson (ARM), Kevin Ring (AGI), Ken Russell (Google), and
Giles Thomas (Resolver System:s).

This book benefited from an open culture of reviews. As editors, we reviewed
chapters, but this was only the beginning. Fellow contributors took initiative to do

© 2012 by Taylor & Francis Group, LLC

Preface XXV

peer reviews, and many external reviewers volunteered their time. For this, we thank
Guillaume Chevelereau (Intersec), Mikkel Gjoel (Splash Damage), Dimitri Kudelski
(Aix-Marseille University), Eric Haines (Autodesk), Andreas Heumann (NVIDIA),
Randall Hopper (L-3 Communications), Steve Nash (NVIDIA), Deron Ohlarik
(AGI), Emil Persson (Avalanche Studios), Aras Pranckevi¢ius (Unity Technologies),
Swaroop Rayudu (Autodesk), Kevin Ring (AGI), Mathieu Roumillac (e-on soft-
ware), Kenneth Russell (Google), Graham Sellers (AMD), Giles Thomas (Resolver
Systems), and Marco Weber (Imagination Technologies).

The value of this book is made possible by the many authors that contributed
to it. We thank every author for their contribution, peer reviews, and enthusiasm.
We also thank Alice Peters, Sarah Chow, and Kara Ebrahim for their hard work in
publishing this book.

The time requirements for preparing this book were often intense. We owe a
great deal of our success to the flexibility provided by our employers. At Analyti-
cal Graphics, Inc., we thank Paul Graziani, Frank Linsalata, Jimmy Tucholski, and
Shashank Narayan. At the University of Pennsylvania, we thank Norm Badler, Steve
Lane, and Joe Kider.

Creating a book on top of our full-time jobs was not just hard on us, it was hard
on our friends and families who saw less of us during nights, weekends, and even
holidays. For their understanding and support, we thank Anthony Cozzi, Margie
Cozzi, Peg Cozzi, and Jilda Stowe.

Website

The companion OpenGL Insights website contains source code and other supple-
ments:

www.openglinsights.com
Please email us with your comments or corrections:

editors@openglinsights.com

© 2012 by Taylor & Francis Group, LLC

© 2012 by Taylor & Francis Group, LLC

Tips

OpenGL glCreateShaderProgram may provide faster build per-
formance than a sequence of glCompilerShader and
glLinkProgram. However, it only creates a single shader stage

program.
OpenGL Not all shader objects need a main () function. Multiple shader
\WebGL objects can be linked together in the same program to allow shar-
OpenGLES & g

ing the same code between different programs.

OpenGL Build all GLSL shaders and programs first, and then query the

WebGL results to hide build and query latency.

OpenGLES
OpenGL Call glDeleteShader after attaching a shader to a program to
WebGL H .
OSen GLes simplify cleanup later.
OpenGL Five OpenGL 4.2 functions generate info logs:
e glCompileShader
e glCreateShaderProgram
e gllLinkProgram
e glValidateProgram
e glValidateProgramPipeline
OpenGL Functions like glGenTextures do not create an object, they re-
OpenGLES

turn a name for use with a new object. Objects are typically cre-
ated with g1Bind* unless they are based on direct state access, in
which case any other function may actually create the object.

XXVii

© 2012 by Taylor & Francis Group, LLC

XXViii

Tips

OpenGL
WebGL
OpenGLES

OpenGL
WebGL
OpenGLES

OpenGL

OpenGL

OpenGL

OpenGL
WebGL
OpenGLES

OpenGL
WebGL
OpenGLES

OpenGL
WebGL
OpenGLES

OpenGL
WebGL
OpenGLES

OpenGL

OpenGL

OpenGL
WebGL
OpenGLES

© 2012 by Taylor & Francis Group, LLC

glGenerateMipmap may execute on the CPU, and therefore
may be especially slow. Generate mipmaps offline or profile this
function.

When using the default texture scanline alignment,
GL_PACK_ALIGNMENT, of four bytes, with glTexImage2D
or glTexSubImage2D, the end of each row of pixel data may
need to be padded to the next multiple of the alignment.

Texture rectangle, texture multisample, and buffer textures can’t
have mipmaps.

Integer textures, GL_EXT_texture_integer, do not support fil-
tering.

A buffer texture is a 1D texture with a buffer object as storage
which can only be fetched, not sampled.

Unmap buffers as soon as possible to allow the driver to start the
transfer or to schedule the transfer.

Use buffer usage flags appropriately: COPY, GL to GL; DRAW, APP
to GL; READ, GL to APP; STREAVM, update always, DYNAMIC, up-
date often, STATIC, update rarely.

Set a GLSL sampler uniform to the texture unit number, not the
OpenGL texture ID.

glGetUniformLocationreturns —1 but doesn’t generate an er-
ror if the uniform name does not correspond to an active uniform.
All declared uniforms are not active; uniforms that do not con-
tribute to the shader’s output can be optimized out by the com-

piler.

An OpenGL context must always be current for the duration of
OpenGL/compute interoperability.

An OpenGL object should not be accessed by OpenGL while it is
mapped for usage within the compute portion.

Avoid extraneous glBindFramebuffer calls. Use multiple at-
tachments to a FBO rather than managing multiple FBOs.

Tips

XXiX

OpenGL
WebGL
OpenGLES

OpenGL

OpenGL

OpenGL
WebGL
OpenGLES

OpenGL
WebGL
OpenGLES

OpenGL
WebGL
OpenGLES

OpenGL

WebGL

OpenGL
WebGL
OpenGLES

WebGL
OpenGLES

FBOs must always be validated before use to ensure that the se-
lected format is renderable.

Only one OpenGL query per query type, e.g., timer or occlusion,
can be active at a time.

For occlusion queries, using GL_ANY_SAMPLES_PASSED may be
more effective than GL_SAMPLES_PASSED, as a rendering doesn’t
have to continue as soon as one fragment passed.

For image-space rendering on GPUs with a large clipping guard
band clipping, e.g., GeForce, Radeon, and PowerVR series 6 use a
large clipped triangle instead of a quad. Measure both if in doubt.

To test vertex throughput, do not render to a 1 x 1 viewport be-
cause parallelism is lost; instead, render outside of the view frus-
tum.

glGetError is particularly slow, especially in mult-process
WebGL architectures. Only use it in debug builds or instead use
GL_ARB_debug_output when available.

Geometry shaders are usually output bound so spending ALU
time to reduce the amount of data output is a performance win.

In addition to #defining GL_OES_standard_derivatives
before using dFdx, dFdy, and fwidth, also remember to call
context.getExtension("OES_standard derivatives")
in JavaScript.

To accurately compute the length of a gradient, avoid
fwidth(v); instead wuse sqrt(dFdx(v) * dFdx(v) +
dFdy(v) * dFdy(v)).

highp is only available in fragment shaders if
GL_FRAGMENT PRECISION HIGH is #defined. Beware of
the performance implications of using highp in vertex or
fragment shaders.

© 2012 by Taylor & Francis Group, LLC

XXX

Tips

OpenGL

OpenGL

WebGL

OpenGL
WebGL
OpenGLES

OpenGL
WebGL
OpenGLES

OpenGL

OpenGL

© 2012 by Taylor & Francis Group, LLC

In OpenGL, precision qualifiers were reserved in GLSL 1.20
and OpenGL 2.1 but actually introduced with GLSL 1.30
and OpenGL 3.0. From GLSL 1.40 and OpenGL 3.1,
and for the purpose of convergence with OpenGL ES 2.0,
GL_FRAGMENT_PRECISION_HIGH is defined as 1 in a fragment
shader.

By default, precision for vertex, tessellation, and geometry shader
stages is highp for int types, and mediump for the fragment
shader stage int types. This may lead to warnings on some im-
plementations. float is always highp by default.

Given a WebGL context g1, gl . TRUE is undefined. When port-
ing OpenGL or OpenGL ES code, do not change GL_TRUE to
gl.TRUE because it will silently evaluate to false.

Depth writes only occur if GL_DEPTH_TEST is enabled.

The noise functions are still unimplemented in GLSL. Chapter 7
fixes this.

gl _VertexID get values in [first, first+count-1] when
generated from a DrawArray* command, and not in [0,
count-1]. Especially useful when using a zero input attributes
vertex shader.

There are two ways to work with point size: glPointSize
in the client-side code or gl_PointSize in the GLSL code if
PROGRAM POINT_SIZE is enabled.

Tips XXXi

The GLSL core profile and GLSL ES are different subsets of keywords of the GLSL compati-
bility profile. The GLSL core profile allows us to write GLSL code with a fully programmable
pipeline approach. GLSL ES takes advantage of the precision qualifiers, but GLSL doesn't.

© 2012 by Taylor & Francis Group, LLC

© 2012 by Taylor & Francis Group, LLC

| Discovering

In this section, we discover many facets of OpenGL: teaching modern OpenGL in
academia; using OpenGL on the web with WebGL; tessellation shaders in OpenGL
4.0; procedural textures; the safety critical variant, OpenGL SC; and multi-GPU
OpenGL and CUDA interop.

OpenGL enjoys widespread use in computer graphics courses around the world.
Now-depreciated OpenGL features such as fixed-function lighting, immediate mode,
and built-in transforms made the barrier to entry low. However, modern OpenGL
has removed many of these features, resulting in a lean API that exposes the func-
tionality of the underlying hardware. Academia has taken these changes in stride,
updating their graphics courses to modern OpenGL. In Chapter 1, “Teaching Com-
puter Graphics Starting With Shader-Based OpenGL,” Edward Angel discusses how
an introductory computer graphics course can be taught using modern OpenGL.
In Chapter 2, “Transitioning Students to Post-Deprecation OpenGL,” Mike Bailey
presents C++ abstractions and GLSL naming conventions to bridge the gap between
depreciated and modern OpenGL for use in course assignments.

When we announced our call for authors for OpenGL Insights in May 2011, we
included WebGL as a desired topic. Since then, WebGL has gained such traction
that an entire book could easily be justified. In Chapter 3, “WebGL for OpenGL
Developers,” Patrick Cozzi and Scott Hunter present WebGL for those who already
know OpenGL. In the following chapter, “Porting Mobile Apps to WebGL,” Ashraf
Samy Hegab shows the benefits, differences, and trade-offs of using WebGL for mo-
bile applications. Several chapters in later sections continue our WebGL exploration.

Christophe Riccio takes a rigorous look at communication between the OpenGL
APT and GLSL and different shader stages in Chapter 5, “The GLSL Shader Inter-

faces.” He carefully examines using varying blocks; attribute, varying, and fragment

© 2012 by Taylor & Francis Group, LLC

2 | Discovering

output variable locations; linked and separated programs; using semantics in our
designs; and more.

Today, one of the differences between movie-quality rendering and real-time ren-
dering is geometric complexity; movies generally have much higher geometric detail.
To improve geometric detail in real-time rendering, tessellation can be done in hard-
ware. Although this has been available on ATT cards since the ATT Radeon 8500 in
2001, tessellation shaders were recently standardized and made part of OpenGL 4.0.
In Chapter 6, “An Introduction to Tessellation Shaders,” Philip Rideout and Dirk
Van Gelder introduce the new fixed and programmable tessellation stages.

As the gap between compute power and memory bandwidth continues to widen,
procedural techniques become increasingly important. Small size is speed. Procedu-
ral textures not only have trivial memory requirements, but can also have excellent
visual quality, allowing for analytic derivatives and anisotropic antialiasing. Stefan
Gustavson introduces procedural textures, including antialiasing and using Perlin
and Worley noise in Chapter 7, “Procedural Textures in GLSL.” Best of all, he pro-
vides GLSL noise functions for OpenGL, OpenGL ES, and WebGL.

OpenGL SC, for safety critical, may be one of the lesser-known OpenGL vari-
ants. In Chapter 8, “OpenGL SC Emulation Based on OpenGL and OpenGL ES,”
Hwanyong Lee and Nakhoon Back explain the motivation for OpenGL SC and de-
scribe the benefits of implementing it based on other OpenGL variants, instead of
creating custom drivers or a software implementation.

In the past 15 years, consumer GPUs have transformed from dedicated fixed-
function graphics processors to general-purpose massively-parallel processors. Tech-
nologies like CUDA and OpenCL have emerged for developing general data-parallel
algorithms on the GPU. There is, of course, a need for these general algorithms,
like particle systems and physical simulation, to interop efficiently with OpenGL for
rendering. In the final chapter of this section, “Mixing Graphics and Compute with
Multiple GPUs,” Alina Alt reviews interoperability between CUDA and OpenGL
and presents interoperability between multiple GPUs where one GPU is used for
CUDA and another for OpenGL.

© 2012 by Taylor & Francis Group, LLC

Teaching Computer Graphics
Starting with Shader-Based
OpenGL

Edward Angel

1.1 Introduction

For at least ten years, OpenGL has been used in the first computer graphics course
taught to students in computer science and engineering, other branches of engi-
neering, mathematics, and the sciences. Whether the course stresses basic graphics
principles or takes a programming approach, OpenGL provides students with an API
to support their learning. One of the many features of the OpenGL API that makes
it popular for teaching is its stability and backward compatibility. Hence, instruc-
tors needed to make only minor changes in their courses as OpenGL evolved. At
least that used to be true: over the last few years, OpenGL has changed rapidly and
dramatically.

Starting with version 3.1, the fixed function pipeline was eliminated, an action
that deprecated immediate mode and many of the familiar OpenGL functions and
state variables. Every application must provide at least a vertex shader and a frag-
ment shader. For those of us who use OpenGL to teach our graphics courses, these
changes and the introduction of three additional shader stages in subsequent releases
of OpenGL have led to a reexamination of how we can best teach computer graph-
ics. As the authors of a popular textbook [Angel 09] used for the first course, we
realized that this reexamination was both urgent and deep, requiring input from in-
structors at a variety of institutions. In the end, we wrote a new edition [Angel and
Shreiner 12] that was entirely shader-based. Some of the key issues were addressed
briefly in [Angel and Shreiner 11] but this chapter will not only discuss the reasons
for the change but will also include practical observations and issues based on the
actual teaching of a fully shader-based course.

© 2012 by Taylor & Francis Group, LLC

4 | Discovering

I start with a historical overview, stressing how the software used in the first
computer graphics course has changed over the years while the concepts we teach
have remained largely unchanged. I review the key elements of a first course in
computer graphics. Then I present a typical first Hello World program using the
fixed-function pipeline. Next, the reader will see how we have to change that first
program when moving to a shader-based course. Finally, I examine how each of the
major topics in our standard course is affected by use of a shader-based OpenGL.

1.2 A Basic Course

Computer graphics has been taught in most colleges and universities since the 1970s.
A comparison between what was taught then and what is taught now leads to some
interesting observations. The first textbook that took the modern approach to graph-
ics was Newman and Sproull’s [Newman and Sproull 79]. Subsequently, Foley, van
Dam, et al. [Foley et al. 96] became the standard. Not only do these two clas-
sic works agree as to the key topics, but so do all the recent textbooks [Angel and
Shreiner 12, Hearn et al. 11]. These topics include

e modeling,
e geometry,

e transformations,

lighting and shading,
e texture mapping and pixel processing.

A major theme of this chapter is that using a shader-based OpenGL in the in-
troductory course not only is possible but actually reinforces these key concepts. 1
will examine each area individually, but first one of the major worries confronting in-
structors needs to be addressed, namely, the perception that it is much harder to get
started with a version of OpenGL that not only requires the application to provide
its own shaders but also forces the programmer to use new constructs, such as vertex
buffer objects, that were not required previously.

1.3 Hello World in OpenGL: Old Style

Let’s start with a simple example (shown in Listing 1.1) that we might teach in the
first week of a typical class using pre-3.1 OpenGL: drawing a white rectangle on a
black background using default values for most variables and, to delay any discussion
of coordinate systems and transformations, giving vertex positions in clip coordi-
nates.

© 2012 by Taylor & Francis Group, LLC

1. Teaching Computer Graphics Starting with Shader-Based OpenGL

#include <GL/glut.h>

void display(void)
{
glClear (GL_COLOR_BUFFER_BIT) ;
glBegin (GL_POLYGON) ;
glVertex2f(-0.5, -0.5);
glVertex2f(-0.5, 0.5);
glVertex2f (0.5, 0.5);
glVertex2f (0.5, -0.5);
glEnd () ;
glutSwapBuffers();
}

int main(int argc, char **argv)

{
glutInit (&argc, argv);
glutInitDisplayMode (GLUT_RGBA | GLUT_DOUBLE) ;
glutCreateWindow("Hello World");
glutDisplayFunc(display);

glutMainLoop() ;

Figure 1.1. Hello World output.

Listing 1.1. Hello World.

As trivial as this program is, it possesses many of the features that instructors
have built on." For example, it is easy to add colors, normals, and texture coor-
dinates between the glBegin and glEnd. Adding transformations and viewing is
straightforward. Note that although we use GLUT in this example to interface with
the window system and input devices and will use it in our other examples, its use is
not crucial to the discussion. The output is shown in Figure 1.1.

There are three major issues with this code and all its extensions:

1. Use of immediate mode.
2. Reliance on the fixed-function pipeline.
3. Use of default values for state variables.

First, with a shader-based OpenGL, all the OpenGL functions in this example
except glClear have been deprecated. Understanding why these functions have
been deprecated is key to understanding why we have switched to a more recent
OpenGL. The pipeline model (see a simplified version in Figure 1.2), that underlies
OpenGL stresses immediate-mode graphics. As soon as each vertex is generated, it
triggers an execution of the vertex shader. Because this geometry processing is carried
out on the GPU by the vertex shader, this simple program requires four separate
vertex positions to be sent to the GPU each time we want to display the rectangle.

1'We could eliminate the double buffering to make the example even simpler. However, some systems
would then require a g1Flush instead of glutSwapBuffers to reliably display the output.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-3&iName=master.img-053.jpg&w=137&h=147

6 | Discovering

Vertices Fragments Pixels
Application Vertex) . QIiPper and B Rasterizer Fragment Frame
shader primitive assembly shader Buffer
CPU State
GPU

Figure 1.2. Simplified pipeline.

Such a program masks the bottleneck between the CPU and GPU and hides the
parallelism available on the GPU. Hence, although it is not the kind of program we
want our students to write, the reasons are not apparent from the code.

Second, although it seems nice to be able to rely on the fact that our data will
be processed in a known way, students tend to think the use of the immediate mode
is the only way to display their geometric models. Later, when they process more
complex geometry, they wonder why their applications run so slowly.

Third, this type of program leads to a somewhat outdated view of OpenGL as
a state machine. Although state is important, the use of the fixed-function pipeline
and default values hides a multitude of state variables within OpenGL that control
how the geometry is rendered. As the simple program is expanded, students tend to
get lost in the multitude of state variables and have great difficulty with unintended
side effects of state variable changes. With recent versions of OpenGL, most state
variables have been deprecated, and the application creates its own state variables.

1.4 Starting with Programmable Pipelines

Now, let’s review some of the issues with programmable pipelines starting with
OpenGL 3.0. Although programmable pipelines have been in OpenGL since ver-
sion 2.0, not only was their use optional, but an application programmer still had
access to all the functions that are now deprecated. An application could have its own
shaders and also use immediate mode. The shaders had access to most OpenGL state
variables, which simplified writing applications with shaders. Hence, an instructor
could start with our trivial application and introduce shaders later. However, in a
first course that starts with immediate mode and the fixed-function pipeline, very
few instructors actually get to programmable shaders. At best, shaders are given a
short introduction at the end of the course.

OpenGL 3.0 announced that starting with OpenGL 3.1, backward compatibil-
ity would no longer be required of an implementation. OpenGL 3.1 has a core that
is shader-based and a compatibility extension that supports the deprecated functions.
Later versions introduced core and compatibility profiles. Implementors could sup-
ply either or both profiles. The option we took was to design a first course that

© 2012 by Taylor & Francis Group, LLC

1. Teaching Computer Graphics Starting with Shader-Based OpenGL

was totally shader based, consistent with the OpenGL 3.1 core.? To develop a first
program, we had to examine what was absolutely required.

A shader-based program requires at least a vertex shader and a fragment shader.
Hence, the instructor must introduce a minimal amount of the OpenGL Shading
Language (GLSL). Because GLSL is semantically close to C with a few C++-style
enhancements, we can present the almost trivial shaders required for a Hello World
program without going into an in-depth discussion of GLSL. The instructor must
introduce some concepts such as program objects and, of course, what the shaders do.
Although these concepts take some time to present, they are core to understanding
how modern graphics systems work, and introducing them early in the course should
be viewed as a benefit of our approach.

The biggest problem in introducing shaders is that the application must read,
compile, and link the shaders with the application. These operations require a set
of OpenGL functions that contribute little to the student’s understanding of ba-
sic graphics concepts. Consequently, we decided to give the students a function,
InitShaders, that reads in the shader files, compiles them, links them, and, if
successful, returns a program object, as in the code fragment

GLuint program = InitShaders("vertex_shader_file", "fragment_shader_file");

The source code was made available, and the individual functions used in it were
discussed later or assigned as a reading exercise. As seemingly trivial as this decision
appears, it was a departure from previous courses in which we never gave the students
any code without a detailed presentation of its contents.

A second, perhaps more controversial, decision along these lines was to give the
students a small C++ package with two-, three-, and four-dimensional matrix and
vector classes. Although an OpenGL application can be written in C and use pro-
grammable shaders, GLSL relies on some additional matrix and vector types, uses
C++-style constructors, and employs operator overloading. Consequently, if we're
going to teach a shader-based course, our students have to know a little bit of C++. In
practice, this is not a problem as most students have already used an object-oriented
programming language, and even for those who haven’, the required parts of C++
are simple and take little time to introduce.

Although we could just use the C++ features required by GLSL in shader code
only, there are two major advantages to having a C++ matrix/vector package that
mirrors the types and operations in GLSL. One advantage is that the application
code is a lot cleaner and clearer, eliminating most for loops. The second is that
many algorithms that are studied in a typical class, such as lighting, can be applied
either in the application or in one of the shaders. By using application code with
similar types and operations, such algorithms can be applied in any of the possible

2Most OpenGL 2.0 implementations support all the functionality needed for our course, either di-
rectly or with a few OpenGL extensions. Hence, OpenGL 3.1 or any later version is not a requirement
for using our approach.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-3&iName=master.img-073.png&w=382&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-3&iName=master.img-073.png&w=382&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-3&iName=master.img-073.png&w=382&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-3&iName=master.img-073.png&w=382&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-3&iName=master.img-073.png&w=382&h=16

8 | Discovering

ways with almost identical code. We have found this feature to be extremely helpful
in teaching some of the more difficult parts of a course. These advantages override the
potential objections that, once again, we are giving students code instead of having
them write their own and also acknowledge that we really are using some C++ to
teach the introductory course.

1.5 Hello World: New Style

Even the simplest application program can be divided into three parts: an initializa-
tion that sets up the shaders and the interface with the window system, a stage that
forms the data and sends the data to the GPU, and a stage that renders the data on
the GPU. In the shader-based approach, the first stage is no more difficult than with
the traditional approach if we use InitShaders. For beginning examples, the third
stage requires only a clearing of some buffers and a call to glDrawArrays. The
middle stage is fundamentally different from immediate-mode programming. We
have to introduce vertex buffer objects and perhaps vertex array objects for even the
simplest program. Let’s examine all of these issues with a new Hello World program.
A program that produces the same output as our first Hello World program is shown
in Listing 1.2. The corresponding vertex shader is in Listing 1.3, and the fragment
shader is in Listing 1.4.

The include file Angel .h brings in the InitShaders code and the matrix and
vector classes. The next thing we notice about the program is that the data are
for two triangles with shared vertices rather than for a single quadrilateral. Starting
with OpenGL 3.1, triangles are the only filled type that is supported. This single
initialization of an array, which uses our vec2 data type, leads to a good discussion
of why we are restricted to triangles. We can also discuss the alternative of using
either a triangle strip or a triangle fan.

Next comes the most difficult part to explain (although it’s only five lines of
code). We allocate a vertex array object (VAO) and a vertex buffer object (VBO).
The three lines of code for setting up the vertex array data should follow from the
discussion of VBOs. The basic idea that we are setting up storage is clear but why we
need a VBO and a VAO in such a simple program is a tough one since we probably
don’t want to spend a lot of time on that issue early in a course.

The rest of the program is almost identical to the immediate-mode version with
the exception of the use of glDrawArrays, but that function presents no problems
to students, and the display callback is almost trivial to explain.

Not much time is necessary to discuss the shaders; they dont require much
knowledge of GLSL. One nice aspect of the use of shaders is that even these sim-
ple shaders can be changed in interesting ways without going any deeper into GLSL.

3 Alternately, some instructors may choose to leave out any discussion of VAOs by removing these two
lines of code. The program will still run and at this point in the course, the potential efficiency of using a
VAO is not of crucial importance.

© 2012 by Taylor & Francis Group, LLC

1. Teaching Computer Graphics Starting with Shader-Based OpenGL

#include "Angel.h"

void init(void)

{
vec2 points[6] =
{
vec2(-0.5, -0.5), vec2(0.5, -0.5),
vec2(0.5, 0.5), vec2(0.5, 0.5),
vec2(-0.5, 0.5), vec2(-0.5, -0.5)
};

GLuint vao, buffer;
GLuint glGenVertexArrays(l, &vao);
glBindVertexArray(vao);

GLuint glGenBuffers(1l, &buffer);
glBindBuffer (GL_ARRAY_BUFFER , buffer);
glBufferData(GL_ARRAY_BUFFER, sizeof (points), points, GL_STATIC_DRAW);

GLuint program = InitShader("vsimple.glsl", "fsimple.glsl");
glUseProgram(program) ;

GLuint loc = glGetAttribLocation(program, "vPosition");
glEnableVertexAttribArray(loc) ;
glVertexAttribPointer(loc, 2, GL_FLOAT, GL_FALSE, 0, 0);

glClearColor(0.0, 0.0, 0.0, 1.0);
}

void display(void)

{
glClear (GL_COLOR_BUFFER_BIT) ;
glDrawArrays(GL_TRIANGLES, 0, 6);
gutSwapBuffers() ;

int main(int argc, char **argv)

{
glutInit (&argc, argv);
glutInitDisplayMode (GLUT_RGBA | GLUT_DOUBLE) ;
glutCreateWindow("Hello World");

init () ;

glutDisplayFunc(display);

glutMainLoop() ;
}

Listing 1.2. Hello World redux.

in vec4 vPosition; out vec4 FragColor;
void main () void main ()
{ {

gl_Position = vPosition; FragColor = vec4(1.0, 1.0, 1.0, 1.0);
} }
Listing 1.3. Hello World vertex shader. Listing 1.4. Hello World fragment shader.

© 2012 by Taylor & Francis Group, LLC

10 | Discovering

1.5.1 OpenGL ES and WebGL

In my classes, students have always been free to choose to use Macs, PCs, or Linux
computers. With OpenGL, that flexibility has never been a problem. The advent
of OpenGL ES 2.0 and WebGL opens up even more possibilities. OpenGL ES 2.0
is totally shader-based and is supported on a variety of devices, including iPhones.
WebGL is a JavaScript implementation of OpenGL ES 2.0 that runs on the lat-
est browsers. Last semester, students in our class used all five options. Although
JavaScript is usually not part of the standard CS curriculum at most schools, it’s
pretty easy for upper-class and graduate students to pick up the basics. The ability to
share their work via a URL was an enormous benefit to students.

1.5.2 The First Assignment

Once we get past the Hello World example, students are ready for their first program-
ming assignment. We like to give a three-dimensional project to start. Because one of
the goals of the first assignment is to check whether students have the programming
skills to handle later projects, it’s important to assign this type of project early. One
possibility is to base the assignment on modeling and rendering a cube. Although
without transformations, the axis-aligned cube will look like a square, students can
change the vertex data, either to show more than one face of the cube or to create
more interesting objects. Another possibility is an extension of some simple fractal to
three dimensions. Other possibilities are morphing one simple object into another,
twists, and two- or three-dimensional maze generation. You can also focus on shader
code by starting with either a simple model or giving the class the data for a more
complex model and having the students manipulate the model in the vertex shader.
At this point in a typical course, it is better to focus on an assignment using vertex
shaders rather than fragment shaders since the major topics an instructor will likely
be covering in class at that time are geometry and transformations.

