


OpenGL Insights

© 2012 by Taylor & Francis Group, LLC



© 2012 by Taylor & Francis Group, LLC



OpenGL Insights

Edited by

Patrick Cozzi and Christophe Riccio

© 2012 by Taylor & Francis Group, LLC



CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2012 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20120508

International Standard Book Number-13: 978-1-4398-9377-7 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but 
the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to 
trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. 
If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, 
or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without 
written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright 
Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a 
variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to 
infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

© 2012 by Taylor & Francis Group, LLC



CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2012 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed in the United States of America on acid-free paper
Version Date: 20120508

International Standard Book Number: 978-1-4398-9376-0 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but 
the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to 
trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. 
If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, 
or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without 
written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright 
Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a 
variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to 
infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

© 2012 by Taylor & Francis Group, LLC



To Jilda.

—Patrick

To my personal stylist
for unleashing my passion for graphics

with her passion for style.

—Christophe

© 2012 by Taylor & Francis Group, LLC



© 2012 by Taylor & Francis Group, LLC



Contents

Foreword xxi
Barthold Lichtenbelt

Preface xxiii

Tips xxvii

I Discovering 1

1 Teaching Computer Graphics Starting with Shader-Based
OpenGL 3 OpenGL

Edward Angel

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 A Basic Course . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Hello World in OpenGL: Old Style . . . . . . . . . . . . . . . 4
1.4 Starting with Programmable Pipelines . . . . . . . . . . . . . . 6
1.5 Hello World: New Style . . . . . . . . . . . . . . . . . . . . . 8
1.6 The Rest of the Course . . . . . . . . . . . . . . . . . . . . . 10
1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Transitioning Students to Post-Deprecation OpenGL 17 OpenGL

Mike Bailey

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Naming Shader Variables: Introduction . . . . . . . . . . . . . 18
2.3 Naming Shader Variables: Details . . . . . . . . . . . . . . . . 18
2.4 Indexed Vertex Buffer Object C++ Class . . . . . . . . . . . . . 20
2.5 GLSLProgram C++ Class . . . . . . . . . . . . . . . . . . . . 23
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

vii

© 2012 by Taylor & Francis Group, LLC



viii Contents

3 WebGL for OpenGL Developers 27OpenGL

WebGL Patrick Cozzi and Scott Hunter

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 The Benefits of WebGL . . . . . . . . . . . . . . . . . . . . . 28
3.3 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Deploying Shaders . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 The JavaScript Language . . . . . . . . . . . . . . . . . . . . . 37
3.6 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Porting Mobile Apps to WebGL 47WebGL
OpenGL ES Ashraf Samy Hegab

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 OpenGL across Platforms . . . . . . . . . . . . . . . . . . . . 47
4.3 Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4 Loading Textures . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5 Camera and Matrices . . . . . . . . . . . . . . . . . . . . . . 53
4.6 Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.7 Other Considerations . . . . . . . . . . . . . . . . . . . . . . 56
4.8 Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 The GLSL Shader Interfaces 61OpenGL

Christophe Riccio

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Variables and Blocks . . . . . . . . . . . . . . . . . . . . . . . 62
5.3 Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.4 Matching Interfaces . . . . . . . . . . . . . . . . . . . . . . . 68
5.5 Working with Semantics . . . . . . . . . . . . . . . . . . . . . 77
5.6 Application-Side Validations for Debug Build Only . . . . . . . 82
5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 An Introduction to Tessellation Shaders 87OpenGL

Philip Rideout and Dirk Van Gelder

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2 The New Shading Pipeline . . . . . . . . . . . . . . . . . . . . 90
6.3 Tessellating a Teapot . . . . . . . . . . . . . . . . . . . . . . . 99
6.4 Isolines and Spirals . . . . . . . . . . . . . . . . . . . . . . . . 102
6.5 Incorporating Other OpenGL Features . . . . . . . . . . . . . 103
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

© 2012 by Taylor & Francis Group, LLC



Contents ix

7 Procedural Textures in GLSL 105 OpenGL

WebGL
OpenGL ES

Stefan Gustavson

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.2 Simple Functions . . . . . . . . . . . . . . . . . . . . . . . . 107
7.3 Antialiasing . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.4 Perlin Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.5 Worley Noise . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.6 Animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.7 Texture Images . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.8 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8 OpenGL SC Emulation Based on OpenGL and OpenGL ES 121 OpenGL

OpenGL ES

OpenGL SC

Hwanyong Lee and Nakhoon Baek

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.2 OpenGL SC Implementations . . . . . . . . . . . . . . . . . . 123
8.3 Design and Implementation . . . . . . . . . . . . . . . . . . . 125
8.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

9 Mixing Graphics and Compute with Multiple GPUs 133 OpenGL

Alina Alt

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
9.2 Graphics and Compute Interoperability on an API Level . . . . 134
9.3 Graphics and Compute Interoperability on a System Level . . . 138
9.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

II Rendering Techniques 143

10 GPU Tessellation: We Still Have a LOD of Terrain to Cover 145 OpenGL

António Ramires Fernandes and Bruno Oliveira

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
10.2 Rendering Terrains with OpenGL GPU Tessellation . . . . . . . 146
10.3 A Simple Approach to Dynamic Level of Detail . . . . . . . . . 149
10.4 Roughness: When Detail Matters . . . . . . . . . . . . . . . . 152
10.5 Crunching Numbers, or Is This All That Matters? . . . . . . . . 153
10.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

© 2012 by Taylor & Francis Group, LLC



x Contents

11 Antialiased Volumetric Lines Using Shader-Based Extrusion 163OpenGL

WebGL
OpenGL ES

Sébastien Hillaire

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
11.2 Antialiased Lines Using Postprocess Antialiasing . . . . . . . . . 164
11.3 Antialiased Volumetric Lines Using Geometry Extrusion . . . . 165
11.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
11.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

12 2D Shape Rendering by Distance Fields 173OpenGL

WebGL
OpenGL ES

Stefan Gustavson

12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
12.2 Method Overview . . . . . . . . . . . . . . . . . . . . . . . . 174
12.3 Better Distance Fields . . . . . . . . . . . . . . . . . . . . . . 176
12.4 Distance Textures . . . . . . . . . . . . . . . . . . . . . . . . 176
12.5 Hardware Accelerated Distance Transform . . . . . . . . . . . . 177
12.6 Fragment Rendering . . . . . . . . . . . . . . . . . . . . . . . 177
12.7 Special Effects . . . . . . . . . . . . . . . . . . . . . . . . . . 179
12.8 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
12.9 Shortcomings . . . . . . . . . . . . . . . . . . . . . . . . . . 180
12.10Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

13 Efficient Text Rendering in WebGL 183WebGL

Benjamin Encz

13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
13.2 Canvas-Based Font Rendering . . . . . . . . . . . . . . . . . . 184
13.3 Bitmap Font Rendering . . . . . . . . . . . . . . . . . . . . . 187
13.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
13.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

14 Layered Textures Rendering Pipeline 195OpenGL

Dzmitry Malyshau

14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
14.2 Layered Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . 197
14.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

© 2012 by Taylor & Francis Group, LLC



Contents xi

15 Depth of Field with Bokeh Rendering 205 OpenGL

Charles de Rousiers and Matt Pettineo

15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
15.2 Depth of Field Phenomemon . . . . . . . . . . . . . . . . . . 206
15.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 208
15.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
15.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
15.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
15.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

16 Shadow Proxies 219 OpenGL

Jochem van der Spek

16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
16.2 Anatomy of a Shadow Proxy . . . . . . . . . . . . . . . . . . . 221
16.3 Setting Up the Pipeline . . . . . . . . . . . . . . . . . . . . . 223
16.4 The ShadowProxy-Enabled Fragment Shader . . . . . . . . . . 224
16.5 Modulating the Shadow Volume . . . . . . . . . . . . . . . . . 226
16.6 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
16.7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . 228
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

III Bending the Pipeline 229

17 Real-Time Physically Based Deformation Using Transform
Feedback 231 OpenGL

Muhammad Mobeen Movania and Lin Feng

17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
17.2 Hardware Support and Evolution of Transform Feedback . . . . 232
17.3 The Mechanism of Transform Feedback . . . . . . . . . . . . . 233
17.4 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . 234
17.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 238
17.6 Experimental Results and Comparisons . . . . . . . . . . . . . 244
17.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

18 Hierarchical Depth Culling and Bounding-Box Management
on the GPU 247 OpenGL

Dzmitry Malyshau

18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
18.2 Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

© 2012 by Taylor & Francis Group, LLC



xii Contents

18.3 Order of Operations . . . . . . . . . . . . . . . . . . . . . . . 254
18.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 255
18.5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . 257
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

19 Massive Number of Shadow-Casting Lights with Layered
Rendering 259OpenGL

Daniel Rákos

19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
19.2 Traditional Shadow Map Rendering in OpenGL . . . . . . . . . 260
19.3 Our Shadow Map Generation Algorithm . . . . . . . . . . . . 263
19.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
19.5 Advanced Techniques . . . . . . . . . . . . . . . . . . . . . . 275
19.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
19.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

20 Efficient Layered Fragment Buffer Techniques 279OpenGL

Pyarelal Knowles, Geoff Leach, and Fabio Zambetta

20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
20.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 281
20.3 The Linked-List LFB . . . . . . . . . . . . . . . . . . . . . . 282
20.4 The Linearized LFB . . . . . . . . . . . . . . . . . . . . . . . 283
20.5 Performance Results . . . . . . . . . . . . . . . . . . . . . . . 286
20.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

21 Programmable Vertex Pulling 293OpenGL

Daniel Rákos

21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
21.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 294
21.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
21.4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
21.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
21.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

22 Octree-Based Sparse Voxelization Using the GPU Hardware
Rasterizer 303OpenGL

Cyril Crassin and Simon Green

22.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
22.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . 304

© 2012 by Taylor & Francis Group, LLC



Contents xiii

22.3 Unrestricted Memory Access in GLSL . . . . . . . . . . . . . . 305
22.4 Simple Voxelization Pipeline . . . . . . . . . . . . . . . . . . . 306
22.5 Sparse Voxelization into an Octree . . . . . . . . . . . . . . . . 312
22.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

IV Performance 321

23 Performance Tuning for Tile-Based Architectures 323 WebGL
OpenGL ESBruce Merry

23.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
23.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
23.3 Clearing and Discarding the Framebuffer . . . . . . . . . . . . 326
23.4 Incremental Frame Updates . . . . . . . . . . . . . . . . . . . 328
23.5 Flushing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
23.6 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
23.7 Hidden Surface Removal . . . . . . . . . . . . . . . . . . . . . 332
23.8 Blending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
23.9 Multisampling . . . . . . . . . . . . . . . . . . . . . . . . . . 333
23.10Performance Profiling . . . . . . . . . . . . . . . . . . . . . . 334
23.11Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

24 Exploring Mobile vs. Desktop OpenGL Performance 337 OpenGL

WebGL
OpenGL ES

Jon McCaffrey

24.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
24.2 Important Differences and Constraints . . . . . . . . . . . . . 338
24.3 Reducing Memory Bandwidth . . . . . . . . . . . . . . . . . . 341
24.4 Reducing Fragment Workload . . . . . . . . . . . . . . . . . . 345
24.5 Vertex Shading . . . . . . . . . . . . . . . . . . . . . . . . . . 349
24.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

25 Improving Performance by Reducing Calls to the Driver 353 OpenGL

Sébastien Hillaire

25.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
25.2 Efficient OpenGL States Usage . . . . . . . . . . . . . . . . . 354
25.3 Batching and Instancing . . . . . . . . . . . . . . . . . . . . . 357
25.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

© 2012 by Taylor & Francis Group, LLC



xiv Contents

26 Indexing Multiple Vertex Arrays 365OpenGL

WebGL
OpenGL ES

Arnaud Masserann

26.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
26.2 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
26.3 An Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 368
26.4 Vertex Comparison Methods . . . . . . . . . . . . . . . . . . . 369
26.5 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
26.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

27 Multi-GPU Rendering on NVIDIA Quadro 375OpenGL

Shalini Venkataraman

27.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
27.2 Previous Scaling Approaches . . . . . . . . . . . . . . . . . . . 376
27.3 Targeting a Specific GPU for Rendering . . . . . . . . . . . . . 377
27.4 Optimized Data Transfer between GPUs . . . . . . . . . . . . 382
27.5 Application Structure for Multi-GPU . . . . . . . . . . . . . . 383
27.6 Parallel Rendering Methodologies . . . . . . . . . . . . . . . . 385
27.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

V Transfers 389

28 Asynchronous Buffer Transfers 391OpenGL

Ladislav Hrabcak and Arnaud Masserann

28.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
28.2 Buffer Objects . . . . . . . . . . . . . . . . . . . . . . . . . . 392
28.3 Upload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
28.4 Download . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
28.5 Copy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
28.6 Multithreading and Shared Contexts . . . . . . . . . . . . . . . 405
28.7 Usage Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 408
28.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414

29 Fermi Asynchronous Texture Transfers 415OpenGL

Shalini Venkataraman

29.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
29.2 OpenGL Command Buffer Execution . . . . . . . . . . . . . . 417

© 2012 by Taylor & Francis Group, LLC



Contents xv

29.3 Current Texture Transfer Approaches . . . . . . . . . . . . . . 418
29.4 GPU Asynchronous Texture Transfers . . . . . . . . . . . . . . 421
29.5 Implementation Details . . . . . . . . . . . . . . . . . . . . . 423
29.6 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . 425
29.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430

30 WebGL Models: End-to-End 431 WebGL

Won Chun

30.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
30.2 Life of a 3D Model . . . . . . . . . . . . . . . . . . . . . . . 432
30.3 A Coherent Whole . . . . . . . . . . . . . . . . . . . . . . . . 441
30.4 Key Improvements . . . . . . . . . . . . . . . . . . . . . . . . 447
30.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452

31 In-Game Video Capture with Real-Time Texture Compression 455 OpenGL

Brano Kemen

31.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
31.2 Overview of DXT Compression . . . . . . . . . . . . . . . . . 456
31.3 DXT Compression Algorithms . . . . . . . . . . . . . . . . . 456
31.4 Transformation to YUV Style Color Spaces . . . . . . . . . . . 458
31.5 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
31.6 Using Real-Time DXT Compression for Procedural Content and

Video Capture . . . . . . . . . . . . . . . . . . . . . . . . . . 462
31.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466

32 An OpenGL-Friendly Geometry File Format and Its Maya
Exporter 467 OpenGL

OpenGL ESAdrien Herubel and Venceslas Biri

32.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
32.2 Manifesto . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
32.3 The Drone Format . . . . . . . . . . . . . . . . . . . . . . . . 469
32.4 Writing a Maya File Translator . . . . . . . . . . . . . . . . . . 474
32.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
32.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479

© 2012 by Taylor & Francis Group, LLC



xvi Contents

VI Debugging and Profiling 481

33 ARB debug output: A Helping Hand for Desperate
Developers 483OpenGL

António Ramires Fernandes and Bruno Oliveira

33.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
33.2 Exposing the Extension . . . . . . . . . . . . . . . . . . . . . 484
33.3 Using a Callback Function . . . . . . . . . . . . . . . . . . . . 484
33.4 Sorting Through the Cause of Events . . . . . . . . . . . . . . 485
33.5 Accessing the Message Log . . . . . . . . . . . . . . . . . . . . 486
33.6 Adding Custom User Events to the Log . . . . . . . . . . . . . 487
33.7 Controlling the Event Output Volume . . . . . . . . . . . . . . 488
33.8 Preventing Impact on the Final Release . . . . . . . . . . . . . 488
33.9 Clash of the Titans: Implementation Strategies . . . . . . . . . 489
33.10Further Thoughts on Debugging . . . . . . . . . . . . . . . . 491
33.11Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492

34 The OpenGL Timer Query 493OpenGL

Christopher Lux

34.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
34.2 Measuring OpenGL Execution Times . . . . . . . . . . . . . . 495
34.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502

35 A Real-Time Profiling Tool 503OpenGL

Lionel Fuentes

35.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
35.2 Scope and Requirements . . . . . . . . . . . . . . . . . . . . . 504
35.3 Design of the Tool . . . . . . . . . . . . . . . . . . . . . . . . 505
35.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 507
35.5 Using the Profiler . . . . . . . . . . . . . . . . . . . . . . . . 510
35.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 512
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512

36 Browser Graphics Analysis and Optimizations 513WebGL

Chris Dirks and Omar A. Rodriguez

36.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 513
36.2 The Stages of Bloom . . . . . . . . . . . . . . . . . . . . . . . 514
36.3 Overhead of Bloom . . . . . . . . . . . . . . . . . . . . . . . 515
36.4 Analyzing WebGL Applications . . . . . . . . . . . . . . . . . 516
36.5 Analysis Workflow on Windows . . . . . . . . . . . . . . . . . 519

© 2012 by Taylor & Francis Group, LLC



Contents xvii

36.6 Optimized Bloom . . . . . . . . . . . . . . . . . . . . . . . . 522
36.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 526
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526

37 Performance State Tracking 527 OpenGL

Aleksandar Dimitrijević

37.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
37.2 Power Consumption Policies . . . . . . . . . . . . . . . . . . . 528
37.3 P-State Tracking Using NVAPI . . . . . . . . . . . . . . . . . 528
37.4 P-State Tracking Using ADL . . . . . . . . . . . . . . . . . . . 532
37.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 533
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534

38 Monitoring Graphics Memory Usage 535 OpenGL

Aleksandar Dimitrijević

38.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
38.2 Graphics Memory Allocation . . . . . . . . . . . . . . . . . . 536
38.3 Querying Memory Status on NVIDIA Cards . . . . . . . . . . 537
38.4 Querying Memory Status on AMD Cards . . . . . . . . . . . . 538
38.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540

VII Software Design 541

39 The ANGLE Project: Implementing OpenGL ES 2.0 on Direct3D 543 WebGL
OpenGL ESDaniel Koch and Nicolas Capens

39.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
39.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
39.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 544
39.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
39.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
39.6 Source Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 569
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569

40 SceneJS: A WebGL-Based Scene Graph Engine 571 WebGL

Lindsay Kay

40.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 571
40.2 Efficiently Abstracting WebGL . . . . . . . . . . . . . . . . . . 572
40.3 Optimizing the Scene . . . . . . . . . . . . . . . . . . . . . . 578

© 2012 by Taylor & Francis Group, LLC



xviii Contents

40.4 Picking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580
40.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581

41 Features and Design Choices in SpiderGL 583WebGL

Marco Di Benedetto, Fabio Ganovelli, and Francesco Banterle

41.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 583
41.2 Library Architecture . . . . . . . . . . . . . . . . . . . . . . . 584
41.3 Representing 3D Objects . . . . . . . . . . . . . . . . . . . . 585
41.4 Direct Access to WebGL Object State . . . . . . . . . . . . . . 590
41.5 WebGLObject Wrappers . . . . . . . . . . . . . . . . . . . . . 598
41.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 602
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603

42 Multimodal Interactive Simulations on the Web 605WebGL

Tansel Halic, Woojin Ahn, Suvranu De

42.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
42.2 Π -SoFMIS Design and Definitions of Modules . . . . . . . . . 606
42.3 Framework Implementation . . . . . . . . . . . . . . . . . . . 607
42.4 Rendering Module . . . . . . . . . . . . . . . . . . . . . . . . 609
42.5 Simulation Module . . . . . . . . . . . . . . . . . . . . . . . 611
42.6 Hardware Module . . . . . . . . . . . . . . . . . . . . . . . . 613
42.7 Case Study: LAGB Simulator . . . . . . . . . . . . . . . . . . 614
42.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 619
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619

43 A Subset Approach to Using OpenGL and OpenGL ES 621OpenGL

OpenGL ES Jesse Barker and Alexandros Frantzis

43.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 621
43.2 Making Legacy Code Modern . . . . . . . . . . . . . . . . . . 622
43.3 Keeping Code Maintainable across API Variants . . . . . . . . . 626
43.4 What if I Need a Specific Piece of Functionality? . . . . . . . . 633
43.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 633
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634

44 The Build Syndrome 635OpenGL

OpenGL ES Jochem van der Spek and Daniel Dekkers

44.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 635
44.2 Using Utility Libraries . . . . . . . . . . . . . . . . . . . . . . 637
44.3 OpenGL Agnosticism . . . . . . . . . . . . . . . . . . . . . . 640
44.4 Configuration Spaces . . . . . . . . . . . . . . . . . . . . . . 642
44.5 Metabuilds and CMake . . . . . . . . . . . . . . . . . . . . . 643

© 2012 by Taylor & Francis Group, LLC



Contents xix

44.6 CMake and the Configuration Space . . . . . . . . . . . . . . 644
44.7 CMake and Platform Specifics . . . . . . . . . . . . . . . . . . 648
44.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 654
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654

About the Contributors 657

Index 673

© 2012 by Taylor & Francis Group, LLC



© 2012 by Taylor & Francis Group, LLC



Foreword

Barthold Lichtenbelt

OpenGL is not a single API anymore. OpenGL has involved into a family of APIs,
with OpenGL, OpenGL ES, and WebGL being closely related siblings that enable
application developers to write and deploy graphics applications on a wide variety of
platforms and operating systems. OpenGL has become an ecosystem; 3D graphics is
truly everywhere now. OpenGL is the cross platform 3D API for desktop machines
and work stations. OpenGL ES is the 3D API for mobile devices, like tablets and
cell phones, and embedded platforms from settop boxes to cars. WebGL ties this all
together by providing a pervasive 3D API in browsers, based on OpenGL ES, that
run on any platform. It doesn’t stop with graphics. Combining the use of OpenGL
with a compute API like OpenCL or CUDA enables the creation of amazing visual
computing applications on the desktop.

It is Khronos’ job to provide APIs that serve their targeted developers, their mar-
kets, and their platforms, while encouraging silicon vendors to innovate underneath
the API. Because the power consumption budget, hardware gate budget, and cost
budget is larger for desktop GPUs than it is for mobile GPUs, the 3D API reflects
this. Hence, OpenGL will generally be the first to expose leading edge functionality,
on desktop platforms. The focus for OpenGL ES is to provide maximum function-
ality with the most optimal hardware and power budget for mobile and embedded
devices. WebGL has a unifying focus; the goal for WebGL is to provide the same
functionality everywhere, regardless of whether the underlying platform is capable
of OpenGL 4.2 or OpenGL ES 2.0. This is fundamental to achieving the browser
vision of “write once, deploy everywhere.” It is exciting to see WebGL provide ac-
cess to the GPU, and therefore hardware accelerated 3D rendering, everywhere. The
HTML5 standard provides a rich set of APIs to develop web applications. WebGL
is leading the way to do so in a hardware accelerated way within HTML5. This
will truly transform the type of web applications that will be available to us to enjoy,
precisely because WebGL integrates into the HTML5 standard.

xxi

© 2012 by Taylor & Francis Group, LLC



xxii Foreword

Given the widespread adoption of OpenGL and OpenGL ES across all flavors of
Linux and Windows, as well as iOS and Android, these APIs are serving a real need.
The adoption of WebGL by almost all browser vendors underscores its importance
as a web API for 3D graphics. Exquisite graphics applications have been developed
using the OpenGL family of APIs. Of course there is much more to developing a
great graphics application than the API. The ability to debug GPU code, to measure
and optimize performance of graphics code to push the GPU to its limits, to use the
right rendering technique given the underlying GPU, and to deploy that code to a
wide variety of devices, are all critical factors to success.

This book explores the OpenGL ecosystem in depth. It provides debugging
and performance tips, rendering techniques, clever tricks, software development, and
porting advice, as well as best practices written by experts in various areas of the
OpenGL ecosystem, to help you build the perfect graphics application. These experts
have put in effort and time to share their OpenGL insights with us because they
passionately believe in the OpenGL ecosystem and want to share that passion with
us. This includes Patrick Cozzi and Christophe Riccio, who have done an amazing
job editing and putting OpenGL Insights together. Thank you for sharing!

—Barthold Lichtenbelt
Khronos OpenGL ARB working group chair

Director of Tegra graphics software for NVIDIA

© 2012 by Taylor & Francis Group, LLC



Preface

Sometimes I wish I had been involved in computer graphics 40 years ago when the
field was unfolding with early research in visible surfaces and shading. There were
many fundamental problems to solve, and the forthcoming solutions would have a
great impact.

However, I’m grateful for the time we live in; the foundations of modeling, ren-
dering, and animation are well established. Hardware-accelerated rendering is avail-
able on practically all devices. As developers, we are now capable of reaching an
immense number of users with captivating, real-time graphics.

In part, we have the swiftness and availability of rendering APIs, including
OpenGL, OpenGL ES, and WebGL, to thank. Frequent OpenGL specification
updates coupled with drivers exposing these new features make OpenGL the API
of choice for cross-platform desktop developers seeking access to recent GPU capa-
bilities. With the explosion of smartphones and tablets, OpenGL ES is the API for
hardware-accelerated rendering on iOS and Android. Even more recently, WebGL
has rapidly emerged to provide truly zero-footprint hardware-accelerated 3D graphics
on web pages.

With the widespread use of OpenGL, OpenGL ES, and WebGL, we recognize
the need for developers using these APIs to learn from each other and go well beyond
the basics. To this end, we have created the OpenGL Insights series, with this first vol-
ume containing contributions from developers, vendors, researchers, and educators.
It is both a celebration of the breadth of the OpenGL family of APIs and a collection
of deep, experienced-backed articles on practical and future-looking techniques.

Breadth is demonstrated through the diversity of topics—from using OpenGL
in the classroom to recent extensions, optimizing for mobile devices, and designing
WebGL libraries. Depth is realized by the deep corners into which many chapters
take us, for example, asynchronous buffer and texture transfers, performance state
tracking, and programmable vertex pulling.

xxiii

© 2012 by Taylor & Francis Group, LLC



xxiv Preface

It is our passion for these APIs and the passionate surrounding developer com-
munity that motivated us to start this series. In our day, there may be fewer funda-
mental problems to solve, but the breadth and complexity of the problems we solve
is astonishing. It is an outstanding time to be an OpenGL developer.

—Patrick Cozzi
February 2012

First of all, I would like to thank Patrick, who asked me to join him on this project. I
still remember that night when, after seeing a great movie at the cinema, Somewhere,
I received his email. There was really only one answer I could possibly give, but I
certainly tried to fool myself that it could be otherwise: “Oh, let’s think this through.”
That hesitation lasted no longer than five seconds. The rest was just a lot of work
and a lot of learning in the process.

Despite our differences in culture and background, Patrick and I were connected
by a shared vision: we wanted to make a good book revealing, without preconception,
the views of the entire OpenGL community, embracing everyone who shares our
passion for the graphics variety that the OpenGL ecosystem can provide.

The OpenGL specifications are the foundation of OpenGL, but they are far
from enough to understand its potential and limitations. With a dictionary and a
grammar manual we can know a lot about a language, but it is still not enough
for us to write poetry. I hope OpenGL Insights will bring a little bit of the secret
ingredient—experience—so that we can improve the everyday life of the OpenGL
programmer and lead to the creation of more efficient development and graphics
software.

If you enjoy this book and share the belief that it takes the contribution of ev-
eryone to build real-time graphics, don’t hesitate to contact us. We look forward to
hearing from you and learning from your experiences in a future volume.

—Christophe Riccio
February 2012

Acknowledgments. Significant effort is required to get a community-based book
like this off the ground. We are grateful to have had a lot of help on everything
from our book proposal to getting the word out to authors. For these tasks, we
thank Quarup Barreirinhas (Google), Henrik Bennetsen (Katalabs), Eric Haines (Au-
todesk), Jon Leech (Khronos Group), Barthold Lichtenbelt (NVIDIA), Jon McCaf-
frey (NVIDIA), Tom Olson (ARM), Kevin Ring (AGI), Ken Russell (Google), and
Giles Thomas (Resolver Systems).

This book benefited from an open culture of reviews. As editors, we reviewed
chapters, but this was only the beginning. Fellow contributors took initiative to do

© 2012 by Taylor & Francis Group, LLC



Preface xxv

peer reviews, and many external reviewers volunteered their time. For this, we thank
Guillaume Chevelereau (Intersec), Mikkel Gjoel (Splash Damage), Dimitri Kudelski
(Aix-Marseille University), Eric Haines (Autodesk), Andreas Heumann (NVIDIA),
Randall Hopper (L-3 Communications), Steve Nash (NVIDIA), Deron Ohlarik
(AGI), Emil Persson (Avalanche Studios), Aras Pranckevičius (Unity Technologies),
Swaroop Rayudu (Autodesk), Kevin Ring (AGI), Mathieu Roumillac (e-on soft-
ware), Kenneth Russell (Google), Graham Sellers (AMD), Giles Thomas (Resolver
Systems), and Marco Weber (Imagination Technologies).

The value of this book is made possible by the many authors that contributed
to it. We thank every author for their contribution, peer reviews, and enthusiasm.
We also thank Alice Peters, Sarah Chow, and Kara Ebrahim for their hard work in
publishing this book.

The time requirements for preparing this book were often intense. We owe a
great deal of our success to the flexibility provided by our employers. At Analyti-
cal Graphics, Inc., we thank Paul Graziani, Frank Linsalata, Jimmy Tucholski, and
Shashank Narayan. At the University of Pennsylvania, we thank Norm Badler, Steve
Lane, and Joe Kider.

Creating a book on top of our full-time jobs was not just hard on us, it was hard
on our friends and families who saw less of us during nights, weekends, and even
holidays. For their understanding and support, we thank Anthony Cozzi, Margie
Cozzi, Peg Cozzi, and Jilda Stowe.

Website
The companion OpenGL Insights website contains source code and other supple-
ments:

www.openglinsights.com

Please email us with your comments or corrections:

editors@openglinsights.com

© 2012 by Taylor & Francis Group, LLC



© 2012 by Taylor & Francis Group, LLC



Tips

OpenGL glCreateShaderProgram may provide faster build per-
formance than a sequence of glCompilerShader and
glLinkProgram. However, it only creates a single shader stage
program.

OpenGL
WebGL
OpenGL ES

Not all shader objects need a main() function. Multiple shader
objects can be linked together in the same program to allow shar-
ing the same code between different programs.

OpenGL
WebGL
OpenGL ES

Build all GLSL shaders and programs first, and then query the
results to hide build and query latency.

OpenGL
WebGL
OpenGL ES

Call glDeleteShader after attaching a shader to a program to
simplify cleanup later.

OpenGL Five OpenGL 4.2 functions generate info logs:

• glCompileShader

• glCreateShaderProgram

• glLinkProgram

• glValidateProgram

• glValidateProgramPipeline

OpenGL
OpenGL ES

Functions like glGenTextures do not create an object, they re-
turn a name for use with a new object. Objects are typically cre-
ated with glBind* unless they are based on direct state access, in
which case any other function may actually create the object.

xxvii

© 2012 by Taylor & Francis Group, LLC



xxviii Tips

OpenGL
WebGL
OpenGL ES

glGenerateMipmap may execute on the CPU, and therefore
may be especially slow. Generate mipmaps offline or profile this
function.

OpenGL
WebGL
OpenGL ES

When using the default texture scanline alignment,
GL PACK ALIGNMENT, of four bytes, with glTexImage2D

or glTexSubImage2D, the end of each row of pixel data may
need to be padded to the next multiple of the alignment.

OpenGL Texture rectangle, texture multisample, and buffer textures can’t
have mipmaps.

OpenGL Integer textures, GL EXT texture integer, do not support fil-
tering.

OpenGL A buffer texture is a 1D texture with a buffer object as storage
which can only be fetched, not sampled.

OpenGL
WebGL
OpenGL ES

Unmap buffers as soon as possible to allow the driver to start the
transfer or to schedule the transfer.

OpenGL
WebGL
OpenGL ES

Use buffer usage flags appropriately: COPY, GL to GL; DRAW, APP
to GL; READ, GL to APP; STREAM, update always, DYNAMIC, up-
date often, STATIC, update rarely.

OpenGL
WebGL
OpenGL ES

Set a GLSL sampler uniform to the texture unit number, not the
OpenGL texture ID.

OpenGL
WebGL
OpenGL ES

glGetUniformLocation returns −1 but doesn’t generate an er-
ror if the uniform name does not correspond to an active uniform.
All declared uniforms are not active; uniforms that do not con-
tribute to the shader’s output can be optimized out by the com-
piler.

OpenGL An OpenGL context must always be current for the duration of
OpenGL/compute interoperability.

OpenGL An OpenGL object should not be accessed by OpenGL while it is
mapped for usage within the compute portion.

OpenGL
WebGL
OpenGL ES

Avoid extraneous glBindFramebuffer calls. Use multiple at-
tachments to a FBO rather than managing multiple FBOs.

© 2012 by Taylor & Francis Group, LLC



Tips xxix

OpenGL
WebGL
OpenGL ES

FBOs must always be validated before use to ensure that the se-
lected format is renderable.

OpenGL Only one OpenGL query per query type, e.g., timer or occlusion,
can be active at a time.

OpenGL For occlusion queries, using GL ANY SAMPLES PASSED may be
more effective than GL SAMPLES PASSED, as a rendering doesn’t
have to continue as soon as one fragment passed.

OpenGL
WebGL
OpenGL ES

For image-space rendering on GPUs with a large clipping guard
band clipping, e.g., GeForce, Radeon, and PowerVR series 6 use a
large clipped triangle instead of a quad. Measure both if in doubt.

OpenGL
WebGL
OpenGL ES

To test vertex throughput, do not render to a 1 × 1 viewport be-
cause parallelism is lost; instead, render outside of the view frus-
tum.

OpenGL
WebGL
OpenGL ES

glGetError is particularly slow, especially in multi-process
WebGL architectures. Only use it in debug builds or instead use
GL ARB debug output when available.

OpenGL Geometry shaders are usually output bound so spending ALU
time to reduce the amount of data output is a performance win.

WebGL In addition to #defining GL OES standard derivatives

before using dFdx, dFdy, and fwidth, also remember to call
context.getExtension("OES standard derivatives")

in JavaScript.

OpenGL
WebGL
OpenGL ES

To accurately compute the length of a gradient, avoid
fwidth(v); instead use sqrt(dFdx(v) * dFdx(v) +

dFdy(v) * dFdy(v)).

WebGL
OpenGL ES

highp is only available in fragment shaders if
GL FRAGMENT PRECISION HIGH is #defined. Beware of
the performance implications of using highp in vertex or
fragment shaders.

© 2012 by Taylor & Francis Group, LLC



xxx Tips

OpenGL In OpenGL, precision qualifiers were reserved in GLSL 1.20
and OpenGL 2.1 but actually introduced with GLSL 1.30
and OpenGL 3.0. From GLSL 1.40 and OpenGL 3.1,
and for the purpose of convergence with OpenGL ES 2.0,
GL FRAGMENT PRECISION HIGH is defined as 1 in a fragment
shader.

OpenGL By default, precision for vertex, tessellation, and geometry shader
stages is highp for int types, and mediump for the fragment
shader stage int types. This may lead to warnings on some im-
plementations. float is always highp by default.

WebGL Given a WebGL context gl, gl.TRUE is undefined. When port-
ing OpenGL or OpenGL ES code, do not change GL TRUE to
gl.TRUE because it will silently evaluate to false.

OpenGL
WebGL
OpenGL ES

Depth writes only occur if GL DEPTH TEST is enabled.

OpenGL
WebGL
OpenGL ES

The noise functions are still unimplemented in GLSL. Chapter 7
fixes this.

OpenGL gl VertexID get values in [first, first+count-1] when
generated from a DrawArray* command, and not in [0,

count-1]. Especially useful when using a zero input attributes
vertex shader.

OpenGL There are two ways to work with point size: glPointSize

in the client-side code or gl PointSize in the GLSL code if
PROGRAM POINT SIZE is enabled.

© 2012 by Taylor & Francis Group, LLC



Tips xxxi

The GLSL core profile and GLSL ES are different subsets of keywords of the GLSL compati-
bility profile. The GLSL core profile allows us to write GLSL code with a fully programmable
pipeline approach. GLSL ES takes advantage of the precision qualifiers, but GLSL doesn’t.

© 2012 by Taylor & Francis Group, LLC



© 2012 by Taylor & Francis Group, LLC



I Discovering

In this section, we discover many facets of OpenGL: teaching modern OpenGL in
academia; using OpenGL on the web with WebGL; tessellation shaders in OpenGL
4.0; procedural textures; the safety critical variant, OpenGL SC; and multi-GPU
OpenGL and CUDA interop.

OpenGL enjoys widespread use in computer graphics courses around the world.
Now-depreciated OpenGL features such as fixed-function lighting, immediate mode,
and built-in transforms made the barrier to entry low. However, modern OpenGL
has removed many of these features, resulting in a lean API that exposes the func-
tionality of the underlying hardware. Academia has taken these changes in stride,
updating their graphics courses to modern OpenGL. In Chapter 1, “Teaching Com-
puter Graphics Starting With Shader-Based OpenGL,” Edward Angel discusses how
an introductory computer graphics course can be taught using modern OpenGL.
In Chapter 2, “Transitioning Students to Post-Deprecation OpenGL,” Mike Bailey
presents C++ abstractions and GLSL naming conventions to bridge the gap between
depreciated and modern OpenGL for use in course assignments.

When we announced our call for authors for OpenGL Insights in May 2011, we
included WebGL as a desired topic. Since then, WebGL has gained such traction
that an entire book could easily be justified. In Chapter 3, “WebGL for OpenGL
Developers,” Patrick Cozzi and Scott Hunter present WebGL for those who already
know OpenGL. In the following chapter, “Porting Mobile Apps to WebGL,” Ashraf
Samy Hegab shows the benefits, differences, and trade-offs of using WebGL for mo-
bile applications. Several chapters in later sections continue our WebGL exploration.

Christophe Riccio takes a rigorous look at communication between the OpenGL
API and GLSL and different shader stages in Chapter 5, “The GLSL Shader Inter-
faces.” He carefully examines using varying blocks; attribute, varying, and fragment

1

© 2012 by Taylor & Francis Group, LLC



2 I Discovering

output variable locations; linked and separated programs; using semantics in our
designs; and more.

Today, one of the differences between movie-quality rendering and real-time ren-
dering is geometric complexity; movies generally have much higher geometric detail.
To improve geometric detail in real-time rendering, tessellation can be done in hard-
ware. Although this has been available on ATI cards since the ATI Radeon 8500 in
2001, tessellation shaders were recently standardized and made part of OpenGL 4.0.
In Chapter 6, “An Introduction to Tessellation Shaders,” Philip Rideout and Dirk
Van Gelder introduce the new fixed and programmable tessellation stages.

As the gap between compute power and memory bandwidth continues to widen,
procedural techniques become increasingly important. Small size is speed. Procedu-
ral textures not only have trivial memory requirements, but can also have excellent
visual quality, allowing for analytic derivatives and anisotropic antialiasing. Stefan
Gustavson introduces procedural textures, including antialiasing and using Perlin
and Worley noise in Chapter 7, “Procedural Textures in GLSL.” Best of all, he pro-
vides GLSL noise functions for OpenGL, OpenGL ES, and WebGL.

OpenGL SC, for safety critical, may be one of the lesser-known OpenGL vari-
ants. In Chapter 8, “OpenGL SC Emulation Based on OpenGL and OpenGL ES,”
Hwanyong Lee and Nakhoon Baek explain the motivation for OpenGL SC and de-
scribe the benefits of implementing it based on other OpenGL variants, instead of
creating custom drivers or a software implementation.

In the past 15 years, consumer GPUs have transformed from dedicated fixed-
function graphics processors to general-purpose massively-parallel processors. Tech-
nologies like CUDA and OpenCL have emerged for developing general data-parallel
algorithms on the GPU. There is, of course, a need for these general algorithms,
like particle systems and physical simulation, to interop efficiently with OpenGL for
rendering. In the final chapter of this section, “Mixing Graphics and Compute with
Multiple GPUs,” Alina Alt reviews interoperability between CUDA and OpenGL
and presents interoperability between multiple GPUs where one GPU is used for
CUDA and another for OpenGL.

© 2012 by Taylor & Francis Group, LLC



Teaching Computer Graphics
Starting with Shader-Based

OpenGL

Edward Angel

1.1 Introduction
For at least ten years, OpenGL has been used in the first computer graphics course
taught to students in computer science and engineering, other branches of engi-
neering, mathematics, and the sciences. Whether the course stresses basic graphics
principles or takes a programming approach, OpenGL provides students with an API
to support their learning. One of the many features of the OpenGL API that makes
it popular for teaching is its stability and backward compatibility. Hence, instruc-
tors needed to make only minor changes in their courses as OpenGL evolved. At
least that used to be true: over the last few years, OpenGL has changed rapidly and
dramatically.

Starting with version 3.1, the fixed function pipeline was eliminated, an action
that deprecated immediate mode and many of the familiar OpenGL functions and
state variables. Every application must provide at least a vertex shader and a frag-
ment shader. For those of us who use OpenGL to teach our graphics courses, these
changes and the introduction of three additional shader stages in subsequent releases
of OpenGL have led to a reexamination of how we can best teach computer graph-
ics. As the authors of a popular textbook [Angel 09] used for the first course, we
realized that this reexamination was both urgent and deep, requiring input from in-
structors at a variety of institutions. In the end, we wrote a new edition [Angel and
Shreiner 12] that was entirely shader-based. Some of the key issues were addressed
briefly in [Angel and Shreiner 11] but this chapter will not only discuss the reasons
for the change but will also include practical observations and issues based on the
actual teaching of a fully shader-based course.

3

1

© 2012 by Taylor & Francis Group, LLC



4 I Discovering

I start with a historical overview, stressing how the software used in the first
computer graphics course has changed over the years while the concepts we teach
have remained largely unchanged. I review the key elements of a first course in
computer graphics. Then I present a typical first Hello World program using the
fixed-function pipeline. Next, the reader will see how we have to change that first
program when moving to a shader-based course. Finally, I examine how each of the
major topics in our standard course is affected by use of a shader-based OpenGL.

1.2 A Basic Course
Computer graphics has been taught in most colleges and universities since the 1970s.
A comparison between what was taught then and what is taught now leads to some
interesting observations. The first textbook that took the modern approach to graph-
ics was Newman and Sproull’s [Newman and Sproull 79]. Subsequently, Foley, van
Dam, et al. [Foley et al. 96] became the standard. Not only do these two clas-
sic works agree as to the key topics, but so do all the recent textbooks [Angel and
Shreiner 12, Hearn et al. 11]. These topics include

• modeling,

• geometry,

• transformations,

• lighting and shading,

• texture mapping and pixel processing.

A major theme of this chapter is that using a shader-based OpenGL in the in-
troductory course not only is possible but actually reinforces these key concepts. I
will examine each area individually, but first one of the major worries confronting in-
structors needs to be addressed, namely, the perception that it is much harder to get
started with a version of OpenGL that not only requires the application to provide
its own shaders but also forces the programmer to use new constructs, such as vertex
buffer objects, that were not required previously.

1.3 Hello World in OpenGL: Old Style
Let’s start with a simple example (shown in Listing 1.1) that we might teach in the
first week of a typical class using pre-3.1 OpenGL: drawing a white rectangle on a
black background using default values for most variables and, to delay any discussion
of coordinate systems and transformations, giving vertex positions in clip coordi-
nates.

© 2012 by Taylor & Francis Group, LLC



1. Teaching Computer Graphics Starting with Shader-Based OpenGL 5

#include <GL/glut.h>

void display (void)
{

glClear (GL_COLOR_BUFFER_BIT);
glBegin (GL_POLYGON);

glVertex2f(-0.5, -0.5);
glVertex2f(-0.5, 0.5);
glVertex2f(0.5, 0.5);
glVertex2f(0.5, -0.5);

glEnd();
glutSwapBuffers();

}

int main(int argc , char **argv)
{

glutInit (&argc , argv);
glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE);
glutCreateWindow("Hello World");
glutDisplayFunc(display );
glutMainLoop();

}

Listing 1.1. Hello World.
Figure 1.1. Hello World output.

As trivial as this program is, it possesses many of the features that instructors
have built on.1 For example, it is easy to add colors, normals, and texture coor-
dinates between the glBegin and glEnd. Adding transformations and viewing is
straightforward. Note that although we use GLUT in this example to interface with
the window system and input devices and will use it in our other examples, its use is
not crucial to the discussion. The output is shown in Figure 1.1.

There are three major issues with this code and all its extensions:

1. Use of immediate mode.

2. Reliance on the fixed-function pipeline.

3. Use of default values for state variables.

First, with a shader-based OpenGL, all the OpenGL functions in this example
except glClear have been deprecated. Understanding why these functions have
been deprecated is key to understanding why we have switched to a more recent
OpenGL. The pipeline model (see a simplified version in Figure 1.2), that underlies
OpenGL stresses immediate-mode graphics. As soon as each vertex is generated, it
triggers an execution of the vertex shader. Because this geometry processing is carried
out on the GPU by the vertex shader, this simple program requires four separate
vertex positions to be sent to the GPU each time we want to display the rectangle.

1We could eliminate the double buffering to make the example even simpler. However, some systems
would then require a glFlush instead of glutSwapBuffers to reliably display the output.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-3&iName=master.img-053.jpg&w=137&h=147


6 I Discovering

Vertex
shader

Vertices

Clipper and
primitive assembly

Rasterizer
Fragment

shader

Pixels

Application Frame
Buffer

Fragments

GPU

StateCPU

Figure 1.2. Simplified pipeline.

Such a program masks the bottleneck between the CPU and GPU and hides the
parallelism available on the GPU. Hence, although it is not the kind of program we
want our students to write, the reasons are not apparent from the code.

Second, although it seems nice to be able to rely on the fact that our data will
be processed in a known way, students tend to think the use of the immediate mode
is the only way to display their geometric models. Later, when they process more
complex geometry, they wonder why their applications run so slowly.

Third, this type of program leads to a somewhat outdated view of OpenGL as
a state machine. Although state is important, the use of the fixed-function pipeline
and default values hides a multitude of state variables within OpenGL that control
how the geometry is rendered. As the simple program is expanded, students tend to
get lost in the multitude of state variables and have great difficulty with unintended
side effects of state variable changes. With recent versions of OpenGL, most state
variables have been deprecated, and the application creates its own state variables.

1.4 Starting with Programmable Pipelines

Now, let’s review some of the issues with programmable pipelines starting with
OpenGL 3.0. Although programmable pipelines have been in OpenGL since ver-
sion 2.0, not only was their use optional, but an application programmer still had
access to all the functions that are now deprecated. An application could have its own
shaders and also use immediate mode. The shaders had access to most OpenGL state
variables, which simplified writing applications with shaders. Hence, an instructor
could start with our trivial application and introduce shaders later. However, in a
first course that starts with immediate mode and the fixed-function pipeline, very
few instructors actually get to programmable shaders. At best, shaders are given a
short introduction at the end of the course.

OpenGL 3.0 announced that starting with OpenGL 3.1, backward compatibil-
ity would no longer be required of an implementation. OpenGL 3.1 has a core that
is shader-based and a compatibility extension that supports the deprecated functions.
Later versions introduced core and compatibility profiles. Implementors could sup-
ply either or both profiles. The option we took was to design a first course that

© 2012 by Taylor & Francis Group, LLC



1. Teaching Computer Graphics Starting with Shader-Based OpenGL 7

was totally shader based, consistent with the OpenGL 3.1 core.2 To develop a first
program, we had to examine what was absolutely required.

A shader-based program requires at least a vertex shader and a fragment shader.
Hence, the instructor must introduce a minimal amount of the OpenGL Shading
Language (GLSL). Because GLSL is semantically close to C with a few C++-style
enhancements, we can present the almost trivial shaders required for a Hello World
program without going into an in-depth discussion of GLSL. The instructor must
introduce some concepts such as program objects and, of course, what the shaders do.
Although these concepts take some time to present, they are core to understanding
how modern graphics systems work, and introducing them early in the course should
be viewed as a benefit of our approach.

The biggest problem in introducing shaders is that the application must read,
compile, and link the shaders with the application. These operations require a set
of OpenGL functions that contribute little to the student’s understanding of ba-
sic graphics concepts. Consequently, we decided to give the students a function,
InitShaders, that reads in the shader files, compiles them, links them, and, if
successful, returns a program object, as in the code fragment

GLuint program = InitShaders("vertex_shader_file", "fragment_shader_file");

The source code was made available, and the individual functions used in it were
discussed later or assigned as a reading exercise. As seemingly trivial as this decision
appears, it was a departure from previous courses in which we never gave the students
any code without a detailed presentation of its contents.

A second, perhaps more controversial, decision along these lines was to give the
students a small C++ package with two-, three-, and four-dimensional matrix and
vector classes. Although an OpenGL application can be written in C and use pro-
grammable shaders, GLSL relies on some additional matrix and vector types, uses
C++-style constructors, and employs operator overloading. Consequently, if we’re
going to teach a shader-based course, our students have to know a little bit of C++. In
practice, this is not a problem as most students have already used an object-oriented
programming language, and even for those who haven’t, the required parts of C++
are simple and take little time to introduce.

Although we could just use the C++ features required by GLSL in shader code
only, there are two major advantages to having a C++ matrix/vector package that
mirrors the types and operations in GLSL. One advantage is that the application
code is a lot cleaner and clearer, eliminating most for loops. The second is that
many algorithms that are studied in a typical class, such as lighting, can be applied
either in the application or in one of the shaders. By using application code with
similar types and operations, such algorithms can be applied in any of the possible

2Most OpenGL 2.0 implementations support all the functionality needed for our course, either di-
rectly or with a few OpenGL extensions. Hence, OpenGL 3.1 or any later version is not a requirement
for using our approach.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-3&iName=master.img-073.png&w=382&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-3&iName=master.img-073.png&w=382&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-3&iName=master.img-073.png&w=382&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-3&iName=master.img-073.png&w=382&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-3&iName=master.img-073.png&w=382&h=16


8 I Discovering

ways with almost identical code. We have found this feature to be extremely helpful
in teaching some of the more difficult parts of a course. These advantages override the
potential objections that, once again, we are giving students code instead of having
them write their own and also acknowledge that we really are using some C++ to
teach the introductory course.

1.5 Hello World: New Style
Even the simplest application program can be divided into three parts: an initializa-
tion that sets up the shaders and the interface with the window system, a stage that
forms the data and sends the data to the GPU, and a stage that renders the data on
the GPU. In the shader-based approach, the first stage is no more difficult than with
the traditional approach if we use InitShaders. For beginning examples, the third
stage requires only a clearing of some buffers and a call to glDrawArrays. The
middle stage is fundamentally different from immediate-mode programming. We
have to introduce vertex buffer objects and perhaps vertex array objects for even the
simplest program. Let’s examine all of these issues with a new Hello World program.
A program that produces the same output as our first Hello World program is shown
in Listing 1.2. The corresponding vertex shader is in Listing 1.3, and the fragment
shader is in Listing 1.4.

The include file Angel.h brings in the InitShaders code and the matrix and
vector classes. The next thing we notice about the program is that the data are
for two triangles with shared vertices rather than for a single quadrilateral. Starting
with OpenGL 3.1, triangles are the only filled type that is supported. This single
initialization of an array, which uses our vec2 data type, leads to a good discussion
of why we are restricted to triangles. We can also discuss the alternative of using
either a triangle strip or a triangle fan.

Next comes the most difficult part to explain (although it’s only five lines of
code). We allocate a vertex array object (VAO) and a vertex buffer object (VBO).
The three lines of code for setting up the vertex array data should follow from the
discussion of VBOs. The basic idea that we are setting up storage is clear but why we
need a VBO and a VAO in such a simple program is a tough one since we probably
don’t want to spend a lot of time on that issue early in a course.3

The rest of the program is almost identical to the immediate-mode version with
the exception of the use of glDrawArrays, but that function presents no problems
to students, and the display callback is almost trivial to explain.

Not much time is necessary to discuss the shaders; they don’t require much
knowledge of GLSL. One nice aspect of the use of shaders is that even these sim-
ple shaders can be changed in interesting ways without going any deeper into GLSL.

3Alternately, some instructors may choose to leave out any discussion of VAOs by removing these two
lines of code. The program will still run and at this point in the course, the potential efficiency of using a
VAO is not of crucial importance.

© 2012 by Taylor & Francis Group, LLC



1. Teaching Computer Graphics Starting with Shader-Based OpenGL 9

#include "Angel.h"

void init( void )
{

vec2 points [6] =
{

vec2( -0.5, -0.5 ), vec2( 0.5, -0.5 ),
vec2( 0.5, 0.5 ), vec2( 0.5, 0.5 ),
vec2( -0.5, 0.5 ), vec2( -0.5, -0.5 )

};
GLuint vao , buffer;
GLuint glGenVertexArrays(1, &vao);
glBindVertexArray(vao);

GLuint glGenBuffers(1, &buffer);
glBindBuffer(GL_ARRAY_BUFFER , buffer);
glBufferData(GL_ARRAY_BUFFER , sizeof(points), points , GL_STATIC_DRAW);

GLuint program = InitShader("vsimple .glsl", "fsimple .glsl");
glUseProgram(program );

GLuint loc = glGetAttribLocation(program , "vPosition");
glEnableVertexAttribArray(loc);
glVertexAttribPointer(loc, 2, GL_FLOAT , GL_FALSE , 0, 0);

glClearColor(0.0, 0.0, 0.0, 1.0);
}

void display (void)
{

glClear (GL_COLOR_BUFFER_BIT);
glDrawArrays(GL_TRIANGLES , 0, 6);
gutSwapBuffers();

}

int main(int argc , char **argv)
{

glutInit (&argc , argv);
glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE);
glutCreateWindow("Hello World");
init();
glutDisplayFunc(display );
glutMainLoop();

}

Listing 1.2. Hello World redux.

in vec4 vPosition;

void main()
{

gl_Position = vPosition;
}

Listing 1.3. Hello World vertex shader.

out vec4 FragColor;

void main()
{

FragColor = vec4(1.0, 1.0, 1.0, 1.0);
}

Listing 1.4. Hello World fragment shader.

© 2012 by Taylor & Francis Group, LLC



10 I Discovering

1.5.1 OpenGL ES and WebGL

In my classes, students have always been free to choose to use Macs, PCs, or Linux
computers. With OpenGL, that flexibility has never been a problem. The advent
of OpenGL ES 2.0 and WebGL opens up even more possibilities. OpenGL ES 2.0
is totally shader-based and is supported on a variety of devices, including iPhones.
WebGL is a JavaScript implementation of OpenGL ES 2.0 that runs on the lat-
est browsers. Last semester, students in our class used all five options. Although
JavaScript is usually not part of the standard CS curriculum at most schools, it’s
pretty easy for upper-class and graduate students to pick up the basics. The ability to
share their work via a URL was an enormous benefit to students.

1.5.2 The First Assignment

Once we get past the Hello World example, students are ready for their first program-
ming assignment. We like to give a three-dimensional project to start. Because one of
the goals of the first assignment is to check whether students have the programming
skills to handle later projects, it’s important to assign this type of project early. One
possibility is to base the assignment on modeling and rendering a cube. Although
without transformations, the axis-aligned cube will look like a square, students can
change the vertex data, either to show more than one face of the cube or to create
more interesting objects. Another possibility is an extension of some simple fractal to
three dimensions. Other possibilities are morphing one simple object into another,
twists, and two- or three-dimensional maze generation. You can also focus on shader
code by starting with either a simple model or giving the class the data for a more
complex model and having the students manipulate the model in the vertex shader.
At this point in a typical course, it is better to focus on an assignment using vertex
shaders rather than fragment shaders since the major topics an instructor will likely
be covering in class at that time are geometry and transformations.

1.6 The Rest of the Course
In most courses that have a programming component, instructors want to get their
students programming as soon as possible so they can move on to the core topics.
Comparing our experience with the two Hello World examples, it takes about an
extra week to get students to write their first assignment using the shader-based ap-
proach. This extra time comes back to the instructor because the details of using
shader-based code that we needed to explain for the Hello World example would
have been introduced later in a traditional course. Let’s look at each part of what
we claim is core to all senior-level graphics courses and discuss how a shader-based
OpenGL fits into each one.

© 2012 by Taylor & Francis Group, LLC



1. Teaching Computer Graphics Starting with Shader-Based OpenGL 11

1.6.1 Geometry

Computer graphics is built on some basic geometric concepts. Every introductory
computer graphics class introduces the basic types (scalars, points, vectors), sim-
ple objects (triangles, planes, polylines), and methods of representation (coordinate
systems, frames). Our approach has been to spend some time on building geomet-
ric models through vertex buffers. This section of most courses need not change
with a shader-based OpenGL. Nevertheless, there are some interesting ways in which
shaders can be used.

Consider modeling a cube. It’s a very useful object to have available as we develop
transformations, viewing, lighting, and texture mapping. Because we can only render
triangles, we have multiple ways we can build a model for the cube. Since we have
already introduced vertex buffers for the Hello World program, an extension to using
simple data structures and glDrawElements is a nice topic. Color is usually added
at this point in the course. Since the old built-in state variables, including the current
color and the vertex position, are no longer part of the OpenGL state, these and
other state variables must be defined in the application and their values sent to the
GPU. Courses that are programming-oriented can use the flexibility of how data are
organized and transferred to the GPU to experiment with various strategies, such as
using uniform variables versus vertex attributes or various ways to mix geometric and
color data in the application and on the GPU.

More generally, the issue of efficiency is often a neglected topic. With the stan-
dard immediate-mode approach, when students are asked to see how close their pro-
grams come to the advertised ratings of their graphics card, they are amazed and
perplexed with how poorly their programs perform. With the flexibility of newer
versions of OpenGL, students can try various strategies and achieve performances
close to spec. In addition, if they use a compatibility profile, they can compare
immediate-mode and retained-mode performance.

1.6.2 Transformations and Viewing

This part of the course is fairly standard and takes the most time. We introduce
the standard affine transformations—translation, rotation, scaling, shear—and how
to build them. We then move on to projective transformations and derive from
them the standard orthographic and perspective transformations. Courses differ in
how an instructor divides between theory and application. Before OpenGL 3.1,
the API provided support through some simple matrix functions (glMatrixMode,
glLoadMatrix, glLoadIdentity, glMultMatrix), the standard transforma-
tion functions (glTranslate, glRotate, glScale), matrix stacks (glPush
Matrix, glPopMatrix), and the projection functions (glOrtho, glFrustum). All
these functions have been deprecated. Moreover, because most state variables have
been eliminated, the notion of a current matrix is gone, and thus the concept of a

© 2012 by Taylor & Francis Group, LLC



12 I Discovering

matrix function that alters a current matrix by post multiplication is also gone. All
these changes have major consequences.

At this point in a typical class, the instructor develops the standard affine trans-
formations in homogeneous coordinates. Although the basic translation, rotation
about a coordinate axis, and scaling functions are simple for the students to write
themselves, rotation about an arbitrary axis is more difficult and can be done in a
number of ways. One of the advantages of not having these functions available in
the API is that students pay more attention to the instructor and the textbook since
they can no longer rely on the functionality being part of the API. Nevertheless, we
have added functions to our matrix/vector classes that form the basic matrices, in-
cluding the standard viewing matrices. One reason for this is that we often want to
make comparisons between carrying out a transformation in the application and car-
rying it out in the shader. By providing these matrices, students can carry out these
comparisons with almost identical code.

One of the exercises that has proved helpful has been to use the same model we
used in the geometric section (the cube) and look at different methods of rotating it
in an idle callback. One extreme, in terms of efficiency, is to rotate the vertices in the
application and resend the data. Students can then compare this immediate-mode
strategy with the strategies of sending rotation matrices to the vertex shader or just
sending the angles to a shader.

If the instructor covers hierarchical models, it is simple to add matrix push and
pop functions to implement matrix stacks. Some instructors are interested in teach-
ing about quaternions as part of a discussion on rotation. Quaternions can be imple-
mented with just a few lines of code in a shader and thus fit well into a shader-based
course.

1.6.3 Lighting and Shading

This section, more than any other, shows the benefits of the shader-based approach.
In the past, students were able to use only the Blinn-Phong lighting because it was
the only model supported by the fixed-function pipeline. Other models could be
discussed but could only be implemented in an offline manner. Equally problematic
was that only vertex lighting was available. Thus, while students could study Phong
and Gouraud shading, they could not implement Phong shading within the pipeline.
Consequently, students focussed on a single lighting and shading model. With pro-
grammable shaders, both per-vertex and per-fragment lighting can be accomplished
with almost identical code. Students can even use our matrix and vector types to im-
plement per-vertex lighting in the application. Once students have covered texture
mapping, it is fairly easy to add bump mapping as an additional shading method.

The deprecation of most state variables and immediate-mode functions does
cause some problems. Applications must provide their own normals, usually as a
vertex attribute. The larger problem occurs with transforming normals. When stu-
dents implement a lighting shader, they must provide a normal matrix because the

© 2012 by Taylor & Francis Group, LLC



1. Teaching Computer Graphics Starting with Shader-Based OpenGL 13

state variable gl NormalMatrix has been deprecated. Students can either imple-
ment this matrix themselves, either in the application or the shader, or a normal
matrix function can be added to the mat.h file.

1.6.4 Texturing and Discrete Processing

Most of the pre-3.1 texture functions have not changed with recent versions of
OpenGL. The application sets up a texture object. Texture coordinates can be pro-
duced in either the application as a vertex attribute or in the vertex shader and then
interpolated by the rasterizer. Finally, a sampler is used in the fragment shader that
applies the shader to coloring each fragment.

Starting with OpenGL 3.1, pixel processing is dramatically different. Both the
bitmap- and pixel-writing functions have been deprecated, as have some of the related
functions, such as those for using an accumulation buffer. Although these functions
were easy to use, they were extremely inefficient. Here is a case where ease of pro-
gramming leads to poor use of the GPU and a bottleneck due to large amounts of
data that go back and forth between the CPU and the GPU. The alternative is to take
an approach based on using fragment shaders to manipulate textures. For example,
the simple fragment shader in Listing 1.5 is sufficient to illustrate image smoothing
and can be altered easily to do other imaging operations.

in vec2 texCoord ;
out vec4 FragColor;
uniform float d;

uniform sampler2D image;

void main()
{

FragColor =
(texture ( image , vec2(texCoord .x + d, texCoord .y))

+ texture ( image , vec2(texCoord .x, texCoord .y + d))
+ texture ( image , vec2(texCoord .x - d, texCoord .y))
+ texture ( image , vec2(texCoord .x, texCoord .y - d))) / 4.0;

}

Listing 1.5. Image-smoothing shader.

1.6.5 Advanced Topics

The topics we discussed above are central to most first courses in computer graph-
ics. Depending on the instructor and the focus (programming vs. theory, survey
vs. depth), three additional topics fit in well at this level. The first is curves and
surfaces. Although evaluators have been deprecated, they are easy to create on the
application side. If we use a more recent version of OpenGL, a much more interest-
ing approach is to introduce geometry shaders for generating parametric cubic curves.
Geometry shaders do not add a significant amount of programming complexity, and

© 2012 by Taylor & Francis Group, LLC



14 I Discovering

they can also be used for an introduction to subdivision curves and surfaces. Tessel-
lation shaders may be better for parametric polynomial surfaces but are most likely
much too complex for a first course.

The second topic that an instructor might consider introducing is framebuffer
objects (FBOs). Although FBOs require the introduction of more OpenGL detail,
they open up many new areas that lead to excellent student projects. Consider ren-
dering to a texture. Because textures are shared by all instances of shaders, they
provide shared memory. Doing a single pass through a texture as in the previous
section is simple, but dynamic imaging operations are much more interesting. Such
examples are usually best done by rendering to an off-screen buffer and then using
this buffer as a texture for the next iteration. This type of double buffering (or buffer
ping-ponging) is not only the basis for nongraphical uses of GPUs, as with CUDA or
OpenCL, but is also used for games, particle systems, and agent-based simulations.

Lacking the necessary hardware and software, the early courses in computer
graphics spent a lot of time on algorithms for rasterization, clipping, and hidden-
surface removal. As better hardware and APIs such as OpenGL became available,
much of that emphasis has been lost. Instructors can rely on the graphics system to
do these tasks, and the discussion of such algorithms tends to be short and at the end
of a typical introductory course. Programmable shaders allow the student to study
and implement a wide range of graphics algorithms as possible class projects.

1.6.6 Issues

As exciting as we find the shader-based approach, there are some issues. Some in-
structors may find that the extra time needed to get to the first programming assign-
ment is a problem. We have not found that to be the case, nor did we find that we
had less time to teach the core topics. What is more significant is that there is a real
change in emphasis from a focus on interactions between the CPU and GPU to the
capabilities of the GPU itself. With a shader-based OpenGL, some of the standard
interactive operations involve much more application overhead than they did with
immediate-mode graphics. The main reason is that interactive techniques, such as
the use of menus or rubber-banding of objects as they are moved across the display,
can be done very easily with immediate-mode graphics. With a fully shader-based
OpenGL, data must first be moved to the GPU. Most techniques are doable with a
shader-based OpenGL, but they’re not as simple or elegant as with immediate mode.
Our view is that the time is better spent on other topics that more accurately reflect
what is possible with recent GPUs.

The problem of how to interface with the window system has become more
problematic. The OpenGL Utility Toolkit (GLUT) provided an interface to all the
standard windowing systems. It allowed an application to open and manipulate one
or more windows, use a mouse and keyboard with OpenGL, provided some nice
extras such as the teapot (with normals), and system independent text. GLUT has
been unchanged for 10 years. Consequently, many of its features, including text

© 2012 by Taylor & Francis Group, LLC



1. Teaching Computer Graphics Starting with Shader-Based OpenGL 15

rendering and some of its objects, should not work with a shader-based OpenGL
using only a core profile, because many GLUT functions rely on deprecated OpenGL
functions. The freeglut project (freeglut.sourceforge.net) addresses some of these
issues, but it too uses deprecated functions. Surprisingly, many applications work
correctly with GLUT or freeglut, depending on the graphics card and driver that
is used. This situation is of dubious benefit for many instructors. For example,
many implementations support GLUT or freeglut menus even though the source
for these toolkits use the deprecated glRasterPos function to implement menus,
and the situation may not hold for long. For example, Mac OS X Lion supports
OpenGL 3.2, but the 3.2 profile is incompatible with the GLUT framework.

There are a few possible approaches to fixing this problem, although the better
ones may take a while to develop. Most instructors do not want to go back to using
the native windowing functions on their architectures. Such an approach would be
in conflict with the ability to teach a course in which students can use Windows, Mac
OS X, Linux, OpenGL ES, or WebGL. There are a few cross-platform alternatives
to GLUT out there, but it remains to be seen if any of them will become established.
Perhaps a more desirable path would be for some group to update freeglut so it is
fully compatible with a shader-based OpenGL.

An interesting alternative would be to use WebGL for beginning classes. Al-
though academic CS departments have an aversion to JavaScript, there is a lot to be
said for such an approach. WebGL is supported by almost all the latest browsers on
Windows, Mac OS X, and Linux. Hence, there is no need to worry about differences
among systems. In addition, there is a wide range of tools available for interaction
with WebGL.

Finally, there are issues with the various versions of OpenGL and GLSL and with
the associated drivers. Although OpenGL 3.1 was the first version to require the
application to provide shaders and deprecated many functions from earlier versions,
it was plagued by many ambiguities and some features that were reexamined in later
versions. Starting with OpenGL 3.2, OpenGL introduced multiple profiles that al-
low the programmer to request a core profile or a compatibility profile that includes
the deprecated functions. However, with the rapid release of new versions and the si-
multaneous evolution of GLSL, OpenGL drivers vary dramatically in which versions
and profiles they support and in how they interpret the standards. In practice, with
the variety of versions, drivers, profiles, and GPUs available, getting students started
can take some effort. However, once students get the Hello World program running,
they have little trouble with the mechanics of their assignments.

1.7 Conclusion
Overall, we are convinced that starting with a shader-based OpenGL is not only
possible but makes for a much better first course in computer graphics. The feedback
from the students has been overwhelmingly positive. Students who used WebGL or

© 2012 by Taylor & Francis Group, LLC



16 I Discovering

OpenGL ES were especially happy with the course. We attribute a large part of
their enthusiasm to the ease with which they could demo their assignments to their
cohorts, friends, and families.

The code for our class is available at www.cs.unm.edu/∼angel, and many other
examples can be found starting at www.opengl.org.

Acknowledgments. Dave Shreiner (ARM, Inc.) has been an enormous help over many
years, both as a coauthor of our textbook and copresentor of many SIGGRAPH courses. My
students were the first to get me interested in OpenGL over 15 years ago. More recently, my
students at the University of New Mexico and colleagues at the Santa Fe Complex pushed me
toward teaching a fully shader-based introductory course.

Bibliography
[Angel and Shreiner 11] Edward Angel and Dave Shreiner. “Teaching a Shader-Based Intro-

duction to Computer Graphics.” IEEE Computer Graphics and Applications 31:2 (2011),
9–13.

[Angel and Shreiner 12] Edward Angel and Dave Shreiner. Interactive Computer Graphics,
Sixth Edition. Boston: Addison-Wesley, 2012.

[Angel 09] Edward Angel. Interactive Computer Graphics, Fifth Edition. Boston: Addison-
Wesley, 2009.

[Foley et al. 96] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes.
Computer Graphics, Second Edition. Reading: Addison-Wesley, 1996.

[Hearn et al. 11] Donald Hearn, M. Pauline Baker, and Warren R. Carithers. Computer
Graphics, Fourth Edition. Boston: Prentice Hall, 2011.

[Newman and Sproull 79] William M. Newman and Robert F. Sproull. Principles of Interac-
tive Computer Graphics, Second Edition. New York: McGraw Hill, 1979.

© 2012 by Taylor & Francis Group, LLC



Transitioning Students to
Post-Deprecation OpenGL

Mike Bailey

2.1 Introduction

From an educator’s perspective, teaching OpenGL in the past has been a snap. The
separation of geometry from topology in the glBegin-glEnd, the simplicity of
glVertex3f, and the classic organization of the postmultiplied transformation ma-
trices has been fast and easy to explain. This has considerably excited the students
because going from zero knowledge to “cool 3D program you can smugly show your
friends” was the task of a single lesson. This made motivation easy.

The Great OpenGL Deprecation has changed that. Creating and using vertex
buffer objects is a lot more time consuming to explain than glBegin-glEnd [Angel
11]. It’s also much more error-prone. Creating and maintaining matrices and matrix
stacks now requires deft handling of matrix components and multiplication order
[GLM 11]. In short, while postdeprecation OpenGL might be more streamlined
and efficient, it has wreaked havoc on those who need to teach it and even more on
those who need to learn it.

So the “old way” is not current, but the “new way” takes a long time to learn be-
fore one can see a single pixel. How can we keep students enthusiastic and motivated
but still move them along the road to learning things the new way?1 This chapter

1One option, of course, is not to transition at all, where the current penalty is simply falling behind
the OpenGL curve. However, in some instances, most notably, OpenGL ES 2.0 [Munshi 08], failing to
transition is not even an option.

17

2

© 2012 by Taylor & Francis Group, LLC



18 I Discovering

discusses intermediate solutions to this problem by presenting C++ classes that ease
the transition to postdeprecation OpenGL. These C++ classes are

1. Create vertex buffers with methods that look suspiciously like glBegin-

glEnd.

2. Load, compile, link, and use shaders.

This chapter also suggests a naming convention that can be instrumental in keep-
ing shader variables untangled from each other.

2.2 Naming Shader Variables: Introduction
This isn’t exactly a transition issue. It’s more of a confusion-prevention issue.

With seven different places that GLSL variables can be set, it is convenient to
adopt a naming convention to help recognize what variables came from what sources.
This works very well, as shown in Table 2.1.

Beginning letter(s) Means that the Variable
a Is a per-vertex attribute from the application
u Is a uniform variable from the application
v Came from a vertex shader
tc Came from a tessellation control shader
te Came from a tessellation evaluation shader
g Came from a geometry shader
f Came from a fragment shader

Table 2.1. Variable name prefix convention.

2.3 Naming Shader Variables: Details
Variables like gl Vertex and gl ModelViewMatrix have been built-in to the
GLSL language from the start. They are used like this:

vec4 ModelCoords = gl_Vertex;
vec4 EyeCoords = gl_ModelViewMatrix * gl_Vertex;
vec4 ClipCoords = gl_ModelViewProjectionMatrix * gl_Vertex;
vec3 TransfNorm = gl_NormalMatrix * gl_Normal;

However, starting with OpenGL 3.0, they have been deprecated in favor of user-
defined variables that we pass in from the application. The built-ins still work if
compatibility mode is enabled, but we should all be prepared for them to go away
some day. Also, OpenGL ES has already completely eliminated the built-ins.

© 2012 by Taylor & Francis Group, LLC



2. Transitioning Students to Post-Deprecation OpenGL 19

We have chosen to pretend that we have created variables in an application and
have passed them in. So, the previous lines of code would be changed to look like
this:

vec4 ModelCoords = aVertex ;
vec4 EyeCoords = uModelViewMatrix * aVertex ;
vec4 ClipCoords = uModelViewProjectionMatrix * aVertex ;
vec3 TransfNorm = uNormalMatrix * aNormal ;

If they really are being passed in from the application, we can go ahead and use
these names. But, if we haven’t made that transition yet, the new names can still be
used (thus preparing for an eventual transition) by including a set of #defines at
the top of their shader code, as shown in Listing 2.1.

If the graphics driver supports the ARB shading language include exten-
sion,2 then these lines can be #included right into the shader code. If it is not
supported, an #include can be “faked” by copying these lines into the first of the
multiple strings that are used to load shader source code before compiling.

The #line statement is there so that compiler error messages give the correct
line numbers and do not include these lines in the count.

Later on in this chapter, this set of #include lines will be referred to as gstap.h.3

// uniform variables:

#define uModelViewMatrix gl_ModelViewMatrix
#define uProjectionMatrix gl_ProjectionMatrix
#define uModelViewProjectionMatrix gl_ModelViewProjectionMatrix
#define uNormalMatrix gl_NormalMatrix
#define uModelViewMatrixInverse gl_ModelViewMatrixInverse

// per-vertex attribute variables:

#define aColor gl_Color
#define aNormal gl_Normal
#define aVertex gl_Vertex
#define aTexCoord0 gl_MultiTexCoord0
#define aTexCoord1 gl_MultiTexCoord1
#define aTexCoord2 gl_MultiTexCoord2
#define aTexCoord3 gl_MultiTexCoord3
#define aTexCoord4 gl_MultiTexCoord4
#define aTexCoord5 gl_MultiTexCoord5
#define aTexCoord6 gl_MultiTexCoord6
#define aTexCoord7 gl_MultiTexCoord7

#line 1

Listing 2.1. #include file to translate new names to old names.

2. . . and if this line is placed at the top of the shader code: #extension GL ARB shading

language include : enable.
3. . . which stands for Graphics Shaders: Theory and Practice, the book in which this file originally

appeared (Second Edition, A K Peters, 2011).

© 2012 by Taylor & Francis Group, LLC



20 I Discovering

2.4 Indexed Vertex Buffer Object C++ Class
There is no question that using glBegin-glEnd is convenient, especially when
beginning to learn OpenGL. With this in mind, here is a C++ class that looks like
the application is using glBegin-glEnd, but inside, its data structures are preparing
to use indexed vertex buffer objects (VBOs) [Shreiner 09] when the class’s Draw( )

method is called. The Print( ) method’s print format shows the data in VBO-
table form so the students can see what they would have created if they had used
VBOs in the first place. The following methods are supported by the class, as shown
in Listing 2.2.

void CollapseCommonVertices( bool collapse );
void Draw( );
void Begin( GLenum type );
void Color3f ( GLfloat red, GLfloat green , GLfloat blue );
void Color3fv ( GLfloat *rgb );
void End( );
void Normal3f ( GLfloat nx, GLfloat ny, GLfloat nz );
void Normal3fv( GLfloat *nxyz );
void TexCoord2f( GLfloat s, GLfloat t );
void TexCoord2fv( GLfloat *st );
void Vertex2f ( GLfloat x, GLfloat y );
void Vertex2fv( GLfloat *xy );
void Vertex3f ( GLfloat x, GLfloat y, GLfloat z );
void Vertex3fv( GLfloat *xyz );
void Print( char *str = ��, FILE *out = stderr );
void RestartPrimitive( );
void SetTol( float tol );

Listing 2.2. VertexBufferObject class methods.

2.4.1 Usage Notes

• This implements an indexed VBO; that is, it keeps track of the vertices’ index
in the VBO and then uses glDrawElements( ) to display the object.

• Passing a TRUE to the CollapseCommonVertices( ) method’s Boolean
argument says that any vertices close enough to each other should be collapsed
to be treated as a single vertex. “Close enough” is defined by the distance
specified in SetTol( ). The advantage to this is that the single vertex gets
transformed only once per display update. The disadvantage is that the col-
lapsing process takes time, especially for large lists of vertices.

• The RestartPrimitive( ) method invokes an OpenGL-ism that restarts
the current primitive topology without starting a new VBO. It is especially
handy for triangle strips and line strips. For example, if the topology is triangle
strip, then RestartPrimitive( ) allows the application to end one strip
and start another and have all the vertices end up in a single VBO. This saves
overhead.

© 2012 by Taylor & Francis Group, LLC



2. Transitioning Students to Post-Deprecation OpenGL 21

• The first call to the Draw( ) method sends the VBO data to the graphics card
and draws it. Subsequent calls to Draw( ) just do the drawing.

2.4.2 Example Code

Listing 2.3 and Figure 2.1 show an example of using the VertexBufferObject

class to draw a colored cube.

#include "VertexBufferObject.h"

VertexBufferObject VB;
. . .

// this goes in the part of the program where graphics things
// get initialized once:

VB.CollapseCommonVertices( true );
VB.SetTol ( .001f ); // how close need to be to collapse

VB.Begin( GL_QUADS );
for( int i = 0; i < 6; i++ )
{

for( int j = 0; j < 4; j++ )
{

VB.Color3fv ( . . . );
VB.Vertex3fv( . . . );

}
}
VB.End( );
VB.Print( "VB:" ); // verify that vertices were really collapsed

. . .

// this goes in the display -callback part of the program :

VB.Draw( );

Listing 2.3. VertexBufferObject class used to draw a colored cube.

Y

X

Z

Figure 2.1. Colored cube created with the VertexBufferObject class.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-4&iName=master.img-156.jpg&w=143&h=120


22 I Discovering

// create an instance of the class:
// (the real constructor �� is in the Begin method)
VertexBufferObject VB;
VB.CollapseCommonVertices( true );
VB.SetTol( .001f );
. . .

// this goes in the part of the program where graphics things
// get initialized once:

int x, y; // loop indices
float ux, uy; // utm coordinates

VB.Begin( GL_LINE_STRIP );

for( y = 0, uy = meteryMin; y < NumLats ; y++, uy += meteryStep )
{

VB.RestartPrimitive( );
for( x = 0, ux = meterxMin; x < NumLngs x++, ux += meterxStep )
{

float uz = Heights [ y*NumLngs + x ];
VB.Color3f ( 1., 1., 0. ); // single color = yellow
VB.Vertex3f ( ux, uy, uz );

}
}

for( x = 0, ux = meterxMin; x < NumLngs ; x++, ux += meterxStep )
{

VB.RestartPrimitive( );
for( y = 0, uy = meteryMin; y < NumLats ; y++, uy += meteryStep )
{

float uz = Heights [ y*NumLngs + x ];
VB.Color3f ( 1., 1., 0. );
VB.Vertex3f ( ux, uy, uz );

}
}

VB.End( );
VB.Print( "Terrain VBO:" );
. . .

// this goes in the display -callback part of the program :

VB.Draw( );

Listing 2.4. VertexBufferObject class used to draw a wireframe terrain.

This next example, shown in Listing 2.4 and Figure 2.2, shows drawing gridlines
on a terrain map. The already-defined Heights[ ] array holds the terrain heights.
This is a good example of using the RestartPrimitive( ) method so that the
next grid line doesn’t have to be in a new line strip. The entire grid is saved as a single
line strip and is drawn by blasting a single VBO into the graphics pipeline.

© 2012 by Taylor & Francis Group, LLC



2. Transitioning Students to Post-Deprecation OpenGL 23

Figure 2.2. Wireframe terrain created with the VertexBufferObject class.

2.4.3 Implementation Notes

• This class uses the C++ standard template library (STL) vector function to
maintain the ever-expanding array of vertices.

• It also uses the C++ STL map function to speed the collapsing of common
vertices.

2.5 GLSLProgram C++ Class
The act of creating, compiling, linking, using, and passing parameters to shaders is
very repetitive [Rost 09,Bailey 11]. When teaching students, we have found it helpful

bool Create( char *, char * = NULL , char * = NULL , char * = NULL , char * = NULL );
bool IsValid ( );
void SetAttribute( char *name , int val );
void SetAttribute( char *name , float val );
void SetAttribute( char *name , float val0 , float val1 , float val2 );
void SetAttribute( char *name , float *valp );
void SetAttribute( char *name , Vec3& vec3 );
void SetAttribute( char *name , VertexBufferObject& vb, GLenum which );
void SetGstap ( bool set );
void SetUniform( char *name , int );
void SetUniform( char *name , float );
void SetUniform( char *name , float , float , float );
void SetUniform( char *name , float [3] );
void SetUniform( char *name , Vec3& );
void SetUniform( char *name , Matrix4 & );
void Use( );
void UseFixedFunction( );

Listing 2.5. GLSLProgram class methods.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-4&iName=master.img-224.jpg&w=176&h=142


24 I Discovering

to create a C++ class called GLSLProgram that implements this process. This class has
the tools to manage all the steps of shader program development and use, including
source-file opening, loading, and compilation. It also has methods that implement
setting attribute and uniform variables. The following methods are supported by the
class, as shown in Listing 2.5.

2.5.1 Usage Notes

• The Create( ) method takes up to five shader file names as arguments.
From the filename extensions shown in Table 2.2, it figures out what type
of shaders these are, loads them, compiles them, and links them all together.
All errors are written to stderr.4 It returns true if the resulting shader binary
program is valid, or false if it is not. The IsValid( ) method can be called
later if the application wants to know if everything succeeded or not. The files
listed in the Create( ) call can be in any order. The filename extensions that
the Create( ) method is looking for are shown in Table 2.2.

Extension Shader Type
.vert GL VERTEX SHADER

.vs GL VERTEX SHADER

.frag GL FRAGMENT SHADER

.fs GL FRAGMENT SHADER

.geom GL GEOMETRY SHADER

.gs GL GEOMETRY SHADER

.tcs GL TESS CONTROL SHADER

.tes GL TESS EVALUATION SHADER

Table 2.2. Shader type filename extensions.

• The SetAttribute( ) methods set attribute variables to be passed to the
vertex shader. The vertex buffer version of the SetAttribute( ) method
lets a VertexBufferObject be specified along with which data inside it is
to be assigned to this attribute name. For example, one might say:

GLSLProgram Ovals;
VertexBufferObject VB;

. . .
Ovals.SetAttribute ( "aNormal ", VB, GL_NORMAL_ARRAY );

• The SetUniform( ) methods set uniform variables destined for any of the
shaders.

4Standard error is used for these messages because it is unbuffered. If a program crashes, the helpful
messages sent to standard output might still be trapped in a buffer and will not be seen. Those messages
sent to standard error were seen right away.

© 2012 by Taylor & Francis Group, LLC



2. Transitioning Students to Post-Deprecation OpenGL 25

• The Use( ) method makes this shader program active so that it affects any
subsequent drawing. If someone insists on using the fixed functionality, the
UseFixedFunction( ) method returns the state of the pipeline to doing so.

• The SetGstap( ) method is there to give the option to have the gstap.h code
included automatically. Just pass TRUE as the argument. Call this before the
call to the Create( ) method.

2.5.2 Example Code

Listing 2.6 shows an example GLSLProgram class application.

#include "GLSLProgram.h"

float Ad, Bd, NoiseAmp , NoiseFreq , Tol;
GLSLProgram Ovals;
VertexBufferObject VB;

. . .

// set everything up once:

Ovals.SetVerbose( true );
Ovals.SetGstap ( true );
bool good = Ovals.Create( "ovalnoise.vert", "ovalnoise.frag" );
if( ! good )
{

fprintf ( stderr , "GLSL Program Ovals wasn �t created .\n" );
. . .

}

. . .

// do this in the display callback :

Ovals.Use( );
Ovals.SetUniform( "uAd", Ad );
Ovals.SetUniform( "uBd", Bd );
Ovals.SetUniform( "uNoiseAmp", NoiseAmp );
Ovals.SetUniform( "NoiseFreq", NoiseFreq );
Ovals.SetUniform( "uTol", Tol );
Ovals.SetAttribute( "aVertex ", VB, GL_VERTEX_ARRAY );
Ovals.SetAttribute( "aColor", VB, GL_COLOR_ARRAY );
Ovals.SetAttribute( "aNormal ", VB, GL_NORMAL_ARRAY );

VB.Draw( );

Listing 2.6. GLSLProgram class application example.

2.5.3 Implementation Notes

The SetAttribute( ) and SetUniform( ) methods use the C++ STL map
function to relate variable names to variable locations in the shader program sym-
bol table. It only ever really looks them up once.

© 2012 by Taylor & Francis Group, LLC



26 I Discovering

2.6 Conclusion
From a teaching perspective, the simplicity of explanation and the speed to develop
an application have long been advantages of using OpenGL in its fixed-function,
predeprecation state. Students of OpenGL do need to learn how to use OpenGL in
the postdeprecation world. However, they don’t need to learn it right from the start.

This chapter has presented a way of starting students out in a way that is easier for
them to learn but that still uses the recommended methods underneath. As they get
comfortable with graphics programming, the “underneath” can be revealed to them.
This sets the students up for using shaders and VBOs.

This chapter has also suggested a shader-variable naming convention. As shaders
become more complex, and as more variables are being passed between the shaders,
we have found that this is useful to keep shader-variable names untangled from each
other. This naming convention, along with the gstap.h file, sets students up for
passing their own quantities into their shaders.

Bibliography
[Angel 11] Edward Angel and Dave Shreiner, Interactive Computer Graphics: A Top-down Ap-

proach with OpenGL, 6th edition, Reading, MA: Addison-Wesley, 2011.

[Bailey 11] Mike Bailey and Steve Cunningham, Computer Graphics Shaders: Theory and Prac-
tice, Second Edition, Natick, MA: A K Peters, 2011.

[GLM 11] GLM. “OpenGL Mathematics.” http://glm.g-truc.net/, 2011.

[Munshi 08] Aaftab Munshi, Dan Ginsburg, and Dave Shreiner, OpenGL ES 2.0, Reading,
MA: Addison-Wesley, 2008.

[Rost 09] Randi Rost, Bill Licea-Kane, Dan Ginsburg, John Kessenich, Barthold Lichtenbelt,
Hugh Malan, and Mike Weiblen, OpenGL Shading Language, 3rd edition. Reading, MA:
Addison-Wesley, 2009.

[Shreiner 09] Dave Shreiner,OpenGL 3.0 Programming Guide, 7th edition. Reading, MA:
Addison-Wesley, 2009.

© 2012 by Taylor & Francis Group, LLC



WebGL for OpenGL Developers

Patrick Cozzi and Scott Hunter

3.1 Introduction
Don’t get us wrong—we are C++ developers at heart. We’ve battled triple-pointers,
partial template specialization, and vtable layouts under multiple inheritance. Yet,
through a strange series of events, we are now full-time JavaScript developers. This
is our story.

At the SIGGRAPH 2009 OpenGL BOF, we first heard about WebGL, an up-
coming web standard for a graphics API based on OpenGL ES 2.0 available to
JavaScript through the HTML5 canvas element, basically OpenGL for JavaScript.
We had mixed feelings. On the one hand, WebGL brought the promise of devel-
oping zero-footprint, cross-platform, cross-device, hardware-accelerated 3D applica-
tions. On the other, it requires us to develop in JavaScript. Could we do large-scale
software development in JavaScript? Could we write high-performance graphics code
in JavaScript?

After nearly a year of development resulting in over 50,000 lines of JavaScript
and WebGL code, we have answered our own questions: properly written JavaScript
scales well, and WebGL is a very capable API with tremendous momentum. This
chapter shares our experience moving from developing with C++ and OpenGL for
the desktop to developing with JavaScript and WebGL for the web. We focus on
the unique aspects of moving OpenGL to the web, not on porting OpenGL code to
OpenGL ES.

27

3

© 2012 by Taylor & Francis Group, LLC



28 I Discovering

3.2 The Benefits of WebGL
Loosely speaking, WebGL brings OpenGL ES 2.0 to JavaScript and, therefore, to
the web. From a web developer’s point of view, this is a natural progression for
web-deliverable media types: first there was text, then images, then video, and now
interactive 3D. From an OpenGL developer’s point of view (our point of view), we
have a new way to deliver applications: the web. Compared to traditional desktop
applications, the web has several advantages.

3.2.1 Zero-Footprint

Plugins aside, browsing to a web page does not require an install, nor does it require
the user to have administrator privileges. Users simply browse to a URL and expect
their content. As application developers, having such a low barrier to entry enables us
to reach the widest possible market. In our work at Analytical Graphics, Inc. (AGI),
many of our users do not have administrator privileges and have to go through long
processes to have new software installed. WebGL helps us overcome these barriers.

3.2.2 Cross-Platform

The web provides a convenient way to reach all the major desktop operating systems:
Windows, Linux, and OS X. In fact, part of our motivation for using WebGL at AGI
was to support multiple platforms. We have found very few differences across plat-
forms, with the biggest difference being the presence of ANGLE on Windows, which
translates WebGL (OpenGL ES 2.0) to Direct3D 9, as discussed in Chapter 39.

As of this writing, which comes less than a year after the release of the WebGL 1.0
specification, desktop browsers supporting WebGL include Chrome, Firefox, Safari,
and the Opera 12 alpha. Internet Explorer (IE) does not support WebGL; however,
several workarounds exist, with our preferred option being Google Chrome Frame.1

Chrome Frame is an IE plugin that does not require administrator privileges to install
and that brings Chrome’s JavaScript engine and open web technologies, including
WebGL, to IE. IE’s networking layer is still used, but pages that include a meta tag
requesting Chrome Frame are presented using Chrome Frame and are able to use
WebGL.

Even with multiple developers actively working in the same code base using dif-
ferent operating systems and browsers, we have found very few differences across
browsers, especially Chrome and Firefox.

3.2.3 Cross-Device

Another advantage of WebGL is that web browsers supporting WebGL are start-
ing to become available on tablets and phones. See Figure 3.1. Currently, Firefox

1developers.google.com/chrome/chrome-frame/

© 2012 by Taylor & Francis Group, LLC



3. WebGL for OpenGL Developers 29

Figure 3.1. From top to bottom, WebGL running in Safari on OS X, in Chrome on Win-
dows, in Chromium on Linux, and in Firefox Mobile on Android. Over 800 satellites are
propagated server-side, streamed, and interpolated client-side and rendered as billboards. The
globe is rendering with day and night textures; a specular map; a bump map; and a cloud map
with shadows.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-5&iName=master.img-028.jpg&w=359&h=420


30 I Discovering

Mobile supports WebGL on Android; wide support for the stock browser is expected
soon. Given that Sony recently released their WebGL implementation in the An-
droid 4 browser for their Xperia phones as open source [Edenbrandt 12], we expect
Android support to continue to improve. On iOS, WebGL is officially available to
iAd developers.

As mobile platforms mature, WebGL developers will be able to write code that
targets both desktops and mobile devices. However, some areas will still need spe-
cial consideration. For example, code to handle mouse and keyboard events on the
desktop will be different than code to handle touch events on mobile. Likewise,
desktop and mobile versions may use different shaders and textures and perhaps dif-
ferent optimizations, as discussed in Chapter 24. Although web apps currently do
not deliver the same experience as native apps on mobile, they are becoming very
close with recent HTML5 standards such as geolocation, device orientation, and
acceleration [Mahemoff 11, Meier and Mahemoff 11].

Supporting multiple platforms and devices can be done with more traditional
means, as discussed in Chapter 44, but we feel that JavaScript and WebGL is the
most straightforward way to do so. See Chapter 4 for more on using WebGL with
mobile.

3.2.4 It’s Easy

For OpenGL developers, WebGL is easy. Listing 3.1 is a JavaScript/WebGL port of
the C++/OpenGL code in Listing 1.2 that draws a white rectangle on a black back-
ground using clip coordinates. A WebGL context is created by requesting a WebGL
context from an HTML canvas element. Positions for two triangles are stored in an
array, which is then copied to an array buffer using a familiar call to bufferData.
All WebGL calls are part of the context object and are not global functions as in
OpenGL. A shader program is created using a helper function that is not part of
WebGL, but uses the familiar sequence of calls to createShader, shaderSource,
compileShader, attachShader, createProgram, and linkProgram. Finally,
the position vertex attribute is defined and the screen is cleared, before entering the
draw loop.

The draw function executes once to draw the scene. The call to window.

requestAnimFrame at the end of the function requests that the browser call draw
again when it thinks the next frame should be drawn. This creates a draw loop con-
trolled by the browser, which allows the browser to perform optimizations such as
not animating hidden tabs [Irish 11].

For OpenGL developers, the challenge of moving to WebGL is not in learning
WebGL itself. It is in moving to the web in general and developing in JavaScript, as
explained in Section 3.5.

© 2012 by Taylor & Francis Group, LLC



3. WebGL for OpenGL Developers 31

var canvas = document .getElementById("canvas");
var context = canvas.getContext("webgl") || canvas .getContext("experimental -webgl");

var points = new Float32Array([
-0.5, -0.5, 0.5, -0.5,
0.5, 0.5, 0.5, 0.5,

-0.5, 0.5, -0.5, -0.5
]);

var buffer = context .createBuffer();
context .bindBuffer(context .ARRAY_BUFFER , buffer);
context .bufferData(context .ARRAY_BUFFER , points, context .STATIC_DRAW);

var vs = "attribute vec4 vPosition;" +
"void main(void) { gl_Position = vPosition; }";

var fs = "void main(void) { gl_FragColor = vec4(1.0); }";
var program = createProgram(context , vs, fs, message ); // Helper; not part of WebGL
context .useProgram(program );

var loc = context .getAttribLocation(program , "vPosition");
context .enableVertexAttribArray(loc);
context .vertexAttribPointer(loc , 2, context .FLOAT , false , 0, 0);

context .clearColor(0.0, 0.0, 0.0, 1.0);

function draw() {
context .clear(context .COLOR_BUFFER_BIT);
context .drawArrays(context .TRIANGLES , 0, 6);
window.requestAnimFrame(animate );

}
draw();

Listing 3.1. Hello WebGL. Drawing a white rectangle on a black background.

3.2.5 Strong Tool Support

When we first started investigating WebGL, we were not sure what kind of tool
support to expect. Both Chrome and Firefox with Firebug have excellent JavaScript
debuggers with the features we expect: breakpoints, variable watches, call stacks, etc.
They also provide built-in tools for profiling. Currently, both browsers have six-week
release cycles for stable, beta, and developer releases. For developers, this means we
get new features and bug fixes quickly. Both browsers have public bug trackers that
allow us to submit and follow requests.

For WebGL, the WebGL Inspector provides gDEBugger-like capabilities, such
as stepping through draw call by draw call and viewing the contents and history of
vertex buffers and textures. See Chapter 36 for more on WebGL profiling and tools.

3.2.6 Performance

As C++ developers, our gut reaction to JavaScript is that it is slow. Given the nature
of the JavaScript language, with its loose type system, functional features, and garbage
collection, we don’t expect it to run as fast as our C++ code.

© 2012 by Taylor & Francis Group, LLC



32 I Discovering

Figure 3.2. A 32 × 32 grid evenly spaced in the xy plane; each point’s z component is
determined by a 3D noise function given the xy position and the current time.

To get a feel for the performance difference, we ported the 3D simplex noise
function discussed in Chapter 7 from GLSL to both C++ and JavaScript for use in
a CPU-intensive application. We then wrote code that perturbs a 2D grid originally
in the xy plane over time. At each time step, the z component for each grid point is
computed as z = snoise(x, y, time) on the CPU. To render a wireframe like
that shown in Figure 3.2, we use trivial shaders, store x and y in a static vertex buffer,
and stream z into a separate vertex buffer every frame with glBufferSubData. See
Chapter 28 for additional ways to improve streaming performance.

Given that each noise function call involves a fair amount of computation, this
test simulates a CPU-intensive application that is constantly streaming vertex data to
the GPU—a common use case in our work at AGI, where we simulate and visualize
dynamic objects like satellites and aircrafts. Table 3.1 shows the results in millisec-
onds per frame for various grid sizes for C++ and JavaScript. The C++ version is
a default release build using Visual C++ 2010 Express and GLM with SIMD opti-
mizations. The test laptop has an Intel Core 2 Duo at 2.13 GHz with an NVIDIA
GeForce 260M with driver version 285.62.

As grid size increases, all implementations slow down. For all grid sizes, C++
is much faster than JavaScript. Given that this is a CPU-intensive application, we
expect C++ to be faster. JavaScript supports only double-precision floating-point,
not single-precision; this plays a role since the noise function uses float in C++ and
is not able to do so in JavaScript.2

Mesh resolution 32 × 32 64 × 64 128 × 128
C++ 1.9 ms 6.25 ms 58.82 ms
JavaScript—Chrome 18 27.77 ms 111.11 ms 454.54 ms
Relative slowdown 14.62 17.78 7.73

Table 3.1. C++ vs. JavaScript performance for our CPU-intensive example.

2However, in JavaScript, the noise function’s return value is put into a Float32Array for streaming
to WebGL.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-5&iName=master.img-091.jpg&w=215&h=96


3. WebGL for OpenGL Developers 33

Mesh resolution 32 × 32 64 × 64 128 × 128
C++ 3.33 ms 9.43 ms 37.03 ms
JavaScript—Chrome 18 12.82 ms 22.72 ms 41.66 ms
Relative slowdown 3.85 2.41 1.13

Table 3.2. C++ vs. JavaScript performance for our GPU-intensive example. The mesh is
drawn 256 times per frame.

Seeing JavaScript take 7.73–17.78 times longer than C++ is initially dishearten-
ing. However, let’s consider performance for a GPU-intensive application. To do
so, we no longer execute the noise function on the CPU, nor do we stream a vertex
buffer for the z components. Instead, we call the original GLSL noise function from
the vertex shader as shown in Listing 3.2 and simply draw a static mesh. To increase
the GPU workload, we draw the mesh 256 times per frame with sequential calls to
glDrawElements.

The GPU-intensive performance numbers, shown in Table 3.2, are more favor-
able for WebGL. In the most GPU-intense case where a 128 × 128 mesh is drawn
256 times per frame, JavaScript in Chrome takes only 1.13 times longer than C++.
Of course, we should expect such performance; the heavy computation is offloaded
to the GPU, and JavaScript is no longer the bottleneck.

The CPU- and GPU-intensive examples are not the norm for most applications,
but they illustrate an important point: to maximize WebGL performance, we must
utilize the GPU as much as possible. Tavares applies this principle to render 40,000
dynamic objects at 30–40 fps in WebGL [Tavares 11].

Besides pushing work onto the GPU, we can offload JavaScript by pushing other
work to the server. At AGI, we use numerically intense algorithms to simulate the
dynamics of satellites and other objects. We perform these computations server-side
and periodically transfer keyframes, which are interpolated client-side. Balancing the

attribute vec2 position ;

uniform float u_time;
uniform mat4 u_modelViewPerspective;

varying vec3 v_color ;

float snoise(vec3 v) { /* ... */ }

void main(void)
{

float height = snoise(vec3(position .x, position .y, u_time));
gl_Position = u_modelViewPerspective * vec4(vec3(position , height), 1.0);
v_color = mix(vec3(1.0, 0.2, 0.0), vec3(0.0, 0.8, 1.0), (height + 1.0) * 0.5);

}

Listing 3.2. Vertex shader used for the GPU-intensive example.

© 2012 by Taylor & Francis Group, LLC



34 I Discovering

amount of work done on the client and the server and the amount of data transfered
requires care. Chapter 30 discusses efficient techniques for transferring models.

Heavy client-side computation can also be moved off the rendering thread using
web workers and transferable objects [Bidelman 11].

We don’t argue that JavaScript and WebGL will perform better than C++ and
OpenGL; however, given that raw JavaScript performance continues to improve and
that WebGL, server-side computation, and web workers allow us to minimize the
JavaScript bottleneck, we feel that lack of performance is not a reason to dismiss
WebGL.

3.3 Security
When moving from OpenGL to WebGL, a new topic familiar to web develop-
ers but perhaps unfamiliar to desktop developers emerges: security. OpenGL al-
lows undefined values in certain areas. For example, reading outside of the frame-
buffer using glReadPixels is undefined, as are the contents of a buffer created by
glBufferData with a NULL data pointer. Uninitialized and undefined values can
lead to security holes, so WebGL defines values for cases like theses; readPixels re-
turns an RGBA of [0, 0, 0, 0] for pixels outside of the framebuffer, and bufferData

initializes the contents to zero if no data are provided. These API changes usually do
not affect us as developers. However, other security considerations do.

3.3.1 Cross-Origin Requests

In OpenGL, image data provided to a texture with, for example, glTexImage2D
or glTexSubImage2D, can come from anywhere. Image data may be procedurally
generated in code, read from a file, or received from a server. In WebGL, if the image
comes from a server, it must be from the same domain that sent the web page. For
example, a WebGL page hosted at myDomain.com cannot download images from
anotherDomain.com, and this results in an SECURITY_ERR exception, as shown in
Figure 3.3. This restriction is in place to prevent sites from using a user’s browser as a
proxy to access images that are meant to be private or are behind a firewall. However,
accessing image data from another site is actually a common use case. Consider
all the sites that embed Google Maps; the images for map tiles come from Google
servers, regardless of the server hosting the web page embedding the map.

There are two ways to work around this restriction. The first is the use of cross-
origin resource sharing (CORS). A server enables CORS by explicitly allowing it
in its HTTP response headers.3 Many servers, such as Google Maps, are starting
to provide images intended for public access this way. As shown in Figure 3.4, in
JavaScript, the image is requested using CORS with the line img.crossOrigin

3Setting this up on the server is straightforward; see enable-cors.org.

© 2012 by Taylor & Francis Group, LLC



3. WebGL for OpenGL Developers 35

Figure 3.3. Attempting to create a texture from an
image from another domain without CORS or a proxy.

Figure 3.4. Creating a texture from an image from
another domain using CORS.

= "anonymous";. We expect that servers of public image data will enable these
headers over time.

If a server does not support CORS, the image request can be made through a
proxy server hosted on the web page’s domain, as shown in Figure 3.5. Instead of
sending the image request directly to anotherDomain.com, the image url is sent as an
HTTP argument to a proxy server hosted on myDomain.com, which then requests
the image from anotherDomain.com and sends it back to the client. The image can
be used to create a texture because, from the client’s perspective, it comes from the
same domain.

Set up a proxy server with care. Do not let it forward arbitrary requests, which
would open up a security hole. Also, some services require a direct browser connec-
tion and, therefore, do not work with proxies.

Cross-origin restrictions can also prevent local file access for images used as tex-
tures. Instead of testing html files using the filesystem, they should be hosted by
a local web server. When testing on Linux and Mac, this can be as simple as

Figure 3.5. Creating a texture from an image from another domain by transferring it through
a proxy.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-5&iName=master.img-190.jpg&w=184&h=95
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-5&iName=master.img-191.jpg&w=186&h=95
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-5&iName=master.img-192.jpg&w=226&h=120


36 I Discovering

running python -m SimpleHTTPServer in the same directory as the index.html
file, and then browsing to http://localhost:8000/. Alternatively, these restrictions
can be relaxed by starting Chrome with the --allow-file-access-from-files
command line argument or changing security.fileuri.strict origin

policy to false in Firefox. This should be done for testing only.
Although we discuss cross-origin requests in the context of images, the same re-

strictions are also true of videos. For more information on CORS, see “Using CORS”
[Hossain 11].

3.3.2 Context Loss

Windows Vista introduced a new driver model that reset the graphics driver if a draw
call or other operation took too long, e.g., more than two seconds. This surprised
the GPGPU community, whose draw calls intentionally took a long time due to ex-
pensive computations done in vertex and fragment shaders to execute general com-
putations like physical simulations. In WebGL, a similar watchdog model is used to
protect against denial of service attacks, where malicious scripts with complex shaders
or large batches or both could cause a machine to become unresponsive.

When a long running operation is detected and the graphics driver is reset, all
contexts, including innocent ones, are lost. Using the GL_ARB_robustnessWebGL
extension, the WebGL implementation is notified, which can warn the user that
WebGL content might have caused the reset, and the user can decide if they want to
continue. As WebGL developers, we need to be prepared to restore our context when
it is lost due to a reset [Sherk 11], similarly to how Direct3D 9 developers handle a
lost device, in which GPU resources are lost due to a user changing the window to or
from full screen, a laptop’s cover opening/closing, etc.

For more on WebGL security, see the Khronos Group’s WebGL Security white
paper [Khronos 11].

3.4 Deploying Shaders
JavaScript is served to clients via .js files. With WebGL, the source for vertex and
fragment shaders also needs to be sent to clients. There are several options:

• Store the shader source as JavaScript strings, as done in Listing 3.1. Only a
single HTTP request needs to be made to request the JavaScript and shaders.
However, it is painful to author shaders as JavaScript strings.

• Store the shader source in an HTML script tag, as shown in Listing 3.3.
In JavaScript, the text content of the script can be extracted [Vukićević 10].
Shaders can be shared among multiple HTML files by dynamically generating
the page. This cleanly separates JavaScript and GLSL, and does not require
additional HTTP requests for shaders. Although it is not as painful to author

© 2012 by Taylor & Francis Group, LLC



3. WebGL for OpenGL Developers 37

<script id="fs" type="x-shader/x-fragment ">
void main(void)
{

gl_FragColor = vec4(1.0);
}
</script >

Listing 3.3. Storing a fragment shader in an HTML script tag.

a shader this way as compared to using JavaScript strings, it is not as productive
as having separate files for each shader.

• Store each shader in a separate file, creating the best scenario for shader author-
ing. Shaders can be transferred to the client individually on an as-needed basis
using XMLHttpRequest [Salga 11]. This has the downside of requiring an
HTTP request per shader; however, this is unlikely to be significant compared
to other HTTP requests for vertex and texture data.

At AGI, we use a hybrid: shaders are authored individually in separate files, but
deployed as strings in a single JavaScript file. The build converts each GLSL file to a
JavaScript string and concatenates the strings with the existing JavaScript code.

In addition to determining how to organize shaders, shader deployment in WebGL
can also include minifying the GLSL code to reduce the amount of data transfered.
Minification tools such as glsl-unit’s GLSL compiler4 and GLSL Minifier5 perform
a series of transforms that do not change the behavior of the code but reduce its size,
such as removing white space, comments, and dead functions and renaming variables
and functions. This makes the code less readable but is only done for deployment,
not development.

Now that we’ve seen what WebGL has to offer and some of the differences from
OpenGL, let’s look at the biggest bridge to cross when moving from OpenGL to
WebGL: JavaScript.

3.5 The JavaScript Language
In many ways, JavaScript is a very different language than other commonly used
languages such as C++, Java, or C#. Despite the name, JavaScript is not related to
Java; the names are similar for historical reasons. Attempting to write substantial
programs in JavaScript without understanding their important differences from C-
like languages can easily lead to confusing and frustrating results.

The core JavaScript language is standardized under the name ECMAScript, with
Version 5.1 being the latest version at the time of writing. Confusingly, there are

4http://code.google.com/p/glsl-unit/wiki/UsingTheCompiler
5http://www.ctrl-alt-test.fr/?p=171

© 2012 by Taylor & Francis Group, LLC



38 I Discovering

<!doctype html>
<html>
<head>

<meta charset ="utf -8">
<script src="script.js" type="text/javascript">
</script >

</head>
<body>
</body>
</html>

Listing 3.4. A skeleton HTML file.

also versions of JavaScript providing new language features that are only supported
in Firefox. We only discuss ECMAScript features that work in all modern browsers.

Since JavaScript is primarily a browser-based programming language, we need
a web browser to run programs. Unlike C++, there is no compilation step for
JavaScript programs, so all that is necessary to execute JavaScript on a web page
is to add a script tag to an HTML page for each JavaScript file we want to include.
Listing 3.4 contains a simple HTML skeleton showing how to include a JavaScript
file named script.js in the same directory as the HTML file.

JavaScript does not currently have a standard way to include files, except by
adding script tags for each JavaScript file, which will execute sequentially in a sin-
gle context. In Section 3.5.7, we discuss some techniques for code organization.

Because JavaScript has some unusual features that can easily cause mistakes, a
tool named JSLint is available online6 to analyze our source code to detect potential
errors. Section 3.5.8 describes several common errors.

Despite similar syntax, expecting JavaScript to behave the same way as C++ can
lead an unsuspecting developer into a number of traps. We will highlight some
important ways in which JavaScript is unlike C++.

3.5.1 JavaScript Types

Unlike C++, there are very few built-in types in the JavaScript language:

Object. An unordered set of name-value pairs, called the properties of the object.
Property names can be strings, or, as long as the name is a valid identifier, the
quotes can be omitted. Property values can be of any type, including another
object. Object literals are declared as a comma-separated list of colon-separated
name-value pairs, surrounded by curly brackets:

{
a : "value",
"long property " : 1.2

}

6www.jslint.com

© 2012 by Taylor & Francis Group, LLC



3. WebGL for OpenGL Developers 39

Number. A signed, double-precision 64-bit IEEE 754 floating-point number. There
are no integer types or smaller types, though some bitwise operators treat their
inputs as 32-bit signed integers. NaN is a special value meaning “not a num-
ber.”

String. An immutable Unicode character sequence. There is no type representing a
single character, and string literals are declared using matching pairs of either
" or ’.

null and undefined. These are both present in JavaScript. A variable or property’s
value is undefined before it has been assigned. null values can be explicitly
assigned.

Boolean: true or false. In addition, any value can be treated as a boolean, com-
monly using the terms “truthy” and “falsy,” with the following values being
considered “falsy”: false, 0, "", null, undefined, and NaN. All other values are
considered “truthy.”

JavaScript also provides several built-in kinds of objects, all of type Object,
though they differ in how they are constructed and the properties present. Some of
the more commonly used objects are

Array. A random-access sequence of values. Arrays are mutable, resizable, and can
contain values of any type. Array literals are declared as a comma-separated list
of items, surrounded by square brackets:

[1, "two", false]

Function. In JavaScript, all functions are also Objects. They are typically declared
using the function keyword, and neither return types nor argument types are
declared:

function foo(bar, baz) {
return bar + baz;

}

There are also built-in Date and RegExp objects, and web browsers also provide
additional kinds of objects to represent the structure of web pages and allow changes
from JavaScript, called the document object model, or DOM. The standardization
of the browser DOM is not as complete as ECMAScript, but modern generations of
web browsers are very close.

3.5.2 Dynamic Typing

Unlike most compiled languages like C++, which are usually statically typed,
JavaScript is a dynamically typed language, like many other scripting languages, such

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-5&iName=master.img-265.png&w=298&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-5&iName=master.img-265.png&w=298&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-5&iName=master.img-265.png&w=298&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-5&iName=master.img-265.png&w=298&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-5&iName=master.img-265.png&w=298&h=16


40 I Discovering

as Ruby, Perl, or PHP. In dynamically typed languages, variables are not declared to
be of any particular type, but instead are always simply declared as var. One vari-
able can hold values of different types over time, though this can become confusing
to read. Similarly, arguments to functions do not have declared types. As a result,
functions cannot be overloaded by argument type as in C++. A commonly used re-
placement technique in JavaScript libraries is to accept multiple kinds of data for a
given argument, and interpret them differently, as a convenience to callers. For ex-
ample, if a function accepts a web browser DOM object, it might also accept a string
identifier, which is then looked up to find and use the corresponding DOM object.

Because there are very few distinct types—most values are of type Object, vari-
ables don’t declare types, and properties can be added to objects after their
construction—determining the type of an object can be difficult. As a result, most
JavaScript programs rarely concern themselves with the types of values and simply
expect that the values passed to functions have the right properties. A commonly
used term for this approach is duck typing from a metaphor suggesting that “if it
walks and talks like a duck, it must be a duck.” For example, if a function takes a
set of coordinates, it could be designed to accept an object with x and y properties,
regardless of what kind of object it is.

3.5.3 Functional Scoping

Another important difference in JavaScript, as compared to C++, is that the scope of
variables is only limited by function and not by any other kind of block, e.g., if or
for blocks. For example, Listing 3.5 shows how a variable persists outside the block
where it is declared.

A good mental model is to envision that all variables declared throughout a func-
tion are instead declared once at the top and nowhere else. We can write code this
way to help avoid confusion, and JSLint has rules we can use to enforce this.

function f() {
var x = 1; // x will be declared throughout the function .

if (x === 1) {
var a = "a string";
// a will also be declared throughout the function ,
// not just within this if block!

}

// a will also retain its value , after leaving the if block.
while (a === "a string") {

var a = 0; // This still affects the same a! Redeclaring a
// variable with "var" has no effect, but can be confusing.

}
}

Listing 3.5. An example of scopes differing from blocks.

© 2012 by Taylor & Francis Group, LLC



3. WebGL for OpenGL Developers 41

3.5.4 Functional Programming

Because JavaScript functions are first-class objects, functions can be stored in variables
or property values, passed as arguments to other functions, and returned as results
of functions. In this way, JavaScript functions are closer to C++ function objects
(functors), or the new lambda functions in C++11. Listing 3.6 shows some ways we
can make use of this.

When functions are declared in JavaScript, they can refer to variables declared
outside the function itself, forming a closure. In Listing 3.6, the anonymous function
returned by logAndCall refers to func and name, both declared outside the anony-
mous function, and can access their values at a later time, even after logAndCall
itself has returned. Any variables can be closed over in this way simply by accessing
them, so no special syntax is necessary.

// Functions can be declared using this syntax:
function f(a) {

return a + 1;
}

// or this syntax.
var g = function (a) {

return a + 1;
};

// Both produce a function that can be invoked the same way.
var x = f(1), y = g(1); // => x == y == 2

// Objects can contain functions as property values :
var obj = {

v: "Some value",
m: function (x, y) {

return x + y;
}

};

var result = obj.m(x, y); // => result == 4

// Functions can be passed and returned from functions:
function logAndCall(func , name) {

return function () {
// (assume log is defined elsewhere)
log("calling function " + name);
return func();

}
}

var originalFunc = function () {
return "some value";

};
var newFunc = logAndCall(originalFunc , "originalFunc");

var result2 = newFunc (); // => result2 == "some value",
// and log is called with "calling function originalFunc"

Listing 3.6. Examples of using functions as objects.

© 2012 by Taylor & Francis Group, LLC



42 I Discovering

3.5.5 Prototypal Objects

JavaScript is an object-oriented language, but does not use classes for inheritance. In-
stead, every object has a prototype object, and if a particular requested property is not
defined on an object, the prototype is checked next, then the prototype’s prototype,
and so on. The benefit is that data or functions can be declared on a prototype and
shared by many object instances that share that same prototype.

The easiest mechanism for creating objects that share a prototype is the use of
constructor functions. A constructor function is no different from any other func-
tion, except that it is invoked using the new keyword, which has the following effects:

1. A new object is created, with its prototype set to the prototype property of
the constructor function itself.

2. The constructor function is executed with the this keyword set to the newly
created object. This allows the constructor to set properties on the new object.

3. The new object is implicitly returned as the result of the constructor call.

Listing 3.7 provides an example of defining values on the prototype of a con-
structor function and using it to create an object.

// A constructor function . To distinguish them from other functions ,
// by convention their names start with capital letters .
function Rectangle(width , height) {

// �this� will refer to the new instance being constructed.
this.width = width;
this.height = height;

}

// By declaring �area� on the prototype , it will be available
// on any object constructed using the Rectangle constructor.
Rectangle.prototype.area = function () {

return this.width * this.height;
}

var r = new Rectangle(10, 20);

// Accessing properties directly on the object:
var w = r.width; // => w == 10

// Accessing properties on the object �s prototype:
var a = r.area(); // => a == 200

Listing 3.7. An example of object construction.

3.5.6 The this Keyword

In Listing 3.7, we made use of the this keyword inside the area function to access
properties of the object. One confusing aspect of JavaScript is that the this key-
word is bound when a function is called, not when it is defined. This is somewhat

© 2012 by Taylor & Francis Group, LLC



3. WebGL for OpenGL Developers 43

var obj = {
f: function (){

return this;
}

};

// When invoking a function normally , �this� is set as expected .
obj.f() === obj; // => true

// Even though f points to the same function , invoking it directly
// results in a different value of �this �.
var f = obj.f;
f() === obj; // => false

// Functions have a call function that allows you to explicitly
// provide a value for �this �.
f.call(obj) === obj // => true

Listing 3.8. The this keyword depends on how a function is invoked.

analogous to problems in C++ when attempting to pass the address of a member
function as a regular function pointer: the this reference is lost. In normal usage,
as in Listing 3.7, this works as expected because area was invoked in the context
of r. Listing 3.8 shows a different case where this behaves unexpectedly.

One common problematic situation with this is in creating callback functions,
where we may not have control over how our callback function is invoked. In cases
like this, it may be easier to avoid using this. Instead, we can use closures for

var obj = {
x: 10,
getX: function () {

return this.x * 2;
},
createCallbackIncorrect: function () {

// Here we use �this� from a context where it may be incorrect.
return function () {

return this.getX();
}

},
createCallbackClosure: function () {

// By storing �this� in a variable , we always use the right one.
var that = this;
return function () {

return that.getX();
}

},
createCallbackBind: function () {

// �bind� returns a function that always uses the right �this �.
return this.getX.bind(this);

}
};

Listing 3.9. Two ways to preserve a value of this.

© 2012 by Taylor & Francis Group, LLC



44 I Discovering

a similar effect by assigning this to a local variable at a point where we know it
will be correct and referring to that local variable from inside our callback instead.
Alternatively, ECMAScript 5 defines a bind function on all Functions, which
returns an adapter function that executes the original function with a given this

specified, similar to a combination of the mem fun and bind1st functions from the
STL functional library. Listing 3.9 shows these two approaches.

3.5.7 Code Organization

Unlike C++, JavaScript does not have namespaces, so all global variables and func-
tions exist in the same context, across all scripts included in a web page. Because of
this, it is best to minimize the number of global variables our code creates to avoid
conflicts with our own code or third-party libraries. One technique is the use of self-
executing functions to limit the scope of variables by default and create a single global
variable containing all of our functions and constructors. Listing 3.10 shows how
this works.

// This variable will be our only global variable .
var MyLib = {};

(function () {
// This syntax declares , then immediately invokes , an anonymous
// function . The parentheses surrounding the function are necessary
// for syntactic reasons .

var constantValue = 5; // This variable is local to this function .

// So is this constructor function ...
function MyData(x) {

this.x = x + constantValue;
}

// ...but we can �export � it for use elsewhere.
MyLib.MyData = MyData;

})();

// Elsewhere , perhaps in a later script file:

(function () {
// This has the appearance of a function in a namespace , but is
// merely accessing a property on our global container object.
var d = new MyLib.MyData (10);

})();

Listing 3.10. An example of how to hide variables in self-executing functions.

3.5.8 Common Errors

Besides the larger differences already discussed, there are also several smaller differ-
ences that can lead to accidental errors.

© 2012 by Taylor & Francis Group, LLC



3. WebGL for OpenGL Developers 45

In JavaScript, global variables can be declared at any time by simply assigning
a value to each, usually as a result of accidentally forgetting a var keyword when
trying to create a local variable. This can lead to confusing problems in entirely
unrelated areas of the code. To help with this, ECMAScript 5 defines a strict mode
which makes it an error to assign an undeclared variable and also fixes other, more
esoteric parts of the language. To use strict mode, write "use strict"; at the top
of a function to enable it for that function and any nested functions. This syntax was
chosen because older browsers will simply ignore it. If we are using self-executing
functions, described in Section 3.5.7, we can enable it for all the contained code at
once.

Another confusing JavaScript language feature is the standard equality operators
== and !=. Unfortunately, in JavaScript these operators will attempt to coerce the
types of the values being compared, resulting in the string “1” being equal to the
number 1 and white-space strings being equal to the number 0, for example. Since
this is almost never desirable, we should use the noncoercing operators === and !==

instead. We can use JSLint to detect any use of the coercing equality operators.

3.6 Resources
Although we miss developing in C++ and using the latest features of desktop OpenGL,
we found that the benefits of JavaScript and WebGL make the transition well worth
it. For getting up to speed with WebGL, the best resources are the “Learning WebGL
blog,” learningwebgl.com/blog/, and “WebGL Camp,” www.webglcamp.com. For
JavaScript, we recommend JavaScript: The Good Parts [Crockford 08], and for gen-
eral modern web development, check out “HTML5 Rocks,” www.html5rocks.com.

Bibliography
[Bidelman 11] Eric Bidelman. “Transferable Objects: Lightning Fast!” http://updates.

html5rocks.com/2011/12/Transferable-Objects-Lightning-Fast, 2011.

[Crockford 08] Douglas Crockford. JavaScript: The Good Parts. San Jose, CA: Yahoo Press,
2008.

[Edenbrandt 12] Anders Edenbrandt. “WebGL Implementation for XPeria Phones
Released as Open Source.” http://developer.sonyericsson.com/wp/2012/01/25/
webgl-implementation-for-xperia-phones-released-as-open-source/, 2012.

[Hossain 11] Monsur Hossain. “Using CORS.” http://www.html5rocks.com/en/tutorials/
cors/, 2011.

[Irish 11] Paul Irish. “RequestAnimationFrame for Smart Animating.” http://paulirish.com/
2011/requestanimationframe-for-smart-animating/, 2011.

[Khronos 11] Khronos. “WebGL Security White Paper.” http://www.khronos.org/webgl/
security/, 2011.

© 2012 by Taylor & Francis Group, LLC



46 I Discovering

[Mahemoff 11] Michael Mahemoff. “HTML5 vs. Native: The Mobile App Debate.” http://
www.html5rocks.com/en/mobile/nativedebate.html, 2011.

[Meier and Mahemoff 11] Reto Meier and Michael Mahemoff. “HTML5 versus Android:
Apps or Web for Mobile Development?” Google I/O 2011.

[Salga 11] Andor Salga. “Defenestrating WebGL Shader Concatenation.” http://asalga.
wordpress.com/2011/06/23/defenestrating-webgl-shader-concatenation/, 2011.

[Sherk 11] Doug Sherk. “Context Loss: The Forgotten Scripts.” WebGL Camp 4.

[Tavares 11] Gregg Tavares. “WebGL Techniques and Performance.” Google I/O 2011.

[Vukićević 10] Vladimir Vukićević. “Loading Shaders from HTML Script Tags.” http:
//learningwebgl.com/cookbook/index.php/Loading shaders from HTML script tags,
2010.

© 2012 by Taylor & Francis Group, LLC



Porting Mobile Apps to WebGL

Ashraf Samy Hegab

4.1 Introduction
WebGL provides direct graphics hardware acceleration hooks into web browsers, al-
lowing for a richer application experience. This experience is now becoming compa-
rable with native applications. However, the development environment for creating
these new types of rich web apps using WebGL is different.

This chapter walks us through the aspects of porting a typical OpenGL mobile
app from Android and iOS to the web, covering steps from setting up your GL
context to drawing a textured button or handling the camera and controls to finally
debugging and maintaining your application.

This chapter includes accompanying source code that demonstrates the concepts
introduced in iOS, Android, Qt, and WebGL to help developers get up to speed on
web development using WebGL.

4.2 OpenGL across Platforms
Mobile apps have exploded into the scene since the arrival of smartphones. The new
app model introduced by Apple drove the development for interface and style, which
meant a higher utilization of graphics hardware to power animations and graphics in
mobile games and apps. In order for this model to successfully move over to the
web, Microsoft lead the way in providing a hardware-accelerated HTML5 canvas
component. Next to come was the standardization of a 3D hardware-accelerated API

47

4

© 2012 by Taylor & Francis Group, LLC



48 I Discovering

named WebGL, built as a standard component of a modern web browser. WebGL
is based on the OpenGL ES spec and used in the context of a web browser and
JavaScript. And now, with companies like Facebook and Google leading the way
with web app stores, the app market on the web is projected to grow [Gartner 11b].

As application developers, the more platforms we can retail our app on, the more
potential revenue we can earn. One way of architecting our app’s user interface is to
utilize the native drawing components provided per platform, which means Objec-
tive C’s UIKit on iOS, Java’s native Android views and Canvas for Android, and C#
and Silverlight for Windows Phone 7. While our application will benefit from the
platform’s natural look and feel, most of the specific UI code will be required to be
rewritten per platform. However, with the emergence of gamification [Gartner 11b],
which suggests the use of game mechanics to provide for a more enticing user expe-
rience, the design trends of breaking a platform’s standard UI for something more
game-like is now practiced among newer mobile apps. This practice requires us to
develop our UI using OpenGL ES in order to do more than what the native com-
ponents offer and, as a design task, tone down the experience to respect the natural
interface of the platform.

With web apps moving to WebGL and mobile apps moving to OpenGL ES,
porting between them can be made much easier because they share a common API.
But that’s not the end of the story: as the implementation of WebGL becomes
more robust and optimized, we see a future where the norm may be to develop
our application completely for the web and deploy a native shell application that
launches the native web view component directed to the web source as used in Phone-
Gap [Adobe 11]. This further reduces the cost involved in porting.

4.3 Getting Started
This section covers how to go from drawing things on an iOS and Android NDK app
to drawing things on a WebGL app. This requires us to initialize the OpenGL ES
context, load basic shaders, initialize draw buffers, and finally draw.

4.3.1 Initializing an OpenGL ES context

iOS. In order to initialize OpenGL ES on iOS, we need to allocate and set an
EAGLContext. To generate and bind render buffers, CAEAGLLayer is provided
to allow us to allocate storage on native views (see Listing 4.1).

iOS typically sets the render buffer’s size to the device’s screen resolution. We can
request different sizes by modifying the properties of the EAGLLayer:

// Set the back buffer to be twice the density in resolution.
glView.contentScaleFactor = 2.0f;
eaglLayer.contentsScale = 2.0;

© 2012 by Taylor & Francis Group, LLC



4. Porting Mobile Apps to WebGL 49

EAGLContext *context = [[ EAGLContextalloc] initWithAPI:kEAGLRenderingAPIOpenGLES2];
[EAGLContextsetCurrentContext:context ];
glGenFramebuffers( 1, &frameBuffer );
glBindFramebuffer( GL_FRAMEBUFFER , frameBuffer );
glGenRenderbuffers( 1, &renderBuffer );
glBindRenderbuffer( GL_RENDERBUFFER , renderBuffer );
[context renderbufferStorage:GL_RENDERBUFFERfromDrawable:( CAEAGLLayer*)gView.layer];
glFramebufferRenderbuffer( GL_FRAMEBUFFER , GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER , ←↩

renderBuffer );

Listing 4.1. iOS OpenGL initialization.

Android NDK. Android provides a GLSurfaceView class to handle creating a
framebuffer and compositing it into the view system for us. This view requires us to
override the GLSurfaceView.Renderer’s provided onDrawFrame, onSurface
Changed, andonSurfaceCreated functions, which are called on a separate thread.

WebGL. WebGL’s approach is much simpler. We create an HTML5 canvas object
either in JavaScript or in the HTML, then request a webgl context:

var canvas = document .createElement( �canvas� );
document .body.appendChild( canvas );
var gl =canvas.getContext( �webgl � ) || canvas.getContext( �experimental -webgl � );

For WebGL, the size of the canvas determines the resolution of the back buffer.
The best practices recommend we specify a fixed width and height for the canvas
and instead modify the style properties width and height when resizing the con-
text, as internally modifying the canvas size requires the back buffers to be recreated,
which can be slow when resizing the window:

// Keep the back buffer size as 720x480 , but stretch it to be the browser window ←↩
size

canvas.width = 720;
canvas.height = 480;
canvas.style.width = document .body.clientWidth;
canvas.style.height = document .body.clientHeight;

4.3.2 Loading Shaders

While creating a context is different for most platforms, loading shaders is an OpenGL
specified operation, so platform implementations follow the same convention.

In iOS and Android, we create a shader by calling glCreateShader, then
setting the source with glShaderSource, and finally compiling the shader with
glCompileShader. Using WebGL, we create a shader by calling the function of the
WebGL context createShader, then set the shaderSource to point to a string
of the shader we wish to load, before finally calling compileShader. The only

© 2012 by Taylor & Francis Group, LLC



50 I Discovering

GLuint *shader = glCreateShader( GL_VERTEX_SHADER );
glShaderSource( *shader, 1, &source , NULL );
glCompileShader( *shader );

Listing 4.2. iOS/Android compiling shaders.

difference is that in OpenGL on iOS, we use C-style functions, and WebGL uses the
WebGL context for function calls. See Listings 4.2 and 4.3.

var shader = gl.createShader( gl.VERTEX_SHADER );
gl.shaderSource( shader, source );
gl.compileShader( shader );

Listing 4.3. WebGL compiling shaders.

4.3.3 Drawing Vertices

Let’s now compare drawing a basic square using client-side arrays in iOS to using
vertex buffer objects (VBOs) in WebGL. In iOS or Android NDK, we can simply
specify an array of floats and then pass it to the VertexArributePointer function
(see Listing 4.4).

const float vertices [] = {
start.x, start.y, start.z, // Top left
end.x, start.y, start.z, // Top right
start.x, end.y, end.z, // Bottom left
end.x, end.y, end.z, // Bottom right

};
glVertexAttribPointer( ATTRIB_VERTEX , 3, GL_FLOAT , 0, 0, vertices );
glDrawArrays( GL_TRIANGLE_STRIP, 0, 4 ); // Draw the square

Listing 4.4. iOS/Android NDK drawing vertices.

In contrast, in WebGL we first create a vertex buffer object, bind it, copy in our
data, and then proceed with rendering (see Listing 4.5).

Once we have our VBO, we can render by calling vertexAttribPointer and
drawArrays just as in the example shown in Listing 4.4:

gl.vertexAttribPointer( shaderProgram.vertexPositionAttribute,
bufferObject.itemSize , gl.FLOAT , false , 0, 0 );
gl.drawArrays( gl.TRIANGLE_STRIP , 0, bufferObject.numItems );

The Float32Arrayobject is an array of 32-bit floats. Regular arrays in JavaScript
are dynamically typed; this provides flexibility from a coding standpoint at the cost
of performance. Typed arrays that can’t be resized and have their values converted to
the array’s storage type are an attempt [Alexander 11] to help the JavaScript virtual
machine avoid unnecessary overhead.

© 2012 by Taylor & Francis Group, LLC



4. Porting Mobile Apps to WebGL 51

varbufferObject = gl.createBuffer();
bufferObject.itemSize = 3;
var vertices = [

start.x, start.y, start.z, // Top left
end.x, start.y, start.z, // Top right
start.x, end.y, end.z, // Bottom left
end.x, end.y, end.z, // Bottom right

];
bufferObject.numItems = 4;
var data = new Float32Array( vertices );
gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, bufferObject );
gl.bufferData( gl.ELEMENT_ARRAY_BUFFER, data , gl.STATIC_DRAW );

Listing 4.5. WebGL creating a VBO.

4.4 Loading Textures
Most apps need a way to draw textured squares to represent buttons. In this section,
we compare the process of loading textures for such widgets.

Generally, mobile apps have their texture data packaged with the application. In
order to load a texture, we must load in the raw binary data and unpack the data
appropriately according to the encoded format.

4.4.1 Assigning a Texture

iOS and Android provide native texture loaders to load and unpack image data. We
can always use other libraries to load any specific formats that aren’t supported, but
this will require more coding. Listing 4.6 shows the minimum necessary steps to get
a square multiple-of-two PNG loaded on iOS, and Listing 4.7 shows an Android
implementation. This operation is synchronous; if we want to avoid blocking, we
have to manage creating a new thread ourselves.

CGDataProviderRefcgDataProviderRef = CGDataProviderCreateWithFilename( imageData );
CGImageRef image = CGImageCreateWithPNGDataProvider( cgDataProviderRef, NULL , false ,←↩

kCGRenderingIntentDefault );
CGDataProviderRelease( cgDataProviderRef );
CFDataRef data = CGDataProviderCopyData( CGImageGetDataProvider( image ) );
GLubyte *pixels = (GLubyte *) CFDataGetBytePtr( data );
floatimageWidth = CGImageGetWidth( image );
floatimageHeight = CGImageGetHeight( image );
glGenTextures( 1, &glName );
glbindTexture( glName );
glTexImage2D( GL_TEXTURE_2D , 0, GL_RGBA , imageWidth , imageHeight , 0, format , ←↩

GL_UNSIGNED_BYTE , pixels );

Listing 4.6. iOS using CoreGraphics to load a texture.

© 2012 by Taylor & Francis Group, LLC



52 I Discovering

Bitmap bitmap;
InputStream is = context .getResources().openRawResource( R.drawable .imageName );
try {

bitmap = BitmapFactory.decodeStream( is );
is.close();

} catch( Exception e ) {}
int[] glName = new int[];
gl.glGenTextures( 1, glName );
gl.glBindTexture( GL10.GL_TEXTURE_2D , glName [0] );
GLUtils .texImage2D( GL10.GL_TEXTURE_2D , 0, bitmap, 0 );
bitmap.recycle (); // Release the image data

Listing 4.7. Android using Bitmap to load a texture.

In WebGL, texture loading is almost as easy as specifying an img tag in HTML
(see Listing 4.8). The main difference between OpenGL ES and WebGL is that
instead of creating an ID using glGenTextures, in WebGL, we call gl.create
Texture(), which returns a WebGLTexture object. This object is then supplied
with a DOM image object, which handles supporting the loading and unpacking of
all the native browser image formats. When the image.onload function is called,
signaling that the image has been downloaded and loaded by the browser, we can
hook in our call to gl.TexImage2D to bind the image data to the CanvasTexture.

var texture = gl.createTexture();
varimage = new Image();
image.onload = function () {

gl.bindTexture( gl.TEXTURE_2D , texture );
gl.texImage2D( gl.TEXTURE_2D , 0, gl.RGBA , gl.RGBA , gl.UNSIGNED_BYTE , image );

}
texture .src = src; // URL of an image to download

Listing 4.8. WebGL loading in textures using DOM image objects.

4.4.2 Handling Asynchronous Loads

The big difference in loading textures between OpenGL ES and WebGL is porting
over the logic of asynchronous texture loading. Sometimes, our application’s loading
may depend on the type and size of the texture being loaded. For example, if we’re
loading in a texture we would like to draw as a button, we might want to size the wid-
get the same size as the texture. Because images load asynchronously in JavaScript,
we don’t know the image’s width until it has been loaded. To get around this, we

var texture = loadTexture( src , function (image) {
setSize ( image.width , image.height );

} );

Listing 4.9. Using callbacks in JavaScipt.

© 2012 by Taylor & Francis Group, LLC



4. Porting Mobile Apps to WebGL 53

can use callbacks. In Listing 4.9, we define a callback function that is passed to the
loadTexture function.

In loadTexture, once the texture is loaded, the callback function is called, and
the widget is sized appropriately:

function loadTexture(src, callback ){
var texture = gl.createTexture();
var image = new Image();
image.onload = function () {

callback ( image );
gl.bindTexture( gl.TEXTURE_2D , texture );
gl.texImage2D( gl.TEXTURE_2D , 0, gl.RGBA , gl.RGBA , gl.UNSIGNED_BYTE , ←↩

tihs.image );
}
image.src = src;
return texture ;

}

4.5 Camera and Matrices
In order to set up the camera, we need to specify the size of the viewport. Doing so
across platforms is the same, with the only difference being accessing the size of the
back buffer. In OpenGL ES, the backbuffer size is known from when the buffer is
bound:

glGetRenderbufferParameteriv( GL_RENDERBUFFER , GL_RENDERBUFFER_WIDTH, &←↩
backBufferWidth );

glGetRenderbufferParameteriv( GL_RENDERBUFFER , GL_RENDERBUFFER_HEIGHT, &←↩
backBufferHeight );

glViewport( 0, 0,backBufferWidth , backBufferHeight );

In WebGL, the width and height properties of the canvas object are used to scale
how much of the view we’re rendering to:

gl.viewport ( 0, 0, canvas.width , canvas.height );

4.5.1 float vs. Float32Array

Previously, in Section 4.3.3, we introduced the Float32Array object in JavaScript,
which is heavily used for efficient matrix implementations. In the sample code, we
used an open source library called glMatrix,1 which wraps the Float32Arrayobject
and provides matrix and vertex helper functions, to avoid having to port our C++
code.

1https://github.com/toji/gl-matrix

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-6&iName=master.img-223.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-6&iName=master.img-223.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-6&iName=master.img-223.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-6&iName=master.img-223.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-6&iName=master.img-223.png&w=322&h=16


54 I Discovering

4.5.2 Passing a Matrix to a Shader

The final piece of the puzzle is passing a matrix, which uses UniformMatrix4fv on
all platforms—with OpenGL ES:

GLUniformMatrix4fv( uniform , 1, GL_FALSE , pMatrix );

or with WebGL:

gl.uniformMatrix4fv( uniform , false , pMatrix );

4.6 Controls
Now comes the fun part: making what we’re drawing react to touch and mouse
inputs. To do so, we need to handle touch event callbacks, get the position of the
touch, project the touch into the view, collide with objects along the path, and handle
the collisions accordingly.

4.6.1 Getting Touch Events

-(void)touchesBegan:(NSSet*) touches withEvent:( UIEvent *)event {
NSArray *touchesArray = [touches allObjects];
for( uint i=0; i<[ touchesArray count]; ++i ){

UITouch *touch = [touchesArrayobjectAtIndex:i];
CGPoint position = [touch locationInView:view];

}
}

Listing 4.10. iOS demonstrating how to get the position of a touch.

In iOS, a UIView object that provides the EAGLLayer also provides touches
Began, touchesMoved, touchesEnded, and touchesCancelled events, which
provide the touches’ position and state (see Listing 4.10).

public Boolean onTouchEvent(final MotionEvent event) {
int action = event.getAction() &MotionEvent.ACTION_MASK;
int index = ( event.getAction() &MotionEvent.ACTION_POINTER_INDEX_MASK ) >>←↩

MotionEvent.ACTION_POINTER_INDEX_SHIFT;
intpointerId = event.getPointerId( index );
float x = event.getX();
float y = event.getY();
return true;

}

Listing 4.11. Android demonstrating how to get the position and action of a touch.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-6&iName=master.img-238.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-6&iName=master.img-238.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-6&iName=master.img-238.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-6&iName=master.img-238.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-6&iName=master.img-238.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-6&iName=master.img-243.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-6&iName=master.img-243.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-6&iName=master.img-243.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-6&iName=master.img-243.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-6&iName=master.img-243.png&w=322&h=16


4. Porting Mobile Apps to WebGL 55

canvas.addEventListener( �touchstart�, function (event) {
var touch = event.touches [0];
if( touch )
{

this.x = touch.clientX ;
this.y = touch.clientY ;

}
}, false );

Listing 4.12. JavaScript demonstrating how to get the position of a touch.

In Android, we override the onTouchEvent function of an activity, which is the
callback for all touch events (see Listing 4.11).

In WebGL, we can add event listeners to react to touchstart, touchmove,
touchend, and touchcancel events as well as overriding the onmouseup,
onmousedown, and onmousemove events (see Listing 4.12).

4.6.2 Using Touch Events with the Camera and Collision

In the CCSceneAppUI files in the example code, the handleTilesTouch function
projects the control’s position into 3D via the camera’s project3D function. The
resulting projectionNear and projectionFar vectors are then queried by the
collision system in order to return an object that’s colliding (see Listing 4.13).

CCSceneAppUI.prototype.handleTilesTouch = function (touch , touchAction){
var camera = this.camera;
if( camera.project3D( touch.x, touch.y ) ){

var objects = this.objects ;
var length = objects .length;

// Scan to see if we�re blocked by a collision
varhitPosition = vec3.create ();
varhitObject = this.basicLineCollisionCheck( objects , length, camera.←↩

projectionNear , camera.projectionFar , hitPosition , true );

for( var i=0; i<length ; ++i ){
var tile = objects [i];
if( tile.handleProjectedTouch( hitObject , hitPosition , touch , ←↩

touchAction ) == 2 )
{

return true;
}

}
}
return false;

}

Listing 4.13. JavaScript demonstrating how to detect touch collisions.

© 2012 by Taylor & Francis Group, LLC



56 I Discovering

4.7 Other Considerations
Now that we can render buttons and control them, we are close to understanding
how to port between mobile apps and WebGL apps. However, there are a few other
things to consider while porting.

4.7.1 Animation

In order to animate the view, many mobile apps create another thread to run the 3D
rendering loop. Android provides an encapsulated version of this with GLSurface-
View; on iOS, we can hook into the applications run loop; however, it’s always best
to create another thread for the 3D rendering loop to avoid UI thread stalls.

For the web, there’s a nifty function called requestAnimationFrame, which
requests the browser to call our update function at the next best available time. This
allows browsers to not call our update function when, say, the user is looking at a
different tab and not our app. If we call this function continuously, we can create an
upload loop for our animations:

function update (){
window .requestAnimationFrame( Update );
gEngine .updateEngine();

}

4.7.2 Inheritance

JavaScript uses prototypal inheritance instead of classical inheritance. This pattern
can be counterintuitive when porting apps that are based off classical inheritance.

functioncopyPrototype(descendant , parent , parentName) {
var aMatch = parent.toString ().match( /\s*function (.*)\(/ );
if( aMatch != null )
{

descendant.prototype[aMatch [1]] = parent;

}
// Make a copy all the functions in our parent
for( var parentMethod in parent.prototype ) {

if( parentName ){
// Make a copy with our parent �s name as a prefix to allow the ←↩

child to override the parent �s function
var combined = parentName + �_� + parentMethod;
descendant.prototype[combined ] = parent.prototype[parentMethod];

}
descendant.prototype[parentMethod] = parent.prototype[parentMethod];

}
};

Listing 4.14. JavaScript demonstrating inheritance through copying parent prototype.

© 2012 by Taylor & Francis Group, LLC



4. Porting Mobile Apps to WebGL 57

Since JavaScript is a dynamic language, there are various ways to simulate classi-
cal inheritance; the way presented in the samples is by copying the parent object’s
function prototypes and renaming them with a prefix, allowing us to call the parent
object’s function implementation when overriding a function (see Listing 4.14).

Now, when declaring a “class” in JavaScript, we call the copyPrototype func-
tion to assign its parent:

function Parent () {}
Parent.prototype.doSomething = function () {

alert( �Hello Parent � );
}
function Child() {}
copyPrototype( Child , Parent, �Parent � );

When overriding the parent’s doSomething function, we have the option of
calling the parent’s implementation:

Child.prototype.doSomething = function () {
this.Parent_doSomething();
alert( �Hello Child� );

}

4.8 Maintenance
Debugging a WebGL app is a fun experience. In the world of native apps, our
debugger lives in the IDE, and our app runs on a device or in a simulator/emulator.
In the world of web apps, the debugger lives in the web browser, and our app also
runs in the web browser.

4.8.1 Debugging

Web browsers provide many tools for debugging JavaScript apps on desktop oper-
ating systems. In the native world, our application code is pretty much static. In
JavaScript, we can continually chop and change our JavaScript code while our appli-
cation is running. For Google Chrome, we can use the built-in JavaScript debugger;
for Firefox, we can use the renowned Firebug2 extension for debugging capabilities.

When debugging a WebGL app, it is wise to call requestAnimationFrame
after the update and render functions, as calling it before will trigger another frame
to be rendered even if the program has hit a breakpoint.

There are a few drawbacks. Firstly, as of this writing, the current generation of
mobile web browsers do not support debugging. If we plan on deploying our WebGL
app to a mobile device, we must prepare for lots of manual debug logging. Secondly,
the debugger lives inside the web browser, and our app runs inside the web browser.

2getfirebug.com

© 2012 by Taylor & Francis Group, LLC



58 I Discovering

In the case of a serious crash, our means to debug our application crashes along with
our app.

4.8.2 Profiling

Profiling is supported as part of our debugger. In the console view, we generally find a
profile tab, which allows us to profile certain portions of the app. Native mobile apps,
in comparison, aren’t as intuitive. iOS requires recompiling for profiling in another
application; Android supports profiling Java code, but not NDK; but both solutions
are very ad hoc, while profiling a web app is part of the web browser debugging
package. Please refer to Chapter 36 for more on profiling.

4.8.3 Performance and Adoption

As of this writing, WebGL is increasingly being supported on mobile devices. An-
droid’s version of Firefox supports most of the WebGL spec; however, its performance
is currently lacking compared to its desktop counterpart. This will be improved, but
currently, to help alleviate these performance issues on mobile devices, lowering the
resolution of the canvas and ensuring we batch draw calls is recommended.

Apple officially supports WebGL in their iAd framework for iOS. Currently,
you can also enable WebGL on a UIWebViewby using the private API function
setWebGLEnabled, as explained by Nathan de Vries [Vries 11]; however, this

should be used for experimentation only, as use of private APIs are forbidden by
Apple’s App Store. It is expected to be supported in the standard mobile Safari once
the security and performance issues over WebGL have passed.

Microsoft has yet to support WebGL in their desktop browser, but it seems like
only a matter of time until they have to because WebGL applications will soon go
mainstream.

Given the current state of WebGL’s maturity, if porting over an application, it’s
best to continue to maintain both a native and web port but move toward a data-
driven scene management system if the application does not already do so.

4.9 Conclusion
As of this writing, there are still some features, such as gyroscope, compass, and
camera integration, that the web doesn’t support. There are still some features that
are in flux, such as local storage, WebSQL, and WebSockets. But there are some
features that are natural to the web apps, which native applications try to emulate
with a more convoluted implementation, such as JSON/XML parsing, accessing,
and caching web content.

Hopefully this chapter showed that porting apps from native mobile languages to
the web isn’t hard once we get our heads around the differences between the ecosys-

© 2012 by Taylor & Francis Group, LLC



4. Porting Mobile Apps to WebGL 59

tems. Google Web Toolkit already provides a Java to JavaScript cross compiler, and
while there isn’t an equivalently mainstream C++ to JavaScript cross compiler, port-
ing basic parts of C++ to JavaScript is very possible, especially if we consider that
most rendering implementations avoid the complexities of C++ and are data driven.

With porting, the next challenge of performances: efficiency. Of course,
JavaScript is getting faster; however, language concepts such as Garbage Collection
will limit the amount of memory consumption an application can utilize before the
garbage collection cycle becomes too taxing. But it’s not a dead end, as mobile plat-
forms such as Android and Windows Phone 7 have proven that it is possible to utilize
hardware acceleration in a garbage collected environment.

The web’s promise of “write once, run everywhere” is powerful. As hardware
becomes more standardized, it’s very easy to imagine a future where WebGL and
WebCL [Khronos 11] enable us to bypass the current in-vogue, closed ecosystems
with performance-sensitive code where it is required. We already have the promise
of Google’s Native Client [Google 11], which allows native code to utilize OpenGL
directly within a web browser. And with the emergence of cloud computing, the
apps can already run in the cloud and stream the client a video of what’s going on
directly, as OnLive [OnLive 11], a cloud-based gaming service, does.

Whatever ends up being the case, it is a very exciting and emerging world. New
standards are emerging that will challenge the status quo of the last ten years of
application development.

For more tutorials on WebGL, we recommend Giles Thomas’ “Learning
WebGL” website [Thomas 11].

Bibliography
[Adobe 11] Adobe. “PhoneGap.” Available at www.phonegap.com, October 31, 2011.

[Alexander 11] Ryan Alexander. “Using Float32Array Slower than var.” github.com/
empaempa/GLOW/issues/3, July 10, 2011.

[Gartner 11a] Gartner. “Gartner Says Companies Will Generate 50 Percent of Web Sales
Via Their Social Presence and Mobile Applications by 2015.” gartner.com/it/page.jsp?id=
1826814, October 19, 2011.

[Gartner 11b] Gartner. “Gartner Predicts Over 70 Percent of Global 2000 Organisations Will
Have at Least One Gamified Application by 2014.” gartner.com/it/page.jsp?id=1844115,
November 9, 2011.

[Google 11] Google. “nativeclient.” code.google.com/p/nativeclient/, October 31, 2011.

[Khronos 11] Khronos. “WebCL.” www.khronos.org/webcl/, October 31, 2011.

[OnLive 11] OnLive. “OnLive.” www.onlive.com/, October 31, 2011.

© 2012 by Taylor & Francis Group, LLC



60 I Discovering

[Thomas 11] Giles Thomas. “Learning WebGL.” www.learningwebgl.com, October 31,
2011.

[Vries 11] Nathan de Vries. “Amazing Response to My iOS WebGL Hack.” atnan.com/blog/
2011/11/07/amazing-response-to-my-ios-webgl-hack/, November 7, 2011.

© 2012 by Taylor & Francis Group, LLC



The GLSL Shader Interfaces

Christophe Riccio

5.1 Introduction
The shader system is a central module of a graphics engine, providing flexibility,
performance, and reliability to an application. In this chapter we explore various
aspects of the GLSL shader interfaces to improve its quality.

These interfaces are the elements of the language that expose buffers and textures
within a shader stage. They allow communication between shader stages and between
the application and the shader stages. This includes input interfaces, output inter-
faces, interface blocks, atomic counters, samplers, and image units [Kessenich 12].

On the OpenGL Insights website, www.openglinsights.com, code samples are pro-
vided to illustrate each section. A direct output from this chapter is a series of func-
tions that can be directly used in any OpenGL program for detecting silent errors,
errors that OpenGL doesn’t catch by design, but eventually result in an unexpected
rendering.

I target three main goals:

• Performance. Description of some effects of the shader interface on mem-
ory consumption, bandwidth, and reduction of the CPU overhead.

• Flexibility. Exploration of cases to ensure the reuse of a maximum number
of objects.

• Reliability. Options in debug mode for detecting silent errors.

61

5

© 2012 by Taylor & Francis Group, LLC



62 I Discovering

5.2 Variables and Blocks

5.2.1 User-Defined Variables and Blocks

The GLSL shader interfaces are the elements of the OpenGL API and GLSL that
allow communication. On the application side, we can create various kinds of buffers
and textures that are used in a shader pipeline. In GLSL, these resources need to be
exposed through variables and blocks. It’s the duty of the OpenGL programmer to
make sure that the required resources are bound and that these resources are actually
compatible with the variables and blocks that expose them. It is called shader interface
matching [Leech 12].

A GLSL variable may be a scalar, a vector, a matrix, an array, a structure, or an
opaque type according to which interface it is declared for. See Table 5.1.

vertex varying fragment uniform
input output

scalar yes yes yes yes
vector yes yes yes yes
matrix yes yes no yes
array yes yes yes yes
structure no yes no yes
opaque type no no no yes
block no yes no yes

Table 5.1. Elements of languages and interfaces where they can be used.

An opaque type is a type that abstracts and exposes an element of the GPU fixed
functions. GLSL 4.20 has three different opaque types: samplers, images, and atomic
counters.

Blocks (Listing 5.1) were introduced in OpenGL 3.1 and GLSL 1.40 to expose
uniform buffers in shaders. With OpenGL 3.2 and the introduction of the geometry-
shader stage, the use of blocks has been extended to varying variables in GLSL 1.50
to cope with a namespace issue, which block-name and instance-name solve.

Blocks are containers of variables, called block members, which can be anything
but opaque types or blocks. A block looks like a structure at first, but it has at least
two differences: a block can’t be declared and defined at two different spots in the
shader; a block decouples its name into two parts: the block name and the instance

[layout -qualifier] interface -qualifier block -name
{

member -list
} [instance -name];

Listing 5.1. Block syntax.

© 2012 by Taylor & Francis Group, LLC



5. The GLSL Shader Interfaces 63

[Vertex Shader Stage]
in vec4 AttribColor;
out vec4 VertColor;

[Geometry Shader Stage]
in vec4 VertColor;
out vec4 GeomColor;

[Fragment Shader Stage]
in vec4 GeomColor;
out vec4 FragColor;

Listing 5.2. A trivial shading pipeline using
variables. What if a program wants to add
or remove the geometry shader stage in this
pipeline? The variable names won’t match.

[Vertex Shader Stage]
in vec4 Color;

out block{
vec4 Color;

} Out;

[Geometry Shader Stage]
in block{

vec4 Color;
} In;

out block{
vec4 Color;

} Out;

[Fragment Shader Stage]
in block{

vec4 Color;
} In;

out vec4 Color;

Listing 5.3. A trivial shading pipeline
using blocks. Blocks resolve the issue
with Listing 5.2.

name. A block name is used to identify a block for a shader interface; the instance
name is used to identify a block within a shader stage. Listings 5.2 and 5.3 present
some differences between variables and blocks when used for the communication
between stages.

Tips – Use varying blocks instead of varying variables to simplify the naming convention.

– Use varying blocks instead of varying variables to bring more flexibility to the
rendering pipeline.

5.2.2 Built-in Variables and Blocks

GLSL exposes a large collection of constants for various limits defined by the speci-
fications. Along with the user-defined variables and blocks, GLSL provides built-in
variables and blocks to connect the programmable part of the rendering pipeline
with the fixed-function part of the pipeline. As we stand with the OpenGL 4.2 core
profile, only a few built-in variables remain useful; gl PerVertex is the only one
that requires our attention, as it might be required in the vertex, tessellation control,
tessellation evaluation, and geometry shader stages (see Listing 5.4).

Built-in variables are assumed to be declared and don’t have to be re-declared
unless the application is using them within a separate program [Kilgard 12], in which
case a built-in block is required.

© 2012 by Taylor & Francis Group, LLC



64 I Discovering

out gl_PerVertex {
vec4 gl_Position;
float gl_PointSize;
float gl_ClipDistance[];

};

Listing 5.4. Vertex shader built-in output block: gl PointSize and gl ClipDistance

are optional.

5.3 Locations

5.3.1 Definitions

Location is an abstract representation of memory that reflects the vectorized nature
of GLSL and a key OpenGL concept. Unfortunately, it isn’t globally defined but
sparsely applied all over the OpenGL or GLSL specifications. This concept is es-
sential because it defines how different elements may or may not match, and it also
defines the sizes that may be allocated or used.

As an example, any vertex array object can’t be used with a vertex shader stage.
The vertex array object must match the vertex shader input interface—the list of all the
vertex shader stage input variables. For this matching to be successful, at least all the
active input variables (see Section 5.3.2) need to be backed by an array buffer to ex-
pect a relevant result. Also, the maximum number of locations defines the maximum
number of variables that may be declared by a vertex shader input interface.

We acknowledge three kinds of locations:

• Attribute locations. Communication between array buffers and vertex
shader inputs.

• Varying locations. Communication of output and input variables used
across shader stages.

• Fragment output variable locations. Communication of fragment shader
outputs and the glDrawBuffers indirection table.

5.3.2 Counting Locations

It is essential for an OpenGL programmer to know how to count locations for three
main reasons. First, the number of locations taken by a variable defines the size of a
shader interface. Second, matching may rely on explicit locations, and third, there is
no GLSL operator to count the number of locations for us. In practice, understand-
ing this aspect allows us to write more advanced design and prevents GLSL compiler,
linker, and silent errors, which may be time consuming to fix.

Attribute locations and fragment shader output locations are very similar, as
they behave like indexes. One attribute location corresponds to one vertex array
attribute; likewise, one fragment shader output location corresponds to one entry in

© 2012 by Taylor & Francis Group, LLC



5. The GLSL Shader Interfaces 65

the glDrawBuffers indirection table with the framebuffer attachments. A vertex
array attribute and a framebuffer attachment can hold up to four components, which
shows the vectorized nature of the locations.

Neither a single vertex array attribute nor a single framebuffer attachment can
store a matrix or an array of vectors. However, vertex shader inputs and fragment
shader outputs may be arrays, and vertex shader inputs can even be matrices. To
make this possible, each element of an array is assigned its own locations. Similarly,
matrices are considered as arrays of column vectors, which leads us to the interesting
fact that a mat2x4 requires two locations but a mat4x2—with the same number of
components—requires four locations. This model for assigning locations to matrices
and arrays also applies to varying and uniform locations.

Double-precision floating-point types, e.g., dvec3, dmat4, etc., are slightly more
complex beasts. For attribute locations, they are indexes, like single-precision ones.
A dvec4 takes one location just like a vec4. However, double types are not allowed
for fragment shader outputs, and varying variables may double the required number
of locations. Because of GPU design constraints, instead of being an index, we
can consider that a varying location is an abstract representation for the memory of
a vec4. A GPU relies on a number of registers used as binding points to feed the
pipeline with buffers and textures. However, to communicate between stages, a GPU
relies on caches that are eventually limited in size. A dvec4 takes twice the memory
of a vec4; thus, it requires twice the number of locations. A double or a dvec2 fits
within the memory space of a vec4, so only one location is required for those. The
specification explicitly says that the number of varying locations may be either one
or two for dvec3 and dvec4, depending on the implementation. Unfortunately,
there is no convenient way to figure out the actual size, so an application needs to
assume that it takes two locations to maximize portability, which will underutilize
some hardware not bound by this limitation.

Some varying variables may be arrayed if the shader stage is accessing multiple
input primitives or if it is generating multiple output primitives. This is the case for the
tessellation control, tessellation evaluation, and geometry shader stages. Contrary to
arrays, the number of locations is computed for a single primitive—a single element
of an arrayed variable—as it is only a feature to expose fixed-function parts of the
pipeline.

For locations and components to be consumed, a variable must be active, that is
to say that the variable must contribute to the result of the shader execution; other-
wise, the implementation will typically eliminate these variables at compile or link
times. For the case of separated programs, GL ARB separate shader objects,
all the input and output variables and blocks are considered active by the GLSL
linker.

Table 5.2 summarizes this discussion by applying the rules we just discussed to
examples.

© 2012 by Taylor & Francis Group, LLC



66 I Discovering

Variable Vertex
attribute
locations

Varying
locations

Fragment
output
locations

vec4 v; 1 1 1
uvec3 v; 1 1 1
float s; 1 1 1
dvec2 v; 1 1 N/A
dvec4 v; 1 1 or 2 N/A
vec2 a[2]; 2 2 2
uint a[3]; 3 3 3
vec4 a[]; N/A 1 N/A
mat4x3 m; 4 4 4
dmat3x2 m; 3 3 N/A
dmat2x3 m; 2 2 or 4 N/A
struct S{
vec3 A;

float B; N/A 3 N/A
ivec2 C;

} s;

struct S{
mat3x4 A;

double B[2]; N/A 18 N/A
ivec2 C;

} a[3];

Table 5.2. Examples of variable types and their count of locations.

Tips – An application may assume for portability that dvec3 and dvec4 each take two
locations, as there is no convenient way to know the actual requirement by a
specific implementation.

– Consider packing the components when locations are used as indexes (e.g., ivec4
instead of int[4]).

5.3.3 Location Limits

Locations are an abstraction of memory and because memory is limited, the num-
ber of locations is limited too. OpenGL defines various minimum maximums and
provides queries for actual limits.

Since attribute locations should be considered like indices, both vertex array at-
tributes and vertex shader input variables share the same limit given by GL MAX

VERTEX ATTRIBS. Both OpenGL 3.x and 4.x specifications require a minimum
of 16 attribute locations. However, Direct3D 11 requires 32 attribute locations so
that, in theory, GeForce GTX 400 series, Radeon HD 5000 series, and newer GPUs
should support at least 32 attribute locations. In practice, a GeForce GTX 470 sup-
ports 16 attribute locations, and a Radeon HD 5850 supports 29 attribute locations.

© 2012 by Taylor & Francis Group, LLC



5. The GLSL Shader Interfaces 67

Similarly, the number of fragment shader output variables is bound by the max-
imum number of draw buffers given by GL MAX DRAW BUFFERS. This value must
be at least 8, which matches the maximum number of framebuffer color attach-
ments given by GL MAX COLOR ATTACHMENTS. This is what GeForce GTX 470 and
Radeon HD 5850 currently expose.

The limit for varying locations is relative to the number of components declared
by a shader interface. A single location is used to identify a float, int, uint,
[i|u]vec2, [i|u]vec3, and [i|u]vec4. However, a component is used to iden-
tify a single float, int, or uint. Hence, a vec4 takes four components. This
definition implies that the number of varying locations isn’t a constant; it depends on
how many components we use per location. Because double-precision floating-point
variables consume twice the internal storage of single-float variables, they consume
twice the number of components as well.

OpenGL used to have the values GL MAX VARYING COMPONENTS and GL MAX

VARYING VECTORS to query the number of component limits, but these are depre-
cated, so we ignore them here. Instead, OpenGL provides a dedicated value for each
output and input interface (Table 5.3) of each shader stage.

Looking at this table, we notice that the OpenGL requirements don’t necessarily
make the most sense, but actual available implementations streamline these numbers.

If a shader interface exceeds these limits, the GLSL compiler will return an er-
ror. Following these results, an application may assume that an implementation
supports a minimum of 32 varying locations for any shader stage. Unfortunately, the
OpenGL 4.2 specification doesn’t provide any feature to query either the number of
varying locations consumed or a varying variable query API. This prevents any kind
of application-side validation of the shader-varying interfaces and implies that if such
feature is required by the application, then this management needs to be taken care
of up front by the application, which would need to generate the shader interface’s
code.

Values OpenGL 4.2
requirement

Radeon
HD 5850

GeForce
GTX 470

MAX VERTEX OUTPUT COMPONENTS 64 128 128
MAX TESS CONTROL INPUT COMPONENTS 128 128 128
MAX TESS CONTROL OUTPUT COMPONENTS 128 128 128
MAX TESS EVALUATION INPUT COMPONENTS 128 128 128
MAX TESS EVALUATION OUTPUT COMPONENTS 128 128 128
MAX GEOMETRY INPUT COMPONENTS 64 128 128
MAX GEOMETRY OUTPUT COMPONENTS 128 128 128
MAX FRAGMENT INPUT COMPONENTS 128 128 128

Table 5.3. Number of components requirement and actual support.

© 2012 by Taylor & Francis Group, LLC



68 I Discovering

5.4 Matching Interfaces
For a successful rendering, a minimum requirement is to have interfaces that match.
Each interface must provide the necessary information with an appropriate layout to
the subsequent interface. If such conditions aren’t fulfilled, then rendering is likely
to result either with an OpenGL error or, worse, a silent error.

5.4.1 Partial and Full Match

OpenGL and GLSL support two types of interface matching: full matching and par-
tial matching. A full match is a matching where each element on each side of the
interface has a corresponding element on the other side of the interface (Figure 5.1).
A partial match is a matching where at least all the elements on the subsequent in-
terface have a matching element on the precedent interface (Figure 5.2). In some
cases, built-in blocks or variables may not have corresponding blocks or variables be-
cause they are only present for the interaction with the fixed pipeline. For example, a
pipeline with only a vertex and a fragment stage requires exposing the gl Position

in the vertex shader stage but doesn’t allow declaring it in the fragment shader stage.
This definition applies on many levels:

• The vertex array object matching with the vertex shader input interface.

• Any shader stage with its subsequent shader stage.

• The fragment shader output interface with the draw buffers table.

• The draw buffers indirection table with the framebuffer color attachments.

• An uniform buffer range with its associated uniform block.

Choosing between a software design approach based on partial or full matching
is actually making a choice between flexibility and performance: generating more
inputs that we need may have an absolute performance cost but may also support a
higher variety of combinations for the subsequent elements.

Regarding the performance issue, by making a difference between variables and
active variables, the specification allows unused-variable elimination. Using linked
programs, this optimization can even be extended to previous shader stages.

Figure 5.1. Full match.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-7&iName=master.img-257.jpg&w=275&h=73


5. The GLSL Shader Interfaces 69

Figure 5.2. Partial match.

Figure 5.3 is when everything works perfectly, but some cases are more troubling
like partial matching between the vertex array object and the vertex shader input
interface. It’s tricky for the implementation not to emit vertex array attributes that are
not exposed in the vertex shader stage. Even if it might automatically disable unused
vertex arrays, if vertex attributes are interleaved, the implementation might fetch
unused data, consuming the bandwidth and polluting the cache due to the minimum
memory burst size [Kime and Kaminski 08].

