

Early praise for
OpenGL ES 2.0 for Android

Kevin’s book is stuffed full of useful code and explanations, to the point of being inspirational.
The math/matrix stuff is the best I have ever read on the topic. If you already know Java
well and want to break into 3D graphics, this book is perfect.

➤ John Horton
HadronWebDesign.com and author of the Android math league app Math Legends

Cuts out the academic fluff and teaches you what you need to become productive quickly.
I wish I had access to such a clear, concise, and humorous book when I first learned OpenGL.

➤ Mark F. Guerra
Developer, GLWallpaperService library for OpenGL

An amazing introduction to Android graphics programming, covering all the topics that give
headaches to OpenGL beginners with such extensive detail that you’ll be perfectly prepared
to implement your own ideas.

➤ Carsten Haubold
Maintainer, NeHe OpenGL tutorials

I wish I had this book when I first started programming Android games. It’s well written
and up-to-date.

➤ Owen Alanzo Hogarth
President, Team Blubee, Inc.

I am greatly impressed by this book and would gladly recommend it to any programming
enthusiast or anyone who’s ever dreamed of making a game.

➤ Tibor Simic

OpenGL ES 2 for Android
A Quick-Start Guide

Kevin Brothaler

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The Android robot is reproduced from work created and shared by Google and is used
according to terms described in the Creative Commons 3.0 Attribution License
(http://creativecommons.org/licenses/by/3.0/us/legalcode).

The unit circle image in Figure 43, from http://en.wikipedia.org/wiki/File:Unit_circle.svg, is used according
to the terms described in the Creative Commons Attribution-ShareAlike license, located at
http://creativecommons.org/licenses/by-sa/3.0/legalcode.

Day skybox and night skybox courtesy of Jockum Skoglund, also known as hipshot,
hipshot@zfight.com,http://www.zfight.com.

The image of the trace capture button is created and shared by the Android Open Source
Project and is used according to terms described in the Creative Commons 2.5 Attribution
License.

Copyright © 2013 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-937785-34-5
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—June 2013

http://pragprog.com
http://creativecommons.org/licenses/by/3.0/us/legalcode
http://en.wikipedia.org/wiki/File:Unit_circle.svg
http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://www.zfight.com

To Anne and my Oma

You have brought so much joy and wonder
into my life. Thank you for making it all

possible.

Contents

Foreword xi

Acknowledgments xiii

Welcome to OpenGL ES for Android! xv

1. Getting Started 1
Installing the Tools 11.1

1.2 Creating Our First Program 4
1.3 Initializing OpenGL 6
1.4 Creating a Renderer Class 11
1.5 Using Static Imports 14
1.6 A Review 15

Part I — A Simple Game of Air Hockey

2. Defining Vertices and Shaders 19
Why Air Hockey? 192.1

2.2 Don’t Start from Scratch 21
2.3 Defining the Structure of Our Air Hockey Table 22
2.4 Making the Data Accessible to OpenGL 26
2.5 Introducing the OpenGL Pipeline 28
2.6 The OpenGL Color Model 34
2.7 A Review 35

3. Compiling Shaders and Drawing to the Screen 37
Loading Shaders 373.1

3.2 Compiling Shaders 39
3.3 Linking Shaders Together into an OpenGL Program 44
3.4 Making the Final Connections 46
3.5 Drawing to the Screen 51

3.6 A Review 57
3.7 Exercises 58

4. Adding Color and Shade 59
Smooth Shading 604.1

4.2 Introducing Triangle Fans 61
4.3 Adding a New Color Attribute 63
4.4 Rendering with the New Color Attribute 71
4.5 A Review 75
4.6 Exercises 75

5. Adjusting to the Screen’s Aspect Ratio 77
We Have an Aspect Ratio Problem 785.1

5.2 Working with a Virtual Coordinate Space 80
5.3 Linear Algebra 101 83
5.4 Defining an Orthographic Projection 87
5.5 Adding an Orthographic Projection 89
5.6 A Review 94
5.7 Exercises 94

6. Entering the Third Dimension 95
The Art of 3D 956.1

6.2 Transforming a Coordinate from the Shader to the
Screen 96

6.3 Adding the W Component to Create Perspective 99
6.4 Moving to a Perspective Projection 101
6.5 Defining a Perspective Projection 103
6.6 Creating a Projection Matrix in Our Code 105
6.7 Switching to a Projection Matrix 107
6.8 Adding Rotation 111
6.9 A Review 114
6.10 Exercises 114

7. Adding Detail with Textures 115
Understanding Textures 1167.1

7.2 Loading Textures into OpenGL 119
7.3 Creating a New Set of Shaders 126
7.4 Creating a New Class Structure for Our Vertex Data 127
7.5 Adding Classes for Our Shader Programs 133
7.6 Drawing Our Texture 137
7.7 A Review 139
7.8 Exercises 139