1.6 The Rest of the Course

In most courses that have a programming component, instructors want to get their
students programming as soon as possible so they can move on to the core topics.
Comparing our experience with the two Hello World examples, it takes about an
extra week to get students to write their first assignment using the shader-based ap-
proach. This extra time comes back to the instructor because the details of using
shader-based code that we needed to explain for the Hello World example would
have been introduced later in a traditional course. Let’s look at each part of what
we claim is core to all senior-level graphics courses and discuss how a shader-based
OpenGL fits into each one.

© 2012 by Taylor & Francis Group, LLC

1. Teaching Computer Graphics Starting with Shader-Based OpenGL

1.6.1 Geometry

Computer graphics is built on some basic geometric concepts. Every introductory
computer graphics class introduces the basic types (scalars, points, vectors), sim-
ple objects (triangles, planes, polylines), and methods of representation (coordinate
systems, frames). Our approach has been to spend some time on building geomet-
ric models through vertex buffers. This section of most courses need not change
with a shader-based OpenGL. Nevertheless, there are some interesting ways in which
shaders can be used.

Consider modeling a cube. It’s a very useful object to have available as we develop
transformations, viewing, lighting, and texture mapping. Because we can only render
triangles, we have multiple ways we can build a model for the cube. Since we have
already introduced vertex buffers for the Hello World program, an extension to using
simple data structures and glDrawElements is a nice topic. Color is usually added
at this point in the course. Since the old built-in state variables, including the current
color and the vertex position, are no longer part of the OpenGL state, these and
other state variables must be defined in the application and their values sent to the
GPU. Courses that are programming-oriented can use the flexibility of how data are
organized and transferred to the GPU to experiment with various strategies, such as
using uniform variables versus vertex attributes or various ways to mix geometric and
color data in the application and on the GPU.

More generally, the issue of efficiency is often a neglected topic. With the stan-
dard immediate-mode approach, when students are asked to see how close their pro-
grams come to the advertised ratings of their graphics card, they are amazed and
perplexed with how poorly their programs perform. With the flexibility of newer
versions of OpenGL, students can try various strategies and achieve performances
close to spec. In addition, if they use a compatibility profile, they can compare
immediate-mode and retained-mode performance.

1.6.2 Transformations and Viewing

This part of the course is fairly standard and takes the most time. We introduce
the standard affine transformations—translation, rotation, scaling, shear—and how
to build them. We then move on to projective transformations and derive from
them the standard orthographic and perspective transformations. Courses differ in
how an instructor divides between theory and application. Before OpenGL 3.1,
the API provided support through some simple matrix functions (glMatrixMode,
glloadMatrix, glloadIdentity, glMultMatrix), the standard transforma-
tion functions (glTranslate, glRotate, glScale), matrix stacks (glPush
Matrix, glPopMatrix), and the projection functions (gl0rtho, glFrustum). All
these functions have been deprecated. Moreover, because most state variables have
been eliminated, the notion of a current matrix is gone, and thus the concept of a

© 2012 by Taylor & Francis Group, LLC

12 | Discovering

matrix function that alters a current matrix by post multiplication is also gone. All
these changes have major consequences.

At this point in a typical class, the instructor develops the standard affine trans-
formations in homogeneous coordinates. Although the basic translation, rotation
about a coordinate axis, and scaling functions are simple for the students to write
themselves, rotation about an arbitrary axis is more difficult and can be done in a
number of ways. One of the advantages of not having these functions available in
the APl is that students pay more attention to the instructor and the textbook since
they can no longer rely on the functionality being part of the APIL. Nevertheless, we
have added functions to our matrix/vector classes that form the basic matrices, in-
cluding the standard viewing matrices. One reason for this is that we often want to
make comparisons between carrying out a transformation in the application and car-
rying it out in the shader. By providing these matrices, students can carry out these
comparisons with almost identical code.

One of the exercises that has proved helpful has been to use the same model we
used in the geometric section (the cube) and look at different methods of rotating it
in an idle callback. One extreme, in terms of efficiency, is to rotate the vertices in the
application and resend the data. Students can then compare this immediate-mode
strategy with the strategies of sending rotation matrices to the vertex shader or just
sending the angles to a shader.

If the instructor covers hierarchical models, it is simple to add matrix push and
pop functions to implement matrix stacks. Some instructors are interested in teach-
ing about quaternions as part of a discussion on rotation. Quaternions can be imple-
mented with just a few lines of code in a shader and thus fit well into a shader-based
course.

1.6.3 Lighting and Shading

This section, more than any other, shows the benefits of the shader-based approach.
In the past, students were able to use only the Blinn-Phong lighting because it was
the only model supported by the fixed-function pipeline. Other models could be
discussed but could only be implemented in an offline manner. Equally problematic
was that only vertex lighting was available. Thus, while students could study Phong
and Gouraud shading, they could not implement Phong shading within the pipeline.
Consequently, students focussed on a single lighting and shading model. With pro-
grammable shaders, both per-vertex and per-fragment lighting can be accomplished
with almost identical code. Students can even use our matrix and vector types to im-
plement per-vertex lighting in the application. Once students have covered texture
mapping, it is fairly easy to add bump mapping as an additional shading method.
The deprecation of most state variables and immediate-mode functions does
cause some problems. Applications must provide their own normals, usually as a
vertex attribute. The larger problem occurs with transforming normals. When stu-
dents implement a lighting shader, they must provide a normal matrix because the

© 2012 by Taylor & Francis Group, LLC

1. Teaching Computer Graphics Starting with Shader-Based OpenGL

state variable gl _NormalMatrix has been deprecated. Students can either imple-
ment this matrix themselves, either in the application or the shader, or a normal
matrix function can be added to the mat . h file.

1.6.4 Texturing and Discrete Processing

Most of the pre-3.1 texture functions have not changed with recent versions of
OpenGL. The application sets up a texture object. Texture coordinates can be pro-
duced in either the application as a vertex attribute or in the vertex shader and then
interpolated by the rasterizer. Finally, a sampler is used in the fragment shader that
applies the shader to coloring each fragment.

Starting with OpenGL 3.1, pixel processing is dramatically different. Both the
bitmap- and pixel-writing functions have been deprecated, as have some of the related
functions, such as those for using an accumulation buffer. Although these functions
were easy to use, they were extremely inefficient. Here is a case where ease of pro-
gramming leads to poor use of the GPU and a bottleneck due to large amounts of
data that go back and forth between the CPU and the GPU. The alternative is to take
an approach based on using fragment shaders to manipulate textures. For example,
the simple fragment shader in Listing 1.5 is sufficient to illustrate image smoothing
and can be altered easily to do other imaging operations.

in vec2 texCoord;
out vec4 FragColor;
uniform float d;

uniform sampler2D image;

void main ()

{
FragColor =
(texture (image, vec2(texCoord.x + d, texCoord.y))
+ texture (image, vec2(texCoord.x, texCoord.y + d))
+ texture (image, vec2(texCoord.x - d, texCoord.y))
+ texture (image, vec2(texCoord.x, texCoord.y - d))) / 4.0;
}

Listing 1.5. Image-smoothing shader.

1.6.5 Advanced Topics

The topics we discussed above are central to most first courses in computer graph-
ics. Depending on the instructor and the focus (programming vs. theory, survey
vs. depth), three additional topics fit in well at this level. The first is curves and
surfaces. Although evaluators have been deprecated, they are easy to create on the
application side. If we use a more recent version of OpenGL, a much more interest-
ing approach is to introduce geometry shaders for generating parametric cubic curves.
Geometry shaders do not add a significant amount of programming complexity, and

© 2012 by Taylor & Francis Group, LLC

14 | Discovering

they can also be used for an introduction to subdivision curves and surfaces. Tessel-
lation shaders may be better for parametric polynomial surfaces but are most likely
much too complex for a first course.

The second topic that an instructor might consider introducing is framebuffer
objects (FBOs). Although FBOs require the introduction of more OpenGL detail,
they open up many new areas that lead to excellent student projects. Consider ren-
dering to a texture. Because textures are shared by all instances of shaders, they
provide shared memory. Doing a single pass through a texture as in the previous
section is simple, but dynamic imaging operations are much more interesting. Such
examples are usually best done by rendering to an off-screen buffer and then using
this buffer as a texture for the next iteration. This type of double buffering (or buffer
ping-ponging) is not only the basis for nongraphical uses of GPUs, as with CUDA or
OpenCL, but is also used for games, particle systems, and agent-based simulations.

Lacking the necessary hardware and software, the early courses in computer
graphics spent a lot of time on algorithms for rasterization, clipping, and hidden-
surface removal. As better hardware and APIs such as OpenGL became available,
much of that emphasis has been lost. Instructors can rely on the graphics system to
do these tasks, and the discussion of such algorithms tends to be short and at the end
of a typical introductory course. Programmable shaders allow the student to study
and implement a wide range of graphics algorithms as possible class projects.

1.6.6 Issues

As exciting as we find the shader-based approach, there are some issues. Some in-
structors may find that the extra time needed to get to the first programming assign-
ment is a problem. We have not found that to be the case, nor did we find that we
had less time to teach the core topics. What is more significant is that there is a real
change in emphasis from a focus on interactions between the CPU and GPU to the
capabilities of the GPU itself. With a shader-based OpenGL, some of the standard
interactive operations involve much more application overhead than they did with
immediate-mode graphics. The main reason is that interactive techniques, such as
the use of menus or rubber-banding of objects as they are moved across the display,
can be done very easily with immediate-mode graphics. With a fully shader-based
OpenGL, data must first be moved to the GPU. Most techniques are doable with a
shader-based OpenGL, but they’re not as simple or elegant as with immediate mode.
Our view is that the time is better spent on other topics that more accurately reflect
what is possible with recent GPUs.

The problem of how to interface with the window system has become more
problematic. The OpenGL Ugtility Toolkit (GLUT) provided an interface to all the
standard windowing systems. It allowed an application to open and manipulate one
or more windows, use a mouse and keyboard with OpenGL, provided some nice
extras such as the teapot (with normals), and system independent text. GLUT has
been unchanged for 10 years. Consequently, many of its features, including text

© 2012 by Taylor & Francis Group, LLC

1. Teaching Computer Graphics Starting with Shader-Based OpenGL

15

rendering and some of its objects, should not work with a shader-based OpenGL
using only a core profile, because many GLUT functions rely on deprecated OpenGL
functions. The freeglut project (freeglut.sourceforge.net) addresses some of these
issues, but it too uses deprecated functions. Surprisingly, many applications work
correctly with GLUT or freeglut, depending on the graphics card and driver that
is used. This situation is of dubious benefit for many instructors. For example,
many implementations support GLUT or freeglut menus even though the source
for these toolkits use the deprecated glRasterPos function to implement menus,
and the situation may not hold for long. For example, Mac OS X Lion supports
OpenGL 3.2, but the 3.2 profile is incompatible with the GLUT framework.

There are a few possible approaches to fixing this problem, although the better
ones may take a while to develop. Most instructors do not want to go back to using
the native windowing functions on their architectures. Such an approach would be
in conflict with the ability to teach a course in which students can use Windows, Mac
OS X, Linux, OpenGL ES, or WebGL. There are a few cross-platform alternatives
to GLUT out there, but it remains to be seen if any of them will become established.
Perhaps a more desirable path would be for some group to update freeglut so it is
fully compatible with a shader-based OpenGL.

An interesting alternative would be to use WebGL for beginning classes. Al-
though academic CS departments have an aversion to JavaScript, there is a lot to be
said for such an approach. WebGL is supported by almost all the latest browsers on
Windows, Mac OS X, and Linux. Hence, there is no need to worry about differences
among systems. In addition, there is a wide range of tools available for interaction
with WebGL.

Finally, there are issues with the various versions of OpenGL and GLSL and with
the associated drivers. Although OpenGL 3.1 was the first version to require the
application to provide shaders and deprecated many functions from earlier versions,
it was plagued by many ambiguities and some features that were reexamined in later
versions. Starting with OpenGL 3.2, OpenGL introduced multiple profiles that al-
low the programmer to request a core profile or a compatibility profile that includes
the deprecated functions. However, with the rapid release of new versions and the si-
multaneous evolution of GLSL, OpenGL drivers vary dramatically in which versions
and profiles they support and in how they interpret the standards. In practice, with
the variety of versions, drivers, profiles, and GPUs available, getting students started
can take some effort. However, once students get the Hello World program running,
they have little trouble with the mechanics of their assignments.

1.7 Conclusion

Opverall, we are convinced that starting with a shader-based OpenGL is not only
possible but makes for a much better first course in computer graphics. The feedback
from the students has been overwhelmingly positive. Students who used WebGL or

© 2012 by Taylor & Francis Group, LLC

16 | Discovering

OpenGL ES were especially happy with the course. We attribute a large part of
their enthusiasm to the ease with which they could demo their assignments to their
cohorts, friends, and families.

The code for our class is available at www.cs.unm.edu/~angel, and many other
examples can be found starting at www.opengl.org.

Acknowledgments. Dave Shreiner (ARM, Inc.) has been an enormous help over many
years, both as a coauthor of our textbook and copresentor of many SIGGRAPH courses. My
students were the first to get me interested in OpenGL over 15 years ago. More recently, my
students at the University of New Mexico and colleagues at the Santa Fe Complex pushed me
toward teaching a fully shader-based introductory course.

Bibliography

[Angel and Shreiner 11] Edward Angel and Dave Shreiner. “Teaching a Shader-Based Intro-
duction to Computer Graphics.” IEEE Computer Graphics and Applications 31:2 (2011),
9-13.

[Angel and Shreiner 12] Edward Angel and Dave Shreiner. Interactive Computer Graphics,
Sixth Edition. Boston: Addison-Wesley, 2012.

[Angel 09] Edward Angel. Interactive Computer Graphics, Fifth Edition. Boston: Addison-
Wesley, 2009.

[Foley et al. 96] James D. Foley, Andries van Dam, Steven K. Feiner, and John E Hughes.
Computer Graphics, Second Edition. Reading: Addison-Wesley, 1996.

[Hearn et al. 11] Donald Hearn, M. Pauline Baker, and Warren R. Carithers. Computer
Graphics, Fourth Edition. Boston: Prentice Hall, 2011.

[Newman and Sproull 79] William M. Newman and Robert E. Sproull. Principles of Interac-
tive Computer Graphics, Second Edition. New York: McGraw Hill, 1979.

© 2012 by Taylor & Francis Group, LLC

Transitioning Studentsto 2
Post-Deprecation OpenGL

Mike Bailey

2.1 Introduction

From an educator’s perspective, teaching OpenGL in the past has been a snap. The
separation of geometry from topology in the glBegin-glEnd, the simplicity of
glVertex3f, and the classic organization of the postmultiplied transformation ma-
trices has been fast and easy to explain. This has considerably excited the students
because going from zero knowledge to “cool 3D program you can smugly show your
friends” was the task of a single lesson. This made motivation easy.

The Great OpenGL Deprecation has changed that. Creating and using vertex
buffer objects is a lot more time consuming to explain than glBegin-glEnd [Angel
11]. It’s also much more error-prone. Creating and maintaining matrices and matrix
stacks now requires deft handling of matrix components and multiplication order
[GLM 11]. In short, while postdeprecation OpenGL might be more streamlined
and efficient, it has wreaked havoc on those who need to teach it and even more on
those who need to learn it.

So the “old way” is not current, but the “new way” takes a long time to learn be-
fore one can see a single pixel. How can we keep students enthusiastic and motivated
but still move them along the road to learning things the new way?! This chapter

'One option, of course, is not to transition at all, where the current penalty is simply falling behind
the OpenGL curve. However, in some instances, most notably, OpenGL ES 2.0 [Munshi 08], failing to
transition is not even an option.

17

© 2012 by Taylor & Francis Group, LLC

18 | Discovering

discusses intermediate solutions to this problem by presenting C++ classes that ease
the transition to postdeprecation OpenGL. These C++ classes are

1. Create vertex buffers with methods that look suspiciously like glBegin-
glEnd.

2. Load, compile, link, and use shaders.

This chapter also suggests a naming convention that can be instrumental in keep-
ing shader variables untangled from each other.

2.2 Naming Shader Variables: Introduction

This isn't exactly a transition issue. It's more of a confusion-prevention issue.

With seven different places that GLSL variables can be set, it is convenient to
adopt a naming convention to help recognize what variables came from what sources.
This works very well, as shown in Table 2.1.

Beginning letter(s) Means that the Variable

a Is a per-vertex attribute from the application
u Is a uniform variable from the application

v Came from a vertex shader

tc Came from a tessellation control shader

te Came from a tessellation evaluation shader
g Came from a geometry shader

£ Came from a fragment shader

Table 2.1. Variable name prefix convention.

2.3 Naming Shader Variables: Details

Variables like gl _Vertex and gl ModelViewMatrix have been built-in to the
GLSL language from the start. They are used like this:

vec4 ModelCoords
vec4 EyeCoords
vec4 ClipCoords
vec3 TransfNorm

gl_Vertex;

gl_ModelViewMatrix * gl _Vertex;
gl_ModelViewProjectionMatrix * gl_Vertex;
gl_NormalMatrix * gl_Normal;

However, starting with OpenGL 3.0, they have been deprecated in favor of user-
defined variables that we pass in from the application. The built-ins still work if
compatibility mode is enabled, but we should all be prepared for them to go away
some day. Also, OpenGL ES has already completely eliminated the built-ins.

© 2012 by Taylor & Francis Group, LLC

2. Transitioning Students to Post-Deprecation OpenGL

We have chosen to pretend that we have created variables in an application and
have passed them in. So, the previous lines of code would be changed to look like
this:

vec4 ModelCoords = aVertex;

vec4 EyeCoords = uModelViewMatrix * aVertex;

vec4 ClipCoords = uModelViewProjectionMatrix * aVertex;
vec3 TransfNorm = uNormalMatrix * aNormal;

If they really are being passed in from the application, we can go ahead and use
these names. But, if we haven’t made that transition yet, the new names can still be
used (thus preparing for an eventual transition) by including a set of #defines at
the top of their shader code, as shown in Listing 2.1.

If the graphics driver supports the ARB_shading language_include exten-
sion,? then these lines can be #included right into the shader code. If it is not
supported, an #include can be “faked” by copying these lines into the first of the
multiple strings that are used to load shader source code before compiling.

The #1line statement is there so that compiler error messages give the correct
line numbers and do not include these lines in the count.

Later on in this chapter, this set of #include lines will be referred to as gstap.h.’

// uniform variables:

#define uModelViewMatrix gl_ModelViewMatrix

#define uProjectionMatrix gl_ProjectionMatrix

#define uModelViewProjectionMatrix gl_ModelViewProjectionMatrix
#define uNormalMatrix gl_NormalMatrix

#define uModelViewMatrixInverse gl_ModelViewMatrixInverse

// per-vertex attribute variables:

#define aColor gl_Color

#define aNormal gl_Normal

#define aVertex gl_Vertex

#define aTexCoordO gl_MultiTexCoordO
#define aTexCoordl gl_MultiTexCoordil
#define aTexCoord2 gl_MultiTexCoord2
#define aTexCoord3 gl_MultiTexCoord3
#define aTexCoord4 gl_MultiTexCoord4
#define aTexCoord5 gl_MultiTexCoord5
#define aTexCoord6 gl_MultiTexCoord6
#define aTexCoord7 gl_MultiTexCoord?7
#line 1

Listing 2.1. #include file to translate new names to old names.

2...and if this line is placed at the top of the shader code: #extension GL_ARB_shading_
language_include : enable.

3...which stands for Graphics Shaders: Theory and Practice, the book in which this file originally
appeared (Second Edition, A K Peters, 2011).

© 2012 by Taylor & Francis Group, LLC

20 | Discovering

2.4 Indexed Vertex Buffer Object C++ Class

There is no question that using glBegin-glEnd is convenient, especially when
beginning to learn OpenGL. With this in mind, here is a C++ class that looks like
the application is using g1Begin-glEnd, but inside, its data structures are preparing
to use indexed vertex buffer objects (VBOs) [Shreiner 09] when the class’s Draw()
method is called. The Print() method’s print format shows the data in VBO-
table form so the students can see what they would have created if they had used
VBOs in the first place. The following methods are supported by the class, as shown
in Listing 2.2.

void CollapseCommonVertices(bool collapse);

void Draw();

void Begin(GLenum type);

void Color3f (GLfloat red, GLfloat green, GLfloat blue);
void Color3fv(GLfloat *rgb);

void End();

void Normal3f (GLfloat nx, GLfloat ny, GLfloat nz);
void Normal3fv(GLfloat *nxyz);

void TexCoord2f(GLfloat s, GLfloat t);

void TexCoord2fv(GLfloat *st);

void Vertex2f (GLfloat x, GLfloat y);

void Vertex2fv(GLfloat *xy);

void Vertex3f (GLfloat x, GLfloat y, GLfloat z);
void Vertex3fv(GLfloat *xyz);

void Print(char *str = '', FILE *out = stderr);
void RestartPrimitive();

void SetTol(float tol);

Listing 2.2. VertexBufferObject class methods.

2.4.1 Usage Notes

This implements an indexed VBO; that is, it keeps track of the vertices” index
in the VBO and then uses glDrawElements () to display the object.

Passing a TRUE to the CollapseCommonVertices() method’s Boolean
argument says that any vertices close enough to each other should be collapsed
to be treated as a single vertex. “Close enough” is defined by the distance
specified in SetTol(). The advantage to this is that the single vertex gets
transformed only once per display update. The disadvantage is that the col-
lapsing process takes time, especially for large lists of vertices.

e The RestartPrimitive() method invokes an OpenGL-ism that restarts
the current primitive topology without starting a new VBO. It is especially
handy for triangle strips and line strips. For example, if the topology is triangle
strip, then RestartPrimitive() allows the application to end one strip
and start another and have all the vertices end up in a single VBO. This saves
overhead.

© 2012 by Taylor & Francis Group, LLC

2. Transitioning Students to Post-Deprecation OpenGL 21

e The first call to the Draw() method sends the VBO data to the graphics card
and draws it. Subsequent calls to Draw() just do the drawing.

2.4.2 Example Code

Listing 2.3 and Figure 2.1 show an example of using the VertexBufferObject
class to draw a colored cube.

#include "VertexBufferObject.h"

VertexBufferObject VB;

// this goes in the part of the program where graphics things
// get initialized once:

VB.CollapseCommonVertices(true);

VB.SetTol(.001f); // how close need to be to collapse
VB.Begin(GL_QUADS);
for(int i = 0; i < 6; i++)
{
for(int j = 0; j < 4; j++)
{
VB.Color3fv(. . .);
VB.Vertex3fv(. . .);
}
}
VB.End();
VB.Print ("VB:"); // verify that vertices were really collapsed

// this goes in the display-callback part of the program:

VB.Draw();

Listing 2.3. VertexBufferObject class used to draw a colored cube.

Figure 2.1. Colored cube created with the VertexBufferObject class.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-4&iName=master.img-156.jpg&w=143&h=120

22 | Discovering

// create an instance of the class:

// (the real constructor'' is in the Begin method)
VertexBufferObject VB;

VB.CollapseCommonVertices(true);

VB.SetTol(.001f);

// this goes in the part of the program where graphics things
// get initialized once:

int x, y; // loop indices
float ux, uy; // utm coordinates

VB.Begin(GL_LINE_STRIP);
for(y = 0, uy = meteryMin; y < NumLats; y++, uy += meteryStep)

VB.RestartPrimitive();

for(x = 0, ux = meterxMin; x < NumLngs x++, ux += meterxStep)

{
float uz = Heights[y*NumLngs + x 1;
VB.Color3f(1., 1., 0.); // single color = yellow
VB.Vertex3f (ux, uy, uz);

}
}
for(x = 0, ux = meterxMin; x < NumLngs; x++, ux += meterxStep)
{
VB.RestartPrimitive();
for(y = 0, uy = meteryMin; y < NumLats; y++, uy += meteryStep)
{
float uz = Heights[y*NumLngs + x 1;
VB.Color3f(1., 1., 0.);
VB.Vertex3f (ux, uy, uz);
}
}
VB.End();

VB.Print ("Terrain VBO:");

// this goes in the display-callback part of the program:

VB.Draw();

Listing 2.4. VertexBufferObject class used to draw a wireframe terrain.

This next example, shown in Listing 2.4 and Figure 2.2, shows drawing gridlines
on a terrain map. The already-defined Heights[] array holds the terrain heights.
This is a good example of using the RestartPrimitive() method so that the
next grid line doesn’t have to be in a new line strip. The entire grid is saved as a single
line strip and is drawn by blasting a single VBO into the graphics pipeline.

© 2012 by Taylor & Francis Group, LLC

2. Transitioning Students to Post-Deprecation OpenGL

23

Figure 2.2. Wireframe terrain created with the VertexBufferObject class.

2.4.3 Implementation Notes

e This class uses the C++ standard template library (STL) wvecror function to
maintain the ever-expanding array of vertices.

e It also uses the C++ STL map function to speed the collapsing of common
vertices.

2.5 GLSLProgram C++ Class

The act of creating, compiling, linking, using, and passing parameters to shaders is
very repetitive [Rost 09,Bailey 11]. When teaching students, we have found it helpful

bool Create(char *, char * = NULL, char * = NULL, char * = NULL, char *
bool IsValid();

void SetAttribute(char *name, int val);

void SetAttribute(char *name, float val);

void SetAttribute(char *name, float valO, float vall, float val2);
void SetAttribute(char *name, float *valp);

void SetAttribute(char *name, Vec3& vec3);

void SetAttribute(char *name, VertexBufferObject& vb, GLenum which);
void SetGstap (bool set);

void SetUniform(char #*name, int);

void SetUniform(char #*name, float);

void SetUniform(char *name, float, float, float);

void SetUniform(char #*name, float[3]);

void SetUniform(char #*name, Vec3&);

void SetUniform(char #*name, Matrix4&);

void Use();

void UseFixedFunction();

NULL

D

Listing 2.5. GLSLProgram class methods.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-4&iName=master.img-224.jpg&w=176&h=142

24 | Discovering

to create a C++ class called GLSLProgram that implements this process. This class has
the tools to manage all the steps of shader program development and use, including
source-file opening, loading, and compilation. It also has methods that implement
setting attribute and uniform variables. The following methods are supported by the
class, as shown in Listing 2.5.

2.5.1 Usage Notes

e The Create() method takes up to five shader file names as arguments.
From the filename extensions shown in Table 2.2, it figures out what type
of shaders these are, loads them, compiles them, and links them all together.
All errors are written to stderr.? It returns true if the resulting shader binary
program is valid, or false if it is not. The IsValid() method can be called
later if the application wants to know if everything succeeded or not. The files
listed in the Create () call can be in any order. The filename extensions that
the Create () method is looking for are shown in Table 2.2.

Extension Shader Type

.vert GL_VERTEX_SHADER

Vs GL_VERTEX_SHADER

frag GL_FRAGMENT_SHADER

fs GL_FRAGMENT_SHADER

.geom GL_GEOMETRY_SHADER

.gs GL_GEOMETRY_SHADER

.tcs GL_TESS_CONTROL_SHADER

.tes GL_TESS_EVALUATION_SHADER

Table 2.2. Shader type filename extensions.

e The SetAttribute() methods set attribute variables to be passed to the
vertex shader. The vertex buffer version of the SetAttribute() method
lets a VertexBufferObject be specified along with which data inside it is
to be assigned to this attribute name. For example, one might say:

GLSLProgram Ovals;
VertexBufferObject VB;

Ovals.SetAttribute ("aNormal", VB, GL_NORMAL_ARRAY);

e The SetUniform() methods set uniform variables destined for any of the

shaders.