Tip – Be careful with partial matching, especially with the vertex array object when
performance matters.

Figure 5.3. Linked program with partial matching. On top, resolve with an indirection
table. On bottom with previous shader stage unused variables elimination and resolve with
direct mapping.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-7&iName=master.img-267.jpg&w=275&h=73
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-7&iName=master.img-270.jpg&w=307&h=195


70 I Discovering

5.4.2 Type Matching

From the very first GLSL specification release, the language provides some flexibility
on the type matching. For two types to match, these types don’t necessarily need to
be the same. OpenGL requires a strict type matching between shader stages but not
for assets connected to a program pipeline.

The matching between vertex array attributes and vertex shader input variables
is very flexible due to the nature of attribute locations: They are vec4 based. Hence,
even if some vector components are missing on any side of the interface, they will
match, as illustrated in Figure 5.4. If the vertex shader input exposes more compo-
nents that the vertex array attribute provides, the extra component will be filled with
the default vector vec4(0, 0, 0, 1). Similarly, OpenGL is very flexible regard-
ing the data types of the vertex array attributes, as traditionally all types are cast by
the hardware to floating-point values when using glVertexAttribPointer. For
example, if an array buffer stores RGB8 colors, the color will be exposed as a vec3
by the corresponding vertex shader input variable: the buffer actually stores unsigned
byte data, but at vertex attribute fetching, the values are converted on the fly.

To escape from this flexibility, we can use glVertexAttribIPointer, which
can only expose vertex arrays that store integers, GL BYTE, GL UNSIGNED BYTE,
GL SHORT, GL UNSIGNED SHORT, GL INT, and GL UNSIGNED INT, with integer-
based vertex input variables. We can also use glVertexAttribLPointer for
double-float storage (GL DOUBLE), exposed as double-based shader input variables.

Double-based vectors are more restricted because a double-based vector may or
may not take two varying locations. If the subsequent stage declares a dvec2 variable

Figure 5.4. Example of vertex array attributes and vertex shader inputs based on float.

Figure 5.5. Example of vertex array attributes and vertex shader inputs based on double.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-7&iName=master.img-290.jpg&w=259&h=71
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-7&iName=master.img-291.jpg&w=259&h=73


5. The GLSL Shader Interfaces 71

Vertex array
attribute type

Vertex shader
input type

Match?

3 x float vec3 yes
4 x float vec3 yes
2 x float vec3 yes
2 x int int yes
2 x int float yes
2 x double vec2 yes
2 x double dvec2 yes
3 x double dvec2 no
2 x float ivec2 no
2 x float dvec2 no

Table 5.4. Example of type-matching vertex input variable types and vertex array attribute
types.

while the previous stage provides a dvec3, for example, then the two variables are
not using the same number of locations. Thus, the interfaces can’t possibly match.
Consequently, OpenGL requires double variables to be exactly the same type either
when assigning to attribute locations (Figure 5.5).

Table 5.4 gives a list of examples and indicates whether the vertex array attribute
types and the vertex shader input types match or not.

NVIDIA also supports 64-bit integers through GL NV vertex attrib

integer 64bit, in which case, GL INT64 NV and GL UNSIGNED INT64 NV may
also be used with glVertexAttribLPointer and exposed as int64 t, i64vec2,
i64vec3, i64vec4, uint64 t, u64vec2, u64vec3, u64vec4 in the vertex shader
input interface.

Tips – Avoid submitting more vertex attribute components than the shader interface will
use.

– OpenGL 4.2 doesn’t provide an API to validate that double shader input has been
submitted with glVertexAttribLPointer or not. This may lead to a silent
error and is an OpenGL specification bug.

5.4.3 Matching by Name, Matching by Location

From the first version of GLSL, it has been possible to match varying variables by
name: on both sides of the shader interface, the variables must match by name, type,
and have compatible qualification. For vertex input variables and fragment output
variables, matching with resources has always relied on locations.

With OpenGL 4.1 and the introduction of separate programs, matching by name
is no longer able to resolve partial matches between shader stages because the GLSL
linker doesn’t necessarily know both sides of the shader interface anymore. Typically,

© 2012 by Taylor & Francis Group, LLC



72 I Discovering

[Vertex Shader Stage]
in vec4 AttribColor;
out vec4 VertColor;

[Geometry Shader Stage]
in vec4 VertColor;
out vec4 GeomColor;

[Fragment Shader Stage]
in vec4 GeomColor;
out vec4 FragColor;

Listing 5.5. Matching-by-name declarations.

[Vertex Shader Stage]
layout (location = 0) in vec4 Color;
layout (location = 0) out vec4 VertColor;

[Geometry Shader Stage]
layout (location = 0) in vec4 Color;
layout (location = 0) out vec4 GeomColor;

[Fragment Shader Stage]
layout (location = 0) in vec4 Color;
layout (location = 0) out vec4 FragColor;

Listing 5.6. Matching-by-location declarations.

with separate programs, the implementation packs input and output active variables
one after the other and expects to retrieve them the same way on the subsequent
shader stage. If a variable is unused, all the following variables will be in a different
memory location than the expected one.

The solution adopted was to introduce matching by location to varying variables
(compare Listings 5.5 and 5.6). A variable is qualified with an explicit location and
this location defines a position in memory. This is where the subsequent shader stage
should expect to find the value of this variable, relieving the GLSL compiler of part
of its duty that it can’t perform anymore.

Figure 5.6. Resolution of partial matching on separate programs with matching by location.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-7&iName=master.img-357.jpg&w=307&h=210


5. The GLSL Shader Interfaces 73

Comparing Figure 5.6 with Figure 5.3, we notice that, by design, linked pro-
grams may generate more compact shader interfaces than separate programs. In
practice, with the drivers of AMD Catalyst 11.12, this is a limitation that we en-
counter through an effective reduction in the number of components available, but
this is not the case with NVIDIA Forceware 290.53, which lets us suppose that the
drivers do an implicit linking between stages through the pipeline program object.

An apparent side effect of using matching by location is the freedom for naming
variables, which doesn’t have to be the same across shader stages; however, OpenGL
provides something better with blocks.

5.4.4 Matching with Blocks

Blocks can’t have locations, so the only possible matching is by block-name (List-
ing 5.7). Thus, when using separated programs with OpenGL, partial matching of
block-based shader interfaces will result in a silent error.

block -qualifier block -name
{

variable -qualifier type block -member;
} block -instance ;

Listing 5.7. Block syntax.

An interface may contain both blocks and variables, in which case, partial match-
ing is possible on the variables, but the blocks must fully match, as illustrated in
Figure 5.7. This is actually a typical scenario of a partial matching interface.

Blocks allow the GLSL compiler to perfectly pack the components of the block
members, leading to maximum use of the hardware capabilities.

Using blocks also guarantees that a vertex shader output will always have a pos-
sible matching tessellation or geometry shader input (compare the matching arrays
in Listings 5.8 and 5.9). GLSL 4.20 only supports 1D arrays, but the corresponding

Figure 5.7. Typical scenario of partial matching with separated programs. A, B, C are
variables with explicit location. gl PerVertex the built-in block and ud PerVertex a user-
defined block.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-7&iName=master.img-375.jpg&w=307&h=84


74 I Discovering

[Vertex Shader Stage]
out gl_PerVertex {

vec4 gl_Position;
};

out block {
vec4 Color [2];

} Out;

[Geometry Shader Stage]
in gl_PerVertex{

vec4 gl_Position;
} gl_in [];

in block {
vec4 Color [2];

} In[];

Listing 5.8. Matching block member
array.

[Vertex Shader Stage]
out vec4 gl_Position;
out vec4 Color [2]; // OK

[Geometry Shader Stage]
in vec4 gl_Position[];
in vec4 Color [][2]; // Error with GLSL 420!

Listing 5.9. Matching variable array, valid with
GL EXT geometry shader.

geometry shader input variable of a vertex shader output array variable is an arrayed
array; in others words, a 2D array. A possible solution to this specification issue is to
clearly state the difference between arrayed variables and arrays in the specification,
but so far, an arrayed variable is simply an array.

With blocks, arrayed varying blocks are allowed, but varying block arrays are for-
bidden, allowing the programmer to avoid this issue by generating a GLSL compiler
error instead of a possible silent error.

Tips – Favor blocks rather than variables for program robustness in time.

– Uniform blocks may be declared as arrays with each element backed by a different
uniform buffer range.

– Varying blocks can’t be declared as arrays but can be arrayed to reflect fixed-
function multiple input or output primitives.

– Separate programs with partial match blocks is an undefined state in the
OpenGL specification.

5.4.5 Matching with Structures

Blocks are great, and we should enjoy using them. However, due to the role of the
block-name for the shader matching, this name must be uniquely used, and the decla-
ration of the block must be done where the block-instance is defined. Structures
don’t share this language property, making them more attractive at first sight.

For many scenarios, we would like to reuse a maximum of programs to reduce
the number of objects created and the number of state changes at program execution
to reduce CPU overhead. To do this, we need to be sure that the subsequent shader
stage will have the same shader interface. One solution is to declare a structure in

© 2012 by Taylor & Francis Group, LLC



5. The GLSL Shader Interfaces 75

a separated shader source and use this declaration in any shader we want to mix
and match. Making this structure declaration unique and shared implies that any
change is applied to any shaders using it. This will most likely generate a lot of
GLSL compiler errors in all the noncompliant shaders with the updated structure.
However, this provides direct input about where we should update the code instead
of causing us to a lot of mismatches and silent errors later on, which are very difficult
and time consuming to catch.

Unfortunately, using structures for varying variables shares the same drawbacks
as using typical varying variables and magnifies the location counting issue. With a
structure, each member takes a certain number of locations; adding or removing a
member will eventually change the number of locations taken by this structure. If a
scenario is using multiple structures for a shader interface and explicit locations for
matching, then it becomes our responsibility to assign the locations to each structure
and to make sure that they remain perfectly packed one after the other.

During development, we will add and remove from time to time members of
our structures that would lead us to have to count again the number of locations

[Shared shader code]
struct vertex {

vec4 Color;
vec2 Texcoord ;

};

[Vertex Shader Stage]
out gl_PerVertex {

vec4 gl_Position;
};

out blockA {
vertex Vertex;

} OutA;

out blockB {
vertex Vertex;

} OutB;

[Geometry Shader Stage]
in gl_PerVertex{

vec4 gl_Position;
} gl_in [];

in blockA {
vertex Vertex;

} InA;

in blockB {
vertex Vertex;

} InB;

Listing 5.10. Matching block member
array.

[Shared shader code]
struct vertex {

vec4 Color;
vec2 Texcoord ;

};

[Vertex Shader Stage]
out vec4 gl_Position;

layout(location = 0)
out vec4 vertex OutA;

layout(location = ???)
out vec4 vertex OutB;

[Geometry Shader Stage]
in vec4 gl_Position[];

layout(location = 0)
in vec4 vertex InA[];

layout(location = ???)
in vec4 vertex InB[];

Listing 5.11. Matching variable array. The ideal location for
OutB and InB is dependent on the number of locations taken by
the structure vertex. Here, and in Listing 5.10, this value is 2,
the number we can use in the present case. However, in a classic
development phase, the structure will evolve, which requires that
we manually change the locations each time we update vertex.

© 2012 by Taylor & Francis Group, LLC



76 I Discovering

taken by the structure and update the explicit locations of the others structures ac-
cordingly. This works, but it is not an effective way to code. Listings 5.10 and 5.11
illustrate that GLSL doesn’t provide any operator to help us in counting the number
of locations of a structure.

Tip – Use structures...but only within blocks!

5.4.6 Linked and Separated Programs

From the beginning, GLSL has had a very different programming model than HLSL,
Cg, or even the old assembly-like OpenGL programs [Brown 02, Lipchak 2002]. In
those environments, each shader stage is independent This approach follows very well
the way a graphics programmer designs his software, where, for example, the vertex
program may define how objects are transformed and the fragment programs may
define materials. Many objects can share the same transformation method (the same
vertex shader) but have different fragment shaders. This strategy models how we
can sort the objects for rendering to minimize shader stage changes and how we can
batch multiple objects into a lower number of draw calls to maximize performance.
We call it the separate shader program approach.

However, GLSL previously followed a different approach where all the shader
stages were linked into a single program object. On a rendering pipeline composed
of two shader stages, both vertex and fragment shader stage were bound at the same
time. This approach has some performance advantages because the linker is able to
perform cross-stage optimizations. For example, if a vertex output variable is never
used by the fragment shader, then not only does the fragment shader discard it, but
the vertex shader may not need to compute it either. Another even more important
advantage is that the GLSL linker can detect errors of matching interface between
stages. The OpenGL specification refers to this approach as linked programs or
monolithic programs.

These two approaches raise a dilemma: software design flexibility and perfor-
mance against compiler performance and error detection. Fortunately, with OpenGL
4.1 and GL ARB separate program objects, not only can we finally take advan-
tage of separate programs, but OpenGL gives us the opportunity to take advantage
of both linked programs and separate programs on a single program pipeline object,
a container for all the shader program stages. For example, thanks to the program
pipeline, an application may choose to link all the prerasterization shader stages to-
gether and keep the fragment shader stage separately.

An application may find it interesting to use both linked programs and separate
programs to validate whether the shader interfaces match in debug and to take ad-
vantage of the flexibility of separate programs in release builds. In such a case, an
application may consider always declaring the built-in blocks, as they are required
for separate programs.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-7&iName=master.img-514.png&w=321&h=13
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-7&iName=master.img-514.png&w=321&h=13


5. The GLSL Shader Interfaces 77

Tips – Always declare built-in blocks to be able to switch between linked and separate
programs.

– In debug mode only, link all stages to get shader interface errors.

– Always use program pipeline objects, which handle both linked and separate pro-
grams.

5.5 Working with Semantics
With OpenGL, a semantic is a software design concept that gives a meaning to a
slot, associating a variable and a resource. For example, a semantic may guarantee for
the code or a part of the code that a specific location will be used for the semantic
“color.” The vertex array that stores the color data will be bound to this attribute
location, and the vertex shader will know that it can access this specific buffer with
the variable using this dedicated location.

SAS [Bjork 08] was an attempt to define a common list of semantics. However,
semantics are software-specific associations, so a set of them may only be valid for a
single application or only a subset of its code if we don’t want to waste resources.

5.5.1 Varying Compiler-Generated Locations and Explicit
Locations

GLSL typically provides two methods to allocate locations. Either the GLSL com-
piler does it, or the OpenGL programmer does it.

When the GLSL compiler generates locations, there is no specification rule that
lets us know what locations are reserved for a specific variable. Consequently, these
locations need to be queried on the application side, which requires us to deal with
building an association between the variable and the resource.

Alternatively, the application can manually assign the locations, in which case,
we can use the “semantic” scheme and always assume that the resources are where
we expect to find them. This second approach can provide significantly better per-
formance because, thanks to sorting and semantics, an application can reuse bound
objects, reducing the overall number of bindings [Collins 11].

5.5.2 Vertex Array Attributes and Vertex Shader Inputs

The location of a vertex input can either be generated by the implementation, or we
can assign it with either glBindAttribLocation (OpenGL 2.0) or the location
layout qualifier (OpenGL 3.3).

When we let the compiler set the attribute locations to the vertex input vari-
ables, we must query these values using glGetAttribLocation and use these val-
ues to assign a vertex array attribute to the corresponding vertex input variable. In
most cases, this approach defeats the strength of OpenGL because it results in a

© 2012 by Taylor & Francis Group, LLC



78 I Discovering

Figure 5.8. With implicit attribute locations, each vertex program requires a dedicated vertex
array object.

dependency between the vertex arrays and the GLSL programs. This choice intro-
duces software design complexity but also a performance hit due to the necessity to
duplicate similar programs and similar vertex array objects. This forces us to bind a
vertex array object each time we bind a new program object and vice versa.

When the GLSL compiler assigns attribute locations, even if two programs share
the same vertex input variables, the interfaces may be different. An example of this is
different orders of declarations (Figures 5.8 and 5.9).

In practice, some GLSL compilers always order the variable locations the same
way, a fact we may think we can rely on, but we can’t. Different implementations or
newer drivers may generate different orders.

Figure 5.9. With explicit attribute locations, a vertex array object is shared by multiple vertex
programs and vice versa.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-7&iName=master.img-540.jpg&w=285&h=135
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-7&iName=master.img-541.jpg&w=285&h=135


5. The GLSL Shader Interfaces 79

From an application-design point of view, glBindAttribLocation may be
used to set the default attribute location to a vertex input variable, and the layout
location qualifier may be used to overload these default values. An issue with user-
defined location is that the application may potentially set attribute locations that are
already used by another variable, generating a link error.

OpenGL vertex array attributes are typically specified with the command
glVertexArrayAttrib*Pointer. These commands define the vertex format,
the vertex binding, and the vertex array buffers in a per-attribute fashion. Since the
OpenGL 3.2 core profile, applications require the use of a vertex array object as a
container of the vertex array attributes.

Working with semantics implies that within a certain frame (e.g., a rendering
pass, an effect, or the entire software), a vertex input can assume that the buffer range
that backed it contains the semantically expected data. Positions, colors, texture
coordinates, normals, tangents are all classic examples of semantics associated with
attribute locations.

Tip – Do not let the compiler automatically generate vertex input locations.

5.5.3 Fragment Shader Outputs and Framebuffer Color
Attachments

We might expect that the fragment shader output interface works with framebuffer
color attachments in a similar way to the way the vertex shader input interface works
with the vertex array attributes, but there are major differences. The fragment shader
output locations don’t refer to framebuffer color attachments but to an indirection
table exposed by glDrawBuffers. This table is not a framebuffer state, but it
requires that a framebuffer object is bound (see Figure 5.10).

Each output has a location that should be considered an index in the indirection
table. Using glDrawBuffers, we control this table to specify which

Figure 5.10. Example of fragment shader output variables and framebuffer attachments
matching.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-7&iName=master.img-551.png&w=321&h=13
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-7&iName=master.img-551.png&w=321&h=13
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-7&iName=master.img-553.jpg&w=291&h=102


80 I Discovering

fragment output is going to feed which colorbuffer. In practice, we will typically
assign a location corresponding directly to the framebuffer attachment number so
that the glDrawBuffers table only does a direct mapping. This is so typical that
OpenGL ES 2 doesn’t support this table.

A fragment shader output that isn’t backed by a framebuffer attachment will be
silently ignored, but a framebuffer attachment that isn’t fed by a fragment output will
have undefined values. A workaround for this is to disable writes for each attachment
concerned using glColorMaski. In some special cases like rendering to images
[Bolz 12], we actually want to render without framebuffer, in which case, we can
disable it with glDrawBuffer(GL NONE).

Once again, we can use semantics to handle this association. We need to as-
sign the framebuffer color attachments to the indexes identifying the semantics and
use the same semantics for the framebuffer output. Using a direct mapping for the
glDrawBuffers table simplifies the design so that the application only needs to call
this function each time a framebuffer is bound. Some typical names for fragment
ouputs and framebuffer attachments semantics include diffuse, specular, position,
normal, tangent.

Tip – Using glDrawBuffers as an indirection table may increase the complexity of a
software design unnecessarily. Consider using direct mapping at first.

5.5.4 Varying Outputs and Varying Inputs

When we use linked programs, we don’t need to consider semantics for the varying
outputs and inputs because the GLSL linker will resolve the interface. Thus, we
should not use the location qualifier and semantics, because we can’t do component
packing as well as the compiler can.

However, if we step back a little, we notice that separate programs actually fit
well in a software design based on semantics. Chances are that a vertex shader may
be reused with multiple fragment shaders. In such a case, using semantics for the
variable locations can ensure the matching. Sharing a vertex shader with multiple
fragment shaders has the advantage that when we change the fragment program, we
only need to bind the resources used by the new fragment program, and we don’t even
need to validate on the application side whether the vertex array object, the texture
buffer, and the uniform buffer associated with the vertex shader stage are correct. If
they were, they still are. Indeed, such an example of update strategy can be extended
to any shader stage and for any update rate of any stage, bringing a lot of flexibility
to the rendering optimizations.

Ultimately, varying locations are only required for partial matching. Semantics
are typically attached to locations, but we can use block names to carry the semantics.
Examples of block names for semantics include texture mapping, normal mapping,
vertex lighting, two-face colors; a strategy for defining semantics of blocks is to name

© 2012 by Taylor & Francis Group, LLC



5. The GLSL Shader Interfaces 81

the blocks based on the feature capabilities that output the interface. With vary-
ing variables, we need to cope with a finer level of granularity and assign variables
with locations having semantics of position, light direction, normal, tangent, texture
coordinates, etc.

Tip – Using separated programs, sorting, and semantics reduces the amount of binding.

5.5.5 Uniform Buffers and Uniform Blocks

Uniform buffers and uniform blocks were introduced in OpenGL 3.1. They offer
a great replacement to uniform variables, especially for semantics-based software de-
sign. Using uniform variables, we have no other choice than letting the compiler
assigning the location to the variables. A uniform variable is a state of a program
that implies that this variable can’t be reused for any other program. With uniform
blocks, the storage is a buffer that can be reused with other programs.

The OpenGL specification requires at least 12 uniform blocks per shader stage
(Table 5.5).

OpenGL requires as many buffer bindings (GL MAX UNIFORM BUFFER

BINDING) as combined uniform blocks so that each single uniform block may be
backed by a different uniform buffer. An application is also free to back multiple
uniform blocks with the same uniform buffer binding. Each of these binding point
is an opportunity for us to define a dedicated semantic to change a shader stage
without changing the uniform buffer bindings.

With the rest of the uniform buffer API, glUniformBlockBindingwas intro-
duced to associate a uniform block index with a uniform buffer binding. GLSL 4.20
introduced the binding layout qualifier that allows us to directly set a default bind-
ing to a uniform block. Both approaches can work for semantics, but used directly,
the default binding avoids carrying around the uniform block index. Semantics for
uniform buffers are assigned by update rates: per-camera transform, per-object trans-
form, per-material, etc.

Values OpenGL 4.2
requirement

Radeon
HD 5850

GeForce
GTX 470

HD Graphics
3000

MAX VERTEX UNIFORM BLOCKS 12 15 12 12
MAX TESS CONTROL UNIFORM BLOCKS 12 15 12 N/A
MAX TESS EVALUATION UNIFORM BLOCKS 12 15 12 N/A
MAX GEOMETRY UNIFORM BLOCKS 12 15 12 N/A
MAX FRAGMENT UNIFORM BLOCKS 12 15 12 12
MAX COMBINED UNIFORM BLOCKS 60 75 12 24

Table 5.5. Uniform block limitations.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-7&iName=master.img-575.png&w=321&h=13
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-7&iName=master.img-575.png&w=321&h=13


82 I Discovering

Tips – Use the binding qualifier to avoid unnecessary complexity on the application side.

– Organize uniform buffer and uniform block by update rates.

– Uniform buffer range must be aligned on GL UNIFORM BUFFER OFFSET

ALIGNMENT.

5.6 Application-Side Validations for Debug
Build Only

Bugs are not a problem, because they are part of the DNA of programming. The
problem is to detect them as soon as we encounter them, which will be the purpose
of this section, a tricky aspect of OpenGL.

If interfaces don’t match, OpenGL will either generate an error at draw call—if
we are lucky—or we will have to deal with a silent error. In both cases, fixing the
problem is time consuming. OpenGL provides the functions glValidateProgram
and glValidateProgramPipeline, which, according to the specification, “...will
check for all the conditions that could lead to a GL INVALID OPERATION error when
rendering commands are issued, and may check for other conditions as well” [Segal
and Akeley 10, p. 104].

Unfortunately, as it stands with Catalyst 12.1a preview and Forceware 290.53,
the other conditions seem to be reduced to none even with a debug context. We
could imagine using glValidateProgram and glValidateProgramPipeline

for the following reasons:

• To validate whether the bound vertex array object and a program object vertex
shader input interface match.

• To validate whether the framebuffer attachments are fed by fragment outputs.

• To validate whether varying output variables match with varying input vari-
ables.

• To validate that uniform blocks are backed by bound uniform buffers.

• To validate that uniform samplers are backed by a completed texture object.

• To validate that the uniform sampler is declared accordingly to the texture
object.

• To validate that the texture sampler is appropriate to the texture image.

Fortunately, understanding all the details of the GLSL Shader Interfaces allows
us to do some application-side validations to detect OpenGL errors and even silent
errors as early as possible. For this purpose, OpenGL provides many shader query
functions to allow the application to catch these issues. Unfortunately, OpenGL 4.2
is missing some queries to iterate over varying variables and fragment shader outputs.

Because of the page-count limit, the briefly described validation capabilities are
only illustrated by the companion source code of this chapter.

© 2012 by Taylor & Francis Group, LLC



5. The GLSL Shader Interfaces 83

Tip – Picture validation as assert-based validation. Encapsulate the validation in a
function, and call this function only within an asset to ensure doing this valida-
tion only in debug builds. Such validation introduces a lot of CPU overhead.

5.6.1 Vertex Inputs Validation

For the vertex array object, we may assume that we already know the attribute pa-
rameter, as we actually created this object on the application side. However, using
glGetVertexArray* might be a more convenient solution because it allows us to
validate the actual states. We need to use glGetActiveAttrib* to query informa-
tion about the vertex shader inputs, including its name, which we will use to query
separately the attribute locations with glGetAttribLocation that aren’t given by
glGetActiveAttrib.

To ensure the validity of the matching, it is also necessary to check if the re-
quested format conversion is valid, that is to say, if the user calls the appropriate
functions between glVertexAttribPointer, glVertexAttribIPointer, and
glVertexAttribLPointer. Unfortunately, there is a specification bug here, as
the value GL VERTEX ATTRIB ARRAY LONG is missing in the OpenGL 4.2 specifi-
cation.

5.6.2 Varying Interfaces Validation

With OpenGL 4.2, there is only one main validation that we can’t really do. We can’t
query varying outputs and varying inputs from separated programs; hence we can’t
validate these interfaces. The only possible workaround is to link separated programs
together and query the status of this operation. Such an approach is possible but may
hurt software designs that rely on separate programs.

Here, we are reaching a limitation of the OpenGL API that we can only hope to
see fixed for the benefit of our programming experience.

Tips – Be extra careful when writing the varying shader interface. There is no API to
detect mismatching between shader stages with separate programs. We may hope
that glValidateProgramPipeline will give us meaningful feedback.

– Consider using structures declared in a shared shader sources across shader stages.

5.6.3 Fragment Outputs Validation

To avoid writing undefined pixels into framebuffer attachments, it is necessary that
each active attachment is backed by a fragment shader output, which implies that
each element of the glDrawBuffers indirection table must be backed by a fragment
shader ouput. If a fragment shader output doesn’t reach the framebuffer attachments,
the fragment program is doing more work than it could.

© 2012 by Taylor & Francis Group, LLC



84 I Discovering

This analysis builds the strategy for validating the fragment shader output in-
terface; however, OpenGL doesn’t provide APIs to query the list of the fragment
shader outputs. The best we can do is to ensure that the glDrawBuffers ta-
ble doesn’t redirect output to nonexisting framebuffer attachments. To iterate on
glDrawBuffers table elements, use glGetIntegervwith GL DRAW BUFFERi un-
til GL MAX DRAW BUFFER. To iterate on framebuffer attachments, we use
glGetFramebufferAttachmentParameterwith GL COLOR ATTACHMENTi un-
til GL MAX COLOR ATTACHMENTS.

Tip – Be extra careful when writing the fragment shader output interface. There is no
API to enumerate fragment shader stage output variables.

5.6.4 Variables Validation

We can query all the information about uniform variables by iterating over
glGetActiveUniform until GL ACTIVE UNIFORMS, which we obtain through
glGetProgram. By doing this, we are querying all the uniform variables, including
opaque type uniforms: samplers, images, and atomics.

Rich with all this information, we can go further and validate the texture used
with a specific sampler. If the sampler is a usampler* or a isampler* then the
texture should have been created with the GL * INTEGER format. We can check this
by querying the value for GL RGBA INTEGER MODE with glGetIntergerv on the
currently bound texture.

Going further, we can even validate whether the sampler applied on a texture is
appropriate. It is very unlikely that a texture with no mipmaps should be associated
with a GL LINEAR MIPMAPS LINEAR sampler, but this could be a classic production
pipeline issue.

We can query the GL TEXTURE MIN FILTER parameter of a filter with
glGetSamplerParameteriv, but it’s surprisingly more complex to handle the
number of mipmaps. One approach is to compute the difference between GL

TEXTURE MAX LEVEL and GL TEXTURE BASE LEVEL, but too many applications
don’t pay any attention to GL TEXTURE MAX LEVEL. With OpenGL 4.2, the only
way around this is to carry around the texture levels from the texture creation.

5.6.5 Uniform Blocks Validation

OpenGL provides an API for validating uniform blocks by iterating over them us-
ing glGetActiveUniformBlockiv until GL ACTIVE UNIFORM BLOCKS, a value
we can get from glGetProgram. At this point, we are only iterating over blocks,
but we need to iterate as well on block members. We are using GL UNIFORM BLOCK

ACTIVE UNIFORMS to query the number of block members and GL UNIFORM

BLOCK ACTIVE UNIFORM INDICES to query the list of the active uniform indices.

© 2012 by Taylor & Francis Group, LLC



5. The GLSL Shader Interfaces 85

By using the indices of this list, we can now use glGetActiveUniform on each of
them to retrieve the information we need.

We can also validate that a block is effectively backed by a uniform buffer by
using GL UNIFORM BLOCK BINDING with glGetActiveUniformBlockiv to re-
trieve the binding of a uniform buffer binding. Finally, using GL UNIFORM BUFFER

BINDING with glGetIntegeri v, we can retrieve the actual buffer bound, if any.

5.7 Conclusion
I hope this chapter clarifies that a shader interface is not just declaring a bunch of
variables. I would love to give some clearer guidelines in the conclusion, but those
mostly depend on the development scenario, and many more pages could be written
on this complex topic. However, I can identify some good starting recommendations
that could be extended according to the specific nature of each application. For
example, simply considering OpenGL ES 2 will largely challenge these rules.

Initial recommendations for reliability and effectiveness of the shader interfaces:

• Always declare the built-in gl PerVertex blocks.

• Use only blocks for varying interfaces.

• Declare the content of the block in external structures shared across shader
sources.

• Don’t let the compiler set the locations to vertex inputs and fragment outputs.

• Give program-based semantics to attributes and fragment output locations.

• Give program-based semantics to uniform buffer, texture, and image binding
points.

• Rely on full matching, including the number of components.

• Avoid matching by location.

• Match the fragment output interface with the framebuffer attachment through
the glDrawBuffes indirection table. Don’t rely on the implementation for
this.

• Match separate programs varying interfaces with care, as we can’t rely on the
implementation for that. Consider using validation by linking all stages to-
gether.

• Use assert-based validation in debug to detect issues as soon and as often as we
can.

For more information on this discussion, have a look at the companion code
samples of this chapter.

© 2012 by Taylor & Francis Group, LLC



86 I Discovering

Acknowledgments. I am taking advantage of these last few words to thank Pat Brown
for the very insightful, in-depth discussions on this topic and the ongoing work to improve
OpenGL on this topic. Finally, I am very grateful for the support from Arnaud Masserann,
Daniel Rákos, Dimitri Kudelski, and Patrick Cozzi who reviewed this chapter.

Bibliography
[Bjork 08] Kevin Bjork. “Using SAS with CgFX and FX File Formats,” OpenGL Extension

Specifications, 2008.

[Bolz 12] Jeff Bolz and Pat Brown. “GL ARB shader image load store,” OpenGL Extension
Specifications, 2012.

[Brown 02] Pat Brown. “GL ARB vertex program,” OpenGL Extension Specifications,
2002.

[Collins 11] Matt Collins. “Advances in OpenGL for MacOS X Lion,” OpenGL Extension
Specifications, 2011.

[Kessenich 12] John Kessenich. “Interface Blocks, Input Variables, Output Variables, Uni-
form, Opaque Type.” GLSL 4.20 specification, 2012. Sections 4.3.8, 4.3.4, 4.3.6, 4.3.5,
and 4.1.7.

[Kilgard 12] Mark Kilgard, Greg Roth, and Pat Brown. “GL ARB separate shader objects,”
OpenGL Extension Specifications, 2012.

[Kime and Kaminski 08] Charles Kime and Thomas Kaminski. “Memory Basics.” Logic and
Computer Design Fundamentals. Upper Saddle River, NJ: Pearson Education, 2008.

[Leech 12] Jon Leech. “Shader Interface Matching.” OpenGL 4.2 Core Profile Specification,
2012.

[Lipchak 2002] Benj Lipchak. “GL ARB fragment program,” OpenGL Extension Specifica-
tions, 2002.

[Segal and Akeley 10] Mark Segal and Kurt Akeley. The OpenGL Graphics Sys-
tem: A Specification, Version 4.1 (Core Profile). www.scribd.com/jhoni vieceli/d/
69474584-gl-spec41-core-20100725, July 25, 2010.

© 2012 by Taylor & Francis Group, LLC



An Introduction to Tessellation
Shaders

Philip Rideout and Dirk Van Gelder

6.1 Introduction

Tessellation shaders open new doors for real-time graphics programming. GPU-
based tessellation was possible in the past only through trickery, relying on multiple
passes and misappropriation of existing shader units.

OpenGL 4.0 finally provides first-class support for GPU tessellation, but the new
shading stages can seem nonintuitive at first. This chapter explains the distinct roles
of those stages in the new pipeline and gives an overview of some common rendering
techniques that leverage them.

GPUs tend to be better at “streamable” amplification; rather than storing an
entire post-subdivided mesh in memory, tessellation shaders allow vertex data to be
amplified on the fly, discarding the data when they reach the rasterizer. The system
never bothers to store a highly-refined vertex buffer, which would have an impractical
memory footprint for a GPU.

Pretessellation graphics hardware was already quite good at rendering huge
meshes, and CPU-side refinement was often perfectly acceptable for static meshes.
So why move tessellation to the GPU?

The gains are obvious for animation. On a per-frame basis, only the control
points get sent to the GPU, greatly alleviating bandwidth requirements for high-
density surfaces.

Animation isn’t the only killer application of subdivision surfaces. Displacement
mapping allows for staggering geometric level-of-detail. Previous GPU techniques

87

6

© 2012 by Taylor & Francis Group, LLC



88 I Discovering

required multiple passes over the geometry shader, proving awkward and slow. Tes-
sellation shaders allow displacement mapping to occur in a single pass [Castaño 08].

Tessellation shaders can also compute geometric level-of-detail on the fly, which
we’ll explore later in the chapter. Previous techniques required the CPU to resubmit
new vertex buffers when changing the level-of-detail.

6.1.1 Subdivision Surfaces

One of the most compelling uses of GPU tessellation is efficiently rendering Catmull-
Clark subdivision surfaces. Most of these techniques use tessellation shaders to eval-
uate a parametric approximation of the limit surface rather than performing iterative
subdivision. Iterative subdivision can still be done on the GPU but is often better
suited for CUDA or OpenCL.

Parametric approximation of Catmull-Clark surfaces (ACC) arose from Charles
Loop’s research at Microsoft in 2008 [Loop and Schaefer 08], and was subsequently
enhanced to support creases [Kovacs et al. 09]. An excellent overview of the state of
the art can be found in [Ni et al. 09]. This includes a report from Valve, the first
major game developer to use tessellation shaders in this way.

6.1.2 Smoothing Polygonal Data

Catmull-Clark surfaces are not the only way to make good use of tessellation shaders;
game developers may find other surface definitions more attractive. For example,
tessellation can be used to simply “smooth out” traditional polygonal mesh data.
PN triangles are a popular example of this. An even simpler application is Phong
tessellation, the geometric analogue of a Phong lighting.

6.1.3 GPU Compute

OpenCL or CUDA can be used in conjunction with tessellation shaders for various
techniques. The compute API can be used for simulation, e.g., hair physics, [Yuksel
and Tariq 10], or it can be used to perform a small number of iterative subdivisions
to “clean up” the input mesh, removing extraordinary vertices before submitting the
data to the OpenGL pipeline [Loop 10].

6.1.4 Curves, Hair, and Grass

Tessellation shaders can also be applied to lines with isoline tessellation, which opens
up several possibilities for data amplification. One is tessellating a series of line seg-
ments into a smooth cubic curve. In this way, application code works only with a
small number of points. Smooth curves are generated entirely on the GPU, either for
3D applications like hair or rope or for 2D applications such as Bézier curves from a
drafting tool. Isoline tessellation can also be used to generate multiple curves from a
single curve.

© 2012 by Taylor & Francis Group, LLC



6. An Introduction to Tessellation Shaders 89

Figure 6.1. Hairy teapot; lines grown from patches.

Geometry shaders can be used in conjunction with isoline tessellation, which can
be useful for applications such as grass and hair. Figure 6.1 is a screenshot from the
accompanying sample code in which a surface is tessellated into many small polygons,
then extruded into hairs using a geometry shader.

6.1.5 Other Uses

There are also many less obvious uses for tessellation. If a post-tessellated mesh is
sufficiently refined, its geometry can be deformed to simulate lens distortion. These
effects include pincushion warping and panoramic projection. Because GPU raster-
izers can only perform linear interpolation, traditional techniques relying on post-
processing often result in poor sampling.

Figure 6.2 depicts an example of cylindrical warping using tessellation shaders
applied to a cubescape. The vertex buffer sent to the GPU is extremely light because
each cube face is a 4-vertex patch.

Figure 6.2. Cylindrical distortion using tessellation shaders.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-8&iName=master.img-027.jpg&w=145&h=91
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-8&iName=master.img-028.jpg&w=112&h=163


90 I Discovering

6.2 The New Shading Pipeline
Figure 6.3 depicts a simplified view of the OpenGL shading pipeline, highlighting
the new OpenGL 4.0 stages. The pipeline has two new shader stages and one new
fixed-function stage.

Those who come across Direct3D literature should be aware that the control
shader is there known as the hull shader; the evaluation shader is known as the domain
shader.

To start off, OpenGL 4.0 introduces a new primitive type, GL PATCHES, that
must be used to leverage tessellation functionality. Unlike every other OpenGL prim-
itive, patches have a user-defined number of vertices per primitive, configured like so:

glPatchParameteri(GL_PATCH_VERTICES, 16);

The tessellator can be configured in one of three domains: isolines, quads,
and triangles. Later in the chapter, we’ll examine each of these modes in detail.

Vertex Shader

Tess Control Shader

Triangles
quads
isolines

glDrawElements(GL_PATCHES, ...
glDrawArrays(GL_PATCHES, ...

Tessellator Unit

Tess Eval Shader

Rasterizer

Geometry Shader

Fragment Shader

Figure 6.3. The new tessellation stages in OpenGL 4.0.

© 2012 by Taylor & Francis Group, LLC



6. An Introduction to Tessellation Shaders 91

6.2.1 Life of a Patch

Vertex Shader

Patches

Tess Control Shader

Patches

P
re

-v
er

te
x
 d

at
a

p
re

-p
at

ch
 d

at
a

Tessellator Unit

Lines or triangles

Tess Eval Shader

Lines or triangles

Geometry Shader

Points, line strips, or triangle strips

Rasterizer

Fragment Shader

Figure 6.4. Tessellation data flow;
GLSL arrays are depicted by multiple in-
cident arrows.

Although vertex data always starts off ar-
ranged into patch primitives, it gets trans-
formed as it progresses through the pipe, as
depicted in Figure 6.4.

If desired, the tessellation control shader
can perform some of the same transforma-
tions that were traditionally done in the
vertex shader. However, unlike the vertex
shader, the tessellation control shader has
access to all data within the local patch as
well as a patch-relative invocation identifier.
It also acts as a configurator for the fixed-
function tessellator stage, telling it how to
split up the patch into triangles or lines. The
tessellation control shader can be thought of
as a “control point shader” because it oper-
ates on the original, pretessellated vertices.

Next, the tessellator stage inserts new
vertices into the vertex stream according to
tessellation levels stipulated by the control
shader and the tessellation mode stipulated
by the evaluation shader.

The evaluation shader then transforms
vertices in the expanded stream, making
them able to read data from any vertex
within the local patch.

After this point in the OpenGL pipeline,
vertices are finally arranged into triangles or
lines, and the patch concept is effectively dis-
carded.

6.2.2 Threading Model

Table 6.1 shows how the new programable stages are invocated, relative to the num-
ber of elements in the vertex buffer.

The threading model of the control shader is unique in that the relative order of
multiple invocations is somewhat controllable, and it can access a shared read/write
area for each patch.

Control shaders allow developers to specify a synchronization point where all
invocations for a patch must wait for other threads to reach the same point. Such a
synchronization point can be defined using the built-in barrier() function.

© 2012 by Taylor & Francis Group, LLC



92 I Discovering

Unit Invocation Scheme
Vertex Shader one invocation per input vertex
Tess Control Shader one invocation per output vertex
Tess Eval Shader one invocation per post-tessellated vertex

Table 6.1. Threading in the new OpenGL shading pipeline.

The function barrier() is different from memoryBarrier(); the latter was
introducted in OpenGL 4.2 and can be used from any shader unit.

Control shaders can access per-patch shared memory by qualifying a set of out
variables with the new patch keyword. If multiple invocations within a patch write
different values into the same patch variable, the results are undefined.

6.2.3 Inputs and Outputs

Table 6.2 enumerates all the built-in variables available to the two tessellation shader
stages.

The built-in arrays of struct, gl in and gl out, provide access to vertex po-
sition, point size, and clipping distance. These are the same variables that can be
output from the vertex shader and processed by the geometry shader.

In addition to the built-ins in Table 6.2, tessellation shaders can declare a set of
custom in and out variables as usual. Per-vertex data must always be declared as

Identifier Shader Unit(s) Access
gl PatchVerticesIn Control and Eval in
gl PrimitiveID Control and Eval in
gl InvocationID Control Shader in
gl TessLevelOuter[4] Control Shader out
gl TessLevelInner[2] Control Shader out
gl TessLevelOuter[4] Evaluation Shader in
gl TessLevelInner[2] Evaluation Shader in
gl in[n ].gl Position Control and Eval in
gl in[n ].gl PointSize Control and Eval in
gl in[n ].gl ClipDistance[m ] Control and Eval in
gl out[n ].gl Position Control and Eval out
gl out[n ].gl PointSize Control and Eval out
gl out[n ].gl ClipDistance[m ] Control and Eval out
gl TessCoord Evaluation in

Table 6.2. Built-in GLSL variables for tessellation.

© 2012 by Taylor & Francis Group, LLC



6. An Introduction to Tessellation Shaders 93

an array, where each element of the array corresponds to a single element within the
patch. Per-patch data, qualified with patch, is not arrayed over the patch.

Tessellation shaders have read-only access to gl PatchVerticesIn , which rep-
resents the number of vertices in a patch. In the evaluation shader, this number can
vary between patches.

The read-only gl PrimitiveID variable is also available to both tessellation
shaders. This describes the index of the patch within the current draw call.

As with any other shader stage in OpenGL, tessellation shaders can also read
from uniforms, uniform buffers, and textures.

6.2.4 Tessellation Control Shaders

This stage is well suited for change-of-basis transformations and deciding on level-of-
detail. Control shaders can also be used to achieve early rejection by culling patches
when all corners are outside the viewing frustum, although this gets tricky if the
evaluation shader performs displacement.

Listing 6.1 presents a template for a tessellation control shader.

layout(vertices = output patch size ) out;

// Declare inputs from vertex shader
in float vFoo[];

// Declare per-vertex outputs
out float tcFoo[];

// Declare per-patch outputs
patch out float tcSharedFoo;

void main()
{

bool cull = ...;
if (cull)
{

gl_TessLevelOuter[0] = 0.0;
gl_TessLevelOuter[1] = 0.0;
gl_TessLevelOuter[2] = 0.0;
gl_TessLevelOuter[3] = 0.0;

}
else
{

// Compute gl_TessLevelInner...
// Compute gl_TessLevelOuter...

}
// Write per-patch data...
// Write per-vertex data...

}

Listing 6.1. Tessellation control shader template.

© 2012 by Taylor & Francis Group, LLC



94 I Discovering

The layout declaration at the top of the shader defines not only the size of the
output patch but also the number of invocations of the control shader for a given
input patch. All custom out variables must be declared as arrays that are either
explicitly sized to match this count or implicitly using empty square brackets.

The size of the input patch is defined at the API level using glPatch

Parameteri, but the size of the output patch is defined at the shader level. In many
cases, we want these two sizes to be the same. Heavy insertion of new elements into
the vertex stream is best done by the fixed-function tessellator unit and not by the
control shader. The implementation-defined maximum for both sizes can be queried
at the API level using GL MAX PATCH VERTICES. At the time of this writing, 32 is
the common maximum.

The application code can determine the output patch size defined by the active
shader:

GLuint patchSize;
glGetIntegerv(GL_TESS_CONTROL_OUTPUT_VERTICES, &patchSize);

Tessellation modes. The tessellation mode (known as domain in Direct3D par-
lance) is configured using a layout declaration in the evaluation shader. There are
three modes available in OpenGL 4.0:

• triangles. Subdivides a triangle into triangles.

• quads. Subdivides a quadrilateral into triangles.

• isolines. Subdivides a quadrilateral into a collection of line strips.

The array gl OuterTessLevel[] always has four elements, and gl Inner

TessLevel always has two elements, but only a subset of each array is used depend-
ing on the tessellation mode. Similarly, gl TessCoord is always a vec3, but its
z component is ignored for isolines and quads. Table 6.3 summarizes how domain
affects built-in variables.

Domain Outer Inner TessCoord
triangles 3 1 3D (Barycentric)
quads 4 2 2D (Cartesian)
isolines 2 0 2D (Cartesian)

Table 6.3. The effective sizes of the tess level arrays and the gl TessCoord vector.

Fractional tessellation levels. The inner and outer tessellation levels control
the number of subdivisions along various edges. All tessellation levels are floating
points, not integers. The fractional part can have a different meaning depending on

© 2012 by Taylor & Francis Group, LLC



6. An Introduction to Tessellation Shaders 95

the spacing (known as partitioning in Direct3D parlance). Spacing is configured in
the evaluation shader using a layout declaration. For example,

layout(quads , equal_spacing) in;

The three spacing schemes are

• equal spacing. Clamp the tess level to [1,max]; then round up to the
nearest integer. Every new segment has equal length.

• fractional even spacing. Clamp the tess level to [2,max]; then round
up to the nearest even integer. Every new segment has equal length, except
for the two segments at either end, whose size is proportional to the fractional
part of the clamped tess level.

• fractional odd spacing. Clamp the tess level to [1,max-1]; then round
up to the nearest odd integer. Every new segment has equal length, except for
the two segments at either end, whose size is proportional to the fractional part
of the clamped tess level.

In the above descriptions, max refers to the value returned by

GLuint maxLevel ;
glGetIntegerv(GL_MAX_TESS_GEN_LEVEL, &maxLevel );

If we’re computing tessellation levels on the fly, the two fractional spacing modes
can be used to create a smooth transition between levels, resulting in a diminished
popping effect. See Figure 6.5 for how fractional tessellation levels can affect edge
subdivision.

Equal Even Odd
1.0

1.5

2.0

2.5

3.0

Figure 6.5. Fractional tessellation levels.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-8&iName=master.img-170.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-8&iName=master.img-170.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-8&iName=master.img-170.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-8&iName=master.img-170.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-8&iName=master.img-170.png&w=322&h=16


96 I Discovering

Computing the tessellation levels. Writing to gl TessLevelInner and
gl TessLevelOuter is optional; if they are not set by the control shader, OpenGL
falls back to the API-defined defaults. Initially, these defaults are filled with 1.0, but
they can be changed like so:

GLfloat inner[2] = { ... };
GLfloat outer[4] = { ... };
glPatchParameterfv(GL_PATCH_DEFAULT_INNER_LEVEL, inner);
glPatchParameterfv(GL_PATCH_DEFAULT_OUTER_LEVEL, outer);

At the time of this writing, the latest drivers do not always honor the defaults, so
the tessellation levels should always be set from the shader. In practical applications,
we often need to compute this dynamically anyway, which is known as adaptive
tessellation. One approach for computing the level-of-detail is based on screen-space
edge lengths:

uniform float GlobalQuality;

float ComputeTessFactor(vec2 ssPosition0 , vec2 ssPosition1)
{

float d = distance (ssPosition0 , ssPosition1);
return clamp(d * GlobalQuality , 0.0, 1.0);

}

The GlobalQuality constant may be computed in application code using the fol-
lowing heuristic:

GlobalQuality = 1.0/(TargetEdgeSize∗ MaxTessFactor).

Another adaptive scheme uses the orientation of the patch relative to the viewing
angle, leading to higher tessellation along silhouettes. This technique requires an
edge normal, which can be obtained by averaging the normals at the two endpoints:

uniform vec3 ViewVector;
uniform float Epsilon ;

float ComputeTessFactor(vec3 osNormal0 , vec3 osNormal1)
{

float n = normalize(mix(0.5, osNormal0 , osNormal1));
float s = 1.0 - abs(dot(n, ViewVector));
s = (s - Epsilon ) / (1.0 - Epsilon );
return clamp(s, 0.0, 1.0);

}

For more on dynamic level-of-detail, see Chapter 10.

6.2.5 Tessellation Evaluation Shaders

The evaluation stage is well suited for parametric evaluation of patches and compu-
tation of smooth normal vectors.

© 2012 by Taylor & Francis Group, LLC



6. An Introduction to Tessellation Shaders 97

layout(quads , fractional_even_spacing, cw) out;

// Declare inputs from tess control shader
in float tcFoo[];

// Declare per-patch inputs
patch in float tcSharedFoo;

// Declare per-vertex outputs
out float teFoo;

void main()
{

vec3 tc = gl_TessCoord;
teFoo = ... ;
gl_Position = ... ;

}

Listing 6.2. Tessellation evaluation shader template.

Listing 6.2 presents a template for a tessellation evaluation shader. Unlike the
control shader, the outputs are not arrayed over the patch.

For a visualization of gl TessCoord in quadsmode, see Figure 6.6. The mean-
ing of gl TessCoord varies according to the tessellation mode. For example, in
triangles mode, it’s a Barycentric coordinate; see Table 6.3.

By default, the progression of gl TessCoord is counter-clockwise for every tri-
angle. This is consistent with OpenGL’s default definition of front-facing polygons.
If desired, the layout declaration can flip this behavior using the cw token.

By default, the evaluation shader generates triangles for quads and triangles

domains and lines for the isolines domain. However, any domain can be over-
ridden to generate point primitives by adding the point mode token to the layout
declaration.

Figure 6.6. Gumbo’s bicubic patches and their gl TessCoord parameterizations.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-8&iName=master.img-264.jpg&w=145&h=141


98 I Discovering

6.2.6 Primitive Generation Using quads

The procedure for tessellation in the quads domain is described next (follow along
with Figure 6.7):

1. The edges of a rectangular input patch are fed into the tessellator.

2. The patch is first divided into quads according to the two inner tessellation
levels.

3. All of the quads produced by Step 1 except the bordering quads are decom-
posed into triangle pairs.

4. The outer edges of the patch are then subdivided according to the four outer
tessellation levels.

5. The outer ring is then filled with triangles by connecting the points from Step
2 with the points from Step 4. The algorithm for this step is implementation-
dependent.

Figure 6.7 illustrates this procedure using the following tessellation levels:

gl_TessLevelInner = { 4, 5 };
gl_TessLevelOuter = { 2, 3, 2, 4 };

4 2

2

5

1 2 3 4 5

3
4

Figure 6.7. Primitive generation in the quads domain.

6.2.7 Primitive Generation Using triangles

Next, we’ll describe the procedure for tessellation in the triangles domain, fol-
lowing along with Figure 6.8:

1. The edges of a triangular patch are fed into the tessellator.

2. The patch is first divided into concentric triangles according to the inner tes-
sellation level.

© 2012 by Taylor & Francis Group, LLC



6. An Introduction to Tessellation Shaders 99

5 3 2

3

321 4 5

Figure 6.8. Primitive generation in the triangles domain.

3. The spaces between the concentric triangles, except the outer ring, are decom-
posed into triangles.

4. The outer edges of the triangles are then subdivided according to the three
outer tessellation levels.

5. The outer ring is then filled with triangles by connecting the points from Step
2 with the points from Step 4.

The concentric triangles in Step 2 are formed from the intersections of perpen-
dicular lines extending from the original edges.

Figure 6.8 illustrates this procedure using the following tessellation levels:

gl_TessLevelInner = { 5 };
gl_TessLevelOuter = { 3, 3, 2 };

6.3 Tessellating a Teapot
This section illustrates tessellation in the quads domain using simple bicubic patches.
Conveniently, the famous Utah Teapot was originally modelled using bicubic patches.
Tessellation levels for this demo are depicted in Figure 6.9.

Since we are not performing skinning or other deformations, we defer model-
view-projection transformation until the evaluation shader; this makes our vertex
shader trivial. See Listing 6.3.

Figure 6.9. From left to right: inner and outer tess levels of 1, 2, 3, 4, and 7.

© 2012 by Taylor & Francis Group, LLC



100 I Discovering

in vec3 Position ;
out vec3 vPosition;

void main()
{

vPosition = Position ;
}

Listing 6.3. Teapot vertex shader.

Before diving into the control shader, a brief review of bicubic patches is in order.
In its most general form, the parametric formulation of a bicubic surface uses a total
of 48 coefficients:

x(u, v) = axu3v3 + bxu3v2 + cxu3v + dxu3 + exu2v3 + ...px,
y(u, v) = ayu3v3 + byu3v2 + cyu3v + dyu3 + eyu2v3 + ...py,
z(u, v) = azu3v3 + bzu3v2 + czu3v + dzu3 + ezu2v3 + ...pz.

(6.1)

The (u, v) coordinates in the above formulation correspond to gl TessCoord

in the evaluation shader.
The 48 coefficients can be neatly arranged into 4 × 4 matrices. We can denote

ax through px with the matrix Cx :

x(u, v) = (u3 u2 u 1) Cx

⎛
⎜⎜⎝

v3

v2

v
1

⎞
⎟⎟⎠ .

Given a set of knot points, we need to generate a set of coefficient matrices (Cx,
Cy, Cz). First, we select a basis matrix from a list of popular choices (e.g., Bézier,
B-spline, Catmull-Rom, and Hermite) and represent it with B. Next, we arrange the
knot points into matrices (Px, Py, Pz). The coefficient matrices can then be derived
as follows:

Cx = B ∗ Px ∗ BT ,
Cy = B ∗ Py ∗ BT ,
Cz = B ∗ Pz ∗ BT .

Because the coefficient matrices are constant over the patch, computing them
should be done in the control shader rather than the evaluation shader. See List-
ing 6.4.

Listing 6.4 does not make the best use of the threading model. Listing 6.5 makes
a 3 times improvement by performing the computations for each dimension (x, y, z)
across separate invocations.

In some cases, the first return statement in Listing 6.5 will not improve perfor-
mance due to the SIMD nature of shader execution.

© 2012 by Taylor & Francis Group, LLC



6. An Introduction to Tessellation Shaders 101

layout(vertices = 16) out;
in vec3 vPosition[];
out vec3 tcPosition[];
patch out mat4 cx, cy, cz;
uniform mat4 B, BT;

#define ID gl_InvocationID

void main()
{

tcPosition[ID] = vPosition[ID];

mat4 Px , Py, Pz;
for (int idx = 0; idx < 16; ++idx)
{

Px[idx / 4][idx % 4] = vPosition[idx].x;
Py[idx / 4][idx % 4] = vPosition[idx].y;
Pz[idx / 4][idx % 4] = vPosition[idx].z;

}

// Perform the change of basis:
cx = B * Px * BT;
cy = B * Py * BT;
cz = B * Pz * BT;

}

Listing 6.4. Teapot control shader.

layout(vertices = 16) out;
in vec3 vPosition[];
out vec3 tcPosition[];
patch out mat4 c[3];
uniform mat4 B, BT;

#define ID gl_InvocationID

void main()
{

tcPosition[ID] = vPosition[ID];
tcNormal [ID] = vNormal [ID];
if (ID > 2)
{

return;
}

mat4 P;
for (int idx = 0; idx < 16; ++idx)
{

P[idx / 4][idx % 4] = vPosition[idx][ID];
}

// Perform the change of basis:
c[ID] = B * P * BT;

}

Listing 6.5. Improved control shader.

© 2012 by Taylor & Francis Group, LLC



102 I Discovering

layout(quads) in;
in vec3 tcPosition[];
patch in mat4 cx, cy, cz;
uniform mat4 Projection;
uniform mat4 Modelview;

void main()
{

float u = gl_TessCoord.x, v = gl_TessCoord.y;
vec4 U = vec4(u * u * u, u * u, u, 1);
vec4 V = vec4(v * v * v, v * v, v, 1);
float x = dot(cx * V, U);
float y = dot(cy * V, U);
float z = dot(cz * V, U);
gl_Position = Projection * Modelview * vec4(x, y, z, 1);

}

Listing 6.6. Evaluation shader.

Current drivers have trouble with varying arrays of matrices; we had to replace
the c[] array with three separate matrices.

Further gains could be achieved by removing the for loop and using the barrier
instruction, but current drivers do not support the barrier instruction robustly.

Next, we come to the evaluation shader, which is best suited for performing the
computations in Equation 6.1 and performing the model-view-projection transform.
See Listing 6.6.

6.4 Isolines and Spirals
So far, we’ve examined the triangles and quads domains, which both decom-
pose input patches into many tiny polygons. The remaining tessellation mode,
isolines, changes each input patch into a series of line segments. Listing 6.7 is
an excerpt from an evaluation shader that generates multiple smooth curves from a
single coarse curve.

This shader requests that the tessellator unit generates evenly spaced isolines. The
control shader needs to specify values for only two of the outer tessellation levels, and
all inner levels are ignored. Specifically, gl TessLevelOuter[0] describes how
many curves to generate, and gl TessLevelOuter[1] describes how many sam-
ples generate for each of those curves. For example, if our application needs to turn
a coarsely specified curve into a single smooth curve, set gl TessLevelOuter[0]

to 1.0 and set gl TessLevelOuter[1] to 64.0 to finely sample the output curve.
Conversely, setting gl TessLevelOuter[0] to 64.0 and gl TessLevelOuter

[1] to 4.0 causes the tessellator to generate 64 coarse curves.
Listing 6.7 performs B-spline interpolation between the four vertices of each

patch, using gl TessCoord.x to indicate the parametric position along the curve,

© 2012 by Taylor & Francis Group, LLC



6. An Introduction to Tessellation Shaders 103

layout(isolines , equal_spacing , cw) in;

void main()
{

float u = gl_TessCoord.x, v = gl_TessCoord.y;

float B[4];
EvalCubicBSpline(u, B); // See accompanying sample for definition

vec4 pos = B[0] * gl_in [0]. gl_Position +
B[1] * gl_in [1]. gl_Position +
B[2] * gl_in [2]. gl_Position +
B[3] * gl_in [3]. gl_Position;

// Offset in the y coordinate using v so multiple
// curves aren �t drawn on top of each other.
pos += vec4(0.0, v * 5.0, 0.0, 0.0);

gl_Position = Projection * Modelview * pos;
}

Listing 6.7. Spirals shader.

and gl TessCoord.y here is used to offset different curves generated by the tessel-
lator unit.

In this example, a series of five “patches” are created in a spiral with four vertices
each. In the first image, both outer tessellation levels are set to one, so we get a single
curve. See Figure 6.10.

Figure 6.10. Isoline control points (left). Post-tessellated curves (right).

6.5 Incorporating Other OpenGL Features
Many types of animation and deformation are well suited to the current vertex shader.
For example, skinning is still optimally done in a vertex shader; NVIDIA’s Gregory
patch demo is one example of this.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-8&iName=master.img-457.jpg&w=141&h=95


104 I Discovering

OpenGL’s transform feedback functionality can be used to turn off the rasterizer
and send post-tessellated data back to the CPU, possibly for verification or debug-
ging, further processing, or to be leveraged by a CPU-side production-quality ren-
derer.

Transform feedback could also be used to perform iterative refinement, although
this is rarely done in practice due to the large memory requirements of the resulting
vertex buffers. For more on transform feedback, see Chapter 17.

Bibliography
[Castaño 08] Ignacio Castaño. “Displaced Subdivision Surfaces.” Presented at

Gamefest: http://developer.download.nvidia.com/presentations/2008/Gamefest/
Gamefest2008-DisplacedSubdivisionSurfaceTessellation-Slides.PDF, 2008.

[Kovacs et al. 09] Denis Kovacs, Jason Mitchell, Shanon Drone, and Denis Zorin. “Real-
Time Creased Approximate Subdivision Surfaces.” In Proceedings of the 2009 symposium
on Interactive 3D graphics and games, I3D ’09, pp. 155–160. New York: ACM, 2009.

[Loop and Schaefer 08] Charles Loop and Scott Schaefer. “Approximating Catmull-Clark
subdivision surfaces with bicubic patches.” ACM Trans. Graph. 27 (2008), 8:1–8:11.
Available online (http://doi.acm.org/10.1145/1330511.1330519).

[Loop 10] Charles Loop. “Hardware Subdivision and Tessellation of Catmull-Clark Sur-
faces.” Presented at GTC. http://www.nvidia.com/content/GTC-2010/pdfs/2129
GTC2010.pdf, 2010.

[Ni et al. 09] Tianyun Ni, Ignacio Castaño, Jörg Peters, Jason Mitchell, Philip Schneider,
and Vivek Verma. “Efficient Substitutes for Subdivision Surfaces.” In ACM SIGGRAPH
2009 Courses, SIGGRAPH ’09, pp. 13:1–13:107. New York: ACM, 2009.

[Yuksel and Tariq 10] Cem Yuksel and Sarah Tariq. “Advanced Techniques in Real-Time
Hair Rendering and Simulation.” In ACM SIGGRAPH 2010 Courses, SIGGRAPH ’10,
pp. 1:1–1:168. New York: ACM, 2010. Available online (http://doi.acm.org/10.1145/
1837101.1837102).

© 2012 by Taylor & Francis Group, LLC



Procedural Textures in GLSL

Stefan Gustavson

7.1 Introduction

Procedural textures are textures that are computed on the fly during rendering as op-
posed to precomputed image-based textures. At first glance, computing a texture
from scratch for each frame may seem like a stupid idea, but procedural textures
have been a staple of software rendering for decades, for good reason. With the ever-
increasing levels of performance for programmable shading in GPU architectures,
hardware-accelerated procedural texturing in GLSL is now becoming quite useful
and deserves more consideration. An example of what can be done is shown in Fig-
ure 7.1.

Figure 7.1. Examples of procedural textures. A modern GPU renders this image at full
screen resolution in a few milliseconds.

105

7

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-9&iName=master.img-009.jpg&w=322&h=97


106 I Discovering

Writing a good procedural shader is more complicated than using image editing
software to paint a texture or edit a photographic image to suit our needs, but with
procedural shaders, the pattern and the colors can be varied with a simple change of
parameters. This allows extensive reuse of data for many different purposes, as well
as fine-tuning or even complete overhauls of surface appearance very late in a pro-
duction process. A procedural pattern allows for analytic derivatives, which makes it
less complicated to generate the corresponding surface normals, as compared to tra-
ditional bump mapping or normal mapping, and enables analytic anisotropic anti-
aliasing. Procedural patterns require very little storage, and they can be rendered at
an arbitrary resolution without jagged edges or blurring, which is particularly useful
when rendering close-up details in real-time applications where the viewpoint is of-
ten unrestricted. A procedural texture can be designed to avoid problems with seams
and periodic artifacts when applied to a large area, and random-looking detail pat-
terns can be generated automatically instead of having artists paint them. Procedural
shading also removes the memory restrictions for 3D textures and animated patterns.
3D procedural textures, solid textures, can be applied to objects of any shape without
requiring 2D texture coordinates.

While all these advantages have made procedural shading popular for offline ren-
dering, real-time applications have been slow to adopt the practice. One obvious
reason is that the GPU is a limited resource, and quality often has to be sacrificed for
performance. However, recent developments have given us lots of computing power
even on typical consumer-level GPUs, and given their massively parallel architectures,
memory access is becoming a major bottleneck. A modern GPU has an abundance
of texture units and uses caching strategies to reduce the number of accesses to global
memory, but many real-time applications now have an imbalance between texture
bandwidth and processing bandwidth. ALU instructions can essentially be “free”
and cause no slowdown at all when executed in parallel to memory reads, and image-
based textures can be augmented with procedural elements. Somewhat surprisingly,
procedural texturing is also useful at the opposite end of the performance scale. GPU
hardware for mobile devices can incur a considerable penalty for texture download
and texture access, and this can sometimes be alleviated by procedural texturing. A
procedural shader does not necessarily have to be complex, as demonstrated by some
of the examples in this chapter.

Procedural methods are not limited to fragment shading. With the ever-
increasing complexity of real-time geometry and the recent introduction of GPU-
hosted tessellation as discussed in Chapter 6, tasks like surface displacements and
secondary animations are best performed on the GPU. The tight interaction be-
tween procedural displacement shaders and procedural surface shaders has proven
very fruitful for creating complex and impressive visuals in offline shading environ-
ments, and there is no reason to assume that real-time shading would be fundamen-
tally different in that respect.

This chapter is meant as an introduction to procedural shader programming in
GLSL. First, I present some fundamentals of procedural patterns, including antialias-

© 2012 by Taylor & Francis Group, LLC



7. Procedural Textures in GLSL 107

ing. A significant portion of the chapter presents recently developed, efficient meth-
ods for generating Perlin noise and other noise-like patterns entirely on the GPU,
along with some benchmarks to demonstrate their performance. The code repository
on the OpenGL Insights website, www.openglinsights.com, contains a cross-platform
demo program and a library of useful GLSL functions for procedural texturing.

7.2 Simple Functions
Procedural textures are a different animal than image-based textures. The concept
of designing a function to efficiently compute a value at an arbitrary point without
knowledge of any surrounding points takes some getting used to. A good book on
the subject, in fact, the book on the subject, is Texturing and Modeling: A Procedural
Approach [Ebert et al. 03]. Its sections on hardware acceleration have become out-
dated, but the rest is good. Another classic text on software procedural shaders well
worth reading is Advanced Renderman: Creating CGI for Motion Pictures [Apodaca
and Gritz 99].

Figure 7.2 presents a varied selection of regular procedural patterns and the GLSL
expression that generates them. The examples are monochrome, but, of course, black
and white can be substituted with any color or texture by using the resulting pattern
as the last parameter to the mix() function.

For antialiasing purposes, a good design choice is to first create a continuous
distance function of some sort, and then threshold it to get the features we want.
The last three of the patterns in Figure 7.2 follow this advice. None of the examples
implement proper antialiasing, but I will cover this in a moment.

As an example, consider the circular spots pattern. First, we create a periodic
repeat of the texture coordinates by scaling st by 5.0 and taking the fractional part
of the result. Subtracting 0.5 from this creates cells with 2D coordinates in the range
−0.5 to 0.5. The distance to the cell-local origin as computed by length() is a
continuous function everywhere in the plane, and thresholding it by smoothstep()
yields circular spots of any desired size.

There is a knack to designing patterns like this from scratch, and it takes practice
to do it well, but experimenting is a fun learning experience. However, take warning
from the last example in Figure 7.2: writing these kinds of functions as one-liners will
quickly make them unreadable even to their author. Use intermediate variables with
relevant names and comment all code. One of the advantages of procedural textures
is that they can be reused for different purposes, but that point is largely moot if
the shader code is impossible to understand. GLSL compilers are reasonably good
at simple optimizations like removing temporary variables. Some spoon-feeding of
GLSL compilers is still necessary to create optimal shader code, but readability does
not have to be sacrificed for compactness.

© 2012 by Taylor & Francis Group, LLC



108 I Discovering

smoothstep(0.4, 0.5, max(
 abs(fract(8.0*s - 0.5*mod(
  floor(8.0*t), 2.0)) - 0.5),
 abs(fract(8.0*t) - 0.5)))

smoothstep(-0.01, 0.01,
 0.2 - 0.1*sin(30.0*s) - t)

smoothstep(0.3, 0.32,
 length(fract(5.0*st)-0.5))

s fract(5.0*s)

abs(fract(5.0*s)*2.0-1.0) mod(floor(10.0*s)
+ floor(10.0*t), 2.0)

Figure 7.2. Examples of regular procedural patterns. Texture coordinates are either float
s,t or vec2 st; 0 ≤ s ≤ 1 and 0 ≤ t≤ 0.4.

7.3 Antialiasing
Beginners’ experiments with procedural patterns often result in patterns that alias
terribly, but that problem can be solved. The field of software shader programming
has methods of eliminating or reducing aliasing, and those methods translate directly
to hardware shading. Antialiasing is even more important for real-time content be-
cause the camera view is often unrestricted and unpredictable. Supersampling can
always reduce aliasing, but it is not a suitable routine remedy, because a well written
procedural shader can perform its own antialiasing with considerably less work than
what a brute force supersampling would require.

Many useful patterns can be generated by thresholding a smoothly varying func-
tion. For such thresholding, using conditionals (if-else), or the all-or-nothing
step() function will alias badly and should be avoided. Instead, use the mix() and
smoothstep() functions to create a blend region between the two extremes, and
take care to make the width of the blend region as close as possible to the size of one
fragment. To relate shader space (texture coordinates or object coordinates) to frag-
ment space in GLSL, we use the automatic derivative functions dFdx() and dFdy().

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-9&iName=master.img-037.jpg&w=121&h=49
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-9&iName=master.img-038.jpg&w=121&h=49
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-9&iName=master.img-039.jpg&w=121&h=49
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-9&iName=master.img-040.jpg&w=121&h=49
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-9&iName=master.img-041.jpg&w=121&h=49
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-9&iName=master.img-042.jpg&w=121&h=49
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-9&iName=master.img-043.jpg&w=121&h=49


7. Procedural Textures in GLSL 109

F(x, y) F(x + 1, y)

F(x, y + 1)
dFdx = F(x + 1, y) - F(x, y)

dFdy = F(x, y + 1) - F(x, y)

Figure 7.3. “Automatic derivatives” dFdx() and dFdy() in a fragment shader are simply
differences between arbitrary computed values of two neighboring fragments. Derivatives in
x and y in one fragment (bold square) are computed using one neighbor each (thin squares).
If the right or top neighbors are not part of the same primitive or for reasons of efficiency, the
left or bottom neighbors may be used instead.

There have been some teething problems with these functions, but now they can be
expected to be implemented correctly and efficiently on all GLSL-capable platforms.
The local partial derivatives are approximated by differences between neighboring
fragments, and they require very little extra effort to compute (see Figure 7.3). The
partial derivative functions break the rule that a fragment shader has no access to
information from other fragments in the same rendering pass, but it is a very lo-
cal special case handled behind the scenes by the OpenGL implementation. Mip-
mapping and anisotropic filtering of image-based textures use this feature as well,
and proper antialiasing of textures would be near impossible without it.

For smooth, anisotropic antialiasing of a thresholding operation on a smoothly
varying function F , we need to compute the length of the gradient vector in fragment
space and make the step width of the smoothstep() function dependent on it.
The gradient in fragment space (x, y) of F is simply

(
∂F/∂x, ∂F/∂y

)
. The built-in

function fwidth() computes the length of that vector as |∂F/∂x| + |∂F/∂y| in a
somewhat misguided attempt to be fast on older hardware. A better choice in most
cases nowadays is to compute the true length of the gradient,√(

∂F
∂x

)2

+

(
∂F
∂y

)2

,

according to Listing 7.1. Using ±0.7 instead of ±0.5 for the step width compen-
sates for the fact that smoothstep() is smooth at its endpoints and has a steeper
maximum slope than a linear ramp.

// �threshold � is constant , �value � is smoothly varying
float aastep(float threshold , float value)
{

float afwidth = 0.7 * length(vec2(dFdx(value), dFdy(value)));
// GLSL �s fwidth(value) is abs(dFdx(value)) + abs(dFdy(value))
return smoothstep(threshold - afwidth , threshold + afwidth , value);

}

Listing 7.1. Anisotropic antialiased step function.

© 2012 by Taylor & Francis Group, LLC



110 I Discovering

// st is a vec2 of texcoords , G2_st is a vec2 in texcoord space
mat2 Jacobian2 = mat2(dFdx(st), dFdy(st));
// G2_xy is G2_st transformed to fragment space
vec2 G2_xy = Jacobian2 * G2_st;
// stp is a vec3 of texcoords , G3_stp is a vec3 in texcoord space
mat2x3 Jacobian3 = mat2x3(dFdx(stp), dFdy(stp));
// G3_xy is G3_stp projected to fragment space
vec2 G3_xy = Jacobian3 * G3_stp;

}

Listing 7.2. Transforming a vector in (s, t) or (s, t, p) texture space to fragment (x, y) space.

In some cases, the analytical derivative of a function is simple to compute, and
it may be inefficient or inaccurate to approximate it using finite differences. The
analytical derivative is expressed in 2D or 3D texture coordinate space, but antiali-
asing requires knowledge of the length of the gradient vector in 2D screen space.
Listing 7.2 shows how to transform or project vectors in texture coordinate space to
fragment coordinate space. Note that we need two to three times as many values from
dFdx() and dFdy() to project an analytical gradient to fragment space compared
to computing an approximate gradient directly in fragment space, but automatic
derivatives come fairly cheap.

7.4 Perlin Noise
Perlin noise, introduced by Ken Perlin, is a very useful building block of procedural
texturing [Perlin 85]. In fact, it revolutionized software rendering of natural-looking
surfaces. Some patterns generated using Perlin noise are shown in Figure 7.4, along
with the shader code that generates them. By itself, it is not a terribly exciting-
looking function—it is just a blurry pattern of blotches within a certain range of
sizes. However, noise can be manipulated in many ways to create impressive visual
effects. It can be thresholded and summed to mimic fractal patterns, and it has great
potential also for introducing some randomness in an otherwise regular pattern. The
natural world is largely built on or from stochastic processes, and manipulations of
noise allows a large variety of natural materials and environments to be modeled
procedurally.

The examples in Figure 7.4 are static 2D patterns, but some of the more striking
uses of noise use 3D texture coordinates and/or time as an extra dimension for the
noise function. The code repository for this chapter contains an animated demo
displaying the scene in Figure 7.1. The left two spheres and the ground plane are
examples of patterns generated by one or more instances of Perlin noise.

When GLSL was designed, a set of noise functions was included among the
built-in functions. Sadly, though, those functions have been left unimplemented in
almost every OpenGL implementation to date, except for some obsolete GPUs by

© 2012 by Taylor & Francis Group, LLC



7. Procedural Textures in GLSL 111

float perlin = 0.5 +
 0.5*snoise(vec3(10.0*st, 0.0));
gl_FragColor = vec4(vec3(perlin), 1.0);

float cow = snoise(vec3(10.0*st, 0.0));
cow += 0.5*snoise(vec3(20.0*st, 0.0));
cow = aastep(0.05, n);
gl_FragColor = vec4(vec3(cow), 1.0);

float fbm=snoise(vec3(5.0*st, 0.0))
 + 0.5*snoise(vec3(10.0*st, 2.0))
 + 0.25*snoise(vec3(20.0*st, 4.0))
 + 0.125*snoise(vec3(40.0*st, 6.0))
 + 0.0625*snoise(vec3(80.0*st, 8.0));
gl_FragColor =
 vec4(0.4*vec3(fbm) + 0.5, 1.0);

float d = length(fract(st*10.0) - 0.5);
float n = snoise(vec3(40.0*st, 0.0))
 + 0.5*snoise(vec3(80.0*st, 2.0));
float blotches = aastep(0.4, d + 0.1*n);
gl_FragColor = vec4(vec3(blotches), 1.0);

Figure 7.4. Examples of procedural patterns using Perlin noise. Texture coordinates are
either float s,t or vec2 st.

3DLabs. Native hardware support for noise on mainstream GPUs may not appear
for a good while yet, or indeed ever, but there are software workarounds. Recent
research [McEwan et al. 12] has provided fast GLSL implementations of all common
variants of Perlin noise which are easy to use and compatible with all current GLSL
implementations, including OpenGL ES and WebGL. Implementation details are in
the article, and a short general presentation of Perlin noise in its classic and modern
variants can be found in [Gustavson 05]. Here, we will just present a listing of 2D
simplex noise, a modern variant of Perlin noise, to show how short it is. Listing 7.3
is a stand-alone implementation of 2D simplex noise ready to cut and paste into a
shader: no setup or external resources are needed. The function can be used in vertex
shaders and fragment shaders alike. Other variants of Perlin noise are in the code
repository for this book.

The different incarnations of Perlin noise are not exactly simple functions, but
they can still be evaluated at speeds of several billion fragments per second on a
modern GPU. Hardware and software development have now reached a point where
Perlin noise is very useful for real-time shading, and everyone is encouraged to use it.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-9&iName=master.img-098.jpg&w=147&h=59
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-9&iName=master.img-099.jpg&w=147&h=58
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-9&iName=master.img-100.jpg&w=147&h=59
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-9&iName=master.img-101.jpg&w=147&h=58


112 I Discovering

// Description : Array - and textureless GLSL 2D simplex noise.
// Author : Ian McEwan, Ashima Arts. Version : 20110822
// Copyright (C) 2011 Ashima Arts. All rights reserved .
// Distributed under the MIT License . See LICENSE file.
// https ://github.com/ashima/webgl -noise

vec3 mod289(vec3 x)
{

return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec2 mod289(vec2 x)
{

return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec3 permute (vec3 x)
{

return mod289 (((x*34.0) +1.0)*x);
}

float snoise(vec2 v)
{

const vec4 C = vec4 (0.211324865405187, // (3.0- sqrt(3.0))/6.0
0.366025403784439, // 0.5*( sqrt(3.0) -1.0)

-0.577350269189626 , // -1.0 + 2.0 * C.x
0.024390243902439); // 1.0 / 41.0

// First corner
vec2 i = floor(v + dot(v, C.yy));
vec2 x0 = v - i + dot(i, C.xx);
// Other corners
vec2 i1 = (x0.x > x0.y) ? vec2(1.0, 0.0) : vec2(0.0, 1.0);
vec4 x12 = x0.xyxy + C.xxzz;
x12.xy -= i1;
// Permutations
i = mod289(i); // Avoid truncation effects in permutation
vec3 p = permute ( permute ( i.y + vec3(0.0, i1.y, 1.0 ))

+ i.x + vec3(0.0, i1.x, 1.0 ));
vec3 m = max(0.5 - vec3(dot(x0,x0), dot(x12.xy ,x12.xy),

dot(x12.zw,x12.zw)), 0.0);
m = m * m;
m = m * m;
// Gradients
vec3 x = 2.0 * fract(p * C.www) - 1.0;
vec3 h = abs(x) - 0.5;
vec3 a0 = x - floor(x + 0.5);
// Normalize gradients implicitly by scaling m
m *= 1.79284291400159 - 0.85373472095314 * ( a0*a0 + h*h );
// Compute final noise value at P
vec3 g;
g.x = a0.x * x0.x + h.x * x0.y;
g.yz = a0.yz * x12.xz + h.yz * x12.yw;
return 130.0 * dot(m, g);

}

Listing 7.3. Complete, self-contained GLSL implementation of Perlin simplex noise in 2D.

© 2012 by Taylor & Francis Group, LLC



7. Procedural Textures in GLSL 113

7.5 Worley Noise
Another useful function is the cellular basis function or cellular noise introduced by
Steven Worley [Worley 96]. Often referred to as Worley noise, this function can
be used to generate a different class of patterns than Perlin noise. The function is
based on a set of irregularly positioned, but reasonably evenly spaced feature points.
The basic version of the function returns the distance to the closest one of these
feature points from a specified point in 2D or 3D. A more popular version re-
turns the distances to the two closest points, which allows more variation in the
pattern design. Worley’s original implementation makes commendable efforts to be
correct, isotropic, and statistically well-behaved, but simplified variants have been
proposed over the years to cut some corners and make the function less cumber-
some to compute in a shader. It is still more complicated to compute than Perlin

// Cellular noise ("Worley noise ") in 2D in GLSL , simplified version .
// Copyright (c) Stefan Gustavson 2011-04-19. All rights reserved .
// This code is released under the conditions of the MIT license .
// See LICENSE file for details .

vec4 permute (vec4 x)
{

return mod((34.0 * x + 1.0) * x, 289.0);
}

vec2 cellular2x2(vec2 P)
{

const float K = 1.0/7.0;
const float K2 = 0.5/7.0;
const float jitter = 0.8; // jitter 1.0 makes F1 wrong more often
vec2 Pi = mod(floor(P), 289.0);
vec2 Pf = fract(P);
vec4 Pfx = Pf.x + vec4(-0.5, -1.5, -0.5, -1.5);
vec4 Pfy = Pf.y + vec4(-0.5, -0.5, -1.5, -1.5);
vec4 p = permute (Pi.x + vec4(0.0, 1.0, 0.0, 1.0));
p = permute (p + Pi.y + vec4(0.0, 0.0, 1.0, 1.0));
vec4 ox = mod(p, 7.0) * K + K2;
vec4 oy = mod(floor(p * K) ,7.0) * K + K2;
vec4 dx = Pfx + jitter * ox;
vec4 dy = Pfy + jitter * oy;
vec4 d = dx * dx + dy * dy; // distances squared
// Cheat and pick only F1 for the return value
d.xy = min(d.xy, d.zw);
d.x = min(d.x, d.y);
return d.xx; // F1 duplicated , F2 not computed

}
varying vec2 st; // Texture coordinates
void main(void) {

vec2 F = cellular2x2(st);
float n = 1.0 - 1.5 * F.x;
gl_FragColor = vec4(n.xxx, 1.0);

}

Listing 7.4. Complete, self-contained GLSL implementation of our simplified version of
Worley noise in 2D.

© 2012 by Taylor & Francis Group, LLC



114 I Discovering

vec2 F = cellular(st*10.0);
gl_FragColor = vec4(vec3(F), 1.0);

vec2 F = cellular(st*10.0);
float rings = 1.0 - aastep(0.45, F.x)
+ aastep(0.55, F.x);
gl_FragColor = vec4(vec3(rings), 1.0);

vec2 F; // distances to features
vec4 d; // vectors to features
// F and d are ‘out’ parameters
cellular(8.0*st, F, d);
// Constant width lines, from
// the book “Advanced RenderMan”
float t = 0.05 *
(length(d.xy - d.zw)) / (F.x + F.y);
float f = F.y - F.x;
// Add small scale roughness
f +=t* (0.5 - cellular(64.0*st).y);
gl_FragColor =
 vec4(vec3(aastep(t, f)), 1.0);

vec2 F = cellular(st*10.0);
float blobs = 1.0 - F.x*F.x;
gl_FragColor = vec4(vec3(blobs), 1.0);

vec2 F = cellular(st*10.0);
float facets = 0.1 + (F.y - F.x);
gl_FragColor = vec4(vec3(facets), 1.0);

Figure 7.5. Examples of procedural patterns using Worley noise. Texture coordinates are
vec2 st. For implementations of the cellular() functions, see the code repository.

noise because it requires sorting of a number of candidates to determine which feature
point is closest, but while Perlin noise often requires several evaluations to generate
an interesting pattern, a single evaluation of Worley noise can be enough. Generally
speaking, Worley noise can be just as useful as Perlin noise, but for a different class
of problems. Perlin noise is blurry and smooth by default, while Worley noise is
inherently spotty and jagged with distinct features.

There have not been any recent publications of Worley noise algorithms for real-
time use, but using concepts from my recent Perlin noise work and ideas from previ-
ous software implementations, I created original implementations of a few simplified
variants and put them in the code repository for this chapter. Detailed notes on the
implementation are presented in [Gustavson 11]. Here, I just point to their existence
and provide them for use. The simplest version is presented in Listing 7.4.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-9&iName=master.img-226.jpg&w=139&h=56
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-9&iName=master.img-227.jpg&w=139&h=56
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-9&iName=master.img-228.jpg&w=139&h=56
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-9&iName=master.img-229.jpg&w=139&h=56
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-9&iName=master.img-231.jpg&w=139&h=56


7. Procedural Textures in GLSL 115

Some patterns generated using Worley noise are shown in Figure 7.5, along with
the GLSL expressions that generate them. The right two spheres in Figure 7.1 are
examples of patterns generated by a single invocation of Worley noise.

7.6 Animation
For procedural patterns, all properties of a fragment are computed anew for each
frame, which means that animation comes more or less for free. It is only a mat-
ter of supplying the shader with a concept of time through a uniform variable and
making the pattern dependent on that variable in some manner. Animation speed is
independent of frame rate, and animations do not need to loop but can extend for
arbitrary long periods of time without repeating (within the constraints of numerical
precision if a floating-point value is used for timing). Animation literally adds a new
dimension to patterns, and the unrestricted animation that is possible with proce-
dural textures is a strong argument for using them. Perlin noise is available in a 4D
version, and its main use is to create textures where 3D spatial coordinates and time
together provide the texture coordinates for an animated solid texture. The demo
code that renders the scene in Figure 7.1 animates the shaders simply by supplying
the current time as a uniform variable to GLSL and computing patterns that depend
on it.

Unlike prerendered image sequences, procedural shader animation is not re-
stricted to simple, linear time dependencies. View-dependent changes to a procedural
texture can be used to affect the level-of-detail for the rendering so that, for example,
bump maps or small-scale features are computed only in close-up views to save GPU
resources. Procedural shading allows arbitrary interactive and dynamic changes to a
surface, including extremely complex computations like smoke and fluid simulations
performed on the GPU. Animated shaders have been used in software rendering for
a long time, but interactivity is unique to real-time shading, and a modern GPU has
considerably more computing power than a CPU, paving the way to many fun and
wonderful avenues to explore.

7.7 Texture Images
Procedural texturing is all about removing the dependency on image-based textures,
but there are applications where a hybrid approach is useful. A texture image can
be used for coarse detail to allow better artistic control, and a procedural pattern
can fill in the details in close-up views. This includes not only surface properties in
fragment shaders, but also displacement maps in vertex shaders. Texture images can
also be used as data for further processing into a procedural pattern, as in the manner
presented in Chapter 12 or in the halftoning example in Figure 7.6, rendered by the
shader in Listing 7.5. The bilinear texture interpolation is performed explicitly in

© 2012 by Taylor & Francis Group, LLC



116 I Discovering

Figure 7.6. A halftone shader using a texture image as input. The shader is listed in List-
ing 7.5. Small random details become visible in close-up views (inset, lower right). For dis-
tance views, the shader avoids aliasing by gradually blending out the halftone pattern and
blending in the plain RGB image (inset, lower left).

shader code. Hardware texture interpolation often has a limited fixed-point precision
that is unsuitable for this kind of thresholding under extreme magnifications.

Of course, some procedural patterns that are too cumbersome to compute for
each frame can be rendered to a texture and reused between frames. This approach
maintains several of the advantages from using procedural patterns (flexibility, com-
pactness, dynamic resolution), and it can be a good compromise while we are waiting
for complex procedural texturing to be easily manageable in true real time. Some of
the advantages are lost (memory bandwidth, analytic anisotropic antialiasing, rapid
animations), but it does solve the problem of extreme minification. Minification can
be tricky to handle analytically but is solved well by mipmapping an image-based
texture.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-9&iName=master.img-250.jpg&w=261&h=261


7. Procedural Textures in GLSL 117

uniform sampler2D teximage ;
uniform vec2 dims; // Texture dimensions (width and height)
varying vec2 one; // 1.0/dims from vertex shader
varying vec2 st; // 2D texture coordinates

// Explicit bilinear lookup to circumvent imprecise interpolation.
// In GLSL 1.30 and above , �dims � can be fetched by textureSize().
vec4 texture2D_bilinear(sampler2D tex , vec2 st, vec2 dims , vec2 one)
{

vec2 uv = st * dims;
vec2 uv00 = floor(uv - vec2(0.5)); // Lower left of lower left texel
vec2 uvlerp = uv - uv00 - vec2 (0.5); // Texel -local blends [0,1]
vec2 st00 = (uv00 + vec2(0.5)) * one;
vec4 texel00 = texture2D(tex , st00);
vec4 texel10 = texture2D(tex , st00 + vec2(one.x, 0.0));
vec4 texel01 = texture2D(tex , st00 + vec2(0.0, one.y));
vec4 texel11 = texture2D(tex , st00 + one);
vec4 texel0 = mix(texel00 , texel01 , uvlerp.y);
vec4 texel1 = mix(texel10 , texel11 , uvlerp.y);
return mix(texel0 , texel1, uvlerp.x);

}

void main(void)
{

vec3 rgb = texture2D_bilinear(teximage , st, dims , one).rgb;
float n = 0.1 * snoise(st * 200.0);
n += 0.05 * snoise(st * 400.0);
n += 0.025 * snoise(st * 800.0); // Fractal noise , 3 octaves
vec4 cmyk;
cmyk.xyz = 1.0 - rgb; // Rough CMY conversion
cmyk.w = min(cmyk.x, min(cmyk.y, cmyk.z)); // Create K
cmyk.xyz -= cmyk.w; // Subtract K amount from CMY

// CMYK halftone screens , in angles 15/ -15/0/45 degrees
vec2 Cuv = 50.0 * mat2(0.966 , -0.259, 0.259, 0.966) * st;
Cuv = fract(Cuv) - 0.5;
float c = aastep (0.0, sqrt(cmyk.x) - 2.0 * length (Cuv) + n);
vec2 Muv = 50.0 * mat2(0.966 , 0.259, -0.259, 0.966)*st;
Muv = fract(Muv) - 0.5;
float m = aastep (0.0, sqrt(cmyk.y) - 2.0 * length (Muv) + n);
vec2 Yuv = 50.0 * st; // 0 deg
Yuv = fract(Yuv) - 0.5;
float y = aastep (0.0, sqrt(cmyk.z) - 2.0 * length (Yuv) + n);
vec2 Kuv = 50.0 * mat2(0.707 , -0.707, 0.707, 0.707) * st;
Kuv = fract(Kuv) - 0.5;
float k = aastep (0.0, sqrt(cmyk.w) - 2.0 * length (Kuv) + n);

vec3 rgbscreen = 1.0 - vec3(c, m, y);
rgbscreen = mix(rgbscreen , vec3 (0.0), 0.7 * k + 0.5 * n);
vec2 fw = fwidth(st);
float blend = smoothstep(0.7, 1.4, 200.0 * max(fw.s, fw.t));
gl_FragColor = vec4(mix(rgbscreen , rgb, blend), 1.0);

}

Listing 7.5. The fragment shader to generate the halftone pattern in Figure 7.6.

© 2012 by Taylor & Francis Group, LLC



118 I Discovering

7.8 Performance
Shader-capable hardware comes in many variations. An older laptop GPU or a low-
cost, low-power mobile GPU can typically run the same shader as a brand new high-
end GPU for gaming enthusiasts, but the raw performance might differ by as much
as 100 times. The usefulness of a certain procedural approach is therefore highly
dependent on the application. GPUs get faster all the time, and their internal archi-
tectures change between releases, sometimes radically so. For this reason, absolute
benchmarking is a rather futile exercise in a general presentation like this one. In-
stead, I have measured the performance of a few of the example shaders from this
chapter on a selection of hardware. The results are summarized in Table 7.1.

The list should not be considered a representative or carefully picked selection—
it is just a few random GPUs of different models, neither top performing nor par-
ticularly new, as well as some of the shaders we have presented in this chapter. The
program to run this benchmark is included in the code repository. The absolute
figures depend on operating system and driver version and should only be taken
as a general indication of performance. The most useful information in the table
is the relative performance within one column: it is instructive to compare a con-
stant color shader or a single texture lookup with various procedural shaders on the
same GPU. As is apparent from the benchmarks, it is very hard to beat a single
texture lookup for raw speed, not least because most current GPUs are specifically
designed to have a high texture bandwidth. However, reasonably complex procedu-
ral textures can run at perfectly useful speeds, and they become more competitive
when the limiting factor for GPU performance is memory bandwidth. Procedural
methods can execute in parallel to memory reads and add to the visual complex-
ity of a textured surface without necessarily slowing things down. For the foresee-
able future, GPUs will continue to have a problem with memory bandwidth, and

NVIDIA AMD AMD NVIDIA
Shader 9600M HD6310 HD4850 GTX260
Constant color 422 430 2,721 3,610
Single texture 412 414 2,718 3,610
Dots (Fig 7.2, lower right) 360 355 2,720 3,420
Perlin noise (Fig 7.4, top left) 63 97 1,042 697
5x Perlin (Fig 7.4, bottom left) 11 23 271 146
Worley noise (Fig 7.5, top left) 82 116 1,192 787
Worley tiles (Fig 7.5, bottom) 26 51 580 345
Halftone (Fig 7.6) 34 52 597 373

Table 7.1. Benchmarks for a few example shaders. Numbers are in millions of fragments
per second. NVIDIA 9600M is an old laptop GPU, AMD HD6310 is a budget laptop GPU.
AMD HD4850 and NVIDIA GTX260 were mid-range desktop GPUs in 2011. High-end
GPUs of 2011 perform several times better.

© 2012 by Taylor & Francis Group, LLC



7. Procedural Textures in GLSL 119

their computational power will keep increasing. There is certainly lots of room to
experiment here.

7.9 Conclusion
The aim of this chapter was to demonstrate that modern shader-capable GPUs are
mature enough to render procedural patterns at fully interactive speeds, and that
GLSL is a good language for writing procedural shaders very similar to the ones
that have become standard tools in offline rendering over the past two decades. In
a content production process that includes procedural textures, some of the visuals
need to be created using math and a programming language as tools for creative
visual expression, and this requires a different kind of talent than what it takes to
be a good visual artist with traditional image editing tools. Also, the GPU is still a
limited resource, and care needs to be taken not to overwhelm it with overly complex
shaders. Procedural texturing is not yet a wise choice in every situation. However,
there are situations where a procedural pattern simply does the job better than a
traditional, image-based texture, and the tools and the required processing power are
now available to do it in real-time. Now is a good time to start writing procedural
shaders in GLSL.

Bibliography
[Apodaca and Gritz 99] Anthony Apodaca and Larry Gritz. Advanced RenderMan: Creating

GCI for Motion Pictures. San Francisco: Morgan Kaufmann, 1999.

[Ebert et al. 03] David Ebert, Kenton Musgrave, Darwyn Peachey, Ken Perlin, and Steve
Worley. Texturing and Modeling: A Procedural Approach. San Francisco: Morgan Kauf-
mann, 2003.

[Gustavson 05] Stefan Gustavson. “Simplex Noise Demystified.” http://www.itn.liu.se/
∼stegu/simplexnoise/simplexnoise.pdf, March 22, 2005.

[Gustavson 11] Stefan Gustavson. “Cellular Noise in GLSL: Implementation Notes.” http://
www.itn.liu.se/∼stegu/GLSL-cellular/GLSL-cellular-notes.pdf, April 19, 2011.

[McEwan et al. 12] Ian McEwan, David Sheets, Stefan Gustavson, and Mark Richardson.
“Efficient Computational Noise in GLSL.” Journal of Graphics Tools 16:2 (2012), to
appear.

[Perlin 85] Ken Perlin. “An Image Synthesizer.” Proceedings of ACM Siggraph 85 19:3 (1985),
287–296.

[Worley 96] Steven Worley. “A Cellular Texture Basis Function.” In SIGGRAPH ’96, Pro-
ceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques,
pp. 291–293. New York: ACM, 1996.

© 2012 by Taylor & Francis Group, LLC



© 2012 by Taylor & Francis Group, LLC



OpenGL SC Emulation Based on
OpenGL and OpenGL ES

Hwanyong Lee and Nakhoon Baek

8.1 Introduction
OpenGL is one of the most widely used 3D graphics APIs. It originated from
IRIS GL in the 1980s and is now available on various platforms. Currently, Khronos
Group, the open standard consortium, consistently manages all the standard speci-
fications for the OpenGL family, including OpenGL, OpenGL ES (for embedded
systems), OpenGL SC (safety critical profile), and WebGL.

At this time, the latest version for desktops and workstations is OpenGL 4.2,
which was released in August 2011. On embedded systems and handheld devices,
OpenGL ES 1.1 and 2.0 are widely used. These embedded versions are smashingly
successful, especially for smart phones and tablet PCs.

Another sibling in the OpenGL family is OpenGL SC, the safety-critical pro-
file [Stockwell 09] derived from OpenGL ES. Historically, this safety-critical profile
was started as a subset of OpenGL ES to minimize implementation and safety certi-
fication costs, mainly for the DO-178B requirements [RTCA/DO-178B 92]. How-
ever, due to the different targets and requirements, OpenGL SC became another
independent specification. Currently, OpenGL SC and OpenGL ES are not com-
patible with each other despite some common features. Figure 8.1 shows OpenGL
SC-based cockpit displays.

In safety-critical markets for avionics, industrial, military, medical, and automo-
tive applications, OpenGL SC plays a major role for the graphical interfaces and ap-
plications. The need for this 3D graphics API is rapidly increasing with the growth
of the safety-critical market. For medical and automotive applications, consumer
electronics markets are starting to strongly ask for this standard.

121

8

© 2012 by Taylor & Francis Group, LLC



122 I Discovering

Figure 8.1. OpenGL SC-based cockpit displays. Image courtesy of ESTEREL Technology Inc.

We naturally need a cost-effective way of implementing OpenGL SC, based
on commercial off-the-shelf items [Cole 05, Snyder 05, Beeby 02]. We have a few
OpenGL SC implementations at this time, some of which provide fully dedicated
OpenGL SC semiconductor chips or exclusive device drivers on existing OpenGL
chips. These solutions require a large amount of development cost. Though some
full software solutions are also available, their performance is not satisfying for many
applications.

Implementation of a graphics library over another existing graphics pipeline has
advantages such as cost-effectiveness and portability. For OpenGL ES, we have an
example of OpenGL ES 1.1 implementation over OpenGL ES 2.0, where the ES
2.0 pipeline was modified to fully support ES 1.1 features [Hill et al. 08]. OpenGL
ES 1.1 emulation over desktop OpenGL is also available [Lee and Baek 09, Baek
and Lee 12]. To support WebGL features on Windows PCs, an OpenGL ES 2.0
emulation on the top of Direct3D 9 was developed as discussed in Chapter 39.

In this chapter, an OpenGL SC emulation library is implemented based on
the OpenGL 1.1 fixed rendering pipeline and the ARB multitexture extension
[Leech 99], which may be one of the lowest-end hardware profiles for embedded 3D
graphics systems. We also demonstrate emulating OpenGL SC on OpenGL ES hard-
ware. Finally, our OpenGL SC emulation can be used for desktop-based OpenGL SC
development. One of the most widely used graphics devices on low-end embedded
systems is OpenGL ES 1.1, which is based on OpenGL 1.3, and is mainly used
because of its stability, cost-effectiveness, and small footprint.

This kind of implementation is strongly required for the following reasons:

• Cost-effectiveness. Although we could develop the whole OpenGL SC fa-
cilities from scratch, there are already hardware devices and their correspond-
ing drivers with OpenGL or OpenGL ES support. Our goal is to provide
additional OpenGL SC support at a relatively low cost by utilizing these exist-
ing hardware devices.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-10&iName=master.img-018.jpg&w=316&h=115


8. OpenGL SC Emulation Based on OpenGL and OpenGL ES 123

• Efficient development environment. Most embedded systems are typ-
ically developed on desktop PCs and then downloaded on the target devices
since the target embedded systems do not often have sufficient computing
power for development tools. Thus, for these cross-compiling environments,
emulation libraries for the PCs are required.

• Rapid and stable implementation. Before the delivery of the whole in-
dependent OpenGL SC hardware or full software implementations, we rapidly
created a stable product with a low-level emulation library based on the desk-
top OpenGL.

In the next section, we first show the previous OpenGL SC implementations
and other related cases of emulation library implementations for the 3D graphics
API’s. Our overall design and implementation details are presented in Section 8.3.
Implementation results and conclusions follow in Sections 8.4 and 8.5, respectively.

8.2 OpenGL SC Implementations
OpenGL SC simplifies safety-critical certification, guarantees repeatability, allows
compliance with real-time requirements, and facilitates porting of legacy safety-critical
applications [Pulli et al. 07].

OpenGL SC 1.0.1 targets various application areas, including

• Avionics applications. The Federal Aviation Administration (FAA) man-
dated DO-178B certification for software airplane cockpits, demanding 100%
reliable graphics drivers for instrumentation, navigation, and controls [Khronos
Group 11].

• Automotive applications. Integrated dashboard applications will need
OpenGL SC safety-critical reliability.

• Military applications. Primarily avionics and also increasingly embedded
training and visualization on handheld devices use OpenGL SC.

• Industrial applications. Equipment for power plant instrumentation,
transportation monitoring and control, networking, surveillance, etc., will all
eventually be updated with commercial off-the-shelf graphics that meet safety-
critical certification.

• Medical applications. Real-time display of medical data requires 100%
reliability for surgery.

Currently, it is more cost-effective to develop separate OpenGL SC device drivers
over the commercially available OpenGL semiconductor chips, as shown in Fig-
ure 8.2, rather than to build up fully-dedicated OpenGL SC chips and device drivers

© 2012 by Taylor & Francis Group, LLC



124 I Discovering

OpenGL SC
Application Program

OpenGL SC
device driver

OpenGL
hardware

Framebuffer

OpenGL SC
API calls

OpenGL
hardware instructions

(a) (b)

Figure 8.2. An OpenGL SC implementation based on the OpenGL-family
semiconductor chip. (a) API call flow (b) XMC G1 Graphic Board Image
courtesy of COTS Technology Inc.

OpenGL SC
Application Program

OpenGL SC
Software

Implementation

Framebuffer

OpenGL SC
API calls

Low-level
instructions

Figure 8.3. A full software
OpenGL SC implementation.

from scratch using register-level instructions. Even with the limitations, developers
can accomplish high execution speeds due to hardware support. There are two exam-
ples in this implementation category: ALT Software Inc. uses AMD OpenGL chips,
and Presagis Inc. developed their OpenGL SC drivers over NVIDIA OpenGL chips.

There are also a few full software OpenGL SC implementations, such as IGL178
from Quantum3D Inc. and Vincent SC from Vincent3D Inc. In these cases, as
shown in Figure 8.3, it was relatively easy to adopt new hardware. In contrast, slow
execution speeds are unavoidable. However, software implementations provide stable
systems with easy modification at reasonably low costs.

The third implementation method is building up an OpenGL SC emulation
library based on an OpenGL device driver and hardware. More precisely, we devel-
oped an OpenGL SC emulator on the OpenGL device driver, as shown in Figure 8.4.
These emulators can be implemented with minimal cost if we choose a suitable un-
derlying library. However, generally, it is not simple to bridge the gap between the
target API and the underlying library.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-10&iName=master.img-038.jpg&w=111&h=203


8. OpenGL SC Emulation Based on OpenGL and OpenGL ES 125

OpenGL SC
Application Program

OpenGL SC
Device Driver

OpenGL
Hardware

Framebuffer

OpenGL SC
API calls

OpenGL
API calls

OpenGL
Device Driver

(a) (b)

Figure 8.4. OpenGL SC emulator library on the OpenGL device driver. (a) API call flow
(b) PMC OpenGL ES Graphic Board. Image courtesy of HUONE Inc.

8.3 Design and Implementation

8.3.1 Overall Pipeline

The OpenGL SC specification has 101 functions based on the OpenGL 1.3 specifi-
cation [Leech 01]. These API functions can be classified into the core API functions
and several extensions: a core extension of OES single precision, a mandatory
extension of EXT paletted texture, and an optional extension of EXT shared

texture palette [Leech 99]. These two texture-related extensions are critical to
most avionics 2D mapping applications. They separate color tables from texture data
to allow rapid color table change and permit palettes to be shared between multiple
textures [Stockwell 09]. Our implementation supports all OpenGL SC extensions.
Figure 8.5 shows the block diagram of the entire OpenGL SC rendering pipeline.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-10&iName=master.img-048.jpg&w=114&h=239


126 I Discovering

Figure 8.5. The OpenGL SC rendering pipeline.

Although the same function names are defined in OpenGL SC and its ancestor
OpenGL specifications, they do not provide the same functionality. Customized to
safety-critical devices, the features and acceptable parameter values for the OpenGL
SC functions are different from the original OpenGL specifications. Thus, to fulfill
OpenGL SC requirements, we perform strict error checking and proper numerical
conversions prior to OpenGL hardware execution. This extra work is performed on
a case-by-case basis, similar to the implementation of OpenGL ES 1.1 over desktop
OpenGL [Baek and Lee 12].

OpenGL SC functions Requirements for Implementation
and extensions OpenGL hardware Strategy

most of core functions OpenGL 1.1 core error checking and
function emulation

ARB multitexture more than two use ARB functions
extension texture units (instead of 1.3 core)

OES single precision none numerical conversion and
extension error checking codes

EXT paletted texture none use paletted texture
extension processing pipeline

EXT shared texture palette none use paletted texture
extension processing pipeline

Table 8.1. Summary of our implementation strategy.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-10&iName=master.img-065.jpg&w=322&h=172


8. OpenGL SC Emulation Based on OpenGL and OpenGL ES 127

Our implementation strategy for OpenGL SC features is summarized in Ta-
ble 8.1:

• Core functions from OpenGL 1.1. These functions are basically provided
by the underlying OpenGL hardware pipeline. Some of them additionally re-
quire numerical conversions before calling the underlying OpenGL functions.

• Core functions from OpenGL 1.3. Excluding OpenGL 1.1 functions
from OpenGL SC specification, the remaining pure OpenGL 1.3 core func-
tions are all related to the ARB multitexture extension.

• OES single precision extension. The single precision extension is a
mandatory extension. Fortunately, these functions are single-precision floating
point type variations of the original double-precision floating point based API
functions in the original OpenGL specification. Thus, from the viewpoint of
OpenGL SC implementers, these functions can be used to convert the user-
provided single-precision floating point values into double-precision floating
point values; they then call the underlying OpenGL functions. In the case of
OpenGL SC specifications, the following four functions are effective:

void glDepthRangef(GLclampf near , GLclampf far);
void glFrustumf(GLfloat left , GLfloat right ,

GLfloat bottom , GLfloat top ,
GLfloat near , GLfloat far);

void glOrthof (GLfloat left , GLfloat right ,
GLfloat bottom , GLfloat top ,
GLfloat near , GLfloat far);

void glClearDepthf(GLclampf depth);

• EXT paletted texture extension. This mandatory extension is used to
support legacy avionics applications, and currently available OpenGL-related
devices do not support it. With this extension, a texture can be defined as an
index-based texture and its corresponding color table or color palette. Currently,
most graphics devices use the direct color system and do not support indexed
color features. To fully support this extension, we introduced a full software
implementation of a new texture processing pipeline.

• EXT shared texture palette extension. This optional extension al-
lows multiple textures to share a single color palette. Thus, it can be ap-
plied only when the above EXT paletted texture extension is already sup-
ported, and meets the same problem. Our newly designed texture processing
pipeline also supports this optional extension.

8.3.2 Texture Pipeline

To support the EXT paletted texture and EXT shared texture palette ex-
tensions, we made a large amount of modifications to the texture handling functions,

© 2012 by Taylor & Francis Group, LLC



128 I Discovering

Rasterizer

Texture
unit #i – 1

Texture
environment

color

Texture
unit #i

Texture
unit #i + 1

Cp

(previous)

Cv

(computed)

Active
texture #i

Cs

(source)

Ce

(environment)

Primitive
with color

Cf

(fagment)

Figure 8.6. Texture color calculation for a texture unit.

including glTexImage2D and others. Figure 8.6 shows the multiple texture units
and their relationships: a texture unit gets the previous color, active texture color,
and texture environment color and then calculates its computed color and passes it
to the next texture unit.

For each texture unit, as shown in Figure 8.7, we need a dedicated color table
to support paletted texture extensions. An extra color table in the global context is
also required to support the EXT shared texture palette extension. We can

texture
(for i-th
unit)

Internal Format?

Shared texture
palette?

Color
Table

(for i-th
unit)

Shared
Color
Table

COLOR_INDEX8_EXT:
index value

Enabled

Disabled Color
value

RGBA
color value

Texture
source color

glTexImage2D(...)

glColorTableEXT(...)
glCOlorSubTableEXT(...)
Target = TEXTURE_2D

glColorTableEXT( )
glCOlorSubTableEXT( )
target = SHARED_TEXTURE_PALETTE_EXT

Figure 8.7. Our implementation of a texture unit with paletted texture support.

© 2012 by Taylor & Francis Group, LLC



8. OpenGL SC Emulation Based on OpenGL and OpenGL ES 129

use glColorTableEXT and glColorSubTableEXT functions to store color values
of the quadruple (red, green, blue, alpha) for each index.

When defining a texture with the internal format of RGBA, each pixel in the
texture is stored in a 4-byte quadruple color. These quadruple colors are directly used
as the texture source colors, as specified in the typical texture processing pipelines.

For palette textures, pixels are expressed as 1-byte color index values. Later, our
texture processing pipeline uses these indices to pick up the actual quadruple color
values from the color tables in the texture unit or the global context, according to the
user-specified flag values. Conceptually, these color restoration procedures would be
repeatedly performed whenever those textures are needed. In our implementation,
we naturally introduce a texture cache for each texture unit. Thus, the system may
repeatedly use the corresponding cached texture instead of the original paletted tex-
ture. When the user provides a new texture or when updates the corresponding color
table, the cached texture is discarded, and we perform a new restoration process.

8.4 Results

Our first-stage implementation was done on a Linux-based system with a hardware-
accelerated OpenGL device driver. Most of the optimization and debugging were
performed on this Linux-based implementation with a set of OpenGL chips from
different vendors. The OpenGL SC conformance test suite from the Khronos group
was used to verify the correctness of our implementation.

In the second stage, our target was low-powered embedded systems, which are
equipped with OpenGL 1.2–based graphics chips with the multitexture extension.
We verified the execution of all the OpenGL SC test applications on these systems,
as shown in Figure 8.8.

(a) (b)

Figure 8.8. Developing on an embedded system: (a) development environment; (b) screen output.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-10&iName=master.img-187.jpg&w=114&h=113
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-10&iName=master.img-188.jpg&w=85&h=112
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-10&iName=master.img-189.jpg&w=100&h=113


130 I Discovering

(a) OpenGL 1.1 (b) OpenGL SC ratio delays
(frames per second) emulation (b/a)

(frames per second)

gears 1325.5 1301.8 98.21% 1.79%
clock 1178.6 1159.0 98.34% 1.66%
spin 1261.3 1239.0 98.23% 1.77%
angles 339.4 332.6 97.99% 2.01%

average 98.27% 1.73%

Table 8.2. Execution speeds from the test programs.

Table 8.2 shows the overall cost of our OpenGL SC emulation library. We first
executed the original OpenGL sample programs, converted them into OpenGL SC
programs, and then compared their performance. OpenGL SC programs cannot
use OpenGL-specific GL QUAD or GL POLYGON primitives and additionally perform
extra software emulations for the paletted textures. Despite these handicaps, our
implementation shows less than 2% delay time. All the experiments were performed

(a) (b)

(c) (d)

Figure 8.9. Screenshots from the test programs: (a) gears, (b) clock, (c) spin, and (d) angles.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-10&iName=master.img-258.jpg&w=217&h=107
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-10&iName=master.img-258.jpg&w=217&h=107
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-10&iName=master.img-260.jpg&w=217&h=107
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-10&iName=master.img-260.jpg&w=217&h=107


8. OpenGL SC Emulation Based on OpenGL and OpenGL ES 131

on an Intel Core2 Duo–based system with 4GB of RAM and NVIDIA GeForce
8600 graphics card. Figure 8.9 shows some screenshots from the test programs.

8.5 Conclusion
According to our tests, all the core and extension features of OpenGL SC can be
achieved as an emulation layer over OpenGL 1.1 hardware equipped with the multi-
texture extension. The results demonstrate the effectiveness of our approach. Our
implementation is able to run various OpenGL SC applications and conformance
tests correctly with less than 2% performance overhead. Our next step is to imple-
ment OpenGL SC over lower-powered chips such as multimedia processors or DSP
chips.

When the OpenGL working group released OpenGL 3.0, the working group
announced that later OpenGL versions will not support the “begin-end” scheme any
more. OpenGL ES is designed without “begin-end” scheme at the beginning of de-
sign stage. Paletted textures are not supported by the current OpenGL hardware.
Therefore, to implement OpenGL SC on OpenGL or OpenGL ES hardware, we
should use a chipset released quite a long time ago, or we should make software emu-
lation that can increase performance overhead and cost. Furthermore, current safety
critical applications also request high performance rendering with various visual ef-
fects, image processing, and blending.

Khronos held a face-to-face meeting in Phoenix, Arizona, in September 2011
that included discussions on the future roadmap for OpenGL SC. There was agree-
ment that OpenGL SC should evolve to meet the needs of the safety critical market
and that Khronos should consider basing that evolution on OpenGL ES 2.0, which
is itself a streamlined API. However, more discussion is required to find the right
combination of OpenGL SC 1.0 and OpenGL ES 2.0 to effectively develop the
OpenGL SC roadmap.

Bibliography
[Baek and Lee 12] N. Baek and H. Lee. “OpenGL ES 1.1 Implementation Based on

OpenGL.” Multimedia Tools and Applications 57:3 (2012), 669–685.

[Beeby 02] M. Beeby. “Aviation Quality COTS Software: Reality or Folly.” In 21st Digital
Avionics Systems Conference, 2002.

[Cole 05] P. Cole. “OpenGL ES SC: Open Standard Embedded Graphics API for Safety
Critical Applications.” In 24th Digital Avionics Systems Conference, 2005.

[Hill et al. 08] S. Hill, M. Robart, and E. Tanguy. “Implementing OpenGL ES 1.1 over
OpenGL ES 2.0.” In Digest of Technical Papers, IEEE International Conference on Con-
sumer Electronics, pp. 1–2, 2008.

© 2012 by Taylor & Francis Group, LLC



132 I Discovering

[Khronos Group 11] Khronos Group. “The Khronos Group Inc.” http://www.khronos.org/,
2011.

[Lee and Baek 09] H. Lee and N. Baek. “Implementing OpenGL ES on OpenGL.” In Proc.
of the 13th IEEE International Symposium on Consumer Electronics, pp. 999–1003, 2009.

[Leech 99] J. Leech. Appendix F. ARB Extensions, The OpenGL Graphics System: A Specifica-
tion, Version 1.2.1. OpenGL ARB, 1999.

[Leech 01] J. Leech. The OpenGL Graphics System: A Specification, Version 1.3. OpenGL
ARB, 2001.

[Pulli et al. 07] K. Pulli, J. Vaarala, V. Miettinen, T. Aarnio, and K. Roimela. Mobile 3D
Graphics: With OpenGL ES and M3G. San Francisco: Morgan Kaufmann, 2007.

[RTCA/DO-178B 92] RTCA/DO-178B. Software Considerations in Airborne Systems and
Equipment Certification. RTCA Inc., 1992.

[Snyder 05] M. Snyder. “Solving the Embedded OpenGL Puzzle: Making Standards, Tools,
and APIs Work Together in Highly Embedded and Safety Critical Environments.” In
24th Digital Avionics Systems Conference, 2005.

[Stockwell 09] B. Stockwell. OpenGL SC: Safety-Critical Profile Specification, Version 1.0.1
(Difference Specification). Khronos Group, 2009.

© 2012 by Taylor & Francis Group, LLC



Mixing Graphics and Compute
with Multiple GPUs

Alina Alt

9.1 Introduction

In recent years, GPU computing has evolved to deliver teraflops of floating point
compute power to desktop systems. This trend has necessitated that scientific and
visualization applications require a mix of compute and graphics capabilities in ad-
dition to efficiently processing large amounts of data. Examples of such applications
include physically based simulations (e.g., particle systems) and image/video process-
ing (e.g., special effects, image recognition, augmented reality, etc.).

To maximize this compute and graphics capability, the applications need to be
designed with interoperability in mind, which allows data passing between compute
and graphics contexts.

Current compute APIs include functions dedicated to interoperability with
OpenGL. To illustrate the concept of graphics and compute API interoperability, the
first section of this chapter uses the CUDA C API. The second part of the chapter
focuses on interoperability on a system scale. In particular, what are the challenges
and benefits of dedicating one GPU for compute and another for graphics? And
how does this translate to application design decisions helping to enable efficient,
cross-GPU, compute and graphics interoperability?

133

9

© 2012 by Taylor & Francis Group, LLC



134 I Discovering

9.2 Graphics and Compute Interoperability on
an API Level

Since they were developed many years after the development of the graphics APIs,
GPU computing languages and APIs, such as the CUDA C API, which is NVIDIA’s
platform computing interface, and OpenCL, which is a cross-platform computing
interface, were tasked with providing a way to interact with graphics API objects to
avoid unnecessary data movement through both the GPU and system memory. As
of OpenGL Version 4.2, there is no OpenGL mechanism for interaction with any
of the compute APIs; therefore, it is exclusively up to each of the compute APIs to
provide such a mechanism. The mechanism of interaction with OpenGL is very
similar for each of the compute APIs, and we will illustrate this mechanism with the
usage of the CUDA C Runtime API [NVIDIA 11]. This section of the chapter will
only deal with interoperability on an API level.

9.2.1 Interoperability Preparation

CUDA and OpenGL interoperability requires a current OpenGL context. Also, the
context must remain current in the interoperability execution thread for the duration
of the interoperability.

Before CUDA can begin working with an OpenGL object, a correspondence be-
tween the object and a CUDA graphics resource must be established. Each OpenGL
object must first be registered with the CUDA context as a CUDA graphics resource.
This is a costly operation, as it can allocate resources in the CUDA context and must
be done only once per object after its creation and before CUDA starts working with
the object.

There are two registering CUDA API calls: one for buffer objects and another for
texture and renderbuffer objects. Listing 9.1 illustrates registering an OpenGL Pixel
Buffer Object (PBO) with CUDA using cudaGraphicsGLRegisterBuffer.

GLuint imagePBO ;
cudaGraphicsResource_t cudaResource;
//OpenGL buffer creation
glGenBuffers(1, &imagePBO );
glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, imagePBO );
glBufferData(GL_PIXEL_UNPACK_BUFFER_ARB, size , NULL , GL_DYNAMIC_DRAW);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB ,0);
// Registration with CUDA
cudaGraphicsGLRegisterBuffer(&cudaResource , imagePBO ,
cudaGraphicsRegisterFlagsNone);

Listing 9.1. Registering on OpenGL PBO with CUDA.

© 2012 by Taylor & Francis Group, LLC



9. Mixing Graphics and Compute with Multiple GPUs 135

GLuint imageTex ;
cudaGraphicsResource_t cudaResource;
//OpenGL texture creation
glGenTextures(1, &imageTex );
glBindTexture(GL_TEXTURE_2D , imageTex );
//set texture parameters here
glTexImage2D(GL_TEXTURE_2D ,0, GL_RGBA8UI_EXT , width , height , 0,
GL_RGBA_INTEGER_EXT, GL_UNSIGNED_BYTE , NULL);
glBindTexture(GL_TEXTURE_2D , 0);
// Registration with CUDA
cudaGraphicsGLRegisterImage (&cudaResource , imageTex , GL_TEXTURE_2D ,
cudaGraphicsMapFlagsNone);

Listing 9.2. Registering an OpenGL Texture with CUDA.

OpenGL texture and renderbuffer objects are registered using cudaGraphics

GLRegisterImage, which currently supports the following image formats:

• GL RED, GL RG, GL RGBA, GL LUMINANCE, GL ALPHA, GL LUMINANCE

ALPHA, GL INTENSITY.

• {GL R, GL RG, GL RGBA} X {8, 16, 16F, 32F, 8UI, 16UI,

32UI, 8I, 16I, 32I}.

• {GL LUMINANCE, GL ALPHA, GL LUMINANCE ALPHA, GL INTENSITY}
X {8, 16, 16F ARB, 32F ARB, 8UI EXT, 16UI EXT, 32UI EXT,

8I EXT, 16I EXT, 32I EXT}.

Note that for brevity’s sake, the list is abbreviated. For example, {GL R,GL RG}
x{8x16} would expand into {GL R8, GL R16, GL RG8, GL RG16}. The most
up-to-date list can be found in [NVIDIA 01].

Applications that require the usage of textures of unsupported formats have two
options: either perform format conversion to and from the supported format before
and after CUDA-GL interoperability, or have CUDA interact with a PBO and then
copy pixels from the PBO to the texture object.

Listing 9.2 illustrates registering an unnormalized integer texture with CUDA.
After the application is done with the resource, it should unregister it from the

CUDA context using cudaGraphicsUnregisterResource.

9.2.2 OpenGL Object Interaction

Both OpenGL and CUDA logically partition device memory into two kinds of mem-
ory: texture memory and linear memory (Figure 9.1). An OpenGL buffer object,
which is unformatted device memory, will map to a CUDA linear memory object,
which is a CUDA buffer in device memory that can be referenced via pointer. Simi-
larly, OpenGL texture and renderbuffer objects will map to a CUDA array, which is
an opaque memory layout optimized for texture hardware access, and which will be

© 2012 by Taylor & Francis Group, LLC



136 I Discovering

GPU Memory

Linear memory

OpenGL Buffer Object OpenGL Texture/Render buffer

CUDA Heap Memory CUDA Array

Texture memory

InteroperabilityInteroperability

OpenGL Context

CUDA Context

Figure 9.1. Device memory map for interoperability.

setup by the driver to take advantage of the available texture hardware features such
as caching, filtering, etc.

Typically, the driver will try to share the graphics resource with OpenGL in-
stead of creating a copy in the CUDA context, but there are times where the driver
will choose to create a separate copy, for example, when the OpenGL and CUDA
contexts reside on separate GPUs or when OpenGL allocates the resource in system
memory instead of device memory. The latter can happen when the application fre-
quently needs to upload or download data to or from the GPU, or when the OpenGL
context spans multiple GPUs, as is in the case for scalable, multi-GPU visualization
solutions.

Every time CUDA interacts with an OpenGL object, the object must be mapped
and subsequently unmapped from the CUDA context. This is done with cuda

GraphicsMapResources and cudaGraphicsUnmapResources. These calls have
dual responsibility: (1) gating object access to ensure that all outstanding work on
the object is complete (map ensures that all prior OpenGL operations that use the
resource have completed before CUDA accesses the resource, and unmap does the
same for CUDA operations) and (2) synchronizing between the contents of the re-
source copies if there is more than one copy. The driver will attempt to perform
all synchronization on the GPU as much as possible, but in some cases, it cannot
guarantee that the CPU thread will not stall as well, e.g., on Mac OS or on Linux
with indirect rendering.

The last parameter of cudaGraphicsGLRegister* is a flag that tells CUDA
how the resource will be used. Currently, possible options include

• cudaGraphicsRegisterFlagsNone,

© 2012 by Taylor & Francis Group, LLC



9. Mixing Graphics and Compute with Multiple GPUs 137

unsigned char *memPtr;
cudaGraphicsMapResources(1, &cudaResource , 0);
cudaGraphicsResourceGetMappedPointer((void **)&memPtr , &size ,←↩

cudaResource);
//call CUDA kernel on memPtr
cudaGraphicsUnmapResources(1, &cudaResource ,0);

Listing 9.3. CUDA operating on an OpenGL buffer.

• cudaGraphicsRegisterFlagsReadOnly,

• cudaGraphicsRegisterFlagsWriteDiscard, and

• cudaGraphicsRegisterFlagsSurfaceLoadStore.

Choosing the right value for this flag can eliminate unnecessary data movement be-
tween CUDA and OpenGL during map/unmap time when synchronizing between
the contents of the resource copies (if a copy was created by CUDA). The map/un-
map behavior can also be specified anytime using cudaGraphicsResourceSet

MapFlags.
Applications where CUDA is the producer and OpenGL is the consumer should

register the objects with a write-discard flag: then, the content synchronization will
be skipped at map time, and the map operation becomes a hardware wait opera-
tion. Conversely, applications, where OpenGL is the producer and CUDA is the
consumer should register the objects with a read-only flag: then, the content syn-
chronization step will be skipped at unmap time, and the unmap operation becomes
a hardware wait operation. Once the graphics resource is mapped into CUDA, the
application can obtain a pointer to an object in the CUDA address space using one
of the cudaGraphicsResourceGetMapped* calls to start interacting with the ob-
ject. An OpenGL object should not be accessed by OpenGL within the application
while it is mapped in CUDA, as it can cause data corruption. Listings 9.3 and 9.4
illustrate the preparation needed for interacting with a buffer object and a texture
object, respectively.

cudaArray *arrayPtr ;
cudaGraphicsMapResources(1, &cudaResource , 0);
cudaGraphicsResourceGetMappedArray((void **) &arrayPtr , cudaResource , ←↩

0, 0);
//call CUDA kernel on arrayPtr
cudaGraphicsUnmapResources(1, &cudaResource ,0);

Listing 9.4. CUDA operating on an OpenGL texture.

© 2012 by Taylor & Francis Group, LLC



138 I Discovering

9.3 Graphics and Compute Interoperability on
a System Level

There are many situations when the application requires distributing graphics and
compute portions across two or more GPUs. In other words, one GPU will be
dedicated to the computation, while another is dedicated to rendering the scene. In
these situations, communication between the compute and graphics contexts turns
into communication between devices in a system (Figure 9.2).

Motivations for multi-GPU system architectures:

• Increase in system processing power. Offloading intensive computa-
tion from the main-display GPU will always result in overall system interac-
tivity improvement. Also, an additional GPU can often allow applications to
overlap graphics and compute tasks (this is possible when one of the APIs is a
producer and the other is a consumer).

• More FLOPS per dollar. A combination of a dedicated compute GPU and
a low-end graphics GPU can often have the same or better performance for a
lower cost than a single, high-end GPU.

• Increase in system functionality. System configuration can happen with-
out the required graphics capabilities on the compute GPU, for example, a
simulation application, previously running on the nondisplay GPU, such as
the NVIDIA Tesla GPU, now adding advanced visualization features.

CUDA
Context

GPU 0:
Computing GPU

GPU 1:
Rendering GPU

CUDA
Context

I/O Hub

CPU RAM

PCIePCIe

Memory
Controller

OpenGL
Context

OpenGL
Context

GPU 0

API
Interop

Figure 9.2. Single-GPU ecosystem (left) versus multi-GPU ecosystem (right).

© 2012 by Taylor & Francis Group, LLC



9. Mixing Graphics and Compute with Multiple GPUs 139

• Increased determinism. A Windows application can minimize compute
kernel launch overhead by bypassing the Windows Driver Display Model
(WDDM) if a nondisplay device is used for the simulation portion. For ex-
ample, the NVIDIA Tesla GPU can be configured as a nondisplay device by
using the TCC driver mode.

Developers must keep in mind that cross-GPU interoperability will inevitably
involve data transfers as part of the content synchronization between the contexts,
which, depending on the data size, can impact the application performance. This is
an important point to consider in addition to the potential benefits of multi-GPU
configurations, such as improvement in system interactivity, task overlap, etc.

An example of task overlap achieved by dedicating one GPU for compute and
another for graphics is illustrated in Figure 9.3. Both parts of the figure show a
timeline of GPU commands in an application that uses API interoperability where
CUDA is the producer and OpenGL is the consumer. In this example, CUDA and
OpenGL have similar workloads. Figure 9.3(a) shows the timeline of commands as
they are executed on a single GPU. Figure 9.3(b) shows the timeline where compute
and graphics commands are executed on two different GPUs. In this case, the ap-
plication will incur an overhead from contents synchronization occurring during the
unmap operation.

F1

F1
F1

F1

Time

CUDA

OpenGL

F0

Draw

Compute

CUDA unmap

CUDA map

F0

F0

F0

(a)

F1

F1

F1

F2

F2

F1

Time

CUDA

OpenGL

F0

Draw

Compute

CUDA unmap

CUDA map

F0

F0

F0

(b)

Figure 9.3. GPU timeline. (a) CUDA and OpenGL reside on a single GPU. (b) CUDA and OpenGL
reside on separate GPUs.

© 2012 by Taylor & Francis Group, LLC



140 I Discovering

When implementing multi-GPU compute-graphics interoperability, developers
are faced with multiple design options:

1. API interoperability. Context interaction as it was described in Section 9.3.
In other words, letting the driver handle the communication between the con-
texts. This option requires practically no code changes in the existing, single-
GPU applications.

2. CUDA memory copy + API interoperability. This approach gives the
application fine-grained control over the data movement. It leaves it up to the
driver to decide whether the data transfer will happen as a direct peer-to-peer
transfer or as a staged transfer through system memory. It requires creating
an auxiliary CUDA context setup with OpenGL interoperability on the ren-
dering GPU and then having the application initiate the transfer between the
CUDA contexts using CUDA memcpy. This approach can allow applications
to implement double buffering for overlapping transfers with compute/draw
or transfer only a portion of the object, etc.

3. Naı̈ve interoperability. This is a completely manual implementation of
CUDA and OpenGL interoperability. It requires mapping of the CUDA and
OpenGL objects to system memory, copying data between the mapped ob-
jects, and then unmapping the objects. This is the slowest implementation
because the data transfer involves an additional CPU memcpy. This imple-
mentation should be used where manual data movement is preferred/required
but option (2) is not applicable, for example, applications that have separate
code bases for the simulation and the visualization portions, i.e., a simulation
plugin for a modeling application that requires simulated results to reside in
system memory.

Aside from the options above, one can also set up an auxiliary OpenGL context
on the computing GPU, perform the API interoperability on that GPU, and then
use OpenGL copy extension [NVIDIA 09] to copy the objects to the rendering
GPU. This implementation will not be considered as an option as it has no real
benefits over the presented options, in addition to being limited to texture objects
and applications that support graphics context creation on the compute GPU (for
example, TCC driver mode on Windows disables graphics support on the GPU).

Figures 9.4(a)–(c) depict all possible design combinations. For any particular ap-
plication, one combination will be more suitable than others. Table 9.1 summarizes
properties of each combination in Figures 9.4(a)–(c) based on the following aspects:

• Implementation overhead. In comparison to a single GPU architecture.

• Synchronization overhead. Characterization of content synchronization
overhead.

• Compatibility. Application use-cases classification.

© 2012 by Taylor & Francis Group, LLC



9. Mixing Graphics and Compute with Multiple GPUs 141

API Interoperability

(a) (b) 

API
Interoperability

CUDA memcpy

GPU 0

GPU 0

CUDA
Context

OpenGL
Context

OpenGL
Context

Auxiliary
CUDA
Context

CUDA
Context

GPU 1

CUDA memcpy OpenGL Map/Unmap

BufferBuffer

(c) 

memcpy

RAM

CUDA
Context

OpenGL
Context

GPU 0 GPU 1

GPU 1

Figure 9.4. Various ways for cross-GPU compute and graphics context interaction: (a) API interoperability,
(b) CUDA memcpy + API interoperability, (c) naı̈ve interoperability.

Combination Implementation Synchronization Compatibility
Overhead Overhead

(a) API interoperability Code written for a single
GPU works well on
multi-GPU configura-
tions with almost no
code changes.

Similar to option (b) Best suited for applications
that require quick develop-
ment turnaround and don’t
mind the driver controlling
of cross-GPU communica-
tion.

(b) CUDA memcpy+API
interoperability

Auxiliary CUDA context
management, CUDA
memcpy.

Involves a direct GPU-
to-GPU data transfer.

Best suited for applications
that can benefit from fine-
grain control over the data
transfers.

(c) Naı̈ve interoperability Management of multiple
in-flight buffer copies in
system memory.

Involves GPU-to-host
memory data transfer, a
CPU memory copy, and
a host memory-to-GPU
data transfer.

Best suited for applications
that can benefit from fine-
grain control over the data
transfers but cannot imple-
ment option (b).

Table 9.1. Summary of cross-GPU compute and graphics contexts interaction.

© 2012 by Taylor & Francis Group, LLC



142 I Discovering

9.4 Conclusion
We have covered interoperability between CUDA and OpenGL at two different lev-
els: at an API level and at a system level. Often times, CUDA and OpenGL con-
texts can reside on two different GPUs, and even though multi-GPU configurations
promise a significant increase in functionality and productivity, they also introduce
some complexity when it comes to context communication across multiple GPUs.
The analysis presented in this chapter can provide developers with some background
and tools to navigate through compute-graphics interoperability complexities intro-
duced by multi-GPU configurations.

Bibliography
[NVIDIA 01] NVIDIA. “CUDA Reference Manual.” http://developer.nvidia.com/

cuda-toolkit, 2001.

[NVIDIA 11] NVIDIA. “CUDA C Programming guide.” http://developer.download.nvidia.
com/compute/cuda/4 0/toolkit/docs/CUDA C Programming Guide.pdf, pp. 37–39 and
pp. 48–50. May 6, 2011.

[NVIDIA 09] NVIDIA. “NV Copy Image OpenGL Specification” http://www.opengl.org/
registry/specs/NV/copy image.txt, July 29, 2009.

© 2012 by Taylor & Francis Group, LLC



II Rendering
Techniques

We can’t possibly imagine a book about OpenGL without rendering, and neither
could the authors of this book.

António Ramires Fernandes and Bruno Oliveira provide a use case for the new
OpenGL 4 tessellation pipeline through terrain rendering in their chapter “GPU
Tessellation: We Still Have a LOD of Terrain to Cover,” providing an entirely GPU-
based method for continuous level of detail maintaining a high level of fidelity to the
original mesh.

Sébastien Hillaire brings us to a parallel universe where rendering is defined by
lines in his chapter “Antialiased Volumetric Lines Using Shader-Based Extrusion.”
He comes back on the line primitives exposed by OpenGL and their issues before
bringing perspective to line rendering thanks to two approaches: one based on the
vertex shader stage and one based on the geometry shader stage for perspective correct
and antialiased lines.

Stefan Gustavson leads us close to new borders through his chapter “2D Shape
Rendering by Distance Fields,” allowing perfectly antialiased contours. He is pushing
his concept to font rendering and distance field-based effects.

Benjamin Encz analyses WebGL font rendering in his chapter “Efficient Text
Rendering in WebGL” by describing canvas- and bitmap-based methods. He con-
cludes his chapter with a performance analysis with both the frame rate and the
memory footprint in mind.

Dzmitry Malyshau discusses an approach inspired by Blender in his chapter “Lay-
ered Textures Rendering Pipeline.” He aims at providing more flexibility to the ren-
dering pipeline to handle complex object materials so that artists may express their
creativity during the producing while maintaining real-time performance.

143

© 2012 by Taylor & Francis Group, LLC



144 II Rendering Techniques

Charles de Rousiers and Matt Pettineo present a method for “Depth of Field with
Bokeh Rendering.” Their method, developed around OpenGL 4 hardware atomic
counter, image load and store, and indirect draw, provides a level of performance for
real-time application.

Finally, Jochem van der Spek introduces a technique he calls “Shadow Proxies,”
which provides, for appropriate scenarios, real-time soft shadows with color bleeding.

© 2012 by Taylor & Francis Group, LLC



GPU Tessellation: We Still Have
a LOD of Terrain to Cover

António Ramires Fernandes and Bruno Oliveira

10.1 Introduction
Terrain rendering has come a long way from the days where all data fit in the graphics
memory to algorithms that deal with massive amounts of information that do not
fit in the system’s RAM. Nowadays, a full-blown terrain engine has to deal with out-
of-core issues: a first step of the level of detail (LOD) might happen in the CPU to
determine which data goes to the GPU, and a second step of LOD may be required
to draw all those triangles at interactive rates.

In this chapter we are going to explore how OpenGL 4.x can boost performance
in this last step. The algorithms presented will use GPU tessellation for shader-based
LOD and view-frustum culling.

Although LOD can substantially reduce the amount of geometry rendered, it
may also cripple the fidelity of the representation. An approach will be introduced
to render heightmap-based terrains, which can be included in most of the available
terrain-rendering engines, that captures in a simple process the irregularities of a
terrain, maintaining a very high level of visual fidelity to the original data.

Previous knowledge on the subject of GPU tessellation is assumed. See Chapter 6
or “Programming for Real-Time Tessellation on GPU” [Tatarchuk et al. 09], for an
introduction to the subject.

145

10

© 2012 by Taylor & Francis Group, LLC



146 II Rendering Techniques

10.2 Rendering Terrains with OpenGL GPU
Tessellation

The goal of this section is to present a heightmap-based, fully tessellated terrain ren-
dering implementation, upon which the LOD solutions will grow (see Figure 10.1).

We assume that the heightmap is a regular grid, represented by a greyscale image
loaded as a texture. However, the terrain size is not limited by the texture’s size, as
height values between texels can be sampled. The GPU has dedicated hardware for
sampling, such as GLSL texture* functions, according to the sampler or texture
sampler state. The terrain size, in terms of grid points, is, therefore, theoretically
unlimited. To avoid the almost flatness of the regions represented by the sampled
points, noise-based approaches can be used to provide high-frequency detail.

The terrain size, in terms of physical units, can be further parameterized by defin-
ing a grid spacing; in other words, the number of units between two consecutive
points in the final grid.

To render the terrain, we use the new primitive introduced with tessellation,
the patch. A patch can cover as many grid points as the maximum tessellation
levels permitted by hardware, a square grid of 64 quads in the current OpenGL 4.0
hardware. This defines a patch as 65× 65 vertices, as the edges of patches are shared
between adjacent patches. To render a terrain, we define a grid of such patches. As
an example, to render a terrain of 8K × 8K points, a grid of 128 × 128 patches
is required. Other patch sizes are possible, but the reported tests (shown later in
Figure 10.9), show a performance penalty when using smaller patches.

Since the terrain grid is a highly regular structure, only one vertex to define a
patch is needed (e.g., the lower left corner). The regular nature of the terrain’s grid
allows the developer to compute all other patch elements based solely on this vertex.
The final vertex positions, texture coordinates, and normals will be computed in the
shaders.

The patch positions are defined as if the terrain were to be drawn in a normalized
square, ranging from 0 to 1. A translation and scale operation will be applied in the
tessellation evaluation shader to place the terrain where needed.

Figure 10.1. Full tessellation (left); high LOD (middle); low LOD (right).

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-13&iName=master.img-018.jpg&w=316&h=105


10. GPU Tessellation: We Still Have a LOD of Terrain to Cover 147

10.2.1 GPU Tessellation Shaders

The vertex shader is a simple pass-through, as vertex transformations will be per-
formed later in the pipeline. It receives the vertex xz position, and outputs it to a

// one vertex per patch
layout(vertices = 1) out;
// XZ position from the vertex shader
in vec2 posV[];
// XZ position for the tessellation evaluator shader
out vec2 posTC[];

void main()
{

// Pass through the position
posTC[gl_InvocationID] = posV[gl_InvocationID];
// Define tessellation levels
gl_TessLevelOuter = ivec4 (64);
gl_TessLevelInner = ivec2 (64);

}

Listing 10.1. Tessellation control shader (full tessellation).

layout(quads , fractional_even_spacing, cw) in;

// The heightmap texture sampler
uniform sampler2D heightMap;
// Scale factor for heights
uniform float heightStep;
// Units between two consecutive grid points
uniform float gridSpacing;
// Number of height samples between two consecutive texture texels
uniform int scaleFactor;
// The Projection * View * Model matrix
uniform mat4 pvm;

// Vertices XZ position from the tessellation control shader
in vec2 posTC[];
// Output texture coordinates for the fragment shader
out vec2 uvTE;

void main()
{

ivec2 tSize = textureSize(heightMap , 0) * scaleFactor;
vec2 div = tSize * 1.0/64.0;
// Compute texture coordinates
uvTE = posTC [0].xy + gl_TessCoord.st/div;
// Compute pos (scale x and z) [0..1] -> [0..tSize * gridSpacing]
vec4 res;
res.xz = uvTE.st * tSize * gridSpacing;
// Get height for the Y coordinate
res.y = texture (heightMap , uvTE).r * heightStep;
res.w = 1.0;
// Transform the vertices as usual
gl_Position = pvm * res;

}

Listing 10.2. Tessellation evaluator shader.

© 2012 by Taylor & Francis Group, LLC



148 II Rendering Techniques

// the normal matrix
uniform mat3 normalMatrix;
// texUnit is the color texture sampler
uniform sampler2D texUnit , heightMap;
uniform float heightStep , gridSpacing , scaleFactor;

// Texture coordinates from the tessellation evaluator shader
in vec2 uvTE;
// Color output
out vec4 outputF ;

// Function to retrieve heights
float height(float u, float v)
{

return (texture (heightMap , vec2(u, v)).r * heightStep);
}

void main()
{

// compute the normal for the fragment
float delta = 1.0 / (textureSize(heightMap , 0).x * scaleFactor);
vec3 deltaX = vec3(

2.0 * gridSpacing ,
height(uvTE.s + delta , uvTE.t) - height(uvTE.s - delta , uvTE.t),
0.0);

vec3 deltaZ = vec3(
0.0,
height(uvTE.s, uvTE.t + delta) - height(uvTE.s, uvTE.t - delta),
2.0 * gridSpacing);

normalF = normalize(normalMatrix * cross(deltaZ , deltaX));
// The light direction is hardcoded. Replace with a uniform
float intensity = max(dot(vec3 (0.577 , 0.577, 0.577) , normalF ), 0.0);
// Diffuse and ambient intensities - replace by uniforms
vec4 color = texture2D(texUnit , uvTE) * vec4(0.8, 0.8, 0.8, 1.0);

outputF = color * intensitiy + color * vec4(0.2, 0.2, 0.2, 1.0);
}

Listing 10.3. Fragment shader.

vec2 named posV.1 The heights, or y coordinates, will be sampled in the tessellation
evaluator shader.

The tessellation control shader for a fully tessellated terrain (Listing 10.1) sets
all tessellation levels to maximum, as defined by the patch size, configuring the next
step, the nonprogrammable tessellation primitive generator. The position from the
vertex shader is passed through to the tessellation evaluator shader.

After the execution of this shader, the tessellation primitive generator has all the
data it needs, in other words, the tessellation control levels. The output will be a grid
of uv coordinates, 65 × 65, which will be the input of the next programmable stage,
the tessellation evaluator (Listing 10.2).

1As a rule of thumb, in the code displayed in this chapter, all out variables are defined with a suffix,
which represents the shader that outputs the variable, so pos is the input of the vertex shader, and posV

is the output. In the tessellation control shader, posV will be the input, and posTC the output and so on.

© 2012 by Taylor & Francis Group, LLC



10. GPU Tessellation: We Still Have a LOD of Terrain to Cover 149

The tessellation evaluator is responsible for the transformation of the vertex po-
sitions and computation of the texture coordinates (uvTE). Although normals could
also be computed here, when using LOD it is advisable to compute them in the
fragment shader (see Section 10.5.2).

The fragment shader (Listing 10.3) has as input the vertex position through
gl Position, and the texture coordinates through uvTE. The shader is pretty stan-
dard apart from the normal computation, which is based on the approach suggested
by [Shandkel 02].

And...that’s it! A full tessellated terrain can be obtained with these four simple
shaders.

10.3 A Simple Approach to Dynamic Level of
Detail

When using GPU tessellation, LOD naturally becomes a synonym for tessellation
levels. Hence, a simple approach for LOD can be implemented by computing a
tessellation level for each patch edge, the outer tessellation levels, while the inner tes-
sellation levels can be computed as the maximum of the respective outer tessellation
levels.

A criteria that has been commonly used in previous CPU LOD implementations
is the projected screen size of an object’s bounding box. Using this approach for the
tessellation outer levels, the tessellation level of an edge becomes a function of its
projected size. Therefore, adjoining patches will share the same tessellation level for
the common edge, thus ensuring a crack-free geometry.

Dynamic LOD requires smooth geometry transitions as the LOD varies.
OpenGL offers a tessellation approach that resembles geomorphing, using either
fractional even spacing or fractional odd spacing as the output layout
qualifier in the tessellation evaluator shader.

Tessellation levels are defined in the tessellation control shader, so this is where
the changes happen. All other shaders remain the same. As in the previous section,
the only data available to this shader is a corner of the patch.

Picking the two points that constitute an edge of the patch, one can compute its
projected length [Boesch 10]. The projected length is then used to define a level of
tessellation based on a single parameter: pixels per edge. For instance, if a segment
has a projected size of 32 pixels and we want 4 pixels per triangle edge, then we
should compute 32/4, or 8, as the respective outer tessellation level.

The main issue with this approach is that patch edges that are almost collinear
with the view direction tend to have very low tessellation levels, as the projected
size will be very small; however, this can be fixed with some extra parameterization
or over-tessellation. Another solution, provided by [Cantlay 11], is to consider the

© 2012 by Taylor & Francis Group, LLC



150 II Rendering Techniques

projected size of a sphere with diameter equal to the length of the edge of the patch.
This solution deals effectively with the collinearity issue.

P2

P1
e2

e1

d

d

Figure 10.2. Diagram to compute
the projected sphere screen size.

To compute the projected size of the sphere
(Figure 10.2) we pick two corners sharing the
same edge, e1 and e2, and compute the edge’s
length in world space, d . Then, we compute the
midpoint of the edge, P1, and a new point above
the centre, P2, displaced by the edge’s length, d .
Points P1 and P2 are then transformed to screen
space. The distance between the transformed
points provides the screen-space diameter of the
enclosing sphere.

Function screenSphereSize (Listing 10.4)
performs these computations and determines the
tessellation level for the edge, based on the com-

puted diameter divided by the parameter pixelsPerEdge, clamped to ensure a
valid tessellation level.

Patches outside the view frustum should be discarded by setting their edge tes-
sellation levels to zero. In order to test if a patch is inside the view frustum, we
must consider the available information, the four corners of the patch, and, hence,
its edges. The heights for points inside the patch are unknown at this stage, so we
cannot afford to perform culling based on the y-axis information. However, it is safe

// Viewport dimension in pixels
uniform ivec2 viewportDim;
// LOD parameter
uniform int pixelsPerEdge;

// Sphere screen size based on segment e1-e2
float screenSphereSize(vec4 e1, vec4 e2)
{

vec4 p1 = (e1 + e2) * 0.5;
vec4 p2 = viewCenter;
p2.y += distance (e1, e2);
p1 = p1 / p1.w;
p2 = p2 / p2.w;
float l = length ((p1.xy - p2.xy) * viewportDim * 0.5);
return(clamp(l / pixelsPerEdge , 1.0, 64.0));

}

// determining if an edge of a patch is inside the XZ frustum
bool edgeInFrustum(vec4 p, vec4 q)
{

return !((p.x < -p.w && q.x < -q.w) || (p.x > p.w && q.x > q.w) ||
(p.z < -p.w && q.z < -q.w) || (p.z > p.w && q.z > q.w));

}

Listing 10.4. Auxiliary functions for the tessellation evaluator shader.

© 2012 by Taylor & Francis Group, LLC



10. GPU Tessellation: We Still Have a LOD of Terrain to Cover 151

to perform conservative culling in clip space based on the xz coordinates of the trans-
formed corners of the patch. The function edgeInFrustum (Listing 10.4) performs
this computation. See [Ramires 07] for more details on how to perform view frustum
culling in clip space.

Listing 10.5 shows the tessellation control shader. Functions in Listing 10.4 are
also part of the shader’s code. Initially, the remaining three corners of the patch are
computed. All four corners are then transformed into clip space. Then, for each
edge, we check whether it is at least partially inside the view frustum using function

layout(vertices = 1) out;
// ...
void main() {

vec4 posTransV[4];
vec2 pAux , posAux [4];

vec2 tSize = textureSize(heightMap , 0) * scaleFactor;
float div = 64.0 / tSize.x;
posTC[ID] = posV[ID];
// Compute the fours corners of the patch
posAux [0] = posV[0];
posAux [1] = posV[0] + vec2(0.0, div);
posAux [2] = posV[0] + vec2(div , 0.0);
posAux [3] = posV[0] + vec2(div , div);
// Transform the four corners of the patch
for (int i = 0; i < 4; ++i )
{

pAux = posAux[i] * tSize * gridSpacing;
posTransV[i] = pvm * vec4(pAux[0], height(posAux[i].x,posAux[i].y), pAux[1], ←↩

1.0);
}
// check if a patch is inside the view frustum
if (edgeInFrustum(posTransV[ID], posTransV[ID + 1]) ||

edgeInFrustum(posTransV[ID], posTransV[ID + 2]) ||
edgeInFrustum(posTransV[ID + 2], posTransV[ID + 3]) ||
edgeInFrustum(posTransV[ID + 3], posTransV[ID + 1])))

{
// Compute the tess levels as function of the patch �s edges
gl_TessLevelOuter = vec4(

screenSphereSize(posTransV[ID], posTransV[ID + 1]),
screenSphereSize(posTransV[ID], posTransV[ID + 2]),
screenSphereSize(posTransV[ID + 2], posTransV[ID + 3]),
screenSphereSize(posTransV[ID + 3], posTransV[ID + 1]));

gl_TessLevelInner = vec2(
max(gl_TessLevelOuter[1], gl_TessLevelOuter[3]),
max(gl_TessLevelOuter[0], gl_TessLevelOuter[2]));

}
else
{

// Discard patches by setting tessellation levels to zero
gl_TessLevelOuter = vec4(0);
gl_TessLevelInner = vec2(0);

}
}

Listing 10.5. Tessellation control shader for simple LOD.

© 2012 by Taylor & Francis Group, LLC



152 II Rendering Techniques

edgeInFrustum. If all edges are outside the view frustum, the tessellation levels are
set to zero, and the patch is culled. Otherwise, the outer tessellation level is computed
for each edge using the function screenSphereSize. The inner levels are set to
the maximum of the respective outers to ensure a sound subdivision.

10.4 Roughness: When Detail Matters
The LOD solution presented in the previous section does a great job in reducing the
number of triangles, and creating a terrain that can be rendered with a high frame
rate. However, there is an implicit assumption that all patches are born equal. A
terrain may be considered homogeneous, when the roughness of its surface is similar
at every point, or heterogeneous, where both very smooth and very rough areas can
be found. An approach based on the projected size of the patch edges does not take
into account the variation of the heights inside a patch or its roughness, and it will
either over-tessellate flat distant patches or under-tessellate rougher patches. Hence,
the previous method is more suitable for homogeneous terrains.

The goal of this section is to present an LOD solution to the aforementioned
problem, considering heterogeneous terrains, by taking into account the roughness
of a patch to compute its tessellation levels. To achieve this, a roughness factor
for each patch is calculated to be used as a scale factor. These factors are precom-
puted on the CPU and submitted to the GPU along with the patch’s coordinates.
This information can be precalculated outside the rendering application, speeding
up bootstrapping.

Due to the preprocessing stage, this approach is unsuitable for terrains with dy-
namic geometry. However, if only a small part of the terrain is affected, this approach
can still be used for the static part of the terrain, and over-tessellation can be used for
the dynamic areas.

10.4.1 Adding the Roughness Factor

To compute the roughness factor, the average patch normal is determined considering
the four corners of the patch. The maximum difference between the normals of each
individual vertex of the fully tessellated patch and the average normal is the value
stored as the patch’s roughness.

For each outer tessellation level, the roughness applied will be the maximum
between the two patches that share the edge, hence ensuring crack-free geometry.

Once again, the only shader affected is the tessellation control shader. List-
ing 10.6 shows the changes to this shader. The function getRoughness fetches
the roughness value for a patch, stretching it to create a wider range of values. This
stresses irregularities in the terrain, which may otherwise be ignored. The function’s
constants are experimental, and it can be an interesting exercise to find the best scal-
ing factor for roughness.

© 2012 by Taylor & Francis Group, LLC



10. GPU Tessellation: We Still Have a LOD of Terrain to Cover 153

uniform sampler2D roughFactor;

float getRoughness(vec2 disp)
{

return (pow((1.8 - texture (roughFactor , posV[0] + disp / textureSize(roughFactor←↩
,0)).x ), 4));

}

// Place this code in the main function presented before
// replacing the outer tessellation level computation
//(...)

vec4 rough;
float roughForCentralP = getRoughness(vec2(0.5));
rough [0] = max(roughForCentralP , getRoughness(vec2(-0.5, 0.5)));
rough [1] = max(roughForCentralP , getRoughness(vec2(0.5, -0.5)));
rough [2] = max(roughForCentralP , getRoughness(vec2(1.5, 0.5)));
rough [3] = max(roughForCentralP , getRoughness(vec2(0.5, 1.5)));
gl_TessLevelOuter = vec4(

screenSphereSize(posTransV[ID], posTransV[ID + 1]) * rough[0],
screenSphereSize(posTransV[ID + 0], posTransV[ID + 2]) * roughs [1],
screenSphereSize(posTransV[ID + 2], posTransV[ID + 3]) * rough[2],
screenSphereSize(posTransV[ID + 3], posTransV[ID + 1]) * roughn [3]);

//(...)

Listing 10.6. Snippet of the tessellation control shader for LOD with a roughness factor.

10.5 Crunching Numbers,
or Is This All That Matters?

Now that the different techniques for rendering terrains with tessellation and LOD
have been introduced, it is time to look at the numbers. These tests are not, however,
entirely related to how many triangles, or frames-per-second, the application can
score. The visual quality of what is being rendered is also important, and so image
comparison tests were also conducted.

10.5.1 Test Setup

The data used for the tests is a 16-bit heightmap and its corresponding color texture
(Figure 10.3), are used, for instance, in [Lindstrom and Pascucci 01]. These files
report geographical data from the Puget Sound area in the USA.

In all tests, the color texture was 2K × 2K, whereas the resolution of the terrain
grids tested ranged from 1K × 1K to 64K × 64K. The height data are based on a
heightmap of up to 8K × 8K , with greater resolutions resorting to in-shader height
sampling.

This terrain was chosen particularly for this LOD study since it is highly hetero-
geneous. It contains areas that are almost flat, green and blue, and areas that are very
irregular, most of the red and white.

© 2012 by Taylor & Francis Group, LLC



154 II Rendering Techniques

Figure 10.3. Terrain height and color maps.

10.5.2 Evaluating the Quality of the LOD Solutions

To evaluate an LOD solution, we must take several factors into account, as LOD
is not only about performance. Using LOD causes the geometry to change as the

648164816481648164

Pixels per Edge

81648164816481

0

50000

100000

150000

200000

250000

300000

350000
Viewpoint1 Viewpoint2 Viewpoint3 Viewpoint4 Viewpoint5 Viewpoint6 Viewpoint7 Viewpoint8

Simple Count of Different Pixels Roughness

648164816481648164

Pixels per Edge

81648164816481

0

0.02

0.04

0.06

0.08

0.1

0.12
Viewpoint1 Viewpoint2 Viewpoint3 Viewpoint4 Viewpoint5 Viewpoint6 Viewpoint7 Viewpoint8

Simple Average pixel color difference Roughness

Figure 10.4. Differences between the two LOD approaches and the full tessellated solution
computed from eight viewpoints. The total number of different pixels (top); the average color
difference per pixel (bottom).

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-13&iName=master.img-299.jpg&w=122&h=122
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-13&iName=master.img-300.jpg&w=122&h=122
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-13&iName=master.img-301.jpg&w=299&h=93
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-13&iName=master.img-302.jpg&w=306&h=95


10. GPU Tessellation: We Still Have a LOD of Terrain to Cover 155

Figure 10.5. Close-ups for full tessellation (left), roughness approach (center), and simple
method (right), with 16 pixels per edge.

camera moves in the scene, triggering variations in tessellation, and this may lead to
visual artifacts. Another issue is related to the similarity to the original model. An
LOD solution can be high performing without significant visual artifacts; still there
may exist meaningful differences when compared to the original model.

The first test relates to the visual quality of the LOD solutions. The method
used was to take the framebuffer from a fully tessellated terrain and compare it to the
results of both LOD solutions, as presented in Sections 10.3 and 10.4. In both cases,
there is only one parameter to control the LOD, the number of pixels per edge. For
each comparison, two differences were computed: the number of different pixels and
a pixelwise color difference. This test was performed from eight different viewpoints.
The chart in Figure 10.4 provides the results.

Regarding the LOD parameter, pixels per edge ({1, 2, 4, 8, 16, 32, 64}), the meth-
ods behave as expected. As the number of pixels per edge increases, so does the
amount of different pixels. In general, both the count of different pixels and the
average color difference are lower for the roughness approach.

A clearer perspective can be obtained by looking at the actual images. Figure 10.5
shows close-ups of snapshots taken from viewpoint 1 for both the LOD methods
and the fully tessellated geometry. The figure shows that the simple method tends to
oversimplify patches that are further away, and it does alter the shape of the distant
mountains. The LOD with a roughness factor, on the other hand, provides a nearly
perfect contour.

Figure 10.6 was also built looking from the first viewpoint. The top row shows
that the simple method clearly is more prone to misrepresenting the contour of the
distant irregular geometry. The bottom row shows that, although the number of
pixel differences is relatively the same for both methods, these correspond to very
small color differences when using the roughness factor. For instance, considering
the roughness factor with 16 pixels per edge, the differences are barely noticeable.

Concluding this test, one can state that, even when considering higher values
for the parameter pixels per edge, the results are perceptually better when using the

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-13&iName=master.img-312.jpg&w=322&h=107


156 II Rendering Techniques

Figure 10.6. Differences between both LOD approaches and the full tessellation result. Top row: pixel
difference; bottom row: five times enhanced color difference. Left column: simple method, 8 pixels per edge.
Middle column: simple method, 16 pixels per edge. Right column: roughness approach, 16 pixels per edge.

roughness factor, as the shape of distant geometry seems to be significantly affected
if patch roughness is not considered.

The second test relates to the expected differences when the camera moves from
viewpoint P(d) to viewpoint P(d + step), where step is the distance traveled in two
consecutive frames. These differences occur during the course of camera navigation.
At point P(d), a feature of the terrain being observed may look differently when the
camera moves a single step, due to dynamic tessellation.

Using LOD, it is to be expected that the tessellation levels vary when the camera
moves, and this can cause visual artifacts that reveal the dynamic nature of the algo-
rithm. To have zero visual artifacts, the result using tessellation computed at point
P(d) should be indistinguishable from the result using tessellation computed at point
P(d + step), both being observed at point P(d + step).

This test calculates the differences between images generated at point P(d +step),
using tessellation levels computed for point P(d) and point P(d + step), for values
of step in the set {1, 2, 4, 8, 16, 32, 64} units. The chart in Figure 10.7 presents the
average number of different pixels considering eight test viewpoints and using values
of pixels per edge from 1 to 64. As expected, the errors reported for both LOD
methods increase as the step increases. The error also grows as pixels per edge gets
bigger.

The chart in Figure 10.7 clearly shows that, for the same value of pixels per edge,
the differences that can be expected using the simplest method are always significantly
higher than using a roughness factor.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-13&iName=master.img-322.jpg&w=114&h=85
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-13&iName=master.img-323.jpg&w=114&h=85
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-13&iName=master.img-324.jpg&w=114&h=85
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-13&iName=master.img-325.jpg&w=114&h=85
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-13&iName=master.img-326.jpg&w=114&h=85
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-13&iName=master.img-327.jpg&w=114&h=85


10. GPU Tessellation: We Still Have a LOD of Terrain to Cover 157

64816481648164

Pixels per Edge

81648164816481

0

20000

40000

60000

80000

100000

120000
Step = 1 Step = 2 Step = 4 Step = 8 Step = 16 Step = 32 Step = 64

Simple 

C
ou

n
t 

of
 D

if
fe

re
n
t 

P
ix

el
s

Roughness

Figure 10.7. Differences in the step forward test, using both LOD methods.

10.5.3 Performance

Now it is time to see if the suggested LOD implementation using hardware tessel-
lation pays off. It has already been shown that LOD introduces errors. These may
be controlled by the number of pixels per edge, or some other more sophisticated
approach, but there will be errors. So, the performance reports must be conclusive;
otherwise, what is the point?

The hardware used for testing was a desktop system with a GeForce 460 GTX
with 1GB of RAM and a laptop system with a Radeon 6990M with 2GB of RAM.

The results are presented for the terrain described previously, where the cam-
era completed a full circle, advancing one degree per step, performing a total of
360 frames. The total time and the number of primitives generated, found using
OpenGL queries, were recorded for each trial.

The test was performed with terrain grids ranging from 1K× 1K to 64K× 64K,
varying the value of pixels per edge for both LOD methods. As a comparison, full
tessellation, traditional submission of geometry (up to 4K × 4K) and instancing (up
to 8K × 8K) are also presented.

The first chart, Figure 10.8, compares the performance obtained for full tessella-
tion (with and without culling) with both full triangle grid submission and instancing
with a patch of 64 × 64 vertices, which is replicated to cover the full terrain. The
terrain grid size varies from 1K up to 8K.

Full tessellation is only beaten by the full triangle grid submission. The instanc-
ing approach does not match the performance of either in this case. Culling, as
expected, boosts the tessellation approach, making it worthwhile to include the extra
bit of code in the shaders.

Considering the largest terrains, and comparing to the full tessellation with culling
approach, the frame rates of the other approaches are simply to low for any practical
use. Notice that to show the data, the chart was created with a logarithmic FPS scale
(base 2); otherwise, some of the data would not show up meaningfully.

© 2012 by Taylor & Francis Group, LLC



158 II Rendering Techniques

460 GTX Full Tess Culling

460 GTX Full Tess

460 GTX Triangles

460 GTX Instancing 6990M Instancing

6990M Triangles

6990M Full Tess

6990M Full Tess Culling

1.00
1K 2K

Terrain Size

4K 8K

2.00

4.00

8.00

16.00

32.00

64.00

128.00

256.00

512.00

1,024.00

F
P

S

Figure 10.8. Frames-per-second performance on rendering a terrain without LOD.

The chart in Figure 10.9 reports on the performance of the roughness approach
and full tessellation (with and without culling), considering three possible patch sizes
on a Radeon 6990M.

In all cases, LOD introduces a very significant performance boost. In fact, the
boost is so significant that, again, a logarithmic scale was used to show visible curves
for every method. The patch size does influence performance, with larger sizes
performing better overall; in particular, culling with larger patches is clearly more
efficient. The other feature that is highlighted from the chart is the relevance of the
LOD factor, pixels per edge, performancewise. The parameter works as expected,
with performance increasing with the number of pixels per edge.

Now that the benefits of culling have been shown and the patch size impact on
performance has been observed, all the remaining tests make use of culling and a

6432168

CullingNo Culling

42164

Pixels per Edge

F
P

S

3216

1024
Patch 64 - roughness Patch 64 - full tess

Patch 32 - full tess

Patch 16 - full tess

Patch 32 - roughness

Patch 16 - roughness

512

256

128

64

32

16

8

4
8421

Figure 10.9. Comparison on the effect of culling in full tessellation and roughness methods.

© 2012 by Taylor & Francis Group, LLC



10. GPU Tessellation: We Still Have a LOD of Terrain to Cover 159

6432168421 6432168421 6432168421 6432168421
0

500

1,000

1,500

F
P

S

2,000

2,500

3,000
1K 2K 4K 8K

460GTX Simple

460GTX Roughness

6990M Simple

6990M Roughness

Pixels per Edge

Figure 10.10. Frames per second for both LOD methods, with terrain sizes up to 8K.

patch size of 65 × 65. The goal is to test how the variation of the terrain’s grid
size affects performance and also to see how far one can push GPU LOD based on
tessellation with OpenGL.

The chart in Figure 10.10 reports the tests in terrains up to 8K × 8K. Perfor-
mancewise, both LOD methods achieve very high frame rates. As expected, the sim-
ple method performs better than the roughness approach. However, as seen before,
the errors obtained with the latter approach are lower than the errors obtained with
the former method, and a global comparison should take this into consideration.

Pushing further, we have tested both LOD methods using terrains up to
64K × 64K (Figure 10.11). Such a grid has over four billion vertices, so its a huge
challenge for any technique. Since, presently, there is no hardware that is even re-
motely capable of handling this massive requirement, optimization techniques such
as culling and LOD are mandatory.