Contents • viii

8. Building Simple Objects 141
Combining Triangle Strips and Triangle Fans 1428.1

8.2 Adding a Geometry Class 143
8.3 Adding an Object Builder 145
8.4 Updating Our Objects 153
8.5 Updating Shaders 155
8.6 Integrating Our Changes 156
8.7 A Review 161
8.8 Exercises 161

9. Adding Touch Feedback: Interacting with Our Air Hockey
Game 165

9.1 Adding Touch Support to Our Activity 165
9.2 Adding Intersection Tests 168
9.3 Moving Around an Object by Dragging 177
9.4 Adding Collision Detection 181
9.5 A Review and Wrap-Up 185
9.6 Exercises 186

Part II — Building a 3D World

10. Spicing Things Up with Particles 191
Creating a Set of Shaders for a Simple Particle System 19310.1

10.2 Adding the Particle System 197
10.3 Drawing the Particle System 201
10.4 Spreading Out the Particles 204
10.5 Adding Gravity 206
10.6 Mixing the Particles with Additive Blending 208
10.7 Customizing the Appearance of Our Points 209
10.8 Drawing Each Point as a Sprite 211
10.9 A Review 214
10.10 Exercises 214

11. Adding a Skybox 217
Creating a Skybox 21811.1

11.2 Loading a Cube Map into OpenGL 219
11.3 Creating a Cube 221
11.4 Adding a Skybox Shader Program 224
11.5 Adding the Skybox to Our Scene 227
11.6 Panning the Camera Around the Scene 228

Contents • ix

11.7 A Review 232
11.8 Exercises 232

12. Adding Terrain 233
Creating a Height Map 23312.1

12.2 Creating Vertex and Index Buffer Objects 234
12.3 Loading in the Height Map 237
12.4 Drawing the Height Map 241
12.5 Occluding Hidden Objects 245
12.6 A Review 250
12.7 Exercises 251

13. Lighting Up the World 253
Simulating the Effects of Light 25313.1

13.2 Implementing a Directional Light with Lambertian
Reflectance 255

13.3 Adding Point Lights 264
13.4 A Review 272
13.5 Exercises 272

14. Creating a Live Wallpaper 275
Implementing the Live Wallpaper Service 27514.1

14.2 Playing Nicely with the Rest of the System 283
14.3 A Review 286
14.4 Exercises 286

15. Taking the Next Step 289
15.1 Looking Toward Other Platforms 289
15.2 Learning About More Advanced Techniques 291
15.3 Sharing Your Artistic Vision with the World 295

A1. The Matrix Math Behind the Projections 297
A1.1 The Math Behind Orthographic Projections 297
A1.2 The Math Behind Perspective Projections 300

A2. Debugging 305
A2.1 Debugging with glGetError 305
A2.2 Using Tracer for OpenGL ES 306
A2.3 Pitfalls to Watch Out For 308

Bibliography 311

Index 313

Contents • x

Foreword
Games are visual experiences. As game developers, we want to create environ-
ments and characters that pull players into our games, be it through
stunningly realistic 3D scenery or quirky, out-of-this-world experiences. We
are longing for millions to play our games and experience our worlds, making
their lives a tiny bit more fun. Android and its ecosystem provide us with an
audience. OpenGL ES gives us the technological means to realize the games
of our dreams.

OpenGL ES is the de facto standard in mobile graphics programming. It’s the
lean and mean brother of desktop OpenGL, removing a lot of the cruft kept
for backward compatibility. OpenGL ES comes in three major versions: version
1.0, which gave us an inflexible fixed-function pipeline; version 2.0, which
introduced a programmable pipeline with all the bells and whistles we can
ask for; and finally, the very young and not-yet-widely-available version 3.0,
which adds new features on top of the 2.0 standard.

While OpenGL ES has been in use for almost a decade, hands-on material
for beginners is hard to come by, especially for version 2.0, which introduced
shaders, an esoteric topic for newcomers. In addition to device- and platform-
specific issues, this lack of material sets the entry barrier rather high.

This is where Kevin’s book comes in. He cuts through all the boilerplate talk
and takes you on a pragmatic tour of OpenGL ES 2.0. Not only does Kevin
cover the fundamental concepts behind 3D graphics, but he also documents
all the Android-specific pitfalls you run into. Even experienced developers
will find a few nuggets here. To paraphrase: “It’s dangerous to go it alone, so
read this book!”