4Standard error is used for these messages because it is unbuffered. If a program crashes, the helpful
messages sent to standard output might still be trapped in a buffer and will not be seen. Those messages
sent to standard error were seen right away.

© 2012 by Taylor & Francis Group, LLC

2. Transitioning Students to Post-Deprecation OpenGL 25

e The Use() method makes this shader program active so that it affects any
subsequent drawing. If someone insists on using the fixed functionality, the
UseFixedFunction() method returns the state of the pipeline to doing so.

e TheSetGstap() method is there to give the option to have the gstap.h code
included automatically. Just pass TRUE as the argument. Call this before the
call to the Create () method.

2.5.2 Example Code

Listing 2.6 shows an example GLSLProgram class application.

#include "GLSLProgram.h"

float Ad, Bd, NoiseAmp, NoiseFreq, Tol;
GLSLProgram QOvals;
VertexBufferObject VB;

// set everything up once:

Ovals.SetVerbose(true);

Ovals.SetGstap (true);

bool good = Ovals.Create("ovalnoise.vert", "ovalnoise.frag")8
if(! good)

fprintf (stderr, "GLSL Program Ovals wasn't created.\n");

// do this in the display callback:

Ovals.Use();

Ovals.SetUniform("uAd", Ad);

Ovals.SetUniform("uBd4", Bd);

Ovals.SetUniform("uNoiseAmp", NoiseAmp);
Ovals.SetUniform("NoiseFreq", NoiseFreq);
Ovals.SetUniform("uTol", Tol);

Ovals.SetAttribute("aVertex", VB, GL_VERTEX_ARRAY);
Ovals.SetAttribute("aColor", VB, GL_COLOR_ARRAY);
Ovals.SetAttribute("aNormal", VB, GL_NORMAL_ARRAY);

VB.Draw();

Listing 2.6. GLSLProgram class application example.

2.5.3 Implementation Notes

The SetAttribute() and SetUniform() methods use the C++ STL map
function to relate variable names to variable locations in the shader program sym-
bol table. It only ever really looks them up once.

© 2012 by Taylor & Francis Group, LLC

26 | Discovering

2.6 Conclusion

From a teaching perspective, the simplicity of explanation and the speed to develop
an application have long been advantages of using OpenGL in its fixed-function,
predeprecation state. Students of OpenGL do need to learn how to use OpenGL in
the postdeprecation world. However, they don't need to learn it right from the start.

This chapter has presented a way of starting students out in a way that is easier for
them to learn but that still uses the recommended methods underneath. As they get
comfortable with graphics programming, the “underneath” can be revealed to them.
This sets the students up for using shaders and VBOs.

This chapter has also suggested a shader-variable naming convention. As shaders
become more complex, and as more variables are being passed between the shaders,
we have found that this is useful to keep shader-variable names untangled from each
other. This naming convention, along with the gstap.h file, sets students up for
passing their own quantities into their shaders.

Bibliography

[Angel 11] Edward Angel and Dave Shreiner, Interactive Computer Graphics: A Top-down Ap-
proach with OpenGL, 6th edition, Reading, MA: Addison-Wesley, 2011.

[Bailey 11] Mike Bailey and Steve Cunningham, Computer Graphics Shaders: Theory and Prac-
tice, Second Edition, Natick, MA: A K Peters, 2011.

[GLM 11] GLM. “OpenGL Mathematics.” http:/glm.g-truc.net/, 2011.

[Munshi 08] Aaftab Munshi, Dan Ginsburg, and Dave Shreiner, OpenGL ES 2.0, Reading,
MA: Addison-Wesley, 2008.

[Rost 09] Randi Rost, Bill Licea-Kane, Dan Ginsburg, John Kessenich, Barthold Lichtenbelt,
Hugh Malan, and Mike Weiblen, OpenGL Shading Language, 3rd edition. Reading, MA:
Addison-Wesley, 2009.

[Shreiner 09] Dave Shreiner,OpenGL 3.0 Programming Guide, 7th edition. Reading, MA:
Addison-Wesley, 2009.

© 2012 by Taylor & Francis Group, LLC

WebGL for OpenGL Developers 3

Patrick Cozzi and Scott Hunter

3.1 Introduction

Don’t get us wrong—we are C++ developers at heart. We've battled triple-pointers,
partial template specialization, and vtable layouts under multiple inheritance. Yet,
through a strange series of events, we are now full-time JavaScript developers. This
is our story.

At the SIGGRAPH 2009 OpenGL BOE we first heard about WebGL, an up-
coming web standard for a graphics API based on OpenGL ES 2.0 available to
JavaScript through the HTML5 canvas element, basically OpenGL for JavaScript.
We had mixed feelings. On the one hand, WebGL brought the promise of devel-
oping zero-footprint, cross-platform, cross-device, hardware-accelerated 3D applica-
tions. On the other, it requires us to develop in JavaScript. Could we do large-scale
software development in JavaScript? Could we write high-performance graphics code
in JavaScript?

After nearly a year of development resulting in over 50,000 lines of JavaScript
and WebGL code, we have answered our own questions: properly written JavaScript
scales well, and WebGL is a very capable API with tremendous momentum. This
chapter shares our experience moving from developing with C++ and OpenGL for
the desktop to developing with JavaScript and WebGL for the web. We focus on
the unique aspects of moving OpenGL to the web, not on porting OpenGL code to
OpenGL ES.

27

© 2012 by Taylor & Francis Group, LLC

28 | Discovering

3.2 The Benefits of WebGL

Loosely speaking, WebGL brings OpenGL ES 2.0 to JavaScript and, therefore, to
the web. From a web developer’s point of view, this is a natural progression for
web-deliverable media types: first there was text, then images, then video, and now
interactive 3D. From an OpenGL developer’s point of view (our point of view), we
have a new way to deliver applications: the web. Compared to traditional desktop
applications, the web has several advantages.

3.2.1 Zero-Footprint

Plugins aside, browsing to a web page does not require an install, nor does it require
the user to have administrator privileges. Users simply browse to a URL and expect
their content. As application developers, having such a low barrier to entry enables us
to reach the widest possible market. In our work at Analytical Graphics, Inc. (AGI),
many of our users do not have administrator privileges and have to go through long
processes to have new software installed. WebGL helps us overcome these barriers.

3.2.2 Cross-Platform

The web provides a convenient way to reach all the major desktop operating systems:
Windows, Linux, and OS X. In fact, part of our motivation for using WebGL at AGI
was to support multiple platforms. We have found very few differences across plat-
forms, with the biggest difference being the presence of ANGLE on Windows, which
translates WebGL (OpenGL ES 2.0) to Direct3D 9, as discussed in Chapter 39.

As of this writing, which comes less than a year after the release of the WebGL 1.0
specification, desktop browsers supporting WebGL include Chrome, Firefox, Safari,
and the Opera 12 alpha. Internet Explorer (IE) does not support WebGL; however,
several workarounds exist, with our preferred option being Google Chrome Frame.!
Chrome Frame is an IE plugin that does not require administrator privileges to install
and that brings Chrome’s JavaScript engine and open web technologies, including
WebGL, to IE. IE’s networking layer is still used, but pages that include a meta tag
requesting Chrome Frame are presented using Chrome Frame and are able to use
WebGL.

Even with multiple developers actively working in the same code base using dif-
ferent operating systems and browsers, we have found very few differences across
browsers, especially Chrome and Firefox.

3.2.3 Cross-Device

Another advantage of WebGL is that web browsers supporting WebGL are start-
ing to become available on tablets and phones. See Figure 3.1. Currently, Firefox

!developers.google.com/chrome/chrome-frame/

© 2012 by Taylor & Francis Group, LLC

3. WebGL for OpenGL Developers

29

Figure 3.1. From top to bottom, WebGL running in Safari on OS X, in Chrome on Win-
dows, in Chromium on Linux, and in Firefox Mobile on Android. Over 800 satellites are
propagated server-side, streamed, and interpolated client-side and rendered as billboards. The
globe is rendering with day and night textures; a specular map; a bump map; and a cloud map
with shadows.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-5&iName=master.img-028.jpg&w=359&h=420

30 | Discovering

Mobile supports WebGL on Android; wide support for the stock browser is expected
soon. Given that Sony recently released their WebGL implementation in the An-
droid 4 browser for their Xperia phones as open source [Edenbrandt 12], we expect
Android support to continue to improve. On iOS, WebGL is officially available to
iAd developers.

As mobile platforms mature, WebGL developers will be able to write code that
targets both desktops and mobile devices. However, some areas will still need spe-
cial consideration. For example, code to handle mouse and keyboard events on the
desktop will be different than code to handle touch events on mobile. Likewise,
desktop and mobile versions may use different shaders and textures and perhaps dif-
ferent optimizations, as discussed in Chapter 24. Although web apps currently do
not deliver the same experience as native apps on mobile, they are becoming very
close with recent HTMLS5 standards such as geolocation, device orientation, and
acceleration [Mahemoff 11, Meier and Mahemoff 11].

Supporting multiple platforms and devices can be done with more traditional
means, as discussed in Chapter 44, but we feel that JavaScript and WebGL is the
most straightforward way to do so. See Chapter 4 for more on using WebGL with
mobile.

3.2.4 It's Easy

For OpenGL developers, WebGL is easy. Listing 3.1 is a JavaScript/WebGL port of
the C++/OpenGL code in Listing 1.2 that draws a white rectangle on a black back-
ground using clip coordinates. A WebGL context is created by requesting a WebGL
context from an HTML canvas element. Positions for two triangles are stored in an
array, which is then copied to an array buffer using a familiar call to bufferData.
All WebGL calls are part of the context object and are not global functions as in
OpenGL. A shader program is created using a helper function that is not part of
WebGL, but uses the familiar sequence of calls to createShader, shaderSource,
compileShader, attachShader, createProgram, and 1inkProgram. Finally,
the position vertex attribute is defined and the screen is cleared, before entering the
draw loop.

The draw function executes once to draw the scene. The call to window.
requestAnimFrame at the end of the function requests that the browser call draw
again when it thinks the next frame should be drawn. This creates a draw loop con-
trolled by the browser, which allows the browser to perform optimizations such as
not animating hidden tabs [Irish 11].

For OpenGL developers, the challenge of moving to WebGL is not in learning
WebGL itself. It is in moving to the web in general and developing in JavaScript, as
explained in Section 3.5.

© 2012 by Taylor & Francis Group, LLC

3. WebGL for OpenGL Developers

var canvas = document.getElementById("canvas");
var context = canvas.getContext("webgl") || canvas.getContext("experimental -webgl");

var points new Float32Array([

=0.5, =0.5, ©.5, =0.5,
©.5, 0.5, 0.5, 0.5,
-0.5, 0.5, -0.5, -0.5
1
var buffer = context.createBuffer();

context.bindBuffer(context.ARRAY_BUFFER, buffer);
context .bufferData(context .ARRAY_BUFFER, points, context .STATIC_DRAW) ;

var vs = "attribute vec4 vPosition;" +
"void main(void) { gl_Position = vPosition; }";
var fs = "void main(void) { gl_FragColor = vec4(1.0); 1}";
var program = createProgram(context, vs, fs, message); // Helper; not part of WebGL
context .useProgram(program) ;

var loc = context.getAttribLocation(program, "vPosition");
context .enableVertexAttribArray(loc);
context.vertexAttribPointer(loc, 2, context.FLOAT, false, 0, 0);

context.clearColor(0.0, 0.0, 0.0, 1.0);

function draw() {
context.clear (context .COLOR_BUFFER_BIT);
context.drawArrays(context.TRIANGLES, 0, 6);
window,requestAnimFrame(animate);

}

draw () ;

Listing 3.1. Hello WebGL. Drawing a white rectangle on a black background.

3.2.5 Strong Tool Support

When we first started investigating WebGL, we were not sure what kind of tool
support to expect. Both Chrome and Firefox with Firebug have excellent JavaScript
debuggers with the features we expect: breakpoints, variable watches, call stacks, etc.
They also provide built-in tools for profiling. Currently, both browsers have six-week
release cycles for stable, beta, and developer releases. For developers, this means we
get new features and bug fixes quickly. Both browsers have public bug trackers that
allow us to submit and follow requests.

For WebGL, the WebGL Inspector provides gDEBugger-like capabilities, such
as stepping through draw call by draw call and viewing the contents and history of
vertex buffers and textures. See Chapter 36 for more on WebGL profiling and tools.

3.2.6 Performance

As C++ developers, our gut reaction to JavaScript is that it is slow. Given the nature
of the JavaScript language, with its loose type system, functional features, and garbage
collection, we don’t expect it to run as fast as our C++ code.

© 2012 by Taylor & Francis Group, LLC

32 | Discovering

Figure 3.2. A 32 x 32 grid evenly spaced in the xy plane; each point’s z component is
determined by a 3D noise function given the xy position and the current time.

To get a feel for the performance difference, we ported the 3D simplex noise
function discussed in Chapter 7 from GLSL to both C++ and JavaScript for use in
a CPU-intensive application. We then wrote code that perturbs a 2D grid originally
in the xy plane over time. At each time step, the z component for each grid point is
computed as z = snoise(x, y, time) on the CPU. To render a wireframe like
that shown in Figure 3.2, we use trivial shaders, store x and y in a static vertex buffer,
and stream z into a separate vertex buffer every frame with glBuf ferSubData. See
Chapter 28 for additional ways to improve streaming performance.

Given that each noise function call involves a fair amount of computation, this
test simulates a CPU-intensive application that is constantly streaming vertex data to
the GPU—a common use case in our work at AGI, where we simulate and visualize
dynamic objects like satellites and aircrafts. Table 3.1 shows the results in millisec-
onds per frame for various grid sizes for C++ and JavaScript. The C++ version is
a default release build using Visual C++ 2010 Express and GLM with SIMD opti-
mizations. The test laptop has an Intel Core 2 Duo at 2.13 GHz with an NVIDIA
GeForce 260M with driver version 285.62.

As grid size increases, all implementations slow down. For all grid sizes, C++
is much faster than JavaScript. Given that this is a CPU-intensive application, we
expect C++ to be faster. JavaScript supports only double-precision floating-point,
not single-precision; this plays a role since the noise function uses float in C++ and
is not able to do so in JavaScript.?

Mesh resolution 32 x 32 64 x 64 | 128 x 128
C++ 1.9 ms 6.25 ms 58.82 ms
JavaScript—Chrome 18 | 27.77 ms | 111.11 ms | 454.54 ms
Relative slowdown 14.62 17.78 7.73

Table 3.1. C++ vs. JavaScript performance for our CPU-intensive example.

2However, in JavaScript, the noise function’s return value is put into a Float32Array for streaming

to WebGL.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-5&iName=master.img-091.jpg&w=215&h=96

3. WebGL for OpenGL Developers

Mesh resolution 32 x 32 64 x 64 128 x 128
C++ 3.33 ms 9.43 ms 37.03 ms
JavaScript—Chrome 18 | 12.82ms | 22.72 ms | 41.66 ms
Relative slowdown 3.85 2.41 1.13

Table 3.2. C++ vs. JavaScript performance for our GPU-intensive example. The mesh is
drawn 256 times per frame.

Seeing JavaScript take 7.73-17.78 times longer than C++ is initially dishearten-
ing. However, let’s consider performance for a GPU-intensive application. To do
so, we no longer execute the noise function on the CPU, nor do we stream a vertex
buffer for the z components. Instead, we call the original GLSL noise function from
the vertex shader as shown in Listing 3.2 and simply draw a static mesh. To increase
the GPU workload, we draw the mesh 256 times per frame with sequential calls to
glDrawElements.

The GPU-intensive performance numbers, shown in Table 3.2, are more favor-
able for WebGL. In the most GPU-intense case where a 128 x 128 mesh is drawn
256 times per frame, JavaScript in Chrome takes only 1.13 times longer than C++.
Of course, we should expect such performance; the heavy computation is offloaded
to the GPU, and JavaScript is no longer the bottleneck.

The CPU- and GPU-intensive examples are not the norm for most applications,
but they illustrate an important point: to maximize WebGL performance, we must
utilize the GPU as much as possible. Tavares applies this principle to render 40,000
dynamic objects at 30—40 fps in WebGL [Tavares 11].

Besides pushing work onto the GPU, we can offload JavaScript by pushing other
work to the server. At AGI, we use numerically intense algorithms to simulate the
dynamics of satellites and other objects. We perform these computations server-side
and periodically transfer keyframes, which are interpolated client-side. Balancing the

attribute vec2 position;

uniform float u_time;
uniform mat4 u_modelViewPerspective;

varying vec3 v_color;
float snoise(vec3 v) { /* ... */ }

void main(void)

{
float height = snoise(vec3(position.x, position.y, u_time));
gl_Position = u_modelViewPerspective * vec4(vec3(position, height), 1.0);
v_color = mix(vec3(1.0, 0.2, 0.0), vec3(0.0, 0.8, 1.0), (height + 1.0) * 0.5);
}

Listing 3.2. Vertex shader used for the GPU-intensive example.

© 2012 by Taylor & Francis Group, LLC

34 | Discovering

amount of work done on the client and the server and the amount of data transfered
requires care. Chapter 30 discusses efficient techniques for transferring models.

Heavy client-side computation can also be moved off the rendering thread using
web workers and transferable objects [Bidelman 11].

We don't argue that JavaScript and WebGL will perform better than C++ and
OpenGL; however, given that raw JavaScript performance continues to improve and
that WebGL, server-side computation, and web workers allow us to minimize the
JavaScript bottleneck, we feel that lack of performance is not a reason to dismiss

WebGL.

3.3 Security

When moving from OpenGL to WebGL, a new topic familiar to web develop-
ers but perhaps unfamiliar to desktop developers emerges: security. OpenGL al-
lows undefined values in certain areas. For example, reading outside of the frame-
buffer using glReadPixels is undefined, as are the contents of a buffer created by
glBufferData with a NULL data pointer. Uninitialized and undefined values can
lead to security holes, so WebGL defines values for cases like theses; readPixels re-
turns an RGBA of [0, 0, 0, 0] for pixels outside of the framebuffer, and bufferData
initializes the contents to zero if no data are provided. These API changes usually do
not affect us as developers. However, other security considerations do.

3.3.1 Cross-Origin Requests

In OpenGL, image data provided to a texture with, for example, glTexImage2D
or glTexSubImage2D, can come from anywhere. Image data may be procedurally
generated in code, read from a file, or received from a server. In WebGL, if the image
comes from a server, it must be from the same domain that sent the web page. For
example, a WebGL page hosted at myDomain.com cannot download images from
anotherDomain.com, and this results in an SECURITY_ERR exception, as shown in
Figure 3.3. This restriction is in place to prevent sites from using a user’s browser as a
proxy to access images that are meant to be private or are behind a firewall. However,
accessing image data from another site is actually a common use case. Consider
all the sites that embed Google Maps; the images for map tiles come from Google
servers, regardless of the server hosting the web page embedding the map.

There are two ways to work around this restriction. The first is the use of cross-
origin resource sharing (CORS). A server enables CORS by explicitly allowing it
in its HTTP response headers.> Many servers, such as Google Maps, are starting
to provide images intended for public access this way. As shown in Figure 3.4, in
JavaScript, the image is requested using CORS with the line img.crossOrigin

3Setting this up on the server is straightforward; see enable-cors.org.

© 2012 by Taylor & Francis Group, LLC

3. WebGL for OpenGL Developers

Figure 3.3. Attempting to create a texture from an Figure 3.4. Creating a texture from an image from
image from another domain without CORS ora proxy. another domain using CORS.

= "anonymous";. We expect that servers of public image data will enable these
headers over time.

If a server does not support CORS, the image request can be made through a
proxy server hosted on the web page’s domain, as shown in Figure 3.5. Instead of
sending the image request directly to anotherDomain.com, the image url is sent as an
HTTP argument to a proxy server hosted on myDomain.com, which then requests
the image from anotherDomain.com and sends it back to the client. The image can
be used to create a texture because, from the client’s perspective, it comes from the
same domain.

Set up a proxy server with care. Do not let it forward arbitrary requests, which
would open up a security hole. Also, some services require a direct browser connec-
tion and, therefore, do not work with proxies.

Cross-origin restrictions can also prevent local file access for images used as tex-
tures. Instead of testing html files using the filesystem, they should be hosted by
a local web server. When testing on Linux and Mac, this can be as simple as

Figure 3.5. Creating a texture from an image from another domain by transferring it through
a proxy.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-5&iName=master.img-190.jpg&w=184&h=95
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-5&iName=master.img-191.jpg&w=186&h=95
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-5&iName=master.img-192.jpg&w=226&h=120

36 | Discovering

running python -m SimpleHTTPServer in the same directory as the index.html
file, and then browsing to http:/localhost:8000/. Alternatively, these restrictions
can be relaxed by starting Chrome with the -—allow-file-access-from-files
command line argument or changing security.fileuri.strictorigin_
policy to false in Firefox. This should be done for testing only.

Although we discuss cross-origin requests in the context of images, the same re-
strictions are also true of videos. For more information on CORS, see “Using CORS”
[Hossain 11].

3.3.2 Context Loss

Windows Vista introduced a new driver model that reset the graphics driver if a draw
call or other operation took too long, e.g., more than two seconds. This surprised
the GPGPU community, whose draw calls intentionally took a long time due to ex-
pensive computations done in vertex and fragment shaders to execute general com-
putations like physical simulations. In WebGL, a similar watchdog model is used to
protect against denial of service attacks, where malicious scripts with complex shaders
or large batches or both could cause a machine to become unresponsive.

When a long running operation is detected and the graphics driver is reset, all
contexts, including innocent ones, are losz. Using the GL_ARB_robustness WebGL
extension, the WebGL implementation is notified, which can warn the user that
WebGL content might have caused the reset, and the user can decide if they want to
continue. As WebGL developers, we need to be prepared to restore our context when
it is lost due to a reset [Sherk 11], similarly to how Direct3D 9 developers handle a
lost device, in which GPU resources are lost due to a user changing the window to or
from full screen, a laptop’s cover opening/closing, etc.

For more on WebGL security, see the Khronos Group’s WebGL Security white
paper [Khronos 11].

3.4 Deploying Shaders

JavaScript is served to clients via .js files. With WebGL, the source for vertex and
fragment shaders also needs to be sent to clients. There are several options:

e Store the shader source as JavaScript strings, as done in Listing 3.1. Only a
single HTTP request needs to be made to request the JavaScript and shaders.
However, it is painful to author shaders as JavaScript strings.

e Store the shader source in an HTML script tag, as shown in Listing 3.3.
In JavaScript, the text content of the script can be extracted [Vukicevi¢ 10].
Shaders can be shared among multiple HTML files by dynamically generating
the page. This cleanly separates JavaScript and GLSL, and does not require
additional HTTP requests for shaders. Although it is not as painful to author

© 2012 by Taylor & Francis Group, LLC

3. WebGL for OpenGL Developers

37

<script id="fs" type="x-shader/x-fragment">
void main(void)
{

gl_FragColor = vec4(1.0);

</script>

Listing 3.3. Storing a fragment shader in an HTML script tag.

a shader this way as compared to using JavaScript strings, it is not as productive
as having separate files for each shader.

e Store each shader in a separate file, creating the best scenario for shader author-
ing. Shaders can be transferred to the client individually on an as-needed basis
using XMLHttpRequest [Salga 11]. This has the downside of requiring an
HTTP request per shader; however, this is unlikely to be significant compared
to other HTTP requests for vertex and texture data.

At AGI, we use a hybrid: shaders are authored individually in separate files, but
deployed as strings in a single JavaScript file. The build converts each GLSL file to a
JavaScript string and concatenates the strings with the existing JavaScript code.

In addition to determining how to organize shaders, shader deployment in WebGL
can also include minifying the GLSL code to reduce the amount of data transfered.
Minification tools such as glsl-unit’s GLSL compiler* and GLSL Minifier® perform
a series of transforms that do not change the behavior of the code but reduce its size,
such as removing white space, comments, and dead functions and renaming variables
and functions. This makes the code less readable but is only done for deployment,
not development.

Now that we've seen what WebGL has to offer and some of the differences from
OpenGL, let’s look at the biggest bridge to cross when moving from OpenGL to
WebGL: JavaScript.

3.5 The JavaScript Language

In many ways, JavaScript is a very different language than other commonly used
languages such as C++, Java, or C#. Despite the name, JavaScript is not related to
Java; the names are similar for historical reasons. Attempting to write substantial
programs in JavaScript without understanding their important differences from C-
like languages can easily lead to confusing and frustrating results.

The core JavaScript language is standardized under the name ECMAScript, with
Version 5.1 being the latest version at the time of writing. Confusingly, there are

4http://code.google.com/p/glsl-unit/wiki/Using TheCompiler
Shrep:/ fwww.ctrl-alt-test. fr/2p=171

© 2012 by Taylor & Francis Group, LLC

38 | Discovering

<!doctype html>

<html>

<head>
<meta charset="utf-8">
<script src="script.js" type="text/javascript">
</script>

</head>

<body>

</body>

</html>

Listing 3.4. A skeleton HTML file.

also versions of JavaScript providing new language features that are only supported
in Firefox. We only discuss ECMAScript features that work in all modern browsers.

Since JavaScript is primarily a browser-based programming language, we need
a web browser to run programs. Unlike C++, there is no compilation step for
JavaScript programs, so all that is necessary to execute JavaScript on a web page
is to add a script tag to an HTML page for each JavaScript file we want to include.
Listing 3.4 contains a simple HTML skeleton showing how to include a JavaScript
file named script.js in the same directory as the HTML file.

JavaScript does not currently have a standard way to include files, except by
adding script tags for each JavaScript file, which will execute sequentially in a sin-
gle context. In Section 3.5.7, we discuss some techniques for code organization.

Because JavaScript has some unusual features that can easily cause mistakes, a
tool named JSLint is available online® to analyze our source code to detect potential
errors. Section 3.5.8 describes several common errors.

Despite similar syntax, expecting JavaScript to behave the same way as C++ can
lead an unsuspecting developer into a number of traps. We will highlight some
important ways in which JavaScript is unlike C++.

3.5.1 JavaScript Types

Unlike C++, there are very few built-in types in the JavaScript language:

Object. An unordered set of name-value pairs, called the properties of the object.
Property names can be strings, or, as long as the name is a valid identifier, the
quotes can be omitted. Property values can be of any type, including another
object. Object literals are declared as a comma-separated list of colon-separated
name-value pairs, surrounded by curly brackets:

{

a : "value",

"long property" : 1.2
}

Owww.jslint.com

© 2012 by Taylor & Francis Group, LLC

3. WebGL for OpenGL Developers

39

Number. A signed, double-precision 64-bit IEEE 754 floating-point number. There
are no integer types or smaller types, though some bitwise operators treat their

inputs as 32-bit signed integers. NalN is a special value meaning “not a num-
ber.”

String. An immutable Unicode character sequence. There is no type representing a

single character, and string literals are declared using matching pairs of either

n or 7'

null and undefined. These are both present in JavaScript. A variable or property’s
value is undefined before it has been assigned. null values can be explicitly

assigned.

Boolean: true or false. In addition, any value can be treated as a boolean, com-
monly using the terms “truthy” and “falsy,” with the following values being
considered “falsy”: false, 0, "", null, undefined, and NaN. All other values are
considered “truthy.”

JavaScript also provides several built-in kinds of objects, all of type Object,
though they differ in how they are constructed and the properties present. Some of
the more commonly used objects are

Array. A random-access sequence of values. Arrays are mutable, resizable, and can
contain values of any type. Array literals are declared as a comma-separated list
of items, surrounded by square brackets:

[1, "two", false]

Function. In JavaScript, all functions are also Objects. They are typically declared
using the function keyword, and neither return types nor argument types are

declared:

function foo(bar, baz) {
return bar + baz;

I

There are also built-in Date and RegExp objects, and web browsers also provide
additional kinds of objects to represent the structure of web pages and allow changes
from JavaScript, called the document object model, or DOM. The standardization
of the browser DOM is not as complete as ECMAScript, but modern generations of
web browsers are very close.