643216842164321684216432168421

600
16K 32K 64K

500

400

300

200

100

0

F
P

S

Pixels per Edge

460GTX Simple

460GTX Roughness

6990M Simple

6990M Roughness

Figure 10.11. Frames per second for both LOD methods, with terrain sizes up to 64K.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-13&iName=master.img-360.jpg&w=268&h=100


160 II Rendering Techniques

648164816481648164

460 GTX Simple

460 GTX Roughness

6990 GTX Simple

6990 GTX Roughness

8164816481
0

100

200

300

400

500

600

700

800

900

1,000
1K 2K 4K 8K 16K 32K 64K

T
ri

a
n
g
le

s 
p
er

 S
ec

o
n
d

(M
il
li
o
n
s)

Pixels per Edge

Figure 10.12. Triangles per second on both LOD methods, with terrain sizes up to 64K.

The throughput of primitives created by the tessellation primitive generator stage
has much higher values when using the roughness approach, particularly as the ter-
rain grows larger. This is the price to pay for having higher fidelity to the original
model, but it also suggests that our implementation might be too conservative.

Regarding the number of triangles processed per second (Figure 10.12), the
results show the GeForce 460 GTX achieving over 800 million, and the Radeon
6990M topping out at 500 million.

10.6 Conclusion
Taking advantage of the new tessellation engine and corresponding shaders, a GPU-
based LOD algorithm was presented. The algorithm takes into account the rough-
ness of the terrain to preserve a high level of fidelity to the original data, which is
specially required in highly irregular, distant patches. It can be either used as a stand-
alone method for terrains that fit in graphics memory, or, when considering larger
terrains, as the final rendering stage of full-blown terrain-rendering engines, enhanc-
ing the fidelity of the rendered terrain while not compromising the frame rate.

Bibliography
[Boesch 10] Florian Boesch. “OpenGL 4 Tessellation.” http://codeflow.org/entries/2010/nov/

07/opengl-4-tessellation/, 2010.

[Cantlay 11] Iain Cantlay. “DirectX 11 Terrain Tessellation.” Technical report, NVIDIA,
2011.

© 2012 by Taylor & Francis Group, LLC



10. GPU Tessellation: We Still Have a LOD of Terrain to Cover 161

[Lindstrom and Pascucci 01] P. Lindstrom and V. Pascucci. “Visualization of Large Terrains
Made Easy.” In Proceedings of the Conference on Visualization’01, pp. 363–371. IEEE Com-
puter Society, 2001.

[Ramires 07] António Ramires. “Clip Space Approach: Extracting the Planes.” http://www.
lighthouse3d.com/tutorials/view-frustum-culling/clip-space-approach-extracting-the-
planes, 2007.

[Shandkel 02] Jason Shandkel. “Fast Heightfield Normal Calculation.” In Game Programming
Gems 3. Hingham, MA: Charles River Media, 2002.

[Tatarchuk et al. 09] Natalya Tatarchuk, Joshua Barczak, and Bill Bilodeau. “Programming
for Real-Time Tessellation on GPU.” Technical report, AMD, Inc., 2009.

© 2012 by Taylor & Francis Group, LLC



© 2012 by Taylor & Francis Group, LLC



Antialiased Volumetric Lines
Using Shader-Based Extrusion

Sébastien Hillaire

11.1 Introduction
The ability to render lines has always been an important feature in computer graph-
ics. Lines are useful for several purposes. They can be used as a debugging tool to
display vertex normals or to visualize triangles in order to evaluate the complexity
of a scene. Line rendering is also an important feature of CAD applications to help
users to better perceive silhouettes and shapes by emphasizing object edges, or for
GUI information like a wireframe cube around a selected object, gizmos, etc. Lines
are also used in several games such as PewPew [Geyelin 09] or remakes of old games
like Battlezone [Coy 09] where line rendering is part of the retro visual style. Finally,
they are also used in GIS and simulation applications for roads, country borders, and
vehicles path.

Nowadays, rendering high-quality antialiased lines is still not a trivial task. Graph-
ics APIs like Direct3D or OpenGL allow the programmer to render basic 2D/3D
lines with a limited width. However, those lines are not properly antialiased on all
hardware [Lorach 05], and there is no perspective effect, i.e., a line always has the
same size on the screen whatever its distance to the viewer. Furthermore, they lack of
an overall volumetric look. McNanmara [McNamara et al. 00] and Chan [Chan and
Durand 05] have proposed methods to render antialiased lines, but they do not fea-
ture any perspective effect. Cozzi [Cozzi and Ring 11] proposed a geometry shader
extruding quads from 3D lines in screen space for high-quality antialiased lines with-
out any perspective effect. Lorach [Lorach 05] has proposed to render volumetric an-
tialiased lines by using an extended quad in screen space using a vertex shader. Line

163

11

© 2012 by Taylor & Francis Group, LLC



164 II Rendering Techniques

appearance is represented by 16 texture tiles that were interpolated based on the
camera position as compared to the line direction. However, the trick used is still
noticeable when viewing a line along its direction.

This chapter presents three methods to render high-quality antialiased lines. The
first method relies on the fixed-width line-rendering possibility of the OpenGL API.
The last two methods exploit shaders in order to extrude geometry around the line
that will be shaded to achieve a volumetric appearance without aliasing.

11.2 Antialiased Lines Using Postprocess
Antialiasing

One existing solution to rendering antialiased lines is to use the OpenGL line primi-
tives with hardware multisampling activated. The selected multisampling quality, 4,
8, or 16 times, will directly influence the required memory and bandwidth. As an
example, 8 times multisampling will require eight samples per pixel instead of one,
eight times more memory, and the execution of a resolve step computing final pixel
color from samples.

Over the last year, researchers have proposed a new way to achieve real-time
antialiasing as a postprocess without requiring huge memory and with a low compu-
tational cost: postprocess antialiasing. A complete overview is presented in [Jimenez
et al. 11]. Basically, these methods use screen-space information such as color, depth,
normals, and geometry to detect edges in the rendered picture and apply a smart
blur filter, taking advantage of the hardware linear filtering to reduce aliasing. Of
all the algorithms, FXAA [Lottes 11] is a good choice as it only relies on the color
buffer, and it only needs the luminance information. Another advantage is that the
full shader file provided can be used either in OpenGL, Direct3D, or on consoles,

Without FXAA With FXAA

Figure 11.1. OpenGL line primitives without and with postprocess antialiasing (FXAA).
The green rectangles represent the zoomed-in areas.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-14&iName=master.img-018.jpg&w=226&h=114


11. Antialiased Volumetric Lines Using Shader-Based Extrusion 165

and it can be easily tweaked using preprocessor directives. It is one of the fastest post-
process antialiasing algorithm available [Jimenez et al. 11]. As visible in Figure 11.1,
FXAA makes it possible to render high-quality antialiased lines using the standard
line-rendering features of OpenGL. No matter how many lines we need to render,
FXAA always has a constant cost. This approach not only improves the quality of
lines, it improves the quality of the entire scene.

11.3 Antialiased Volumetric Lines Using
Geometry Extrusion

This section presents two methods that take advantage of the shaders to render an-
tialiased volumetric lines. The volumetric look is achieved via geometry extrusion
using either a vertex shader or geometry shader. Antialiasing is achieved using a
texture that controls the appearance of the lines [Chan and Durand 05].

11.3.1 Geometry Extrusion Using a Vertex Shader

This method renders three quads modeled by triangle strips extruded from the line
segment (in Figure 11.2). The middle quad is a billboard that can only rotate around
the line direction. The two others are “caps,” or half-billboard, that are always facing
the camera.

This method can be used on older hardware as it only relies on a vertex shader.
To generate the extruded geometry, we need to submit the same vertex several times
to form the triangle strip. The extrusion of each vertex by the vertex shader requires
several inputs:

• currentVertex. The vertex of the line currently processed,

• otherVertex. The other vertex of the line, e.g., it will be B if currentVertex
is A (Figure 11.2),

Camera

A

B

B

A

A B

BA

2D View from Above 3D Camera View

Figure 11.2. 2D and 3D views showing how quads are extruded and oriented as a function
of the line segment and camera position.

© 2012 by Taylor & Francis Group, LLC



166 II Rendering Techniques

• offset. A vec2 specifying the vertex displacement length along and perpen-
dicular to the line direction in clip space,

• UV. A vec2 representing a texture coordinate from the texture controlling the
appearance of the line.

For each line, height vertices are required to draw the triangle strip. The data
are sent to the vertex shader according to a repetitive template that is visible in Fig-
ure 11.3. These data are submitted to the GPU by modifying the content of vertex
buffer objects. However, offset and UV are constant data. They are packed in a
single static vertex buffer object created and filled once during initialization. The size
of these two static buffers corresponds to the maximum number of lines that can be
rendered per batch. The element array is also filled once during initialization because
its content does not need to be modified. Multiple lines are drawn in a single draw
call using a primitive restart element as specified by the GL NV primitive restart

extension, which was promoted to core in OpenGL 3.0.
The extrusion vertex shader is shown in Listing 11.1. Geometry extrusion is

done in clip space. The direction of the line on the screen is first computed. Then,
a comparison is used to avoid the line direction being wrong when one of the line
vertices is not on the same side of the near clip plane. Finally, that direction is used
to displace the current vertex along and perpendicular to the line direction according
to its offset vector. Visually, the final triangle strip is extruded along the line, thus
giving the illusion of a volumetric line (Figure 11.4). Using a mipmapped appearance
texture is recommended in order to get nice filtering when line widths decrease [Chan
and Durand 05]. For very thin lines, multisampling, or postprocess antialiasing, will
help to hide jaggies.

This simple method allows the rendering of volumetric lines using only six trian-
gles per line and few additional ALU operations in the vertex shader. Furthermore,
it has the advantage of being usable on hardware that only supports programmable
vertex shading.

CurrentVertex

OtherVertex

OffsetUV

A A A A B B B B

B B B B A A A A

...

...

...

...

...

...,UV0 ,UV1 ,UV2 ,UV3 ,UV4 ,UV5 ,UV6 ,UV7

Data required for each line

Figure 11.3. Buffer arrays layout required to render volumetric lines using vertex shader–
based extrusion.

© 2012 by Taylor & Francis Group, LLC



11. Antialiased Volumetric Lines Using Shader-Based Extrusion 167

// [GLSL version , varying values and vertex attributes...]
uniform mat4 MVP;
uniform float radius;
uniform float invScrRatio;
uniform sampler2D lineTexture;
void main()
{

Out.Texcoord = OffsetUV .zw;

// Compute vertex position in clip space
vec4 vMVP = MVP * vec4(Position ,1.0);
vec4 otherMVP = MVP * vec4(PositionOther ,1.0);

// (1) line direction on the (XY) plane of clip space (perspective division ←↩
required )

vec2 lineDirProj = radius * normalize((vMVP.xy / vMVP.ww) - (otherMVP .xy / ←↩
otherMVP .ww));

// (2) trick to avoid inversed condition when points are not on the same side of←↩
near plane (sign(otherMVP .w)!=sign(vMVP.w))

if(otherMVP .w * vMVP.w < 0)
{

lineDirProj = -lineDirProj;
}

// (3) offset along and orthogonal to line direction (takes into account screen ←↩
aspect ratio)

vec2 iscrRatio = vec2(1.0, invScrRatio);
vMVP.xy += lineDirProj.xy * OffsetUV .xx * iscrRatio;
vMVP.xy += lineDirProj.yx * OffsetUV .yy * vec2(1.0 , -1.0) * iscrRatio;

gl_Position = vMVP;
}

Listing 11.1. Geometry extrusion vertex shader.

Figure 11.4. Volumetric lines rendered using a vertex shader–based geometry extrusion.
Two different appearance textures are shown here (small icon on the top-left of pictures).

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-14&iName=master.img-086.jpg&w=290&h=121


168 II Rendering Techniques

11.3.2 Geometry Extrusion Using a Geometry Shader

The vertex shader–based extrusion method has the drawback of not being able to
render correct volumetric lines when they are viewed along their own direction: the
triangle strip becomes visible at the grazing angle (Figure 11.5). The method using a
geometry shader–based extrusion does not suffer from this problem.

Figure 11.5. The visual error resulting from using the vertex shader–based extrusion while
viewing a line along its direction (left). Corrected version using geometry shader–based extru-
sion (right).

Given the two input vertices, the geometry shader extrudes an object-oriented
bounding box (OOBB). An orthonormal basis is first computed with its x-axis set
parallel to the line direction. The y- and z-axes are then generated according to
basic geometry relations, but we do not care about their direction. However, it is
important that the line is tightly contained inside the OOBB according to its width.
The OOBB is generated using two triangle strips. Each of its vertices is associated
with a view-ray direction expressed in view-space that is interpolated and passed to
be used in the fragment shader.

Figure 11.6. Volumetric lines rendered using a geometry shader–based geometry extrusion.
Two different appearance gradients are shown here (small icon on the top-left of pictures).

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-14&iName=master.img-096.jpg&w=258&h=108
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-14&iName=master.img-097.jpg&w=258&h=107


11. Antialiased Volumetric Lines Using Shader-Based Extrusion 169

Figure 11.7. Advanced effect possible when using the geometry-shader based extrusion: fog-
like effect with smooth intersections with the virtual environment (left) and with the virtual
camera when it is inside the volume (right).

The task of the fragment shader is simple. It computes the distance between the
two closest points on the line segment and on the view direction corresponding to
the currently rasterized fragment. This distance is finally scaled by the inverse radius
of the line and is used as a coordinate to sample a 1D gradient texture that will define
the appearance of the volumetric line (Figure 11.6). The drawback of this method
is that a lot of geometry is output from the geometry shader for each line: sixteen
vertices and two triangle strips. This is usually not recommended for a geometry
shader and is a huge cost to render a single line. A solution would be to implement
culling in the geometry shader [AMD 11].

This geometry shader–based volumetric line-rendering method results in higher-
quality volumetric lines than the vertex-based one. Moreover, it does not require
changing the way we send line vertices to the GPU. This method only requires us to
enable the shader before the line rendering section of the code. More visual effects
using the fragment shader can be achieved with this approach, such as volumetric
participating media, taking into account intersections with the camera [Hillaire 10]
(Figure 11.7) or meshless tubes [Rideout 11].

11.4 Performance

The performance of the previously discussed methods are shown in Figure 11.8 when
rendering 1024 lines with equal width and using additive blending. Performance was
recorded on an Intel Core i5 and a GeForce GTX 275. On such hardware,
FXAA (PC version) takes only 0.2 milliseconds to complete the rendering on a 720p
RGB8 buffer when using the green channel as luminance. Performance is given for
the 720p and 1080p resolutions as well as with lines rendered out of the frustum.
This last condition is used to ignore most of the rasterization cost and to focus on

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-14&iName=master.img-107.jpg&w=290&h=105


170 II Rendering Techniques

0

1

2

3

4

Standard lines Vertex shader Geometry shader

1080p 720p No rasterization
0.

38
 m

s

0.
24

 m
s

0.
03

 m
s

0.
96

 m
s

0.
56

 m
s

0.
11

 m
s

3.
98

 m
s

3.
15

 m
s

0.
16

 m
s

T
im

e

Figure 11.8. Performance in milliseconds when rendering 1024 lines without FXAA accord-
ing to three conditions. Additive blending was used, and each line had the same width.

the draw-call setup and vertex processing costs. In this case, lines were rendered out
of the view frustum.

Results show that the vertex extrusion method is twice as costly as the standard
line-rendering method. This is the cost of higher quality antialiasing together with
an overall volumetric and perspective look achieved using texture sampling. It is
important to note that this methods could be faster if data were interleaved, and
that, on recent hardware, the repetitive offsetUV could be read from a uniform
array using the gl VertexID%8 as an index (OpenGL 2.0 required).

It is important to note that the cost overhead due to the use of the heavy-
extrusion geometry shader is not the problematic part of the geometry-shader method.
As measured under the no rasterization condition, the overall computational cost is
50% higher than that of the vertex shader–based geometry extrusion. However, in
the 720p condition, it appears to be almost six times more costly. This suggests that
the more complex fragment shader may be the bottleneck in this case. This is the
cost of having consistent volumetric and antialiased lines whatever the line direction
is as compared to the camera relative position.

11.5 Conclusion
We have explored three methods for rendering high-quality antialiased lines of vari-
able width. The first method uses the standard line-drawing feature of OpenGL and
relies on a postprocess antialiasing method to achieve antialiasing. The last two meth-
ods take advantage of the programmable pipeline for the purpose of geometry extru-
sion in order to achieve additional volumetric and perspective effects. Antialiasing is
achieved using texture sampling and mipmapping. Furthermore, these methods can

© 2012 by Taylor & Francis Group, LLC



11. Antialiased Volumetric Lines Using Shader-Based Extrusion 171

also be combined with postprocess antialiasing to reduce the jaggy effect resulting
from thin lines.

The source code, available on the OpenGL Insights website, www.openglinsights.
com, contains implementation of each method. Each method has specific advantages
and drawbacks that resume our choice as a tradeoff between quality and computa-
tional cost.

Bibliography
[AMD 11] AMD. “ATI Radeon HD 2000 Programming Guide.” http://developer.amd.com/

media/gpu assets/ATI Radeon HD 2000 programming guide.pdf, 2011.

[Chan and Durand 05] Eric Chan and Frédo Durand. “Fast Prefiltered Lines.” In GPU Gems
2, pp. 15–30. Reading, MA: Addison-Wesley, 2005.

[Coy 09] Stephen Coy. “Simplified High Quality Anti-aliased Lines.” In ShaderX7: Advanced
REndering Techniques, pp. 15–30. Hingham, MA: Charles Rriver Media, 2009.

[Cozzi and Ring 11] Patrick Cozzi and Kevin Ring. 3D Engine Design for Virtual Globes.
Natick, MA: A K Peters, 2011.

[Geyelin 09] Jean-Francois Geyelin. “PewPew.” http://pewpewgame.blogspot.com, 2009.

[Hillaire 10] Sebastien Hillaire. “Volumetric Lines 2.” http://tinyurl.com/5wt8nmx, 2010.

[Jimenez et al. 11] Jorge Jimenez, Diego Gutierrez, Jason Yang, Alexander Reshetov, Pete De-
moreuille, Tobias Berghoff, Cedric Perthuis, Henry Yu, Morgan McGuire, Timothy
Lottes, Hugh Malan, Emil Persson, Dmitry Andreev, and Tiago Sousa. “Filtering Ap-
proaches for Real-Time Anti-Aliasing.” In ACM SIGGRAPH 2011 Courses, SIGGRAPH
’11, pp. 6:1–6:329. New York: ACM, 2011.

[Lorach 05] Tristan Lorach. “CG Volume Lines, NVIDIA SDK 9.52 Code Samples.” http://
tinyurl.com/6jbe2bo, 2005.

[Lottes 11] Timothy Lottes. “FXAA.” http://tinyurl.com/5va6ssb, 2011.

[McNamara et al. 00] Robert McNamara, Joel McCormack, and Norman P. Jouppi. “Pre-
filtered Antialiased Lines Using Half-Plane Distance Functions.” In The ACM SIG-
GRAPH/EUROGRAPHICS Workshop on Graphics Hardware. S.N. Spencer, 2000.

[Rideout 11] Philip Rideout. “Tron, Volumetric Lines, and Meshless Tubes.” http://prideout.
net/blog/?p=61, 2011.

© 2012 by Taylor & Francis Group, LLC



© 2012 by Taylor & Francis Group, LLC



2D Shape Rendering by
Distance Fields

Stefan Gustavson

12.1 Introduction
Every now and then, an idea comes along that seems destined to change the way
certain things are done in computer graphics, but for some reason it’s very slow to
catch on with would-be users. This is the case with an idea presented in 2007 by
Chris Green of Valve Software in a SIGGRAPH course chapter entitled “Improved
Alpha-Tested Magnification for Vector Textures and Special Effects” [Green 07].
Whether the slow and sparse adoption is due to an obscure title, the choice of pub-
lication venue, a lack of understanding from readers, lack of source code, or the
shortcomings of Green’s original implementation, this chapter is an attempt to fix
that.

The term vector textures refers to 2D surface patterns built from distinct shapes
with crisp, generally curved boundaries between two regions: foreground and back-
ground. Many surface patterns in the real world look like this, for example printed
and painted text, logos, and decals. Alpha masks for blending between two more
complex surface appearances may also have crisp boundaries: bricks and mortar, wa-
ter puddles on asphalt, cracks in paint or plaster, mud splatter on a car. For decades,
real-time computer graphics has been long plagued by an inability to accurately ren-
der sharp surface features up close, as demonstrated in Figure 12.1. Magnification
without interpolation creates jaggy, pixelated edges, and bilinear interpolation gives
a blurry appearance. A common method for alpha masks is to perform thresholding
after interpolation. This maintains a crisp edge, but it is wobbly and distorted, and
the pixelated nature of the underlying data is apparent.

173

12

© 2012 by Taylor & Francis Group, LLC



174 II Rendering Techniques

Figure 12.1. Up close, high-contrast edges in texture images become jaggy, blurry, or wobbly.

Shape rendering by the method described here solves the problem in an elegant
and GPU-friendly way, and it does not require rethinking the production pipeline
for texture creation. All it takes is some insight into what can be done. First, I
present the principles of the method and explain what it is good for. Following that,
I provide a summary of recent research on how to make better distance fields from
regular artwork, removing Green’s original requirement for special high-resolution 1-
bit alpha images. Last, I present concrete shader code in GLSL to perform this kind
of rendering, comment on its performance and shortcomings, and point to trade-offs
between speed and quality.

12.2 Method Overview

Generally speaking, a crisp boundary cannot be sampled and reconstructed properly
using standard texture images. Texel sampling inherently assumes that the pattern
is band limited , i.e., that it does not vary too rapidly and does not have too-small
details, because the pattern is going to be rendered by a smooth interpolation of the
texel samples. If we keep one of these constraints, that the pattern must not contain
too-small details, but want the transitions between background and foreground to be
crisp, formally representing an infinite gradient, we can let a shader program perform
thresholding by a step function and let the texels represent a smoothly varying function
on which to apply the step. A suitable smooth function for this purpose is a distance
field .

A typical distance field is shown in Figure 12.2. Here, texels do not represent a
color, but the distance to the nearest contour, with positive values on one side of the
contour and negative values on the other. An unsigned distance field, having distance
values only outside the contour, is useful, but for flexibility and proper antialiasing, it
is highly preferable to have a signed distance field with distance values both inside and
outside the contour. The contour is then a level set of the distance field: all points
with distance value equal to zero. Thresholding the distance function at zero will
generate the crisp 2D shape. Details smaller than a single texel cannot be represented,
but the boundary between background and foreground can be made infinitely sharp,
and because the texture data is smoothly varying and can be closely approximated
as a linear ramp at most points, it will behave nicely under both magnification and
minification using ordinary bilinear interpolation.

© 2012 by Taylor & Francis Group, LLC



12. 2D Shape Rendering by Distance Fields 175

Figure 12.2. A 2D shape (left), its smoothly varying distance field shown in a rainbow-color
map (middle), and three level sets (right) showing the original outline (thick line) and inward
and outward displaced outlines (thin lines).

Thresholding by a step function will alias badly, so it is desirable to use instead a
linear ramp or a smoothstep function with the transition region extending across
approximately one fragment (one pixel sample) in the rendered output. Proper anti-
aliasing is often overlooked, so Listing 12.1 gives the source code for an anisotropic
antialiasing step function. Using the built-in GLSL function fwidth() may be
faster, but it computes the length of the gradient slightly wrong as |∂F/∂x|+|∂F/∂y|
instead of √(

∂F
∂x

)2

+

(
∂F
∂y

)2

.

Using ±0.7 instead of ±0.5 for the thresholds compensates for the fact that
smoothstep() is smooth at its endpoints and has a steeper maximum slope than a
linear ramp.

Because the gradient of a distance field has a constant magnitude except at lo-
calized discontinuities, the skeleton points, gradient computation is straightforward
and robust. The gradient can be stored with the distance field using a multichannel
(RGB) texture format, but it can also be accurately and efficiently estimated by the
automatic derivatives dFdx() and dFdy() in the fragment shader. Thus, it is not
necessary to sample the texture at several points. By carefully computing the gradient

// �threshold � is constant , �distance � is smoothly varying
float aastep(float threshold , float dist.)
{

float afwidth = 0.7 * length(vec2(dFdx(dist.), dFdy(dist.)));
return smoothstep(threshold - afwidth , threshold + afwidth , dist.);

}

Listing 12.1. Anisotropic antialiased step function.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-15&iName=master.img-028.jpg&w=258&h=101


176 II Rendering Techniques

projection to screen space, an accurate, anisotropic analytical antialiasing of the edge
can be performed with little extra effort.

12.3 Better Distance Fields
In digital image processing, distance fields have been a recurring theme since the
1970s. Various distance transform methods have been proposed, whereby a binary
(1-bit) image is transformed into an image where each pixel represents the distance
to the nearest transition between foreground and background. Two problems with
previously published methods are that they operate on binary images and that they
compute distance as a vector from the center of each foreground or background
pixel to the center of the closest pixel of the opposite type. This only allows for
distances that are of the form

√
i2 + j2, where i and j are both integers, and the

measure of distance is not consistent with the distance to the edge between foreground
and background. These two restrictions have recently been lifted [Gustavson and
Strand 11]. The new antialiased Euclidean distance transform is a straightforward
extension of traditional Euclidean distance transform algorithms, and for the purpose
of 2D shape rendering, it is a much better fit than previous methods. It takes as its
input an antialiased, area-sampled image of a shape, it computes the distance to the
closest point on the underlying edge of the shape, and it allows fractional distances
with arbitrary precision, limited only by the antialiasing accuracy of the input image.
The article cited contains the full description of the algorithm, with source code
for an example implementation. The demo code for this chapter contains a similar
implementation, adapted for stand-alone use as a texture preprocessing tool.

12.4 Distance Textures
The fractional distance values from the antialiased distance transform need to be
supplied as a texture image to OpenGL. An 8-bit format is not quite enough to
represent both the range and the precision required for good-quality shapes, but if
texture bandwidth is limited, it can be enough. More suitable formats are, of course,
the single channel float or half texture formats, but a 16-bit integer format with
a fixed-point interpretation to provide enough range and precision will also do the
job nicely.

For maximum compatibility with less-capable platforms such as WebGL and
OpenGL ES, I have chosen a slightly more cumbersome method for the demo code
for this chapter: I store a 16-bit fixed-point value with 8 bits of signed integer range
and 8 bits of fractional precision as the R and G channels of a traditional 8-bit RGB
texture. This leaves room to also have the original antialiased image in the B channel,
which is convenient for the demo and allows for an easy fallback shader in case the
shape rendering turns out to be too taxing for some particularly weak GPU.

© 2012 by Taylor & Francis Group, LLC



12. 2D Shape Rendering by Distance Fields 177

The disadvantage is that OpenGL’s built-in bilinear texture interpolation incor-
rectly interpolates the integer and fractional 8-bit values separately, so we need to
use nearest-neighbor sampling, look up four neighbors explicitly, reconstruct the
distance values from the R and G channels, and perform bilinear interpolation by
explicit shader code. This adds to the complexity of the shader program. Four
nearest-neighbor texture lookups constitute the same memory reads as a single bilin-
ear lookup, but most current hardware has built-in bilinear filtering that is faster than
doing four explicit texture lookups and interpolation in shader code. (The OpenGL
extension GL ARB texture gather, where available, goes some way towards ad-
dressing this problem.)

A bonus advantage of the approach using dual 8-bit channels is that we work
around a problem with reduced precision in the built-in bilinear texture interpola-
tion. We are no longer interpolating colors to create a blurry image, but computing
the location of a crisp edge, and that requires better precision than what current
(2011) GPUs provide natively. Moving the interpolation to shader code guarantees
an adequate accuracy for the interpolation.

12.5 Hardware Accelerated Distance
Transform

In some situations where a distance field might be useful, it can be impractical or im-
possible to precompute it. In such cases, a distance transform can be performed on
the fly using a multipass rendering and GLSL. An algorithm suitable for the kind of
parallel processing that can be performed by a GPU was originally invented in 1979
and published as little more than a footnote in [Danielsson 80] under the name par-
allel Euclidean distance transform. It was recently independently reinvented under the
name jump flooding and implemented on GPU hardware [Rong and Tan 06]. A vari-
ant that accepts antialiased input images and outputs fractional distances according
to [Gustavson and Strand 11] is included in the accompanying demos and source
code for this chapter. The jump flooding algorithm is a complicated image process-
ing operation that requires several iterative passes over the image, but on a modern
GPU, a reasonably sized distance field can be computed in a matter of milliseconds.
The significant speedup compared to a pure CPU implementation could be useful
even for offline computation of distance fields.

12.6 Fragment Rendering
The best way of explaining how to render the 2D shape is probably to show the
GLSL fragment shader with proper comments. See Listing 12.2. The shader listed
here assumes that the distance field is stored as a single-channel floating-point texture.

© 2012 by Taylor & Francis Group, LLC



178 II Rendering Techniques

// Distance map 2D shape texturing , Stefan Gustavson 2011.
// A re-implementation of Green �s method, using a single
// channel high precision distance map and explicit texel
// interpolation. This code is in the public domain.

#version 120
uniform sampler2D disttex ; // Single -channel distance field
uniform float texw , texh; // Texture width and height (texels)
varying float oneu , onev; // 1/ texw and 1/texh from vertex shader
varying vec2 st; // Texture coords from vertex shader

void main(void)
{

vec2 uv = st * vec2(texw , texh); // Scale to texture rect coords
vec2 uv00 = floor(uv - vec2(0.5)); // Lower left of lower left texel
vec2 uvlerp = uv - uv00 - vec2 (0.5); // Texel -local blends [0,1]

// Perform explicit texture interpolation of distance value D.
// If hardware interpolation is OK, use D = texture2D(disttex , st).

// Center st00 on lower left texel and rescale to [0,1] for lookup
vec2 st00 = (uv00 + vec2(0.5)) * vec2(oneu , onev);
// Sample distance D from the centers of the four closest texels
float D00 = texture2D(disttex , st00).r;
float D10 = texture2D(disttex , st00 + vec2(0.5 * oneu , 0.0)).r;
float D01 = texture2D(disttex , st00 + vec2(0.0, 0.5 * onev)).r;
float D11 = texture2D(disttex , st00 + vec2(0.5 * oneu ,0.5 * onev)).r;
vec2 D00_10 = vec2(D00, D10);
vec2 D01_11 = vec2(D01, D11);
vec2 D0_1 = mix(D00_10 , D01_11 , uvlerp.y); // Interpolate along v
float D = mix(D0_1.x, D0_1.y, uvlerp.x); // Interpolate along u

// Perform anisotropic analytic antialiasing
float aastep = 0.7 * length(vec2(dFdx(D), dFdy(D)));
// �pattern � is 1 where D > 0, 0 where D < 0, with proper AA around D = 0.
float pattern = smoothstep(-aastep , aastep , D);
gl_FragColor = vec4(vec3(pattern ), 1.0);

}

Listing 12.2. Fragment shader for shape rendering.

#version 120
uniform sampler2D disttex ; // Single -channel distance field
varying vec2 st; // Texture coords from vertex shader

void main( void )
{

float D = texture2D(disttex , st).
float aastep = 0.5 * fwidth(D);
float pattern = smoothstep(-aastep , aastep , D);
gl_FragColor = vec4(vec3(pattern ), 1.0);

}

Listing 12.3. Minimal shader, using built-in texture interpolation and antialiasing.

© 2012 by Taylor & Francis Group, LLC



12. 2D Shape Rendering by Distance Fields 179

Figure 12.3. A low resolution, antialiased bitmap (left). Shapes rendered using a distance
field generated from that bitmap (right).

As mentioned above, the interactive demo instead uses a slightly more cumbersome
8-bit RGB texture format for maximum compatibility. A minimal shader relying on
the potentially problematic but faster built-in texture and antialiasing functionality
in GLSL is presented in Listing 12.3. It is very simple and very fast, but on current
GPUs, interpolation artifacts appear even at moderate magnification. A final shape
rendering is demonstrated in Figure 12.3, along with the antialiased image used to
generate the distance field.

12.7 Special Effects

The distance field representation allows for many kinds of operations to be performed
on the shape, like thinning or fattening of features, bleed or glow effects and noise-
like disturbances to add small-scale detail to the outline. These operations are readily
performed in the fragment shader and can be animated both per-frame and per-
fragment. The distance field representation is a versatile image-based component
for more general procedural textures. Figure 12.4 presents a few examples of special
effects, and their corresponding shader code is shown in Listing 12.4. For brevity, the
example code does not perform proper antialiasing. Details on how to implement
the noise() function can be found in Chapter 7.

Figure 12.4. Shader special effects using plain distance fields as input.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-15&iName=master.img-139.jpg&w=242&h=70


180 II Rendering Techniques

// Glow effect
float inside = 1.0 - smoothstep(-2.0, 2.0, D);
float glow = 1.0 - smoothstep(0.0, 20.0, D);
vec3 insidecolor = vec3(1.0, 1.0, 0.0);
vec3 glowcolor = vec3(1.0, 0.3, 0.0);
vec3 fragcolor = mix(glow * glowcolor , insidecolor , inside);
gl_FragColor = vec4(fragcolor , 1.0);

// Pulsate effect
D = D - 2.0 + 2.0 * sin(st.s * 10.0);
vec3 fragcolor = vec3(smoothstep(-0.5, 0.5, D));
gl_FragColor = vec4(fragcolor , 1.0);

// Squiggle effect
D = D + 2.0 * noise (20.0 * st);
vec3 fragcolor = vec3(1.0 - smoothstep(-2.0, -1.0, D) + smoothstep(1.0, 2.0, D));
gl_FragColor = vec4(fragcolor , 1.0);

Listing 12.4. Shader code for the special effects in Figure 12.4.

12.8 Performance
I benchmarked this shape-rendering method on a number of current and not-so-
current GPUs, and instead of losing myself in details with a table, I summarize the
results very briefly.

The speed of this method on a modern GPU with adequate texture bandwidth
is almost on par with plain, bilinear interpolated texturing. Using the shader in
Listing 12.3, it is just as fast, but the higher-quality interpolation of Listing 12.2 is
slightly slower. Exactly how much slower depends strongly on the available texture
bandwidth and ALU resources in the GPU. With some trade-off in quality under
extreme magnifications, single channel 8-bit distance data can be used, but 16-bit
data comes at a reasonable cost. Proper antialiasing requires local derivatives of the
distance function, but on the hardware level this is implemented as simple interfrag-
ment differences with very little overhead.

In short, performance should not be a problem with this method. Where speed
is of utmost importance, decals and alpha masks could in fact be made smaller with
this method than with traditional alpha masking. This saves texture memory and
bandwidth and can speed up rendering without sacrificing quality.

12.9 Shortcomings
Even though the shapes rendered by distance fields have crisp edges, a sampled and
interpolated distance field is unable to perfectly represent the true distance to an
arbitrary contour. Where the original underlying edge has strong curvature or a
corner, the rendered edge will deviate slightly from the true edge position. The
deviations are small, only fractions of a texel in size, but some detail may be lost or

© 2012 by Taylor & Francis Group, LLC



12. 2D Shape Rendering by Distance Fields 181

Figure 12.5. Rendering defects in extreme magnification. The black and white shape is
overlaid with the grayscale source image pixels in purple and green. For this particularly
problematic italic lowercase “n,” the left edge of the leftmost feature is slightly rounded off,
and the narrow white region in the middle is distorted where two opposite edges cross a single
texel.

distorted. Most notably, sharp corners will be shaved off somewhat, and the character
of such distortions will depend on how each particular corner aligns with the texel
grid.

Also, narrow shapes that are less than two texels wide cannot be accurately repre-
sented by a distance field, and if such features are present in the original artwork, they
will be distorted in the rendering. To avoid this, some care needs to be taken when
designing the artwork and when deciding on the resolution of the antialiased image
from which to generate the distance field. Opposite edges of a thin feature should
not pass through the same texel, nor through two adjacent texels. (This limitation is
present also in traditional alpha interpolation.) Both these artifacts are demonstrated
by Figure 12.5, which is a screenshot from the demo software for this chapter.

12.10 Conclusion
A complete cross-platform demo with full source code for texture creation and ren-
dering is freely available on the OpenGL Insights website, www.openglinsights.com.

This chapter and its accompanying example code should contain enough infor-
mation to get you started with distance field textures in OpenGL projects where
appropriate. Compared to [Green 07], I provide a much improved distance trans-
form method taken from recent research and give example implementations with
full source code for both texture generation and rendering. I also present shader
code for fast and accurate analytic antialiasing, which is important for the kind of
high-frequency detail represented by a crisp edge.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-15&iName=master.img-180.jpg&w=208&h=130


182 II Rendering Techniques

While distance fields certainly do not solve every problem with rendering shapes
with crisp edges, they do solve some problems very well, for example text, decals, and
alpha-masked transparency for silhouettes and holes. Furthermore, the method does
not require significantly more or fundamentally different operations than regular
texture images, neither for shader programming nor for the creation of texture assets.
It is my hope that this method will find more widespread use. It certainly deserves it.

Bibliography
[Danielsson 80] Per-Erik Danielsson. “Euclidean Distance Mapping.” Computer Graphics

and Image Processing 14 (1980), 227–248.

[Green 07] Chris Green. “Improved Alpha-Tested Magnification for Vector Textures and Spe-
cial Effects.” In SIGGRAPH07 Course on Advanced Real-Time Rendering in 3D Graphics
and Games, Course 28, pp. 9–18. New York: ACM Press, 2007.

[Gustavson and Strand 11] Stefan Gustavson and Robin Strand. “Anti-Aliased Euclidean dis-
tance transform.” Pattern Recognition Letters 32:2 (2011), 252–257.

[Rong and Tan 06] Guodong Rong and Tiow-Seng Tan. “Jump Flooding in GPU with Ap-
plications to Voronoi Diagram and Distance Transform.” In Proceedings of ACM Sympo-
sium on Interactive 3D Graphics and Games, pp. 109–116, 2006.

© 2012 by Taylor & Francis Group, LLC



Efficient Text Rendering
in WebGL

Benjamin Encz

13.1 Introduction

As the first plugin-free 3D rendering API for browsers, WebGL is an interesting
technology for the development of web applications. Since it is a low-level graphics
API, the basic functionality is slim, and many features need to be implemented by
the application developer. One of the missing functions is native support for text
rendering. In many applications, especially on the web, text content is an important
factor.

Being a young standard, only a few WebGL applications using text rendering
exist. Furthermore, in contrast to OpenGL, to date, hardly any extensions or libraries
for text rendering are available. Currently we need to implement it on our own. This
chapter introduces and discusses two approaches.

One approach is bitmap fonts, a common technique where single characters are
rendered as textured quads. For WebGL developers, a second approach exists: we can
use the 2D capabilities of the HTML5 element canvas to create textures containing
dynamically rendered text.

This chapter discusses both approaches. It describes each concept, provides
implementation details, and compares the efficiency in different scenarios. De-
mos and documented source code are available on the OpenGL Insights website,
www.openglinsights.com.

183

13

© 2012 by Taylor & Francis Group, LLC



184 II Rendering Techniques

13.2 Canvas-Based Font Rendering
Canvas-based font rendering is a WebGL-specific technique. We can use the HTML5
element canvas to generate a texture font.

13.2.1 The HTML5 Canvas

The canvas element is part of the HTML5 standard. It provides two APIs for graph-
ics. WebGL’s functionality is provided by the canvas’ 3D context. Canvas’ 2D con-
text, in turn, offers an API for drawing 2D raster and vector images, including text.

13.2.2 Concept

When the canvas’ 2D context is used to draw characters or shapes, the result is pre-
sented on the canvas and stored as a bitmap. This bitmap can be be transformed into
a WebGL texture. Using the 2D context, canvas-based text rendering is implemented
in three steps:

1. Use 2D context to render text onto the canvas,

2. Capture the resulting bitmap as a WebGL texture,

3. Render viewport-aligned triangles shaded with the texture.

Canvas-based text rendering requires two canvas elements: one with a 2D con-
text, to generate the texture, and another with a 3D context, to render the 3D scene,
as shown in Figure 13.1.

Hello World!

(a)

Hello World!

(b)

Figure 13.1. Canvas-based font rendering: (a) texture creation canvas, (b) rendered 3D
scene.

© 2012 by Taylor & Francis Group, LLC



13. Efficient Text Rendering in WebGL 185

13.2.3 Implementation

The first implementation step is to render text using the 2D context as shown in
Listing 13.1. We begin with requesting ctx, the 2D context of the canvas, and
setting up the parameters for our text. Several attributes can be used to vary the
font appearance, including CSS syntax, which allows us to reuse styles from existing
web applications. By calling ctx.fillRect(), we fill the canvas with a blue back-
ground. Then, we call ctx.fillText() to render white text on top. Now, the
image is drawn, and we create a WebGL texture from it, as shown in Listing 13.2.

var dynamicImage = document .getElementById("text");
var ctx = dynamicImage.getContext("2d");
var text = "Hello World";
var leftOffset = ctx.canvas.width / 2;
var topOffset = ctx.canvas.height / 2;

ctx.fillStyle = "blue";
ctx.fillRect (0, 0, ctx.canvas .width , ctx.canvas.height);
ctx.fillStyle = "white";
ctx.lineWidth = 5;
ctx.font = "bold 44px Arial";
ctx.textAlign = "center";
ctx.textBaseline = "middle";
ctx.fillText (text , leftOffset , topOffset);
handleLoadedTexture(dynamicImage);

Listing 13.1. 2D context text rendering.

First, we initialize dynamicTexture with the call to gl.createTexture().
Then, we activate flipping for our image, which has an inverted y-axis and would
be displayed upside down otherwise. Next, we copy the content of the 2D context
to the WebGL texture, passing it as the last argument to gl.texImage2D(). We

function handleLoadedTexture(image) {
var dynamicTexture = gl.createTexture();
gl.bindTexture(gl.TEXTURE_2D , dynamicTexture);
gl.pixelStorei(gl.UNPACK_FLIP_Y_WEBGL, true);
gl.texImage2D(gl.TEXTURE_2D , 0,gl.LUMINANCE_ALPHA , gl.LUMINANCE_ALPHA , gl.←↩

UNSIGNED_BYTE ,image);
gl.texParameteri(gl.TEXTURE_2D , gl.TEXTURE_MIN_FILTER, gl.LINEAR_MIPMAP_LINEAR);
gl.texParameteri(gl.TEXTURE_2D , gl.TEXTURE_MAG_FILTER, gl.LINEAR);
// Generate the mipmap required for the minimization filter
gl.generateMipmap(gl.TEXTURE_2D);

}

Listing 13.2. Texture creation.

© 2012 by Taylor & Francis Group, LLC



186 II Rendering Techniques

var quadBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER , quadBuffer);
var vertices = [

-5, -5, 1, 0, 1 //P0
5, -5, 1, 0, 0 //P1
5, 5, 1, 1, 0 //P2

-5, -5, 1, 0, 1 //P0
5, -5, 1, 0, 0 //P2
5, 5, 1, 1, 0 //P3

];
gl.bufferData(gl.ARRAY_BUFFER , new Float32Array(vertices ), gl.STATIC_DRAW);

Listing 13.3. Interleaved buffer for a quad.

choose Luminance-Alpha as the texture format since that saves us 2 bytes per pixel.
The color information does not need to be stored characterwise; instead, we can store
it globally or with each string. Finally, we set up bilinear texture filtering. This demo
allows us to move and translate the rendered text from its initial viewport-aligned
position so we use texture filtering to create a smooth font appearance at any world
position.

In the third step, we create a surface using two triangles and shade them with our
texture. To do so, we create an interleaved buffer with vertices and texture coordi-
nates, as shown in Listing 13.3.

In each line, the first three floats describe the world position of each vertex, and
the last two describe which point of the texture is mapped to it. Finally, we bind
that buffer and call gl.drawArrays(). The vertex shader, shown in Listing 13.4,
transforms our quad to clip coordinates, and passes the texture coordinates to the
fragment shader.

Canvas-based text rendering is straightforward. We have access to several font
attributes and can put the actual text rendering details, such as character placing, off
to the canvas’ 2D context.

attribute vec3 aVertexPosition;
uniform mat4 uMVPMatrix;
attribute vec2 aTextureCoord;
varying vec2 vTextureCoord;

void main(void) {
gl_Position = uMVPMatrix * vec4(aVertexPosition , 1.0);
vTextureCoord = aTextureCoord;

}

Listing 13.4. Vertex shader.

© 2012 by Taylor & Francis Group, LLC



13. Efficient Text Rendering in WebGL 187

13.3 Bitmap Font Rendering
In contrast to canvas-based rendering, bitmap font rendering is a low-level approach.
We need to render every character individually.

13.3.1 Concept

Every character in a string is drawn as a rectangular surface (tile) and shaded with a
texture representing the corresponding character, as shown in Figure 13.2.

To create these tiles, we need texture and meta information for the characters in
our fonts. Bitmap fonts are usually provided as a set of two components:

1. One or multiple textures containing the images for all characters in a charset.

2. A meta file, providing a descriptor for all characters.

The character descriptor defines the size of a character and is used to create a
TextureCoordBuffer, which describes the part of a texture applied to a WebGL
primitive. Figure 13.2 shows how a subimage is extracted from a bitmap font and
applied to a character tile. To access the character descriptors and implement tile
creation, we need the following components:

• bitmap font parser,

• bitmap font representation,

• character hub to provide character information, and

• character-creating and character-placing component (text unit).

Figure 13.3 shows how these components work together. Before rendering be-
gins, the font texture is loaded, and the bitmap font descriptor is parsed. After the

Bitmap Font Texture

Created Tiles

TextureCoordBuffer

Figure 13.2. Bitmap font texture application.

© 2012 by Taylor & Francis Group, LLC



188 II Rendering Techniques

Text RenderingPreparation

Receive Text

Parse Font Descriptor

Create Representation

Create
and place
Letter Tile

Apply
Texture

Request
Character
Descriptor

“Hello”

“H”

1

3

4

2

Text Unit

Character HubBitmap Font Representation

Bitmap Font Parser

<xml>
Font Descriptor
</xml>

Figure 13.3. Bitmap font rendering structure.

preparation is complete, the text unit receives the strings to be rendered. It iterates
through all characters in these strings and requests the character descriptor for each
of them. It creates vertices and texture coordinates for each character tile and stores
them in one buffer.

Before I discuss how this concept can be implemented, I will discuss a necessary
preparation step: creating bitmap fonts.

13.3.2 Creating Bitmap Fonts

Creating a bitmap font requires the creation of textures and a font descriptor. The
textures contain a complete charset, and the font descriptor provides the necessary
meta information for the contained characters. We use a free tool, BMFont, to create
a bitmap font [Angel 04]. The tool provides many settings, e.g., the resolution of the
texture and the characters it should contain. It generates a set of textures and a XML
font descriptor.

13.3.3 Implementation

In the first step, we load the bitmap font texture and parse the bitmap font descrip-
tor. The bitmap font texture is initialized in the same manner as for canvas-based
rendering, shown in Listing 13.2. The only change is that we load the texture from
a file. The demo uses an XML font descriptor. We process the XML and store the
parsed character descriptors in the bitmap font representation. Now, we have access

© 2012 by Taylor & Francis Group, LLC



13. Efficient Text Rendering in WebGL 189

x,y

xOffset

baseline

width

xAdvance

h
ei

g
h
t

y
O

ff
se

t

Figure 13.4. Bitmap font character descriptor.

to all character descriptors. Let’s look at the information contained in a character
descriptor:

<char id ="47" x="127" y="235" width ="26" height ="66" xoffset ="0"
yoffset ="15" xadvance ="25" page ="0" chnl="15" />

In this sample entry, x, y, width, and height define the character’s subimage
in the bitmap font texture file. The page parameter defines in which texture the
character is stored; it is only necessary if a bitmap font is spread over several textures.
Figure 13.4 visualizes the important attributes of this descriptor. They are necessary
to create the vertices and texture coordinates of the character tiles.

Creating character tiles. Listing 13.5 shows the source code for the character
tile creation. It contains two loops. We use the outer loop to iterate through all
strings and the inner loop to iterate through all characters contained in the strings.
In the outer loop, we store the origin of the currently selected string, which we need
to initialize the position vertices.

In the inner loop, we create the vertices and texture coordinates for our character
tiles. We load the character’s descriptor and transform its properties using a font size
factor. Next, we initialize the position vertices for our character tile. We calculate
the positions of our vertices, using the string’s origin and the information provided
through the character descriptor. We complete the definition of our tile by adding the
texture coordinates of the character to the buffer. Finally, we increase the xOffset,
so that the next character is placed a correct distance from the current one.

After the loop terminates, the vertices and texture coordinates for all characters
are contained in only one interleaved buffer. This means we can render all the scene’s
strings in a single draw call.

The actual rendering is the same as for canvas-based rendering. We bind the
interleaved buffer and use the same shader program.

© 2012 by Taylor & Francis Group, LLC



190 II Rendering Techniques

// Outer loop: is executed for every string
for ( i = 0; i < stringAmount; i++) {

// set offsets to string �s origin
var yOffset = renderString[i].originY ;
var xOffset = renderString[i].originX ;

// Inner loop: is executed for every character
for (n = 0; n < renderString[i].text.length; n++) {

var charDescriptor = bmFontDescriptor.getCharacter(renderString[i].text[n]);
var char_xOffset = charDescriptor.xoffset * fontSizeFactor;
var char_yOffset = - (charDescriptor.yoffset * fontSizeFactor);
var char_xAdvance = charDescriptor.xadvance * fontSizeFactor;
var charHeight = charDescriptor.height * fontSizeFactor;
var charWidth = charDescriptor.width * fontSizeFactor;

// Get textureCoords for the current char
textureCoords = (charDescriptor.textureBuffer);

// Initialize P1
vertices [vertices_i] = 0 + xOffset + char_xOffset;
vertices [vertices_i+1] = -charHeight + yOffset + char_yOffset;
vertices [vertices_i+2] = 1.0;
vertices [vertices_i+3] = textureCoords[0];
vertices [vertices_i+4] = textureCoords[1];
// Initialize P2
vertices [vertices_i+5] = charWidth + xOffset + char_xOffset;
vertices [vertices_i+6] = -charHeight + yOffset + char_yOffset;
vertices [vertices_i+7] = 1.0;
vertices [vertices_i+8] = textureCoords[2];
vertices [vertices_i+9] = textureCoords[3];
// Initialize P3
// Initialize P4
// [...]

xOffset += char_xAdvance;
// [...]

}
}

Listing 13.5. Tile creation and initial placing.

13.4 Comparison
This section compares both text rendering approaches and determines when to use
each. The following configuration was used for the performance tests:

• CPU. QuadCore AMD Phenom II, 2.80 GHz,

• System Memory. 4GB,

• GPU. ATI Radeon HD 4600 Series (1GB memory),

• Browser. Google Chrome 15,

• OS. Windows 7 (32bit).

© 2012 by Taylor & Francis Group, LLC



13. Efficient Text Rendering in WebGL 191

13.4.1 Performance

To supply a reliable performance analysis, the different approaches were tested in the
following scenarios:

• Static text (10,000 characters and 20,000 characters),

• Dynamic text (1,000 characters, 2,000 characters, and 10,000 characters).

The vertex shader we use for the demo is processed so fast that the GPU has to wait
for the CPU to fill the buffers. This means that the performance of the text-rendering
implementations mainly depends on the used CPU Time. To reach the maximum
frame rate of 60 FPS, we have a time slot of about 16 ms per frame for our JavaScript
code to execute. Table 13.1 shows the consumed CPU time for each benchmark.

In the first test, using static text, the CPU load is low. Both approaches reach 60
FPS for 10,000 and for 20,000 rendered characters using less than 0.2 ms of CPU
time. Once the buffers are filled, the only expensive CPU operation is one draw call
per frame. Using bitmap-font rendering, we can render about 130,000 characters
before the frame rate drops below 60 FPS due to the GPU performance.

In the second test, we change all rendered characters every frame. This per-
formance depends on the CPU load. The benchmark reveals enormous differences
in the consumed CPU time for both approaches. The results are displayed in Fig-
ure 13.5. This figure shows that bitmap font rendering is a lot faster than canvas-
based rendering for frequently changing text.

When the strings change for the bitmap font approach, we need to refill the
buffers for the character tiles. In canvas-based rendering, we need to refresh the
drawing on the canvas’ 2D context and generate a new texture from it, a much more
expensive operation.

The buffer recreation for 1,000 characters consumes 7 ms of CPU time and leaves
our demo with enough time for buffer bindings. We reach the maximum frame rate
of 60 FPS. In total, we only use 11 ms of our available CPU time.

Canvas-based rendering is much slower. To generate a texture of 1024 × 1024
pixels, we need 66 ms, 99% of the complete CPU time, and only reach a frame rate
of 14.7 FPS.

Bitmap Fonts Canvas-Based
Static
10,000 characters 0.2 ms 0.2 ms
20,000 characters 0.2 ms 0.2 ms

Dynamic
1,000 characters 11.0 ms 66.0 ms
2,000 characters 11.2 ms 230.0 ms
10,000 characters 21.0 ms 1240.0 ms

Table 13.1. Consumed CPU time per frame.

© 2012 by Taylor & Francis Group, LLC



192 II Rendering Techniques

Performance Dynamic Text in FPS

Bitmap 1k

Bitmap 2k

Bitmap 10k

Canvas 1k

Canvas 2k

Canvas 10k

0.0

0.8

4.2

14.7

47.0

60.0

60.0

10.0 20.0 30.0 40.0 50.0 60.0

Figure 13.5. Performance comparison dynamic text.

In the second test, we render 2,000 characters. The differences between both ap-
proaches expand further. Using canvas-based rendering a texture size of 2048×2048
pixels1 is required. The generation of this texture takes 230 ms and lets the frame
rate drop to 4.2 FPS. The CPU time for bitmap font rendering increases marginally
to 11.2 ms, and we still achieve 60 FPS.

In the last test, rendering 10,000 characters, bitmap font rendering’s performance
decreases to 47 FPS. Now, creating the vertices and filling the buffer consumes 15 ms
CPU time. In total we need 21 ms on the CPU. The performance of canvas-based
rendering decreases further to 0.8 FPS since the necessary texture size increases to
4096 × 4096 for 10,000 characters.

The following are the performance conclusions:

• The performance of our text rendering implementation depends on how much
CPU time we use per frame.

• For static text, both rendering approaches are very efficient.

• For frequently changing text, bitmap font rendering is a lot faster than canvas-
based rendering.

• The efficiency of canvas-based rendering depends on the size of the generated
texture. Implementations can try to use as little texture space as possible by
developing a placing strategy for the several strings.

1WebGL does not support mipmapping for non-power-of-two (NPOT) textures, and we are using
mipmapping for our texture filters.

© 2012 by Taylor & Francis Group, LLC



13. Efficient Text Rendering in WebGL 193

13.4.2 Memory Footprint

Next to the frame rate, the memory consumption is an important comparison fac-
tor. Figure 13.6 shows the memory usage of my approach in three different sce-
narios. The result of canvas-based rendering for 10,000 characters is not contained,
because the graphic memory consumption of 32 MB would distort the graph. Fur-
ther, mipmapping is not activated for the memory benchmark since it uses additional
graphic memory.

Canvas-based rendering is able to beat bitmap font rendering for 200 characters
since it only stores a small number of buffer entries. Using bitmap font rendering, the
most memory per character is used by the vertices. We can describe a character using
26 float values. Together with the required data structures the process consumes
about 300 Bytes per character. For the chosen font resolution, we additionally need
a texture consuming 512 KB.

For canvas-based rendering, the characters are defined as textures, and one pixel
consumes 2 bytes of graphic memory in luminance-alpha format. Our characters
have a font size of 44 pixels, so a single character will use up to 3872 bytes!2 This
explains the enormous differences in the memory usage. To render 2,000 characters
using canvas-based rendering, we need a 2048×2048 pixel texture, which uses 8 MB
graphic memory.

However, the number of characters is not the only factor that influences the
memory consumption. What if we want to use several fonts? With the demo’s
font resolution, bitmap font rendering will require 512 KB graphic memory for
every font, assuming we include the same charset for each. Canvas-based render-
ing, in contrast, uses system fonts and renders them dynamically, not requiring any

Memory Cosumption in MB
10.00

9.00

8.00

7.00

6.00

5.00

4.00

3.00

2.00

1.00

0.00
Bitmap 200

0.50

1.30

0.50

1.24 1.25

8.00

0.50

2.15

0.50

4.10

Bitmap 2k Bitmap 10k Canvas 200 Canvas 2k

Graphic Memory

JavaScript Heap

JavaScript Heap

Figure 13.6. Memory consumption in MB.

2Maximum character size: 44 × 44 = 1936 pixels. Using 2 bytes per pixel: 1936 × 2 = 3872 bytes.

© 2012 by Taylor & Francis Group, LLC



194 II Rendering Techniques

additional memory. I draw the following conclusions:

• The memory consumption of canvas-based rendering mainly grows with the
number of rendered characters.

• Bitmap font rendering’s memory usage mainly grows with the number of used
fonts.

13.4.3 Ease of Development

Canvas-based font rendering has the advantage of access to the native font API of
the canvas’ 2D context. Further, the setup is lightweight; only one additional canvas
element is necessary for its 2D context.

Bitmap font rendering, in contrast, requires a large initial development effort.
We need to generate fonts; parse font descriptors; and create, shade, and place in-
dividual character tiles. However, user interaction is easier to handle using bitmap
font rendering: we know the positions for each character and can use standard colli-
sion detection algorithms for our character tiles. This enables mouse-pointer–based
interaction.

This is different for canvas-based rendering: the text is rendered as one single tile,
and we need calculations to determine character-based interaction. The following
conclusions can be made:

• Canvas-based rendering can be implemented simply and quickly.

• Bitmap font rendering can be used with collision detection, to allow user in-
teraction.

13.5 Conclusion
In general, applications that don’t focus on text content will tend to use canvas-
based rendering due to its simple implementation. For noninteractive, static text, the
canvas approach offers a reasonable performance. For applications mainly based on
text presentation, bitmap font rendering is the better approach due to its performance
and flexibility once all required components are implemented.

However, there are also special cases: applications using a large number of fonts
will probably prefer canvas-based rendering since it is memory efficient in this sce-
nario. Further, the two approaches can be combined, for example, by rendering large
amounts of text with bitmap font rendering and using canvas-based rendering for
smaller fragments with lots of different fonts.

Bibliography
[Angel 04] Angelcode.com. “Bitmap Font Generator.” http://www.angelcode.com/products/

bmfont/, 2004.

© 2012 by Taylor & Francis Group, LLC



Layered Textures Rendering
Pipeline

Dzmitry Malyshau

14.1 Introduction
Texture mapping is a fundamental part of the contemporary rendering pipeline.
It provides various shading models with surface-varying properties, such as diffuse
color, specular color and glossiness, normal direction and displacement offset. Dur-
ing rendering, these properties become parameters of the lighting equation produc-
ing the final pixel colors. There are many ways to define the coordinates used for
texture sampling, such as prebaked UV, parametric projections, including the screen
position, world position, normal vector, reflection vector, etc. When applied to an
existing primitive, texture data can be mixed using various blending equations and
coefficients: add, mix, alpha blend, replace. Table 14.1 shows many of the parame-
ters of the texturing pipeline.

Texture Type Semantics Coordinates Blending Mode
1D file Diffuse One of the UV channels Mix
2D file Opacity Screen position Add
3D file Specular World position Subtract
Cube file Glossiness Normal vector Multiply
Generated Normal Reflection vector Overlay
Encoded Displace Tangent vector Difference
... ... ... ...

Table 14.1. Texturing pipeline parameters.

195

14

© 2012 by Taylor & Francis Group, LLC



196 II Rendering Techniques

Any combination of these parameters may be requested by an artist, hence the
64 = 1296 variations already shown in this limited example. Unlike filtering and
wrapping modes, these parameters are not encapsulated in the OpenGL texture sam-
pling state. Supporting these parameters in the real-time pipeline requires different
execution paths on both the CPU and the GPU.

Some 3D engines have a limited number of material profiles like Diffuse only,
Diffuse + Normal, Diffuse + Environment. Source engine [Valve 11] gives an ex-
ample: “The Phong mask is a greyscale image stored in the alpha channel of the
model’s normal map.” There is always a workaround to write our own shader that
implements any combination of the parameters in our table. However, an artist is
not going to do it, and it is too time consuming to be used in the prototyping stage.
These limitations basically leave no way for an artist to experiment with texturing
pipeline in a full degree of freedom in real time.

This article presents an original rendering pipeline designed to support a flexible
texture pipeline, allowing any combination of texture and blending options. It was
inspired by the Blender texturing pipeline [KatsBits 00] and designed for it. Our
pipeline allows artists to use Blender’s texturing expressiveness during the early de-
velopment stage, while retaining the advantage of 3D engines’ real-time performance
when visualizing the results of texturing experiments.

14.1.1 Terminology

Let’s start by clearing up some terminology:

• Phong lighting. A commonly used lighting model with the following pa-
rameters: diffuse and specular colors, shininess, surface normal, camera, and
light vectors.

• G-buffer. A storage of material properties baked in screen space. Can be rep-
resented by a number of textures or a single layered texture. The information
is extracted from the G-buffer when the light contribution to the fragment is
evaluated.

• Deferred rendering. A family of rendering pipelines that split material
properties and lighting evaluation. Generally, it is implemented in two steps:
G-buffer creation and light resolution.

14.1.2 Textures in Blender

A Blender material contains a list of textures. Material properties correspond to the
uniform properties of a geometric primitive and define the initial parameter val-
ues. Textures are applied in a sequence, modifying some of these values in a high-
frequency manner. Table 14.1 is constructed from a core set, but not all of the
Blender texture parameters. After the primitive parameters are set by the material

© 2012 by Taylor & Francis Group, LLC



14. Layered Textures Rendering Pipeline 197

0. Material sets initial
   parameters in a uniform way. 

1. Marble texture sets
   surface normals using UV-0
   coordinates.

2. Gradient texture adds
   color to the material diffuse.

Figure 14.1. Example Blender material.

and textures, the lighting equations produce the final sample color. An example
material sequence of operations is presented in Figure 14.1.

14.2 Layered Pipeline
The most natural storage for surface properties is a 2D texture. We render an array
of textures several times: one for the material parameters and one for each texture.
Think of it as applying a sequence of layers onto the material.

An important choice that is easy to miss is the coordinate system of the surface
parameters. Screen space is the straightforward solution that I followed, but it is not
the only possibility. For example, we can choose the UV space defined by one of the
UV coordinate layers. This alternative would produce aliasing and filtering issues for
the camera projection but could be used for multiple cameras at once.

There is already a known screen-space surface baking technique in real-time 3D
graphics. It is a part of the deferred rendering algorithm [Calver 03], referred to as
“G-Buffer creation.” The method proposed and the original G-buffer creation aim
to produce the same result: primitive properties baked in the screen space. The
difference is that we are applying layer after layer, while the classical approach is to
fill the G-buffer in a single pass. Obviously, the latter is faster but less flexible; it also
has higher requirements on the memory space and the number of FBO attachments
used for rendering. As for the second stage, lighting evaluation, I will not propose
any improvements and will describe just one variation of the known procedure. This
procedure adds Phong-based lighting contributions in screen space by drawing light
volumes on the final FBO and sampling the surface properties from the G-buffer.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-17&iName=master.img-070.jpg&w=84&h=47
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-17&iName=master.img-071.jpg&w=84&h=47
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-17&iName=master.img-072.jpg&w=84&h=47


198 II Rendering Techniques

14.2.1 G-buffer Creation

Our G-buffer has three RGBA textures in the format shown in Table 14.2. Note that
the last vector is in range [−1, 1], packed in a fixed-point format.

Format RGB data Alpha data
RGBA8 Diffuse color Emissive amount
RGBA8 Specular color Glossiness amount

RGBA12 World-space normal Displacement

Table 14.2. G-buffer format.

The G-buffer does not include reflection color, which may be required for the
environmental map. We can apply an environmental map later, if needed, over the
final framebuffer instead of baking that into the G-buffer.

There is also a depth texture used in the pipeline for reconstructing the world
position of the point and performing the depth test. We fill it during the material
parameters pass, but the developer can decide to perform a separate early-depth pass
in advance. These three textures plus the depth texture should be attached to a
framebuffer object (FBO) in the same order they are listed. The algorithm is as
follows:

1. Clear all color attachments with black. Clear depth with 1.0.

2. Set depth test and write enabled. Set draw buffers to 111b (binary) to affect
all attachments.

3. Draw all objects with a dedicated shader program.

The vertex shader only computes the world-space normal and projects the vertex
into camera space. The fragment shader is even more trivial, updating the G-buffer
with the raw primitive parameters.

At this point, we have material information baked into the G-buffer. Theoreti-
cally, we could skip the rest and apply lighting right away, but the produced image
would lack a lot of detail.

14.2.2 Layers Resolution

This stage is a core part of the pipeline. We apply textures one by one, setting the
proper OpenGL state for each, including blending, draw buffers, color masking, and
the shader. The procedure for applying a texture has separate code paths for color
modifiers and normal maps.

© 2012 by Taylor & Francis Group, LLC



14. Layered Textures Rendering Pipeline 199

Color maps. See Listing 14.1 for a color layer fragment shader.

1. Set draw buffers to 011b to prevent normals from being affected.

2. Set color mask for each attachment separately to affect only the required set
of parameters, which are a subset of Table 14.2. These are the parameters
checked by the artist in the “Influence” tab of Blender texture properties.

3. Set blending equation and factors to correspond to the ones chosen in Blender.
Our implementation supports “Multiply,” “Add,” and “Mix” at the moment,
but this list can be extended by adding, at least, “Difference,” “Lighten,” and
“Saturation.”

4. Set depth mask to GL FALSE. Draw the object with depth test.

5. The vertex shader transforms the position into clip coordinates. It may also
provide the texture coordinates used for sampling. This is the case when these
coordinates are dependent on the vertex input, like most of the coordinates:
UV layers, world position, reflection, etc.

6. The fragment shader samples the texture and dispatches sampled parameters
to the first two color attachments of the FBO. The shader may also need to
generate the texture coordinates if they were impossible to obtain from the
vertex shader, e.g., clip coordinates. Blender has an option to convert RGB
values to intensity. If this option is used, the fragment shader needs to use the
manual user color with an intensity derived from the original color.

// Obtain the texture coordinates
vec4 tc4 = tc_unit ();
// Apply parallax offset
vec2 tc = make_offset(tc4.xy);
// Finally , sample
vec4 value = texture (unit_texture , tc);
// Alpha test (optional )
if (value.w < 0.01)
{

discard ;
}
// compute intensity
float single = dot(value.xyz, luminance);
// Compute alternative color
vec3 alt = single * user_color.xyz;
vec3 color = mix(value.xyz, alt , user_color.w);
// Output the same value into both attachments
c_diffuse = c_specular = vec4(color , value.w);

Listing 14.1. Color layer fragment shader.

© 2012 by Taylor & Francis Group, LLC



200 II Rendering Techniques

Normal maps. See Listing 14.2 for a normal layer fragment shader.

1. Set draw buffers to 100b, making the rendering affect only the third texture.

2. Set the color mask to affect either normal only or the displacement.

3. Draw the object with the depth test and disabled depth mask.

4. The vertex shader transforms the position into clip coordinates and generates
texture coordinates. It also has to compute the coordinate space in which the
normal map is given: tangent or object space. This space, or its mapping to
the world, is represented by a rotational transform in the form of a (quater-
nion,handedness) pair [Malyshau 10].

5. The fragment shader extracts the normal, transforms it into world space and
encodes into the output [0, 1] range vector.

// Obtain the texture coordinates
vec4 tc = tc_unit ();
// Sample from the normal map
vec4 value = texture (unit_texture , tc.xy);
// Re-normalize filtered normal
vec3 normal = normalize(value.xyz * 2.0 - vec3(1.0));
// Re-normalize interpolated map->world transformation
vec4 quat = normalize(n_space );
// Transform the normal into world space
vec3 n = qrot(quat , normal) * vec3(handedness , 1.0, 1.0);
// Encode the normal
c_normal = 0.5 * vec4(n, 0.0) + vec4(0.5);

Listing 14.2. Normal layer fragment shader.

14.2.3 Unified parallax offset

Parallax mapping [Welsh 04] is a natural improvement to normal mapping. It shifts
texture coordinates according to the normal vector and viewer position. This, in turn,
makes the surface look more bumpy and natural. We will not explain the particular
equation used, but instead show the general routine required to implement any kind
of texture offset (see Listing 14.3).

The resulting offset should be produced in the space of the coordinates used
for sampling the texture. Hence, we developed an algorithm for universal paral-
lax offsets in order to support arbitrary texture coordinates. This algorithm uses
GLSL derivative instructions in order to get the world-to-texture transformation;
then, it gets view and normal vectors into the texture space and finally computes the
offset.

© 2012 by Taylor & Francis Group, LLC



14. Layered Textures Rendering Pipeline 201

in vec3 view , var_normal;
// World -space view vector and the vertex interpolated normal
vec2 make_offset(vec2 tc)
{

vec2 tscreen = gl_FragCoord.xy / screen_size.xy;
vec4 bump = 2.0 * texture (unit_bump , tscreen ) - vec4 (1.0);
// Read the world space normal from the G-buffer
vec3 bt = bump.xyz;
vec3 vt = normalize(view); // world space view vector
vec3 pdx = dFdx(-view); // world space derivation
vec3 pdy = dFdy(-view);
vec2 tdx = dFdx(tc); //texture space derivation
vec2 tdy = dFdy(tc);
// Construct the transition transform and orthogonalize it
vec3 t = normalize(tdy.y * pdx - tdx.y * pdy);
vec3 b = normalize(tdy.x * pdx - tdx.x * pdy);
vec3 n = normalize(var_normal);
t = cross(b, n); b = cross(n, t);
// Texture -> world transform
mat3 t2w = mat3(t,b,n);
bt = bt * t2w; // Reverse order multiplication
vt = vt * t2w; // To get into texture space
// finally , compute parallax offset
vec2 offset = parallax * bump.w * bt.z * vt.xy;
return tc + offset;

}

Listing 14.3. Unified parallax offset code.

14.2.4 Lighting

Lighting is standard for a deferred rendering approach. Before adding the light con-
tribution to the final rendered image, we fill it with emissive color read from the
G-buffer. I will describe it step by step from the OpenGL state down to the pixel on
the final FBO color attachment.

Initialization.

1. Select the final framebuffer with its color attachment for drawing.

2. A quad is drawn with a simple shader with no depth test. A large triangle will
work as well.

3. The vertex shader scales the quad/triangle to cover the viewport.

4. The fragment shader generates the emissive color based on the first G-buffer
texture:

// sample diffuse color and emissive amount
vec4 diff = texture (unit_g0 , tex_coord);
rez_color = diff.w * diff;

© 2012 by Taylor & Francis Group, LLC



202 II Rendering Techniques

Light shading.

1. Select the final framebuffer with its color attachment for drawing.

2. Set blending equation to GL ADD with coefficients 1, 1.

3. Depth testing enabled in read-only mode with GL GEQUAL function.

4. Cull front faces.

5. Draw light volume as a mesh with a dedicated shader.

6. The vertex shader scales and modifies the shape according to light ranges.

7. The fragment shader starts by extracting the depth value from the depth tex-
ture and transforming it into the world space.

8. Surface parameters are extracted from G-buffer and used to compute Phong-
model lighting.

14.3 Results

14.3.1 Implementation

This pipeline is implemented as a module for the KRI engine [Malyshau 10]. The
implementation consists of three parts.

The Blender-to-engine translation part starts with a Python exporter. It dumps
material and texture properties unchanged in a format accepted by the engine. The
scene loader checks that the selected set of parameters is supported. It also assigns a
shader object for each texture-coordinate method used.

The core rendering part substitutes the G-buffer fill routine. It initializes the G-
buffer and fills it with textures, layer after layer as described in Section 14.2. It can
be swapped with an alternative G-buffer filling routine at any time. For example,
once the artist is satisfied with the result, we can ask the programmer to combine
all texture stages into one shader. This optimized shader may be used instead of our
layered routine in the production phase.

Finally, the KRI Viewer is an engine client that supports our pipeline. We can
switch to it at any point while viewing a scene and compare the result to alternative
pipelines, such as flat shading, forward lighting, and classical deferred rendering.

14.3.2 Results

An experimental scene has a single sphere object lit by one omnidirectional light (see
Figure 14.2). The material of the sphere has three textures:

1. Tangent-space normal map using UV coordinates.

© 2012 by Taylor & Francis Group, LLC



14. Layered Textures Rendering Pipeline 203

(a) (b)

Figure 14.2. Rendered scene: (a) Blender image, (b) KRI image.

2. Diffuse gradient map using local object coordinates. It is mixed with an un-
derlying material color.

3. Diffuse map with alpha testing. Uses dummy object world coordinates for
sampling. It is also mixed with the previous color.

Blender was not able to produce a 100% match in the output picture. Blender
samples the textures slightly differently, leaving a thin visible outline of the decal
texture.

Performance numbers (see Table 14.3) were obtained using the KRI Viewer pro-
filer in an 800×600 OpenGL area. The test machine had a Radeon 2400 HD video
card, Core 2 Quad 2.4GHz CPU, and 3 GB RAM.

Stage Layered pipeline Deferred pipeline
Early-depth 77 �s 77 �s
G-buffer fill 2094 �s 839 �s
Deferred lighting 2036 �s 1997 �s
Total 4207 �s 2913 �s

Table 14.3. Performance comparison.

14.3.3 Conclusion

This chapter has presented a new rendering pipeline that replaces the G-buffer filling
procedure of the deferred rendering pipeline. The filling method applies textures sep-
arately layer after layer. It supports various texture-coordinate-generating methods,
blending equations, and normal map spaces. It also features the parallax offset algo-
rithm that transforms world-space normal and view vectors into the space of target
texture coordinates.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-17&iName=master.img-224.jpg&w=141&h=119
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-17&iName=master.img-225.jpg&w=132&h=119


204 II Rendering Techniques

The actual implementation of the pipeline does not support all listed texture pa-
rameters at the moment. For example, environmental textures are not yet supported.
However, this method provides a framework, which simplifies the process of adding
support for these parameters as easy as possible.

The separation of layers gives better granularity of the rendering system. It pro-
vides more options for real-time texture mapping. This comes at the cost of reduced
performance. The layered pipeline is compatible with regular deferred rendering and
can be switched with a standard G-buffer fill procedure on the fly.

The presented rendering pipeline method allows artists to see the precise real-
time interpretation of their work in Blender. This ability streamlines the preproduc-
tion and prototyping stages of development.

Future work. The biggest issue of the described pipeline is performance. This
issue is being addressed by creating a shader composing system. This system will work
in a way similar to the fixed GPU pipeline by creating a complete shader program
for each material. This program will apply all textures with corresponding blending
modes in a single pass, producing the same results.

I am also going to extend the texture parameter support. This includes making
an additional rendering step for applying environmental textures on the final image.

Bibliography
[Calver 03] Dean Calver. “Photo-Realistic Deferred Lighting.” http://www.beyond3d.com/

content/articles/19, July 31, 2003.

[KatsBits 00] KatsBits. “Blender 2.5 Texturing Tutorial.” http://www.katsbits.com/tutorials/
blender/blender-basics-2.5-materials-textures-images.php, 2000.

[Malyshau 10] Dzmitry Malyshau. “KRI Engine Wiki.” http://code.google.com/p/kri/w/list,
2010.

[Valve 11] Valve. “Source Engine Wiki.” http://developer.valvesoftware.com/wiki/, June 30,
2011.

[Welsh 04] Terry Welsh. “Parallax Mapping with Offset Limiting.” https://www8.cs.umu.se/
kurser/5DV051/VT09/lab/parallax\ mapping.pdf, January 18, 2004.

© 2012 by Taylor & Francis Group, LLC



Depth of Field with
Bokeh Rendering

Charles de Rousiers and Matt Pettineo

15.1 Introduction
In order to increase realism and immersion, current games make frequent use of
depth of field to simulate lenticular phenomena. Typical implementations use screen-
space filtering techniques to roughly approximate a camera’s circle of confusion for
out-of-focus portions of a scene. While such approaches can provide pleasing results
with minimal performance impact, crucial features present in real-life photography
are still missing. In particular, lens-based cameras produce a phenomenon known
as bokeh (blur in Japanese). Bokeh manifests as distinctive geometric shapes that
are most visible in out-of-focus portions of an image with high local contrast (see
Figure 15.1). The actual shape itself depends on the shape of the camera’s aperture,
which is typically circular, octagonal, hexagonal, or pentagonal.

Current and upcoming Direct3D 11 engines, e.g., CryENGINE, Unreal En-
gine 3, Lost Planet 2 Engine, have recently demonstrated new techniques for simu-
lating bokeh depth of field, which reflects a rising interest in reproducing such effects
in real time. However, these techniques have performance requirements that can
potentially relegate them to high-end GPUs. The precise implementation details of
these techniques also aren’t publicly available, making it difficult to integrate these
techniques into existing engines. Consequently, it remains an active area of research,
as there is still a need for implementations that are suitable for a wider range of
hardware.

A naive approach would be to explicitly render a quad for each pixel, with each
quad using a texture containing the aperture shape. While this can produce excellent

205

15

© 2012 by Taylor & Francis Group, LLC



206 II Rendering Techniques

Figure 15.1. Comparison between a simple blur-based depth of field (left) and a depth of
field with bokeh rendering (right).

results [Sousa 11,Furturemark 11,Mittring and Dudash 11], it is also extremely inef-
ficient due to the heavy fill rate and bandwidth requirements. Instead, we propose a
hybrid method that mixes previous filtering-based approaches with quad rendering.
Our method selects pixels with high local contrast and renders a single textured quad
for each such pixel. The texture used for the quad contains the camera’s aperture
shape, which allows the quads to approximate bokeh effects. In order to achieve high
performance, we use atomic counters in conjunction with an image texture for ran-
dom memory access. An indirect draw command is also used, which avoids the need
for expensive CPU-GPU synchronization. This efficient OpenGL 4.2 implementa-
tion allows rendering of thousands of aperture-shaped quads at high frame rates, and
also ensures the temporal coherency of the rendered bokeh.

15.2 Depth of Field Phenomemon

Depth of field is an important effect for conveying a realistic sense of depth and
scale, particularly in open scenes with a large viewing distance. Traditional real-time
applications use a pinhole camera model [Pharr and Humphreys 10] for rasterization,
which results in an infinite depth of field. However, real cameras use a thin lens,
which introduces a limited depth of field based on aperture size and focal distance.
Objects outside this region appear blurred on the final image, while objects inside it
remain sharp (see Figure 15.2).

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-18&iName=master.img-018.jpg&w=322&h=181


15. Depth of Field with Bokeh Rendering 207

Start
near

End
near

Start
far

End
far

In
 f
oc

u
s

O
u
t 

of
 f
oc

u
s

O
u
t 

of
 f
oc

u
s

Distance
focused at

CCD Sensor ApertureLens

Focal point

Resulting
Images

Near area Far area

Reference

Linear
approximation

C
oC

 S
iz

e

Depth

Object

Figure 15.2. Depth of field phenomenon, where a thin lens introduces a limited depth of
field. In-focus objects appear sharp, while out-of-focus objects appear blurred. The size of the
circle of confusion depends on the distance between object and the point at which the camera
is focused. We use a linear approximation in order to simplify parameters as well as run-time
computations.

The “blurriness” of an object is defined by its circle of confusion (CoC). The size
of this CoC depends on the distance between the object and the area on which
the camera is focused. The further an object is from the focused area, the blurrier
it appears. The size of the CoC does not increase linearly based on this distance.
The size actually increases faster in the out-of-focus foreground area than it does in
the out-of-focus background area (see Figure 15.2). Since the CoC size ultimately
depends on focal distance, lens size, and aperture shape, setting up the simulation
parameters may not be intuitive to someone inexperienced with photography. This

© 2012 by Taylor & Francis Group, LLC



208 II Rendering Techniques

CCD Sensor

Lens

Circular
aperture

In focus

Circular
integration

Pentagonal
integration

In focus

Pentagonal
aperture

Distance
focused at

Bokeh

Figure 15.3. Aperture shape of a camera. Aperture blocks a portion of the incoming light. Its shape
modifies the pixel integration and, hence, changes the bokeh shape.

is why we use a simple linear approximation as proposed by [Earl Hammon 07] (see
Figure 15.2).

The aperture of a camera is responsible for allowing light to pass through the
lens and strike the sensor (or film).1 The shape of this aperture directly impacts the
formation of the image since each out-of-focus point is convolved with the aperture
shape (see Figure 15.3).

While it is often difficult to see distinct bokeh patterns in areas with low contrast,
bokeh is clearly visible in areas that are significantly brighter than their surroundings.
We use this observation as a heuristic to determine where bokeh quads need to be
drawn in order to provide a plausible approximation.

15.3 Related Work
Several methods have been proposed during the last decade for efficiently approxi-
mating a depth-of-field effect. However, those methods use a Gaussian blur or heat
diffusion to simulate out-of-focus areas [Earl Hammon 07, Lee et al. 09, Kosloff and
Barsky 07] and are therefore unable to reproduce bokeh effects.

1If an object or the camera moves while the aperture is open, the objects will appear blurred. This is
known as motion blur.

© 2012 by Taylor & Francis Group, LLC



15. Depth of Field with Bokeh Rendering 209

An earlier approach from Krivanek [Krivanek et al. 03] uses sprite splatting as a
means for implementing depth of field rather than a filtering approach. While this
brute-force method does produce bokeh shapes, it is quite inefficient due to excessive
overdraw and bandwidth consumption.

The video game industry has shown a recent interest in bokeh effects [Cap-
com 07, Sousa 11, Furturemark 11, Mittring and Dudash 11]. While complete im-
plementation details are not available, the methods used by video game developers
largely take a similar approach to Krivanek where sprites are rendered for each pixel.
Consequently, these techniques make use of complex optimizations, e.g., hierarchical
rasterization, multiple downscaling passes, in order to improve performance.

A recent approach proposed by White [White and Brisebois 11] reproduces
hexagonal bokeh using several directional blur passes. While efficient, this method
does not support arbitrary aperture shapes.

15.4 Algorithm

We observe that only points with a high local contrast will produce distinct bokeh
shapes. We use this heuristic to detect bokeh positions in screen space [Pettineo 11]
and then splat textured quads at those locations. The remaining pixels use a blur-
based approach to simulate a circle of confusion.

15.4.1 Overview

Our approach is divided into four passes (see Figure 15.4). The first pass computes
the CoC size for each pixel based on its depth value, and then outputs a linear depth

Bokeh position/size buffer Bokeh color buffer Indirect draw buffer

Bokeh counter
#

#

CoC
computation

Bokeh
extraction

Blur-based
depth of field

Bokeh
rendering

Bokeh texture

C
ol

or
 f
ra

m
e

C
ol

or
 f
ra

m
e

D
ep

th
 f
ra

m
e

#

Append Copy

Figure 15.4. Overview of the pipeline. It is composed of four passes and takes as input the
color and depth buffers of the current frame. It outputs a final color image with depth of field
and bokeh effects.

© 2012 by Taylor & Francis Group, LLC



210 II Rendering Techniques

value to a framebuffer attachment.2 Then, the second pass computes the contrast
of the current pixel by comparing the pixel’s brightness with the brightness of the
5×5 neighboring pixels. If this contrast is above a predefined threshold, its position,
CoC size, and average color are appended to a buffer. During the third pass, a blur-
based depth of field is computed with one of the previous methods, e.g., Gaussian
blur. Finally, a fourth pass splats textured quads at the bokeh positions that were
appended to the buffer in the second pass.

In order to maintain high performance, it is crucial to avoid CPU/GPU syn-
chronization. We ensure this by making use of an indirect draw command [Bolz
et al. 09], which renders a number of quads based on the count stored in the append
buffer. This way, the number of bokeh points detected by the GPU is never read
back by the CPU.

15.4.2 Circle of Confusion Computation

Setting up depth of field using physical camera parameters, such as focal length and
aperture size, can be nonintuitive for those not familiar with optics or photography.
Instead, we define two areas where geometry is out of focus: a near/foreground area
and a far/background area. Both areas are delimited with a near and far depth value
(see Figure 15.2). In both regions, the blur amount is linearly interpolated between
the two bounds. This allows a simple and intuitive means of describing the depth of
field for a given scene.

CoC =
Zpixel − Zstart

Zend − Zstart
.

The resulting CoC size from this equation is normalized to [0,1]. An extra pa-
rameter MaxRadius determines the final size of the blur in screen space a posteriori.
This setting can be tweaked by artists in order to achieve the desired appearance and
provides a means of balancing performance: smaller values of MaxRadius result in
greater performance.

15.4.3 Bokeh Detection

The detection pass aims to detect pixels from which we will generate bokeh shapes.
To detect such pixels, we use the following heuristic: a pixel with high contrast in a
given neighborhood will generate a bokeh shape. We compare the current pixel lumi-
nance Lpixel to its neighborhood luminance Lneigh. If the difference Lpixel − Lneigh

is greater than the threshold, LumThreshold, then the current pixel is registered
as a bokeh point.3 Pixels detected as bokeh are sparse, which means writing them
into a framebuffer attachment would be wasteful in terms of both memory usage

2If a linear depth buffer is available as an input, the first two passes can be merged together.
3We also use the threshold CoCThreshold to discard bokeh with a small radius.

© 2012 by Taylor & Francis Group, LLC



15. Depth of Field with Bokeh Rendering 211

and bandwidth.4 To address this problem, we use the OpenGL ImageBuffer [Bolz
et al. 11] in combination with an “atomic counter” [Licea-Kane et al. 11]. This al-
lows us to build a vector in which we append parameters for detected bokeh points.
ImageBuffers have to be preallocated with a given size, i.e., the maximum number
of bokeh sprites that can be displayed on screen. The atomic counter BokehCounter
stores the number of appended bokeh points. Its current value indicates the next free
cell in the ImageBuffer vector. Two ImageBuffer variables, BokehPosition
and BokehColor, are used to store the CoC size, position, and color of the detected
bokeh points. See Listings 15.1 and 15.2 and Figure 15.5.

// Create indirect buffer
GLuint indirectBufferID;
glGenBuffers(1, &indirectBufferID);
glBindBuffer(GL_DRAW_INDIRECT_BUFFER, indirectBufferID);
DrawArraysIndirectCommand indirectCmd;
indirectCmd.count = 1;
indirectCmd.primCount = 0;
indirectCmd.first = 0;
indirectCmd.reservedMustBeZero = 0;
glBufferData(GL_DRAW_INDIRECT_BUFFER, sizeof(DrawArraysIndirectCommand), &←↩

indirecCmd , GL_DYNAMIC_DRAW);

// Create a texture proxy for the indirect buffer
// (used during bokeh count synch .)
glGenTextures(1, &bokehCountTexID);
glBindTexture(GL_TEXTURE_BUFFER, bokehCountTexID);
glTexBuffer(GL_TEXTURE_BUFFER, GL_R32UI , indirectBufferID);

// Create an atomic counter
glGenBuffers(1, &bokehCounterID);
glBindBuffer(GL_ATOMIC_COUNTER_BUFFER, bokehCounterID);
glBufferData(GL_ATOMIC_COUNTER_BUFFER, sizeof(unsigned int), 0, GL_DYNAMIC_DRAW);

// Create position and color textures with a GL_RGBA32F inner format
...

// Bind atomic counter
glBindBufferBase(GL_ATOMIC_COUNTER_BUFFER, 0, bokehCounterID);

// Bind position image buffer
glActiveTexture(GL_TEXTURE0 + bokehPosionTexUnit);
glBindImageTexture(bokehPostionTexUnit, bokehPositionTexID, 0, false , 0, ←↩

GL_WRITE_ONLY , GL_RGBA32F);

// Bind color image buffer
glActiveTexture(GL_TEXTURE0 + bokehColorTexUnit);
glBindImageTexture(bokehColorTexUnit, bokehColorTexID , 0, false , 0, GL_WRITE_ONLY ,←↩

GL_RGBA32F);

DrawSceenTriangle();

Listing 15.1. Host application for extracting bokehs (Pass 2).

4During our tests, less than 1% of pixels are detected as bokeh at 720p.

© 2012 by Taylor & Francis Group, LLC



212 II Rendering Techniques

#version 420
// Bokeh counter , position (x,y,z,size), and color
layout(binding = 0, offset = 0) uniform atomic_uint BokehCounter;
layout(size4x32 ) writeonly uniform image1D BokehPositionTex;
layout(size4x32 ) writeonly uniform image1D BokehColorTex;

// Constrast and CoC thresholds
uniform float LumThreshold;
uniform float CoCThreshold;
...

float cocCenter; // Current CoC size
vec3 colorCenter; // Current pixel color
vec3 colorNeighs; // Average color of the neighborhood

// Append pixel whose constrast is greater than the user �s threshold
float lumNeighs = dot(colorNeighs , vec3(0.299f, 0.587f, 0.114f));
float lumCenter = dot(colorCenter , vec3(0.299f, 0.587f, 0.114f));
if(( lumCenter - lumNeighs) > LumThreshold && cocCenter > CoCThreshold)
{

int current = int(atomicCounterIncrement(BokehCounter));
imageStore(BokehPositionTex , current ,vec4(gl_FragCoord.x, gl_FragCoord.y, depth , ←↩

cocCenter));
imageStore(BokehColorTex , current , vec4(colorCenter , 1));

}

Listing 15.2. Fragment shader for extracting bokehs (Pass 2).

Bokeh counter

NeighborhoodCurrent pixel

+1

xyz
CoC

0 1 2 3 4

Bokeh position/
CoC buffer

Bokeh color buffer

0 1 2 3 4

xyz
CoC

xyz
CoC

xyz
C0C

xyz
CoC

4

Figure 15.5. Bokeh detection. The luminance of the current pixel is compared to its neigh-
borhood. If the difference is greater than LumThreshold, bokeh parameters, i.e., position,
color, and CoC, are appended into BokehPosition and BokehColor image buffers. The
atomic counter BokehCounter is also incremented.

15.4.4 Blur-Based Depth of Field

Several approaches are possible for this pass. We refer readers to previous work for
this step. Nevertheless, here is a short summary of popular approaches:

• Perform a Gaussian blur with fixed kernel width at various resolutions, and
apply a linear interpolation to blend them according to CoC size.

© 2012 by Taylor & Francis Group, LLC



15. Depth of Field with Bokeh Rendering 213

• Perform a Poisson disc sampling in screen space, with radius determined by
pixel CoC size.5

• Apply a large-width bilateral filter where invalid pixels are rejected based on
depth.6

The Hammon’s approach [Earl Hammon 07] can be used for processing the fore-
ground out-of-focused area. This approach is compatible with the bokeh rendering
technique presented here.

15.4.5 Bokeh Rendering

In order to avoid CPU/GPU synchronization, we use the indirect drawing command
glDrawArraysIndirect . This command draws instances where the count is read
from a buffer located in GPU memory. This buffer can be updated from either the
CPU or the GPU. In order to allow the GPU to operate independently of the CPU,
we update this buffer from the GPU before the last pass. We bind this indirect buffer
as an ImageTexture and copy the value of the atomic counter into it. Thus, the
number of instances drawn is equal to the number of detected bokeh points (see
Listing 15.3).

We use this command in combination with a vertex array object (VAO), describ-
ing a single vertex to render a point primitive. The instanced points are translated
by the vertex shader so that they are located at the screen-space bokeh position.
This position is read from the BokehPosition array buffer, which is indexed using

#version 420
layout(binding = 0, offset = 0) uniform atomic_uint BokehCounter;
layout(size1x32 ) writeonly uniform uimage1D IndirectBufferTex;
out vec4 FragColor;

void main()
{

imageStore(IndirectBufferTex, 1, uvec4(atomicCounter(BokehCounter), 0, 0, 0));
FragColor = vec4(0);

}

Listing 15.3. Synchronization of the indirect buffer with the atomic counter (Pass 3/4). The function
glMemoryBarrier has to be call before this shader in order to ensure that all bokeh data have been written.

5A random rotation can be applied to a Poisson sampling pattern for transforming aliasing into noise.
6For implementation details, we refer the reader to the code sample. This approach offers a good

compromise between quality and performance. However, larger filter kernels require a large sampling
radius. An OpenCL implementation would allow for better performance since shared memory can be
used to cache texture fetches.

© 2012 by Taylor & Francis Group, LLC



214 II Rendering Techniques

#version 420
uniform mat4 Transformation;
uniform vec2 PixelScale;
in float vRadius [1];
in vec4 vColor [1];
out vec4 gColor;
out vec2 gTexCoord;
layout(points) in;
layout(triangle_strip , max_vertices = 6) out;

void main()
{

gl_Layer = 0;
vec4 offsetx = vec4(PixelScale.x * Radius [0], 0, 0, 0);
vec4 offsety = vec4(0, PixelScale.y * Radius [0], 0, 0);
gColor = vColor [0];
gl_Position = Transformation * (gl_in [0]. gl_Position - offsetx - offsety );
gTexCoord = vec2(0,0);
EmitVertex();
gl_Position = Transformation * (gl_in [0]. gl_Position + offsetx - offsety );
gTexCoord = vec2(1,0);
EmitVertex();
gl_Position = Transformation * (gl_in [0]. gl_Position - offsetx + offsety );
gTexCoord = vec2(0,1);
EmitVertex();
gl_Position = Transformation * (gl_in [0]. gl_Position + offsetx + offsety );
gTexCoord = vec2(1,1);
EmitVertex();
EndPrimitive();

}

Listing 15.4. Geometry shader for rendering bokeh (Pass 4).

the built-in gl InstanceID input variable. After being transformed in the vertex
shader, each point is expanded into a quad in the geometry shader. The size of this
quad is determined by the bokeh size, which is also read from the BokehPosition
array buffer. Finally, the fragment shader applies the alpha texture bokeh onto the
quad and multiplies it by the bokeh color, which is read from the BokehColor array
buffer (see Listing 15.4).

15.5 Results
Figures 15.1, 15.6, and 15.7 show the rendering of a tank using our method. Since
the final bokeh shape is texture-driven, we can apply arbitrary shapes (see Figure 15.7).

Figure 15.8 details the rendering times of each pass as well as the number of
detected bokeh points. We can see that the blur-based depth-of-field pass is the
most expensive, indicating that a more optimal approach might be more suitable.
Unlike the blur and detection passes, the rendering pass is strongly dependent on the
number of detected bokeh points and is fill-rate bound. When the scene is entirely
out of focus, our algorithm detects around 5,000 bokeh points in the tank scene. In
this case, the cost of the rendering pass is less than 2 ms.

© 2012 by Taylor & Francis Group, LLC



15. Depth of Field with Bokeh Rendering 215

Figure 15.6. Rendering of a tank with a small depth of field. Bokeh shapes are clearly visible
on the more reflective surfaces of the tank.

Figure 15.7. Rendering of the same scene with different aperture shapes. Bokeh textures are
32 × 32 pixel grayscale bitmap. From left to right: a circle aperture, a pentagonal aperture, an
hexagonal aperture, and a star aperture.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-18&iName=master.img-229.jpg&w=316&h=177
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-18&iName=master.img-230.jpg&w=316&h=177


216 II Rendering Techniques

0

1

2

3

4

5

2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

Number of Instanced Bokehs

T
im

e 
(m

s)

Synchronization & Reset
Linear Depth/CoC computation

Bokeh detection

Bokeh rendering

Blur-based depth of field

Figure 15.8. Timings of the different passes for varying numbers of detected bokeh points.
Those timings have been recorded on an NVIDIA GeForce GTX 580 at 1280 × 720.

15.6 Discussion
Temporal coherence is a natural concern for this approach. Like other methods,
we base our approach on the final color buffer. If subpixel aliasing is addressed
by previous rendering steps, our approach is stable, and bokeh shapes are coherent
from frame to frame. In the case of subpixel aliasing, our method exhibits the same
limitations as all previous methods, and the resulting bokeh shapes may flicker.

Also, our method requires preallocated buffers for storing the bokeh position and
color. Consequently, a maximum number of bokeh points has to be specified. If this
number is too low, bokeh points may pop and flicker from frame to frame with little
coherency. If this number is too large, then GPU memory is potentially wasted.
Thus, the maximum number of sprites must be carefully chosen to suit the type of
scene being displayed.

15.7 Conclusion
We have presented an efficient implementation for rendering a depth-of-field effect
with bokeh. This method allows us to combine an efficient blur-based approach
with plausible bokeh reproduction. We use a heuristic to identify pixels that pro-
duce distinct bokeh shapes and then render those shapes as textured quads. This
implementation avoids costly CPU/GPU synchronization through the use of indi-
rect draw commands. These commands allow the GPU to directly read the number
of instances without the need for CPU readback.

© 2012 by Taylor & Francis Group, LLC



15. Depth of Field with Bokeh Rendering 217

While this approach provides good visual results, several optimizations can be
made in order to improve performance. In particular, large CoC sizes require ras-
terization of quads that cover a significant portion of the screen. Using hierarchical
rasterization,7 as proposed in [Furturemark 11], could improve performance by re-
ducing the number of pixels that need to be shaded and blended.

Bibliography
[Bolz et al. 09] Jeff Bolz, Pat Brown, Barthold Lichtenbelt, Bill Licea-Kane, Merry Bruce,

Sellers Graham, Roth Greg, Haemel Nick, Boudier Pierre, and Piers Daniell.
“ARB draw indirect.” OpenGL extension, 2009.

[Bolz et al. 11] Jeff Bolz, Pat Brown, Barthold Lichtenbelt, Bill Licea-Kane, Eric Wer-
ness, Graham Sellers, Greg Roth, Nick Haemel, Pierre Boudier, and Piers Daniell.
“ARB shader image load store.” OpenGL extension, 2011.

[Capcom 07] Capcom. “Lost Planet 2 DX10 Engine.” 2007.

[Earl Hammon 07] Earl Hammon Jr. “Blur Practical Post-Process Depth of Field.” In GPU
Gems 3: Infinity Ward. Reading, MA: Addison Wesley, 2007.

[Furturemark 11] Furturemark. “3DMark11 Whitepaper.” 2011.

[Kosloff and Barsky 07] Todd Jerome Kosloff and Brian A. Barsky. “An Algorithm for Ren-
dering Generalized Depth of Field Effects Based on Simulated Heat Diffusion.” Tech-
nical report, University of California, Berkeley, 2007.

[Krivanek et al. 03] Jaroslav Krivanek, Jiri Zara, and Kadi Bouatouch. “Fast Depth of Field
Rendering with Surface Splatting.” Proceedings of Computer Graphics International.
2003.

[Lee et al. 09] Sungkil Lee, Elmar Eisemann, and Hans-Peter Seidel. “Depth-of-Field Ren-
dering with Multiview Synthesis.” SIGGRAPH Asia ’09, pp. 134:1–134:6, 2009.

[Licea-Kane et al. 11] Bill Licea-Kane, Barthold Lichtenbelt, Chris Dodd, Eric Werness, Gra-
ham Sellers, Greg Roth, Jeff Bolz, Nick Haemel, Pat Brown, Pierre Boudier, and Piers
Daniell. “ARB shader atomic counters.” OpenGL extension, 2011.

[Mittring and Dudash 11] Martin Mittring and Bryan Dudash. “The Technology Behind
the DirectX 11 Unreal Engine ”Samaritan” Demo.” GDC. Epics Games, 2011.

[Pettineo 11] Matt Pettineo. “How to Fake Bokeh.” Ready At Dawn Studios, 2011.

[Pharr and Humphreys 10] Matt Pharr and Greg Humphreys. Physically Based Rendering,
Second Edition: From Theory To Implementation, Second edition. San Francisco, CA:
Morgan Kaufmann Publishers Inc., 2010.

7Quads are rasterized into different viewports according to their size: full resolution, half resolution,
quarter resolution, etc. The bigger a quad is, less the viewport resolution is.

© 2012 by Taylor & Francis Group, LLC



218 II Rendering Techniques

[Sousa 11] Tiago Sousa. “Crysis 2 DX11 Ultra Upgrade.” Crytek, 2011.

[White and Brisebois 11] John White and Colin Barre Brisebois. “More Performance Five
Rendering Ideas from Battlefield 3 and Need for Speed: The Run.” Siggraph talk. Black
Box and Dice, 2011.

© 2012 by Taylor & Francis Group, LLC



Shadow Proxies

Jochem van der Spek

16.1 Introduction
For real-time rendering of the virtual painting machines that I regularly show in
exhibitions (see Figure 16.1), I needed a shadowing technique capable of rendering
soft shadows without any rendering artifacts such as banding or edge jitter no matter
how close the the camera came to the penumbra. I call such shadows infinitely soft. In
addition, I wanted a method to render color bleeding so that the color and shadow of
one object could reflect onto others (see Figure 16.2). Searching through the existing

Figure 16.1. Stills from a virtual painting machine.

219

16

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-19&iName=master.img-009.jpg&w=358&h=134


220 II Rendering Techniques

Figure 16.2. Still from the demo movie.

real-time soft shadow techniques [Hasenfratz et al. 03], I found that most were either
too complex to implement in the relatively short time available, or they were simply
not accurate enough, especially when it came to getting the camera infinitely close to
the penumbra. Most techniques for rendering the color bleeding required setting up
some form of real-time radiosity rendering that would be prohibitively complex and
expensive in terms of computing power.

Light direction

Represented
geometry

Bleeding volume

ProxyOffset

Shadow volumeMaximum volume

Figure 16.3. The volume regions of a shadow proxy.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-19&iName=master.img-019.jpg&w=322&h=137


16. Shadow Proxies 221

(a) (b)

Figure 16.4. The shadow volume of a proxy. (a) The volume without modulation. (b) The
volume multiplied by the dot product of the surface normal and light direction.

The solution came in the form of a reversed argument: if we cannot globally
model the way the light influences the objects, why not locally model the way the
objects influence the light? Given that in a diffusely lit environment, shadows and
reflections have limited spatial influence, some sort of halo around the model could
function as a light subtraction volume (see Figures 16.3 and 16.4). In order to model
directional lighting, the shadow volume could be expanded in the direction away
from the light source and contracted to zero in the opposite direction. The color-
bleeding volume could be expanded toward the light in the same manner. We call
these volumes shadow proxies,1 because they serve as a stand-in for the actual geom-
etry. The volume of a proxy covers the maximum spatial extent of the shadow and
color bleeding of the geometry that the proxy represents. The technique is there-
fore limited to finite shadow volumes and is most useful for diffusely lit environ-
ments. This is similar to the Ambient Occlusion Fields technique by [Kontkanen
and Laine 05], although with ShadowProxies, modeling and modulating the shadow
volumes is done on the fly rather than precalculating the light accessibility of the
geometry into a cubemap.

16.2 Anatomy of a Shadow Proxy
In the current implementation, each shadow proxy can only represent a simple geo-
metrical shape like a sphere, box, or cylinder, allowing quick proximity calculations
in the fragment shader that eventually renders the shadows.

An implementation that uses super-ellipsoids [Barr 81] has also been attempted.
Even though the surface lookup is fast enough to be used in real time, the method

1The ShadowProxies technique is implemented in the OpenGL- based cross-platform scenegraph li-
brary called RenderTools, available under the GNU Public License (GPL) which ensures open source
distribution. RenderTools is available on Sourceforge at http://sourceforge.net/projects/rendertools and
through the OpenGL Insights website, www.openglinsights.com

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-19&iName=master.img-030.jpg&w=241&h=95


222 II Rendering Techniques

vec3 closestPoint(int shape , mat4 proxy , vec3 fragment )
{

vec3 local = (inverse (proxy) * fragment ).xyz;
vec3 localSgn = sign(local);
vec3 localAbs = abs(local);

if (shape == SPHERE)
{

localAbs = normalize(localAbs );
}
else if (shape == BOX)
{

localAbs = min(localAbs , 1.0);
}
else if(shape == CYLINDER )
{

if (length (localAbs .xy) > 1.0 )
{

localAbs .xy = normalize(localAbs .xy);
}
localAbs .z = min(localAbs .z, 1.0);

}
return(proxy * (localSgn * localAbs ));

}

Listing 16.1. The nearest point on the surface of a shadow proxy from the worldposition of
a fragment.

presents problems with the requirement of perfectly smooth penumbra. This is be-
cause the search for the boundary of an implicit surface typically results in an approx-
imation and zooming in onto the penumbra area or a zooming in onto the error of
the approximation, which quickly becomes visible in the form banding. An adaptive
algorithm where accuracy is dependent on camera proximity has not been attempted.
Furthermore, a version has been implemented where the sharp edges of the shapes
are replaced by arcs. A parameter allows the dynamic modification of the radius of
the arc, making possible quite a host of different shapes. In practice, this method has
turned out to be ineffective for the relative high computational cost.

Surprisingly, the extremely simple, almost trivial surface-determination algorithm
now implemented outperforms both previous approaches in terms of efficiency, sim-
plicity, and quality (see Listing 16.1).

Aside from shape information, position, orientation and size, each shadow proxy
holds information about the material it represents such as the diffuse and reflective
colors of the geometry. Instead of specifying the exact extent of each proxy volume,
a fixed offset distance is added to the size of the geometry as the maximum extent of
the volume that the proxy represents. This single-valued ProxyOffset parameter
is represented in the shader as a uniform float. Other global parameters include the
falloff of the shadows as the exponent to the attenuation function, a cutoff value to
allow for an offset between the surface and the start of the shadow falloff, the amount
of shadow contribution, the amount of color bleeding, etc. The complete list can be
found in the ShadowProxyTest example in the RenderTools library.

© 2012 by Taylor & Francis Group, LLC



16. Shadow Proxies 223

16.3 Setting Up the Pipeline
The flow of information from the scene to the screen is as follows:

1. Collect the objects that cast shadows or reflect their color, and collect their
shadow proxy objects.

2. Clip the proxies against the viewing clip planes.

3. Pass the information about the shadow proxies, such as size, color, position,
etc., that are in view to the uniforms in the ShadowProxy-enabled fragment
shader.

4. Render the geometry that receives shadows using the ShadowProxy-enabled
shader.

Because a scene could have hundreds of different shadow proxies inside the view
frustum, the last step in the process is a bottleneck, as each fragment needs to be
tested against each shadow proxy. In order to reduce the number of pairwise com-
parisons, a spatial subdivision scheme is needed so that each fragment is only tested
against proxies that were nearby. This is done by subdividing the viewport into an
orthogonal grid and then testing the overlap of the bounding box of each shadow
proxy projected onto the near plane of the frustum with each cell in the grid (see
Figure 16.5). This overlap calculation is quite straightforward: the corners of the
non–axis-aligned bounding box of each proxy are projected onto the near plane of
the frustum, and then the minima and maxima are calculated in terms of grid-indices.
The index of that proxy is then added to the rectangle of cells within those minima
and maxima. The proxy index is simply the index of the proxy in the list of proxies
that are in view. Each grid’s cell should be able to hold several shadow proxies, but
not very many. In fact, in my experience, situations with more than three proxies
overlapping the same cell are rare.

The information of each grid’s cell is encoded in a texture called the IndexMap,
using a fixed number of pixels to store the indices of the shadow proxies. For porta-
bility, we chose to use the GLubyte data type, limiting the number of unique proxy
indices to 255, as each color component of a texel holds one single proxy index. This
limitation can be overcome by using less portable floating point textures or by using
more than one component for an index. Thus, in order to encode a grid of 64 × 64
cells with each cell capable of holding 16 indices, an RGBA texture of 128 × 128
pixels suffices. The information for each proxy neatly fits into a 4 × 4 floating-point
matrix by using one float for the type, three for size, four for position and orientation,
and one float each for the colors, packing the RGBA values into a single float. I wrote
a simple packing function for this, only to find out later that GLSL 4.0 introduces
some handy pack/unpack functions. Using this encoding scheme, the proxies can be
sent to the shader as an array of uniform mat4. The array is ordered as indexed by

© 2012 by Taylor & Francis Group, LLC



224 II Rendering Techniques

IndexMap

Figure 16.5. Index storage: a red pixel in the IndexMap means that the first index of that
cell is set with the index of a proxy ranging from 0–255, yellow means the first two indices
are set.

the clipping algorithm so that each index in the IndexMap corresponds directly to
the index in the array.

16.4 The ShadowProxy-Enabled Fragment
Shader

The algorithm (see Listing 16.2) for determining whether a fragment needs shadow-
ing or additional coloring because of color bleeding is summarized as follows:

1. Calculate the index of the grid’s cell that contains the current fragment.

2. Fetch the indices of the proxies that that grid’s cell overlaps.

3. For each shadow proxy index, retrieve the corresponding mat4 uniform that
contains all the positional, type, and color data, and construct a 4 × 4 trans-
formation matrix for that proxy.

4. Using the proxies’ transformation matrices, test if the fragment overlaps any of
the proxies’ influence volume.

First, we obtain a list of shadow proxies that are potentially influencing the color
of the fragment. For each proxy in that list, we test if the fragment is contained
within its influence volume. This containment test is performed by comparing the
distance from the fragment to the closest point on the surface of the shadow proxy.

© 2012 by Taylor & Francis Group, LLC



16. Shadow Proxies 225

// Find the cell index for this fragment
vec2 index = floor(( gl_FragCoord.xy / viewport ) * proxyGridSize);
// Find out the uv- coordinate of the center of the pixel
vec2 uv = index * vec2(cellSizeX , cellSizeY) + vec2(0.5, 0.5);

// Loop over each pixel of the cell that this fragment is in
for (int j = 0; j < cellSizeX; j++)
{

for(int i = 0; i < cellSizeY; i++)
{

// Get 4 proxy indices from this pixel (scaled to 255)
vec4 proxies = texture2D(IndexMap , ((uv + vec2(i, j)) / IndexMapSize2));
for(int k = 0; k < 4; k++)
{

// If this index == 0, the algorithm ends
if (proxies [ k ] == 0.0)
{

return returnStruct;
}
// Retrieve the index of the proxy from the texel
int currentIndex = int(proxies [k] * 255.0) - 1;
if (currentIndex == (proxyIndex - 1))
{

// Ignore self -shadows
continue ;

}
// We have a valid index , so find the associated parameters
mat4 params = proxyParams[currentIndex];

//... calculate and accumulate shadow and bleed values
}

}
}

Listing 16.2. GLSL code to retrieve the proxy index and data.

Figure 16.6. Shadow of the different shapes. Notice how the shadow is sharper where the
distance to the geometrical surface is smaller.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-19&iName=master.img-134.jpg&w=281&h=148


226 II Rendering Techniques

If the distance is smaller than the ProxyOffset parameter, the fragment is deemed
inside the volume. To calculate this closest point, we recognize that all three shapes
under consideration are symmetrical in the three planes xy, xz, and yz. This allows
us to take the absolute value of the local fragment coordinate relative to the shadow
proxy’s reference frame and clamp that vector to the positive boundaries for each axis
so that we consider just the positive quadrant of the shape. Finally we obtain the
true point on the surface by multiplying the result with the original sign of the local
fragment coordinate and the shadow proxy’s reference frame (see Listing 16.1 and
Figure 16.6).

16.5 Modulating the Shadow Volume

When we want to model a directional light, the shadow and bleeding volumes need
to be modulated to an egg-shaped volume that snugly fits the geometry (see Fig-
ure 16.7). This is done by multiplying the dot product of the normal at the proxy
surface with the normalized vector from that point toward the light (see Listing 16.3).
Exactly the same calculation but with reversed normal gives the volume of the color
bleeding in the opposite direction. The direction in which the shadow or color bleed-
ing is cast is taken to be the normalized directional vector from the fragment world
coordinate to the closest point on the surface of the maximally extended volume.

Figure 16.7. The combined effect of shadow and color bleeding.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-19&iName=master.img-144.jpg&w=280&h=156


16. Shadow Proxies 227

// modulate the shadow to an egg -shaped volume around the geometry
shadow *= clamp(dot(lightDirection , surface .normal ), shadowCutoffValue, 1.0 );

Listing 16.3. Modulating the shadow volume. The surface normal is the normal at the closest point on the
proxy surface.

16.6 Performance

Performance is mostly influenced by the ProxyOffset parameter that determines
the size of the shadow volumes. When the parameter is small compared to the geom-
etry, volume overlaps occur less often and shader performance scales with the number
of overlaps. However, due to the limited size of the volumes, scaling is linear, as can
be seen in Figure 16.8.

Performance
frame 1 with 30 objects

0.045

0.04

0.035

0.03

0.025

0.02

S
ec

o
n
d
s 

p
er

 F
ra

m
e 

(1
02

4
×7

68
)

0.015

0.01

0.005

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Objects in Scene

frame 1

frame 2

frame 3

17 18 19 20 21 22 23 24 25 26 27 28 29 30

frame 2 frame 3

Figure 16.8. Duration of each frame was measured using glQueryCounter at the begin-
ning and end of the render calls. The graph shows the performance of rendering a single frame
at three distances from the camera with increasing numbers of objects in the scene. The test
was run on a MacBook Pro 2.4GHz with an NVIDIA GeForce GT330M.

© 2012 by Taylor & Francis Group, LLC



228 II Rendering Techniques

16.7 Conclusion and Future Work
The ShadowProxies technique was developed for a specific purpose, and the qual-
ity of the result is sufficient for the project at hand, but the technique is admittedly
limited. However, the technique has proven to be very useful in small games and
other projects like the painting machines and can be particularly effective in situa-
tions with relatively simple geometrical shapes and scenery. Because the technique is
so easy to implement and provides an original rendering style, I believe many games
that otherwise cannot afford soft shadows, much less color bleeding, could benefit a
great deal by using it.

A simple but useful extension to the algorithm can introduce multiple colored
light sources with similarly colored overlapping shadows. This can be achieved by
iterating over the available light sources when doing the shadow calculations. An-
other feature that is almost trivial to add is light emission by the proxy or, a bit less
trivial, modeling caustics like those caused by a semitransparent marble. A more
sophisticated light transport model can be envisioned where the orientation of the
receiving surface and the direction of the incoming shadow or color reflection plays a
much greater role than is currently the case. Finally, representation of the geometrical
shapes could be extended by implementing some form of constructive solid geome-
try, or could be replaced altogether by reconstructing the represented geometry from
its spherical harmonics representation [Mousa et al. 07].

Bibliography
[Barr 81] A. Barr. “Superquadrics and Angle-Preserving Transformations.” IEEE Computer

Graphics and Applications 1:1 (1981), 11–23. http://vis.cs.brown.edu/results/bibtex/
Barr-1981-SAP.bib(bibtex: Barr-1981-SAP).

[Hasenfratz et al. 03] J.-M. Hasenfratz, M. Lapierre, N. Holzschuch, and F.X. Sillion. “A
Survey of Real-Time Soft Shadows Algorithms.” Computer Graphics Forum 22:4 (2003),
753–774.

[Kontkanen and Laine 05] Janne Kontkanen and Samuli Laine. “Ambient Occlusion Fields.”
In Proceedings of ACM SIGGRAPH 2005 Symposium on Interactive 3D Graphics and
Games, pp. 41–48. New York: ACM Press, 2005.

[Mousa et al. 07] Mohamed Mousa, Raphalle Chaine, Samir Akkouche, and Eric Galin. “Ef-
ficient Spherical Harmonics Representation of 3D Objects.” In 15th Pacific Graphics,
pp. 248–257, 2007. Available online (http://liris.cnrs.fr/publis/?id=2972).

© 2012 by Taylor & Francis Group, LLC



III Bending the
Pipeline

Today GPUs are masters of performance, considering either high-end desktop
GPUs or even mobile GPUs, which deliver an unbelievable amount of graphics rel-
ative to the power consumption. The future of graphics raises a lot of question
regarding how to scale performance, doing more with less. Based on research on
petascale and exoscale supercomputers, we notice that such a scale of performance
forces us to reconsider memory, bandwidth, and data movement. Challenges are
ahead for GPU innovations. Under the name “bending the pipeline,” we include all
ideas that push the graphics pipeline to explore alternative ways to feed the rendering
pipeline.

We start with two classic techniques. The first one, “Real-Time Physically-Based
Deformation Using Transform Feedback,” presented by Muhammad Mobeen Mova-
nia and Lin Feng, explores the OpenGL transform feedback for GPU-based physical
simulation. The second technique, “Hierarchical Depth-Culling and Bounding-Box
Management on GPU,” presented by Dzmitry Malyshau, presents a method based
on the depth buffer and bounding boxes to discard invisible objects before the actual
rendering even starts.

Maybe shadow mapping is a way to bend the pipeline, but Daniel Rákos certainly
pushes it further in his chapter “Massive Number of Shadows with Layered Render-
ing” with a rendering method allowing him to generate multiple shadow maps per
draw call thanks to layered rendering.

In their chapter “Efficient Layered Fragment Buffer Techniques,” Pyarelal
Knowles, Geoff Leach, and Fabio Zambetta lead us to explore one of the most inter-
esting innovations of OpenGL 4 hardware, image load store, and atomic operations,
through an example of order-independent transparency with a special highlight of
performance resulting from different approaches.

229

© 2012 by Taylor & Francis Group, LLC



230 III Bending the Pipeline

One step further into innovation, Daniel Rákos introduces “Programmable Ver-
tex Pulling,” a radical change of perspective, where we don’t submit work to the
GPU, but let the GPU query the work. No doubt this approach will evolve and gain
a lot of importance in the years to come.

If pushing the boundaries of today’s graphics requires a shift in paradigm, bring-
ing new asset representations might be an answer. This is the direction of the work
on Gigavoxels of Cyril Crassin and Simon Green. For their OpenGL Insights chapter
“Octree-Based Sparse Voxelization Using the GPU,” they explain how a GPU may
be efficiently used to build voxel-based representation.

© 2012 by Taylor & Francis Group, LLC



Real-Time Physically Based
Deformation Using

Transform Feedback

Muhammad Mobeen Movania and Lin Feng

17.1 Introduction

This chapter describes a method for implementing real-time deformation using the
transform feedback mechanism of the modern GPU. We will begin with an intro-
duction to the transform feedback mechanism and how it might be exploited to
implement a deformation pipeline. Numerous physically based deformation models
have been proposed in the literature [Nealen et al. 06]. To demonstrate the power of
the proposed acceleration techniques, we implement a basic cloth simulation using
the mass spring system (see Figure 17.1).

The vertex shader usually transforms input vertex positions from object space to
clip space. This is carried out by multiplying the current object space vertex position
with the combined modelview projection matrix. However, modern GPUs allow
the vertex shader to circulate its result in a loop to perform iterative tasks on the
input again and again. The advantage is that the data remains on the GPU and it is

Figure 17.1. Real-time cloth simulation using transform feedback.

231

17

© 2012 by Taylor & Francis Group, LLC



232 III Bending the Pipeline

not transferred back to the CPU. This feature is called transform feedback [Richard
et al. 10]. Using this feature, the output values from a vertex or geometry shader can
be stored back into a buffer object. These buffer objects are called transform feedback
buffers. The recorded data may be read back on the CPU using glMapBuffer, for
instance, or it may be visualized directly as we see in a later section.

Our quest for real-time physically based deformation will commence with a look
at the hardware support and evolution of the transform feedback. Following this,
an introduction to the transform feedback mechanism will be given. Next, we de-
scribe the mathematical background needed to comprehend the mass spring system
in general. The specifics related to the cloth simulation using the mass spring system
will be presented after. Then, we look into how we map the cloth simulation to the
transform feedback mechanism. Results and performance assessment will be given.
Finally, we conclude with a look at the possible extensions to this approach.

17.2 Hardware Support and Evolution of
Transform Feedback

The transform feedback mechanism was first proposed by NVIDIA as a vendor-
specific extension, GL NV transform feedback, in OpenGL 3.0. This exten-
sion introduced the general transform feedback mechanism. It was promoted to
GL EXT transform feedback and was finally included in OpenGL 3.0 specifica-
tions. This work was later extended by NVIDIA in the form of GL NV

transform feedback2, which gave way to four extensions in OpenGL 4.0,
GL ARB transform feedback2, GL ARB transform feedback3, GL ARB

draw indirect (partially), and GL ARB gpu shader5 (partially).
GL ARB transform feedback2 defines a transform feedback object similar to

other OpenGL objects. In addition, it includes two new features: first, it enables
the capability of pausing and resuming transform feedback so that multiple trans-
form feedback objects can record their attributes one after the other; second, it pro-
vides glDrawTransformFeedback to directly render the transform feedback object
without querying the total primitives written. GL ARB transform feedback3 de-
fines two features: first, it allows writing interleaved varyings in several buffers, and
second, it allows attaching multiple vertex streams to transform feedback.

GL ARB draw indirect provides new draw calls glDrawArraysIndirect
and glDrawElementsIndirect. It also provides a new buffer binding point
GL DRAW INDIRECT BUFFER. The behavior of these is similar to glDraw[Arrays/
Elements]InstancedBasedVertex except that the parameters are read from a
buffer bound to GL DRAW INDIRECT BUFFER binding. This buffer can be gener-
ated by transform feedback or using any other API like OpenCL or CUDA.

While all of these promising features were exposed, one key feature of the
OpenGL 3.2 core GL ARB draw instanced was ignored; thus, it was not possi-

© 2012 by Taylor & Francis Group, LLC



17. Real-Time Physically Based Deformation Using Transform Feedback 233

ble to draw instances from a transform feedback buffer without querying the output
primitive count. In OpenGL 4.2, this was fixed by GL ARB transform feedback

instanced, which provided two functions, glDrawTransformFeedback

Instanced and glDrawTransformFeedbackStreamInstanced.
The transform feedback mechanism is available on a wide range of hardware from

both NVIDIA and ATI/AMD. The OpenGL 3.x transform feedback and
OpenGL 4.x transform feedback has been supported on the Radeon 2000 series by
ATI/AMD via ARB transform feedback2 and ARB transform feedback3.
On NVIDIA hardware, OpenGL 3.x transform feedback is supported by the
GeForce 8 series, whereas OpenGL 4.x ARB transform feedback2 is supported
by the GeForce GTX 200 series, and OpenGL 4.x ARB transform feedback3 is
supported by the GeForce 400 series.

17.3 The Mechanism of Transform Feedback
In OpenGL 4.0 and above, we can create a transform feedback object by calling
glGenTransformFeedbacks. This object encapsulates the transform feedback
state. Once we have used the object, we must delete it by calling glDelete

TransformFeedbacks.
After the creation of the transform feedback object, the object should be bound to

the current OpenGL context. This is done by issuing a call to glBindTransform

Feedback. We must also register the vertex attributes that we need to record us-
ing transform feedback. This is done by issuing a call to glTransformFeedback

Varyings. The first parameter is the name of the program object that will output
the attributes. The second parameter is the number of output attributes that will
be recorded using transform feedback. The third parameter is the array of C-style
strings containing the names of the output attributes. The last parameter identi-
fies the mode of recording. This mode can be either GL INTERLEAVED ATTRIBS

if the attributes are recorded into a single buffer or GL SEPARATE ATTRIBS if the
attributes are recorded into separate buffers. After specifying the transform feedback
varyings, we need to link our program again.

Now that our output attributes have been linked to the transform feedback, we
must also identify the buffer object where the attributes will be written to. This is
done by issuing a call to glBindBufferBase. We must identify the index and the
buffer object we need to bind to that index. We can bind as many buffer objects as
we need depending on how many attributes we are outputting from our vertex or
geometry shader. After this, we may issue a call to glBeginTransformFeedback.
The only parameter is the type of primitive we are interested in. Next, we issue a
call to glDraw* to draw the primitive we want. Finally, we terminate the transform
feedback by issuing a call to glEndTransformFeedback.

In OpenGL 4.0, if we want to draw the transform feedback buffer directly, we can
call glDrawTransformFeedback and pass it the type of primitive we want. This

© 2012 by Taylor & Francis Group, LLC



234 III Bending the Pipeline

Figure 17.2. Real-time physically based deformation pipeline using transform feedback.

is very convenient since we no longer need to query the number of primitives output
from transform feedback as was needed in the previous OpenGL versions. There
are some more new features introduced in OpenGL 4.0 and above like pausing and
resuming transform feedback, but we are limiting our discussion to the functionality
used in this chapter. For interested readers, more information can be obtained from
the references given at the end of this chapter.

The transform feedback mechanism can be exploited to implement a real-time
deformation pipeline entirely on the GPU. Our real-time deformation pipeline high-
lighting the transform feedback stage is given in Figure 17.2. We will start by dis-
cussing the mathematical underpinnings required to understand the later sections.

17.4 Mathematical Model

There are numerous methods for cloth modeling. These range from more accu-
rate continuum mechanics models, for example, the finite element (FEM), to less-
accurate particle models like the mass spring model. A mass spring system is based on

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-21&iName=master.img-097.jpg&w=322&h=242


17. Real-Time Physically Based Deformation Using Transform Feedback 235

Mass point

Structural spring

Shear spring

Flexion spring
0

1

2

3

5

7

8

9

10

11

x,y

(x+1,y)

(x-1,y)

(x+2,y)

(x,y-2)

(x-2,y)

(x,y+2)

4

(x,y-1)

(x,y+1)

6

(x+1,y-1)(x-1,y-1)

(x+1,y+1)(x-1,y+1)

Figure 17.3. Different spring types used in a mass spring system.

a collection of virtual masses that are linked to their neighbors using massless springs
(see Figure 17.3) [Yan Chen 98]. These springs include

1. structural springs that link the node to its immediate neighbor in x-, y-, and
z-axis only,

2. shear springs that connect the remaining neighbors, including all of the diag-
onal links, and

3. flexion springs that are structural springs connected to the nodes one node
away.

Each of these springs is constrained by a different force, i.e., under pure stress, shear
springs are constrained, under pure compression/traction stress, or stretching, only
structural springs are constrained, and under pure flexion stresses, or bending, only
flexion springs are constrained. All of the connections act as linear springs which
bring the mesh towards equilibrium. Each mass point is associated with a set of
physical properties, including mass (m), position (x), velocity (v), and acceleration
(a). At any point in time, the system is governed by the following second-order
ordinary differential equation:

mẍ = −cẋ +
∑

(fint + fext ), (17.1)

where c is the damping coefficient, fint is the internal (spring) force, and fext is the
external force, which may be due to the user’s intervention, wind, or a gravity or

© 2012 by Taylor & Francis Group, LLC



236 III Bending the Pipeline

collision force due to collision of the object with other objects. The spring force fint

may be defined as

fint (t) = ki(‖xi(t) − xj(t)‖ − li)
xi(t) − xj(t)
‖xi(t) − xj(t)‖ , (17.2)

where ki is the spring’s stiffness, li is the resting length of the spring, xi is the spring’s
position and xj is the position of its neighbor.

The system in Equation (17.1) may be solved using any of the numerical inte-
gration schemes. We may either use the explicit integration schemes [Yan Chen 98,
Georgii and Westermann 05] or the implicit integration schemes [Baraff and Witkin
98]. Some examples of the explicit integration schemes include Euler integration, the
midpoint method (second-order Runge Kutta), Verlet integration, and fourth-order
Runge Kutta integration. An example of the Implicit integration scheme is implicit
Euler integration [Baraff and Witkin 98]. Whatever integration scheme we use, the
acceleration (a) may be calculated using the Newton’s second law of motion,

ai(t) =
fi(t)
mi

.

In the case of the explicit integration schemes, the formulation is as follows. For
the explicit Euler integration [Yan Chen 98], the velocity (v) and position (x) are
updated separately using the following equations:

vi(t +Δt) = vi(t) +Δtai(t),

xi(t +Δt) = xi(t) +Δtvi(t).

For the Verlet integration [Georgii and Westermann 05], there is no need to calculate
and store velocity (v) since the new position (x) is obtained from the current and the
previous position using the following numerical operations:

xi(t +Δt) = 2xi(t) − xi(t −Δt) + ai(t)Δt2. (17.3)

For this to work, both the current and the previous positions are needed. In the case
of the midpoint Euler method, the new velocity and the new position are given as

vi(t +Δt) = vi(t) +Δtai(t +
Δt
2

),

xi(t +Δt) = xi(t) +Δtvi(t +
Δt
2

).
(17.4)

In Equation (17.4), both the acceleration as well as the velocity are evaluated at the
midpoint between t and (t +Δt), i.e., (t +Δt/2).

© 2012 by Taylor & Francis Group, LLC



17. Real-Time Physically Based Deformation Using Transform Feedback 237

Finally, for the fourth-order Runge Kutta method, the new velocities are first
obtained using the following set of operations:

vi(t +Δt) = vi(t) +
1
6

(F1 + 2(F2 + F3) + F4),

F1 =
Δt
2

ai(t),

F2 =
Δt
2

F1

mi
,

F3 = Δt
F2

mi
,

F4 = Δt
F3

mi
.

The new positions are then obtained by the following set of operations:

xi(t +Δt) = xi(t) +
1
6

(k1 + 2(k2 + k3) + k4),

k1 =
Δt
2

ai(t),

k2 =
Δt
2

k1,

k3 = Δtk2,

k4 = Δtk3.

All of the explicit integration schemes suffer from stability problems and require the
time-step value to be very small. This is because the velocity and position evaluation
is carried out explicitly without taking notice of the wildly changing derivatives. On
the contrary, the implicit integration schemes are unconditionally stable because the
system is solved as a couple unit. It starts backward in time to find a new position
that has a given output state. The implicit Euler integration is given as [Baraff and
Witkin 98],

Δx = Δt(v0 +Δv),

Δv = Δt(M−1F),

F = f0 +
∂f
∂x
Δx +

∂f
∂v
Δv.

The implicit integration schemes can be solved using any iterative solvers like the
Newton Raphson (Newton) method or the conjugate gradient (CG) method [Baraff
and Witkin 98]. We can implement both implicit and explicit integration schemes
with the proposed pipeline. For this chapter, we restrict our discussion to the Ver-
let integration scheme. This is because Verlet integration is second-order accurate.

© 2012 by Taylor & Francis Group, LLC



238 III Bending the Pipeline

Moreover, it does not require estimation of velocity since it represents velocity im-
plicitly in the formulation using the current and previous position.

The new positions obtained through any of the integration schemes discussed
earlier are then applied certain constraints like the positivity constraint to prevent
the masses from falling under the ground plane. The positivity constraint is given as

xi.y =

{
xi+1.y if xi+1.y > 0

0 else,
(17.5)

where xi.y is the y component of the position x, assuming that the y axis is the world
up axis. Likewise, other constraints like collision of the mass with an arbitrary poly-
gon may be implemented very easily in the vertex shader. For instance, we consider a
constraint on collision of the masses with a sphere. Assuming we have a sphere hav-
ing a center (C) and a radius (r), we have a mass at position (xi), and it is transformed
to a new position (xi+1). The collision constraint is given as

xi+1 =

{
C + (xi−C )·r

|xi−C | if|xi − C | < r

xi else.

17.5 Implementation
Now that the mathematical foundation is laid out, we can begin looking into the
implementation details. To understand how the different steps of the algorithm
work, for the rest of this discussion, we discuss the steps needed to implement the
Verlet integration as an example. To give a bird’s-eye view, we do the integration
calculation in the vertex shader. Then, using transform feedback, we direct the new
and previous positions to a set of buffer objects held as the binding point of a set of
vertex array objects. Exactly how all this is carried out is detailed in the next sections.

17.5.1 The Verlet Integration Vertex Shader

The most important piece in our implementation is the Verlet integration vertex
shader. We will dissect the whole vertex shader to understand how it works. We
first store the current and previous positions of the cloth mass points into a 2D
grid. These are stored on the GPU into a pair of buffer objects. In order to effi-
ciently obtain the neighborhood information, we attach the current and the previous
position buffer objects to the texture buffer target. This allows us to fetch the neigh-
bor’s current and previous positions in the vertex shader using the corresponding
samplerBuffer.

The vertex shader starts with extracting the current position, the previous posi-
tion, and the current velocity:

© 2012 by Taylor & Francis Group, LLC



17. Real-Time Physically Based Deformation Using Transform Feedback 239

void main()
{

float m = position_mass.w;
vec3 pos = position_mass.xyz;
vec3 pos_old = prev_position.xyz;
vec3 vel = (pos - pos_old ) / dt;
float ks = 0, kd = 0;
// ...

Next, the index of the current vertex is determined using the built-in register (gl
VertexID). Using this global index, the x, y index into the 2D grid is obtained. This
is used to extract the correct neighbor from the samplerBuffer:

int index = gl_VertexID;
int ix = index % texsize_x;
int iy = index / texsize_x;

Since we do not want the upper corner vertices to move, we assign them a mass
of 0. Next, the external force is calculated using the acceleration due to gravity and
the damping force due to the current velocity:

if(index ==0 || index == (texsize_x - 1))
{

m = 0;
}
vec3 F = (gravity * m) + (DEFAULT_DAMPING * vel);

Next, we loop through the 12 neighbors of the current vertex. Each time, we
obtain the neighbor’s coordinates using basic arithmetic as shown in Figure 17.3 and
check whether they are within the bounds of the texture. If they are, we determine
the appropriate index of the neighbor node and fetch its current and the previous
position from the samplerBuffer:

for(int k=0;k<12;k++)
{

ivec2 coord = getNextNeighbor(k, ks, kd);
int j = coord.x;
int i = coord.y;
if (((iy + i) < 0) || ((iy + i) > (texsize_y -1)))
{

continue ;
}
if (((ix + j) < 0) || ((ix + j) > (texsize_x -1)))
{

continue ;
}
int index_neigh = (iy + i) * texsize_x + ix + j;
vec3 p2 = texelFetchBuffer(tex_position_mass, index_neigh).xyz;
vec3 p2_last = texelFetchBuffer(tex_prev_position_mass, index_neigh).xyz;
// ...

© 2012 by Taylor & Francis Group, LLC



240 III Bending the Pipeline

Next, we obtain the rest length of the spring and finally determine the spring
force using Equation (17.2):

vec2 coord_neigh = vec2(ix + j, iy + i) * step;
float rest_length = length (coord * inv_cloth_size);

vec3 v2 = (p2 - p2_last ) / dt;
vec3 deltaP = pos - p2;
vec3 deltaV = vel - v2;
float dist = length(deltaP);

float leftTerm = -ks * (dist - rest_length);
float rightTerm = kd * (dot(deltaV , deltaP) / dist);
vec3 springForce = (leftTerm + rightTerm) * normalize(deltaP);
F += springForce;

}

Once the total force is calculated, the acceleration is obtained. For mass points
with 0 mass, the acceleration is set as 0, which prevents the mass from moving:

vec3 acc = vec3(0);
if (m != 0)
{

acc = F / m;
}

Finally, the current position is obtained using Equation (17.3). In addition, the
positivity constraint is also applied using Equation (17.5) to prevent the mass from
falling under the floor, and then the output attributes are written:

vec3 tmp = pos;
pos = pos * 2.0 - pos_old + acc* dt * dt;
pos_old = tmp;
pos.y = max(0, pos.y);
out_position_mass = vec4(pos , m);
gl_Position = vec4(pos_old , m);

}

17.5.2 Registering Attributes to Transform Feedback

For the following, refer to Listing 17.1. First, we generate the transform feedback
object using glGenTransformFeedbacks and then bind it to the current context
using glBindTransformFeedback. Our Verlet integration vertex shader outputs
two attributes, the current position, which gets written out to out position mass,
and the previous position, which gets written to gl Position. We must regis-
ter our attributes to the transform feedback object. This is done by issuing a call
to glTransformFeedbackVaryings and passing it the names of our attributes
out position mass and gl Position. After this call, we must relink our vertex
shader.

© 2012 by Taylor & Francis Group, LLC



17. Real-Time Physically Based Deformation Using Transform Feedback 241

// Setup transform feedback attributes
glGenTransformFeedbacks(1, &tfID);
glBindTransformFeedback(GL_TRANSFORM_FEEDBACK, tfID);
const char *varying_names[] = {"out_position_mass", "gl_Position"};
glTransformFeedbackVaryings(massSpringShader.GetProgram(), 2, varying_names , ←↩

GL_SEPARATE_ATTRIBS);
glLinkProgram(massSpringShader.GetProgram());

Listing 17.1. Registering attributes with transform feedback object.

17.5.3 The Array Buffer and Buffer Object Setup

So far, we have only looked at half of the story. The other half is the actual buffer
objects and array object setup. The application pushes a set of positions (current
and previous positions) to the GPU. Each element is a vec4 with x, y, z in the first
three components and mass in the fourth component. The reason we use a set of
buffer objects for positions is so that we may use the ping-pong strategy to read
from a set of positions while we write to another set using the transform feedback
approach. We do this because we cannot write to a transform feedback attribute
when we are reading from it. We have two array objects for updating the physics
and two more array objects for rendering of the resulting positions. Referring to

Figure 17.4. The array object and buffer object setup for transform feedback: the blue
rectangles show the attributes written to an array object; the red rectangles show the attributes
being read simultaneously from another array object.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-21&iName=master.img-281.jpg&w=290&h=217


242 III Bending the Pipeline

// Set update vao
for (int i = 0; i < 2; i++)
{

glBindVertexArray(vaoUpdateID[i]);
glBindBuffer(GL_ARRAY_BUFFER , vboID_Pos[i]);
glBufferData(GL_ARRAY_BUFFER , X.size() * sizeof(glm::vec4), &(X[0].x), ←↩

GL_DYNAMIC_COPY);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 4, GL_FLOAT , GL_FALSE , 0, 0);

glBindBuffer(GL_ARRAY_BUFFER , vboID_PrePos[i]);
glBufferData(GL_ARRAY_BUFFER , X_last.size() * sizeof (glm::vec4), &( X_last [0].x), ←↩

GL_DYNAMIC_COPY);
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 4, GL_FLOAT , GL_FALSE , 0,0);

}

// Set render vao
for(int i = 0; i < 2; i++)
{

glBindVertexArray(vaoRenderID[i]);
glBindBuffer(GL_ARRAY_BUFFER , vboID_Pos[i]);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 4, GL_FLOAT , GL_FALSE , 0, 0);

glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vboIndices);
if(i==0)
{

glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices .size() * sizeof(GLushort ), &←↩
indices [0], GL_STATIC_DRAW);

}
}

Listing 17.2. The array object/buffer object setup code.

Figure 17.4 for the following, each array object stores a set of buffer objects for
current and previous positions. The usage flags for the position buffer objects are
set as dynamic (GL DYNAMIC COPY in OpenGL) since the data will be dynamically
modified using the shaders. This gives an additional hint to the GPU so that it
may put the buffers in the fastest accessible memory. The setup code is given in
Listing 17.2.

Referring to Figure 17.5, for each rendering cycle, we swap between the two
buffers to alternate the read/write pathways. Before the transform feedback can pro-
ceed, we need to bind the update array object to the current render device so that
the appropriate buffer objects can be set up for recording data. We bind the ap-
propriate buffer object for reading the current and previous positions to the current
transform feedback buffer base by issuing a call to glBindBufferBase. The ras-
terizer is disabled to prevent the execution of the rest of the programmable pipeline.
The draw-point call is issued to allow us to write vertices to the buffer object. The
transform feedback is then disabled. Following the transform feedback, the raster-
izer is enabled, and then the points are drawn. This time, the render array object is
bound. This renders the deformed points on screen.

© 2012 by Taylor & Francis Group, LLC



17. Real-Time Physically Based Deformation Using Transform Feedback 243

Figure 17.5. The transform feedback data flow for the update and render cycle.

17.5.4 On-the-Fly Modification of Data

Often, it is required to modify the data in the buffer object dynamically, for example,
in the case of collision detection and response. In such a case, we need to obtain the
pointer to data. We can do so in the current deformation pipeline by first binding
the appropriate array object. Next, the appropriate buffer object is bound to the
array object. Finally, the glMapBuffer call is made to obtain the data pointer. In
the demo application, we execute the function calls listed in Listing 17.3 to modify
the position based on the point picked by the user.

glBindVertexArray(vaoRenderID[readID ]);
glBindBuffer(GL_ARRAY_BUFFER , vboID_Pos[writeID ]);
GLfloat * pData = (GLfloat *) glMapBuffer(GL_ARRAY_BUFFER , GL_READ_WRITE);
pData[selected_index * 4] += Right[0] * valX;
float newValue = pData[selected_index * 4 + 1] + Up[1] * valY;
if (newValue > 0)
{

pData[selected_index * 4 + 1] = newValue ;
}
pData[selected_index * 4 + 2] += Right [2] * valX + Up[2] * valY;
glUnmapBuffer(GL_ARRAY_BUFFER);
glBindBuffer(GL_ARRAY_BUFFER , 0);

Listing 17.3. The code for dynamically modifying the data stored in the buffer object.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-21&iName=master.img-338.jpg&w=307&h=191


244 III Bending the Pipeline

17.6 Experimental Results and Comparisons
We have looked at how the whole deformation pipeline is set up; we now look at
some results from the demo application accompanying this chapter (see Figure 17.6).
The full source code is on the OpenGL Insights website, www.openglinsights.com.
This application implements a cloth simulation using the Verlet integration. In ad-
dition, it provides three modes that can be toggled using the space bar key. The first
mode is the GPU mode using the transform feedback mechanism. The second mode
is the unoptimized CPU mode, which implements the exact same cloth simulation;
however, it uses CPU for deformation. An additional mode is also provided that uses
the OpenMP-based optimized deformation on the CPU.

For performance analysis, we compare the performance of the cloth simulation
with different cloth resolutions ranging from 64 × 64 mass points to 1024 × 1024
mass points on our test machine, a Dell Precision T7500 desktop with an Intel Xeon
E5507 with a 2.27Mhz CPU. The machine is equipped with an NVIDIA Quadro
FX 5800 graphics card. The operating system is Windows 7 64-bit. The perfor-
mances were compared against the three modes, namely, the unoptimized CPU mode
(column “Unoptimized CPU (a)” in Table 17.1), the optimized CPU mode (column
“Optimized CPU (b)” in Table 17.1), and the GPU mode using transform feedback
(column “GPU TF (c)” in Table 17.1).

As can be seen, the GPU mode clearly outperforms both of the CPU modes. The
CPU code proceeds sequentially both for calculating the forces and for integration. It
then transfers the updated positions to the GPU for rendering. On the contrary, the
transform feedback–based code fetches the neighbor node positions efficiently and
performs the calculation of forces and integration in parallel. In addition, the data are
used directly for rendering without GPU transfer as was required for the CPU mode.

Figure 17.6. Several animation frames from the cloth simulation implemented using the transform feedback
mechanism.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-21&iName=master.img-364.jpg&w=90&h=129
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-21&iName=master.img-365.jpg&w=90&h=129
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-21&iName=master.img-366.jpg&w=90&h=129
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-21&iName=master.img-367.jpg&w=90&h=129
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-21&iName=master.img-364.jpg&w=90&h=129
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-21&iName=master.img-365.jpg&w=90&h=129
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-21&iName=master.img-366.jpg&w=90&h=129
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-21&iName=master.img-367.jpg&w=90&h=129


17. Real-Time Physically Based Deformation Using Transform Feedback 245

Grid Size
Frame Rate (in frames per second).

Unoptimized CPU (a) Optimized CPU (b) GPU TF (c)

64 × 64 224.12 503.40 941.71

128 × 128 64.11 177.81 650.35

256 × 256 18.13 57.84 220.75

512 × 512 4.11 14.02 45.49

1024 × 1024 0.98 2.74 34.55

Table 17.1. Performance comparison between unoptimized CPU code, optimized CPU code
and GPU code using transform feedback.

This gives massive speedup as is evident in the statistics given in Table 17.1. Thanks
to the efficiency of the transform feedback mechanism, real-time deformations can
now be carried out entirely on the GPU.

17.7 Conclusion
We have presented a novel GPU pipeline for implementing real-time deformation.
Our approach is based on the mechanism of transform feedback available in the
new-generation GPUs. The data is pushed once to the GPU, and then, using the
ping-pong approach with multiple vertex buffer objects, the read/write pathways are
modified. As a proof-of-concept, we have implemented a basic cloth simulation;
however, the ideas presented in this chapter can be extended quite easily to accom-
modate other physically based animation areas like particle systems, modeling of fire,
water waves, realistic lighting, etc. We are in the process of expanding the algorithm
to address specific applications such as biomedical modeling and simulation [Lin
et al. 96, Lin et al. 07].

Bibliography
[Baraff and Witkin 98] David Baraff and Andrew Witkin. “Large Steps in Cloth Simula-

tion.” In Proceedings of the 25th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’98, pp. 43–54. New York: ACM, 1998.

[Georgii and Westermann 05] Joachim Georgii and Rudiger Westermann. “Mass-Spring Sys-
tems on the GPU.” Simulation Practice and Theory 13:8 (2005), 693–702.

[Lin et al. 96] Feng Lin, Hock Soon Seah, and Tsui Lee Yong. “Deformable Volumetric
Model and Isosurface: Exploring a New Approach for Surface Construction.” Com-
puters and Graphics 20:1 (1996), 33–40.

© 2012 by Taylor & Francis Group, LLC



246 III Bending the Pipeline

[Lin et al. 07] Feng Lin, Hock Soon Seah, Zhongke Wu, and Di Ma. “Voxelisation and
Fabrication of Freeform Models.” Virtual and Physical Prototyping 2:2 (2007), 65–73.

[Nealen et al. 06] Andrew Nealen, Matthias Mueller, Richard Keiser, Eddy Boxerman, and
Mark Carlson. “Physically Based Deformable Models in Computer Graphic.” STAR
Report Eurographics 2005 25:4 (2006), 809–836.

[Richard et al. 10] S. Wright Jr. Richard, Haemel Nicholas, Sellers Graham, and Lipchak
Benjamin. OpenGL Superbible, Fifth Edition. Upper Saddle River, NJ: Addison Wesley,
2010.

[Yan Chen 98] Arie Kaufman Yan Chen, Qing-hong Zhu. “Physically-Based Animation of
Volumetric Objects.” In Technical Report TR-CVC-980209, 1998.

© 2012 by Taylor & Francis Group, LLC



Hierarchical Depth Culling and
Bounding-Box Management

on the GPU

Dzmitry Malyshau

18.1 Introduction
Optimizing the data passed to the GPU is one of the keys to achieving high and stable
frame rates. The fewer data that go into a GPU, the better the performance. This
is what geometry-culling techniques are for: they reduce the number of fragments,
polygons, or even whole objects processed by the GPU.

There are several common culling methods today [Fernando 04]:

• Frustum culling. On a high level, the graphics engine determines the ob-
jects outside the view frustum and leaves them out of drawing. It generally
uses a bounding-volume approximation (e.g., box, sphere, etc.) to compute
the intersection with the frustum. On a low level, the OpenGL rasterizer dis-
cards polygons and polygon parts outside of the clip space. This process is
performed after the vertex processing stage. Thus, some GPU time may be
wasted on the shading of vertices, which don’t belong to visible triangles.

• Backface culling. GPU-accelerated and exposed by OpenGL, this method
discards polygons facing away from the viewer. It may be implemented via one
scalar product per face, but it is fully optimized by the hardware.

• Depth buffer. Exposed by OpenGL, this method stores the closest depth
value per fragment in order to discard fragments lying beyond that depth. Im-
mediate rendering implementation requires one read-modify-write operation
on the GPU per fragment. Efficiency may be improved by preordering opaque
objects, polygons, and fragments from the nearest to the farthest at drawing.

247

18

© 2012 by Taylor & Francis Group, LLC



248 III Bending the Pipeline

Scene (initial
data set)

In-frustum
objects

Frustum culling
on CPU

In-frustum
fragments

Draw calls
sent to GPU

Vertex and geometry
shader processing

GL backface culling
and primitives clipping

Visible
fragments

Depth-buffer culling
(depth test)

Fragment shader
processing

Figure 18.1. Culling stages combined.

Most of the time, a developer will ap-
ply all three categories simultaneously (see
Figure 18.1).

Moving from stage to stage introduces
additional computational cost. Culling
unnecessary input as early as possible
yields the highest efficiency. This chap-
ter introduces one of the ways to use
the depth buffer for culling whole objects
while drawing. The method is known
as hierarchical depth culling (alternatively,
occlusion culling). It combines differ-
ent levels of the rendering pipeline for
the common goal of discarding invisible
primitives. These levels include: frame-
buffer for the depth buffer, spatial level
for bounding volumes, and the render-
ing sequence for the early depth pass.
The chapter presents a core OpenGL 3.0
implementation of the hierarchical depth
culling pipeline performed with minimal
CPU-GPU synchronization.

18.2 Pipeline
The pipeline (see Figure 18.2) can be expressed in the following short steps:

• Obtain the depth buffer of occluders (may be the whole scene).

• Construct depth mipmaps.

• Update objects’ bounding boxes.

• Perform depth culling of the bounding boxes.

• Draw the scene using culling results.

This sequence does not mention DMA memory transfers, such as retaining
culling results in the system memory or debugging during the stage of drawing
bounding boxes; nor does it specify the exact order of commands, e.g., we may
use the depth buffer of the previous frame for culling. In the latter case, the culling
results would have a one frame delay and therefore would not be exact.

In the following sections, I will describe each stage in detail. The source GLSL
code of a working implementation can be found on the OpenGL Insights website,
www.openglinsights.com.

© 2012 by Taylor & Francis Group, LLC



18. Hierarchical Depth Culling and Bounding-Box Management on the GPU 249

Scene

Early depth
pass

Depth
buffer

Depth
mipmap

constructor

Depth
mipmap

Opaquegeometry

Depth

fragments

T
ex

tu
re

lev
els

Mip

levels

Bounding-box
data

Modified

geometry Bounding
box update

A
A

B
B

 

co
rn

ers

Hier depth culling
(transform feedback)

V
ertex

a
ttrib

u
tes

T
ex

tu
re

Visibility
data

Flags

Actual
rendering

Geom
etr

y, m
ate

rial
s

and lig
hts

Depth buffer

(read-only)

R
en

d
er con

d
ition

Framebuffer
color output

C
o
lo

r

fr
a
g
m

en
ts

Legend:

Input/Result

Commonly-
used function

New
function

data

Figure 18.2. Hierarchical depth culling pipeline data flow.

18.2.1 Early Depth Pass

The early depth pass is a special rendering stage that draws an opaque part of a scene
into the depth buffer without any color output. The pixel processing cost for this
operation is minimal. It guarantees that only visible fragments will be processed by
heavy pixel shaders when the actual drawing of a scene is performed, with the depth
buffer attached in read-only mode. This pass utilizes the double-speed, depth-only
function implemented in the hardware for many cards [Cozzi 09].

The implementation assumes that we have a user-controlled FBO, where the
color attachment is supposed to store the rendered frame. The early depth pass is
computed this way:

• Make sure the FBO has a texture as the depth attachment. We will need to
sample from it later. Thus, the depth-stencil format is not allowed.

• Bind the FBO and set the draw buffer to GL NONE, meaning that no color
layers are affected.

• Enable depth test and write. Clear the depth with “1.0.” Set the depth test
function to GL LEQUAL.

• Render opaque objects of the scene. The vertex shader does plain model-view-
projection transformation. No fragment shader is attached.

Note that no polygon offset is needed since we assume that the same geometry
and transformations in the same order will take place later in the frame. OpenGL

© 2012 by Taylor & Francis Group, LLC



250 III Bending the Pipeline

invariance rules [Group 10, Appendix A] guarantee that the same polygons will cover
the same fragments each time we draw them, as long as we use the same vertex-shader
transformation code.

The depth buffer after this stage should not include transparent objects, because
they are not occluders. They can still be culled by the hierarchical depth check
described below.

18.2.2 Depth LOD Construction

In general, the hierarchical depth culling technique (see Figure 18.3) can operate
on mipmaps of a noncomplete depth buffer. For example, one can draw only the
biggest occluders into the depth buffer and start with a lower resolution than the
original one. However, we prefer to build the whole depth mipmap set because we
can use the depth buffer produced by the early depth pass for it. This approach is
also better to discard primitives based on the mipmap level containing the bounding
box in the pixel neighbors (see Section 18.2.4 for an example).

During the culling process we can only discard an object if its closest parts are
occluded by the farthest approximated occluder in the area. Therefore, when produc-
ing the depth level of detail (LOD) chain, we are going to get the maximum depth
from the pixel neighbors instead of an averaged one. Construction of each level i
(ranges from 1 to the max LOD of the depth texture) takes the following steps:

• Set the depth function to GL ALWAYS, enable depth test, and write.

• Set the GL TEXTURE BASE LEVEL and GL TEXTURE MAX LEVEL of the depth
texture to i − 1.

• Activate the framebuffer object (FBO) with draw buffer set to GL NONE. At-
tach depth texture level i.

• Draw a unit quad (or a large triangle) with a dedicated shader.

The vertex shader copies the position directly into gl Position, and no trans-
formation is required. The fragment shader (Listing 18.1) fetches the depth from
the texture bound as sampler depth. We are using texelFetch with LOD = 0
because the base level of the texture is set to i − 1.

Figure 18.3. Depth levels of detail: 0,2,4,6.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-22&iName=master.img-048.jpg&w=322&h=67


18. Hierarchical Depth Culling and Bounding-Box Management on the GPU 251

ivec2 tc = ivec2(gl_FragCoord.xy * 2.0);
vec4 d = vec4(

texelFetch(sampler_depth , tc, 0).r,
texelFetch(sampler_depth , tc+ivec2(1,0), 0).r,
texelFetch(sampler_depth , tc+ivec2(0,1), 0).r,
texelFetch(sampler_depth , tc+ivec2(1,1), 0).r);

gl_FragDepth = max( max(d.x,d.y), max(d.z,d.w) );

Listing 18.1. Depth buffer downsampling fragment shader.

18.2.3 Bounding-Boxes Update

An axis-aligned bounding box serves as an approximation of an object volume. It
can be easily transformed into projection space for hierarchical depth culling. The
traditional approach is to keep bounding box information updated on the client side
(CPU), involving special tricks to deal with animated objects.

Our approach is to utilize the GPU to iterate over vertices (see Figure 18.4). It
naturally supports real-time mesh animation modifiers like skinning and morphing.
The stage can be implemented using color blending and geometry shaders. We are
going to store the bounding-box corners of each object in two pixels inside a render-
buffer. Given a set of objects with outdated bounding boxes A, the algorithm works
as follows:

• Make an FBO with a color attachment only, which is a floating-point RGB
renderbuffer of size 2n × 1, where n is the number of objects in the scene.

• Set the blending mode to GL MAX and the blend weighting factors to GL ONE,
GL ONE.

• For each object in A: Set the scissor test and the viewport to include only
2 pixels designated for the object. Clear the color buffer with +∞ (floating
point).

• For each object in A, draw the object using a dedicated shader program.

Mesh
vertices

RGB32F pixels
storing AABB

corners

Buffer
object
data

System
memory

Draw with
blending

Buffer
read-back

Copy

Figure 18.4. GPU-assisted AABB calculation data flow.

© 2012 by Taylor & Francis Group, LLC



252 III Bending the Pipeline

in vec3 position [];
out vec4 color;
void main() {

gl_Position = vec4( -0.5 ,0.0 ,0.0 ,1.0);
color = vec4(+position [0] ,1.0);
EmitVertex();
gl_Position = vec4(+0.5 ,0.0 ,0.0,1.0);
color = vec4(-position [0] ,1.0);
EmitVertex();

}

Listing 18.2. Bounding-box update geometry shader.

• Read back the bounding box texture in a buffer attached to the GL PIXEL

PACK BUFFER target.

The vertex shader just passes the local vertex position to the geometry stage. This
position is set as a color of the first pixel by the geometry shader, while the negated
position is written to the second pixel color (see Listing 18.2). We negate the position
here in order to reverse the effect of GL MAX blending: max(−x) = −min(x).

The result of this step is a buffer containing two floating-point positions per
object: the maximum of the local vertex coordinates and negated minimum of these
same coordinates. These values define an axis-aligned bounding box of an object in
local space.

Note that we cannot use the buffer for an FBO attachment right away as a texture
buffer object, because it is forbidden by OpenGL specification (see [Group 10]).
Also, the algorithm will behave inefficiently in the case of a small number of objects
because the GPU will have a hard time parallelizing the computations going into
such a small pixel area. In further research, this issue can be addressed by dividing
the vertex stream of each object over several destination pixel pairs with a dedicated
function that combines the result from these pairs.

18.2.4 Hierarchical Depth Cull

Now that we have the depth LOD chain and bounding boxes on the GPU, we can
finally do the main step, which is culling. We reuse the same shader inputs declared
in Section 18.2.5. In addition, we bind the depth buffer to a texture unit accessed
by the shader as a uniform variable. It is important to set the border color to 0. This
will cull objects outside the frustum side planes.

We are going to use OpenGL transform feedback (TF) in order to get a single
visibility flag per scene object in a resulting buffer. Note that it is also possible to
draw into a 1D texture for that, but TF was chosen due to its simplicity (no ras-
terizer/fragment processing/PBO involved). It is also better in terms of concurrency
because each output primitive offset is known in advance by the driver.

© 2012 by Taylor & Francis Group, LLC



18. Hierarchical Depth Culling and Bounding-Box Management on the GPU 253

View X

V
ie

w
 Y

View Z

Object’s
closest point

Hier-Z far
point

Figure 18.5. Hierarchical depth cull main stage.

Here are the steps to check each object visibility against the depth mipmap set
performed in the vertex processing stage (see Figure 18.5):

• Compute the bounding box in the normalized device coordinates (NDC,
range in [0, 1]) using the camera projection.

• Determine the LOD level of the depth mipmap set containing a tightest 2×2
pixel area covering the whole NDC box.

• Discard the primitive if the LOD level is less than some threshold. For exam-
ple, setting this threshold to 2 will cull out all objects in the bounding boxes
that fit inside a 4 × 4 pixel area.

• Find the maximum depth of the area by sampling from these pixels.

• Return true if the NDC minimum z-coordinate is less than the maximum
sampled depth.

18.2.5 Bounding-Box Debug Draw

Rendering bounding volumes on top of the scene is a convenient way to debug a
range of visibility issues. In a previous stage (Section 18.2.3), we gathered all bound-
ing boxes in a scene into the OpenGL buffer object. It is possible, therefore, to draw
all boxes at once by supplying correct vertex attributes together with model-to-world
transformations (Figure 18.6). Here is the procedure:

• Declare two floating-point, four-component attributes interleaved in the given
buffers containing the bounding box information.

© 2012 by Taylor & Francis Group, LLC



254 III Bending the Pipeline

Screen:Vertex Attributes: Geometry Shader:

AABB
corners

AABB
corners

AABB
corners

AABB
corners

AABB
corners

i-2:

i-1:

i:

i+1:

i+2:

Model-to-World
transformation

Model-to-World
transformation

Model-to-World
transformation

Model-to-World
transformation

Model-to-World
transformation

X

Local
object
AABB

8 points
12 lines

Construct

W
ired box

on the

screen

(12 lines)Camera
projection

Figure 18.6. Bounding-box drawing pipeline.

• Upload an array of model-to-view transformations per object on the GPU. It
can be a buffer object or a range of uniforms.

• Enable depth test. Disable depth write.

• Issue an n-points draw call with the special shader program.

The vertex shader is supposed to pass bounding box and transformation data
to the geometry stage. The geometry shader generates twelve lines per input in the
shape of a box and transforms them into the projection space.

18.3 Order of Operations
I have described all the stages of the culling pipeline. Now, I will talk about the
way these bricks follow each other in the frame-processing sequence. The order is
important because trying to perform an action that depends on the previous action
when the previous action is not complete may stall the graphics pipeline.

There are dependencies among these stages. For example, generating a depth
LOD chain requires the depth buffer to be initialized by the early depth pass.
Bounding-box drawing and culling requires boxes to be updated first. Main scene
rendering is supposed to happen after the culling in order to use the results. Culling
is just an optimization task. Therefore, it does not require precise implementation as
long as our visible objects do not disappear for a noticeable amount of time.

GPU time may be saved during the processing of our culling tasks by stretching
the computations over one or more frames. For example, we have a graphics applica-
tion running at 60 fps that will make the one-frame visibility delay barely noticeable.
The rendering sequence designed to avoid stalls is shown in Figure 18.7.

© 2012 by Taylor & Francis Group, LLC



18. Hierarchical Depth Culling and Bounding-Box Management on the GPU 255

Frame
start

Early depth
pass (using last
frame culling)

Update
bounding

boxes

Main scene
rendering (using

last frame culling)

Create depth
mipmap

Hierarchical
depth culling

Draw
bounding

boxes

Read back
culling
results

Frame
end

Figure 18.7. Example full pipeline.

18.4 Experimental Results

We have two untextured scenes (Figure 18.8) rendered with different pipelines in
an 800 × 600 window. The City scene view from Blender is also shown in Fig-
ure 18.9. The results are shown in Table 18.1. Our measurements use OpenGL
time queries to determine the time spent on each rendering stage. Both compared
pipelines evaluated lighting according to the Phong model. The first pipeline culled
objects using the hierarchical depth culling method; the second one used CPU-side
frustum culling. We used a Radeon HD 2400 with an Intel Q6600 CPU and 3GB
of RAM as a hardware platform.

(a) (b)

Figure 18.8. Rendered scenes: (a) soldiers scene, (b) city scene.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-22&iName=master.img-126.jpg&w=167&h=149
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-22&iName=master.img-127.jpg&w=177&h=149


256 III Bending the Pipeline

Figure 18.9. City scene screenshot from Blender.

We can see from the numbers that the cost of the hierarchical depth culling stage
is minimal, while the construction of the depth buffer mipmap set is comparable
to the time spent on the early depth pass. In the Soldiers scene, CPU-side culling
proved to be slightly more effective. In the City scene, however, hierarchical depth
culling performed significantly better, reducing the frame time by almost a factor of
three.

Pipeline stage Soldiers City

(omni lights) 9 1

Hierarchical depth culling pipeline

(visible) 39/82 53/403

(draw calls) 775 1038

EarlyDepth 517 �s 1644 �s

ZMipMap 535 �s 533 �s

HierZcull 22 �s 48 �s

Lighting 33828 �s 6082 �s

Total 34902 �s 8307 �s

CPU-side culling pipeline

(visible) 42/82 231/403

(draw calls) 865 4415

EarlyDepth 470 �s 5070 �s

Lighting 30867 �s 16989 �s

Total 31337 �s 22059 �s

Table 18.1. Soldiers scene and city scene rendered with different pipelines.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-22&iName=master.img-137.jpg&w=181&h=131


18. Hierarchical Depth Culling and Bounding-Box Management on the GPU 257

18.5 Conclusion and Future Work
I have presented a culling pipeline that effectively marks occluded objects according
to the depth buffer mipmap set. The pipeline runs mostly on the GPU and requires
minimal DMA transfer. It is designed to support skinning, morphing, and any other
GPU-side mesh modifications. This feature is helpful for graphics engines that try
not to keep synchronized copies of meshes in main memory and perform all mesh-
related transformations on the GPU.

Using hierarchical depth culling makes classical frustum culling partially obso-
lete. Objects outside the far plane are culled by the depth buffer clear value (1.0).
Objects outside of the side planes are culled by the border value (0.0). Only objects
in front of the near plane are not culled by this method. We can skip frustum inter-
section checks on the CPU completely, allowing bounding-box data to live only on
the GPU memory side.

Implementation of this pipeline is presented as one of the rendering modes of
KRI Viewer [Malyshau 10], which is available on the book’s website. By using the
Blender exporter included in the demo, one can export any dynamic scene into KRI
format and open it with Viewer. Switching to HierZ mode will show the up-to-date
bounding boxes of objects and the number of occluded objects by the hierarchical
depth buffer check. The demo also includes full versions of GLSL core profile shaders
used for all stages of the culling pipeline. It is also possible to see the amount of time
per frame being spent on a particular stage in comparison to the performance with
nonculling, alternative rendering modes.

A lot of research remains to be done in order to utilize new highly parallelized
graphics processors. The bounding box update procedure is the bottleneck in the
current implementation and, therefore, requires some structural optimizations. We
are also going to look into the latest OpenGL 4+ features in order to completely re-
move read-back operations (reading the culling results) by the conditional execution
of draw calls on the GPU.

Bibliography
[Cozzi 09] Patrick Cozzi. “Z Buffer Optimizations.” http://www.slideshare.net/pjcozzi/

z-buffer-optimizations, 2009.

[Fernando 04] Randima Fernando. “Efficient Occlusion Culling.” Reading, MA: Addison-
Wesley Professional, 2004.

[Group 10] Khronos Group. “OpenGL 3.3 Core Profile Specification.” http://www.opengl.
org/registry/doc/glspec33.core.20100311.pdf, March 11, 2010.

[Malyshau 10] Dzmitry Malyshau. “KRI Engine Wiki.” http://code.google.com/p/kri/w/list,
2010.