3.5.2 Dynamic Typing

Unlike most compiled languages like C++, which are usually statically typed,
JavaScript is a dynamically typed language, like many other scripting languages, such

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-5&iName=master.img-265.png&w=298&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-5&iName=master.img-265.png&w=298&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-5&iName=master.img-265.png&w=298&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-5&iName=master.img-265.png&w=298&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-5&iName=master.img-265.png&w=298&h=16

40 | Discovering

as Ruby, Perl, or PHP. In dynamically typed languages, variables are not declared to
be of any particular type, but instead are always simply declared as var. One vari-
able can hold values of different types over time, though this can become confusing
to read. Similarly, arguments to functions do not have declared types. As a result,
functions cannot be overloaded by argument type as in C++. A commonly used re-
placement technique in JavaScript libraries is to accept multiple kinds of data for a
given argument, and interpret them differently, as a convenience to callers. For ex-
ample, if a function accepts a web browser DOM object, it might also accept a string
identifier, which is then looked up to find and use the corresponding DOM object.

Because there are very few distinct types—most values are of type Object, vari-
ables don’t declare types, and properties can be added to objects after their
construction—determining the type of an object can be difficult. As a result, most
JavaScript programs rarely concern themselves with the types of values and simply
expect that the values passed to functions have the right properties. A commonly
used term for this approach is duck typing from a metaphor suggesting that “if it
walks and talks like a duck, it must be a duck.” For example, if a function takes a
set of coordinates, it could be designed to accept an object with x and y properties,
regardless of what kind of object it is.

3.5.3 Functional Scoping

Another important difference in JavaScript, as compared to C++, is that the scope of
variables is only limited by function and not by any other kind of block, e.g., if or
for blocks. For example, Listing 3.5 shows how a variable persists outside the block
where it is declared.

A good mental model is to envision that all variables declared throughout a func-
tion are instead declared once at the top and nowhere else. We can write code this
way to help avoid confusion, and JSLint has rules we can use to enforce this.

function £() {
var x = 1; // x will be declared throughout the function.

if (x === 1) {
var a = "a string";
// a will also be declared throughout the function,
// not just within this if block!

+
// a will also retain its value, after leaving the if block.
while (a === "a string") {
var a = 0; // This still affects the same a! Redeclaring a
// variable with "var" has no effect, but can be confusing.
+

}

Listing 3.5. An example of scopes differing from blocks.

© 2012 by Taylor & Francis Group, LLC

3. WebGL for OpenGL Developers

41

3.5.4 Functional Programming

Because JavaScript functions are first-class objects, functions can be stored in variables
or property values, passed as arguments to other functions, and returned as results
of functions. In this way, JavaScript functions are closer to C++ function objects
(functors), or the new lambda functions in C++11. Listing 3.6 shows some ways we
can make use of this.

When functions are declared in JavaScript, they can refer to variables declared
outside the function itself, forming a closure. In Listing 3.6, the anonymous function
returned by LogAndCall refers to func and name, both declared outside the anony-
mous function, and can access their values at a later time, even after logAndCall
itself has returned. Any variables can be closed over in this way simply by accessing
them, so no special syntax is necessary.

// Functions can be declared using this syntax:
function f(a) {
return a + 1;

+

// or this syntax.
var g = function (a) {
return a + 1;

e

// Both produce a function that can be invoked the same way.
var x = £(1), y = g(1); // => x ==y == 2

// Objects can contain functions as property values:
var obj = {
v: "Some value",
m: function(x, y) {
return x + y;
}
};

var result = obj.m(x, y); // => result == 4

// Functions can be passed and returned from functions:
function logAndCall(func, name) {
return function () {
// (assume log is defined elsewhere)
log("calling function " + name);
return func();

}
}
var originalFunc = function() {
return "some value";
};
var newFunc = logAndCall(originalFunc, "originalFunc");
var result2 = newFunc(); // => result2 == "some value",

// and log is called with "calling function originalFunc"

Listing 3.6. Examples of using functions as objects.

© 2012 by Taylor & Francis Group, LLC

42 | Discovering

3.5.5 Prototypal Objects

JavaScript is an object-oriented language, but does not use classes for inheritance. In-
stead, every object has a prororype object, and if a particular requested property is not
defined on an object, the prototype is checked next, then the prototype’s prototype,
and so on. The benefit is that data or functions can be declared on a prototype and
shared by many object instances that share that same prototype.

The easiest mechanism for creating objects that share a prototype is the use of
constructor functions. A constructor function is no different from any other func-
tion, except that it is invoked using the zew keyword, which has the following effects:

1. A new object is created, with its prototype set to the prototype property of
the constructor function itself.

2. The constructor function is executed with the this keyword set to the newly
created object. This allows the constructor to set properties on the new object.

3. The new object is implicitly returned as the result of the constructor call.

Listing 3.7 provides an example of defining values on the prototype of a con-
structor function and using it to create an object.

// A constructor function. To distinguish them from other functions,
// by convention their names start with capital letters.
function Rectangle(width, height) {
// 'this' will refer to the new instance being constructed.
this.width = width;
this.height = height;
}

// By declaring 'area' on the prototype, it will be available
// on any object constructed using the Rectangle constructor.
Rectangle.prototype.area = function() {

return this.width * this.height;
+

var r = new Rectangle(10, 20);

// Accessing properties directly on the object:
var w = r.width; // => w == 10

// Accessing properties on the object's prototype:
var a = r.area(); // => a == 200

Listing 3.7. An example of object construction.

3.5.6 The this Keyword

In Listing 3.7, we made use of the this keyword inside the area function to access
properties of the object. One confusing aspect of JavaScript is that the this key-
word is bound when a function is called, not when it is defined. This is somewhat

© 2012 by Taylor & Francis Group, LLC

3. WebGL for OpenGL Developers 43

var obj = {
f: function (){
return this;

}
+;
// When invoking a function normally, 'this' is set as expected.
obj.f() === obj; // => true

// Even though f points to the same function, invoking it directly
// results in a different value of 'this'.

var £ = obj.f;

£f() === obj; // => false

// Functions have a call function that allows you to explicitly
// provide a value for 'this'.
f.call(obj) === obj // => true

Listing 3.8. The this keyword depends on how a function is invoked.

analogous to problems in C++ when attempting to pass the address of a member
function as a regular function pointer: the this reference is lost. In normal usage,
as in Listing 3.7, this works as expected because area was invoked in the context
of r. Listing 3.8 shows a different case where this behaves unexpectedly.

One common problematic situation with this is in creating callback functions,
where we may not have control over how our callback function is invoked. In cases
like this, it may be easier to avoid using this. Instead, we can use closures for

var obj = {
x: 10,
getX: function () {
return this.x * 2;
1,
createCallbackIncorrect: function () {
// Here we use 'this' from a context where it may be incorrect.
return function () {
return this.getX();
}
s
createCallbackClosure: function() {
// By storing 'this' in a variable, we always use the right one.
var that = this;
return function () {
return that.getX();
}
s
createCallbackBind: function() {
// 'bind' returns a function that always uses the right 'this'.
return this.getX.bind(this);
}
};

Listing 3.9. Two ways to preserve a value of this.

© 2012 by Taylor & Francis Group, LLC

44 | Discovering

a similar effect by assigning this to a local variable at a point where we know it
will be correct and referring to that local variable from inside our callback instead.
Alternatively, ECMAScript 5 defines a bind function on all Functions, which
returns an adapter function that executes the original function with a given this
specified, similar to a combination of the mem_fun and bind1st functions from the
STL functional library. Listing 3.9 shows these two approaches.

3.5.7 Code Organization

Unlike C++, JavaScript does not have namespaces, so all global variables and func-
tions exist in the same context, across all scripts included in a web page. Because of
this, it is best to minimize the number of global variables our code creates to avoid
conflicts with our own code or third-party libraries. One technique is the use of se/f
executing functions to limit the scope of variables by default and create a single global
variable containing all of our functions and constructors. Listing 3.10 shows how
this works.

// This variable will be our only global variable.
var MyLib = {};

(function () {
// This syntax declares, then immediately invokes, an anonymous
// function. The parentheses surrounding the function are necessary
// for syntactic reasons.

var constantValue = 5; // This variable is local to this function.

// So is this constructor function...
function MyData(x) {

this.x = x + constantValue;
}
// ...but we can 'export' it for use elsewhere.
MyLib.MyData = MyData;
HO;

// Elsewhere, perhaps in a later script file:

(function () {
// This has the appearance of a function in a namespace, but is
// merely accessing a property on our global container object.
var d = new MyLib.MyData (10);

HO;

Listing 3.10. An example of how to hide variables in self-executing functions.

3.5.8 Common Errors

Besides the larger differences already discussed, there are also several smaller differ-
ences that can lead to accidental errors.

© 2012 by Taylor & Francis Group, LLC

3. WebGL for OpenGL Developers

In JavaScript, global variables can be declared at any time by simply assigning
a value to each, usually as a result of accidentally forgetting a var keyword when
trying to create a local variable. This can lead to confusing problems in entirely
unrelated areas of the code. To help with this, ECMAScript 5 defines a strict mode
which makes it an error to assign an undeclared variable and also fixes other, more
esoteric parts of the language. To use strict mode, write "use strict"; at the top
of a function to enable it for that function and any nested functions. This syntax was
chosen because older browsers will simply ignore it. If we are using self-executing
functions, described in Section 3.5.7, we can enable it for all the contained code at
once.

Another confusing JavaScript language feature is the standard equality operators
== and !=. Unfortunately, in JavaScript these operators will attempt to coerce the
types of the values being compared, resulting in the string “1” being equal to the
number 1 and white-space strings being equal to the number 0, for example. Since
this is almost never desirable, we should use the noncoercing operators === and !==
instead. We can use JSLint to detect any use of the coercing equality operators.

3.6 Resources

Although we miss developing in C++ and using the latest features of desktop OpenGL,
we found that the benefits of JavaScript and WebGL make the transition well worth
it. For getting up to speed with WebGL, the best resources are the “Learning WebGL
blog,” learningwebgl.com/blog/, and “WebGL Camp,” www.webglcamp.com. For
JavaScript, we recommend JavaScript: The Good Parts [Crockford 08], and for gen-
eral modern web development, check out “HTML5 Rocks,” www.html5rocks.com.

Bibliography

[Bidelman 11] Eric Bidelman. “Transferable Objects: Lightning Fast!” http:/updates.
html5rocks.com/2011/12/Transferable-Objects- Lightning-Fast, 2011.

[Crockford 08] Douglas Crockford. JavaScript: The Good Parts. San Jose, CA: Yahoo Press,

2008.
[Edenbrandt 12] Anders Edenbrandt. “WebGL Implementation for XPeria Phones
Released as Open Source.” htep/developer.sonyericsson.com/wp/2012/01/25/

webgl-implementation-for-xperia- phones-released-as-open-source/, 2012.

[Hossain 11] Monsur Hossain. “Using CORS.” http:/www.html5rocks.com/en/tutorials/
cors/, 2011.

(Irish 11] Paul Irish. “RequestAnimationFrame for Smart Animating.” http:/paulirish.com/
2011/requestanimationframe-for-smart-animating/, 2011.

[Khronos 11] Khronos. “WebGL Security White Paper.” http:/www.khronos.org/webgl/
security/, 2011.

© 2012 by Taylor & Francis Group, LLC

46 | Discovering

[Mahemoff 11] Michael Mahemoff. “HTMLS5 vs. Native: The Mobile App Debate.” hetp://

www.html5rocks.com/en/mobile/nativedebate.html, 2011.

[Meier and Mahemoff 11] Reto Meier and Michael Mahemoff. “HTMLS5 versus Android:
Apps or Web for Mobile Development?” Google 1/0 2011.

[Salga 11] Andor Salga. “Defenestrating WebGL Shader Concatenation.” http:/asalga.
wordpress.com/2011/06/23/defenestrating-webgl-shader-concatenation/, 2011.

[Sherk 11] Doug Sherk. “Context Loss: The Forgotten Scripts.” WebGL Camp 4.
[Tavares 11] Gregg Tavares. “WebGL Techniques and Performance.” Google 1/0 2011.

[Vukitevi¢ 10] Vladimir Vukicevie. “Loading Shaders from HTML Script Tags.” http:
MNearningwebgl.com/cookbook/index.php/Loading_shaders_from_HTML_script_tags,
2010.

© 2012 by Taylor & Francis Group, LLC

Porting Mobile Apps to WebGL 4

Ashraf Samy Hegab

4.1 Introduction

WebGL provides direct graphics hardware acceleration hooks into web browsers, al-
lowing for a richer application experience. This experience is now becoming compa-
rable with native applications. However, the development environment for creating
these new types of rich web apps using WebGL is different.

This chapter walks us through the aspects of porting a typical OpenGL mobile
app from Android and iOS to the web, covering steps from setting up your GL
context to drawing a textured button or handling the camera and controls to finally
debugging and maintaining your application.

This chapter includes accompanying source code that demonstrates the concepts
introduced in i0S, Android, Qt, and WebGL to help developers get up to speed on
web development using WebGL.

4.2 OpenGL across Platforms

Mobile apps have exploded into the scene since the arrival of smartphones. The new
app model introduced by Apple drove the development for interface and style, which
meant a higher utilization of graphics hardware to power animations and graphics in
mobile games and apps. In order for this model to successfully move over to the
web, Microsoft lead the way in providing a hardware-accelerated HTML5 canvas
component. Next to come was the standardization of a 3D hardware-accelerated API

47

© 2012 by Taylor & Francis Group, LLC

48 | Discovering

named WebGL, built as a standard component of a modern web browser. WebGL
is based on the OpenGL ES spec and used in the context of a web browser and
JavaScript. And now, with companies like Facebook and Google leading the way
with web app stores, the app market on the web is projected to grow [Gartner 11b].

As application developers, the more platforms we can retail our app on, the more
potential revenue we can earn. One way of architecting our app’s user interface is to
utilize the native drawing components provided per platform, which means Objec-
tive C’s UIKit on iOS, Java’s native Android views and Canvas for Android, and C#
and Silverlight for Windows Phone 7. While our application will benefit from the
platform’s natural look and feel, most of the specific UI code will be required to be
rewritten per platform. However, with the emergence of gamification [Gartner 11b],
which suggests the use of game mechanics to provide for a more enticing user expe-
rience, the design trends of breaking a platform’s standard UT for something more
game-like is now practiced among newer mobile apps. This practice requires us to
develop our UI using OpenGL ES in order to do more than what the native com-
ponents offer and, as a design task, tone down the experience to respect the natural
interface of the platform.

With web apps moving to WebGL and mobile apps moving to OpenGL ES,
porting between them can be made much easier because they share a common APL
But thats not the end of the story: as the implementation of WebGL becomes
more robust and optimized, we see a future where the norm may be to develop
our application completely for the web and deploy a native shell application that
launches the native web view component directed to the web source as used in Phone-
Gap [Adobe 11]. This further reduces the cost involved in porting.

4.3 Getting Started

This section covers how to go from drawing things on an iOS and Android NDK app
to drawing things on a WebGL app. This requires us to initialize the OpenGL ES
context, load basic shaders, initialize draw buffers, and finally draw.

4.3.1 |Initializing an OpenGL ES context

iOS. In order to initialize OpenGL ES on iOS, we need to allocate and set an
EAGLContext. To generate and bind render buffers, CAEAGLLayer is provided
to allow us to allocate storage on native views (see Listing 4.1).

iOS typically sets the render buffer’s size to the device’s screen resolution. We can
request different sizes by modifying the properties of the EAGLLayer:

// Set the back buffer to be twice the density in resolution.
glView.contentScaleFactor = 2.0f;
eaglLayer.contentsScale = 2.0;

© 2012 by Taylor & Francis Group, LLC

4. Porting Mobile Apps to WebGL 49

EAGLContext *context = [[EAGLContextalloc] initWithAPI:kEAGLRenderingAPIOpenGLES2];

[EAGLContextsetCurrentContext:context];

glGenFramebuffers(1, &frameBuffer);

glBindFramebuffer(GL_FRAMEBUFFER, frameBuffer);

glGenRenderbuffers(1, &renderBuffer);

glBindRenderbuffer(GL_RENDERBUFFER, renderBuffer);

[context renderbufferStorage:GL_RENDERBUFFERfromDrawable:(CAEAGLLayer*)gView.layer];

glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENTO, GL_RENDERBUFFER, <
renderBuffer);

Listing 4.1. iOS OpenGL initialization.

Android NDK. Android provides a GLSurfaceView class to handle creating a
framebuffer and compositing it into the view system for us. This view requires us to
override the GLSurfaceView.Renderer’s provided onDrawFrame, onSurface
Changed, andonSurfaceCreated functions, which are called on a separate thread.

WebGL. WebGLs approach is much simpler. We create an HTMLS5 canvas object
either in JavaScript or in the HTML, then request a webgl context:

var canvas = document.createElement('canvas');
document . body .appendChild(canvas) ;
var gl =canvas.getContext('webgl') || canvas.getContext('experimental -webgl');

For WebGL, the size of the canvas determines the resolution of the back buffer.
The best practices recommend we specify a fixed width and height for the canvas
and instead modify the style properties width and height when resizing the con-
text, as internally modifying the canvas size requires the back buffers to be recreated,
which can be slow when resizing the window:

// Keep the back buffer size as 720x480, but stretch it to be the browser window <

size
canvas .width = T720;
canvas.height = 480;
canvas.style.width = document.body.clientWidth;

canvas.style.height = document.body.clientHeight;

4.3.2 Loading Shaders

While creating a context is different for most platforms, loading shaders is an OpenGL
specified operation, so platform implementations follow the same convention.

In iOS and Android, we create a shader by calling glCreateShader, then
setting the source with glShaderSource, and finally compiling the shader with
glCompileShader. Using WebGL, we create a shader by calling the function of the
WebGL context createShader, then set the shaderSource to point to a string
of the shader we wish to load, before finally calling compileShader. The only

© 2012 by Taylor & Francis Group, LLC

50 | Discovering

GLuint *shader = glCreateShader(GL_VERTEX_SHADER);
glShaderSource(*shader, 1, &source, NULL);
glCompileShader(*shader);

Listing 4.2. iOS/Android compiling shaders.

difference is that in OpenGL on iOS, we use C-style functions, and WebGL uses the
WebGL context for function calls. See Listings 4.2 and 4.3.

var shader = gl.createShader(gl.VERTEX_SHADER);
gl.shaderSource(shader, source);
gl.compileShader(shader);

Listing 4.3. WebGL compiling shaders.

4.3.3 Drawing Vertices

Let’s now compare drawing a basic square using client-side arrays in iOS to using
vertex buffer objects (VBOs) in WebGL. In iOS or Android NDK, we can simply
specify an array of floats and then pass it to the VertexArributePointer function

(see Listing 4.4).

const float vertices[] = {
start.x, start.y, start.z, // Top left
end.x, start.y, start.z, // Top right
start.x, end.y, end.z, // Bottom left
end.x, end.y, end.z, // Bottom right

};

glVertexAttribPointer(ATTRIB_VERTEX, 3, GL_FLOAT, 0, 0, vertices);
glDrawArrays(GL_TRIANGLE_STRIP, O, 4); // Draw the square

Listing 4.4. iOS/Android NDK drawing vertices.

In contrast, in WebGL we first create a vertex buffer object, bind it, copy in our
data, and then proceed with rendering (see Listing 4.5).

Once we have our VBO, we can render by calling vertexAttribPointer and
drawArrays just as in the example shown in Listing 4.4:

gl.vertexAttribPointer(shaderProgram.vertexPositionAttribute,
bufferObject.itemSize, gl.FLOAT, false, 0, 0);
gl.drawArrays(gl.TRIANGLE_STRIP, O, bufferObject.numItems);

The Float32Array object is an array of 32-bit floats. Regular arrays in JavaScript
are dynamically typed; this provides flexibility from a coding standpoint at the cost
of performance. Typed arrays that can’t be resized and have their values converted to
the array’s storage type are an attempt [Alexander 11] to help the JavaScript virtual
machine avoid unnecessary overhead.

© 2012 by Taylor & Francis Group, LLC

4. Porting Mobile Apps to WebGL

varbufferObject = gl.createBuffer();
bufferObject.itemSize = 3;

var vertices = [
start.x, start.y, start.z, // Top left
end.x, start.y, start.z, // Top right
start.x, end.y, end.z, // Bottom left
end.x, end.y, end.z, // Bottom right

1

bufferObject.numItems = 4;

var data = new Float32Array(vertices);

gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, bufferObject);
gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, data, gl.STATIC_DRAW);

Listing 4.5. WebGL creating a VBO.

4.4 Loading Textures

Most apps need a way to draw textured squares to represent buttons. In this section,
we compare the process of loading textures for such widgets.

Generally, mobile apps have their texture data packaged with the application. In
order to load a texture, we must load in the raw binary data and unpack the data
appropriately according to the encoded format.

4.4.1 Assigning a Texture

iOS and Android provide native texture loaders to load and unpack image data. We
can always use other libraries to load any specific formats that aren’t supported, but
this will require more coding. Listing 4.6 shows the minimum necessary steps to get
a square multiple-of-two PNG loaded on iOS, and Listing 4.7 shows an Android
implementation. This operation is synchronous; if we want to avoid blocking, we
have to manage creating a new thread ourselves.

CGDataProviderRefcgDataProviderRef = CGDataProviderCreateWithFilename(imageData);

CGImageRef image = CGImageCreateWithPNGDataProvider(cgDataProviderRef, NULL, false,<
kCGRenderingIntentDefault);

CGDataProviderRelease(cgDataProviderRef);

CFDataRef data = CGDataProviderCopyData(CGImageGetDataProvider(image));

GLubyte *pixels = (GLubytex*)CFDataGetBytePtr(data);

floatimageWidth = CGImageGetWidth(image);

floatimageHeight = CGImageGetHeight(image);

glGenTextures(1, &glName);

glbindTexture(glName);

glTexImage2D(GL_TEXTURE_2D, O, GL_RGBA, imageWidth, imageHeight, 0, format, <
GL_UNSIGNED_BYTE , pixels);

Listing 4.6. iOS using CoreGraphics to load a texture.

© 2012 by Taylor & Francis Group, LLC

52

| Discovering

Bitmap bitmap;
InputStream is = context.getResources().openRawResource(R.drawable.imageName);
try {
bitmap = BitmapFactory.decodeStream(is);
is.close();
} catch(Exception e) {}
int[] glName = new int[];
gl.glGenTextures(1, glName);
gl.glBindTexture(GL10.GL_TEXTURE_2D, glName [0]);
GLUtils.texImage2D(GL10.GL_TEXTURE_2D, O, bitmap, 0);
bitmap.recycle(); // Release the image data

Listing 4.7. Android using Bitmap to load a texture.

In WebGL, texture loading is almost as easy as specifying an img tag in HTML
(see Listing 4.8). The main difference between OpenGL ES and WebGL is that
instead of creating an ID using glGenTextures, in WebGL, we call gl.create
Texture (), which returns a WebGLTexture object. This object is then supplied
with a DOM image object, which handles supporting the loading and unpacking of
all the native browser image formats. When the image . onload function is called,
signaling that the image has been downloaded and loaded by the browser, we can
hook in our call to g1 .TexImage2D to bind the image data to the CanvasTexture.

var texture = gl.createTexture();
varimage = new Image();
image.onload = function () {

gl.bindTexture(gl.TEXTURE_2D, texture);
gl.texImage2D(gl.TEXTURE_2D, O, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, image);
}

texture.src = src; // URL of an image to download

Listing 4.8. WebGL loading in textures using DOM image objects.

4.4.2 Handling Asynchronous Loads
The big difference in loading textures between OpenGL ES and WebGL is porting

over the logic of asynchronous texture loading. Sometimes, our application’s loading
may depend on the type and size of the texture being loaded. For example, if we're
loading in a texture we would like to draw as a button, we might want to size the wid-
get the same size as the texture. Because images load asynchronously in JavaScript,
we don’t know the image’s width undl it has been loaded. To get around this, we

var texture = loadTexture(src, function (image) {
setSize (image.width, image.height);
105

Listing 4.9. Using callbacks in JavaScipt.

© 2012 by Taylor & Francis Group, LLC

4. Porting Mobile Apps to WebGL

53

can use callbacks. In Listing 4.9, we define a callback function that is passed to the
loadTexture function.

In loadTexture, once the texture is loaded, the callback function is called, and
the widget is sized appropriately:

function loadTexture(src, callback){

var texture = gl.createTexture();
var image = new Image();
image.onload = function () {

callback (image) ;
gl.bindTexture(gl.TEXTURE_2D, texture);
gl.texImage2D(gl.TEXTURE_2D, O, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE,
tihs.image);
}
image.src = src;
return texture;

P

4.5 Camera and Matrices

In order to set up the camera, we need to specify the size of the viewport. Doing so
across platforms is the same, with the only difference being accessing the size of the
back buffer. In OpenGL ES, the backbuffer size is known from when the buffer is
bound:

glGetRenderbufferParameteriv(GL_RENDERBUFFER , GL_RENDERBUFFER_WIDTH, &<
backBufferWidth);

glGetRenderbufferParameteriv(GL_RENDERBUFFER , GL_RENDERBUFFER_HEIGHT, &<
backBufferHeight);

glViewport(O, O,backBufferWidth , backBufferHeight);

In WebGL, the width and height properties of the canvas object are used to scale
how much of the view we're rendering to:

gl.viewport (0, O, canvas.width, canvas.height);

4.5.1 float vs. Float32Array

Previously, in Section 4.3.3, we introduced the Float32Array object in JavaScript,
which is heavily used for efficient matrix implementations. In the sample code, we
used an open source library called glMatrix,' which wraps the Float32Array object
and provides matrix and vertex helper functions, to avoid having to port our C++
code.

Theepsi/github.com/toji/gl- matrix

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-6&iName=master.img-223.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-6&iName=master.img-223.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-6&iName=master.img-223.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-6&iName=master.img-223.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-6&iName=master.img-223.png&w=322&h=16

54 | Discovering

4.5.2 Passing a Matrix to a Shader

The final piece of the puzzle is passing a matrix, which uses UniformMatrix4fvon
all platforms—with OpenGL ES:

GLUniformMatrix4fv(uniform, 1, GL_FALSE, pMatrix);

or with WebGL:

gl.uniformMatrix4fv(uniform, false, pMatrix);

4.6 Controls

Now comes the fun part: making what we're drawing react to touch and mouse
inputs. To do so, we need to handle touch event callbacks, get the position of the
touch, project the touch into the view, collide with objects along the path, and handle
the collisions accordingly.

4.6.1 Getting Touch Events

-(void) touchesBegan: (NSSet*) touches withEvent:(UIEvent*)event {
NSArray *touchesArray = [touches allObjects];
for(uint i=0; i<[touchesArray count]; ++i){
UITouch *touch = [touchesArrayobjectAtIndex:il;
CGPoint position = [touch locationInView:viewl];

Listing 4.10. iOS demonstrating how to get the position of a touch.

In iOS, a UIView object that provides the EAGLLayer also provides touches
Began, touchesMoved, touchesEnded, and touchesCancelled events, which
provide the touches’ position and state (see Listing 4.10).

public Boolean onTouchEvent(final MotionEvent event) {

int action = event.getAction() &MotionEvent.ACTION_MASK;

int index = (event.getAction() &MotionEvent.ACTION_POINTER_INDEX_MASK) >>¢
MotionEvent.ACTION_POINTER_INDEX_SHIFT;

intpointerId = event.getPointerId(index);

float x = event.getX();

float y = event.getY();

return true;

Listing 4.11. Android demonstrating how to get the position and action of a touch.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-6&iName=master.img-238.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-6&iName=master.img-238.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-6&iName=master.img-238.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-6&iName=master.img-238.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-6&iName=master.img-238.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-6&iName=master.img-243.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-6&iName=master.img-243.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-6&iName=master.img-243.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-6&iName=master.img-243.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-6&iName=master.img-243.png&w=322&h=16

4. Porting Mobile Apps to WebGL 55

canvas.addEventListener('touchstart', function(event) {
var touch = event.touches [0];
if (touch)
{

this.x = touch.clientX;
this.y = touch.clientY;
}
}, false);

Listing 4.12. JavaScript demonstrating how to get the position of a touch.