© 2012 by Taylor & Francis Group, LLC



© 2012 by Taylor & Francis Group, LLC



Massive Number of
Shadow-Casting Lights with

Layered Rendering

Daniel Rákos

19.1 Introduction
Shadow map generation is one of the most time-consuming rendering tasks that to-
day’s graphics applications have to deal with due to the high number of dynamic light
sources used. Deferred rendering techniques have provided a reasonable answer for
handling a large number of dynamic light sources in linear time because they work
independently of the scene complexity. However, shadow map generation is still an
O(nm) time complexity task where n is the number of light sources and m is the
number of objects.

This chapter explores the possibility of taking advantage of some of the latest
GPU technologies to decrease this time complexity by using layered rendering to ren-
der multiple shadow maps at once using the same input geometry. Layered rendering
will enable us to decrease the vertex attribute–fetching bandwidth requirements and
the vertex processing time to O(m) time complexity.

While this approach will still require O(nm) time complexity for rasterizing and
fragment processing, this generally takes far less time in practice, as usually, the
light volumes don’t overlap completely, so most of the geometric primitives will be
culled early by the rasterizer. We will also investigate whether the required rasterizer
throughput can be further decreased by doing view-frustum culling in the geometry
shader performing the layered rendering.

I will present a reference implementation for both traditional and layered shadow
map rendering that enables us to provide performance comparison results for the two
approaches in different scenes with various scene complexities and various numbers

259

19

© 2012 by Taylor & Francis Group, LLC



260 III Bending the Pipeline

of light sources and types. In addition, I will provide measurements about how the
shadow map resolution affects the performance of the traditional method and our
new technique.

Performance measurements are executed both for client-side and server-side work-
loads because, besides decreasing the geometry processing requirements of shadow
rendering, the technique also drastically decreases the number of necessary state
changes and draw commands to render multiple shadow maps, thus providing an
edge for CPU-bound applications.

While the technique primarily targets OpenGL 4.x–capable GPUs, we present
how the same technique can be implemented with some caveats for GPUs with only
OpenGL 3.x capabilities.

Further, I will present some special use cases of layered shadow map rendering
that can be used to render shadow cube maps and cascaded shadow maps with a single
draw call, and I will briefly present how the technique can be altered to accelerate the
generation of reflection maps and reflection cube maps in a similar fashion.

Finally, I will discuss the limitations of the presented algorithm, explicitly men-
tioning those imposed by hardware limitations of GPU implementations.

19.2 Traditional Shadow Map Rendering in
OpenGL

Shadow mapping or projective shadowing is an image-space rendering technique in-
troduced by [Williams 78] that became the de facto standard for performing shadow
rendering in real time and offline graphics applications.

The principle of shadow mapping is that if we view the scene from a light source’s
position, all the object points we can see from there appear in light and anything
behind those is in shadow. Based on this, the algorithm works in the following way:

• We render the scene from the light source’s point of view to a depth buffer
using the well-known z-buffer visibility algorithm.

• When we render the scene from the camera’s point of view, by comparing the
distance of the light source to any point of the surface with the sampled value
from the depth buffer corresponding to the point, we can decide whether the
given point is in light or in shadow. See Figure 19.1.

Modern graphics processors provide hardware support for this technique in the form
of two features:

• Providing a mechanism to store depth-buffer images in textures.

• Providing a mechanism to compare a reference depth value with a depth value
stored in a depth texture.

© 2012 by Taylor & Francis Group, LLC



19. Massive Number of Shadow-Casting Lights with Layered Rendering 261

ZA = ZB

point is lit ZA > ZB

point is shadow

Figure 19.1. Illustration of the shadow mapping algorithm where ZA is the distance of the
fragment from the light source and ZB is the value stored in the depth buffer generated in the
first pass.

Both of these features are available as extensions [Paul 02] and have been part of the
OpenGL specification since Version 1.4. These extensions provide a fixed-function
mechanism that returns the boolean result of a comparison between the depth texture
texel value and a reference value derived from the texture-coordinate set used for
the fetch. Although in modern OpenGL these are all done with shaders, GLSL
provides depth comparison texture lookup functions to perform the fixed-function
comparison of the depth values.

Putting everything together, in order to implement shadow mapping for a single
light source, we have to use a two-pass rendering algorithm. In the first pass, we set
up the light’s view-projection matrix for use in our shadow rendering vertex shader.
Then we prepare the framebuffer for depth-texture rendering. Finally, we simply
draw our scene without textures, materials, or any additional configuration, as we are
interested only in the generated depth values (see Listing 19.1). There are no special
requirements about the shaders used in the shadow map generation pass; we only
need a single vertex shader, with no further shader stages, that performs the exact
same transformations as it would do in case of regular scene rendering.

The framebuffer object used in Listing 19.1 is configured with only a single-
depth attachment with no color attachments. The code needed to set up the depth
texture and the framebuffer object used in Listing 19.1 is presented in Listing 19.2.

In the second pass, we use the depth texture generated in the first pass as a texture
input, and we will also need the light’s view-projection matrix to reconstruct each
fragment’s position in the light view’s clip space to perform the texture lookup and the
depth comparison (see Listing 19.3). Obviously, this pass differs based on whether a
forward renderer or a deferred renderer is in use, as the rendered geometry is either

© 2012 by Taylor & Francis Group, LLC



262 III Bending the Pipeline

/* bind the framebuffer that has only a depth texture attachment */
glBindFramebuffer(GL_FRAMEBUFFER , depth_fbo);

/* we must ensure that depth testing and depth writes are enabled */
glEnable (GL_DEPTH_TEST);
glDepthMask(GL_TRUE );

/* clear the depth buffer before proceeding */
glClear (GL_DEPTH_BUFFER_BIT);

/* bind the shadow map rendering program which has only a vertex shader attached */
glUseProgram(shadow_po);

/* bind the uniform buffer containing the view -projection matrix of the light */
glBindBufferBase(GL_UNIFORM_BUFFER, 0, lightVP_ubo);

/* render the scene as usual */
..................

Listing 19.1. Traditional shadow map generation pass using OpenGL 3.3+.

the whole scene or a primitive that represents the light (a light volume or a full screen
quad), respectively.

Usually, when we have multiple light sources, we need to execute both passes for
each light source separately. Sometimes, the first pass needs to be executed multiple
times even for a single light source, as in the case of omnidirectional light sources
or if we would like to use cascaded shadow maps as presented by [Dimitrov 07] for
directional light sources.

/* create the depth texture with a 16-bit depth internal format */
glGenTextures(1, &depth_texture);
glBindTexture(GL_TEXTURE_2D , depth_texture);
glTexImage2D(GL_TEXTURE_2D , 0, GL_DEPTH_COMPONENT16, width , height, 0,
GL_DEPTH_COMPONENT, GL_FLOAT , NULL);

/* set up the appropriate filtering and wrapping modes */
glTexParameteri(GL_TEXTURE_2D , GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D , GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D , GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D , GL_TEXTURE_MIN_FILTER, GL_NEAREST);

/* create the framebuffer object and bind it */
glGenFramebuffers(1, &depth_fbo);
glBindFramebuffer(GL_FRAMEBUFFER , depth_fbo);

/* disable all color buffers */
glDrawBuffer(GL_NONE );

/* attach the depth texture as depth attachment */
glFramebufferTexture(GL_FRAMEBUFFER , GL_DEPTH_ATTACHMENT, depth_texture , 0);

Listing 19.2. Setting up a framebuffer object for shadow map rendering.

© 2012 by Taylor & Francis Group, LLC



19. Massive Number of Shadow-Casting Lights with Layered Rendering 263

/* bind the target framebuffer that we want the lit scene to be rendered to */
glBindFramebuffer(GL_FRAMEBUFFER , final_fbo);
/* bind the shadow map as texture input */
glBindTexture(GL_TEXTURE_2D , depth_texture);
/* bind the light shader program with shadow mapping support */
glUseProgram(light_po );
/* bind the uniform buffer containing the view -projection matrix of the light */
glBindBufferBase(GL_UNIFORM_BUFFER, 0, lightVP_ubo);
/* render the scene or light as usual */
..................

Listing 19.3. Traditional shadow mapping pass using OpenGL 3.3+.

While shadow map generation is a lightweight rendering pass, especially for frag-
ment processing as we don’t have to compute per-fragment shading or other sophis-
ticated effects, it still has a significant overhead for vertex and command processing.
This is why we need a more streamlined algorithm for rendering shadow maps for
multiple light sources.

19.3 Our Shadow Map Generation Algorithm
The latest generations of GPUs brought several hardware features that can be used to
decrease the vertex processing and API overhead of the generation of multiple shadow
maps. One of these features is the support for 1D and 2D texture arrays [Brown 06].
A texture array is actually an array of textures that have the same properties (internal
format, size, etc.) and allows a programmable shader to access them through a single
texture unit using a single coordinate vector. This means that we can access a 2D
texture array with an (S,T , L) coordinate set where L selects the layer of the texture
array and the (S,T ) coordinate set is used to access that single layer of the array
texture as if it were a regular 2D texture. This GPU generation does not allow us just
to sample texture arrays but also to render to them.

From our point of view, the other important feature that was introduced with
this hardware generation is the geometry shader [Brown and Lichtenbelt 08]. This
new shader stage allows us to process OpenGL primitives as a whole, but it is capable
of more: it can generate zero, one, or more output primitives based on the input
primitive and also allows us to select the target texture layer to use for rasterization in
the case of a layered rendering target. These features enable us to implement a more
sophisticated shadow map generation algorithm.

In order to implement our shadow map generation algorithm, only small changes
are required to be made to the traditional method. The first thing is to replace our
2D depth texture with a 2D depth texture array and to set up the framebuffer for
layered rendering (this later step actually does not need any change compared to the
code presented in Listing 19.2). The modified code is shown in Listing 19.4.

© 2012 by Taylor & Francis Group, LLC



264 III Bending the Pipeline

/* create the depth texture with a 16-bit depth internal format */
glGenTextures(1, &depth_texture);
glBindTexture(GL_TEXTURE_2D_ARRAY, depth_texture);
glTexImage3D(GL_TEXTURE_2D_ARRAY, 0, GL_DEPTH_COMPONENT16, width , height ,
number_of_shadow_maps, 0, GL_DEPTH_COMPONENT, GL_FLOAT , NULL);

/* set up the appropriate filtering and wrapping modes */
glTexParameteri(GL_TEXTURE_2D , GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D , GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D , GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D , GL_TEXTURE_MIN_FILTER, GL_NEAREST);

/* create the framebuffer object and bind it */
glGenFramebuffers(1, &depth_fbo);
glBindFramebuffer(GL_FRAMEBUFFER , depth_fbo);

/* disable all color buffers */
glDrawBuffer(GL_NONE );

/* attach the depth texture as depth attachment */
glFramebufferTexture(GL_FRAMEBUFFER , GL_DEPTH_ATTACHMENT, depth_texture , 0);

Listing 19.4. Setting up a framebuffer object for layered shadow map rendering.

In order to emit all incoming geometric primitives to all the layers of the depth
texture array, we have to inject a geometry shader into our shadow map rendering
program that will do the task. We would like to use a separate view-projection matrix
for each render target layer because they belong to different light sources; thus, the
view-projection transformation has to be postponed to the geometry shader stage.

Here, we can take advantage of one more feature introduced with OpenGL 4–
capable GPUs: instanced geometry shaders. With traditional OpenGL 3 geometry
shaders, we could only emit multiple output primitives sequentially. As usual, se-
quential code is not really well suited for highly parallel processor architectures like
the modern GPUs. Instanced geometry shaders allow us to execute multiple in-
stances of the geometry shader on the same input primitive, thus making it possible
to process and emit the output primitives in parallel. The implementation of such a
geometry shader for emitting the incoming geometry to a total of 32 output layers is
presented in Listing 19.5. This means that we can render with it to 32 depth textures
at once. While this code contains a loop, the loop is very likely to be unrolled by the
shader compiler, but more cautious developers can unroll the loop.

Let’s discuss the effect the postponement of the view-projection transformation to
the geometry shader can have on the usability of the presented algorithm. One may
say that this can introduce performance issues because the transformation is executed
multiple times on a single vertex; this can be especially problematic when skeletal
animation or another sophisticated vertex transformation algorithm is used. While
it is true that the light’s view-projection may be executed multiple times on the same
vertex, this is a fixed cost, and it may be done anyway multiple times even if we want
to generate our shadow maps in the traditional way because of the limited storage

© 2012 by Taylor & Francis Group, LLC



19. Massive Number of Shadow-Casting Lights with Layered Rendering 265

#version 420 core

layout(std140 , binding = 0) uniform lightTransform {
mat4 VPMatrix [32];

} LightTransform;

layout(triangles , invocations = 32) in;
layout(triangle_strip , max_vertices = 3) out;

layout(location = 0) in vec4 vertexPosition[];

out gl_PerVertex {
vec4 gl_Position;

};

void main() {
for (int i=0; i<3; ++i) {

gl_Position = LightTransform.VPMatrix [gl_InvocationID] * vertexPosition[i];
gl_Layer = gl_InvocationID;
EmitVertex();

}
EndPrimitive();

}

Listing 19.5. OpenGL 4.2 instanced geometry shader that renders input geometry to 32 output layers.

of the post-transform vertex cache. However, model transformations like skeletal
animation don’t have to be moved to the geometry shader, as they are independent
of the view and the projection, so those should be kept in the vertex shader.

So what else do we need to change in our code to make the layered shadow
map generation algorithm work? Nothing, except that when rendering the scene to
the shadow maps, our culling algorithms have to be aware that we are rendering our
geometry not only from a single view but from multiple views; thus, these algorithms
should skip the rendering of a scene node only when it is not visible from any of these
views.

19.4 Performance
We use a Radeon HD5770 and an Athlon X2 4000+ for performance testing. The
basic scenario is to render the shadow of the Stanford dragon model, which has a
total of 35,577 triangles in our case.

The scene is rendered to up to 32 shadow maps, including the depth buffer clear,
making the whole scene visible in the depth texture with traditional and layered
shadow map generation. The resulting shadow maps will look like the one shown in
Figure 19.2. Also, we try multiple shadow map resolutions to see how they affect the
rendering performance.

The vertex shader is shown in Listing 19.6; the preprocessor directive LAYERED
is defined only in the case of our layered shadow map generation algorithm. The

© 2012 by Taylor & Francis Group, LLC



266 III Bending the Pipeline

Figure 19.2. Sample depth maps of the Stanford dragon model consisting of 35,577 triangles
from various light positions and directions.

geometry shader used is equivalent to the one presented earlier in Listing 19.5 with
the number of geometry shader invocations set to the number of shadow maps that
have to be rendered. The results of the GPU time needed to render the shadow maps
for each particular resolution were measured using timer queries [Daniell 10] and
can be seen in Figure 19.3.

#version 420 core

layout(location = 0) in vec3 inVertexPosition;

#ifdef LAYERED
layout(location = 0) out vec4 vertexPosition;
#endif

layout(std140 , binding = 1) uniform transform {
mat4 ModelMatrix;

} Transform;

#ifndef LAYERED
layout(std140 , binding = 0) uniform lightTransform {

mat4 VPMatrix ;
} LightTransform;
out gl_PerVertex {

vec4 gl_Position;
};
#endif

void main(void) {
#ifdef LAYERED

vertexPosition = Transform.ModelMatrix * vec4(inVertexPosition , 1.f);
#else

gl_Position = LightTransform.VPMatrix * (Transform.ModelMatrix * vec4(←↩
inVertexPosition , 1.f));

#endif
}

Listing 19.6. Shadow rendering vertex shader used for performance measurements.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-23&iName=master.img-186.jpg&w=322&h=107


19. Massive Number of Shadow-Casting Lights with Layered Rendering 267

256 x 256 shadow map

1024 x 1024 shadow map 2048 x 2048 shadow map

12 ms

10 ms

8 ms

6 ms

4 ms

2 ms

0 ms
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

512 x 512 shadow map
14 ms

12 ms

10 ms

8 ms

6 ms

4 ms

2 ms

0 ms
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

T
im

e
T

im
e

20 ms

18 ms

14 ms

16 ms

10 ms

12 ms

6 ms

8 ms

4 ms

2 ms

0 ms
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

# of shadow maps

45 ms

40 ms

35 ms

30 ms

20 ms

25 ms

15 ms

10 ms

5 ms

0 ms
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

# of shadow maps

Figure 19.3. The GPU time required to render 1 to 32 shadow maps using traditional shadow map generation
(blue) and our layered method (red). The resulting shadow maps are of size 256 × 256 (top left), 512 × 512
(top right), 1024 × 1024 (bottom left), and 2048 × 2048 (bottom right). Lower values are better.

Figure 19.4. The total GPU time required to render 1 to 32 shadow maps (left) and the average GPU time
required per shadow map (right) using traditional shadow map generation (blue) and our layered method (red).
Lower values are better.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-23&iName=master.img-230.jpg&w=382&h=114


268 III Bending the Pipeline

Figure 19.5. The total CPU time required to render 1 to 32 shadow maps (left) and the average CPU time
required per shadow map (right) using traditional shadow map generation (blue) and our layered method (red).
Lower values are better.

Figure 19.3 shows that when using such a simple vertex shader, the amount of
GPU work saved by using layered rendering does not outweigh the overhead of the
introduced geometry shader stage. Actually, it has roughly 10% lower performance
than the traditional method. Also, the shadow map resolution has very little effect
on the relative performance of the two techniques. The reason for this is that the
fragment processing cost is equivalent in both cases. We will disable rasterization in
our further measurements so that we can concentrate on the geometry processing
time. This can be easily done by using the following command before our shadow
map rendering:

glEnable (GL_RASTERIZER_DISCARD);

Figure 19.4 shows the performance results of the shadow map generation without
rasterization. We also provide a separate chart to present the average GPU time
required for generating a single shadow map.

When using such a simple vertex shader, the overhead of layered shadow map
rendering makes the technique suboptimal from a GPU-resource point of view, but
the time savings on the CPU side show the strength of layered rendering. As can be
seen in Figure 19.5, the CPU time required to generate multiple shadow maps can
go off the charts even though there is only a single draw command that renders the
whole scene. Contrarily, our layered method has a constant CPU cost indifferent of
the number of shadow maps generated.

19.4.1 Performance with Complex Vertex Shaders

The vertex processing requirements in our tests were too optimistic because we used
a minimal vertex attribute setup of 12 bytes per vertex (3 floats for vertex position),
and our shaders only perform two matrix-vertex multiplications, one for the model

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-23&iName=master.img-240.jpg&w=382&h=115


19. Massive Number of Shadow-Casting Lights with Layered Rendering 269

#version 420 core

layout(location = 0) in vec3 inVertexPosition;
layout(location = 1) in ivec4 inBoneIndex;
layout(location = 2) in vec4 inBoneWeight;

#ifdef LAYERED
layout(location = 0) out vec4 vertexPosition;
#endif

layout(std140 , binding = 1) uniform boneTransform {
mat3 BoneMatrix[64];

} BoneTransform;

#ifndef LAYERED
layout(std140 , binding = 0) uniform lightTransform {

mat4 VPMatrix ;
} LightTransform;
out gl_PerVertex {

vec4 gl_Position;
};
#endif

void main(void) {
vec3 vertex = (BoneTransform.BoneMatrix[inBoneIndex.x] * inVertexPosition) * ←↩

inBoneWeight.x;
if (inBoneIndex.y != 0xFF) {

vertex += (BoneTransform.BoneMatrix[inBoneIndex.y] * inVertexPosition) * ←↩
inBoneWeight.y;

if (inBoneIndex.z != 0xFF) {
vertex += (BoneTransform.BoneMatrix[inBoneIndex.z] * inVertexPosition) *←↩

inBoneWeight.z;
if (inBoneIndex.w != 0xFF) {

vertex += (BoneTransform.BoneMatrix[inBoneIndex.w] * ←↩
inVertexPosition) * inBoneWeight.w;

}
}

}
#ifdef LAYERED

vertexPosition = vec4(vertex , 1.f);
#else

gl_Position = LightTransform.VPMatrix * vec4(vertex , 1.f));
#endif
}

Listing 19.7. Shadow rendering vertex shader that performs skeletal animation with up to four bones per
vertex.

transformation and one for the view-projection transformation. Now, let’s try a real-
life scenario by implementing a vertex shader that performs simple skeletal animation.
We will provide a maximum of 64 bone matrices and a vertex attribute setup of 32
bytes per vertex (3 floats for vertex position, 4 bytes for bone indices, and 4 floats for
bone weights), which provides us up to four bone matrices per vertex with no model
transformation. Based on this, our vertex shader will look like the one presented in
Listing 19.7.

© 2012 by Taylor & Francis Group, LLC



270 III Bending the Pipeline

Figure 19.6. The total GPU time required to render 1 to 32 shadow maps (left) and the average GPU time
required per shadow map (right) using traditional shadow map generation (blue) and our layered method (red)
when using a vertex shader that performs skeletal animation. Lower values are better.

When we use the skeletal animation implementation instead of the simple vertex
shader, layered shadow map generation outperforms the traditional method when
rendering to more than two depth textures, saving about 30% of GPU time when
we render three or more depth textures at once. It has diminishing performance
difference compared to the traditional method even in the case of a single shadow
map. See Figure 19.6.

Of course, one may say that skeletal animation is usually not applied to all the ge-
ometry rendered in a scene. But we also assume one more thing: the whole geometry
is visible in the final rendering. While modern visibility-determination algorithms
are very efficient, the CPU-based culling algorithms are usually rather coarse and
conservative. This means that in many cases, a reasonable amount of geometry fed
to the GPU does not contribute to the final image either due to occlusion or because
the geometry falls out of the view’s frustum.

19.4.2 View Frustum Culling Optimization

In the next test, we render the Stanford dragon model four times using geometry in-
stancing, from which only one instance is visible from the light’s perspective. With
this, we can simulate a more realistic scenario when the input geometry is just par-
tially visible. We won’t do any sophisticated vertex transformation techniques like
skeletal animation but simply use a per-instance model transformation matrix. The
source code for the vertex shader is shown in Listing 19.8.

In addition to the geometry shader presented in Listing 19.5, used earlier for
performing the layered rendering, we also perform tests with an alternative geometry
shader shown in Listing 19.9 that performs conservative view frustum culling and
emits the incoming triangles only when the triangle lies in the light’s frustum.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-23&iName=master.img-312.jpg&w=382&h=114


19. Massive Number of Shadow-Casting Lights with Layered Rendering 271

#version 420 core

layout(location = 0) in vec3 inVertexPosition;

#ifdef LAYERED
layout(location = 0) out vec4 vertexPosition;
#endif

layout(std140 , binding = 1) uniform transform {
mat4 ModelMatrix[4];

} Transform;

#ifndef LAYERED
layout(std140 , binding = 0) uniform lightTransform {

mat4 VPMatrix ;
} LightTransform;

out gl_PerVertex {
vec4 gl_Position;

};
#endif

void main(void) {
#ifdef LAYERED

vertexPosition = Transform.ModelMatrix[gl_InstanceID] * vec4(inVertexPosition , ←↩
1.f);

#else
gl_Position = LightTransform.VPMatrix * (Transform.ModelMatrix[gl_InstanceID] * ←↩

vec4(inVertexPosition , 1.f));
#endif
}

Listing 19.8. Simplistic shadow rendering vertex shader with geometry instancing support.

As geometry shaders are usually output bound, we expect to get a reasonable per-
formance increase from our new geometry shader. This optimization can reduce the

Figure 19.7. The total GPU time required to render 1 to 32 shadow maps (left) and the average GPU time
required per shadow map (right) using traditional shadow map generation (blue), our layered method without
view frustum culling (red) and our layered method with view frustum culling (green) using four instances of the
scene. Lower values are better.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-23&iName=master.img-357.jpg&w=382&h=112


272 III Bending the Pipeline

#version 420 core

layout(std140 , binding = 0) uniform lightTransform {
mat4 VPMatrix [32];

} LightTransform;

layout(triangles , invocations = 32) in;
layout(triangle_strip , max_vertices = 3) out;

layout(location = 0) in vec4 vertexPosition[];

out gl_PerVertex {
vec4 gl_Position;

};

void main() {
vec4 vertex [3];
int outOfBound[6] = int[6]{ 0, 0, 0, 0, 0, 0 };
for (int i=0; i<3; ++i) {

vertex[i] = LightTransform.VPMatrix [gl_InvocationID] * vertexPosition[i];
if (vertex[i].x > +vertex[i].w) ++ outOfBound[0];
if (vertex[i].x < -vertex[i].w) ++ outOfBound[1];
if (vertex[i].y > +vertex[i].w) ++ outOfBound[2];
if (vertex[i].y < -vertex[i].w) ++ outOfBound[3];
if (vertex[i].z > +vertex[i].w) ++ outOfBound[4];
if (vertex[i].z < -vertex[i].w) ++ outOfBound[5];

}

bool inFrustum = true;
for (int i=0; i<6; ++i)

if (outOfBound[i] == 3) inFrustum = false;

if (inFrustum) {
for (int i=0; i<3; ++i) {

gl_Position = vertex[i];
gl_Layer = gl_InvocationID;
EmitVertex();

}
EndPrimitive();

}
}

Listing 19.9. OpenGL 4.1 instanced geometry shader that performs view frustum culling to determine
whether the incoming triangle has to be emitted to a particular layer.

number of vertices emitted by the geometry shader performing the layered rendering
by a factor of four. The measurements from this combined performance are shown
in Figure 19.7.

Even the naive layered shadow map rendering approach that does not perform
view frustum culling reaches the performance of the traditional method when we
render at least five to ten shadow maps simultaneously. This is most probably the
result of performing geometry instancing in this case so our vertex shader accesses
the gl InstanceID built-in variable. This shows how easily vertex shader costs can
increase when using even such simple techniques like instancing.

While our original layered rendering geometry shader already provides adequate
performance in this use case, what is even more impressive is that performing view

© 2012 by Taylor & Francis Group, LLC



19. Massive Number of Shadow-Casting Lights with Layered Rendering 273

frustum culling in the geometry shader almost doubles the performance of our lay-
ered shadow map generation algorithm despite the additional cost of the actual
culling algorithm.

We’ve seen that the proposed shadow map generation technique offers a clear
performance advantage compared to the traditional method when complex vertex
shaders are used or when the visibility determination algorithms performed on the
CPU provide only conservative results, but what if neither applies to our case? We
still have one more thing that we haven’t taken advantage of: back-face culling.

19.4.3 Back-Face Culling Optimization

When rendering uniformly tessellated closed and opaque geometry, back-face culling
usually halves the amount of geometry rasterized. While OpenGL supports fixed-
function back-face culling, it is done after the geometry shader stage, and that is
already too late, as our algorithm is usually geometry-shader output-bound. Still,
back-face culling can be used for our advantage to further decrease the number of
triangles emitted by the layered rendering geometry shader if we perform it manually
within the shader itself. Thus, the last version of the performance tests uses the

#version 420 core

layout(std140 , binding = 0) uniform lightTransform {
mat4 VPMatrix [32];
vec4 position [32];

} LightTransform;

layout(triangles , invocations = 32) in;
layout(triangle_strip , max_vertices = 3) out;

layout(location = 0) in vec4 vertexPosition[];

out gl_PerVertex {
vec4 gl_Position;

};

void main() {
vec3 normal = cross(vertexPosition[2].xyz - vertexPosition[0].xyz, vertexPosition←↩

[0].xyz - vertexPosition[1].xyz);
vec3 view = LightTransform.position [gl_InvocationID].xyz - vertexPosition[0].xyz;

if (dot(normal , view) > 0.f) {
for (int i=0; i<3; ++i) {

gl_Position = LightTransform.VPMatrix [gl_InvocationID] * vertexPosition[i];
gl_Layer = gl_InvocationID;
EmitVertex();

}
EndPrimitive();

}
}

Listing 19.10. OpenGL 4.1 instanced geometry shader that performs back-face culling to determine whether
the incoming triangle has to be emitted to a particular layer.

© 2012 by Taylor & Francis Group, LLC



274 III Bending the Pipeline

Figure 19.8. The total GPU time required to render 1 to 32 shadow maps (left) and the average GPU time
required per shadow map (right) using traditional shadow map generation (blue), our layered method without
back-face culling (red) and our layered method with back-face culling (green). Lower values are better.

geometry shader in Listing 19.10. The rest of the configuration is equivalent to the
one used in the first test; we use the minimalistic vertex shader show in Listing 19.6
and only a single instance of the scene.

As shown in Figure 19.8, if we use back-face culling, the rendering time is almost
halved, and the GPU time required by layered shadow map generation can be more
than 40% lower than that of the traditional method, even in the case of a simple
vertex shader and no other optimizations.

When layered shadow map rendering is properly implemented, it will outper-
form the traditional method despite the added overhead of using a geometry shader.
The rule of thumb for the geometry shader applies to this technique: it’s always
worth spending even a lot of ALU instructions to decrease the number of output
components emitted by the geometry shader.

In summary, the case of a slightly expensive vertex shader layered shadow map
generation is about 30% faster; with a coarsely culled scene, view frustum culling
brings roughly 40% speed advantage, and using back-face culling makes our layered
technique more than 40% faster than the traditional method even for simple shaders.
Obviously, these use cases may happen in combination; thus, we’ve executed a final
test that renders four instances of the scene with skeletal animation done in the vertex
shader, and with back-face culling and view frustum culling performed in the geom-
etry shader in the case of layered shadow map generation. The results are shown on
Figure 19.9.

The combined results show that our layered technique can take 60% less GPU
time to render shadow maps if more than four depth textures are rendered at once.
Further, even if in a special configuration, the presented technique does not provide
any advantage over the traditional method from the GPU-time point of view, the
amount of CPU time saved by batching the shadow map generation passes into a
single pass can be a good enough reason to implement it.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-23&iName=master.img-465.jpg&w=382&h=113


19. Massive Number of Shadow-Casting Lights with Layered Rendering 275

Figure 19.9. The total GPU time required to render 1 to 32 shadow maps (left) and the average GPU time
required per shadow map (right) using traditional shadow map generation (blue) and our layered method (red)
with back-face culling and view frustum culling. The scene is rendered four times using geometry instancing.
Lower values are better.

19.5 Advanced Techniques
The shadow map generation technique we’ve presented can be directly used to render
shadows for spot lights, but the technique can be applied in a similar manner for
omnidirectional lights and directional light sources.

For omnidirectional lights, we can choose from several alternatives. We can split
the omnidirectional light and use, for example, six 2D shadow maps from the shadow
map array for rendering. Our technique naturally extends to omnidirectional light
sources. We can also use cube shadow maps, in which case, we will use a cube-map
texture array [Haemel 09] instead of a 2D one. Luckily, this does not affect the
implementation of the layered shadow map generation algorithm, as each element of
a cube-map texture array is actually seen as six 2D layers, and a single layer index can
be used to address a specific side of a specific element in the cube-map texture array.

For directional light sources, layered rendering can be used to accelerate cascaded
shadow map rendering. Usually, each layer of the cascaded shadow map has the same
size because objects farther from the eye’s position don’t require that much resolution;
all of the layers of the cascaded shadow map can be rendered in a single run using the
very same algorithm. Actually, it is even possible to render multiple cascaded shadow
maps in a single pass using our technique.

The presented algorithm also trivially handles other advanced shadow map gen-
eration techniques like the ones presented in [Martin and Tan 04, Stamminger and
Drettakis 02, Wimmer et al. 04, Zhang et al. 06]. These techniques tackle the alias-
ing artifacts of shadow mapping resulting from undersampling by performing various
transformations on the scene geometry before rendering it to the shadow map.

Layered rendering is not restricted to rendering shadow maps; it can be used to
generate arbitrary textures. This enables us to use the presented rendering technique
for the batched generation of reflection maps or reflection cube maps analogous to

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-23&iName=master.img-475.jpg&w=382&h=112


276 III Bending the Pipeline

the shadow map generation for spot lights or omnidirectional light sources. The only
difference is that we need to accompany our depth texture array with a color texture
array that will be used as the color buffer of the framebuffer object and attach the
appropriate fragment shaders to the pipeline.

Also, layered rendering can be advantageous for stereoscopic rendering. The only
difference is that the view-projection matrices used will be those of the two eyes; the
same geometry shaders presented could be used without any significant modification.
This use case is a particularly good candidate to take advantage of the performance
benefits of layered rendering, as the two eyes’ position and orientation are roughly
the same at any given time; thus, the list of triangles inside the view frustra are also
more or less identical in the two cases.

Finally, layered rendering can be beneficial also for CAD software, which usually
display multiple views of the same scene that can be rendered in a single pass this
way.

19.6 Limitations
Though layered shadow map generation is very promising, it has limitations, many
of them arising from certain hardware restrictions.

One of these limitations is that the layers of an array texture must have the same
size. This means that multiple shadow maps, reflection maps, or other textures can
be generated in a single pass using our technique only if they have the same size. We’ll
probably have to wait quite some time until hardware and APIs relax this restriction
or provide other means to dispatch rendering to separate, different-sized texture im-
ages. Further, this also requires us to be able to select between different viewports
besides target layers. While both viewport selection and layer selection is possible on
the OpenGL 3.x hardware and API, support is limited to using only one of them at
a time, not both. Until these issues are addressed by the hardware vendors, we need
to use separate passes for each particular shadow map resolution. As an alternative,
a possible solution on current hardware could be the use of a texture atlas that holds
multiple depth images. In this case, the shaders should perform the appropriate view-
port transformations and manually discard the fragments lying outside the intended
viewport.

Another inherent limitation of the presented algorithm is the maximum number
of parallel geometry shader invocations supported by hardware. At the time of this
writing, this is capped at 32, although this may change in the near future. However,
this is not a hard limit on the number of shadow maps our algorithm can handle, as
more instances of an incoming primitive can be emitted to separate target layers even
from within a single geometry shader invocation using a loop. While we lose some
concurrency, we can somewhat increase the upper limit of the number of shadow
maps that can be generated in a single run.

© 2012 by Taylor & Francis Group, LLC



19. Massive Number of Shadow-Casting Lights with Layered Rendering 277

There is, however, also a performance perspective on the practical upper limit
of the number of shadow maps that should be generated in a single pass. As we’ve
seen in the performance-result charts, on a Radeon HD5770, our technique does not
scale that nicely when rendering to more than six shadow maps. The average time
per shadow map does still decrease somewhat above this limit, though we don’t see
as nice a slope as we see for lower number of layers. However, this may be different
on other current or future hardware, including higher-end GPUs or hardware from
other vendors.

There is also another practical limitation on the number of shadow maps that
should be rendered in a single pass. Our technique performs best when there are
many primitives that lie in more than one light source’s frustum. This means that in
the case where the light sources don’t overlap well or, in other words, most of the tri-
angles are visible only from a single light source’s point of view, the added overhead of
executing a geometry shader for every incoming primitive with an invocation count
equal to the number of light sources will outweigh the eliminated vertex attribute
fetching and vertex processing costs. Thus, care must be taken to group light sources
in an appropriate way when their shadow maps are generated with the technique
presented here.

19.7 Conclusion

I’ve presented a rendering technique that takes advantage of OpenGL’s layered ren-
dering capability to accelerate the generation of multiple shadow maps. I provided a
reference implementation and performance measurements on OpenGL 4.x–capable
hardware for both traditional shadow map generation and the layered technique. The
layered technique outperforms traditional shadow map generation in most use cases
on the GPU and can also reduce the CPU overhead of the generation process to con-
stant time. While this technique primarily targets OpenGL 4.x–capable hardware,
I’ve noted that an implementation is possible for OpenGL 3.x capable hardware.

Visibility determination algorithms like view frustum culling and back-face
culling can be used to increase the efficiency of layered rendering and of geome-
try shaders in general. I’ve also presented how layered rendering can be used to
increase the performance of other advanced rendering techniques like reflection map
generation and stereoscopic rendering.

While layered rendering of shadow maps is not popular in the industry yet, I
expect that it will soon gain attention, and developers will see more implementations
taking advantage of it in the domains of video games, CAD software, and other
computer graphics applications.

© 2012 by Taylor & Francis Group, LLC



278 III Bending the Pipeline

Bibliography
[Paul 02] Brian Paul. “ARB depth texture and ARB shadow.” OpenGL extension specifica-

tions, 2002.

[Brown 06] Pat Brown. “EXT texture array.” OpenGL extension specification, 2006.

[Brown and Lichtenbelt 08] Pat Brown and Barthold Lichtenbelt. “ARB geometry”
“ shader4.” OpenGL extension specification, 2008.

[Daniell 10] Piers Daniell. “ARB timer query.” OpenGL extension specification, 2010.

[Dimitrov 07] Rouslan Dimitrov. “Cascaded Shadow Maps.” NVIDIA Corporation, 2007.

[Haemel 09] Nick Haemel. “ARB texture cube map array.” OpenGL extension specifica-
tion, 2009.

[Martin and Tan 04] Tobias Martin and Tiow-Seng Tan. “Antialiasing and Continuity with
Trapezoidal Shadow Maps.” School of Computing, National University of Singapore,
2004.

[Stamminger and Drettakis 02] Marc Stamminger and George Drettakis. “Perspective
Shadow Maps.” REVES-INRIA, 2002.

[Williams 78] Lance Williams. “Casting Curved Shadows on Curved Surfaces.” Computer
Graphics Lab, Old Westbury, New York: New York Institute of Technology, 1978.

[Wimmer et al. 04] Michael Wimmer, Daniel Scherzer and Werner Purgathofer. “Light Space
Perspective Shadow Maps.” Eurographics Symposium on Rendering, 2004.

[Zhang et al. 06] Fan Zhang, Hanqiu Sun, Leilei Xu and Lee Kit Lun. “Parallel-Split Shadow
Maps for Large-scale Virtual Environments.” Department of Computer Science and Engi-
neering, The Chinese University of Hong Kong, 2006.

© 2012 by Taylor & Francis Group, LLC



Efficient Layered Fragment
Buffer Techniques

Pyarelal Knowles, Geoff Leach, and Fabio Zambetta

20.1 Introduction
Rasterization typically resolves visible surfaces using the depth buffer, computing just
the front-most layer of fragments. However, some applications require all fragment
data, including those of hidden surfaces. In this chapter, we refer to these data and the
technique to compute them as a layered fragment buffer (LFB). LFBs can be used for
order-independent transparency, multilayer transparent shadow maps, more accurate
motion blur, indirect illumination, ambient occlusion, CSG, and relief imposters.

With the introduction of atomic operations and random access to video memory
exposed via image units in OpenGL 4.2, it is now possible to capture all fragments
in a single rendering pass of the geometry. This chapter describes and compares
two approaches to packing this data: linked list–based and linearized array–based
approaches.

Transparency is a well-known effect that requires data from hidden surfaces. It
is used here to demonstrate and compare different LFB techniques. To render trans-
parency, an LFB is constructed, and the fragments at each pixel are sorted. Fig-
ure 20.1 shows an example of fragment layers after sorting where each layer contains
fragments of the same depth index. Note that surfaces are discretized and there is
no fragment connectivity information. The sorted fragments are then blended in
back-to-front order. Unlike polygon-sorting approaches to transparency, the LFB
can resolve intersecting geometry and complex arrangements such as in Figure 20.2.

Previous approaches to capturing LFB data involve multiple rendering passes or
suffer from read-modify-write problems, discussed in Section 20.2. OpenGL atomic

279

20

© 2012 by Taylor & Francis Group, LLC



280 III Bending the Pipeline

Layer 0

Layer 1

Layer 2

Layer 3

View Direction

Figure 20.1. Fragment layers resulting from sorting fragments by depth.

operations allow the LFB to be accurately computed in a single rendering pass. The
basic, brute force LFB technique for single-pass construction is to allocate a 3D array,
storing a fixed number of layers in z for each pixel x, y. A per-pixel atomic counter
is incremented to write fragments into the correct layer. Typical scenes have varying
depth complexities, i.e., per-pixel fragment counts, so while the brute force LFB is
fast, the fixed z dimension commonly wastes memory or overflows. The following
are two general approaches to packing the data, solving this issue:

1. Dynamic linked list construction.

2. Array based linearization.

Both aim to pack the data with minimal overhead; however, there are some significant
differences. Exploring these differences and comparing performance is the primary
focus of this chapter.

Figure 20.2. Cyclically overlapping geometry.

© 2012 by Taylor & Francis Group, LLC



20. Efficient Layered Fragment Buffer Techniques 281

20.2 Related Work
There are a number of techniques to capture multiple layers of rasterized fragments.
Before atomic operations in shaders were available, techniques used the depth buffer’s
fragment serialization and multiple rendering passes of the geometry. With the in-
troduction of image units and atomic operations, techniques to capture fragments in
a single pass have been proposed.

Depth peeling [Everitt 01, Mammen 89] is an established approach to captur-
ing LFB data. The scene’s geometry is rendered multiple times, capturing a single
layer with each pass using the depth buffer. For complex geometry and high-depth
complexities, this method is not practical for most real-time applications. Wei and
Xu [Wei and Xu 06] use multiple framebuffer attachments to increase the speed
of depth peeling by peeling multiple layers at once. This algorithm suffers from
fragment collisions, i.e., concurrent read/write hazards; however, is guaranteed to re-
solve errors progressively with each pass. Dual depth peeling [Bavoil and Myers 08]
improves the performance of depth peeling by peeling both front and back layers
simultaneously using blending. Depth peeling via bucket sort [Liu et al. 09a] uses
framebuffer attachments and blending to route fragments into buckets, defined by
uniformly dividing the depth range. An adaptive approach that uses nonuniform
divisions can be used to reduce artifacts caused by fragment collisions. Unlike the
previous techniques, the k-buffer [Bavoil et al. 07] captures and sorts fragments in
a single pass using insertion sort. Atomic operations were not available at the time,
so this method suffers from fragment collisions that give rise to significant artifacts,
although heuristics were described to reduce them.

Liu et al. [Liu et al. 09b] developed a CUDA rasterizer that atomically increments
counters to push fragments onto constant-sized per-pixel arrays in one rendering
pass. This is the brute force technique mentioned in Section 20.1. Yang et al. [Yang
et al. 10] construct per-pixel linked lists of fragments dynamically on the GPU. We
briefly describe this process in Section 20.3. The performance of this method origi-
nally suffered from atomic operation contention, discussed further in Section 20.5.
Crassin [Crassin 10] presented a method to reduce atomic contention using “pages”
of fragments. Around four to six fragments are stored in each linked-list node, thus
reducing the atomic increments on the global counter at the cost of some overallo-
cation of memory. Per-pixel counts are incremented for the index within the current
page, and per-pixel semaphores are used to resolve which shader allocates new pages.
We refer to this technique as the linked pages LFB.

An alternative to the linked-list approach is to pack the data into a linear ar-
ray as described in Section 20.4. This technique is similar to the l-buffer con-
cept [Lipowski 10], except for this method, packing is performed during rendering,
reducing peak memory usage. A rudimentary implementation of this technique is in-
cluded in the Direct3D 11 SDK [Microsoft Corporation 10]. The technique is also
mentioned by Korostelev [Korostelev 10] and discussed by Lipowski [Lipowski 11],
although this is the first detailed comparison as far as we are aware. Lipowski also

© 2012 by Taylor & Francis Group, LLC



282 III Bending the Pipeline

packs the lookup tables, which reduces memory consumption by eliminating empty
pixel entries.

20.3 The Linked-List LFB
The basic linked-list approach is relatively simple to implement. In one rendering
pass, all fragments are placed in a global array using a single atomic counter for
“allocation.” Next, pointers are stored in a separate array of the same length to form
linked lists. Each fragment is appended to the appropriate pixel’s list via per-pixel
head pointers. An atomic exchange safely inserts the fragment into the front of
the list, following which, the fragment’s next pointer is set to the previous head
node:

node = atomicCounterIncrement(allocCounter);
head = imageAtomicExchange(headPtrs , pixel , node).r;
imageStore(nextPtrs , node , head);
imageStore(fragmentData , node , frag);

Figure 20.3 shows an example of the rendering result. The total number of
fragments can be read from the atomic counter. Fragments in the same list are not
guaranteed to be stored near each other in memory. Reading the fragment data is
straightforward:

node = imageLoad(headPtrs , pixel).r;
while (node)
{

frags[fragCount++] = imageLoad(fragmentData , node);
node = imageLoad(nextPtrs , node).r;

}

6

1 2

5

3

0

40

Per-pixel head pointers

Next pointers

Fragment data

Rasterized
fragments

Atomic counter

10 2 3 4 5 6 7

NULL NULL

Figure 20.3. Per-pixel linked lists of fragments.

© 2012 by Taylor & Francis Group, LLC



20. Efficient Layered Fragment Buffer Techniques 283

To determine the memory required for the global array, a preliminary fragment-
counting pass can be performed, or the total memory required must be predicted. If
insufficient memory is allocated in the latter case, data are discarded, or a complete
rerender is needed.

20.4 The Linearized LFB
We now discuss the linearized LFB algorithm, which packs the fragment data into an
array using an offset lookup table, as shown in Figure 20.4(a). This table is computed
from per-pixel fragment counts, which is why a two-pass approach is used. The first
pass calculates fragment counts, and the second regenerates and packs the fragment
data. This produces a 1D array where all per-pixel fragments are grouped and stored
one after the other, in contrast to the linked-list approach.

The linearized LFB rendering algorithm is summarized as follows:

1. Zero offset table.

2. First render pass: compute per-pixel fragment counts.

3. Compute offsets using parallel prefix sums.

4. Second render pass: capture and pack fragments.

An example of the count and offset data for three rasterized triangles is shown
in Figure 20.5. In step 2, the count data is computed, for example, as shown in
Figure 20.5(a). Only the fragment counts are needed, so additional fragment com-
putation such as lighting is disabled.

Count

Offset

Pack

Prefix Sums

Total

0 2 3 3 4 4 4 6

2 1 0 1 0 0 2 0

6

(a)

2 1 0 1 0 0 2 0

2 3 0 4 0 0 2 0

0 4

0 3 4 4

0 2 3 3 4 4 4 6

4 2

Total 6

3 1 0 2

(b)

Figure 20.4. (a) Linearly packing fragment data and (b) the parallel prefix sum algo-
rithm [Ladner and Fischer 80] used to create the offset table.

© 2012 by Taylor & Francis Group, LLC



284 III Bending the Pipeline

1 1

1 1 13 3

1 1 12

1

2

(a)

15 15 16 17 19 19 19 19

6 7 8 11 14 15 15 15

1 1 2 3 5 6 6 6

0 0 0 1 1 1 1 1

(b)

Figure 20.5. An example of (a) counts and (b) offsets for three triangles.

In step 3, offsets are computed, applying the parallel prefix sum algorithm [Lad-
ner and Fischer 80] to the count data. The offsets are computed in place, overwriting
the counts since the counts can be recalculated as the difference between consecutive
offset values. This algorithm is visualized in Figure 20.4(b), and an example of the
final offset table is shown in Figure 20.5(b). For simplicity, the input data for the
parallel prefix sums is increased to the next power of 2, causing a maximum of dou-
ble memory allocation for the offset data. Harris et al. [Harris et al. 07] describe
methods for improving the speed of prefix sums using CUDA as well as handling
non–power-of-2 data.

The total number of fragments is known from the prefix-sums computation.
Thus, the exact memory needed is determined and allocated before packing during
the main render.

In step 4, the second and main rendering pass of the scene is performed. Each
incoming fragment atomically increments the offset value, giving a unique index that
stores the fragment data. Figure 20.6 shows an example of the final linear LFB data.
The data can be read using the difference in offsets, keeping in mind that they now
mark the end of each fragment array:

fragOffset = 0;
if (pixel > 0)

fragOffset = imageLoad(offsets , pixel - 1).r;
fragCount = imageLoad(offsets , pixel).r - fragOffset;

for (int i = 0; i < fragCount; ++i)
frags[i] = imageLoad(fragmentData , fragOffset + i);

0 1 32 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Figure 20.6. An example of linearized LFB fragment data. This, along with the offset table,
Figure 20.5(b), is the algorithm’s output.

© 2012 by Taylor & Francis Group, LLC



20. Efficient Layered Fragment Buffer Techniques 285

20.4.1 Implementation Details

The LFB is a generic data structure, so having a cleanly accessible interface that mul-
tiple shaders can use is important. This is made more difficult with the two geometry
passes of the linearized LFBs. Our approach is to implement an external preprocessor
to parse the #include statement, which gives any shader access to the LFB inter-
face. One could also use ARB shading language include. The application’s
LFB object then sets the uniform variables for each shader that #includes it. This
simplifies managing multiple LFB instances. Injecting #define values is also useful,
for example, for setting constants, removing unused code, or creating permutations
of shaders.

The following shows our basic linearized LFB rendering process, where render
Program and transparencyProgram are OpenGL shader programs:

lfb.init(); //zero lookup tables
lfb.setUniforms(renderProgram);
render (); //fragment count pass
lfb.count (); //parallel prefix sums
lfb.setUniforms(renderProgram);
render (); //capture and store fragments
lfb.end(); //cleanup . also pre-sort if needed
...
lfb.setUniforms(transparencyProgram);
fullScreenTriangle(); //draw LFB contents

In this example, renderProgram computes each fragment’s color and calls
addFragment(color, depth), defined in "lfb.h". This call increments
the fragment count in the first rendering pass and writes fragment data in the
second. The transparent geometry drawn to the LFB in render() is then
blended into the scene, rendering a full-screen triangle. The fragment shader of
transparencyProgram calls loadFragments() and sortFragments(), de-
fined in "lfb.h", providing an array of sorted fragments to be blended.

We store the linearized LFB offset table and data in buffer objects and bind them
to ARB shader image load store image units via glTexBuffer for shader ac-
cess. Memory barriers must be set between each LFB algorithm step and parallel
prefix sum pass with glMemoryBarrier(GL SHADER IMAGE ACCESS BARRIER

BIT). Memory barriers force previous operations on memory to finish before fur-
ther operations start. This stops, for example, prefix sums from being computed
before the fragment-count pass has finished writing the results.

Fragment counts can be calculated in step 2 using either atomic increments or ad-
ditive blending. Blending can be faster but is not supported with integer textures, so
either the prefix sums must be performed with floats or a copy is required. Care must
be taken to structure the implementation such that the fragment count between ren-
dering passes matches exactly. For example, entire triangles intersecting the near- and
far-clipping planes are rasterized. We ignore fragments outside the clipping planes
by forcing the early depth test with layout(early fragment tests) in;.

© 2012 by Taylor & Francis Group, LLC



286 III Bending the Pipeline

If blending is used, the offset table can be zeroed with glClear. If blending is
not used, zeroing a buffer object can be accomplished quickly using glCopyBuffer
SubData to copy a preallocated block of zeroed memory. This gives a small per-
formance boost over writing zeros from shaders, at the cost of additional memory
overhead.

The prefix sums can be computed in a vertex shader by calling glDraw

Arrays(GL POINTS, 0, n) without client state attributes being bound. gl

VertexID can be used as the thread ID for the computation. Enabling GL

RASTERIZER DISCARD prevents the point primitives proceeding to rasterization.
When reading the total fragment count during the prefix sums step, both glGet

BufferSubData and glMapBufferRange are slow when operating directly on the
offset table. As a workaround, we copy the total fragment count into a one-integer
buffer and read from that instead. The same phenomenon occurs when reading the
linked-list LFB atomic counter.

When rendering transparency, we sort the fragments in a local array in the shader,
as access to global video memory is relatively slow. This imposes the limitation of a
maximum number of fragments per pixel because the size of the local array is set at
compile time. Saving the sorted data (or sorting in place for small depth complex-
ities) may be beneficial for other applications that read fragments many times, for
example, raycasting. The O(n log n) sorting algorithms perform worse than O(n2)
algorithms for small n; the fastest sorting algorithm tested was insertion sort for up
to 32 fragments. This is discussed further in Section 20.5.

We have found that shaders reading empty LFB fragment lists take an unexpect-
edly long time, so the stencil buffer is used to mask empty pixels. This provides a
performance boost, especially when a significant fraction of the viewport is empty.
We believe the cause is related to a slowdown from relatively large local arrays, in this
case, the sorting array, for reasons about which we are uncertain.

20.5 Performance Results
We have implemented the brute force, linearized, linked-list, and linked-pages LFBs.
Transparency is used as a benchmark, as other authors have done [Yang et al. 10,
Crassin 10]. We compare performance and show that linearized and linked-list LFBs
are competitive packing techniques. All timing experiments were performed using a
Geforce GTX 460 at 1920 × 1080 resolution.

Updates to the OpenGL 4.2 implementation (late 2011) provide fast atomic
counters. As such, there is no longer significant overhead from the atomic contention
that originally hindered the linked-list approach. The basic linked-list LFB now
performs better than the linked-pages variant [Crassin 10].

Two meshes, the dragon and atrium shown in Figures 20.7 and 20.8, are rendered
to detail each algorithm’s step times, given in Table 20.1. These scenes were chosen
for their differing viewport coverage and depth complexities, shown in Figure 20.9.

© 2012 by Taylor & Francis Group, LLC



20. Efficient Layered Fragment Buffer Techniques 287

Figure 20.7. The Stanford dragon model, 871,414 triangles, striped to better show trans-
parency. 1.3M total fragments.

Reading and sorting LFB data quickly becomes the bottleneck with more fragments.
A goal in linearizing the LFB data is to give better memory access patterns; however,
we observe little performance benefit from the sequential access. Both techniques
perform similarly for these scenes, to within 10% of each other.

Figure 20.8. Sponza atrium by Frank Meinl, 279,095 triangles. 17.5M total fragments.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-24&iName=master.img-142.jpg&w=225&h=164
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-24&iName=master.img-143.jpg&w=319&h=179


288 III Bending the Pipeline

Dragon Atrium

Algorithm step L LL L LL

Zero tables or pointers 0.02 3.0 0.02 3.00

Fragment count render 3.97 10.60

Compute prefix sums 4.47 4.67

Main LFB render 3.79 5.99 30.00 30.99

Read & blend fragments 8.52 10.16 95.05 88.08

Sort in shader 1.3 0.93 43.68 42.14

Total 22.07ms 20.10ms 177.05ms 171.24ms

Table 20.1. Linearized (L) and linked-list (LL) LFB algorithm step times.

Results vary considerably depending on resolution and viewing direction com-
pared to typical rasterization using the depth buffer. To better investigate these vari-
ables, we use a synthetic scene of transparent, layered tessellated grids, as shown in
Figure 20.10. An orthographic projection is used, and the grid size, layers, and tes-
sellation are varied. A linear relationship between rendering time and total fragments
is observed in Figure 20.11, where fragments are increased by scaling ten layers of
20K triangle grids to fill the viewport. Rendering more grid layers to increase the
total fragments gives similar results. The brute force LFB is faster than other tech-
niques, although it has much higher memory requirements. The rendering times in
the synthetic scene broadly match that of the dragon and atrium for their fragment
counts.

Depth complexity, or rather, fragment distribution, impacts sorting performance
significantly. In Figure 20.12, the linearized LFB is used to render increasing grid
layers while reducing the viewport coverage, keeping the total fragments (8M) and

(a) (b)

Figure 20.9. Depth complexities where black represents 0 fragments and white represents
(a) 8 fragments and (b) 32 fragments.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-24&iName=master.img-209.jpg&w=147&h=107
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-24&iName=master.img-210.jpg&w=196&h=107


20. Efficient Layered Fragment Buffer Techniques 289

Figure 20.10. Transparent layered grids of polygons.

polygons (500–1000) approximately constant. Rendering times are similar for both
linearized and linked-list LFBs, as sorting is a common operation. The sorting time
becomes dominant after approximately 50 layers. Simply declaring and populating
the sorting array (no sorting) with 256 vec4 elements causes a 3–4× slowdown,
compared to blending unsorted fragments directly from video memory (no local
array). As expected, O(n2) insertion sort is faster for small n, for example, in the
dragon and atrium scenes. We expect most scenes to have similar depth complexities;
however, more complex scenes will benefit from O(n log n) sorting algorithms.

In terms of memory requirements, the overhead for the linearized LFB is the off-
set table, whereas the overhead for the linked-list LFB is both head and next point-
ers. In general, the linked-list LFB uses ≈ 25% more memory than the linearized
LFB from the addition of next pointers, assuming 16 bytes of data per fragment.

0 M
0

20

200

180

160

140

120

100

80

60

40

T
im

e 
(m

il
li
se

co
n
d
s)

5 M 10 M 15 M

Fragments (millions)

Linked pages

Linked lists

Brute force

Linearized

20 M

Figure 20.11. Comparing rendering times for different LFB techniques.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-24&iName=master.img-220.jpg&w=117&h=115
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-24&iName=master.img-221.jpg&w=117&h=115


290 III Bending the Pipeline

0
0

1000

900

800

700

600

500

400

300

200

100
T

im
e 

(m
il
li
se

co
n
d
s)

64 128 192

Grid Layers

Insertion sort

Merge sort

Shell sort

No sorting

No local array

256

Figure 20.12. Varying depth complexity.

For 1920 × 1080 resolution, offsets are 8MB—in this case, 92KB more than head

pointers, but potentially up to two times larger.

20.6 Conclusion
We have presented a comparison of linearized and linked-list LFBs, and results show
both perform similarly for transparency. An expectation regarding the linearized LFB
was that the sequential data layout would provide faster memory access. At this stage,
this has not been observed to significantly affect the performance of transparency
rendering.

The concept of capturing all output during rasterization, for example, in REYES
[Carpenter 84], is well known, and the ability to do so in real time is becoming
practical. In this chapter, we have focused on transparency; however, there are many
applications that become possible or could be improved with the LFB. Screen-space
effects such as ambient occlusion, indirect illumination [Yang et al. 10], motion
blur, and depth of field suffer inaccuracies from missing data behind the front layer.
Correct refraction and reflection [Davis and Wyman 07] require raycasting through
multilayer data. Relief imposters [Hardy and Venter 10] produce incorrect results for
concave objects, a problem that could be solved with the LFB.

Bibliography
[Bavoil and Myers 08] Louis Bavoil and Kevin Myers. “Order Independent Transparency

with Dual Depth Peeling.” Technical report, NVIDIA Corporation, 2008.

[Bavoil et al. 07] Louis Bavoil, Steven P. Callahan, Aaron Lefohn, João L. D. Comba, and
Cláudio T. Silva. “Multi-Fragment Effects on the GPU Using the k-Buffer.” In Proceed-

© 2012 by Taylor & Francis Group, LLC



20. Efficient Layered Fragment Buffer Techniques 291

ings of the 2007 Symposium on Interactive 3D Graphics and Games, I3D ’07, pp. 97–104.
New York: ACM, 2007.

[Carpenter 84] Loren Carpenter. “The A-Buffer, an Antialiased Hidden Surface Method.”
SIGGRAPH Computer Graphics 18 (1984), 103–108.

[Crassin 10] Cyril Crassin. “Icare3D Blog: Linked Lists of Fragment Pages.” http://blog.
icare3d.org/2010/07/opengl-40-abuffer-v20-linked-lists-of.html, 2010.

[Davis and Wyman 07] Scott T Davis and Chris Wyman. “Interactive refractions with total
internal reflection.” In Proceedings of Graphics Interface 2007, GI ’07, pp. 185–190.
New York: ACM, 2007. Available online (http://doi.acm.org.ezproxy.lib.rmit.edu.au/
10.1145/1268517.1268548).

[Everitt 01] Cass Everitt. “Interactive Order-Independent Transparency.” Technical report,
NVIDIA Corporation, 2001.

[Hardy and Venter 10] Alexandre Hardy and Johannes Venter. “3-View Impostors.” In Pro-
ceedings of the 7th International Conference on Computer Graphics, Virtual Reality, Visuali-
sation and Interaction in Africa, AFRIGRAPH ’10, pp. 129–138. New York: ACM, 2010.
Available online (http://doi.acm.org/10.1145/1811158.1811180).

[Harris et al. 07] Mark Harris, Shubhabrata Sengupta, and John D. Owens. “Parallel Prefix
Sum (Scan) with CUDA.” In GPU Gems 3, edited by Hubert Nguyen, Chapter 39,
pp. 851–876. Reading, MA: Addison Wesley, 2007.

[Korostelev 10] Eugene Korostelev. “Order-Independent Transparency on the GPU Us-
ing Dynamic Lists.” UralDev Programming Contest Articles 4, http://www.uraldev.ru/
articles/id/36, 2010.

[Ladner and Fischer 80] Richard E. Ladner and Michael J. Fischer. “Parallel Prefix Compu-
tation.” Journal of the ACM 27 (1980), 831–838.

[Lipowski 10] Jarosław Konrad Lipowski. “Multi-Layered Framebuffer Condensation: The l-
Buffer Concept.” In Proceedings of the 2010 International Conference on Computer Vision
and Graphics: Part II, ICCVG’10, pp. 89–97. Berlin, Heidelberg: Springer-Verlag, 2010.

[Lipowski 11] Jarosław Konrad Lipowski. “d-Buffer: Letting a Third Dimension Back In...”
http://jkl.name/∼jkl/rnd/, 2011.

[Liu et al. 09a] Fang Liu, Meng-Cheng Huang, Xue-Hui Liu, and En-Hua Wu. “Efficient
Depth Peeling via Bucket Sort.” In Proceedings of the Conference on High Performance
Graphics 2009, HPG ’09, pp. 51–57. New York: ACM, 2009.

[Liu et al. 09b] Fang Liu, Meng-Cheng Huang, Xue-Hui Liu, and En-Hua Wu. “Single Pass
Depth Peeling via CUDA Rasterizer.” In SIGGRAPH 2009: Talks, SIGGRAPH ’09,
pp. 79:1–79:1. New York: ACM, 2009. Available online (http://doi.acm.org/10.1145/
1597990.1598069).

[Mammen 89] A. Mammen. “Transparency and Antialiasing Algorithms Implemented with
the Virtual Pixel Maps Technique.” Computer Graphics and Applications, IEEE 9:4
(1989), 43–55.

[Microsoft Corporation 10] Microsoft Corporation. “DirectX Software Development Kit
Sample.” http://msdn.microsoft.com, 2010.

© 2012 by Taylor & Francis Group, LLC



292 III Bending the Pipeline

[Wei and Xu 06] Li-Yi Wei and Ying-Qing Xu. “Multi-Layer Depth Peeling via Fragment
Sort.” Technical report, Microsoft Research, 2006.

[Yang et al. 10] Jason C. Yang, Justin Hensley, Holger Grün, and Nicolas Thibieroz. “Real-
Time Concurrent Linked List Construction on the GPU.” Computer Graphics Fo-
rum 29:4 (2010), 1297–1304. Available online (http://dblp.uni-trier.de/db/journals/cgf/
cgf29.html#YangHGT10).

© 2012 by Taylor & Francis Group, LLC



Programmable Vertex Pulling

Daniel Rákos

21.1 Introduction
OpenGL and today’s GPUs provide a high degree of flexibility for acquiring
geometry-related information from auxiliary buffers using the shader built-in con-
stants provided by GLSL based on data granularity. The name gl VertexID pro-
vides the index of the currently processed vertex, gl PrimitiveID, which provides
the index of the currently processed geometric primitive, and gl InstanceID pro-
vides the index of the currently processed instance of an instanced draw command.
Still, there are restrictions on how object information can be passed to the graphics
pipeline if we use traditional methods for specifying geometric information using
attribute arrays and an optional element array.

This chapter explores the possibility of taking advantage of some of the latest
GPU technologies to provide a method that enables completely programmable vertex
pulling, i.e., a programmable approach to fetch vertex attributes.

The possibility of implementing programmable vertex pulling has been avail-
able in OpenGL and in hardware for some time now, but this technique is rarely
used in practice. The main reason behind this is that developers assume that fixed-
functionality vertex pulling uses dedicated hardware to execute this task and thus can
provide better performance.

However, OpenGL 3.x–capable hardware’s unified architecture shows that fixed-
function vertex pulling has to go through the very same hardware path that pro-
grammable buffer fetching does, including the cache hierarchy that is shared among
all fetching units, including attribute, buffer, and texture fetches.

293

21

© 2012 by Taylor & Francis Group, LLC



294 III Bending the Pipeline

The main goal of this chapter is to implement a simple programmable vertex
pulling shader with a sample vertex attribute setup and compare its performance
with a setup that uses fixed-function vertex attribute fetching to demonstrate the
performance characteristics of programmable vertex pulling.

Further, I will present common use cases where programmable vertex pulling can
provide additional flexibility and/or performance over the traditional approaches.

21.2 Implementation
The core of the implementation of programmable vertex pulling is built around
the functionality provided by buffer textures [Brown 08]. These textures provide
a method that allows every shader stage to fetch arbitrary data from buffer ob-
jects. Trivially, this functionality alone is enough to implement programmable vertex
pulling, as the only change that has to be made compared to fixed-function vertex
pulling is that all vertex attributes and, optionally, the indices are manually fetched
in the vertex shader.

I will distinguish two types of programmable vertex pulling methods:

1. Programmable attribute fetching. In this case, we will still use fixed-
function indexed primitive rendering, but the vertex attributes will be manu-
ally fetched in the vertex shader.

2. Fully programmable vertex pulling. Vertex indexing will be done in the
vertex shader together with the vertex attribute fetching.

In our sample implementation, we use a simple vertex attribute setup of 32 bytes/
vertex (3 floats for position, 3 floats for normal, and 2 floats for texture coordi-
nates) all stored in an interleaved buffer format. In the case of fixed-function vertex
pulling, we use an element array for indexed primitive rendering. In the case of our
programmable vertex pulling implementation, the element array will be fed to the
vertex shader as the only vertex attribute array, and we will implement indexed prim-
itive rendering programmatically in the vertex shader (i.e., fully programmable vertex
pulling).

The vertex shader used for both fixed-function and programmable vertex pulling
is presented in Listing 21.1, where the preprocessor directive PROGRAMMABLE is de-
fined only in the case of the latter. The shader transforms the vertex position into clip
space, the normal to view space, and passes them together with the texture coordinate
set to subsequent stages of the rendering pipeline.

Obviously, the client-side code setup for the vertex arrays and the buffer textures
is different in both cases. This is presented in Listing 21.2 using the same preproces-
sor directive for selecting between the two rendering paths.

Now, in this example, there is no additional flexibility provided by programmable
vertex pulling; however, if the information required by the vertex shader is not

© 2012 by Taylor & Francis Group, LLC



21. Programmable Vertex Pulling 295

#version 420 core

layout(std140 , binding = 0) uniform transform {
mat3 NormalMatrix;
mat4 MVPMatrix;

} Transform;

#ifdef PROGRAMMABLE
layout(location = 0) in int inIndex ;
layout(binding = 0) uniform samplerBuffer attribBuffer;
#else
layout(location = 0) in vec3 inVertexPosition;
layout(location = 1) in vec3 inVertexNormal;
layout(location = 2) in vec2 inVertexTexCoord;
#endif

layout out vec3 outVertexNormal;
layout out vec2 outVertexTexCoord;

out gl_PerVertex {
vec4 gl_Position;

};

void main(void) {
#ifdef PROGRAMMABLE

vec4 attrib0 = texelFetch(attribBuffer , inIndex * 2);
vec4 attrib1 = texelFetch(attribBuffer , inIndex * 2 + 1);
vec3 inVertexPosition = attrib0 .xyz;
vec3 inVertexNormal = vec3(attrib0 .w, attrib1 .xy);
vec2 inVertexTexCoord = attrib1 .zw;

#endif
gl_Position = MVPMatrix * vec4(inVertexPosition , 1.f);
outVertexNormal = NormalMatrix * inVertexNormal;
outVertexTexCoord = inVertexTexCoord;

}

Listing 21.1. Sample vertex shader that can perform fixed-function or programmable vertex pulling.

#ifdef PROGRAMMABLE
/* setup index buffer as the only vertex attribute */

glBindBuffer(GL_ARRAY_BUFFER , indexBuffer);
glEnableVertexAttribArray(0);
glVertexAttribIPointer(0, 1, GL_INT, 4, NULL);

/* configure the buffer texture to use the vertex attribute buffer as storage */
glBindTexture(GL_TEXTURE_BUFFER, bufferTexture);
glTexBuffer(GL_TEXTURE_BUFFER, GL_RGBA32F , vertexBuffer);

#else
/* use the index buffer as element array buffer */

glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, indexBuffer);
/* use the vertex buffer to set up interleaved vertex attributes */

glBindBuffer(GL_ARRAY_BUFFER , vertexBuffer);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT , GL_FALSE , 32, 0);
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 3, GL_FLOAT , GL_FALSE , 32, 12);
glEnableVertexAttribArray(2);
glVertexAttribPointer(2, 2, GL_FLOAT , GL_FALSE , 32, 24);

#endif

Listing 21.2. Client-side configuration of the vertex attributes for fixed-function and programmable vertex
pulling.

© 2012 by Taylor & Francis Group, LLC



296 III Bending the Pipeline

different for every vertex, programmable vertex pulling can be advantageous. Fixed-
function vertex pulling provides a mechanism via instanced arrays [Helferty et al. 08]
that makes it possible to fetch some vertex attributes with a smaller frequency than
every vertex, but it is limited to the possibility of fetching new attributes at every nth
instance. With programmable vertex pulling, this frequency can be arbitrary.

One can use the built-in shader variables gl VertexID, gl PrimitiveID, and
gl InstanceID to control the rate of attribute fetches, but on OpenGL 4.x–capable
hardware, even nonuniform fetching frequencies can be achieved by using custom
shader logic and atomic counters [Licea-Kane et al. 11].

21.3 Performance
One of the preconceptions that scares off developers from using programmable vertex
pulling where traditional fixed-function vertex pulling is simply not flexible enough
to solve a particular problem is performance. In order to falsify this preconception,
I’ve executed some tests that reveal the strengths and weaknesses and the relative per-
formance of programmable vertex pulling compared to the fixed functionality. The
tests were executed on OpenGL 3– and OpenGL 4–capable GPUs from different
vendors and use the Stanford Dragon and Buddha models consisting of 871,414 and
1,087,716 indexed triangles, respectively.

The tests use the vertex shader and client-side setup presented in Listing 21.1
and Listing 21.2. In the case of fixed-function vertex pulling and programmable
attribute fetching, we render the models using a single glDrawElements call, while
in the case of fully programmable vertex pulling, the glDrawArrays command is
used because, in this case, we don’t intend to utilize fixed-function indexed primitive
rendering.

The measurements have been done so that we can eliminate all the fragment
processing overhead by rendering the models outside the view frustum, as we are pri-
marily aiming to measure vertex-processing cost differences between the three tech-
niques. We use timer queries [Daniell 10] to measure the GPU time required to
render the models (see Figure 21.1). Unfortunately, based on our tests, timer queries
return very dissimilar values in the case of the two hardware vendors, which may be
either the result of driver implementation or hardware architecture differences. How-
ever, as we are only interested in the relative performance of the three vertex pulling
techniques, this does not really affect us.

Table 21.1 shows that programmable attribute fetching is as fast as fixed-function
vertex pulling on modern GPUs, even though we may have expected a slight perfor-
mance penalty because of the possible additional latency incurred by performing the
vertex attribute fetching inside the vertex shader. This shows us that the sophisticated
latency-hiding mechanisms of current GPUs eliminate this cost.

The picture is a bit less bright when using fully programmable vertex pulling,
though the Radeons provide acceptable performance there as well. The reason behind

© 2012 by Taylor & Francis Group, LLC



21. Programmable Vertex Pulling 297

Redeon 5850
(Buddha model)

Redeon 5770
(Buddha model)

GeForce 470
(Buddha model)

GeForce 260
(Buddha model)

Radeon 5850
(Dragon model)

GeForce 470
(Dragon model)

GeForce 260
(Dragon model)

Radeon 5770
(Dragon model)

21.81.61.41.210.80.60.2 0.40

Fully programmable vertex pulling

Programmable attribute fetching

Fixed-function vertex pulling

Figure 21.1. Relative GPU time of rendering the Stanford Dragon and Buddha models on various GPUs
using programmable vertex pulling compared to fixed-function vertex pulling (lower values are better).

the performance penalty for fully programmable vertex pulling is the fact that it
cannot take advantage of the post-transform cache, which can greatly increase the
speed of indexed primitive rendering. I have to also mention that the models were
not optimized for maximum post-transform cache usage, so the time difference may
be even higher in real-life scenarios. The advantage of the Radeon GPUs when

GPU Model Fixed-function Programmable Fully programmable
vertex pulling attribute fetching vertex pulling

GPU time Absolute Absolute Relative Absolute Relative

GeForce 260 Dragon 3.291 ms 3.281 ms -0.3 % 5.902 ms +79.3 %

(GL3) Buddha 4.056 ms 4.047 ms -0.2 % 7.366 ms +81.6 %

GeForce 470 Dragon 0.786 ms 0.748 ms -4.8 % 1.234 ms +57.0 %

(GL4) Buddha 0.928 ms 0.918 ms -1.1 % 1.540 ms +65.9 %

Radeon 5770 Dragon 10.287 ms 10.288 ms 0.0 % 12.393 ms +20.5 %

(GL4) Buddha 13.377 ms 13.381 ms 0.0 % 16.034 ms +19.9 %

Radeon 5850 Dragon 8.896 ms 8.897 ms 0.0 % 9.471 ms +6.5 %

(GL4) Buddha 11.177 ms 11.177 ms 0.0 % 12.009 ms +7.4 %

Table 21.1. Absolute and relative GPU time for rendering the Stanford Dragon and Buddha models on various
GPUs using programmable vertex pulling compared to fixed-function vertex pulling (lower values are better).

© 2012 by Taylor & Francis Group, LLC



298 III Bending the Pipeline

using fully programmable vertex pulling makes me believe that AMD GPUs are less
dependent on efficient post-transform cache usage.

Based on the results, my verdict is that programmable vertex pulling has no over-
head compared to fixed-function vertex pulling in the following cases:

• When rendering nonindexed primitives (e.g., triangle strips).

• When rendering indexed primitives using fixed-function index handling.

While programmable index handling is also an option, when the meshes rely
heavily on the usage of the post-transform cache, the performance of fully program-
mable vertex pulling can be prohibitive.

21.4 Application
We’ve already mentioned that programmable vertex pulling can enable us to control
the frequency of vertex attribute consumption. This means that we can, for example,
pass normals on a per-triangle basis instead of per-vertex; in a similar fashion, we can
select a single layer of a texture array, again, on a per-primitive basis. Additionally,
there might be attributes that have to be consumed from the attribute buffer only in
certain cases, in which case, we can use an atomic counter to supervise our current
position in the buffer. This can decrease memory size and bandwidth requirements
of storing and fetching attributes, thus resulting in better overall performance.

Programmable vertex pulling can handle interleaved and separate data buffers as
well, but it also makes possible the use of arbitrary data structures to store the vertex
attributes or other information that may be needed by the vertex shader. This can in-
clude even multiple indirections, though performance may be a concern when doing
an excessive number of buffer lookup indirections. This also enables the possibility
of handling multiple vertex formats in a single vertex shader and thus can reduce the
number of vertex format setups at the cost of a fairly low runtime overhead in most
cases. While at the time of this, writing OpenGL does not support structure fetches,
the introduction of POD (plain old data structure) fetches can further simplify the
use of programmable vertex pulling in these cases.

Another application of programmable vertex pulling can be attribute-less render-
ing. This can come handy when rendering simple primitives like full-screen trian-
gles for postprocessing or simple light-volume primitive rendering in the case of de-
ferred rendering methods, but it can also be used to dynamically generate parametric
curves and surfaces in the vertex shader. Neither of these require any vertex attribute
arrays, as all of them can be implemented using a few uniform variables as param-
eters. Considering that ALU capacity is usually higher than memory bandwidth,
programmable vertex pulling can greatly increase the rendering performance in these
situations.

© 2012 by Taylor & Francis Group, LLC



21. Programmable Vertex Pulling 299

Besides performance-critical applications, where certain types of data structures
would simply not be feasible, CAD software can benefit from programmable vertex
pulling. CAD software, depending on the target domain, uses various data struc-
tures for storing the topology of the mesh internally. These internal representations
can be based on, e.g., the winged edge model [Baumgart 75], quad-edge data struc-
ture [Guibas and Stolfi 85], combinatorial maps or boundary representation models.
As CAD software, in general, uses fixed-function vertex pulling, it usually has to
maintain two copies of the data, one for internal usage and one for rendering. Tak-
ing advantage of programmable vertex pulling can potentially eliminate the need for
the second copy by enabling the rendering pipeline to parse and display the mesh
data in its original form, used internally by the CAD software.

21.5 Limitations
The biggest issue with fully programmable vertex pulling is that we cannot take ad-
vantage of the post-transform vertex cache that otherwise greatly increases the speed
of indexed primitive rendering. In order to take advantage of this optimization, we
require new hardware and APIs to be able to explicitly tag vertices emitted by a vertex
shader invocation.

In fixed-function vertex pulling, this is done up front by tagging the vertices
with their indices. My proposal is to introduce a new output parameter called
gl VertexTag to the vertex shader language that would be used by the post-
transform vertex cache to tag the received vertices. While this approach would still
not allow us to discard vertices that are already processed on a wavefront, in practice,
it could potentially increase the performance of fully programmable vertex pulling to
as close as possible to the speed of its fixed-function counterpart. This feature would
also allow the post-transform cache to function efficiently in other cases where the
system disables it because the vertex shader can have side effects, as in the case where
the vertex shader uses atomic counters or load/store images [Bolz et al. 11].

Another approach to optimize programmable vertex pulling in the case of pro-
grammatically indexed primitives is to implement a sort of post-transform vertex
cache in the vertex shader. This option is actually possible using OpenGL 4.2 by
taking advantage of atomic counters and load/store images to store already processed
vertices, although the performance of such an approach may still be much lower than
that of the fixed-function post-transform vertex cache.

A further limitation of programmable vertex pulling is that manual format con-
version may be needed in the vertex shader when we would like to use interleaved
attribute arrays that contain attributes with multiple different data formats. For such
cases, our proposal is to attach the same buffer object to multiple buffer textures
using different internal formats and access the appropriate buffer texture in the ver-
tex shader that is as close to the target format as possible to minimize the ALU cost
required to convert the values to the intended representation.

© 2012 by Taylor & Francis Group, LLC



300 III Bending the Pipeline

21.6 Conclusion
Based on the performance results, I can say that programmable attribute fetching is
a viable alternative to fixed-function vertex pulling even in the case when the fixed-
function method could be applied as well, considering that there is no latency in-
curred by manual attribute fetching on most GPUs. However, the strength of pro-
grammable vertex pulling appears when storing the attributes in a structure that is
suitable for traditional rendering is simply not feasible due to the size of the data set
or in cases in which we already have an internal representation that we would like to
work with that does not map well to any of the fixed-function attribute-specification
methods.

As we’ve seen, it is pretty straightforward to implement programmable vertex
pulling using the existing tool set provided by OpenGL, and the required hardware
is only an OpenGL 3.x–capable GPU, though a much greater level of flexibility is
available on OpenGL 4.x–capable GPUs. Actually, in theory, even earlier GPUs can
take advantage of this technique if they support vertex texture fetches by storing the
vertex attributes in a traditional 1D texture.

I’ve also shown that programmable vertex pulling can only be prohibitive from a
performance point of view if we are using programmable indexed primitive render-
ing, as in this case the lack of post-transform vertex cache utilization can dramatically
decrease the performance. I also proposed a few possible solutions to circumvent this
issue.

Finally, I also discussed a few potential applications of the presented technique,
both regarding interactive rendering and CAD software, and I also discussed the key
limitations of programmable vertex pulling compared to its fixed-function counter-
part.

There is need for a much longer and more in-depth study in order to be able
to get a better picture of the capabilities and weaknesses of programmable vertex
pulling, although I hope that this brief preview of the technique’s potential captures
the attention of readers to seek and find their own best use cases for it.

Bibliography
[Baumgart 75] Bruce G. Baumgart. “Winged-Edge Polyhedron Representation for Computer

Vision.” National Computer Conference, 1975.

[Bolz et al. 11] Jeff Bolz, Pat Brown, Barthold Lichtenbelt, Bill Licea-Kane, Eric Wer-
ness, Graham Sellers, Greg Roth, Nick Haemel, Pierre Boudier, and Piers Daniell.
“ARB shader image load store.” OpenGL extension specification, 2011.

[Brown 08] Pat Brown. “ARB texture buffer object.” OpenGL extension specification, 2008.

[Daniell 10] Piers Daniell. “ARB timer query.” OpenGL extension specification, 2010.

© 2012 by Taylor & Francis Group, LLC



21. Programmable Vertex Pulling 301

[Guibas and Stolfi 85] Leonidas J. Guibas and Jorge Stolfi. “Primitives for the Manipulation
of General Subdivisions and the Computation of Voronoi Diagrams.” ACM Transactions
on Graphics, New York: ACM Press, 1985.

[Helferty et al. 08] James Helferty, Daniel Koch, Michael Gold, and John Rosasco.
“ARB instanced arrays.” OpenGL extension specification, 2008.

[Licea-Kane et al. 11] Bill Licea-Kane, Barthold Lichtenbelt, Chris Dodd, Eric Werness, Gra-
ham Sellers, Greg Roth, Jeff Bolz, Nick Haemel, Pat Brown, Pierre Boudier, and Piers
Daniell. “ARB shader atomic counters.” OpenGL extension specification, 2011.

© 2012 by Taylor & Francis Group, LLC



© 2012 by Taylor & Francis Group, LLC



Octree-Based Sparse
Voxelization Using the GPU

Hardware Rasterizer

Cyril Crassin and Simon Green

22.1 Introduction
Discrete voxel representations are generating growing interest in a wide range of
applications in computational sciences and particularly in computer graphics. Ap-
plications range from fluid simulation [Crane et al. 05], collision detection [Allard
et al. 10], and radiative transfer simulation to detail rendering [Crassin et al. 09,
Crassin et al. 10, Laine and Karras 10] and real-time global illumination [Kaplanyan
and Dachsbacher 10,Thiedemann et al. 11,Crassin et al. 11]. When used in real-time
contexts, it becomes critical to achieve fast 3D scan conversion (also called voxeliza-
tion) of traditional triangle-based surface representations [Eisemann and Décoret 08,
Schwarz and Seidel 10, Pantaleoni 11].

In this chapter, we will first describe an efficient OpenGL implementation of a
simple surface voxelization algorithm that produces a regular 3D texture (see Fig-
ure 22.1). This technique uses the GPU hardware rasterizer and the new image
load/store interface exposed by OpenGL 4.2. This section will allow us to familiarize
the reader with the general algorithm and the new OpenGL features we leverage.

In the second part, we will describe an extension of this approach, which enables
building and updating a sparse voxel representation in the form of an octree structure.
In order to scale to very large scenes, our approach avoids relying on an intermediate-
full regular grid to build the structure and constructs the octree directly. This second
approach exploits the draw indirect features standardized in OpenGL 4.0 in order to
allow synchronization-free launching of shader threads during the octree construc-
tion, as well as the new atomic counter functions exposed in OpenGL 4.2.

303

22

© 2012 by Taylor & Francis Group, LLC



304 III Bending the Pipeline

Figure 22.1. Real-time voxelization of dynamic objects into a sparse voxel octree (Wald’s hand 16K triangles
mesh voxelized sparsely in approximately 5.5 ms) and use of the technique for a voxel-based global illumination
application.

One of our main motivations in this work has been to investigate the usability of
the hardware graphics pipeline for fast and real-time voxelization. We will compare
the performance of our approach to the recent work of Pantaleoni [Pantaleoni 11],
which uses CUDA for regular-grid thin voxelization, and detail the performance
of our sparse-octree building approach. A typical real-time usage of our dynamic
voxelization inside a sparse voxel octree has been demonstrated recently as part of the
voxel-based global illumination approach described in [Crassin et al. 11].

22.2 Previous Work
Previous work on 3D voxelization makes a distinction between two kinds of surface
voxelization: thin voxelization, which is a 6-separating representation of a surface
(cf. [Huang et al. 98]) and fully conservative voxelization, where all voxels overlapped
by a surface are activated, or 26-separating (Figure 22.2). Although our method
could easily be extended to fully conservative voxelization, in this chapter we will
only describe the case of thin voxelization. Thin voxelization is cheaper to compute
and is often more desirable in computer graphics applications.

Figure 22.2. Examples of a 4-separating (left) and an 8-separating (right) 2D line rasteriza-
tion equivalent to 6-separating and 26-separating surface voxelizations in 3D.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-26&iName=master.img-018.jpg&w=101&h=90
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-26&iName=master.img-019.jpg&w=150&h=90
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-26&iName=master.img-020.jpg&w=90&h=90
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-26&iName=master.img-021.jpg&w=86&h=87
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-26&iName=master.img-022.jpg&w=87&h=87


22. Octree-Based Sparse Voxelization Using the GPU Hardware Rasterizer 305

In recent years, many algorithms have been proposed that exploit GPUs by
performing triangle mesh voxelization. Early approaches used the fixed-function
pipeline found in commodity graphics hardware of the time. Previous hardware-
based approaches [Fang et al. 00,Crane et al. 05,Li et al. 05] were relatively inefficient
and suffered from quality problems. Due to the lack of random write access, these
approaches had to use a multipass rendering technique, processing the volume slice
by slice and retransforming the entire geometry with each pass. In contrast, [Dong
et al. 04,Zhang et al. 07,Eisemann and Décoret 08] process multiple slices at a time
by encoding voxel grids with a compact binary representation, achieving higher per-
formance but limited to binary voxelization (only storing a single bit to represent an
occupied voxel).

Newer voxelization approaches take advantage of the freedom offered by the
compute mode (CUDA or OpenCL) available on modern GPUs [Schwarz and Sei-
del 10, Pantaleoni 11]. Instead of building on the fixed-function hardware, these
approaches propose pure data-parallel algorithms, providing more flexibility and al-
lowing new original voxelization schemes like direct voxelization into a sparse octree.
However, using only the compute mode of the GPU means that these approaches
don’t take advantage of the powerful fixed-function graphics units, particularly the
hardware rasterizer, that effectively provide a very fast point-in-triangle test func-
tion and sampling operation. With increasing industry focus on power efficiency
for mobile devices, utilizing efficient fixed-function hardware is increasingly impor-
tant. Our method combines the advantages of both approaches, taking advantage
of the fast fixed-function graphics units while requiring only a single geometry pass
and allowing sparse voxelization thanks to the most recent evolutions of the GPU
hardware.

22.3 Unrestricted Memory Access in GLSL

Previous graphics-based approaches (not using compute) were limited by the fact
that all memory write operations had to be done through the ROP (fragment op-
eration) hardware, which does not allow random access and 3D-addressing because
only the current pixel could be written. Recently, the programming model offered by
OpenGL shaders has changed dramatically, with GLSL shaders acquiring the ability
to generate side effects and to dynamically address arbitrary buffers and textures, for
example, the OpenGL 4.2 specification standardized image units access in GLSL (pre-
viously exposed through the EXT shader image load store extension). This
feature, only available on Shader Model 5 (SM5) hardware, gives us the ability to
perform read/write access as well as atomic read-modify-write operations into a sin-
gle mipmap level of a texture from any GLSL shader stage. Beyond textures, linear
memory regions (buffer objects stored in GPU global memory) can also be easily ac-
cessed with this feature using “buffer textures” bound to a GLSL imageBuffer.

© 2012 by Taylor & Francis Group, LLC



306 III Bending the Pipeline

In addition, the NVIDIA-specific extensions NV shader buffer load and
NV shader buffer store (supported on Fermi-class SM5 hardware), provide sim-
ilar functionality on linear memory regions, but they do this through C-like pointers
in GLSL, and the ability to query the global memory address of any buffer object.
This approach simplifies the access to buffer objects and allows arbitrary numbers
of discontinuous memory regions (different buffer objects) to be accessed from the
same shader invocation, while only a limited number of image units can be accessed
by a given shader (this number is implementation dependent and can be queried
using GL MAX IMAGE UNITS).

These new features dramatically change the computation model of GPU shaders
and give us the ability to write algorithms with much of the same flexibility as CUDA
or OpenCL, while still taking advantage of the fast fixed-function hardware.

22.4 Simple Voxelization Pipeline
In this section we will present an initial simple approach to directly voxelize into a
regular grid of voxels stored in a 3D texture. Our voxelization pipeline is based on
the observation that, as shown in [Schwarz and Seidel 10], a thin surface voxelization
of a triangle B can be computed for each voxel V by testing if (1) B’s plane intersects
V , (2) the 2D projection of the triangle B along the dominant axis of its normal (one
of the three main axes of the scene that provides the largest surface for the projected
triangle) intersects the 2D projection of V .

Based on this observation, we propose a very simple voxelization algorithm that
operates in four main steps inside a single draw call (illustrated in Figure 22.3). First,
each triangle of the mesh is projected orthographically along the dominant axis of
its normal, which is the one of the three main axes of the scene that maximizes the
projected area and thus maximizes the number of fragments that will be generated
during the conservative rasterization. This projection axis is chosen dynamically on
a per-triangle basis inside a geometry shader (see Figure 22.4), where information
about the three vertices of the triangle is available. For each triangle, the selected axis

x

x

y y

z

z

Y-
proj

Z-
proj

X-
proj

Normal

Triangle
Dominant

Axis Selection

Triangle
Projection

Conservative
Rasterization

Voxel
Attributes

Computation

Figure 22.3. Illustration of our simple voxelization pipeline.

© 2012 by Taylor & Francis Group, LLC



22. Octree-Based Sparse Voxelization Using the GPU Hardware Rasterizer 307

Geometry Shader

Dominant
Axis

Selection

Triangle
Projection

Edge
Shifting

Fragment
Clipping 

Voxel Frag
Attribute

Computation

Write To 3D
Texture 

Fragment Shader

H
ar

d
w

ar
e

S
et

u
p
/R

as
te

r.

Conservative Rasterization

Figure 22.4. Implementation of our voxelization pipeline on top of the GPU rasterization pipeline.

is the one that provides the maximum value for l{x,y,z} = |n · v{x,y,z}|, with n the
triangle normal and v{x,y,z} the three main axes of the scene. Once the axis selected,
the projection along this axis is simply a classical orthographic projection, and this is
calculated inside the geometry shader.

Each projected triangle is fed into the standard setup and rasterization pipeline
to perform 2D scan conversion (rasterization, see Figure 22.4). In order to get frag-
ments corresponding to the 3D resolution of the destination (cubical) voxel grid, we
set the 2D viewport resolution (glViewport(0, 0, x, y)) to correspond to lat-
eral resolution of our voxel grid (for instance 512× 512 pixels for a 5123 voxel grid).
Since we rely on image access instead of the standard ROP path to the framebuffer
to write data into our voxel grid, all framebuffer operations are disabled, includ-
ing depth writes, depth testing (glDisable(GL DEPTH TEST)) and color writes
(glColorMask(GL FALSE, GL FALSE, GL FALSE, GL FALSE)).

During rasterization, each triangle generates a set of 2D fragments. Each of
these fragments can correspond to the intersection of the triangle with one, two
or three voxels along its direction of projection. Indeed, due to our choice of the
dominant triangle axis for projection (and the use of cubic voxels), the depth range
of a triangle across a 2D pixel can only span a maximum of three voxels in depth.
For each 2D fragment, the voxels actually intersected by the triangle are computed
within the fragment shader, based on position and depth information interpolated
from vertices’ values at the pixel center, as well as screen-space derivatives provided
by GLSL (dFdx()/dFdy()).

This information is used to generate what we call voxel fragments. A voxel frag-
ment is the 3D generalization of the classic 2D fragment and corresponds to a voxel
intersected by a given triangle. Each voxel fragment has a 3D integer coordinate
inside the destination voxel grid, as well as multiple attribute values.

Voxel-fragment attributes are usually a color, a normal, and any other useful
attribute one would want to store per voxel, depending on the application. As usual,
these values can be either interpolated on pixel centers from vertex attributes by the
rasterization process or sampled from the traditional 2D surface textures of the model
using interpolated texture coordinates. In our demo implementation, we only store
one color value as well as one normal vector (used for shading during the rendering
of the voxel grid) per voxel.

© 2012 by Taylor & Francis Group, LLC



308 III Bending the Pipeline

Finally, voxel fragments are written directly from the fragment shader into their
corresponding voxel inside the destination 3D texture, where they must be com-
bined. This is done using image load/store operations as detailed in Section 22.4.2.

22.4.1 Conservative Rasterization

Although it is very simple, this approach does not ensure a correct thin (6-separating
planes [Schwarz and Seidel 10]) voxelization. This is due to the fact that only the
coverage of the center of each pixel is tested against the triangles to generate frag-
ments during the rasterization step. Thus, a more precise conservative rasterization
must be employed to ensure that a fragment will be generated for each pixel touched
by a triangle. The precision of the coverage test could be enhanced by relying on
multisample antialiasing (MSAA), but this solution only delays the problem a little
further and still misses fragments in the case of small triangles. Instead, and similarly
to [Zhang et al. 07], we build upon the second conservative rasterization approach
proposed in [Hasselgren et al. 05]. We will not detail the technique here, and we
invite the reader to refer to [Hasselgren et al. 05] for more details.

The general idea is to generate, for each projected triangle, a slightly larger
bounding polygon that ensures that any projected triangle touching a pixel will nec-
essarily touch the center of this pixel and thus will get a fragment emitted by the
fixed-function rasterizer. This is done by shifting each triangle edge outward in or-
der to enlarge the triangle using the geometry shader (Figure 22.4). Since the exact
bounding polygon that does not overestimate the coverage of a given triangle is not
triangle-shaped (Figure 22.5), the excess fragments outside the bounding box are
killed in the fragment shader after rasterization. This approach entails more work in
the fragment shader but, in practice, is faster than computing and generating exactly
the correct bounding polygon inside the geometry shader.

Pixel footprint

Original triangle

Enlarged triangle

Clipping region

Figure 22.5. Bounding polygon of a triangle used for conservative rasterization.

© 2012 by Taylor & Francis Group, LLC



22. Octree-Based Sparse Voxelization Using the GPU Hardware Rasterizer 309

22.4.2 Compositing Voxel Fragments

Once voxel-fragments have been generated in the fragment shader, their values can
be written directly into the destination 3D texture using image load/store operations.
However, multiple voxel fragments from different triangles can fall into the same
destination voxel in arbitrary order. Since voxel fragments are created and processed
in parallel, the order in which they will be written is not predictable, which leads to
write-ordering issues and can create flickering and non–time-coherent results when
dynamically revoxelizing a scene. In standard rasterization, this problem is handled
by the ROP units, which ensure that fragments are composed in the framebuffer in
the same order as their source primitives have been issued.

In our case, we have to rely on atomic operations. Atomic operations guarantee
that the read-modify-write cycle is not interrupted by any other thread. When mul-
tiple voxel fragments end up on the same voxel, the most simple desirable behavior
is averaging all incoming values. For specific applications, one may want to use more
sophisticated combination schemes like coverage-based combination, but this goes
beyond the scope of this chapter.

Averaging values using atomic operations. To average all values falling into
the same voxel, the simplest way is to first sum all values using an atomic add opera-
tion and then divide this sum by the total number of values in a subsequent pass. To
do so, a counter must be maintained per voxel, and we rely on the alpha channel of
the RGBA color values we store per voxel for this purpose.

However, image-atomic operations are restricted to 32-bit signed/unsigned in-
teger types in OpenGL 4.2 specification, which will rarely correspond to the texel
format used in the voxel grid. We generally want to store RGBA8 or RGBA16F/32F
color components per voxel. Thus, the imageAtomicAdd function cannot be used
directly as is to do the summation.

We emulate an atomic add on such types by relying on a compare-and-swap
atomicCompSwap()operation using the function detailed in Listing 22.1. The idea
is to loop on each write until there are no more conflicts and the value, with which
we have computed the sum has not been changed by another thread. This approach
is a lot slower than a native atomicAdd would be but still allows a functionally
correct behavior while waiting for the specification to evolve. On NVIDIA hardware,
an atomicCompSwap64 operating on 64-bit values can be used on global memory
addresses (NV shader buffer store), which allows us to cut by half the number
of operations and thus provides a two times speedup over the cross-vendor path.
Unfortunately, this process is not exposed for image access, which requires the voxel
grid to be stored inside the global memory instead of the texture memory.

A second problem appears when using an RGBA8 color format per voxel. With
such a format, only 8 bits are available per color component, which quickly causes
overflow problems when summing the values. Thus, the average must be computed
incrementally each time a new voxel fragment is merged into a given voxel. To do

© 2012 by Taylor & Francis Group, LLC



310 III Bending the Pipeline

void imageAtomicFloatAdd(layout(r32ui) coherent volatile uimage3D imgUI , ivec3 ←↩
coords, float val)

{
uint newVal = floatBitsToUint(val);
uint prevVal = 0; uint curVal ;

//Loop as long as destination value gets changed by other threads
while( (curVal = imageAtomicCompSwap(imgUI , coords , prevVal , newVal)) != prevVal )
{

prevVal = curVal;
newVal = floatBitsToUint((val + uintBitsToFloat(curVal)));

}
}

Listing 22.1. AtomicAdd emulation on 32-bit floating point data type using a compare-and-swap operation.

this, we simply compute a moving average using the following formula:

Ci+1 =
iCi + xi+1

i + 1
.

This can be done easily by slightly modifying the previous swap-based atomic add
operation as shown in Listing 22.2. Note that this approach will only work if all data
to be stored, including the counter, can be swapped together using one single atomic
operation.

vec4 convRGBA8ToVec4(uint val){
return vec4( float((val&0 x000000FF)), float((val&0x0000FF00)>>8U), float ((val&0←↩

x00FF0000) >>16U), float((val&0xFF000000) >>24U) );
}
uint convVec4ToRGBA8(vec4 val){

return (uint(val.w)&0 x000000FF) <<24U | (uint(val.z)&0x000000FF) <<16U | (uint(val.y←↩
)&0 x000000FF)<<8U | (uint(val.x)&0x000000FF);

}

void imageAtomicRGBA8Avg(layout(r32ui) coherent volatile uimage3D imgUI , ivec3 ←↩
coords, vec4 val) {

val.rgb*=255.0 f; //Optimise following calculations
uint newVal = convVec4ToRGBA8(val);
uint prevStoredVal = 0; uint curStoredVal;
//Loop as long as destination value gets changed by other threads
while( (curStoredVal = imageAtomicCompSwap(imgUI , coords , prevStoredVal , newVal)) ←↩

!= prevStoredVal) {
prevStoredVal = curStoredVal;
vec4 rval=convRGBA8ToVec4(curStoredVal);
rval.xyz=(rval.xyz*rval.w); // Denormalize
vec4 curValF =rval+val; //Add new value
curValF .xyz/=(curValF .w); // Renormalize
newVal = convVec4ToRGBA8(curValF );

}
}

Listing 22.2. AtomicAvg on RGBA8 pixel type implemented with a moving average and using a compare-
and-swap atomic operation.

© 2012 by Taylor & Francis Group, LLC



22. Octree-Based Sparse Voxelization Using the GPU Hardware Rasterizer 311

22.4.3 Results

Figure 22.6. Stanford dragon
voxelized into a 1283 voxels grid.

Table 22.1 shows execution times (in milliseconds)
of our voxelization algorithm on the Stanford dragon
mesh (871K triangles, Figure 22.6), for 1283 and
5123 voxel resolutions, with and without conserva-
tive rasterization, and with direct write or merging of
values (Section 22.4.2). All timings have been done
on an NVIDIA GTX480.

Fermi and Kepler hardware support 32-bit float-
ing point (FP32) atomic add operation on both im-
ages and global memory pointers, which is exposed
through the NV shader atomic float extension.
Times marked with a star correspond to the results
obtained with this native atomicAdd operation in-
stead of our emulation. The right table compares
our results using an FP32 voxel grid with VoxelPipe [Pantaleoni 11].

As can be seen, our approach provides as good or even better results than [Panta-
leoni 11] when no merging is done (which does not give the same voxelization result)
or when native atomic operations can be used (as is the case for R32F and RG16 voxel
formats). For RG16 voxel formats (two normalized short integers), we perform the
merging inside each voxel using the native atomicAdd operating on an unsigned
int value, which works as long as the 16 bits per component do not overflow.

However, performance drops dramatically when we use our atomic emulation in
floating-point format (R32F, nonstarred results) or our atomic moving average on
RGBA8 formats (Section 22.4.2). Our FP32 atomicAdd emulation appears up to
25 times slower than the native operation when a lot of collisions occur. Paradoxically

Std. raster. Cons. raster. VoxelPipe

Format Res Write Merge Write Merge Write Merge

R32F
128 1.19 1.24* /1.40 1.63 2.41* /62.1 4.80 5.00
512 1.38 2.73* /5.15 1.99 5.30* /30.74 5.00 7.50

RG16
128 1.18 1.24 1.63 2.16
512 1.44 2.38 2.03 4.46

RGBA8
128 1.18 1.40 1.63 69.80
512 1.47 5.30 2.07 31.40

Table 22.1. Execution time (in milliseconds) of our voxelization algorithm and comparison
with VoxelPipe on the Stanford dragon mesh. Times marked with a star correspond to the
results obtained with the hardware atomicAdd operation instead of our emulation.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-26&iName=master.img-162.jpg&w=113&h=112


312 III Bending the Pipeline

in these cases, lower resolution voxelization ends up slower than higher resolution,
due to the increase in the number of collisions encountered per voxel.

22.5 Sparse Voxelization into an Octree
The goal of our sparse voxelization is to store only the voxels that are intersected
by mesh triangles instead of a full grid in order to handle large and complex scenes
and objects. For efficiency, this representation is stored in the form of a sparse-voxel
octree in the spirit of [Laine and Karras 10] and [Crassin et al. 09]. To simplify
explanations in the following sections, we will use the compute terminology and
describe our algorithm in terms of kernels and launching of threads. The way we
actually perform such compute-like thread execution in OpenGL will be described
in Section 22.5.6.

22.5.1 Octree Structure

Our sparse-voxel octree is a very compact pointer-based structure, implemented sim-
ilarly to [Crassin et al. 09]. Its memory organization is illustrated in Figure 22.7.
The root node of the tree represents the entire scene; each of its children represents
an eighth of its volume and so forth for every node.

Octree nodes are stored in linear video memory in a buffer object called the octree
pool. In this buffer, nodes are grouped into 2×2×2 node tiles, which allows us to store
a single pointer in each node (actually an index into the buffer) pointing to eight child
nodes. Voxel values can be stored directly into the nodes in linear memory or can
be kept in bricks associated with the node tiles and stored in a big 3D texture. This
node-plus-brick scheme is the one used in [Crassin et al. 11] to allow fast trilinear
sampling of voxel values.

1

2

4 5

86 7

3

9

1 2 3 4 5

Octree
poolB

u
ff
e
r 

o
b
je

c
t

6 7 8 9

22

7 8

555555554

9

3333 4444444

9

3
D

 T
e
x
tu

re

Brick
pool

Figure 22.7. Illustration of our octree structure with bricks and its implementation in video
memory.

© 2012 by Taylor & Francis Group, LLC



22. Octree-Based Sparse Voxelization Using the GPU Hardware Rasterizer 313

This structure contains values for all levels of the tree, which allows querying
filtered voxel data at any resolution and with increasing detail by descending the tree
hierarchy. This property is highly desirable and was strongly exploited in our global
illumination application [Crassin et al. 11].

22.5.2 Sparse-Voxelization Overview

In order to build the octree structure, our sparse-voxelization algorithm builds upon
the regular grid voxelization we presented earlier. Our entire algorithm is illustrated
in Figure 22.8. The basic idea of our approach is very simple.

We build the structure from top to bottom, one level at a time, starting from
the 1-voxel root node and progressively subdividing nonempty nodes (intersected
by at least one triangle) in each successive octree level of increasing resolution (step
2 in Figure 22.8). For each level, nonempty nodes are detected by voxelizing the
scene at the resolutions corresponding to the resolution of the level, and a new tile
of 23 subnodes is created for each of them. Finally, voxel-fragment values are written
into the leaves of the tree and mipmapped into the interior nodes (steps 3 and 4 in
Figure 22.8).

Write leaf
nodes’
values

Create Voxel-
Fragment list

Bottom-up
octree

MIP-map

...

0

1

2 0

1

2

Top-down
Octree

building
Flag Level 

Nodes

Create New

Node Tiles

Init New

Node Tiles
1 2 3 42a 2b 2c

Figure 22.8. Illustration of our octree-building steps.

22.5.3 Voxel-Fragment List Construction Using an Atomic
Counter

Actually revoxelizing the entire mesh multiple times, once for each level of the octree,
would be very costly. Instead, we chose to voxelize it only once at the maximum
resolution, the resolution of the deepest octree level, and to write generated voxel
fragments into a voxel fragment list (step 1 in Figure 22.8). This list is then used
instead of the triangle mesh to subdivide the octree during the building process.

Our voxel-fragment list is a linear vector of entries stored inside a preallocated
buffer object. It is made up of multiple arrays of values, one containing the 3D
coordinate of each voxel fragment (encoded in one 32-bit word with 10 bits per
component and 2 unused bits) and the others containing all the attributes we want
to store. In our demo implementation we only keep one color per voxel fragment.

In order to fill this voxel-fragment list, we voxelize our triangle scene similarly
to how we did in the first part of this chapter. The difference here is that instead of

© 2012 by Taylor & Francis Group, LLC



314 III Bending the Pipeline

directly writing voxel fragments into a destination 3D texture, we append them to
our voxel fragment list. To manage the list, we store the index of the next available
entry (that is also a counter of the number of voxel fragments in the list) as a single
32-bit value inside another buffer object.

This index needs to be accessed concurrently by thousands of threads append-
ing voxel values, so we implement it with a new atomic counter (introduced with
OpenGL 4.2). Atomic counters provide a highly optimized atomic increment/decre-
ment operation on 32-bit integer variables. In contrast to the generic atomicInc or
atomicAdd operations that allow dynamic indexing, atomic counters are designed
to provide high performance when all threads operate on the same static memory re-
gion.

22.5.4 Node Subdivision

The actual subdivision of all nodes of a given octree level is done in three steps
as illustrated in Figure 22.9. First, the nodes that need to be subdivided are flagged,
using one thread per entry of the voxel-fragment list. Each thread simply traverses the
octree from top to bottom, down to the current level (where there is no node linking
subnodes), and flags the node in which the thread ended. Since multiple threads will
end up flagging the same octree nodes, this allows us to gather all subdivision requests
for a given node. This flag is implemented simply by setting the most significant bit
of the children pointer of the node.

Whenever a node is flagged to be subdivided, a set of 2 × 2 × 2 subnodes (a
tile) needs to be allocated inside the octree pool and linked to the node. Thus, in a
second step, the actual allocation of these subnode tiles is performed by launching
one thread per node of the current octree level. Each thread first checks the flag of
its assigned node, and if it is marked as touched, a new node tile is allocated and its
index is assigned to the childNode pointer of the current node. This allocation of

(1) Tag octree
nodes

...

nodes

(2) Create new node tiles

Node pool

1 2 3 40 11 200000

1 thread per
voxel fragment

1 2 3 4 5 6 7 80

9 10 11 12 13 14 15 16

100000 22222 3 4 5 622

169 10 11 12 13 14 15

1 thread per node

l

V
ox

el
-f
ra

gm
en

ts
 l
is

t

1 2 3 4 5 6 7 80

9 10 11 12 13 14 15 16

100000 22222 3 4 5 622

13 14 15 16

(3) Init new node tiles

1 thread
per node

Node pool Node pool

Figure 22.9. Illustration of the three steps performed for each level of the octree during the top-down
construction with thread scheduling.

© 2012 by Taylor & Francis Group, LLC



22. Octree-Based Sparse Voxelization Using the GPU Hardware Rasterizer 315

new node tiles inside the octree pool is done using a shared atomic counter, similarly
to what we do for the voxel-fragment list (Section 22.5.3).

Finally, these new nodes need to be initialized, essentially to null child node
pointers. This is performed in a separate pass so that one thread can be associated
with each node of the new octree level (Figure 22.9, step 3).

22.5.5 Writing and Mipmapping Values

Once the octree structure has been built, the only remaining task is to fill it with the
values from the voxel fragments. To do so, we first write the high-resolution voxel
fragment values into the leaf nodes of the octree. This is achieved using one thread
per entry of the voxel-fragment list. Each thread uses a similar scheme to the regular
grid to splat and merge voxel-fragment values into the leaves (Section 22.4.2).

In a second step, we mipmap these values into the interior nodes of the tree. This
is done level-per-level from bottom to top, in n− 1 steps for an octree of n levels. At
each step, we use one thread to average the values contained in the eight sub-nodes
of each non-empty node of the current level. Since we built the octree level-by-level
(Section 22.5.2), node tiles get automatically sorted per level inside the octree pool.
Thus, it is easy to launch threads for all nodes allocated in a given level to perform
the averaging. These two steps are illustrated in Figure 22.8 (steps 3 and 4).

22.5.6 Synchronization-Free Compute-Like Kernel Launch
Using draw indirect

In contrast to using CUDA or OpenCL, launching kernels with a specific number
of threads (as we described) is not trivial in OpenGL. We propose to implement
such kernel launches by simply using a vertex shader triggered with zero input vertex
attributes. With this approach, threads are identified within the shader using the
gl VertexID built-in variable that provides a linear thread index.

Since our algorithm is entirely implemented on the GPU, all data necessary for
each step of our approach are present in video memory. In order to provide optimal
performance, we want to avoid reading back these values to the CPU to be able to
launch new kernels since any readback will stall the pipeline. Instead, we rely on
indirect draw calls (glDrawArraysIndirect) that read the call parameters from a
structure stored within a buffer object directly in video memory.

This allows us to batch multiple kernel launches for successive steps of our al-
gorithm with the actual thread configuration (the number of threads to launch and
the starting offset) depending on the result of previous launches with absolutely zero
CPU synchronization. Such GPU-driven kernel launch is currently not possible ei-
ther in CUDA or in OpenCL.

We modify launch parameters using lightweight kernel launches with only one
thread in charge of writing correct values into the draw indirect structure through
global memory pointers.

© 2012 by Taylor & Francis Group, LLC



316 III Bending the Pipeline

With this approach, different kernels launched successively can potentially get
scheduled at the same time on the GPU, and read/write ordering between two kernels
is not ensured. When one kernel depends on the result of a previous kernel for its
execution, we ensure that the data will be available to the threads of the second kernel
by using memory barriers (glMemoryBarrier() command).

22.5.7 Results and Discussion

Table 22.2 shows computation time (in milliseconds) for the different steps of our
algorithm on three representative scenes. Times marked with a star correspond to the
results when atomic-based fragment merging is activated. The maximum voxeliza-
tion resolution is 5123 (9 octree levels). We use RGBA32F voxel values stored into a
buffer object in global memory, and all timings have been done on a Kepler-based
NVIDIA GTX680. We can observe that most of the time is spent in the octree
construction, especially flagging the nodes (Section 22.5.4). Overall performance is
30% to 58% faster compared to a Fermi-based GTX480, and the atomic fragment
merging is up to 80% faster.

Figure 22.10. The Sponza scene voxelized into our octree structure at a maximum resolution of respectively
5123, 2563, and 643 voxels and rendered without filtering.

Frag
list

Octree Construction
Write Mipmap Total

Scene Flag Create Init Total

Hand 0.17 0.89 0.18 0.35 1.42 0.35/ 0.9* 0.55 2.49/ 3.04*

Dragon 3.51 4.93 0.22 0.49 5.64 2.01/ 3.05* 0.78 11.94/ 12.98*

Sponza 2.07 5.65 0.37 1.32 7.34 2.25/ 3.94* 2.09 13.75/ 15.44*

Table 22.2. Step-by-step execution time (in milliseconds) of our sparse octree voxelization for three different
scenes. Times marked with a star correspond to the results when atomic-based fragment merging is activated.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-26&iName=master.img-900.jpg&w=114&h=114
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-26&iName=master.img-901.jpg&w=114&h=114
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-26&iName=master.img-902.jpg&w=114&h=114


22. Octree-Based Sparse Voxelization Using the GPU Hardware Rasterizer 317

Figure 22.10 shows the results of voxelizing the Sponza atrium scene into octree
structures of different resolutions. We used this octree construction algorithm inside
the voxel-based global illumination technique described in [Crassin et al. 11]. In this
approach, a static environment must be quickly prevoxelized, and then at runtime,
dynamic objects must be updated in real time inside the structure. Thanks to our
fast voxelization approach, we were able to keep this structure update under 15% of
the whole frame time.

Currently, one of the weakness of our approach is the requirement of preallocat-
ing the octree buffer with a fixed size. Although this may seem like a problem, it is
in fact often desirable to manage this buffer as a cache, similar to what is proposed
in [Crassin et al. 09].

22.6 Conclusion
In this chapter, we presented two approaches to voxelize triangle meshes, one pro-
ducing a regular voxel grid and one producing a more compact sparse voxel octree.
These approaches take advantage of the fast rasterization hardware of the GPU to
implement efficient 3D sampling and scan conversion. Our approach dramatically
reduces the geometrical cost of previous graphics-based approaches, while in most
cases providing similar or slightly higher performance than state-of-the-art compute-
based approaches. Although it was not detailed here, our approach supports a fast
dynamic update of the octree structure, allowing us to merge dynamic objects inside
a static prevoxelized environment, as demonstrated in [Crassin et al. 11]. Details can
be found in the accompanying source code. Possible future work includes optimiz-
ing the voxel merging as well as the conservative rasterization implementation. In
fact, the new NVIDIA Kepler architecture already improves atomic operation per-
formance considerably.

Acknowledgments. We would like to thank Crytek for its improved version of the
Atrium Sponza Palace model originally created by Marko Dabrovic. We would also like to
thank the Stanford University Computer Graphics Laboratory for the Dragon model, as well
as Ingo Wald for his animated hand model.

Bibliography
[Allard et al. 10] Jérémie Allard, François Faure, Hadrien Courtecuisse, Florent Falipou,

Christian Duriez, and Paul Kry. “Volume Contact Constraints at Arbitrary Resolution.”
In ACM Transactions on Graphics, Proceedings of SIGGRAPH 2010, pp. 1–10. New York:
ACM, 2010. Available online (http://hal.inria.fr/inria-00502446/en/).

[Crane et al. 05] Keenan Crane, Ignacio Llamas, and Sarah Tariq. “Real-Time Simulation
and Rendering of 3D Fluids.” In GPU Gems 2, pp. 615–634. Reading, MA: Addison
Wesley, 2005.

© 2012 by Taylor & Francis Group, LLC



318 III Bending the Pipeline

[Crassin et al. 09] Cyril Crassin, Fabrice Neyret, Sylvain Lefebvre, and Elmar Eisemann.
“GigaVoxels: Ray-Guided Streaming for Efficient and Detailed Voxel Rendering.” In
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D), 2009. Avail-
able online (http://artis.imag.fr/Publications/2009/CNLE09).

[Crassin et al. 10] Cyril Crassin, Fabrice Neyret, Miguel Sainz, and Elmar Eisemann. “Ef-
ficient Rendering of Highly Detailed Volumetric Scenes with GigaVoxels.” In GPU
Pro, pp. 643–676. Natick, MA: A K Peters, 2010. Available online (http://artis.imag.fr/
Publications/2010/CNSE10).

[Crassin et al. 11] Cyril Crassin, Fabrice Neyret, Miguel Sainz, Simon Green, and Elmar Eise-
mann. “Interactive Indirect Illumination Using Voxel Cone Tracing.” In Computer
Graphics Forum (Pacific Graphics 2011), 2011.

[Dong et al. 04] Zhao Dong, Wei Chen, Hujun Bao, Hongxin Zhang, and Qunsheng Peng.
“Real-Time Voxelization for Complex Polygonal Models.” In Proceedings of the Com-
puter Graphics and Applications, 12th Pacific Conference, PG ’04, pp. 43–50. Washington,
DC: IEEE Computer Society, 2004. Available online (http://dl.acm.org/citation.cfm?id=
1025128.1026026).

[Eisemann and Décoret 08] Elmar Eisemann and Xavier Décoret. “Single-Pass GPU Solid
Voxelization for Real-Time Applications.” In Proceedings of graphics interface 2008, GI
’08, pp. 73–80. Toronto, Ont., Canada, Canada: Canadian Information Processing So-
ciety, 2008.

[Fang et al. 00] Shiaofen Fang, Shiaofen Fang, Hongsheng Chen, and Hongsheng Chen.
“Hardware Accelerated Voxelization.” Computers and Graphics 24:3 (2000), 433–442.

[Hasselgren et al. 05] Jon Hasselgren, Tomas Akenine-Mller, and Lennart Ohlsson. “Conser-
vative Rasterization.” In GPU Gems 2. Reading, MA: Addison Wesley, 2005.

[Huang et al. 98] Jian Huang, Roni Yagel, Vassily Filippov, and Yair Kurzion. “An Accurate
Method for Voxelizing Polygon Meshes.” In Proceedings of the 1998 IEEE Symposium on
Volume Visualization, VVS ’98, pp. 119–126. New York: ACM, 1998. Available online
(http://doi.acm.org/10.1145/288126.288181).

[Kaplanyan and Dachsbacher 10] Anton Kaplanyan and Carsten Dachsbacher. “Cascaded
Light Propagation Volumes for Real-time Indirect Illumination.” In Proceedings of I3D,
2010.

[Laine and Karras 10] Samuli Laine and Tero Karras. “Efficient Sparse Voxel Octrees.” In
Proceedings of ACM SIGGRAPH 2010 Symposium on Interactive 3D Graphics and Games,
pp. 55–63. New York: ACM Press, 2010.

[Li et al. 05] Wei Li, Zhe Fan, Xiaoming Wei, and Arie Kaufman. “Flow Simulation with
Complex Boundaries.” In GPU Gems 2, pp. 615–634. Reading, MA: Addison Wesley,
2005.

[Pantaleoni 11] Jacopo Pantaleoni. “VoxelPipe: A Programmable Pipeline for 3D Voxeliza-
tion.” In Proceedings of the ACM SIGGRAPH Symposium on High Performance Graphics,
HPG ’11, pp. 99–106. New York: ACM, 2011. Available online (http://doi.acm.org/10.
1145/2018323.2018339).

[Schwarz and Seidel 10] Michael Schwarz and Hans-Peter Seidel. “Fast Parallel Surface and
Solid Voxelization on GPUs.” In ACM SIGGRAPH Asia 2010 papers, SIGGRAPH ASIA

© 2012 by Taylor & Francis Group, LLC



22. Octree-Based Sparse Voxelization Using the GPU Hardware Rasterizer 319

’10, pp. 179:1–179:10. New York: ACM, 2010. Available online (http://doi.acm.org/
10.1145/1866158.1866201).

[Thiedemann et al. 11] Sinje Thiedemann, Niklas Henrich, Thorsten Grosch, and Stefan
Müller. “Voxel-Based Global Illumination.” In Symposium on Interactive 3D Graphics
and Games, Proceedings of I3D, pp. 103–110. New York: ACM, 2011.

[Zhang et al. 07] Long Zhang, Wei Chen, David S. Ebert, and Qunsheng Peng. “Con-
servative Voxelization.” The Visual Computer 23 (2007), 783–792. Available online
(http://dl.acm.org/citation.cfm?id=1283953.1283975).

© 2012 by Taylor & Francis Group, LLC



© 2012 by Taylor & Francis Group, LLC



IV Performance

When it comes to real-time graphics, performance is what defines the possible from
the impossible; it is what sets the boundaries.

A lack of performance might come from a lack of understanding of the platform
we are working on. This may have a dramatic negative impact on the tile-based
GPUs leading the OpenGL ES world. In his chapter, “Performance Tuning for Tile-
Based Architectures,” Bruce Merry presents key tile-based GPU architecture features
and how to take advantage of them. Jon McCaffrey follows this discussion in his
chapter “Exploring Mobile vs. Desktop OpenGL Performance,” which shows the
performance-scale differences between the mobile and desktop worlds.

Performance is not only the concern of GPU architectures, it is also the direct
result of how we write software. With GPUs whose performances increase at a faster
rate than CPUs, we are more and more often CPU-bound, leaving us incapable to
benefit from all the GPU power. Sébastien Hillaire, in his chapter “Improving Per-
formance by Reducing Calls to the Drivers,” introduces some fundamental concepts
to reduce CPU overhead with a legacy flavor.

In his chapter “Indexing Multiple Vertex Arrays,” Arnaud Masserann comes back
to one of the most fundamental elements for GPU performance: how we submit
vertex array data to the GPU. He provides a directly applicable method to ensure that
vertex indexing will be used even on assets not organized this way, like COLLADA
geometry.

Finally, sometimes we are left with no choice: to scale performance, we must scale
the number of GPUs used for rendering. This is the topic of Shalini Venkataraman
in her chapter “Multi-GPU Rendering on NVIDIA Quadro.” She explains how to
efficiently use multiple GPUs for rendering and integrate their work to build the final
image.

321

© 2012 by Taylor & Francis Group, LLC



© 2012 by Taylor & Francis Group, LLC



Performance Tuning for
Tile-Based Architectures

Bruce Merry

23.1 Introduction
The OpenGL and OpenGL ES specifications describe a virtual pipeline in which
triangles are processed in order: the vertices of a triangle are transformed, the triangle
is set up and rasterized to produce fragments, the fragments are shaded and then
written to the framebuffer. Once this has been done, the next triangle is processed,
and so on. However, this is not the most efficient way for a GPU to work; GPUs will
usually reorder and parallelize things under the hood for better performance.

In this chapter, we will examine tile-based rendering, a particular way to arrange
a graphics pipeline that is used in several popular mobile GPUs. We will look at
what tile-based rendering is and why it is used and then look at what needs to be
done differently to achieve optimal performance. I assume that the reader already
has experience with optimizing OpenGL applications and is familiar with the stan-
dard techniques, such as reducing state changes, reducing the number of draw calls,
reducing shader complexity and texture compression, and is looking for advice that
is specific to tile-based GPUs.

Keep in mind that every GPU, every driver, and every application is different and
will have different performance characteristics [Qua 10]. Ultimately, performance-
tuning is a process of profiling and experimentation. Thus, this chapter contains
very few hard-and-fast rules but instead tries to illustrate how to estimate the costs
associated with different approaches.

This chapter is about maximizing performance, but since tile-based GPUs are
currently popular in mobile devices, we will also briefly mention power consumption.
Many desktop applications will simply render as many frames per second as possible,

323

23

© 2012 by Taylor & Francis Group, LLC



324 IV Performance

always consuming 100% of the available processing power. Deliberately throttling
the frame rate to a more modest level and thus consuming less power can significantly
extend battery life while having relatively little impact on user experience. Of course,
this does not mean that one should stop optimizing after achieving the target frame
rate: further optimizations will then allow the system to spend more time idle and
hence improve power consumption.

The main focus of this chapter will be on OpenGL ES since that is the primary
market for tile-based GPUs, but occasionally I will touch on desktop OpenGL fea-
tures and how they might perform.

23.2 Background
While performance is the main goal for desktop GPUs, mobile GPUs must balance
performance against power consumption, i.e., battery life. One of the biggest con-
sumers of power in a device is memory bandwidth: computations are relatively cheap,
but the further data has to be moved, the more power it takes.

The OpenGL virtual pipeline requires a large amount of bandwidth. For a fairly
typical use-case, each pixel will require a read from the depth/stencil buffer, a write
back to the depth/stencil buffer, and a write to the color buffer, say 12 bytes of traffic,
assuming no overdraw, no blending, no multipass algorithms, and no multisampling.
With all the bells and whistles, one can easily generate over 100 bytes of memory
traffic for each displayed pixel. Since at most 4 bytes of data are needed per displayed
pixel, this is an excessive use of bandwidth and hence power. In reality, desktop GPUs
use compression techniques to reduce the bandwidth, but it is still significant.

To reduce this enormous bandwidth demand, many mobile GPUs use tile-based
rendering. At the most basic level, these GPUs move the framebuffer, including the
depth buffer, multisample buffers, etc., out of main memory and into high-speed
on-chip memory. Since this memory is on-chip, and close to where the computa-
tions occur, far less power is required to access it. If it were possible to place a large
framebuffer in on-chip memory, that would be the end of the story; but unfortu-
nately, that would take far too much silicon. The size of the on-chip framebuffer, or
tile buffer, varies between GPUs but can be as small as 16 × 16 pixels.

This poses some new challenges: how can a high-resolution image be produced
using such a small tile buffer? The solution is to break up the OpenGL framebuffer
into 16 × 16 tiles (hence the name “tile-based rendering”) and render one at a time.
For each tile, all the primitives that affect it are rendered into the tile buffer, and once
the tile is complete, it is copied back to the more power-hungry main memory, as
shown in Figure 23.1. The bandwidth advantage comes from only having to write
back a minimum set of results: no depth/stencil values, no overdrawn pixels, and no
multisample buffer data. Additionally, depth/stencil testing and blending are done
entirely on-chip.

© 2012 by Taylor & Francis Group, LLC



23. Performance Tuning for Tile-Based Architectures 325

Primitives Tile buffer Framebuffer

Figure 23.1. Operation of the tile buffer. All the transformed primitives for the frame are
stored in memory (left). A tile is processed by rendering the primitives to the tile buffer (held
on-chip, center). Once a tile has been rendered, it is copied back to the framebuffer held in
main memory (right).

We now come back to the OpenGL API, which was not designed with tile-based
architectures in mind. The OpenGL API is immediate-mode: it specifies triangles to
be drawn in a current state, rather than providing a scene structure containing all
the triangles and their states. Thus, an OpenGL implementation on a tile-based ar-
chitecture needs to collect all the triangles submitted during a frame and store them
for later use. While early fixed-function GPUs did this in software, more recent
programmable mobile GPUs have specialized hardware units to do this. For each
triangle, they will use the gl Position outputs from the vertex shader to deter-
mine which tiles are potentially affected by the triangle and enter the triangle into a
spatial data structure. Additionally, each triangle needs to be packaged with its cur-
rent fragment state: fragment shader, uniforms, depth function, etc. When a tile is
rendered, the spatial data structure is consulted to find the triangles relevant to that
tile together with their fragment states.

At first glance, we seem to have traded one bandwidth problem for another: in-
stead of vertex attributes being used immediately by a rasterizer and fragment shading
core, triangles are being saved away for later use in a data structure. Indeed, storage is
required for vertex positions, vertex shader outputs, triangle indices, fragment state,
and some overhead for the spatial data structure. We will refer to these collective
data as the frame data (ARM documentation calls them polygon lists [ARM 11], while
Imagination Technologies documentation calls them the parameter buffer [Ima 11]).
Tile-based GPUs are successful because the extra bandwidth required to read and
write these data is usually less than the bandwidth saved by keeping intermediate
shading results on-chip. This will be true as long as the number of post-clipping
triangles is kept to a reasonable level. Excessive tessellation into micropolygons will
bloat the frame data and negate the advantages of a tile-based GPU.

Figure 23.2(a) shows the flow of data. The highest bandwidth data transfers
are those between the fragment processor and the tile buffer, which stay on-chip.
Contrast this to Figure 23.2(b) for an immediate-mode GPU, where multisample
color, depth, and stencil data are sent across the memory bus.

© 2012 by Taylor & Francis Group, LLC



326 IV Performance

On-chip

DRAM

Geometry
processor

Fragment
processor

Frame
data

Framebuffer
(color)

Tile buffer
(depth/stencil)

Tile buffer
(color)

(a)

On-chip

DRAM

Geometry
processor

Fragment
processor

MSAA buffer
(depth/stencil)

MSAA buffer
(color)

Frame buffer
(color)

(b)

Figure 23.2. Data flow in (a) tiled-based and (b) immediate-mode GPUs for multisampled
rendering. Yellow boxes are computational units, blue boxes are memory, and thick borders
indicate multisampled buffers. The immediate-mode GPU moves multisampled pixel data on
and off the chip, consuming a lot of bandwidth.

23.3 Clearing and Discarding the Framebuffer
When it comes to performance-tuning, the most important thing to remember about
a tile-based GPU is that the representation of a frame that is currently being con-
structed is not a framebuffer but the frame data: lists of transformed vertices, poly-
gons, and state necessary to produce the framebuffer. Unlike a framebuffer, these
data grow as more draw calls are issued in a frame. It is thus important to ensure that
frames are properly terminated so that the frame data do not grow indefinitely.

When swapping a double-buffered window, the effect on the back buffer depends
on the window system bindings used. Both EGL and GLX allow the implementation
to invalidate the contents of the back buffer. Thus, the driver can throw away the
frame data after each swap and start with a blank slate (with EGL, applications can
opt to have the back buffer preserved on a swap; see Section 23.4 for more details).

Things become more difficult when using framebuffer objects, which do not have
a swap operation. Specifically, consider the use of glClear. Typical desktop GPUs
are immediate-mode architectures, meaning that they draw fragments as soon as all
the data for a triangle are available. On an immediate-mode GPU, a call to glClear

© 2012 by Taylor & Francis Group, LLC



23. Performance Tuning for Tile-Based Architectures 327

glDisable(GL_SCISSOR_TEST);
glColorMask(GL_TRUE , GL_TRUE , GL_TRUE , GL_TRUE );
glDepthMask(GL_TRUE );
glStencilMask(0xFFFFFFFF);
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);

Listing 23.1. Clearing the screen correctly for a tile-based GPU.

actually writes values into the framebuffer and thus can be expensive. Programmers
use assorted tricks to avoid this, such as not clearing the color buffer if they know it
will be completely overwritten and using half the depth range on alternate frames to
avoid clearing the depth buffer. While these tricks were useful in the past, they have
been surpassed by hardware-level optimizations, and can even reduce performance
by working against these hardware optimizations.

On a tile-based architecture, avoiding clears can be disasterous for performance:
since the frame is built up in frame data, clearing all buffers will simply free up the
existing frame data. In other words, not only is glClear very cheap, it actually
improves performance by allowing unneeded frame data to be discarded.

To get the full benefit of this effect, it is necessary to clear everything: using a
scissor or a mask or only clearing a subset of color, depth, and stencil will prevent the
frame data from being freed. While drivers may detect more cases where clearing can
free the frame data, the safest and most portable approach is shown in Listing 23.1.

This should be done at the start of each frame,1 unless the window system already
takes care of discarding the framebuffer contents. Of course, the masks and scissor
enable don’t need to be set explicitly if they are already in the correct state.

The above discussion about clearing highlights a limitation of the API: glClear
is a low-level command that specifies buffer contents rather than a high-level hint
about how the application is using a buffer. OpenGL ES developers wanting portable
performance should consider the EXT discard framebuffer extension, which
provides this hint. The command glDiscardFramebufferEXT indicates to the
driver that the application no longer cares about the contents of some buffers, allow-
ing the driver to set the pixel values to whatever it wishes. Tiled-based architectures
can use this hint to free up the frame data, while immediate-mode architectures can
choose to ignore the hint. Listing 23.2 shows an example that can be used in place
of Listing 23.1.

const GLenum attachments[3] = { COLOR_EXT , DEPTH_EXT , STENCIL_EXT };
glDiscardFramebufferEXT(GL_FRAMEBUFFER , 3, attachments);

Listing 23.2. Discarding framebuffer contents with EXT framebuffer discard.

1OpenGL does not define what a “frame” is, and it is a surprisingly slippery concept. In this context,
we consider each framebuffer that is generated to constitute a separate frame, even if multiple framebuffer
objects are combined to create a single onscreen image.

© 2012 by Taylor & Francis Group, LLC



328 IV Performance

Discards have another use with framebuffer objects, i.e., render-to-texture. When
rendering 3D geometry to a texture such as an environment map, a depth buffer is
needed during the rendering but does not need to be preserved afterwards. The
application can inform the driver of this by calling glDiscardFramebufferEXT

after doing the rendering but before unbinding the framebuffer object, and a tile-
based GPU may use this as a hint that depth values need not be copied back from
the tile buffer to main memory. Although not yet available on desktop OpenGL,
EXT discard framebuffer is likely to be useful for multisampled framebuffer
objects as well, where the multisampled buffer may be discarded as soon as it has been
resolved into a single-sampled target. At the time of this writing, EXT discard

framebuffer is still relatively new, and some experimentation will be required to
determine how effectively the hints are used by any particular implementation.

23.4 Incremental Frame Updates
For a 3D view with a moving camera, such as in a first-person shooter game, it is
reasonable to expect every pixel to change from frame to frame, and so clearing the
framebuffer will not destroy any useful information. For more GUI-like applications,
there may be assorted controls or information views that do not change from frame
to frame and which do not need to be regenerated. Application developers using
EGL on a tile-based GPU are often surprised to find that the color buffer does not
persist from frame to frame. EGL 1.4 allows this to be explicitly requested by setting
EGL SWAP BEHAVIOR on the surface, but it is not the default on a tile-based GPU
since it reduces performance.

To understand why back-buffer preservation reduces performance, consider again
how a tile-based GPU composes fragments for a single tile. If the framebuffer is
cleared at the start of a frame, the tile buffer need only be initialized to the clear color
before fragments are drawn, but if the framebuffer is preserved from the previous
frame, then the tile buffer needs to be initialized with the corresponding section of
the framebuffer before any new fragments are rendered, and this requires bandwidth.
The bandwidth cost is comparable to treating the previous framebuffer as a texture
and drawing it into the current frame. Although it will depend on the complexity
of the scene, it can be faster just to redraw the entire frame than to try to preserve
regions from the previous frame.

Qualcomm provides a vendor extension (QCOM tiled rendering) that ad-
dresses this use-case. The application explicitly indicates which region it is going
to update, and all rendering is clipped to this region. The GPU then only needs to
process the tiles intersecting this region, and the rest of the framebuffer can remain
untouched. This extension also includes features similar to EXT discard frame

buffer to allow the user to indicate whether the existing contents of the target re-
gion need to be preserved. For example, suppose an application contains a 3D view
in the region with offset x, y and dimensions w × h, which is going to be com-

© 2012 by Taylor & Francis Group, LLC



23. Performance Tuning for Tile-Based Architectures 329

glStartTilingQCOM(x, y, width , height , GL_NONE );
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);
glViewport(x, y, width , height );
// Draw the scene
glEndTilingQCOM(GL_COLOR_BUFFER_BIT0_QCOM);
eglSwapBuffers(dpy , surface );

Listing 23.3. Replacing a portion of the framebuffer using QCOM tiled rendering. GL NONE

indicates that the previous contents of the framebuffer for the affected region may be discarded.
GL COLOR BUFFER BIT0 QCOM indicates that the rendered color data must be written back to the framebuffer.
Depth and stencil may be discarded.

pletely replaced, while the rest of the window is static and does not need to be up-
dated. This can be achieved using the code in Listing 23.3 in addition to setting
EGL SWAP BEHAVIOR to EGL BUFFER PRESERVED.

23.5 Flushing
Tile-based GPUs are sometimes referred to as deferred because the driver will try to
avoid performing fragment shading until it is required. Eventually, of course, the
pixel values will be needed. The following operations will all force the framebuffer
contents to be brought up to date:

• eglSwapBuffers and its equivalents in other window systems;

• glFlush and glFinish;

• glReadPixels, glCopyTexImage, and glBlitFramebuffer;

• querying an occlusion query result from an occlusion query in the current
frame;

• using the result of render-to-texture for texturing.

Changing framebuffer attachments using either glFramebufferRenderbufferor
glRenderbufferStorage, or the texture equivalents is also likely to cause a flush,
as the frame data will only be applicable to the old attachment.

The following pattern will have very poor performance:

1. Draw some triangles.

2. Use the framebuffer contents.

3. Draw another triangle.

4. Use the framebuffer contents.

5. Draw another triangle. . . .

© 2012 by Taylor & Francis Group, LLC



330 IV Performance

Each time the framebuffer contents are needed, there will be another fragment-
shading pass, which in the worst case could involve a read and a write for every
framebuffer pixel just to draw one triangle. Because the cost of each pass is so high,
the goal is to have only one pass per frame.

This is true even if the accesses to the framebuffer contents are done entirely
on the GPU, such as by accessing the results of render-to-texture or by calling
glReadPixelswith a pixel pack buffer, because each draw-then-access requires the
fragment shading to be rerun. Compare this to an immediate-mode GPU, where the
cost of glReadPixelswith a pixel pack buffer will be essentially the same regardless
of when it is performed.

In some drivers, glBindFramebuffer also starts fragment shading for the
framebuffer that has just been unbound. Thus, it is best to bind each framebuffer
only once per frame. As an example, consider a scene in which some objects are
made shiny by using generated environment maps. A naı̈ve walk of the scene graph
might cause each environment map to be generated immediately before drawing the
object itself, but it would be better to first generate all the environment maps before
binding the window system framebuffer to render the final scene.

Apart from the commands above, there is another situation in which flushing
happens. Because the memory usage for the frame data scales with the amount of
geometry in the frame, an application that just keeps drawing more geometry with-
out swapping or clearing would eventually run out of memory. To prevent this from
happening, the driver will eventually force a flush. This is very expensive because un-
like a swap operation, all the buffers, including multisample buffers, are written out
to memory and then reloaded for rendering to continue, which can easily consume
16 times the bandwidth of a regular flush.

This means that performance does not scale linearly with the number of vertices.
Once an application has sufficiently simple geometry to run at interactive rates, it
should be well clear of this performance cliff, but when starting optimization, it is
worth checking for this case before estimating a target vertex count from current
throughput.

23.6 Latency
Since vertex and fragment processing for a frame happen in separate phases, an ap-
plication that has balanced demands on the CPU, vertex processor, and fragment
processor will have three frames in flight at any time, as shown in Figure 23.3. The
exact latency between command submission and completion will depend on which
resources are most limited and will also vary over time.

Apart from impacting responsiveness to user input, latency is a concern when
results of rendering are read back to the CPU. Synchronous queries such as glRead
Pixels without a pixel pack buffer will stall the CPU until results are available and
should almost never be used. But even with asynchronous queries such as occlu-

© 2012 by Taylor & Francis Group, LLC



23. Performance Tuning for Tile-Based Architectures 331

CPU
processing

Vertex
processing

Fragment
processing

CPU
processing

Vertex
processing

Fragment
processing

CPU
processing

Vertex
processing

Fragment
processing

Frame N − 2

Frame N − 1

Frame N

Time

Figure 23.3. Processing pipeline in a tile-based GPU. At any point in time, there can be three frames in
different stages of processing. This shows an idealized case with no pipeline bubbles.

sion queries, the result must eventually be read, and doing so too soon will stall the
pipeline. If it is acceptable to just wait until the query result is available, then a pe-
riodic check of GL QUERY RESULT AVAILABLE is sufficient. Code that is written
for an immediate-mode GPU that assumes the query result will be available within
a fixed number of frames may need to be retuned, either to wait for a larger num-
ber of intervening frames or to poll for the result becoming available. Similarly, if
glReadPixels must be used, performance can be greatly improved at the cost of
some latency by rotating between multiple framebuffer objects and reading not the
just-rendered frame but a previous one, which is more likely to have completed ren-
dering.

Latency also plays a role when objects are modified since commands bind their
resources at the time they are issued. A common example is an animated mesh,
where the vertex positions are updated every frame. The previous vertex positions
may still be in use for vertex shading in the previous frame, so when the application
updates the vertex buffer, the memory the GPU is reading from cannot be touched
until the previous frame is complete. In most cases, drivers handle this by making
an extra copy of the resource “under the hood” to avoid stalling the pipeline, but on
a memory- and bandwidth-constrained mobile device, it is still worth being aware
that this copy-on-write is happening. The problem becomes worse if a single resource
is used multiple times during a frame, interspersed with partial updates, leading to
multiple copy-on-writes. If possible, all the updates should be done as a block before
the resource is used.

Be particularly careful when using extensions such as EGL KHR image pixmap

or GLX EXT texture from pixmap to modify operating system pixmaps. Drivers
usually have less freedom to move these resources around in memory and may need
to stall the pipeline or even flush partial results to the framebuffer and reload them.

The three-phase processing shown in Figure 23.3 means that tile-based GPUs
will typically have a higher latency than immediate-mode GPUs, and thus, code that
has been tuned for an immediate-mode GPU may need retuning. For some tile-
based GPUs, vertex shading for a frame finishes much earlier than fragment shading

© 2012 by Taylor & Francis Group, LLC



332 IV Performance

(in fact, before fragment shading starts), so the latency for vertex shading will be
lower. However, in some cases, parts of vertex shading will be delayed until needed
during fragment shading.

23.7 Hidden Surface Removal
When objects overlap in an immediate-mode GPU, causing one pixel to be over-
written by another, there are two costs associated with this: the cost of shading the
hidden pixels and the extra bandwidth consumed by the associated framebuffer ac-
cesses. In a tile-based GPU, the latter cost is eliminated because only fully rendered
tiles are emitted to memory, but the shading cost remains. It is thus still important
to do high-level culling and to submit opaque objects in front-to-back order to take
advantage of hardware early depth tests. Because the costs are different, however, the
optimal balance of CPU load for sorting and GPU load for shading may be different
compared to an immediate-mode GPU.

An exception to the above is the PowerVR family of GPUs, which feature per-
pixel hidden surface removal during fragment shading [Ima 11]. Before running
any fragment shaders, the polygons are preprocessed to determine which fragments
potentially contribute to the final result, and only those are shaded. This removes
the need to sort opaque geometry. To take full advantage of this, the fragment shader
must be guaranteed to replace occluded pixels. The presence of the GLSL discard

keyword as well as sample masking, alpha testing, alpha-to-coverage, and blending
will all disable the optimization as the occluded pixel may potentially impact the final
image. Thus, these features should only be enabled for the objects that require them,
even at the cost of extra state changes.

Where PowerVR-style hardware hidden-surface removal is not available, another
option is to use an initial depth-only pass: submit all the geometry once with an
empty fragment shader and color writes disabled to populate the depth buffer, and
then draw everything again with the real fragment shader. The depth pass will deter-
mine the depth of the visible surfaces, and the color pass will then perform fragment
shading only for the those surfaces (assuming early depth culling).

This depth-only pass technique can be effective on either an immediate-mode
GPU or a tile-based GPU when it eliminates expensive shading computations, but
the trade-offs are different. In both cases, the depth pass incurs all the vertex pro-
cessing and rasterization costs of the color pass (however, the Adreno 200 and pos-
sibly others have higher fragment throughput in a depth-only pass [Qua 10]). On
an immediate-mode GPU, a depth-only pass incurs a bandwidth penalty since the
depth buffer is accessed during both passes. On a tile-based GPU, the depth buffer
accesses have no main memory bandwidth penalty, but there is the smaller penalty
of duplicating all the geometry in the frame data. Thus, for bandwidth-limited ap-
plications a depth-only pass may be effective on a tile-based GPU even when it is not
effective on an immediate-mode GPU.

© 2012 by Taylor & Francis Group, LLC



23. Performance Tuning for Tile-Based Architectures 333

23.8 Blending
On immediate-mode GPUs, blending is usually expensive because it requires a read-
modify-write cycle to the framebuffer, which is held in relatively slow memory. On
a tile-based CPU, this read-modify-write cycle occurs entirely on-chip and so is very
cheap. Some GPUs have dedicated blending hardware which makes the blending op-
eration essentially free, while others use shader instructions to implement blending;
hence, blending will reduce fragment shading throughput.

Note that this only addresses the direct cost of the blending operation compared
to other transparency or translucency techniques such as alpha tests or alpha-to-
coverage. Making an object partially transparent or translucent has indirect costs, as
the object can no longer be treated as an occluder for hidden-surface removal. The
fragments behind the translucent object must now be processed, whereas previously
they could be eliminated by optimizations such as hardware hidden-surface removal
or early depth testing.

23.9 Multisampling
Multisampling is an effective technique to improve visual quality without sacrificing
as much performance as supersampling. Each framebuffer pixel stores multiple sam-
ples, which are averaged together to produce an antialiased image, but fragments gen-
erated by rasterization need only be shaded once per pixel. While this keeps fragment
shading costs largely the same, it has an enormous bandwidth impact on immediate-
mode GPUs: with 4 times multisampling (a common choice), the bandwidth of all
framebuffer accesses increases by a factor of 4. Various hardware optimizations re-
duce this bandwidth overhead to the point where multisampling is practical, but it is
still expensive.

In contrast, multisampling in a tile-based GPU can be very cheap, as the multiple
samples need only be retained in the on-chip tile buffer, with only the averaged color
value written out to framebuffer memory. Thus, multisampling has no impact on
framebuffer bandwidth.

There are, nevertheless, two costs: firstly, 4 times multisampling will require
four times as much tile buffer memory. Since tile buffer memory is expensive in
terms of silicon area, some GPUs compensate for this by reducing the tile size when
multisampling is in effect. A reduction in tile size has some impact on performance,
but halving the tile size will not halve the performance, and applications limited by
fragment shading throughput will see only a minor impact.

The second cost for multisampling (which also affects immediate-mode GPUs) is
that more fragments will be generated along object silhouettes. Each polygon will hit
more pixels as shown in Figure 23.4. Furthermore, where both the foreground and
background geometry contribute to a single pixel, both fragments must be shaded,
and so hardware hidden surface removal will cull fewer fragments. The cost of these

© 2012 by Taylor & Francis Group, LLC



334 IV Performance

Figure 23.4. The effect of multisampling on fragment shader load. Without multisampling,
only pixels whose centers are covered generate fragments (left; blue). If any of the sample
points are covered, a fragment is generated, thus leading to slightly more fragments along
edges (right).

extra fragments will depend on how much of the scene is made up of silhouettes, but
10% is a good first guess.

23.10 Performance Profiling

On an immediate-mode GPU, the ARB timer query extension can be used to
gauge the cost of rendering some part of the scene: a range of commands to profile is
bracketed by glBeginQuery and glEndQuery, and the time elapsed between these
commands in the command stream is measured. This functionality is described in
more detail in Chapter 34.

While it is possible to implement this extension on a tile-based GPU, the results
will not be useful for anything less than frame granularity. This is because commands
are not processed in the order they are submitted: the vertex processing is all done
in a first pass, and then fragment processing is ordered by tiles. Thus, profiling
will need to rely on more intrusive techniques, such as turning parts of the scene
on or off to determine the performance impact. Vendor-specific tools for accessing
internal performance counters can also be a great help in identifying which parts of
the pipeline are causing bottlenecks.

Apart from post hoc profiling, it is often a good idea to start development with
microbenchmarks that measure the performance of specific aspects of the system to
determine a budget for triangles, textures, shader complexity, etc. When doing so,
keep in mind that submitting too much geometry without swapping will lead to a
performance cliff as described in Section 23.5. It is also important to ensure that the
commands do actually get executed—placing a glClear after draw calls may well
cancel those draw calls before they reach the GPU.

© 2012 by Taylor & Francis Group, LLC



23. Performance Tuning for Tile-Based Architectures 335

23.11 Summary
Every GPU and every driver is different, and different choices in optimizations and
heuristics mean that the only way to truly determine the performance impact of
design choices on a specific system is to test it. Nevertheless, the following rules of
thumb are a good starting point to obtain high performance from a tile-based GPU:

• Clear or discard the entire contents of the color, depth, and stencil buffers at
the start of each frame.

• For each framebuffer, bind it once during the frame, and submit all the com-
mands for the frame before unbinding it or using the results.

• Keep latency in mind when using occlusion queries or other mechanisms to
retrieve the results of commands, and if an application was previously tuned
for the latencies of an immediate-mode GPU, it may need to be retuned.

• Keep polygon counts to a reasonable level, and in particular avoid micropoly-
gons.

• On hardware with built-in hidden surface removal (PowerVR), there is no
need to sort opaque objects front to back; on other hardware, this should be
done. Also consider using a depth-only pass.

• Take advantage of cheap multisampling.

• Remember that on mobile devices, performance must be balanced against
power consumption.

Bibliography
[ARM 11] ARM. Mali GPU Application Optimization Guide, 2011. Version 1.0.

[Ima 11] Imagination Technologies Ltd. POWERVR Series5 Graphics SGX Architecture Guide
for Developers, 2011. Version 1.0.8.

[Qua 10] Qualcomm Incorporated. Adreno™ 200 Performance Optimization: OpenGL ES
Tips and Tricks, 2010.

© 2012 by Taylor & Francis Group, LLC



© 2012 by Taylor & Francis Group, LLC



Exploring Mobile vs. Desktop
OpenGL Performance

Jon McCaffrey

24.1 Introduction

The stunning rise of mobile platforms has opened a new market for new 3D appli-
cations and games where, excitingly, OpenGL ES is the lingua franca for graphics.
However, mobile platforms and GPUs have performance profiles and characteristics
that may be unfamiliar to desktop developers. Developers making the transition from
desktop to mobile need to be aware of the limits and capabilities of mobile devices
to create the best experience possible for the given hardware resources. This chapter
surveys mobile GPU design decisions and constraints, and then explores how these
affect classic rendering paradigms.

First, we examine how mobile and desktop GPUs differ in design goals, scale
and architecture. We then look at memory bandwidth, which greatly affects perfor-
mance and device power consumption, and break down the contributions of display,
rendering, composition, blending, texture access, and antialiasing. After that, our
focus shifts towards optimizing fragment shading for limited compute power. We
will look at ways to eliminate shading work entirely if we can or perform operations
more efficiently if we can’t

Finally, we will discuss the relationship between vertex and fragment shaders and
how it is affected by different mobile GPU architectures and will end with some tips
for optimizing vertex data for efficient reads and updates.

337

24

© 2012 by Taylor & Francis Group, LLC



338 IV Performance

24.2 Important Differences and Constraints

24.2.1 Differences in Scale

Modern mobile devices are very capable, but they face greater limitations than desk-
top systems in terms of cost, chip die size, power consumption, and heat dissipation.

Power consumption is a major concern for mobile platforms that is much less
pressing on the desktop. Mobile devices must run off batteries small enough to fit
in the body of the device, and a short battery life is frustrating and inconvenient
to the user. Mobile hardware is built to use less power than desktop hardware via
lower clock frequencies, narrower busses, smaller chips, smaller data formats, and
by limiting redundant and speculative work. Display and radio take a great deal
of power, but OpenGL applications contribute to power consumption, especially
through computation and through off-chip memory accesses.

Power consumption is doubly impactful on mobile devices since power con-
sumed by the processor, GPU, and memory is largely dissipated as heat. Unlike
desktop systems with active air cooling, good air circulation, and large heat sinks,
mobile systems are usually passively cooled and have contrained bodies with little
room for large sinks or radiating fins. Excess heat generation is not only potentially
damaging to components, it’s also noticeable and irritating to users of handheld prod-
ucts.

Die size and cost are also greatly different between mobile and desktop. High-
end desktop GPUs are some of the largest mainstream chips made, with over three
billion transistors on recent models [Walton 10]. The large area and the effect of
area on yield mean increased cost. A discrete GPU also means a separate package and
mounting and the expected cost increase. In mobile systems, however, the GPU is
usually one component on an integrated system on a chip (SoC) designed for mobile
and embedded applications, which means that a mobile GPU is a fraction of the cost
and area of a desktop GPU.

24.2.2 Differences in Rendering Architecture

Mobile and desktop GPUs don’t differ only in scale. Mobile GPUs such as the
Imagination Tech SGX543MP2 used in the Apple iPhone 4S/iPad 2 and the ARM
Mali-400 used in the Samsung Galaxy S2 use a tile-based rendering architecture
[Klug and Shimpi 11b]. In contrast, desktop GPUs from NVIDIA and ATI and
mobile GPUs like the GeForce ULV GPU used in the Samsung Galaxy Tab 10.1 use
immediate-mode rendering (IMR).

In IMRs, vertices are transformed once and primitives are rasterized essentially
in order (see Figure 24.1). If a fragment passes depth testing (assuming the platform
has early-z), it will be shaded and its output color will be written to the framebuffer.
However, a later fragment may overwrite this pixel, nullifying the earlier work done
and writing the framebuffer again. This behavior is known as overdraw. If the frame-

© 2012 by Taylor & Francis Group, LLC



24. Exploring Mobile vs. Desktop OpenGL Performance 339

Figure 24.1. IMRs render each primitive only once and render the entire framebuffer in a
single pass.

buffer is stored in DRAM external to the GPU, this means a relatively costly and
slow memory access was wasted. Even without overdraw, the depth buffer still must
be read for later fragments generated at a pixel location in order to reject them.

Tilers instead divide the framebuffer into tiles of pixels (see Figure 24.2). All
draw commands are buffered. At the end of the frame, for each tile, all geometry
overlapping that tile is transformed, clipped, and rasterized into a framebuffer cache.
Once the final values for all pixels have been resolved, the entire tile is written out to
memory from the framebuffer cache. This saves redundant framebuffer writes and
allows for fast depth-buffer access since depth testing and depth and color writes can
be performed with the local framebuffer cache. The end goal is to limit the memory
bandwidth consumed by color- and depth-buffer access.

There is an additional group of tilers which use tile-based deferred rendering
(TBDR), for example, the Imagination Tech SGX family. The idea is to rasterize
all primitives in a tile before performing any fragment shading. This allows hidden
surface removal (HSR) and depth testing to be performed in a fast framebuffer cache
before any fragment shading work is done. Assuming opaque geometry, each pixel is
then shaded and written to the framebuffer exactly once.

Figure 24.2. Tiling architectures divide the scene into tiles and render all primitives into
each tile using a fast framebuffer cache.

© 2012 by Taylor & Francis Group, LLC



340 IV Performance

Tiling doesn’t come for free. The scene geometry must be retransformed and
clipped for each tile, so, to maintain a balanced pipeline, additional vertex process-
ing power is needed. Bandwidth will also be spent rereading vertex data for each
tile. The digital logic for tiling, repeated vertex shading, and a fast framebuffer cache
also takes transistors from raw fragment-shading horsepower. Tiling also requires
buffering commands deeply, leading to a more complicated hardware and driver im-
plementation, and the fact that the rendering of each primitive cannot be neatly
placed in a single interval of time makes performance analysis more difficult. For
more tips on performance-tuning specific to tiling architectures, see Chapter 23.

Architecturally, the mobile GPU landscape is not homogenous. Optimizations
may affect the different architectures very differently, so it is important to test on
multiple devices for cross-platform releases.

24.2.3 Differences in Memory Architecture

On desktop systems, middle to high-end GPUs are discrete devices that commu-
nicate with the rest of the system via a peripheral bus like PCI-e, although some
desktop CPUs are now shipping with capable integrated GPUs, for example, the
AMD Llano processors. For good performance, this means that GPUs must include
their own dedicated memory since accessing system memory through a peripheral
bus for all memory accesses would be too slow in terms of bandwidth and latency.
While this increases cost, it is an optimization opportunity since this memory and
its configuration, controller, caching, and geometry can be optimized for graphics
workloads.

For example, the NVIDIA Fermi architecture uses GDDR5 memory that is heav-
ily partitioned [Walton 10] to allow for a wide memory interface. There are no other
components competing for this bandwidth except for uploads from the rest of the
system and scan-out for output devices; the GPU is the only user of this memory.

In mobile devices, on the other hand, the GPU is usually integrated into the
same SoC as the CPU and other components. To save cost, power, die size, and
package complexity, the GPU shares the RAM and memory interface with the other
components. This is known as a unified memory architecture (UMA). A common
memory type is the low-power LPDDR2, which has a 32-bit-wide interface [Klug
and Shimpi 11a]. Not only is this memory general purpose, the GPU now shares
bandwidth with other parts of the system like the CPU, network, camera, mul-
timedia, and display, leaving less dedicated bandwidth available for rendering and
composition.

There are some performance advantages to a unified memory architecture besides
the savings in cost and complexity. With discrete GPUs the peripheral bus could
become a bottleneck for transfers, especially for non–PCI-e buses with asymmetric
speeds [Elhasson 05]. With a UMA, OpenGL client and server data are in fact stored
in the same RAM. Even when it is not possible to directly access server-side data with
glMapBufferOES, there are fewer performance cliffs lurking in transfers between

© 2012 by Taylor & Francis Group, LLC



24. Exploring Mobile vs. Desktop OpenGL Performance 341

OpenGL client and server data, and using client-side data for dynamic vertices or
indices may not have as great a performance penalty. Data transfer and command
latencies from the GPU to the CPU are also likely to be lessened.

One current limitation is that OpenGL ES does not yet have an extension for
pixel buffer objects (PBO), meaning that pixel and texture data must be transferred
synchronously. This makes the comparatively cheap bandwidth between client and
server data less useful and also makes streaming assets during runtime more difficult.

24.3 Reducing Memory Bandwidth
As shown in Table 24.1, memory bandwidth pressure is one of the major perfor-
mance pressures on mobile devices, especially on games and other applications that
also perform heavy amounts of CPU-side work during the frame, or in multimedia
applications which have additional bandwidth clients besides the GPU and display.

Besides limiting performance, memory accesses external to the GPU consume a
great deal of power, sometimes more than the computation itself [Antochi et al. 04].

Device CPU Write GPU Write
Bandwidth (GB/s) Bandwidth (GB/s)

Motorola Xoom 2.6 1.252
Motorola Droid X 1.4 6.8
LG Thunderbolt 0.866 0.518

Dell Inspiron 520 4.8 3.8
Desktop System 14.2 25.7

Table 24.1. Write bandwidth for CPU and GPU on different devices. CPU write bandwidth
estimated by memset. GPU bandwidth estimated by glClear followed by glFinish. Desk-
top system has an Intel Core 2 Quad and NVIDIA GeForce 8800 GTS. The desktop system
has significantly more bandwidth available to the GPU than to the CPU, and CPU and GPU
memory accesses do not interfere with each other. The Droid X GPU write bandwidth score
is high enough that it may not actually be writing the framebuffer each time (i.e., coalescing
redundant clears or setting a cleared flag).

24.3.1 Relative Display Sizes

Despite the tight power and cost constraints for mobile devices, the display reso-
lutions of modern mobile devices are a considerable fraction of the resolutions of
desktop displays. Even though the display sizes are smaller, mobile devices often
have a higher pixel density to be viewable at a close distance (see Table 24.2).

With the limited fragment shading throughput and memory bandwidth of mo-
bile devices, these comparatively large display sizes mean that fragment shading and

© 2012 by Taylor & Francis Group, LLC



342 IV Performance

Device Resolution % of 1280 × 1024 % of 1920 × 1080

Motorola Xoom 1280 × 800 78.13 49.38
Apple iPad 2 1024 × 768 58.63 37.06
Apple iPhone 4S 960 × 640 46.89 29.63
Samsung Galaxy S2 800 × 480 30.00 18.52

Table 24.2. Resolution comparison of desktop and mobile panels.

full-screen or large-quad operations can easily become a bottleneck since these re-
quirements scale proportionally with the number of output pixels. Memory band-
width is also a major power drain, making limiting bandwidth doubly important.
Common large-quad operations include postprocessing effects and user-interface
composition.

Within mobile devices, there is also a large spread of resolution sizes, especially
between tablets and phone form factors, so testing on multiple devices is important
for performance testing as well as application useabilty.

24.3.2 Framebuffer Bandwidth

Basic rendering can consume surprisingly significant amounts of memory band-
width. Assume the framebuffer has 16-bit color with 16-bit depth [Android 11]
and a 1024 × 768 resolution. Accessing every pixel in the framebuffer 60 times a
second takes 94MB/s of bandwidth, so to write all the pixels’ colors every frame at
60 frames a second with 0% overdraw, takes 94MB/s of bandwidth.

However, assuming an IMR architecture, to be able to render a scene, we also
usually perform a depth-buffer read for each rendered pixel. Both the depth buffer
and the color buffer are also usually cleared each frame, and when applications write
to the color buffer while rendering the scene, they also generally write the fragment
depth to the depth buffer.

The memory bandwidth consumption of the final framebuffer doesn’t end when
the application is done writing it either. After eglSwapBuffers, it may need to
be composited by the platform-specific windowing system and then scanned out to
the display. Unlike desktop systems which often have dedicated graphics or frame-
buffer memory, this will also consume system memory bandwidth. This will con-
sume 94MB/s of bandwidth just for scanout, or at least 288MB/s with composition
(read, write to composited framebuffer, and scanout).

Thus, with a depth and color clear, one depth-buffer read, a depth- and color-
buffer write, and display scanout, a basic clear-fill-and-display operation on an IMR
consumes 564–752MB/s of bandwidth, so even simple-use cases consume a signifi-
cant amount of memory bandwidth; anything interesting the application does only
costs more bandwidth. If a 32-bit framebuffer is used, this number will be even

© 2012 by Taylor & Francis Group, LLC



24. Exploring Mobile vs. Desktop OpenGL Performance 343

greater. This can be a significant portion of the bandwidth available on a mobile
device (see Table 24.1 for bandwidth measurements for some devices).

Tile-based architectures can consume less bandwidth for this basic operation
since they ideally handle the depth and color clears and the depth buffer reads within
the framebuffer cache. Use of the EXT discard framebuffer [Bowman 09]
extension saves additional bandwidth because it means the calculated depth buffer
never needs to be written back to external memory from the framebuffer cache once
the frame is complete. So a tile-based architecture will consume at least
188–377MB/s for basic clear-fill-and-display operation.

Applications using a 32-bit framebuffer that may be bandwidth-bound should
experiment with a lower-precision format. Since the output framebuffer is not often
used in subsequent calculations, the loss of numerical precision is not propagated
and magnified. One valid concern is banding or quantization of smooth gradi-
ents [Guy 10]. However, this may be more of an issue in photography and me-
dia applications rather than games and 3D applications because of the nature of the
produced content.

24.3.3 Antialiasing

Antialiasing improves image quality by refining edges that are jagged when rendered.
Supersampling antialiasing (SSAA) consumes a large amount of extra bandwidth and
fragment-shading load since it must render the scene to a larger, high-resolution
buffer and then downsample to the final image. Multisample antialiasing (MSAA),
on the other hand, rasterizes multiple samples per pixel and stores a depth and color
for each sample. If all samples in a pixel are covered by the same primitive, the
fragment shader will only be run once for that pixel, and the same color value will be
written for all samples in that pixel. These samples are then blended to compute the
final image [aths 03].

Though using MSAA creates little if any additional fragment-shading work or
texture-read bandwidth consumption, it does use a significant amount of bandwidth
to read and write the multiple samples for pixels. Tiling architectures may be able to
store the samples in the framebuffer cache and perform this blending before write-
back to system memory [Technologies 11]. Vendors may perform other optimiza-
tions like only storing multiple samples when there is nontrivial coverage informa-
tion.

24.3.4 Texture Bandwidth

Since texture accesses are often performed at least once per-pixel, these can be another
large source of bandwidth consumption.

One simple way to reduce bandwidth is to lower the texture resolution. Fewer
texels, besides a smaller memory footprint, means better texture cache utilization
and more efficient filtering. The framebuffer resolution usually can’t be lowered,

© 2012 by Taylor & Francis Group, LLC



344 IV Performance

since native resolution is expected. Texture sizes are more flexible, particularly if they
represent low-frequency signals like illumination. Low-frequency textures could even
be demoted to vertex attributes, and interpolated. If assets have been ported from
desktop, there may be room for optimization here.

For static textures, as opposed to textures drawn by frequent offscreen rendering,
texture compression is another great way to save bandwidth, loading time, memory
footprint, and disk space. Even though work must be done to decompress the tex-
ture data when they are used, the smaller size of compressed textures makes them
friendlier to texture caching and memory bandwidth, increasing runtime perfor-
mance.

One complication is that there are multiple incompatible formats for texture
compression supported via OpenGL ES 2 extensions. Example formats are ETC,
available on most Android 2.2 devices, S3TC, available on NVIDIA Tegra, and
PVRTC, available on ImaginationTech SGX [Motorola 11].

To support texture compression formats on multiple devices, an application must
either package multiple versions of its assets and dynamically choose the correct ones
or perform the compression at runtime, loadtime, or install-time. Performing the
compression at runtime or install-time must be done carefully to avoid slowing down
the application and gives up the benefits of improved loading time and disk space,
as well as reduced network bandwidth required to download the application. S3TC
has compression ratios between 4:1 and 8:1, so the space and download savings lost
are substantial [Domine 00].

As for framebuffer bandwidth, using a texture format with lower precision like
RGB565 saves read bandwidth. Unlike texture compression, this applies to textures
used as render targets as well.

24.3.5 Texture Filtering and Bandwidth

The texture filtering mode used can also have a significant impact on the mem-
ory bandwidth consumed, though texture caching can greatly mitigate these costs.
GL NEAREST only needs a single value from the texture. GL LINEAR requires four
values for bilinear filtering, but it is unlikely that all four samples will have to be read
from external memory since, due to the locality of texture coordinates of neighboring
fragments, those samples are possibly already in the texture cache. Trilinear filtering
with mipmaps via GL LINEAR MIPMAP LINEAR requires eight values per sample,
but it can actually increase performance since, for faraway pixels, samples from the
smaller mip levels are very likely to hit in texture cache.

Anisotropic filtering via EXT texture filter anisotropicprevents surfaces
oblique to the viewer from appearing blurry. However, it requires between 2 and 16
taps into a mipmapped texture for each sample. Even if the majority of these taps
hit in texture cache, high levels of anistropic filtering stress memory bandwidth and
texture filtering hardware.

© 2012 by Taylor & Francis Group, LLC



24. Exploring Mobile vs. Desktop OpenGL Performance 345

24.4 Reducing Fragment Workload

Due to the limited compute and bandwidth available on mobile devices with respect
to the large number of pixels and the complexity of modern rendering, fragment
shading is often a bottleneck for mobile GPUs. However, fragment shading can be
improved in other ways than just simplifying shading.

24.4.1 Overdraw and Blending

Overdraw is when pixels that have previously been shaded are overwritten by later
fragments in a scene (see Figure 24.3). On IMRs and tiling immediate-mode render-
ers, overdraw wastes completed fragment shading since the previous computed pixel
value is overwritten and lost. On IMRs, this also results in an additional framebuffer
write, when only one final pixel color needs to be written.

On IMR GPUs, this extra bandwidth consumption and fragment work can be
limited by sorting and rendering geometry from front to back (see Figure 24.4). This
is especially practical for static geometry, which can be processed into a spatial data
structure during an asset export step. An additional heuristic for games is to render
the player character first and the sky-box last [Pranckevicius and Zioma 11].

For batches where front-to-back object sorting is not practical, for example, with
complicated, interlocking geometry or heavy use of alpha testing, a depth prepass
can be used to eliminate redundant pixel calculations, at the cost of repeated vertex
shading work, primitive assembly, and depth-buffer access (see Figure 24.5).

The idea of a depth prepass is to bind a trivial fragment shader and render the
scene with color writes disabled. Depth calculation, testing, and writes proceed as
normal, and the final pixel depth is resolved. The normal fragment shader is then
bound, and the scene is rerendered. In this manner, only the final fragments that
affect the scene color are rendered. This only works for opaque objects.

Figure 24.3. In this overdraw case, pixels that are covered by later primitives are shaded more
than once

© 2012 by Taylor & Francis Group, LLC



346 IV Performance

Figure 24.4. By ordering front to back, we no longer shade the covered pixels more than
once

Even without overdraw, on IMRs, heavy amounts of overlapping geometry can
still be expensive because of the depth-buffer reads needed to reject pixels. Primitive
assembly, rasterization, and the pixel reject rate can also become limiting for large
primitives like sky-boxes [Pranckevicius and Zioma 11].

One type of effect that can be particular expensive in terms of fragment shad-
ing and framebuffer bandwidth is particle effects rendered via multiple overlapping
quads with blending. On IMRs, each layer of overlap requires a read and write of
the existing framebuffer value. For all mobile GPUs, each layers adds additional
fragment computation and blending. Some simple effects like a torch flame can be
converted into an animated shader, for example, by changing a texture offset each
frame. Other effects, like a candle flame, can be done by rendering a mesh of dy-
namic data instead of many overlapping billboarded quads. This reduces overlap
and the resultant blending. When applicable, using opaque, alpha-tested sprites also
eliminates the cost of blending.

Figure 24.5. A depth prepass resolves ordering in the depth buffer before performing non-
trivial fragment shading.

© 2012 by Taylor & Francis Group, LLC



24. Exploring Mobile vs. Desktop OpenGL Performance 347

24.4.2 Full-Screen Effects

Full-screen postprocessing effects are a major tool for visual effects in modern games
and graphics applications and have been an area of innovation in recent years. Com-
mon applications of full-screen postprocessing in games are motion blur, depth of
field, screen-space ambient occlusion, light bloom, color filtering, and tone-mapping.
Other applications such as photo-editing tools may use full-screen or large-area ef-
fects for composition, blending, warping, and filtering.

Full-screen postprocessing is a powerful tool to create effects, but it is an easy
way to consume large amounts of bandwidth and fragment processing. Such effects
should be carefully weighed for their worth and are prime candidates for optimiza-
tion.

A full-screen pass implies at least a read and write of the framebuffer at full resolu-
tion, which at 16-bit color and a 1024×768 resolution means 188MB/s bandwidth.
Even with tiling architectures, a post-processing pass means a roundtrip to external
memory. One way to optimize these effects is to remove the extra full-screen pass.
Some postprocessing effects such as color filtering or tone mapping that don’t require
knowledge of neighboring pixels or feedback from rendering may be merged into the
fragment shaders for the objects themselves. This may require the use of uber-shaders
or shader generation, to allow for natural editing of object fragment shaders while
programmatically appending postprocessing effects.

If the additional pass cannot be eliminated, then all layered full-screen postpro-
cessing effects can be coalesced into a single additional pass. Instead of multiple
passes that each read the previous result from a texture and write out a new filtered
value, each effect can pass its computed value to the next effect in the same shader.
This saves redundant roundtrips to framebuffer memory.

One limitation of OpenGL ES 2.0 is poor support for multiple render targets
(MRT), which allow multiple output buffers from a fragment shader. This makes
deferred shading impractical: it relies on separate geometry buffers to store different
geometry attributes, but without MRTs, this requires rendering a full pass of the
scene for each. Even if MRTs were available, however, the additional bandwidth
cost of reading and writing multiple full-screen intermediate buffers make deferred
shading prohibitively expensive.

24.4.3 Offscreen Passes

Similar to full-screen effects are effects requiring offscreen render targets like envi-
ronmental reflections, depth-map shadows, and light bloom.

Many of these effects require multiple samples of the offscreen image for a soft ef-
fect. Since these textures are rendering targets, they probably don’t have full mipmap
levels or optimal internal texture layouts for coherent read access, so eliminating
the cost of multiple samples of a large texture is particularly important. One way
to optimize offscreen effects that require a blurred image is to take advantage of

© 2012 by Taylor & Francis Group, LLC



348 IV Performance

MP/s
Device GPU Arch clear vtx lgt frg lgt one tap five tap

Motorola Xoom IMR 626 52.4 24.08 26.13 3.17
Motorola Droid X TBDR 3670 234 62.9 5.36 5.7
LG Thunderbolt TB IMR 305 48.7 – 30 20.36

Dell Inspiron 520 IMR 1920 231 204 139 120
Desktop System* IMR 1380 2950 1920 1730 1290

*Desktop system has an Intel Core 2 Quad and NVIDIA 8800 GTS.

Table 24.3. Performance for different shading and pass configurations. All tests used 1024 × 1024 16-bit
offscreen depth and color buffers as the main framebuffer, with a 32-bit RGBA intermediate color buffer and 16-
bit depth buffer where applicable. clear performs color buffer clear operations. vtx lgt renders a synthetic
scene with lighting computed per-vertex, a per-pixel texture lookup, and 39,200 triangles with 0% overdraw.
frg lgt uses the same scene and calculates the diffuse illumination in the fragment shader. five tap and
one tap draw the vertex lighting scene with five- and one- sample full-screen postprocessing passes, respectively.
All units are pixels per second. The Droid X clear scores are high enough that it may not actually be writing
the framebuffer each time (i.e., coalescing redundant clears, setting a cleared flag, or color compression).

texture-filtering hardware. Rather than rendering a large offscreen image, and then
taking multiple samples of a fragment shader, the scene can be rendered into a low-
resolution offscreen target and blurred via texture filtering.

The main fragment shader for the scene can then bind that target as a texture
and read from it with an appropriate texture-filtering mode such as GL LINEAR. The
smaller size of the offscreen target makes this strategy particularly cache-friendly. This
may work well for light bloom and environmental reflection, for example. Depend-
ing on the effect, an additional Gaussian blurring pass on the offscreen target may be
needed, but these can also be accelerated with texture filtering and separable kernels
as well [Rideout 11].

Even when blurring due to texture filtering is not beneficial, reducing offscreen
target resolution is an easy way to reduce the fragment workload and memory band-
width without a serious visual impact for effects that only need low-frequency signals
like environmental reflections.

Whenever moving additional computations from a separate full-screen pass into
the fragment shader of objects in the scene, it is important on non-TBDR archi-
tectures to minimize overdraw to avoid wasted work. One advantage of full-screen
postprocessing in a separate pass is that each pixel is computed exactly once. Perfor-
mance of various configurations can be seen in Table 24.3.

24.4.4 Shaving Fragment Work

One area of optimization with a significant amount of leverage is optimizing frag-
ment shaders. Shaders tend to be fairly small and simple, but the sheer number

© 2012 by Taylor & Francis Group, LLC



24. Exploring Mobile vs. Desktop OpenGL Performance 349

of fragments and amount of floating-point computation makes nontrivial fragment
shading a major bottleneck on both tiling and IMR GPUs. Optimizations here will
probably have some effect on visual quality, but it may well be worth the gain in
performance.

For static geometry and lighting, baking most of the illumination into light maps
saves computation at runtime and allows the use of more advanced lighting tech-
niques than would otherwise be affordable [Miller 99,Unity 11]. Light-map genera-
tion and export does require a well-developed asset pipeline.

Another classic trick to avoid floating-point work and special functions in frag-
ment shaders is to approximate a complicated function with a lookup texture [Pranck-
evicius 11]. This allows the use of much more elaborate BDRFs. This also allows
for effects that would be difficult to achieve purely procedurally [Jason Mitchell 07].
One-dimensional look-up textures may be particular cache-friendly and with a
smooth input parameter, should have good locality of reference.

Fragment shaders with multiple texture fetches, however, may already be bound
by texture fetch. Large amounts of state for each fragment shader may also limit the
maximum number of in-flight fragments due to register pressure, which affects the
ability of the GPU to hide the latency of texture lookups.

24.5 Vertex Shading

24.5.1 Vertex vs. Fragment Work

Traditional IMR wisdom states that lifting computations like lighting, specularity,
and normalization from per-fragment to per-vertex and then interpolating the results
can save performance at the cost of image quality, and this is still true for IMRs.

However, for tiling architectures, this performance wisdom is more dubious be-
cause tilers must perform all vertex computations for each tile [Apple 11]. Tilers are
more likely to be vertex-bound, and Unity recommends 40K or fewer vertices on
recent iOS devices, which use Imagination Tech SGX GPUs [Unity 11].

This means that heavy vertex shaders, even if they save fragment work, may be a
performance drag on tiling architectures. This is particularly true for TBDRs since
they perform little-to-no redundant fragment work. When working with IMRs,
lifting computation from the fragment shader to the vertex shader is likely a perfor-
mance win, and becoming vertex-bound is less of a concern.

Another consideration to the relationship between vertex and fragment shaders
is that adding too many additional varyings can be a drag on performance since they
must all be interpolated, and a large amount of per-fragment memory to store vary-
ings may limit the number of fragments that can be in flight at once. A large number
of varyings may also thrash the post-transform cache, which stores the results of ver-
tex shading, making vertex processing more expensive. So, thinning the interface
between vertex and fragment shading can be valuable.

© 2012 by Taylor & Francis Group, LLC



350 IV Performance

Vertex processing is more of a bandwidth drain on tiling architectures since the
attributes are probably pulled again for each tile unless they hit in a pre- or post-
transform cache. To lower this bandwidth, use a lower-precision buffer format such
as OES vertex half float.

Interleaved vertex data, which interleaves the attributes for each vertex in the
same buffer, is also more efficient for attribute fetch since an entire vertex can be
fetched in one linear read [Apple 11]. Since memory reads have some granularity,
interleaving all the data for a vertex means less unnecessary data will be transferred
because it was adjacent to a fetched attribute. If there is a pretransform vertex at-
tribute cache, which stores fetched vertex attributes and the surrounding data, this
will make more efficient use of it.

One caveat to interleaving vertex data is if the vertex data is partially dynamic.
The most common case is when only positions are updated. A solution is to separate
the vertex data into ”hot” attributes that are frequently updated and ”cold” ones
which are mostly static, and store them in separate buffers. This avoids inefficient
updates to the ”hot” attributes because of a large stride between vertices.

24.6 Conclusion
OpenGL ES is a fundamental component of the modern mobile experience for UI
rendering and composition [Guy and Haase 11] and presents a huge market and
potential impact for OpenGL developers. However, driven by explicit consumer de-
mand for long battery life and slender devices on the one hand and large, brilliant
displays with perfectly smooth rendering on the other, performance must be a dom-
inant consideration during development. The wide range of devices in the market,
differing in age, resolution, and capability, only make this more difficult.

One important question is if the significant difference in performance between
mobile and desktop GPUs will continue to be a dominant consideration in appli-
cation development or if it is something that the steady march of semiconductor
process and architectural improvements will soon make irrelevant. Looking at the
projected roadmaps for mobile GPU vendors, the compute power of mobile GPUs
should indeed climb over the next few years. However, other limits, including band-
width and power consumption, are more fundamental and cannot be conquered as
easily. Desktop and even laptop systems are less tightly constrained on those dimen-
sions.

The expected workloads of mobile devices are also changing. Sprite-based games
and 2D workloads are still very important, but several publishers have produced
mobile ports of desktop game engines, and games with console or desktop levels of
rich game worlds and visual quality. These games raise the bar for what is considered
possible and now expected on mobile systems and present challenges in terms of the
amount of geometry, assets, and visual effects they require. The main strategy to
deliver on these promises is a measured assessment of a platform’s capabilities and

© 2012 by Taylor & Francis Group, LLC



24. Exploring Mobile vs. Desktop OpenGL Performance 351

limitations paired with an understanding and quantification of the costs of different
effects and rendering techniques.

While developing a fast and efficient application for mobile devies takes thought,
careful measurement and budgeting, and creative corner cutting, with a conscious-
ness to the costs and limitations involved, developers can deliver beautiful and com-
pelling graphics and an experience users can barely believe is possible.

Bibliography
[Android 11] Google Android. “GLSurfaceView.” http://developer.android.com/reference/

android/opengl/GLSurfaceView.html, 2011.

[Antochi et al. 04] Iosif Antochi, Ben H. H. Juurlink, Stamatis Vassiliadis, and Petri Liuha.
“Memory Bandwidth Requirements of Tile-Based Rendering.” In SAMOS, Lecture Notes
in Computer Science, edited by Andy D. Pimentel and Stamatis Vassiliadis, pp. 323–332.
Springer, 2004.

[Apple 11] Apple. “Best Practices for Working with Vertex Data.” http://developer.apple.com/
library/ios/#documentation/3DDrawing/Conceptual/OpenGLES ProgrammingGuide/
TechniquesforWorkingwithVertexData/TechniquesforWorkingwithVertexData.html#//
apple ref/doc/uid/TP40008793-CH107-SW1, 2011.

[aths 03] aths. “Multisampling Anti-Aliasing: A Closeup View.” http://alt.3dcenter.org/
artikel/multisampling anti-aliasing/index e.php, 2003.

[Bowman 09] Benji Bowman. “EXT discard framebuffer.” http://www.khronos.org/registry/
gles/extensions/EXT/EXT discard framebuffer.txt, 2009.

[Domine 00] Sebastian Domine. “Using Texture Compression in OpenGL.” http://www.
oldunreal.com/editing/s3tc/ARB texture compression.pdf, 2000.

[Elhasson 05] Ikrima Elhasson. “Fast Texture Downloads and Readbacks using Pixel Buffer
Objects in OpenGL.” http://developer.download.nvidia.com/assets/gamedev/docs/Fast
Texture Transfers.pdf?display=style-table, 2005.

[Guy and Haase 11] Romain Guy and Chet Haase. “Android 4.0 Graphics and An-
imations.” http://android-developers.blogspot.com/2011/11/android-40-graphics-and-
animations.html, 2011.

[Guy 10] Romain Guy. “Bitmap Quality, Banding, and Dithering.” http://www.
curious-creature.org/2010/12/08/bitmap-quality-banding-and-dithering/, 2010.

[Jason Mitchell 07] Dhabih Eng Jason Mitchell, Moby Francke. “Illustrative Rendering in
Team Fortress 2.” International Symposium on Non-Photorealistic Animation and Ren-
dering, 2007.

© 2012 by Taylor & Francis Group, LLC



352 IV Performance

[Klug and Shimpi 11a] Brian Klug and Anand Lal Shimpi. “LG Optimus 2X & NVIDIA
Tegra 2 Review: The First Dual-Core Smartphone.” http://www.anandtech.com/show/
4144/lg-optimus-2x-nvidia-tegra-2-review-the-first-dual-core-smartphone/5, 2011.

[Klug and Shimpi 11b] Brian Klug and Anand Lal Shimpi. “Samsung Galaxy S 2 (In-
ternational) Review—The Best, Redefined.” http://www.anandtech.com/Show/Index/
4686?cPage=13&all=False&sort=0&page=15&slug=samsung-galaxy-s-2-international-
review-the-best-redefined, 2011.

[Miller 99] Kurt Miller. “Lightmaps (Static Shadowmaps).” http://www.flipcode.com/
archives/Lightmaps Static Shadowmaps.shtml, 1999.

[Motorola 11] Motorola. “Understanding Texture Compression.” http://developer.motorola.
com/docstools/library/understanding-texture-compression/, 2011.

[Pranckevicius and Zioma 11] Aras Pranckevicius and Renaldas Zioma. “Fast Mobile
Shaders.” http://blogs.unity3d.com/2011/08/18/fast-mobile-shaders-talk-at-siggraph/,
2011.

[Pranckevicius 11] Aras Pranckevicius. “iOS Shader Tricks, or It’s 2001 All Over Again.”
http://aras-p.info/blog/2011/02/01/ios-shader-tricks-or-its-2001-all-over-again/, 2011.

[Rideout 11] Philip Rideout. “OpenGL Bloom Tutorial.” http://prideout.net/archive/
bloom/, 2011.

[Technologies 11] Imagination Technologies. “POWERVR Series5 Graphics SGX Architec-
ture Guide for Developers.” http://www.imgtec.com/powervr/insider/docs/POWERVR%
20Series5%20Graphics.SGX%20architecture%20guide%20for%20developers.1.0.8.
External.pdf, 2011.

[Unity 11] Unity. “Optimizing Graphics Performance.” http://unity3d.com/support/
documentation/Manual/Optimizing%20Graphics%20Performance.html, 2011.

[Walton 10] Steven Walton. “NVIDIA GeForce GTX 480 Review: Fermi Arrives.” http://
www.techspot.com/review/263-nvidia-geforce-gtx-480/page2.html, 2010.

© 2012 by Taylor & Francis Group, LLC



Improving Performance by
Reducing Calls to the Driver

Sébastien Hillaire

25.1 Introduction
Rendering a scene can involve several rendering passes such as shadow map construc-
tion, light contribution accumulation, and framebuffer postprocessing. OpenGL is
a state machine, and each of these passes requires changing state several times. Ren-
dering requires two main steps:

1. Modify OpenGL states and objects in order to set up the assets used for ren-
dering.

2. Issue a draw call to draw triangles and effectively change some pixel values.

These two steps require multiple calls to the driver. The driver is responsible for
translating these function calls into commands to be sent to the GPU. The driver is
provided by the GPU vendor and could be considered as a black box where only the
vendor knows what is being done by each function call. At first, it seems reasonable
to think that the drivers are filling a FIFO command queue that will be used to render
the next frame. However, the driver’s behavior can be very different depending on the
vendor and/or platform. For example, a GPU driver for desktop computers has to
take into account the wide variety of hardware that makes drivers a lot more complex
than their counterpart on consoles, for which the platform is entirely and reliably
known [Carmack 11]. Indeed, on such a platform, the driver can be specifically
optimized for the installed hardware, whereas on the PC, the API requires a higher
level of abstraction. Therefore, we should assume that each call to the OpenGL API

353

25

© 2012 by Taylor & Francis Group, LLC



354 IV Performance

will result in costly driver operations such as resource management, current state
error checking, or multiple shared context threads synchronizations.

This chapter presents solutions that can be used to reduce the number of calls to
the graphic driver in order to improve the performance. These solutions allow us to
reduce the CPU overhead and hence increase rendering complexity.

25.2 Efficient OpenGL States Usage
Accessing and modifying OpenGL states can only be done through multiple calls to
the API functions. Each call can potentially consume a lot of processing power. As a
result, care must be taken to efficiently change OpenGL states using as few API calls
as possible. In the OpenGL 1.0 days, state change operations could be accelerated
using display lists which stored precompiled commands that could be executed in
a single call. Despite being static, display lists were used as a fast way to change
OpenGL states. However, they were removed from the OpenGL 3.2 core profile but
are still available in the compatibility profile.

This section presents ways of detecting and avoiding unnecessary API calls. We
also present recent OpenGL features that allow us to increase the efficiency of each
call intended to change the current OpenGL states.

25.2.1 Detecting Redundant State Modifications

Debugging and optimizing an OpenGL application can be made easier by using
some specific existing software. gDEBugger [Remedy 11] is a free tool that can record
the OpenGL function call sequence for each frame independently. An important
feature of this software is the Statistics and Redundant Function Calls Viewer, as seen
in Figure 25.1, accessible using Ctrl+Shift+S. It allows us to count the number of

Figure 25.1. Using gDEBugger statistics to detect redundant OpenGL calls.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-30&iName=master.img-018.jpg&w=274&h=117


25. Improving Performance by Reducing Calls to the Driver 355

redundant calls to the driver that do not change its state. These calls are hence useless
and should be avoided for the benefit of performance on the CPU/application side.

gDEBugger can also be used to verify that no deprecated functions are called.
One of its drawbacks is that it is currently limited to OpenGL 3.2. However, more
runtime debugging possibilities are offered such as OpenGL data/states viewing,
global statistics, and performance analysis.

25.2.2 General Methods for Efficient State Modification

To avoid redundant calls, a solution would be to rely on the glGet* functions in
order to query an OpenGL state’s value before each API call that might modify it.
This approach must must be avoided, as it is not efficient. This is due to the fact
that the driver may have to look for the value resulting from previous commands ap-
pended to the command queue. Instead, two software solutions should be preferred:
return-to-default-state or state tracking.

The return-to-default-state method is a straightforward one. OpenGL is first
initialized to what is called the default states. When rendering is required, OpenGL
states are modified. After draw calls corresponding to this state has been issued,
default OpenGL states are restored so that others parts of the program start from
the same point when modifying the default OpenGL states assumed. This widely
used approach, often in old maintained projects and demos, has the advantage of
avoiding checking all OpenGL states before changing only a few of them. The
drawback is that it potentially issues twice as many API calls unless you rely on
glPushAttrib/glPopAttrib, which is not a recommended approach.

The widely used alternative method called state tracking avoids redundant calls
by keeping the OpenGL states up-to-date on the CPU side and keeping track of
changes. This enables runtime evaluation of which driver calls are required to change
the current states to the desired one. A very efficient implementation of this behavior
is available in the game Quake 3 Arena [IdSoftware 05].1 OpenGL states are kept
in a single unsigned long value (Listing 25.1). Each bit of this double word stores
whether or not an OpenGL state is activated. This enables the application to keep
track of binary OpenGL states.

More complex states can also be tracked. As an example, the source and desti-
nation blend modes are kept in the lowest significant byte of the double word. If
this byte is 0×00, then blending is disabled, else the first and second hexadecimal are
custom values representing the source and destination blend mode. When rendering
the scene, each time a new material, e.g., shader, is selected to render surfaces, the
GL State function is called with the desired OpenGL states as a parameter (List-
ing 25.1). The differences as compared to current OpenGL states are first computed
using XOR. This is used to check, for each OpenGL state, whether a change needs
to be applied. If the result is not zero, then, the state needs to be changed and an

1See GL State function in tr backend.c.

© 2012 by Taylor & Francis Group, LLC



356 IV Performance

void GL_State (unsigned long stateBits)
{

// Xor operation to compute state that need to be changed
unsigned long diff = stateBits ^ glState .glStateBits;

// Check depthFunc bits
if (diff & GLS_DEPTHFUNC_EQUAL_BITS)
{

if (stateBits & GLS_DEPTHFUNC_EQUAL)
{

glDepthFunc( GL_EQUAL );
}
else
{

glDepthFunc( GL_LEQUAL );
}

}

// [Process other states ...]

// Store current state
glState .glStateBits = stateBits;

}

Listing 25.1. Avoiding redundant OpenGL calls by storing current state on the CPU.

API call needs to be issued. At the end of this method, the current tracked state is
replaced with the new one. The Quake 3 engine also tracks OpenGL objects that
can be bound such as textures and the associated environment parameter for the first
two texture units.

We have modified the Quake 3 rendering engine to compare the return-to-
default-state approach to the state tracking one used in Quake 3. The performance
was measured on a replayed session of the game with 32 bots playing against a human
on the Q3DM7 map. The computer was equipped with an Intel Core i5 processor,
4GB of memory, and an NVIDIA GeForce 275 GTX. Results show that for a com-
plex scene with surfaces ordered by material, the state tracking method is 11% faster
than the return-to-default-state approach (Table 25.1). We must keep in mind that
the difference would have been much higher on a computer from 1999 because of
lower CPU frequency. Also, OpenGL now requires the use of shaders, uniform val-
ues, buffer objects, etc. These increase the number of states that must be tracked.

Frames per second milliseconds

states-tracking 714 1.4

return-to-default-states 643 1.55

Table 25.1. Mean performance measured when replaying 20 recorded sessions of Quake 3
arena with and without OpenGL states check on the CPU.

© 2012 by Taylor & Francis Group, LLC



25. Improving Performance by Reducing Calls to the Driver 357

It is important to understand that the state-tracking method alone will not dra-
matically improve performance if meshes are rendered in a random order. It should
only be seen as an additional component to more generalized optimization approaches.
Indeed, the performance of an application will benefit more from the a priori knowl-
edge we have when rendering meshes. For example, the Quake 3 engine sorts meshes
per material so that they are drawn in a specific order, e.g., opaque, sky box, then
transparent geometry. This helps us apply fewer changes to states related to material
such as textures or alpha blending. Furthermore, state tracking can also be applied
only when a material needs to be changed. You can also group some common states
together to look for state differences at a coarse level first and then apply fine-grained
state checks. Instead of material, grouping state changes as a function of their modi-
fication frequency can also be a good choice. To sum up, a priori knowledge, coarse
state grouping, and fine-grained state changes are three methods that can be com-
bined, or used independently, for efficient state tracking and modifications.

Another example of the use of such methods can be found in recent opensource
game engines such as the engines used for games Penumbra Overture [Frictional-
Game 10] and Doom 3 [IdSoftware 11]. Unified lighting is achieved in the Doom 3
renderer by using a common set of shaders to render all surfaces. As in Quake 3, an a
priori knowledge is used to sort meshes according to their material. The state track-
ing method is also used to modify OpenGL states at specific stages of each code path
for the unified lighting and shadowing methods. This reveals that these methods are
timeless and should always be considered when developing any renderer.

25.3 Batching and Instancing
The performance of a rendering system will not only be driven by the number of
triangles an application need to draw. The number of draw calls issued for each
frame also plays a crucial role. Indeed, this is a very complex metric that depends
a lot on the hardware [Wloka 03], i.e., CPU/GPU, and software, i.e., the driver
[Hardwidge 03]. Thus, if CPU bound, the performance of an application will be
mostly influenced by the number of batches per frame, a batch representing a draw
call (glDraw*) that is often accompanied with state changes. If GPU bound, the
performance will be influenced by the number of triangles drawn and pixel-shader
complexity. Reducing the number of draw calls is mostly a CPU-only optimization.
Thus, such reduction will not influence the performance of an application that is
GPU bound because of complex geometry or shaders.

On a PC, the number of batches that can be submitted every frame is very lim-
ited when compared to consoles because of higher driver overhead [Hardwidge 03].
Wloka [Wloka 03] has shown that the number of batches that can be issued per
frame highly depends on the CPU when there are few triangles because of the over-
head resulting from the setup and commands submission to the driver (CPU-bound
application). As a result, we can, to some extent, freely render more triangles per

© 2012 by Taylor & Francis Group, LLC



358 IV Performance

batch without hurting the overall performance of the application. It shows that per-
formance depends a lot on the CPU and GPU performance and the way they are
tied together. Despite being old, the presentation of Wloka is a good starting point
to begin understanding the cost of batches. We have to keep in mind that perfor-
mance will be closely linked to our hardware and context of execution, and it can
evolve with hardware. However, there are still some guidelines that can be followed
to improve draw-call size and reduce the number of draw calls.

25.3.1 Batching

Batching refers to the general activity of grouping primitives together to render them
all using as few draw call as possible. The larger the batches, the less the cumulative
batch-submission overhead, i.e., fewer draw calls for fewer driver calls and CPU
usage. Changes in transformation, material, or texture are the major batch breakers
as these operations require changing OpenGL states. Several batching methods exist
to reduce the number of draw calls: combine, combine+element, and dynamic.

The combine method packs together several geometry objects in a single set of
buffer arrays (vertices and their attributes, indices) and renders them in a single draw
call. The combination can be done based on object-appearance similarity. For ex-
ample, small rocks could be combined and drawn together in a single draw call. The
drawbacks are that objects can no longer move relative to each other, and culling will
be limited. However, a certain amount of culling can be maintained if we take into
account the relative position of objects in order to not pack together objects that are
far away. You can also group together object that are in the same room or area of
your scene.

The combine+element method consists of packing together geometry objects in
a single set of buffer arrays (vertices and their attributes) but keeping the element ar-
ray (indices) dynamic. As compared to combine, this approach allows us to have full
control over object culling. It can be used for small-to-large static objects, as copying
element indices can be done very fast. However, the combined array buffers contain-
ing geometry can take a lot of memory because they must contain all transformed
geometry of all objects in the scene. The drawback of this method is that it can only
be used to group nonanimated meshes.

The last method, dynamic, proposes to preallocate vertex and element buffers
and to fill them dynamically at runtime. This approach can be used for objects
sharing the same rendering state (shaders, textures, uniforms, blending, etc.) but
potentially different vertex buffers over time, e.g., objects resulting from transforma-
tion or skinning. This approach is efficient for a lot of relatively small objects when
computing vertex transformation on the CPU is faster than issuing more draw calls.
Also, it takes some memory bandwidth to fill dynamic buffers, so performance tests
must be conducted before choosing this method instead of issuing more draw calls.

In the case where different objects packed in a single array require different tex-
tures for their appearance, a texture atlas can be used. A texture atlas refers to a single

© 2012 by Taylor & Francis Group, LLC



25. Improving Performance by Reducing Calls to the Driver 359

32 128 256 512 1024 2048 3072 4096

Combine + Elements

8 meshes 16 meshes 32 meshes

0

0.15

0.30

0.45

0.60

0.75

0.90

32 128 256 512 1024 2048 3072 4096

Dynamic

Number of Triangle per Mesh

0

0.1

0.2

0.3

0.4

32 128 256 512 1024 2048 3072 4096

Combine

M
il
li
se

co
n
d
s

Figure 25.2. Batching performance for three different methods.

large texture containing several textures [NVIDIA 04]. Thus, changing appearance
no longer requires changing the currently bound texture object. This method still
suffers from the need to preprocess texture coordinates to match the texture atlas.
Also, texture repetition cannot be used unless handled specifically in the fragment
shader using more ALU operations. A more efficient approach on today’s hardware
would be to use texture arrays through the extension ARB texture array. In this
case, a single texture object can address different textures of the same size according
to a single index and without the need to process texture coordinates.

The performance of each method is presented in Figure 25.2 for 8, 16, and 32
meshes rendered. Performance is presented as a function of the number of triangles
per mesh with each vertex attribute having 2-component texture coordinates and
a 3-component normal. We can notice that the combine+element method has an
overhead because it needs to send the element array before each draw call. That cost
disappears when the number of triangles to draw increases. As expected, the dynamic
method is the most costly one, as all data need to be sent to the GPU before each
draw call.

The methods presented in this section effectively reduce the number of draw
calls. However, they also require either a lot of preprocessing, making them harder to
use in dynamically generated content environments. These solutions fit perfectly for
most of the use cases. However, they would not be able to efficiently render a huge
number of instances of an object with specific per-instance data. A solution for such
a case is to use instancing.

25.3.2 OpenGL Instancing

The efficient rendering of a huge number of instances of objects having different
positions and appearance is a complex task. With OpenGL, two methods can be
used to achieve instancing.

© 2012 by Taylor & Francis Group, LLC



360 IV Performance

The first instancing method relies on the memory available through shader uni-
forms to store arrays of parameters. This array can be indexed through an addi-
tional per-instance vertex attribute. Thus, a large batch of geometry can be rendered
in a single draw call, and each vertex will automatically read the input it needs to
achieve a specific appearance and transformation in a way similar to indexed ver-
tex skinning [Beeson 04]. With this method, we do not need any OpenGL ex-
tensions. The downside is that we are limited by the number of uniforms that
can be allocated for each vertex shader. An extension to this method is to use
vertex texture fetch to read data from textures. However, this requires having a
graphic card supporting at least the OpenGL 2.0 core and, if we require floating
point values, to check that the GL ARB texture float extension is defined un-
less we use the OpenGL core 3.0. This methods has the advantage of being us-
able on old hardware, but the number of instances drawn per draw call will be
limited.

True instancing [Carucci 05] can be achieved with OpenGL 3.1 or through
the GL ARB instanced array extension. It is achieved using three specific steps:
(1) bind array buffers to the attribute input of the vertex shader; (2) for each attribute
input, specify the frequency at which vertex attributes need to be updated using the
divisor value (attribute array pointer will be incremented every “divisor” instance);
(3) call a draw function that takes as input the number of instances to draw, e.g.,
glDrawElementsInstanced. Additionally, the constant gl instanceID repre-
senting the number of instances already drawn is available in the shaders. It allows
us to compute specific data for the current instance being rendered.

Concerning visual diversity, instancing is more limited than multiple indepen-
dent draw calls. However, OpenGL extensions such as ARB base vertex,
ARB base instance, or ARB texture array were designed to help developers
restore that diversity on all instances, e.g., material parameters and textures.

To show the importance of instancing on GPU performance, I measured the cost
of rendering different number of instances with a varying number of per-instance
data. To get the raw performance, each instance consisted of a single triangle. I
compared one draw call per instance, glDrawElements, to one single call for all
instances, glDrawElementsInstanced. In the first case, per-instance parameters
were sent through shader uniforms. In the second case, the divisor value is used with
array buffers, as described previously, to get different input values for each instance
(divisor = 1). Figure 25.3 presents the measured performance for several instances
and per-instance vec3 parameters. All triangles were rendered outside the view frus-
trum to avoid rasterization cost. Performance was measured on a Intel i5 processor,
with 4GB of memory and a NVIDIA GeForce 275 GTX. This table reveals a cost
overhead for the instancing method when there are fewer than 768 instances. Above
that limit, the more per-instance parameters we add, the more interesting it is to use
instancing. Also, 768 instances is a worst-case scenario as we are only instancing a
single triangle. As revealed by Wloka [Wloka 03], we could also draw more triangles
per instance without hurting performance: the more triangles per instance, the lower

© 2012 by Taylor & Francis Group, LLC



25. Improving Performance by Reducing Calls to the Driver 361

0

0.07

0.14

0.21

0.29

0.36

0.43

0.50

0 256 512 768 1024 1280 1536 1792 2048

glDrawElement - 1 vec3 glDrawElementsInstanced - 1 vec3

glDrawElement - 2 vec3 glDrawElementsInstanced - 2 vec3

glDrawElement - 3 vec3 glDrawElementsInstanced - 3 vec3

0

4

8

12

16

20

24

0 16384 32768 49152 65536

M
il
li
se

co
n
d
s

Number of Instances

Figure 25.3. Performance comparison for one draw call per instance (glDrawElements)
to one single call for all instances (glDrawElementsInstanced) for 1–3 per-instance vec3
attributes.

the instancing initialization overhead. Also, the GPU rendering cost grows linearly
with the number of instances drawn.

Instancing is an interesting method, but we must keep in mind that the cost
overhead of each batch is much higher than a standard draw call. We have con-
ducted another performance experiment when rendering volumetric lines filled with

0

2

4

6

8

glDrawArrayElement glDrawElementInstanced glDrawElement+PrimitiveRestart

M
il
li
se

co
n
d
s

1.91 ms

7.42 ms

1.25 ms

4.7 ms

0.86 ms

3.1 ms

8K lines

32K lines

Figure 25.4. Performance when rendering volumetric lines using three different approaches:
one draw call per line, instancing, and multiple lines drawn using a primitive restart element.

© 2012 by Taylor & Francis Group, LLC



362 IV Performance

a single color using the vertex extrusion method presented in Chapter 11. Per-
formance is visible in Figure 25.4. In this case, the color is the parameter that
needs to be modified for each line instance. As expected, the slowest method is
again the one that issues a draw call for each line after having modified the uniform
color value (Figure 25.4, glDrawElement). Using instancing, performance is 50%
higher (Figure 25.4, glDrawElementsInstanced). In this case, an array buffer
object is updated once per frame with colors of each instance. The color attribute
is updated once per instance using the per-vertex attribute divisor. Surprisingly, the
fastest method is the one relying on a dynamically filled array buffer object as il-
lustrated in Chapter 11 (Figure 25.4, glDrawElements+PrimitiveRestart).
In this implementation, the triangle strip vertices are generated on the CPU and
sent into a vertex buffer object on the GPU. All strips are drawn using an preal-
located element buffer that contains a special index value used to restart the strip
primitives. This method indeed consumes a lot more memory than the one relying
on instancing. However, because the cost of a primitive restart is negligible when
compared to the overhead of using instancing, this method is actually the fastest.
However, although Figure 25.4 does not show such a trend, we must keep in mind
that the CPU might become the bottleneck when too many lines have to be pro-
cessed. This last example shows that we must stay imaginative and try multiple
approaches: the latest technology may not be the right choice in some cases and on
some hardwares. As in this example, the choice of an implementation can often be re-
garded as a quality/memory/computation complexity trade-off but not a technology
decision.

25.4 Conclusion
Over the last several years, the OpenGL API has been heavily modified in order
to make certain high-frequency calls more efficient for better overall performance.
There is no doubt that upcoming years will reveal more API modification for the
purpose of simplicity and efficiency. However, even with all these new tempting
technologies, we must also keep in mind that traditional brute force approaches can
still be faster under certain circumstances.

Acknowledgments. I would like to thank the editors, Randall Hopper, Aras Pranck-
evičius, Emil Persson, and an anonymous reviewer for their insightful comments during the
review process of this article.

Bibliography
[Beeson 04] Curtis Beeson. “Animation in the Dawn Demo.” In GPU Gems. Reading, MA:

Addison-Wesley, 2004.

[Carmack 11] John Carmack. “QuakeCon Keynote.” QuakeCon Conference, Dallas, 2011.

© 2012 by Taylor & Francis Group, LLC



25. Improving Performance by Reducing Calls to the Driver 363

[Carucci 05] Francesco Carucci. “Inside Geometry Instancing.” In GPU Gems 2. Reading,
MA: Addison-Wesley, 2005.

[FrictionalGame 10] FrictionalGame. “Penumbra Overture Engine.” http://frictionalgames.
blogspot.com/2010/05/penumbra-overture-goes-open-source.html, 2010.

[Hardwidge 03] Ben Hardwidge. “Farewell to DirectX?” http://www.bit-tech.net/hardware/
graphics/2011/03/16/farewell-to-directx/1, 2003.

[IdSoftware 05] IdSoftware. “IdTech3 Source Code.” http://en.wikipedia.org/wiki/Id Tech 3,
2005.

[IdSoftware 11] IdSoftware. “IdTech4 Source Code.” http://github.com/TTimo/doom3.gpl,
2011.

[NVIDIA 04] NVIDIA. “Improve Batching Using Texture Atlases.” http://http.download.
nvidia.com/developer/NVTextureSuite/Atlas Tools/Texture Atlas Whitepaper.pdf,
2004.

[Remedy 11] Graphic Remedy. “gDEBugger.” http://www.gremedy.com, 2011.

[Wloka 03] Matthias Wloka. “Batch, Batch, Batch, What Does It Really Mean?” Game
Developer’s Conference, San Francisco, 2003.

© 2012 by Taylor & Francis Group, LLC



© 2012 by Taylor & Francis Group, LLC



Indexing Multiple
Vertex Arrays

Arnaud Masserann

26.1 Introduction
One of OpenGL’s features is vertex buffer object (VBO) indexing, which allows de-
velopers to reuse a single vertex in several primitives. Since vertex attributes don’t
need to be duplicated, indexing saves memory and bandwidth. Given that the GPU
is often memory-bound, most of the time we can get extra speed with indexing.

Indexing requires having a single index for positions, texture coordinates, nor-
mals, and so on. Unfortunately, this is not how many 3D file formats work: for
instance, COLLADA has different indices for each vertex attribute. This is problem-
atic in asset pipelines, where models can come from a variety of sources.

This chapter shows a simple algorithm that transforms several attribute buffers,
each using different indices, into a format that is directly usable by OpenGL. For
applications that do not use indexing, this chapter provides a simple way to improve
run-time performance. In practice, speedups of about 1.4 times can be expected, and
this format opens possibilities for further optimizations.

26.2 The Problem
With nonindexed VBOs (see Figure 26.1), we need to specify all attributes for each
vertex: position, color, and all needed UV coordinates, normals, tangents, bitan-
gents, etc.

365

26

© 2012 by Taylor & Francis Group, LLC



366 IV Performance

(x2, y2, z2)

(x1, y1, z1)
(x0, y0, z0)

Vertex Array Buffer:
(x0, y0, z0), (x1, y1, z1), (x2, y2, z2),
(x2, y2, z2), (x1, y1, z1), (x3, y3, z3)

Normal Array Buffer:
(x′0, y′0, z′0), (x′1, y′1, z′1), (x′2, y′2, z′2),
(x′2, y′2, z′2), (x′1, y′1, z′1), (x′3, y′3, z′3)

(x3, y3, z3)

Figure 26.1. A nonindexed VBO.

Nonindexed VBOs suffer from two performance penalties. First, on most meshes
this method uses more memory. For instance, on a sphere with 1000 vertices, all
vertices are shared by three triangles. A nonindexed VBO with GL FLOAT attributes
for positions, UVs, and normals will take 3 × 1,000 × (3 × 4 + 2 × 4 + 3 × 4) =
3 × 1,000× 32 = 96, 000 bytes. A similar, indexed VBO will take 96,000/3 bytes,
plus 3×1,000×4 = 12,000 for the index buffer, totaling 44,000 bytes. In this ideal
case, the indexed VBO only takes 45% of the size of the nonindexed VBO. Indexing
thus reduces both the memory footprint and the PCI-e transfers.

The second performance penalty comes from the difference in cache usage. There
are two kinds of vertex caches:

• AMD GPUs have a pretransform vertex cache that contains a part of the raw
VBO. This cache is used to feed the vertex shader.

• The post-transform cache is used to store the ouput variables of the vertex
shader. This is useful because most of the time, a vertex is used by several
triangles. The cache avoids the cost of re-executing the same computations for
each vertex shared by several triangles. However, it uses the index of the vertex
as a key, so if primitives are drawn without indexing, the cache has no effect.

There are two consequences. First, simple indexing will natively improve perfor-
mance. Second, the use of both of these caches can be optimized:

• If the element buffer contains indices to vertices that have a good spatial local-
ity, the pretransform cache will make a large number of hits. In other words,
indices 0-1-2 are better than 0-50-99.

• If neighboring triangles are drawn consecutively, most of the used vertices
will be in the post-transform cache, available for immediate reuse. A num-
ber of algorithms can be found in the literature for reorganizing the indices
in order to get a better post-transform cache usage. In particular, I recom-
mend nvTriStrip, which is slow but ready-to-use, and Tom Forsyth’s algo-
rithm [Forsyth 06], which runs in linear time.

© 2012 by Taylor & Francis Group, LLC



26. Indexing Multiple Vertex Arrays 367

Vertex Array Buffer:
(x0, y0, z0),
(x1, y1, z1),
(x2, y2, z2),
(x3, y3, z3)

Normal Array Buffer:
(x′0, y′0, z′0),
(x′1, y′1, z′1),
(x′2, y′2, z′2),
(x′3, y′3, z′3)

Element Array Buffer:
0 1 2, 2 1 3

0

1

3

2

Figure 26.2. An indexed VBO.

Figure 26.2 shows what an indexed VBO looks like, along with the associated
attributes. Note that both coordinates and normals are shared for vertices 1 and 2.

For these reasons, indexing is recommended by all major GPU vendors
[NVIDIA 08, Hart 04, Imagination Technologies 09]. However, Figure 26.3 shows
an excerpt of the COLLADA export of a similar mesh.

Figure 26.3. A COLLADA mesh.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-31&iName=master.img-029.jpg&w=195&h=68
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-31&iName=master.img-030.jpg&w=287&h=165


368 IV Performance

Vertices:
(x0, y0, z0),
(x1, y1, z1),
(x2, y2, z2),
(x3, y3, z3)

Normal:
(x′0, y′0, z′0),
(x′1, y′1, z′1),
(x′2, y′2, z′2),
(x′3, y′3, z′3)

Indices for Vertices:
0 3 2, 0 2 1

Indices for Normal:
0 1 2, 0 2 3

0

1

3

2

Figure 26.4. COLLADA representation of the mesh.

As shown in Figure 26.4, several index buffers, or element array buffers in
OpenGL terminology, are needed—one for each attribute. This is not possible in
OpenGL, where all attributes must be indexed by the same element array buffer.

This chapter shows a simple solution to convert nonindexed data into an indexed
form, allowing its use in an efficient way with many file formats such as OBJ, X,
VRML, and COLLADA.

26.3 An Algorithm

The trick is to only reuse a vertex if all of its attributes match. We can simply iterate
through all input vertices and append them to the output buffer when it doesn’t
already contain a matching vertex.

In Listing 26.1, in vertices and out vertices are arrays. It is important
that getSimilarVertexIndex is as fast as possible since it is called once for each
input vertex. This can be done using a data structure like a std::map, which limits
the complexity of the algorithm to O(n log n), or a std::hash map, with a theoret-
ical complexity of O(n).

An important detail is that this version of the code assumes that in vertices

and out vertices contain packed vertices, so comparing two vertices takes all at-
tributes into account.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-31&iName=master.img-040.jpg&w=187&h=66


26. Indexing Multiple Vertex Arrays 369

// Reserve space in output vectors
out_indices.reserve (in_vertices.size());
// ...

std::map<PackedVertex ,unsigned short > VertexToOutIndex;

// For each input vertex
for (unsigned int i = 0; i < in_vertices.size(); i++ )
{

PackedVertex packed(in_vertices[i], in_uvs[i], in_normals[i]);

unsigned short index;
bool found = getSimilarVertexIndex(packed , VertexToOutIndex , index);

if (found)
{

// A matching vertex is already in the VBO, use it instead .
out_indices.push_back(index);

}
else
{

// If not , it needs to be added in the output data.
out_vertices.push_back(in_vertices[i]);
out_uvs .push_back(in_uvs[i]);
out_normals.push_back(in_normals[i]);
unsigned short newindex = (unsigned short)out_vertices.size() - 1;
out_indices.push_back(newindex );
VertexToOutIndex[packed] = newindex ;

}
}

// Downsize the output vectors to the exact needed size
std::vector <unsigned short >( out_indices).swap(out_indices);
// ...

Listing 26.1. The indexing algorithm.

26.4 Vertex Comparison Methods
The containers need a comparison function in order to create their internal tree. This
function does not need to have a real meaning; the only requirement is that for two
equal vertices, v1 and v2, compare(v1,v2) == false and compare(v2,v1)

== false (no vertex is greater than the other).

26.4.1 If/Then/Else Version

The comparison function can be implemented as shown in Listing 26.2. This is
the most generic version, and it will work on any platform. What’s more, we can
tweak isEqual depending on our needs. If we know that similar vertices will have
exactly the same coordinates, we can implement isEqual with the == operator.
This is usually the case, because the coordinates are not modified with floating-point
operations during the export and import phases. On the other hand, we may want
to weld vertices with slight differences in their normals to reduce the size of the VBO
or to smooth out the rendering. This can be done by using an epsilon in isEqual.

© 2012 by Taylor & Francis Group, LLC



370 IV Performance

if (isEqual (v1.x,v2.x))
{

// Can�t sort on this criterion , try another
if (isEqual (v1.y,v2.y))
{

if (isEqual (v1.z,v2.z))
{

// Same for UVs, normals , ...
// Vertices are equal
return false;

}
else
{

return v1.z > v2.z;
}

}
else
{

return v1.y > v2.y; // Can�t sort on x, but y is ok
}

}
else
{

return v1.x > v2.x; // x is already discriminant , sort on this axis
}

Listing 26.2. Comparison function 1.

26.4.2 memcmp() Version

If the vertices are packed and we only want to weld vertices with perfectly equal co-
ordinates, this function can be greatly simplified by using memcmp instead, as shown
in Listing 26.3.

return memcmp ((void*)this , (void*)&that , sizeof(PackedVertex)) >0;

Listing 26.3. Comparison function 2.

This will work if the structure is tightly packed (aligned on 8 bits, which may not
be a good idea since the driver will probably realign it on 32 bits internally), or if all
unused zones are always set to the same value. This can be done by zeroing the whole
structure with memset, for instance in the constructor, as shown in Listing 26.4.

memset ((void*)this , 0, sizeof (PackedVertex));

Listing 26.4. Dealing with alignment.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-31&iName=master.img-131.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-31&iName=master.img-131.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-31&iName=master.img-131.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-31&iName=master.img-131.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-31&iName=master.img-131.png&w=322&h=16


26. Indexing Multiple Vertex Arrays 371

26.4.3 Hashing Function

We can also implement the algorithm using a Dictionary, or std::hash map

in C++, instead. Such a container requires two functions: a hash function, which
converts our vertex into an integer and an equality function. The equality function is
straightforward: all attributes must be equal. The hash function can be implemented
in a variety of ways; the main constraint is that if two vertices are considered equal,
their hash must be equal. This actually heavily restricts our possibilities of using an
epsilon-based equality function.

Listing 26.5 shows a simplistic implementation. It groups the vertices in a uni-
form grid of 0.01 units and computes the hash by multiplying each new coordinate
by a prime number, which avoids clustering vertices in common planes. Finally, the
hash is modulated by 216, which creates 65,536 bins in the hashmap. Other at-
tributes are not used, because position is usually the most separating criterion, and
they will be taken into account by the equality function.

For a more detailed analysis of hashing functions for 3D vertices, see, for instance
[Hrádek and Skala 03].

class hash <PackedVertex >
{

public size_t operator ()(const PackedVertex & v)
{

size_t x = size_t(v.position .x) * 100;
size_t y = size_t(v.position .y) * 100;
size_t z = size_t(v.position .z) * 100;
return (3 * x + 5 * y + 7 * z) % (1 << 16);

}
}

Listing 26.5. Hashing function.

26.5 Performance
Table 26.1 and Figure 26.5 give indexing times (in milliseconds) for models of var-
ious complexities. A standard std::map is used, with the memcmp version of the

Model # vertices # triangles Indexing time (ms)

Suzanne 500 1,000 0.7

Plane 10,000 20,000 14

Sponza 153,000 279,000 820

Table 26.1. Indexing times for various models.

© 2012 by Taylor & Francis Group, LLC



372 IV Performance

1000

100

100 1000 10000 100000 1000000

#triangles

m
s 10

1

0

Figure 26.5. Indexing time w.r.t. triangles count.

comparison operator. The vertices are packed and have floating-point UVs and nor-
mals. Times are given for an Intel i5 2.8GHz CPU.

Table 26.2 gives rendering speeds (in milliseconds) for the same three models.
Each model is rendered 100 times per frame in different positions, with a vertex
shader that outputs five varyings and a Blinn-Phong fragment shader with one texture
fetch.

Indexed versions are at least as fast, and up to 1.8 times faster than their non-
indexed equivalents. This number is mostly valid for meshes with a topology that
is already cache-friendly; other models will usually require a post-transform cache-
optimization pass, as mentioned above. For instance, a Standford Bunny model

Model ms/frame
Indexed Indexed Nonindexed Nonindexed
interleaved noninterleaved interleaved noninterleaved

NVIDIA Suzanne 1.6 1.6 1.6 1.6

GTX Plane 6.2 6.3 11.5 11.5

470 Sponza 154 154 161 161

AMD Suzanne 4.8 4.8 5.1 5.1

HD Plane 25 25 31 32

6570 Sponza 281 277 282 304

Intel Suzanne 16 15 16 16

GMA Plane 77 74 128 129

3000 Sponza 1170 1166 1228 1229

Table 26.2. Rendering performance.

© 2012 by Taylor & Francis Group, LLC



26. Indexing Multiple Vertex Arrays 373

Method Rendering time (ms/frame)

Nonindexed interleaved 0.70

Indexed interleaved 0.58

Indexed interleaved and optimized 0.50

Table 26.3. Rendering performance for an optimized model.

with 35,000 vertices is rendered 1.4 times faster when indexed and optimized with
nvTriStrip, as shown in Table 26.3.

26.6 Conclusion
The proposed algorithm has some key advantages:

• it is simple to implement;

• it is cross-platform, and works with any CPU, OpenGL version, programming
language, and OS;

• it is simple to customize and to integrate into existing code;

• it can either generate one interleaved array or separate arrays, depending on
our needs;

• it can be integrated directly into our asset pipeline so that we have no runtime
performance penalty;

• it opens possibilities for further performance gains through pre- and post-
transform cache optimizations;

• most importantly, it can get us extra milliseconds for free.

An example implementation using interleaved arrays and an std::map with
the memcmp comparison function can be found on the OpenGL Insights website,
www.openglinsights.com.

Bibliography
[Forsyth 06] Tom Forsyth. “Linear-Speed Vertex Cache Optimisation.” http://home.comcast.

net/∼tom forsyth/papers/fast vert cache opt.html, September 28, 2006.

[Hart 04] Even Hart. “OpenGL Performance Tuning.” http://developer.amd.com/media/
gpu assets/PerformanceTuning.pdf, 2004.

© 2012 by Taylor & Francis Group, LLC



374 IV Performance

[Hrádek and Skala 03] Jan Hrádek and Václav Skala. “Hash Function and Triangular mesh
Reconstruction.” Computers & Geosciences 29:6 (2003), 741–751.

[Imagination Technologies 09] Imagination Technologies. “PowerVR Application De-
velopment Recommendations.” http://www.imgtec.com/powervr/insider/sdk/
KhronosOpenGLES2xSGX.asp, 2009.

[NVIDIA 08] NVIDIA. NVIDIA GPU Programming Guide, 2008.

© 2012 by Taylor & Francis Group, LLC



Multi-GPU Rendering on
NVIDIA Quadro

Shalini Venkataraman

27.1 Introduction

Multi-GPU configurations are becoming a common and affordable option for
OpenGL applications to scale performance, data size, display size, image quality,
and the number of users per GPU in server-based environments. Current tech-
nologies targeted for multi-GPU configurations like NVIDIA SLI or ATI Crossfire
require no application changes; the OpenGL driver transparently handles command
dispatch to all GPUs. However, this limits scalability as applications are still sin-
gle threaded, which requires a single CPU core to keep the multiple GPU hardware
queues busy. This is particularly evident in scene-graph based applications where the
scene traversal is typically done on the CPU. Moreover, both commands and data
are replicated across all GPUs. To achieve maximum performance, applications re-
quire fine-grained programmability to manage individual GPU workloads as well as
to optimize communication between GPUs.

Currently, targeting specific GPUs for OpenGL rendering on Windows is vendor
specific. This article focuses on NVIDIA’s WGL NV gpu affinity extension, with
details on how to enumerate the graphics resources on a system, and allocate contexts
per GPU and the cross-platform NV copy image extension, which is used for op-
timized data transfer between GPUs. Both of these extensions are only available on
NVIDIA Quadro cards. I also show the best practices for multi-GPU programming

375

27

© 2012 by Taylor & Francis Group, LLC



376 IV Performance

Look at points

Left
Frustum

Right
Frustum

GPU2

GPU0

GPU3

GPU1

Data Distribution +
Render

L R

Figure 27.1. Using two GPUs for stereoscopic rendering, giving linear scaling (left). Ren-
dering the 14GB Visible Human dataset across four GPUs (right).

by using multiple threads, GL contexts, and managing synchronization. I conclude
with common application scenarios and programming pointers to implement:

• Onscreen rendering. Each GPU is responsible for rendering the view frus-
tum and displaying the viewport for its attached display such as in multitiled
display and projector configurations. The application does not do any explicit
communication between the GPUs. Another example is passive stereoscopic
configurations, where each GPU renders one eye and feeds the information to
a projector (Figure 27.1 (left)).

• Offscreen rendering and readback. Each GPU is treated as a sepa-
rate rendering resource that can communicate with other GPUs to implement
complex task decomposition and load balancing schemes. For example, large
data sets that cannot fit into a single GPU’s memory are split across multi-
ple GPUs, rendered, read back, and then composited for final display. Fig-
ure 27.1 (right) shows this scaling approach for the 14GB Visible Human
Dataset [NLM 03] that cannot fit into the texture memory of a single GPU.
Another example is for fill-rate intensive applications like raytracing, where
each GPU works on a tile of the final image.

27.2 Previous Scaling Approaches
In transparent mechanisms like NVIDIA SLI [NVIDIA 11] and AMD Crossfire
[AMD 11], multiple cards are connected through a hardware bridge so that they ap-
pear as one virtual graphics resource to the OS and the application. In this case, only

© 2012 by Taylor & Francis Group, LLC



27. Multi-GPU Rendering on NVIDIA Quadro 377

one graphics card is connected to the monitor, and the other card is used as a slave
for extra processing power. Rendering work is split in a predefined way between the
two GPUs and cannot be changed at runtime. OpenGL commands and application
data are replicated on all GPUs. This approach provides a quick seamless way to
increase the overall pixel fill rate but creates a potential bottleneck at the application
level since a single stream of OpenGL commands must now saturate multiple graph-
ics cards. Furthermore, since all the commands and data are replicated across GPUs,
any application-specific parallelism such as distributing the data or load balancing
cannot be programmed.

27.3 Targeting a Specific GPU for Rendering
OpenGL behavior on multi-GPU configurations is OS specific. On Linux with sep-
arate X screen configuration, the default behavior is for OpenGL calls to be sent only
to the GPU attached to the screen that was used to open the display connection. On
Windows XP, the default behavior is for OpenGL commands to be sent to all GPUs,
causing the performance to be gated by the slowest GPU. Windows 7, meanwhile,
defaults to the most powerful GPU to execute all the OpenGL commands, and the
resulting image is copied by the drivers to the the other GPU’s framebuffer for fi-
nal display. Applications, however, require a deterministic way of selecting which
GPU(s) in the system OpenGL calls should be directed to, which is the focus of this
section.

On Linux, this is easily achieved by configuring each GPU to have its separate X
screen without Xinerama. In this case, the windows cannot be moved across screens.
Typically, one X server is used for all cards, and to address each GPU, the corre-
sponding X screen is specified using XOpenDisplay:0.[screen]. On Windows,
the WGL NV gpu affinity [ARB 09c] extension provides the mechanism to select
specific NVIDIA Quadro GPUs for rendering. On AMD GPUs, the alternative is to
use the WGL AMD gpu association [ARB 09d].

The WGL NV gpu affinity extension, which is the focus of this section, in-
troduces the concept of a GPU affinity mask that specifies the GPUs the OpenGL
commands should be sent to. In addition, there is the concept of an affinity device
context, which is simply a device context (DC) with the GPU affinity mask embed-
ded. When an OpenGL context is created from this affinity DC, it inherits the GPU
affinity mask, and subsequent calls made in that context are only sent to the GPUs
in the mask.

This OpenGL affinity context can be used in two ways:

• Onscreen rendering. When the affinity context is associated with a win-
dow DC, the GPUs specified in its affinity mask are responsible for that win-
dow’s drawing. Figure 27.2 shows this for a two-display configuration where
each GPU is responsible for rendering its view frustum and viewport to its

© 2012 by Taylor & Francis Group, LLC



378 IV Performance

wglCreateContext

wglMakeCurrent wglMakeCurrent

wglCreateContext

gpuMask=0 gpuMask=1

Affinity-DC

winDC winDC

Affinity-DC

Affinity-GLRC Affinity-GLRC

OpenGL
commands

OpenGL
commands

Render Onscreen Render Onscreen

Figure 27.2. Drawing onscreen with WGL NV gpu affinity.

attached display with no inter-GPU communication. The application has full
control of each GPU’s OpenGL command stream and can do any viewing-
based optimizations at runtime such as view-frustum culling.

• Offscreen rendering. There is no window DC, and the affinity context
is associated with its affinity DC instead. The application uses a framebuffer
object (FBO) for offscreen rendering to texture. Figure 27.3 shows an example
for this case where the rendered subimage is now copied over PCI-express to
the primary GPU where it is composited with the primary GPU’s intermediate
result and then displayed onscreen, for which the primary window DC is still
used. The offscreen method provides the maximum flexibility in terms of dis-
tributing render workloads and implementing various composition methods
for final image assembly.

The simplest way to access the WGL NV gpu affinity functions is using ex-
tension wrapper libraries such as GLEW [GLEW 11] and GLee [GLee 09]. Alterna-
tively, the function handles can be retrieved using wglGetProcAddress as defined
in wglext.h [Khronos 11]. A valid OpenGL context must be created and made
current before doing this.

© 2012 by Taylor & Francis Group, LLC



27. Multi-GPU Rendering on NVIDIA Quadro 379

Consumer
Producer

affinityDC
affinityDC

GL Context

GL Context

winDC

wglCreateContext
wglMakeCurrent wglCreateContext

wglMakeCurrent

wglMakeCurrent

gpuMask=0
gpuMask=1

Primary

Render
offscreen

Render
offscreenComposite

Copy over PCI-e

Slave

Figure 27.3. Offscreen drawing showing communication between GPUs

27.3.1 Enumerating GPUs and Displays

Before targeting a specific GPU for rendering, the first step is to enumerate all the
GPUs in the system along with their capabilities. Handles for the GPUs present in a
system are enumerated with wglEnumGpusNV:

BOOL wglEnumGpusNV(UINT iGpuIndex , HGPUNV *phGPU)

By looping over wglEnumGpusNV and incrementing iGPUIndex starting at 0,
the corresponding GPU handle is returned in phGPU. For each GPU handle, the
attached displays can be enumerated using the wglEnumGpuDevicesNV call:

BOOL wglEnumGpuDevicesNV(HGPUNV hGpu ,UINT iDeviceIndex , PGPU_DEVICE lpGpuDevice)

Again, by looping over wglEnumGpuDevicesNV and incrementing iDevice

Index starting at 0, all the display devices attached to a GPU can be queried. This
will populate the GPU DEVICE structure shown in Listing 27.1 and explained further
in Table 27.1. The complete enumeration code for GPUs and displays is shown in
Listing 27.2.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-32&iName=master.img-068.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-32&iName=master.img-068.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-32&iName=master.img-068.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-32&iName=master.img-068.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-32&iName=master.img-068.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-32&iName=master.img-073.png&w=382&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-32&iName=master.img-073.png&w=382&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-32&iName=master.img-073.png&w=382&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-32&iName=master.img-073.png&w=382&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-32&iName=master.img-073.png&w=382&h=16


380 IV Performance

typedef struct _GPU_DEVICE
{

DWORD cb;
CHAR DeviceName[32];
CHAR DeviceString[128];
DWORD Flags; //
RECT rcVirtualScreen;

} GPU_DEVICE , *PGPU_DEVICE;

Listing 27.1. GPU DEVICE structure.

Finally, the affinity-DC is created with wglCreateAffinityDCNV:

HDC wglCreateAffinityDCNV(const HGPUNV *phGpuList)

The GPU handles that were retrieved earlier are passed into a NULL-terminated
array in phGpuList. An OpenGL context can be created with this affinity DC using
wglCreateContext, and rendering will now be restricted to the GPUs specified in
phGpuList.

Listing 27.2 shows the affinity DC creation, which corresponds to the scenario
in Figure 27.3 that we use throughout the chapter to show a simple multi-GPU
producer-consumer example. The slave GPU acts as the producer that generates
its portion of the final image, which is then copied over to the primary GPU that
“consumes” the image by compositing with its subimage and then displays the final
result onscreen. The primary GPU has two DCs: (1) the affinity DC, destDC, that
is used for offscreen rendering to generate its subimage and (2) the window DC,

cb Size of the GPU DEVICE structure

DeviceName String identifying the display device, e.g., DISPLAY1

DeviceString String identifying the GPU driving this display, e.g., Quadro 4000

Flags Indicates the state of the display device, which can be a combination of any of the
following:

• DISPLAY DEVICE ATTACHED TO DESKTOP: If set, the device is part of the
desktop.

• DISPLAY DEVICE PRIMARY DEVICE: If set, the primary desktop is on this
device. Only one device in the system can have this set.

rcVirtualScreen Specifies the display device rectangle in virtual screen coordinates. The value of
rcVirtualScreen is undefined if the device is not part of the desktop, i.e.,
DISPLAY DEVICE ATTACHED TO DESKTOP is not set in the Flags field.

Table 27.1. Fields in the GPU DEVICE structure.

© 2012 by Taylor & Francis Group, LLC



27. Multi-GPU Rendering on NVIDIA Quadro 381

HGPUNV hGPU , gpuMask [2];
GPU_DEVICE gpuDevice;

HDC winDC = GetDC(hWnd); // Assume window is created
pixelFormat = ChoosePixelFormat(winDC , &pfd);
SetPixelFormat(winDC , pixelFormat , &pfd)
// Create a dummy context just to get function handles
HGLRC winRC = wglCreateContext(winDC);
wglMakeCurrent(winDC , winRC)
// Assume all the function handles have been retrieved with wglGetProcAddress
wglDeleteContext(winRC); // Dummy context is no longer needed

gpuDevice.cb = sizeof(gpuDevice);
// First call this function to get a handle to the gpu
UINT GPUIdx = 0;
while(wglEnumGpusNV(GPUIdx, &hGPU))
{

printf("Device # %d:\n", GPUIdx);
bool bDisplay = false;
bool bPrimary = false;
// Now get the detailed information about this device :
// how many displays it�s attached to
UINT displayDeviceIdx = 0;
while(wglEnumGpuDevicesNV(hGPU , displayDeviceIdx , &gpuDevice))
{

bDisplay = true;
bPrimary |= (gpuDevice.Flags & DISPLAY_DEVICE_PRIMARY_DEVICE) != 0;

printf ("Display # %d:\n", displayDeviceIdx);
printf ("Name: %s\n", gpuDevice.DeviceName);
printf ("String: %s\n", gpuDevice.DeviceString);

if(gpuDevice.Flags & DISPLAY_DEVICE_ATTACHED_TO_DESKTOP)
{

printf("Attached to the desktop : LEFT=%d, RIGHT =%d, TOP=%d, BOTTOM =%d\n", ←↩
gpuDevice.rcVirtualScreen.left ,gpuDevice.rcVirtualScreen.right , gpuDevice←↩
.rcVirtualScreen.top,gpuDevice.rcVirtualScreen.bottom);

}
else
{

printf("Not attached to the desktop \n");
}

// See if it�s the primary GPU
if(gpuDevice.Flags & DISPLAY_DEVICE_PRIMARY_DEVICE)
{

printf(" This is the PRIMARY Display Device\n");
}
displayDeviceIdx++;

} // End of while (wglEnumGpuDevicesNV)
// At this point all the attached displays are queried for GPUIdx
if(bPrimary )
{

// Primary GPU is the destination
gpuMask [0] = hGPU;
gpuMask [1] = NULL;
destDC = wglCreateAffinityDCNV(gpuMask );

}

© 2012 by Taylor & Francis Group, LLC



382 IV Performance

else
{

// Non-primary gpu is the source
gpuMask [0] = hGPU;
gpuMask [1] = NULL;
srcDC = wglCreateAffinityDCNV(gpuMask );

}
GPUIdx ++;

} // End of while (wglEnumGpusNV)

Listing 27.2. Enumerating multiple GPUs and their associated displays.

winDC, that is used to render the final composited image onscreen, and they both
use the same GL context. Like a regular window DC, the affinity DC also requires a
valid pixel format to be set before a GL context can be created.

27.4 Optimized Data Transfer between GPUs
In the producer-consumer case introduced earlier, textures need to be shared between
GPUs. Typically, textures are shared between multiple contexts using ARB create

context, which only works when both contexts are on the same physical device.
With contexts across multiple GPUs, one method is to download from the producer
to main memory using glReadPixels or glGetTexImage and then upload to the
destination GPU using glTexSubImage.

wglCopyImageSubDataNV (srcCtx, srcTex, GL_TEXTURE_2D, 0, 0, 0, 0,
destCtx, destTex, GL_TEXTURE_2D, 0, 0, 0, 0,

width, height, 1);

Consumer ProducersrcCtxdestCtx

destTex srcTex

Graphics
Engine

GPU
Memory

GPU
Memory

Graphics
Engine

Copy
Engine

Copy
Engine

Figure 27.4. Inter-GPU texture transfer with NV copy image.

© 2012 by Taylor & Francis Group, LLC



27. Multi-GPU Rendering on NVIDIA Quadro 383

This method, if implemented naively, could trigger multiple copies between
driver pinned memory and application during download and upload increasing la-
tency. The NV copy image [ARB 09b] extension that works in tandem with
WGL NV gpu affinity was created to avoid this latency and additional program-
ming complexity. This extension exposes the wglCopyImageSubDataNV function
on Windows and glXCopyImageSubDataNV on Linux, enabling efficient image
data transfer between image objects without the need to bind the objects or per-
form any other state changes. An image object may be either a texture or a ren-
derbuffer. In addition to 2D textures, 3D textures and cube maps are also sup-
ported. Figure 27.4 shows how in a single call, the source texture, srcTex, is copied
to the destination texture, destTex, on the primary GPU. On Fermi and later
Quadros, this transfer happens asynchronously using the copy engine (Chapter 29).
On previous-generation hardware, this call would stall the GPU until the transfer is
completed.

27.5 Application Structure for Multi-GPU
This section explains how to put together all the concepts introduced into an ap-
plication framework using the producer-consumer example outlined earlier. This
example shows a 1:1 mapping between the producer and consumer; however, this
can be scaled to multiple producing GPUs. The full source code for this example is
available on the OpenGL Insights website, www.openglinsights.com.

To scale across multiple GPUs, it is recommended that the application be multi-
threaded with a thread per GPU so that multiple CPU cores can, in parallel, keep the
GPU hardware queue busy. While pipelining without threading can provide some
speedup, especially for GPU-bound applications, it requires that a single core keep
all GPUs fully busy, and scalability may be limited or even negative as more GPUs
are added.

Separate OpenGL contexts for the producer and consumer are created in the
main application thread and made current to their affinity DCs (for Windows) or
open X11 Displays (for Linux). The main thread then spawns off the producer
and consumer threads that operate with their GL contexts. Multiple textures per
GPU context are used to increase overlap between transfer and texture access on the
consumer. Figure 27.5 shows this overlap where the producer GPU has completed
rendering to texture, srcTex[1], and is transfering across PCI-e while the consumer
thread is concurrently reading and compositing from texture, destTex[0].

The producer thread does the offscreen render of its assigned region to texture,
srcTex, and is also responsible for triggering the copy of this texture across the PCI-
e using NV copy image. It then signals the consumer once the copy has completed.
On Fermi and later hardware, this copy can happen asynchronously so that further
rendering commands can be added to the producer stream before the consumer is
done.

© 2012 by Taylor & Francis Group, LLC



384 IV Performance

App

Consumer

GPU
Memory

GPU
Memory

Producer

destCtx

destTex
[nBuffers]

[0] [0]
FBO

glFramebuffer
Texture

[1] [1]

[2] [2]

srcTex
[nBuffers]Other

Render

glBindTex

glDraw*

srcCtx

Figure 27.5. Multithreaded application structure.

Meanwhile, the consumer runs on the primary GPU attached to the display and
is responsible for rendering its portion of the final image. It then waits for the pro-
ducer to signal completion of texture transfer before using that texture, destTex,
to composite with its intermediate image and display the final result onscreen. Fig-
ure 27.5 shows this process.

27.5.1 Synchronization between Multiple OpenGL
Contexts

The multicontext producer-consumer example requires the producer to notify the
consumer when it has finished the transfer of its current frame. Likewise, the con-
sumer notifies the producer when it has finished using a texture, and the producer is
free to copy into that. OpenGL rendering commands, however, are assumed to be
asynchronous in the sense that when a GL call is issued, it is not guaranteed to be
completed by the time the call returns. To signal GPU completion of a specific GL
command, we use the OpenGL fence objects defined in the GL ARB sync [ARB 09a]
available in OpenGL 3.2 and above. In addition, a CPU event is created to signal
when the fence is valid to be waited upon by another thread. The GPU fences and
CPU events are created for each texture in the array.

Figure 27.6 shows the synchronization mechanism for our case. The producer
queues the fence, producedFence, after rendering and copying its texture to the
consumer’s texture across the bus. The consumer waits on this fence after it has done
its rendering portion. Once signalled, it uses the texture for composition and queues

© 2012 by Taylor & Francis Group, LLC



27. Multi-GPU Rendering on NVIDIA Quadro 385

Consumer GPU
MakeCurrent (destCtx)

Render subtask offscreen

Draw onscreen

Producer GPU
MakeCurrent (srcCtx)

Figure 27.6. Synchronization between producer and consumer GPU.

the consumedFence to notify the producer. The consumer then proceeds to draw
the final result onscreen.

27.6 Parallel Rendering Methodologies
There are many ways to scale rendering with each having its benefits for different
problem domains. Here, we focus on implementing some common parallel render-
ing methodologies with multiple GPUs. All the following approaches are orthogonal
to each other and can be combined for increased parallelism. For instance, multiple
GPUs can be used for data decomposition while a subset of the GPUs are used for
rendering each eye in a stereo configuration. Results shown are for a full-HD reso-
lution final image (1920 × 1200) generated on a workstation running Windows 7
with two Quadro 5000s attached to the PCI-e 16X slots.

For larger installations, programming using a higher-level middleware abstrac-
tion may be desired, which helps the developer focus on the application rather than
the low-level GPU intricacies that can quickly get unwieldy. Equalizer [Eilemann
et al. 09] is a cross-platform and opensource framework for an OpenGL applica-
tion to scale from single GPU to a multisystem graphics cluster. Equalizer imple-
ments a large set of parallelization, composition, and load-balancing schemes. Com-
pleX [CompleX 09] is reference framework that runs on NVIDIA hardware in a
single-system multi-GPU configuration.

27.6.1 Sort-First Image Decomposition

Parallelism occurs in screen space; each GPU focuses on its view frustum correspond-
ing to the image subregion. Adding more GPUs lets each GPU work on a smaller

© 2012 by Taylor & Francis Group, LLC



386 IV Performance

3

Sort-Last

Parallelization Method

Performance Scaling with 2 GPUs

S
ca

li
n
g 

F
ac

to
r

Sort-First

Best case

Likely case

Worst case

2.5

2

1.5

1

0.5

0

Figure 27.7. Results comparing scaling with two GPUs.

subregion, thereby increasing performance. If each subregion is directly mapped to
an associated screen, the onscreen rendering approach described earlier is used with
no inter-GPU communication. Powerwalls with multiple LCD panels or projectors
as well as CAVEs are some of the applications. If the subregions are to be read back
and composited into one final image, the offscreen approach using the producer-
consumer example can be simply extended to have multiple producers corresponding
to the number of slave GPUs. This tiling approach works well for fill-rate limited
applications such as raytracing. Figure 27.7 shows the likely best- and worst-case sce-
narios. An example of the worst-case scenario is encountered when all the rendering
lands on one GPU, but the other GPUs are still transmitting empty images, causing
a slowdown. The best-case scenario is generally found when fragment-intensive tasks
are divided in a balanced way such that the transfer overhead is mitigated by the
high processing time. There is still some synchronization overhead in the drivers that
limit scaling to around 75%. As more GPUs are added, the transfer requirements per
GPU decrease proportionally, making this a good candidate for parallelization when
the data can fit into GPU memory.

27.6.2 Sort-Last Data Decomposition

This parallelism approach is most useful when the application data exceeds the mem-
ory on the GPU. Each GPU renders part of the data set, and the intermediate results
are read back and composited for final display. Figure 27.8 shows a volume-rendering
example with a 3D texture distributed across four GPUs. There are three slave GPUs,
and the primary GPU, along with rendering its portion of the data, does the alpha
compositing. The intermediate images are sorted and blended along the viewing
direction. For opaque geometry, the depth buffers are also transferred, and depth

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-32&iName=master.img-281.jpg&w=224&h=124


27. Multi-GPU Rendering on NVIDIA Quadro 387

App

GPU0
(Onscreen)

GPU1
(Slave)

GPU2
(Slave)

GPU3
(Slave)

Upload

NV_copy_image

Composite

Figure 27.8. Data decomposition approach.

composition takes place, requiring twice the transfer bandwidth compared to the
volumetric case. This is manifested in the worst-case scenario shown in Figure 27.7,
where the transfer is the bottleneck compared to the rendering time causing the slow-
down when scaling the number of GPUs. The best-case for sort-last is realized where
superlinear scaling can be achieved since both processing cores and available memory
are scaled. In contrast to sort-first, the bandwidth requirements increase proportion-
ally with the number of GPUs since the full image resolution has to be transferred.

27.6.3 Stereo

Each GPU is responsible for rendering each eye in a stereo pair and can be consid-
ered a special case of sort-first with two GPUs. In the case of passive stereoscopy, the
left-right images can be directly fed into the projector for each eye using the onscreen
approach with some hardware-level synchronization. If the streams need to be com-
bined into one stereo left-right signal, the offscreen approach can be used, where one
view is copied to the consumer and used in the GL BACK LEFT or GL BACK RIGHT

buffer, depending on the eye.

27.6.4 Server-Side Rendering

In this case, there is one master acting as the broker (consumer) spawning render
tasks on the slave GPUs (producers) and reading back the results to be sent across
the network. The master decides the GPU for each task depending on current GPU
loads for which the NVIDIA-specific extension GL NVX mem info (Chapter 38) is
used. This approach can be extended to a cluster or cloud environment where each

© 2012 by Taylor & Francis Group, LLC



388 IV Performance

node is attached to multiple GPUs and message-passing mechanisms like MPI are
used for intersystem communication.

27.7 Conclusion
This article introduced the building blocks of a scalable rendering system. Using the
WGL NV affinity extension, an application can target specific graphics resources
for rendering tasks depending on current GPU load and application metrics. This al-
lows for dynamic load balancing where the GPU can be thought of and programmed
as a coprocessor. The NV copy image extension provides a path for direct image
transfer between GPUs. I discussed the application restructuring that is required
to get the maximum performance out of multiple GPUs and the synchronization
required using a simple producer-consumer example. This simple example can be
extended to implement complex parallel rendering topologies, and I concluded with
a discussion of some of the expected performance improvement with each of them.

Bibliography
[AMD 11] AMD. “AMD CrossFire.” http://www.amd.com/us/PRODUCTS/

WORKSTATION/GRAPHICS/CROSSFIRE-PRO/Pages/crossfire-pro.aspx, 2011.

[ARB 09a] OpenGL ARB. “OpenGL ARB Sync Specification.” http://www.opengl.org/
registry/specs/ARB/sync.txt, 2009.

[ARB 09b] OpenGL ARB. “OpenGL NV copy image Specification.” http://developer.
download.nvidia.com/opengl/specs/GL NV copy image.txt, 2009.

[ARB 09c] OpenGL ARB. “OpenGL WGL NV gpu affinity.” http://developer.download.
nvidia.com/opengl/specs/WGL nv gpu affinity.txt, 2009.

[ARB 09d] OpenGL ARB. “WGL AMD gpu association specification.” http://www.opengl.
org/registry/specs/AMD/wgl gpu association.txt, 2009.

[CompleX 09] CompleX. “NVIDIA.” http://developer.nvidia.com/complex, 2009.

[Eilemann et al. 09] Stefan Eilemann, Maxim Makhinya, and Renato Pajarola. “Equalizer: A
Scalable Parallel Rendering Framework.” IEEE Transactions on Visualization and Com-
puter Graphics 15:3 (2009), 436–452.

[GLee 09] GLee. “GLee (GL Easy Extension library).” http://elf-stone.com/glee.php, 2009.

[GLEW 11] GLEW. “The OpenGL Extension Wrangler Library.” http://glew.sourceforge.
net/, 2011.

[Khronos 11] Khronos. “wglext.h.” http://opengl.org/registry/api/wglext.h, 2011.

[NLM 03] NIH NLM. “The Visible Human Project.” http://www.nlm.nih.gov/research/
visible/visible human.html, 2003.

[NVIDIA 11] NVIDIA. “NVIDIA SLI Technology.” http://www.nvidia.com/object/quadro
sli.html, 2011.

© 2012 by Taylor & Francis Group, LLC



V Transfers

OpenGL applications transfer a lot of data. Data is transferred between machines,
between disk and system memory, between system and video memory, between video
memory and video memory, and so on. Optimizing these transfers improves perfor-
mance. In this section, we look at optimizing asynchronous transfers between the
CPU and GPU; compressing models for use with WebGL; compressing textures on
the GPU for video creation; and an efficient geometry file format.

Although general computations like particle systems are being pushed to the
GPU, there is still a need to do many computations or IO on the CPU and then
efficiently stream data to the GPU. In Chapter 28, “Asynchronous Buffer Transfers,”
Ladislav Hrabcak and Arnaud Masserann share best practices for maximizing per-
formance when using buffer objects to transfer data between the CPU and GPU
in either direction. With detailed performance analysis, they cover direct memory
access (DMA), buffer usage hints, implicit synchronization with draw calls, pinned
memory, and multithreading. Shalini Venkataraman continues the asynchronous
transfers discussion in the following chapter, “Fermi Asynchronous Texture Trans-
fers,” where she discusses how the NVIDIA Fermi architecture allows transfer and
rendering to occur at the same time when using multiple threads and OpenGL
contexts.

The discussion of transfers moves from within a system to across systems in
Chapter 30, “WebGL Models: End-to-End.” Won Chun presents the techniques,
including a detailed analysis, used in Google Body to compress and transfer mod-
els to a web browser for rendering with WebGL. Continuing on the compression
theme, Brano Kemen demonstrates real-time image compression on the GPU in
Chapter 31, “In-Game Video Capture with Real-Time Texture Compression.” He
applies his method to video compression using a DXT fixed-rate compression format

389

© 2012 by Taylor & Francis Group, LLC



390 V Transfers

to reduce bandwidth consumption, and he explores various decoloration methods to
enhance image compression quality.

In graphics, content is king. A smooth content-creation pipeline empowers
artists, and a format that requires minimal runtime processing improves load times.
In the last chapter of this section, “An OpenGL Friendly Geometry File Format and
its Maya Exporter,” Adrien Herubel and Venceslas Biri present the Drone format, a
binary geometry file format suitable for use with OpenGL.

© 2012 by Taylor & Francis Group, LLC



Asynchronous Buffer Transfers

Ladislav Hrabcak and Arnaud Masserann

28.1 Introduction
Most 3D applications send large quantities of data from the CPU to the GPU on a
regular basis. Possible reasons include

• streaming data from hard drive or network: geometry, clipmapping, level of
detail (LOD), etc.;

• updating skeletal and blend-shapes animations on the CPU;

• computing a physics simulation;

• generating procedural meshes;

• data for instancing;

• setting uniform parameters for shaders with uniform buffers.

Likewise, it is often useful to read generated data back from the GPU. Possible sce-
narios are

• video capture [Kemen 10];

• physics simulation;

• page resolver pass in virtual texturing;

• image histogram for computing HDR tonemapping parameters.

391

28

© 2012 by Taylor & Francis Group, LLC



392 V Transfers

While copying data back and forth to the GPU is easy, the PC architecture,
without unified memory, makes it harder to do it fast. Furthermore, the OpenGL
API specification doesn’t tell how to do it efficiently, and a naive use of data-transfer
functions wastes processing power on both the CPU and the GPU by introducing
pauses in the execution of the program.

In this chapter, for readers familiar with buffer objects, we are going to explain
what happens in the drivers and then present various methods, including unconven-
tional ones, to transfer data between the CPU and the GPU with maximum speed.
If an application needs to transfer meshes or textures frequently and efficiently, these
methods can be used to improve its performance. In this chapter, we will be using
OpenGL 3.3, which is the Direct3D 10 equivalent.

28.1.1 Explanation of Terms

First, in order to match the OpenGL specification, we refer to the GPU as the device.
Second, when calling OpenGL functions, the drivers translate calls into com-

mands and add them into an internal queue on the CPU side. These commands are
then consumed by the device asynchronously. This queue has already been refered to
as the command queue, but in order to be clear, we refer to it as the device command
queue.

Data transfers from CPU memory to device memory will be consistently referred
to as uploading and transfers from the device memory to CPU memory as download-
ing. This matches the client/server paradigm of OpenGL.

Finally, pinned memory is a portion of the main RAM that can be directly used
by the device through the PCI express bus (PCI-e). This is also known as page-locked
memory.

28.2 Buffer Objects
There are many buffer-object targets. The most well-known are GL ARRAY BUFFER

for vertex attributes and GL ELEMENT ARRAY BUFFER for vertex indices, formerly
known as vertex buffer objects (VBOs). However, there are also GL PIXEL PACK

BUFFER and GL TRANSFORM FEEDBACK BUFFER and many other useful ones. As
all these targets relate to the same kind of objects, they are all equivalent from a
transfer point of view. Thus, everything we will describe in this chapter is valid for
any buffer object target.

Buffer objects are linear memory regions allocated in device memory or in CPU
memory. They can be used in many ways, such as

• the source of vertex data,

• texture buffer, which allows shaders to access large linear memory regions
(128–256 MTexels on GeForce 400 series and Radeon HD 5000 series)
[ARB 09a],

© 2012 by Taylor & Francis Group, LLC



28. Asynchronous Buffer Transfers 393

• uniform buffers,

• pixel buffer objects for texture upload and download.

28.2.1 Memory Transfers

Memory transfers play a very important role in OpenGL, and their understanding
is a key to achieving high performance in 3D applications. There are two major
desktop GPU architectures: discrete GPUs and integrated GPUs. Integrated GPUs
share the same die and memory space with the CPU, which gives them an advantage
because they are not limited by the PCI-e bus in communication. Recent APUs from
AMD, which combine a CPU and GPU in a single die, are capable of achieving a
transfer rate of 17GB/s which is beyond the PCI-e ability [Boudier and Sellers 11].
However, integrated units usually have mediocre performance in comparison to their
discrete counterparts. Discrete GPUs have a much faster memory on board (30–192
GB/s), which is a few times faster than the conventional memory used by CPUs and
integrated GPUs (12–30 GB/s) [Intel 08].

The direct memory access (DMA) controller allows the OpenGL drivers to asyn-
chronously transfer memory blocks from user memory to device memory without
wasting CPU cycles. This asynchronous transfer is most notably known for its
widespread usage with pixel buffer objects [ARB 08], but can actually be used to
transfer any type of buffer. It is important to note that the transfer is asynchronous
from the CPU point of view only: Fermi (GeForce 400 Series) and Nothern Islands
(Radeon HD 6000 Series) GPUs can’t transfer buffers and render at the same time,
so all OpenGL commands in the command queue are processed sequentially by the
device. This limitation comes partially from the driver, so this behavior is susceptible
to change and can be different in other APIs like CUDA, which exposes these GPU-
asynchronous transfers. There are some exceptions like the NVIDIA Quadro, which
can render while uploading and downloading textures [Venkataraman 10].

There are two ways to upload and download data to the device. The first way is to
use the glBufferData and glBufferSubData functions. The basic use of these
functions is quite straightforward, but it is worth understanding what is happening
behind the scenes to get the best functionality.

As shown in Figure 28.1, these functions take user data and copy them to pinned
memory directly accessible by the device. This process is similar to a standard
memcpy. Once this is done, the drivers start the DMA transfer, which is asyn-
chronous, and return from glBufferData. Destination memory depends on usage
hints, which will be explained in the next section, and on driver implementation.
In some cases, the data stay in pinned CPU memory and is used by the GPU di-
rectly from this memory, so the result is one hidden memcpy operation in every
glBufferData function. Depending on how the data are generated, this memcpy
can be avoided [Williams and Hart 11].

© 2012 by Taylor & Francis Group, LLC



394 V Transfers

vertex data
app

memory

glBufferData(...)

OpenGL driver

GPU memory
DMA transfer

memory
accessible

directly by GPU

FileRead(...)
or prepare

data manually

Figure 28.1. Buffer data upload with glBufferData / glBufferSubData.

A more efficient way to upload data to the device is to get a pointer to the inter-
nal drivers’ memory with the functions glMapBuffer and glUnmapBuffer. This
memory should, in most cases, be pinned, but this behavior can depend on the
drivers and available resources. We can use this pointer to fill the buffer directly, for
instance, using it for file read/write operations, so we will save one copy per mem-
ory transfer. It is also possible to use the ARB map buffer alignment extension,
which ensures that the returned pointer is aligned at least on a 64-byte boundary,
allowing SSE and AVX instructions to compute the buffer’s content. Mapping and
unmapping is shown in Figure 28.2.

The returned pointer remains valid until we call glUnmapBuffer. We can ex-
ploit this property and use this pointer in a worker thread, as we will see later in this
chapter.

Finally, there are also glMapBufferRange and glFlushMappedBuffer

Range, similar to glMapBuffer, but they have additional parameters which can
be used to improve the transfer performance and efficiency. These functions can be
used in many ways:

• glMapBufferRange can, as its name suggests, map only specific subsets of
the buffer. If only a portion of the buffer changes, there is no need to reupload
it completely.

vertex data

glMapBuffer or
glMapBufferRange/

glFlushMappedBufferRange
or glUnmapBuffer

FileRead(...) or
direct modify

OpenGL driver

DMA transfer
GPU memory

memory
accessible

directly by GPU

Figure 28.2. Buffer data upload with glMapBuffer / glUnmapBuffer or glMapBufferRange /
glFlushMappedBufferRange.

© 2012 by Taylor & Francis Group, LLC



28. Asynchronous Buffer Transfers 395

• We can create a big buffer, use the first half for rendering, the second half
for updating, and switch the two when the upload is done (manual double
buffering).

• If the amount of data varies, we can allocate a big buffer, and map/unmap only
the smallest possible range of data.

28.2.2 Usage Hints

The two main possible locations where the OpenGL drivers can store our data are
CPU memory and device memory. CPU memory can be page-locked (pinned),
which means that it cannot be paged out to disk and is directly accessible by device,
or paged, i.e., accessible by the device too, but access to this memory is much less
efficient. We can use a hint to help the drivers make this decision, but the drivers can
override our hint, depending on the implementation.

Since Forceware 285, NVIDIA drivers are very helpful in this area because they
can show exactly where the data will be stored. All we need is to enable the GL ARB

debug output extension and use the WGL CONTEXT DEBUG BIT ARB flag in
wglCreateContextAttribs. In all our examples, this is enabled by default. See
Listing 28.1 for an example output and Chapter 33 for more details on this exten-
sion.

It seems that NVIDIA and AMD use our hint to decide in which memory to
place the buffer, but in both cases, the drivers uses statistics and heuristics in order
to fit the actual usage better. However, on NVIDIA with the Forceware 285 drivers,
there are differences in the behavior of glMapBuffer and glMapBufferRange:
glMapBuffer tries to guess the destination memory from the buffer-object us-
age, whereas glMapBufferRange always respects the hint and logs a debug mes-
sage (Chapter 33) if our usage of the buffer object doesn’t respect the hint. There
are also differences in transfer rates between these functions; it seems that using

Buffer detailed info: Buffer object 1 (bound to GL_TEXTURE_BUFFER, usage hint is ←↩
GL_ENUM_88e0) has been mapped WRITE_ONLY in SYSTEM HEAP memory (fast).

Buffer detailed info: Buffer object 1 (bound to GL_TEXTURE_BUFFER, usage hint is ←↩
GL_ENUM_88e0) will use SYSTEM HEAP memory as the source for buffer object ←↩
operations.

Buffer detailed info: Buffer object 2 (bound to GL_TEXTURE_BUFFER, usage hint is ←↩
GL_ENUM_88e4) will use VIDEO memory as the source for buffer object operations.

Buffer info:
Total VBO memory usage in the system:
memType : SYSHEAP , 22.50 Mb Allocated , numAllocations: 6.
memType : VID , 64.00 Kb Allocated , numAllocations: 1.
memType : DMA_CACHED , 0 bytes Allocated , numAllocations: 0.
memType : MALLOC , 0 bytes Allocated , numAllocations: 0.
memType : PAGED_AND_MAPPED , 40.14 Mb Allocated , numAllocations: 12.
memType : PAGED , 142.41 Mb Allocated , numAllocations: 32.

Listing 28.1. Example output of GL ARB debug output with Forceware 285.86 drivers.

© 2012 by Taylor & Francis Group, LLC



396 V Transfers

Function Usage hint Destination Transfer
memory rate (GB/s)

glBufferData /

glBufferSubData

GL STATIC DRAW device 3.79

glMapBuffer /

glUnmapBuffer

GL STREAM DRAW pinned n/a (pinned in
CPU memory)

glMapBuffer /

glUnmapBuffer

GL STATIC DRAW device 5.73

Table 28.1. Buffer-transfer performance on an Intel Core i5 760 and an NVIDIA GeForce
GTX 470 with PCI-e 2.0.

glMapBufferRange for all transfers ensures the best performance. An example
application is available on the OpenGL Insights website, www.openglinsights.com,
to measure the transfer rates and other behaviors of buffers objects; a few results are
presented in Tables 28.1 and 28.2.

Pinned memory is standard CPU memory and there is no actual transfer to de-
vice memory: in this case, the device will use data directly from this memory location.
The PCI-e bus can access data faster than the device is able to render it, so there is no
performance penalty for doing this, but the driver can change that at any time and
transfer the data to device memory.

Transfer Source Destination Transfer
memory memory rate (GB/s)

buffer to buffer pinned device 5.73
buffer to texture pinned device 5.66
buffer to buffer device device 9.00
buffer to texture device device 52.79

Table 28.2. Buffer copy and texture transfer performance on an Intel Core i5 760
and an NVIDIA GeForce GTX 470 with PCI-e 2.0 using glCopyBufferSubData and
glTexImage2D with the GL RGBA8 format.

28.2.3 Implicit Synchronization

When an OpenGL call is done, it usually is not executed immediately. Instead,
most commands are placed in the device command queue. Actual rendering may
take place two frames later and sometimes more depending on the device’s perfor-
mance and on driver settings (triple buffering, max prerendered frames, multi-GPU
configurations, etc.). This lag between the application and the drivers can be mea-
sured by the timing functions glGetInteger64v(GL TIMESTAMP,&time) and
glQueryCounter(query,GL TIMESTAMP), as explained in Chapter 34. Most of

© 2012 by Taylor & Francis Group, LLC



28. Asynchronous Buffer Transfers 397

application
thread

driver
thread

frame n

frame n + 1

glClear

glClear

glBufferSubData is
waiting until VBO

is free

glBufferSubData
can finish update

glDrawElements

glDrawElementsglBufferSubData

swap
buffers

Swap
Buffers

OpenGL driver has to wait because VBO is used
by glDrawElements from previous frame

Figure 28.3. Implicit synchronization with glSubBufferData.

the time, this is actually the desired behavior because this lag helps drivers hiding
latency in device communication and providing better overall performance.

However, when using glBufferSubData or glMapBuffer[Range], nothing
in the API itself prevents us from modifying data that are currently used by the device
for rendering the previous frame, as shown in Figure 28.3. Drivers have to avoid
this problem by blocking the function until the desired data are not used anymore:
this is called an implicit synchronization. This can seriously damage performance or
cause annoying jerks. A synchronization might block until all previous frames in
the device command queue are finished, which could add several milliseconds to the
performance time.

28.2.4 Synchronization Primitives

OpenGL offers its own synchronization primitives named sync objects, which work
like fences inside the device command queue and are set to signaled when the device
reaches their position. This is useful in a multithreaded environment, when other
threads have to be informed about the completeness of computations or rendering
and start downloading or uploading data.

The glClientWaitSync and glWaitSync functions will block until the spec-
ified fence is signaled, but these functions provide a timeout parameter which can
be set to 0 if we only want to know whether an object has been signaled or not,
instead of blocking it. More precisely, glClientWaitSync blocks the CPU until
the specified sync object is signaled, while glWaitSync blocks the device.

28.3 Upload
Streaming is the process in which data are uploaded to the device frequently, e.g.,
every frame. Good examples of streaming include updating instance data when using

© 2012 by Taylor & Francis Group, LLC



398 V Transfers

instancing or font rendering. Because these tasks are processed every frame, it is
important to avoid implicit synchronizations. This can be done in multiple ways:

• a round-robin chain of buffer objects,

• buffer respecification or “orphaning” with glBufferData or glMapBuffer
Range,

• fully manual synchronization with glMapBufferRange and glFenceSync

/ glClientWaitSync.

28.3.1 Round-Robin Fashion (Multiple Buffer Objects)

The idea of the round-robin technique is to create several buffer objects and cycle
through them. The application can update and upload buffer N while the device is
rendering from buffer N −1, as shown on Figure 28.4. This method can also be used
for download, and it is useful in a multithreaded application, too. See Sections 28.6
and 28.7 for details.

application
thread glClear

frame n

frame n – 1

glClear
glBufferSubData

vbo[0]
glDrawElements

vbo[0]
swap

buffers

glBufferSubData
vbo[1]

glDrawElements
vbo[1]

OpenGL driver doesn’t need to synchronize
here because previous frame is using

another VBO

driver
thread

swap
buffers

Figure 28.4. Avoiding implicit synchronizations with a round-robin chain.

28.3.2 Buffer Respecification (Orphaning)

Buffer respecification is similar to the round-robin technique, but it all happens in-
side the OpenGL driver. There are two ways to respecify a buffer. The most common
one is to use an extra call to glBufferData with NULL as the data argument and
the exact size and usage hint it had before, as shown in Listing 28.2. The driver will
detach the physical memory block from the buffer object and allocate a new one.
This operation is called orphaning. The old block will be returned to the heap once it
is not used by any commands in the command queue. There is a high probability that

© 2012 by Taylor & Francis Group, LLC



28. Asynchronous Buffer Transfers 399

glBindBuffer(GL_ARRAY_BUFFER , my_buffer_object);

glBufferData(GL_ARRAY_BUFFER , data_size , NULL , GL_STREAM_DRAW);
glBufferData(GL_ARRAY_BUFFER , data_size , mydata_ptr , GL_STREAM_DRAW);

Listing 28.2. Buffer respecification or orphaning using glBufferData.

this block will be reused by the next glBufferData respecification call [OpenGL
Wiki 09]. What’s more, we don’t have to guess the size of the round-robin chain,
since it all happens inside the driver. This process is shown in Figure 28.5.

The behavior of glBufferData / glBufferSubData is actually very imple-
mentation dependent. For instance, it seems that AMD’s driver can implicitly or-
phan the buffer. On NVIDIA, it is slightly more efficient to orphan manually and
then upload with glBufferSubData, but doing so will ruin the performance on In-
tel. Listing 28.2 gives the more “coherent” performance across vendors. Lastly, with
this technique, it’s important that the size parameter of glBufferData is always the
same to ensure the best performance.

The other way to respecify the buffer is to use the function glMapBufferRange

with the GL MAP INVALIDATE BUFFER BIT or GL MAP INVALIDATE RANGE BIT

flags. This will orphan the buffer and return a pointer to a freshly allocated memory
block. See Listing 28.3 for details. We can’t use glMapBuffer, since it doesn’t have
this option.

frame n – 1 frame n

glDrawElements

Buffer respecification
detaches the memory block
from the VBO and allocates

the new block.
The old one will be returned

to the heap when it is no
longer used.

glBufferSubData
real data update

glDrawElements

vertex buffer object

handle

target

new memory block
detached

memory block

swap
buffers

glBufferData(NULL)
re-specification

glClear......

Figure 28.5. Avoiding implicit synchronizations with orphaning.

© 2012 by Taylor & Francis Group, LLC



400 V Transfers

glBindBuffer(GL_ARRAY_BUFFER , my_buffer_object);
void *mydata_ptr = glMapBufferRange(

GL_ARRAY_BUFFER , 0, data_size ,
GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_BUFFER_BIT);

// Fill mydata_ptr with useful data

glUnmapBuffer(GL_ARRAY_BUFFER);

Listing 28.3. Buffer respecification or invalidation using glMapBufferRange.

However, we found that, at least on NVIDIA, glBufferData and glMap

BufferRange, even with orphaning, cause expensive synchronizations if called con-
currently with a rendering operation, even if the buffer is not used in this draw call
or in any operation enqueued in the device command queue. This prevents the de-
vice from reaching 100 percent utilization. In any case, we recommend not using
these techniques. On top of that, flags like GL MAP INVALIDATE BUFFER BIT or
GL MAP INVALIDATE RANGE BIT involve the driver memory management, which
can increase the call duration by more than ten times. The next section will present
unsynchronized mapping, which can be used to solve all these synchronization prob-
lems.

28.3.3 Unsynchronized Buffers

The last method we will describe here gives us absolute control over the buffer-object
data. We just have to tell the driver not to synchronize at all. This can be done by
passing the GL MAP UNSYNCHRONIZED BIT flag to glMapBufferRange. In this

frame 0 frame 1

glDrawElements glDrawElements

glDrawElements in all
frames are using 

different part
of one VBO

swap
buffers

swap
buffers

glClear

handle

target

memory part used in frame 0 memory part used in frame 1

Vertex Buffer Object

glMapBufferRange with
GL–UNSYNCHRONIZED–BIT

and offset 0

glMapBufferRange with
GL–UNSYNCHRONIZED–BIT

and offset 4096
glClear

Figure 28.6. Possible usage of unsynchronized glMapBufferRange.

© 2012 by Taylor & Francis Group, LLC



28. Asynchronous Buffer Transfers 401

const int buffer_number = frame_number++ % 3;

// Wait until buffer is free to use, in most cases this should not wait
// because we are using three buffers in chain , glClientWaitSync
// function can be used for check if the TIMEOUT is zero
GLenum result = glClientWaitSync(fences[buffer_number], 0, TIMEOUT );
if (result == GL_TIMEOUT_EXPIRED || result == GL_WAIT_FAILED)
{

// Something is wrong
}

glDeleteSync(fences[buffer_number]);
glBindBuffer(GL_ARRAY_BUFFER , buffers [buffer_number]);
void *ptr = glMapBufferRange(GL_ARRAY_BUFFER , offset , size , GL_MAP_WRITE_BIT | ←↩

GL_MAP_UNSYNCHRONIZED_BIT);

// Fill ptr with useful data
glUnmapBuffer(GL_ARRAY_BUFFER);

// Use buffer in draw operation
glDrawArray(...);

// Put fence into command queue
fences[buffer_number] = glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, 0);

Listing 28.4. Unsynchronized buffer mapping.

case, drivers just return a pointer to previously allocated pinned memory and do no
synchronization and no memory re-allocation. This is the fastest way to deal with
mapping (see Figure 28.6).

The drawback is that we really have to know what we’re doing. No implicit
sanity check or synchronization is performed, so if we upload data to a buffer that
is currently being used for rendering, we can end up with an undefined behavior or
application crash.

The easiest way to deal with unsynchronized mapping is to use multiple buffers
like we did in the round-robin section and use GL MAP UNSYNCHRONIZED BIT in
the glMapBufferRange function, as shown in Listing 28.4. But we have to be sure
that the buffer we are going to use is not used in a concurrent rendering operation.
This can be achieved with the glFencSync and glClientWaitSync functions. In
practice, a chain of three buffers is enough because the device usually doesn’t lag more
than two frames behind. At most, glClientWaitSync will synchronize us on the
third buffer, but it is a desired behavior because it means that the device command
queue is full and that we are GPU-bound.

28.3.4 AMD’s pinned memory Extension

Since Catalyst 11.5, AMD exposes the AMD pinned memory extension [Mayer 11,
Boudier and Sellers 11], which allows us to use application-side memory allocated

© 2012 by Taylor & Francis Group, LLC



402 V Transfers

#define GL_EXTERNAL_VIRTUAL_MEMORY_AMD 37216 // AMD_pinned_memory

char *_pinned_ptr = new char[buffer_size + 0x1000];
char *_pinned_ptr_aligned = reinterpret_cast <char *>(unsigned (_pinned_ptr + 0xfff) &←↩

(~0xfff));

glBindBuffer(GL_EXTERNAL_VIRTUAL_MEMORY_AMD, buffer );
glBufferData(GL_EXTERNAL_VIRTUAL_MEMORY_AMD, buffer_size , _pinned_ptr_aligned, ←↩

GL_STREAM_READ);
glBindBuffer(GL_EXTERNAL_VIRTUAL_MEMORY_AMD, 0);

Listing 28.5. Example usage of AMD pinned memory.

with new or malloc as buffer-object storage. This memory block has to be aligned
to the page size. There are a few advantages when using this extension:

• Memory is accessible without OpenGL mapping functions, which means there
is no OpenGL call overhead. This is very useful in worker threads for geometry
and texture loading.

• Drivers’ memory management is skipped because we are responsible for mem-
ory allocation.

• There is no internal driver synchronization involved in the process. It is sim-
ilar to the GL MAP UNSYNCHRONIZED BIT flag in glMapBufferRange, as
explained in the previous section, but it means that we have to be careful
which buffer or buffer portion we are going to modify; otherwise, the result
might be undefined or our application terminated.

Pinned memory is the best choice for data streaming and downloading, but it is
available only on AMD devices and needs explicit synchronization checks to be sure
that the buffer is not used in a concurrent rendering operation. Listing 28.5 shows
how to use this extension.

28.4 Download
The introduction of the PCI-e bus gave us enough bandwidth to use data down-
load in real-life scenarios. Depending on the PCI-e version, the device’s upload and
download performance is approximately 1.5–6 GB/s. Today, many algorithms or
situations require downloading data from the device:

• procedural terrain generation (collision, geometry, bounding boxes, etc.);

• video recording, as discussed in Chapter 31;

• page resolver pass in virtual texturing;

© 2012 by Taylor & Francis Group, LLC



28. Asynchronous Buffer Transfers 403

application
thread

frame n

glClear
render

to
texture

glReadPixels
starts DMA

transfer

some other
useful work

sync glMapBuffer
swap 
buffers

DMA transfer

Figure 28.7. Asynchronous DMA transfer in download.

• physics simulation;

• image histogram.

The asynchronous nature of OpenGL drivers brings some complications to the
download process, and the specification is not very helpful regarding how to do it
fast and without implicit synchronization. OpenGL currently offers a few ways to
download data to the main memory. Most of the time, we want to download textures
because rasterization is the most efficient way to generate data on the GPU, at least
in OpenGL. This includes most of the use-cases above.

In this case, we have to use glReadPixels and bind a buffer object to the
GL PIXEL PACK BUFFER target. This function will start an asynchronous transfer
from the texture memory to the buffer memory. In this case, it is important to specify
a GL * READ usage hint for the buffer object because the OpenGL driver will copy
the data to the driver memory, which can be accessed from the application. Again,
this is only asynchronous for the CPU: the device has to wait for the current render
to complete and process the transfer. Finally, glMapBuffer returns a pointer to the
downloaded data. This process is presented in Figure 28.7.

In this simple scenario, the application thread is blocked because the device com-
mand queue is always lagging behind, and we are trying to download data which
aren’t ready yet. Three options are available to avoid this waiting:

• do some CPU intensive work after the call to glReadPixels;

• call glMapBuffer on the buffer object from the previous frame or two frames
behind;

• use fences and call glMapBuffer when a sync object is signaled.

The first solution is not very practical in real applications because it doesn’t guar-
antee that we will not be waiting at the end and makes it harder to write efficient
code. The second solution is much better, and in most cases, there will be no wait

© 2012 by Taylor & Francis Group, LLC



404 V Transfers

if (rb_tail != rb_head )
{

const int tmp_tail = (rb_tail + 1) & RB_BUFFERS_MASK;
GLenum res = glClientWaitSync(fences[tmp_tail ], 0, 0);
if (res == GL_ALREADY_SIGNALED || res == GL_CONDITION_SATISFIED)
{

rb_tail = tmp_tail ;
glDeleteSync(sc->_fence);
glBindBuffer(GL_PIXEL_PACK_BUFFER, buffers [rb_tail ]);
glMapBuffer( GL_PIXEL_PACK_BUFFER, GL_READ_ONLY);
// Process data
glUnmapBuffer(GL_PIXEL_PACK_BUFFER);

}
}
const int tmp_head = (rb_head + 1) & RB_BUFFERS_MASK;
if (tmp_head != rb_tail )
{

glReadBuffer(GL_BACK );
glBindBuffer(GL_PIXEL_PACK_BUFFER, buffers [rb_head ]);
glReadPixels(0, 0, width , height, GL_BGRA , GL_UNSIGNED_BYTE , (void*)offset );

}
else
{

// We are too fast
}

Listing 28.6. Asynchronous pixel data transfer.

because the data is already transferred. This solution needs multiple buffer objects
as presented in the round-robin section. The last solution is the best way to avoid
implicit synchronization because it gives exact information on the completeness of
the transfer; we still have to deal with the fact that the data will only be ready later,
but as developers, we have more control over the status of the transfer thanks to the
fences. The basic steps are provided in Listing 28.6.

However, on AMD hardware, glUnmapBufferwill be synchronous in this spe-
cial case. If we really need an asynchronous behavior, we have to use the AMD pinned

memory extension.
On the other hand, we have found that on NVIDIA, it is better to use another

intermediate buffer with the GL STREAM COPY usage hint, which causes the buffer
to be allocated in device memory. We use glReadPixels on this buffer and finally
use glCopyBufferSubData to copy the data into the final buffer in CPU memory.
This process is almost two times faster than a direct way. This copy function is
described in the next section.

28.5 Copy
A widespread extension is ARB copy buffer [NVIDIA 09], which makes it possible
to copy data between buffer objects. In particular, if both buffers live in device

© 2012 by Taylor & Francis Group, LLC



28. Asynchronous Buffer Transfers 405

glBindBuffer(GL_COPY_READ_BUFFER, source_buffer);
glBindBuffer(GL_COPY_WRITE_BUFFER, dest_buffer);
glCopyBufferSubData(GL_COPY_READ_BUFFER, GL_COPY_WRITE_BUFFER, source_offset , ←↩

write_offset , data_size);

Listing 28.7. Copying one buffer into another using ARB copy buffer.

memory, this is the only way to copy data between buffers on the GPU side without
CPU intervention (see Listing 28.7).

As we pointed out at the end of previous section, on NVIDIA GeForce devices,
copy is useful for downloading data. Using an intermediate buffer in device memory
and reading the copy back to the CPU is actually faster than a direct transfer: 3GB/s
instead of 1.5GB/s. This is a limitation of the hardware that is not present on the
NVIDIA Quadro product line. On AMD, with Catalyst 11.12 drivers, this function
is extremely unoptimized, and in most cases, causes expensive synchronizations.

28.6 Multithreading and Shared Contexts

In this section, we will describe how to stream data from another thread. In the
last few years, single-core performance hasn’t been increasing as fast as the number
of cores in the CPU. As such, it is important to know how OpenGL behaves in
a multithreaded environment. Most importantly, we will focus on usability and
performance considerations. Since accessing the OpenGL API from multiple threads
is not very well known, we need to introduce shared contexts first.

28.6.1 Introduction to Multithreaded OpenGL

OpenGL can actually be used from multiple threads since Version 1.1, but some care
must be taken at application initialization. More precisely, each additional thread
that needs to call OpenGL functions must create its own context and explicitly con-
nect that context to the first context in order to share OpenGL objects. Not doing so
will result in crashes when trying to execute data transfers or draw calls. Implementa-
tion details vary from platform to platform. The recommended process on Windows
is depicted in Figure 28.8, using the WGL ARB create context extensions avail-
able in OpenGL 3.2 [ARB 09b]. A similar extension, GLX ARB create context,
is available for Linux [ARB 09c]. Implementation details for Linux, Mac, and Win-
dows can be found in [Supnik 08].

© 2012 by Taylor & Francis Group, LLC



406 V Transfers

main–hrc =
wglCreateContextAttribsARB(
    hdc, NULL, attribs
);
worker1–hrc =
wglCreateContextAttribsARB(
    hdc, main–hrc, NULL
);
worker2–hrc =
wglCreateContextAttribsARB(
    hdc, main–hrc, NULL
);

OpenGL calls OpenGL calls OpenGL calls

Thread lane OpenGL call CPU synchronization

wglMakeCurrent(
    hdc, main–hrc
);

wglMakeCurrent(
    hdc, worker1–hrc
);

wglMakeCurrent(
    hdc, worker2–hrc
);

Main rendering thread

Worker thread 1 Worker thread 2

Figure 28.8. Shared-context creation on Windows.

28.6.2 Synchronization Issues

In a single-threaded scenario, it is perfectly valid to respecify a buffer while it is
currently in use: the driver will put glBufferData in the command queue, and
upon processing, wait until draw calls relying on the same buffer are finished.

When using shared contexts, however, the driver will create one command queue
for each thread, and no such implicit synchronization will take place. A thread can
thus start a DMA transfer in a memory block that is currently used in a draw call by
the device. This usually results in partially updated meshes or instance data.

The solution is to use the above-mentioned techniques, which also work with
shared contexts: multibuffering the data or using fences.

28.6.3 Performance Hit due to Internal Synchronization

Shared contexts have one more disadvantage: as we will see in the benchmarks below,
they introduce a performance hit each frame.

In Figure 28.9, we show the profiling results of a sample application running
in Parallel Nsight on a GeForce GTX 470 with the 280.26 Forceware drivers. The
first timeline uses a single thread to upload and render a 3D model; the second

© 2012 by Taylor & Francis Group, LLC



28. Asynchronous Buffer Transfers 407

Single thread

With an additional shared context

Device Context

API Calls

Draw Calls

Device Context

API Calls

Draw Calls

97 98 99

lag

0.5 ms hit

lag

100

100

101100

99

101 102100

glBufferData glBufferData glBufferDataSwap...

glBufferData glBufferDataSwapB... SwapB...SwapB...

glBSwap... Swap...Swap...

Figure 28.9. Performance hit due to shared contexts.

timeline does exactly the same thing but with an extra shared context in an idle
thread. This simple change adds 0.5 ms each frame, probably because of additional
synchronizations in the driver. We also notice that the device only lags one frame
behind instead of two.

At least on NVIDIA, this penalty usually varies between 0.1 and 0.5 ms; this
mostly depends on the CPU performance. Remarkably, it is quite constant with
respect to the number of threads with shared contexts. On NVIDIA Quadro hard-
ware, this penalty is usually lower because some hardware cost optimizations of the
GeForce product line are not present.

28.6.4 Final Words on Shared Context

Our advice is to use standard working threads when possible. Since all the function-
ality that shared contexts offers can be obtained without them, the following do not
usually cause a problem:

• If we want to speed up the rendering loop by offloading some CPU-heavy
task in another thread, this can be done without shared contexts; see the next
section for details.

• If we need to know if a data transfer is finished in a single-threaded envi-
ronment, we can use fences, as defined in the GL ARB sync extension; see
Listing 28.8 for details.

We have to point out that shared contexts won’t make transfers and rendering
parallel, at least in NVIDIA Forceware 285 and AMD Catalyst 11.12, so there is
usually minimal performance advantage for using them. See Chapter 29 for more
details on using fences with shader contexts and multiple threads.

© 2012 by Taylor & Francis Group, LLC



408 V Transfers

glUnmapBuffer(...);

GLsync fence = glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, 0);

// Other operations

int res = glClientWaitSync(fence , 0, TIMEOUT );
if (res == GL_ALREADY_SIGNALED || res == GL_CONDITION_SATISFIED)
{

glDeleteSync(fence);
// Transfer finished

}

Listing 28.8. Waiting for a transfer completion with GL ARB sync.

28.7 Usage Scenario
In this last section, we will now present a scenario in which we will stream some scene
object data to the device. Our scene is represented by 32,768 objects representing a
building structure. Each object is generated in a GPU shader, and the only input is
the transformation matrix, which means 2MB of data per frame for the whole scene.
For rendering, we use an instanced draw call that minimizes the CPU intervention.

This scenario is implemented in three different methods: a single-threaded ver-
sion, a multithreaded version without shared contexts, and a multithreaded version
with shared contexts. All the source code is available for reference on the OpenGL
Insights website, www.openglinsights.com.

In practice, these methods can be used to upload, for instance, frustum culling
information, but since we want to measure the transfer performance, no computation
is actually done: the work consists simply in filling the buffer as fast as possible.

28.7.1 Method 1: Single Thread

In this first method, everything is done in the rendering thread: buffer streaming and
rendering. The main advantage of this implementation is its simplicity. In particular,
there is no need for mutexes or other synchronization primitives.

The buffer is streamed using glMapBufferRangewith the GL MAP WRITE BIT

and GL MAP UNSYNCHRONIZED BIT flags. This enables us to write transformation
matrices directly into the pinned memory region, which will be used directly by
the device, saving an extra memcpy and a synchronization compared to the other
methods.

In addition, glMapBufferRange can, as the name suggests, map only a subset
of the buffer, which is useful if we don’t want to modify the entire buffer or if the size
of the buffer changes from frame to frame: as we said earlier, we can allocate a big
buffer and only use a variable portion of it. The performance of this single-threaded
implementation method is shown in Table 28.3.

© 2012 by Taylor & Francis Group, LLC



28. Asynchronous Buffer Transfers 409

Architecture Rendering time
(ms/frame)

Intel Core i5, NVIDIA GeForce GTX 470 2.8
Intel Core 2 Duo Q6600, AMD HD 6850 3.6
Intel Core i7, Intel GMA 3000 16.1

Table 28.3. Rendering performance for Method 1.

28.7.2 Method 2: Two Threads and One OpenGL Context

The second method uses another thread to copy the scene data to a mapped buffer.
There are a number of reasons why doing so is a good idea:

• The rendering thread doesn’t stop sending OpenGL commands and is able to
keep the device busy all the time.

• Dividing the processing between two CPU cores can shorten the frame time.

• OpenGL draw calls are expensive; they are usually more time consuming than
simply appending a command in the device command queue. In particular,
if the internal state has changed since the last draw call, for instance, due to
a call to glEnable, a long state-validation step occurs [2]. By separating our
computations from the driver’s thread, we can take advantage of multicore
architectures.

In this method (see Figure 28.10), we will use two threads: the application thread
and the renderer thread. The application thread is responsible for

• handling inputs,

• copying scene instance data into the mapped buffer,

• preparing the primitives for font rendering.

The renderer thread is responsible for

• calling glUnmapBuffer on the mapped buffers that were filled in the appli-
cation thread,

• setting shaders and uniforms,

• drawing batches.

We use a queue of frame-context objects that helps us avoid unnecessary syn-
chronizations between threads. The frame-context objects hold all data required for
a frame, such as the camera matrix, pointers to memory-mapped buffers, etc. This
design is very similar to the round-robin fashion because it uses multiple unsyn-
chronized buffers. It is also used with success in the Outerra Engine [Kemen and

© 2012 by Taylor & Francis Group, LLC



410 V Transfers

Single threaded

Two threads, one OpenGL context
Bold line represents one full frame, but in this case, it
is divided into two threads and processed in parallel

Application
thread

Renderer
thread

Application
thread

frame N - 1 app part frame N app part

frame N - 1 renderer part... frame N renderer part

...

Time

Time 20 ms

33 ms 33 ms

20 ms 20 ms

Data preparation

frame N - 1 frame N

OpenGL calls

Figure 28.10. Method 2: improving the frame rate with an external renderer thread.

Hrabcak 11]. The performance results are shown in Table 28.4. For simplicity, we
used only two threads here, but we can of course add more, depending on the tasks
and the dependencies in the computations.

Architecture Performance
(ms/frame) improvement

vs. Method 1
Intel Core i5, NVIDIA GeForce GTX 470 2.0 ×1.4
Intel Core 2 Duo Q6600, AMD HD 6850 3.2 ×1.25
Intel Core i7, Intel GMA 3000 15.4 ×1.05

Table 28.4. Rendering performance for Method 2.

28.7.3 Method 3: Two Threads and Two OpenGL Shared
Contexts

In this last method, the scene-data copy is done in an OpenGL-capable thread.
We thus have two threads: the main rendering thread and the additional rendering
thread. The main rendering thread is responsible for the following tasks:

• handling inputs,

• calling glMapBufferRange and glUnmapBuffer on buffers,

• copying scene instance data into the mapped buffer,

• preparing primitives for font rendering.

© 2012 by Taylor & Francis Group, LLC



28. Asynchronous Buffer Transfers 411

Architecture Performance
(ms/frame) improvement

vs. Method 1
hit due to shared
contexts (ms/frame)

Intel Core i5, NVIDIA GeForce GTX 470 2.1 ×1.33 +0.1
Intel Core 2 Duo Q6600, AMD HD 6850 7.5 ×0.48 +4.3
Intel Core i7, Intel GMA 3000 15.3 ×1.05 -0.1

Table 28.5. Rendering performance for Method 3.

The renderer thread is responsible for

• setting shaders and uniforms,

• drawing batches.

In this method, buffers are updated in the main thread. This includes call-
ing glMapBufferRange and glUnmapBuffer because the threads are sharing the
OpenGL rendering context. We get most of the benefits from the second method
(two threads and one OpenGL context) as compared to the single-threaded version:
faster rendering loop, parallelization of some OpenGL calls, and better overall perfor-
mance than Method 1, as shown in Table 28.5. However, as mentioned earlier, there
is a synchronization overhead in the driver, which makes this version slower than
the previous one. This overhead is much smaller on professional cards like NVIDIA
Quadro, on which such multithreading is very common, but is still present.

The performance drop of AMD in this case should not be taken too seriously,
because unsynchronized buffers are not ideal with shared contexts on this platform.
Other methods exhibit a more reasonable 1.1 times performance improvement over
the first solution, as shown in the next section.

28.7.4 Performance Comparisons

Table 28.6 shows the complete performance comparisons of our scenarios with sev-
eral upload policies on various hardware configurations. All tests use several buffers
in a round-robin fashion; the differences lie in the way the data is given to OpenGL:

• InvalidateBuffer. The buffer is mapped with glMapBufferRange using
the GL MAP WRITE BIT | GL MAP INVALIDATE BUFFER BIT flags, and
unmapped normally.

• FlushExplicit. The buffer is mapped with glMapBufferRange using the
GL MAP WRITE BIT | GL MAP FLUSH EXPLICIT BIT flags, flushed, and
unmapped. The unmapping must be done because it is not safe to keep the
buffer mapped permanently, except when using AMD pinned memory.

© 2012 by Taylor & Francis Group, LLC



412 V Transfers

CPU Intel Q6600 Intel i7 2630QM Intel i5 760

GPU
AMD
HD
6850

NV
GTX
460

Intel
HD
3000

NV
GT
525M

AMD
HD
6570

NV
GTX
470

Scenario 1
InvalidateBuffer 3.6 5.0 16.1 12.6 12.0 3.5
FlushExplicit 4.9 4.9 16.1 12.5 18.4 3.5
Unsynchronized 3.6 3.7 16.1 11.2 9.0 2.8
BufferData 5.2 4.3 16.2 11.7 6.7 3.1
BufferSubData 4.4 4.3 17.3 11.6 9.5 3.1
Write 8.8 4.9 16.1 12.4 19.5 3.5
AMD Pinned 3.7 n/a n/a n/a 8.6 n/a

Scenario 2
InvalidateBuffer 5.5 3.2 15.3 10.3 9.5 2.1
FlushExplicit 7.2 3.1 15.3 10.3 16.3 2.1
Unsynchronized 3.2 2.9 15.4 9.9 8.0 2.0
BufferData 4.6 3.5 15.2 10.4 5.5 2.3
BufferSubData 4.0 3.5 15.1 10.5 8.3 2.3
Write 7.4 3.1 15.3 10.3 17.0 2.1
AMD Pinned 3.2 n/a n/a n/a 8.1 n/a

Scenario 3
InvalidateBuffer 5.3 3.8 15.2 10.6 9.4 2.4
FlushExplicit 7.4 3.7 15.2 10.6 17.1 2.3
Unsynchronized 7.5 3.2 15.3 10.2 17.9 2.1
BufferData broken 4.5 15.3 11.0 broken 2.5
BufferSubData 4.5 3.9 15.1 11.0 8.6 2.5
Write 7.5 3.5 15.2 10.5 17.9 2.3
AMD Pinned 3.2 n/a n/a n/a 8.0 n/a

Table 28.6. Our results in all configurations. All values are expressed in ms/frame (smaller is
better).

• Unsynchronized. The buffer is mapped with glMapBufferRange using
the GL MAP WRITE BIT | GL MAP UNSYNCHRONIZED BIT flags and
unmapped normally.

• BufferData. The buffer is orphaned using glBufferData(NULL), and
updated with glBufferSubData.

• BufferSubData. The buffer is not orphaned and is simply updated with
glBufferSubData.

• Write. The buffer is mapped with glMapBufferRange using only the
GL MAP WRITE BIT flag.

© 2012 by Taylor & Francis Group, LLC



28. Asynchronous Buffer Transfers 413

Tests on the Intel GMA 3000 were performed with a smaller scene because it
wasn’t able to render the larger scene correctly.

The Intel GMA 3000 has almost the same performance in all cases. Since there
is only standard RAM, there is no transfer and probably fewer possible variations for
accessing the memory. Intel also seems to have a decent implementation of shared
contexts with a minimal overhead.

NVIDIA and AMD, however, both have worse performance when using shared
contexts. As said earlier, the synchronization cost is relatively constant but not negli-
gible.

For all vendors, using a simple worker thread gets us the best performance, pro-
vided that synchronizations are done carefully. While the unsynchronized version is
generally the fastest, we notice some exceptions: in particular, glBufferData can
be very fast on AMD when the CPU can fill the buffer fast enough.

28.8 Conclusion
In this chapter, we investigated how to get the most out of CPU-device transfers. We
explained many available techniques to stream data between the CPU and the device
and provided three sample implementations with performance comparisons.

In the general case, we recommend using a standard worker thread and multiple
buffers with the GL MAP UNSYCHRONIZED BIT flag. This might not be possible
because of dependencies in the data, but this will usually be a simple yet effective
way to improve the performance of an existing application.

It is still possible that such an application isn’t well suited to parallelization. For
instance, if it is rendering-intensive and doesn’t use much CPU, nothing will be
gained from multithreading it. Even there, better performance can be achieved by
simply avoiding uploads and downloads of currently used data. In any case, we
should always upload our data as soon as possible and wait as long as possible before
using new data in order to let the transfer complete.

We believe that OpenGL would benefit from a more precise specification in
buffer objects, like explicit pinned memory allocation, strict memory destination
parameters instead of hints, or a replacement of shared contexts by streams, similar
to what CUDA and Direct3D 11 provide. We also hope that future drivers provide
real GPU-asynchronous transfers for all buffer targets and textures, even on low-cost
gaming hardware, since it would greatly improve the performance of many real-world
scenarios.

Finally, as with any performance-critical piece of software, it is very important
to benchmark the actual usage on our target hardware, for instance, using NVIDIA
Nsight because it is easy to leave the “fast path.”

© 2012 by Taylor & Francis Group, LLC



414 V Transfers

Bibliography
[ARB 08] OpenGL ARB. “OpenGL EXT framebuffer object Specification.” www.opengl.

org/registry/specs/EXT/framebuffer object.txt, 2008.

[ARB 09a] OpenGL ARB. “OpenGL ARB texture buffer object Specification.” www.
opengl.org/registry/specs/EXT/texture buffer object.txt, 2009.

[ARB 09b] OpenGL ARB. “OpenGL GLX create context Specification.” www.opengl.org/
registry/specs/ARB/glx create context.txt, 2009.

[ARB 09c] OpenGL ARB. “OpenGL WGL create context Specification.” www.opengl.org/
registry/specs/ARB/wgl create context.txt, 2009.

[Boudier and Sellers 11] Pierre Boudier and Graham Sellers. “Memory System on Fusion
APUs: The Benefit of Zero Copy.” developer.amd.com/afds/assets/presentations/1004
final.pdf, 2011.

[Intel 08] Intel. “Intel X58 Express Chipset.” http://www.intel.com/Assets/PDF/prodbrief/
x58-product-brief.pdf, 2008.

[Kemen and Hrabcak 11] Brano Kemen and Ladislav Hrabcak. “Outerra.” outerra.com,
2011.

[Kemen 10] Brano Kemen. “Outerra Video Recording.” www.outerra.com/video, 2010.

[Mayer 11] Christopher Mayer. “Streaming Video Data into 3D Applications.” developer.
amd.com/afds/assets/presentations/2116 final.pdf, 2011.

[NVIDIA 09] NVIDIA. “OpenGL ARB copy buffer Specification.” http://www.opengl.org/
registry/specs/ARB/copy buffer.txt, 2009.

[OpenGL Wiki 09] OpenGL Wiki. “OpenGL Wiki Buffer Object Streaming.” www.opengl.
org/wiki/Buffer Object Streaming, 2009.

[Supnik 08] Benjamin Supnik. “Creating OpenGL Objects in a Second
Thread—Mac, Linux, Windows.” http://hacksoflife.blogspot.com/2008/02/
creating-opengl-objects-in-second.html, 2008.

[Venkataraman 10] Shalini Venkataraman. “NVIDIA Quadro Dual Copy Engines.” www.
nvidia.com/docs/IO/40049/Dual copy engines.pdf, 2010.

[Williams and Hart 11] Ian Williams and Evan Hart. “Efficient Rendering of Geomet-
ric Data Using OpenGL VBOs in SPECviewperf.” www.spec.org/gwpg/gpc.static/
vbo whitepaper.html, 2011.

© 2012 by Taylor & Francis Group, LLC



Fermi Asynchronous
Texture Transfers

Shalini Venkataraman

29.1 Introduction
Many real-world graphics applications need to transfer textures efficiently in and
out of the GPU memory in the form of 2D images, 2.5D terrains, or 3D volumes
and their time-varying counterparts. In the pre-Fermi generation of NVIDIA hard-
ware, any data transfer would stall the GPU from rendering because the GPU had
a single hardware execution thread that could either execute transfers or rendering.
The OpenGL pixel buffer object (PBO) [ARB 04] provides a mechanism to optimize
transfers, but it is CPU asynchronous in that it allows for concurrent CPU processing
while the GPU performs uploads and downloads. However, the GPU is still blocked
from rendering OpenGL commands while the actual data transfers occur. As dis-
cussed in Chapter 28, many applications go a step further to use multiple threads
for resource preparation such that the GPU is always kept busy. At the hardware-
execution level, however, the GPU will end up serializing the transfer and the draw
command queues.

This chapter explains how this limitation is overcome by the copy engine hardware
found in the NVIDIA Fermi architecture [NVIDIA 10] generation and later GPUs.
A copy engine is a dedicated controller on the GPU that performs DMA transfers of
data between CPU memory and GPU memory independent of the graphics engine
(Figure 29.1). Each copy engine allows one-way-at-a-time bidirectional transfer. The
NVIDIA Fermi GeForce and the low-end Quadro cards1 have one copy engine such

1Quadro 2000 and below.

415

29

© 2012 by Taylor & Francis Group, LLC



416 V Transfers

Two Copy Engines

One Copy Engine

No Copy Engine
GPU Memory

GPU Memory

GPU Memory

Memory Controller

Memory Controller

Memory Controller

Graphics
Engine

Graphics
Engine

Graphics
Engine

GPU
GPU

GPU Copy
Engine

Copy
EngineCopy

Engine

Figure 29.1. Copy engine and graphics engine layout for various GPUs.

that unidirectional transfers can be concurrently performed with rendering, allowing
for two-way overlap. The Quadro mid-higher level cards2 have two copy engines so
that bidirectional transfers can be done in parallel with rendering. This three-way
overlap means that the current set of data can be processed while the previous set is
downloaded from the GPU and the next set is uploaded.

Figure 29.1 shows the block diagrams comparing GPUs with (left) no copy en-
gine, where the graphics engine handles transfers and drawing; (center) a single copy
engine that handles transfers in both directions; and finally, (right) two copy engines,
each dedicated to transfers in a single direction.

Some examples for overlapped transfers include the following:

• Video or time-varying geometry and volumes. This includes transcod-
ing, visualizing time-varying numerical simulations, and scanned medical data
such as 4D ultrasound.

• Remoting graphics. Powerful GPU servers are used for offscreen render-
ing, and the results are downloaded to the server’s main memory, which is sent
over the network to thin clients such as phones and tablets.

• Parallel rendering. When a scene is divided and rendered across multiple
GPUs and the color and depth are read back for composition, parallelizing
readback will speed up the pipeline. This is likewise the case for a sort-first
implementation, where at every frame, the data have to be streamed to the
GPU based on the viewpoint.

2Quadro 4000, 5000, 6000, and Quadro Plex 7000.

© 2012 by Taylor & Francis Group, LLC



29. Fermi Asynchronous Texture Transfers 417

• Data bricking for large images, terrains, and volumes. Bricks or
LODs are paged in and out as needed in another thread without disrupting
the rendering thread.

• OS cache. Operating systems can page in and out textures as needed, elimi-
nating shadow copies in RAM.

This chapter starts by covering existing methods for texture transfers, such as
synchronous and CPU-asynchronous methods like PBOs, and explains their limi-
tations. Then, GPU-asynchronous methods using the Fermi copy engines are in-
troduced where transfers can occur concurrently with GPU rendering. Achieving
this parallelism on the GPU hardware requires application restructuring into mul-
tiple threads with a context per thread and use of OpenGL fences to manage the
synchronization. Finally, it concludes with results showing the speedup achieved for
various data sizes, application characteristics, and GPUs with different overlap capa-
bilities. The complete source code that is used to generate the results is available on
the OpenGL Insights website, www.openglinsights.com.

29.2 OpenGL Command Buffer Execution
Before diving into transfers, I will lay the groundwork for understanding OpenGL
command buffers, specifically the interplay between the drivers and the OS and
how it is all finally executed by the graphics hardware. I use GPUView [Fisher and
Pronovost 11], a tool developed by Microsoft and available as part of the Windows 7
SDK. GPUView will allow us to see, as a function of time, the state of all the context-
specific CPU queues as well as the queue for the graphics card.

Figure 29.2 shows the trace for an OpenGL application with multiple contexts.
The application thread continuously submits work to the CPU command queue
from where the OS uploads to the GPU hardware queue. The CPU command
queue exists per OpenGL context. OpenGL calls for a context are batched in a list
of commands for that context, and when enough commands are built up, they are
flushed to the CPU command queue. Each CPU command queue has its own color
so that it is easy to see which queue the graphics hardware is currently working on.
Periodically, when there is room, the graphics scheduler will add a task from the
CPU context command queue onto the GPU hardware queue. The GPU hardware
queue shows the work that is currently being processed by the graphics card and
queue of tasks it is working on. There are two GPU hardware queues in this example
showing some of the packets that are processed in parallel and others in serial. The
arrows follow a series of command packets as they are flushed to the CPU command
queue, and then wait in the queue and are executed on the GPU. When the GPU has
finished executing the final packets, the CPU command queue can return and the
next frame begins. Throughout this chapter, we use GPUView traces to understand
what happens under the hood for the various transfer approaches.

© 2012 by Taylor & Francis Group, LLC



418 V Transfers

Mapped to same

hardware queue

GPU Time

Start execution
on GPU

Wait
Finished execution on GPU

CPU queue return

App thread flushes commands

Figure 29.2. Screenshot of GPUView.

29.3 Current Texture Transfer Approaches
A typical upload-process-download pipeline can be broken down into the following:

• Copy. The CPU cycles spent for data conversion, if any, to native GPU
formats; use memcpy from application space to driver space for upload and
vice versa for download.

• Upload. The time for the actual data transfer on the PCI-e bus from host to
GPU.

• Process. The GPU cycles for rendering or processing.

• Download. The time for the data transfer from the GPU back to host.

To achieve maximum end-to-end throughput on the GPU, maximum overlap is re-
quired between these various stages in the pipeline.

© 2012 by Taylor & Francis Group, LLC



29. Fermi Asynchronous Texture Transfers 419

[ 0 ]
texID

[ 1 ]

[ 2 ]

...Disk

glTexSubImage

Graphics Memory
Main Memory

Time

Draw

Frame Draw

GPU

Bus

CPU

Draw Copy and
Upload with
TexSubImage

Copy and
Upload with
TexSubImage

Figure 29.3. Synchronous texture uploads with no overlap.

29.3.1 Synchronous Texture Transfers

For simplicity, we start by analyzing an upload-render pipeline. The straightforward
upload method for textures is to call glTexSubImage, which uses the CPU for
copying data from user space to driver pinned memory and blocks it during the sub-
sequent data transfer on the bus to the GPU. Figure 29.3 illustrates the inefficiency
of this method as the GPU is blocked during the CPU copy. The corresponding

Empty Queue

Render time = 10 ms

Upload Time = ≈15ms includes
the memcpy timedone by CPU

Upload
+ Render

Figure 29.4. GPUView timeline showing synchronous texture uploads.

© 2012 by Taylor & Francis Group, LLC



420 V Transfers

GPUView trace is shown in Figure 29.4, and shows that upload and render are han-
dled sequentially and the additional GPU hardware queue is unused. This graph
also shows that the memcpys are in fact interspersed with the transfer, causing the
spikes and gaps in the CPU and GPU command queues. Ideally, we would like the
execution timeline of a packet to be solid until completion to show that the GPU is
kept fully busy, as is shown by the render.

29.3.2 CPU Asynchronous Texture Transfers

The OpenGL PBO [ARB 04] mechanism provides for transfers that are asynchronous
on the CPU if an application can schedule enough work between initiating the trans-
fer and actually using the data. In this case, glTexSubImage, glReadPixels, and
glGetTexImage operate with little CPU intervention. PBOs allow direct access
into GPU driver-pinned memory, eliminating the need for additional copies. After
the copy operation, the CPU does not stall while the transfer takes place and contin-
ues on to process the next frame. Ping-pong PBOs can further increase parallelism
where one PBO is mapped for memcpy while the other feeds to the texture.

Figure 29.5 shows the workflow along with the timeline for the same upload-
render workflow, and Listing 29.1 shows the code snippets to map the PBOs and
populate or “unpack” them. Multiple threads can be used to feed the data for trans-
fer (see Chapter 28); however, at the hardware-execution level, there is only one
thread of execution causing transfers to be serialized with the drawing as shown in
the GPUView trace in Figure 29.6. The trace also shows solid lines for upload and
render, signifying 100% GPU utilization without any CPU intervention.

[0] PBO0

Graphics Memory

OpenGL Controlled
Memory

texID

PBO1[1]

[2]

...

Main Memory

Disk

Datanext:
memcpy

Datacur:
glTexSubImage

Frame Draw

Draw0

Upload0:PBO0 Upload1:PBO1 Upload2:PBO1

Copy0:PBO0 Copy1:PBO1 Copy2:PBO0

Draw1

Time

GPU

Bus

CPU

Draw2

Figure 29.5. CPU asynchronous uploads with ping-pong PBOs.

© 2012 by Taylor & Francis Group, LLC



29. Fermi Asynchronous Texture Transfers 421

GLuint pbo[2]; // The ping -pong pbo�s
unsigned int curPBO = 0;
// Bind current pbo for app->pbo transfer
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, pbo[curPBO ]);
GLubyte *ptr;
ptr = (GLubyte *) glMapBufferRange(GL_PIXEL_UNPACK_BUFFER_ARB, 0, size , ←↩

GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_BUFFER_BIT);
memcpy(ptr , pData , width * height * sizeof(GLubyte ) * nComponents);
glUnmapBuffer(GL_PIXEL_UNPACK_BUFFER);
glBindTexture(GL_TEXTURE_2D , texId);
// Bind next pbo for upload from pbo to texture object
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, pbo[1 - curPBO ]);
glTexSubImage2D(GL_TEXTURE_2D , 0, 0, 0, width , height , GL_RGBA , GL_UNSIGNED_BYTE ,←↩

0);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
glBindTexture(GL_TEXTURE_2D , 0);
curPBO = 1 - curPBO;

Listing 29.1. CPU asynchronous upload using ping-pong PBOs.

Frame time

Upload time Render time
Unused Hardware Queue

Figure 29.6. CPU asynchronous transfers using PBOs in the same thread as render.

29.4 GPU Asynchronous Texture Transfers

The GPUView diagrams show that only one GPU hardware queue was used and the
additional GPU hardware queues signifying tasks for the copy engines are empty.
The copy engines are not used by default, as there is some additional overhead in
initialization and synchronization, which is not warranted for small transfers as the
results later show (Section 29.6). In order to trigger the copy engine, the application
has to provide a heuristic to the drivers, and it does this by separating the transfers
in a separate thread. When the transfers are partitioned this way, the GPU scheduler
ensures that the OpenGL commands issued in the render thread will map and run on
the graphics engine and the commands in the transfer threads on the copy engines in
parallel and completely asynchronously. This is what I refer to as GPU asynchronous
transfers.

© 2012 by Taylor & Francis Group, LLC



422 V Transfers

time

Uploadt0:PBO0 Uploadt2:PBO0Uploadt1:PBO1

CPU

GPU Drawt0 Drawt2Drawt1

Frame Draw

Copyt0:PBO0 Copyt1:PBO1 Copyt2:PBO0

Bus 0 t1 1

t0

t2 0

t

Figure 29.7. GPU asynchronous transfer showing overlap of upload and draw.

Figure 29.7 shows the end-to-end frame time amortized over three frames for an
upload-render case. The current frame upload (t1) is overlapped with the render of
the previous frame (t0) and CPU memcpy of the next frame (t2). Figure 29.8 shows
the GPUView trace on a Quadro 6000 card where three separate GPU command
queues are exposed, although the download queue is currently unused. The upload
here is hidden by the render time.

So far in this chapter, I have touched mostly on the upload-render case for the
sake of simplicity in illustration. However, the same principles apply for a render-
download and a upload-render-download overlap case.

Frame
Time

Overlapped Download queue unused

Upload

CPU
Upload

CPU
Render

Render

Figure 29.8. GPUView timing diagram showing the overlap of upload and draw at the GPU
hardware queues.

© 2012 by Taylor & Francis Group, LLC



29. Fermi Asynchronous Texture Transfers 423

29.5 Implementation Details

29.5.1 Multiple OpenGL Contexts

A separate thread with its associated OpenGL context is created for each stage appli-
cable in the pipeline: upload, render, and download. Figure 29.9 shows the schematic
for a upload-render pipeline. The upload thread is responsible for streaming source
data from main memory into a shared texture that the render thread subsequently
accesses for drawing.

Likewise, as shown in Figure 29.10, the render thread renders to a framebuffer-
object attachment that the download thread is waiting on to transfer back to main
memory. The offscreen rendering is done via FBOs [ARB 08]. All the transfers are
still done using PBOs, as was explained in Section 29.3.2. Multiple textures for both
source and destinations are used to ensure sufficient overlap such that uploads and
downloads are kept busy while the GPU is rendering to or with a current texture.

Upload Thread

SrcTex
[numBuffers] Render

ThreadPBO0
PBO1

Graphics Memory

OpenGL Controlled
Memory

Datacur:
glTexSubImage

Datanext:
memcpy glBindTexture

Main Memory

[0]

[1]

[2]
Disk

Figure 29.9. Schematic showing upload and render threads with shared textures.

glFramebuffer
Texture

resultTex
[numBuffers]

Framecur:
glGetTexImage

Frameprev:
memcpy

OpenGL Controlled
Memory

[0]

[1]

[2]

Main Memory

FBO

PBO0
PBO1

Render
Thread

Graphics Memory

Download Thread

Figure 29.10. Render and download threads accessing shared offscreen textures.

© 2012 by Taylor & Francis Group, LLC



424 V Transfers

The textures are shared between multiple contexts using WGL ARB create

context [ARB 09c] on Windows and GLX ARB create context on Linux
[ARB 09b]. Threads are then spawned to handle the upload, render, and download
processes. To manage concurrent access from threads to shared textures, synchro-
nization primitives like CPU events and GPU fences are created per texture.

29.5.2 Synchronization

OpenGL rendering commands are assumed to be asynchronous. When a glDraw*
call is issued, it is not guaranteed that the rendering is done by the time the call
returns. When sharing data between OpenGL contexts bound to multiple CPU
threads, it is useful to know that a specific point in the command stream was fully
executed. For example, the render thread needs to know when the texture upload
has completed in order to use the texture. This handshaking is managed by syn-
chronization objects as part of the GL ARB Sync mechanism [ARB 09a]. Synchro-
nization objects can be shared between different OpenGL contexts, and an object
created in a context can be waited on by another context. Specifically, we use a
fence, which is a type of synchronization object that is created and inserted in the
command stream (in a nonsignaled state) and when executed, changes its state to
signaled. Due to the in-order execution of OpenGL, if the fence is signaled, then all
commands issued before the fence in the current context have also been completed.
In an upload-render scheme, as shown in Figure 29.11, the render waits on the fence,
endUpload, inserted after texture upload to start the drawing while the upload waits
on the startUpload fence, which the render queues after the drawing. These fences
are created per texture. Corresponding CPU events are used to signal the GPU fence
creation to avoid busy waiting. For example, the endUploadValid event is set by
the upload thread to signal to the render thread to start the glWaitSync for the
endUpload fence before rendering to that texture.

Likewise, in a render-download scheme, as shown in Figure 29.12, the download
waits on the fence startDownload inserted after render to start reading from the
texture, and the render waits for download to complete before using the endDown
load fence.

Upload Render

srcTex

[ 0 ]

[ 1 ]

[ 2 ]

[ 3 ]

Figure 29.11. Upload thread produces to srcTex[2] while render thread consumes from
srcTex[0].

© 2012 by Taylor & Francis Group, LLC



29. Fermi Asynchronous Texture Transfers 425

Render
[0]

[1]

[2]

[3]

resultTex

Download

Figure 29.12. Render thread produces resulting image to resultTex[3] while download
thread consumes from resultTex[2].

29.5.3 Copy Engine Considerations

An OpenGL context attached to a copy engine is a fully functional GL context so that
non-DMA commands can be issued in the transfer threads. However, some of these
calls may time-slice with the rendering thread, causing us to lose parallelism. In the
event that the driver has to serialize calls between the transfer and render context, it
generates a debug message, “Pixel transfer is synchronized with 3D rendering,” which
the application can query using the GL ARB debug output extension (Chapter 33).
Another limitation of Fermi’s copy engine is that it is only limited to pixel transfers
and not vertex transfers.

When FBOs are used in conjunction with copy engines, there is some over-
head in doing the FBO validation during texture and renderbuffer attachments. For
this reason, glGetTexImage is the prefered path for download rather than using
glReadPixels to read from a renderbuffer or texture. Lastly, the optimal number
of shared textures should be set based on the ratio of render time to transfer time;
this requires some experimentation. When both the times are balanced, a double-
buffered texture is sufficient.

29.6 Results and Analysis

The following tests were done on a Dell T7500 Workstation with Intel Xeon Quad
Core E5620 at 2.4GHz and 16GB RAM. The test boards used were NVIDIA
Quadro 6000 and NVIDIA GeForce GTX 570 attached to the PCI-e x16 slot with
Quadro and Forceware 300.01 drivers. As the PCI transfer rates are highly sensitive
to the chipset, a workstation-class motherboard is used to achieve the best results.

The results compare the performance gain achieved on the GeForce and Quadro
with various texture sizes for applications that range from transfer-heavy to bal-
anced to render-heavy. The horizontal axis shows the ratio of render to transfer
time on a logarithmic scale. The baseline for each series is the time taken for CPU-
asynchronous transfers (Section 29.3.2) on that card.

© 2012 by Taylor & Francis Group, LLC



426 V Transfers

Figure 29.13. Comparing upload-render performance improvement.

For the upload-render overlap in Figure 29.13, the performance improvement
on Quadro is higher than GeForce (lighter colored lines) for all data sizes. The
overlap performance on the Quadro is also more deterministic as compared to the
GeForce, which shows a lot of jitter between runs. It is also seen that for texture

Figure 29.14. Comparing render-download performance improvement.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-35&iName=master.img-254.jpg&w=273&h=153
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-35&iName=master.img-255.jpg&w=267&h=184


29. Fermi Asynchronous Texture Transfers 427

Render-Download Bandwidth for Quadro vs GeForce

P
C

I-
e 

b
a
n
d
w

id
th

 (
M

B
/
s)

5000

4000

3000

2000

1000

0
256K 1MB 8MB

Texture Size

GeForce GTX 570 Quadro 6000

32MB

Figure 29.15. Quadro download performance is 3X higher than GeForce.

sizes less than 1MB invoking the copy engine shows very little gain. There are only
significant gains, 50% or more, which warrant the extra programming effort, from
using the copy engine for textures bigger than 1MB. Using the copy engine also favors
applications that are balanced between transfer and rendering time. For example, we
see close to linear scaling at around 1.8X for the 32MB texture in the balanced case,
which sustains a bandwidth of 4GB/s.

Figure 29.14 shows the performance improvement in the render-download over-
lap case. The bandwidth for the peaks are comparable to the upload case. For

Frame time = 11.6 msa)

b)

c)

Render

Render

Download Serialized Overlapped

Render

Frame Time
Render = 10 ms

Upload = 6 ms

4 x download time

Both

Upload

Figure 29.16. GeForce GTX 570 trace for upload, download, and bidirectional overlap.

© 2012 by Taylor & Francis Group, LLC



428 V Transfers

Render

Download

Download
Copy Engines are idle

Frame time

Frame time

Upload

Upload

Render

b)

a)

Figure 29.17. Ideal case of bidirectional transfers where upload, render, and download take
the same time (top). Render-bottlenecked applications where the copy engines are idle 50%
of the time (bottom).

the GeForce, although using the copy engine gives a 40% improvement in render-
download overlap performance for the 8MB and 32MB texture, the absolute down-
load performance is significantly better on the Quadro, peaking at more than 3X, as
shown in Figure 29.15.

The behavior on GeForce cards is verified by the GPUView trace in Figure 29.16
(top), which shows the upload-render overlap working as expected, and Figure 29.16
(middle), which shows the render-download overlap but with much larger download
times for the same texture size. The GeForce boards are only optimized for the
upload path, as that is the use case for many consumer applications and games that do
bricking and paging. Figure 29.16 (bottom) shows how doing bidirectional transfers
on the GeForce serializes the upload and download, as they now end up sharing one
copy engine.

Figure 29.17 shows the bidirectional transfer overlap with rendering that is avail-
able on mid- to high-end Quadros. Figure 29.17 (top) shows the ideal case where
there is maximum overlap and very little idle time in any of the three queues. Fig-
ure 29.17 (bottom), on the other hand, shows a render-heavy case where the copy
engines are idle half the time.

© 2012 by Taylor & Francis Group, LLC



29. Fermi Asynchronous Texture Transfers 429

29.6.1 Previous Generation Architecture

Figure 29.18 shows the same application running on a Quadro 5800 based on the
GT 200 chip and the NVIDIA Tesla architecture. The number of threads and the
CPU command queues remain the same, but at the hardware level, the GPU sched-
uler serializes the different command queues, and therefore, no overlap is seen. The
length of the CPU command queue for the download shows the latency from the
time when the download commands were queued by the application to when the
GPU has completed execution.

Serial execution on GPU

Render

Upload

Download

upload time download time

Render Time = 10ms

Frame Time

Figure 29.18. The same multithreaded application on a Tesla card (Quadro 5800) is serial-
ized in the GPU hardware queue.

29.7 Conclusion
The GPU asynchronous texture-transfer mechanism enabled by the copy engines in
NVIDIA’s Fermi and above generation provides for the best transfer performance
for applications that (1) are balanced in terms of render and transfers and (2) have
significantly large data (more than 1MB) to transfer. I also illustrated how to use
multiple threads and synchronization primitives to invoke the copy engines using a
2D texture streaming example. Results with the aid of GPUView show the two-way
overlap that takes place on the GeForce and low-end Quadros and three-way overlap
on the higher-end Quadros. This example can be easily applied to a terrain-paging
system where the different LODs are uploaded concurrently with the rendering

© 2012 by Taylor & Francis Group, LLC



430 V Transfers

depending on view parameters. Other extensions could include large volumetric
rendering by bricking 3D textures for applications in medical imaging, oil and gas,
and numerical simulations. The render-download usage case maps directly to server-
based OpenGL rendering that is rampant with the proliferation of thin clients like
phones and tablets.

Bibliography
[ARB 04] OpenGL ARB. “OpenGL PBO Specification.” http://www.opengl.org/registry/

specs/ARB/pixel buffer object.txt, 2004.

[ARB 08] OpenGL ARB. “OpenGL FBO Specification.” http://www.opengl.org/registry/
specs/EXT/framebuffer object.txt, 2008.

[ARB 09a] OpenGL ARB. “OpenGL ARB Sync Specification.” http://www.opengl.org/
registry/specs/ARB/sync.txt, 2009.

[ARB 09b] OpenGL ARB. “OpenGL GLX ARB create context.” http://www.opengl.org/
registry/specs/ARB/glx create context.txt, 2009.

[ARB 09c] OpenGL ARB. “OpenGL WGL ARB create context.” http://www.opengl.org/
registry/specs/ARB/wgl create context.txt, 2009.

[Fisher and Pronovost 11] Mathew Fisher and Steve Pronovost. “GPUView.” http://graphics.
stanford.edu/∼mdfisher/GPUView.html, 2011.

[NVIDIA 10] NVIDIA. “Fermi White Paper.” http://www.nvidia.com/content/PDF/fermi
white papers/NVIDIA Fermi Compute Architecture Whitepaper.pdf, 2010.

© 2012 by Taylor & Francis Group, LLC



WebGL Models: End-to-End

Won Chun

30.1 Introduction

When we were making Google Body in 2010 (see Figure 30.1), WebGL was new
technology. It wasn’t entirely clear what we’d be able to accomplish; indeed, the

Figure 30.1. Google Body, a 3D anatomy browser for
the web.

uncertainty was one of the
reasons for building it in the
first place. Adopting a new
technology like WebGL was
a leap of faith. Even if the
idea made perfect sense to
us, so many things outside
of our control needed to go
right. We eventually open
sourced Google Body,1 and
unequivocally demonstrated
that it is possible to build
a rich, 3D application using
WebGL. Google Body made
the use of WebGL less an act
of faith, and more an act of
execution.

1The content is now available at zygotebody.com.

431

30

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-36&iName=master.img-009.jpg&w=196&h=140


432 V Transfers

When we started, the simple act of loading a 3D model was its own little leap
of faith. The source 3D model data was incredibly detailed; we ended up shipping
a reduced version with 1.4 million triangles and 740 thousand vertices for 1,800
anatomical entities. Our first prototype simply loaded everything using COLLADA,
but that took almost a minute to load from a local web server. That’s a really long
time to wait for a web page.

COLLADA was inefficient in its use of bandwidth and computation, but it
wasn’t immediately apparent how we could do better. There is no DOM node or
MIME-type for 3D models. WebGL added TypedArray support to JavaScript, but
XMLHttpRequestwouldn’t get it for months. Fortunately, we devised a way to load
Google Body’s 1.4 million triangles much more efficiently than we expected using a
surprising combination of standard web technologies.

I’ve shared WebGL Loader, http://code.google.com/p/webgl-loader/, as an open-
source project so that other WebGL projects can benefit. This chapter describes how
WebGL Loader works. WebGL Loader can compress a 6.3 MB OBJ file to under
0.5 MB, better than a 13:1 compression ratio. GZIP alone shrinks the same file to
about 1.8 MB and yields a model file that is slower to parse and render. Taken apart,
the techniques and concepts are actually quite simple to understand. I also hope to
give insights into the process of how we went about making those choices so that we
can be equipped with more than just faith for the next time we are spurred to delve
into the depths of technical uncertainty.

30.2 Life of a 3D Model
Loading 3D models was the apparent challenge, but it is always important to keep
the big picture in mind. When I joined Google, as part of orientation, I attended
internal lectures about how the key internal systems at Google work. They all had
titles like“Life of a [blank].” For example, “Life of a Query” walks through, step by
step, what happens when a user performs a search on google.com. This end-to-end
perspective is the key to building computer systems because it motivates what we
build, even when we focus on a single component. I spent two years optimizing a
tiny corner of web search by a few percent, but I knew the effort was worthwhile
because it was in the critical path for every web search by all of our users. If “Life of
a Query” teaches us anything, it is that there are lots of queries.

It doesn’t make sense to think about loading 3D models outside the context of all
the other steps a 3D model takes through an application. Each step informs the de-
sign. For Google Body, we thought of the model as it related to four key stages. They
are general enough that they should apply to most other WebGL projects as well:

• Pipeline. Where does the 3D model data originate?

• Serving. How does the 3D model data arrive in users’ browsers?

• Encoding. What format should the 3D model data use?

• Rendering. How does the 3D model data get to the screen?

© 2012 by Taylor & Francis Group, LLC



30. WebGL Models: End-to-End 433

30.2.1 Stage 1: Pipeline

Unless the application is a demo where 3D models are mere stand-ins to showcase
some new technology, it is important to understand their creation process, called the
art pipeline. The art pipeline can include many creative steps, like concept drawing
or 3D modeling, but the key technological steps to understand are the tools that get
models from the care of the artists to the application.

Art creation tools like Maya, Blender, Photoshop, or GIMP have their own file
formats, but applications usually don’t use them directly. The flexibility that is a
necessity during creation ends up as baggage after the art is created. Contrast a
Photoshop PSD file with a plain old JPG image. The PSD file can contain lots
of extra sophistication like layers or color transforms that are essential for lossless,
nondestructive editing, but that will never get used by something that simply needs
to present the final image.

A similar thing happens with 3D models. For example, 3D modeling software
keeps track of positions, normals, texture coordinates, or other vertex attributes in
separate lists. A vertex is represented as a tuple of indices, one for each vertex at-
tribute. This is an excellent choice for creation and editing; if an artist changes an
attribute like a position or texture coordinate, all the vertices that share that attribute
are implicitly updated. GPUs don’t support these multi-indexed vertex lists; they
must first be converted to a single-indexed vertex list. WebGL additionally enforces
a limit of 65,536 unique vertices in a single drawElements call for maximum porta-
bility. Larger meshes must be split into batches.

Somewhere along the line, the model needs to be converted from a multipurpose,
creation-appropriate form to a streamlined, render-appropriate form. The best time
and place to do this is in the art pipeline. From the perspective of the application,
everything that happens in the art pipeline appears to happen magically ahead of
time. Since more time can be spent in the art pipeline than during loading, it is a
great opportunity to offload work from the stages ahead. This is where to optimize
the mesh for rendering and compress it for serving.

30.2.2 Stage 2: Serving
We don’t have much control over what happens between the server and client because
it is all governed by Internet standards; all we can do is understand how things work
and how to best use them. I learned about high-performance web serving during
my first project at Google, optimizing infrastructure behind iGoogle.2 As it turns
out, serving 3D models over HTTP is not that different from serving other kinds
of static contents, such as stylesheets or images. Almost everything in this section
applies equally to images and to meshes since it is all about how to send bits onto
the client. Perhaps more accurately, this section is about how not to send bits to the
client using that reliable system design workhorse: caching. The bits we never send
are the fastest and cheapest of all.

2iGoogle is the customizable homepage for Google: http://www.google.com/ig.

© 2012 by Taylor & Francis Group, LLC



434 V Transfers

HTTP caching fundamentals. Before a browser makes an HTTP GET request to
download the data for a URL, it first checks the cache to see if the data corresponding
to that URL are already present. If so, the browser potentially has a cache hit. The
problem with simply using these data right away is that they might be stale; the data
in the cache might not reflect what is actually being served anymore. This is the
trouble with caches; they seem like a cheap and simple way to improve performance,
but then we have to deal with the extra complexity of validation.

There are several ways a browser validates its cache data. The basic approaches
use a conditional GET. The browser remembers when it originally fetched the data,
so it uses an if-modified-since header in a GET request, and the server responds
with a new version only if necessary. Another approach is to use ETags, which can
act as a content fingerprint so the server can detect when a URL has changed since
last requested.

These approaches work as we would expect, but both still require a round-trip
communication with the server. These requests, while usually cheap, still consume
connections, a limited resource on both the client and server, and can have unpre-
dictable latencies depending on the state of the network. It is better to completely
avoid this parasitic latency with a simple tweak in the server. Instead of forcing the
browser to ask, “Is this stale?” for each request, the server can proactively tell the
browser how long the data will be fresh by using an Expires header. With an
explicit expiration, the browser can use locally cached data immediately.

A long Expires header (the longest supported is just under a year) improves
caching performance, but makes updates less visible. My favorite approach to deal
with this is to simply never update the data for a given URL by using unique URLs
for each version of the data. One particularly simple way is to embed a content
fingerprint in the URL—no need to maintain any extra state.

Fingerprinting works best if you control the references to your fingerprinted as-
sets; otherwise, clients can end up with stale references. A hybrid approach is to have
a small manifest file with a conventional URL and caching parameters referencing
fingerprinted URLs. This way, we can have good caching performance for bulk data,
amortizing validation, while maintaining freshness.

HTTP proxy caches. The most important cache is the browser cache, but in re-
ality, there could be many between the user and the server. Companies use HTTP
proxies as an intermediary between workstations and the Internet, and usually these
include web caches to efficiently use available Internet bandwidth. ISPs, in the busi-
ness of providing bandwidth, deploy many caching proxies to improve performance.
Some web servers will have reverse proxies that are optimized for serving static con-
tent. It is an excellent idea to recruit these caches, especially because they are numer-
ous and tend to be closer to users. Fortunately, all these caches understand the same
HTTP conventions, so with some careful design, we can simultaneously optimize for
all of them.

© 2012 by Taylor & Francis Group, LLC



30. WebGL Models: End-to-End 435

To enable proxy caching, the server should set the Cache-control: public

header. Since proxy caches are shared, a few more criteria must be met before the
data is actually effectively cached. Some proxy caches ignore URLs with ? so don’t
use query strings. Cookies don’t work in shared caches, and they also make every
HTTP request header larger.

A good way to avoid performance problems with cookies is to use a separate,
cookieless domain. Different domains need not be separate servers, but they could
be, for example, if we used a content delivery network (CDN) service. To use mul-
tiple domains to serve content, we must also enable CORS, cross-origin resource
sharing (http://enable-cors.org/), to add exceptions to the browser’s same-origin se-
curity policy. CORS applies to resources fetched using XMLHttpRequest as well as
HTML images destined to be WebGL texture data.

Compression. Caching is one way HTTP avoids sending bits, and compression
is the other. Media files used on the web are already compressed. A raw true-color
image uses 24-bits per pixel, but JPEG is typically able to compress that image using
only 1 or 2 bits per pixel at high quality. Modern codecs like WebP perform even
better [Banarjee and Arora 11].

For text files, like HTML, CSS, or JavaScript, HTTP allows for on-the-fly com-
pression using GZIP. Unlike JPEG, GZIP is an exact, lossless encoding tuned for
text. At a high level, GZIP is similar to many other text-compression algorithms. It
starts with a phrase matcher, LZ77, to eliminate repeated character sequences and
follows that with Huffman coding [Gailly and Adler 93]. Huffman coding, which
uses fewer bits to encode frequently occurring bytes, is the workhorse statistical coder;
it is also used as the final step of JPEG and PNG compression.

It turns out that it is also possible to use Huffman encoding as the final step
for compressing 3D models by piggybacking on top of HTTP’s GZIP encoding.
Instead of writing our own compressor, all we need is to encode 3D models in a
GZIP-friendly way.

30.2.3 Stage 3: Loading

Even before JavaScript gets to see the model’s data, the browser has already performed
quite a bit of work downloading it. As efficient as JavaScript implementations have
gotten recently, it is a still a good idea to exploit as much native capability as possible.
Fortunately, we can use GZIP to handle most of the compression and decompression
work. The key to efficient loading is in finding a representation that is compact but
easy to convert to WebGL vertex buffers from what we can receive and process using
JavaScript.