In Android, we override the onTouchEvent function of an activity, which is the
callback for all touch events (see Listing 4.11).

In WebGL, we can add event listeners to react to touchstart, touchmove,
touchend, and touchcancel events as well as overriding the onmouseup,
onmousedown, and onmousemove events (see Listing 4.12).

4.6.2 Using Touch Events with the Camera and Collision

In the CCSceneAppUT files in the example code, the handleTilesTouch function
projects the control’s position into 3D via the camera’s project3D function. The
resulting projectionNear and projectionFar vectors are then queried by the
collision system in order to return an object that’s colliding (see Listing 4.13).

CCSceneAppUI.prototype.handleTilesTouch = function (touch, touchAction){
var camera = this.camera;
if (camera.project3D(touch.x, touch.y)){
var objects = this.objects;
var length = objects.length;

// Scan to see if we're blocked by a collision

varhitPosition = vec3.create();

varhitObject = this.basicLineCollisionCheck(objects, length, camera.<
projectionNear , camera.projectionFar, hitPosition, true);

for(var i=0; i<length; ++i){
var tile = objects[i];
if (tile.handleProjectedTouch(hitObject, hitPosition, touch, <
touchAction) == 2)
{
return true;
}
}
}

return false;

Listing 4.13. JavaScript demonstrating how to detect touch collisions.

© 2012 by Taylor & Francis Group, LLC

56 | Discovering

4.7 Other Considerations

Now that we can render buttons and control them, we are close to understanding
how to port between mobile apps and WebGL apps. However, there are a few other
things to consider while porting.

4.7.1 Animation

In order to animate the view, many mobile apps create another thread to run the 3D
rendering loop. Android provides an encapsulated version of this with GLSurface-
View; on iOS, we can hook into the applications run loop; however, it’s always best
to create another thread for the 3D rendering loop to avoid UI thread stalls.

For the web, there’s a nifty function called requestAnimationFrame, which
requests the browser to call our update function at the next best available time. This
allows browsers to not call our update function when, say, the user is looking at a
different tab and not our app. If we call this function continuously, we can create an
upload loop for our animations:

function update (){
window.requestAnimationFrame(Update);
gEngine .updateEngine() ;

4.7.2 Inheritance

JavaScript uses prototypal inheritance instead of classical inheritance. This pattern
can be counterintuitive when porting apps that are based off classical inheritance.

functioncopyPrototype(descendant, parent, parentName) {
var aMatch = parent.toString().match(/\s*function (.*)\(/);
if (aMatch != null)
{
descendant.prototypelaMatch[1]] = parent;

}
// Make a copy all the functions in our parent
for(var parentMethod in parent.prototype) {
if (parentName){
// Make a copy with our parent's name as a prefix to allow the <>
child to override the parent's function
var combined = parentName + '_' + parentMethod;
descendant.prototypel[combined] = parent.prototypelparentMethod];
}
descendant.prototypel[parentMethod] = parent.prototypelparentMethod];

Listing 4.14. JavaScript demonstrating inheritance through copying parent prototype.

© 2012 by Taylor & Francis Group, LLC

4. Porting Mobile Apps to WebGL

57

Since JavaScript is a dynamic language, there are various ways to simulate classi-
cal inheritance; the way presented in the samples is by copying the parent object’s
function prototypes and renaming them with a prefix, allowing us to call the parent
object’s function implementation when overriding a function (see Listing 4.14).

Now, when declaring a “class” in JavaScript, we call the copyPrototype func-
tion to assign its parent:

function Parent () {}

Parent .prototype.doSomething = function() {
alert ('Hello Parent');

}

function Child () {}

copyPrototype(Child, Parent, 'Parent');

When overriding the parent’s doSomething function, we have the option of
calling the parent’s implementation:

Child.prototype.doSomething = function () {
this.Parent_doSomething();
alert ('Hello Child');

4.8 Maintenance

Debugging a WebGL app is a fun experience. In the world of native apps, our
debugger lives in the IDE, and our app runs on a device or in a simulator/emulator.
In the world of web apps, the debugger lives in the web browser, and our app also
runs in the web browser.

4.8.1 Debugging

Web browsers provide many tools for debugging JavaScript apps on desktop oper-
ating systems. In the native world, our application code is pretty much static. In
JavaScript, we can continually chop and change our JavaScript code while our appli-
cation is running. For Google Chrome, we can use the built-in JavaScript debugger;
for Firefox, we can use the renowned Firebug? extension for debugging capabilities.

When debugging a WebGL app, it is wise to call requestAnimationFrame
after the update and render functions, as calling it before will trigger another frame
to be rendered even if the program has hit a breakpoint.

There are a few drawbacks. Firstly, as of this writing, the current generation of
mobile web browsers do not support debugging. If we plan on deploying our WebGL
app to a mobile device, we must prepare for lots of manual debug logging. Secondly,
the debugger lives inside the web browser, and our app runs inside the web browser.

2getfirebug.com

© 2012 by Taylor & Francis Group, LLC

58 | Discovering

In the case of a serious crash, our means to debug our application crashes along with
our app.

4.8.2 Profiling

Profiling is supported as part of our debugger. In the console view, we generally find a
profile tab, which allows us to profile certain portions of the app. Native mobile apps,
in comparison, aren't as intuitive. iOS requires recompiling for profiling in another
application; Android supports profiling Java code, but not NDK; but both solutions
are very ad hoc, while profiling a web app is part of the web browser debugging
package. Please refer to Chapter 36 for more on profiling.

4.8.3 Performance and Adoption

As of this writing, WebGL is increasingly being supported on mobile devices. An-
droid’s version of Firefox supports most of the WebGL spec; however, its performance
is currently lacking compared to its desktop counterpart. This will be improved, but
currently, to help alleviate these performance issues on mobile devices, lowering the
resolution of the canvas and ensuring we batch draw calls is recommended.

Apple officially supports WebGL in their iAd framework for iOS. Currently,
you can also enable WebGL on a UIWebViewby using the private API function
_setWebGLEnabled, as explained by Nathan de Vries [Vries 11]; however, this
should be used for experimentation only, as use of private APIs are forbidden by
Apple’s App Store. It is expected to be supported in the standard mobile Safari once
the security and performance issues over WebGL have passed.

Microsoft has yet to support WebGL in their desktop browser, but it seems like
only a matter of time until they have to because WebGL applications will soon go
mainstream.

Given the current state of WebGLs maturity, if porting over an application, it’s
best to continue to maintain both a native and web port but move toward a data-
driven scene management system if the application does not already do so.

4.9 Conclusion

As of this writing, there are still some features, such as gyroscope, compass, and
camera integration, that the web doesn’t support. There are still some features that
are in flux, such as local storage, WebSQL, and WebSockets. But there are some
features that are natural to the web apps, which native applications try to emulate
with a more convoluted implementation, such as JSON/XML parsing, accessing,
and caching web content.

Hopefully this chapter showed that porting apps from native mobile languages to
the web isn’t hard once we get our heads around the differences between the ecosys-

© 2012 by Taylor & Francis Group, LLC

4. Porting Mobile Apps to WebGL

tems. Google Web Toolkit already provides a Java to JavaScript cross compiler, and
while there isn’t an equivalently mainstream C++ to JavaScript cross compiler, port-
ing basic parts of C++ to JavaScript is very possible, especially if we consider that
most rendering implementations avoid the complexities of C++ and are data driven.

With porting, the next challenge of performances: efficiency. Of course,
JavaScript is getting faster; however, language concepts such as Garbage Collection
will limit the amount of memory consumption an application can utilize before the
garbage collection cycle becomes too taxing. But it’s not a dead end, as mobile plat-
forms such as Android and Windows Phone 7 have proven that it is possible to utilize
hardware acceleration in a garbage collected environment.

The web’s promise of “write once, run everywhere” is powerful. As hardware
becomes more standardized, it’s very easy to imagine a future where WebGL and
WebCL [Khronos 11] enable us to bypass the current in-vogue, closed ecosystems
with performance-sensitive code where it is required. We already have the promise
of Google’s Native Client [Google 11], which allows native code to utilize OpenGL
directly within a web browser. And with the emergence of cloud computing, the
apps can already run in the cloud and stream the client a video of what’s going on
directly, as OnLive [OnLive 11], a cloud-based gaming service, does.

Whatever ends up being the case, it is a very exciting and emerging world. New
standards are emerging that will challenge the status quo of the last ten years of
application development.

For more tutorials on WebGL, we recommend Giles Thomas™ “Learning
WebGL” website [Thomas 11].

Bibliography
[Adobe 11] Adobe. “PhoneGap.” Available at www.phonegap.com, October 31, 2011.

[Alexander 11] Ryan Alexander. “Using Float32Array Slower than var” github.com/
empaempa/ GLOW/issues/3, July 10, 2011.

[Gartner 11a] Gartner. “Gartner Says Companies Will Generate 50 Percent of Web Sales
Via Their Social Presence and Mobile Applications by 2015.” gartner.com/it/page.jsp?id=
1826814, October 19, 2011.

[Gartner 11b] Gartner. “Gartner Predicts Over 70 Percent of Global 2000 Organisations Will
Have at Least One Gamified Application by 2014.” gartner.com/it/page.jsp?id=1844115,
November 9, 2011.

[Google 11] Google. “nativeclient.” code.google.com/p/nativeclient/, October 31, 2011.

[Khronos 11] Khronos. “WebCL.” www.khronos.org/webcl/, October 31, 2011.

[OnLive 11] OnLive. “OnLive.” www.onlive.com/, October 31, 2011.

© 2012 by Taylor & Francis Group, LLC

60 | Discovering

[Thomas 11] Giles Thomas. “Learning WebGL.” www.learningwebgl.com, October 31,
2011.

[Vries 11] Nathan de Vries. “Amazing Response to My iOS WebGL Hack.” atnan.com/blog/
2011/11/07/amazing- response- to-my-ios-webgl-hack/, November 7, 2011.

© 2012 by Taylor & Francis Group, LLC

The GLSL Shader Interfaces 5

Christophe Riccio

5.1 Introduction

The shader system is a central module of a graphics engine, providing flexibility,
performance, and reliability to an application. In this chapter we explore various
aspects of the GLSL shader interfaces to improve its quality.

These interfaces are the elements of the language that expose buffers and textures
within a shader stage. They allow communication between shader stages and between
the application and the shader stages. This includes input interfaces, output inter-
faces, interface blocks, atomic counters, samplers, and image units [Kessenich 12].

On the OpenGL Insights website, www.openglinsights.com, code samples are pro-
vided to illustrate each section. A direct output from this chapter is a series of func-
tions that can be directly used in any OpenGL program for detecting silent errors,
errors that OpenGL doesn’t catch by design, but eventually result in an unexpected
rendering.

I target three main goals:

e Performance. Description of some effects of the shader interface on mem-
ory consumption, bandwidth, and reduction of the CPU overhead.

e Flexibility. Exploration of cases to ensure the reuse of a maximum number
of objects.

e Reliability. Options in debug mode for detecting silent errors.

61

© 2012 by Taylor & Francis Group, LLC

62 | Discovering

5.2 Variables and Blocks

5.2.1 User-Defined Variables and Blocks
The GLSL shader interfaces are the elements of the OpenGL API and GLSL that

allow communication. On the application side, we can create various kinds of buffers
and textures that are used in a shader pipeline. In GLSL, these resources need to be
exposed through variables and blocks. It’s the duty of the OpenGL programmer to
make sure that the required resources are bound and that these resources are actually
compatible with the variables and blocks that expose them. It is called shader interface
matching [Leech 12].

A GLSL variable may be a scalar, a vector, a matrix, an array, a structure, or an
opaque type according to which interface it is declared for. See Table 5.1.

vertex | varying | fragment | uniform

input output
scalar yes yes yes yes
vector yes yes yes yes
matrix yes yes no yes
array yes yes yes yes
structure no yes no yes
opaque type no no no yes
block no yes no yes

Table 5.1. Elements of languages and interfaces where they can be used.

An opaque type is a type that abstracts and exposes an element of the GPU fixed
functions. GLSL 4.20 has three different opaque types: samplers, images, and atomic
counters.

Blocks (Listing 5.1) were introduced in OpenGL 3.1 and GLSL 1.40 to expose
uniform buffers in shaders. With OpenGL 3.2 and the introduction of the geometry-
shader stage, the use of blocks has been extended to varying variables in GLSL 1.50
to cope with a namespace issue, which block-name and instance-name solve.

Blocks are containers of variables, called block members, which can be anything
but opaque types or blocks. A block looks like a structure at first, but it has at least
two differences: a block can’t be declared and defined at two different spots in the
shader; a block decouples its name into two parts: the block name and the instance

[layout-qualifier] interface-qualifier block-name

member-1list
} [instance-name];

Listing 5.1. Block syntax.

© 2012 by Taylor & Francis Group, LLC

5. The GLSL Shader Interfaces

[Vertex Shader Stagel [Vertex Shader Stagel
in vec4 AttribColor; in vec4 Color;
out vec4 VertColor;
out block{
vecd4d Color;
} Out;
[Geometry Shader Stagel [Geometry Shader Stagel
in vec4 VertColor; in block{
out vec4 GeomColor; vecd4d Color;
} In;
out block{
vecd4d Color;
} Out;
[Fragment Shader Stage] [Fragment Shader Stagel]
in vec4 GeomColor; in blockq{
out vec4 FragColor; vecd4d Color;
} In;

out vec4 Color;

Listing 5.2. A trivial shading pipeline using Listing 5.3. A wrivial shading pipeline
variables. What if a program wants to add using blocks. Blocks resolve the issue
or remove the geometry shader stage in this ~ with Listing 5.2.

pipeline? The variable names won’t match.

name. A block name is used to identify a block for a shader interface; the instance
name is used to identify a block within a shader stage. Listings 5.2 and 5.3 present
some differences between variables and blocks when used for the communication
between stages.

Tips - Use varying blocks instead of varying variables to simplify the naming convention.
— Use varying blocks instead of varying variables to bring more flexibility to the
rendering pipeline.

5.2.2 Built-in Variables and Blocks

GLSL exposes a large collection of constants for various limits defined by the speci-
fications. Along with the user-defined variables and blocks, GLSL provides built-in
variables and blocks to connect the programmable part of the rendering pipeline
with the fixed-function part of the pipeline. As we stand with the OpenGL 4.2 core
profile, only a few built-in variables remain useful; gl_PerVertex is the only one
that requires our attention, as it might be required in the vertex, tessellation control,
tessellation evaluation, and geometry shader stages (see Listing 5.4).

Built-in variables are assumed to be declared and don’t have to be re-declared
unless the application is using them within a separate program [Kilgard 12], in which
case a built-in block is required.

© 2012 by Taylor & Francis Group, LLC

64 | Discovering

out gl_PerVertex {

vecd gl_Position;

float gl_PointSize;
float gl_ClipDistancel];
15

Listing 5.4. Vertex shader built-in output block: gl PointSize and gl_ClipDistance
are optional.

5.3 Locations
5.3.1 Definitions

Location is an abstract representation of memory that reflects the vectorized nature
of GLSL and a key OpenGL concept. Unfortunately, it isn't globally defined but
sparsely applied all over the OpenGL or GLSL specifications. This concept is es-
sential because it defines how different elements may or may not match, and it also
defines the sizes that may be allocated or used.

As an example, any vertex array object can’t be used with a vertex shader stage.
The vertex array object must match the vertex shader input interface—the list of all the
vertex shader stage input variables. For this matching to be successful, at least all the
active input variables (see Section 5.3.2) need to be backed by an array buffer to ex-
pect a relevant result. Also, the maximum number of locations defines the maximum
number of variables that may be declared by a vertex shader input interface.

We acknowledge three kinds of locations:

e Attribute locations. Communication between array buffers and vertex
shader inputs.

e Varying locations. Communication of output and input variables used
across shader stages.

e Fragment output variable locations. Communication of fragment shader
outputs and the glDrawBuffers indirection table.

5.3.2 Counting Locations

It is essential for an OpenGL programmer to know how to count locations for three
main reasons. First, the number of locations taken by a variable defines the size of a
shader interface. Second, matching may rely on explicit locations, and third, there is
no GLSL operator to count the number of locations for us. In practice, understand-
ing this aspect allows us to write more advanced design and prevents GLSL compiler,
linker, and silent errors, which may be time consuming to fix.

Attribute locations and fragment shader output locations are very similar, as
they behave like indexes. One attribute location corresponds to one vertex array
attribute; likewise, one fragment shader output location corresponds to one entry in

© 2012 by Taylor & Francis Group, LLC

5. The GLSL Shader Interfaces

the glDrawBuffers indirection table with the framebuffer attachments. A vertex
array attribute and a framebuffer attachment can hold up to four components, which
shows the vectorized nature of the locations.

Neither a single vertex array attribute nor a single framebuffer attachment can
store a matrix or an array of vectors. However, vertex shader inputs and fragment
shader outputs may be arrays, and vertex shader inputs can even be matrices. To
make this possible, each element of an array is assigned its own locations. Similarly,
matrices are considered as arrays of column vectors, which leads us to the interesting
fact that a mat2x4 requires two locations but a mat4x2—with the same number of
components—requires four locations. This model for assigning locations to matrices
and arrays also applies to varying and uniform locations.

Double-precision floating-point types, e.g., dvec3, dmat4, etc., are slightly more
complex beasts. For attribute locations, they are indexes, like single-precision ones.
A dvec4 takes one location just like a vec4. However, double types are not allowed
for fragment shader outputs, and varying variables may double the required number
of locations. Because of GPU design constraints, instead of being an index, we
can consider that a varying location is an abstract representation for the memory of
a vec4d. A GPU relies on a number of registers used as binding points to feed the
pipeline with buffers and textures. However, to communicate between stages, a GPU
relies on caches that are eventually limited in size. A dvec4 takes twice the memory
of a vec4; thus, it requires twice the number of locations. A double or a dvec?2 fits
within the memory space of a vec4, so only one location is required for those. The
specification explicitly says that the number of varying locations may be either one
or two for dvec3 and dvec4, depending on the implementation. Unfortunately,
there is no convenient way to figure out the actual size, so an application needs to
assume that it takes two locations to maximize portability, which will underutilize
some hardware not bound by this limitation.

Some varying variables may be arrayed if the shader stage is accessing multiple
input primitives or if it is generating multiple output primitives. This is the case for the
tessellation control, tessellation evaluation, and geometry shader stages. Contrary to
arrays, the number of locations is computed for a single primitive—a single element
of an arrayed variable—as it is only a feature to expose fixed-function parts of the
pipeline.

For locations and components to be consumed, a variable must be active, that is
to say that the variable must contribute to the result of the shader execution; other-
wise, the implementation will typically eliminate these variables at compile or link
times. For the case of separated programs, GL_ARB_separate_shader_objects,
all the input and output variables and blocks are considered active by the GLSL
linker.

Table 5.2 summarizes this discussion by applying the rules we just discussed to
examples.

© 2012 by Taylor & Francis Group, LLC

66 | Discovering

Variable Vertex Varying Fragment
attribute locations output
locations locations
vecd v; 1 1 1
uvec3 v; 1 1 1
float s; 1 1 1
dvec2 v; 1 1 N/A
dvecd v; 1 lor2 N/A
vec2 al[2]; 2 2 2
uint al[3]; 3 3 3
vecd all; N/A 1 N/A
mat4x3 m; 4 4 4
dmat3x2 m; 3 3 N/A
dmat2x3 m; 2 2or4 N/A
struct S{
vec3 A;
float B; N/A 3 N/A
ivec2 C;

s

struct S{
mat3x4 A;
double B[2]; N/A 18 N/A
ivec2 C;

} al3];

Table 5.2. Examples of variable types and their count of locations.

Tips — An application may assume for portability that dvec3 and dvec4 each take two
locations, as there is no convenient way to know the actual requirement by a
specific implementation.

— Consider packing the components when locations are used as indexes (e.g., ivecd
instead of int [4]).

5.3.3 Location Limits

Locations are an abstraction of memory and because memory is limited, the num-
ber of locations is limited too. OpenGL defines various minimum maximums and
provides queries for actual limits.

Since attribute locations should be considered like indices, both vertex array at-
tributes and vertex shader input variables share the same limit given by GL_MAX_
VERTEX_ATTRIBS. Both OpenGL 3.x and 4.x specifications require a minimum
of 16 attribute locations. However, Direct3D 11 requires 32 attribute locations so
that, in theory, GeForce GTX 400 series, Radeon HD 5000 series, and newer GPUs
should support at least 32 attribute locations. In practice, a GeForce GTX 470 sup-
ports 16 attribute locations, and a Radeon HD 5850 supports 29 attribute locations.

© 2012 by Taylor & Francis Group, LLC

5. The GLSL Shader Interfaces

Similarly, the number of fragment shader output variables is bound by the max-
imum number of draw buffers given by GL_MAX_DRAW_BUFFERS. This value must
be at least 8, which matches the maximum number of framebuffer color attach-
ments given by GL_MAX_COLOR_ATTACHMENTS. This is what GeForce GTX 470 and
Radeon HD 5850 currently expose.

The limit for varying locations is relative to the number of components declared
by a shader interface. A single location is used to identify a float, int, uint,
[ilulvec2, [ilulvec3,and [i|u]lvec4. However, a component is used to iden-
tify a single float, int, or uint. Hence, a vec4 takes four components. This
definition implies that the number of varying locations isn’t a constant; it depends on
how many components we use per location. Because double-precision floating-point
variables consume twice the internal storage of single-float variables, they consume
twice the number of components as well.

OpenGL used to have the values GL_MAX_VARYING_COMPONENTS and GL_MAX_
VARYING_VECTORS to query the number of component limits, but these are depre-
cated, so we ignore them here. Instead, OpenGL provides a dedicated value for each
output and input interface (Table 5.3) of each shader stage.

Looking at this table, we notice that the OpenGL requirements don’t necessarily
make the most sense, but actual available implementations streamline these numbers.

If a shader interface exceeds these limits, the GLSL compiler will return an er-
ror. Following these results, an application may assume that an implementation
supports a minimum of 32 varying locations for any shader stage. Unfortunately, the
OpenGL 4.2 specification doesn’t provide any feature to query either the number of
varying locations consumed or a varying variable query API. This prevents any kind
of application-side validation of the shader-varying interfaces and implies that if such
feature is required by the application, then this management needs to be taken care
of up front by the application, which would need to generate the shader interface’s
code.

Values OpenGL 4.2 Radeon GeForce
requirement HD 5850 GTX 470
MAX_VERTEX_OUTPUT_COMPONENTS 64 128 128
MAX_TESS_CONTROL_INPUT_COMPONENTS 128 128 128
MAX_TESS_CONTROL_OUTPUT_COMPONENTS 128 128 128
MAX_TESS_EVALUATION_INPUT_COMPONENTS 128 128 128
MAX_TESS_EVALUATION_OUTPUT_COMPONENTS 128 128 128
MAX_GEOMETRY_INPUT_COMPONENTS 64 128 128
MAX_GEOMETRY_OUTPUT_COMPONENTS 128 128 128
MAX_FRAGMENT_INPUT_COMPONENTS 128 128 128

Table 5.3. Number of components requirement and actual support.

© 2012 by Taylor & Francis Group, LLC

68 | Discovering

5.4 Matching Interfaces

For a successful rendering, a minimum requirement is to have interfaces that match.
Each interface must provide the necessary information with an appropriate layout to
the subsequent interface. If such conditions aren’t fulfilled, then rendering is likely
to result either with an OpenGL error or, worse, a silent error.

5.4.1 Partial and Full Match

OpenGL and GLSL support two types of interface matching: full matching and par-
tial matching. A full match is a matching where each element on each side of the
interface has a corresponding element on the other side of the interface (Figure 5.1).
A partial match is a matching where at least all the elements on the subsequent in-
terface have a matching element on the precedent interface (Figure 5.2). In some
cases, built-in blocks or variables may not have corresponding blocks or variables be-
cause they are only present for the interaction with the fixed pipeline. For example, a
pipeline with only a vertex and a fragment stage requires exposing the gl _Position
in the vertex shader stage but doesn’t allow declaring it in the fragment shader stage.
This definition applies on many levels:

o The vertex array object matching with the vertex shader input interface.

Any shader stage with its subsequent shader stage.

e The fragment shader output interface with the draw buffers table.

e The draw buffers indirection table with the framebuffer color attachments.
e An uniform buffer range with its associated uniform block.

Choosing between a software design approach based on partial or full matching
is actually making a choice between flexibility and performance: generating more
inputs that we need may have an absolute performance cost but may also support a
higher variety of combinations for the subsequent elements.

Regarding the performance issue, by making a difference between variables and
active variables, the specification allows unused-variable elimination. Using linked
programs, this optimization can even be extended to previous shader stages.

Figure 5.1. Full match.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-7&iName=master.img-257.jpg&w=275&h=73

5. The GLSL Shader Interfaces

69

Figure 5.2. Partial match.

Figure 5.3 is when everything works perfectly, but some cases are more troubling
like partial matching between the vertex array object and the vertex shader input
interface. Its tricky for the implementation not to emit vertex array attributes that are
not exposed in the vertex shader stage. Even if it might automatically disable unused
vertex arrays, if vertex attributes are interleaved, the implementation might fetch
unused data, consuming the bandwidth and polluting the cache due to the minimum
memory burst size [Kime and Kaminski 08].

Tip - Be careful with partial matching, especially with the vertex array object when
performance matters.

Figure 5.3. Linked program with partial matching. On top, resolve with an indirection
table. On bottom with previous shader stage unused variables elimination and resolve with
direct mapping.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-7&iName=master.img-267.jpg&w=275&h=73
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-7&iName=master.img-270.jpg&w=307&h=195

70 | Discovering

5.4.2 Type Matching

From the very first GLSL specification release, the language provides some flexibility
on the type matching. For two types to match, these types don’t necessarily need to
be the same. OpenGL requires a strict type matching between shader stages but not
for assets connected to a program pipeline.

The matching between vertex array attributes and vertex shader input variables
is very flexible due to the nature of attribute locations: They are vec4 based. Hence,
even if some vector components are missing on any side of the interface, they will
match, as illustrated in Figure 5.4. If the vertex shader input exposes more compo-
nents that the vertex array attribute provides, the extra component will be filled with
the default vector vec4(0, 0, 0, 1). Similarly, OpenGL is very flexible regard-
ing the data types of the vertex array attributes, as traditionally all types are cast by
the hardware to floating-point values when using glVertexAttribPointer. For
example, if an array buffer stores RGB8 colors, the color will be exposed as a vec3
by the corresponding vertex shader input variable: the buffer actually stores unsigned
byte data, but at vertex attribute fetching, the values are converted on the fly.

To escape from this flexibility, we can use glVertexAttribIPointer, which
can only expose vertex arrays that store integers, GL_BYTE, GL_UNSIGNED_BYTE,
GL_SHORT, GL_UNSIGNED_SHORT, GL_INT, and GL_UNSIGNED_INT, with integer-
based vertex input variables. We can also use glVertexAttribLPointer for
double-float storage (GL_DOUBLE), exposed as double-based shader input variables.

Double-based vectors are more restricted because a double-based vector may or
may not take two varying locations. If the subsequent stage declares a dvec2 variable

Figure 5.4. Example of vertex array attributes and vertex shader inputs based on float.

Figure 5.5. Example of vertex array attributes and vertex shader inputs based on double.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-7&iName=master.img-290.jpg&w=259&h=71
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-7&iName=master.img-291.jpg&w=259&h=73

5. The GLSL Shader Interfaces

Vertex array Vertex shader Match?
attribute type input type

3 x float vec3 yes
4 x float vec3 yes
2 x float vec3 yes
2 x int int yes
2 x int float yes
2 x double vec2 yes
2 x double dvec2 yes
3 x double dvec?2 no
2 x float ivec?2 no
2 x float dvec2 no

Table 5.4. Example of type-matching vertex input variable types and vertex array attribute
types.

while the previous stage provides a dvec3, for example, then the two variables are
not using the same number of locations. Thus, the interfaces can’t possibly match.
Consequently, OpenGL requires double variables to be exactly the same type either
when assigning to attribute locations (Figure 5.5).

Table 5.4 gives a list of examples and indicates whether the vertex array attribute
types and the vertex shader input types match or not.

NVIDIA also supports 64-bit integers through GL_NV_vertex_attrib_
integer 64bit, in which case, GL_.INT64_NV and GL_UNSIGNED_INT64 NV may
also be used with glVertexAttribLPointer and exposed as int64_t, i64vec2,
i64vec3, i64vecd,uintb4_t, ubdvec?2, ubdvec3, ub4vecs in the vertex shader
input interface.

Tips - Avoid submitting more vertex attribute components than the shader interface will
use.
— OpenGL 4.2 doesn’t provide an API to validate that double shader input has been
submitted with glVertexAttribLPointer or not. This may lead to a silent
error and is an OpenGL specification bug.

5.4.3 Matching by Name, Matching by Location

From the first version of GLSL, it has been possible to match varying variables by
name: on both sides of the shader interface, the variables must match by name, type,
and have compatible qualification. For vertex input variables and fragment output
variables, matching with resources has always relied on locations.

With OpenGL 4.1 and the introduction of separate programs, matching by name
is no longer able to resolve partial matches between shader stages because the GLSL
linker doesn’t necessarily know both sides of the shader interface anymore. Typically,

© 2012 by Taylor & Francis Group, LLC

72

| Discovering

[Vertex Shader Stagel [Vertex Shader Stagel

in vec4 AttribColor; layout (location = 0) in vec4 Color;

out vecd4 VertColor; layout (location = 0) out vec4 VertColor;
[Geometry Shader Stagel [Geometry Shader Stagel

in vec4 VertColor; layout (location = 0) in vec4 Color;

out vec4 GeomColor; layout (location = 0) out vec4 GeomColor;
[Fragment Shader Stagel [Fragment Shader Stagel

in vec4 GeomColor; layout (location = 0) in vec4 Color;

out vec4 FragColor; layout (location = 0) out vec4 FragColor;
Listing 5.5. Matching-by-name declarations. Listing 5.6. Matching-by-location declarations.

with separate programs, the implementation packs input and output active variables
one after the other and expects to retrieve them the same way on the subsequent
shader stage. If a variable is unused, all the following variables will be in a different

memory location than the expected one.

The solution adopted was to introduce matching by location to varying variables
(compare Listings 5.5 and 5.6). A variable is qualified with an explicit location and
this location defines a position in memory. This is where the subsequent shader stage
should expect to find the value of this variable, relieving the GLSL compiler of part

of its duty that it can’t perform anymore.

Figure 5.6. Resolution of partial matching on separate programs with matching by location.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-7&iName=master.img-357.jpg&w=307&h=210

5. The GLSL Shader Interfaces

Comparing Figure 5.6 with Figure 5.3, we notice that, by design, linked pro-
grams may generate more compact shader interfaces than separate programs. In
practice, with the drivers of AMD Catalyst 11.12, this is a limitation that we en-
counter through an effective reduction in the number of components available, but
this is not the case with NVIDIA Forceware 290.53, which lets us suppose that the
drivers do an implicit linking between stages through the pipeline program object.

An apparent side effect of using matching by location is the freedom for naming
variables, which doesn’t have to be the same across shader stages; however, OpenGL
provides something better with blocks.

5.4.4 Matching with Blocks

Blocks cant have locations, so the only possible matching is by block-name (List-
ing 5.7). Thus, when using separated programs with OpenGL, partial matching of
block-based shader interfaces will result in a silent error.

block-qualifier block-name
{

variable-qualifier type block-member;
} block-instance;

Listing 5.7. Block syntax.

An interface may contain both blocks and variables, in which case, partial match-
ing is possible on the variables, but the blocks must fully match, as illustrated in
Figure 5.7. This is actually a typical scenario of a partial matching interface.

Blocks allow the GLSL compiler to perfectly pack the components of the block
members, leading to maximum use of the hardware capabilities.

Using blocks also guarantees that a vertex shader output will always have a pos-
sible matching tessellation or geometry shader input (compare the matching arrays
in Listings 5.8 and 5.9). GLSL 4.20 only supports 1D arrays, but the corresponding

Figure 5.7. Typical scenario of partial matching with separated programs. A, B, C are
variables with explicit location. gl_PerVertex the built-in block and ud_PerVertex a user-

defined block.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-7&iName=master.img-375.jpg&w=307&h=84

74 | Discovering

[Vertex Shader Stagel [Vertex Shader Stagel
out gl_PerVertex { out vec4 gl_Position;

vec4d gl_Position; out vec4 Color[2]; // OK
}o5

out block {
vec4 Color[2];
} Out;

[Geometry Shader Stage] [Geometry Shader Stagel
in gl_PerVertex{ in vec4 gl_Position[];

vec4 gl_Position; in vec4 Color[][2]; // Error with GLSL 420!
} gl_inl[];

in block {
vec4 Color[2];
} Inll;

Listing 5.8. Matching block member Listing 5.9. Matching variable array, valid with
array. GL_EXT_geometry_shader.

geometry shader input variable of a vertex shader output array variable is an arrayed
array; in others words, a 2D array. A possible solution to this specification issue is to
clearly state the difference between arrayed variables and arrays in the specification,
but so far, an arrayed variable is simply an array.

With blocks, arrayed varying blocks are allowed, but varying block arrays are for-
bidden, allowing the programmer to avoid this issue by generating a GLSL compiler
error instead of a possible silent error.

Tips — Favor blocks rather than variables for program robustness in time.
— Uniform blocks may be declared as arrays with each element backed by a different
uniform buffer range.
— Varying blocks cant be declared as arrays but can be arrayed to reflect fixed-
function multiple input or output primitives.
— Separate programs with partial match blocks is an undefined state in the
OpenGL specification.

5.4.5 Matching with Structures

Blocks are great, and we should enjoy using them. However, due to the role of the
block-name for the shader matching, this name must be uniquely used, and the decla-
ration of the block must be done where the block-instance is defined. Structures
don’t share this language property, making them more attractive at first sight.

For many scenarios, we would like to reuse a maximum of programs to reduce
the number of objects created and the number of state changes at program execution
to reduce CPU overhead. To do this, we need to be sure that the subsequent shader
stage will have the same shader interface. One solution is to declare a structure in

© 2012 by Taylor & Francis Group, LLC

5. The GLSL Shader Interfaces 75

a separated shader source and use this declaration in any shader we want to mix
and match. Making this structure declaration unique and shared implies that any
change is applied to any shaders using it. This will most likely generate a lot of
GLSL compiler errors in all the noncompliant shaders with the updated structure.
However, this provides direct input about where we should update the code instead
of causing us to a lot of mismatches and silent errors later on, which are very difficult
and time consuming to catch.

Unfortunately, using structures for varying variables shares the same drawbacks
as using typical varying variables and magnifies the location counting issue. With a
structure, each member takes a certain number of locations; adding or removing a
member will eventually change the number of locations taken by this structure. If a
scenario is using multiple structures for a shader interface and explicit locations for
matching, then it becomes our responsibility to assign the locations to each structure
and to make sure that they remain perfectly packed one after the other.

During development, we will add and remove from time to time members of
our structures that would lead us to have to count again the number of locations

[Shared shader code] [Shared shader codel

struct vertex {
vec4 Color;
vec2 Texcoord;

3

[Vertex Shader Stagel
out gl_PerVertex {
vec4 gl_Position;

3

out blockA {
vertex Vertex;
} OutA;

out blockB {
vertex Vertex;
} OutB;

[Geometry Shader Stagel
in gl_PerVertex{

vec4 gl _Position;
} gl_in[];

in blockA {
vertex Vertex;
} InA;

in blockB {
vertex Vertex;
} InB;

Listing 5.10. Matching block member

array.

© 2012 by Taylor & Francis Group, LLC

struct vertex {
vec4 Color;
vec2 Texcoord;

g

[Vertex Shader Stagel
out vec4 gl_Position;

layout (location = 0)
out vec4 vertex 0Outl;

layout (location = ?77)
out vecd4 vertex 0OutB;

[Geometry Shader Stagel
in vec4 gl_Positionl[];

layout (location = 0)
in vec4 vertex InA[];

layout (location = ?777)
in vec4 vertex InB[];

Listing 5.11. Matching variable array. The ideal location for
OutB and InB is dependent on the number of locations taken by
the structure vertex. Here, and in Listing 5.10, this value is 2,
the number we can use in the present case. However, in a classic
development phase, the structure will evolve, which requires that
we manually change the locations each time we update vertex.

76 | Discovering

taken by the structure and update the explicit locations of the others structures ac-
cordingly. This works, but it is not an effective way to code. Listings 5.10 and 5.11
illustrate that GLSL doesn’t provide any operator to help us in counting the number
of locations of a structure.

Tip - Use structures...but only within blocks!

5.4.6 Linked and Separated Programs

From the beginning, GLSL has had a very different programming model than HLSL,
Cg, or even the old assembly-like OpenGL programs [Brown 02, Lipchak 2002]. In
those environments, each shader stage is independent This approach follows very well
the way a graphics programmer designs his software, where, for example, the vertex
program may define how objects are transformed and the fragment programs may
define materials. Many objects can share the same transformation method (the same
vertex shader) but have different fragment shaders. This strategy models how we
can sort the objects for rendering to minimize shader stage changes and how we can
batch multiple objects into a lower number of draw calls to maximize performance.
We call it the separate shader program approach.

However, GLSL previously followed a different approach where all the shader
stages were linked into a single program object. On a rendering pipeline composed
of two shader stages, both vertex and fragment shader stage were bound at the same
time. This approach has some performance advantages because the linker is able to
perform cross-stage optimizations. For example, if a vertex output variable is never
used by the fragment shader, then not only does the fragment shader discard it, but
the vertex shader may not need to compute it either. Another even more important
advantage is that the GLSL linker can detect errors of matching interface between
stages. The OpenGL specification refers to this approach as linked programs or
monolithic programs.

These two approaches raise a dilemma: software design flexibility and perfor-
mance against compiler performance and error detection. Fortunately, with OpenGL
4.1 and GL_ARB_separate_program_objects, not only can we finally take advan-
tage of separate programs, but OpenGL gives us the opportunity to take advantage
of both linked programs and separate programs on a single program pipeline object,
a container for all the shader program stages. For example, thanks to the program
pipeline, an application may choose to link all the prerasterization shader stages to-
gether and keep the fragment shader stage separately.

An application may find it interesting to use both linked programs and separate
programs to validate whether the shader interfaces match in debug and to take ad-
vantage of the flexibility of separate programs in release builds. In such a case, an
application may consider always declaring the built-in blocks, as they are required
for separate programs.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-7&iName=master.img-514.png&w=321&h=13
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-7&iName=master.img-514.png&w=321&h=13

5. The GLSL Shader Interfaces

77

Tips — Always declare built-in blocks to be able to switch between linked and separate
programs.
— In debug mode only, link all stages to get shader interface errors.

— Always use program pipeline objects, which handle both linked and separate pro-
grams.

5.5 Working with Semantics

With OpenGL, a semantic is a software design concept that gives a meaning to a
slot, associating a variable and a resource. For example, a semantic may guarantee for
the code or a part of the code that a specific location will be used for the semantic
“color.” The vertex array that stores the color data will be bound to this attribute
location, and the vertex shader will know that it can access this specific buffer with
the variable using this dedicated location.

SAS [Bjork 08] was an attempt to define a common list of semantics. However,
semantics are software-specific associations, so a set of them may only be valid for a
single application or only a subset of its code if we don’t want to waste resources.

5.5.1 Varying Compiler-Generated Locations and Explicit
Locations

GLSL typically provides two methods to allocate locations. Either the GLSL com-
piler does it, or the OpenGL programmer does it.

When the GLSL compiler generates locations, there is no specification rule that
lets us know what locations are reserved for a specific variable. Consequently, these
locations need to be queried on the application side, which requires us to deal with
building an association between the variable and the resource.

Alternatively, the application can manually assign the locations, in which case,
we can use the “semantic” scheme and always assume that the resources are where
we expect to find them. This second approach can provide significantly better per-
formance because, thanks to sorting and semantics, an application can reuse bound
objects, reducing the overall number of bindings [Collins 11].

5.5.2 Vertex Array Attributes and Vertex Shader Inputs

The location of a vertex input can either be generated by the implementation, or we
can assign it with either glBindAttribLocation (OpenGL 2.0) or the location
layout qualifier (OpenGL 3.3).

When we let the compiler set the attribute locations to the vertex input vari-
ables, we must query these values using glGetAttribLocationand use these val-
ues to assign a vertex array attribute to the corresponding vertex input variable. In
most cases, this approach defeats the strength of OpenGL because it results in a

© 2012 by Taylor & Francis Group, LLC

78 | Discovering

Figure 5.8. With implicit attribute locations, each vertex program requires a dedicated vertex
array object.

dependency between the vertex arrays and the GLSL programs. This choice intro-
duces software design complexity but also a performance hit due to the necessity to
duplicate similar programs and similar vertex array objects. This forces us to bind a
vertex array object each time we bind a new program object and vice versa.

When the GLSL compiler assigns attribute locations, even if two programs share
the same vertex input variables, the interfaces may be different. An example of this is
different orders of declarations (Figures 5.8 and 5.9).

In practice, some GLSL compilers always order the variable locations the same
way, a fact we may think we can rely on, but we can’t. Different implementations or
newer drivers may generate different orders.

Figure 5.9. With explicit attribute locations, a vertex array object is shared by multiple vertex
programs and vice versa.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-7&iName=master.img-540.jpg&w=285&h=135
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-7&iName=master.img-541.jpg&w=285&h=135

5. The GLSL Shader Interfaces

From an application-design point of view, glBindAttribLocation may be
used to set the default attribute location to a vertex input variable, and the layout
location qualifier may be used to overload these default values. An issue with user-
defined location is that the application may potentially set attribute locations that are
already used by another variable, generating a link error.

OpenGL vertex array attributes are typically specified with the command
glVertexArrayAttrib*Pointer. These commands define the vertex format,
the vertex binding, and the vertex array buffers in a per-attribute fashion. Since the
OpenGL 3.2 core profile, applications require the use of a vertex array object as a
container of the vertex array attributes.

Working with semantics implies that within a certain frame (e.g., a rendering
pass, an effect, or the entire software), a vertex input can assume that the buffer range
that backed it contains the semantically expected data. Positions, colors, texture
coordinates, normals, tangents are all classic examples of semantics associated with
attribute locations.

Tip - Do not let the compiler automatically generate vertex input locations.

5.5.3 Fragment Shader Outputs and Framebuffer Color
Attachments

We might expect that the fragment shader output interface works with framebuffer
color attachments in a similar way to the way the vertex shader input interface works
with the vertex array attributes, but there are major differences. The fragment shader
output locations don’t refer to framebuffer color attachments but to an indirection
table exposed by glDrawBuffers. This table is not a framebuffer state, but it
requires that a framebuffer object is bound (see Figure 5.10).

Each output has a location that should be considered an index in the indirection
table. Using glDrawBuffers, we control this table to specify which

Figure 5.10. Example of fragment shader output variables and framebuffer attachments
matching.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-7&iName=master.img-551.png&w=321&h=13
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-7&iName=master.img-551.png&w=321&h=13
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-7&iName=master.img-553.jpg&w=291&h=102

80 | Discovering

fragment output is going to feed which colorbuffer. In practice, we will typically
assign a location corresponding directly to the framebuffer attachment number so
that the glDrawBuffers table only does a direct mapping. This is so typical that
OpenGL ES 2 doesn’t support this table.

A fragment shader output that isn’t backed by a framebuffer atctachment will be
silently ignored, but a framebuffer attachment that isn’t fed by a fragment output will
have undefined values. A workaround for this is to disable writes for each attachment
concerned using glColorMaski. In some special cases like rendering to images
[Bolz 12], we actually want to render without framebuffer, in which case, we can
disable it with glDrawBuffer (GL_NONE).

Once again, we can use semantics to handle this association. We need to as-
sign the framebuffer color attachments to the indexes identifying the semantics and
use the same semantics for the framebuffer output. Using a direct mapping for the
glDrawBuffers table simplifies the design so that the application only needs to call
this function each time a framebuffer is bound. Some typical names for fragment
ouputs and framebuffer attachments semantics include diffuse, specular, position,
normal, tangent.

Tip - Using glDrawBuffers as an indirection table may increase the complexity of a
software design unnecessarily. Consider using direct mapping at first.

5.5.4 Varying Outputs and Varying Inputs

When we use linked programs, we don’t need to consider semantics for the varying
outputs and inputs because the GLSL linker will resolve the interface. Thus, we
should not use the location qualifier and semantics, because we can’t do component
packing as well as the compiler can.

However, if we step back a little, we notice that separate programs actually fit
well in a software design based on semantics. Chances are that a vertex shader may
be reused with multiple fragment shaders. In such a case, using semantics for the
variable locations can ensure the matching. Sharing a vertex shader with multiple
fragment shaders has the advantage that when we change the fragment program, we
only need to bind the resources used by the new fragment program, and we don’t even
need to validate on the application side whether the vertex array object, the texture
buffer, and the uniform buffer associated with the vertex shader stage are correct. If
they were, they still are. Indeed, such an example of update strategy can be extended
to any shader stage and for any update rate of any stage, bringing a lot of flexibility
to the rendering optimizations.

Ultimately, varying locations are only required for partial matching. Semantics
are typically attached to locations, but we can use block names to carry the semantics.
Examples of block names for semantics include texture mapping, normal mapping,
vertex lighting, two-face colors; a strategy for defining semantics of blocks is to name

© 2012 by Taylor & Francis Group, LLC

5. The GLSL Shader Interfaces

the blocks based on the feature capabilities that output the interface. With vary-
ing variables, we need to cope with a finer level of granularity and assign variables
with locations having semantics of position, light direction, normal, tangent, texture
coordinates, etc.

Tip - Using separated programs, sorting, and semantics reduces the amount of binding.

5.5.5 Uniform Buffers and Uniform Blocks

Uniform buffers and uniform blocks were introduced in OpenGL 3.1. They offer
a great replacement to uniform variables, especially for semantics-based software de-
sign. Using uniform variables, we have no other choice than letting the compiler
assigning the location to the variables. A uniform variable is a state of a program
that implies that this variable can’t be reused for any other program. With uniform
blocks, the storage is a buffer that can be reused with other programs.

The OpenGL specification requires at least 12 uniform blocks per shader stage
(Table 5.5).

OpenGL requires as many buffer bindings (GL_MAX_UNIFORM_BUFFER_
BINDING) as combined uniform blocks so that each single uniform block may be
backed by a different uniform buffer. An application is also free to back multiple
uniform blocks with the same uniform buffer binding. Each of these binding point
is an opportunity for us to define a dedicated semantic to change a shader stage
without changing the uniform buffer bindings.

With the rest of the uniform buffer API, glUniformBlockBinding was intro-
duced to associate a uniform block index with a uniform buffer binding. GLSL 4.20
introduced the binding layout qualifier that allows us to directly set a default bind-
ing to a uniform block. Both approaches can work for semantics, but used directly,
the default binding avoids carrying around the uniform block index. Semantics for
uniform buffers are assigned by update rates: per-camera transform, per-object trans-
form, per-material, etc.

Values OpenGL 4.2 Radeon GeForce HD Graphics
requirement HD 5850 GTX470 3000

MAX_VERTEX_UNIFORM_BLOCKS 12 15 12 12
MAX_TESS_CONTROL_UNIFORM_BLOCKS 12 15 12 N/A
MAX_TESS_EVALUATION_UNIFORM_BLOCKS 12 15 12 N/A
MAX_GEOMETRY_UNIFORM_BLOCKS 12 15 12 N/A
MAX_FRAGMENT_UNIFORM_BLOCKS 12 15 12 12
MAX_COMBINED_UNIFORM_BLOCKS 60 75 12 24

Table 5.5. Uniform block limitations.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-7&iName=master.img-575.png&w=321&h=13
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-7&iName=master.img-575.png&w=321&h=13

82 | Discovering

Tips - Use the binding qualifier to avoid unnecessary complexity on the application side.
— Organize uniform buffer and uniform block by update rates.

— Uniform buffer range must be aligned on GL_UNIFORM_BUFFER_OFFSET-
ALIGNMENT.

5.6 Application-Side Validations for Debug
Build Only

Bugs are not a problem, because they are part of the DNA of programming. The
problem is to detect them as soon as we encounter them, which will be the purpose
of this section, a tricky aspect of OpenGL.

If interfaces don’t match, OpenGL will either generate an error at draw call—if
we are lucky—or we will have to deal with a silent error. In both cases, fixing the
problem is time consuming. OpenGL provides the functions glValidateProgram
and glValidateProgramPipeline, which, according to the specification, “...will
check for all the conditions that could lead to a GL_INVALID_OPERATION error when
rendering commands are issued, and may check for other conditions as well” [Segal
and Akeley 10, p. 104].

Unfortunately, as it stands with Catalyst 12.1a preview and Forceware 290.53,
the other conditions seem to be reduced to none even with a debug context. We
could imagine using glValidateProgramand glValidateProgramPipeline
for the following reasons:

e To validate whether the bound vertex array object and a program object vertex
shader input interface match.

o To validate whether the framebuffer attachments are fed by fragment outputs.

e To validate whether varying output variables match with varying input vari-

ables.
e To validate that uniform blocks are backed by bound uniform buffers.
e To validate that uniform samplers are backed by a completed texture object.

e To validate that the uniform sampler is declared accordingly to the texture
object.

e To validate that the texture sampler is appropriate to the texture image.

Fortunately, understanding all the details of the GLSL Shader Interfaces allows
us to do some application-side validations to detect OpenGL errors and even silent
errors as early as possible. For this purpose, OpenGL provides many shader query
functions to allow the application to catch these issues. Unfortunately, OpenGL 4.2
is missing some queries to iterate over varying variables and fragment shader outputs.

Because of the page-count limit, the briefly described validation capabilities are
only illustrated by the companion source code of this chapter.

© 2012 by Taylor & Francis Group, LLC

5. The GLSL Shader Interfaces

83

Tip - Picture validation as assert-based validation. Encapsulate the validation in a
function, and call this function only within an asset to ensure doing this valida-
tion only in debug builds. Such validation introduces a lot of CPU overhead.

5.6.1 Vertex Inputs Validation

For the vertex array object, we may assume that we already know the attribute pa-
rameter, as we actually created this object on the application side. However, using
glGetVertexArray* might be a more convenient solution because it allows us to
validate the actual states. We need to use glGetActiveAttrib* to query informa-
tion about the vertex shader inputs, including its name, which we will use to query
separately the attribute locations with glGetAttribLocation that arent given by
glGetActiveAttrib.

To ensure the validity of the matching, it is also necessary to check if the re-
quested format conversion is valid, that is to say, if the user calls the appropriate
functions between glVertexAttribPointer, glVertexAttribIPointer, and
glVertexAttribLPointer. Unfortunately, there is a specification bug here, as
the value GL_.VERTEX_ATTRIB_ARRAY_LONG is missing in the OpenGL 4.2 specifi-
cation.

5.6.2 Varying Interfaces Validation

With OpenGL 4.2, there is only one main validation that we can’t really do. We can’t
query varying outputs and varying inputs from separated programs; hence we can’t
validate these interfaces. The only possible workaround is to link separated programs
together and query the status of this operation. Such an approach is possible but may
hurt software designs that rely on separate programs.

Here, we are reaching a limitation of the OpenGL API that we can only hope to
see fixed for the benefit of our programming experience.

Tips - Be extra careful when writing the varying shader interface. There is no API to
detect mismatching between shader stages with separate programs. We may hope
that glValidateProgramPipeline will give us meaningful feedback.

— Consider using structures declared in a shared shader sources across shader stages.

5.6.3 Fragment Outputs Validation

To avoid writing undefined pixels into framebuffer attachments, it is necessary that
each active attachment is backed by a fragment shader output, which implies that
each element of the glDrawBuffers indirection table must be backed by a fragment
shader ouput. If a fragment shader output doesn’t reach the framebuffer atctachments,
the fragment program is doing more work than it could.

© 2012 by Taylor & Francis Group, LLC

84 | Discovering

This analysis builds the strategy for validating the fragment shader output in-
terface; however, OpenGL doesn’t provide APIs to query the list of the fragment
shader outputs. The best we can do is to ensure that the glDrawBuffers ta-
ble doesn’t redirect output to nonexisting framebuffer attachments. To iterate on
glDrawBuffers table elements, use glGet Integerv with GL_DRAW_BUFFERi un-
til GL_MAX DRAWBUFFER. To iterate on framebuffer attachments, we use
glGetFramebufferAttachmentParameter with GL_COLOR_ATTACHMENTI un-
til GL_MAX_COLOR_ATTACHMENTS.

Tip — Be extra careful when writing the fragment shader output interface. There is no
API to enumerate fragment shader stage output variables.

5.6.4 Variables Validation

We can query all the information about uniform variables by iterating over
glGetActiveUniform until GL_ACTIVE UNIFORMS, which we obtain through
glGetProgram. By doing this, we are querying all the uniform variables, including
opaque type uniforms: samplers, images, and atomics.

Rich with all this information, we can go further and validate the texture used
with a specific sampler. If the sampler is a usampler* or a isampler* then the
texture should have been created with the GL_*_INTEGER format. We can check this
by querying the value for GL_RGBA_INTEGER_MODE with glGetIntergerv on the
currently bound texture.

Going further, we can even validate whether the sampler applied on a texture is
appropriate. It is very unlikely that a texture with no mipmaps should be associated
with a GL_LINEAR MIPMAPS_LINEAR sampler, but this could be a classic production
pipeline issue.

We can query the GL_TEXTUREMIN_FILTER parameter of a filter with
glGetSamplerParameteriv, but it’s surprisingly more complex to handle the
number of mipmaps. One approach is to compute the difference between GL_
TEXTURE_MAX_LEVEL and GL_TEXTURE_BASE_LEVEL, but too many applications
don’t pay any attention to GL_TEXTURE_MAX_LEVEL. With OpenGL 4.2, the only
way around this is to carry around the texture levels from the texture creation.

5.6.5 Uniform Blocks Validation

OpenGL provides an API for validating uniform blocks by iterating over them us-
ing glGetActiveUniformBlockiv until GL_ACTIVE_UNIFORM_BLOCKS, a value
we can get from glGetProgram. At this point, we are only iterating over blocks,
but we need to iterate as well on block members. We are using GL_UNIFORM_BLOCK_
ACTIVE_UNIFORMS to query the number of block members and GL_UNIFORM
_BLOCK_ACTIVE_UNIFORM_INDICES to query the list of the active uniform indices.

© 2012 by Taylor & Francis Group, LLC

5. The GLSL Shader Interfaces

By using the indices of this list, we can now use glGetActiveUniformon each of
them to retrieve the information we need.

We can also validate that a block is effectively backed by a uniform buffer by
using GL_UNIFORM_BLOCK_BINDING with glGetActiveUniformBlockiv to re-
trieve the binding of a uniform buffer binding. Finally, using GL_UNIFORM_BUFFER_
BINDING with glGetIntegeri_v, we can retrieve the actual buffer bound, if any.

5.7 Conclusion

I hope this chapter clarifies that a shader interface is not just declaring a bunch of
variables. I would love to give some clearer guidelines in the conclusion, but those
mostly depend on the development scenario, and many more pages could be written
on this complex topic. However, I can identify some good starting recommendations
that could be extended according to the specific nature of each application. For
example, simply considering OpenGL ES 2 will largely challenge these rules.