XML or JSON? XMLHttpRequest is the principle mechanism for downloading
bulk application data in JavaScript, and until recently, it didn’t even really support
binary data. Despite the name, we don’t actually have to use XMLHttpRequest for

© 2012 by Taylor & Francis Group, LLC



436 V Transfers

XML data; we can grab the raw responseText string data and do pretty much
what we want with it using JavaScript.

If not XML, could we use JSON? Working with JSON in JavaScript is simple
because it is a tiny, data-only dialect of JavaScript. Every browser that supports
WebGL has a fast and safe JSON.parsemethod. JSON may be a lighter and simpler
alternative to XML, but it is still no panacea for 3D models. Sure, XML’s tags are
much larger than JSON’s, but the tag sizes don’t really matter if almost all of the bytes
are consumed by giant float arrays. Besides, GZIP does a good job of compressing
the redundancy in XML tags. We’ll leave the XML versus JSON war alone.

Quantization. For models, the real problem isn’t XML versus JSON at all. The
key is avoiding the storage, transmission, and parsing of the vertex attributes and
triangle indices. As a human-readable string, a 32-bit, 4-byte floating-point value
requires up to seven decimal digits, not including the sign (another byte), decimal
point (another byte), and possibly the scientific notation exponent (yet more bytes):
-9.876543e+21, for example. Since floating-point numbers do not always have
exact decimal representations, algorithms for parsing decimal values are exceedingly
fussy, challenging, and slow. Quantizing the source floating-point format to a fixed-
point format in the art pipeline would greatly help. Since 32-bit floating point is
more than you need for most situations,3 we can save space and time by using only
as much precision as necessary.

The fixed-point resolution depends on the attribute: 10 bits (1,024 values) per
channel is generally considered adequate for normals, and it works well for texture
coordinates as well. Google Body was very sensitive to positions, since our models
included many small anatomical details. We settled on 14 bits (16,384 levels) per
channel. For a six-foot human, this was nearly 1/250′′ resolution; for a two-meter
human, this was better than 1/8 mm resolution. Google Body had very high quality
requirements, and analyses later in this chapter use this fine level of quantization.
Most models could manage with less, and compression rates will improve accord-
ingly.

After quantizing, both the vertex attributes and triangle indices can be encoded
within short, 16-bit integers. Small integers are faster on many JavaScript virtual
machines; Chrome’s V8 engine is particularly efficient with integers that fit within
31-bits [Wingo 11]. And, as it turns out, JavaScript has always had a fast, compact,
and convenient way of representing arrays of 16-bit values: strings.

With this key insight, XMLHttpRequest.responseText suddenly looks quite
well suited for the job. JavaScript uses UTF-16 for its internal string representation,
and we index a string by simply using the String.charCodeAt method. The art
pipeline could encode all the attributes and indices as “characters” in a string, serve
them up GZIP compressed, and then decode them into TypedArrays destined to
become vertex and index buffer objects.

3Sometimes, 32-bit floating point is not enough! See [Cozzi and Ring 11].

© 2012 by Taylor & Francis Group, LLC



30. WebGL Models: End-to-End 437

Code Points Byte 1 Byte 2 Byte 3
[0 ... 127] 0XXXXXXX

[128 ... 2,047] 110YYYXX 10XXXXXX

[2,048 ... 65,535] 1110YYYY 10YYYYXX 10XXXXXX

Table 30.1. Table of UTF-8 encodings for 16-bit Unicode code points. XXXXXXXX represents
the bottom 8 bits of the code point, and YYYYYYYY represents the top 8 bits.

Unicode, UTF-16, and UTF-8. This works aside from one detail: surrogate pairs.
As of Unicode 6.0, there are over one million code points4 defined; only the most
common code points, the basic multilingual plane (BMP), can be encoded by a single
16-bit value. Code points outside the BMP are encoded using a pair of 16-bit values,5

both of which are in the 2,048 code surrogate-pair range from 0xD800 (55,296) to
0xDFFF (57,343). The surrogate-pair range is at the high end of 16-bit values, so it
is reasonable to avoid it by ensuring that all the encoded values are small enough. In
fact, we encoded many meshes in blissful ignorance before encountering one that hit
the surrogate-pair range. In practice, this is not a problem (see Table 30.1).

Even though JavaScript uses UTF-16 for strings, UTF-8 is the strongly preferred
encoding for HTTP data, and is transparently decoded by the browser. UTF-8 is a
very well-designed character encoding. It uses a clever byte-oriented variable-length
encoding, so it maintains backwards compatibility with ASCII, compresses well with
GZIP, and is endian-independent. Like UTF-16, UTF-8 is designed to transmit
smaller Unicode code points more efficiently than larger ones. Because most 16-bit
Unicode code points require a 3-byte encoding, variable-length encoding seems like
a disadvantage, but if most values are small, then it is a significant advantage.

30.2.4 Stage 4: Rendering

Used correctly, indexed triangle lists are one of the fastest methods used to draw
triangles in most GPU-accelerated 3D graphics libraries, including WebGL. Indexed
triangle lists are intrinsically faster because they contain the most information about
how vertices are shared between triangles. Triangle strips and fans also share vertices
between triangles, but not as effectively. Strips are also inconvenient to draw in
WebGL; to save on draw calls, triangle strips must be joined together by degenerate
triangles.

Optimizing for the post-transform vertex cache. To render a triangle, the
GPU must first transform its vertices. Vertex shading is programmable in WebGL,
so these transforms have the potential to be expensive. Fortunately, the results are

4“Code point” is rigorous Unicode specification language for what we consider to be a “character”
[Unicode 11].

5Unicode makes a distinction between characters and encodings, so technically, values within the
surrogate-pair range are “code units,” not “code points.”

© 2012 by Taylor & Francis Group, LLC



438 V Transfers

strictly determined by the inputs. If the GPU knows when a vertex is shared between
triangles, it can also share the transformation for that vertex. To do this, the GPU
stores recently transformed vertices in the post-transform vertex cache.

The post-transform vertex cache can be quite effective in reducing the number of
vertex transforms. In a normal model, most vertices are shared by 6 triangles. In this
idealized case, there are only 0.5 vertices per triangle, so the vertex shader would only
execute every other triangle—an ACMR (average cache miss ratio) of 0.5. These are
compulsory misses; each vertex needs to be transformed at least once, no matter how
often it is shared. Idealized triangle strips only achieve a best-case ACMR of 1.0. It
is rare to actually achieve these ideal values. In practice, good ACMRs for indexed
triangle lists are in the 0.6 to 0.7 range,6 which is still considerably better than the
theoretical ideal ACMR for triangle strips.

Unlike the caches used in HTTP, which operate in millisecond timescales, the
post-transform vertex cache is a tight piece of hardware that operates on nanosecond
timescales. In order for it to help, it must be very fast, and in order for it to be fast,
it must be small. As a result, the post-transform vertex cache can only store a fixed
number of vertices at a time, introducing the possibility of capacity misses. We can
help avoid capacity misses by optimizing the triangle order so that vertex references
are locally clustered.

There is a great deal of existing literature written on optimizing triangle orders
to minimize ACMR. The key to all triangle optimization approaches is in how they
model the post-transform vertex cache. The problem is that there are too many dif-
ferent kinds of post-transform vertex caches. GPUs with separate vertex shaders gen-
erally used FIFOs with 16 to 32 elements, Modern unified-shader GPUs do some-
thing completely different. And who knows what might change in the future?

Instead of trying to model all of these variants precisely, a better approach is
to use a cache-oblivious model that does a reasonable job of approximating them
all. WebGL Loader uses my favorite approach, Tom Forsyth’s “Linear Speed Vertex
Optimization.” It is fast, simple, and generally gets as close to ideal results as more
specific or sophisticated approaches. More crucially, it never performs badly.

Forsyth’s algorithm is greedy and does no backtracking; it simply finds the best
triangle at any given moment and adds that to the triangle list [Forsyth 06]. De-
termining the “best” triangle trades off between greedily maximizing cache use and
ensuring that triangles are added promptly so that the last few triangles are not left
scattered around the mesh. Forsyth’s algorithm uses simple heuristics to address both
factors. Vertex references are tracked using a 32-entry LRU list where more recently
referenced vertices have higher scores. The algorithm also tracks the number of re-
maining triangles that share a vertex; vertices with fewer triangles remaining have
higher scores. The best triangle is the triangle with the highest vertex score sum.

6Unfortunately, perfect ACMR depends on the mesh, specifically the actual ratio of vertices to trian-
gles. An alternative metric is ATVR, average transform to vertex ratio, which was first described by Ignacio
Castaño. Naturally, a perfect ATVR is 1 [Castano 09].

© 2012 by Taylor & Francis Group, LLC



30. WebGL Models: End-to-End 439

2

Before After

1.5

1

0.5

0
6 16

FIFO Cache Length

24 32

A
M

C
R

(a)

2

Before After

1.5

1

0.5

0
6 16

FIFO Cache Length

24 32

A
M

C
R

(b)

Figure 30.2. Post-transform vertex cache optimization on (a) hand 00 and (b) ben 00.

We quantify the improvements that post-transform vertex cache optimization
makes by modeling FIFO caches of various common sizes on meshes before and after
optimization. We use two models from the Utah 3D Animation Repository [SCI In-
stitute 11]: hand 00, the first keyframe of a wiggling hand animation with 9,740 ver-
tices and 17,135 triangles, an ideal ACMR of 0.568, and ben 00, the first keyframe
of a running man animation with 44,915 vertices and 78,029 triangles, an ideal
ACMR of 0.575 (see Figure 30.2).

For both models and all modeled FIFO cache lengths, Forsyth’s algorithm im-
proves ACMR. Larger caches have greater benefit, but these benefits are marginal
beyond 16 or 24 entries, so the choice of a 32-entry LRU cache is well justified
[Hoppe 99].

Optimizing for the pretransform vertex cache. Just as there is a cache at
the output of the vertex shaders, there is also one buffering the input loads. To
optimize for the pretransform vertex cache, we must try to make these loads occur as
sequentially as possible. The index array is accessed sequentially no matter what, so
nothing needs to be done there. For static geometry, it is slightly more efficient to
interleave all the vertex attributes needed for rendering so that the vertex shader can
load them together.

The remaining variable is the actual ordering of the vertex accesses, which are
indirectly indexed. We don’t want to actually change the order of the triangles es-
tablished by the post-transform vertex optimization, but it is possible to change the
order of the vertices without changing the order of the triangles. Simply order the
vertices by their first reference in the index buffer, and update the index buffer to
reference its new location.

Figure 30.3 is an illustration of an indexed triangle list before and after the
pretransform vertex cache optimization. On the left, the vertex indices have been

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-36&iName=master.img-110.jpg&w=164&h=106
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-36&iName=master.img-111.jpg&w=164&h=106


440 V Transfers

Attributes:

Indices:

Attributes:

Indices:6 2 4 4 2 0 0 1 1 32 2

Figure 30.3. Before (left) and after (right) vertex reordering.

optimized using the post-transform vertex cache but not the pretransform vertex
cache. Attributes are shared between nearby triangles, but appear in an arbitrary or-
der, causing random reads by the vertex shader. After the pretransform vertex-cache
optimization (on the right), the attributes are ordered by first appearance, yielding
mostly sequential reads by the vertex shader. The triangle order is preserved.

Analysis. We can visualize the effect of vertex cache optimization by plotting in-
dices and attributes before and after. We examine the first 2,000 indices and x po-
sitions of the Happy Buddha, a large, greater than one-million triangle model from
the Stanford 3D Scanning Repository7 (see Figure 30.4).

In general, indices follow a linear trend upwards. The slope represents the average
number of times a vertex is shared—in this case, roughly 5.5 times (there are 361
unique values in the first 2,000 indices). Before optimization, index values jump
around both forwards and backward by hundreds. Around position 1,600, there is

199
8

188
7

177
6

166
5

155
4

144
3

133
2

122
1

111
0

9998887776665554443332221110
0

250

500

750

1000

In
d
ex

Position

Indices Optimized Indices

Figure 30.4. Effect of optimization on indices.

7http://graphics.stanford.edu/data/3Dscanrep/

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-36&iName=master.img-126.jpg&w=243&h=157


30. WebGL Models: End-to-End 441

199
8

188
7

177
6

166
5

155
4

144
3

133
2

122
1

111
0

9998887776665554443332221110
–0.45

–0.3

–0.15

–0

0.15

V
al

u
e

Index

Original Optimized

Figure 30.5. Effect of optimization on x position.

even an index that goes off the charts. After optimization, the indices form a much
smoother line. Because of pretransform vertex-cache optimization, there are no large
forward jumps, and because of post-transform vertex-cache optimization, backwards
jumps are relatively small.

Vertex-cache optimization also affects attributes. There is a definite pattern to
the original data; they were originally captured by laser, so the periodic scanning is
apparent. The value units are in the original floating-point data, although the actual
data have been quantized. After vertex-cache optimization, attributes are ordered
by use. Instead of rapidly scanning back and forth, x positions are more correlated,
forming a random-looking, but connected line (see Figure 30.5). We will see that
while this line appears random, it has structure that can be exploited for compression.

30.3 A Coherent Whole
WebGL and HTTP are calling the shots in the life of a 3D model, and all we can
do is find the best way to do as much work as possible ahead of time during the art
pipeline without placing too large of a burden on browser JavaScript. Fortunately,
even if WebGL and HTTP apply constraints on what we can do, they also provide
the tools and guidance to make everything work together.

Part of the problem is solved: we will encode attributes and indices as Unicode
code points. Let us now revisit UTF-8 encoding. On one hand, as a byte-oriented
encoding, UTF-8 interacts well with GZIP; on the other hand, only a small range of

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-36&iName=master.img-137.jpg&w=242&h=156


442 V Transfers

UTF-8 is encoded compactly. It is a waste and missed opportunity to use GZIP to
counteract this expansion, especially when it is avoidable.

Optimizing the mesh for vertex caches introduces an exploitable structure to the
vertex indices and attributes. Because of post-transform vertex-cache optimizations,
vertex index references are clustered. Because of pretransform vertex-cache optimiza-
tions, index values increase gradually and sort related vertex attributes together. In-
troducing coherence in the mesh not only makes it faster to render, it makes it more
compressible too!

30.3.1 Delta Coding

GZIP is designed for text compression, so it needs a little help compressing signals
like vertex attributes and indices. It is unreasonable to expect LZ77 phrase matching
to help something that isn’t structured like words, but Huffman coding should cer-
tainly help. An easy approach is to first transform the data using delta coding. Delta
coding is a simple predictive filter that sends differences within the data instead of
the data themselves. If the most recent value is a good predictor of the next value,
then the difference will be cheaper to encode than the next value. Delta coding can
be implemented like this in JavaScript:

var prev = 0;
for (var i = 0; i < original .length; i++) {

delta[i] = original [i] - prev;
prev = original [i];

}

Given an original array of [100, 110, 107, 106, 115], the delta array
will be [100, 10,−3,−1, 9]. Delta decoding to reverse this is also really simple. This
is good news because it is the innermost loop of the JavaScript decompressor:

var prev = 0;
for (var i = 0; i < delta.length; i++) {

prev += delta[i];
original [i] = prev;

}

From this example, we can see that even if the original data are in the hundreds
range, the differences are much smaller in magnitude. This effect will help both
UTF-8 and Huffman coding. Smaller values will use fewer bytes in UTF-8. Smaller
values also skew the distribution of bytes so that Huffman coding can use fewer bits
to encode them.

When delta encoding or decoding a vector quantity, such as a vertex attribute,
you want to make sure to compute differences across like values, rather than adjacent
interleaved values—x positions with x positions, and not x positions with y positions
or even x normals. In general, this means you need a different prev for each scalar

© 2012 by Taylor & Francis Group, LLC



30. WebGL Models: End-to-End 443

attribute value. For example, if your vertex format contains both a position and a
normal, you will need to keep track of six values in the decoder (the encoder is left
as an exercise to the reader):

var prev = new Array (6);
for (var i = 0; i < delta.length ;) {

for (var j = 0; j < 6; j++) {
prev[j] += delta[i];
original [i] = prev[j]
++i;

}
}

30.3.2 Delta Coding Analysis

We can visualize the effects of delta coding using the Happy Buddha x position data.
Compared to the original signal, the delta coded signal is centered on zero, and has
smaller variation. These qualities make it more compressible (see Figure 30.6).

Delta coding doesn’t always help. For example, the original data do not have
coherence easily exploitable by delta coding, as shown in Figure 30.7. Even though
delta coding manages to center values around zero, the difference signal varies more
than the original, unoptimized data.

199
8

188
7

177
6

166
5

155
4

144
3

133
2

122
1

111
0

9998887776665554443332221110

X
 V

a
lu

e

Index

Optimized Optimized Delta

–0.45

–0.3

–0.15

–0

0.15

Figure 30.6. Delta coding optimized positions.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-36&iName=master.img-186.jpg&w=240&h=155


444 V Transfers

199
8

188
7

177
6

166
5

155
4

144
3

133
2

122
1

111
0

9998887776665554443332221110
–0.4

–0.2

0

0.2

0.4

X
 V

a
lu

e

Index

Delta Original

Figure 30.7. Delta coding original positions.

30.3.3 ZigZag Coding

Delta coding generates negative values roughly half the time. Unlike floating-point
numbers, which have a dedicated sign bit, fixed-point values normally use a two’s
complement representation. In two’s complement, small negative numbers map to
large unsigned values, which spoils the skew distribution we were hoping to achieve
with delta coding. Ideally, we’d like the bottom bit to act like a sign bit so that
small negative numbers are interleaved with small positive numbers, as shown in
Table 30.2.

At Google, we call this zigzag coding, although it is a much older idea that follows
naturally from delta coding. It’s defined in the open-source Protocol Buffer library
[Proto 11], which uses a variable-length encoding for integer values. Since zigzag

Delta Unsigned ZigZag
−3 0xFFFD 0x0005

−2 0xFFFE 0x0003

−1 0xFFFF 0x0001

0 0x0000 0x0000

1 0x0001 0x0002

2 0x0002 0x0004

3 0x0003 0x0006

Table 30.2. Two’s complement and zigzag coding.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-36&iName=master.img-196.jpg&w=243&h=157


30. WebGL Models: End-to-End 445

encoding and decoding are in the inner loop for the compressor and decompressor,
it is worth using some bit-twiddling magic to make sure it is as fast as possible.
Encoding a 16-bit signed value uses the following incantation:

((input << 1) ^ (input >> 15)) & 0xFFFF;

The 0xFFFF might be implicit if you know it will be stored in a 16-bit value
(e.g. a uint16 t in C/C + + or within a Uint16Array in JavaScript). Decoding
is also funky: In both cases, you want to make sure to use signed right shifts.

(input >> 1) ^ (-(input & 1));

30.3.4 Delta + ZigZag Coding Analysis

We can visualize the effectiveness of delta + zigzag coding by examining the distri-
bution of encoded values, as shown in Figure 30.8. A semi-log plot of the first 128
values, shown in Figure 30.9, shows that delta values have a small magnitude bias.
These are the values that will be encoded in a single UTF-8 byte and account for
92.8% of the total. Aside from some periodic spikes, the plot is linear with a nega-
tive slope, indicating an exponential decay. The spikes, which occur at multiples of
41, are artifacts of the discrete scanning resolution of the original model.

The trend continues for the first 2,048 values, the values that can be encoded in
UTF-8 using up to 2 bytes. The exponential decay and the periodic spikes continue.

120112104968880726456484032241680
1

10

100

1000

10000

L
og

 C
ou

n
t

Value

Delta Codes

Figure 30.8. UTF-8 single byte encoding.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-36&iName=master.img-241.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-36&iName=master.img-241.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-36&iName=master.img-241.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-36&iName=master.img-241.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-36&iName=master.img-241.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-36&iName=master.img-247.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-36&iName=master.img-247.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-36&iName=master.img-247.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-36&iName=master.img-247.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-36&iName=master.img-247.png&w=322&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-36&iName=master.img-252.jpg&w=231&h=149


446 V Transfers

199
8

188
7

177
6

166
5

155
4

144
3

133
2

122
1

111
0

9998887776665554443332221110
1

10

100

1000

10000

L
o
g
 C

o
u
n
ts

Value

Delta Codes

Figure 30.9. UTF-8 single and double byte encoding.

This plot accounts for 99.98% of the total values. Values larger than 1,000 are very
rare.

30.3.5 The Compression Pipeline

We finally have all the details we need to build a model compressor. Google Body
followed exactly these steps:

1. Quantize attributes. Encode attributes such that each value can be read
as a single small integer value from JavaScript, avoiding expensive client-side
parsing. We may reconstitute the original values at load time or delay that to
the vertex shader; position scales and offsets are easy to fold into the model
transformation.

2. Optimize models for vertex-cache performance. Forsyth’s “Linear
Speed Vertex Optimizer” simultaneously improves rendering performance while
making the model data more compressible by making the data more coherent.

3. Delta coding. Expose coherence to later coding stages.

4. ZigZag coding. Fix two’s complement mapping so that small negative num-
bers are encoded using small values.

5. UTF-8 encoding. This is how HTTP likes to send text data. As a bonus,
it uses fewer bytes to send smaller values, an excellent follow-up to delta and
zigzag coding.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-36&iName=master.img-262.jpg&w=224&h=145


30. WebGL Models: End-to-End 447

6. GZIP compression. Standard HTTP compression provides the final statis-
tical coder in the form of Huffman coding.

30.4 Key Improvements
After open-sourcing WebGL Loader, we discovered a few improvements over Google
Body’s original mesh-compression algorithm. The first was an ordering that im-
proved attribute compression, and the second was a new technique for encoding
vertex indices that improved on basic delta coding.

30.4.1 Interleaving vs. Transposing

WebGL prefers storing vertex attributes in interleaved form because that is how they
are accessed by the vertex shader. This is not ideal for Huffman coding, which dy-
namically adapts to the input statistics. If the data is interleaved, then Huffman
coding will see a mix of deltas for disparate attributes like positions, normals, and
texture coordinates. Even different dimensions of the same attribute can have differ-
ent behavior (see Figure 30.10).

In the above semi-log chart, we plot the value distributions of both x position
and x normal. While both show a characteristic exponential decay, their lines have
different slopes and thus different decay rates. Furthermore, normals don’t have the
periodic frequency spikes exhibited in the positions.

203
4

192
1

180
8

169
5

158
2

14
69

13
56

12
4311

30
10

1790
4

79
1

67
8

56
5

45
2

33
9

22
6

11
30

1

10

100

1000

10000

L
og

 C
ou

n
t

Value

Position Normal

Figure 30.10. Attribute distributions.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-36&iName=master.img-272.jpg&w=227&h=147


448 V Transfers

If we use a transposed format for compression (xxx...yyy...zzz... instead of xyzxyz
xyz...), then Huffman coding will see long runs of values that come from a sin-
gle attribute dimension, allowing it to adapt and encode to their distribution more
efficiently. Interleaving doesn’t have a significant additional cost for decoding in
JavaScript, because all the data need to be copied from the XMLHttpRequest.

responseText to a TypedArray anyway. Compared to the interleaved represen-
tation, the transposed representation has slightly worse memory locality, but achieves
approximately 5% better GZIP compression.

30.4.2 High-Water Mark Prediction

Another significant improvement was in the delta and zigzag coding for vertex in-
dices. There is a better predictor for the next index than the previous index: the
highest seen index to that point, or the high-water mark. When a model is opti-
mized for the post-transform vertex cache, vertex indices tend to be clustered. When
a model is optimized for the pretransform vertex cache, vertex indices slowly increase.
Specifically, the only time a vertex index larger than the current high-water mark ap-
pears, it is exactly one larger. Contrast this with delta coding, where differences are
positive or negative with roughly equal probability.

High-water mark prediction works by encoding the difference from the potential
next high-water mark. Differences will never be negative and will be zero if and only
if a new vertex index is referenced. This encoding is about as simple as delta coding:

var nextHighWaterMark = 0;
for (var i = 0; i < original .length; i++) {

var index = original [i];
delta[i] = nextHighWaterMark - index;
if (index === nextHighWaterMark) {

nextHighWaterMark++;
}

}

Since differences are never negative, there is no need for zigzag coding. Decoding
correspondingly looks like this:

var nextHighWaterMark = 0;
for (var i = 0; i < delta.length; i++) {

var code = delta[i];
original [i] = nextHighWaterMark - code;
if (code === 0) {

nextHighWaterMark++;
}

}

We can visualize the effectiveness of delta coding with and without high-water
mark prediction by examining the effect on the distribution of encoded values on the

© 2012 by Taylor & Francis Group, LLC



30. WebGL Models: End-to-End 449

191817161514131211109876543210
0

15000

30000

C
ou

n
t

45000

60000

High-water Mark Delta + ZigZag Indices

Figure 30.11. Top 20 references.

first 55,000 vertices of the Happy Buddha model. First, a close-up of the 20 smallest,
most frequently referenced values, as shown in Figure 30.11.

The original index data are the yellow line along the bottom that plots the num-
ber of times the first 20 vertex indices are referenced. In this scale, it is difficult to
see that each index is referenced about six times on average, as expected. High-water
mark prediction yields the blue line, and delta + zigzag coding is the red line. They
each plot the number of times an encoded value is sent. Both high-water mark and
delta + zigzag strongly bias the distribution of values sent to be small; this effect

High-water Mark Delta + ZigZag Indices

1261191121059891847770635649423528211470
1

10

100

1000

10000

L
og

 C
ou

n
t

Position

Figure 30.12. UTF-8 single byte encoding.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-36&iName=master.img-315.jpg&w=227&h=148
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-36&iName=master.img-316.jpg&w=227&h=147


450 V Transfers

203
4

192
1

180
8

169
5

158
2

14
69

13
56

12
43

11
30

10
1790

4
79

1
67

8
56

5
45

2
33

9
22

6
11

30
1

10

100

1000

10000

L
og

 C
ou

n
t

Position

High-water Mark Delta + ZigZag Indices

Figure 30.13. UTF-8 single- and double-byte encoding.

allows Huffman coding to compress well. However, high-water mark coding does a
better job, yielding smaller values with a steeper distribution. Delta + zigzag coding
reveals a slight sawtooth character; there are slight peaks at even values, indicating a
slight skew towards positive deltas. These trends continue as we examine the set of
values encoded by a single byte in UTF-8, as shown in Figure 30.12.

Using a semi-log plot, the original index data are actually visible. The gap be-
tween high-water mark and delta + zigzag coding persists. Over 95.7% of high-water
mark–predicted values are encoded by one byte, compared to just over 90.9% for
delta + zigzag, a nearly 5% improvement. We can see that the tail is substantially
longer for delta + zigzag by zooming out to the set of values encoded in up to two
bytes in UTF-8, as shown in Figure 30.13.

For delta + zigzag, 6.54% of the values require two bytes in UTF-8. High-water
mark reduces this to 2.88%. Cumulatively, 98.6% of high-water mark–predicted
values are encoded using 2 bytes or fewer, slightly better than 97.4% for delta +
zigzag.

30.4.3 Performance

Most of the computation in this model-compression technique is actually done by
UTF-8 and GZIP, so JavaScript doesn’t have to do very much to the data. The time
actually spent doing delta, zigzag, and high-water mark decoding is quite low. Con-
sider the Happy Buddha model, which is 1,087,716 triangles and 543,652 vertices
(position and normal) and compresses to 5,148,735 bytes (∼ 4.73 bytes per trian-
gle). We must delta + zigzag decode 3,261,912 16-bit vertex attributes and 3,263,148

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-36&iName=master.img-326.jpg&w=229&h=148


30. WebGL Models: End-to-End 451

16-bit indices. On my oldest working laptop, a 2.4 GHz Core 2 Duo running Mac
OS 10.5.8, the time spent in JavaScript is a fraction of a second.

The performance depends on the browser. Prior to Chrome 17, Firefox 8 is
faster, but Chrome 17 makes some important performance improvements for han-
dling strings from XMLHttpRequest:

Browser Time
Chrome 16.0.912.41 383 ms
Firefox 8.01 202 ms
Chrome 17.0.949.0 114 ms

Churning through 5,148,735 bytes in 114 ms is a throughput better than
45MB/sec, closer to local storage bandwidth than broadband Internet bandwidth.

The current implementation in WebGL loader uses progress events to incremen-
tally decode, so transfer and compute latency can overlap. WebWorkers will soon
support fast, zero-copy transfers of TypedArrays [Herman and Russell 2011], so
multiple models could be decoded in parallel. Since decoding is pure JavaScript
and doesn’t actually require a WebGL context, it is possible to overlap parallel model
downloads with operations like WebGL context and shader initialization.

30.4.4 Future Work

Figure 30.14. Parallelo-
gram prediction.

There are a few more improvements we have not yet im-
plemented that should improve compression. One no-
table improvement is to use indexed triangle strips in-
stead of indexed triangle lists. Indexed triangle strips are
not very popular, because they aren’t faster than indexed
triangle lists on desktop GPUs (strips may be faster on
mobile GPUs). They would help for compression in two
ways: directly, by making index buffers smaller, and in-
directly, by making parallelogram prediction simple.

Parallelogram prediction (Figure 30.14) is a tech-
nique that can be used to predict vertex attributes on
triangles that share an edge, as adjacent triangles in a tri-
angle strip implicitly do. In the figure to the right, the
shaded triangle is the current triangle in a triangle strip and so shares an edge with
the next triangle. Parallelogram prediction assumes that the next triangle looks like
the previous one, so it guesses that the next vertex can be computed by reflecting
the unshared vertex (at the bottom-left) across the shared edge, yielding the dotted
triangle. The guess is usually close to the actual triangle (solid, unshaded triangle),
so only a small correction vector needs to be stored (dashed arrow).

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-36&iName=master.img-339.jpg&w=89&h=89


452 V Transfers

30.5 Conclusion
Web browsers are evolving at a rapid pace. WebGL is a welcome addition, but it
has brought its share of unsolved problems. Google Body’s model-compression tech-
nique described how to close a key gap: how to load high-quality meshes in WebGL
without direct browser support. Thanks to existing web infrastructure and quantum
leaps in JavaScript performance, meshes can be compressed compactly and efficiently
without a severe impact on loading time while simultaneously optimizing for GPU
rendering performance. We eagerly anticipate the pervasive deployment of 3D con-
tent on the Web using WebGL.

Acknowledgments. I would first like to thank the Zygote Media Group, who was an
excellent partner during the Google Body endeavor. Preserving the quality of their artistically
fashioned models of human anatomy was a significant motivation for the work in this chapter.
I would like to thank the people at Google who helped make this happen: my 80% team
who was always patient even when this 20% activity became all consuming; Thatcher Ulrich,
who tells me which of my ideas are any good; and Ken Russell, who was always generous
with his knowledge of browser and WebGL performance. Finally, I reserve my greatest thanks
forthe Google Body team, especially Arthur Blume, David Kogan, Vangelis Kokkevis, Rachel
Weinstein Petterson, Nico Weber, and Dr. Roni Zeiger.

Bibliography
[Banarjee and Arora 11] Somnath Banerjee and Vikas Arora. “WebP Compression Study.”

code.google.com/speed/webp/docs/webp study.html, May 18, 2011.

[Castano 09] Ignacio Castaño, “ACMR.” http://www.ludicon.com/castano/blog/2009/01/
acmr-2/, January 29, 2009.

[Cozzi and Ring 11] Patrick Cozzi and Kevin Ring. 3D Engine Design for Virtual Globes. Nat-
ick, MA: A K Peters, 2011. http://www.virtualglobebook.com/.

[Forsyth 06] Tom Forsyth. “Linear-Speed Vertex Cache Optimization.” http://home.comcast.
net/∼tom forsyth/papers/fast vert cache opt.html, September 28, 2006.

[Gailly and Adler 93] Jean-Loup Gailly and Mark Adler. “A Brief Description of the Algo-
rithms used by GZIP.” http://www.gzip.org/algorithm.txt,August 9, 1993.

[Herman and Russell 2011] David Herman and Kenneth Russell. “Typed Array Specifica-
tion.” http://www.khronos.org/registry/typedarray/specs/latest/#9, December 8, 2011.

[Hoppe 99] Hughes Hoppe. “Optimization of Mesh Locality for Transparent Vertex
Caching.” ACM SIGGRAPH Proceedings (1999) 269–276.

[Proto 11] Proto. “Encoding.” http://code.google.com/apis/protocolbuffers/docs/encoding.
html#types,retrieved December 14, 2011.

[SCI Institute 11] SCI Institute. The Utah 3D Animation Respository. http://www.sci.utah.
edu/∼wald/animrep/.

© 2012 by Taylor & Francis Group, LLC



30. WebGL Models: End-to-End 453

[Unicode 11] Unicode. “Unicode 6.0.0.” http://www.unicode.org/versions/Unicode6.0.0/,
September 26, 2011.

[Wingo 11] Andy Wingo. “Value Representation in JavaScript Implementations.” http://
wingolog.org/archives/2011/05/18/value-representation-in-javascript-implementations,
May 11, 2011.

© 2012 by Taylor & Francis Group, LLC



© 2012 by Taylor & Francis Group, LLC



In-Game Video Capture with
Real-Time Texture Compression

Brano Kemen

31.1 Introduction
This chapter discusses techniques for real-time compression of images on the GPU
for use with various types of procedurally or dynamically generated images and virtual
texturing. The techniques are designed to achieve lower memory and bandwidth
requirements while providing high quality. We also describe the use of this technique
in capturing high-quality video directly from the application without significantly
impairing the overall performance.

Figure 31.1. Procedural tree generator in Outerra using real-time compression for clusters
of leaves.

455

31

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-37&iName=master.img-009.jpg&w=309&h=122
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-37&iName=master.img-009.jpg&w=309&h=122
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-37&iName=master.img-009.jpg&w=309&h=122


456 V Transfers

31.2 Overview of DXT Compression
DXT compression, also S3 Texture Compression, S3TC [S3TC 12], refers to a group
of lossy, fixed-rate image-compression algorithms that are now widely supported in
graphics hardware, as they are well suited for hardware-accelerated texture decom-
pression for 3D graphics.

The compression ratio is fixed, either 8:1 or 6:1 for the DXT1 format with 1-
bit transparency or without alpha, respectively. Formats with higher quality alpha
encoding have 4:1 compression ratios.

All compression schemes encode the RGB part in the same way by compressing
blocks of 4 × 4 input pixels in 64 bits of color output. The output consists of two
16-bit RGB 5:6:5 quantized color values, followed by 16 2-bit values that determine
how the corresponding pixel color is computed: either one of the two colors or a
blend between them.

The alpha component can be encoded in several ways depending on the mode.
For DXT4 and DXT5, it’s encoded using a scheme similar to the color part but with
two 8-bit alpha values and 3-bit interpolation values for each pixel.

DXT compression has some limitations, and the image quality can be degraded
if used naively on some images with sharp changes in colors (Figure 31.3). However,
it is well suited for most of the textures used in 3D graphics, as these are usually more
homogenous.

The quality loss is offset by the significantly reduced memory and bandwidth
requirements; compressed textures of the same dimensions render faster as the result.
Alternatively, a gain in quality can be achieved by using higher-resolution textures
for the same amount of memory.

31.3 DXT Compression Algorithms
While the decompression algorithm is defined exactly, there are multiple compression
algorithms with different quality output. The quality mainly depends on the way
the two endpoint color values are selected [Brown 06]. High-quality compression
algorithms try to find the best endpoints for the given set of pixels. Testing all possible
endpoints by a bruteforce method is very time consuming, so the goal is to reduce
the number of combinations to be tested.

Colors in a 4 × 4 block can be considered points in 3D RGB space. Resulting
compressed colors must lie on a line between two selected endpoints in this space.
The direction along which the points vary the most can be found using the technique
of principal components analysis. It is likely that this direction, called the principal
axis, is very close to the direction of the line through the optimal endpoints, and it
can be used to seed the search.

Nevertheless, these algorithms are still too slow for real-time compression, for
which we need a fast selection of the compression line. We can use the extents of

© 2012 by Taylor & Francis Group, LLC



31. In-Game Video Capture with Real-Time Texture Compression 457

the bounding box of RGB color subspace in which the colors from given 4 × 4 pixel
block are contained. The line spans the complete dynamic range and tends to line
up with the luminance distribution. The selection process then reduces to finding
out which diagonal of the bounding box is the best. This can be done by testing the
sign of the covariance of the color values relative to the center of the bounding box,
which can be done easily on the GPU.

For each texel in the 4 × 4 block, the algorithm finds the closest color repre-
sentable on the selected line and outputs a coded-color index. More details about the
algorithm can be found in [van Waveren 06] and [van Waveren and Castaño 07].

31.3.1 Creating Compressed Textures Dynamically

To create a compressed texture from another source texture, we use the render-to-
texture technique, setting up a framebuffer and binding an auxiliary integer texture in
GL RGBA32UI format (128-bits/texel, same size as 1 DXT5 block) or in GL RG32UI

(64-bits/texel, same size as 1 DXT1 block). The encoding shader compresses each
4 × 4 block of input texels into one pixel of the target. The width and height of the
target texture will be a quarter of the size of the source texture. If the input size is not
a multiple of four, we need an additional row or column in the target, and the texel
fetch operation has to be clamped to the edges of the source texture.

The auxiliary texture is then loaded into a buffer object using glReadPixels,
which is in turn used as the source buffer in texture upload via glCompressedTex
SubImage2D. The command sequence is shown in Listing 31.1.

The transfer happens on the GPU side, so it’s quite fast. Unfortunately, OpenGL
doesn’t provide a mechanism to reinterpret a block of memory under a different
format to avoid the copying. We cannot use glCopyTexImageSubDataNV to avoid
one copy operation, as it requires the pixel format to be the same for the source and
destination textures.

// The compressed DXT image is assumed to be in the first
// color attachment of the currently bound FBO
glReadBuffer(GL_COLOR_ATTACHMENT0);
glBindBuffer(GL_PIXEL_PACK_BUFFER, bo_aux);
glReadPixels(0, 0, (w + 3) / 4, (h + 3) / 4, GL_RGBA_INTEGER , GL_UNSIGNED_INT , 0);

glBindBuffer(GL_PIXEL_PACK_BUFFER, 0);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);

// Copy to dxt texture
glBindTexture(GL_TEXTURE_2D , tex_aux );
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, bo_aux);

glCompressedTexSubImage2D(GL_TEXTURE_2D , 0, 0, 0, w, h,
GL_COMPRESSED_RGBA_S3TC_DXT5_EXT, w * h, 0);

Listing 31.1. Flipping the framebuffer attachment into a compressed texture.

© 2012 by Taylor & Francis Group, LLC



458 V Transfers

In case the mipmaps are needed on the resulting texture, there are two ways to
get them: either by invoking glGenerateMipmap to automatically generate the
mipmaps, or by creating and uploading all required mipmap levels in the same way
we have created the top-level texture. While the first method is more convenient, it’s
important to verify whether the driver implements glGenerateMipmap effectively
on the GPU. At the time of writing this, invoking automatic mipmap generation
on a compressed texture incurs a pipeline stall under both major vendors, indicating
that the texture gets pulled and processed on the CPU side. With AMD, we get the
hit even with the uncompressed textures. Apparently, this functionality doesn’t have
the priority in most of the existing applications, but for the procedural rendering, it
could save a few commands.

31.4 Transformation to YUV Style Color
Spaces

DXT compression has some limitations and quality issues when we try to use it
on arbitrary images. However, the perceived quality can be enhanced by using a
different color space. The YUV color space is a color encoding scheme that takes
human perception into account. Indeed, one of its goals is to mask and suppress
the compression artifacts by dedicating more bandwidth to image attributes that are
more significant in human perception.

Our eyes are much more sensitive to changes in luminance than to the changes
in chrominance. Thus, if we convert the color values from the RGB color space to a
color space based on luminance (Y) and two other chroma components, we can use
a higher-quality encoding for the luminance while lowering the bandwidth for the
chrominance and gaining a higher perceived quality overall.

As presented in [van Waveren and Castaño 07], this can be achieved using the
DXT5 compression scheme. If we look at how the DXT5 scheme encodes RGBA
color data, we can see that it uses 64 bits for the RGB components, and the same
number of bits solely for the alpha component. This obviously lends itself to using
the alpha for the luminance and to encoding the chroma channels in the RGB part.

31.4.1 YCoCg Color Space

Thus far, we were using a wider definition of the YUV color space, encompassing all
color spaces that use either luminance (Y) or luma (Y′) and two other channels used
to encode the deviation from grey along a selected axis. There are several schemes
and equations to compute the luminance and chrominance values in use, employed,
for example, in analog and digital TV and elsewhere.

One of the color spaces of this class that can be used effectively with graphics
hardware is YCoCg, with Co standing for chroma-orange and Cg for chroma-green.

© 2012 by Taylor & Francis Group, LLC



31. In-Game Video Capture with Real-Time Texture Compression 459

Since we are going to add a code that transforms from a YUV color space to RGB
color space, we need something that is relatively cheap to execute in a fragment
shader. With YCoCg, the conversion to RGB becomes quite simple:

R = Y + Co − Cg,

G = Y + Cg,

B = Y − Co − Cg.

With YCoCg, the Y value is stored in the alpha channel, and Co and Cg are
stored in the red and green channel, respectively. Because of the 5:6:5 quantization
in DXT, the Cg channel uses 6 bits in comparison to 5 bits for the Co channel. The
value of Cg is present in all three equations when converting back to RGB, so the
green channel can use a little better precision.

Nevertheless, the quantization of DXT colors in the RGB component can cause a
loss of color in situations where the dynamic range of chroma components is narrow.
For this reason, an extended YCoCg-S implementation utilizes also the third, so far
unused blue channel to store a scaling factor. The Co and Cg values are scaled up
during the compression, and the scale factor is stored within the blue channel and
then used in the decoder to scale the values back down.

Decoding now becomes slightly more complex:

Scale =
1

255
8 B + 1

,

Y = A,

Co = (R − 0.5)Scale,

Cg = (G − 0.5)Scale.

R = Y + Co − Cg,

G = Y + Cg,

B = Y − Co − Cg.

This method adds some additional code to the decoder and consumes the third chan-
nel that could be used for other things.

Eric Lasota [Lasota 10] came up with a simplified scheme, named YCoCg-X in
this chapter, and in the example, based on YCoCg with scaling. The reasoning behind
the simplified scheme is that, with YCoCg being a YUV-style color space, the values
for Co and Cg are constrained to a range that’s proportional to the value of the Y
channel. Instead of using a separate scale factor and putting it into the blue channel,
we can use the value of Y to normalize Co and Cg channels. The Co and Cg now
reflect only the changes in the tone and saturation, leaving the information about
intensity solely in the Y channel.

© 2012 by Taylor & Francis Group, LLC



460 V Transfers

This scheme uses slightly different vectors for the computation of chromatic val-
ues to make the resulting math simple:

Y = (R + 2G + B)/4,

Co = 0.5 + (2R − 2B)/4,

Cg = 0.5 + (−R + 2G − B)/4.

R = 2Y(2Co − Cg),

G = 2YCg,

B = 2Y(2 − 2Co − Cg).

Like the YCoCg-S, this scheme addresses the problems of quantization in the
non-scaled YCoCg mode; however, it’s not a quality improvement over the YCoCg-S
scheme, as the peak signal-to-noise ratio (PSNR) metrics indicate as well.

31.5 Comparison
The compression schemes have been tested on a few sample scenes using a visual
test together with the commonly used PSNR metrics for comparison. Figure 31.2
shows some of the artifacts occurring with the selected compression schemes, using
the image 03 from Kodak Lossless True Color Image Suite [Franzen 99].

Images compressed directly in the RGB color space show some obvious errors in
the form of a discolored block of 4 × 4 pixels appearing in between the areas with
different colors. Especially in this case, the error is higher and more visible for the
runtime compressor in comparison to the higher quality offline compressor, that can
invest much more time in the search of optimal endpoints. However, the runtime
compressor used on the YCoCg color space easily outperforms even the offline one
in terms of quality.

original ycocg ycocg-s

dxt-hq dxt-rt ycocg-x

Figure 31.2. Comparison of the compression artifacts.

© 2012 by Taylor & Francis Group, LLC



31. In-Game Video Capture with Real-Time Texture Compression 461

The difference between various YCoCg compressors can be observed mostly in
some of the corner cases. The basic version without scaling shows a loss of color in
shaded areas, where the chromacity values are low. The effect of 5:6 quantization of
Co and Cg values can be also observed in some notorious cases, like the compression
of the sky gradient. The scaled scheme (YCoCg-S) achieves the best quality; however,
it still doesn’t have the full dynamic range to handle the sky gradient flawlessly. The
simplified scaled scheme (YCoCg-X) can handle the shaded areas best, but it doesn’t
perform well in the bright areas with a gradual change in chromacity.

Errors in YCoCg color space are harder to spot and less intrusive than similar er-
rors in RGB space. Figure 31.3 shows the differences between the encoding schemes
and the original image, amplified 16 times. Errors along the edges of the image com-
pressed with plain DXT are rather visible and disturbing; the differences in YUV-style
schemes appear more like color tone changes and aren’t that easily spotted.

Apart from the Kodak image used because of the wild chrominance and lumi-
nance changes, I tested the method on two images from planetary engine Outerra
in two different lighting conditions (see Figure 31.4). The lower, darker half of Fig-
ure 31.4(b) was also tested separately as a last option.

PSNR error metrics for these sample images are shown in Table 31.1. Thanks
to the division by luminance, YCoCg-X performs exceptionally well in darker areas,
but it cannot match the results of the other two YCoCg schemes in bright ones with

dxt-rt ycocg-x

ycocg-sycocg

Figure 31.3. 16X amplified and inverted difference between compressed and original images.

© 2012 by Taylor & Francis Group, LLC



462 V Transfers

(a) (b)

Figure 31.4. (a) Bright and (b) dark scene used in the test.

a gradual hue change like a clean sky. Still, its properties can be used with advantage
in some cases, for example, when compressing generated ground textures.

Raw PSNR doesn’t represent well how the compression artifacts appear to the
human eye, and metrics that would give different weights to luminance and chromi-
nance channels would be probably better.

Scheme
PSNR

kodim03 light dark dark low
DXT real-time 38.7839 38.3560 44.9785 46.3247
YCoCg 42.3551 41.7667 45.0011 46.8363
YCoCg-S 42.7758 42.0848 45.3294 47.2720
YCoCg-X 40.6135 36.8699 41.7026 52.7532

Table 31.1. PSNR of various compression schemes: bigger is better. YCoCg-S wins in most
situations, trumped by YCoCg-X only on the dark test scene.

31.6 Using Real-Time DXT Compression for
Procedural Content and Video Capture

Where can real-time DXT encoding be used? Obviously, it’s not necessary or even
desired for static data, as offline compressors can usually achieve a higher-quality
output, and the longer running time doesn’t matter as much in that case.

Real-time compression can be used with advantage on the image data that are
generated dynamically, for example, the output of various procedural generators that
produce data on demand. In procedural engine Outerra, it can be found in several
places, for example, in the terrain texture generator, lowering the memory require-
ments of the tile cache and speeding up terrain rendering as well by reducing the
required bandwidth. Figure 31.1 shows the output of the procedural tree generator,

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-37&iName=master.img-100.jpg&w=144&h=81
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-37&iName=master.img-101.jpg&w=145&h=81


31. In-Game Video Capture with Real-Time Texture Compression 463

where the real-time compression is used on the produced clusters of leaves. The gen-
erator creates the textures dynamically at startup using current quality settings. The
ability to produce the data dynamically means that the quality can be adjusted as the
hardware gets better over time. Another interesting area is the use of this technique
for in-game video capture.

31.6.1 Video Capture Using YUYV-DXT Compression

When we or our users want to capture videos from our 3D application, there are
relatively few options: we can use an external program such as Fraps or a special
hardware for capturing the video as it goes out from the graphics card.

Both have their advantages and disadvantages. External programs are widely
available and can be easily used by players, but they can considerably slow down the
application, forcing it to use a lower resolution or reduced-quality modes. Capture
cards will provide a high-quality output, but they aren’t cheap, nor are they widely
available.

However, there’s another option: to endow the application with a native video
capture support. It gives our users the ability to capture videos without any additional
software or hardware. There are, of course, some complications.

31.6.2 Bandwidth Considerations

To capture a raw RGB video with 1080p resolution at 30 fps, we need a bandwidth
of 187MB/s. However, since the memory on GPU is aligned, we can’t effectively
read 8-bit RGB directly and must read RGBA instead, making it 249MB/s.

This is still well below the peak download bandwidth between the GPU and
CPU, which is around 2.5–6GB/s, but the problematic part here is the sustained
write speed of hard disks. A typical modern 7200 rpm desktop SATA hard drive, like
the Seagate Barracuda 7200.11, has a sustained data transfer rate up to 129MB/s. It’s
apparent we need to perform a compression to get below the limits.

A real-time on-GPU DXT-like compression would be an ideal candidate for this
since we can utilize the parallel computing powers of the GPU, reducing both the
GPU-CPU and CPU-disk bandwidth below the sustainable system speeds. Using
YCoCg-DXT5 encoding, the bandwidth for the above scenario reduces to 62.2MB/s.

31.6.3 Format of the Video Stream

We have shown that a YUV-style transformation can enhance the quality of DXT-
style compressed data so that they become usable for a light compression of image
data. So far we have been ensuring that the derived YUV-formats we are using can
be efficiently decoded in a fragment shader, limiting ourselves to the existing DXT
schemes. However, since the captured video will be transcoded outside of our appli-
cation, we should care also about the format that will be used for the video and adapt
the encoding to it.

© 2012 by Taylor & Francis Group, LLC



464 V Transfers

Since we are no longer constrained by the requirement to use an accelerated
DXT decoding, the resulting format can be modified. For example, instead of us-
ing the 5:6:5 quantization from the original RGB block of DXT textures, we can
use 8:8 quantization for the two chromatic values, utilizing the full dynamic range
and avoiding the issues mentioned in Section 31.2 of using a custom and simplified
software decoder for the video format.

From the available and well-supported video formats, one of the most used and
available is YUYV422. It stores one pair of U and V chrominance values for every
2 luminance (Y) values. As has already been mentioned, the human eye is more
sensitive to luminance than chrominance, so the loss of chrominance samples does
not have a significant impact on image quality. In order to support the YUYV422
encoding, we can subsample the chromatic values by averaging values of U and V in

const vec3 TO_Y = vec3(0.2215, 0.7154 , 0.0721) ;
const vec3 TO_U = vec3(-0.1145, -0.3855, 0.5000) ;
const vec3 TO_V = vec3(0.5016, -0.4556, -0.0459);

void ExtractColorBlockYY(out vec2 col[16], sampler2D image , ivec2 coord)
{

for(inti=0;i<4;i++)
{

for(intj=0;j<4;j++)
{

vec3 color = texelFetch(image , coord + ivec2(j, i), 0).xyz;
col[i * 4 + j].x = dot(TO_Y , color);

}
}

for(inti=0;i<4;i++)
{

for(intj=4;j<8;j++)
{

vec3 color = texelFetch(image , coord + ivec2(j, i), 0).xyz;
col[i * 4 + j - 4].y = dot(TO_Y , color);

}
}

}

void ExtractColorBlockUV(out vec2 col[16], sampler2D image , ivec2 coord)
{

for (inti=0;i<4;i++)
{

for (intj=0;j<8;j+=2)
{

vec3 color0 = texelFetch(image , coord + ivec2(j, i), 0).xyz;
vec3 color1 = texelFetch(image , coord + ivec2(j + 1, i), 0).xyz;
vec3 color = 0.5 * (color0 + color1);
col[i * 4 + (j >> 1)].x = dot(TO_U , color) + offset;
col[i * 4 + (j >> 1)].y = dot(TO_V , color) + offset;

}
}

}

Listing 31.2. Extracting YY and UV blocks from 8 × 4 RGB input block.

© 2012 by Taylor & Francis Group, LLC



31. In-Game Video Capture with Real-Time Texture Compression 465

two horizontal pixels. Two blocks of 4×4Y values and two blocks of U and V values
can be encoded separately, each in its corresponding block equivalent to how the
alpha component is being encoded in the DXT5 format, with two 8-bit boundary
values and 16 3-bit interpolation indices. The GLSL code to extract YY and UV
blocks from the input texture is in Listing 31.2.

31.6.4 Download of Video Frames from the GPU

The YUYV scheme still keeps the same 3:1 effective compression ratio as the DXT5-
YCoCg mode, requiring a 62.2MB/s bandwidth in 1080p mode at 30 fps. It is less
than half of the sustained write speed of the hard disk; nevertheless, it is still desirable
to use a different drive than the one used by the system and our application for data
loading to avoid potential clashes on the bus.

After the current frame is rendered into an offscreen buffer, it is used as a source
texture for the real-time compression shader pass. The setup is the same as described
in Section 31.3.1: a shader pass first generates an intermediate integer texture with
compressed data, which is then flipped to a buffer object. The buffer is then down-
loaded to the CPU.

As with all transfers from and to the GPU, we have to be careful to avoid pipeline
stalls. It is important to download the buffers asynchronously. The process is de-
scribed in depth in Chapter 28. The example code for the YUYV-DXT video capture
is integrated into the example code for the asynchronous buffer downloads.

The remaining part of the capture process is writing the captured frame data to
disk. For the best performance, we use asynchronous writes here, avoiding unneces-
sary caching. Otherwise, the implementation is pretty straightforward.

Captured videos will take quite a lot of disk space: one minute of a 1080p video
at 30 fps consumes more than 3.7GB of disk space. We also need a custom decoder in
order to play and convert the video stream. There already exists an unofficial decoder
plugin for the libavcodec audio/video codec library used in FFmpeg [FFmpeg 07].
The decoder uses a custom YOG container file format described in [Kemen 10],
which is quite simple to output: a simple header followed by the frames with com-
pressed data.

With the plugin, all FFmpeg tools can recognize and play YOG videos. They
can also be converted to another supported format, for example, to MJPEG with
high-quality settings for further editing, or directly to an H264 format for high com-
pression.

31.7 Conclusion
I described real-time DXT compression on the GPU and its use for dynamically
generated content, comparing several quality enhancing schemes. I have shown that

© 2012 by Taylor & Francis Group, LLC



466 V Transfers

even with real-time compression, one can achieve high-quality results while saving
memory and bandwidth.

We have also used the technique for real-time video capturing from our OpenGL
application. Source code on the OpenGL Insights website, www.openglinsights.com,
shows two examples for this chapter: one with the code for the real-time compression
of textures and creation of DXT textures, together with the code used to decode it
back to RGB color space. The second code example is integrated into the example
for Chapter 28, capturing and saving the video from the example application.

Bibliography
[Brown 06] Simon Brown. “DXT Compression Techniques.” http://www.sjbrown.co.uk/

2006/01/19/dxt-compression-techniques/, 2006.

[FFmpeg 07] FFmpeg. “A Complete, Cross-Platform Solution to Record, Convert and
Stream Audio and Video.” http://ffmpeg.org/, 2007.

[Franzen 99] Rich Franzen. “Kodak Lossless True Color Image Suite.” http://r0k.us/graphics/
kodak/, 1999.

[Kemen 10] Brano Kemen. “In-Game HD Video Capture using Real-Time YUYV-DXT
Compression.” http://www.outerra.com/video/, 2010.

[Lasota 10] Eric Lasota. “YCoCg DXT5: Stripped Down and Simplified.” http://codedeposit.
blogspot.com/2010/10/ycocg-dxt5-stripped-down-and- simplified.html, 2010.

[S3TC 12] S3TC. “S3 Texture Compression.” http://en.wikipedia.org/wiki/S3 Texture
Compression, 2012.

[van Waveren and Castaño 07] J. M. P. van Waveren and Ignacio Castaño. “Real-
Time YCoCg-DXT Compression.” http://www.nvidia.com/object/real-time-
ycocg-dxt-compression.html, 2007.

[van Waveren 06] J. M. P. van Waveren. “Real-Time DXT Compression.” id Software, Inc.,
2006.

© 2012 by Taylor & Francis Group, LLC



An OpenGL-Friendly
Geometry File Format and

Its Maya Exporter

Adrien Herubel and Venceslas Biri

32.1 Introduction
Geometry is at the heart of most computer graphics, whether film, video games, or
tools. The vast majority of props, sets, and characters rendered to the screen come
from geometry files stored in the computer hard drive.

Despite being the lowest common denominator of CG applications, there is no
de facto standard for geometry files. On the contrary, there is a plethora of both
proprietary and open formats. One of the many reasons for this state of affairs is
that each application has different requirements that are not efficiently compatible.
An out-of-core path tracer will have different needs for its geometry-storing solution
than a 3D editor or a game. Of course a kitchen-sink approach will offer all the
needed features, but probably at the cost of computational and storage efficiency.

The goal of this chapter is not to implement the ultimate geometry format. In-
stead, we will show how to tackle the problem by creating a file format suited to our
needs along with the right tools. A file format is pointless without tools for exporting
and importing but also for data-mining or conformation. Good tools enable rapid
iterations on our asset production pipeline, thus increasing productivity and enabling
better artistic impulse.

First we start by defining our feature requests for a file format suitable for the
OpenGL API. We will then confront our use cases against the feature matrix of
existing formats. In the second part, we will present the Drone format, a binary
chunk-based format, designed for efficient deserialization and serialization of a 3D
scene. Then, in the third part, we write our first tool, a Maya exporter, introducing
the software API. Finally, a second tool is used to benchmark our file format.

467

32

© 2012 by Taylor & Francis Group, LLC



468 V Transfers

32.2 Manifesto

32.2.1 Goals and Features

Computer graphics presents an interesting paradox stated by Blinn’s law: “As tech-
nology advances, rendering time remains constant.” Performance is and always will
be a key requirement when building a CG application. Therefore, geometry storage
is not an exception. We define a few key points for a geometry file format suitable
for a typical OpenGL application. Generally geometry data is stored once and for all
during the asset creation pipeline and potentially read many times at runtime, so the
format should be optimized to follow this use case.

Full scene storage. A good format will offer the possibility either to use a file for
each shape or to consolidate a full scene into only a few files. Therefore, a basic scene
structure is required. A scene should at least feature, meshes, transforms, lights, and
basic shading data like diffuse color and specular coefficient. Meshes can be either
static, or animated, using keyframes or skinning.

No transformation at runtime. Data stored on the disk should be kept as close
as possible as the data used to feed the OpenGL Vertex Buffer API. Ideally, the initial
deserialized buffer should be enough. Runtime transformation of data should be kept
for dynamic geometry only. For example, a mesh should be stored using only trian-
gles, and vertices with multiple normals should be duplicated. This requires more
computation when writing geometry but considerably reduces loading times. There
are trade-offs when precomputing transformations directly into the file, as it increases
file size. The cost of loading the file might surpass the cost of transforming geometry,
especially if it is stored on a slow media or streamed across the network. Moreover,
some transformations, like subdivision surfaces and level-of-detail, are generally not
uniformly applied on the whole scene and therefore might not be suited for precom-
putation in the file.

Arbitrary access. The file-format-reading API should be able to only load part of
the file. For example, we should allow it to quickly iterate on all the stored bounding
boxes, then only load visible meshes. The other advantage for offering arbitrary access
to shapes is to enable the use of out-of-core algorithms by loading and discarding data
as needed.

Scene exporting. In game and film industries, sets and characters are generally
built in commercial or homegrown editors, often using their own geometry formats.
Thus, the asset-creation pipeline should be supported by robust exporting procedures
from the editor format to the rendering-engine or game-engine format. Due to the
sheer amount of produced data, per-shape tweaking, and human intervention in
general should not be necessary during this stage.

© 2012 by Taylor & Francis Group, LLC



32. An OpenGL-Friendly Geometry File Format and Its Maya Exporter 469

Simplicity and extensibility. Writing and reading from a file format should not
force the user to bear with huge dependencies on various frameworks. A format using
small and consistent APIs is much easier to use and extend in a project.

32.2.2 Existing Formats

When writing a 3D engine, whether for a game, an editor, or a demo, developers are
faced with a multitude of geometry file formats (Figure 32.1), coarsely divided in two
categories. COLLADA and FBX are competing to become the standard file format
when it comes to exchanging geometry between applications. The two formats im-
plement a wide array of functionalities. However, they require huge frameworks for
manipulation, and as exchange formats, performance is not the main focus. More-
over, the FBX SDK is closed source. Formats focused only on geometry assets are
therefore more easily implemented, yet they often are ASCII-only and poorly stan-
dardized, or lack exporters in commercial editors.

Format

FBX

COLLADA

MD5

Obj

Multiple
plugins

Builtin
I/O

Builtin
I/O

Builtin
I/O

Multiple
plugins

Plugin
Export

Yes

Yes

Not all
plugins

No

ASCII

ASCII No
Non-

standard
No

External
non-

standard

Animation
in external

file
Yes No Yes

Autodesk
3DS Max

Builtin
I/O

Builtin
I/O

Plugin Plugin Plugin Yes Yes XML
Skinning
and anim

curves

Yes No Yes

Plugin
Export

Yes Yes Binary
Skinning
and anim

curves

Yes No Yes

Autodesk
Maya

Blender
Triangu-
lation

Hard
Edges

Extraction

Storage
Anim-
ations

Multiple
Objects

Arbitrary
Access

Shading

Figure 32.1. Geometry file-format feature matrix.

32.3 The Drone Format
We introduce a new geometry file format, meeting all the previously stated require-
ments. We design our format around two very simple APIs: the first is used to
manage low-level data chunks, and the second is used to serialize and deserialize the
scene. The code of the two APIs and a viewer is included in the companion code on
the OpenGL Insights website, www.openglinsights.com.

32.3.1 Binary Layout

To achieve minimum runtime transformation, data will be stored in a binary form.
The Drone format is based on the notions of chunks and chunk descriptors. A chunk

© 2012 by Taylor & Francis Group, LLC



470 V Transfers

Header with
entry index offset

Arbitrary
data chunks

24B

16B Descriptors
with chunk offset
and size

16B

16B

16B

16B

16B

Figure 32.2. Binary layout for the
Drone format.

is an arbitrarily sized contiguous array stored
in the file and a descriptor of a small structure
containing chunk metadata. A scene exported
in the Drone format will be divided into many
chunks.

The low-level layout (Figure 32.2) is
straightforward: a 24-byte structure is serialized
at the start of the file (Listing 32.1); it contains
a version number corresponding to the Drone
API version, an offset pointing to the start of
the descriptor array, and the number of chunks.
Then, raw data chunks are stored consecutively,
and finally, the descriptors are serialized. Stor-
ing metadata at the end of the file enables us
to write the chunks on the fly instead of keep-
ing them in RAM until the end but at the cost
of a file seek upon load. Each descriptor con-
tains chunk offset and size. It is tempting to
add additional data for each chunk, such as a

type. However, many chunks will be stored, and the smaller the structure is, the
greater the number of descriptors will fit in the CPU cache.

typedef struct
{

uint64_t version ;
uint64_t index_offset;
uint64_t chunk_count;

} drone_header_data_t;

typedef struct
{

uint64_t offset;
uint64_t size;

} drone_desc_t;

Listing 32.1. Drone header and descriptor data structures.

32.3.2 Drone API

The low-level Drone API is divided in two parts, the writer and the reader. If we
closely examine our use cases, we need to be able to write our scene once to the
file and then read many times from it at runtime. To be efficient in both cases, we
need different structures for writing and reading into the file. The API is in pure C
without any dependency besides the libc. The full code is available in the lib/drone
subdirectory of the code.

© 2012 by Taylor & Francis Group, LLC



32. An OpenGL-Friendly Geometry File Format and Its Maya Exporter 471

// Creates a writer object. Save place for the header in the file.
int32_t drone_open_writer(drone_writer_t *writer, const char *filename );
// Store the descriptor list in the file and closes file descriptor
int32_t drone_close_writer(drone_writer_t *writer );
// Write a chunk in the file. Add a descriptor to the list.
int32_t drone_writer_add_desc(drone_writer_t *writer , const void *data , uint64_t ←↩

size);
// Get the last added descriptor ID
drone_desc_id_t drone_writer_get_last_desc(drone_writer_t *writer);

Listing 32.2. Drone writer API.

Writer API. The writer API (Listing 32.2) uses a writer object containing a file
descriptor, various offset counters, and a descriptor list. Each time we add a chunk,
the data are written to the disk, and the descriptor is added to the list in memory.
When the writing is done, the list is transformed in an array and written at the end
of the file, and the header is updated. See usage example in Listing 32.3.

float random_float_chunk[256];
const char *arbitrary_string = "34 zh3t4tr34h3tr1h351e3h1zt53h13zt1hzr31hzt31htr3";
drone_writer_t writer_writer;
// Create a writer object. Open the file and seek to next writing location .
int32_t status = drone_open_writer(&writer_writer , "file.drn");
// Write chunk. Add descriptor to list.
status = drone_writer_add_desc(&writer_writer , random_float_chunk, sizeof (float) * ←↩

256);
// Write chunk. Add descriptor to list.
status = drone_writer_add_desc(&writer_writer , arbitrary_string , strlen(←↩

arbitrary_string));
// Write header . Convert list to array. Write descriptor array in the file. Close ←↩

file
status = drone_close_writer(& writer_writer);

Listing 32.3. Drone writer API usage.

Reader API. Reading a drone file (Listing 32.4) mostly consists in deserializing the
header and the descriptor array and then using them to navigate in the data. The API

drone_t reader;
// Open the reader in load mode
int32_t status = drone_open(&reader , "file.drn", DRONE_READ);
// Get descriptor object of ID 0
drone_desc_t desc = drone_get_desc(&reader , 0);
// Get associated data
const float *data = (float *) drone_get_chunk(&reader , 0);
// Close reader
status = drone_close(&reader);

Listing 32.4. Drone reader API usage.

© 2012 by Taylor & Francis Group, LLC



472 V Transfers

#define DRONE_READ_LOAD 0 // Load all the file into a single array
#define DRONE_READ_MMAP 1 // Mmap the file
#define DRONE_READ_NOLOAD 2 // Load only the header and descriptor array
// Creates a reader object. Load or mmap data if necessary.
int32_t drone_open(drone_t *reader , const char *filename , uint32_t mode);
// Close the file descriptor of the reader. Deallocates or unmap data if necessary.
int32_t drone_close(drone_t *reader);
// Read Drone API version
uint64_t drone_get_version(drone_t *reader);
// Get the number of registered chunk
uint64_t drone_get_chunk_count(drone_t *reader);
// Get the descriptor corresponding to the ID
drone_desc_t drone_get_desc(drone_t *reader , drone_desc_id_t desc_id );
// Get a pointer on the chunk referenced by the descriptor. Only works in load and ←↩

mmap modes
const void *drone_get_chunk(drone_t *reader , drone_desc_id_t desc_id );
// Copy the chunk referenced by the descriptor into the array. Load data in NO_LOAD ←↩

mode
int32_t *drone_copy_chunk(drone_t *reader , const void *data , drone_desc_id_t desc_id←↩

);

Listing 32.5. Drone reader API.

(Listing 32.5) offers three choices for loading the data. The user can either decide
to load them completely, to map them into RAM, or to load them on demand.
The LOAD mode serves for the general case, when all the scene fits into RAM. The
mapping approach is particularly suited for out-of-core algorithms and large files.
Using either the mmap system call on Unix or the MapViewOfFile on Windows,
the operating system will handle streaming the data from disk to RAM on demand
and manage itself with the proper LRU queues depending on data usage. More
details about the use of memory mappings regarding performance will be found in
[Kamp 10]. Finally, when using the NOLOAD mode, data will be loaded on demand
from the disk.

32.3.3 Scene API

The Scene API describes how to store and read a scene using the Drone API. For
each type of object, the API features two structures. The container is stored directly
into the file, it can contain scalars, statically allocated vectors, and chunk descriptor
IDs pointing to other chunks. This type of structure is known as plain-old-data. The
other structure is constructed when the file is loaded. It has the same fields as the
container, except that descriptor IDs are replaced by pointers to the corresponding
data. Using this mechanism, we can represent the various data hierarchies inherent
in a 3D scene. The full code is available in the lib/scene subdirectory of the code, and
an example of scene reading is available in the viewer source code in the tools/viewer
subdirectory. Our scene API features a whole hierarchy of containers for describing
meshes, dynamic mesh data, shading, transformations, and skeletons.

© 2012 by Taylor & Francis Group, LLC



32. An OpenGL-Friendly Geometry File Format and Its Maya Exporter 473

struct MeshDynamicDataContainer
{

drone_desc_id_t vertices ;
drone_desc_id_t normals ;

};

struct MeshDynamicData
{

const float *vertices ;
const float *normals ;
const MeshDynamicDataContainer *d;

};

struct MeshContainer
{

uint32_t numTriangles;
uint32_t numVertices;
drone_desc_id_t triangleList;
drone_desc_id_t uvs;
drone_desc_id_t dynamicData;

};

struct Mesh
{

uint64_t dagNodeId;
uint32_t numTriangles;
uint32_t numVertices;
const int *triangleList;
const float *uvs;
MeshDynamicData *dynamicData;
const MeshContainer *d;

};

Listing 32.6. Scene container example.

In Listing 32.6, we can observe the dual-structure mechanism. The two contain-
ers are actually serialized in the drone file, and at runtime, each container is resolved
in the corresponding structure.

One big advantage of separating the two APIs is that the scene is independent
from the chunk-storing order. The layout of the chunks in the file is tremendously
important performancewise. For example, the various chunks of vertex keyframes
can be stored either per-object then per-frame, or per-frame then per-object. In the
first case, reading the animations for the whole scene will be largely slower, and in the
second case, reading the animation of only one object will be slower. The decoupling
of both APIs enables us to optimize the files for each one of the reading scenarios
without altering the format.

APIs are making it easy to write tools that manipulate and explore the geometry
files. It is relatively simple to build small applications for data-mining purposes, for
example, to analyze scene complexity. We can also write tools that reorder chunks
offline to improve performances, merge multiple files into one, or filter animation
data.

© 2012 by Taylor & Francis Group, LLC



474 V Transfers

32.4 Writing a Maya File Translator
Autodesk Maya is one of the most popular 3D computer graphics software, offering
a wide range of features, from modeling to animation, simulation, and rendering.

32.4.1 Maya SDK 101

Maya offers developers a huge C++/Python API, a solid scripting language called
MEL, and flexible batch execution modes. Automating tasks and creating custom
tools is extremely easy and common in production.

Each component and feature of the software can be derived and redefined us-
ing the API as described in the online documentation and the authoritative book
[Gould 02]. Most of the terms written in code font can be directly looked up in
the online Maya documentation [Autodesk 11].

32.4.2 Writing a Translator

To export a scene from Maya to an unsupported file format, it is necessary to im-
plement a component called a FileTranslator. Our FileTranslator will be
called the DroneTranslator (Listing 32.7) and will only have writing capabilities,
as by default, a FileTranslator can also be used for import. Our translator sup-
ports exporting meshes, skeletons, locators, lights, and cameras. Transform matrices
for objects and joints, baked vertices, and normals can be exported over an arbitrary
number of frames in the same file. We also support basic shading nodes and embed-
ded textures. The full code of the Maya plugin is available in the tools/mayadrone
subdirectory of the code.

All Maya plugins have to define two functions, initializePlugin, and
uninitializePlugin. In these two functions, nodes, commands, translators, or
shaders are, respectively, registered and unregistered using an MFnPlugin object. We

class DroneTranslator : public MPxFileTranslator
{
public:

DroneTranslator() {}
virtual ~DroneTranslator() {}
// Actual constructor
static void *creator ();
// This function is called when the translator is used to export a scene
MStatus writer(const MFileObject& file , const MString & optionsString , ←↩

FileAccessMode mode);
bool haveReadMethod() const {return false; }
bool haveWriteMethod() const { return true; }
MString defaultExtension() const { return "drn"; }

};

Listing 32.7. A write-only custom FileTranslator declaration.

© 2012 by Taylor & Francis Group, LLC



32. An OpenGL-Friendly Geometry File Format and Its Maya Exporter 475

select -all;
file -f -type "DroneTranslator" -op "option string" -es "mymodel .drn";

Listing 32.8. Selecting all the scene and calling the DroneTranslator.

register the translator using the registerFileTranslator function by passing it
a pointer on the DroneTranslator::creator function.

Given that the plugin is correctly compiled and placed in the right directory,
loading it will be accomplished using either the GUI or the loadPlugin MEL
instructions. Using the script editor instead of the GUI enables the developer to
quickly iterate while developing a plugin.

When a FileTranslator is registered, it will immediately appear in the ex-
port dialog box. A custom export interface can be shipped with the plugin using
MEL. For now, we will only use the MEL script to call and pass options to the
DroneTranslator (Listing 32.8). By default, the FileTranslatorwill grab the
current selection. Then the writer function will finally be called.

32.4.3 Walking through the Maya DAG

When the writer function is called, the selection, the option string, and the file
name are passed in parameters. It is then entirely up to the developer to iterate
through the selection to search depth-first through the scene directed acyclic graph
(DAG).

A simplified writer mechanism in a translator will generally follow those steps:

• Parse options, check if the file can be written, and write a header placeholder.

• Get the active selection or build it using the options. Consulting global Maya
states like the active selection is done through the MGlobal header.

• Build an MItSelectionList to iterate on DAG nodes contained in the se-
lection.

• For each given DAG node, build a depth-first DAG iterator object MItDag to
traverse each subgraph.

• For each traversed node, build an MDagPath object. These objects are used to
identify nodes through their position or path in the graph. Thus, they can be
notably used to retrieve the transforms.

• Use the MFn API on the path to determine the underlying data type. The
MFn API is the RTTI system of the Maya API; it tests if the end node of a
path supports a given function set. For example, we can test if the node has
MFn::kMesh support.

© 2012 by Taylor & Francis Group, LLC



476 V Transfers

• If the node supports the MFn::kMesh function sets, we can build an MFnMesh

function set to access the data in the node. Then, we write data accordingly to
the format.

• Write metadata and close the file.

Transform nodes in Maya also support the function set of their child node; thus,
a transform node can be mistakenly taken for a shape node if not properly tested.

32.4.4 Exporting OpenGL-Ready Meshes

The Maya API for meshes is able to triangulate polygons, but a bit of work is nec-
essary to reorder all the vertex attributes like normals and texture coordinates along
the triangles. Another source of trouble is that Maya is perfectly fine with having
multiple normals and texture coordinates associated with the same vertex, as they are
stored per-vertex and per-primitive. In order to obtain OpenGL-ready meshes, such
vertices need to be duplicated.

• Gather base and triangulated topologies as well as vertex attributes using the
MFnMesh previously obtained. The Maya API uses its own data containers
such as MIntArray and MPointArray; they are tightly packed so the base C
pointer is easily accessible.

• Prepare arrays for triangulated normal and texture coordinates.

• For each polygon and then for each triangle in the polygon, find the matching
normal and texture coordinate ID; then, store it.

We now need to identify which vertices are associated with more than one normal
or texture coordinate.

• For each triangle, and then for each vertex, build a tuple containing vertex ID,
normal ID, and texture-coordinate ID.

• Use a hash table (or another similar structure) to find if the tuple is unique.

• If the tuple is unique, generate a new vertex ID and associate it with the tuple;
then, store it in the hash table.

• Reorder vertices and vertex attributes along the new unique vertex IDs.

Triangulated geometry can be obtained more easily, for example, if the geometry
has previously been triangulated using the Mesh->triangulate menu. However,
if the mesh contains hard edges, the vertices still need to be duplicated, which can
also been done by hand but much more tediously.

© 2012 by Taylor & Francis Group, LLC



32. An OpenGL-Friendly Geometry File Format and Its Maya Exporter 477

32.5 Results
The benchmarks were done on a Intel Core i7 920 2.67GHz, 7200 trpm HDD and
an NVIDIA GeForce 295 GTX GPU. The scene (Figure 32.3) is the San Miguel
[McGuire 11] model with a supplementary skinned and textured character. We
measure file size for various part of the sets. Files are generated using Maya 2011.
FBX and OBJ files are exported using Maya’s own plugins, COLLADA files using
the third party OpenCOLLADA plugin [OpenCOLLADA 12]. As shown in Ta-
ble 32.1, triangulation, per-vertex normal options, are activated when available and
texture embedding is deactivated.

Model Number Number of
of shapes triangles

Character 5 13434
Wood table 11 2216
Plants only 1207 3.1M
Walls only 1385 0.66M
Full set 7102 6.1M

Table 32.1. Number of shapes and triangles in the benchmark scenes.

COLLADA and Wavefront OBJ are ASCII-based; thus, file size is significantly
larger (Figure 32.4), FBX file size is sightly lower than the Drone file size, probably
due to mesh data compression.

Figure 32.3. Side-by-side capture of the Drone viewer and the same scene in Maya.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-38&iName=master.img-280.jpg&w=179&h=134
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-38&iName=master.img-281.jpg&w=179&h=133


478 V Transfers

1400

1200

1000

800

M
B

600

400

200

0
Character Wood table Walls only Plants only Full set

Drone

0,99 0,96 4,08 1,03 0,2 0,17 0,49 0,28
56 39

152
112

256

82

556

368

480

71

1248

884

FBX

Collada

OBJ

Figure 32.4. File size performance comparison between formats on the test scene.

Loading times (Figure 32.5) are measured using the Assimp library [Source-
Forge 07] for COLLADA and OBJ and the official SDK [Autodesk 12] for FBX
format. We define the loading time by calculating time elapsed between the begin-
ning of the load and the first displayed frame containing the model. Despite using an
efficient XML parser, COLLADA loading times drop significantly when the number
of shapes increases. The Drone format clearly benefits from the layout optimization
and the no-runtime transformation policy.

0
0,26 0,42 0,6 0,98 0,160,35 0,46 0,82 0,26

10 14 18 16

43

68

89

35

81

117

210

50

100

S
ec

on
d
s 150

200

250

Character Wood table Walls only Plants only Full set

Drone

FBX

Collada

OBJ

Figure 32.5. Loading performance comparison between formats on the test scene.

© 2012 by Taylor & Francis Group, LLC



32. An OpenGL-Friendly Geometry File Format and Its Maya Exporter 479

32.6 Conclusion
For simplicity’s sake, a few features of both APIs presented in the source code were
omitted from the previous description. Notably, in the Drone API, we added a
dictionary mechanism so chunks can be tagged by an arbitrary number of strings,
as it can be useful for data-mining purposes or for storing multiple scenes in the
same file using different name spaces. Furthermore, it is very likely that we will add
Drone support to other commercial and noncommercial 3D software packages, such
as Autodesk 3DS Max and Blender.

Rather than presenting a fixed-function, definitive-geometry file format, we first
presented our requirements and then defined a file format meeting these goals. The
Drone file format is capable of representing a full 3D scene, animated and shaded,
in a compact manner, with built-in out-of-core capabilities. The geometry data is
prepared offline to be directly compatible with the OpenGL vertex buffer API. We
also presented how to use the Maya API to write an geometry exporter suited to our
requirements.

The format is meant to be expanded and modified to suit a wide range of in-
teractive and noninteractive CG applications, as some choices made for the Drone
format and exporter are not suited to some CG algorithms. Typically, an application
dealing with subdivision surfaces will prefer using nonduplicated vertices: a Reyes
renderer will need the base topology instead of triangles. When dealing with massive
data, compression should be considered, either by chunk, by group of chunks, or
by file. Notably, LZ4 and Google’s snappy compression algorithms are relatively fast
and provide good results for geometry data.

Bibliography
[Autodesk 11] Autodesk. “Auotdesk Maya API Documentation.” http://download.autodesk.

com/us/maya/2011help/API/, 2011.

[Autodesk 12] Autodesk. http://www.autodesk.com, 2012.

[Gould 02] D. A. D. Gould. Complete Maya Programming: An Extensive Guide to MEL and
the C++ API, 1. San Francisco: Morgan Kaufmann, 2002.

[Kamp 10] P. H. Kamp. “You’re Doing it Wrong.” Communications of the ACM 53:7 (2010),
55–59.

[McGuire 11] Morgan McGuire. “Computer Graphics Archive.” http://graphics.cs.williams.
edu/data, 2011.

[OpenCOLLADA 12] OpenCOLLADA. http://opencollada.org/, 2012.

[SourceForge 07] SourceForge. “Assimp Open Asset Import Library.” http://assimp.
sourceforge.net/, 2007.

© 2012 by Taylor & Francis Group, LLC



© 2012 by Taylor & Francis Group, LLC



VI Debugging
and Profiling

We probably often underestimate how powerful the OpenGL API can be. However,
programming is less about the result than the process to reach this result. The most
impressive rendering is nothing but the end of a path that is, in a large part, debug-
ging and profiling. Unfortunately, OpenGL doesn’t have a great reputation on that
side. Who really enjoys using glGetError?

This part of the OpenGL experience is now history since the release at SIG-
GRAPH 2010 of the GL ARB debug ouput extension that revolutionizes every day
of an OpenGL programmer’s life. This revolution is captured by António Ramires
and Bruno Oliveira in their chapter “ARB debug output: OpenGL’s Solutions for
Desperate Developers,” which shows every aspect of this extension, how to break the
program when an OpenGL error occurs, and even opens on interesting debugging
perspectives.

Profiling knew an earlier take-off in the world of OpenGL programming thanks
to the release of GL EXT timer query in 2006, then standardized within
OpenGL 3.3. Thanks to Christopher Lux and his chapter, “The OpenGL Timer
Query,” this primitive of OpenGL profiling won’t hide any secrets any longer.

There are two kinds of profiler: the built-in and the external tools, which pro-
vide two different approaches to picture profiling. On one side, a profiler tightly
connected to application designs and specific use-cases, on other side more generic
tools that can embrace all sorts of scenarios and software. The first approach is per-
fectly reflected by Lionel Fuentes in his chapter “A Real-Time Profiling Tool,” which
deals with how a built-in real-time profiler can help the game programmer and also
the artist creating game assets. Chris Dirks and Omar A. Rodriguez expose the sec-
ond approach through their chapter “Browser Graphics Analysis and Optimizations,”
which discuss the utilization of Intel GPA to study WebGL performance.

481

© 2012 by Taylor & Francis Group, LLC



482 VI Debugging and Profiling

Finally, Aleksandar Dimitrijević offers us two innovative profiling chapters, first
introducing us to GPU P-States in his chapter “Performance State Tracking,” where
he calls our attention to how GPUs reach full speed and how this may affect our
performance measurements. He backs his discussion with AMD and NVIDIA pro-
prietary libraries. In his second chapter, he deals with the problem of GPU memory
limits. OpenGL doesn’t provide functionalities to determine the actual memory us-
age, but proprietary extensions provide the required information, and Dimitrijević
helps us to go through them in his chapter “Monitoring Graphics Memory Usage.”

© 2012 by Taylor & Francis Group, LLC



ARB debug output:
A Helping Hand for

Desperate Developers

António Ramires Fernandes and Bruno Oliveira

33.1 Introduction
Since the inception of OpenGL, error handling has not been without some contro-
versy, as the only available mechanism to provide feedback was the glGetError

function. For each OpenGL command, the application had to explicitly query for
possible errors, getting in return a single and very broad meaning error identifier for
the latest error.

ARB debug output [Konttinen 10a], originally proposed by AMD [Kontti-
nen 10b], introduces a new feedback mechanism. It allows developers to define a
callback function that will be invoked by OpenGL to report events back to the appli-
cation. The callback mechanism frees the developer from having to explicitly check
for errors during execution, populating the code with glGetError function calls.
Nevertheless, the extension specification does not force the definition of a callback
function. When no callback is defined, the implementation will keep an internal log
called the message log.

The nature of the reported events is very broad and can relate, for instance, to
errors using the API, the usage of deprecated functionality, performance warnings, or
GLSL compiler/linker issues. Event information contains a driver-implementation
dependant message and other data such as its severity, type, and source.

The extension also allows user-defined filtering of the events that are reported by
selecting only the ones of interest. Finally, the application, or any third-party library,
may also generate custom events. In the following sections, we will show how to use
the aforementioned extension and its features. We will also have a peek at the current
implementation approaches.

483

33

© 2012 by Taylor & Francis Group, LLC



484 VI Debugging and Profiling

33.2 Exposing the Extension
As stated in the specification, it is recommended that the extension is available only
in an OpenGL debug context to avoid a potential performance impact; hence, it
may be required to create such a context. Using freeglut as an example, this can be
achieved with glutInitContextFlags(GLUT DEBUG). An example of the flags
to create an OpenGL 4.1 core debug context using WGL and GLX is presented in
Listing 33.1. To check if the extension is available, we can use glGetStringi.

int attribs [] =
{
#ifdef WIN32

WGL_CONTEXT_MAJOR_VERSION_ARB, 4,
WGL_CONTEXT_MINOR_VERSION_ARB, 1,
WGL_CONTEXT_FLAGS_ARB, WGL_CONTEXT_DEBUG_BIT_ARB,
WGL_CONTEXT_PROFILE_MASK, WGL_CONTEXT_CORE_PROFILE_BIT_ARB,

#endif
#ifdef __linux__

GLX_CONTEXT_MAJOR_VERSION_ARB, 4,
GLX_CONTEXT_MINOR_VERSION_ARB, 1,
GLX_CONTEXT_FLAGS_ARB, GLX_CONTEXT_DEBUG_BIT_ARB,
GLX_CONTEXT_PROFILE_MASK, GLX_CONTEXT_CORE_PROFILE_BIT_ARB,

#endif
0

};

Listing 33.1. Flags to create a core debug context in WGL and GLX.

33.3 Using a Callback Function
The extension allows the definition of a callback function that will be invoked each
time an event is issued. This directs the flow of generated events to the callback, and
they will not be stored in the message log.

If working with multiple contexts, each one should have its own callback func-
tion. Multithreading applications are allowed to use the same callback for multiple
threads, and the application is fully responsible for ensuring thread safety.

Listing 33.2 is an example of such a callback function; it prints the event passed
by OpenGL in a human-readable form. The enumerations are defined in the exten-
sions spec [Konttinen 10a]. The getStringFor* functions translates the enumer-
ation value into a human readable format. The complete code can be found on the
book’s web site (www.openglinsights.com).

The function glDebugMessageCallbackARB, used to specify the callback func-
tion, takes two arguments: the name of the callback function and a pointer to the
user data. The pointer to the user data can only be changed with a new call to
glDebugMessageCallbackARB. This pointer allows the callback to receive user-

© 2012 by Taylor & Francis Group, LLC



33. ARB debug output: A Helping Hand for Desperate Developers 485

void CALLBACK DebugLog (GLenum source , GLenum type , GLuint id, GLenum severity , ←↩
GLsizei length , const GLchar *message , GLvoid *userParam)

{
printf("Type: %s; Source: %s; ID: %d; Severity : %s\n",

getStringForType(type).c_str (),
getStringForSource(source ).c_str(),id,
getStringForSeverity(severity ).c_str());

printf("Message : %s\n", message );
}

Listing 33.2. Example of a simple callback function.

defined data, in addition to the event data. Listing 33.3 shows a very simple, al-
though useless, example. In that snippet of code, the last two OpenGL function
calls should generate events. The callback function will receive a pointer to myData,
which will hold the value 2 the first time, and 3 the second.

int myData ;
...
// set myData as the user data
glDebugMessageCallbackARB(DebugLog , &myData);
...
//set the value of the variable myData
myData = 2
// Generate an event due to an invalid parameter to glEnable
glEnable (GL_UNIFORM_BUFFER);
// change the variable myData.
myData = 3;
// From now on events will carry the value 3 in the user param.
// Another event: parameter combination not available in core profile
glPolygonMode(GL_FRONT , GL_LINE );

Listing 33.3. Example of the user-data parameter usage facilities.

A more realistic and complete example of usage for the user data is to pass a struct
holding pointers to the relevant subsystems of the application, such as the resource
manager and the rendering manager.

Once set, the callback can be disabled by passing NULL as the first argument to
glDebugMessageCallbackARB. From that point onwards, events will be directed
to the message log. A final note: any call to an OpenGL or window-system func-
tion inside the callback function will have undefined behaviour and may cause the
application to crash.

33.4 Sorting Through the Cause of Events
Getting events reported is only a part of the debugging process. The rest of the
procedure involves pinpointing the issue’s location and then acting upon it. Finding

© 2012 by Taylor & Francis Group, LLC



486 VI Debugging and Profiling

the cause of the event or the offending lines of code can be a very simple task with
the extension synchronous mode.

The specification defines two event reporting modes: synchronous and asynchro-
nous. The former will report the event before the function that caused the event
terminates. The latter option allows the driver to report the event at its conve-
nience. The reporting mode can be set by enabling or disabling GL DEBUG OUTPUT

SYNCHRONOUS ARB. The default is asynchronous mode.
In synchronous mode, the callback function is issued while the offending OpenGL

call is still in the call stack of the application. Hence, the simplest solution to find
the code location that caused the event to be generated is to run the application in a
debug runtime environment. This allows us to inspect the call stack from inside the
IDE by placing a breakpoint at the callback function.

33.4.1 Accessing the Call Stack Outside the IDE

The other solution, harder to deploy but neater, is to implement a function within
the application to get the call stack and print it out. While more complex, this
solution is far more productive since there is no need to keep stopping the program
at each event; it also allows us to filter from the call stack only the calls originated
from the application, eliminating calls to the operating system’s libraries, thereby
providing a cleaner output. This output can be directed to a stream, allowing for
maximum flexibility. The callback, when running in test machines, can produce a
sort of a minidump file, pinpointing the error location, that later can be sent to the
developer team.

The source code accompanying this chapter provides a small library that includes
a function for Windows and Linux systems that retrieves the call stack. An example
of a call stack is printed by the library as

function : setGLParams - line: 1046
function : initGL - line: 1052
function : main - line: 1300

33.5 Accessing the Message Log
As mentioned before, if no callback is defined, the events are stored in an internal log.
In the extension specification, this log is referenced as the message log; however, it
contains all the event’s fields. Hence, event log would probably be a more descriptive
name.

The log acts as a limited-size queue. The limited size causes new events to be
discarded when the log is full; hence, the developer must keep cleaning the log to
ensure that new events fit in, as any event that occurs often is bound to fill the log
very rapidly. Also, being a queue, the log will provide the events in the order they
were added. When retrieving an event, the oldest event is reported first.

© 2012 by Taylor & Francis Group, LLC



33. ARB debug output: A Helping Hand for Desperate Developers 487

GLint maxMessages , totalMessages , len , maxLen, lens [10];
GLenum source , type , id, severity , severities[10];
// Querying the log
glGetIntegerv(GL_MAX_DEBUG_LOGGED_MESSAGES_ARB, &maxMessages);
printf("Log Capacity : %d\n", maxMessages);

glGetIntegerv(GL_DEBUG_LOGGED_MESSAGES_ARB, &totalMessages);
printf("Number of messages in the log: %d\n", totalMessages);

glGetIntegerv(GL_MAX_DEBUG_MESSAGE_LENGTH_ARB, &maxLen);
printf("Maximum length for messages in the log: %d\n", maxLen);

glGetIntegerv(GL_DEBUG_NEXT_LOGGED_MESSAGE_LENGTH_ARB, &len);
printf("Length of next message in the log: %d\n", len);
char *message = (char *)malloc (sizeof(char) * len);
// Retrieving all data for the first event in the log. Placing NULL
// in any of the fields is allowed and the field will be ignored .
glGetDebugMessageLogARB(1, len , &source , &type , &id, &severity , NULL , message );
// Retrieving the severity and messages for the first 10 events.
char *messages = (char *) malloc(sizeof(char) * maxLen * 10);
glGetDebugMessageLogARB(10, maxLen * 10, NULL , NULL , NULL , severities , lens , ←↩

messages );
// Clearing the log
glGetIntegerv(GL_DEBUG_LOGGED_MESSAGES_ARB, &totalMessages);
glGetDebugMessageLogARB(totalMessages , 0, NULL , NULL , NULL , NULL , NULL , NULL);

Listing 33.4. Querying the log and retrieving messages.

The log’s capacities and the length of the first message can be queried with
glGetInteger. Multiple events can be retrieved with a single call using
glGetDebugMessageLogARB. Listing 33.4 presents some examples of usage.

When retrieving multiple events, their associated messages are all concatenated
in a string, separated by a null terminator. The array lens will store their individual
lengths. If the maximum length (second parameter) is not sufficient to hold all the
messages to retrieve, only those events whose messages do fit in messagewill actually
be retrieved.

Each time an event is retrieved, it is removed from the log. Hence, to clear the
log, one just needs to retrieve all events (Listing 33.4).

33.6 Adding Custom User Events to the Log

An application, or third-party library, can also take advantage of the debug facilities
now available with this extension since it is possible to insert the application’s own
events into the log. The log can then be used as a centralized debug resource for all
that is related to the graphics pipeline.

One note, though, regarding this approach. Developers of libraries have to be
aware of possible clashes in the IDs of the events, although this could partially be

© 2012 by Taylor & Francis Group, LLC



488 VI Debugging and Profiling

glDebugMessageInsertARB(GL_DEBUG_SOURCE_APPLICATION_ARB,
GL_DEBUG_TYPE_ERROR_ARB,
1111, GL_DEBUG_SEVERITY_LOW_ARB,
-1, // null terminated string
"Houston , there�s some problem with my app...");

Listing 33.5. Extension function to add events to the event log.

solved by adding, in each event’s message, an identification of the library who is-
sued it.

Adding events to the log is very straightforward, with only one new function,
glDebugMessageInsertARB. An example of usage can be found in Listing 33.5.
The source field can only be GL DEBUG SOURCE APPLICATION ARB or GL DEBUG

SOURCE THIRD PARTY ARB. The specification states that low-severity events are not
enabled by default. Next section will show how to enable and disable classes, or
individual events.

33.7 Controlling the Event Output Volume
The extension provides a function, glDebugMessageControlARB, which can be
used to filter the events that get reported. The function effectively filters out, GL
FALSE, or allows the inclusion, GL TRUE, of any events that match the criteria spec-
ified. This does not affect events already in the log; it will only filter new events.
Listing 33.6 shows some examples of usage.

To specify a particular combination of source, type, and/or severity (the
first three parameters), just set them to either one of the defined enumeration values
or use GL DONT CARE, i.e., no filter is applied to that field.

A set of event IDs can also be specified to set an array with the required val-
ues. This only works for pairs of source and type, both not being simultaneously
GL DONT CARE, while severity must be set to GL DONT CARE. This is because an
event is uniquely identified by its type, source, and ID.

This feature can become even more powerful if integrated with a dynamic debug-
ging system. In conjunction with the callback function, or with a periodic inspection
to the event log, it is possible to devise a mechanism by which some events are dis-
abled after some number of occurrences.

33.8 Preventing Impact on the Final Release
As we begin to use this extension, its functions will start to appear here and there in
our code. This brings up the next issue: how to get rid of all these function calls for
the final release version. Building a library allows us to concentrate these calls in a

© 2012 by Taylor & Francis Group, LLC



33. ARB debug output: A Helping Hand for Desperate Developers 489

// Disabling events related to deprecated behaviour
glDebugMessageControlARB(GL_DONT_CARE ,

GL_DEBUG_TYPE_DEPRECATED_BEHAVIOR_ARB,
GL_DONT_CARE ,
0, NULL , GL_FALSE );

// Enabling only two particular combinations of source , type and id.
// Note that first we had to disable all events.
GLuint id[2] = {1280, 1282};
glDebugMessageControlARB(GL_DONT_CARE , GL_DONT_CARE , GL_DONT_CARE ,

0, 0, FALSE);
glDebugMessageControlARB(GL_DEBUG_SOURCE_API_ARB,

GL_DEBUG_TYPE_ERROR_ARB,
GL_DONT_CARE ,
// 2 is the number of IDs
2, id, GL_TRUE );

Listing 33.6. Filtering events.

particular class, yet this does not solve the issue, as now one has to call the library’s
functions instead.

A possible workaround for this issue is to use compilation flags, dealt by the
preprocessor. A simple example is shown in Listing 33.7. With this approach, all
calls related to the extension can be removed just by undefining the compilation flag.

#ifdef OPENGL_DEBUG
// do this for all extension functions
#define GLDebugMessageControl(source , type , sev, num , id, enabled ) \\

glDebugMessageControlARB(source , type , sev, num , id, enabled )
#else
// do this for all extension function
#define GLDebugMessageControl(source , type , sev, num , id, enabled )
#endif
// now instead of calling glDebug ... call GLDebug ..., for instance
GLDebugMessageControl(NULL , NULL , NULL , -1, NULL , GL_TRUE );

Listing 33.7. Using compilation flags to prevent impact on the final release.

33.9 Clash of the Titans: Implementation
Strategies

AMD and NVIDIA have started in different directions when implementing this
extension. AMD had a head start since it already had an implementation for AMD
debug output. This extension is very similar to ARB debug output and contains
most of the features in it.

AMD drivers, Catalyst 11.11, are focused on giving more meaningful infor-
mation to situations typically reported by glError. They also consider GLSL

© 2012 by Taylor & Francis Group, LLC



490 VI Debugging and Profiling

compiler/linker issues as events, providing the info log as the message. NVIDIA,
on the other hand, started off paying little attention to these issues and went on to
provide information on operations such as buffer binding and memory allocation.
Starting from version 290.xx, NVIDIA also began to provide some more informa-
tion to glError scenarios, starting to close the gap between their drivers and AMD
drivers.

Regarding implementation constants, both drivers share the same log queue size,
128 events, and maximum message length, 1024 bytes.

As for events caused by OpenGL commands, consider binding a buffer to a non–
buffer-object name. NVIDIA does not report any event on this, while AMD provides
the following information:

glBindBuffer in a Core context performing invalid operation
with parameter <name > set to �0x5� which was removed
from Core OpenGL (GL_INVALID_OPERATION)

Note that, although the message is not entirely correct since it refers incorrectly
to a deprecated feature, it provides the value of the offending parameter. Similar
information detail is obtained when attempting to use a deprecated combination
of parameters. For instance when using glPolygonMode(GL FRONT, GL LINE),
one gets

Using glPolygonMode in a Core context with parameter
<face > and enum �0x404� which was removed from
Core OpenGL (GL_INVALID_ENUM)

NVIDIA, on the other hand, reports

GL_INVALID_ENUM error generated. Polygon modes for <face > are
disabled in the current profile .

Although not as complete as AMD, it is an improvement from its earlier implemen-
tations (285.62 drivers), where it reported only a GL INVALID ENUM error.

In a different scenario, when the name is actually bound and data are successfully
sent to the buffer, the AMD driver keeps silent, while NVIDIA is kind enough to
give information about the operation in low-severity messages:

Buffer detailed info: Buffer object 3 (bound to
GL_ELEMENT_ARRAY_BUFFER_ARB, usage hint
is GL_ENUM_88e4) will use VIDEO memory as
the source for buffer object operations.

This becomes particularly useful when too many buffers have been allocated and they
do not fit in video memory anymore. In this situation, when calling glBufferData,
the driver reports that system heap memory will be used instead.

© 2012 by Taylor & Francis Group, LLC



33. ARB debug output: A Helping Hand for Desperate Developers 491

NVIDIA also warns if something is about to go wrong. For instance, in a situa-
tion where memory is running very low, the following report was issued when calling
glDrawElements:

Unknown internal debug message . The NVIDIA
OpenGL driver has encountered an out of memory
error. This application might behave inconsistently and fail.

Regarding performance, the implementations may behave very differently. When
rendering in debug mode for a scene with small models with a large number of small
VAOs, we noticed some performance degradation with NVIDIA, whereas AMD
showed no performance difference. However, when testing with a scene containing
a single very large VAO, the performance issue with NVIDIA almost vanished. For
both drivers, no significant differences were found regarding the synchronicity mode,
which suggests that these drivers have not yet implemented, or optimized, the asyn-
chronous mode. When checking the call stacks, considering a large number of events,
there was also no evidence that the asynchronous mode has been implemented.

33.10 Further Thoughts on Debugging
While on the theme of OpenGL debugging, there are a few things that could come in
handy. For instance, OpenGL has a rich set of functions to query its state regarding
buffers, shaders, and other objects, but all these queries operate on numerical names.
For anything other than very simple demos, it becomes hard to keep track of all
these numbers. Extension EXT debug label [Lipchak 11a], available on OpenGL
ES 1.1, promotes the mapping of text names to objects.

Another interesting OpenGL ES extension is EXT debug marker [Lipchak 11b].
This extension allows developers to annotate, with text markers, the command stream
for both discrete events or groups of commands. Unfortunately, it does not provide
queries for the current active markers.

OpenGL needs more robust development tools that allow shaders to be debugged
and state to be inspected. The above two extensions are a step in the right direction
and will improve the productivity of developers when used in this context.

33.11 Conclusion
The ARB debug output extension is a highly welcomed addition, as it adds an extra
value to the API, making it possible to evaluate its behavior with a more centralized
and efficient approach.

Regarding implementations, AMD had a head start, but NVIDIA is catching
up. It may be argued that the extension needs some rewriting so that NVIDIA’s
approach fits more smoothly. The extension was designed for errors and warnings,

© 2012 by Taylor & Francis Group, LLC



492 VI Debugging and Profiling

not the type of information NVIDIA is providing, since even a low-severity setting
doesn’t apply when reporting that an operation has completed successfully. Adding a
GL DEBUG INFO setting would probably be enough to deal with this issue. Still, it is
undeniable that this information can come in very handy when problems emerge.

As with any other functionality in OpenGL, the API has a lot of potential, and
it is up to the developers to fully unleashed it.

Bibliography
[Konttinen 10a] Jaakko Konttinen. “AMD debug output Extension Spec.” http://www.

opengl.org/registry/specs/ARB/debug output.txt, June 10, 2010.

[Konttinen 10b] Jaakko Konttinen. “AMD debug output Extension Spec.” http://www.
opengl.org/registry/specs/AMD/debug output.txt, May 7, 2010.

[Lipchak 11a] Benj Lipchak. “EXT debug label Extension Spec.” http://www.opengl.org/
registry/specs/ARB/debug\ output.txt, July 22, 2011.

[Lipchak 11b] Benj Lipchak. “EXT debug marker Extension Spec.” http://www.opengl.org/
registry/specs/ARB/debug\ output.txt, July 22, 2011.

© 2012 by Taylor & Francis Group, LLC



The OpenGL Timer Query

Christopher Lux

This chapter presents the OpenGL functionality to measure execution times of se-
quences of OpenGL commands using methods provided through the OpenGL timer
query. The special requirement of dedicated OpenGL timing methods for profiling
and runtime purposes is highlighted, followed by an introduction of the basic func-
tions and concepts regarding synchronous and asynchronous approaches to OpenGL
timing. Different types of applications are demonstrated, while indicating special
limitations to this functionality.

34.1 Introduction
How long does it take the graphics hardware (GPU) to execute a certain sequence of
OpenGL rendering commands? The answer to this question is essential during the
development as well as the runtime of real-time computer graphics applications such
as games, simulations, and scientific visualizations.

Profiling a program means measuring and recording, for instance, execution
times and memory usage of individual parts of the program. Profiling allows a soft-
ware engineer to analyze how many resources and how much time is spent in various
parts of the program, and thereby identify critical sections in the program source
code. These critical sections present the best opportunities for optimizations from
which the program performance can benefit the most.

Execution time measurements at program runtime can also be utilized to dynam-
ically adjust the workload of rendering algorithms to achieve or maintain interactive

493

34

© 2012 by Taylor & Francis Group, LLC



494 VI Debugging and Profiling

frame times. For instance, a program can use information about rendering times
of geometrical models to adapt the used levels-of-detail to decrease or increase the
geometry workload of the graphics system. Another application area of runtime tim-
ings is resource streaming, where, for instance, information about texture-upload
speeds is used to adjust the amount of texture resources transferred to GPU memory.

The timer query functionality, introduced with the EXT timer query exten-
sion [ARB 06] and promoted to core specification with OpenGL Version 3.3 [Segal
and Akeley 11], allows us to measure the time it takes to execute a sequence of
OpenGL commands and to retrieve the current time stamp of the OpenGL server.
This time query mechanism is required because current GPUs are running asyn-
chronous to the CPU. Issuing an OpenGL command ultimately places it in the
OpenGL command-queue processed by the GPU at a later point in time, which
means, upon calling an OpenGL function, the corresponding command is not nec-
essarily executed directly, nor is it guaranteed to be finished when the call returns
control to the CPU. Furthermore, the execution of OpenGL commands stored in
the command queue is usually delayed by at least one frame in relation to the current
rendering frame on the CPU. This practice minimizes GPU idle times and hides
latencies in CPU-GPU interoperation.

Modern immediate-mode GPUs are employing heavily pipelined architectures,
which are processing different primitives (e.g., vertices, fragments) in different pipe-
line stages simultaneously [Ragan-Kelley 10]. This results in the overlapped execu-
tion of individually issued draw commands on the GPU. Figure 34.1 illustrates the
asynchronous and pipelined execution model of immediate-mode GPUs. This chap-
ter specifically discusses performance measurements for immediate-mode GPUs. The
architectural differences of tile-based GPUs and the associated differences in perfor-
mance profiling are described in Chapter 23.

The basic asynchronous character of the OpenGL server allows the CPU to at-
tend to different tasks while the GPU is executing the issued commands. However,
measuring GPU execution times using general CPU timing methods results in cap-

Rendering Frame N

DC_0

GPU

CPU SwapBuffers

t

DC_1 DC_2 DC_3

DC_0 (N − x)

DC_1 (N − x)

DC_2 (N − x)

DC_3 (N − x)

...

Figure 34.1. Asynchronous and pipelined execution of draw calls (DC n) on the GPU: four draw calls
are issued by the CPU during the rendering frame N. Through the heavily pipelined architecture of modern
immediate-mode GPUs, the draw commands are ultimately executed overlapped in parallel.

© 2012 by Taylor & Francis Group, LLC



34. The OpenGL Timer Query 495

turing only the time used to submit the OpenGL commands to the command stream
and not the actual execution times on the GPU. While it is possible to synchronize
the activities of the CPU and the GPU by using glFinish() or OpenGL sync ob-
jects [Segal and Akeley 11], timing GPU activities this way influences the potentially
overlapped program flow and, therefore, affects the general program performance.
Hence, such an attempt only allows us to generate meaningful timing results for
isolated routines on the GPU, as the measurement adversely affects other program
parts. On the other hand, OpenGL timer queries allow us to measure GPU execution
times without affecting the established program flow and, when carefully employed,
without stalling GPU or CPU execution. This makes them an indispensable tool for
every OpenGL software developer looking to understand and optimize the runtime
performance of their programs.

34.2 Measuring OpenGL Execution Times
OpenGL offers two approaches for measuring execution times on the GPU: syn-
chronous and asynchronous queries. Before discussing the different types of time
queries, it is important to clarify how time is represented in OpenGL.

34.2.1 OpenGL Time

Time in OpenGL is expressed with the granularity of one nanosecond, which is a
billionth of a second (10−9 s). Because of this very fine granularity, the data types
used to store timing results and their representable value ranges have to be consid-
ered. The use of 32-bit unsigned integer values (GLuint) allows us to represent
time intervals of up to approximately four seconds; using 64-bit-wide unsigned in-
tegers (GLuint64) raises this limit to hundreds of years, plenty for timing rendering
routines in real-time applications.

While the OpenGL specification requires implementations to internally offer at
least 30 bits of storage, which allows us to represent time intervals of at least one
second, modern implementations, however, offer the full 64 bits of internal storage.
On the other hand, the programmer is free to choose the data type for storing the
timing results retrieved from OpenGL. For most application scenarios in real-time
rendering, 32-bit values suffice to measure the duration of relevant program sections
without risking arithmetic overflow, but when querying time stamps from OpenGL,
64-bit types are required to avoid overflow issues.

34.2.2 Synchronous Timer Query

The synchronous type of time queries allows us to retrieve the current time stamp
of the GPU using a simple glGetInteger() query with the GL TIMESTAMP pa-
rameter name, as demonstrated in Listing 34.1. This query returns the time stamp

© 2012 by Taylor & Francis Group, LLC



496 VI Debugging and Profiling

// this variable will hold current time on the GPU
GLint64 time_stamp;
// retrieve the current time stamp ,
// after all prior OpenGL commands reached the GPU
glGetInteger64v(GL_TIMESTAMP , &time_stamp);

Listing 34.1. Synchronous time-stamp query.

of the GPU after all previously issued OpenGL commands have reached the GPU
but have not yet necessarily finished execution, causing an implicit command-queue
flush similar to a call to glFlush(). The query call returns as soon as the result
is available, as illustrated in Figure 34.2. Additional synchronization is required to
measure GPU execution times similar to the previously described intrusive CPU tim-
ing method. This renders the synchronous-timing approach the least useful. Besides,
comparisons with CPU timers show only insignificant differences. Note how, in List-
ing 34.1, a 64-bit signed integer (GLint64) is used to store the queried time stamp,
as the synchronous time query only allows us to retrieve results into signed integer
variables.

Rendering Frame N

DC_0

GPU

CPU

t

DC_1 DC_2

DC_0

DC_1

DC_2

SQ_0 SQ_1

Blocking
query

Non-blocking
query

Figure 34.2. Synchronous timer queries: the query SQ 0 blocks the CPU execution until the previous
OpenGL commands have reached the GPU, returning the time at the beginning of the execution of draw
call DC 2. Query SQ 1 returns an intermediate time stamp without blocking the CPU.

34.2.3 Asynchronous Timer Query

The real strength of OpenGL timing lies with the asynchronous timing approach.
Asynchronous timer queries use the same query-object mechanism as occlusion
queries. Such timer queries can be used to measure either the amount of time taken
to execute a set of OpenGL commands or to record the current time stamp of the
GPU without stalling execution on the CPU or GPU.

New query objects are generated using glGenQueries(). A timer query can
then be prepared and be started and stopped with the glBeginQuery() and

© 2012 by Taylor & Francis Group, LLC



34. The OpenGL Timer Query 497

GLuint timer_query;
// generate query object
glGenQueries(1, &timer_query);
[...]
// start the timer query
glBeginQuery(GL_TIME_ELAPSED , timer_query);
// issue a sequence of OpenGL rendering commands
[...]
// stop the timer query
glEndQuery(GL_TIME_ELAPSED , timer_query);
[...]
// retrieve the query results , potentially stalling GPU execution
GLuint64 timer_result;
glGetQueryObjectui64v(timer_query , GL_QUERY_RESULT , &timer_result);

printf("GPU timing result: %f ms\n", double(timer_result) / 1e06);

Listing 34.2. Basic usage of an asynchronous timer query.

glEndQuery() calls using the GL TIME ELAPSED target, as demonstrated in List-
ing 34.2. These calls return immediately without waiting for the measurement re-
sults. The timer is actually started and stopped when all OpenGL commands prior
to the begin and end calls are fully executed by the GPU. This enables precise mea-
surements of the GPU execution times required to process the commands enclosed
by the time query.

However, because of the pipelined nature of current GPUs and the consequent
overlapped execution of multiple rendering commands, inaccurate measurements are
possible. The difference in measured to actual execution time is highlighted in Fig-
ure 34.3. The actually occurring differences in these times vary with the complexity

Rendering Frame N

DC_0

GPU

CPU

t

DC_1 DC_2 DC_3

DC_0

DC_1

DC_2

DC_3

QB QE

Measured time

Actual time

QR_0

Blocking
results query

QR_1

Nonblocking
results query

Figure 34.3. Asynchronous timer query: a single query is started (QB) and stopped (QE) to measure the
combined execution time of the enclosed draw calls (DC n). While the first result request QR 0 blocks CPU
execution until the GPU has finished all commands, the later request QR 1 does not block.

© 2012 by Taylor & Francis Group, LLC



498 VI Debugging and Profiling

Rendering Frame N

DC_0

GPU

CPU

t

DC_1 DC_2 DC_3

DC_0

DC_1

DC_2

DC_3

QB QE

Measured time

S

Figure 34.4. Correct timing of overlapped draw calls (DC n) using an asynchronous timer query and a GPU
synchronization point S to defer the execution of the enclosed commands without blocking CPU execution.

of the rendered objects and the surrounding rendering commands. Smaller, less com-
plex objects show smaller divergences, while larger objects offer more opportunities
for overlapped execution and therefore show larger divergences between measured
and actual rendering times. This issue is resolved without stalling CPU execution by
using an OpenGL sync object and a GPU synchronization point (glWaitSync())
issued just before the start of the timer query. Through forcing the completion of all
commands prior to the synchronization point, the correct timing of the enclosed ren-
dering commands becomes possible at the expense of the overlapped operation. This
approach is illustrated in Figure 34.4. It is important to note, that while this intru-
sive approach allows us to gather very precise measurements of isolated sequences
of rendering commands, it is affecting the execution of surrounding operations.
On the other hand, the nonintrusive begin/end query mechanism, without addi-
tional synchronization points, widely produces results close to the actual execution
times.

Once the result of a measurement is available, it is finally stored in the query
object. The actual result value of a timer query is acquired from the query object
using a glGetQueryObject() call requesting the GL QUERY RESULT object state
entry. Since the results may not be directly available after ending the timer query, the
acquisition of the result value will be blocked until the necessary information even-
tually becomes obtainable. Therefore, it is recommended to retrieve the query result
at a later point in the program, which is described in closer detail in Section 34.2.5.

A very significant limitation of this timing approach is that pairs of begin/end
queries must not be nested or interleaved. Therefore it is not possible to record the
overall GPU time of a rendering method while at the same time measuring subrou-
tines of that same method, which might be useful for profiling purposes.

© 2012 by Taylor & Francis Group, LLC



34. The OpenGL Timer Query 499

34.2.4 Asynchronous Time Stamp Query

Another way to use asynchronous timer queries that avoids the nesting problem
is to record the current time stamp on the GPU to a query object generated by
glGenQueries(). Calling glQueryCounter() with the target GL TIMESTAMP

will store the current time stamp into the corresponding query object after all previ-
ous OpenGL commands have been fully executed. This call will also return immedi-
ately without blocking the application, and the result value is acquired the same way
as before using glGetQueryObject().

Through the use of two query objects to record the time stamps at the beginning
and end of a sequence of OpenGL commands, the elapsed GPU time can be easily
determined. Nevertheless, similar issues to those present with the begin/end mech-
anism arise when attempting to time commands for which execution is overlapped
on the GPU. When requiring very precise measurement results, this can be resolved
similarly by using OpenGL sync objects and GPU synchronization points prior to
beginning the time stamp query.

The advantage of using asynchronous time stamp queries over the begin/end
query mechanism is that calls to glQueryCounter() can be used anywhere without
interfering with other time queries. It is even completely legal to query a time stamp
between glBeginQuery() and glEndQuery() calls that are using a different query
object.

Listing 34.3 demonstrates how to use queried time stamps to determine the times
spent on the GPU for multiple rendering routines. By acquiring time stamps at
different points, it is possible to calculate the elapsed time duration of the enclosed
code segments. Using this approach, each particular query for a time stamp requires

GLuint timer_queries[3];
// generate three query objects
glGenQueries(3, &timer_queries);
[...]
// query time stamps around all draw routines
glQueryCounter(timer_queries[0], GL_TIMESTAMP);
draw_world();
glQueryCounter(timer_queries[1], GL_TIMESTAMP);
draw_models();
glQueryCounter(timer_queries[2], GL_TIMESTAMP);
[...]
// later in the program retrieve the query results
GLuint64 time_0 , time_1 , time_2;
glGetQueryObjectui64v(timer_queries[0], GL_QUERY_RESULT , &time_0);
glGetQueryObjectui64v(timer_queries[1], GL_QUERY_RESULT , &time_1);
glGetQueryObjectui64v(timer_queries[2], GL_QUERY_RESULT , &time_2);

printf("world draw time : %f ms\n", double(time_1 - time_0) / 1e06);
printf("models draw time: %f ms\n", double(time_2 - time_1) / 1e06);

Listing 34.3. Using asynchronous time stamp queries.

© 2012 by Taylor & Francis Group, LLC



500 VI Debugging and Profiling

an individual query object. Otherwise, when reusing a query object, it becomes
necessary to retrieve the intermediate results, which can potentially stall the program
flow.

While the begin/end paradigm to measure execution times is easier to use and
understand, the time stamp query offers certain advantages for more complex ap-
plication scenarios. When, for instance, implementing a rendering library that in-
ternally is depending on time measurements, it is highly recommended to utilize
time stamp queries. Consequently, client code is free to use any form of time query
without interfering with the internal operation of the library.

34.2.5 Considering Query Retrievals

The main issue when timing OpenGL commands asynchronously is when to re-
trieve the results without negatively affecting the general program flow. A call to
glGetQueryObject() to acquire a query result may stall the program if the result
is not available at this point. The most optimal solution would be to know before-
hand when a query result is available, as illustrated in Figure 34.3.

The availability of the result of a query object can be explicitly inquired with
a nonblocking call to glGetQueryObject(), requesting the GL QUERY RESULT

AVAILABLE state. Since the GPU is typically running several frames behind the
CPU, this query can be used to decide to skip the retrieval of query results for a
series of rendering frames until they are eventually available. However, it is important
that existing queries are not reissued and therefore overwritten until their results have
been acquired, as illustrated in Listing 34.4.

When trying to avoid explicitly polling query availability, implicitly available
synchronization points may be used, such as already-established command-stream
synchronization points using OpenGL sync objects and fences. A common mis-
conception is the consideration of the swapping of the front and back buffer of the
default framebuffer as an implicit synchronization point. Because the processing of
the OpenGL command queue on the GPU is often delayed by multiple frames in
relation to the CPU, query results may not be available until a much later point in
time. Depending on the frame rate and CPU overhead, the number of rendering
frames the GPU is running behind the CPU can be observed to be as high as five
frames, depending on the GPUs performance and driver settings. Besides this aspect,
all OpenGL commands not influencing the framebuffer are unaffected by the swap
operation and are therefore not necessarily synchronized at this point, e.g., texture
or buffer transfers. A straightforward way to avoid blocking query retrievals is to
use a double-buffered query approach, which allows us to start a new query before
acquiring the result from the query issued during the previous rendering frame. If
the thereby introduced delay of one frame between issuing the timer query and the
retrieval of the result value is insufficient for nonblocking execution, more buffered
queries can easily be added to this approach.

© 2012 by Taylor & Francis Group, LLC



34. The OpenGL Timer Query 501

bool query_issued = false;
GLuint timer_query;
[...]
// start of rendering frame
[...]
// query time stamps if query is not in use
if (! query_issued) {

glQueryCounter(timer_query , GL_TIMESTAMP);
query_issued = true;

}
[...]
// check the availability of the timer query result
GLuint timer_available = GL_FALSE ;
glGetQueryObjectuiv(timer_query , GL_QUERY_RESULT_AVAILABLE,

&timer_available);

if (timer_available) {
// retrieve available timer query result without blocking CPU
glGetQueryObjectui64v(timer_query , GL_QUERY_RESULT , &result_time);
query_issued = false;

}
[...]
// end of rendering frame

Listing 34.4. Nonblocking check for timer query availability.

Finally, it is important to note that execution times of separate sets of OpenGL
commands may not combine linearly. Current OpenGL implementations and GPUs
expose heavily pipelined architectures that are potentially running multiple tasks in
parallel. For example, it is possible that the drawing of a large geometric model or
the use of a computational complex shader is actually overlapped with the upload
of texture resources. Therefore, the time required to run these tasks combined will
probably not be equal to the sum of the individual task execution times (c.f. Fig-
ure 34.1). In such cases, the best strategy is to explicitly measure the combined
execution time of the overlapped tasks in addition to the individual timings to deter-
mine the amount of overlap between the individual tasks. Furthermore, this enables
the program to determine the workloads of these tasks relative to each other and to
adjust them accordingly for the most optimal utilization of the GPU.

34.3 Conclusion

Modern GPUs are generally running asynchronously to the rendering software ex-
ecuted on the CPU. The addition of the timer query mechanism to the standard
OpenGL range of functionality finally allows developers to measure the amount of
time required to execute sequences of OpenGL commands on the GPU without af-
fecting the general program performance. This functionality is available in two basic
flavors: synchronous and asynchronous timer queries.

© 2012 by Taylor & Francis Group, LLC



502 VI Debugging and Profiling

The synchronous query only allows us to acquire a GPU time stamp after all prior
issued commands have reached the GPU but have not yet necessarily completed ex-
ecution. Additional efforts are required to generate meaningful results using this
approach. The real strength of the timer query interface lies with the asynchronous
queries. They allow us to either directly time a sequence of OpenGL commands by
employing the begin/end query paradigm or to acquire a GPU time stamp after all
commands prior to the query have finished execution. While the first approach only
allows for a single active query at a time, the latter can be employed very freely. There-
fore, it is generally recommended to employ the asynchronous time stamp query for
GPU execution measurements. This enables the use of timer queries for a vast variety
of application areas in real-time rendering.

Since current GPUs may execute multiple rendering commands overlapped in
parallel, special efforts are required in order to acquire exact measurements for in-
dividual rendering commands. There is, however, no approach to handle this issue
completely nonintrusively. This presents an area for future improvements to the
timer-query functionality: allowing the direct measurements of execution times even
for commands executed overlapped on the GPU.

Bibliography
[ARB 06] OpenGL ARB. “OpenGL EXT timer query Extension Specification.” www.

opengl.org/registry/specs/EXT/timer query.txt, June 2006.

[Ragan-Kelley 10] J. Ragan-Kelley. “Keeping Many Cores Busy: Scheduling the Graphics
Pipeline.” In SIGGRAPH 2010: ACM SIGGRAPH 2010 Courses. New York: ACM,
2010.

[Segal and Akeley 11] M. Segal and K. Akeley. “The OpenGL Graphics System: A Specifica-
tion (Version 4.2).” www.opengl.org/documentation/specs, August 2011.

© 2012 by Taylor & Francis Group, LLC



A Real-Time Profiling Tool

Lionel Fuentes

35.1 Introduction
As time goes on, video games are becoming more complex, presenting rich environ-
ments, a high level of interaction with the player, gorgeous graphics, physics sim-
ulation, etc. To push the hardware to its limits, developers need to have a precise
knowledge of the time taken by the executed tasks, their distribution on the avail-
able hardware threads, and the dependencies each task has on the completion of
the others. To this end, we focus in this chapter on the use of the time counters
present on CPUs and modern GPUs to provide a real-time and easy-to-use profiler
that is directly embedded into the application. We discuss the role of such a tool in
the context of video game development and how it can benefit both developers and
artists.

The proposed tool works by manually marking in the code the beginning and
ending of the sections that are to be measured. At runtime, we record time stamps
that correspond to the boundaries of the measured sections and display them in
a simple and minimal graphical interface. The time interval between two matching
time stamps is represented by a colored rectangle whose length represents the amount
of time needed for completion of the associated task. We use platform-specific high-
precision timers to measure the time spent on the CPU side and the OpenGL ex-
tension ARB timer query on the GPU side. The target is the consumer multicore
PC/Mac device featuring one GPU.

503

35

© 2012 by Taylor & Francis Group, LLC



504 VI Debugging and Profiling

35.2 Scope and Requirements

The final goal is to give developers and artists a general look at the time consump-
tion for the different threads of the application, be it on the CPUs or on the GPU.
The tool can be used to search for bottlenecks and synchronization problems in the
targeted application. We aim at fulfilling the following requirements:

• Accuracy. We want our measurements to be as accurate as possible. We
also want to minimize the perturbations due to our measurements and debug
display.

• Real time. Coupled with a live update system of in-game assets, this system
enables artists to tune the quality of their models, textures, and sound settings
in order to fit in the imposed time constraints. Having a real-time profiler also
enables us to analyze how the application’s performance is impacted during its
execution.

• Ease of use. User-friendliness is an important element, as it makes the tool
accessible not only to developers but also to artists. We also want the tool to be
easy to use on the developer side because making it easy to place markers in the
code will result in more markers being inserted and better granularity in the
measurements. Finally, we want the data to be displayed in a useful manner,
making it easy to spot synchronization problems and performance bottlenecks
and identify whether we are CPU-bound or GPU-bound.

• Portability. The proposed tool is embedded inside the game engine itself,
and the display is done using the same renderer the game is based on. As
a consequence, the time querying functions are the only platform-dependent
part. Having a portable profiling tool gives a uniform and coherent feeling
across all supported platforms, thus making profiling easy when switching to
a new, unknown platform. While it doesn’t replace a fine platform-specific
external debugger like gDEBugger [Graphic Remedy 10, AMD 11], at the
time of switching to a new platform, all previously developed functionality is
immediately available and no learning curve is needed.

• Small. We want the profiler to be enabled and displayed throughout the
whole development process so that developers can keep track of the evolution
of time consumption and detect performance problems as soon as possible.
This can only be done if the space taken on the screen is minimal.

© 2012 by Taylor & Francis Group, LLC



35. A Real-Time Profiling Tool 505

35.3 Design of the Tool

35.3.1 User Interface

The profiler is displayed as a set of horizontal rectangles arranged in lines, each line
corresponding to a “thread,” either a software CPU thread or the GPU (see Fig-
ure 35.1). It can be noted that in the ideal case where we create as many threads as the
number of available CPU cores and dispatch them accordingly (through thread pro-
cessor affinity APIs like SetThreadIdealProcessor [Microsoft Corporation 11]),
we can match each line to a physical CPU core.

Each displayed rectangle corresponds to a measured task, which is surrounded in
the code by dedicated macros. We allow nested tasks, which are naturally represented
by smaller rectangles. Finally, users can get the name and timing information for a
given task if they hover the mouse cursor over it, thus displaying a hierarchy of marker
names.

Figure 35.1. Screenshot of our sample implementation, displaying up to three levels of
nested markers.

35.3.2 Limitations and Workarounds

Because of the chosen graphical representation, we are limited to a finite number of
nested measured tasks. This can be worked around by using thicker rectangles, but
the screen space taken by the profiler would degrade the usability of the developed
application, so this should be reserved for a possible “expanded” display mode of the
profiler.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-42&iName=master.img-029.jpg&w=258&h=193


506 VI Debugging and Profiling

In certain cases, the positions and sizes of the displayed rectangles will vary a lot
from frame to frame. We solve this problem by allowing the user to “freeze” the
profiler (in our case through mouse clicking) so that we can take our time to analyze
the captured frame. Another solution is to display averages over several frames, which
also has the advantage of reducing the chances of missing a particular costly event
that happens rarely. The difficulty here would be to match corresponding rectangles
from different frames and to order them in time in a meaningful way. Such an
improvement is beyond the scope of this chapter.

Finally, the proposed profiler could be completed by displaying information on
the current P-state of the GPU (see Chapter 37). This information is important to
correctly interpret the results of the profiler, particularly when comparing different
techniques.

35.3.3 API

The API consists of a few methods to mark the beginning of a frame to mark the be-
ginning and end of the profiled sections and to draw the interface (see Listing 35.1).

class Profiler
{

[...]
void pushCpuMarker(const char *name , const Color& color);
void popCpuMarker();
void pushGpuMarker(const char *name , const Color& color);
void popGpuMarker();
void synchronizeFrame();
void draw();

};

Listing 35.1. Exposed API of our profiler.

We can wrap these methods in macros to allow easy removal in a retail version.
An example usage of the profiler is shown in Listing 35.2.

while(!done)
{

PROFILER_SYNC_FRAME();
PROFILER_PUSH_CPU_MARKER("Physics ", COLOR_GREEN);

doPhysics();
PROFILER_POP_CPU_MARKER();
PROFILER_PUSH_GPU_MARKER("Render scene", COLOR_RED);

PROFILER_PUSH_GPU_MARKER("Render shadow maps", COLOR_LIGHT_BLUE);
renderShadowMaps();

PROFILER_POP_GPU_MARKER();
PROFILER_PUSH_GPU_MARKER("Render final scene", COLOR_LIGHT_GREEN);

renderFinalScene();
PROFILER_POP_GPU_MARKER();

PROFILER_POP_GPU_MARKER();
PROFILER_DRAW();

}

Listing 35.2. Example usage.

© 2012 by Taylor & Francis Group, LLC



35. A Real-Time Profiling Tool 507

Profiled code sections are surrounded by the corresponding push and pop macros.
When measuring time on the CPU, a high-precision timer is used to record the dates
that the push and the pop methods are called. When measuring time on the GPU,
asynchronous timer queries are issued. The result is used several frames later at the
time the Profiler::draw()method is executed.

Profiler::synchronizeFrame()has to be called once per frame and pushes
a new frame to profile. Finally, Profiler::draw()uses the renderer of the applica-
tion to display an overlay showing a graphical representation of the recorded markers.

35.4 Implementation

35.4.1 Measuring Time on CPUs

The C++ language does not provide any portable high-precision time-querying func-
tion. As a consequence, we need to rely on platform-specific APIs. The x86 family
of processors provides a high-precision timer that can be read with the RDTSC (ReaD
Time Stamp Counter) instruction. However, since multi-CPU systems have become
the standard, multiple CPU counters are now in use simultaneously. This leads to
synchronization problems between those timers. The problem is even worse when
the OS switches the currently running thread from one CPU to another. Those
problems are generally addressed by the operating system, which provides APIs to
measure time with a high precision [Walbourn 05].

The Windows API exposes the QueryPerformanceCounter() and Query

PerformanceFrequency() functions, which are specifically designed to let the
user have access to the highest-precision timers available [Microsoft Corporation 07].

The POSIX API provides nothing better than gettimeofday(), which has
a maximum precision of one microsecond. Consequently, for Unix-like platforms
we prefer to rely on OS-specific APIs. As for MacOS X, the XNU kernel pro-
vides mach absolute time() [Apple, Inc 05], while the Linux kernel provides the
clock gettime() function; both represent time at a precision of one nanosecond.

The code provided with this book contains a portable function uint64 t

getTimeNs() that uses the mentioned APIs to query the highest-precision timer
available on the platform and returns the time elapsed since the start of the ap-
plication in nanoseconds. As discussed in Chapter 34, using 32-bit unsigned in-
tegers to hold a value in nanoseconds limits the maximum representable value to
(232 − 1) × 10−9 ≈ 4.294 s so that we need to rely on 64-bit unsigned integers.

35.4.2 Measuring Time on the GPU

The CPU communicates with the GPU through the use of commands that are ag-
gregated in a so-called command buffer. The GPU then asynchronously processes
these commands in the order they are submitted. As a consequence, it is impossi-
ble to measure the time spent by the GPU executing commands in a synchronous

© 2012 by Taylor & Francis Group, LLC



508 VI Debugging and Profiling

way, as we do for the CPU, without severely affecting the performance. We need
to rely on the asynchronous timer query mechanism provided by OpenGL, which is
discussed in depth in Chapter 34. In order to support nested markers, we prefer the
glQueryCountermechanism over glBeginQuery/glEndQuery pairs.

A consequence of this is that the profiler cannot display timing information
for a given frame until the results of the timer queries issued in this frame be-
come available. Therefore, we record timing information for several frames and
display the information related to the most ancient one. We found that a num-
ber of NB RECORDED FRAMES = 3 recorded frames is sufficient to guarantee that
the results of the timer queries are available.

35.4.3 Data Structures

We represent each line, which corresponds to a software or hardware thread, by
a C++ structure that contains a fixed-size array of NB MARKERS PER THREAD =

NB RECORDED FRAMES * MAX NB MARKERS PER FRAME = 3*100 = 300mark-
ers. We run through this array in a circular fashion while maintaining a read and a
write index.

The GPU thread is represented by the structure shown in Listing 35.3. The CPU
threads are represented by a very similar structure with an additional identifier for the
thread (see Listing 35.4).

The base class Marker encapsulates information that is common to all types of
markers. This includes the start and end times of the marker, information on the
state at the time the marker was pushed and some identifying information. CPU
markers do not need any additional information, while GPU markers also need to
store the identifiers for the OpenGL timer queries (see Listing 35.5).

struct GpuThreadInfo
{

GpuMarker markers [NB_GPU_MARKERS];
int cur_read_id;
int cur_write_id;
size_t nb_pushed_markers;

void init()
{

cur_read_id=cur_write_id=0;
nb_pushed_markers=0;

}
};

Listing 35.3. Data structure for the GPU
thread.

struct CpuThreadInfo
{

ThreadId thread_id;
CpuMarker markers [NB_MARKERS_PER_THREAD];
int cur_read_id;
int cur_write_id;
size_t nb_pushed_markers;

void init(ThreadId id)
{

cur_read_id = cur_write_id = 0;
nb_pushed_markers = 0;
thread_id = id;

}
};

Listing 35.4. Data structures for CPU threads.

© 2012 by Taylor & Francis Group, LLC



35. A Real-Time Profiling Tool 509

struct Marker
{

uint64_t start; // Start and end times in nanoseconds
uint64_t end; // relative to the start of the application
size_t layer; // Number of markers pushed at the time we push this one
int frame; // Frame at which the marker was pushed
char name[MARKER_NAME_MAX_LENGTH];
Color color;

Marker () :
start(INVALID_TIME),
end(INVALID_TIME),
frame (-1)

{} // unused by default
};

typedef Marker CpuMarker;
struct GpuMarker : public Marker
{

GLuint id_query_start;
GLuint id_query_end;

};

Listing 35.5. Marker structure.

35.4.4 Markers Management

Each thread structure maintains its own circular list of markers. Using circular lists
allows us to reuse the same entries several times smoothly while avoiding memory
allocations.

When pushing or popping a CPU marker, the profiler needs a way to retrieve the
CpuThreadInfo corresponding to the calling thread. A possible solution would be
to store the CpuThreadInfo objects in a hash table, indexed by the thread identi-
fiers. However, this solution imposes the use of a critical section everytime we need to
access or modify the hash table, which is unacceptable in our context for performance
reasons. Instead, we prefer to rely on a fixed-size array, leaving empty entries at the
locations of removed elements (those entries being reused when needed). This way,
critical sections can be avoided at the time of searching a CpuThreadInfo object
by its thread identifier. This comes at a linear cost, which should not be a problem
considering the very low number of elements.

Circular list management. Markers are “read” during drawing at the spot indi-
cated by cur read id and “pushed” at the spot indicated by cur write id. When
pushing, we record the marker’s name, color, frame, layer, and start time. Popping is
done by starting at the cell cur write id-1, going backwards while testing for end
!= INVALID TIME, and updating the value of end. This method allows lock-free
reading and writing and avoids memory allocations, while maintaining a hierarchy
of markers that keeps time coherency.

As shown in Figure 35.2, GPU markers are handled in a similar fashion, the only
difference being the use of glQueryCounter(GL TIMESTAMP, &id) and the time
of drawing.

© 2012 by Taylor & Francis Group, LLC



510 VI Debugging and Profiling

start  = 1,132,289,047
end    = INVALID_TIME
layer  = 0
name = “parent”
color  = 148,189,94
frame = 184

start  = 1,132,405,283
end    = 1,133,294,683
layer  = 1
name  = “child”
color  = 184,71,71
frame = 184

start  = INVALID–TIME
end   = INVALID–TIME 
layer  = ?
name = ?
color  = ?
frame = ?

cur–write–id

start  = 1,031,937,048
end    = 1,033,271,283
layer  = 0
name = “parent”
color  = 148,189,94
frame = 181

cur–read–id

Figure 35.2. Circular list of markers.

35.5 Using the Profiler

35.5.1 Levels of Usage

The most basic usage one can make of the profiler is to simply determine the general
performance of the application by looking at the length of the total frame. Then,
by looking in more detail, we can easily determine the most demanding tasks, as
they correspond to the longest rectangles, and identify interesting candidates for op-
timization. However, such a basic analysis is not enough to determine whether a task
is worth the effort of optimizing or not: we need to look at the order in which the
tasks are executed, as illustrated in Figure 35.3.

Furthermore, a direct visualization of the task execution enables the programmer
to take strategic decisions concerning task ordering. In Figure 35.4, object A is long
to update but fast to draw, while object B is long to draw but fast to update. As we
can see, different orders of execution yield different performance results.

Such a visualization also makes it easy to determine whether the application is
bound by a CPU or by the GPU: the bottleneck corresponds to the thread that
ends last. An important point is to avoid surrounding buffer swapping and, gener-
ally speaking, thread waiting by profiler push/pop commands, as this results in the
synchronization being visualized as a running task.

Synchronization

Long task

Small task 0 Small task 1 Small task 2 Small task 3 Small task 4

CPU 0

CPU 1

Figure 35.3. Optimizing the longest task is useless as it is not the bottleneck.

© 2012 by Taylor & Francis Group, LLC



35. A Real-Time Profiling Tool 511

CPU

Case 2: Update & draw object B, then Update & draw object A

GPU

CPU

Case 1: Update & draw object A, then Update & draw object B

Update A

Update B Update A

Update B

Draw B

Draw A

Draw A

Saved time

Draw BGPU

Figure 35.4. Case 1 is longer than case 2, although the execution time for the tasks is the same.

35.5.2 Determining What Should be Measured

As the aim of the profiler is mainly to give a general view of the application’s per-
formance state during the development process, the displayed information should be
reduced to the minimum most of the time. For example, a GPU could consist of five
main markers for shadow maps rendering, G-buffer rendering, lighting calculations,
postprocessing, and 2D. However, because of the hierarchical nature of the profiler,
it is possible to limit the display to a given layer so that introducing new layers is not
a problem and can allow a better granularity when needed.

An interesting alternative would be to give artists the possibility to tune the per-
formances of specific assets, for example, by marking them for profiling during the
exporting phase.

35.5.3 Artists

Because they generate the content that is to be treated by the application, artists have
a major impact on the final performance. Unfortunately, as they generally have little
knowledge of the way the application works, it may be difficult for them to identify
their impact on performance. This is why making such a profiling tool accessible to
artists is important: by letting them evaluate the implications of their work on general
performance, they can tune the parameters of their creations to fit in the imposed
timing constraints. Coupled with a live update system of resources, artists can tweak
in real time their texture sizes, numbers of vertices, skinning bones numbers, LOD
distances, numbers of fur shells, etc., while interacting with the application.

35.5.4 Limitations

The presented profiler can only measure the time spent between markers. Therefore,
it is impossible to determine whether the GPU is bound by the texture cache, the

© 2012 by Taylor & Francis Group, LLC



512 VI Debugging and Profiling

vertex shader ALU, the fragment shader ALU, shader-uniform fetching, etc. As a
consequence, some testing is needed to determine the correct behavior to adopt to
improve GPU performance (e.g., reducing texture size vs. optimizing the number of
fragment shader computations).

35.6 Conclusions
We presented a practical method for visualizing in real time the usage of the available
processing resources. We use high-precision timers for CPU time measuring and rely
on OpenGL timer queries to measure the execution time on the GPU. Compared
with external profilers, this approach directly embeds the tool in the application. As
a consequence, the information is available on all the supported platforms and can
be used throughout the whole development process, making it possible for program-
mers as well as artists to make strategic decisions regarding performance. Displaying
the resources’ usage in real time lets us have a general overview of the behavior of
the application in real conditions and also allows us to test several use cases for the
application without effort.

The code provided with this book (www.openglinsights.com) shows an imple-
mentation for the Windows, MacOS X, and Linux platforms that displays an ex-
ample animation and lets the user visualize in real time the time taken to animate
and draw the objects. By hovering the mouse cursor over the markers, the user can
display hierarchical timing statistics. Possible improvements include displaying in-
formation on the current P-state, which could help in interpreting the results and
in multiple-GPUs support. Finally, the system could be ported to other platforms,
most notably modern video game consoles.

Bibliography
[AMD 11] AMD. “AMD gDEBugger 6.0.” http://developer.amd.com/tools/gdebugger, June

29, 2011.

[Apple, Inc 05] Apple, Inc. “Technical Q&A QA1398 Mach Absolute Time Units.” http://
developer.apple.com/library/mac/#qa/qa1398/ index.html, January 6, 2005.

[Graphic Remedy 10] Graphic Remedy. “gDEBugger Tutorial.” http://www.gremedy.com/
tutorial, December 16, 2010.

[Microsoft Corporation 07] Microsoft Corporation. “MSDN.” http://support.microsoft.
com/kb/172338/en-us, January 20, 2007.

[Microsoft Corporation 11] Microsoft Corporation. “MSDN.” http://msdn.microsoft.com/
en-us/library/windows/desktop/ms686253%28v=vs.85%29.aspx, September 7, 2011.

[Walbourn 05] Chuck Walbourn. “Game Timing and Multicore Processors.” http://msdn.
microsoft.com/en-us/library/windows/desktop/ee417693%28v=vs.85%29.aspx, 2005.

© 2012 by Taylor & Francis Group, LLC



Browser Graphics Analysis and
Optimizations

Chris Dirks and Omar A. Rodriguez

36.1 Introduction

Understanding performance bottlenecks in games helps developers deliver the best
gameplay experience. In games, performance bottlenecks are usually grouped in one
of two categories: CPU or GPU. Focusing optimization efforts in the appropriate
category saves development time and helps get our game running better faster. Opti-
mizing CPU issues when the bottleneck is in the graphics pipeline will result in little
to no performance gain and a good amount of frustration. Deploying our game in a
web browser complicates the process of isolating bottlenecks. Using the techniques
described here, we’ll be more successful in identifying the most profitable areas to
optimize.

Postprocessing effects have become a standard in AAA games and very often are a
performance bottleneck. In this article, we discuss an implementation of the bloom
effect in WebGL and its performance characteristics in the browser. Because WebGL
runs in a web browser, this poses some special challenges when doing graphics analy-
sis in comparison to a native 3D graphics application. Just as a native application may
choose a different code path when detecting a different operating system, the same is
true of the browser’s implementation of the Canvas or WebGL APIs. Add to this the
fact that we’ll likely be supporting multiple browsers, and there is the potential for
many permutations and a challenge in understanding what happens from “script to
pixel.” We’ll discuss the support for WebGL analysis in common 3D graphics tools
and the various implementations of the standard in modern web browsers.

513

36

© 2012 by Taylor & Francis Group, LLC



514 VI Debugging and Profiling

36.2 The Stages of Bloom
The familiarity of the bloom effect in games is one reason it was used for this article.
The other major reason is that it is composed of several steps with parameters that
can be tweaked to favor quality versus performance. As shown in Figure 36.1, this
implementation starts with the original scene rendered to a texture and applies the
bloom effect in four major steps:

1. Draw scene to a texture.

2. Identify fragments whose luminance exceeds a threshold.

3. Blur the results of the luminance test.

4. Combine the original rendered scene texture with the blurred highlights.

Each of these steps has parameters that can trade quality for performance. In
the luminance step, we can set the luminance threshold to control the number of
fragments of the original scene texture that are written to the luminance render target.
In the blur step, we can set the number of blur passes and resolution of the render

Original scene Final frame

Luminance Final frame

Is bloom
on?

No

Yes

Blur

Figure 36.1. Visual representation of the results of each stage.

© 2012 by Taylor & Francis Group, LLC



36. Browser Graphics Analysis and Optimizations 515

target to increase/decrease blur quality. In the final step, we can control the weight
of the blurred highlights that get combined with the original scene.

Fragments of the original scene that have a luminance value above the luminance
threshold are written to the render target. Anything below the luminance threshold
is written as black. The number of blur passes determines the number of times the
highlights (luminance results) are blurred. The resolution determines the size of the
render target used by the blur passes. The weight of the blurred highlights determines
how much of the blurred highlights end up in the final frame. We expose some of
these parameters as part of the HUD and others are set in code.

The source code that accompanies this chapter is laid out in a simple format to
make it easy to follow and understand. The bloom implementation is composed of
the following:

• MainLoop (in index.html) takes care of calling update/render loop with the
appropriate request-animation frame method for each browser.

• Init (in bloom.js) defines all resources used in the sample, such as shaders,
textures, scene objects geometry, and render targets.

• Update (in bloom.js) contains all nonrendering actions such as updating ro-
tations.

• Render (in bloom.js) draws scene geometry, performs luminance test, blurs
highlights, and combines results into the final frame.

• bloom-utils.js contains helper functions used to load shaders and textures,
parse .obj files, and create geometry.

36.3 Overhead of Bloom
Now that we’ve described the general implementation of bloom as a postprocessing
effect, we’ll describe the specifics about our implementation in WebGL. The first
thing we measure is the actual overhead of applying bloom to the scene. With the
Javascript code in Listing 36.1, we capture a good enough approximation of the
frame time to measure overhead and update the scene.

var MainLoop = function () {
nCurrentTime = ( newDate ).getTime ();
fElapsedTime = nCurrentTime - nLastTime;
nLastTime = nCurrentTime;

// call Update & Render
// call requestAnimationFrame( MainLoop );

}

Listing 36.1. JavaScript code to approximate frame time.

© 2012 by Taylor & Francis Group, LLC



516 VI Debugging and Profiling

35

30

25

20

F
ra

m
e 

ti
m

e 
(m

s)

15

10

5

0
Bloom OFF Bloom ON

Bloom

Draw scene

Figure 36.2. Frame time with bloom ON = 1.8 * Frame time with Bloom OFF.

This will measure the time between requestAnimationFramecallbacks. Some
web browsers may expose performance data at runtime when enabled. For example,
running Google Chrome with the --show-fps-counter flag displays a frames-
per-second counter. With this measurement code in place, introducing bloom ap-
proximately doubles our frame time (see Figure 36.2).

The measurements were taken on Google Chrome version 15.0.874.106 run-
ning on a prerelease second generation Intel Core processor (Intel microarchitecture
code name Sandy Bridge, D1 stepping quad core 2.4 GHz CPU with 4GB DDR3
1333MHz RAM) with Intel HD Graphics 3000 running Windows 7 Ultimate with
Service Pack 1. The frame time is composed of the amount of time it takes API calls
to set state on the CPU, and the time it takes the GPU to process the draw calls. The
JavaScript code above suffices to measure time spent on the CPU. To understand
GPU frame time, we’ll refer to some offline tools discussed later in this article.

36.4 Analyzing WebGL Applications
Analyzing WebGL applications poses a few interesting challenges because there are
many moving parts that have to work together: operating systems, graphics APIs,
graphics drivers, browsers, and analysis tools.

36.4.1 Almost Native Graphics Layer (ANGLE)

One of the main challenges when doing analysis on a WebGL application is to un-
derstand the difference between running on Windows, Mac OS X, or Linux. On
Windows, OpenGL drivers can usually be downloaded from the graphics hardware
vendor’s website when available. On Mac OS X, OpenGL drivers are part of the

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-43&iName=master.img-049.jpg&w=165&h=133


36. Browser Graphics Analysis and Optimizations 517

system and are updated through the OS update mechanism. On Linux, OpenGL
drivers might not be installed by default, but are generally provided through the
distribution’s package management system or the hardware vendor’s website.

For the broadest compatibility on the Windows platform, Chrome and Firefox
make use of the Almost Native Graphics Layer Engine [ANGLE 11]. This layer
translates OpenGL ES 2.0 calls to DirectX 9 API calls, and translates GLSL shaders
to equivalent HLSL shaders. As a user, this translation is completely hidden, but as
a developer, this layer is as important as the WebGL application we wrote. ANGLE
has a few quirks related to differences in the APIs specifically with buffers and texture
fetches. For example, ANGLE does not create/update resources until a draw call is
issued, as explained in Chapter 39.

36.4.2 JavaScript profiling

Most modern web browsers have a set of JavaScript developer tools that are prepack-
aged or can be installed from an extension (see, for example, Figure 36.3). Chrome,
Firefox, Internet Explorer, Opera, and Safari have their own JavaScript debuggers

Figure 36.3. Chrome developer tools and Firebug.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-43&iName=master.img-059.jpg&w=351&h=266


518 VI Debugging and Profiling

and profilers. These help with debugging HTML DOM and network latency issues.
JavaScript profilers are helpful in understanding where CPU time is spent. However,
these tools don’t show contextual information for WebGL beyond the JavaScript API
calls.

36.4.3 WebGL Inspector

The other major issue with analyzing a WebGL application is the limited support
of tools. WebGL Inspector [Vanik 11] is currently the de facto tool for debugging
API calls and understanding bound resources. This tool can capture a frame and
show the API calls; state; and bound textures, buffers, and programs. It is available
as a Google Chrome extension and as a JavaScript library that can be dropped into
our WebGL application—useful when running on browsers other than Chrome.
WebGL Inspector, shown in Figure 36.4, is free and available for download from
http://benvanik.github.com/WebGL-Inspector/.

WebGL Inspector captured frame

WebGL Inspector
extension and options

Figure 36.4. WebGL Inspector showing a frame capture of our sample.

36.4.4 Intel Graphics Performance Analyzers (GPA)

A positive side effect of Chrome and Firefox using ANGLE on Windows is that
DirectX analysis tools can be used to analyze WebGL applications. In this article,
we use Intel GPA Frame Analyzer [Intel 11] to capture frames and analyze the post-
translation DirectX draw calls and resources. This article shows frame captures from
Intel HD Graphics 3000, but Intel GPA is not restricted to Intel graphics hardware.

© 2012 by Taylor & Francis Group, LLC



36. Browser Graphics Analysis and Optimizations 519

Figure 36.5. Frame Analyzer showing a frame capture of our sample.

Figure 36.5 shows a captured frame of the bloom application described above. You
can download Intel GPA for free from http://www.intel.com/software/gpa. Refer to
the documentation on the Intel GPA website and the documentation that installs
this tool for detailed instructions on capturing frames.

36.5 Analysis Workflow on Windows
In this section, we will learn how to use WebGL Inspector and Intel GPA Frame
Analyzer to identify problem areas and/or confirm that our program is doing what we
think it is doing. On Windows, WebGL Inspector and Frame Analyzer together show
the full graphics pipeline when the browser uses ANGLE. WebGL Inspector shows
the WebGL side, and Frame Analyzer shows the post-translation DirectX equivalent.
WebGL Inspector works well for tracking down incorrectly bound resources and
debugging our graphics code.

Once the WebGL Inspector extension is installed and enabled, or we include the
JavaScript library in our project, we should see a “capture” button on the top right.
With that said, the first step is to capture a frame with WebGL Inspector and make
sure we are binding the correct buffers, shaders, and textures. Figure 36.6 shows the
“Programs” tab where all shaders used by the WebGL application are displayed as well
as the status, uniform, and attribute information. This tab will also display shader

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-43&iName=master.img-081.jpg&w=358&h=215


520 VI Debugging and Profiling

Figure 36.6. Confirming correct shaders are bound with WebGL Inspector.

compilation and link errors. The other tabs in WebGL Inspector show detailed
information about the other resources such as buffer contents for bound buffers and
texture resolution for all bound textures. WebGL Inspector also shows previews for
resources such as vertex buffers and textures. The previews can help as a sanity check
to make sure the correct mesh or texture is bound when making a draw call.

Unlike WebGL Inspector, Intel GPA is not integrated into the web browser
through an extension or JavaScript library. In addition, capturing a frame gets a
bit more interesting because of the multiprocess architecture of some browsers like
Google Chrome. Intel GPA can attach to the Chrome process on launch, but the
process that handles the rendering calls is a child process of the main Chrome pro-
cess. Fortunately, starting Chrome with a --no-sandbox flag allows GPA to at-
tach to the correct rendering process and trigger frame captures. Note that running
Chrome with a --no-sandbox flag will not change performance characteristics but
will change the security characteristics of the browser. For this reason, this flag should
never be used for general browsing.

36.5.1 Tracking Down API Calls

After capturing a frame and opening it with Frame Analyzer, we will see a visualiza-
tion of all draw calls in the captured frame, as shown in Figure 36.5. Each Draw,
Clear, and StretchRect call is shown as a bar whose height is by default set to
GPU duration. At first glance, this visualization shows the order in which geometry
is drawn as well as which calls are most expensive. Draw calls are blue bars, Clear
calls are light blue bars, and StretchRect calls are dark red/magenta bars. The light
gray bars are markers for render target changes. Draw/Clear/StretchRect calls in
between two light gray bars affect the same render target. The labels in Figure 36.7
are not a feature of Frame Analyzer but were added for clarity.

Looking at Figure 36.7, we can see that the tall bars correspond to the blur
passes, which is expected since that fragment shader is the bulk of the work in this

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-43&iName=master.img-091.jpg&w=316&h=117


36. Browser Graphics Analysis and Optimizations 521

Render
scene

Luminance
test

Final
frame

Blur Blur

Figure 36.7. Draw call visualization in Frame Analyzer of a frame capture in Google
Chrome.

application. Looking closer at the frame, we can see where the scene is drawn, where
the luminance test happens, the blur passes, and the final composition of the frame.
It is also clear from Figure 36.7 that there are more draw calls in the visualization
than what the WebGL Inspector API log shows. If we look at the calls in between the
luminance test and the first blur pass, we will notice that they seem to be redrawing
the luminance results but using a lower-resolution render target. Comparing this
to the API log from WebGL Inspector, we notice that the only thing happening
between the gl.drawArrays call and the beginning of the blur pass marked by
gl.bindFramebuffer is this piece of code:

gl.bindTexture( gl.TEXTURE_2D , RenderTargets.HighPass .Texture );
gl.generateMipmap( gl.TEXTURE_2D );

There aren’t any noticeable draw calls in that piece of code. But in Windows,
gl.generateMipmap( gl.TEXTURE 2D ) is translated to multiple draw calls by
ANGLE. A quick peek at the ANGLE source code (src/libGLESv2/Texture.cpp)
[ANGLE 11] that translates generateMipmap to DirectX 9 shows the following:

// ...snipsnip
for (unsigned int i = 1; i<= q; i++)
{

IDirect3DSurface9 *upper = NULL;
IDirect3DSurface9 *lower = NULL;
mTexture ->GetSurfaceLevel(i-1, &upper);
mTexture ->GetSurfaceLevel(i, &lower);

if (upper != NULL && lower != NULL)
{

getBlitter()->boxFilter(upper , lower);
}
if (upper != NULL) upper ->Release ();
if (lower != NULL) lower ->Release ();
mImageArray[i].dirty = false;

}
// ...snipsnip

© 2012 by Taylor & Francis Group, LLC



522 VI Debugging and Profiling

In short, getBlitter()->boxFilter( upper, lower ) results in a draw
call and because it’s in a loop, it’s called multiple times, creating all the extra draw
calls we see in Figure 36.7 between the different phases. Since it’s creating all the
mipmaps for the previous draw based on the resolution of the render target used,
reducing the initial render target resolution will not only reduce the work that each
pass needs to do, but it will also reduce the number of mipmaps created.

Looking at Figure 36.7, we can see that each labeled region begins with a Clear
(light blue), followed by one or more Draw (blue) calls, and ends with a StretchRect
(dark red). Like the name suggests, StretchRect will stretch the results to the
bound render target to fit the viewport. In some cases, it might be an undesirable
effect, but it mostly works well to fill the viewport with our scene. Unfortunately,
this results in another hidden call that is unaccounted for compared to the API log
in WebGL Inspector.

36.6 Optimized Bloom
Now that we understand how to analyze the graphics side of our sample with WebGL
Inspector and Intel GPA, we can begin using that information to make changes to
our code where it will have the most impact. As clearly shown in Figure 36.8, the
blur passes are the bottleneck in our bloom implementation. Using Intel GPA Frame
Analyzer, we see that these two calls make up approximately 63% of the frame time.

Blur Blur

Figure 36.8. The tallest and thickest bars are the blur calls.

36.6.1 Lower Render Target Resolution

In our implementation, we have exposed two parameters we can tweak for the blur:
number of passes and render-target resolution. From Figure 36.8, we can see that
there are only two blur passes, which is fairly low and gives us good quality. Low-
ering the resolution of the render target we use for the blur passes will have two
effects: reducing the number of fragments processed and the number of extra draw

© 2012 by Taylor & Francis Group, LLC



36. Browser Graphics Analysis and Optimizations 523

30

25

20

F
ra

m
e 

ti
m

e 
(m

s)

15

10

5

0
Blur 1024×1024 Blur 256×256

Blur

Everything else

Figure 36.9. Performance impact of lowering resolution of blur render target (frame time in
this graph refers to GPU frame time as reported by Intel GPA Frame Analyzer).

calls caused by gl.generateMipmap, as discussed above. After lowering the reso-
lution to one quarter of the original resolution, we notice that the two blur passes
are now only approximately 11% of rendering. That is a significant performance
improvement, as shown in Figure 36.9, with an easy code change.

Looking at Figure 36.10, it’s hard to tell the difference by just looking at the final
frames, even in WebGL Inspector, since the quality was not noticeably degraded.

1024×1024 256×256

Figure 36.10. Original final frame with 1024 × 1024 blur render target and after lowering
the resolution of the blur render target to 256 × 256.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-43&iName=master.img-149.jpg&w=155&h=118
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-43&iName=master.img-150.jpg&w=241&h=171


524 VI Debugging and Profiling

Blur Blur

Figure 36.11. Blur calls are no longer the most expensive.

However, we can confirm the improvement in Intel GPA by capturing a new
frame, as shown in Figure 36.11.

We could go with an even lower resolution, but there is a point where the quality
might be affected. In this case, lowering the resolution works well and produces ac-
ceptable results because we are working with a blur. For other applications, lowering
the resolution might not be the solution.

36.6.2 Unnecessary Mipmap Generation

As discussed in Section 36.5.1, there was a call to generateMipmap after every
bloom stage. In Windows, this resulted in several more API calls than we could
account for in the WebGL Inspector log and the code. Originally, we were planning
to map the render target textures to quads and display them all on screen to show
the bloom stages. We discarded that idea and instead we map each bloom stage to
a fullscreen quad. The bloom stages’ results can be displayed one at a time. This
allowed us to remove the call to generateMipmap and thus remove all the extra
API calls. This can be confirmed by comparing Figures 36.7 and 36.12.

Blur

Blur

Luminance

Draw
scene

Final
frame

Figure 36.12. Frame capture after removing generateMipmap.

© 2012 by Taylor & Francis Group, LLC



36. Browser Graphics Analysis and Optimizations 525

36.6.3 Floating-Point Framebuffers

After removing the call to generateMipmap in between bloom stages, we looked
into the OES texture float extension to enable floating-point buffers. Origi-
nally, we used gl.UNSIGNED BYTE as the format for the framebuffer, which created
A8R8G8B8 framebuffers. With the OES texture float extension enabled, we
create floating-point buffers by passing gl.FLOAT as the texture format. This cre-
ates A32R32G32B32F framebuffers. After lowering the resolution and removing
unnecessary mipmap generation, it allows us to create higher-quality blur for ap-
proximately the same cost. The code change happened in our MakeRenderTarget
function (see Listing 36.2).

var MakeRenderTarget = function ( gl, nWidth , nHeight ) {
// create the new framebuffer

// use floating point framebuffers if OES_texture_float extension exists
var nTexFormat = ( gl.getExtension( "OES_texture_float" ) ) ? gl.FLOAT :

gl.UNSIGNED_BYTE;

// create the offscreen texture
var pTexture = gl.createTexture();
gl.bindTexture( gl.TEXTURE_2D , pTexture );
gl.texParameteri( gl.TEXTURE_2D , gl.TEXTURE_MAG_FILTER, gl.NEAREST );
gl.texParameteri( gl.TEXTURE_2D , gl.TEXTURE_MIN_FILTER, gl.NEAREST );
gl.texParameteri( gl.TEXTURE_2D , gl.TEXTURE_WRAP_S , gl.CLAMP_TO_EDGE );
gl.texParameteri( gl.TEXTURE_2D , gl.TEXTURE_WRAP_T , gl.CLAMP_TO_EDGE );
gl.texImage2D( gl.TEXTURE_2D , 0, gl.RGBA , pFrameBuffer.width ,

pFrameBuffer.height, 0, gl.RGBA , nTexFormat , null );

// create the offscreen depth buffer
// attach texture and depth buffer to framebuffer
// reset bindings to defaults

return { "FrameBuffer" : pFrameBuffer ,
"Texture " : pTexture ,
"Depth" : pDepthBuffer ,
"Width" : nWidth ,
"Height" : nHeight

};
}

Listing 36.2. Creating floating-point frame buffers with OES texture float.

According to [Lipchak 05], it requires NEARESTmagnification filter and NEAREST
and NEAREST MIPMAP NEARESTminification filters to be supported. For the bloom
sample, we draw these textures in a way that does not need the minification filter, so
we set both to gl.NEAREST.

© 2012 by Taylor & Francis Group, LLC



526 VI Debugging and Profiling

36.7 Conclusion
Support for WebGL is progressing at a steady pace and is helping the browser become
a viable development and distribution platform for games with higher-quality graph-
ics. Like any other platform, getting the best performance allows our games to shine
and improve the gameplay experience. Tools play an important role in helping game
and graphics developers deliver these experiences in the browser. In this article, we
presented several tools that work well with WebGL applications and explained some
of the areas where potential bottlenecks might appear in the current implementations
on Windows. In short, developers should understand the differences between hard-
ware platforms and operating systems to get the best performance. The web browser
has always been a way to abstract away the hardware and OS, but with WebGL we’re
getting closer to these layers and can now use that to our advantage.

Bibliography
[ANGLE 11] ANGLE. “ANGLE: Almost Native Graphics Layer Engine.” http://code.google.

com/p/angleproject/, December 15, 2011.

[Intel 11] Intel. “Intel Graphics Performance Analyzers 4.3.” http://www.intel.com/software/
gpa, December 15, 2011.

[Lipchak 05] BenjLipchak. “OES texture float”. http://www.khronos.org/registry/gles/
extensions/OES/OES texture float.txt, November 9, 2011.

[Vanik 11] Ben Vanik. “WebGL Inspector: An advanced WebGL debugging toolkit.” http://
benvanik.github.com/WebGL-Inspector/, July 29, 2011.

© 2012 by Taylor & Francis Group, LLC



Performance State Tracking

Aleksandar Dimitrijević

37.1 Introduction
Reducing power consumption and dissipation is one of the predominant goals of
all modern integrated circuit designs. Besides the design-time optimizations, all
CPU/GPU vendors implement various real-time methods to reduce power consump-
tion while preserving acceptable performance. One of the consequences of power
management is a dynamic change in working frequencies and, hence, the overall per-
formance capabilities of the system. Modern GPUs, for both desktop and mobile
platforms, can be very aggressive in changing working frequencies according to the
current load.

Consider a simple case of rendering a triangle on a system with an NVIDIA
GeForce GTX 470 graphics card. NVIDIA drivers raise the frequencies to the high-
est level instantly if they detect a 3D application. Even a creation of the OpenGL
rendering context is enough to make the GPU enter the highest performance state.
The moment the application starts, the GPU frequency is 607.5 MHz, while the
memory IO bus frequency is 1674 MHz. A frame rendering time is less than 0.16
ms for the full HD MSAA 8x screen and the GPU utilization is about 0%. After
a dozen seconds, since the utilization is extremely low, the GPU enters a lower per-
formance state. The frame rendering time is changed to about 0.24 ms. Since the
GPU remains at low utilization, the performance is further reduced. After changing
four performance levels, the GPU finally enters the lowest performance state with the
GPU frequency at 50.5 MHz, and memory IO bus frequency at 101 MHz. The ren-
dering capabilities are reduced by an order of magnitude, while the frame rendering
time rises up to 1.87 ms. If we do not track the performance state, we are not able to

527

37

© 2012 by Taylor & Francis Group, LLC



528 VI Debugging and Profiling

interpret measured results correctly. Furthermore, for less demanding applications,
it is possible to get shorter execution time on some older and less powerful graphics
cards because their lower performance states may involve much higher frequencies.

37.2 Power Consumption Policies
For many years, graphics card vendors have been developing a highly advanced form
of dynamic power management (DPM). DPM estimates the relative workload and
aggressively conserves power when the workload is low. Power consumption is con-
trolled by changing voltage levels, GPU frequencies, and memory-clock frequencies.
A set of values that define the current power consumption and performance capabil-
ities of the graphics card is known as a performance state (P-state).

NVIDIA defines sixteen P-states, where P0 is the highest P-state, and P15 is the
idle state. Not all P-states are present on a given system. The state P0 is activated
whenever a 3D application is detected. If the utilization is below some threshold for
a certain period of time, the P-state is changed to a lower level.

AMD defines three P-states, where P0 is the lowest, and P2 is the highest per-
formance state. P0 is the starting state, and it is changed only by demanding ap-
plications. The latest AMD technology, known as PowerTune [AMD 10], defines a
whole range of working frequencies in the highest P-state. When the GPU reaches
the thermal design power (TDP) limits, the GPU frequency is gradually decreased
while maintaining the high power state. This enables much better performance for
demanding applications, while preserving acceptable power level.

Having in mind such advanced power-management scenarios, a fair comparison
of different rendering algorithms cannot be done on a frame-rate basis only. If the
same or an even lower frame-rate is achieved in the lower P-state, it certainly qualifies
the algorithm as more efficient, or at least less demanding. That is why P-state
tracking is an important part of profiling software. So far, OpenGL doesn’t have a
capability to track P-states; thus, we will take a look at how it can be implemented
using vendor-specific APIs: NVAPI for NVIDIA and ADL for AMD hardware.

37.3 P-State Tracking Using NVAPI
NVAPI is NVIDIA’s core API that allows direct access to NVIDIA drivers on all
Microsoft Windows platforms [NVIDIA 11c], and it is shipped as a DLL with
the drivers.1 NVAPI has to be statically linked to an application; hence, a soft-
ware development kit (SDK) has been released with appropriate static library and

1The official documentation states that NVAPI is supported by drivers since Release 81.20 (R81.20),
but there are problems in accessing most of its functionality through the SDK in pre-R195 drivers. The
first NVAPI SDK was released with R195 in October 2009. Since R256 drivers, all settings have become
wide open to change with NVAPI.

© 2012 by Taylor & Francis Group, LLC



37. Performance State Tracking 529

header files.2 It is both forward and backward compatible. Calling a function that
is not implemented in the current version of the DLL only returns a NVAPI NO

IMPLEMENTATION error and does not result in an application crash [NVIDIA 11a].
When reading or changing some driver parameters, communication with the

drivers is session-based [NVIDIA 11a]. An application has to create a session, load
system settings into the session, get a profile, and finally read or write some setting to
the profile. All driver settings are organized into profiles. Some profiles are shipped
with the driver as Predefined Profiles, while others are created by the user as User
Profiles. A profile can have an arbitrary number of applications associated to it, while
each application can be associated with only a single profile. A profile associated with
applications is called an Application Profile. If the application is not associated with
a certain Application Profile, or the specific setting is not defined in the associated
profile, the Current Global Profile is used. All profiles that are not associated with
applications are called Global Profiles. Only one of the Global Profiles can be se-
lected as the Current Global Profile. If the setting is not found in the Current Global
Profile, the Base Profile is used. The Base Profile is system wide, and its settings are
automatically applied as defaults.

The driver’s settings are loaded and applied at the moment when the driver DLL
is initialized. If the settings are changed during the application execution, the appli-
cation has to be restarted in order to take advantage of new settings. Considering
OpenGL, NVAPI offers the ability to configure OpenGL Expert Mode, its feedback
and reporting mechanism.

P-states tracking does not require reading or changing any driver settings, which
eliminates the need for sessions and profile manipulation. The only required step is
to initialize NVAPI through the NvAPI Initialize function call.

37.3.1 GPU Utilization

The GPU utilization directly affects the current P-state. High utilization activates a
higher P-state if the GPU is not in the highest state already. The function that can be
used to retrieve utilization is NvAPI GPU GetDynamicPstatesInfoEx. Unlike its
name would suggest, the function does not tell which P-state the GPU is currently
in, but rather information about the utilization in the current state. The utilization
is defined over three GPU domains:

• graphic engine (GPU),

• framebuffer (FB), and

• video engine (VID).

The official documentation [NVIDIA 11c] states that P-state thresholds can also be
retrieved, although this functionality is not yet exposed through the SDK.

2http://developer.nvidia.com/nvapi

© 2012 by Taylor & Francis Group, LLC



530 VI Debugging and Profiling

#define UTIL_DOMAIN_GPU 0
#define UTIL_DOMAIN_FB 1
#define UTIL_DOMAIN_VID 2

NvPhysicalGpuHandle m_hPhysicalGPU[NVAPI_MAX_PHYSICAL_GPUS];
NvU32 m_gpuCount;
NV_GPU_DYNAMIC_PSTATES_INFO_EX m_DynamicPStateInfo;
NvAPI_EnumPhysicalGPUs(m_hPhysicalGPU , &m_gpuCount);
m_DynamicPStateInfo.version = NV_GPU_DYNAMIC_PSTATES_INFO_EX_VER;
NvU32 utilGPU , utilFB , utilVID ;

NvAPI_Status status = NvAPI_GPU_GetDynamicPstatesInfoEx(m_hPhysicalGPU[0], &←↩
m_DynamicPStateInfo);

if(status == NVAPI_OK ){
utilGPU = m_DynamicPStateInfo.utilization[UTIL_DOMAIN_GPU]. percentage;
utilFB = m_DynamicPStateInfo.utilization[UTIL_DOMAIN_FB]. percentage;
utilVID = m_DynamicPStateInfo.utilization[UTIL_DOMAIN_VID]. percentage;

}

Listing 37.1. Reading GPU utilization using NVAPI.

Since the system can have multiple GPUs, NvAPI GPU GetDynamicPstates

InfoEx requires a handle to a physical GPU for which utilization should be re-
trieved. The total number of physical GPUs and the handles to them can be re-
trieved with NvAPI EnumPhysicalGPUs. Listing 37.1 illustrates reading GPU
utilization using NVAPI. The utilization is read for the default graphics adapter
(m hPhysicalGPU[0]).

All NVAPI functions require setting a proper value for the version field of the
structures passed to them as parameters. For the structures defined in the SDK, the
proper values of the version fields are defined as <structure name> VER.

The retrieved utilization value is not a single clock-interval sample, but an aver-
aged value over the last second. If the GPU utilization drops below a certain thresh-
old, depending on the mutual relationship of two adjacent P-states, the next lower
state is activated. Experimental results show that the lower threshold varies from 5%
to 30%. If GPU utilization crosses the upper threshold (usually about 60%), the next
higher level is activated. The threshold values may vary depending on the hardware,
P-state settings, and the driver’s policy. The transition to a lower P-state requires
having a low utilization for about 15 s for pre-R280 drivers on Windows, while the
transition to a higher P-state is instantaneous. Starting from R280, NVIDIA de-
creases the amount of time required at low GPU utilization before transitioning to a
lower P-state [NVIDIA 11c].

37.3.2 Reading P-States

All available P-states of a physical GPU, with accompanying parameters, can be re-
trieved using the NvAPI GPU GetPstatesInfoEx function, which has three pa-
rameters:

• a handle to a physical GPU,

© 2012 by Taylor & Francis Group, LLC



37. Performance State Tracking 531

• a pointer to an NV GPU PERF PSTATES INFO structure, and

• input flags.

Input flags are allocated to define various options, but currently, only bit 0 is
used to select whether the returned values are the defaults, or the current settings.
The current settings might differ from the defaults if the GPU is overclocked.

If a call to NvAPI GPU GetPstatesInfoEx succeeds, an NV GPU PERF

PSTATES INFO structure is filled with parameters regarding P-states. In the ver-
sion of NVAPI shipped with R290 drivers, NV GPU PERF PSTATES INFO contains
the following fields:

• version. Version of NV GPU PERF PSTATES INFO; it should be set to NV

GPU PERF PSTATES INFO VER before calling the function.

• flags. Reserved for future use.

• numPstates. Number of available P-states.

• numClocks. Number of domains for which clocks are defined; there are cur-
rently three public clock domains: NVAPI GPU PUBLIC CLOCK GRAPHICS,
NVAPI GPU PUBLIC CLOCK MEMORY, and NVAPI GPU PUBLIC CLOCK

PROCESSOR.

• numVoltages. Number of domains for which voltages are defined; currently,
only one domain is presented: NVAPI GPU PERF VOLTAGE INFO DOMAIN

CORE.

• pstates[16]. Parameters of each P-state:

◦ pstateId. ID of the P-state (0...15),

◦ flags:

· bit 0. PCI-e limit (version 1 or 2),
· bit 1. P-state is overclocked,
· bit 2. P-state can be overclocked,
· bits 3–31. Reserved for future use.

• clocks[32]:

◦ domainId. Domain for which the particular clock is defined: NVAPI
GPU PUBLIC CLOCK GRAPHICS,NVAPI GPU PUBLIC CLOCK MEMORY,
or NVAPI GPU PUBLIC CLOCK PROCESSOR,

◦ flags:

· bit 0. Clock domain can be overclocked,
· bits 1–31. Reserved for future use,

© 2012 by Taylor & Francis Group, LLC



532 VI Debugging and Profiling

◦ freq. Clock frequency in kHz.

• voltages[16]:

◦ domainId. Domain for which the voltage is defined (NVAPI GPU

PERF VOLTAGE INFO DOMAIN CORE),

◦ flags. Reserved for future use,

◦ mvolt. Voltage in mV.

The current P-state ID of a physical GPU is retrieved using NvAPI GPU Get

CurrentPstate. Unlike NvAPI GPU GetPstatesInfoEx, which should be called
only once, usually during the application initialization; NvAPI GPU GetCurrent

Pstate must be called frequently, at least once per frame.
Unfortunately, the NVAPI SDK does not expose all the functionality of NVAPI.

Most of the functionality is available only in the NDA version of the SDK. Further-
more, the official documentation refers to some functions and structures that are not
included even in NDA version. We hope that more functions will be published in
the future.

37.4 P-State Tracking Using ADL
AMD Display Library (ADL) is an API that allows access to various graphics driver
settings. It is a wrapper around a private API for both Windows and Linux. ADL
binaries are delivered as a part of the Catalyst display driver package for Windows or
Linux, while the SDK (documentation, definitions, and sample code) can be down-
loaded from the website.3

P-state management is exposed openly through the ADL OverDrive Version 5
(OD5) API. OD5 provides access to the engine clock, memory clock, and core volt-
age level. Each state component can be read and also changed within some prede-
fined range. The range is defined inside the BIOS of the graphics card and prevents
hardware malfunctioning.

P-states have to be enumerated in an ascending order, with each component hav-
ing the same or a greater value compared to the previous state. If the rule is violated,
the state will not be set. Custom settings are not preserved after a system restart,
and should be maintained by the application. Since the standard P-state settings are
determined through a comprehensive qualification process, it is not recommended
to change them. We will confine our interaction with OD5 only to P-state tracking.
Listing 37.2 illustrates how the current P-state setting can be read.

All relevant parameters of the current P-state can be retrieved using the ADL

Overdrive5 CurrentActivity Get function call. The values are stored in an

3http://developer.amd.com/sdks/ADLSDK/Pages/default.aspx

© 2012 by Taylor & Francis Group, LLC



37. Performance State Tracking 533

typedef int (* ADL_OVERDRIVE5_CURRENTACTIVITY_GET) (int, ADLPMActivity *);

HINSTANCE hDLL = LoadLibrary(_T("atiadlxx .dll")); // try to load native DLL
if(hDLL == NULL){ // if fails (32-bit app on 64-bit OS), load 32-bit DLL

hDLL = LoadLibrary(_T(" atiadlxy .dll"));
}

ADL_Overdrive5_CurrentActivity_Get = (ADL_OVERDRIVE5_CURRENTACTIVITY_GET)←↩
GetProcAddress( hDLL , "ADL_Overdrive5_CurrentActivity_Get");

ADLPMActivity activity ;

activity .iSize = sizeof(ADLPMActivity);
ADL_Overdrive5_CurrentActivity_Get (0, &activity );

Listing 37.2. Retrieving the current P-state parameters using ADL OverDrive5.

ADLPMActivity structure, which, among others, contains the following P-state
members:

• iCurrentPerformanceLevel. Current P-state ID,

• iEngineClock. GPU engine clock in tens of kHz,

• iMemoryClock. Memory clock in tens of kHz,

• iVddc. Core voltage level in mV, and

• iActivityPercent. GPU utilization in %.

The greatest advantage of the OD5 P-state tracking is its simplicity. All param-
eters are retrieved with a single function call. Each P-state is uniquely identified by
iCurrentPerformanceLevel, where a higher value corresponds to a higher P-
state. The first parameter of the ADL Overdrive5 CurrentActivity Get is the
adapter index. The previous example assumes the default adapter; hence, the value
is 0.

37.5 Conclusion
P-states tracking is essential for all profilers. Each measured value should be stamped
with the current state in order to be properly interpreted and filter out unwanted
values. Special care must be taken during the interpretation, since the state change
might be recorded with one-frame delay. So, not only the current state is important,
but also the frame in which a transition occurs. Another problem can arise if the
state transition happens during the measured interval that spans multiple frames.
If we measure frequent or periodical events, the intervals that enclose state changes
could be just ignored. In the case of events that are not periodic, we should subdivide
the measured interval in order to catch the frame in which the transition occurs.

© 2012 by Taylor & Francis Group, LLC



534 VI Debugging and Profiling

The performance state policies differ widely according to graphics hardware, cur-
rent drivers, and vendors’ preferences. NVIDIA aggressively raises the P-state to the
highest value as soon as a 3D application is detected. If the application is less de-
manding, the P-state is gradually decreased. AMD has a different policy and starts
with the lowest performance state. In the case of both vendors, the GPU utilization
is tracked precisely, and the P-state is changed accordingly.

Thus far, OpenGL does not have the ability to track P-states. In order to reach
all relevant parameters, like working frequencies or GPU utilization, we have to use
vendor-specific APIs. NVAPI gathers detailed information, but most of its function-
ality is still hidden, while ADL openly provides an easy-to-use interface to the re-
quired information, and, furthermore, enables customization of P-states parameters.
Since power consumption becomes more and more important with each new gen-
eration of graphics cards, we can expect a further development of P-state-accessing
APIs. Perhaps even OpenGL will provide an insight into what is really happening
beneath the powerful graphics cards’ coolers.

Bibliography
[AMD 10] AMD. “AMD PowerTune Technology.” http://www.amd.com/us/Documents/

PowerTune Technology Whitepaper.pdf, December 2010.

[NVIDIA 11a] NVIDIA. “NVIDIA Driver Settings Programming Guide.” PG-5116-001-
v02, http://developer.download.nvidia.com/assets/tools/docs/PG-5116-001 v02 public.
pdf, January 19, 2011.

[NVIDIA 11b] NVIDIA. “Understanding Dynamic GPU Performance Mode, Release
280 Graphics Drivers for Windows—Version 280.26.” RN-W28026-01v02, http://
us.download.nvidia.com/Windows/280.26/280.26-Win7-WinVista-Desktop-Release-
Notes.pdf, August 9, 2011.

[NVIDIA 11c] NVIDIA. “NVAPI Reference Documentation (Developer),” Release 285,
http://developer.nvidia.com/nvapi, September 15, 2011.

© 2012 by Taylor & Francis Group, LLC



Monitoring
Graphics Memory Usage

Aleksandar Dimitrijević

38.1 Introduction
The struggle to achieve higher levels of realism in computer graphics always leads
to high memory demands. Despite the fact that modern graphics accelerators are
equipped with more and more onboard memory with each new generation, applica-
tions’ demands grow even faster. Since memory is a limited and expensive resource,
an application needs tools to help it make clever decisions on how this resource can
be used more effectively.

Until several years ago, OpenGL implementations hid resource management
from applications. The resource shielding was justified by stating that it enabled
a hardware abstraction and a higher level of portability. However, the knowledge
about the environment in which an application is executing is more than useful.
There is a wide variety of graphics cards, each card with different GPU power and an
arbitrary amount of onboard memory. Furthermore, nowadays many computers are
equipped with more than one graphics card that can be used for scalable rendering
(see Chapter 27). Which of them should be used for a specific task depends on their
capabilities (see Chapter 9). Even on a single-accelerator system, an application can
make wise decisions, like which level of detail or algorithms to apply, according to
available resources. Knowledge about the maximum available resources is useful for
the initial setup, but the current state must be tracked during the whole application’s
life. The reasons for varying available resources can be various, from the complexity

535

38

© 2012 by Taylor & Francis Group, LLC



536 VI Debugging and Profiling

of the current scene to a competition between different applications for the same
resource.

In this chapter, we take a look at graphics memory allocation and how its current
status can be retrieved using two vendor-specific OpenGL extensions.

38.2 Graphics Memory Allocation
Graphics memory can be classified into two major categories: dedicated and shared.
Dedicated graphics memory is memory associated with the graphics subsystem, and
it is exclusively accessed by graphics applications. It can be either onboard memory
(dedicated video memory) or a portion of system memory (system video memory).
Onboard memory is a “privilege” of discrete graphics adapters. It usually uses a wide
and high-speed local bus, resulting in much better performance compared to sys-
tem memory. Integrated graphics adapters can only use portions of system memory
as dedicated video memory. The allocation of system video memory can be done
by BIOS or by a driver. System BIOS allocation is done at a system startup, ef-
fectively hiding a portion of the memory from the operating system, while driver’s
memory allocation happens during operating system boot. In the second case, the
operating system reports dedicated graphics memory as a part of system memory al-
though it is exclusively owned by the graphics driver and cannot be used for other
purposes.

Shared system memory is a portion of the system memory that can be used by
the graphics subsystem when needed. This memory can be used by nongraphics
applications as well; hence, there is no guarantee that it is available. The amount of
shared system memory reported by the operating system, like Vista or Windows 7,
is the maximum amount. The actual amount depends on the system load. More
detailed information about memory classification and reporting through Windows
Display Driver Model (WDDM) can be found in [Microsoft 06].

Total available graphics memory is a sum of dedicated graphics memory and
shared system memory. The highest performance is achieved if the graphics objects
are stored in dedicated graphics memory. However, in some applications, the capacity
of dedicated memory is not enough to store all objects. If newly allocated objects, or
objects currently being used, cannot be stored in dedicated memory, the driver has
to evict some of the objects already stored in order to make space for new ones. An
GL OUT OF MEMORY exception should be raised only if the object cannot be allocated
in dedicated or in shared system memory.

Querying memory status is not a part of the OpenGL core functionality, but
the two major graphics cards’ vendors have published some useful extensions for the
purpose. The following sections give a closer look at those extensions.

© 2012 by Taylor & Francis Group, LLC



38. Monitoring Graphics Memory Usage 537

38.3 Querying Memory Status on NVIDIA
Cards

Since Release 195 of NVIDIA graphics drivers, the current memory status is accessi-
ble through the experimental OpenGL extension: NVX gpu memory info [Stroyan
09]. This extension defines several new enumerations that can be passed to glGet

Integerv in order to retrieve specific information. The symbolical names and the
corresponding hexadecimal values are the following:

• GL GPU MEMORY INFO DEDICATED VIDMEM NVX (0x9047),

• GL GPU MEMORY INFO TOTAL AVAILABLE MEMORY NVX (0x9048),

• GL GPU MEMORY INFO CURRENT AVAILABLE VIDMEM NVX (0x9049),

• GL GPU MEMORY INFO EVICTION COUNT NVX (0x904A), and

• GL GPU MEMORY INFO EVICTED MEMORY NVX (0x904B).

The hexadecimal values are listed because NVX gpu memory info is an experi-
mental extension, and as such, its enumerations are not part of the standard OpenGL
extension header file: glext.h.

GL GPU MEMORY INFO DEDICATED VIDMEM NVX retrieves the total size of ded-
icated graphics memory in kB. This value needs to be read only once since it will not
change during the application’s life. NVX gpu memory info enables reading only
the size of the dedicated graphics memory. The sizes of shared system memory can
be retrieved only by using WDDM [Microsoft 06] or NVAPI [NVIDIA 11].

GL GPU MEMORY INFO TOTAL AVAILABLE MEMORY NVX retrieves the maxi-
mum available dedicated graphics memory in kB. This value may differ from the
total size of dedicated graphics memory if the certain amount of the memory is allo-
cated for a special purpose. However, in many implementations, the value is identical
to a dedicated memory total size. This information also doesn’t need to be read by
the application more than once.

GL GPU MEMORY INFO CURRENT AVAILABLE VIDMEM NVX retrieves the cur-
rently free dedicated graphics memory in kB. This is one of the most important
values that the application should track. If the current amount of free graphics mem-
ory is not enough to store new objects, OpenGL starts to swap objects between
dedicated and shared system memory, significantly affecting the overall performance.
The swapping may start even if the total amount of free memory is enough to store
newly created objects because of memory fragmentation.

GL GPU MEMORY INFO EVICTION COUNT NVX retrieves the count of evictions
since the operating system or an application start. For Windows XP and Linux, the
eviction count is a per-process information. The count is reset with the application
start, and as long as it is 0, object swapping has not started yet; therefore, the applica-
tion runs at full speed. For Windows Vista and Windows 7, the eviction information

© 2012 by Taylor & Francis Group, LLC



538 VI Debugging and Profiling

is system wide, and the eviction count is not 0 on the first query. The eviction count
is an important piece of information that should be tracked. The rise of the eviction
count signals memory overload and drop of performance.

GL GPU MEMORY INFO EVICTED MEMORY NVX retrieves the amount of evicted
memory. It is the total size of all objects removed from the dedicated memory in order
to make space for new allocations. In Version 1.2 of NVX gpu memory info, each
query resets the eviction count and the size of the evicted memory. In Version 1.3,
the values increase with each new eviction.

Although NVX gpu memory info enables efficient memory-allocation tracking
on NVIDIA graphics cards, some pieces of information are still missing. One of
them is the size of the maximum free memory block. Knowing this, we can predict
evictions more precisely and have better insight into the drivers’ memory defrag-
mentation algorithm. The other missing piece of information is the shared-system
memory-allocation size. We can read a cumulative amount of evicted memory only,
but it cannot be used to calculate a shared system memory allocation size.

38.4 Querying Memory Status on AMD Cards
On AMD graphics cards, memory information is retrieved using the ATI meminfo

[Stefanizzi 09] OpenGL extension. It is also based on the glGetIntegerv function,
but unlike NVIDIA’s counterpart, it retrieves a 4-tuple instead of simple integers.
Information on free graphics memory is retrieved by specifying one of the three
memory pools:

• GL VBO FREE MEMORY ATI. Memory status for the pool used for vertex buffer
objects,

• GL TEXTURE FREE MEMORY ATI. Memory status for the pool used for tex-
tures, or

• GL RENDERBUFFER FREE MEMORY ATI. Memory status for the pool used for
render buffers.

For each pool, a 4-tuple integer is returned containing the following information:

• param[0]. Total dedicated graphics memory free in kB,

• param[1]. Largest available dedicated graphics memory free block in kB,

• param[2]. Total shared system memory free in kB, and

• param[3]. Largest shared system memory free block in kB.

© 2012 by Taylor & Francis Group, LLC



38. Monitoring Graphics Memory Usage 539

UINT maxCount ;
UINT* ID;
size_t memTotal = 0; // total size of dedicated graphics memory in MB
maxCount = wglGetGPUIDsAMD(0, 0);
ID = new UINT[maxCount ];
wglGetGPUIDsAMD(maxCount , ID);
wglGetGPUInfoAMD(ID[0], WGL_GPU_RAM_AMD , GL_UNSIGNED_INT , sizeof(size_t), & ←↩

memTotal );

Listing 38.1. Querying dedicated graphics memory size using WGL AMD gpu association.

The pools can be independent or shared, depending on the implementation.
Thus far, each of the pools maps the whole graphics memory, and the same values
are retrieved for all pools (shared implementation). A returned value does not need
to reveal the exact information, but instead, it could return a conservative value of
80% of actual availability. The precise values for the free memory space, for both
NVIDIA’s and AMD’s extensions are not of paramount concern. From the moment
when the information is retrieved to the moment of new allocation, even if it is
instantaneously issued, the amount of free memory can be significantly changed. The
delay can be a consequence of a command queue, or, more severely, of the postponed
allocation, imposed by the driver, to a moment of the first usage of the allocated
object. Even a glFinish call cannot force the driver to commit the allocation.
For example, calls to glTexImage* and glBufferData do not change memory
allocation on the graphics card until the objects are used for the first time.

ATI meminfo gives no clue about the total amount of graphics memory. If
we want to calculate memory utilization, we have to make use of another AMD
extension: WGL AMD gpu association [Haemel 09]. This extension provides a
mechanism for applications to explicitly bind to a specific GPU in a multi-GPU
system. Since different GPUs can have different capabilities, this extension enables
querying those capabilities, one of which is the total memory size in MB.

The function wglGetGPUInfoAMD serves to retrieve properties of the specified
GPU. In order to access the information, we need IDs for GPUs presented in the
system. Even if we have just one, querying IDs is a mandatory step. The function
wglGetGPUIDsAMD(maxCount, ID) fills the array ID with up to maxCount val-
ues and retrieves the total number of GPUs. We could choose an arbitrary value
for maxCount, but we can also use the wglGetGPUIDsAMD function just to get
the number of GPUs by setting the ID parameter to NULL. Having an ID, we
can retrieve the amount of memory dedicated to a specific GPU by calling wglGet
GPUInfoAMDwith a specified ID and the second parameter set to WGL GPU RAM AMD.
Listing 38.1 demonstrates querying dedicated graphics memory size using WGL AMD

gpu association.

© 2012 by Taylor & Francis Group, LLC



540 VI Debugging and Profiling

38.5 Conclusion
The amount of available dedicated graphics memory may affect application execu-
tion significantly. Discrete graphics adapters are more sensitive to memory overload
since onboard memory has higher throughput and significantly outperforms system
memory. When memory utilization reaches full capacity, OpenGL object manage-
ment is likely to cause a negative impact on the application’s performance due to
object swapping or access to objects residing in the shared system memory. In order
to help applications avoid reaching memory limits, GPU vendors provide extensions
for determining the amount of available graphics memory. These extensions do not
have to retrieve the exact amount of free memory, but rather provide a hint to the
application.

Both extensions provide additional information that gives better insight into the
current memory status. A very useful piece of information that NVX gpu memory

info can retrieve is the eviction count. If the count increases, the memory is over-
loaded, objects are swapped, and hence, the performance is reduced. ATI meminfo

does not report evictions, but enables more precise prediction of such events by re-
trieving the maximum free memory block.

The full utilization of the retrieved information is impossible; new allocations are
not committed at the moment a command is issued, but are postponed to the most
convenient moment for the driver, usually on the first use of the object. In any case,
an application can benefit from memory usage tracking and clever resource manage-
ment. By avoiding evictions, we prevent object swapping and, hence, preserve high
performance.

Bibliography
[Haemel 09] Nick Haemel. “AMD gpu association,” Revision 1.0, March 3, 2009.

[Microsoft 06] Microsoft. “Graphics Memory Reporting through WDDM,” http://www.
microsoft.com/whdc/device/display/graphicsmemory.mspx, January 9, 2006.

[NVIDIA 11] NVIDIA. “NVAPI Reference Documentation (Developer),” Release 285,
http://developer.nvidia.com/nvapi, September 15, 2011.

[Stefanizzi 09] Bruno Stefanizzi, Roy Blackmer, Bruno Stefanizzi, Andreas Wolf, and Evan
Hart. “ATI meminfo,” Revision 0.2, March 2, 2009.

[Stroyan 09] Howard Stroyan, “GL NVX gpu memory info,” Revision 1.3, December 4,
2009.

© 2012 by Taylor & Francis Group, LLC



VII Software
Design

Developers work with OpenGL at many levels of the software stack. Some developers
create OpenGL implementations by writing drivers or, as we will see, using another
graphics API; other developers create middleware or engines that simplify the use
of OpenGL and raise the level of abstraction; and perhaps the majority of OpenGL
developers create actual applications, whether by directly calling OpenGL or by using
OpenGL-based engines. In this section, we look at software design at each layer of
this stack. We consider implementing OpenGL ES 2.0, engines and applications
built on WebGL, making legacy OpenGL code modern, and building cross-platform
OpenGL applications.

ANGLE, or the Almost Native Graphics Layer Engine, provides an OpenGL ES
2.0 implementation using Direct3D 9. It is used as the default WebGL backend for
Chrome and Firefox on Windows. Implementing ANGLE is not nearly as simple
as converting OpenGL calls to Direct3D calls; the differences in capabilities of the
APIs need to be taken into account. In Chapter 39, “The ANGLE Project: Imple-
menting OpenGL ES 2.0 on Direct3D,” Daniel Koch and Nicolas Capens discuss
the implementation challenges in ANGLE, provide performance results, and suggest
recommended practices.

Given how low-level WebGL is compared to other web APIs, it was clear from its
start that there would be demand for higher-level 3D engines built on WebGL. Here,
we look at two such engines. SceneJS is an open-source 3D engine, based on a scene
graph optimized for rendering large numbers of individually pickable and articulated
objects. In Chapter 40, “SceneJS: A WebGL-Based Scene Graph Engine,” Lindsay
Kay presents SceneJS’ architecture and how it makes efficient use of JavaScript and
WebGL.

541

© 2012 by Taylor & Francis Group, LLC



542 VII Software Design

SpiderGL is another 3D graphics library that uses WebGL. Instead of providing
higher-level constructs like a scene graph, SpiderGL provides utilities, data struc-
tures, and algorithms to simplify WebGL development but still allows the use of
other WebGL code in the same application. In Chapter 41, “Features and Design
Choices in SpiderGL,” Marco Di Benedetto, Fabio Ganovelli, and Francesco Ban-
terle discuss some design and implementation decisions in SpiderGL including its
model representation and allowing seamless interoperability with naive WebGL calls.

WebGL is enabling a whole new class of applications. In Chapter 42, “Multi-
modal Interactive Simulations on the Web,” Tansel Halic, Woojin Ahn, and Suvranu
De present a framework for visualization, simulation, and hardware integration for
multimodal interactive simulations using WebGL. Think practicing surgical proce-
dures using a web browser!

Maintaining legacy and modern OpenGL code in the same code base can prove
challenging. Jesse Barker and Alexandros Frantzis share their experiences in Chap-
ter 43, “A Subset Approach to Using OpenGL and OpenGL ES.” They suggest
ways to move to a single modern code base written against both OpenGL and
OpenGL ES.

In “The Build Syndrome,” the final chapter of this section and of the book,
Jochem van der Spek and Daniel Dekkers discuss in detail building cross-platform
OpenGL applications with C++/Objective-C and CMake.

© 2012 by Taylor & Francis Group, LLC



The ANGLE Project:
Implementing OpenGL ES 2.0

on Direct3D

Daniel Koch and Nicolas Capens

39.1 Introduction
The Almost Native Graphics Layer Engine (ANGLE) project is an open-source im-
plementation of OpenGL ES 2.0 for Windows. This chapter explores the challenges
that we encountered in the design of ANGLE and the solutions we implemented.

We begin the chapter by providing the motivation for ANGLE and some po-
tential uses of it. We then delve into the implementation details and explore the
design challenges that were involved in developing ANGLE. We discuss the feature
set that ANGLE provides, including the standard OpenGL ES and EGL extensions
that ANGLE supports, as well as some ANGLE-specific extensions [ANGLE 11].
We also describe in detail some of the optimizations that were implemented to en-
sure high performance and low overhead. We provide performance tips and guidance
for developers who may wish to use ANGLE directly in their own projects. We end
with some performance comparisons of WebGL implementations using ANGLE and
native Desktop OpenGL drivers.

39.2 Background
ANGLE is a conformant implementation of the OpenGL ES 2.0 specification
[Khronos 11c] that is hardware-accelerated via Direct3D. ANGLE version 1.0.772
was certified as compliant by passing the ES 2.0.3 conformance tests in October

543

39

© 2012 by Taylor & Francis Group, LLC



544 VII Software Design

2011. ANGLE also provides an implementation of the EGL 1.4 specification
[Khronos 11b].

TransGaming did the primary development for ANGLE and provides continued
maintenance and feature enhancements. The development of ANGLE was spon-
sored by Google to enable browsers like Google Chrome to run WebGL content on
Windows computers that may not have OpenGL drivers [Bridge 10].

ANGLE is used as the default WebGL backend for both Google Chrome and
Mozilla Firefox on Windows platforms. Chrome, in fact, uses ANGLE for all graph-
ics rendering, including for the accelerated Canvas2D implementation and for the
Native Client sandbox environment.

In addition to providing an OpenGL ES 2.0 implementation for Windows, por-
tions of the ANGLE shader compiler are used as a shader validator and translator
by WebGL implementations across multiple platforms. It is used on Mac OS X
(Chrome, Firefox, and Safari), Linux (Chrome and Firefox), and in mobile variants
of the browsers. Having one shader validator helps to ensure that a consistent set
of GLSL ES (ESSL) shaders are accepted across browsers and platforms. The shader
translator is also used to translate shaders to other shading languages and to option-
ally apply shader modifications to work around bugs or quirks in the native graphics
drivers. The translator targets Desktop GLSL, Direct3D HLSL, and even ESSL for
native OpenGL ES 2.0 platforms.

Because ANGLE provides OpenGL ES 2.0 and EGL 1.4 libraries for Windows,
it can be used as a development tool by developers who want to target applications
for mobile, embedded, set-top, and Smart TV–based devices. Prototyping and initial
development can be done in the developer’s familiar Windows-based development
environment before final on-device performance tuning. Portability tools such as the
GameTree TV SDK [TransGaming 11] can further help to streamline this process
by making it possible to run Win32 and OpenGL ES 2.0-based applications directly
on set-top boxes. ANGLE also provides developers with an additional option for
deploying production versions of their applications to the desktop, either for content
that was initially developed on Windows, or for deploying OpenGL ES 2.0–based
content from other platforms such as iOS or Android.

39.3 Implementation
ANGLE is implemented in C++ and uses Direct3D 9 [MSDN 11c] for rendering.
This API was chosen to allow us to target our implementation at Windows XP, Vista,
and 7, as well as providing access to a broad base of graphics hardware. ANGLE
requires a minimum of Shader Model (SM) 2 support, but due to the limited capa-
bilities of SM2, the primary target for our implementation is SM3. There are some
implementation variances, and in some cases, completely different approaches used,
in order to account for the different set of capabilities between SM2 and SM3. Since

© 2012 by Taylor & Francis Group, LLC



39. The ANGLE Project: Implementing OpenGL ES 2.0 on Direct3D 545

SM3 is our primary target, the focus of this chapter is on the description of our
implementation for this feature set.

The main challenge of implementing OpenGL ES on top of another graphics
API, such as Direct3D, is accounting for different conventions and capabilities. Some
differences can be implemented in a straightforward manner, while others are much
more involved.

This section begins with one of the most well-known differences between the
APIs: the differences in coordinate conventions. Dealing with these in a mathemat-
ically sound manner is critical to achieving correct results. Next, we cover another
key aspect of the project: the translation of OpenGL ES shaders into their Direct3D
equivalents. Following this, we delve into handling data resources such as vertex
buffers and textures. Finally, we cover the finer details of the different API paradigms
and interfaces, tying the individual aspects into a complete OpenGL ES implemen-
tation on top of Direct3D.

39.3.1 Coordinate Systems

It is often said that OpenGL has a right-handed coordinate system and Direct3D
has a left-handed coordinate system, and that this has application-wide implica-
tions [MSDN 11a]. However, this is not entirely correct. The differences can be best
understood by looking at the coordinate transformation equations. Both OpenGL
and Direct3D take the position output from the vertex shader in homogeneous (clip)
coordinates, perform the same perspective division to obtain normalized device coor-
dinates (NDC), and then perform a very similar viewport transformation to obtain
window coordinates. The transformations as performed by OpenGL are shown in
Figure 39.1 and Equation (39.1) [Khronos 11c, Section 2.12]. The parameters px

and py represent the viewport width and height, respectively, and (ox, oy) is the center

Yd

Zd

Yw
Yw

Zw

Xw

py

px

Xwpx

py

Xd
+1

+1

+1

o

+1

o

(a) (b) (c)

Figure 39.1. GL coordinate spaces: (a) NDC space, (b) window space, and (c) screen space.

© 2012 by Taylor & Francis Group, LLC



546 VII Software Design

of the viewport (all measured in pixels):

⎛
⎜⎜⎝

xc

yc

zc

wc

⎞
⎟⎟⎠

vertex shader
clip coords

→
⎛
⎝ xd

yd

zd

⎞
⎠ =

⎛
⎝ xc/wc

yc/wc

zc/wc

⎞
⎠

perspective division
NDC coords

→ (39.1)

⎛
⎝ xw

yw

zw

⎞
⎠ =

⎛
⎝

px

2 xd + ox
py

2 yd + oy
f −n

2 zd + n+f
2

⎞
⎠

viewport transform
window coords

→
(

xs

ys

)
=

(
xw + xpos

yw + ypos

)
present transform

screen coords

.

The transformations performed by Direct3D are shown in Figure 39.2 and Equa-
tion (39.2) [MSDN 11k]:⎛

⎜⎜⎝
xc

yc

zc

wc

⎞
⎟⎟⎠

vertex shader
clip coordinates

→
⎛
⎝ xd

yd

zd

⎞
⎠ =

⎛
⎝ xc/wc

yc/wc

zc/wc

⎞
⎠

perspective division
NDC coordinates

→ (39.2)

⎛
⎝ xw

yw

zw

⎞
⎠ =

⎛
⎝

px

2 xd + ox
py

2 (−yd ) + oy

(f − n)zd + n

⎞
⎠

viewport transform
window coordinates

→
(

xs

ys

)
=

(
xw + xpos

py − yw + ypos

)
present transform
screen coordinates

.

Yd

Zd

Yw
Xw

Zw

Xw

py

px

Yw

py

px

Xd
+1

+1

+1

o
+1

o

(a) (b) (c)

Figure 39.2. Direct3D coordinate spaces: (a) NDC space, (b) window space, and (c) screen space.

© 2012 by Taylor & Francis Group, LLC



39. The ANGLE Project: Implementing OpenGL ES 2.0 on Direct3D 547

Window origin. One notable difference between Equations (39.1) and (39.2) is
that Direct3D inverts the y-axis during the viewport transformation. Direct3D also
considers the window origin to be in the top-left corner with the y-axis pointing
down, whereas OpenGL considers the window origin to be in the lower-left corner
with the y-axis pointing up, as shown in Figure 39.3. These operations cancel each
other out. This means that when the homogeneous coordinates output from an
OpenGL vertex shader are fed into Direct3D using the same viewport parameters,
the resulting image will correctly appear upright on the screen.

The problem is that when rendering to a texture, the image is stored in window
coordinates, and hence, there is no vertical flip performed, leaving the image upside
down. Furthermore, the window coordinates are also an input to the pixel shader, so
things like fragment coordinates and gradients are inverted.

There are several ways to deal with this issue. The first is to append code to
the original OpenGL ES vertex shader to negate the y-component. This way, the
negation in the viewport transformation is canceled, meaning the window coordi-
nates are the way OpenGL expects them, and when rendering to a texture, the image
appears upright. Since Direct3D flips the image when viewed on screen, we also
have to counteract that by explicitly flipping it before the Present call. Originally,
we chose this option; since negating the y-component in the vertex shader is triv-
ial, it easily solves the render-to-texture issue, and no changes are required to pixel
shaders or regular texture handling. It only comes at the cost of an extra pass to
copy the rendered result into a texture and flip it upside down before presenting it
on the screen. Unfortunately, this pass caused a significant performance impact—up
to 20% slower—on low-end hardware when rendering simple scenes.

The second way to deal with the inversion of the y-coordinate is to invert the
texture sampling coordinate system by rewriting every sampling operation to use
modified texture coordinates: (s′, t ′) = (s, 1 − t). This implies that the data for

4

3

2

1

0

3

2

1

0

0 1 2 3 4

0 1 2

(ox, oy) (ox, oy)

3 4 5

Figure 39.3. Window origin and fragment coordinate differences between OpenGL (left)
and Direct3D (right). The red dot represents the location of (0, 0) in window coordinates and
(ox, oy) is the center of a 5 × 4 pixel viewport.

© 2012 by Taylor & Francis Group, LLC



548 VII Software Design

regular textures must be stored in an upside down fashion. Cube maps are handled
by additionally swapping the top (+Y) and bottom (−Y) faces. It also requires all
pixel shader operations that use the window y-coordinate to be adjusted. This is
the solution currently implemented and is discussed further in Section 39.3.2. The
texture inversions on upload are a potential source of inefficiency, but we already
swizzle and convert most texture data on load, so this does not add additional over-
head. Another concern is that the modification of the texture coordinates turns them
into dependent texture reads. This could prevent prefetching of texture data on some
GPU architectures, and the extra instructions add computational overhead. Fortu-
nately, this does not appear to be a problem on most desktop GPUs, and we have
not observed negative effects due to these modifications.

The third way of solving this issue is to invert the rendering only when rendering
into a texture and using the shader unmodified when rendering to a window. This
approach could avoid the drawbacks of the first two methods, but it is not with-
out additional implementation complexity. The shaders would have to be compiled
differently depending on the rendering destination and it could also affect the fill
convention. This approach is still under evaluation and might be implemented in
the future.

Winding order. Another interesting consequence of the difference in viewport
transformations between OpenGL and Direct3D is that the winding order of a tri-
angle’s vertices is reversed. The winding order determines whether a triangle is con-
sidered front facing or back facing and hence which primitives are culled. Since the
winding order is computed using window coordinates, the need to invert the culling
parameters also depends on whether or not the viewport transformation difference is
handled in the vertex shader.

Dithering. No specific dithering algorithm is required in OpenGL ES, only that
the dithering algorithm depends solely on the fragment’s value and window coor-
dinates. When the viewport is inverted, this has the potential to make the dither-
ing algorithm also depend on the viewport height. However, if the identity func-
tion is used, this dithering requirement is trivially fulfilled. Direct3D 9 does have
a D3DRS DITHERENABLE render state, but dithering is typically no longer directly
supported on recent hardware.

Fill convention. One last interesting effect of the different viewport transforma-
tions is that it also affects the fill convention. The fill convention is the rule that
decides whether a pixel whose center is directly on a triangle’s edge is considered cov-
ered by that triangle or not. This is vital to prevent adjoining triangles from filling
the same pixels twice or leaving gaps. Direct3D enforces a top-left fill convention.
OpenGL does not require a specific fill convention, only that a well-defined conven-
tion is used consistently. Although ANGLE complies with this, it is worth noting
that the OpenGL specification does not guarantee exact pixel results. In particular,

© 2012 by Taylor & Francis Group, LLC



39. The ANGLE Project: Implementing OpenGL ES 2.0 on Direct3D 549

screen-space rectangles should be aligned to pixel edges instead of pixel centers to
avoid unexpected results.

Depth range. In addition to the window-origin differences, there is also a differ-
ence in the depth range of the homogeneous coordinates that must be accounted for.
OpenGL clips the z-coordinate to the [−1, 1] range and then transforms it to the
[near, far] range specified with glDepthRangef. Direct3D uses the [0, 1] range
instead. Note again that, contrary to popular belief, the z-axis of OpenGL does
not point out of the screen. Both OpenGL and Direct3D applications are free to
use whichever coordinate system(s) they prefer, as long as the projection takes care
of correctly transforming the camera-space coordinates into the intended clip-space
coordinates. Since clipping takes place right after the vertex shader stage, we can ac-
count for the differences by appending code to the original vertex shader that adjusts
the output z-coordinate. We will revisit this in Section 39.3.2.

Fragment coordinates. The numerical coordinates for pixel centers are also dif-
ferent between OpenGL and Direct3D 9. In OpenGL, the pixel centers are located
at half-pixel locations, and thus, the (x, y) fragment coordinate of the pixel closest to
the origin is (0.5, 0.5). In Direct3D 9, pixel centers are located at integral locations,
and the location of the pixel closest to the origin is (0, 0). This also means that view-
ports are not symmetric around the origin, as shown in Figure 39.3. This oddity has
been corrected in Direct3D 10, but for ANGLE on Direct3D 9, a half-pixel offset is
required to adjust the fragment coordinates for this difference. This adjustment can
also be done at the output of the vertex shader stage, so in homogeneous coordinates,
the half-pixel offset becomes ( 1

px
wc,

1
py

wc).

39.3.2 Shader Compiler and Linker

The initial design of the OpenGL Shading Language was done by 3Dlabs. As part
of their work, they developed and released an open-source GLSL compiler front-
end and shader validator for the initial version of GLSL [3Dlabs 05]. This GLSL
compiler front-end was used as the starting point for ANGLE’s shader compiler and
translator. The 3Dlabs compiler front-end was designed for Version 1.10 of the
GLSL specification and thus needed to be adapted for the GLSL ES Version 1.00
language [Khronos 11e]. The differences between GLSL 1.10 and GLSL ES 1.00
are summed up in a student report from the Norwegian University of Science and
Technology [Ek 05].

Architecture. In OpenGL ES 2.0, individual vertex and fragment shaders are
compiled using glCompileShader and linked into a single program using glLink
Program. With Direct3D 9, however, there is no explicit linking step between the
vertex and pixel shaders (the Direct3D equivalent of the ESSL fragment shader).
Vertex shader outputs and pixel shader inputs have to be assigned a “semantic”
[MSDN 11j], essentially a register identifier, within the HLSL code itself, and they

© 2012 by Taylor & Francis Group, LLC



550 VII Software Design

are implicitly linked when the shaders are made active. Since assigning matching
semantics can only be done when both the vertex and pixel shaders are known, the
actual HLSL compilation has to be deferred until link time. During the compilation
call, ANGLE can only translate the ESSL code into HLSL code, leaving the out-
put and input declarations blank. Note that this is not unique to ANGLE, as other
OpenGL and OpenGL ES implementations also defer some of the compilation until
link time.

The ANGLE shader compiler component functions as either a translator or a
validator. It consists of two main components: the compiler front-end and the com-
piler back-end. The compiler front-end consists of the preprocessor, lexer, parser,
and abstract syntax tree (AST) generator. The lexer and parser are generated from
the shading language grammar using the flex [Flex 08] and bison [FSF 11] tools.
The compiler back-end consists of several output methods that convert the AST to a
desired form of ‘object’ code. The forms of object code that are currently supported
are the HLSL, GLSL, or ESSL shader strings. The shader compiler can validate
shaders against either the ESSL specification [Khronos 11e] or the WebGL specifica-
tion [Khronos 11f]. ANGLE uses the former, and the web browsers use the latter.

During program object linking, the translated HLSL shaders from the “com-
piled” vertex and fragment shaders are compiled into binary shader blobs. The shader
blobs include both the Direct3D 9 bytecode for the shaders and the semantic infor-
mation required to map uniforms to constants. The D3DXGetShaderConstant

Table method is used to obtain the uniform information and define the mappings
between the uniform names and the vertex and pixel shader constant locations. Note
that ANGLE uses the Direct3D 10 shader compiler instead of the one included with
D3DX9 because it comes as a separately updated DLL, produces superior shader as-
sembly/binary code, and can handle complex shaders more successfully without run-
ning out of registers or instruction slots. Unfortunately, there are still some shaders
that contain complex conditionals or loops with a high number of iterations that fail
to compile even with the Direct3D 10 compiler.

Shader translation. The translation of ESSL into HLSL is achieved by traversing
the AST and converting it back into a textual representation while taking the differ-
ences between the languages into account. The AST is a tree structure representation
of the original source code, so the basic process of turning each node into a string
is relatively straightforward. We also extended 3Dlabs’ definition of the AST and
their traversing framework to preserve additional source information like variable
declarations and precisions.

HLSL supports the same binary and unary operators as ESSL, but there are
some noteworthy differences in semantics. In ESSL, the first matrix component
subscript accesses a column vector while the second subscript (if any) selects the row.
With HLSL, this order is reversed. Furthermore, OpenGL constructs matrices from
elements specified in column-major order while Direct3D uses row-major order.
These differences were addressed by transposing matrix uniforms. This also required

© 2012 by Taylor & Francis Group, LLC



39. The ANGLE Project: Implementing OpenGL ES 2.0 on Direct3D 551

(un-)transposing matrices when used in binary operations. Although it may seem in-
efficient to transpose matrices within the HLSL shader, at the assembly level it simply
results in having multiply-add vector instructions instead of dot-product instructions
or vice versa. No noticeable performance impact was observed.

Another significant semantic difference between the two languages is the eval-
uation of the ternary select operator (cond ? expr1 : expr2). With HLSL,
both expressions are evaluated, and then the result of one of them is returned based
on the condition. ESSL adheres to the C semantics and only evaluates the expression
that is selected by the condition. To achieve the ESSL semantics with HLSL, ternary
operators are rewritten as if/else statements. Because ternary operators can be nested
and statements can contain multiple ternary operators, we implemented a separate
AST traverser that hierarchically expands the ternary operators and assigns the re-
sults to temporary variables that are then used in the original statement containing
the ternary operator. The logical binary Boolean AND (&&) and OR (‖) operators
also require short-circuited evaluation and can be handled in a similar manner.

To prevent temporary variables and differences in intrinsic function names from
colliding with names used in the ESSL source, we “decorate” user-defined ESSL
names with an underscore. Reserved names in the ESSL code use the same gl

prefix in HLSL, while variables needed to implement or adjust for Direct3D-specific
behavior have a dx prefix.

Shader built-ins. The OpenGL ES shading language provides a number of built-
in shader variables, inputs, and functions that are not directly provided by Direct3D’s
HLSL or that require different semantics between the two languages.

The vertex shading language has no built-in inputs but instead supports
application-defined attribute variables that provide the values passed into a shader
on a per-vertex basis. The attributes are mapped directly to HLSL vertex shader
inputs using the TEXCOORD[#] semantics.

The varying variables form the interface between the vertex and fragment shaders.
ESSL has no built-in varying variables and supports only application-defined vary-
ings. These varyings are mapped to HLSL vertex shader outputs and pixel shader
inputs using the COLOR[#] semantics. In most cases, we could alternatively use the
TEXCOORD[#] semantics, but these are treated differently for point-sprite rendering,
so instead, we always use the COLOR[#] semantics for user-defined varyings. The
exception for this is in SM2, where variables with the COLOR[#] semantics have lim-
ited range and precision, and thus we must use the TEXCOORD[#] semantic. For this
reason, we cannot directly support large points when using SM2.

The vertex shading language has two built-in output variables: gl PointSize

and gl Position. The gl PointSize output controls the size at which a point is
rasterized. This is equivalent to the HLSL vertex shader PSIZE output semantic, but
to meet the GL requirements, it must be clamped to the valid point size range. The
gl Position output determines the vertex position in homogeneous coordinates.
This is similar to the HLSL vertex shader POSITION0 output semantic; however, we

© 2012 by Taylor & Francis Group, LLC



552 VII Software Design

output.gl_PointSize = clamp(gl_PointSize , 1.0, ALIASED_POINT_SIZE_RANGE_MAX_SM3);
output.gl_Position.x = gl_Position.x - dx_HalfPixelSize.x * gl_Position.w;
output.gl_Position.y = gl_Position.y - dx_HalfPixelSize.y * gl_Position.w;
output.gl_Position.z = (gl_Position.z + gl_Position.w) * 0.5;
output.gl_Position.w = gl_Position.w;
output.gl_FragCoord = gl_Position;

Listing 39.1. Vertex shader epilogue.

must account for several differences between Direct3D and OpenGL coordinates at
this point before we can use it. As described previously in Section 39.3.1, the x- and
y-coordinates are adjusted by the half-pixel offset in screen space to account for the
fragment coordinate differences, and the z-coordinate is adjusted to account for the
depth-range differences. Listing 39.1 shows the vertex shader epilogue that converts
the ESSL shader to Direct3D semantics.

The fragment shading language has three built-in read-only variables: gl Frag

Coord, gl FrontFacing, and gl PointCoord. The gl FragCoord variable
provides the window-relative coordinate values (xw, yw, zw, 1/wc) for the fragments
that are interpolated during rasterization. This is similar to the HLSL VPOS se-
mantic that provides the (x, y)-coordinates. We use the VPOS semantic to pro-
vide the base (x, y) screen-space coordinates and then adjust for both the fragment-
center and window-origin differences. To compute the z- and w-components of
gl FragCoord, we pass the original gl Position from the vertex shader into the
pixel shader via a hidden varying. In the pixel shader, the z-value is multiplied by
1/wc to perform perspective correction and is finally corrected by the depth factors
calculated from the near and far clipping planes, as shown in Listing 39.2.

The gl FrontFacing variable is a boolean value which is TRUE if the fragment
belongs to a front-facing primitive. Under HLSL, similar information is available via
the pixel shader VFACE input semantic; however, this is a floating-point value that
uses negative values to indicate back-facing primitives and positive values to indicate
front-facing ones [MSDN 11h]. This can easily be converted to a boolean value,
but we must also account for the different face-winding convention and the fact that
point and line primitives are always considered front-facing under OpenGL, whereas
the face is undefined for those primitives under Direct3D (see Listing 39.3).

rhw = 1.0 / input.gl_FragCoord.w;
gl_FragCoord.x = input.dx_VPos .x + 0.5;
gl_FragCoord.y = dx_Coord .y - input.dx_VPos .y - 0.5;
gl_FragCoord.z = (input.gl_FragCoord.z * rhw)* dx_Depth .x + dx_Depth .y;
gl_FragCoord.w = rhw;

Listing 39.2. Calculation of the built-in fragment coordinate for SM3.

© 2012 by Taylor & Francis Group, LLC



39. The ANGLE Project: Implementing OpenGL ES 2.0 on Direct3D 553

gl_FrontFacing = dx_PointsOrLines || (dx_FrontCCW ? (input.vFace >= 0.0) : input.←↩
vFace <= 0.0));

Listing 39.3. Calculation of front-facing built-in variable.

The gl PointCoord variable provides a set of 2D coordinates that indicate
where in a point primitive the current fragment is located. The values must vary
from 0 to 1 horizontally (left to right) and from 0 to 1 vertically (top to bot-
tom). These values can be used as texture coordinates in order to provide textured
point sprites. Direct3D also has the ability to synthesize texture coordinates for
the generated vertices of the point sprite [MSDN 11f]. When this is enabled via
the D3DRS POINTSPRITEENABLE render state, the TEXCOORD semantic is used to
generate texture coordinates that serve as the values for gl PointCoord. Since all
points in OpenGL ES are point sprites, we only need to enable this render state once
on the Direct3D device initialization.

The OpenGL ES shading language also provides one built-in uniform: gl

DepthRange. This is defined as a structure that contains the depth range parameters
that were specified via the glDepthRangef command in the API. Since HLSL does
not provide any built-in uniforms, we pass these parameters in the shaders via a hid-
den uniform and define and populate the gl DepthRangeParameters structure
explicitly in the shader source when referenced by the ESSL code.

Both ESSL and HLSL have a variety of built-in, or intrinsic, functions. Many
of the built-in functions have both the same names and functionality, but there are
some cases where either the name or functionality is slightly different. Differences
in name, such as frac (HLSL) and fract (ESSL), are easily handled at translation
time. In cases where there are functionality differences or simply missing functions,
such as modf (HLSL) and mod (ESSL), this is handled by defining our own functions
with the required semantics.

The OES standard derivatives extension provides the built-in shader func-
tions dFdx, dFdy, and fwidth in the shading language. These gradient compu-
tation functions are available in GLSL 1.20 and are commonly used for custom
mipmap LOD computations (necessary when using vertex texture fetch) or for ex-
tracting screen-space normals. They are translated into the HLSL ddx, ddy, and
fwidth intrinsics, respectively, with ddy being negated to account for the window
origin difference.

The ANGLE translated shader source extension [ANGLE 11] provides the
ability to query the translated HLSL shader source. This is provided as a debugging
aid for developers, as some of the error or warning messages that are reported are
relative to the translated source and not to the original shader source.

© 2012 by Taylor & Francis Group, LLC



554 VII Software Design

39.3.3 Vertex and Index Buffers

OpenGL ES 2.0 supports buffer objects that can be used both for vertex and index
data, while Direct3D only supports vertex buffers and index buffers separately. This
means ANGLE has to wait until a draw call is issued to be able to determine which
data can go into which type of Direct3D buffer. Furthermore, Direct3D 9 does not
support all of the vertex element types that OpenGL does, so some elements may
need to be translated to wider data types. Because this translation can be expensive
and not all vertex elements are necessarily used during a draw call, we decided that
our baseline implementation should stream the used range of vertex elements into
Direct3D vertex buffers sequentially instead of in packed structures. Figure 39.4
shows the basic process.

The streaming buffer implementation uses a Direct3D vertex buffer in a circular
manner. New data is appended at the point where the previous write operation
ended. This allows the use of a single Direct3D vertex buffer instead of requiring
a new one to be created for every draw call. Appending new data is very efficient
by making use of the D3DLOCK NOOVERWRITE flag [MSDN 11b] when locking the
buffers so that the driver does not need to wait for previous draw calls to complete.
When the end of the buffer is reached, the D3DLOCK DISCARD flag is used to allow
the driver to rename the buffer. This does not affect data that is already in use by a
previous draw call. The streaming vertex buffer only needs to be reallocated when
the buffer is not large enough to fit all of the vertex data for a single draw call.

As previously mentioned, unsupported vertex element types need to be trans-
lated. Direct3D 9 always supports elements with one to four floating-point values,
which offers a universal fallback for any format; however, ANGLE converts the data
into more efficient formats whenever possible. For instance, if the Direct3D driver
supports the D3DDECLTYPE SHORT4N format, three normalized short values get con-
verted into this format, with the fourth element being set to the default value. We
make extensive use of C++ templates in the translation in order to make the code as
efficient as possible and avoid writing several dozen customized routines.

xyz0 st0 rgb0 xyz1 st1 rgb1 xyz2 st2 rgb2 xyzn stn rgbn ...

XYZ1 XYZ2 XYZ3 RGB11 RGB12 RGB13

xyz3 st3 rgb3

Figure 39.4. Example of streaming buffer translation for a single-triangle draw call. The GL buffer (top)
contains position (xyz), texture (st), and color (rgb) vertex data in an interleaved fashion. This is translated
into the Direct3D vertex buffer (bottom) that contains the condensed streams of translated position (XYZ)
and color (RGB1) values. The texture coordinates and other vertices are not included since they were not
referenced by this draw call.

© 2012 by Taylor & Francis Group, LLC



39. The ANGLE Project: Implementing OpenGL ES 2.0 on Direct3D 555

Despite these optimizations, the streaming implementation is not optimal. When
drawing the same geometry multiple times, the same data must be resent to the hard-
ware on each draw call. To improve on this, ANGLE also features a static buffer
implementation. When the data in a GL buffer is not modified between draw calls,
we can reuse the same Direct3D data from the previous draw call that used this
buffer. This is achieved by associating a Direct3D vertex buffer with each OpenGL
buffer. Instead of streaming data into the global circular vertex buffer, it is streamed
into the static buffer on the first use. A cache keeps track of which vertex element
formats are stored in the static buffer and at which offset. The static buffer gets
invalidated when the OpenGL buffer is subsequently modified or when some for-
mats specified by glVertexAttribPointer no longer match those in the cache.
ANGLE takes the buffer usage parameter into account when determining whether
or not to initially attempt to place data in a static buffer. In our testing, we have also
found that some applications set the usage flags incorrectly. Thus, we track whether
a nonstatic buffer remains unmodified for a number of uses so it can be heuristically
promoted to a static buffer if appropriate. Still, we recommend that applications use
the GL STATIC DRAW hint whenever they are certain a buffer will not be modified
after its first use in a draw call.

In addition to vertex array data specified via glVertexAttribPointer,
OpenGL also supports current attribute values, i.e., attributes that remain constant
during a draw call. Direct3D does not have a similar concept. Even though the value
stays constant per draw call, using an actual Direct3D vertex shader constant would
be complicated because, in one draw call, an attribute can be specified by a vertex
array attribute while, in another draw call, it can use the current attribute, and that
would require rewriting the Direct3D shader. Instead, we opted to implement cur-
rent vertex attributes by using vertex buffers with only one element and a stride of
zero. When the current attribute value is modified, a whole new Direct3D buffer is
created because some drivers do not correctly support updating dynamic buffers that
are used with a stride of zero.

ANGLE supports the OES element index uint extension, which provides
the ability to use 32-bit unsigned integer index buffers with glDrawElements.
Without this extension, OpenGL ES only supports 8- and 16-bit unsigned indices.

39.3.4 Textures

There are some fundamental texture handling differences between OpenGL and Di-
rect3D. In Direct3D 9, the texture format, usage, and shape (number of mipmaps)
must all be declared at texture-object creation time and cannot change over the life-
time of the object. In OpenGL, textures are defined one level at a time and in any
level order; the usage is not known in advance, and the shape can change over time
as mipmaps are added. Furthermore, any or all levels of a texture can be redefined at
any time with the glTexImage2D or glCopyTexImage2D commands.

© 2012 by Taylor & Francis Group, LLC



556 VII Software Design

In order to handle the differences between Direct3D and OpenGL textures, the
application-provided data for each level are stored in a system memory surface. The
creation of the Direct3D texture is deferred until draw time when the shape and us-
age of the texture are known. At Direct3D texture creation time, we must choose
whether the texture will be renderable or not. Under OpenGL, any texture can
become renderable simply by attaching it to a framebuffer object. Creating all Di-
rect3D textures as render targets can result in degraded performance and can lead
to early out-of-memory situations since render target textures are typically pinned
to video memory and the driver is unable to page them out to system memory as
necessary. Since many textures are never used as render targets, the Direct3D tex-
tures are created nonrenderable by default and are loaded with data from the sys-
tem memory surfaces. This allows the driver to more effectively manage the texture
memory. As a consequence of this, whenever a renderable version of a GL texture is
required, we create a renderable Direct3D texture and migrate any existing data from
either the nonrenderable Direct3D texture or from the system memory surfaces into
the renderable texture. We retain the system memory surfaces, which contain the
application-provided texture data, as these continue to serve as staging areas for tex-
ture updates via glTexSubImage2D. The system memory surfaces are also used to
avoid reading back texture data from the graphics memory in the cases where the
texture is redefined.

Texture redefinition occurs whenever the format or dimensions of level 0 of a
texture are changed. When this happens, any existing Direct3D backing texture
must be discarded. Ideally, the contents of any existing mip-levels of the texture at
that point are preserved in the system memory surfaces. These mip-images should
be kept because it is possible for the images to be used again if the texture is later
redefined in a way that is consistent with the original data. For example, consider a
texture that has four levels with sizes 8 × 8, 4 × 4, 2 × 2, and 1 × 1. If level 0 is
redefined as a 2×2 image, it could be used as a single-level texture with mip-filtering
disabled. If level 0 were once again redefined as an 8×8 image with the same format
as originally used, this would once again result in a complete texture with four levels,
and levels 1 through 3 would have the same data as before. This is the behavior
implied by the specification, but not all drivers (including some versions of ANGLE)
have correctly implemented image preservation on redefinition. Hence, portable
applications should not rely on this behavior; it is recommended that redefining
textures be avoided, as this can cause expensive reallocations inside the driver.

OpenGL has recently introduced a new texture creation mechanism that allows
the creation of immutable textures: ARB texture storage [Khronos 11d]. The
glTexStorage command is used to create a texture with a specific format, size, and
number of levels. Once a texture has been defined by glTexStorage, the texture
cannot be redefined and can only have its data specified by the gl*SubImage2D

commands or by render-to-texture. This new texture creation API is beneficial for
many drivers, as it allows them to allocate the correct amount of memory up front
without having to guess how many mip-levels will be provided. ANGLE supports

© 2012 by Taylor & Francis Group, LLC



39. The ANGLE Project: Implementing OpenGL ES 2.0 on Direct3D 557

EXT texture storage [ANGLE 11], an OpenGL ES version of this extension,
in order to provide a more efficient texture implementation. With the shape and
format of the texture known at creation time, we can immediately create a Direct3D
texture that corresponds to the GL texture. The system memory surfaces can be
omitted because we can load the application-provided texture data directly into the
Direct3D9 texture, and we do not have to preserve the system memory copies of the
data because TexStorage textures are immutable. The ANGLE texture usage

extension [ANGLE 11] further provides the ability to let the implementation know
the expected usage of a texture. When it is known that a texture will be rendered
into, the usage parameter can be specified so that the implementation will know to
allocate a renderable texture.

OpenGL also has the notion of incomplete textures. This occurs when insufficient
levels of a texture are present (based on the filter state), or when the formats or sizes
are inconsistent between levels. When sampled in a shader, an incomplete texture
always returns the value (R,G,B,A) = (0, 0, 0, 1). Support for incomplete textures
is implemented by creating a 1-level 1 × 1 Direct3D texture of the appropriate type
that is bound to the sampler during a draw call.

Another texture difference between OpenGL ES and Direct3D 9 is the set of tex-
ture formats that are supported. In addition, OpenGL applications typically supply
the texture data in an RGB(A) format, while Direct3D uses a BGR(A) component
order for most format types. Because of the difference in component ordering and
the limited support for the Direct3D equivalents of some of the packed formats
(e.g., the 4444, 5551, and 565 variants), we expand and swizzle texture data into
the D3DFMT A8R8G8B8 format at load time. The main exceptions are the lumi-
nance and luminance-alpha unsigned byte texture formats, which are loaded directly
as D3DFMT L8 and D3DFMT A8L8 textures when natively supported. While we are
loading the texture data, we must also flip the texture data vertically to account for
the window coordinate differences as described earlier.

To optimize the most common texture loading operations, SSE2 optimized code
is used when supported by the CPU. Similarly, glReadPixels requires flipping
the image and swizzling the color components, but since it is not expected to be a
particularly fast function (because it waits on the GPU to finish rendering), these op-
erations are not yet optimized using SSE2. However, the EXT read format bgra

extension is provided in case the application does not require the components to be
swizzled.

ANGLE supports a number of extensions that provide a wider range of texture
and renderbuffer formats and related capabilities. OES texture npot provides sup-
port for the full complement of mipmapping, minification filters, and repeat-based
wrap modes for nonpower of two textures. 8-bit per component RGB and RGBA
renderbuffers (OES rgb8 rgba8), and BGRA textures (EXT texture format

BGRA8888, EXT read format bgra) provide support for 32-bpp rendering as well
as exposing formats that do not require conversions for performance reasons. The
16- and 32-bit floating-point texture formats (OES texture half float, OES

© 2012 by Taylor & Francis Group, LLC



558 VII Software Design

texture float), including support for linear filtering (OES texture half

float linear, OES texture float linear), are supported in order to pro-
vide more precise texture data for algorithms that require it, particularly those that
also make use of vertex textures. The DXT1 (EXT texture compression dxt1),
DXT3 (ANGLE texture compression dxt3), and DXT5 (ANGLE texture

compression dxt5) compressed texture formats [ANGLE 11] are also provided
to improve performance by using less texture bandwidth in the GPU and by reduc-
ing system and video memory requirements.

39.3.5 Vertex Texture Fetch

OpenGL ES 2 provides the capability to support texture sampling in vertex shaders
(also referred to as vertex texture fetch or VTF) although support for this is not
mandated. VTF is often used for techniques such as displacement mapping where
a heightmap is stored in a texture and then used to adjust the position of the vertex
based on the value obtained from a texture lookup. In order to determine whether
VTF is supported on a particular implementation and device combination, the ap-
plication must query the MAX VERTEX TEXTURE IMAGE UNITS limit. If the value
for this limit is zero, VTF is not supported.

The initial implementation of ANGLE did not support vertex textures; however,
support was later added as this was a highly sought-after feature. The potential
difficulty with implementing VTF in ANGLE is that some SM3 hardware has no
support for it, and on other hardware, it is only supported in a very limited form—
typically only for 2D textures with 32-bit floating-point formats and only with point
filtering. Unlike Direct3D 9, which exposes capabilities like this at a very granular
level, OpenGL and OpenGL ES do not provide a way to limit what types of textures
or formats can be used with vertex texturing; it is required for all textures types and
formats. With OpenGL, using a format or type that is not directly supported by
hardware will cause vertex processing to fall back to software. With Direct3D 9, it is
possible to get a more complete set of vertex texture capabilities by enabling software
vertex processing [MSDN 11g], but that is not without its own drawbacks. First,
the Direct3D 9 device must be created with mixed vertex processing and that may
not perform as well as a pure hardware device. Next, in order to use a texture with
software vertex processing, the texture must be created in the scratch memory pool
[MSDN 11b], necessitating additional copies of the texture data and ensuring that
they are all kept in sync. Finally, software vertex processing is likely to be significantly
slower, and in many cases, developers would rather do without the functionality than
have it available but executing in a software fallback.

Unlike SM3 hardware, SM4 (Direct3D 10 capable) hardware does provide full
support for vertex textures for all formats, for both 2D and cube textures, and with
linear filtering. Furthermore, these capabilities are also exposed via Direct3D 9 on
this hardware. As a result, ANGLE only exposes support for vertex texture fetch
when it detects that it is running on SM4 hardware and can provide the full com-

© 2012 by Taylor & Francis Group, LLC



39. The ANGLE Project: Implementing OpenGL ES 2.0 on Direct3D 559

plement of vertex texture functionality without falling back to software vertex pro-
cessing. However, even though SM4 hardware supports 16 vertex texture samplers,
the Direct3D 9 API only supports four vertex texture samplers, and thus, this is the
maximum supported under ANGLE.

39.3.6 Primitive Types

Both OpenGL and Direct3D provide a number of different types of rendering prim-
itives. They both include primitives for rendering points; line strips and lists; and
triangle strips, fans, and lists. OpenGL ES also provides an additional primitive type
that is not available under Direct3D 9: the line loop. Line loops are similar to line
strips with the addition of a closing line segment that is drawn between the last vertex
vn and the first vertex v0. Thus, for a render call with n vertices, there are n − 1 line
segments drawn between vertices (vi−1, vi)|1 ≤ i ≤ n and a final line segment be-
tween vertices (vn, v0). In ANGLE, this is implemented by drawing two line strips.
The first draw call, either arrayed or indexed as specified by the original drawing
command, renders the first n − 1 line segments via a line strip. The second draw
call renders the final line segment using a streaming index buffer that contains the
indices of the last and first vertex from the original draw command.

Large points and wide lines are optional capabilities in OpenGL ES 2. Support
for these must be queried by checking the maximum available point size range and
line width range. Large points are often used for particle systems or other sprite-
based rendering techniques, as they have a significant memory and bandwidth saving
compared to the fallback method of drawing two triangles forming a screen-aligned
quadrilateral. ANGLE supports points with sizes up to a maximum of 64 pixels in
order to support point sprite rendering. Wide lines are used less frequently and, as of
the time of writing, ANGLE does not support lines with width larger than one.

39.3.7 Masked Clears

Another OpenGL capability not directly supported by Direct3D is masked clear op-
erations. Under Direct3D 9, the color, depth, and stencil masks do not apply to clear
operations, whereas they do in OpenGL. Thus, in cases where only some of the color
or stencil components are to be cleared, we implement the clear operation by drawing
a quad the size of the framebuffer. As with glClear, the scissor test limits the area
that is affected by the draw command. One of the drawbacks to implementing the
clear call via a draw operation is that the current state of the Direct3D device must be
modified. Since we do significant caching in order to minimize the state setup that
must be done at draw time, this draw command has the potential to interfere with
that caching. In order to minimize the individual state changes that must be done,
we preserve the current Direct3D rendering state in a stateblock, configure the state
for the clearing draw call, perform the draw, and then restore the previous state from
the stateblock. In cases where masked clear operations are not required, we directly
use the Direct3D 9 Clear call for performance.

© 2012 by Taylor & Francis Group, LLC



560 VII Software Design

39.3.8 Separate Depth and Stencil Buffers

Framebuffer configuration in OpenGL ES allows applications to separately spec-
ify depth and stencil buffers. Depth and stencil buffers are not separable in Di-
rect3D, and thus, we are not able to support arbitrary mixing of depth and stencil
buffers. However, this is not uncommon for OpenGL or other OpenGL ES imple-
mentations and can be disallowed by reporting GL FRAMEBUFFER UNSUPPORTED

when separate buffers are simultaneously bound to the depth and stencil binding
points. In order to provide support for simultaneous depth and stencil operation, the
OES packed depth stencil extension is supported in ANGLE. This extension
provides a combined depth and stencil surface internal format (DEPTH24 STENCIL8

OES) that can be used for renderbuffer storage. In order to use simultaneous depth
and stencil operations, the application must attach the same packed depth-stencil
surface to both the depth and stencil attachment points of the framebuffer object.
The packed depth-stencil format is also used internally for all formats that require
only depth or stencil components, and the Direct3D pipeline is configured so that
the unused depth or stencil components have no effect. Note that since ANGLE does
not yet support depth textures, packed depth-stencil textures are also not supported.

39.3.9 Synchronization

The glFlush command is required to flush the GL command stream and cause it
to finish execution in finite time. The flush command is implemented in ANGLE
via Direct3D 9 event queries [MSDN 11i]. In Direct3D 9, issuing an event query
and calling GetData with the D3DGETDATA FLUSH parameter causes the command
buffer to be flushed in the driver, resulting in the desired effect.

The glFinish command is required to block until all previous GL commands
have completed. This can also be implemented using Direct3D event queries by
issuing an event query and then polling until the query result is available.

ANGLE also supports the NV fence extension in order to provide finer-grained
synchronization than is possible with only flush and finish. Fence objects are also
implemented via Direct3D 9 event queries as they have very similar semantics.

39.3.10 Multisampling

ANGLE does not currently expose any EGL multisample configurations. This is
not due to any inherent technical difficulty, but rather due to lack of demand for
it. Support for multisampling is provided with multisampled renderbuffers. The
ANGLE framebuffer multisample extension [ANGLE 11] is a subset of the
EXT framebuffer multisample extension from OpenGL. It provides a mecha-
nism to attach multisampled images to framebuffer objects and resolve the multisam-
pled framebuffer object into a single-sampled framebuffer. The resolve destination
can either be another application-created framebuffer object or the window-system
provided one.

© 2012 by Taylor & Francis Group, LLC



39. The ANGLE Project: Implementing OpenGL ES 2.0 on Direct3D 561

ANGLE also provides support for copying directly from one framebuffer to
another. The ANGLE framebuffer blit extension [ANGLE 11] is a subset of
the EXT framebuffer blit extension from OpenGL. It adds support for separate
draw- and read-framebuffer attachment points and makes it possible to copy directly
between images attached to framebuffer objects. glBlitFramebufferANGLE is
implemented via the Direct3D 9 StretchRect function and therefore has some
further restrictions compared to the desktop version. In particular, color conver-
sions, resizing, flipping, and filtering are not supported, and only whole depth and
stencil buffers can be copied. glBlitFramebufferANGLE is also used to resolve
multisample framebuffers.

39.3.11 Multiple Contexts and Resource Sharing

ANGLE supports multiple OpenGL ES contexts as well as sharing objects between
contexts as described in Appendix C of the OpenGL ES 2.0.25 specification
[Khronos 11c]. The object types that can be shared are the resource-type objects:
shader objects, program objects, vertex buffer objects, texture objects, and render-
buffer objects. Framebuffer objects and fences are not shareable objects. The re-
quirement to share framebuffer objects was removed from the OpenGL ES 2.0.25
specification in order to be more compatible with OpenGL. In general, it is not
desirable to share container-type objects, as this makes change propagation and dele-
tion behavior of the shared objects difficult to specify and tricky to implement
and use correctly. Furthermore, there is little value to be had from sharing con-
tainer objects since they are typically quite small and have no data associated with
them.

Shared contexts are specified at context creation time via the share context

parameter to eglCreateContext. As defined in the EGL 1.4 specification, a newly
created context will share all shareable objects with the specified share context

and, by extension, with any other contexts with which share context already
shares. To implement these semantics, we have a resource manager class that is
responsible for creating, tracking, and deleting all shared objects. All nonshared
objects, framebuffers and fences, are always managed directly by the context. The
resource manager can be shared between contexts. When a new, nonshared context
is created, a new resource manager is instantiated. When a shared context is created,
it acquires the resource manager from the shared context. Since contexts can be de-
stroyed in any order, the resource manager is reference counted and not directly tied
to any specific context.

Direct3D 9 does not have the concept of share groups like OpenGL. It is pos-
sible to share individual resources between Direct3D 9Ex devices, but this func-
tionality is only supported on Windows Vista and later. Thus, in order to share
resources between ANGLE’s GL contexts, the ES and EGL implementations only
make use of a single Direct3D 9 device object. The device is created by and associ-
ated with the EGL default display and made accessible to each of the GL contexts as

© 2012 by Taylor & Francis Group, LLC



562 VII Software Design

necessary. In order to provide the required separation of state between GL contexts,
we must completely transition the Direct3D state when we switch GL contexts. The
eglMakeCurrent call provides us with the opportunity to do this when the current
context is changed. With our state-caching mechanism, we simply need to mark all
our cached state dirty at this point, and the necessary Direct3D state will be set for
the next draw command.

The current GL context and corresponding EGL display are tracked using thread-
local storage (TLS). The TLS is used to hold a pointer to the GL context that has
last been made current on this thread via eglMakeCurrent. When a GL function
call is made, the current GL context for the thread is obtained from the TLS, and
the command is dispatched to the GL context. If no GL context is presently current
on the thread, the GL command is silently ignored.

ANGLE supports creation of both window- and pbuffer–based EGL surfaces.
Window surfaces are implemented by creating a windowed Direct3D 9 swapchain
for the EGL surface using the HWND window handle that is passed in to eglCreate

WindowSurface as the native window. The eglSwapBuffers command maps
to the swapchain’s Present method. Window resizing is handled by recreating the
swapchain. Resizing can be detected either by registering a window handler for the
WM SIZE message or by checking the window size at the swap buffer’s call. The pre-
ferred method is via the window handler, but this does not work for windows that
were created in a different process. Pbuffer surfaces, which are used purely for off-
screen rendering and do not need to support swapping or resizing, are implemented
using Direct3D 9 render-target textures. The eglBindTexImage API can also be
used to bind a pbuffer as a texture in order to access the contents of the pbuffer.

ANGLE also supports several EGL extensions that enable more efficient inte-
gration with applications that use Direct3D directly, such as a browser that uses it
internally for the compositor or video decoding. These extensions provide a mecha-
nism that allows textures to be shared between ANGLE’s Direct3D device and other
Direct3D devices. This also provides the ability to share images between processes
since Direct3D resources can be shared across processes. The Direct3D 9 render-
target textures that back the pbuffer surfaces can either be created from, or provide,
a sharing handle [MSDN 11d]. In order to make use of this, we need a mechanism
to provide or extract the Direct3D share handle via EGL.

The ANGLE surface d3d texture 2d share handle extension [ANGLE
11] allows an application to obtain the Direct3D share handle from an EGL sur-
face. This handle can then be used in another device to create a shared texture that
can be used to display the contents of the pbuffer. Similarly, the ANGLE d3d share

handle client buffer extension [ANGLE 11] creates a pbuffer from a Direct3D
share handle that is specified via eglCreatePbufferFromClientBuffer. This
provides the ability to have ES2 content rendered into a texture that has been created
by a different Direct3D device. When sharing a surface between Direct3D devices
in different processes, it is necessary to use event queries to ensure that rendering to
the surface has completed before using the shared resource in another device. From

© 2012 by Taylor & Francis Group, LLC



39. The ANGLE Project: Implementing OpenGL ES 2.0 on Direct3D 563

the ANGLE side, this can be achieved with appropriate use of a fence or by calling
glFinish to ensure that the desired operations have finished.

39.3.12 Context Loss

Direct3D 9 devices can, under various scenarios, become “lost” [MSDN 11e]. On
Windows XP, this can happen when the system has a power management event such
as entering sleep mode, or screen saver activation. On Window Vista and later, when
using Direct3D 9Ex, device loss is much more infrequent but can still happen if the
hardware hangs or when the driver is stopped [MSDN 11d]. When the device is
lost, resources that were located in graphics memory are lost, and rendering related
operations are ignored. To recover from a lost Direct3D device, the application must
release the video memory resources and reset the device.

Unextended OpenGL ES does not provide a mechanism to notify the applica-
tion of a lost or reset device. EGL does have the EGL CONTEXT LOST error code that
corresponds to the loss of a hardware device. By default, when a device loss occurs,
ANGLE generates an out-of-memory error on GL calls, and the context-lost error
on EGL calls, to indicate that the context is in an undefined state. In both cases,
the proper response is to destroy all the GL contexts, recreate the contexts, and then
restore any state and objects as necessary. EGL surfaces do not need to be recreated,
but their content is undefined. For details, see Section 2.6 of the EGL 1.4 specifica-
tion [Khronos 11b]. WebGL applications should additionally follow the advice for
Handling Context Lost [Khronos 11a].

ANGLE supports the EXT robustness extension [ANGLE 11], which is based
on the OpenGL ARB robustness extension [Khronos 11d], in order to provide
a better mechanism for reporting reset notifications. This extension provides an
inexpensive query, glGetGraphicsResetStatusEXT, which applications can use
to learn about context resets. After receiving a reset notification, the application
should continue to query the reset status until GL NO ERROR is returned, at which
point the contexts should be destroyed and recreated.

Applications must opt into receiving reset notifications at context creation time
by specifying the reset notification strategy attribute as defined in the EXT create

context robustness extension [ANGLE 11]. Note that even if an application
does not opt into receiving reset notifications, or explicitly requests no reset notifi-
cations, context loss and resets can still happen at any time. Applications should be
made capable of detecting and recovering from these events.

39.3.13 Resource Limits

The OpenGL ES 2.0 API is quite feature-rich; however, there are still some fea-
tures that are optional or allow for wide variability between implementations. These
include the number of vertex attributes, varying vectors, vertex uniform vectors,
fragment uniform vectors, vertex texture image units, fragment texture image units,

© 2012 by Taylor & Francis Group, LLC



564 VII Software Design

maximum texture size, maximum renderbuffer size, point size range, and line width
range. Applications that need more than the minimum values for any of these lim-
its should always query the capabilities of the GL device and scale their usage based
on the device’s feature set. Failing to do so and assuming sufficient limits typically
results in reduced portability. This is particularly important to keep in mind for
WebGL development or when otherwise using a OpenGL ES 2.0 implementation,
such as ANGLE, that is provided on desktop hardware. In many cases, the capabili-
ties provided far exceed those available on mobile platforms. The complete listing of
minimum requirements for the various implementation-dependent values can be ob-
tained from Tables 6.18–6.20 of the OpenGL ES 2.0.25 specification [Khronos 11c].

Most of the ANGLE limits have been chosen to provide a maximum set of con-
sistent capabilities across a wide range of common hardware. In some cases, the limits
are constrained by the Direct3D 9 API even if the hardware has greater capabilities
that could be exposed under a different API such as OpenGL or Direct3D 10. In
other cases, the limits vary based on the underlying hardware capabilities which are
denoted with an asterisk in Table 39.1.

The maximum vertex (254) and fragment (221) uniforms are based on the com-
mon capabilities for SM3 vertex (256) and pixel shader (224) constants, but must
be lowered to account for the hidden uniforms we may use to implement some of
the shader built-ins. The maximum number of varying vectors (10) is the maximum
available on SM3 hardware and does not need to be reduced to account for built-in
varyings since these are explicitly included in the ESSL varying packing algorithm,
as described in Issue 10.16 in the ESSL specification [Khronos 11e]. The maximum
texture, cube map, and renderbuffer sizes are directly based on the capabilities of
the underlying device, so they range between 2048 and 16384, depending on the
hardware.

Capability ES 2.0 Minimum ANGLE
MAX VERTEX ATTRIBS 8 16
MAX VERTEX UNIFORM VECTORS 128 254
MAX VERTEX TEXTURE IMAGE UNITS 0 0, 4*
MAX VARYING VECTORS 8 10
MAX FRAGMENT UNIFORM VECTORS 16 221
MAX TEXTURE IMAGE UNITS 8 16
MAX TEXTURE SIZE 64 2048-16384*
MAX CUBE MAP SIZE 16 2048-16384*
MAX RENDERBUFFER SIZE 1 2048-16384*
ALIASED POINT SIZE RANGE (min, max) (1, 1) (1, 64)
ALIASED LINE WIDTH RANGE (min, max) (1, 1) (1, 1)

Table 39.1. Resource limits. The most commonly used implementation-dependent values
showing both the minimum OpenGL ES 2.0 values and the ANGLE-specific limits. The
ANGLE limits are for SM3-capable hardware as of ANGLE revision 889.

© 2012 by Taylor & Francis Group, LLC



39. The ANGLE Project: Implementing OpenGL ES 2.0 on Direct3D 565

39.3.14 Optimizations

To ensure that ANGLE performs as closely as possible to a native implementation
of OpenGL ES 2.0, we strive to avoid redundant or unnecessary work, both on the
CPU side and on the GPU side.

Much of the effective rendering state is only known at the time of a draw call,
so ANGLE defers making any Direct3D render-state changes until draw time. For
example, Direct3D only supports explicitly setting culling for clockwise or coun-
terclockwise vertex-winding orders while OpenGL indicates which winding order is
considered front-facing by using glFrontFace. glCullFace determines which
of these sides should be culled, and GL CULL FACE enables or disables the actual
culling. In theory, changing any of the glFrontFace, glCullFace, or GL CULL

FACE states would alter the corresponding Direct3D render state, but by deferring
this to the draw call, we reduce it to at most one change (per state) per draw call. For
each related group of states, ANGLE keeps a “dirty” flag to determine whether the
affected Direct3D states should be updated.

OpenGL identifies resources by integer numbers (or “names”), while the im-
plementation requires pointers to the actual objects. This means ANGLE contains
several map containers that hold the associations between resource names and object
pointers. Since many object lookups are required per frame, this can cause a notice-
able CPU hotspot. Fortunately the associations do not typically change very often,
and for currently bound objects, the same name would be looked up many times
in a row. Thus, for the currently bound objects like programs and framebuffers, the
pointer is cached and replaced or invalidated only when an action is performed which
modifies the association.

ANGLE also keeps track of the textures, buffers, and shaders that are currently
set on the Direct3D device. To avoid issues with cases where an object gets deleted
and a new one coincidentally gets created at the same memory location, resources are
identified by a unique serial number instead of their pointer.

Another place caching plays a critical role in optimizing performance is in apply-
ing the vertex attribute bindings. Direct3D 9 requires all attributes to be described in
a vertex declaration. Creating and later disposing of this object takes up valuable time
and potentially prevents the graphics driver from minimizing internal state changes,
so a cache was implemented to store the most recently used vertex declarations.

We also endeavor to minimize the GPU workload, both in terms of data transfers
to/from the GPU and in terms of computational workload. As discussed earlier, we
have eliminated the overhead in flipping the rendered image at presentation time,
added support for buffers with static usage, implemented mechanisms to minimize
texture reallocations, and used direct clear operations when masked clears are not
required. We also optimize out the computation of any shader built-in variables that
are not used in the shaders.

It is important to note that while all these optimizations have made ANGLE
more complex, they have also significantly helped ensure that the underlying

© 2012 by Taylor & Francis Group, LLC



566 VII Software Design

hardware, accessed through Direct3D, is used as efficiently as possible. Native driver
implementations of OpenGL and OpenGL ES also require many of the same opti-
mizations and inherent complexity in order to achieve high performance in practice.

39.3.15 Recommended Practices

Throughout this chapter, we have touched on a variety of practices that should help
improve the performance and portability of applications. While these recommenda-
tions are targeted specifically at ANGLE’s implementation, we expect that many of
these practices will also be applicable to other GL implementations:

• Always check for optional features and validate resource limits.

• Group objects in buffers based on data format (type and layout) and update
frequency.

• Ensure that appropriate buffer usage flags are used.

• Use static buffers and fully specify the contents of buffers before draw time.

• Use separate buffers for index and vertex data.

• Use immutable textures when available. If EXT texture storage is not
supported, ensure that a complete texture is created and consistently defined.

• Avoid redefining the format or size of existing textures, and create a new tex-
ture instead.

• Use the BGRA EXT / UNSIGNED BYTE texture format to minimize texture con-
versions on load and for pixel readback.

• Use packed depth-stencil for combined depth and stencil support.

• Opt in to reset notifications, and handle context resets appropriately.

• Avoid masked clear operations.

• Avoid line loops by drawing closed line strips instead.

• Use fences instead of glFinish for finer synchronization control.

• Avoid using complex conditional statements and loops with a high maximum
number of iterations in shaders.

© 2012 by Taylor & Francis Group, LLC



39. The ANGLE Project: Implementing OpenGL ES 2.0 on Direct3D 567

39.3.16 Performance Results

At the time of this writing, there are no de facto benchmarks for WebGL. To correctly
interpret performance results of applications and demos, one should first realize that
once a draw call command reaches the GPU driver, there are, in theory, few funda-
mental differences between OpenGL and Direct3D. For ANGLE, in particular, the
ESSL and HLSL shaders are largely equivalent, so the GPU performs essentially the
same operations. Therefore applications or demos with high numbers of vertices or
high levels of overdraw do not really test the graphics API implementation but rather
the hardware performance itself.

Potential differences in performance between ANGLE and native OpenGL im-
plementations would stem mainly from the graphics commands issued between draw
calls (texture, buffer, and uniform updates), the setup work performed to translate a
GL draw call into a Direct3D draw call, and the vertex-shader epilogue and pixel-
shader prologues. Therefore, the applications and demos we chose to use for per-
formance comparisons perform a relatively high number of draw calls, use various
textures, and/or use nontrivial animations.

The results, shown in Table 39.2, reveal that ANGLE typically performs on par
with desktop OpenGL drivers. This demonstrates that on Windows, it is viable to
implement OpenGL ES 2.0 on top of Direct3D, and the translation does not add
significant overhead.

Desktop GL (fps) ANGLE (fps)
MapsGL, San Francisco street level 32 33

http://maps.google.com/mapsgl

WebGL Field, “lots” setting 25–48 25–45
http://webglsamples.googlecode.com/hg/field/field.html

Flight of the Navigator 20 minimum 40 minimum
http://videos.mozilla.org/serv/mozhacks/flight-of-the-navigator/

Skin rendering 62 53
http://alteredqualia.com/three/examples/webgl materials skin.html

Table 39.2. Performance comparison between ANGLE and native OpenGL implementa-
tions in sample applications. The results were obtained using Google Chrome 15.0.874.106m
on a laptop with a Core i7-620M (2.67 GHz dual core), GeForce 330M, running Windows
7 64-bit. Framerates were determined using FRAPS (http://www.fraps.com/), and vsync was
forced off.

© 2012 by Taylor & Francis Group, LLC



568 VII Software Design

39.4 Future Work
ANGLE is continuing to evolve, and there is future work to be done implementing
new features, improving performance, and resolving defects. Additional features that
could be added include depth textures, wide lines, and multisample EGL configs.
Areas for improving performance include target-dependent flipping of rendering,
optimizations to texture loading and pixel readback, and bottlenecks as shown by
profiling applications. Another possible future direction for ANGLE’s development
could be to implement a Direct3D 11 back-end. This would allow us to support
features not available in Direct3D 9, future versions of the OpenGL ES API, and
future operating systems where Direct3D 9 is not ubiquitous.

39.5 Conclusion
This chapter explained the motivation behind ANGLE and described how it is cur-
rently used in web browsers both as an OpenGL ES 2.0-based renderer and as a
shader validator and translator. We discussed many of the challenging aspects of
the implementation of this project, primarily in mapping between OpenGL and
Direct3D, and explained how they were mastered. We discussed some of the opti-
mizations we have made in our implementation in order to provide a conformant
Open GL ES 2.0 driver that is both competitive in performance and fully featured.
The development of ANGLE is ongoing, and we welcome contributions.

39.6 Source Code
The source for the ANGLE Project is available from the Google Code repository.1

This repository includes the full source for the ANGLE libGLESv2 and libEGL li-
braries as well as some small sample programs. The project can be built on Windows
with Visual C++ 2008 Express Edition or newer.

Acknowledgments We would like to acknowledge the contributions of our TransGam-
ing colleagues Shannon Woods and Andrew Lewycky, who were coimplementers of ANGLE.
Thanks also to Gavriel State and others at TransGaming for initiating the project, and to Van-
gelis Kokkevis and the Chrome team at Google for sponsoring and contributing extensions and
optimizations to ANGLE. Finally, we thank the Mozilla Firefox team and other community
individuals for their contributions to the project.

1http://code.google.com/p/angleproject/

© 2012 by Taylor & Francis Group, LLC



39. The ANGLE Project: Implementing OpenGL ES 2.0 on Direct3D 569

Bibliography
[3Dlabs 05] 3Dlabs. GLSL Demos and Source Code from the 3Dlabs OpenGL 2 Website. http:

//mew.cx/glsl/, 2005 (accessed November 27, 2011).

[ANGLE 11] ANGLE Project. ANGLE Project Extension Registry. https://code.google.com/p/
angleproject/source/browse/trunk/extensions, 2011 (accessed November 27, 2011).

[Bridge 10] Henry Bridge. Chromium Blog: Introducing the ANGLE Project. http://
blog.chromium.org/2010/03/introducing-angle-project.html, March 18, 2010 (accessed
November 27, 2011).

[Ek 05] Lars Andreas Ek, Øyvind Evensen, Per Kristian Helland, Tor Gunnar Houeland, and
Erik Stiklestad. “OpenGL ES Shading Language Compiler Project Report (TDT4290).”
Department of Computer and Information Science at NTNU. http://www.idi.ntnu.no/emner/
tdt4290/Rapporter/2005/oglesslc.pdf, November 2005, (accessed November 27, 2011).

[FSF 11] Free Software Foundation. “Bison—GNU parser generator.” GNU Operating Sys-
tem. http://www.gnu.org/s/bison/, May 15, 2011 (accessed November 27, 2011).

[MSDN 11a] Microsoft. Coordinate Systems (Direct3D 9) (Windows). http://msdn.microsoft.
com/en-us/library/bb204853(VS.85).aspx, September 6, 2011 (accessed November 27,
2011).

[MSDN 11b] Microsoft. D3DUSAGE (Windows). http://msdn.microsoft.com/en-us/library/
bb172625(VS.85).aspx, September 6, 2011 (accessed November 27, 2011).

[MSDN 11c] Microsoft. Direct3D 9 Graphics (Windows). http://msdn.microsoft.com/en-us/
library/bb219837(VS.85).aspx, September 6, 2011 (accessed November 27, 2011).

[MSDN 11d] Microsoft. Feature Summary (Direct3D 9 for Windows Vista). http://
msdn.microsoft.com/en-us/library/bb219800(VS.85).aspx, September 6, 2011 (accessed
November 27, 2011).

[MSDN 11e] Microsoft. Lost Devices (Direct3D 9) (Windows). http://msdn.microsoft.com/
en-us/library/bb174714(VS.85).aspx, September 6, 2011 (accessed November 27, 2011).

[MSDN 11f ] Microsoft. Point Sprites (Direct3D 9) (Windows). http://msdn.microsoft.com/
en-us/library/bb147281(VS.85).aspx, September 6, 2011 (accessed November 27, 2011).

[MSDN 11g] Microsoft. Processing Vertex Data (Direct3D 9) (Windows). http://msdn.
microsoft.com/en-us/library/bb147296(VS.85).aspx, September 6, 2011 (accessed
November 27, 2011).

[MSDN 11h] Microsoft. ps 3.0 Registers (Windows). http://msdn.microsoft.com/en-us/
library/bb172920(VS.85).aspx, September 6, 2011 (accessed November 27, 2011).

[MSDN 11i] Microsoft. Queries (DirectD9) (Windows). http://msdn.microsoft.com/en-us/
library/bb147308(VS.85).aspx, September 6, 2011 (accessed November 27, 2011).

[MSDN 11j] Microsoft. Semantics (DirectX HLSL). http://msdn.microsoft.com/en-us/
library/bb509647(VS.85).aspx, September 6, 2011 (accessed November 27, 2011).

[MSDN 11k] Microsoft. Viewports and Clipping (Direct3D 9) (Windows).
http://msdn.microsoft.com/en-us/library/bb206341(VS.85).aspx, September 6, 2011
(accessed November 27, 2011).

© 2012 by Taylor & Francis Group, LLC



570 VII Software Design

[Flex 08] The Flex Project. “Flex: The Fast Lexical Analyzer.” Sourceforge. http://flex.
sourceforge.net/, 2008 (accessed November 27, 2011).

[Khronos 11a] The Khronos Group. Handling Context Lost. http://www.khronos.org/webgl/
wiki/HandlingContextLost, November 17, 2011 (accessed November 27, 2011).

[Khronos 11b] The Khronos Group. “Khronos Native Platform Graphics Interface (EGL
Version 1.4).” Khronos EGL API Registry. Edited by Jon Leech. http://www.khronos.org/
registry/egl/specs/eglspec.1.4.20110406.pdf, April 6, 2011 (accessed November 27, 2011).

[Khronos 11c] The Khronos Group. OpenGL ES 2.0 Common Profile Specification (Version
2.0.25). Edited by Aaftab Munshi and Jon Leech. http://www.khronos.org/registry/gles/
specs/2.0/es full spec 2.0.25.pdf, November 2, 2010 (accessed November 27, 2011).

[Khronos 11d] The Khronos Group. OpenGL Registry. http://www.opengl.org/registry/, (ac-
cessed November 27, 2011).

[Khronos 11e] The Khronos Group. “The OpenGL ES Shading Language (Version
1.0.17).” Khronos OpenGL ES API Registry. Edited by Robert J. Simpson and John
Kessenich. http://www.khronos.org/registry/gles/specs/2.0/GLSL ES Specification 1.0.17.
pdf, May 12, 2009 (accessed November 27, 2011).

[Khronos 11f ] The Khronos Group. “WebGL Specification (Version 1.0).” Khronos WebGL
API Registry. Edited by Chris Marrin. https://www.khronos.org/registry/webgl/specs/1.0/,
February 10, 2011 (accessed November 27, 2011).

[TransGaming 11] TransGaming. GameTree TV: Developers. http://gametreetv.com/
developers, 2011 (accessed November 27, 2011).

© 2012 by Taylor & Francis Group, LLC



SceneJS: A WebGL-Based Scene
Graph Engine

Lindsay Kay

40.1 Introduction

The WebGL graphics API specification extends the capabilities of the JavaScript lan-
guage to enable compatible browsers to generate 3D graphics on the GPU with-
out the need for plugins. With JavaScript execution speed a potential bottleneck,
high-performance WebGL applications rely on executing minimal JavaScript while
offloading as much work as possible to the GPU in the form of shader programs
written in GLSL.

This chapter describes key concepts of SceneJS, an opensource 3D engine for
JavaScript that applies some simple scene-graph concepts such as state inheritance
on top of WebGL [Kay 10]. The framework focuses on efficient rendering of large
numbers of individually pickable and articulated objects as required for high-detail,
model-viewing applications such as BIMSurfer and the BioDigital Human shown in
Figure 40.1 [Berlo and Lindeque 11, BioDigital 11].

Essentially, SceneJS works by maintaining a state-optimized list of WebGL calls
that is updated through a simple scene graph API based on JSON [Crockford 06].
As updates are made to the graph, SceneJS dynamically rebuilds only the affected
portions of the call list, while automatically taking care of shader generation.

This chapter describes the general architecture of SceneJS, focusing mainly on
the JavaScript strategies it uses to efficiently bridge its abstract scene representation
with an efficient use of WebGL and how those strategies can be exploited through
its API.

571

40

© 2012 by Taylor & Francis Group, LLC



572 VII Software Design

Figure 40.1. SceneJS is the rendering engine within the BioDigital Human, a free Web-based
atlas of human anatomies and conditions. When all visible, the 1,886 meshes and 126 textures
in the Human’s male anatomy view render at around 10–15 FPS in Chrome 14.0.835.202 on
a computer with an i7 CPU and an NVIDIA GeForce GTX 260M GPU.

40.2 Efficiently Abstracting WebGL
A scene graph is a data structure that arranges the logical and spatial representation of
a graphical scene as a collection of nodes in a graph, typically a tree. A key feature of
most scene graphs is state inheritance, in which child nodes inherit the states set up by
parents (e.g., coordinate spaces, appearance attributes, etc.). Scene graphs typically
provide a convenient abstraction on top of low-level graphics APIs, which encapsu-
lates optimizations and API best practices, leaving the developer free to concentrate
on scene content.

WebGL is based on OpenGL ES 2.0, which offloads most of the rendering work
to the GPU in the form of shaders written by the graphics programmer. Thus,
WebGL is geared for the limited execution speed of JavaScript, encouraging JavaScript
in the application’s graphics layer to be used for little more than directing GPU state:
buffer allocation and binding, writing variables, draw calls, and so on.

SceneJS bridges the gap between its scene-graph API and WebGL through a five-
stage pipeline:

1. Scene definition. A JSON definition like that of Listing 40.1 is parsed to
create a scene graph like Figure 40.2 with resources such as vertex buffer objects
(VBOs) and textures stored for its nodes on the GPU. Note the geometry
nodes at the leaves.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-48&iName=master.img-018.jpg&w=240&h=192


40. SceneJS: A WebGL-Based Scene Graph Engine 573

SceneJS .createScene({ // Scene graph root
type : "scene",
id : "the -scene",
canvasId : "my-canvas", // Bind to HTML5 canvas
nodes: [{ // View transform with node ID

type: "lookAt",
id: "the-lookat",
eye : { x : 0.0, y : 10.0, z : 15 },
look : { y : 1.0 },
up : { y : 1.0 },

nodes: [{ // Projection transform
type : "camera",
id : "the-camera",
optics : {

type: "perspective",
fovy : 25.0,
aspect : 1.47,
near : 0.10,
far : 300.0

},

nodes: [{ // Light source
type : "light",
mode : "dir",
color : { r : 1.0, g : 1.0, b : 1.0 },
dir : { x : 1.0, y : -0.5, z : -1.0 }

},

{ // Teapot geometry
type : "teapot"

},

{ // Texture for two cubes
type : "texture ",
uri : "images/texture .jpg",

nodes : [{ // Translate first cube
type : "translate",
x : 3.0,

nodes : [{ // Cube geometry
type : "cube"

}]
},

{ // Translate second cube
type : "translate",
x : 6.0,

nodes : [{ // Cube geometry
type : "cube"

}]
}]

}]
}]

}]
});

Listing 40.1. Scene-graph definition. The scene graph is a DAG expressed in JSON, in this case defining a
scene containing one teapot and two textured cubes, all illuminated by a directional light source and viewed in
perspective. Geometry nodes are normally at the leaves, where they inherit the state defined by higher nodes.

© 2012 by Taylor & Francis Group, LLC



574 VII Software Design

Scene

LookAt

Camera

Light

Teapot Texture

Texture
buffer

VBOs

VBOs

WedGL Context

TranslateTranslate

Cube Cube

Figure 40.2. Scene graph compiled from the scene definition of Listing 40.1. Note that the
geometries at the leaves inherit state from parent nodes and that various nodes hold resources
allocated for them on the GPU.

2. Draw list compilation. The scene graph is traversed to compile a sequence
of WebGL state changes. This is described in more detail in Section 40.2.1.

3. Call list compilation. The draw list is compiled into a fast list of WebGL
calls with arguments prepared from the draw list states. As shown in List-
ing 40.2, call list nodes are functions that wrap WebGL calls and are created
by higher-order functions that prepare and memorize their arguments in clo-
sures.

4. State sorting. The call-list nodes are sorted on their corresponding draw list
states to minimize the number of state changes that will go down the OpenGL
pipeline, as described in Section 40.2.2.

5. Call list execution. The call list is executed to render the frame.

Once the scene is created, we start its render loop, which executes these stages to
render the first frame. Note that each stage caches its results. Then, with the render
loop running, we can receive scene-state updates through the API’s scene accessor
methods, as shown in Listing 40.3, which we buffer for batch processing at the start
of each loop.

© 2012 by Taylor & Francis Group, LLC



40. SceneJS: A WebGL-Based Scene Graph Engine 575

//..
callList .push(

(function () {
// Call arguments prepared and cached in a closure .
var uEyePosLoc = currentDrawListNode.shader.getUniformLocation("uEyePos ");
var eye = currentDrawListNode.lookAt.eye;

// The WebGL call. The eye is a state object that is shared
// by reference with the scene graph�s lookAt node and the
// draw list node.
return function () {

glContext.uniform3fv(uEyePosLoc , [eye.x, eye.y, eye.z]);
}

})());

Listing 40.2. Call-list compilation. Each WebGL call is wrapped by a function that is created by a higher-
order function that prepares the arguments and caches them in a closure. In this example, for efficiency, the
higher-order function finds and caches the location of a shader uniform and gets the lookAt state’s eye position
in a variable for faster access.

Different types of scene-state updates require re-execution from different stages
of the pipeline in order to synchronize the rendered view. As we process the buffered
updates, we minimize JavaScript execution by re-executing the pipeline from the
latest stage, which will synchronize the view for all updates. Note that the pipeline is
not executed when the buffer is empty.

Most types of scene update are written straight through to the draw and call lists
without requiring retraversals to rebuild states and without the addition/removal of

// Find the scene and start it:
var scene = SceneJS .scene("the-scene");
scene.start ();

// Find the lookAt node and get its eye attribute:
var lookAt = scene.findNode ("the -lookat");
var eye = lookAt.get("eye");

// Set the lookAt �s eye attribute:
lookAt.set({ eye: { x : eye.x + 5.0 } });

// Create another light:
scene.findNode ("the-camera").add({

nodes: [{
type : "light", dir : { y : -1.0 }

}]
});

Listing 40.3. Scene-graph accessors. The scene graph is encapsulated by API functions that provide read and
write access to node states, render loop control, picking, and so forth. Note that write access is not provided for
states that would require reallocation of GPU-bound resources.

© 2012 by Taylor & Francis Group, LLC



576 VII Software Design

list nodes. This is supported by sharing state between the lists via common objects,
restrictions on what state may be updated, and the simple approach to state inher-
itance described in Section 40.2.1. Therefore, for most types of update, including
camera movements, color changes, and object visibility,1 we need only re-execute the
pipeline from Stage 5.

This approach is tuned to applications in which the scene-graph structure does
not change often, where it suffices to hold content in the graph most of the time,
toggling its visibility to enable or disable it.

The most expensive type of update involves the addition of nodes to the scene.
For this type, we must re-execute the pipeline from Stage 1 to reparse the JSON def-
initions for the new nodes, then rebuild the draw and call lists. Almost as expensive
are node relocations and removals, for which we need to re-execute from Stage 2.

SceneJS is a lean rendering kernel that does not include visibility culling and
physics. However, the efficiency with which it processes updates to object visibilities
and transforms makes it practical for integrating external libraries for these tasks,
such as jsBVH for culling [Rivera 10] and ammo.js for physics [Zakai 11].

40.2.1 Draw-List Compilation

We construct the draw list by traversing the scene graph in depth-first order while
maintaining a stack for each scene-node type, pushing each node’s state to the ap-
propriate stack on pre-visit, then popping it again on post-visit. At each geometry,
we create a draw-list node that references the state at the top of each stack. We also
generate a GLSL shader for the draw-list node, tailored to render the configuration
of states that the node references. For reuse by other nodes with similar states, we
hash the shader on those states and store it in a pool.

Each draw-list node has everything needed for a draw call to render a scene ob-
ject. Figure 40.3 shows the state-sorted draw list compiled from the scene graph of
Figure 40.2.

For most node types, the state at the top of the stack completely overrides the
states lower in the stack, resulting in geometries inheriting state only from the clos-
est parent of that type. As mentioned in Section 40.2, this means that updates to
inherited states of these types will write straight through to the draw and call lists
via shared state objects, requiring neither scene retraversal nor addition/removal of
draw- or call-list nodes.

Two node types are special cases, however:

1. For modeling transform nodes, we maintain a stack of matrices; at each of
these nodes, we multiply that node’s matrix by the top of the stack before
pushing it. The top matrix at each leaf geometry is then referenced by a draw-
list node. An update to any transform node (e.g., changing a rotation angle),

1The call list nodes are actually indexed by their draw-list nodes: as we execute the calls, we can
therefore efficiently skip the calls associated with invisible draw-list nodes.

© 2012 by Taylor & Francis Group, LLC



40. SceneJS: A WebGL-Based Scene Graph Engine 577

Pool of
generated

shaders

Shader
for light

Shader
for light

and texture
n2

n3

Cube

Translate

Texture

Translate

Cube

Light

Camera

LookAt

Teapot Draw List

n1

Figure 40.3. State-sorted draw list compiled from the scene graph of Figure 40.2. Nodes
n1, n2, and n3 reference the states needing to be set on WebGL to draw the teapot and cubes
at the leaves of the scene graph. Nodes n2 and n3 reference a similar state configuration and
therefore reference the same shader.

therefore, requires us to re-execute the SceneJS pipeline from Stage 2 to retra-
verse the branch to recalulate stale draw-list matrices.

2. Geometry nodes may be nested to support VBO sharing, as described in Sec-
tion 40.3.2, which is where a parent geometry node defines vertex arrays that
are inherited by child geometries. For this case, draw-list nodes are created for
leaf geometries as usual, except that as we stack geometry states, we accumu-
late on those the arrays belonging to any state already on the top of the stack.
Updates to the vertex arrays on the geometry nodes are still efficient, however,
since the arrays themselves are shared by reference amongst the scene, draw-
and call-list nodes.

© 2012 by Taylor & Francis Group, LLC



578 VII Software Design

40.2.2 State Sorting

State sorting involves minimizing the number of state changes that go down the
OpenGL pipeline by grouping similar states within the call list. We sort the call-list
nodes by shader, texture, then VBO. Shader is our primary order because switching
shaders causes widespread disruption of the OpenGL pipeline, necessitating the re-
bind of all other states. We order on textures next because during development, we
observed that they were slower to bind than VBOs.2 A further state sort is performed
when we execute the call list, in which we track the ID of the last state change that
we made on WebGL so that we don’t make the same change twice.

40.3 Optimizing the Scene
The API supports several scene-definition techniques that improve scene perfor-
mance by exploiting the state sorting order and the pipeline described in Section 40.2.

40.3.1 Texture Atlases

A texture atlas is a large image that contains many subimages, each of which is used
as a texture for a different geometry, or different parts of the same geometry. The
subtextures are applied by mapping the geometries’ texture coordinates to different
regions of the atlas. As mentioned earlier, SceneJS sorts the draw list by shader, then
by texture. As long as each of the geometry nodes inherits the same configuration
of parent-node states and can therefore share the same shader, the draw list will bind
the texture once for all the geometries. Another important benefit of texture atlases
is that they reduce the number of HTTP requests for texture images [NVIDIA 04].

40.3.2 VBO Sharing

VBO sharing is a technique in which a parent geometry node defines vertices (con-
sisting of arrays of positions, normal vectors, and UV coordinates) that are inherited
by child geometry nodes, which supply their own index arrays pointing into differ-
ent portions of the vertices. The parent VBOs are then bound once across the draw
calls for all the children. Each child is a separate object, around which, as shown in
Listing 40.4, each child geometry can be wrapped by a different texture or material,
etc. This is efficient to render as long as each child geometry inherits a similar com-
bination of states and thus avoids needing to switch generated shaders, as described
in Section 40.2.1.

2In Chrome 14.0.835.202, running on Ubuntu 10.0.4 with NVIDIA GeForce GTX 260M GPU.

© 2012 by Taylor & Francis Group, LLC



40. SceneJS: A WebGL-Based Scene Graph Engine 579

{
type : "geometry ",
positions : [...], // All positions
normals : [...], // All normals
uv : [...], // All UVs

nodes: [{
type : "texture ",
uri : "someTexture.jpg",
nodes : [{

type : "geometry ",
primitive : "triangles",
indices : [...] // Faces for this geometry

}]
},
{

type : "texture ",
uri : "anotherTexture.jpg",
nodes : [{

type : "geometry ",
primitive : "triangles",
indices : [...] // Faces for this geometry

}]
},
{

type : "texture ",
uri : "oneMoreTexture.jpg",
nodes : [{

type : "geometry ",
primitive : "triangles",
indices : [...] // Faces for this geometry

}]
}

]
}

Listing 40.4. VBO sharing to reduce binding calls, as described in Section 40.3.2. In this
example, a parent defines VBOs of positions, UVs, and normals that are inherited by the
children, which define their primitives through index arrays pointing into different portions
of the VBOs. Each child also applies a different texture to its portion.

40.3.3 Sharable Node Cores

Traditionally, reuse within a scene graph is done by attaching nodes to multiple par-
ents. For dynamically updated scenes, this can have a performance impact when the
engine must traverse multiple parent paths in the scene graph, so SceneJS takes an al-
ternative approach with node cores, a concept borrowed from OpenSG [OpenSG 10].

A node core is the node’s state. Having multiple nodes share a core means that
they share the same state. This can have two performance benefits:

1. An update to a shared node can write through to multiple draw- and call-list
nodes simultaneously.

© 2012 by Taylor & Francis Group, LLC



580 VII Software Design

// Define a couple of nodes , in a library
// to prevent them rendering by themselves:
{

type : "library ",
nodes : [

{
type : "geometry ",
coreId : "my-geometry -core",
positions : [..],
indices : [..],
primitive : "triangles"

},
{

type : "material ",
coreId : "my-material -core",
baseColor : { r: 1.0 }

}
]

},

// Share their cores:
{

type : "material ",
id : "my -material ",
coreId : "my-material -core",
nodes : [

{
type : "geometry ",
coreId : "my-geometry -core"

}
]

}

Listing 40.5. State reuse through shared node cores, described in Section 40.3.3. We define
geometry and material nodes within a library node, which prevents them from being
rendered. The geometry and material each have a coreId which allows their state (VBOs,
color etc.) to be shared by other nodes of the same type later in the scene.

2. There is increased chance of identical repeated states having matching IDs
when executing the call list, which, as described in Section 40.2.2, tracks the
state IDs to avoid redundantly reapplying them.

Listing 40.5 shows an example of node-core sharing through the scene-definition API.

40.4 Picking
We use a variation of the pipeline described in Section 40.2 for mouse picking. When
a pick is made, we compile the scene graph to special pick-mode draw and call lists,
which render each pickable object in a different color to an offscreen pickbuffer. We
then read the pixel at the pick coordinates and map its color back to the picked
object.

© 2012 by Taylor & Francis Group, LLC



40. SceneJS: A WebGL-Based Scene Graph Engine 581

Frameworks using this technique typically reduce the viewport to a 1 × 1 region
at the pick coordinates for efficiency while rendering the pickbuffer. SceneJS uses the
entire original viewport so that it can retain the pick buffer to support fast repicking
at different coordinates for the case when nothing has changed in the image since the
last pick. This supports fast mouseover effects such as tool-tips.

40.5 Conclusion
When aiming for high-performance 3D graphics in the browser, the greatest per-
formance bottleneck is JavaScript overhead. To overcome this bottleneck, WebGL
applications can greatly benefit from clever caching strategies and the use of opti-
mizations like compilation to closures. The retained mode API of SceneJS benefits
from this kind of preprocess optimization where complex dynamic code can be com-
piled to a fast static form. That said, classical techniques such as vertex sharing and
texture mapping still have the same impact as in any other OpenGL application and
should still be applied.

SceneJS is opensource software with many more features than were described
here. Moving forward, its road map will continue to focus on high-detail, model-
viewing applications; extend its optimizations for scenes in which nodes are fre-
quently added, relocated, and removed; and leverage emerging technologies such
as Web Workers and Google Native Client for additional performance.

Bibliography
[Berlo and Lindeque 11] Leon Van Berlo and Rehno Lindeque. “BIMSurfer.” http://

bimsurfer.org, September 8, 2011.

[BioDigital 11] BioDigital. “BioDigital Human.” http://biodigitalhuman.com, August 31,
2011.

[Crockford 06] Douglas Crockford. “RFC 4627.” http://tools.ietf.org/html/rfc4627, July
2006.

[Kay 10] Lindsay Kay. “SceneJS.” http://scenejs.org, January 22, 2010.

[NVIDIA 04] NVIDIA. “Improve Batching Using Texture Atlases.” ftp://download.nvidia.
com/developer/NVTextureSuite/Atlas Tools/Texture Atlas Whitepaper.pdf, September
7, 2004.

[OpenSG 10] OpenSG. “OpenSG: Node Cores.” http://www.opensg.org/htdocs/doc-1.8/
NodeCores.html, February 8, 2010.

[Rivera 10] Jon-Carlos Rivera. “jsBVH.” https://github.com/imbcmdth/jsBVH, April 4,
2010.

[Zakai 11] Alon Zakai. “ammo.js.” https://github.com/kripken/ammo.js, May 29, 2011.

© 2012 by Taylor & Francis Group, LLC



© 2012 by Taylor & Francis Group, LLC



Features and Design Choices
in SpiderGL

Marco Di Benedetto, Fabio Ganovelli, and
Francesco Banterle

41.1 Introduction
Technologies related to computer graphics (CG) are constantly growing. This is
mostly due to the widespread availability of 3D acceleration hardware with an un-
precedented ratio of performance to cost. In the past, access to such accelerators was
confined to workstations; nowadays, even handheld devices such as smartphones are
equipped with powerful graphics hardware. On a parallel timeline, with the intro-
duction of OpenGL, CG software has moved to proprietary solutions from royalty-
free specifications. In addition, widespread access to broadband Internet connections
have led to a tremendous increase in content availability, as well as a great enrichment
of web technologies, such as HTML5.

In this mature scenario, the WebGL specification was introduced to allow CG
and web programmers to leverage the power of GPUs directly within web pages.
WebGL is a powerful technology based on the OpenGL ES 2.0 specification, and
it thus adheres to the philosophy of a barebones low-level API. As it happens in
similar contexts, a series of higher-level libraries have been developed to ease usage
and implement more complex constructs.

SpiderGL [Di Benedetto et al. 10] is a JavaScript CG library that uses WebGL
for real-time rendering. The library exposes a series of utilities, data structures, and
algorithms to serve typical graphics tasks. When developing SpiderGL, we wanted
to create a library able to simplify the most common usage pattern of WebGL, and
that could guarantee a seamless integration into complex software packages. Its role
of middleware imposed on us a need to enforce consistency whenever users wanted

583

41

© 2012 by Taylor & Francis Group, LLC



584 VII Software Design

to access the underlying WebGL layer, and to provide a solid foundation for the
development of higher-level components. The library can be downloaded from the
SpiderGL website, http://spidergl.org.

In this chapter, we discuss the most important choices that we made while de-
signing and developing SpiderGL. In Section 41.2, we will briefly discuss the library
architecture. The definition of 3D objects is detailed in Section 41.3. Section 41.4
discusses the problems arising from the object-binding paradigm imposed by the API
and how we deal with it. In Section 41.5, we describe how SpiderGL wraps native
WebGL objects and how we guarantee a robust interoperability with low-level calls.
Section 41.6 draws conclusions from our work.

41.2 Library Architecture
The global philosophy of the SpiderGL library is to provide a procedural interface
to typical CG algorithms and data structures. With the procedural approach, it
is possible to create higher-level interfaces, i.e., scene graphs, that use SpiderGL as
a lower-level library. In designing this software, we imposed on ourselves a series
of requirements, the most important of which was to never prevent the user from
directly accessing WebGL native functionality. Guaranteeing this property means
that a seamless cooperation of high-level SpiderGL code and low-level WebGL calls
can be achieved, giving more freedom to users.

The library is composed of several modules, implemented as JavaScript name-
space objects. The top-level object, SpiderGL, serves as the main library name-
space and avoids polluting the JavaScript global object. The encapsulation of sym-
bols within modules create a clean structure but results in more verbose code. For
this reason, we provide a function that opens each module namespace, making con-
tained symbols properties of the global object and thus accessible without qualifying
them. For example, after opening namespaces, the generic object SpiderGL.Some
Module.SomeClass is aliased by SglSomeClass; this means that when adding
new symbols, we have to avoid name clashes across modules.

There are top-level modules intended to provide most of the interfaces needed
by users, and transversal modules, e.g., components whose functionalities are used
by other modules. The following is a brief description of what SpiderGL modules
contain:

• Core. Basic constant definitions and the SglObject class, the base prototype
used by every object of the library.

• Type. Symbolic constants that represents scalar types, i.e., SGL UINT16 and
SGL FLOAT32, as well as functions to convert from and to WebGL-type sym-
bolic constants. Utility functions to identify JavaScript types, i.e., isArray(),
and implement prototypal inheritance are also provided.

© 2012 by Taylor & Francis Group, LLC



41. Features and Design Choices in SpiderGL 585

• Utility. Functions for object merging, retrieving of default values, and other
common functionalities.

• DOM. Access function to DOM elements such as text retrieval.

• Math. Definition of the most common mathematical objects used in com-
puter graphics, such as vectors, matrices, and quaternions.

• Space. Geometric entities and transformation-related utilities such as the
SglTransformationStack, which provides an easy-to-use interface resem-
bling the fixed-functionality OpenGL matrix stack.

• IO. Classes and functions to access remote content. The SglRequest class
serves as the base type for text, JSON, and binary requests.

• WebGL. Functions and wrappers that simplify the usage of the corresponding
WebGL objects and expose an expressive interface for object editing.

• Model. Classes and functions for defining and rendering of 3D objects.
These allow us to use the same structure both for JavaScript-based algorithms,
e.g., relying on system memory storage, and WebGL rendering.

• UI. Interfaces inspired by the GLUT library to handle rendering canvas events.

To ease the use of the library, all functions and object methods have default
values. Object methods also have the possibility of restoring state default values by
using the special SGL DEFAULT symbolic constant, i.e.,

texture .minFilter = gl.NEAREST ;
// ...
texture .minFilter = SGL_DEFAULT; // Restore default value

Default values can be changed by simply redefining them after the library script has
been processed. In this way, it is possible to configure the default behavior of the
library on a per-application, e.g., per-page, basis.

41.3 Representing 3D Objects
One of the features that most characterizes a CG library is how 3D models are rep-
resented. Approaches like scene graphs generally organize the model as a set of nodes
(see SceneJS in Chapter 40), possibly resembling an identifiable, rooted subtree in
a more complex graph that comprehends all the elements of a scene. Each node
serves as a basic building block, like data sources, i.e., vertex buffers, rendering states,
submodel partitions, and hierarchical and spatial relationships through transforma-
tion chains. SpiderGL is mostly a procedural library that exposes several fundamental

© 2012 by Taylor & Francis Group, LLC



586 VII Software Design

components, intended to be combined in a procedural way to form more complex
entities. Even if a scene graph layer can be built on top of the library, it is indeed clear
that a flexible way of representing 3D models is needed, both for creating content-
rich scenes and for offering a flexible and performancewise data structure that can be
effectively used in applied research or algorithm prototyping.

In SpiderGL, the 3D model went through an upgrading design process, during
which we tried to keep the flexibility of a raw structure while adding expressiveness.

In the first versions, we used a mesh to represent a 3D object: the structure was
simply a set of vertex and primitive streams. Each vertex stream was composed of a
data container, implemented as a vertex buffer, and a data-layout descriptor, which
encapsulated all the information needed to describe the stream, and the parameters
to pass to a call to vertexAttribPointer(). Constant vertex streams, i.e., a sin-
gle attribute shared by all vertices, were represented as a four-component array of
floats, to be used as the input of a vertexAttrib4fv() call. Similarly, a primi-
tive stream was composed of an index buffer and the associated parameters to call
drawElements(). In the case of nonindexed primitives, the stream was just com-
posed of the parameter set needed by drawArrays(). This structure was raw, direct,
and simple to use, but it lacked the possibility of organizing vertex attributes in an in-
terleaved layout. Due to memory-controller architecture and prefetching strategies,
tightly packed attributes together can improve performance, especially on low-end
devices.

In the second implementation of the mesh structure, we relaxed the constraint
that a data source could serve only one stream. A vertex or indexed primitive stream
could refer by name to the source buffer, thus allowing interleaved layouts.

An important feature that we believed to be a powerful point in exploiting the
generality of the WebGL API was the lack of semantic information associated with
vertex streams. They were only identified by arbitrary names, and it was up to
the programmer to establish a correspondence between them and vertex-shader at-
tributes. For example, by reusing a standard flat-color shader program, it was possible
to use the per-vertex texture coordinates as vertex positions to perform a color ren-
dering in texture space. However, even if this made it possible to decouple vertex
streams from vertex shader attributes, not having semantic information implied that
common algorithms, i.e., bounding box and surface normal calculation, did not have
a way to identify the vertex attributes they needed.

Finally, we decided to add semantic information and redesign the mesh as a more
complete structure. The result was a more expressive representation, namely, the
model. Contrary to a mesh, a model is a complex structure made of logic parts. Each
part represents a structural piece of geometry that should be considered indivisible.
However, to cope with the WebGL limitation that sets to 216 − 1 the maximum rep-
resentable vertex index in an indexed primitive stream, each model part is composed
of a set of chunks.

© 2012 by Taylor & Francis Group, LLC



41. Features and Design Choices in SpiderGL 587

Data Vertex and Index Buffers

Access Vertex Attributes and Primitive Streams Layout

Semantic Stream Groups (Chunks) and Semantic Bindings

Logic Model Parts (each part as list of chunks)

High-Level Hierarchical relations, animations, etc.

Model Layer StackFlexibility Expressiveness

Figure 41.1. The stack of layers composing the model structure.

41.3.1 The Model Layer Stack

As shown in Figure 41.1, the model is a stack of layers. Each layer represents informa-
tion at a different level-of-detail and depends only on the previous one in a bottom-
up fashion. As the stack is walked bottom to top, information becomes higher level,
adding expressiveness to data. Conversely, in descending layers from top to bottom,
fewer restrictions are imposed, incrementing flexibility. In the following, we see what
each layer represents and how it is encoded.

Data layer. This is where raw data are stored; it is partitioned into a vertex and
an index data source. Each source can be stored in three ways: regular JavaScript
arrays, typed arrays [Group 11b], and WebGL buffers. The storage alternatives are

model.data = {
vertexBuffers : {

"vbufferA " : {
type : SGL_FLOAT32 ,
untypedArray : // [ ... ],
typedArray : new Float32Array(...),
glBuffer : new SglVertexBuffer(gl, ...)

},
"vbufferB " : {

// Similar to "vbufferA "
},
// ...

},
indexBuffers : {

"ibufferA " : { /* similar to a vertex buffer */ },
// ...

}
};

Listing 41.1. An example of the model Data layer.

© 2012 by Taylor & Francis Group, LLC



588 VII Software Design

not mutually exclusive, meaning that model data can be kept in system and graphics
memory at the same time. This is particularly useful because it avoids the definition
of two different model structures. For example, algorithms that perform calculations
on the geometry can access the regular or typed array, while rendering algorithms will
use wrapped WebGLBuffer objects. Listing 41.1 shows the data-layer structure.

Access layer. The access layer provides the needed information to generate vertex
attribute and primitive streams that will be fed into the rendering pipeline.

A vertex attribute stream can refer by name to a vertex buffer in the data layer
along with layout and accessing parameters (i.e., the needed information to perform
a vertexAttribPointer() call), or it can store a single 4-dimensional value that
will be used by every vertex (i.e., as in vertexAttrib4fv()).

Similarly, a primitive stream can define an indexed primitive flow by referenc-
ing an index buffer in the data layer and its layout parameters (i.e., to be used
in drawElements()) or a nonindexed primitive array range (i.e., translated in a
drawElements() call) (see Listing 41.2).

model.access = {
vertexStreams : {

"vstreamA " : {
buffer : "vbufferA ",
size : 3,
type : SGL_FLOAT32 ,
normalized : false ,
stride : 0,
offset : 0

},
"vstreamB " : { /* similar to "vstreamA " */ },
"vstreamC " : { value: [1, 0.5, 0, 1] }, // Constant stream
// ...

},
primitiveStreams : {

"pstreamA " : { // indexed primitives
buffer : "ibufferA ",
mode : SGL_TRIANGLES ,
count : triCount * 3,
type : SGL_UINT16 ,
offset : 0

},
"pstreamB " : { // non-indexed primitives

mode : SGL_POINTS ,
first : 0,
count : verticesCount

},
// ...

}
};

Listing 41.2. An example of the model Access layer.

Semantic layer. The general idea of the semantic layer is to define, for each way a
model is intended to be rendered, e.g., a shader program or rendering pass, a group

© 2012 by Taylor & Francis Group, LLC



41. Features and Design Choices in SpiderGL 589

model.semantic = {
bindings : {

"bindingA " : {
vertexStreams : {

"POSITION " : [ "vstreamA " ],
"TEXCOORD " : [ "vstreamB " /*, "vstreamB2", ... */ ],
"COLOR" : [ "vstreamC " ]

},
primitiveStreams : {

"FILL" : [ "pstreamA " ],
"POINT" : [ "pstreamB " ]

}}},
chunks : {

"chunkA " : {
techniques : {

"common " : { binding : "bindingA " }
}}}

};

Listing 41.3. An example of the model Semantic layer.

of vertex streams with associated semantics. This information can then be used by
computational geometry or rendering algorithms, e.g., bounding-box calculation, or
to bind model vertex streams to the corresponding input attributes of a vertex shader.

The semantic layer is also used to define indivisible model subparts. This neces-
sity comes from the WebGL specification that limits the number of indexable vertices
in a buffer to 216. Once subparts, or chunks, have been defined, the logic layer can
assemble them to form whole model parts. Inspired by the COLLADA [Group 11a]
schema, each chunk can specify several semantic bindings, depending on the access
or rendering technique that will operate on it, as shown in Listing 41.3.

For each semantic value, e.g., "TEXCOORD", it is possible to specify an array of
streams, each one referring to a semantic set, i.e., two sets of texture coordinates. As in
COLLADA, the common technique refers to a reasonable, general-purpose semantic
binding.

Logic layer. Each model can be composed of parts that have a logical or structural
meaning, i.e., the wheel, windshield, and body parts of a car model. The purpose of
the logic layer is just to group chunks to form a named model part (see Listing 41.4).

model.logic = {
parts : {

"whole" : {
chunks : [ "chunkA" /*, "chunkB", ... */ ]

}
}

};

Listing 41.4. An example of the model Logic layer.

© 2012 by Taylor & Francis Group, LLC



590 VII Software Design

High-level layers. The layer stack of the model is kept open to future additions.
The high-level category is intended to host layers that progressively add more ex-
pressive information. Such layers can be used to define hierarchical relations among
model parts, animation paths, or even annotations.

The layered structure of the model allows flexibility and expressiveness during
algorithm development. As features are added to SpiderGL, we exploit the extend-
ability of this structure to give users a thorough object that can be used at the level of
abstraction required by the application being developed.

To give the the library a good usability level, however, the flexible model structure
must be coupled with a series of manageable WebGL support utilities. The next sec-
tion discusses the most important design choices we adopted in the WebGL module
to ease the development of a real-time rendering application.

41.4 Direct Access to WebGL Object State
WebGL exposes a powerful API that allows its users to leverage the performance of
graphics accelerators. The API deals with low-level objects and operations and fol-
lows the philosophy of providing everything that is necessary, but nothing more. In
this situation, it is often necessary to develop higher-level libraries that add expres-
siveness and, at the same time, simplify the most common usage patterns. Such
libraries are classified as middleware, to underline their placement between low-level
access and higher-level systems, such as thorough engines.

With SpiderGL, we wanted to develop a library that allowed a seamless interop-
erability with native WebGL calls. To achieve this, we had to tackle a usage pattern
that is imposed by the WebGL specification. This pattern comes from the context-
centric state machine nature of the API, which requires the adoption of a particular
binding paradigm to operate on resources or objects in general.

In general, WebGL objects have an internal state, like attributes or parameters,
and encapsulate some sort of data, like raw memory chunks in buffers or images in
textures. Objects can be edited to make changes to their internal state or data, or
they can be bound to particular binding sites or targets of the rendering context to be
used by some stages of the rendering pipeline. As an example, consider Listing 41.5.

Function update modifies the paintTex texture object, i.e., sets the color of
one of its texels, while function draw uses it to perform rendering. Here, we are
witnessing a twofold or overloaded usage of the bindTexture() method: at line 3
paintTex is bound so that the following editing command, texSubImage2D(),
operates on it; at line 9, the same paintTex is bound to the rendering context so
that it can be accessed by some pipeline stages, e.g., by vertex and fragment shaders,
when a drawing command is issued. These syntactically equal but semantically dif-
ferent ways in which the bind function is used are collectively known to OpenGL
developers as the bind-to-edit/bind-to-use paradigm.

© 2012 by Taylor & Francis Group, LLC



41. Features and Design Choices in SpiderGL 591

1 function update(x, y) {
2 // Update a single texel of the texture image
3 gl.bindTexture(gl.TEXTURE_2D , paintTex );
4 gl.texSubImage2D(gl.TEXTURE_2D , 0, x, y, 1, 1,
5 gl.RGBA , gl.UNSIGNED_BYTE , selectedColor);
6 }
7 function draw() {
8 // Clear framebuffer , setup matrices , program etc.
9 gl.bindTexture(gl.TEXTURE2D , paintTex );

10 doSomething();
11 gl.drawElements(...);
12 }

Listing 41.5. Example of bind-to-edit/bind-to-use paradigm.

41.4.1 The Problem

It is important to understand the side effects of this paradigm in the editing phase:
the previous binding is broken, that is, the object T previously bound to the involved
target (TEXTURE 2D in the above example) is unbound in favor of the object to be
edited. This may not be a problem if whoever has bound T is aware that the binding
has been or is going to be broken. In the above example, whoever wrote the draw
function probably wanted paintTex to be bound at the time drawElements()

is called (line 11). To this end, the developer must be sure that the function call
doSomething() at line 10 does not break the binding. Of course, in this simple
example, the code could be probably rearranged to ensure this precondition (i.e.,
swap lines 9 and 10), but in real and more complex scenarios, this is not easily
feasible. This is particularly true whenever third-party middleware, layered libraries,
are used.

OpenGL developers are aware of this, so they changed their coding habits to
avoid such situations. But this comes at some cost, especially for the ones who write
layered libraries. In fact, the advocated solution to this issue is that, whenever a
function acts on a binding, it must recover the existing one, as shown in Listing 41.6.

At line 2, the context is queried to retrieve the object currently bound to the
target of interest; at line 3 the object that must be edited or used is bound, and
operations occurs on it (line 4); at line 5 the previously bound object is restored.
This query/bind/set/restore strategy causes of course a burden both in code writing
and at runtime.

1 function doSomething() {
2 var boundTex = gl.getParameter(gl.TEXTURE_BINDING_2D);
3 gl.bindTexture(gl.TEXTURE_2D , someTex );
4 gl.texParameteri(gl.TEXTURE_2D , gl.TEXTURE_WRAP_S , gl.REPEAT);
5 gl.bindTexture(gl.TEXTURE_2D , boundTex );
6 }

Listing 41.6. A possible solution to the layered library problem.

© 2012 by Taylor & Francis Group, LLC



592 VII Software Design

41.4.2 A Solution

A simpler and cleaner implementation of doSomething() could be made if we have
the opportunity to directly specify the object we want to operate on:

function doSomething() {
gl.texParameteri(someTex , gl.TEXTURE_2D , gl.TEXTURE_WRAP_S , gl.←↩

REPEAT );
}

Other than making development easier, this way of operating on objects is also closer
to an object-oriented paradigm. To overcome the issues of the bind-to-edit/bind-
to-use paradigm, the EXT direct state access (DSA) extension [Kilgard 10]
was developed and made official in desktop OpenGL. For each editing function in
the specification that relies on the current binding (or other context state, in which
case, it is referred to as selector state), the DSA extension exposes a corresponding
function that takes, usually as first argument, the object to operate on. Even if
DSA does not completely solve all the problems, it is a great step toward a cleaner
API.

Unfortunately, WebGL does not have DSA, so current bindings and state selec-
tors are the only way to manipulate object state. SpiderGL can be used as a mid-
dleware library, meaning that we have to cope with the above problems. Since the
first version of the library, wrappers for WebGL objects (e.g., buffers, framebuffers,
programs, renderbuffers, shaders, and textures) were developed and exposed to sim-
plify their usage, with expressive constructor options, methods, and parameter setters
and getters (see Section 41.5); in the initial releases, wrappers were required to be ex-
plicitly bound before any editing on them occurred. The usage pattern was of the
form:

var tex = new SglTexture2D(...); // Encapsulates a WebGLTexture
tex.bind();
tex.wrapS = gl.REPEAT; // Hidden call to gl.texParameteri()
tex.unbind ();

We did not want to impose this requirement and did not feel comfortable with it
while we were coding.

An important design choice had to be taken. The first option was to secretly ap-
ply the query/bind/set/restore strategy, but this would have made the library code full
of replicated and tedious code, not to mention the redundant or avoidable object-
binding penalties that arise when setting several parameters on the same object. An-
other option was to add special methods to set a whole bunch of parameters at once,
but this would not have prevented the user set from tiny parameters individually.
Similarly bad, removing single-parameter settings could have caused the wrapper us-
age to be more verbose than necessary.

© 2012 by Taylor & Francis Group, LLC



41. Features and Design Choices in SpiderGL 593

gl._spidergl = { }; // private SpiderGL injections container.

gl._spidergl.setupXYZ = setupXYZ ;
gl._spidergl.xyz = null;
// ... other extensions ...

// A reference to native getExtension is saved ...
gl._spidergl.getExtension = gl.getExtension;

// ... and replaced to expose new extensions
gl.getExtension = function (name) {

var sgl = this._spidergl;
switch (name) {

case "SGL_XYZ ":
if (!sgl.xyz) {

sgl.setupXYZ (this); // setup extension on first call
}
return sgl.xyz;

// ... other extensions ...
default : // call to native getExtension

return sgl.getExtension.apply(this , arguments);
}

};

Listing 41.7. The modified getExtension() method for extension injection.

A drastic design choice had to be taken, even if it meant hijacking the WebGL

RenderingContext object. This decision breaks our initial policy that we not
modify the context object in any way. However, after realistic tests showed us that
the replacement of some methods of the context object does not sensibly impact per-
formance, we decided to inject the direct state access functionality through custom
extensions. We defined two extensions, SGL current binding and SGL direct

state access, accessible using the standard WebGL extension mechanism, that is,
the getExtension()method of the context object. The SGL current binding

extension is used to track the current binding of each target and avoid querying
the WebGL context via getParameter(), while SGL direct state access is
based on the query/bind/set/restore strategy. To make extensions available, the get
Extension() method was replaced with the code in Listing 41.7.

The property spidergl is added to the context as a container for all SpiderGL-
related injections. For each installed extension, a setup function and the extension
object itself are stored in the container property. The purpose of having a setup
function is to comply with the WebGL specification: in fact, an extension is enabled
and exposed when it is requested for the first time; later calls will just return the
already created extension object, if any. In Listing 41.7, considering a hypotheti-
cal XYZ extension, placeholders "SGL XYZ", setupXYZ, and xyz refer, respectively,
to the extension name string, the function that initializes and installs the extension,
and the name of the property of the spidergl injections container that will refer
to the extension object. For example, placeholders for the SGL current binding

© 2012 by Taylor & Francis Group, LLC



594 VII Software Design

1 function setupXYZ (gl) {
2 var ext = { }; // the object returned by getExtension()
3
4 // store extension in SpiderGL container:
5 // "cb" -> SGL_current_binding
6 // "dsa" -> SGL_direct_state_access
7 // ...
8 gl._spidergl.xyz = ext;
9

10 // extension private data with reference to context
11 ext._ = { gl : gl };
12
13 setupPrivateXYZ(gl);
14 hijackContextXYZ(gl);
15 setupPublicXYZ(gl);
16 }

Listing 41.8. Extension setup skeleton.

extension will be replaced by "SGL current binding", setupCurrentBinding,
and cb.

We will show how our extensions work and are implemented for a single type
of WebGL object, namely, the WebGLBuffer. Other object types are handled in
the same way, and the relative implementation simply follows the code that han-
dles buffer objects. A slightly different solution has been used: for WebGLTexture
objects, even if using the same concepts, a further level of tracking and handling is
introduced to take into account the different state of each texture unit.

To show how extensions are implemented, we use the code in Listing 41.8 as
a general setup skeleton, where XYZ is a placeholder for the extension being dis-
cussed. If needed, the function setupPrivateXYZ() sets up the extension in-
ternal state and functions, hijackContextXYZ() replaces public methods of the
WebGLRenderingContext object with extension-specific modified versions, and
setupPublicXYZ() defines public extension-specific constants and functions.

41.4.3 Bind Tracking and Binding Stack with
SGL current binding

The purpose of the current binding (CB) extension is to have a fast way for re-
trieving the object currently bound to a specific target. After benchmarking, we
found that a naive implementation is much faster than querying the context with
getParameter(). The extension also provides a utility stack for every binding tar-
get, with typical push and pop functions. Referring to line 8 in Listing 41.8, the
extension object is accessed by the cb property of the spidergl container object
installed in the rendering context.

For each target, extension private data consist of a reference to the currently
bound object and an array of object references, initially empty, to implement stack

© 2012 by Taylor & Francis Group, LLC



41. Features and Design Choices in SpiderGL 595

function setupPrivateCB(gl) {
var _ = gl._spidergl.cb._; // Extension private data

_.currentBuffer = { }; // Store per-target binding state
_.currentBuffer[gl.ARRAY_BUFFER] =

gl.getParameter(gl.ARRAY_BUFFER_BINDING);
_.currentBuffer[gl.ELEMENT_ARRAY_BUFFER] =

gl.getParameter(gl.ELEMENT_ARRAY_BUFFER_BINDING);

_.bufferStack = { }; // Per-target object stack
_.bufferStack[gl.ARRAY_BUFFER] = [ ];
_.bufferStack[gl.ELEMENT_ARRAY_BUFFER] = [ ];

_.bindBuffer = gl.bindBuffer; // Save native bindBuffer

// ... other types of WebGLObject ...
}

Listing 41.9. Private data setup function for the SGL current binding extension.

operations. Additionally, native binding functions are saved to be used internally by
hijacked ones. The private data setup, referred to by the underscore variable ( ), is
implemented as shown in Listing 41.9.

To track the current binding state, we need to hijack every native object binding
method. In our implementation, we avoid redundant bindings if the object to be
made current is already bound:

function hijackContextCB(gl) {
gl.bindBuffer = function (target , buffer) {

var _ = this._spidergl.cb._;
if (_.currentBuffer[target ] == buffer) {

return ;
}
_.currentBuffer[target] = buffer;
_.bindBuffer.call(this , target , buffer);

};
// ... other bind calls ...

}

Public extension functions must be exposed as methods of the object returned
by getExtension(). Thus, they are installed as functions of the ext object (cre-
ated at line 2 in Listing 41.8). The implementation of the get, push, and pop is
straightforward:

function setupPublicCB(gl) {
var ext = gl._spidergl.cb;
ext.getCurrentBuffer = function (target) {

return this._.currentBuffer[target ];
};
ext.pushBuffer = function (target) {

var _ = this._;
_.bufferStack[target ].push(_.currentBuffer[target ]);

};

© 2012 by Taylor & Francis Group, LLC



596 VII Software Design

ext.popBuffer = function (target) {
var _ = this._;
if (_.bufferStack[target ].length == 0) {

return ;
}
_.gl.bindBuffer(target, _.bufferStack[target ].pop());

};
// ... other types of WebGLObject ...

}

We executed a series of benchmarks to evaluate the performance of object binding
and query. On average, results show that the hijacked binding functions run 30%
slower than the native binding, while accessing the currently bound object is five
times faster than querying the context in the standard way. Other than to expose
functions to programmers, this extension has been introduced as a utility for the more
important direct state access functionality, so we accept the loss of some performance
during binding operations in favor of a consistent gain in accessing the current object.

41.4.4 Direct Object Access with SGL direct state access

The DSA extension is intended to provide functions to directly access WebGL object
state and data without the need for binding them to a specific target. The WebGL
API already provides functions that follow this philosophy, such as all the ones re-
lated to shaders and programs (with the exception of uniform setting). However,
several methods have to be implemented for other objects. Our implementation
of DSA functionalities uses a query/bind/set/restore strategy. In general, extension
functions take a WebGLObject as first argument, followed by all the remaining ar-
guments required by the original, non-DSA function. Listing 41.10 shows how the
DSA version of a generic function editObject(target, arg1, ..., argN) is
implemented.

1 ext.editObject(object , target , arg1 , ..., argN) {
2 var _ = this._; var gl = _.gl;
3 var current = _.cb.getCurrentObject(target); // Query
4 if (current != object) {
5 gl.bindObject(target, object); // Bind
6 }
7 gl.editObject(target, arg1 , ..., argN); // Set
8 if (current != object) {
9 gl.bindObject(target, current ); // Restore

10 }
11 }

Listing 41.10. Implementation of an edit function in the SGL direct state access

extension.

Using the skeleton in Listing 41.10, it is straightforward to define the DSA coun-
terparts of native functions. The SGL current binding extension is used to query
the current object (line 3).

© 2012 by Taylor & Francis Group, LLC



41. Features and Design Choices in SpiderGL 597

Similar to the cb property used to access the CB extension, the rendering context
will use the dsa property of the spidergl container to access the DSA extension
object. The private state of the extension object just consists of a reference to the CB
extension, which is thus enabled (if it is the first access) and retrieved in the private
setup function:

function setupPrivateDSA(gl) {
var _ = gl._spidergl.dsa._; // Extension private data
_.cb = gl.getExtension("SGL_current_binding"); // Activate CB

}

Contrary to CB, the DSA extension does not need to hijack native context func-
tions, meaning that the hijackContextDSA() function (line 14 of the extension
skeleton code in Listing 41.8) is not needed. Public extension functions are exposed
as shown in Listing 41.11. We have also chosen to add direct versions for functions
that do not explicitly refer to the current binding state and for functions that rely
on the state latched by other commands. To the first class belong functions like
clear(), readPixels(), and copyTexImage2D(), for which the direct versions
accept a WebGLFramebuffer object as first argument. The second class encapsu-
lates functions that use the buffer binding state to configure a pipeline run. Those
functions are vertexAttribPointer() and drawElements(), which rely,

function setupPublicDSA(gl) {
var ext = gl._spidergl.dsa;
ext.getBufferParameter = function (buffer , target , pname) {

var _ = this._; var gl = _.gl;
var current = _.cb.getCurrentBuffer(target);
if (current != buffer) {

gl.bindBuffer(target, buffer);
}
var result = gl.getBufferParameter(target, pname);
if (current != buffer) {

gl.bindBuffer(target, current );
}
return result;

};
ext.bufferData = function (buffer , target , dataOrSize , usage) {

var _ = this._; var gl = _.gl;
var current = _.cb.getCurrentBuffer(target);
if (current != buffer) {

gl.bindBuffer(target, buffer);
}
gl.bufferData(target, dataOrSize , usage);
if (current != buffer) {

gl.bindBuffer(target, current );
}

}
// ... other buffer-related functions and WebGLObject types ...

}

Listing 41.11. Implementing the public interface of the SGL direct state access

extension.

© 2012 by Taylor & Francis Group, LLC



598 VII Software Design

respectively, on the current ARRAY BUFFER and ELEMENT ARRAY BUFFER bind-
ing. In a similar way, the bindTexture() function operates in the currently active
texture unit; an overridden version of it is exposed by the extension, allowing the
programmer to directly specify the target texture unit.

Before committing ourselves to the discussed implementation, we have also tried
a different strategy: binding the object involved in the DSA call, executing the edit
function, and recording in a fix table that the user-bound object must be restored.
All native functions that rely on current binding have been hijacked to execute the
needed fixes before forwarding the call to the native function. Even if optimiza-
tions are done to avoid redundant bindings and unneeded fixes, this solution has
lower performance, is less maintainable, and is more error-prone than the simpler
query/bind/set/restore strategy.

41.4.5 Drawbacks

With a terminology borrowed from the operating systems field, implementing the
extensions the way we did in user space (i.e., above the API layer) has the drawback
of potentially violating the WebGL specification from the user’s point of view. These
issues are a consequence of the query/bind/set/restore strategy used in the DSA ex-
tension: in some situations, the hidden binding and unbinding of objects could
change the context error state, resulting in misleading error diagnostics when using
the getError() function. Worse, it can cause some objects to be deleted prema-
turely according to user’s expectation. In fact, when delete*() is called on certain
types of WebGLObject, e.g. WebGLProgram or WebGLShader, that are currently
bound to some target or container, the object is flagged as deleted, but it will con-
tinue to serve its purpose, and the actual destruction will only be performed when
all the bindings are broken. When making a DSA call, the currently bound object
is unbound (if it is not the target object of the call) in favor of the object on which
the call operates, causing its actual destruction if it is flagged as deleted. The binding
changes hidden in a DSA call may thus result in an apparent discrepancy of a con-
formant API implementation. However, to our experience, relying on this behavior
is not common. Due to the benefits such an extension brings, in SpiderGL, we have
nonetheless chosen to implement and rely on it. We must be effective in making
users aware of these issues, as we do in the documentation.

When a future official extension or API version with the same goal becomes
available, we will just need to fix some internal calls, with the effect of removing the
above issues while keeping the same interface.

41.5 WebGLObject Wrappers
The rendering pipeline that OpenGL-family APIs specify is a compute machine com-
posed of several processing stages. Each stage operates accordingly to a global state

© 2012 by Taylor & Francis Group, LLC



41. Features and Design Choices in SpiderGL 599

(i.e., the rendering context state) and uses specific objects both as sources of opera-
tional parameters and generic data, as well as targets for storing the computed stage
output.

Working with OpenGL objects using the functions provided by the API is not
complex. The major source of difficulty comes from the bind-to-edit paradigm,
which can cause misleading interpretations about what is actually happening, es-
pecially in the API learning phase. A step toward a easier and cleaner object han-
dling can be taken by using the DSA extension, but for most programmers a class-
based, object-oriented approach is almost always preferred. For this reason, many
OpenGL libraries provide object wrappers that simplify typical usage patterns and
offer a friendly interface. In designing SpiderGL, we were aware that WebGL object
wrappers would play a fundamental role both in the overall library usability and dur-
ing the development of higher-level constructs. We implemented a wrapper for ev-
ery WebGL object, that is, WebGLBuffer, WebGLFramebuffer, WebGLProgram,
WebGLRenderbufer, WebGLShader, and WebGLTexture. In the actual imple-
mentation, all wrappers inherit from the base SglObjectGL class. An example of
how wrappers are used is shown in Listing 41.12.

In general, constructors and methods of a GL wrapper take a JavaScript object
with optional properties, whose default values are defined on a per-object basis and
are publicly exposed, such that library users can change them at any time. To edit
the object, there is no need to bind the object before setting any of its parameters or
data, as was mandated in the first versions of the library before the introduction of
the DSA extension.

Wrapper constructor functions internally create an instance of the corresponding
WebGL object and set the passed optional parameters or default values. To fulfill
one of our most important requirements, e.g., to allow a seamless interoperability of
native WebGL calls with SpiderGL, every constructor also accepts a WebGLObject

var texture = new SglTexture2D(gl, {
url : "url -to-image.png",
onLoad : function () { /* ... */},
minFilter : gl.LINEAR,
wrapS : gl.CLAMP_TO_EDGE ,
autoMipmap : true

});

// single parameter setter ...
texture .magFilter = gl.NEAREST ;

// ... or modify a set of sampling parameters
texture .setSampler({

minFilter : SGL_DEFAULT , // reset to default value
wrapT : gl.REPEAT

});

Listing 41.12. Usage example of a WebGLObject wrapper.

© 2012 by Taylor & Francis Group, LLC



600 VII Software Design

1 // Constructs a renderbuffer wrapper .
2 // the actual implementation uses SglObjectGL as base class.
3 function SglRenderbuffer(gl , options ) {
4 var isImported = (options instanceof WebGLRenderbuffer);
5
6 if (isImported && options ._spidergl) {
7 return options ._spidergl; // Already wrapped
8 }
9

10 this._gl = gl;
11 this._dsa = gl.getExtension("SGL_direct_state_access");
12
13 if (isImported) {
14 this._handle = handle; // Store handle
15 // query object state
16 this._width = this._dsa.getRenderbufferParameter(
17 this._handle , gl.RENDERBUFFER , gl.RENDERBUFFER_WIDTH);
18 // ... query other properties ...
19 }
20 else {
21 this._handle = gl.createRenderbuffer(); // Create handle
22 }
23 // install a reference to the wrapper
24 this._handle ._spidergl = this;
25 // ...
26 }
27 SglRenderbuffer.prototype = {
28 get handle () { return this._handle ; },
29 // ...
30 };

Listing 41.13. The constructor function of a WebGLObject wrapper.

in input, in which case, no internal object is created. This is particularly useful
whenever SpiderGL is used in conjunction with other libraries that may want to di-
rectly operate on native WebGLObject handles. The wrapped object, regardless of
whether it was internally created or passed at construction, can be retrieved by using
the handle getter of the wrapper object. As shown in Listing 41.13, to ensure that
no conflicts will be created by wrapping a native handle more than once, the wrapped
object is augmented with the pseudoprivate spidergl property that references the
first wrapper that used the native handle. In case such a property is found, it is imme-
diately returned as the constructed object (line 7). This means that multiple wrapper
objects on the same native object actually point to the same instance. Moreover, if
a native handle is provided, the DSA extension is used to query the object state and
store it in private properties (line 16).

Wrapping existing WebGL objects and exposing the native handle have the major
consequence of potentially causing a discrepancy between the actual object state and
the internal state maintained by the wrapper object. This divergence occurs when-
ever native APIs are called directly on a wrapped native handle. For example, the
SglProgram wrapper maintains the set of shaders attached to it, that are, in turn,
wrapped by SglShader-derived objects, as well as some post-link states. Calling

© 2012 by Taylor & Francis Group, LLC



41. Features and Design Choices in SpiderGL 601

attachShader(), detachShader() or linkProgram() on the wrapped object
must cause the wrapper to update its internal state. In the first versions of SpiderGL,
the library user had to explicitly call the synchronize()method of the wrapper to
keep the wrapper state consistent. It worked but also implied that the programmer
must be aware that a synchronization was needed, or they had to act conservatively
and synchronize whenever they suspected that some external event or call could have
modified the object state. Again, we had to make an important design choice. Our
goal was to keep the wrapper state up-to-date without user intervention. This was
the reason that led us to the definition of another extension: SGL wrapper notify.

41.5.1 Keep Wrappers Updated with
SGL wrapper notify

The SGL wrapper notify (WN) extension is intended to notify wrapper objects
whenever native API calls are executed on native handles that have been wrapped.
The implementation is straightforward and consists of replacing each method of
the rendering context that operates on WebGL objects, whether directly (i.e., all
shader-related functions that take a WebGLShader as argument) or indirectly (i.e.,
buffer-related functions that operate on the currently bound WebGLBuffer) with
a notify function. The purpose of the new method is to execute the original native
call, retrieve the object on which it operates on and, if the object has been wrapped,
forward the call arguments to the corresponding callback method of the wrapper. In
the case of indirect calls, the current object is retrieved by using the CB extension.

Referring to the extension injection skeleton in Listing 41.8, we install the wn

property on the spidergl container and proceed to setup. The private data setup
function is aimed at saving a reference to all the context methods that will be hi-
jacked:

1 function setupPrivateWN(gl) {
2 var _ = gl._spidergl.wn._; // Extension private data
3 // Access the CB extension
4 _.cb = gl.getExtension("SGL_current_binding");
5 // Save native functions
6 _.bufferData = gl.bufferData;
7 // ...
8 _.shaderSource = gl.shaderSource;
9 // ...

10 }

Native functions are then replaced with notifying ones. If the target object has
the spidergl property, it means that it has been wrapped by a SpiderGL wrapper
object, which thus need to be notified. Note that the installed spidergl property
refers to a single wrapper object and not to a list of them, as has been guaranteed by
avoiding the wrap of an already wrapped handle (see Listing 41.13). The hijacking
setup functions is shown in Listing 41.14. As can be deduced from lines 8 and
18, every wrapper contains methods of the form gl * that act as native function

© 2012 by Taylor & Francis Group, LLC



602 VII Software Design

1 function hijackContextWN(gl) {
2 gl.bufferData = function (target /* ... */) {
3 var _ = this._spidergl.wn._;
4 _.bufferData.apply(this , arguments); // native call
5 var h = _.cb.getCurrentBuffer(target); // get bound object
6 if (h && h._spidergl) {
7 // if wrapped , forward call
8 h._spidergl._gl_bufferData.apply(h._spidergl , arguments);
9 }

10 }
11 // ...
12 gl.shaderSource = function (shader , source) {
13 var _ = this._spidergl.wn._;
14 _.shaderSource.apply(this , arguments);
15 // the target object is explicitly passed as arguments:
16 // no need to use the SGL_current_binding extension
17 if (shader && shader._spidergl) {
18 shader._spidergl._gl_bufferData.apply(shader._spidergl , ←↩

arguments);
19 }
20 };
21 // ...
22 }

Listing 41.14. Native methods are hijacked to allow the SGL wrapper notify extension
to track changes to WebGL objects.

callbacks. This extension does not expose any additional API, meaning that the
function setupPublicWN() is not needed.

With this scheme, it is also possible to give wrappers the possibility of preventing
object usage via direct API calls on the native handle. For example, we could add a
seal state to each wrapper, accessible by methods like seal() and unseal() and the
isSealed property getter. The WN extension could then be easily modified such
that native calls are not performed on wrapped handles whose isSealed property
is true.

41.6 Conclusion
In designing SpiderGL we imposed on ourselves a series of requirements that would
lead to an easy-to-use library that could work seamlessly and robustly in the pres-
ence of native WebGL calls. We found the extension mechanism to be a per-
fect and elegant ally that we could exploit to inject new functionalities. We de-
fined the SGL current binding extension to have a fast access to the objects
currently bound to a particular target. The SGL direct state access exten-
sion allowed us to edit WebGL objects, states, and resources in a clean way, and
SGL wrapper notify helped GL wrappers synchronize with native handles.

The structure of the 3D model has undergone various iterations. We started
with a raw mesh that was easy to construct and handle, and we kept upgrading it

© 2012 by Taylor & Francis Group, LLC



41. Features and Design Choices in SpiderGL 603

to allow more flexibility. However, the first solutions lacked in expressiveness, so
we switched to a layered structure that could be used at various levels of detail. As
layers are walked bottom to top, the raw information acquires semantic attributes,
and flexibility is traded off with expressiveness.

SpiderGL was born as a middleware library, and we feel that its structure can
serve as a solid foundation for developing higher-level constructs, such as whole-scene
management. We will be adding new functionalities with the hope of providing a
robust and usable library to CG and web developers.

Acknowledgments. We would like to thank everyone at the Visual Computing Lab,
especially Roberto Scopigno for believing in this project and Federico Ponchio for introducing
us to JavaScript. A special thanks goes to Gianni Cossu for setting up the SpiderGL website.

Bibliography
[Di Benedetto et al. 10] Marco Di Benedetto, Federico Ponchio, Fabio Ganovelli, and

Roberto Scopigno. “SpiderGL: A JavaScript 3D Graphics Library for Next-Generation
WWW.” In Web3D 2010, 15th Conference on 3D Web Technology, 2010.

[Group 11a] Khronos Group. “COLLADA 1.5.0 Specification.” http://www.khronos.org/
collada/, 2011.

[Group 11b] Khronos Group. “TypedArray Specification.” http://www.khronos.org/registry/
typedarray/specs/latest/, 2011.

[Kilgard 10] Mark J. Kilgard. “EXT direct state access.” http://www.opengl.org/registry/
specs/EXT/direct state access.txt, 2010.

© 2012 by Taylor & Francis Group, LLC



© 2012 by Taylor & Francis Group, LLC



Multimodal Interactive
Simulations on the Web

Tansel Halic, Woojin Ahn, Suvranu De

42.1 Introduction

Multimodal interactive simulations (MIS), also known as virtual environments, rep-
resent synthetic computer-generated environments that allow interactions by one or
more users using multiple sensory modalities, e.g., vision, hearing, touch, and smell.
The interaction may be accomplished using specialized interface devices such as the
mouse, space balls, robot arms, etc. Such simulations may be used in a variety of ap-
plications spanning video games, virtual malls, and psychomotor skill training. One
application we are interested in is using MIS to develop interactive medical simula-
tions.

Conventional MIS systems are restricted and highly dependent on the underly-
ing software and hardware systems. The web, unlike traditional software platforms,
provides the simplest solution. Web-based simulation systems may be run indepen-
dent of the client systems and with a very negligible code footprint on a browser
that complies with open standards. This creates ubiquitous simulation environments
independent of hardware and software.

Web browsers have an essential role to play in this paradigm [Murugesan et
al., 11, Rodrigues, Oliveira, and Vaidya 10]. With the web browsers, the hard-
ware systems and software platforms, device drivers, and runtime libraries become
transparent to the user. Highly realistic 3D interactive scenes can now be gener-
ated using the recently introduced standard plugin free visualization API: WebGL
[Khronos 11].

605

42

© 2012 by Taylor & Francis Group, LLC



606 VII Software Design

To enable highly realistic MIS on the web, we have introduced a platform-
independent software framework for multimodal interactive simulations: Π -SoFMIS
[Halic, Ahn, and De 12]. This allows efficient generation of 3D interactive appli-
cations using WebGL, including visualization, simulation, and hardware-integration
modules. We present our framework, some performance tests to demonstrate the
capabilities of WebGL and some implementation details along with a case study in
medical simulation.

42.2 � -SoFMIS Design and Definitions of
Modules

Π -SoFMIS is designed for modularity and extensibility [Halic et al., 11]. The
functional components can be easily replaced or extended through custom imple-
mentations independent of any prerequisite configuration. Π -SoFMIS is a module-
oriented framework since the modular structure isolates the components and elim-
inates inter-dependencies. This also allows the flexibility to be used for multiple
applications, which is one of the most common uses. Another benefit of modularity
in the context of web-based simulations is that the users may use only the parts of
the framework that they need. This increases cacheability of the web application and
decreases the download time of the framework to the client devices which is often
critical in mobile environments or client devices that have limited network capabili-
ties.

Figure 42.1. � -SoFMIS overall architecture.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-50&iName=master.img-018.jpg&w=315&h=178


42. Multimodal Interactive Simulations on the Web 607

There are three major entities in Π -SoFMIS (Figure 42.1): objects, modules, and
interfaces. Modules are an abstraction of the major functionalities of the framework,
which are pluggable and removable components (which are generally in separated
JavaScript files), e.g., visualization (rendering) is a module that renders shapes of
framework objects. This module may be removed from the execution pipeline if
needed, e.g., when only the simulation or the hardware module is used in the appli-
cation.

Interfaces are the components that manage the integrated hardware devices. For
instance, a mouse, a force feedback device, and Microsoft Kinect may be integrated
into the Π -SoFMIS environment with interfaces. The analogy to interface in com-
puter terminology is very similar to the device drivers for a specific hardware installed
on an operating system. Therefore, for each custom or special device, the framework
communicates with the interfaces. At present, haptic devices such as Sensable [Sens-
able 12] and Novint Falcon [Novint 12] devices are supported in Π -SoFMIS.

Objects in Π -SoFMIS are simulation or visualization entities. For instance, in
a virtual surgery scene, organs and surgical tools are all objects. The objects in the
framework are fundamental concepts in its design. The simulation part of the frame-
work operates on the objects. Therefore, the physical simulation of the object is cor-
related with its type. For example, the objects that are simulated with Position Based
Dynamics [Müller et al., 07] may be denoted as PBD objects, thus encapsulating ev-
ery detail that PBD requires, including spring connectivity, geometry, discretization,
and boundary/initial conditions, constraints, etc. The scene is an abstraction that
includes the objects in the environment. Apart from the scene-graph context, the
PBD defines physical relations such that the objects can have physical interactions
with other objects in the same scene.

42.3 Framework Implementation
This section provides details on some key aspects of the Π -SoFMIS implementation.

42.3.1 Modularity

Apart from classical object-oriented languages where the functionality is embedded
in the class definition, JavaScript functionalities reside in the object. Therefore, an
object is not tied to a strict class definition as in strongly-typed languages. How-
ever, the initial definitions of the object are stored in prototype definitions, which
can be used to implement object-oriented hierarchies. With prototyping, the object
definitions and methods of one object can be augmented to another object. This
supports multiple augmentations that resemble multiple inheritance in conventional
object-oriented languages.

InΠ -SoFMIS, we used the prototype features to create modularity. For instance,
the basic object definition in Π -SoFMIS is smSceneObject. smSceneSurface

© 2012 by Taylor & Francis Group, LLC



608 VII Software Design

Object inherits all the prototype definitions and adds 3D mesh representation of
the model and mesh routines specific to the surface mesh. It also has basic WebGL
rendering routines that are called by the rendering module. This can be overridden
by the prototype assignment by the child implementations. For instance, a thin de-
formable object (smClothObject) and a 2D heat transfer object (smSceneHeat2D)
simply augment all the smSceneSurfaceObject definitions. In Π -SoFMIS, one
can simply augment both deformable and heat transfer objects to create new objects
that simultaneously support both physics-based heat transfer and deformation.