Initial recommendations for reliability and effectiveness of the shader interfaces:

o Always declare the built-in gl _PerVertex blocks.
e Use only blocks for varying interfaces.

e Declare the content of the block in external structures shared across shader
sources.

e Don't let the compiler set the locations to vertex inputs and fragment outputs.

e Give program-based semantics to attributes and fragment output locations.

o Give program-based semantics to uniform buffer, texture, and image binding
points.

e Rely on full matching, including the number of components.
e Avoid matching by location.

e Match the fragment output interface with the framebuffer attachment through
the glDrawBuffes indirection table. Don't rely on the implementation for

this.

e Match separate programs varying interfaces with care, as we can’ rely on the
implementation for that. Consider using validation by linking all stages to-
gether.

o Use assert-based validation in debug to detect issues as soon and as often as we
can.

For more information on this discussion, have a look at the companion code
samples of this chapter.

© 2012 by Taylor & Francis Group, LLC

86 | Discovering

Acknowledgments. Iam taking advantage of these last few words to thank Pat Brown
for the very insightful, in-depth discussions on this topic and the ongoing work to improve
OpenGL on this topic. Finally, I am very grateful for the support from Arnaud Masserann,
Daniel Rékos, Dimitri Kudelski, and Patrick Cozzi who reviewed this chapter.

Bibliography

[Bjork 08] Kevin Bjork. “Using SAS with CgFX and FX File Formats,” OpenGL Extension
Specifications, 2008.

[Bolz 12] Jeff Bolz and Pat Brown. “GL_ARB_shader_image_load_store,” OpenGL Extension
Specifications, 2012.

[Brown 02] Pat Brown. “GL_ARB_vertex_program,” OpenGL Extension Specifications,
2002.

[Collins 11] Matt Collins. “Advances in OpenGL for MacOS X Lion,” OpenGL Extension
Specifications, 2011.

[Kessenich 12] John Kessenich. “Interface Blocks, Input Variables, Output Variables, Uni-
form, Opaque Type.” GLSL 4.20 specification, 2012. Sections 4.3.8, 4.3.4, 4.3.6, 4.3.5,
and 4.1.7.

[Kilgard 12] Mark Kilgard, Greg Roth, and Pat Brown. “GL_ARB_separate_shader_objects,”
OpenGL Extension Specifications, 2012.

[Kime and Kaminski 08] Charles Kime and Thomas Kaminski. “Memory Basics.” Lagic and
Computer Design Fundamentals. Upper Saddle River, NJ: Pearson Education, 2008.

[Leech 12] Jon Leech. “Shader Interface Matching.” OpenGL 4.2 Core Profile Specification,
2012.

[Lipchak 2002] Benj Lipchak. “GL_ARB_fragment_program,” OpenGL Extension Specifica-
tions, 2002.

[Segal and Akeley 10] Mark Segal and Kurt Akeley. 7he OpenGL Graphics Sys-

tem: A Specification, Version 4.1 (Core Profile). www.scribd.com/jhoni_vieceli/d/
69474584-gl-spec4d1-core-20100725, July 25, 2010.

© 2012 by Taylor & Francis Group, LLC

An Introduction to Tessellation 6
Shaders

Philip Rideout and Dirk Van Gelder

6.1 Introduction

Tessellation shaders open new doors for real-time graphics programming. GPU-
based tessellation was possible in the past only through trickery, relying on multiple
passes and misappropriation of existing shader units.

OpenGL 4.0 finally provides first-class support for GPU tessellation, but the new
shading stages can seem nonintuitive at first. This chapter explains the distinct roles
of those stages in the new pipeline and gives an overview of some common rendering
techniques that leverage them.

GPUs tend to be better at “streamable” amplification; rather than storing an
entire post-subdivided mesh in memory, tessellation shaders allow vertex data to be
amplified on the fly, discarding the data when they reach the rasterizer. The system
never bothers to store a highly-refined vertex buffer, which would have an impractical
memory footprint for a GPU.

Pretessellation graphics hardware was already quite good at rendering huge
meshes, and CPU-side refinement was often perfectly acceptable for static meshes.
So why move tessellation to the GPU?

The gains are obvious for animation. On a per-frame basis, only the control
points get sent to the GPU, greatly alleviating bandwidth requirements for high-
density surfaces.

Animation isn’t the only killer application of subdivision surfaces. Displacement
mapping allows for staggering geometric level-of-detail. Previous GPU techniques

87

© 2012 by Taylor & Francis Group, LLC

88 | Discovering

required multiple passes over the geometry shader, proving awkward and slow. Tes-
sellation shaders allow displacement mapping to occur in a single pass [Castafio 08].

Tessellation shaders can also compute geometric level-of-detail on the fly, which
we'll explore later in the chapter. Previous techniques required the CPU to resubmit
new vertex buffers when changing the level-of-detail.

6.1.1 Subdivision Surfaces

One of the most compelling uses of GPU tessellation is efficiently rendering Catmull-
Clark subdivision surfaces. Most of these techniques use tessellation shaders to eval-
uate a parametric approximation of the limit surface rather than performing iterative
subdivision. Iterative subdivision can still be done on the GPU but is often better
suited for CUDA or OpenCL.

Parametric approximation of Catmull-Clark surfaces (ACC) arose from Charles
Loop’s research at Microsoft in 2008 [Loop and Schaefer 08], and was subsequently
enhanced to support creases [Kovacs et al. 09]. An excellent overview of the state of
the art can be found in [Ni et al. 09]. This includes a report from Valve, the first
major game developer to use tessellation shaders in this way.

6.1.2 Smoothing Polygonal Data

Catmull-Clark surfaces are not the only way to make good use of tessellation shaders;
game developers may find other surface definitions more attractive. For example,
tessellation can be used to simply “smooth out” traditional polygonal mesh data.
PN triangles are a popular example of this. An even simpler application is Phong
tessellation, the geometric analogue of a Phong lighting.

6.1.3 GPU Compute

OpenCL or CUDA can be used in conjunction with tessellation shaders for various
techniques. The compute API can be used for simulation, e.g., hair physics, [Yuksel
and Tariq 10], or it can be used to perform a small number of iterative subdivisions
to “clean up” the input mesh, removing extraordinary vertices before submitting the

data to the OpenGL pipeline [Loop 10].

6.1.4 Curves, Hair, and Grass

Tessellation shaders can also be applied to lines with isoline tessellation, which opens
up several possibilities for data amplification. One is tessellating a series of line seg-
ments into a smooth cubic curve. In this way, application code works only with a
small number of points. Smooth curves are generated entirely on the GPU, either for
3D applications like hair or rope or for 2D applications such as Bézier curves from a
drafting tool. Isoline tessellation can also be used to generate multiple curves from a
single curve.

© 2012 by Taylor & Francis Group, LLC

6. An Introduction to Tessellation Shaders

89

Figure 6.1. Hairy teapot; lines grown from patches.

Geometry shaders can be used in conjunction with isoline tessellation, which can
be useful for applications such as grass and hair. Figure 6.1 is a screenshot from the
accompanying sample code in which a surface is tessellated into many small polygons,
then extruded into hairs using a geometry shader.

6.1.5 Other Uses

There are also many less obvious uses for tessellation. If a post-tessellated mesh is
sufficiently refined, its geometry can be deformed to simulate lens distortion. These
effects include pincushion warping and panoramic projection. Because GPU raster-
izers can only perform linear interpolation, traditional techniques relying on post-
processing often result in poor sampling.

Figure 6.2 depicts an example of cylindrical warping using tessellation shaders
applied to a cubescape. The vertex buffer sent to the GPU is extremely light because
each cube face is a 4-vertex patch.

Figure 6.2. Cylindrical distortion using tessellation shaders.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-8&iName=master.img-027.jpg&w=145&h=91
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-8&iName=master.img-028.jpg&w=112&h=163

90 | Discovering

6.2 The New Shading Pipeline

Figure 6.3 depicts a simplified view of the OpenGL shading pipeline, highlighting
the new OpenGL 4.0 stages. The pipeline has two new shader stages and one new
fixed-function stage.

Those who come across Direct3D literature should be aware that the control
shader is there known as the hull shader; the evaluation shader is known as the domain
shader.

To start off, OpenGL 4.0 introduces a new primitive type, GL_PATCHES, that
must be used to leverage tessellation functionality. Unlike every other OpenGL prim-
itive, patches have a user-defined number of vertices per primitive, configured like so:

glPatchParameteri(GL_PATCH_VERTICES, 16);

The tessellator can be configured in one of three domains: isolines, quads,
and triangles. Later in the chapter, we'll examine each of these modes in detail.

glDrawElements(GL _PATCHES, ...
glDrawArrays(GL_PATCHES, ...

Triangles
quads
isolines

PEGR RGN

Figure 6.3. The new tessellation stages in OpenGL 4.0.

© 2012 by Taylor & Francis Group, LLC

6. An Introduction to Tessellation Shaders 91

6.2.1 Life of a Patch

Although vertex data always starts off ar-

ranged into patch primitives, it gets trans- v
formed as it progresses through the pipe, as (Vertex Shader)
depicted in Figure 6.4. v
If desired, the tessellation control shader Patches
can perform some of the same transforma- T < Vi

tions that were traditionally done in the :(Tess Control Shader

vertex shader. However, unlike the vertex
shader, the tessellation control shader has
access to all data within the local patch as
well as a patch-relative invocation identifier.
It also acts as a configurator for the fixed-

*

Patches

—
> | Tessellator Unit |
—->

Pre-vertex data
pre-patch data

function tessellator stage, telling it how to g))

. . . . Lines or triangles
split up the patch into triangles or lines. The
tessellation control shader can be thought of =
as a “control point shader” because it oper- —>(Tess Eval Shader)
ates on the original, pretessellated vertices. > v

Next, the tessellator stage inserts new) Lines or triangles
vertices into the vertex stream according to A
tessellation levels stipulated by the control (Geometry Shader)
shader and the tessellation mode stipulated v
by the evaluation shader. Points, line strips, or triangle strips

The evaluation shader then transforms
vertices in the expanded stream, making |
them able to read data from any vertex

within the local patch.

Rasterizer |

(Fragment Shader)

After this point in the OpenGL pipeline,)
vertices are finally arranged into triangles or Figure 6.4. Tessellation data flow;

lines, and the patch concept is effectively dis- C?LSL arrays are depicted by multiple in-
carded cident arrows.

6.2.2 Threading Model

Table 6.1 shows how the new programable stages are invocated, relative to the num-
ber of elements in the vertex buffer.

The threading model of the control shader is unique in that the relative order of
multiple invocations is somewhat controllable, and it can access a shared read/write
area for each patch.

Control shaders allow developers to specify a synchronization point where all
invocations for a patch must wait for other threads to reach the same point. Such a
synchronization point can be defined using the built-in barrier () function.

© 2012 by Taylor & Francis Group, LLC

92 | Discovering
Unit Invocation Scheme
Vertex Shader one invocation per input vertex
Tess Control Shader one invocation per output vertex
Tess Eval Shader one invocation per post-tessellated vertex

Table 6.1. Threading in the new OpenGL shading pipeline.

The function barrier() is different from memoryBarrier (); the latter was
introducted in OpenGL 4.2 and can be used from any shader unit.

Control shaders can access per-patch shared memory by qualifying a set of out
variables with the new patch keyword. If multiple invocations within a patch write
different values into the same patch variable, the results are undefined.

6.2.3 Inputs and Outputs

Table 6.2 enumerates all the built-in variables available to the two tessellation shader
stages.

The built-in arrays of struct, gl_in and gl_out, provide access to vertex po-
sition, point size, and clipping distance. These are the same variables that can be
output from the vertex shader and processed by the geometry shader.

In addition to the built-ins in Table 6.2, tessellation shaders can declare a set of
custom in and out variables as usual. Per-vertex data must always be declared as

Identifier Shader Unit(s) Access
gl _PatchVerticesIn Control and Eval in
gl PrimitiveID Control and Eval in
gl_InvocationID Control Shader in
gl _TessLevelOuter [4] Control Shader out
gl_TessLevelInner[2] Control Shader out
gl_TessLevelOuter [4] Evaluation Shader in
gl _TessLevellInner [2] Evaluation Shader in
gl_in[n].gl Position Control and Eval in
gl_in[n].gl PointSize Control and Eval in
gl in[n].gl ClipDistance[m] Control and Eval in
gloout[n].gl Position Control and Eval ~ out
gloout[n].gl PointSize Control and Eval out
gl out[n].gl ClipDistance[m] Control and Eval out
gl_TessCoord Evaluation in

Table 6.2. Built-in GLSL variables for tessellation.

© 2012 by Taylor & Francis Group, LLC

6. An Introduction to Tessellation Shaders

93

an array, where each element of the array corresponds to a single element within the
patch. Per-patch data, qualified with patch, is not arrayed over the patch.

Tessellation shaders have read-only access to gl_PatchVerticesIn, which rep-
resents the number of vertices in a patch. In the evaluation shader, this number can
vary between patches.

The read-only gl PrimitiveID variable is also available to both tessellation
shaders. This describes the index of the patch within the current draw call.

As with any other shader stage in OpenGL, tessellation shaders can also read
from uniforms, uniform buffers, and textures.

6.2.4 Tessellation Control Shaders

This stage is well suited for change-of-basis transformations and deciding on level-of-
detail. Control shaders can also be used to achieve early rejection by culling patches
when all corners are outside the viewing frustum, although this gets tricky if the
evaluation shader performs displacement.

Listing 6.1 presents a template for a tessellation control shader.

layout (vertices = output_patch_size) out;

// Declare inputs from vertex shader
in float vFool[];

// Declare per-vertex outputs
out float tcFool[];

// Declare per-patch outputs
patch out float tcSharedFoo;

void main ()
{
bool cull = ...;
if (cull)
{
gl_TessLevelOuter[0]
gl_TessLevelOuter[1]
gl_TessLevelOuter[2]
gl_TessLevelOuter[3]

oo
[eleNeNe]
[eleNeNe]

}

else

{
// Compute gl_TessLevellnner...
// Compute gl_TessLevelOuter...

}

// Write per-patch data...

// Write per-vertex data...

Listing 6.1. Tessellation control shader template.

© 2012 by Taylor & Francis Group, LLC

94 | Discovering

The layout declaration at the top of the shader defines not only the size of the
output patch but also the number of invocations of the control shader for a given
input patch. All custom out variables must be declared as arrays that are either
explicitly sized to match this count or implicitly using empty square brackets.

The size of the input patch is defined at the API level using glPatch
Parameteri, but the size of the output patch is defined at the shader level. In many
cases, we want these two sizes to be the same. Heavy insertion of new elements into
the vertex stream is best done by the fixed-function tessellator unit and not by the
control shader. The implementation-defined maximum for both sizes can be queried
at the API level using GL_MAX_PATCH_VERTICES. At the time of this writing, 32 is
the common maximum.

The application code can determine the output patch size defined by the active
shader:

GLuint patchSize;
glGetIntegerv(GL_TESS_CONTROL_OUTPUT_VERTICES, &patchSize);

Tessellation modes. The tessellation mode (known as domain in Direct3D par-
lance) is configured using a layout declaration in the evaluation shader. There are

three modes available in OpenGL 4.0:

e triangles. Subdivides a triangle into triang]es.
e quads. Subdivides a quadrilateral into triangles.

e isolines. Subdivides a quadrilateral into a collection of line strips.

The array gl_OuterTessLevell[] always has four elements, and gl_Inner
TessLevel always has two elements, but only a subset of each array is used depend-
ing on the tessellation mode. Similarly, gl_TessCoord is always a vec3, but its
z component is ignored for isolines and quads. Table 6.3 summarizes how domain
affects built-in variables.

Domain Outer Inner TessCoord
triangles 3 1 3D (Barycentric)
quads 4 2 2D (Cartesian)
isolines 2 0 2D (Cartesian)

Table 6.3. The effective sizes of the tess level arrays and the gl _TessCoord vector.

Fractional tessellation levels. The inner and outer tessellation levels control
the number of subdivisions along various edges. All tessellation levels are floating
points, not integers. The fractional part can have a different meaning depending on

© 2012 by Taylor & Francis Group, LLC

6. An Introduction to Tessellation Shaders

95

the spacing (known as partitioning in Direct3D parlance). Spacing is configured in
the evaluation shader using a 1ayout declaration. For example,

layout (quads, equal_spacing) in;

The three spacing schemes are

e equal_spacing. Clamp the tess level to [1,max]; then round up to the
nearest integer. Every new segment has equal length.

e fractional even spacing. Clamp the tess level to [2,max]; then round
up to the nearest even integer. Every new segment has equal length, except
for the two segments at either end, whose size is proportional to the fractional
part of the clamped tess level.

e fractional odd_spacing. Clamp the tess level to [1,max-1]; then round
up to the nearest odd integer. Every new segment has equal length, except for
the two segments at either end, whose size is proportional to the fractional part
of the clamped tess level.

In the above descriptions, max refers to the value returned by

GLuint maxLevel;
glGetIntegerv(GL_MAX_TESS_GEN_LEVEL, &maxLevel) ;

If we're computing tessellation levels on the fly, the two fractional spacing modes
can be used to create a smooth transition between levels, resulting in a diminished
popping effect. See Figure 6.5 for how fractional tessellation levels can affect edge

subdivision.
Equal Even Odd
1.0 e 0 [L L] [L]
lb @ L 4 L J [L 4 o 00— 00
20@ L L J [\ 4 o *-—o—090

250—0—0—0 00— —00 o0—0—0—0

300—e—e—»o o—0—0—0—9 o—0—0—0

Figure 6.5. Fractional tessellation levels.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-8&iName=master.img-170.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-8&iName=master.img-170.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-8&iName=master.img-170.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-8&iName=master.img-170.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-8&iName=master.img-170.png&w=322&h=16

96 | Discovering

Computing the tessellation levels. Writing to gl_-TessLevelInner and
gl _TessLevelOuter is optional; if they are not set by the control shader, OpenGL

falls back to the API-defined defaults. Initially, these defaults are filled with 1.0, but
they can be changed like so:

GLfloat inner[2] = { ... };
GLfloat outer[4] = { ... };
glPatchParameterfv(GL_PATCH_DEFAULT_INNER_LEVEL, inner);
glPatchParameterfv(GL_PATCH_DEFAULT_OUTER_LEVEL, outer);

At the time of this writing, the latest drivers do not always honor the defaults, so
the tessellation levels should always be set from the shader. In practical applications,
we often need to compute this dynamically anyway, which is known as adaptive
tessellation. One approach for computing the level-of-detail is based on screen-space
edge lengths:

uniform float GlobalQuality;

float ComputeTessFactor(vec2 ssPosition0O, vec2 ssPositionl)
{

float d = distance (ssPosition0, ssPositioni);

return clamp(d * GlobalQuality, 0.0, 1.0);
}

The GlobalQuality constant may be computed in application code using the fol-
lowing heuristic:

GlobalQuality = 1.0/(TargetEdgeSize * MaxTessFactor).

Another adaptive scheme uses the orientation of the patch relative to the viewing
angle, leading to higher tessellation along silhouettes. This technique requires an
edge normal, which can be obtained by averaging the normals at the two endpoints:

uniform vec3 ViewVector;
uniform float Epsilon;

float ComputeTessFactor(vec3 osNormalO, vec3 osNormall)

{
float n = normalize(mix (0.5, osNormalO, osNormalil));
float s = 1.0 - abs(dot(n, ViewVector));
s = (s - Epsilon) / (1.0 - Epsilon);
return clamp(s, 0.0, 1.0);
}

For more on dynamic level-of-detail, see Chapter 10.

6.2.5 Tessellation Evaluation Shaders

The evaluation stage is well suited for parametric evaluation of patches and compu-
tation of smooth normal vectors.

© 2012 by Taylor & Francis Group, LLC

6. An Introduction to Tessellation Shaders

layout (quads, fractional_even_spacing, cw) out;

// Declare inputs from tess control shader
in float tcFool[l;

// Declare per-patch inputs
patch in float tcSharedFoo;

// Declare per-vertex outputs
out float teFoo;

void main ()

{
vec3 tc = gl_TessCoord;
teFoo = 3
gl_Position = ... ;

}

Listing 6.2. Tessellation evaluation shader template.

Listing 6.2 presents a template for a tessellation evaluation shader. Unlike the
control shader, the outputs are not arrayed over the patch.

For a visualization of gl _TessCoord in quads mode, see Figure 6.6. The mean-
ing of gl_TessCoord varies according to the tessellation mode. For example, in
triangles mode, it’s a Barycentric coordinate; see Table 6.3.

By default, the progression of gl_TessCoord is counter-clockwise for every tri-
angle. This is consistent with OpenGLs default definition of front-facing polygons.
If desired, the 1ayout declaration can flip this behavior using the cw token.

By default, the evaluation shader generates triangles for quads and triangles
domains and lines for the isolines domain. However, any domain can be over-
ridden to generate point primitives by adding the point_mode token to the layout
declaration.

Figure 6.6. Gumbo’s bicubic patches and their g1 _TessCoord parameterizations.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-8&iName=master.img-264.jpg&w=145&h=141

98 | Discovering

6.2.6 Primitive Generation Using quads

The procedure for tessellation in the quads domain is described next (follow along

with Figure 6.7):

1. The edges of a rectangular input patch are fed into the tessellator.

2. The patch is first divided into quads according to the two inner tessellation
levels.

3. All of the quads produced by Step 1 except the bordering quads are decom-
posed into triangle pairs.

4. The outer edges of the patch are then subdivided according to the four outer
tessellation levels.

5. The outer ring is then filled with triangles by connecting the points from Step
2 with the points from Step 4. The algorithm for this step is implementation-
dependent.

Figure 6.7 illustrates this procedure using the following tessellation levels:
gl_TessLevellnner
gl_TessLevelOuter

NARE R

Figure 6.7. Primitive generation in the quads domain.

{4, 5 3}
L 25

6.2.7 Primitive Generation Using triangles

Next, we'll describe the procedure for tessellation in the triangles domain, fol-
lowing along with Figure 6.8:

1. The edges of a triangular patch are fed into the tessellator.

2. The patch is first divided into concentric triangles according to the inner tes-
sellation level.

© 2012 by Taylor & Francis Group, LLC

6. An Introduction to Tessellation Shaders

99

A8444

Figure 6.8. Primitive generation in the triangles domain.

3. The spaces between the concentric triangles, except the outer ring, are decom-
posed into triangles.

4. The outer edges of the triangles are then subdivided according to the three
outer tessellation levels.

5. The outer ring is then filled with triangles by connecting the points from Step
2 with the points from Step 4.

The concentric triangles in Step 2 are formed from the intersections of perpen-
dicular lines extending from the original edges.
Figure 6.8 illustrates this procedure using the following tessellation levels:

}

gl_TessLevellnner
gl_TessLevelOuter

{5 3};
{3, 3, 23}

6.3 Tessellating a Teapot

This section illustrates tessellation in the quads domain using simple bicubic patches.
Conveniently, the famous Utah Teapot was originally modelled using bicubic patches.
Tessellation levels for this demo are depicted in Figure 6.9.

Since we are not performing skinning or other deformations, we defer model-
view-projection transformation until the evaluation shader; this makes our vertex
shader trivial. See Listing 6.3.

OO\ @

Figure 6.9. From left to right: inner and outer tess levels of 1, 2, 3, 4, and 7.

© 2012 by Taylor & Francis Group, LLC

100 | Discovering

in vec3 Position;
out vec3 vPosition;

void main ()
{
vPosition = Position;

+

Listing 6.3. Teapot vertex shader.

Before diving into the control shader, a brief review of bicubic patches is in order.
In its most general form, the parametric formulation of a bicubic surface uses a total
of 48 coefhcients:

x(u,v) = a0’ + bV + v+ dal + e’V + .Lpy,
Y(u,v) = a},u%a + byu3v2 + c},u% + d},u3 + e},uzv3 + .2y, (6.1)
2w, v) = ayi® + byP v + v + dyd + et + coiDz

The (#, v) coordinates in the above formulation correspond to gl_TessCoord
in the evaluation shader.

The 48 coefficients can be neatly arranged into 4 X 4 matrices. We can denote
a, through p, with the matrix C,:

y3
3 2 v
x(u,v) = (w uw ul) C,
v

1
Given a set of knot points, we need to generate a set of coefficient matrices (C,,
C, C,). First, we select a basis matrix from a list of popular choices (e.g., Bézier,
B-spline, Catmull-Rom, and Hermite) and represent it with B. Next, we arrange the
knot points into matrices (Py, P, P.). The coefficient matrices can then be derived

as follows:

C,=Bx*P,xB7,
C,=Bx*P,«B’,
C,=BxP,x«B’.

Because the coefficient matrices are constant over the patch, computing them
should be done in the control shader rather than the evaluation shader. See List-
ing 6.4.

Listing 6.4 does not make the best use of the threading model. Listing 6.5 makes
a 3 times improvement by performing the computations for each dimension (x, y, z)
across separate invocations.

In some cases, the first return statement in Listing 6.5 will not improve perfor-
mance due to the SIMD nature of shader execution.

© 2012 by Taylor & Francis Group, LLC

6. An Introduction to Tessellation Shaders 101

layout (vertices = 16) out;
in vec3 vPosition[];

out vec3 tcPosition[];
patch out mat4 cx, cy, cz;
uniform mat4 B, BT;

#define ID gl_InvocationID

void main ()

{
tcPosition[ID] = vPosition[ID];
mat4 Px, Py, Pz;
for (int idx = 0; idx < 16; ++idx)
{
Px[idx / 4][idx % 4] = vPosition[idx].x;
Py[idx / 4][idx % 4] = vPosition[idx].y;
Pz[idx / 4]1[idx % 4] = vPosition[idx].z;
}
// Perform the change of basis:
cx = B *x Px *x BT;
cy = B * Py x BT;
cz = B *x Pz x BT;
}
Listing 6.4. Teapot control shader.
layout (vertices = 16) out;

in vec3 vPosition[];
out vec3 tcPositionl[];
patch out mat4 c[3];
uniform mat4 B, BT;

#define ID gl_InvocationID

void main ()

{
tcPosition[ID] = vPosition[ID];
tcNormal [ID] = vNormal [ID];
if (ID > 2)
{
return;
}
mat4 P;
for (int idx = 0; idx < 16; ++idx)
{
Plidx / 4]1[idx % 4] = vPosition[idx][ID];
}
// Perform the change of basis:
c[ID] = B * P x BT;
}

Listing 6.5. Improved control shader.

© 2012 by Taylor & Francis Group, LLC

102 | Discovering

layout (quads) in;

in vec3 tcPositionl[];
patch in mat4 cx, cy, cz;
uniform mat4 Projection;
uniform mat4 Modelview;

void main ()

{

float u = gl_TessCoord.x, v = gl_TessCoord.y;

vecd U = vecd(u * u * u, u *x u, u, 1);

vecd V = vecd(v *x v *x v, v *x v, v, 1);

float x = dot(cx *x V, U);

float y = dot(cy * V, U);

float z = dot(cz * V, U);

gl_Position = Projection * Modelview * vec4(x, y, z, 1);
}

Listing 6.6. Evaluation shader.

Current drivers have trouble with varying arrays of matrices; we had to replace
the c[] array with three separate matrices.

Further gains could be achieved by removing the for loop and using the barrier
instruction, but current drivers do not support the barrier instruction robustly.

Next, we come to the evaluation shader, which is best suited for performing the
computations in Equation 6.1 and performing the model-view-projection transform.
See Listing 6.6.

6.4 Isolines and Spirals

So far, we've examined the triangles and quads domains, which both decom-
pose input patches into many tiny polygons. The remaining tessellation mode,
isolines, changes each input patch into a series of line segments. Listing 6.7 is
an excerpt from an evaluation shader that generates multiple smooth curves from a
single coarse curve.

This shader requests that the tessellator unit generates evenly spaced isolines. The
control shader needs to specify values for only two of the outer tessellation levels, and
all inner levels are ignored. Specifically, g1 _TessLevelOuter [0] describes how
many curves to generate, and gl_TessLevelOuter [1] describes how many sam-
ples generate for each of those curves. For example, if our application needs to turn
a coarsely specified curve into a single smooth curve, set gl_TessLevelQuter [0]
to 1.0 and set gl _TessLevelOuter [1] to 64.0 to finely sample the output curve.
Conversely, setting gl_TessLevelOuter [0] to 64.0 and gl_TessLevelQuter
[1] to 4.0 causes the tessellator to generate 64 coarse curves.

Listing 6.7 performs B-spline interpolation between the four vertices of each
patch, using gl_TessCoord.x to indicate the parametric position along the curve,

© 2012 by Taylor & Francis Group, LLC

6. An Introduction to Tessellation Shaders 103

layout (isolines, equal_spacing, cw) in;

void main ()
{
float u = gl_TessCoord.x, v = gl_TessCoord.y;

float B[4];
EvalCubicBSpline(u, B); // See accompanying sample for definition

vec4 pos = B[0] * gl_in[0].gl_Position +
B[1] * gl_in[1].gl_Position +
B[2] * gl_in[2].gl_Position +
B[3] * gl_in[3].gl_Position;

// Offset in the y coordinate using v so multiple
// curves aren't drawn on top of each other.

pos += vec4(0.0, v * 5.0, 0.0, 0.0);

gl_Position = Projection * Modelview * pos;

Listing 6.7. Spirals shader.

and gl_TessCoord.y here is used to offset different curves generated by the tessel-
lator unit.

In this example, a series of five “patches” are created in a spiral with four vertices
each. In the first image, both outer tessellation levels are set to one, so we get a single
curve. See Figure 6.10.

Figure 6.10. Isoline control points (left). Post-tessellated curves (right).

6.5 Incorporating Other OpenGL Features

Many types of animation and deformation are well suited to the current vertex shader.
For example, skinning is still optimally done in a vertex shader; NVIDIA’s Gregory
patch demo is one example of this.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-8&iName=master.img-457.jpg&w=141&h=95

104 | Discovering

OpenGLs transform feedback functionality can be used to turn off the rasterizer
and send post-tessellated data back to the CPU, possibly for verification or debug-
ging, further processing, or to be leveraged by a CPU-side production-quality ren-
derer.

Transform feedback could also be used to perform iterative refinement, although
this is rarely done in practice due to the large memory requirements of the resulting
vertex buffers. For more on transform feedback, see Chapter 17.

Bibliography

[Castafio 08] Ignacio Castafo. “Displaced Subdivision Surfaces.” Presented at
Gamefest: http:/developer.download.nvidia.com/presentations/2008/Gamefest/
Gamefest2008- DisplacedSubdivisionSurfaceTessellation-Slides. PDF, 2008.

[Kovacs et al. 09] Denis Kovacs, Jason Mitchell, Shanon Drone, and Denis Zorin. “Real-
Time Creased Approximate Subdivision Surfaces.” In Proceedings of the 2009 symposium
on Interactive 3D graphics and games, I3D 09, pp. 155-160. New York: ACM, 2009.

[Loop and Schaefer 08] Charles Loop and Scott Schaefer. “Approximating Catmull-Clark
subdivision surfaces with bicubic patches.” ACM Trans. Graph. 27 (2008), 8:1-8:11.
Available online (http:/doi.acm.org/10.1145/1330511.1330519).

[Loop 10] Charles Loop. “Hardware Subdivision and Tessellation of Catmull-Clark Sur-
faces.” Presented at GTC. http/www.nvidia.com/content/GTC-2010/pdfs/2129_
GTC2010.pdf, 2010.

[Nietal. 09] Tianyun Ni, Ignacio Castafio, Jorg Peters, Jason Mitchell, Philip Schneider,
and Vivek Verma. “Efficient Substitutes for Subdivision Surfaces.” In ACM SIGGRAPH
2009 Courses, SIGGRAPH 09, pp. 13:1-13:107. New York: ACM, 2009.

[Yuksel and Tariq 10] Cem Yuksel and Sarah Tariq. “Advanced Techniques in Real-Time
Hair Rendering and Simulation.” In ACM SIGGRAPH 2010 Courses, SSGGRAPH ’10,
pp. 1:1-1:168. New York: ACM, 2010. Available online (http:/doi.acm.org/10.1145/
1837101.1837102).

© 2012 by Taylor & Francis Group, LLC

Procedural Textures in GLSL /

Stefan Gustavson

7.1 Introduction

Procedural textures are textures that are computed on the fly during rendering as op-
posed to precomputed image-based textures. At first glance, computing a texture
from scratch for each frame may seem like a stupid idea, but procedural textures
have been a staple of software rendering for decades, for good reason. With the ever-
increasing levels of performance for programmable shading in GPU architectures,
hardware-accelerated procedural texturing in GLSL is now becoming quite useful
and deserves more consideration. An example of what can be done is shown in Fig-
ure 7.1.

Figure 7.1. Examples of procedural textures. A modern GPU renders this image at full
screen resolution in a few milliseconds.

105

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-9&iName=master.img-009.jpg&w=322&h=97

106 | Discovering

Writing a good procedural shader is more complicated than using image editing
software to paint a texture or edit a photographic image to suit our needs, but with
procedural shaders, the pattern and the colors can be varied with a simple change of
parameters. This allows extensive reuse of data for many different purposes, as well
as fine-tuning or even complete overhauls of surface appearance very late in a pro-
duction process. A procedural pattern allows for analytic derivatives, which makes it
less complicated to generate the corresponding surface normals, as compared to tra-
ditional bump mapping or normal mapping, and enables analytic anisotropic anti-
aliasing. Procedural patterns require very little storage, and they can be rendered at
an arbitrary resolution without jagged edges or blurring, which is particularly useful
when rendering close-up details in real-time applications where the viewpoint is of-
ten unrestricted. A procedural texture can be designed to avoid problems with seams
and periodic artifacts when applied to a large area, and random-looking detail pat-
terns can be generated automatically instead of having artists paint them. Procedural
shading also removes the memory restrictions for 3D textures and animated patterns.
3D procedural textures, solid textures, can be applied to objects of any shape without
requiring 2D texture coordinates.

While all these advantages have made procedural shading popular for offline ren-
dering, real-time applications have been slow to adopt the practice. One obvious
reason is that the GPU is a limited resource, and quality often has to be sacrificed for
performance. However, recent developments have given us lots of computing power
even on typical consumer-level GPUs, and given their massively parallel architectures,
memory access is becoming a major bottleneck. A modern GPU has an abundance
of texture units and uses caching strategies to reduce the number of accesses to global
memory, but many real-time applications now have an imbalance between texture
bandwidth and processing bandwidth. ALU instructions can essentially be “free”
and cause no slowdown at all when executed in parallel to memory reads, and image-
based textures can be augmented with procedural elements. Somewhat surprisingly,
procedural texturing is also useful at the opposite end of the performance scale. GPU
hardware for mobile devices can incur a considerable penalty for texture download
and texture access, and this can sometimes be alleviated by procedural texturing. A
procedural shader does not necessarily have to be complex, as demonstrated by some
of the examples in this chapter.

Procedural methods are not limited to fragment shading. With the ever-
increasing complexity of real-time geometry and the recent introduction of GPU-
hosted tessellation as discussed in Chapter 6, tasks like surface displacements and
secondary animations are best performed on the GPU. The tight interaction be-
tween procedural displacement shaders and procedural surface shaders has proven
very fruitful for creating complex and impressive visuals in offline shading environ-
ments, and there is no reason to assume that real-time shading would be fundamen-
tally different in that respect.

This chapter is meant as an introduction to procedural shader programming in
GLSL. First, I present some fundamentals of procedural patterns, including antialias-

© 2012 by Taylor & Francis Group, LLC

7. Procedural Textures in GLSL 107

ing. A significant portion of the chapter presents recently developed, efficient meth-
ods for generating Perlin noise and other noise-like patterns entirely on the GPU,
along with some benchmarks to demonstrate their performance. The code repository
on the OpenGL Insights website, www.openglinsights.com, contains a cross-platform
demo program and a library of useful GLSL functions for procedural texturing.

7.2 Simple Functions

Procedural textures are a different animal than image-based textures. The concept
of designing a function to efficiently compute a value at an arbitrary point without
knowledge of any surrounding points takes some getting used to. A good book on
the subject, in fact, he book on the subject, is Texturing and Modeling: A Procedural
Approach [Ebert et al. 03]. Its sections on hardware acceleration have become out-
dated, but the rest is good. Another classic text on software procedural shaders well
worth reading is Advanced Renderman: Creating CGI for Motion Pictures [Apodaca
and Gritz 99].

Figure 7.2 presents a varied selection of regular procedural patterns and the GLSL
expression that generates them. The examples are monochrome, but, of course, black
and white can be substituted with any color or texture by using the resulting pattern
as the last parameter to the mix () function.

For antialiasing purposes, a good design choice is to first create a continuous
distance function of some sort, and then threshold it to get the features we want.
The last three of the patterns in Figure 7.2 follow this advice. None of the examples
implement proper antialiasing, but I will cover this in a moment.

As an example, consider the circular spots pattern. First, we create a periodic
repeat of the texture coordinates by scaling st by 5.0 and taking the fractional part
of the result. Subtracting 0.5 from this creates cells with 2D coordinates in the range
—0.5 to 0.5. The distance to the cell-local origin as computed by length() is a
continuous function everywhere in the plane, and thresholding it by smoothstep ()
yields circular spots of any desired size.

There is a knack to designing patterns like this from scratch, and it takes practice
to do it well, but experimenting is a fun learning experience. However, take warning
from the last example in Figure 7.2: writing these kinds of functions as one-liners will
quickly make them unreadable even to their author. Use intermediate variables with
relevant names and comment all code. One of the advantages of procedural textures
is that they can be reused for different purposes, but that point is largely moot if
the shader code is impossible to understand. GLSL compilers are reasonably good
at simple optimizations like removing temporary variables. Some spoon-feeding of
GLSL compilers is still necessary to create optimal shader code, but readability does
not have to be sacrificed for compactness.

© 2012 by Taylor & Francis Group, LLC

108 | Discovering

s tract(f).(ﬁs)

abs(fract(5.0%s)*2.0-1.0) Mod(100r (10-075)
+ floor(10.0*t), 2.0)

smoothstep(-0.01, 0.01, smooﬂxsfep(().d, 0.52,
0.2 - 0.1%sin(30.0%s) - t) length(fract(5.0%st)-0.5))

smoothstep (0.4, 0.5, max(
abs(fract(8.0%s - 0.5%mod(
floor(8.0*t), 2.0)) - 0.5),
abs(fract(8.0%t) - 0.5)))

Figure 7.2. Examples of regular procedural patterns. Texture coordinates are either float
s,torvec2 st;0<s<1land0 <t <0.4.

7.3 Antialiasing

Beginners’ experiments with procedural patterns often result in patterns that alias
terribly, but that problem can be solved. The field of software shader programming
has methods of eliminating or reducing aliasing, and those methods translate directly
to hardware shading. Antialiasing is even more important for real-time content be-
cause the camera view is often unrestricted and unpredictable. Supersampling can
always reduce aliasing, but it is not a suitable routine remedy, because a well written
procedural shader can perform its own antialiasing with considerably less work than
what a brute force supersampling would require.

Many useful patterns can be generated by thresholding a smoothly varying func-
tion. For such thresholding, using conditionals (if-else), or the all-or-nothing
step () function will alias badly and should be avoided. Instead, use the mix () and
smoothstep () functions to create a blend region between the two extremes, and
take care to make the width of the blend region as close as possible to the size of one
fragment. To relate shader space (texture coordinates or object coordinates) to frag-
ment space in GLSL, we use the automatic derivative functions dFdx () and dFdy ().

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-9&iName=master.img-037.jpg&w=121&h=49
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-9&iName=master.img-038.jpg&w=121&h=49
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-9&iName=master.img-039.jpg&w=121&h=49
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-9&iName=master.img-040.jpg&w=121&h=49
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-9&iName=master.img-041.jpg&w=121&h=49
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-9&iName=master.img-042.jpg&w=121&h=49
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-9&iName=master.img-043.jpg&w=121&h=49

7. Procedural Textures in GLSL 109

dFdx =F(x + 1,y) - F(x,y)

Ky D) dFdy = F(x,y + 1) - F(x, y)

.

F(x, y) R >$\/F(X +1,)

Figure 7.3. “Automatic derivatives” dFdx () and dFdy () in a fragment shader are simply
differences between arbitrary computed values of two neighboring fragments. Derivatives in
x and y in one fragment (bold square) are computed using one neighbor each (thin squares).
If the right or top neighbors are not part of the same primitive or for reasons of efficiency, the
left or bottom neighbors may be used instead.

There have been some teething problems with these functions, but now they can be
expected to be implemented correctly and efficiently on all GLSL-capable platforms.
The local partial derivatives are approximated by differences between neighboring
fragments, and they require very little extra effort to compute (see Figure 7.3). The
partial derivative functions break the rule that a fragment shader has no access to
information from other fragments in the same rendering pass, but it is a very lo-
cal special case handled behind the scenes by the OpenGL implementation. Mip-
mapping and anisotropic filtering of image-based textures use this feature as well,
and proper antialiasing of textures would be near impossible without it.

For smooth, anisotropic antialiasing of a thresholding operation on a smoothly
varying function F, we need to compute the length of the gradient vector in fragment
space and make the step width of the smoothstep () function dependent on it.
The gradient in fragment space (x, y) of F is simply (8F/0x, OF /0y) . The built-in
function fwidth() computes the length of that vector as |0F /Ox| + |0F /0y| in a
somewhat misguided attempt to be fast on older hardware. A better choice in most
cases nowadays is to compute the true length of the gradient,

OF\" (0FY?
Ox dy)’
according to Listing 7.1. Using 0.7 instead of £0.5 for the step width compen-

sates for the fact that smoothstep () is smooth at its endpoints and has a steeper
maximum slope than a linear ramp.

// 'threshold' is constant, 'value' is smoothly varying
float aastep(float threshold, float value)
{

float afwidth = 0.7 * length(vec2(dFdx(value), dFdy(value)));

// GLSL's fwidth(value) is abs(dFdx(value)) + abs(dFdy(value))

return smoothstep(threshold - afwidth, threshold + afwidth, value);
}

Listing 7.1. Anisotropic antialiased step function.

© 2012 by Taylor & Francis Group, LLC

110 | Discovering

// st is a vec2 of texcoords, G2_st is a vec2 in texcoord space
mat2 Jacobian2 = mat2(dFdx(st), dFdy(st));
// G2_xy is G2_st transformed to fragment space
vec2 G2_xy = Jacobian2 * G2_st;
// stp is a vec3 of texcoords, G3_stp is a vec3 in texcoord space
mat2x3 Jacobian3 = mat2x3(dFdx(stp), dFdy(stp));
// G3_xy is G3_stp projected to fragment space
vec2 G3_xy = Jacobian3 * G3_stp;
}

Listing 7.2. Transforming a vector in (s, #) or (s, £, p) texture space to fragment (x, y) space.

In some cases, the analytical derivative of a function is simple to compute, and
it may be inefficient or inaccurate to approximate it using finite differences. The
analytical derivative is expressed in 2D or 3D texture coordinate space, but antiali-
asing requires knowledge of the length of the gradient vector in 2D screen space.
Listing 7.2 shows how to transform or project vectors in texture coordinate space to
fragment coordinate space. Note that we need two to three times as many values from
dFdx () and dFdy () to project an analytical gradient to fragment space compared
to computing an approximate gradient directly in fragment space, but automatic
derivatives come fairly cheap.

7.4 Perlin Noise

Perlin noise, introduced by Ken Perlin, is a very useful building block of procedural
texturing [Perlin 85]. In fac, it revolutionized software rendering of natural-looking
surfaces. Some patterns generated using Perlin noise are shown in Figure 7.4, along
with the shader code that generates them. By itself, it is not a terribly exciting-
looking function—it is just a blurry pattern of blotches within a certain range of
sizes. However, noise can be manipulated in many ways to create impressive visual
effects. It can be thresholded and summed to mimic fractal patterns, and it has great
potential also for introducing some randomness in an otherwise regular pattern. The
natural world is largely built on or from stochastic processes, and manipulations of
noise allows a large variety of natural materials and environments to be modeled
procedurally.

The examples in Figure 7.4 are static 2D patterns, but some of the more striking
uses of noise use 3D texture coordinates and/or time as an extra dimension for the
noise function. The code repository for this chapter contains an animated demo
displaying the scene in Figure 7.1. The left two spheres and the ground plane are
examples of patterns generated by one or more instances of Perlin noise.

When GLSL was designed, a set of noise functions was included among the
built-in functions. Sadly, though, those functions have been left unimplemented in
almost every OpenGL implementation to date, except for some obsolete GPUs by

© 2012 by Taylor & Francis Group, LLC

7. Procedural Textures in GLSL

float cow = snoise(vec3(10.0*st, 0.0));
cow += 0.5*snoise(vec3(20.0*st, 0.0));
cow = aastep(0.05, n);

gl FragColor = vecd(vec3(cow), 1.0);

float perlin = 0.5 +
0.5*snoise(vec3(10.0*st, 0.0));
gl FragColor = vecd(vec3(perlin), 1.0);

float fbm=snoise(vec3(5.0*st, 0.0)) float d = length(fract(st*10.0) - 0.5);

+ 0.5*snoise(vec3(10.0*st, 2.0)) float n = snoise(vec3(40.0*st, 0.0))

+ 0.25*snoise(vec3(20.0*st, 4.0)) + 0.5%snoise(vec3(80.0*st, 2.0));

+ 0.125*snoise(vec3(40.0*st, 6.0)) float blotches = aastep(0.4, d + 0.1%n);
+ 0.0625*snoise(vec3(80.0%st, 8.0)); gl_FragColor = vecd(vec3(blotches), 1.0);

gl FragColor =
vecd(0.4*vec3(fbm) + 0.5, 1.0);

Figure 7.4. Examples of procedural patterns using Perlin noise. Texture coordinates are
either float s,t or vec2 st.

3DLabs. Native hardware support for noise on mainstream GPUs may not appear
for a good while yet, or indeed ever, but there are software workarounds. Recent
research [McEwan et al. 12] has provided fast GLSL implementations of all common
variants of Perlin noise which are easy to use and compatible with all current GLSL
implementations, including OpenGL ES and WebGL. Implementation details are in
the article, and a short general presentation of Perlin noise in its classic and modern
variants can be found in [Gustavson 05]. Here, we will just present a listing of 2D
simplex noise, a modern variant of Perlin noise, to show how short it is. Listing 7.3
is a stand-alone implementation of 2D simplex noise ready to cut and paste into a
shader: no setup or external resources are needed. The function can be used in vertex
shaders and fragment shaders alike. Other variants of Perlin noise are in the code
repository for this book.

The different incarnations of Perlin noise are not exactly simple functions, but
they can still be evaluated at speeds of several billion fragments per second on a
modern GPU. Hardware and software development have now reached a point where
Perlin noise is very useful for real-time shading, and everyone is encouraged to use it.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-9&iName=master.img-098.jpg&w=147&h=59
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-9&iName=master.img-099.jpg&w=147&h=58
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-9&iName=master.img-100.jpg&w=147&h=59
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-9&iName=master.img-101.jpg&w=147&h=58

112 | Discovering

// Description : Array- and textureless GLSL 2D simplex noise.
// Author : Ian McEwan, Ashima Arts. Version: 20110822

// Copyright (C) 2011 Ashima Arts. All rights reserved.

// Distributed under the MIT License. See LICENSE file.

// https://github.com/ashima/webgl-noise

vec3 mod289 (vec3 x)

{
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec2 mod289 (vec2 x)
{
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec3 permute (vec3 x)
{
return mod289 (((x*34.0)+1.0) *x) ;
}
float snoise(vec2 v)
{
const vec4 C = vec4(0.211324865405187, // (3.0-sqrt(3.0))/6.0
0.366025403784439, // 0.5%(sqrt(3.0)-1.0)
-0.577350269189626 , // -1.0 + 2.0 * C.x
0.024390243902439); // 1.0 / 41.0
// First cormer
vec2 i = floor(v + dot(v, C.yy));
vec2 x0 = v - i + dot(i, C.xx);
// Other corners
vec2 i1l = (x0.x > x0.y) ? vec2(1.0, 0.0) : vec2(0.0, 1.0);
vec4d x12 = x0.xyxy + C.xxzz;
x12.xy -= i1l;
// Permutations
i = mod289(i); // Avoid truncation effects in permutation
vec3 p = permute(permute(i.y + vec3(0.0, il.y, 1.0))
+ i.x + vec3(0.0, il1.x, 1.0));
vec3 m = max(0.5 - vec3(dot(x0,x0), dot(x12.xy,x12.xy),
dot(x12.zw,x12.2zw)), 0.0);
m=m * m;
m=m * m;
// Gradients
vec3 x = 2.0 * fract(p * C.www) - 1.0;
vec3 h = abs(x) - 0.5;
vec3 a0 = x - floor(x + 0.5);
// Normalize gradients implicitly by scaling m
m *= 1.79284291400159 - 0.85373472095314 * (a0*a0 + hxh);
// Compute final noise value at P
vec3 g;
g.x = a0.x * x0.x + h.x * x0.y;
g.yz = a0.yz * x12.xz + h.yz * x12.yw;
return 130.0 * dot(m, g);
}

Listing 7.3. Complete, self-contained GLSL implementation of Perlin simplex noise in 2D.

© 2012 by Taylor & Francis Group, LLC

7. Procedural Textures in GLSL

7.5 Worley Noise

Another useful function is the cellular basis function or cellular noise introduced by
Steven Worley [Worley 96]. Often referred to as Worley noise, this function can
be used to generate a different class of patterns than Perlin noise. The function is
based on a set of irregularly positioned, but reasonably evenly spaced feature points.
The basic version of the function returns the distance to the closest one of these
feature points from a specified point in 2D or 3D. A more popular version re-
turns the distances to the two closest points, which allows more variation in the
pattern design. Worley’s original implementation makes commendable efforts to be
correct, isotropic, and statistically well-behaved, but simplified variants have been
proposed over the years to cut some corners and make the function less cumber-
some to compute in a shader. It is still more complicated to compute than Perlin

// Cellular noise ("Worley noise") in 2D in GLSL, simplified version.
// Copyright (c) Stefan Gustavson 2011-04-19. All rights reserved.

// This code is released under the conditions of the MIT license.

// See LICENSE file for details.

vec4 permute(vecd x)
{

return mod ((34.0 * x + 1.0) * x, 289.0);
}

vec2 cellular2x2(vec2 P)

{
const float K = 1.0/7.0;
const float K2 = 0.5/7.0;
const float jitter = 0.8; // jitter 1.0 makes F1 wrong more often
vec2 Pi = mod(floor (P), 289.0);
vec2 Pf = fract(P);
vec4 Pfx = Pf.x + vec4(-0.5, -1.5, -0.5, -1.5);
vec4 Pfy = Pf.y + vec4(-0.5, -0.5, -1.5, -1.5);
vec4d p = permute(Pi.x + vec4(0.0, 1.0, 0.0, 1.0));
p = permute(p + Pi.y + vec4(0.0, 0.0, 1.0, 1.0));
vec4d ox = mod(p, 7.0) * K + K2;
vecd oy = mod(floor(p * K),7.0) * K + K2;
vec4 dx = Pfx + jitter * ox;
vec4d dy = Pfy + jitter * oy;
vecd d = dx * dx + dy * dy; // distances squared
// Cheat and pick only F1 for the return value
d.xy = min(d.xy, d.zw);
d.x = min(d.x, d.y);
return d.xx; // F1 duplicated, F2 not computed

}

varying vec2 st; // Texture coordinates

void main(void) {
vec2 F = cellular2x2(st);
float n = 1.0 - 1.5 *x F.x;
gl_FragColor = vec4 (n.xxx, 1.0);

Listing 7.4. Complete, self-contained GLSL implementation of our simplified version of
Worley noise in 2D.

© 2012 by Taylor & Francis Group, LLC

114

| Discovering

2 B 2q

E
l C

vec2 F = cellular(st*10.0);
gl FragColor = vecd(vec3(F), 1.0);

=
vec2 F = cellular(st*10.0);

float rings = 1.0 - aastep(0.45, F.x)

+ aastep(0.55, F.x);

gl FragColor = vec4(vec3(rings), 1.0);

vee2 F = cellular(st*10.0);
float blobs = 1.0 - F.x*F.x;

gl FragColor = vecd(vec3(blobs), 1.0);

vee2 F = cellular(st*10.0);
float facets = 0.1 4 (F.y - F.x);
gl FragColor = vecd(vec3(facets), 1.0);

vec2 F; // distances to features
vecd d; // vectors to features

// F and d are ‘out’ parameters
cellular(8.0*st, F, d);

// Constant width lines, from

// the book “Advanced RenderMan”
float t = 0.05 *

(length(d.xy - d.zw)) / (F.x + F.y);
float f = F.y - F.x;

// Add small scale roughness

f +=t* (0.5 - cellular(64.0%st).y);

gl _FragColor =

vecd(vece3(aastep(t, £)), 1.0);

Figure 7.5. Examples of procedural patterns using Worley noise. Texture coordinates are
vec2 st. For implementations of the cellular () functions, see the code repository.

noise because it requires sorting of a number of candidates to determine which feature
point is closest, but while Perlin noise often requires several evaluations to generate
an interesting pattern, a single evaluation of Worley noise can be enough. Generally
speaking, Worley noise can be just as useful as Perlin noise, but for a different class
of problems. Perlin noise is blurry and smooth by default, while Worley noise is
inherently spotty and jagged with distinct features.

There have not been any recent publications of Worley noise algorithms for real-
time use, but using concepts from my recent Perlin noise work and ideas from previ-
ous software implementations, I created original implementations of a few simplified
variants and put them in the code repository for this chapter. Detailed notes on the
implementation are presented in [Gustavson 11]. Here, I just point to their existence
and provide them for use. The simplest version is presented in Listing 7.4.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-9&iName=master.img-226.jpg&w=139&h=56
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-9&iName=master.img-227.jpg&w=139&h=56
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-9&iName=master.img-228.jpg&w=139&h=56
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-9&iName=master.img-229.jpg&w=139&h=56
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-9&iName=master.img-231.jpg&w=139&h=56

7. Procedural Textures in GLSL

Some patterns generated using Worley noise are shown in Figure 7.5, along with
the GLSL expressions that generate them. The right two spheres in Figure 7.1 are
examples of patterns generated by a single invocation of Worley noise.

7.6 Animation

For procedural patterns, all properties of a fragment are computed anew for each
frame, which means that animation comes more or less for free. It is only a mat-
ter of supplying the shader with a concept of time through a uniform variable and
making the pattern dependent on that variable in some manner. Animation speed is
independent of frame rate, and animations do not need to loop but can extend for
arbitrary long periods of time without repeating (within the constraints of numerical
precision if a floating-point value is used for timing). Animation literally adds a new
dimension to patterns, and the unrestricted animation that is possible with proce-
dural textures is a strong argument for using them. Perlin noise is available in a 4D
version, and its main use is to create textures where 3D spatial coordinates and time
together provide the texture coordinates for an animated solid texture. The demo
code that renders the scene in Figure 7.1 animates the shaders simply by supplying
the current time as a uniform variable to GLSL and computing patterns that depend
on it.

Unlike prerendered image sequences, procedural shader animation is not re-
stricted to simple, linear time dependencies. View-dependent changes to a procedural
texture can be used to affect the level-of-detail for the rendering so that, for example,
bump maps or small-scale features are computed only in close-up views to save GPU
resources. Procedural shading allows arbitrary interactive and dynamic changes to a
surface, i