42.3.2 Shaders

In Π -SoFMIS, the rendering module has a default shader that supports decal textur-
ing, bump mapping, specular mapping, ambient occlusion, and displacement map-
ping. These mappings have default bindings in the shaders to simplify creating or
extending a new shader. However, each object can override the default shading by
simply attaching the custom shader. Therefore, prior to rendering, custom shaders
are enabled for each object which is switched back to the default shader after the ob-
ject rendering is completed. Custom and built-in shaders are initialized after HTML
canvas, which is initialized by the rendering module. During initialization, shaders
extract all the uniform and attribute declarations and bind them in uniform variables
that are performed by parsing the shader source code. This eases the development of
additional shaders and eliminates the need to write additional code.

42.3.3 File Format

Π -SoFMIS uses JSON (JavaScript Object Notation) to import 3D geometry. JSON
is a standard language-independent data interchange format. Since it is derived from
a subset of JavaScript, its use, especially parsing and execution, is simple. Moreover,
the files are in a human-readable format, and extending the definitions is straight-
forward. In Π -SoFMIS, any 3D model, such as .obj or .3ds, is converted to JSON
on the server. The generated JSON file is downloaded and imported into the Π -
SoFMIS mesh file structures. The defined file format is in Listing 42.1.

{
"vertexPositions" : [...],
"vertexNormals" : [...],
"vertexTextureCoords":[...],
"vertextangents" :[...] ,
"indices " :[...] ,
"tetras ":[...],
"type": ,
"version ":

}

Listing 42.1. JSON file format for 3D surface and volumetric topology.

© 2012 by Taylor & Francis Group, LLC



42. Multimodal Interactive Simulations on the Web 609

We use versioning in the file format to provide compatibility and extension. The
file format has the type of file definition to differentiate a surface from a volumetric
structure. In the file format, we also compute tangent vectors to render the geom-
etry for bump mapping. The vertex normals are also computed for the objects that
are not deformable in the scene to eliminate initial computation time. For the de-
formable objects, the vertex and triangle neighborhood information (which is located
in smSceneSurfaceObject definition) is computed after the initial loading of the
objects and normals are updated at the end of simulation execution.

42.4 Rendering Module
The rendering module is based on WebGL, so the visualization is accelerated using
the GPU. WebGL is a low-level, cross platform, plugin-free 3D graphics API for the
web. It is an open standard managed by the Khronos group and supported by the
majority of web browsers. Apart from other 3D plugin rendering solutions, WebGL
provides JavaScript APIs to directly access the GPU hardware for shading capabilities.
WebGL, unlike OpenGL, doesn’t support the fixed-pipeline functionality. All the
rendering routines and lighting computations need to be implemented in shaders.
The supported shading language is based on GLSL ES, and at present, only the
vertex- and fragment-level programmability are supported. Since WebGL is based
on OpenGL ES 2.0, the capabilities provided by the API can be used on the majority
of existing devices and also on upcoming low-end CPU and GPU capabilities as in
smart TVs.

WebGL provides its low-level graphics API through the canvas element of
HTML5. Our rendering module is based on WebGL, which incorporates all routines

Chrome 16.0.912.63m

Chrome 18.0.981.0 Canary

Firefox 9.0.1

Firefox Nightly 12.0a1

Figure 42.2. Average rendering performance.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-50&iName=master.img-060.jpg&w=223&h=144


610 VII Software Design

for loading the JSON format of 3D objects and texturing and specifying material
properties and lighting effects in the shaders. The module includes various shaders
to render different objects such as plastic, metal, water, etc.

Our rendering module also creates the context for manipulating 2D content. The
2D context is mainly utilized by our texture manager within the rendering module,
which encapsulates and works as middleware used for all the texture operations in-
cluding resizing, filtering, and raw data processing. The texture operations also con-
sist of a texture image loading and initialization, resizing, raw data access, creating
the arbitrary texture, framebuffer textures or video textures, and an arbitrary texture

(a)

Samsung Chrome OS

Samsung  Galaxy IIS

Viesonic Tablet

(b)

Figure 42.3. (a) Screenshot of the scene. (b) Average rendering performance for tablet,
phone, and ChromeBook.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-50&iName=master.img-070.jpg&w=283&h=198
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-50&iName=master.img-071.jpg&w=235&h=115


42. Multimodal Interactive Simulations on the Web 611

update. Apart from basic operations, our module also supports display manipulation
and interactive camera manipulation with device interfaces.

We perform rendering tests to show the WebGL capabilities and also present the
minimum rendering rates that are attainable with the existing WebGL implemen-
tation in the browsers. In fact, the presented rates can be regarded as a reference
that gives intuition about minimum approximate rendering frame rates in a realistic
surgery scene. We expect better frame rates as the implementation of WebGL in the
browsers become more mature.

We obtained results on a Windows XP machine with an Intel Quad core
2.83 GHz CPU with 2.5GB Memory and an Nvidia GeForce 9800 GX GPU. In
this virtual scene, only rendering and haptic device interface modules are allowed.
The total number of vertices and triangles rendered per frame corresponds to 18,587
and 24,176, respectively. The high-resolution textures (2048 × 2048) are used for
rendering the virtual organs in the scene. Total texture size of the scene approxi-
mately amounts to 151MB. There are three different shaders enabled in rendering.
During rendering, the screen is set to 1900 × 1200 pixel resolution. Our results,
shown in Figure 42.2,indicate that the rendering performance of Chrome is superior
to Firefox.

In addition to browser performance tests, we carried out rendering tests for differ-
ent devices such as Chrome OS, Android ViewSonic Tablet, and Android Samsung
Galaxy SII Phone using Firefox Android browser version 9.0. The rendering is per-
formed with a full screen canvas for all devices. Our wet shading of the framework
is used during the rendering with the bump map enabled. The texture image resolu-
tion is 2048×2048. The total vertices and triangles are 2526 and 4139, respectively.
The measured performance of each device is given in Figure 42.3. The slow speed
is reported as an implementation problem of the mobile version of the browser that
arises due to lack of the texture-sharing mechanism between the web page composit-
ing process and the final rendering process (See WebGL developer email list).

42.5 Simulation Module
The simulator module orchestrates the “object simulators,” where the actual physics
simulation algorithms reside. The simulator module does not have any information
regarding the content of the object simulators. It is primarily responsible for trigger-
ing the object simulators, e.g., thermal simulator or deformable object simulator, and
synchronizing all the simulators when the job is done. This is needed for prospective
design where multithreaded execution in the browser is crucial. This design provides
a straightforward way of supporting both task and data parallelism. We carried out
simulations to test the performance benefit of the web workers in our framework.
Our simulation is based on an explicit heat-transfer simulation for a regular mesh
having 12,228 (64 × 192) nodes. Results are presented in Figure 42.4(a). Based on
our results, the best performance is 42.6 fps with the three threads. The decreasing

© 2012 by Taylor & Francis Group, LLC



612 VII Software Design

(a) (b)

Figure 42.4. (a) Performance of parallel heat transfer. (b) Example: parallel finite difference-
based heat transfer.

performance is due to message copy overhead between the main thread and the web
worker threads in each simulation frame.

We tested the simulation module performance using the Chrome and Firefox
browsers. During the simulation test, the rendering and the hardware interface were
also allowed. Similar to rendering tests, our aim is to present the competency of
JavaScript and WebGL combination for real-time interactivity and minimum frame
rates rather than a comparison of performance of browsers. During the simulation,
the frame rates are written to HTML5 local storage through our data module at the
end of the performance test. Our simulation module executes the deformable thin
structure with cutting enabled. The total number of nodes used in the simulation is
900. The results are shown in Figure 42.5.

In addition to simulation and rendering tests, we executed tests to determine the
overhead of JavaScript language for our simulations. This simulation is executed en-
tirely on the CPU side with a varying number of nodes. The simulation is based on a
PBD simulation with length constraints. We compared Firefox, the Chrome version,
and the C++ version of the simulation; the comparison is given in Figure 42.6.

Chrome 16.0.912.63m

Chrome 18.0.981.0 Canary

Firefox 9.0.1

Firefox Nightly 12.0a1

Figure 42.5. Average simulation performance.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-50&iName=master.img-090.jpg&w=315&h=71
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-50&iName=master.img-090.jpg&w=315&h=71
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-50&iName=master.img-092.jpg&w=189&h=107


42. Multimodal Interactive Simulations on the Web 613

Figure 42.6. Performance comparison of computational performance.

42.6 Hardware Module

Since web browsers do not allow access to the hardware using JavaScript and HTML,
interfacing the hardware input devices is not straightforward. Hardware access is
only allowed through browser plugins where native code can execute. We have there-
fore created a plugin to access hardware interfaces for haptic devices and other cus-
tom data-reading devices. The overall architecture is in Figure 42.7. Our plugin
code is based on the Netscape Plugin Application Programming Interface (NPAPI)
[O’Malley and Hughes 03], which is a cross-platform plugin architecture.

The plugin is simply interfaced by the object definition within the HTML page.
When the web page is loaded, the DLL of our plugin is initialized by an
NP Initialize procedure, which is the first function called by the browser for

Figure 42.7. Plugin architecture.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-50&iName=master.img-102.jpg&w=274&h=112
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-50&iName=master.img-104.jpg&w=374&h=161


614 VII Software Design

the plugin. This is our entry point for global initialization of our plugin where we
directly call each device-specific initialization routine in order. Once the initializa-
tion is complete, the entry points of the plugin and the properties of the plugin are
registered.

Once the plugin is initialized, the functions and plugin properties can be accessed
through a JavaScript plugin object. For simplicity, we define several properties to
obtain the position in world coordinates in the environment and rotational data,
which is defined as a quaternion.

During the simulation execution, the hardware information may be directly ac-
cessed by the simulation module, or it can be separated as a simulator that runs
independently to achieve high update rates. In our plugin, the device runs at its own
frequency of 1 KHz. In force-feedback enabled simulations, the hardware module
achieves between 100 and 200 Hz depending on the browser [Halic et al., 11].

42.7 Case Study: LAGB Simulator
This section describes a virtual laparoscopic adjustable gastric banding (LAGB) sim-
ulator that we developed based on the Π -SoFMIS. LAGB is a minimally invasive
surgical procedure that is performed on morbidly obese patients. In the procedure,
an adjustable band is placed around the stomach to avoid excessive food intake by
providing early satiation leading to weight loss. In order to place the band, the lesser
omentum must be divided to create a pathway for the band to slide behind the stom-
ach. This dissection is performed using a monopolar electrosurgical tool.

Figure 42.8. Initialization, CPU, and GPU execution of heat transfer, deformable body and
electrosurgical simulation of the lesser omentum.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-50&iName=master.img-114.jpg&w=306&h=170


42. Multimodal Interactive Simulations on the Web 615

In our scene, the lesser omentum is simulated as a deformable object which also
allows heat transfer. A mass-spring model is used for tissue deformation. Two dif-
ferent grids, coarse and fine, are generated (Figure 42.8). Each mass point (i,j) is
connected to its eight neighbors (i ± 2, j), (i ± 1, j), (i, j ± 1), and (i, j ± 2) with
springs and dampers.

The 2D boundary of the heat transfer object is extracted from the texture image
for node sampling. This helps in creating independent resolutions at initialization
regardless of the rendering-mesh resolution. In addition, since this works in tex-
ture space, it is independent of the discretization used for the deformation simula-
tion. The projection of the results to high resolution can be easily performed on the
GPU without additional burden. When the simulation loads, the texture image is
downsampled to create a low-resolution domain, as seen in Figure 42.8, for thermal
simulation to improve computational efficiency.

The boundary of the image is then extracted by simple image alpha-channel
thresholding. Different values of the heat conduction coefficient are assumed over
the domain. For instance, the thinner and more transparent layers are assigned higher
heat conduction coefficients compared to the thicker, less transparent regions. This
is simply taken into consideration when the boundary extraction is done.

During simulation execution, interaction of the electrosurgical tool with the tis-
sue results in tissue cutting. When the tissue is cut, the cut region is successively
updated using the texture coordinates of the fine mesh. Therefore, the cut region is
tracked at the texture domain as seen in Figure 42.9. The updated texture domain is
reflected in the thermal domain and upsampled in the GPU for higher resolution in
the thermal simulation. Tissue vaporization is assumed to occur when the temper-
ature exceeds a prescribed value. This is, of course, an oversimplified version of the
actual physics. When this condition is reached for a particular node, the tempera-
ture value is written in the texture image permanently. On the GPU, this upsampled
temperature texture value is multiplied with the fragment color to render a finer
burnt region. A screenshot of the simulation of tissue vaporization can be seen in
Figure 42.10.

Tissue vaporization is associated with the generation of smoke. For smoke gener-
ation, Π -SoFMIS provides an efficient solution based on our previous work [Halic,
Sankaranarayanan, and De 10]. A smoke video is placed in an HTML page, which
is loaded by our rendering module as a video texture image. In the main WebGL
thread, the video texture is initialized with our renderer create texture function call,
which simply creates WebGL texture context and prepares the structure for later us-
age in Listing 42.2.

In the simulation, each frame needs to be fetched when the cautery contacts the
fatty tissue. Therefore, video frame is processed before it is updated. To manipu-
late the video frames, we have used HTMLVideoElement currentTime attribute,
which is defined as double, which indicates and also sets the current playback posi-
tion as a unit of seconds.

© 2012 by Taylor & Francis Group, LLC



616 VII Software Design

Figure 42.9. Region update in heat transfer during electrosurgery.

We update the video frames as texture images in the each rendering frame with
the framework function in Listing 42.3.

Screenshots of tool-tissue interaction and smoke rendered in the laparoscopic
scene can be seen in Figure 42.11. On the CPU, we can control the rate of smoke

Figure 42.10. Tissue vaporization during electrosurgery.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-50&iName=master.img-133.jpg&w=306&h=185
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-50&iName=master.img-134.jpg&w=306&h=184


42. Multimodal Interactive Simulations on the Web 617

smRenderer.prototype.createTexture=function (p_textureName){
this.smTextures[p_textureName].texture =gl.createTexture(); //WebGL texture ←↩

creation
this.smTextures[p_textureName].textureName=p_textureName; //texture name
this.smTextures[p_textureName]=this.texture ; // reference by name
this.smTextures[p_textureName].width =0; //empty texture
this.smTextures[p_textureName].height =0; //empty texture
this.smTextures[this.smTextures.lastIndex++]=this.smTextures[p_textureName];
return this.smTextures.lastIndex -1; // reference by index

}
smRenderer.prototype.bindTexture=function (p_shader ,p_textureName ,p_textureType){

if(p_textureType=="decal "){
gl.activeTexture(gl.TEXTURE0 ); //zero texture channel for decal texture
gl.bindTexture(gl.TEXTURE_2D , this.smTextures[p_textureName]);
gl.uniform1i(p_shader .decalSamplerUniform, 0); //pre defined decal sampler ←↩

in the shader
}

//...
}
//main thread at the initialization part
smRenderer.createTexture(" myVideoTexture");

//update of video texture
// videoElement is the HTML video element
smRenderer.updateTextureWithVideo("myVideoTexture",videoElement);
smRenderer.bindTexture(smokeShader.shaderProgram ," myVideoTexture","decal ");//update ←↩

to decal

Listing 42.2. Video texture creation and update in each frame for smoke videos.

generation as well as the origin of the smoke when the electrosurgical tool is applied.
The whole scene is rendered, and then the smoke is overlaid on it. We enabled the
WebGL blending to achieve simple transparency. Rendering of smoke at the tip
of the electrosurgical tool is performed by drawing small quads with mapped smoke
video textures. The video frames are sent to the WebGL shader, which carries out the
extraction of the background from the smoke. We convert the RGB texture sample

smRenderer.prototype.updateTextureWithVideo=function (p_textureName ,p_videoElement){
gl.bindTexture(gl.TEXTURE_2D , this.smTextures[p_textureName]); //bind WebGL ←↩

texture
gl.texImage2D(gl.TEXTURE_2D , 0, gl.RGBA , gl.RGBA ,gl.UNSIGNED_BYTE , ←↩

p_videoElement);
//video element id in page DOM

gl.texParameteri(gl.TEXTURE_2D , gl.TEXTURE_MAG_FILTER, gl.LINEAR);
gl.texParameteri(gl.TEXTURE_2D , gl.TEXTURE_MIN_FILTER, gl.LINEAR);
if(this.smTextures[p_textureName]. nonPower2Tex){

gl.texParameteri(gl.TEXTURE_2D , gl.TEXTURE_WRAP_S , gl.CLAMP_TO_EDGE);
gl.texParameteri(gl.TEXTURE_2D , gl.TEXTURE_WRAP_T , gl.CLAMP_TO_EDGE);

}
gl.generateMipmap(gl.TEXTURE_2D);
gl.bindTexture(gl.TEXTURE_2D , null);

}

Listing 42.3. Video texture update in each frame.

© 2012 by Taylor & Francis Group, LLC



618 VII Software Design

Figure 42.11. Smoke generation in the framework.

#ifdef GL_ES
precision highp float;
#endif
varying vec2 vTextureCoord;
uniform sampler2D uSampler ;
vec4 sum=vec4 (0.0);
vec3 yuv;
vec2 texCoord ;
uniform float fadeControl;
uniform float xOffset ;
uniform float yOffset ;
uniform float leftCutOff;
uniform float rightCutOff;

vec3 RGBTOYUV (vec3 rgb){
vec3 yuv;
yuv.r=0.299* rgb.r+0.587* rgb.g +0.114* rgb.b;
yuv.g= -0.14713* rgb.r -0.28886*rgb.g +0.436* rgb.b;
yuv.b=0.615* rgb.r -0.51499*rgb.g -0.10001*rgb.b;
return yuv;

}
void main(void){

texCoord =vTextureCoord; //if manipulation needed , varying texture coord cannot ←↩
be changed . Place in texCoord and then change.

sum= vec4(texture2D(uSampler , texCoord ).xyz ,1); //fetch video texture
yuv=RGBTOYUV (sum.rgb); //convert to YUV
float xDist=abs(texCoord .x-xOffset ); //offset in s
float yDist=abs(texCoord .y-yOffset ); //offset in t
sum.a=smoothstep(leftCutOff ,rightCutOff ,yuv.r); //basic filter for alpha
gl_FragColor.rgb=vec3(1.0 ,1.0,1.0); //smoke color
gl_FragColor.a=smoothstep(leftCutOff ,rightCutOff ,sum.a*exp(-xDist)*exp(-yDist));

//based on the actual video , it eliminates the edge artifacts
gl_FragColor.a=gl_FragColor.a*fadeControl; //fade is used for control

}

Listing 42.4. WebGL shader code for filtering the video images for each frame.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-50&iName=master.img-203.jpg&w=306&h=133


42. Multimodal Interactive Simulations on the Web 619

to a YUV color space to separate luma from chrominance. A simple filter for the
alpha channel such as the smoothstep function with user-defined cutoff thresholds in
the WebGL fragment shader provides satisfying results to obtain seamless synthesis
with the scene. The additional thresholding improves the edge effect in the final
smoke image. An example shader code is given in the Listing 42.4 for one video
texture image.

42.8 Conclusion
In this chapter, we present a platform-independent software framework for web-
based interactive simulations. Our case study runs on WebGL-supported browsers
and demonstrates the various aspects of this framework. Unlike most existing web
applications,Π -SoFMIS supports full interactivity and multiphysics simulation with
realistic rendering. In Π -SoFMIS, realistic simulation scenes with large amounts
of data are handled with sufficient refresh rates on desktop PCs [Halic, Ahn, and
De 12, Halic, Ahn, and De 11], and the results are promising on tablet devices
as well. Although we achieved appealing results for simulation performance and
sufficient interactive rates, the overhead of JavaScript and WebGL execution need
to be reduced to achieve more realistic physics-based simulations for more complex
scenarios.

The proposed framework is expected to encourage development, distribution,
and use of MIS, especially in applications where accessibility is critical. This will also
be invaluable for assessment and eventually telementoring applications.

Bibliography
[Halic, Ahn, and De 11] Tansel Halic, W. Ahn, and S. De. (2011). “A Framework for 3D

Interactive Applications on the Web.” Poster presented at SIGGRAPH ASIA, 2011.

[Halic, Ahn, and De 12] Tansel Halic, W. Ahn, and S. De. “A Framework for Web Browser-
Based Medical Simulation Using WebGL.” 19th Medicine Meets Virtual Reality 173 (2012):
149–155.

[Halic, Sankaranarayanan, and De 10] Tansel Halic, G. Sankaranarayanan, and S. De.
“GPU-Based Efficient Realistic Techniques for Bleeding and Smoke Generation in Surgi-
cal Simulators.” The International Journal of Medical Robotics and Computer Assisted Surgery:
IJMRCAS 6:4 (2010): 431–443.

[Halic et al., 11] Tansel Halic, S. A. Venkata, G. Sankaranarayanan, Z. Lu, W. Ahn, and
S. De. “A Software Framework for Multimodal Interactive Simulations (SoFMIS).” Studies
in Health Technology and Informatics 163 (2011):213–217.

[Khronos 11] Khronos. “WebGL—OpenGL ES 2.0 for the Web.” http://www.khronos.org/
webgl/, 2011.

© 2012 by Taylor & Francis Group, LLC



620 VII Software Design

[Müller et al., 07] M. Müller, B. Heidelberger, M. Hennix, and J. Ratcliff. “Position Based
Dynamics.” Journal of Visual Communication and Image Representation 18:2 (2007):109–
118.

[Murugesan et al., 11] S. Murugesan, G. Rossi, L. Wilbanks, and R. Djavanshir. “The Future
of Web Apps.” IT Professional 13:5 (2011):12–14.

[Novint 12] Novint. “Novint Falcon: The Most Immersive Way to Play Video Games.” http:
//www.novint.com/index.php/novintfalcon, 2012.

[O’Malley and Hughes 03] M. O’Malley and S. Hughes. “Simplified Authoring of 3D Hap-
tic Content for the World Wide Web.” Proceedings of the 11th Symposium on Haptic In-
terfaces for Virtual Environment and Teleoperator Systems, pp. 428–429, Washington, DC:
IEEE, 2003.

[Rodrigues, Oliveira, and Vaidya 10] J. J. P. C. Rodrigues, M. Oliveira, and B. Vaidya. “New
Trends on Ubiquitous Mobile Multimedia Applications.” EURASIP Journal of Wireless
Communication Networks 10 (2010):1–13.

[Sensable 12] “Sensable.” http://www.sensable.com/, 2012.

© 2012 by Taylor & Francis Group, LLC



A Subset Approach to Using
OpenGL and OpenGL ES

Jesse Barker and Alexandros Frantzis

43.1 Introduction
The modern GPU is no longer a specialized processor with discrete bits of fixed func-
tionality, many of which are mutually exclusive. It is a powerful, fully programmable
compute engine, in most cases on par with or even surpassing the computational
power of the CPU.

The modern versions of the OpenGL and OpenGL ES APIs reflect this evolu-
tion, though much of the code written against them does not, which limits use on
many platforms. Many of the features that were removed from the core profile of
OpenGL or omitted from OpenGL ES, while not directly supported by the GPU,
must now be implemented by the developer. This represents significant effort, both
in terms of understanding and implementation, on the part of developers, which
impedes their ability to keep their code current.

In our work with opensource software projects at Linaro, we have encountered
a wealth of existing OpenGL code in a variety of applications and toolkit libraries.
For us, this presents a couple of problems. First, we required OpenGL ES 2.0,
and second, the upstream maintainers of the code required that their code continue
to work with desktop OpenGL. We needed compatibility with both API variants.
One option (and one that we have encountered on a number of projects) is to have
multiple code paths, governed by #ifdef constructs. This satisfies the conditions
but makes the code ugly, hard to maintain, and prone to lots of bugs that occur in
one path and not the other. Our team is not large, and this approach is not scalable
to the number of projects in which we participate. We found another solution.

621

43

© 2012 by Taylor & Francis Group, LLC



622 VII Software Design

The solution is to take advantage of the similarity between the modern desktop
OpenGL and OpenGL ES 2.0 APIs in order to produce a single code base that can
be compiled with minimal compile-time code-path selections against both versions.
We call this approach the subset approach, and in our experience, it has proved an
excellent way to simplify supporting code across multiple API versions. We have
successfully applied it to a number of production code bases, making them easier to
maintain and make available across a variety of platforms.

43.2 Making Legacy Code Modern
Since our work has tended to include a fair amount of porting along the way to a
clean Subset code base, we cover porting topics first. The amount of work needed to
update a legacy OpenGL or OpenGL ES code base to a more modern profile, i.e.,
at least version 2.x of either specification, is largely proportional to the complexity
of the application. However, we have found that there is a coarse subset of common
topics that applies to all such efforts. This partial list largely applies whether targeting
OpenGL ES 2.0, OpenGL 2.1, or later. The programmer

• Converts immediate-mode draw-call sequences to vertex- and index-array call
sequences, preferably stored in buffer objects.

• Reduces the set of rendering primitives.

• Needs to handle fixed-function vertex processing—matrix stacks, transforma-
tion APIs, per-vertex lighting, material properties, etc.—either directly in the
application or in vertex shaders.

• Needs to handle fixed-function fragment processing—per-fragment lighting,
fog, texenv, related texture, and fog enables, etc.—in fragment shaders.

• Does not use bitmaps or polygon stipples anymore.

• Does not use glCopyPixels anymore.

• Needs to provide config, context, and surface management using the EGL
API.

Executing the API conversion in the order presented in the above list helps pre-
vent breakage and regression of existing OpenGL functionality independently of any
OpenGL ES–specific work.

© 2012 by Taylor & Francis Group, LLC



43. A Subset Approach to Using OpenGL and OpenGL ES 623

43.2.1 Immediate Mode vs. Vertex Attribute Arrays

In the early days of OpenGL, the input to the pipeline took the form of commands
and attributes. For example, we could tell the pipeline that we wanted it to draw
some triangles, after which it would expect a multiple of three vertex coordinates
followed by the command terminator. It looked something like Listing 43.1.

This was called immediate mode, and even though vertex arrays were added as an
extension to Version 1.1, it was largely how the pipeline was fed for the first decade of
the existence of OpenGL. The best way to optimize vertex feeding with immediate
mode was to put groups of commonly issued commands into display lists; this was
basically a record/playback mechanism for OpenGL commands. Such a technique
had its own set of drawbacks. Display lists had to be compiled before execution,
which could affect performance when the data were dynamic. Additionally, there
were a number of useful commands that could not be put into display lists, and the
developer bore the burden of understanding which calls were deferred and which
were executed immediately. Today, display lists suffer the drawback that they are not
available in OpenGL ES 2.0 or in the OpenGL core profile. There is still a lot of
code out there that is written this way.

Immediate mode was great for getting something up quickly, e.g., drawing very
simple objects, and it used to be a good teaching tool, though it is now eschewed
even for that purpose. For large data sets, it is not very efficient, and the code gets
ugly fast. The concept of vertex arrays was introduced for efficient processing of
larger data sets. The basic idea was to set up all of our vertex data, e.g., positions,
normals, etc., in a single memory buffer and tell OpenGL how to traverse that data
in order to yield primitive descriptions. This is done when passing the buffer pointer
to OpenGL, e.g., there are 136 3D floating-point vertices in this buffer. The draw
call simply tells OpenGL what kind of primitive to draw, at what offset into the
buffer to begin, and how many vertices to use.

Listing 43.2 is a trivial example of vertex arrays but still illustrates the point. The
data can be separate from the code, which makes for cleaner code and fewer API calls,
and the implementation can be more efficient at traversing the data. For more detail
on geometry submission, there is an excellent section in the OpenGL Programming
Guide [Shreiner and Group 09].

Now that we’ve gotten all of our draw calls converted from immediate mode
to vertex and element arrays, we can put all of our vertex arrays into a vertex array

glBegin (GL_TRIANGLES);
glVertex3f(1.0, 0.0, 0.0);
glVertex3f(1.0, 1.0, 0.0);
glVertex3f(0.0, 0.0, 0.0);

glEnd();

Listing 43.1. Immediate mode.

© 2012 by Taylor & Francis Group, LLC



624 VII Software Design

GLfloat my_data [] =
{

1.0, 0.0, 0.0,
1.0, 1.0, 0.0,
0.0, 0.0, 0.0

};
glVertexAttribPointer(0, 3, GL_FLOAT , GL_FALSE , 0, my_data );
glDrawArrays(GL_TRIANGLES , 0, 3);

Listing 43.2. Using a vertex array.

buffer object (VBO). Essentially, VBOs give us a server-side container for all of our
vertex attribute data, i.e., positions, normals, texture coordinates, and related data
like indices. Access to our data is even more efficient than with basic vertex arrays
because the data for buffer objects can reside in memory that is local to the GPU at
the time the draw call is made; the implementation avoids a draw-call-time copy and
a synchronization point [NVIDIA 03]. All data are placed into the bound buffer
object ahead of time, as presented in Listing 43.3.

The critical difference between Listing 43.2 and Listing 43.3 is that the final
argument in the call to glVertexAttribPointer is no longer a pointer to the
application memory containing the vertex array. Because there is a bound buffer
object, the final argument is treated as a byte offset into the buffer data. In this case,
it indicates that the implementation should start at the first vertex coordinate when
processing the draw call.

// This is the setup code , only done once at initialization time.

// Create the buffer object
unsigned int bufferObject;
glGenBuffers(1, &bufferObject);
// Set up the vertex data by binding the buffer object ,
// allocating its data store , and filling it in with our vertex data.
GLfloat my_data [] =
{

1.0, 0.0, 0.0,
1.0, 1.0, 0.0,
0.0, 0.0, 0.0

};
glBindBuffer(GL_ARRAY_BUFFER , bufferObject);
glBufferData(GL_ARRAY_BUFFER , sizeof (my_data ), my_data , GL_STATIC_DRAW);
// Unbind the buffer object to preserve the state.
glBindBuffer(GL_ARRAY_BUFFER , 0);

//
// This sequence is executed each time the object gets drawn.
//
glBindBuffer(GL_ARRAY_BUFFER , bufferObject);
glVertexAttribPointer(0, 3, GL_FLOAT , GL_FALSE , 0, 0);
glDrawArrays(GL_TRIANGLES , 0, 3);

Listing 43.3. Using a vertex buffer object.

© 2012 by Taylor & Francis Group, LLC



43. A Subset Approach to Using OpenGL and OpenGL ES 625

43.2.2 Primitive Choices

Now that we understand how drawing requests must be described in modern OpenGL
and OpenGL ES, it is worth a brief mention of what primitives may actually be
drawn. Most noticeably, the quad, quad strip, and polygon primitives are no longer
available for draw commands in the core profile of OpenGL and have never been
part of OpenGL ES 2.0. The conversion of these to triangle strips or triangle fans
was reasonably straightforward for the projects we have engaged.

43.2.3 Bitmaps and Polygon Stipples

In OpenGL, bitmaps and polygon stipples are rectangular masks of 1-bit color in-
dex data, where a value of 0 yields transparency, or rather, leaves the buffer contents
unchanged, and a value of 1 yields the current raster color, or possibly a texture sam-
ple. These are no longer available in OpenGL and have never been part of OpenGL
ES 2.0. Where legacy code uses these, a simple substitution is to use a 1-byte alpha
texture and handle any special sampling logic in the shader. Listings 43.4 and 43.5
represent a replacement for a piece of polygon-stipple-enabled rendering from an old
OpenGL demo.

The example in Listing 43.5 is for a recent version of GLSL. For GLSL ES, re-
move the declaration of fragColor and replace it with the built-in gl FragColor

// Initialize the stipple pattern
GLubyte textureImage[32][32];
const unsigned int textureResolution(32);
static const unsigned int patterns [] = { 0xaaaaaaaa , 0x55555555 };
for (unsigned int i = 0; i < textureResolution; i++)
{

for (unsigned int j = 0; j < textureResolution; j++)
{

// Alternate the pattern every other line.
unsigned int curMask (1 << j);
unsigned int curPattern(patterns [i % 2]);
textureImage[i][j] = (( curPattern & curMask ) >> j) * 255;

}
}

// Set up the texture that the shadow program will use...
GLuint textureName;
glGenTextures(1, &textureName);
glBindTexture(GL_TEXTURE_2D , textureName);
glTexParameteri(GL_TEXTURE_2D , GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D , GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D , GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D , GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexImage2D(GL_TEXTURE_2D , 0, GL_ALPHA8 ,

textureResolution, textureResolution,
0, GL_ALPHA , GL_UNSIGNED_BYTE , textureImage);

Listing 43.4. Polygon stipple texture image setup.

© 2012 by Taylor & Francis Group, LLC



626 VII Software Design

uniform sampler2D tex;
out vec4 fragColor;

void main()
{

vec2 curPos;
curPos .x = float(int(gl_FragCoord.x) % 32) / 32.0;
curPos .y = float(int(gl_FragCoord.y) % 32) / 32.0;
vec4 color = texture (tex, curPos);
if (color.w < 0.5)
{

discard ;
}
fragColor = color;

}

Listing 43.5. Polygon stipple fragment shader.

in the shader main. The remainder operator (%) is illegal in GLSL ES, so the texture
coordinate computation would also need to be adjusted accordingly.

43.3 Keeping Code Maintainable across API
Variants

After a code base is ported to a modern core profile of OpenGL, there is still some
work needed to ensure compatibility with both the desktop and embedded variants.
The goal is to ensure that only functions and definitions common to both variants
are used. To this end, we have found the OpenGL ES 2.0 Difference Specification
document [Khronos 10] to be extremely helpful.

The GL ARB ES2 compatibility extension adds supports for some OpenGL
ES 2.0 features that are missing from modern OpenGL versions. However, the de-
tails of the supplied features may differ slightly, and not all points of divergence are
addressed, so we recommend that interested readers study the issues section of the
extension specification carefully.

During this step, it is common to come across functionality that is seemingly
missing from OpenGL ES 2.0. However, there is often an alternative way to achieve
or simulate this functionality, using constructs that are present in both variants. In
the following sections, we discuss a selection of cases that fall into this category and
that we have found to be common, but not straightforward, to handle.

43.3.1 Vertex and Fragment Processing

Replacing the fixed-function vertex processing in a legacy project can be a daunting
task. Because we were faced with having to do this for several projects, we devel-
oped the libmatrix project. A version is available on the OpenGL Insights website,
www.openglinsights.com, as well as from the project page at http://launchpad.net/

© 2012 by Taylor & Francis Group, LLC



43. A Subset Approach to Using OpenGL and OpenGL ES 627

libmatrix. The core of libmatrix is a simple set of C++ template classes. These
provide GLSL-like data-types for vectors and matrices along with most of the use-
ful vector and componentwise arithmetic operations appropriate to those objects.
Most of the standard transformations previously supported by the OpenGL API it-
self are included. glOrtho, glFrustum, glRotate, glTranslate, and even
gluLookAt and gluPerspective all have analogs in libmatrix. The matrix stack
template class supports the entire OpenGL matrix API without any of the previ-
ous restrictions on stack depth. Additionally, libmatrix also has a reasonable GLSL
program object abstraction, along with a handy function to load the shader source
from a file, which is nice for development so the entire application does not have
to be rebuilt in order to test new shaders. The glmark2 project is a good example
of the usage of these objects to provide programmable vertex and fragment process-
ing. The code for glmark2 is available from www.openglinsights.com, as well as from
the project page at http://launchpad.net/glmark2. Additionally, there are good sec-
tions implementing the fixed-function pipeline in GLSL in both the OpenGL ES 2.0
Programming Guide [Munshi et al. 08] and the OpenGL Shading Language [Rost 05].

43.3.2 GLX vs. EGL

Some implementations offer access to both OpenGL and OpenGL ES contexts
through EGL, but it is far from a common practice at this time. For the time being,
applications that want to support both flavors of the rendering API will also have to
support both flavors of the context and surface management API.

The good news is that, due to the inherent similarity between GLX and EGL,
it is usually straightforward to create a common abstraction layer around their func-
tionalities. The abstraction layer doesn’t change the fact that we need to make a
decision—probably at compile time—of which API to use. It does, however, provide
a clean and effective way to hide the details and noise of context and surface handling
from the main application code.

We have successfully used such an abstraction layer in both glmark2 and even in
the glcompbench project, available from http://launchpad.net/glcompbench, which
uses the additional texture-from-pixmap functionality provided by GLX and EGL.
We have implemented a basic canvas object from which we derive more specific
class instances to handle some of the subtle, and not so subtle, differences between
window system interfaces. In the glmark2 project, this has allowed us to support
desktop OpenGL through GLX, both OpenGL ES and desktop OpenGL through
EGL, as well as OpenGL ES on Android.

43.3.3 Vertex Array Objects

Conceptually, vertex array objects (VAOs) are simply a container object that gives
the programmer and the implementation an easy handle for the array buffer, element
array buffer, and vertex format that go along with a mesh or meshes to be rendered.

© 2012 by Taylor & Francis Group, LLC



628 VII Software Design

Rather than keeping track of all of the vertex attributes and element array buffer, the
VAO allows all of this metainformation to be associated with a single object that can
then simply be bound and unbound. Sounds great, right? Here’s the catch: while
they have been available in a platform-independent fashion since OpenGL 3.0 with
some availability on older implementations via the GL ARB vertex array object

extension, as of this writing, VAOs have only recently been available in OpenGL ES
via the GL OES vertex array object extension with very limited vendor sup-
port. As of OpenGL 3.1, VAOs actually become mandatory while remaining op-
tional for later versions of the compatibility profile. This makes necessary some
slightly subtle handling in code bases that provide common OpenGL and OpenGL
ES support.

43.3.4 Wireframe Mode

The wireframe mode feature is used extensively in CAD applications and is also
popular as a debugging aid. When using desktop OpenGL, it is easy to achieve this
effect: just set the polygon rasterization mode to GL LINE.

When using OpenGL ES 2.0, however, this approach is not an option since the
ability to set the polygon rasterization mode has been removed. Nevertheless, we can
still achieve this effect in various ways.

One solution is to draw the mesh using the GL LINES or GL LINE STRIP prim-
itives. One drawback of this method is that, in the general case, the developer has
to prepare a dedicated element array to perform the wireframe rendering. Further-
more, if the polygon content is also required, this method requires two rendering
passes, which, like in the fixed-function case, are expensive and suffer from z-fighting
artifacts.

Another solution is to handle wireframe drawing in the shaders. Although the
shaders become more complex, this solution has the advantage that it can handle
both wireframe and polygon content rendering in a single pass. One method, de-
scribed in [Bærentzen et al. 08], is to use the minimum distance from each fragment
to the edges of the primitive to decide how to mix the primitive content with the
wireframe color. This method produces smooth wireframe lines and doesn’t suffer
from z-fighting artifacts, but requires that additional attributes be attached to each
vertex. These attributes can be added either in geometry shaders or by explicitly set-
ting them in the application and using a special vertex shader to handle them. In the
buffer glmark2 benchmark, we have used the second approach in order to remain
compatible with OpenGL ES 2.0, which lacks geometry shader support.

43.3.5 Texture Wrap Modes

Support for texture borders and the related GL CLAMP TO BORDER wrap mode was
removed in OpenGL ES 2.0. Fortunately, it is not difficult to provide a good simu-
lation of this mode using the fragment shader.

© 2012 by Taylor & Francis Group, LLC



43. A Subset Approach to Using OpenGL and OpenGL ES 629

uniform vec4 border_color;
uniform sampler2D sampler ;

varying vec2 texcoords;

float clamp_to_border_factor(vec2 coords)
{

bvec2 out1 = greaterThanEqual(coords , vec2(1.0));
bvec2 out2 = lessThan (coords , vec2(0.0));
bool do_clamp = (any(out1) || any(out2));
return float (!do_clamp );

}

void main()
{

vec4 texel = texture2D(sampler , texcoords);
float f = clamp_to_border_factor(texcoords);
gl_FragColor = mix(border_color , texel , f);

}

Listing 43.6. Simulating GL CLAMP TO BORDER with GL NEAREST.

For nearest-neighbor filtering, i.e., GL NEAREST, it is enough to use the border
color instead of the texel color when the normalized texture coordinates are outside
[0.0, 1.0); see the shader example in Listing 43.6.

When using GL LINEAR filtering, the texture sampler returns bilinearly filtered
values, taking into account nearby texels. For texture coordinates near the edges, the
returned value is affected by whatever texels the current wrapping method dictates,
which is usually not what we want.

To simulate GL CLAMP TO BORDER with GL LINEAR correctly, we need to use
GL NEAREST instead and perform the bilinear filtering plus clamp to border tweaks

uniform sampler2D sampler ;
uniform vec4 border_color;
uniform vec2 dims; // texture dimensions (in texels )

varying vec2 texcoords;

float clamp_to_border_factor(vec2 coords , vec2 dims)
{

vec2 f = clamp(-abs(dims * (coords - 0.5)) + (dims + vec2(1.0)) * 0.5, 0.0, 1.0);
return f.x * f.y; // Good enough in most cases

}

void main()
{

vec4 texel = texture2D(sampler , texcoords);
float f = clamp_to_border_factor(texcoords , texdims );
gl_FragColor = mix(border_color , texel , f);

}

Listing 43.7. Simulating GL CLAMP TO BORDER with GL LINEAR.

© 2012 by Taylor & Francis Group, LLC



630 VII Software Design

1

Factor Texel size

UV
0 1

Figure 43.1. Mixing factor for linear border interpolation as a function of UV coordinates.

in the fragment shader. Unfortunately, in contrast with GL LINEAR, which takes ad-
vantage of optimized GPU support for bilinear sampling, this method requires four
explicit texture accesses and the interpolation logic to be performed in the fragment
shader, incurring a significant performance penalty.1 Another approach, when 100%
correctness is not needed, is to provide just the effect of the linear interpolation of
the texture to the border color near the edges using the already filtered values; see the
shader example in Listing 43.7. The result of the used formula for each dimension
is presented in Figure 43.1. For the 2D case, we have found that by multiplying the
calculated factors for each dimension we get a satisfactory visual result.

43.3.6 Non-Power-of-Two Textures

The support for non-power-of-two (NPOT) textures in the core OpenGL ES 2.0
specification is quite limited. In particular, NPOT textures are only allowed to use
the GL CLAMP TO EDGE wrap mode and the GL NEAREST and GL LINEAR filtering
modes; otherwise, they are marked as incomplete. This restriction has been the
source of many seemingly inexplicable texturing problems.

Although NPOT textures are not widely used in typical OpenGL applications,
they play an important role in modern compositing desktops. Modern composit-
ing is built on accelerated texture-from-pixmap functionality and needs to support
surfaces, and therefore textures, of arbitrary dimensions.

The GL OES texture npot extension adds support for the two repeat wrap
modes and all the minification filters, including filters involving mipmaps, to NPOT
textures. Unfortunately, our experience is that this extension is not universally sup-
ported. Developers that want maximum platform support should simulate the repeat
and mirrored repeat wrap modes in the fragment shader (Listing 43.8).

1Our experiments showed a 20% performance decrease in a simple case of texturing the faces of a
cube, on both desktop and embedded GPUs.

© 2012 by Taylor & Francis Group, LLC



43. A Subset Approach to Using OpenGL and OpenGL ES 631

vec2 wrap_repeat(vec2 coords)
{

return fract(coords);
}

vec2 wrap_mirrored_repeat(vec2 coords)
{

return mix(fract(coords), 1.0 - fract(coords), floor(mod(coords, 2.0)));
}

Listing 43.8. Simulating GL REPEAT and GL MIRRORED REPEAT.

43.3.7 Image Formats and Types

OpenGL ES 2.0 provides a small selection of image formats and types. There is no
support for packed INT formats or for mechanisms to automatically reverse the color
components. The only Truecolor image format that is available by default is RGB(A),
with the components in R,G,B,(A) order in memory. The GL EXT texture

format BGRA8888 extension adds limited support for the BGRA format. Finally,
in OpenGL ES 2.0, the internal image format and the format of the client data must
match; there is no support for automatic format conversions.

Compressed image formats are supported by the API but only for unpack oper-
ations. The core OpenGL ES 2.0 specification doesn’t require any particular format
to be available; all such formats are optional and specified in extensions. However,
the ETC1 format, provided by the GL OES compressed ETC1 RGB8 texture ex-
tension, is widely available in modern devices.

The limited selection of image formats can become a problem when interfacing
with external graphics libraries. Popular libraries like cairo, pixman, and skia express
the component order of their image formats in terms of the order of the bits in
an integer type, making the memory order of the components dependent on the
endianness of the architecture. For 4-byte formats, this layout corresponds to an INT
packed format, which OpenGL ES 2.0 lacks. Therefore, when using such libraries,
and in order to avoid manual pixel conversions, care should be taken to use a format
that can be understood natively by OpenGL ES 2.0.

An effective way to handle this situation, is to check the system endianness at
runtime and use an integer pixel format that matches the memory order used by the
GL format. We have successfully applied this method in our work to add OpenGL
ES 2.0 support to the cairo graphics library.

43.3.8 Image Layouts

In addition to image-format limitations, OpenGL ES 2.0 restricts the supported lay-
outs for pixel transfers. In particular, the only options accepted by glPixelStore
are GL PACK ALIGNMENT and GL UNPACK ALIGNMENT.

© 2012 by Taylor & Francis Group, LLC



632 VII Software Design

The lack of GL PACK ROW LENGTH and GL UNPACK ROW LENGTH makes it im-
possible to pack or unpack pixel rectangles with a length different from the source
image length without additional processing. To handle such rectangles, the contained
pixels need to be extracted manually and saved as a smaller image with the correct
layout.

43.3.9 Shading Language

GLSL ES 1.0 is based on version 1.20 of desktop GLSL and is therefore lacking
features that were added in subsequent desktop GLSL versions. It does, however,
have some properties that were later adopted by the core profile of OpenGL. The
most important one is that neither GLSL ES nor GLSL under the core profile of
OpenGL supports built-in attributes and built-in uniforms, with the exception of
gl DepthRange. The ftransform() function is also missing, so all transforma-
tions must be handled manually using custom attributes and uniforms.

GLSL ES adds support for precision qualifier keywords, both globally per-type
and per-variable. The accepted types are int, float, sampler2D, and sampler

Cube, and the accepted qualifiers are lowp, mediump, and highp. Two important
points to remember for the fragment shader are that there is no default precision
for floating-point types and that support for high precision is optional. In order to
deal with this situation in a manner compatible with both GLSL and GLSL ES, it is
common to use a preamble in the fragment shader like the one in Listing 43.9.

GLSL 1.30 accepts the GLSL ES 1.0 precision keywords but without any se-
mantic meaning and only for the int and float types. Therefore, even when the target
GLSL version is 1.30 or higher, it is recommended to guard the default precision
statements with the GL ES preprocessor definition.

Integers are supported in GLSL ES 1.0, but there is no guarantee that they will
be implemented with real integer types at the hardware level. One side effect of this is
that the integer remainder operator (%), which in GLSL is only defined for nonneg-
ative operands, is unsupported in GLSL ES 1.0. This operation can be implemented
using the mod() function, with the caveat that mod() is less restricted than %, i.e.,
it can handle negative numbers.

#ifdef GL_ES
// For high precision use:
#ifdef GL_FRAGMENT_PRECISION_HIGH
precision highp float;
#else
precision mediump float;
#endif // GL_FRAGMENT_PRECISION_HIGH
// For medium precision use:
precision mediump float;
#endif // GL_ES

Listing 43.9. Fragment-shader preamble for default float precision statements.

© 2012 by Taylor & Francis Group, LLC



43. A Subset Approach to Using OpenGL and OpenGL ES 633

43.4 What if I Need a Specific Piece of
Functionality?

The subset approach promotes the use of functionality that is common to both desk-
top OpenGL and OpenGL ES 2.0. However, there are inevitably going to be cases
when using the common functionality is not enough, either for functional or perfor-
mance reasons. What is the best way to handle such situations while still keeping the
code base elegant and maintainable?

An additional question arises when considering the variations on GLSL. Not only
do OpenGL and OpenGL ES have different variants of GLSL, but there are multiple
versions of GLSL, just as there are multiple versions of the core specification. Even
there, one might attempt to use a subset approach as we suggest for the core API;
however, this is not always possible. Take the case of the polygon stipple example
above. For recent versions, the built-in shader variables used for input and output
are simply not there. It is possible to declare a GLSL version in the shader to address
this, and that may well solve your particular problem.

We have found that an abstraction layer, even a very thin and simple one, can
help here. For GLSL, we have implemented an object to manage shader source for
us. This object has methods to fetch the source from a file on disk, append the shader
source with additional strings, inject constant and other variable definitions at both
the local and global scope, and even a primitive version of macro instantiation. So,
ultimately, the shader string we pass to the API is a processed version of what we
read in from disk. For more detail on our shader-management abstractions, see the
definition and usage of the ShaderSource object in the glmark2 source, available
from the OpenGL Insights website, www.openglinsights.com, as well as from the
project page at http://launchpad.net/glmark2. In glmark2 we also wanted to be able
to show any performance difference between client-side vertex arrays and those stored
in buffer objects; the solution is a simple abstraction. It is possible to find a patho-
logical case where conditionally compiling code is the only option. Our goal is to
minimize this.

43.5 Conclusion
We have seen how to take an old piece of OpenGL code or even new code written in
an old way, and make it compatible with not just one, but multiple modern OpenGL
API variants. The way is largely common sense:

• Stick to APIs and constructs that work for both OpenGL and OpenGL ES.

• Solve the problems at hand, not the ones that might eventually occur.

• Pick the right tool for the job.

© 2012 by Taylor & Francis Group, LLC



634 VII Software Design

We believe that the example of glmark2 represents exactly this philosophy. We have
made it very easy to add new scenarios to the test framework, which increases the
likelihood that it will continue to perform its job moving forward.

Bibliography
[Bærentzen et al. 08] J. Andreas Bærentzen, Steen Lund Nielsen, Mikkel Gjøl, and Bent D.

Larsen. “Two Methods for Antialiased Wireframe Drawing with Hidden Line Removal.”
In Proceedings of the 24th Spring Conference on Computer Graphics, SCCG ’08. New York:
ACM, 2008.

[Khronos 10] Khronos. “OpenGL ES Common Profile Specification 2.0.25 (Difference
Specification).” http://www.khronos.org/registry/gles/specs/2.0/es cm spec 2.0.25.pdf,
2010.

[Munshi et al. 08] Aaftab Munshi, Dan Ginsburg, and Dave Shreiner. OpenGL ES 2.0 Pro-
gramming Guide, First edition. Reading, MA: Addison-Wesley, 2008.

[NVIDIA 03] NVIDIA. “Using Vertex Buffer Objects (VBOs).” http://developer.download.
nvidia.com/assets/gamedev/docs/Using-VBOs.pdf, 2003.

[Rost 05] Randi J. Rost. OpenGL Shading Language, Second edition. Reading, MA: Addison-
Wesley, 2005.

[Shreiner and Group 09] Dave Shreiner and The Khronos OpenGL ARB Working Group.
OpenGL Programming Guide: The Official Guide to Learning OpenGL, Versions 3.0 and
3.1, 7th edition. Reading, MA: Addison-Wesley, 2009.

© 2012 by Taylor & Francis Group, LLC



The Build Syndrome

Jochem van der Spek and Daniel Dekkers

44.1 Introduction
In the current age of desktop, mobile, and console computing, the number of plat-
forms, operating systems, and OpenGL versions that are in active use has become so
large that developing and deploying our application for all those different configura-
tions has become a trying and time-consuming part of development. When a game
studio wants to release its latest title on as many platforms as possible, it needs to
manage a combinatoric explosion of all the different configuration parameters.

We recognize two steps in the process to reduce the complexity of this task.
The first is to write OpenGL agnostic code, meaning that the code encapsulates the
platform- and OpenGL version–specific details into classes that are fully transparent
to any combination of platform and OpenGL version. The second method is to use
a metabuild system that wraps all that code into a usable project for many different
IDEs on many different platforms. Each platform comes with its own set of APIs for
creating a window to draw. Some of these APIs support OpenGL ES for embedded
systems, even on nonembedded desktop platforms such as the iPad simulator on OS
X, while some only support the OpenGL version that is enabled by the OpenGL
drivers on that platform. Different OpenGL implementations on various platforms
can be seen in Table 44.1. A complete list can be found on the OpenGL.org web-
site [Khronos 97]. A completely different way of achieving the same goal is to use
JavaScript with WebGL and is described in detail in Chapter 3. In this article we will
focus on C++/Objective-C.

635

44

© 2012 by Taylor & Francis Group, LLC



636 VII Software Design

OpenGL(1.0–4.2) OpenGL ES(1.0/2.0)

OS X desktop GLUT, QT, wxWidgets, X11 QT

iOS embedded N/A CoreAnimation (iOS 2.0/3.0)

SGI desktop GLUT, QT, X11 EGL

Windows desktop GLUT, QT, wxWidgets, EGL EGL

Windows embedded N/A EGL, QT

Unix desktop GLUT, QT, wxWidgets, EGL EGL

Linux desktop GLUT, QT, wxWidgets, X11, EGL EGL

Linux embedded N/A EGL/QT

Android embedded N/A Android (1.0/2.2), EGL

Symbian embedded N/A EGL, QT

Blackberry embedded N/A BlackberryOS (5.0/7.0)

Web browsers N/A WebGL (ES2.0 only)

Table 44.1. Overview of the main OpenGL implementations on the various platforms.

As a demonstration, we show how to implement a very minimalistic OpenGL
program on a subset of all the possible platforms, as can be seen in Table 44.2.
For the sake of simplicity, we further limit ourselves to considering only APIs that
interface the creation of the so-called OpenGL drawing context, which specifies to
the operating system how a pixel is to be drawn to the screen. See [OpenGL 11] for
a more extensive discussion of this topic.

In describing the use of our selection of APIs on the subset of platforms, we
draw from the experience of writing the RenderTools [RenderTools 11] software li-
brary. The library was created over the course of the past three years (2008–2011)
to serve as a code base to create any conceivable OpenGL application on many dif-
ferent platforms. We tried to keep the classes lightweight: the library, in its sim-
plest form, depends as little as possible on external libraries. We used the whim-
sically named Extension Wrangler Library, or GLEW [Sourceforge 11], to manage
the various OpenGL extensions on each platform. Many deprecated math func-

OpenGL1.0–4.2 OpenGL ES 1.0–2.0

iOS N/A CoreAnimation(iOS 2.0/3.0)

Windows GLUT, QT, EGL EGL

OS X GLUT, QT N/A

Table 44.2. The selection of APIs and subset of platforms used in this article.

© 2012 by Taylor & Francis Group, LLC



44. The Build Syndrome 637

tions such as glRotate, glOrtho, and glPerspective, were implemented in
OpenGL-compliant Matrix classes. Currently only GLfloat types are supported,
though abstraction of the type-to-a-compilersetting is on the wish list. There are
many such open issues, but we believe that the design of the library is sound and can
be built upon and extended by the community; hence, we release it under the GNU
public license (GPL), which ensures open-source distribution, but we also allow bi-
nary distribution under licenses that are free for artists, charities, contributors, and
educators.

44.2 Using Utility Libraries
Where the predecessor to OpenGL, Silicon Graphics’ IrisGL, had functions to cre-
ate a window to draw in, OpenGL does not. This makes OpenGL portable to
different operating systems and Windows APIs but also makes it difficult to set
up without intimate knowledge of the underlying Windows API of the platform
at hand. Each platform has its own platform-specific implementation for creating
an OpenGL Context and a window, such as WGL [Wikipedia 12b] on Windows,
GLX [Wikipedia 12a] on XWindows systems and Cocoa on OS X. Fortunately,
there are many cross-platform software libraries that unify those platform-specific
APIs, one of the most prominent being the OpenGL Utility Toolkit, or GLUT [Kil-
gard 97] for short. GLUT was originally written by Mark J. Kilgard to accompany
the first OpenGL programming guide in 1994, the so called red book, and even
though it is no longer supported, it has been in use ever since. Because of licensing
issues GLUT is no longer maintained, but a reimplementation that is more-or-less
actively maintained called FreeGlut [Olszta 03] is also available. GLUT is standard
with OS X/XCode, and can be easily downloaded and installed for Windows and
Linux. An extensive list of the various toolkits for different platforms can be found
on the OpenGL website [OpenGL 12].

44.2.1 “Hello World” with GLUT

In the example in Listing 44.1, the main routine initializes the GLUT library and
then tells the windowing system to create an OpenGL window that is double buffered
and has an RGBA pixel format. Then it registers a display callback that is called the
first time the window is displayed on the screen and when a previously obscured
part of the window is shown again. Finally, it calls glutMainloop, which is a bit
atypical, because GLUT never returns from this function. GLUT’s work is now
done, and it gives control to the window it has created. This example can be built
and run provided that the compiler or development IDE knows the include and
linker paths in order to find glut.h and link to the correct library (Glut.a on Linux,
GLUT.framework on OS X, glut32.lib on Windows and so on). The rather amazing
thing is that this code runs exactly as it is printed here on all the desktop systems

© 2012 by Taylor & Francis Group, LLC



638 VII Software Design

#include <glut.h>
void displayFunc(void)
{

glClearColor(0.0, 0.0, 0.0, 1.0);
glClear (GL_COLOR_BUFFER_BIT);
glViewport(0, 0, 400, 400);

glColor4f(1.0, 0.0, 0.0, 1.0);
GLfloat vertices [8] = { -0.1, -0.1, 0.1, -0.1, 0.1, 0.1, -0.1, 0.1 };
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(2, GL_FLOAT , 0, vertices );
glDrawArrays(GL_QUADS , 0, 4);

glutSwapBuffers();
}

void main(int argc , char **argv)
{

glutInit (&argc , argv);
glutInitWindowSize(400, 400);
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGBA);
glutCreateWindow("GLut");
glutDisplayFunc(displayFunc);
glutMainLoop();

}

Listing 44.1. A minimal OpenGL example using GLUT.

listed in Table 44.1, and has done so since its inception for the systems that were
available at that time.

44.2.2 “Hello World” with Qt

The same example can be written for Qt [Nokia 08], which can hardly be categorized
as a utility library as it is a complete graphical user interface framework including a
GUI designer, audio facilities, etc. In the context of drawing OpenGL content we
can regard the QtOpenGL component of the Qt suite as similar to GLUT in that
it facilitates the creation of an OpenGL context and window for us. Qt originated
from Quasar Technologies, later TrollTech, in 1992 and was bought by Nokia in
2008. The library is now available under the LGPL Open Source license, and also
under a commercial license from Nokia.

Compiling and linking the Qt example in Listing 44.2 is not quite as simple
as building the GLUT example, because it requires the installation of the entire Qt
suite, but the developers have made it as easy as possible by providing a configuration
utility that lets us select which options we want to include and then generates the
build scripts for us.

44.2.3 “Hello World” with EGL

Finally, the same example written in EGL [Khronos 12] can be seen in Listing 44.3.
EGL interfaces OpenGL ES with the native Windows API on a wide variety of plat-

© 2012 by Taylor & Francis Group, LLC



44. The Build Syndrome 639

#include <QtCore/QtCore >
#include <QtGui/QtGui >
#include <QtOpenGL /QtOpenGL >

class MyView : public QGLWidget
{
Q_OBJECT
public:

MyView(QWidget *parent = 0)
: QGLWidget(QGLFormat(QGL::DoubleBuffer | QGL::Rgba), parent)

{
resize ( 400, 400 );

}
~MyView (){}

protected:
void paintGL (QGLPainter *painter )
{

makeCurrent();

glClearColor(0.0, 0.0, 0.0, 1.0);
glClear (GL_COLOR_BUFFER_BIT);
glViewport(0, 0, 400, 400);

glColor4f(1.0, 0.0, 0.0, 1.0);
GLfloat vertices [8] = { -0.1, -0.1, 0.1, -0.1, 0.1, 0.1, -0.1, 0.1 };
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(2, GL_FLOAT , 0, vertices );
glDrawArrays(GL_QUADS , 0, 4);

}
};

int main(int argc , char **argv)
{

QApplication app(argc , argv);
MyView view;
return app.exec();

}

Listing 44.2. A minimal OpenGL example using Qt.

forms, including mobile and desktop. However, using EGL is a bit more involved
because unlike Qt and GLUT, EGL does not provide a mechanism for creating a win-
dow in a platform-independent way. EGL allows us to create the rendering context
and a drawing surface, and connect it to an existing window or display but no more.
We can create a native display ourselves, or we can use the EGL DEFAULT DISPLAY

flag to obtain the default display for the current system. Either way, we need to create
a native window on that display.

Since we are now building for OpenGL ES, the convenient glOrtho, glMatrix
Mode, etc. functions are not in the API, and we need to reimplement them in our
own library.

© 2012 by Taylor & Francis Group, LLC



640 VII Software Design

void main(void)
{

EGLint attribList [] =
{

EGL_BUFFER_SIZE , 32,
EGL_DEPTH_SIZE , 16,
EGL_NONE

};

// Even though we may obtain the EGL_DEFAULT_DISPLAY, we need
// to create a handle to a window in which we create the drawing
// surface , a HDC on windows , a Display on X11, etc.
EGLNativeDisplayType nativeDisplay = EGL_DEFAULT_DISPLAY;
EGLNativeWindowType nativeWindow = platformSpecificCreateWindow();
EGLDisplay iEglDisplay = eglGetDisplay(nativeDisplay);
eglInitialize(iEglDisplay , 0, 0);

EGLConfig iEglConfig;
EGLint numConfigs;
eglChooseConfig(iEglDisplay , attribList , &iEglConfig , 1, &numConfigs );
EGLContext iEglContext = eglCreateContext(iEglDisplay ,

iEglConfig , EGL_NO_CONTEXT , 0);
EGLSurface iEglSurface = eglCreateWindowSurface(iEglDisplay ,

iEglConfig , &nativeWindow , 0);

// For brevity , we omit a display function similar to
// the one in the GLUT and Qt examples

}

Listing 44.3. A minimal OpenGL example using EGL.

44.3 OpenGL Agnosticism

In order to transparently differentiate the request from the programmer to draw a red
square to the different GL APIs, we can abstract the request completely away from
any OpenGL specifics but would like to offer the ease and flow of the immediate-
mode, fixed-function API. We also want to stay close to the OpenGL naming con-
ventions so that when we think about the objects that we use, we hear the same names
as those that are used in the OpenGL registry. Thus, we want a Vertexbuffer class
that is completely transparent to the underlying implementation.

Vertexbuffer quad;
quad.color (1.0, 0.0, 0.0);
quad.begin(GL_QUADS );
quad.vertex (-10.0, -10.0);
quad.vertex( 10.0, -10.0);
quad.vertex( 10.0, 10.0);
quad.vertex (-10.0, 10.0);
quad.end();

Listing 44.4. Using a RenderTools::Vertexbuffer to emulate the immediate-mode
API.

© 2012 by Taylor & Francis Group, LLC



44. The Build Syndrome 641

The code in Listing 44.4 can be used for all the different dialects of the GL but
internally, this seemingly simple piece of code fragments into at least three different
code paths:

1. Using a VBO (available in all versions).

2. Using a VBO with a VAO (from OpenGL 3.0).

3. Use programs (available from OpenGL 2.0 and ES 2.0).

Implementation of the simple example becomes far from trivial (see Listing 44.5).
To accommodate the various versions of OpenGL within the same code base and to
allow different implementations of the code base for different platforms, we make
extensive use of selective compilation by defining compiler flags that specify the plat-
form and OpenGL version that we compile for. A typical example of such con-
ditional compilation is the RenderTools::ViewController class, which encap-
sulates the OpenGL Versions 1.1 through 4.x, OpenGL ES 1.x and 2.x; the dif-
ferent APIs, Qt, GLUT, EGL, Cocoa, EAGL; and even the different languages
C++ and Objective-C. To accommodate for communication between the differ-
ent APIs and languages that are used simultaneously at runtime on different plat-
forms, we implemented the ViewController as a global static singleton that can
be accessed from anywhere in the system. This is the way that events from the
Objective-C–based iOS are passed along to the C++ hierarchy of RenderTools.
When a ViewController is instantiated, it starts life as a platform-specific class
such as the IOSViewController on iOS but is exposed to the developer simply
as a ViewController class by means of conditional compilation. If the Render-
Tools library is compiled for iOS, RT IOS is defined and the ViewController

class will be a typedef of IOSViewController. For GLUT on windows, OSX
or Linux, RT GLUT will be defined and ViewController will be a typedef of
GLUTViewController, etc. The different implementations of the View

Controller class are wrapped in #ifdef/#endif blocks so as to include or ex-
clude the code from the compilation. Combining these techniques results in the
“HelloWorld” example that can be found in the RenderTools/examples directory. It
can be compiled and run on all the platforms and OpenGL versions supported by
RenderTools without changing a single letter of code and in fact, with just one single
configuration action, as we shall see in the next section.

All of this together leads to a massive number of possible configuration states.
We have the various libraries that we need to include, conditional compilation flags,
different OpenGL libraries, possibly third-party libraries depending on the platform,
and finally different IDE’s on different platforms for which we need to create and
maintain project files in order to build all the various combinations.

© 2012 by Taylor & Francis Group, LLC



642 VII Software Design

#include <RenderTools.h>

using namespace RenderTools;
using namespace RenderTools::Matrix;

class HelloWorldView : public RendergroupGLView
{
public:

static PropertyPtr create (const XMLNodePtr& xml)
{

boost ::shared_ptr <HelloWorldView > p(new HelloWorldView());
return boost:: dynamic_pointer_cast<AbstractProperty , HelloWorldView >(p);

}

virtual const std::string getTypeName(bool ofComponent) const
{

return "HelloWorldView";
}

virtual void onInitialize(void)
{

m_buffer = Vertexbuffer::create ()->getSharedPtr < Vertexbuffer >();
m_buffer ->begin(GL_TRIANGLES);
m_buffer ->color(Vec3( 0.0, 1.0, 0.0));
m_buffer ->vertex(Vec2( -10.0, -10.0));
m_buffer ->vertex(Vec2( 10.0, -10.0));
m_buffer ->vertex(Vec2( 10.0, 10.0));
m_buffer ->vertex(Vec2( 10.0, 10.0));
m_buffer ->vertex(Vec2( -10.0, 10.0));
m_buffer ->vertex(Vec2( -10.0, -10.0));
m_buffer ->end();

}

virtual void onRender (const ComponentFilterPtr& components)
{

m_buffer ->render(GEOMETRIES);
}

VertexbufferPtr m_buffer ;
};

int main(int argc , char **argv)
{

initialize(argc , argv);
Factory :: registerContainerType("HelloWorldView", HelloWorldView(), HelloWorldView::←↩

create);
run("<app type=\"Application\" ><viewcontroller type=\"HelloWorldView\" /></app>");

}

Listing 44.5. The platform-independent and OpenGL-version agnostic minimal example.

44.4 Configuration Spaces

Now that we have defined an abstraction layer over the different OpenGL versions,
a next logical step is to further investigate platform-independence. In order to build
the agnostic OpenGL example, we have to introduce different platforms and a cou-
pling between OpenGL versions and platform specifics. To start administrating this

© 2012 by Taylor & Francis Group, LLC



44. The Build Syndrome 643

increasing complexity, we introduce the concept of a configuration space. A configura-
tion space is an exhaustive enumeration of all the possible configuration flags, where a
configuration flag may involve the current platform, OpenGL version, and/or exter-
nal library, either related to OpenGL like GLUT or EGL or independent of the ren-
dering like Boost [Dawes and Abrahams 04] or Bullet physics [Coumans 10]. We cre-
ate names for these configuration flags within the namespace of RenderTools by pre-
fixing the flag with RT , such as RT APPLE, RT WIN32, RT GLUT, RT IOS, RT ES1,
etc.; these are treated as standard C preprocessor defines. Some RT [VALUE] defini-
tions depend on context and are implied by the platform the build is performed on
(RT APPLE, RT WIN32), some are dictated by the OpenGL version that is targeted
(RT ES1 or RT ES2) and some are required for including the third-party external
libraries (RT GLUT, RT BULLET). Any one combination of flags out of the entire
configuration space is called a configuration state.

Examples of configuration states are

• RT WIN32, RT GLUT, RT DEBUG, RT BULLET. A Windows build, using GLUT
as the windowing interface, in debug mode, using Bullet as an external library.

• RT APPLE, RT GLUT. A Mac OS X release build, using GLUT as the window-
ing interface.

• RT WIN32, RT EGL, RT ES2. A Windows release build, using EGL as the
interface between OpenGL ES 2.0 and Windows.

• RT APPLE, RT IOS, RT ES1, RT DEBUG. An iOS build for iPhone and iPad,
using OpenGL ES1 fixed-function pipeline to support earlier devices, in debug
mode.

Not all configuration states are valid. We cannot simultaneously build for RT ES1

and RT ES2 and some third-party libraries are mutually exclusive like RT BULLET

and RT BOX2D.

44.5 Metabuilds and CMake
One of the most time consuming aspects of platform-independent programming is
the cumbersome task of defining all the individual settings for the different IDE’s:
Visual Studio on Windows, Xcode on Apple, or makefiles on Unix-based systems.
Recently, several so-called metabuild or build automation systems have been gain-
ing popularity to aid in this task. Examples of metabuild systems are premake
[Perkins 07] or waf [WAF 11].

The sheer quantity of settings in IDE’s can be overwhelming. The metabuild
system creates sensible defaults for all of them, and if we want to adjust, we adjust
locally via the configuration files. In this way, the exceptions are clearly visible in
isolation instead of hidden in a long enumerations of settings in the IDE.

© 2012 by Taylor & Francis Group, LLC



644 VII Software Design

An advantage of a metabuild system is that it provides the opportunity to migrate
back and forth between different versions of an IDE. In almost every IDE, it is a
very painful process to go back to a previous version when all the project files have
been converted to a newer version. Another advantage of a metabuild system is the
relative ease in which projects can be shared between different developers. Every
developer has a slightly different path to his sources or has adjusted a few settings in
the IDE to achieve a local successful build. This makes exporting project files directly
to other developers undesirable. With metabuild systems, developers generate fresh
project files themselves out of the source tree after having adjusted a few absolute
paths clearly stated in configuration files in the build system. A rather unexpected
advantage we found while developing was that the latest version of Xcode at the
time, Version 4.0.2 on Mac OS X Snow Leopard, proved to be quite unstable, and
we were a lot more productive developing in Visual Studio even though the final
target was going to be an iOS application. Metabuilds let developers choose their
favorite development IDE.

One of the more popular and well established tools is CMake [CMa 11], a
free, platform-independent, open-source build system. CMake works with human
readable configuration files—always named “CMakeLists.txt”—that contain CMake
scripts and exist in directories of the source tree. These CMake configuration files
link to each other via the CMake ADD SUBDIRECTORY() command. A tree traver-
sal is performed starting from a top-level CMake configuration file, passing through
the sources, creating project setups for libraries and executables as it goes. After this
so-called configure process, CMake generates IDE project files (Visual Studio, Xcode),
or makefiles on Unix based systems. In daily practice, we typically lose our fixed,
static, platform-dependent project files and generate them dynamically every time a
change is made in the build configuration. The CMake structure and especially the
syntax takes some time getting used to, but the advantage is that we only have to
learn a single language. Traditional makefiles are not much easier to read and only
give platform/compiler-specific results.

44.6 CMake and the Configuration Space
We can fit our concept of the configuration state in a top-level CMake configuration
file. The RT [VALUE] elements of the configuration state can be mapped directly
onto so-called options in CMake. These options are communicated to the developer
and can be adjusted in the CMake GUI (Figure 44.1).

We define the configuration state in a CMake includable file “configuration
space.cmake.” In this file, we not only set the various RT [VALUE] options, but
also, based on these settings, set include directories and add definitions. A boolean
RT [VALUE] that is either ON or OFF in CMake will be passed on to the compiler as
a preprocessor definition with the CMake commands:

© 2012 by Taylor & Francis Group, LLC



44. The Build Syndrome 645

IF(RT_[VALUE ]) ADD_DEFINITION(-DRT_[VALUE])

Furthermore, we have to locate third-party libraries such as GLUT, Bullet, Boost,
etc., that are needed for this particular configuration state. These paths are devel-
oper dependent, so they cannot be known in advance. CMake provides a find

package() mechanism to find the packages after a root path is set. It also searches
in platform-specific standard locations in case the libraries are installed systemwide.
If the package finding is omitted in this phase, the individual CMake configuration
files of RenderTools will invoke find package() calls themselves for the needed
libraries. As a whole, configurationspace.cmake creates a “context” from which the
library as well as the application(s) can be built.

A typical main-development source tree with CMake configuration files is shown
in Listing 44.6. In this directory structure, /rendertools is the directory that
holds the “suite” containing the library and the examples. It contains a CMake-
Lists.txt that is a logical start of a build (see the “Where is the source code” entry
in the screenshot of the CMake GUI, Figure 44.1). With the project that is gener-
ated from this CMakeLists.txt, we can build the library based on the RT [VALUE]

settings we choose and build the examples that are dependant on this library.

Figure 44.1. The CMake (2.8.6) GUI.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-52&iName=master.img-399.jpg&w=374&h=239


646 VII Software Design

+ development
(CmakeLists.txt)
+ ARenderToolsApp

CMakeLists.txt
+ src
+ rsrc
+ config

+ rendertools
CMakeLists.txt
+ src
+ examples

CMakeLists.txt
+ HelloWorld

CMakeLists.txt
+ src
+ rsrc
+ config

+ CameraTest
CMakeLists.txt
+ src
+ rsrc
+ config

+ ...
+ config

configurationspace.cmake
+ bullet (external )

CMakeLists.txt
+ src

+ boost (external )
+ glut (external )
+ ...

Listing 44.6. A typical main-development source tree with CMake configuration files.

The general structure of a top-level CMakeLists.txt in a RenderTools context
looks like this:

1. Include “configurationspace.cmake” to define the configuration state RT

APPLE, RT DEBUG, RT IOS, ..., set the paths to the (external) third-party
libraries, add include directories and pass on definitions that are needed for
this particular configuration state.

2. Recurse into the actual source-code directory of the RenderTools library by
invoking ADD SUBDIRECTORY (rendertools/src). If we don’t want to build
RenderTools from source, we can omit this step and link to a binary prebuilt
RenderTools from the applications directly.

3. Recurse source-code directory of a RenderTools–dependent application, or an
intermediate directory representing a set of applications as is the case with the
examples.

The CMakeLists.txt of the RenderTools library itself, located in
rendertools/src, has a simple structure:

© 2012 by Taylor & Francis Group, LLC



44. The Build Syndrome 647

1. Create a new project for the library: PROJECT(RenderTools).

2. Gather the RenderTools sources: FILE(RT SOURCES ... ).

3. Combine these sources with sources from third-party libraries, depending on
the ones defined for inclusion by the RT [VALUE] options if RT SOURCE is
defined. Or, if RT SOURCE is not defined, link third-party libraries directly.

4. Create a library with these sources: ADD LIBRARY(RenderTools �RT

SOURCES).

One could imagine RenderTools being distributed as a set of prebuilt binaries,
which would actually be a large collection for all the different configuration states
on all the different platforms. Instead, we chose to let developers build RenderTools
from source. We feel we can do so because we supply the sources, assist in the build
process via the CMake configuration files, and provide sensible defaults for common
configurations.

The CMakeLists.txt of an intermediate directory that contains various applica-
tions simply recurses into these source-code directories. As an example, the CMake-
Lists in /examples looks like this:

1. Create a new project for this application suite: PROJECT(Examples)

2. Recurse into lower-level source directories:

ADD_SUBDIRECTORY(HelloWorld)
ADD_SUBDIRECTORY(CameraTest)
...

Finally, the CMakeLists.txt in the directories of individual applications have the
following structure:

1. Create a new project for the application:

PROJECT (HelloWorld)

2. Gather application-specific sources and resources:

FILE(APP_SOURCES ...)
FILE(APP_RESOURCES ...)

3. Create an executable with these sources and resources:

ADD_EXECUTABLE(HelloWorld
�{APP_SOURCES} �{APP_RESOURCES})

© 2012 by Taylor & Francis Group, LLC



648 VII Software Design

4. Link in the RenderTools library:

TARGET_LINK_LIBRARY(HelloWorld RenderTools)

5. Set the dependency:

ADD_DEPENDENCY(HelloWorld RenderTools)

For applications residing outside the /rendertools directory, e.g., ARenderTool-
sApp, we can write a CMakeLists.txt in /development that includes ARenderTool-
sApp and the RenderTools library. Such a top-level CMakeLists.txt file looks like
this:

PROJECT (MyDailyWork)
INCLUDE (rendertools/config/configurationspace.cmake)
ADD_SUBDIRECTORY(ARenderToolsApp)
# Recurse directly into the library , avoiding double
inclusion of configurationspace.cmake and the examples :
ADD_SUBDIRECTORY(rendertools/src)

Note that this is a volatile file and changes regularly, depending on the projects you
are working on at that particular moment.

44.7 CMake and Platform Specifics
The CMake structure mentioned above is the general structure that most CMake-
based builds follow. There are of course a lot of platform-specific peculiarities that
have to be dealt with. Some of the nontrivial ones we encountered are listed below.

44.7.1 Windows

Windows is fairly straightforward. GLUT or EGL handles the windowing interface.
OpenGL as binary library is available with the operating system or via a dynamic
link library (DLL) provided by the hardware manufacturer of the video card. The
OpenGL header and library file are shipped with Visual Studio.

• Resources. On Windows, we simply copy all the resources the application
needs to the build directory, avoiding a more involved search mechanism. Un-
like Apple, Windows doesn’t use application bundles, so some of the work of
placing resources in the final distribution will have to be done in the installer.
CMake has a postbuild command mechanism in which tasks can be speci-
fied that have to be performed after the build. The following CMake script
fragment copies the resources to the directory where the executable resides:

© 2012 by Taylor & Francis Group, LLC



44. The Build Syndrome 649

FOREACH (NAME �{APP_RESOURCES})
GET_FILENAME_COMPONENT(NAMEWITHOUTPATH �{NAME} NAME)
ADD_CUSTOM_COMMAND(

TARGET �{APP_NAME }
POST_BUILD
COMMAND �{CMAKE_COMMAND} -E copy

�{NAME}
�{PROJECT_BINARY_DIR}/

�{CMAKE_CFG_INTDIR}/
�{NAMEWITHOUTPATH})

ENDFOREACH()

The CMake variable PROJECT BINARY DIR is the build directory of the
project; CMAKE CFG INTDIR is the current configuration, e.g., Debug, Re-
lease, etc., so together, they form the actual path to the executable. The
�{CMAKE COMMAND} -E copy is the CMake platform-independent copy
command.

44.7.2 Mac OS X

The procedure for Mac OS X is similar to Windows. Again, GLUT handles the
windowing interface. We have no OpenGL ES build for Mac OS X at the moment
of writing.

• Resources. Our Mac OS X application bundles have the standard hierarchy
where the application itself is represented by a bundle (e.g., HelloWorld.app)
containing a /Contents directory, which, in turn, contains a /MacOS directory
with the actual executable, e.g., HelloWorld, and a /Resources directory con-
taining the resources. Using a similar CMake postbuild construct to the one
we used in Windows leads to conflicts with the copying that Xcode performs
internally. We chose to just let Xcode do its job. In CMake, we present sources
and resources to ADD EXECUTABLE():

ADD_EXECUTABLE(�{APP_NAME } MACOSX_BUNDLE
�{APP_SOURCES}
�{APP_RESOURCES})

We make sure the resources are “labeled” as resources so Xcode will treat them
correctly during the build. That is, we make them visible in the /Resources
folder in the Xcode IDE and copy them to the correct location in the applica-
tion bundle:

SET_TARGET_PROPERTIES(�{APP_NAME } PROPERTIES
RESOURCE "�{APP_RESOURCES}")

• Information property list files. Mac OS X application bundles need
an information property list file that enumerates various aspects of the

© 2012 by Taylor & Francis Group, LLC



650 VII Software Design

application in the application bundle, which is located directly in the root
of the bundle. CMake lets you identify a template file with wildcards, which
we name Info.plist.in.

SET(APP_PLIST_FILE
�{APP_ROOT }/ config/apple/osx/Info.plist.in)

SET_TARGET_PROPERTIES(�{APP_NAME } PROPERTIES
MACOSX_BUNDLE_INFO_PLIST �{APP_PLIST_FILE})

CMake will read the Info.plist.in, substitute the wildcards, and generate a
Info.plist in a private section of its build directory, e.g.,
path/to/build/CMakeFiles/HelloWorld.dir/Info.plist. This file is linked and
added to the Xcode project files automatically, after which Xcode will copy it
to the root of the application bundle as a prebuild step.

• Objective-C(++). In order to use C++ code in Objective-C, we need to
compile all sources as Objective-C++, which we can do with

SET(CMAKE_CXX_FLAGS "-x objective -c++")

We need to add the .mm files to the sources in order for them to be built, so
we include those with:

FILE(GLOB APP_SOURCES �{APP_ROOT }/src/[^.]*.[ mmcpph ]*)

44.7.3 iOS

iOS is a lot more involved. Only OpenGL ES is supported on the devices. OpenGL
ES 2.0 is supported only on newer models (iPhone 3GS and up, iPad 2). OpenGL
ES 1.1 is supported on all models. Furthermore, a distinction is made between
applications that run on the simulator on the Intel architecture or on the device
itself with the ARM architecture. The signing and provisioning of applications needs
special attention, and resource management is a bit more involved than on Mac
OS X.

• Configurating targets. CMake presents a method of cross compiling
when the build platform is different from the target platform, which was
our first approach to creating iOS applications, resulting in different so-called
toolchain files for device and simulator. This turned out to be an unneces-
sary in-between step. The compiler can be the default compiler (Apple LLVM
compiler 3.0 for Xcode 4.2) also used for Mac OS X builds. The base SDK is
selected via the CMAKE OSX SYSROOT variable. The CMake script fragment
for iOS 5.0 follows:

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-52&iName=master.img-581.png&w=297&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-52&iName=master.img-581.png&w=297&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-52&iName=master.img-581.png&w=297&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-52&iName=master.img-581.png&w=297&h=16
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-52&iName=master.img-581.png&w=297&h=16


44. The Build Syndrome 651

SET(IOS_BASE_SDK_VER "5.0"
CACHE PATH "iOS Base SDK version ")

SET(IOS_DEVROOT
"/Developer/Platforms/iPhoneOS .platform /Developer")

SET(IOS_SDKROOT "�{IOS_DEVROOT}/SDKs/
iPhoneOS�{IOS_BASE_SDK_VER}.sdk")

SET(CMAKE_OSX_SYSROOT "�{SDKROOT }")

The architecture has to be set:

SET (CMAKE_OSX_ARCHITECTURES
"�(ARCHS_STANDARD_32_BIT)")

This will result in the standard armv7 setting. We set the target to create
universal applications for both iPad and iPhone. The representation “1,2” will
be translated correctly to “iPhone/iPad” in Xcode:

SET_TARGET_PROPERTIES(�{APP_NAME } PROPERTIES
XCODE_ATTRIBUTE_TARGETED_DEVICE_FAMILY "1,2")

SET_TARGET_PROPERTIES(�{APP_NAME } PROPERTIES
XCODE_ATTRIBUTE_DEVICES "Universal")

We can set the minimal iOS deployment version, iOS 4.3 in this case:

SET_TARGET_PROPERTIES(�{APP_NAME } PROPERTIES
XCODE_ATTRIBUTE_IPHONEOS_DEPLOYMENT_TARGET 4.3��)

• Frameworks. The different frameworks needed for linking can be added
via linker flags. They will not be clearly visible in the Xcode IDE, but the
applications link correctly:

# Enumerate frameworks to be linked to on iOS...
SET(IOS_FRAMEWORKS �{IOS_FRAMEWORKS} OpenGLES )
SET(IOS_FRAMEWORKS �{IOS_FRAMEWORKS} UIKit)
SET(IOS_FRAMEWORKS �{IOS_FRAMEWORKS} Foundation)
SET(IOS_FRAMEWORKS �{IOS_FRAMEWORKS} CoreGraphics)
SET(IOS_FRAMEWORKS �{IOS_FRAMEWORKS} QuartzCore)
...
FOREACH (NAME �{IOS_FRAMEWORKS})

SET(CMAKE_EXE_LINKER_FLAGS
"�{CMAKE_EXE_LINKER_FLAGS} -framework �{NAME}")

ENDFOREACH()

• Effective platforms. New in the latest version of CMake, Version 2.8.6,
is the concept of effective platforms. Setting this parameter makes sure that if
we switch between device or simulator schemes in the Xcode IDE, the correct
build path to the corresponding library is automatically selected by Xcode.
This will be either path/to/build/[config]-iphoneos or path/to/build/[config]-

© 2012 by Taylor & Francis Group, LLC



652 VII Software Design

iphonesimulator, where config represents your current configuration, Debug,
Release, etc.:

SET(CMAKE_XCODE_EFFECTIVE_PLATFORMS
-iphoneos ;-iphonesimulator)

• Information property list files. As in Mac OS X builds, an Info.plist
property list file is needed in the bundle. In CMake, they are treated similar
to the Mac OS X builds, only we provide a different template because iOS has
some additional properties like orientations of the device and minimal device
requirements, e.g., gyroscope, GPS:

SET(PLIST_FILE
�{APP_ROOT }/ config/apple/ios/Info.plist.in)

• Interface builder. Xib files are interface builder user interface files. As a
prebuild step, Xcode compiles them into binary nib files and adds them to the
bundle, but only if they are properly identified as resource. The CMake script
fragment follows:

FILE(GLOB XIB_FILES
�{APP_ROOT }/ config/apple/ios/*.xib) # Gather xib files

SET_TARGET_PROPERTIES(�{APP_NAME } PROPERTIES
RESOURCE "�{XIB_FILES}")

• Provisioning and code signing. Provisioning and code signing is one of
the more error-prone new aspects of iOS development. After subscribing to
the Apple Developer Program, a developer will have to spend quite some time
in the “iOS Provisioning Portal” on the Apple Developer website. First, devel-
oper and distribution certificates have to be generated that can be added to the
personal keychain. For each application, we generate an application identifier
called the AppID and generate developer, AdHoc and AppStore distribution
provisioning profiles called *.mobile-provisioning files that need to be linked
with our bundle. Without those, we can only run applications in the simula-
tor. With a developer provisioning profile, we can run and debug our applica-
tion on the device that is tethered to our development machine directly from
Xcode. With the AdHoc distribution, we can create a so-called archive that
can be sent around and installed locally on a limited set of trusted devices via
iTunes. We need to know and enumerate the unique UID keys of these devices
in advance. The AppStore distribution allows us to distribute our application
via the AppStore after it is approved by Apple. The AppID in reversed do-
main notation is set through the CMake MACOS BUNDLE GUI IDENTIFIER

© 2012 by Taylor & Francis Group, LLC



44. The Build Syndrome 653

variable. This entry will also be substituted in the Info.plist file via a wildcard
as value for the CFBundleIdentifier key:

SET(IOS_APP_IDENTIFIER nl.cthrough .helloworld)
# this has to match to your App ID (case sensitive)
SET(MACOSX_BUNDLE_GUI_IDENTIFIER �{IOS_APP_IDENTIFIER})

The provision profile is a separate setting:

SET(IOS_CODESIGN_ENTITLEMENTS
�{APP_ROOT }/ config/apple/ios/
entitlements/EntitlementsDebug.plist)
# replace with EntitlementsDistributionAdHoc.plist or
# EntitlementsDistributionAppStore.plist

SET_TARGET_PROPERTIES(�{APP_NAME } PROPERTIES
XCODE_ATTRIBUTE_CODE_SIGN_ENTITLEMENTS
�{IOS_CODESIGN_ENTITLEMENTS})

• Archiving. Archiving consists of creating an archive for distribution, either
AdHoc or AppStore. To create a successful archive, we have to make sure that,
in Xcode, the skip install property is not set for the application but set for
static libraries, which is the CMake default. Furthermore, we make sure that
the path to an installation directory is not empty:

SET_TARGET_PROPERTIES(�{APP_NAME } PROPERTIES
XCODE_ATTRIBUTE_SKIP_INSTALL NO)

SET_TARGET_PROPERTIES(�{APP_NAME } PROPERTIES
XCODE_ATTRIBUTE_INSTALL_PATH "/Applications")

We also have to make sure that in the code-signing field, a valid iPhone Dis-
tribution as opposed to an iPhone developer profile is set. Unfortunately, with
the latest version of CMake, it is not yet possible to set different values for
different configurations in Xcode, but this feature is on the road map for the
next version (2.8.7). We hope to be able to do the following:

SET( IOS_CODE_SIGN_IDENTITY_DEVELOPER
"iPhone Developer"
CACHE STRING "code signing identity " )
# For developing

SET( IOS_CODE_SIGN_IDENTITY_DISTRIBUTION
"iPhone Distribution"
CACHE STRING "code signing identity " )
# AdHoc or AppStore distribution

SET_TARGET_PROPERTIES( �{APP_NAME } PROPERTIES
XCODE_ATTRIBUTE_CODE_SIGN_IDENTITY[variant =��Debug��]
�{IOS_CODE_SIGN_IDENTITY_DEVELOPER} )

SET_TARGET_PROPERTIES( �{APP_NAME } PROPERTIES
XCODE_ATTRIBUTE_CODE_SIGN_IDENTITY[variant =��Release ��]
�{IOS_CODE_SIGN_IDENTITY_DISTRIBUTION} )

© 2012 by Taylor & Francis Group, LLC



654 VII Software Design

Instead of manually changing the value of the code-sign identity as we have to
do now, the following with work:

SET( IOS_CODE_SIGN_IDENTITY "iPhone Developer"
CACHE STRING "code signing identity " )
# Change to iPhone Distribution�� for archiving

SET_TARGET_PROPERTIES( �{APP_NAME } PROPERTIES
XCODE_ATTRIBUTE_CODE_SIGN_IDENTITY
�{RT_CODE_SIGN_IDENTITY} )

44.8 Conclusion
Fortunately, the last decade has shown an incredible increase in the number of
community-driven software projects aiming to help deal with the complexities of
cross-platform development (Boost, CMake) and to help avoid overly complex code
bases when targeting different OpenGL versions (GLEW, GLUT). Unfortunately,
the task of selecting the best set of these projects is a difficult one. There are many
alternatives to the selection we made, but we believe that we have made the most
sensible choice at this time.

We would like to thank contributors from the very active CMake community,
especially David Cole and Michael Hertling. And George van Venrooij, for pointing
out CMake in the first place.

Bibliography
[CMa 11] “CMake: A Cross-Platform, Open-Source, Build System.” http://www.cmake.org,

2011.

[Coumans 10] Erwin Coumans. “Bullet Physics Library.” http://bulletphysics.org, 2010.

[Dawes and Abrahams 04] Beman Dawes and David Abrahams. “Boost C++ Libaries.” http:
//www.boost.org, 2004.

[Khronos 97] Khronos. “OpenGL Platform and OS Implementations.” http://www.opengl.
org/documentation/implementations, 1997.

[Khronos 12] Khronos. “EGL: Native Platform Interface.” http://www.khronos.org/egl,
2012.

[Kilgard 97] Mark Kilgard. “GLUT: The OpenGL Utility Toolkit.” http://www.opengl.org/
resources/libraries/glut/, 1997.

[Nokia 08] Nokia. “Qt: A Cross-Platform Application and UIFramework.” http://qt.nokia.
com/products, 2008.

[Olszta 03] Pawel W. Olszta. “FreeGLUT: The OpenSourced alternative to GLUT.” http://
freeglut.sourceforge.net/, 2003.

© 2012 by Taylor & Francis Group, LLC



44. The Build Syndrome 655

[OpenGL 11] OpenGL. “Creating an OpenGL Context.” http://www.opengl.org/wiki/
Creating an OpenGL Context, 2011.

[OpenGL 12] OpenGL. “OpenGL Toolkits and APIs.” http://www.opengl.org/wiki/Related
toolkits and APIs#Context.2FWindow/Toolkits, 2012.

[Perkins 07] Jason Perkins. “Premake: Build Script Generation.” http://premake.sourceforge.
net/, 2007.

[RenderTools 11] RenderTools. “RenderTools: A (Lightweight) OpenGL–Based Scenegraph
Library by J. van der Spek.” http://rendertools.dynamica.org, 2011.

[Sourceforge 11] Sourceforge. “GLEW: The OpenGL Extension Wrangler Library.” http://
glew.sourceforge.net, 2011.

[WAF 11] WAF. “WAF: The Meta Build System—Google Project Hosting.” http://code.
google.com/p/waf/, 2011.

[Wikipedia 12a] Wikipedia. “GLX.” http://en.wikipedia.org/wiki/GLX, 2012.

[Wikipedia 12b] Wikipedia. “WGL (software).” http://en.wikipedia.org/wiki/WGL
(software), 2012.

© 2012 by Taylor & Francis Group, LLC



© 2012 by Taylor & Francis Group, LLC



About the Contributors

Woojin Ahn
ahnw@rpi.edu

Woojin is a postdoctoral research associate at the Center for Mod-
eling, Simulation and Imaging in Medicine at Rensselaer Poly-
technic Institute. He received his PhD in Mechanical Engineer-
ing from Korea Advanced Institute of Science and Technology in
2010. His current research interests include surgery simulation,
physics-based animation, and web-based multimodal interactive 3D applications.

Alina Alt
aalt@nvidia.com

Alina is an applied engineer at NVIDIA where her responsibil-
ities include helping users incorporate NVIDIA’s GPUs, video
products, and video-related driver features into their solutions
and applications. She specializes in combining technologies in video-processing ap-
plications and optimizing application performance in systems with multiple GPUs.
Her past experience includes developing augmented reality applications for live sports
telecasts and developing a scalable, CPU-based compute cluster graphics driver.

Edward Angel
angel@cs.unm.edu

Ed is Professor Emeritus of Computer Science at the Univer-
sity of New Mexico (UNM) and was the first UNM Presiden-
tial Teaching Fellow. At UNM, he held joint appointments in
Computer Science, Electrical and Computer Engineering, and
Cinematic Arts. He has held academic positions at the University of California at

657

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-008.jpg&w=59&h=72
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-010.jpg&w=59&h=57


658 About the Contributors

Berkeley, the University of Southern California, and the University of Rochester, and
has held visiting positions in Sweden, the U.K., India, Venezuela, and Ecuador. His
research interests have focused on computer graphics and scientific visualization. Ed’s
textbook Interactive Computer Graphics is now in its sixth edition. The third edition
of the companion book, The OpenGL Primer, was published in 2006. He has taught
over 100 professional short courses, including OpenGL courses at both SIGGRAPH
and SIGGRAPH Asia. He received a BS from the California Institute of Technology
and a PhD from the University of Southern California.

Nakhoon Baek
oceancru@gmail.com

Nakhoon is currently an associate professor in the School of Com-
puter Science and Engineering at Kyungpook National Univer-
sity, Korea. He received his BA, MS, and PhD in computer sci-
ence from Korea Advanced Institute of Science and Technology
(KAIST) in 1990, 1992, and 1997, respectively. His research interests include graph-
ics standards, graphics algorithms, and real-time rendering. He implemented an in-
house version of CGM/CGI graphics standards in the late 1990s, for a telephone
company in Korea. Since 2005, he has been coworking with the graphics team in
HUONE Inc. to commercially implement a set of graphics standards for embedded
systems including OpenVG, OpenGL ES, OpenGL SC, and Collada.

Mike Bailey
mjb@cs.oregonstate.edu

Mike is a professor in computer science at Oregon State Univer-
sity. Mike holds a PhD from Purdue University, and has worked
at Sandia National Labs, Purdue University, Megatek Corpo-
ration, and the San Diego Supercomputer Center at UC San
Diego. Mike has taught numerous classes at the college level (a combined 4000+
students), and at conferences (SIGGRAPH, SIGGRAPH Asia, SIGCSE, IEEE Vi-
sualization, and Supercomputing). Mike was five times voted Computer Science
Teacher of the Year by the UCSD CS seniors. He was also voted Most Enthusias-
tic Professor by the OSU students in 2005 and received the Austin Paul teaching
award from OSU’s College of Engineering in 2008. Mike’s research areas include a
variety of topics in the field of scientific computer graphics, with a specific interest
in GPU programming, visualizing volume data sets, solid freeform fabrication for
visualization hardcopy, and stereographics.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-020.jpg&w=59&h=68
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-021.jpg&w=59&h=63


About the Contributors 659

Francesco Banterle
francesco.banterle@isti.cnr.it

Francesco is a post-doc researcher at the Visual Computing Lab-
oratory at ISTI-CNR Italy. He received a PhD in Engineering
from Warwick University in 2009. During his PhD, he devel-
oped inverse tone mapping, which bridges the gap between low dynamic range imag-
ing and high dynamic range (HDR) imaging. He holds a BSc and an MSc in com-
puter science from Verona University. He is the first coauthor of the book Advanced
High Dynamic Range, published by A K Peters in 2011. His main research fields
are HDR Imaging, Rendering, and Parallel Processing (GPUs and shared-memory
systems).

Jesse Barker
jesse.barker@linaro.org

Jesse is a principal software engineer at ARM Ltd., where he
is currently seconded as technical lead of the graphics working
group to Linaro, a not-for-profit open-source engineering com-
pany aimed at making Linux development for the ARM ecosys-
tem easier and faster. Prior to his arrival at ARM in 2010, he
enjoyed stints at ATI/AMD, Silicon Graphics, Digital, and a few smaller compa-
nies. Efforts for those enterprises have ranged from development to design to lead-
ership of technology as well as process and policy. He has touched just about ev-
ery layer of the graphics stack on a number of platforms, and is excited to see
how Linaro can help shape the direction of the graphics stack on Linux moving
forward.

Venceslas Biri
biri@univ-mlv.fr

Venceslas is an associate professor in the LIGM laboratory of
Université Paris-Est. He specializes in real-time rendering and
global illumination, and has good knowledge in virtual reality.
He also served as headmaster of the higher school of engineering,
IMAC (Image, Multimedia, Audiovisual and Communication),
from 2006 to 2011. A former engineering student of ENSIMAG, he also teaches
mathematics and computer graphics.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-031.jpg&w=59&h=60
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-032.jpg&w=59&h=73
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-033.jpg&w=59&h=70


660 About the Contributors

Nicolas Capens
nicolas@transgaming.com

Nicolas received his MSciEng degree in computer science from
Ghent University in 2007. Even at a young age, he was fascinated
by computer graphics, and he developed a passion for bringing
3D graphics to a wider audience. He wrote the fastest software
renderer with shading capabilities known to date and is deeply involved in projects to
provide efficient translations between graphics APIs. Fueled by the ongoing conver-
gence between CPU and GPU technology, he strives to further blur the line between
software and hardware rendering and make incompatibilities and limitations a thing
of the past.

Won Chun
wonchun@gmail.com

Won is one of the tech leads for Google’s websearch infrastruc-
ture efforts in NYC. In his 20% time, he also helped build and
maintain Google Body, including designing a high-performance
mesh-compression format. Prior to Google, he dabbled in vir-
tualization and user-interface design at moka5 and developed holographic and vol-
umetric rendering algorithms at Actuality Systems. Won has an SB in Electrical
Engineering and Computer Science from MIT.

Patrick Cozzi
pjcozzi@siggraph.org

At Analytical Graphics, Inc. (AGI), Patrick leads the graphics
development for Cesium, an open-source WebGL virtual globe.
He teaches GPU Programming and Architecture at the Univer-
sity of Pennsylvania. Patrick is coeditor of OpenGL Insights and
coauthor of 3D Engine Design for Virtual Globes. Before joining AGI in 2004, he
worked for IBM and Intel. He has an MS in computer and information science
from the University of Pennsylvania and a BA in computer science from Penn State.

Cyril Crassin
ccrassin@nvidia.com

Cyril received his PhD in computer graphics from Grenoble uni-
versity at INRIA in 2011. He is now a postdoctoral fellow at
NVIDIA research. His PhD work focused on using prefiltered
voxel representations for real-time rendering of large detailed
scenes and complex objects, as well as global illumination effects.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-043.jpg&w=59&h=68
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-044.jpg&w=59&h=59
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-045.jpg&w=59&h=63
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-046.jpg&w=59&h=76


About the Contributors 661

In this context, he developed the GigaVoxels rendering pipeline. Cyril has been sup-
porting OpenGL development for many years through his icare3d website.

Suvranu De
des@rpi.edu

Suvranu is the Director of the Center for Modeling, Simula-
tion and Imaging in Medicine, and Professor in the department
of Mechanical, Aerospace and Nuclear Engineering at Rensse-
laer Polytechnic Institute with joint appointments in the Depart-
ments of Biomedical Engineering and Information Technology
and Web Science. He received his ScD in Mechanical Engineer-
ing from MIT in 2001. He is the recipient of the 2005 ONR Young Investiga-
tor Award and serves on the editorial board of Computers and Structures and sci-
entific committees of numerous national and international conferences. He is also
the founding chair of the Committee on Computational Bioengineering of the US
Association for Computational Mechanics. His research interests include the devel-
opment of novel, robust, and reliable computational technology to solve challenging
and high-impact problems in engineering, medicine, and biology.

Charles de Rousiers
charles.derousiers@gmail.com

Charles is currently a PhD candidate at INRIA Grenoble Rhone-
Alpes in the ARTIS research team. He studies complex materi-
als representation for realistic rendering under the supervision of
Nicolas Holzschuch. He was a visiting scholar at UC Berkeley
under the supervision of Ravi Ramamoorthi for six months.

Daniel Dekkers
d.dekkers@cthrough.nl

After graduating from Eindhoven University of Technology, De-
partment of Mathematics and Computing Science with hon-
orable mention, Daniel Dekkers (1971) formed the company
cThrough, which focuses on collaborations between computer
graphics–related computing science and various (artistic) fields, mainly contempo-
rary art, modern dance, architecture, and education. Various projects include
“Prometheus, poem of fire,” a 25-minute animation by artist P. Struycken, for Dutch
national television; “SpaceJart,” an interactive zero-gravity biljart simulation for an
exhibition at Eindhoven University of Technology; “Dynamix,” a sensor-based stage
projection for a ballet by Khrisztina de Châtel; “OptiMixer,” a multicriteria opti-
mization tool in collaboration with architectural firm MVRDV and Climatizer; a
climate-simulation game that was shown at the Cité de sciences et l’Industry, Paris.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-056.jpg&w=59&h=87
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-057.jpg&w=59&h=59
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-058.jpg&w=59&h=64


662 About the Contributors

At the moment, Dekkers is working on GPU programming (OpenCL, CUDA),
cross-platform development, and iOS applications.

Marco Di Benedetto
marco.dibenedetto@isti.cnr.it

Marco is a researcher at the Istituto di Scienza e Tecnologie
dell’Informazione (ISTI) of the National Research Council (CNR)
in Pisa, Italy. He received his PhD in computer science from the
University of Pisa in 2011 with a thesis on real-time rendering
of large multiresolution data sets. These topics are part of his research and publish-
ing work in Computer Graphics, along with photorealistic rendering, out-of-core
processing and rendering, and parallel GPU techniques. He is the creator of the
SpiderGL library (http://spidergl.org) for the development of CG applications on
the web platform.

Aleksandar Dimitrijević
adimitrijevic73@gmail.com

Aleksandar is a teaching assistant, researcher, senior programmer,
team leader, and a Cisco Networking Academy instructor in the
Faculty of Electronic Engineering, University of Niš. Since the
completion of his undergraduate studies in 1997, he has been
involved in teaching several courses at the University, such as data structures, pro-
gramming, computer networks, computer graphics, and human-computer interac-
tion. Aleksandar received an MSc degree in electrical engineering in 2003 in the
Faculty of Electronic Engineering, University of Niš. As a member of the Computer
Graphics and Geographic Information Systems Laboratory, he has been involved in
designing and implementing various information systems. Currently, his main re-
search topic is the development of a large terrain-rendering algorithm, which is a
part of his PhD thesis.

Chris Dirks
ChrisDirks1@gmail.com

Chris is a JavaScript software engineer specializing in game and
simulation development. His professional work includes content
surrounding HTML5 and WebGL technologies. He is also an
avid gamer, with his favorite genre being RPGs.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-068.jpg&w=59&h=58
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-069.jpg&w=59&h=69
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-070.jpg&w=59&h=59


About the Contributors 663

Benjamin Encz
benjamin.encz@googlemail.com

Benjamin started with WebGL in January 2011 at IBM, devel-
oping a UI framework for his bachelor thesis. Currently, he lives
and works in Stuttgart, Germany. He has a bachelor’s degree in
Applied Computer Science from the Baden-Wuerttemberg Co-
operative State University. Benjamin is a software engineer at
Excelsis Business Technology AG, where he focuses on the conception and develop-
ment of iOS applications. Next to his job, he enjoys tracing WebGL’s development,
and video game programming.

Lin Feng
asflin@ntu.edu.sg

Dr. Lin Feng is currently an Associate Professor and the Pro-
gram Director, MSc (Digital Media Technology), at the School
of Computer Engineering, Nanyang Technological University,
Singapore. His research interests include computer graphics,
biomedical imaging and visualization, as well as high-performance
computing. He has published more than 150 technical papers, and he has been serv-
ing on the editorial board and as a guest editor / reviewer for many journals and
books. Dr. Lin is a senior member of IEEE.

Alexandros Frantzis
alexandros.frantzis@linaro.org

Alexandros is an electrical and software engineer and a long-time
free (as in speech) software supporter. He has worked on many
aspects of graphics and multimedia technology on GNU/Linux–
based embedded systems, including protocol and data handling
of video streaming, user-interface creation, DirectFB driver de-
velopment, and OpenGL ES 2.0 application development. He is currently a member
of the Linaro Graphics Working Group, developing benchmarking tools for OpenGL
ES 2.0, and enhancing graphics-related free and open source software libraries and
applications to take advantage of the powerful 3D GPUs available on modern ARM-
based hardware.

Lionel Fuentes
lfuentes@asobostudio.com

Lionel started programming at the age of 15 out of curiosity
to understand how computers work and for the fun of mak-
ing programs and video games. He graduated from INSA

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-080.jpg&w=59&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-081.jpg&w=59&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-082.jpg&w=59&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-083.jpg&w=59&h=62


664 About the Contributors

Toulouse Engineering School, specialized in computer science, and studied one year
in Tohoku University, Japan, researching the field of real-time global illumination.
He now works for video games editor Asobo Studio as an engine programmer. His
tasks include audio engine development, graphics programming, memory manage-
ment, optimization, and tools development. He enjoys spending his free time playing
the guitar, participating in amateur video games development, and playing Wii with
his girlfriend.

Fabio Ganovelli
fabio.ganovelli@isti.cnr.it

Fabio received his PhD from the University of Pisa in 2001.
Since then, he has published in the fields of deformable objects,
geometry processing, out-of-core rendering and manipulation of
massive models, photorealistic rendering, image-to-geometry reg-
istration, and education. He is a core developer of the Visualization and Computer
Graphics Library and has served as reviewer and/or chair for all the main journals and
conferences in computer graphics. He is currently a research scientist at the Istituto
di Scienza e Tecnologie dell’Informazione (ISTI) of the National Research Council
(CNR) in Pisa, Italy.

Simon Green

Simon is a senior member of the Developer Technology group at NVIDIA. He
started graphics programming on the Sinclair ZX-81, which had 1 KB of RAM and
a screen resolution of 64 by 48 pixels, and has been trying to improve the quality of
real-time graphics ever since. He received a BS in computer science from the Uni-
versity of Reading in 1994. Simon has been at NVIDIA since 1999, where he has
worked on numerous projects including the early Geforce graphics demos, games
such as Doom 3, and NVIDIA’s OpenGL and CUDA SDKs. He is a frequent pre-
senter at the GDC and SIGGRAPH conferences, and was a section editor for the
original GPU Gems book. His research interests include cellular automata, physically
based simulation on GPUs, and analogue synthesizers.

Stefan Gustavson
stefan.gustavson@liu.se

Stefan, born in 1965, received his PhD in image processing in
1997. His interest in computer graphics has had him fiddling
with raytracers since the 1980s, and he has been hacking in
OpenGL since Version 1.0. Apart from the procedural noise and
texture-related work presented in this book, he is involved in re-
search in next-generation image-based lighting by higher-dimensional light fields, an
area where computer graphics meets image processing.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-093.jpg&w=59&h=59
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-094.jpg&w=59&h=72


About the Contributors 665

Tansel Halic
halict@rpi.edu

Tansel received his BSc and MSci in computer science from Mar-
mara University, Istanbul, in 2001 and 2004, respectively. He
later continued his research at the University of Arkansas at Lit-
tle Rock. His research focused on surgical simulation in virtual
and augmented environments. He obtained an MS in applied science and special-
ized in applied computing. He later moved to Rensselaer Polytechnic Institute, Troy,
New York, and has been pursuing his PhD degree in the Department of Mechan-
ical, Aerospace and Nuclear Engineering. His research interests include framework
design, surgical simulations in virtual reality environments, and real-time algorithms
for interactive multimodal simulations.

Ashraf Samy Hegab
ashraf.hegab@orange.com

After working in the games industry for seven years as a Render-
ing engineer for console titles such as F1 2010, 50 Cent Blood
on the Sand, and Brian Lara International Cricket, Ashraf moved
to the Service Evolution and Games division of Orange R&D,
where he focuses on the intersection between mobile, desktop, and web to improve
software development strategies and the utilization of emerging technologies into
Orange’s products and services.

Adrien Herubel
herubel@gmail.com

Adrien is an R&D engineer in the motion picture department of
Ubisoft. He is part of the team developing a proprietary real-time
previsualization engine and an offline renderer. He also worked
in a VFX studio called DuranDuboi, where he developed the
low-level layers of the geometry pipeline. He is currently in the
process of finishing his thesis on real-time massive model rendering.

Sébastien Hillaire
sebastien.hillaire@gmail.com

Sébastien obtained his PhD in computer science from the French
National Institute of Applied Science in 2010. After one year at
Dynamixyz, he became a graphics programmer at Criterion—
Electronic Arts. He fell in love with OpenGL many years ago,
and cannot stop using it for high quality graphics and appealing
visual effects.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-104.jpg&w=59&h=76
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-105.jpg&w=59&h=59
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-106.jpg&w=59&h=77
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-107.jpg&w=59&h=77


666 About the Contributors

Ladislav Hrabcak
hrabcak@outerra.com

Ladislav has been interested in computer graphics since 1997 and
cofounded Outerra where he currently works, mainly on Outerra
Engine’s OpenGL-based renderer.

Scott Hunter
scott.k.hunter@gmail.com

Scott is a software developer at Analytical Graphics, Inc. (AGI),
where he builds analysis libraries in C# and Java, and client-side
visualization in HTML, JavaScript, and WebGL. Prior to joining
AGI, he wrote software as a consultant for a wide range of clients in the pharmaceu-
tical, legal, retail, and game industries, using a mix of nearly every modern platform
and language. Scott has a bachelor’s degree in Computer Science from Rensselaer
Polytechnic Institute.

Lindsay Kay
lindsay.kay@xeolabs.com

Lindsay is the author of SceneJS, an open-source, WebGL-based
3D scene graph engine geared towards rendering detailed scenes
for visualization applications. By day, he works as a software
developer at BioDigital Systems, where he is responsible for the
3D engine within the BioDigital Human. With a background in agile development,
his interests include the design of APIs that make access to high-performance graphics
easier for Web developers.

Brano Kemen
cameni@outerra.com

Brano is the cofounder of Outerra. His main interests include
procedural techniques for the generation of terrain and other nat-
ural and artificial phenomena as well as large-scale world render-
ing.

Pyarelal Knowles
pyar.knowles@rmit.edu.au

Pyarelal is a PhD student at RMIT University, Melbourne, with
research interests in real-time computer graphics and physics sim-
ulations. He completed his BS of IT (games and graphics pro-
gramming) in 2008, before a Comp. Sci. (Honors) year in 2009
at RMIT.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-117.jpg&w=59&h=59
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-119.jpg&w=59&h=59
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-120.jpg&w=59&h=56
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-121.jpg&w=59&h=59


About the Contributors 667

Daniel Koch

dgkoch@gmail.com

Daniel received his M.Math degree in computer science from the
University of Waterloo in 2002. He has a strong background in
3D graphics, specializing in OpenGL. He is an active member
of the Khronos OpenGL and OpenGL ES working groups. Daniel is currently the
Senior Graphics Architect at TransGaming. He has been with TransGaming since
2002, where he has been instrumental in advancing the graphics technology used for
Cedega, Cider, and GameTree TV which provide an implementation of Direct3D
using OpenGL/OpenGL ES. He is the project lead for ANGLE, which provides an
implementation of OpenGL ES 2 using Direct3D.

Geoff Leach

gl@rmit.edu.au www.cs.rmit.edu.au/ gl/

Geoff is a lecturer at RMIT University, Melbourne, where he has
been using OpenGL for teaching computer graphics since the
1.0 days. He has won a number of teaching awards and finds
a rewarding challenge in guiding and enthusing students about
learning an area which many find technically difficult. His research interests are fairly
broad, and include computer graphics, computational geometry, GPU computing
and computational nanotechnology. Geoff received a BAppSc with distinction from
Swinburne University in 1984 and MAppSc from RMIT University in 1990.

Hwanyong Lee

hylee@hu1.com

Hwanyong is currently Chief Technical Officer of HUONE Inc.,
Korea. He received his BA in computer science from Korea Ad-
vanced Institute of Science and Technology (KAIST) in 1990,
MS in computer engineering from Pohang University of Science
and Technology (POSTECH) in 1992, and PhD in computer
engineering from Kyungpook National University in 2011. His research interests
include computer graphics; embedded-system software; and game design and devel-
opment. Since 2004, he has been developing graphics software for mobile devices as
Chief Technical Officer of HUONE Inc.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-131.jpg&w=59&h=62
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-132.jpg&w=59&h=65
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-133.jpg&w=59&h=78


668 About the Contributors

Christopher Lux
christopherlux@gmail.com

Christopher Lux currently is a predoctoral research associate with
the Virtual Reality Systems department at Bauhaus-Universität
Weimar, Germany. In 2004 he graduated from the Ilmenau
University of Technology in computer science with a major in
computer graphics. His research interests include real-time rendering, scientific visu-
alization, and visual computing.

Dzmitry Malyshau
kvarkus@gmail.com

Dzmitry is an enthusiast in computer science. He was born in
Belarus and there received his professional degree in mathemat-
ics and programming. He moved to Canada in order to work
on a real-time 3D engine and computer games development for
touchscreen devices. Besides experimenting with 3D rendering ideas, Dzmitry also
researches data compression and artificial intelligence.

Arnaud Masserann
Arnaud1602@gmail.com

Arnaud graduated from the INSA of Rennes, France in 2010. He
works as an R&D engineer at Virtualys, which has been making
serious games for more than ten years. He spends most of his
time playing with Unity, Ogre, and bare OpenGL. He is the
main author of opengl-tutorial.org and makes triangles for a living.

Jon McCaffrey
mccaffrey.jonathan@gmail.com

Jon works at NVIDIA on the Tegra Graphics Performance team,
working to improve performance and user experience. He grad-
uated in 2011 from the University of Pennsylvania with an MSE
in computer science and a BSE in digital media design. At Penn,
he was a teaching assistant for two years for CIS 565, GPU Programming, and Ar-
chitecture. Before coming to NVIDIA, he interned at LucasArts in 2010 working on
in-engine animation tools and worked as a research assistant at the SIG Center for
Computer Graphics.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-143.jpg&w=59&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-144.jpg&w=59&h=66
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-145.jpg&w=59&h=66
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-146.jpg&w=59&h=58


About the Contributors 669

Bruce Merry

bmerry@gmail.com

Bruce did his PhD at the University of Cape Town, specializing
in character animation. In 2008, he joined ARM as a software
engineer working on Mali graphics products. He has now re-
turned to the University of Cape Town to do a postdoc. He is
funded by the Centre for High Performance Computing to do research in GPU ac-
celeration of computer graphics algorithms. When not doing computer graphics,
Bruce is a regular participant in programming contests.

Muhammad Mobeen Movania

mova0002@e.ntu.edu.sg

Muhammad Mobeen received his Bachelor of Computer Sci-
ences from Iqra University Karachi in 2005. After his gradua-
tion, he joined the Data Communication and Control (Pvt.) Ltd
as a software engineer, working on DirectX and OpenGL APIs
to produce real-time interactive tactical simulators and dynamic integrated training
simulators. His research interests include volumetric rendering, GPU technologies,
and real-time volumetric lighting, shading, and shadows. He is currently pursuing
his PhD from NTU, and his proposed area of research is GPU-accelerated advanced
volumetric deformation and rendering under the advice of Associate Professor Lin
Feng. He is the author of the open-source project OpenCloth, http://code.google.
com/p/opencloth, which details all of the existing cloth and soft-body simulation
algorithms in a simple OpenGL-based C++ library.

Bruno Oliveira

bruno.oliveira@dcc.fc.up.pt

Bruno was born on Christmas day in 1978 in Porto, the place
where he still lives today. He studied computer science and later
on got his MSc in computer graphics. In between, he had several
jobs, from network administrator, to software development, to
trainee, to researcher on different University projects. Today he is a researcher at
the Porto Interactive Center, a research group dedicated to innovation in computer
graphics and human-computer interaction and is completing his PhD dissertation in
the same area.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-156.jpg&w=59&h=65
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-157.jpg&w=59&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-158.jpg&w=59&h=69


670 About the Contributors

Matt Pettineo
mpettineo@gmail.com

Matt first began studying graphics programming during college
while developing an interactive 3D simulation program for an
autonomous vehicle. Today he works as a full-time graphics pro-
grammer in the games industry, and regularly contributes graphi-
cal samples and research to his blog, “The Danger Zone.” His interests include image
processing, physically based lighting and material models, and GPU optimizations.
Matt is currently a graphics/engine programmer for Ready At Dawn Studios, and has
been a DirectX/XNA MVP since 2009.

Daniel Rákos
daniel.rakos@rastergrid.com

Daniel is a Hungarian software designer and developer, computer
graphics enthusiast, and has been hobbyist OpenGL developer
for ten years. His primary field of research is GPU-based scene
management, batching, and culling algorithms. He’s currently
working for AMD as an OpenGL driver developer. In his spare time he writes articles
about OpenGL, computer graphics, and other programming-related topics at the
RasterGrid Blogosphere (http://www.rastergrid.com/blog/).

António Ramires Fernandes
arf@di.uminho.pt

António is an assistant professor at the University of Minho,
where for the past 15 years, he has been teaching and researching
computer graphics, focusing on real-time graphics. He is also the
maintainer of www.lighthouse3d.com, a site devoted to teaching OpenGL and 3D
graphics.

Christophe Riccio
christophe.riccio@g-truc.net

Christophe is a graphics programmer with a background in digi-
tal content creation tools, game programming, and GPU design
research. He is also a keen supporter of real-time rendering as a
new media for art. An enthusiast since high school, he has an
MSc degree in computer game programming from the University of Teesside. He
joined e-on software to study terrain editing and to design a multi-threaded graphics
renderer. He worked for Imagination Technologies on the PowerVR series 6 archi-
tecture. He is currently working for AMD doing some OpenGL gardening. For the

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-168.jpg&w=59&h=79
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-169.jpg&w=59&h=59
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-170.jpg&w=59&h=54
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-171.jpg&w=59&h=59


About the Contributors 671

past ten years, Christophe has been an active OpenGL community contributor, in-
cluding contributions to the OpenGL specifications. Through G-Truc Creation, he
writes articles to promote modern OpenGL programming. He develops tools, GLM
and the OpenGL Samples Pack, which are part of the official OpenGL SDK.

Philip Rideout

Philip works on shading tools at an animation studio. In his
previous lives he worked on surgery simulators, GPU developer
tools, and GLSL compilers. Philip has written a book on 3D
programming for iOS devices and he has a blog at http://prideout.
net. In his spare time, he can be found walking his dog at the Berkeley Marina.

Omar A. Rodriguez
omar.a.rodriguez@intel.com

Omar is a software engineer with Intel’s Software and Service
Group. He focuses on real-time 3D graphics and game develop-
ment. Omar holds a BS in computer science from Arizona State
University. Omar is not the lead guitarist for The Mars Volta.

Jochem van der Spek
j@jvanderspek.com

Jochem (1973) studied Media Design at the High School of the
Arts in Utrecht, The Netherlands. Following a short career as
CGI artist and operator of motion capture systems, he created
the indy-game “Loefje,” which is about artificial biological evolution and various art-
work that focuses on the origin of “alive” motion versus “mechanical” motion. This
work was exhibited in numerous shows and acquired by several museums worldwide.
Recently, he has created the game “StyleClash: The Painting Machine Construction
Kit” and is currently working on a version of Loefje for the iPad.

Dirk Van Gelder

Dirk has worked on tools for rigging, animating, and simulating
characters in the feature film industry since 1997. Most recently,
this includes leveraging the GPU for visual detail in animator
interaction.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-181.jpg&w=59&h=59
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-182.jpg&w=60&h=67
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-183.jpg&w=59&h=52
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-184.jpg&w=59&h=59


672 About the Contributors

Shalini Venkataraman
shaliniv@nvidia.com

Shalini is a senior applied engineer at NVIDIA where she works
on using GPUs to solve imaging and visualization problems in
medical, oil and gas, and scientific computing domains. Prior to
that she was a research staff at various high-performance com-
puting centers in the US and Singapore. Her interests are in parallel and large-data
visualization. She earned her MS from the University of Illinois at Chicago and BS
from the National University of Singapore.

Fabio Zambetta
fabio.zambetta@rmit.edu.au

Fabio Zambetta received his MS and PhD in computer science
from the University of Bari (Italy) investigating the use of 3D
personas as adaptive intelligent interfaces. He is now a senior
lecturer with the School of Computer Science and IT, RMIT University (Australia).
His current research focus is on procedural generation of game play, player modeling,
and GPU computing for video games.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-194.jpg&w=59&h=70
http://www.crcnetbase.com/action/showImage?doi=10.1201/b12288-53&iName=master.img-195.jpg&w=59&h=54


Index

3D objects, 585

abstract syntax tree, 550, 551
AMD, 366, 411

ADL, 532–533
AMD debug output, 489–491
AMD pinned memory, 401–402, 404
APU, 393
ATI meminfo, 538–539
Catalyst, 72–73, 407
Crossfire, 376
glBufferData, 399, 413
glGenerateMipmap, 457–458
glUnmapBuffer, 404
glUnmapBuffer), 404
Radeon, 233, 296–298
Radeon HD 5000 series, 66

Android, 30, 47–59, 544, 611
ANGLE, 28, 543–569

ANGLE d3d share handle client
buffer, 563

ANGLE framebuffer blit, 561
ANGLE framebuffer multisample,

561
ANGLE surface d3d texture 2d

share handle, 563
ANGLE texture compression dxt3,

558
ANGLE texture compression dxt5,

558

ANGLE texture usage, 557
ANGLE translated shader source, 554
context loss, 563
coordinate systems, 545
depth range, 549
dithering, 548
fill convention, 549
fragment coordinates, 549
glBlitFramebufferANGLE, 561
index buffers, 554
masked clears, 560
multiple contexts, 561
multisampling, 561
optimizations, 565
packed depth-stencil, 560
primitive types, 559
resource limits, 564
separate depth and stencil buffers, 560
shader built-ins, 551
shader translation, 551
synchronization, 560
textures, 556
vertex buffers, 554
vertex texture fetch, 558
winding order, 548
window origin, 547

antialiasing, 163–171, 343
FXAA, 164–165
MSAA, 343
procedural textures, 107–110

673

© 2012 by Taylor & Francis Group, LLC



674 Index

signed distance field, 174–176, 180
SSAA, 343

aperture, 208
ARB create context, 382, 424
ARB debug output, 395, 425, 483–492
ARB draw indirect, 232
ARB draw instanced, 232
ARB ES2 compatibility, 626
ARB gpu shader5, 232
ARB image load store, 285
ARB instanced array, 360
ARB separate program objects, 76
ARB shader atomic counters, 282–283
ARB sync, 384, 407, 424
ARB texture array, 358–359
ARB texture float, 359–360
ARB timer query, 493–503
ARB transform feedback2, 232, 233
ARB transform feedback3, 232, 233
ARB transform feedback instanced, 233
ARB_timer_query, 334
ARB robustness, 564
ARB texture storage, 557
architecture, 584
array buffer, 30
art pipeline, 433, 436, 441
atomic counter, 211, 282, 283, 313–314
attribute fetch, 350
automatic derivatives, 108

band limited, 174
bandwidth, 324, 340–343
Barycentric coordinate, 97
batching, 358–359
bicubic patches, 100
Blender, 196, 202, 203, 255, 257
blending, 333, 345
bloom, 347–348, 514–526
bokeh, 205–217
buffer textures, 285, 294
buffer usage, 555, 566

Canvas2D, 544
Catmull-Clark subdivision, 88
cdn, 435

Chrome, 28, 31, 35–36, 516, 544, 568,
569, 612

cloth simulation, 231–245
CMake, 643–654
COLLADA, 365, 367, 432, 469
composition, 342
conjugate gradient, 237
conservative rasterization, 308
context loss, 563
copy-on-write, 331
cors, 34–35, 435
cross-GPU data transfers, 139
CUDA, 133–142, 315, 393, 413
cudaGraphicsGLRegisterBuffer, 134
cudaGraphicsGLRegisterImage, 135
cudaGraphicsMapResources, 136
cudaGraphicsUnmapResources, 136
cudaGraphicsUnregisterResource, 135
culling

back-face culling, 273–274
frustum culling, 247, 270–273
GPU-based culling, 150
patch culling, 151

cylindrical warping, 89

deferred shading, 196, 197, 201, 203, 347
delta coding, 442, 443
denial of service, 36
depth buffer, 247, 281
depth complexity, 285–286
depth of field, 205–217
depth-only pass, 249, 283, 332, 345
direct memory access, see dma
direct state access, 590
Direct3D, 28, 36, 66, 90, 205, 413,

518–519, 521, 543–569
displacement mapping, 87
distance field, 174
distance transform, 176
dma, 393, 415
domain shader, 90
dos, see denial of service
draw indirect, 315
Drone, 469
dxt

dxt compression, 456
real-time dxt encoding, 462

© 2012 by Taylor & Francis Group, LLC



Index 675

ECMAScript, 37–38, see also JavaScript
EGL, 544
Equalizer, 385
ESSL, 550, 565, 567
EXT debug label, 491
EXT debug marker, 491
EXT paletted texture, 125
EXT shared texture palette, 125
EXT texture format BGRA8888, 631
EXT timer query, 494
EXT transform feedback, 232
EXT_discard_framebuffer, see framebuffer

discard
EXT create context robustness extension,

564
EXT framebuffer blit, 561
EXT framebuffer multisample, 561
EXT read format bgra, 558
EXT robustness, 564
EXT texture compression dxt1, 558
EXT texture format BGRA8888, 558
EXT texture storage, 557, 567

FBX, 469
fence, 384, 397–407, 417–424, 500, 561
FFmpeg, 465
Firefox, 28, 31, 35–36, 38, 544, 569, 612
fractional even spacing, 149
fractional odd spacing, 149
framebuffer discard, 327–328
framebuffer object, 14, 347, 423
freeglut, 15

g-buffer, 196, 198
GameTree TV, 544
geometry format, 467
geometry shader, 168–169, 259–277
geometry sorting, 345
GL ARB robustness, 36
GL ARRAY BUFFER, 392
GL CLAMP TO BORDER, 628
GL DRAW INDIRECT BUFFER, 232
GL DYNAMIC COPY, 242
GL ELEMENT ARRAY BUFFER, 392
gl InstanceID, 214, 293, 296

GL INTERLEAVED ATTRIBS, 233
GL LINEAR, 629
GL MAP INVALIDATE BUFFER BIT,

399, 400
GL MAP INVALIDATE RANGE BIT,

399, 400
GL MAP UNSYCHRONIZED BIT, 413
GL MAX COLOR ATTACHMENTS, 67
GL MAX DRAW BUFFERS, 67
GL MAX UNIFORM BUFFER BINDING,

81
GL MAX VARYING COMPONENTS, 67
GL MAX VARYING VECTORS, 67
GL NEAREST, 629
GL PATCHES, 90
gl PatchVerticesIn, 93
gl PerVertex, 63, 85
gl PrimitiveID, 93, 293, 296
GL QUERY RESULT, 498
GL QUERY RESULT AVAILABLE, 500
GL RASTERIZER DISCARD, 268, 286
GL SEPARATE ATTRIBS, 233
gl TessCoord, 97
GL TIME ELAPSED, 497
GL TIMESTAMP, 495, 499
GL VERTEX ATTRIB ARRAY LONG, 83
gl VertexID, 285, 293, 296
glBeginQuery, 497, 508
glBeginTransformFeedback, 233
glBindAttribLocation, 77
glBindBufferBase, 233, 242
glBindTransformFeedback, 233, 240
glBufferData, 34, 393, 394, 398–400, 406,

413
glBufferSubData, 32, 393, 394, 397, 399,

412
glClear, 341
glClientWaitSync, 397
glColorMaski, 80
glColorSubTableEXT, 129
glColorTableEXT, 129
glCompressedTexSubImage2D, 457
glCopyBufferSubData, 286, 396, 404
glDebugMessageCallbackARB, 484
glDebugMessageControlARB, 488
glDebugMessageInsertARB, 488

© 2012 by Taylor & Francis Group, LLC



676 Index

glDeleteTransformFeedbacks, 233
glDrawArrays, 8, 285, 296
glDrawArraysIndirect, 213, 232
glDrawArraysInstancedBasedVertex, 232
glDrawBuffer, 80
glDrawBuffers, 79, 80, 84
glDrawElements, 296
glDrawElementsIndirect, 232
glDrawElementsInstancedBasedVertex, 232
glDrawTransformFeedback, 232, 233
glDrawTransformFeedbackInstanced, 233
glDrawTransformFeedbackStreamInstanced,

233
GLee, 378
glEndQuery, 497, 508
glEndTransformFeedback, 233
GLEW, 378
glFlushMappedBufferRange, 394
glGenerateMipmap, 458
glGenQueries, 496
glGenTransformFeedbacks, 233, 240
glGetActiveAttrib, 83
glGetActiveUniform, 84
glGetAttribLocation, 77, 83
glGetBufferSubData, 286
glGetDebugMessageCallbackARB, 485
glGetDebugMessageLogARB, 487
glGetError, 483
glGetFramebufferAttachmentParameter, 84
glGetGraphicsResetStatusEXT, 564
glGetInteger, 495
glGetProgram, 84
glGetQueryObject, 498
glGetstringi, 484
glMapBuffer, 232, 243, 394, 395, 399, 403
glMapBufferOES, 340
glMapBufferRange, 286, 394–396,

398–402, 408, 410–412
glMemoryBarrier, 213
global memory, 305
glPixelStore, 631
glQueryCounter, 227, 499, 508
glReadPixels, 34, 403, 404, 457
GLSL, 544, 550, 554

block, 62–63
built-in variables, 63

locations, 64–67
naming conventions, 18–19
pointers, 305
structure, 74–76
uniform block, 81
variable, 62

GLSL ES, 544
glTransformFeedbackVaryings, 233, 240
glUniformBlockBinding, 81
glUnmapBuffer, 394, 404, 409–411
glut, 14
glutInitContextFlags, 484
glValidateProgram, 82
glValidateProgramPipeline, 82
glVertexAttribIPointer, 70, 83
glVertexAttribLPointer, 70, 71, 83
glVertexAttribPointer, 70, 83
glWaitSync, 397
GLX, 484
Google Body, 431, 432, 436, 446, 447, 452
GPGPU, 36
GPUView, 417
gradient, 109
graphics memory

dedicated, 536
shared, 536

gzip, 432, 435–437, 441, 442, 447–450

hair, 88
heightmap, 146
hidden surface removal, 332
high-water mark, 448–450
HLSL, 544, 550, 567
html5, 27, 30
http, 433–435, 437, 438, 441, 446, 447
huffman coding, 435, 442, 447, 448, 450
hull shader, 90

image buffer, 211
image units, 285, 305
immediate-mode rendering, 325, 338, 345
incomplete texture, 557
index buffer, 554
instancing, 359–362
integration

explicit, 236, 237

© 2012 by Taylor & Francis Group, LLC



Index 677

explicit Euler, 236
implicit, 236, 237
implicit Euler, 236, 237
midpoint Euler, 236
Runge Kutta, 236, 237
Verlet, 236, 238, 244

intel graphics performance analyzers,
518–525

iOS, 30, 47–59
isoline, 102
isoline tessellation, 88

JavaScript, 27–45, 517–518, 571–581,
583–603

closure, 41, 43
duck typing, 40
self-executing functions, 44
type coercion, 45

JSLint, 38, 40, 45
jump flooding, 177

KRI, 202, 203, 257

level of detail, see lod
level set, 174
linearizing arrays, 283
linked list, 282–283
lod, 115, 145, 250, 252

image-based lod evaluation, 155
lod fidelity, 155

lz77, 435, 442

mass spring system, 234, 235
flexion springs, 235
shear springs, 235
structural springs, 235

Maya, 467, 474
API, 474
MEL, 474
MPxFileTranslator, 474
plugin, 474

memory barrier, 92, 285, 315
memory mapping, 472
minification, 37

mipmapping, 193
mobile, 47–59, 323–335, 337–351, 635

native client, 544
Newton Raphson, 237
noise, 179

cellular noise, 113
perlin noise, 110
simplex noise, 31–32, 111
worley noise, 113

normal map, 200
NVIDIA

CompleX, 385
Copy Engine, 383
copy engine, 415
Fermi, 383, 415
GeForce, 233, 286
GeForce GTX 400 series, 66
GeForce GTX 470, 527–528
glBufferData, 399
NV copy image, 375
NV primitive restart, 166
NV shader buffer load, 305
NV shader buffer store, 305
NV transform feedback, 232
NV transform feedback2, 232
NV transform feedback3, 232
NV vertex attrib integer 64bit, 71
NVAPI, 528–532
NVX gpu memory info, 537–538
NVX mem info, 387
NV fence, 561
Quadro, 375
SLI, 376
tesla, 138
WGL NV gpu affinity, 375

nvTriStrip, 366, 373

OBJ, 477
octree, 303
OES compressed ETC1 RGB8 texture,

631
OES texture npot, 630
OES element index uint, 556
OES packed depth stencil, 560

© 2012 by Taylor & Francis Group, LLC



678 Index

OES rgb8 rgba8, 558
OES standard derivatives, 554
OES texture float, 558
OES texture float linear, 558
OES texture half float, 558
OES texture half float linear, 558
OES texture npot, 558
OpenCL, 134, 213, 315
OpenGL, 1–656
OpenGL ES, 10, 27, 121–131, 543,

621–634
OpenGL SC, 121–131
Opera, 28
order independent transparency, 279, 286
out-of-core, 467, 468, 472
overdraw, 345

p-state, 506, 527–534
AMD, 532–533
NVIDIA, 528–532

page-locked memory, see pinned memory
panoramic projection, 89
parallax mapping, 200
parallelogram prediction, 451
parameter buffer, 325
patch, 146
pbuffer, 562, 563
performance, 286, 320–389
phong lighting, 196
phong tessellation, 88
picking, 580–581
pincushion warping, 89
pinned memory, 392
pixel buffer object, 341, 415
PN Triangles, 88
polygon lists, 325
power consumption, 527–534
prefix sum, 283
procedural textures, 105
producer-consumer, 137
profiling, 334, 493–512
pvrtc, 344

Qt, 47–59
QueryPerformanceCounter, 507
QueryPerformanceFrequency, 507

rasterizer, 242
requestAnimationFrame, 516

s3tc, 344
Safari, 28, 544
samplerBuffer, 238, 239
scene graph, 572–578
SceneJS, 571–581
semantics, 77, 588
serialization, 467
shadow

shadow map, 259–277
shadowproxies, 219–228

solid textures, 106
sorting, 289, 290
sparse voxel octree, 303
SpiderGL, 583–603
state sorting, 578
step function, 174
stl, 23, 25
system-on-a-chip, 340

terrain normals, 149
terrain rendering, 145
tessellation, 146
tessellation control shader, 93–94, 148, 151,

152
tessellation evaluation shader, 96
tessellation evaluator, 149
text rendering, 183–194
texture atlas, 578
texture compression, 344
texture filtering, 347
texture mapping, 13
texture redefinition, 556–557, 567
tile buffer, 324
tile-based deferred rendering, 339, 345, 349
tile-based rendering, 323–335, 338
transform feedback, 231–245
transparency, 279, 286

unicode, 437, 441
unified memory architecture, 340
uniform buffer, 81

© 2012 by Taylor & Francis Group, LLC



Index 679

utf-16, 436, 437
utf-8, 437, 441, 442, 445, 446, 450

vector textures, 173
vertex array object, 8, 238, 627–628
vertex buffer, 8, 554
vertex cache, 350

post-transform vertex cache, 437–440,
442, 448

pretransform vertex cache, 439, 442,
448

vertex pulling, 293–300
vertex texture fetch, 558
video capture, 463
voxel, 303
voxelization, 303

web workers, 34
WebGL, 10, 15, 27–59, 183–194, 431–438,

441, 447–452, 513–526, 543,
544, 550, 564, 567–603, 605,
609

security, 34–36
WebGL Inspector, 518–520

WebGL Loader, 432
WGL, 484

XMLHttpRequest, 432, 435, 436, 448, 451

YCoCg color space, 458
YUV color space, 458

zigzag coding, 444, 445

© 2012 by Taylor & Francis Group, LLC



© 2012 by Taylor & Francis Group, LLC



© 2012 by Taylor & Francis Group, LLC


	OpenGL Insights
	Contents
	Foreword
	Preface
	Tips

	Section I: Discovering
	Chapter 1: Teaching Computer Graphics Starting with Shader- Based OpenGL
	1.1 Introduction
	1.2 A Basic Course
	1.3 Hello World in OpenGL: Old Style
	1.4 Starting with Programmable Pipelines
	1.5 Hello World: New Style
	1.5.1 OpenGL ES and WebGL
	1.5.2 The First Assignment

	1.6 The Rest of the Course
	1.6.1 Geometry
	1.6.2 Transformations and Viewing
	1.6.3 Lighting and Shading
	1.6.4 Texturing and Discrete Processing
	1.6.5 Advanced Topics
	1.6.6 Issues

	1.7 Conclusion
	Bibliography

	Chapter 2: Transitioning Students to Post- Deprecation OpenGL
	2.1 Introduction
	2.2 Naming Shader Variables: Introduction
	2.3 Naming Shader Variables: Details
	2.4 Indexed Vertex Buffer Object C++ Class
	2.4.1 Usage Notes
	2.4.2 Example Code
	2.4.3 Implementation Notes

	2.5 GLSLProgram C++ Class
	2.5.1 Usage Notes
	2.5.2 Example Code
	2.5.3 Implementation Notes

	2.6 Conclusion
	Bibliography

	Chapter 3: WebGL for OpenGL Developers
	3.1 Introduction
	3.2 The Benefits of WebGL
	3.2.1 Zero-Footprint
	3.2.2 Cross-Platform
	3.2.3 Cross-Device
	3.2.4 It’s Easy
	3.2.5 Strong Tool Support
	3.2.6 Performance

	3.3 Security
	3.3.1 Cross-Origin Requests
	3.3.2 Context Loss

	3.4 Deploying Shaders
	3.5 The JavaScript Language
	3.5.1 JavaScript Types
	3.5.2 Dynamic Typing
	3.5.3 Functional Scoping
	3.5.4 Functional Programming
	3.5.5 Prototypal Objects
	3.5.6 The this Keyword
	3.5.7 Code Organization
	3.5.8 Common Errors

	3.6 Resources
	Bibliography

	Chapter 4: Porting Mobile Apps to WebGL
	4.1 Introduction
	4.2 OpenGL across Platforms
	4.3 Getting Started
	4.3.1 Initializing an OpenGL ES context
	4.3.2 Loading Shaders
	4.3.3 Drawing Vertices

	4.4 Loading Textures
	4.4.1 Assigning a Texture
	4.4.2 Handling Asynchronous Loads

	4.5 Camera and Matrices
	4.5.1 float vs. Float32Array
	4.5.2 Passing a Matrix to a Shader

	4.6 Controls
	4.6.1 Getting Touch Events
	4.6.2 Using Touch Events with the Camera and Collision

	4.7 Other Considerations
	4.7.1 Animation
	4.7.2 Inheritance

	4.8 Maintenance
	4.8.1 Debugging
	4.8.2 Profiling
	4.8.3 Performance and Adoption

	4.9 Conclusion
	Bibliography

	Chapter 5: The GLSL Shader Interfaces
	5.1 Introduction
	5.2 Variables and Blocks
	5.2.1 User-Defined Variables and Blocks
	5.2.2 Built-in Variables and Blocks

	5.3 Locations
	5.3.1 Definitions
	5.3.2 Counting Locations
	5.3.3 Location Limits

	5.4 Matching Interfaces
	5.4.1 Partial and Full Match
	5.4.2 Type Matching
	5.4.3 Matching by Name, Matching by Location
	5.4.4 Matching with Blocks
	5.4.5 Matching with Structures
	5.4.6 Linked and Separated Programs

	5.5 Working with Semantics
	5.5.1 Varying Compiler-Generated Locations and Explicit
	Locations
	5.5.2 Vertex Array Attributes and Vertex Shader Inputs
	5.5.3 Fragment Shader Outputs and Framebuffer Color
	Attachments
	5.5.4 Varying Outputs and Varying Inputs
	5.5.5 Uniform Buffers and Uniform Blocks

	5.6 Application-Side Validations for Debug Build Only
	5.6.1 Vertex Inputs Validation
	5.6.2 Varying Interfaces Validation
	5.6.3 Fragment Outputs Validation
	5.6.4 Variables Validation
	5.6.5 Uniform Blocks Validation

	5.7 Conclusion
	Bibliography

	Chapter 6: An Introduction to Tessellation Shaders
	6.1 Introduction
	6.1.1 Subdivision Surfaces
	6.1.2 Smoothing Polygonal Data
	6.1.3 GPU Compute
	6.1.4 Curves, Hair, and Grass
	6.1.5 Other Uses

	6.2 The New Shading Pipeline
	6.2.1 Life of a Patch
	6.2.2 Threading Model
	6.2.3 Inputs and Outputs
	6.2.4 Tessellation Control Shaders
	6.2.5 Tessellation Evaluation Shaders
	6.2.6 Primitive Generation Using quads
	6.2.7 Primitive Generation Using triangles

	6.3 Tessellating a Teapot
	6.4 Isolines and Spirals
	6.5 Incorporating Other OpenGL Features
	Bibliography

	Chapter 7: Procedural Textures in GLSL
	7.1 Introduction
	7.2 Simple Functions
	7.3 Antialiasing
	7.4 Perlin Noise
	7.5 Worley Noise
	7.6 Animation
	7.7 Texture Images
	7.8 Performance
	7.9 Conclusion
	Bibliography

	Chapter 8: OpenGL SC Emulation Based on OpenGL and OpenGL ES
	8.1 Introduction
	8.2 OpenGL SC Implementations
	8.3 Design and Implementation
	8.3.1 Overall Pipeline
	8.3.2 Texture Pipeline

	8.4 Results
	8.5 Conclusion
	Bibliography

	Chapter 9: Mixing Graphics and Compute with Multiple GPUs
	9.1 Introduction
	9.2 Graphics and Compute Interoperability on an API Level
	9.2.1 Interoperability Preparation
	9.2.2 OpenGL Object Interaction

	9.3 Graphics and Compute Interoperability on a System Level
	9.4 Conclusion
	Bibliography

	Section II: Rendering Techniques
	Chapter 10: GPU Tessellation: We Still Have a LOD of Terrain to Cover
	10.1 Introduction
	10.2 Rendering Terrains with OpenGL GPU Tessellation
	10.2.1 GPU Tessellation Shaders

	10.3 A Simple Approach to Dynamic Level of Detail
	10.4 Roughness: When Detail Matters
	10.4.1 Adding the Roughness Factor

	10.5 Crunching Numbers, or Is This All That Matters?
	10.5.1 Test Setup
	10.5.2 Evaluating the Quality of the LOD Solutions
	10.5.3 Performance

	10.6 Conclusion
	Bibliography

	Chapter 11: Antialiased Volumetric Lines Using Shader- Based Extrusion
	11.1 Introduction
	11.2 Antialiased Lines Using Postprocess Antialiasing
	11.3 Antialiased Volumetric Lines Using Geometry Extrusion
	11.3.1 Geometry Extrusion Using a Vertex Shader
	11.3.2 Geometry Extrusion Using a Geometry Shader

	11.4 Performance
	11.5 Conclusion
	Bibliography

	Chapter 12: 2D Shape Rendering by Distance Fields
	12.1 Introduction
	12.2 Method Overview
	12.3 Better Distance Fields
	12.4 Distance Textures
	12.5 Hardware Accelerated Distance Transform
	12.6 Fragment Rendering
	12.7 Special Effects
	12.8 Performance
	12.9 Shortcomings
	12.10 Conclusion
	Bibliography

	Chapter 13: Efficient Text Rendering in WebGL
	13.1 Introduction
	13.2 Canvas-Based Font Rendering
	13.2.1 The HTML5 Canvas
	13.2.2 Concept
	13.2.3 Implementation

	13.3 Bitmap Font Rendering
	13.3.1 Concept
	13.3.2 Creating Bitmap Fonts
	13.3.3 Implementation

	13.4 Comparison
	13.4.1 Performance
	13.4.2 Memory Footprint
	13.4.3 Ease of Development

	13.5 Conclusion
	Bibliography

	Chapter 14: Layered Textures Rendering Pipeline
	14.1 Introduction
	14.1.1 Terminology
	14.1.2 Textures in Blender

	14.2 Layered Pipeline
	14.2.1 G-buffer Creation
	14.2.2 Layers Resolution
	14.2.3 Unified parallax offset
	14.2.4 Lighting

	14.3 Results
	14.3.1 Implementation
	14.3.2 Results
	14.3.3 Conclusion

	Bibliography

	Chapter 15: Depth of Field with Bokeh Rendering
	15.1 Introduction
	15.2 Depth of Field Phenomemon
	15.3 Related Work
	15.4 Algorithm
	15.4.1 Overview
	15.4.2 Circle of Confusion Computation
	15.4.3 Bokeh Detection
	15.4.4 Blur-Based Depth of Field
	15.4.5 Bokeh Rendering

	15.5 Results
	15.6 Discussion
	15.7 Conclusion
	Bibliography

	Chapter 16: Shadow Proxies
	16.1 Introduction
	16.2 Anatomy of a Shadow Proxy
	16.3 Setting Up the Pipeline
	16.4 The ShadowProxy-Enabled Fragment Shader
	16.5 Modulating the Shadow Volume
	16.6 Performance
	16.7 Conclusion and Future Work
	Bibliography

	Section III: Bending the Pipeline
	Chapter 17: Real-Time Physically Based Deformation Using Transform Feedback
	17.1 Introduction
	17.2 Hardware Support and Evolution of Transform Feedback
	17.3 The Mechanism of Transform Feedback
	17.4 Mathematical Model
	17.5 Implementation
	17.5.1 The Verlet Integration Vertex Shader
	17.5.2 Registering Attributes to Transform Feedback
	17.5.3 The Array Buffer and Buffer Object Setup
	17.5.4 On-the-Fly Modification of Data

	17.6 Experimental Results and Comparisons
	17.7 Conclusion
	Bibliography

	Chapter 18: Hierarchical Depth Culling and Bounding- Box Management on the GPU
	18.1 Introduction
	18.2 Pipeline
	18.2.1 Early Depth Pass
	18.2.2 Depth LOD Construction
	18.2.3 Bounding-Boxes Update
	18.2.4 Hierarchical Depth Cull
	18.2.5 Bounding-Box Debug Draw

	18.3 Order of Operations
	18.4 Experimental Results
	18.5 Conclusion and Future Work
	Bibliography

	Chapter 19: Massive Number of Shadow- Casting Lights with Layered Rendering
	19.1 Introduction
	19.2 Traditional Shadow Map Rendering in OpenGL
	19.3 Our Shadow Map Generation Algorithm
	19.4 Performance
	19.4.1 Performance with Complex Vertex Shaders
	19.4.2 View Frustum Culling Optimization
	19.4.3 Back-Face Culling Optimization

	19.5 Advanced Techniques
	19.6 Limitations
	19.7 Conclusion
	Bibliography

	Chapter 20: Efficient Layered Fragment Buffer Techniques
	20.1 Introduction
	20.2 Related Work
	20.3 The Linked-List LFB
	20.4 The Linearized LFB
	20.4.1 Implementation Details

	20.5 Performance Results
	20.6 Conclusion
	Bibliography

	Chapter 21: Programmable Vertex Pulling
	21.1 Introduction
	21.2 Implementation
	21.3 Performance
	21.4 Application
	21.5 Limitations
	21.6 Conclusion
	Bibliography

	Chapter 22: Octree-Based Sparse Voxelization Using the GPU Hardware Rasterizer
	22.1 Introduction
	22.2 Previous Work
	22.3 Unrestricted Memory Access in GLSL
	22.4 Simple Voxelization Pipeline
	22.4.1 Conservative Rasterization
	22.4.2 Compositing Voxel Fragments
	22.4.3 Results

	22.5 Sparse Voxelization into an Octree
	22.5.1 Octree Structure
	22.5.2 Sparse-Voxelization Overview
	22.5.3 Voxel-Fragment List Construction Using an Atomic
	Counter
	22.5.4 Node Subdivision
	22.5.5 Writing and Mipmapping Values
	22.5.6 Synchronization-Free Compute-Like Kernel Launch
	Using draw indirect
	22.5.7 Results and Discussion

	22.6 Conclusion
	Bibliography

	Section IV: Performance
	Chapter 23: Performance Tuning for Tile- Based Architectures
	23.1 Introduction
	23.2 Background
	23.3 Clearing and Discarding the Framebuffer
	23.4 Incremental Frame Updates
	23.5 Flushing
	23.6 Latency
	23.7 Hidden Surface Removal
	23.8 Blending
	23.9 Multisampling
	23.10 Performance Profiling
	23.11 Summary
	Bibliography

	Chapter 24: Exploring Mobile vs. Desktop OpenGL Performance
	24.1 Introduction
	24.2 Important Differences and Constraints
	24.2.1 Differences in Scale
	24.2.2 Differences in Rendering Architecture
	24.2.3 Differences in Memory Architecture

	24.3 Reducing Memory Bandwidth
	24.3.1 Relative Display Sizes
	24.3.2 Framebuffer Bandwidth
	24.3.3 Antialiasing
	24.3.4 Texture Bandwidth
	24.3.5 Texture Filtering and Bandwidth

	24.4 Reducing Fragment Workload
	24.4.1 Overdraw and Blending
	24.4.2 Full-Screen Effects
	24.4.3 Offscreen Passes
	24.4.4 Shaving Fragment Work

	24.5 Vertex Shading
	24.5.1 Vertex vs. Fragment Work

	24.6 Conclusion
	Bibliography

	Chapter 25: Improving Performance by Reducing Calls to the Driver
	25.1 Introduction
	25.2 Efficient OpenGL States Usage
	25.2.1 Detecting Redundant State Modifications
	25.2.2 General Methods for Efficient State Modification

	25.3 Batching and Instancing
	25.3.1 Batching
	25.3.2 OpenGL Instancing

	25.4 Conclusion
	Bibliography

	Chapter 26: Indexing Multiple Vertex Arrays
	26.1 Introduction
	26.2 The Problem
	26.3 An Algorithm
	26.4 Vertex Comparison Methods
	26.4.1 If/Then/Else Version
	26.4.2 memcmp() Version
	26.4.3 Hashing Function

	26.5 Performance
	26.6 Conclusion
	Bibliography

	Chapter 27: Multi-GPU Rendering on NVIDIA Quadro
	27.1 Introduction
	27.2 Previous Scaling Approaches
	27.3 Targeting a Specific GPU for Rendering
	27.3.1 Enumerating GPUs and Displays

	27.4 Optimized Data Transfer between GPUs
	27.5 Application Structure for Multi-GPU
	27.5.1 Synchronization between Multiple OpenGL
	Contexts

	27.6 Parallel Rendering Methodologies
	27.6.1 Sort-First Image Decomposition
	27.6.2 Sort-Last Data Decomposition
	27.6.3 Stereo
	27.6.4 Server-Side Rendering

	27.7 Conclusion
	Bibliography

	Section V: Transfers
	Chapter 28: Asynchronous Buffer Transfers
	28.1 Introduction
	28.1.1 Explanation of Terms

	28.2 Buffer Objects
	28.2.1 Memory Transfers
	28.2.2 Usage Hints
	28.2.3 Implicit Synchronization
	28.2.4 Synchronization Primitives

	28.3 Upload
	28.3.1 Round-Robin Fashion (Multiple Buffer Objects)
	28.3.2 Buffer Respecification (Orphaning)
	28.3.3 Unsynchronized Buffers
	28.3.4 AMD’s pinned memory Extension

	28.4 Download
	28.5 Copy
	28.6 Multithreading and Shared Contexts
	28.6.1 Introduction to Multithreaded OpenGL
	28.6.2 Synchronization Issues
	28.6.3 Performance Hit due to Internal Synchronization
	28.6.4 Final Words on Shared Context

	28.7 Usage Scenario
	28.7.1 Method 1: Single Thread
	28.7.2 Method 2: Two Threads and One OpenGL Context
	28.7.3 Method 3: Two Threads and Two OpenGL Shared
	Contexts
	28.7.4 Performance Comparisons

	28.8 Conclusion
	Bibliography

	Chapter 29: Fermi Asynchronous Texture Transfers
	29.1 Introduction
	29.2 OpenGL Command Buffer Execution
	29.3 Current Texture Transfer Approaches
	29.3.1 Synchronous Texture Transfers
	29.3.2 CPU Asynchronous Texture Transfers

	29.4 GPU Asynchronous Texture Transfers
	29.5 Implementation Details
	29.5.1 Multiple OpenGL Contexts
	29.5.2 Synchronization
	29.5.3 Copy Engine Considerations

	29.6 Results and Analysis
	29.6.1 Previous Generation Architecture

	29.7 Conclusion
	Bibliography

	Chapter 30: WebGL Models: End-to-End
	30.1 Introduction
	30.2 Life of a 3D Model
	30.2.1 Stage 1: Pipeline
	30.2.2 Stage 2: Serving
	30.2.3 Stage 3: Loading
	30.2.4 Stage 4: Rendering

	30.3 A Coherent Whole
	30.3.1 Delta Coding
	30.3.2 Delta Coding Analysis
	30.3.3 ZigZag Coding
	30.3.4 Delta + ZigZag Coding Analysis
	30.3.5 The Compression Pipeline

	30.4 Key Improvements
	30.4.1 Interleaving vs. Transposing
	30.4.2 High-Water Mark Prediction
	30.4.3 Performance
	30.4.4 Future Work

	30.5 Conclusion
	Bibliography

	Chapter 31: In-Game Video Capture with Real- Time Texture Compression
	31.1 Introduction
	31.2 Overview of DXT Compression
	31.3 DXT Compression Algorithms
	31.3.1 Creating Compressed Textures Dynamically

	31.4 Transformation to YUV Style Color Spaces
	31.4.1 YCoCg Color Space

	31.5 Comparison
	31.6 Using Real-Time DXT Compression for Procedural Content and Video Capture
	31.6.1 Video Capture Using YUYV-DXT Compression
	31.6.2 Bandwidth Considerations
	31.6.3 Format of the Video Stream
	31.6.4 Download of Video Frames from the GPU

	31.7 Conclusion
	Bibliography

	Chapter 32: An OpenGL-Friendly Geometry File Format and Its Maya Exporter
	32.1 Introduction
	32.2 Manifesto
	32.2.1 Goals and Features
	32.2.2 Existing Formats

	32.3 The Drone Format
	32.3.1 Binary Layout
	32.3.2 Drone API
	32.3.3 Scene API

	32.4 Writing a Maya File Translator
	32.4.1 Maya SDK 101
	32.4.2 Writing a Translator
	32.4.3 Walking through the Maya DAG
	32.4.4 Exporting OpenGL-Ready Meshes

	32.5 Results
	32.6 Conclusion
	Bibliography

	Section VI: Debugging and Profiling
	Chapter 33: ARB debug output: A Helping Hand for Desperate Developers
	33.1 Introduction
	33.2 Exposing the Extension
	33.3 Using a Callback Function
	33.4 Sorting Through the Cause of Events
	33.4.1 Accessing the Call Stack Outside the IDE

	33.5 Accessing the Message Log
	33.6 Adding Custom User Events to the Log
	33.7 Controlling the Event Output Volume
	33.8 Preventing Impact on the Final Release
	33.9 Clash of the Titans: Implementation Strategies
	33.10 Further Thoughts on Debugging
	33.11 Conclusion
	Bibliography

	Chapter 34: The OpenGL Timer Query
	34.1 Introduction
	34.2 Measuring OpenGL Execution Times
	34.2.1 OpenGL Time
	34.2.2 Synchronous Timer Query
	34.2.3 Asynchronous Timer Query
	34.2.4 Asynchronous Time Stamp Query
	34.2.5 Considering Query Retrievals

	34.3 Conclusion
	Bibliography

	Chapter 35: A Real-Time Profiling Tool
	35.1 Introduction
	35.2 Scope and Requirements
	35.3 Design of the Tool
	35.3.1 User Interface
	35.3.2 Limitations and Workarounds
	35.3.3 API

	35.4 Implementation
	35.4.1 Measuring Time on CPUs
	35.4.2 Measuring Time on the GPU
	35.4.3 Data Structures
	35.4.4 Markers Management

	35.5 Using the Profiler
	35.5.1 Levels of Usage
	35.5.2 Determining What Should be Measured
	35.5.3 Artists
	35.5.4 Limitations

	35.6 Conclusions
	Bibliography

	Chapter 36: Browser Graphics Analysis and Optimizations
	36.1 Introduction
	36.2 The Stages of Bloom
	36.3 Overhead of Bloom
	36.4 Analyzing WebGL Applications
	36.4.1 Almost Native Graphics Layer (ANGLE)
	36.4.2 JavaScript profiling
	36.4.3 WebGL Inspector
	36.4.4 Intel Graphics Performance Analyzers (GPA)

	36.5 Analysis Workflow on Windows
	36.5.1 Tracking Down API Calls

	36.6 Optimized Bloom
	36.6.1 Lower Render Target Resolution
	36.6.2 Unnecessary Mipmap Generation
	36.6.3 Floating-Point Framebuffers

	36.7 Conclusion
	Bibliography

	Chapter 37: Performance State Tracking
	37.1 Introduction
	37.2 Power Consumption Policies
	37.3 P-State Tracking Using NVAPI
	37.3.1 GPU Utilization
	37.3.2 Reading P-States

	37.4 P-State Tracking Using ADL
	37.5 Conclusion
	Bibliography

	Chapter 38: Monitoring Graphics Memory Usage
	38.1 Introduction
	38.2 Graphics Memory Allocation
	38.3 Querying Memory Status on NVIDIA Cards
	38.4 Querying Memory Status on AMD Cards
	38.5 Conclusion
	Bibliography

	Section VII: Software Design
	Chapter 39: The ANGLE Project: Implementing OpenGL ES 2.0 on Direct3D
	39.1 Introduction
	39.2 Background
	39.3 Implementation
	39.3.1 Coordinate Systems
	39.3.2 Shader Compiler and Linker
	39.3.3 Vertex and Index Buffers
	39.3.4 Textures
	39.3.5 Vertex Texture Fetch
	39.3.6 Primitive Types
	39.3.7 Masked Clears
	39.3.8 Separate Depth and Stencil Buffers
	39.3.9 Synchronization
	39.3.10 Multisampling
	39.3.11 Multiple Contexts and Resource Sharing
	39.3.12 Context Loss
	39.3.13 Resource Limits
	39.3.14 Optimizations
	39.3.15 Recommended Practices
	39.3.16 Performance Results

	39.4 Future Work
	39.5 Conclusion
	39.6 Source Code
	Bibliography

	Chapter 40 SceneJS: A WebGL-Based Scene Graph Engine
	40.1 Introduction
	40.2 Efficiently Abstracting WebGL
	40.2.1 Draw-List Compilation
	40.2.2 State Sorting

	40.3 Optimizing the Scene
	40.3.1 Texture Atlases
	40.3.2 VBO Sharing
	40.3.3 Sharable Node Cores

	40.4 Picking
	40.5 Conclusion
	Bibliography

	Chapter 41: Features and Design Choices in SpiderGL
	41.1 Introduction
	41.2 Library Architecture
	41.3 Representing 3D Objects
	41.3.1 The Model Layer Stack

	41.4 Direct Access to WebGL Object State
	41.4.1 The Problem
	41.4.2 A Solution
	41.4.3 Bind Tracking and Binding Stack with
	SGL current binding
	41.4.4 Direct Object Access with SGL direct state access
	41.4.5 Drawbacks

	41.5 WebGLObject Wrappers
	41.5.1 Keep Wrappers Updated with
	SGL wrapper notify

	41.6 Conclusion
	Bibliography

	Chapter 42: Multimodal Interactive Simulations on the Web
	42.1 Introduction
	42.2
	-SoFMIS Design and Definitions of
	Modules
	42.3 Framework Implementation
	42.3.1 Modularity
	42.3.2 Shaders
	42.3.3 File Format

	42.4 Rendering Module
	42.5 Simulation Module
	42.6 Hardware Module
	42.7 Case Study: LAGB Simulator
	42.8 Conclusion
	Bibliography

	Chapter 43: A Subset Approach to Using OpenGL and OpenGL ES
	43.1 Introduction
	43.2 Making Legacy Code Modern
	43.2.1 Immediate Mode vs. Vertex Attribute Arrays
	43.2.2 Primitive Choices
	43.2.3 Bitmaps and Polygon Stipples

	43.3 Keeping Code Maintainable across API Variants
	43.3.1 Vertex and Fragment Processing
	43.3.2 GLX vs. EGL
	43.3.3 Vertex Array Objects
	43.3.4 Wireframe Mode
	43.3.5 Texture Wrap Modes
	43.3.6 Non-Power-of-Two Textures
	43.3.7 Image Formats and Types
	43.3.8 Image Layouts
	43.3.9 Shading Language

	43.4 What if I Need a Specific Piece of Functionality?
	43.5 Conclusion
	Bibliography

	Chapter 44: The Build Syndrome
	44.1 Introduction
	44.2 Using Utility Libraries
	44.2.1 “Hello World” with GLUT
	44.2.2 “Hello World” with Qt
	44.2.3 “Hello World” with EGL

	44.3 OpenGL Agnosticism
	44.4 Configuration Spaces
	44.5 Metabuilds and CMake
	44.6 CMake and the Configuration Space
	44.7 CMake and Platform Specifics
	44.7.1 Windows
	44.7.2 Mac OS X
	44.7.3 iOS

	44.8 Conclusion
	Bibliography

	About the Contributors
	Woojin Ahn
	Alina Alt
	Edward Angel
	Nakhoon Baek
	Mike Bailey
	Francesco Banterle
	Jesse Barker
	Venceslas Biri
	Nicolas Capens
	Won Chun
	Patrick Cozzi
	Cyril Crassin
	Suvranu De
	Charles de Rousiers
	Daniel Dekkers
	Marco Di Benedetto
	Aleksandar Dimitrijevi ´ c
	Chris Dirks
	Benjamin Encz
	Lin Feng
	Alexandros Frantzis
	Lionel Fuentes
	Fabio Ganovelli
	Simon Green
	Stefan Gustavson
	Tansel Halic
	Ashraf Samy Hegab
	Adrien Herubel
	Se ´bastien Hillaire
	Ladislav Hrabcak
	Scott Hunter
	Lindsay Kay
	Brano Kemen
	Pyarelal Knowles
	Daniel Koch
	Geoff Leach
	Hwanyong Lee
	Christopher Lux
	Dzmitry Malyshau
	Arnaud Masserann
	Jon McCaffrey
	Bruce Merry
	Muhammad Mobeen Movania
	Bruno Oliveira
	Matt Pettineo
	Daniel Ra ´kos
	Anto ´nio Ramires Fernandes
	Christophe Riccio
	Philip Rideout
	Omar A. Rodriguez
	Jochem van der Spek
	Dirk Van Gelder
	Shalini Venkataraman
	Fabio Zambetta

	Index
	Poster