Mario Zechner
Creator of libgdx,1 author of Beginning Android Games [Zec12]

1. https://code.google.com/p/libgdx/

report erratum • discuss

https://code.google.com/p/libgdx/
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Acknowledgments
I am so grateful to the wonderful team over at The Pragmatic Programmers
for giving me the chance to write this book and for doing such a great job in
helping me bring it to completion. When I first started out, I wasn’t quite sure
what to expect, but they did an excellent job of teaching me the ropes. I owe
a special debt of gratitude to my editor, Susannah Pfalzer, for guiding me so
expertly through the process, and to Aron Hsiao for skillfully coaching a new
and bewildered author to the Pragmatic writing style.

I am also thankful for all of my technical reviewers and for everyone else who
provided invaluable feedback, including (in no particular order) Mario Zechner,
Owen Alanzo Hogarth, Sam Rose, Mike Riley, Aaron Kalair, Rene van der
Lende, John Horton, Ed Burnette, Mark Guerra, Maik Schmidt, Kevin Gisi,
Brian Schau, Marius Marinescu, Stephen Wolff, Haress Das, Bill Yee, Chad
Dumler-Montplaisir, Tibor Simic, Michael Hunter, Jonathan Mischo, and
Stefan Turalski, as well as everyone who reported errata or sent in their
feedback. Your feedback and advice helped to greatly improve the book, and
your encouragement is much appreciated.

I couldn’t have done it without the support of the greater community and the
generosity of those willing to share their knowledge, including my wonderful
readers over at Learn OpenGL ES, the guys at the Khronos Group, NeHe
Productions, the Android team, John Carmack, and all of the other giants
whom I may have missed and who are too numerous to mention. I stand on
their shoulders, and this work wouldn’t be possible without them.

Perhaps my greatest debt of gratitude goes to the two women in my life who
have kept me grounded all this time: my Oma, for showing me that a little
bit of toughness can go a long way, and Anne, my fiancée, for letting me spend
so many hours tucked away in my home office and for being so encouraging
from beginning to end.

Finally, thank you, dear reader, for deciding to pick up this book and give it
a read. May it prove valuable to you and serve you well in the journey ahead.

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Welcome to OpenGL ES for Android!
Android has just gone through an incredible period of growth, with more than
750 million devices in the hands of consumers around the world and more
than 1 million activations per day.1 Along with Apple, Android also has a
centralized market available on every Android phone and tablet, called Google
Play. With this market installed on every Android device, there’s never been
a better opportunity for anyone who’s ever had a dream to publish his or her
own game or live wallpaper.

On Android, as well as on Apple’s iOS and many other mobile platforms,
developers create 2D and 3D graphics through a cross-platform application
programming interface called OpenGL. OpenGL has been used on the desktop
for a while now, and the mobile platforms use a special embedded version
known as OpenGL ES. The first version of OpenGL ES brought 3D to mobile,
which was very popular with developers because it was easy to learn and
because it had a well-defined feature set. However, this feature set was also
limited, and it wasn’t able to keep up with the latest and greatest features
from the most powerful smartphones and tablets.

Enter OpenGL ES 2.0. Most of the old APIs were completely removed and
replaced with new programmable APIs, which makes it much easier to add
special effects and take advantage of what the latest devices have to offer.
These devices can now produce graphics that rival consoles from just a few
years ago! However, to take advantage of this power, we need to learn the
new APIs that come with 2.0. In August 2012, the Khronos Group finalized
the specification for the next version, OpenGL ES 3.0, which is fully compat-
ible with 2.0, extending it with a few advanced features.

So, what can be done with OpenGL on Android? We can create amazing live
wallpapers and have them downloaded by millions of users. We can create a
compelling 3D game that has vivid and breathtaking graphics. With the

1. http://googleblog.blogspot.ca/2013/03/update-from-ceo.html

report erratum • discuss

http://googleblog.blogspot.ca/2013/03/update-from-ceo.html
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

declining cost of hardware and the increasingly massive reach of online stores,
it’s a great time to begin!

What Will We Cover?

Here’s a quick look at what we’re going to discuss:

• In the first part of the book, you’ll learn how to create a simple game of
air hockey, including touch, texturing, and basic physics. This project
will teach you how to successfully initialize OpenGL and send data to the
screen, as well as how to use basic vector and matrix math to create a
3D world. You’ll also learn many details that are specific to Android, such
as how to marshal data between the Dalvik virtual machine and the native
environment and how to safely pass data between the main thread and
the rendering thread.

• In the second part of the book, you’ll build upon what you learned in the
first part. You’ll use some advanced techniques, such as lighting and
terrain rendering, and then you’ll learn how to create a live wallpaper that
can run on your Android’s home screen.

Who Should Read This book?

If you’re interested in learning how to develop more advanced graphics on
Android, then this is the book for you. This book assumes that you have some
programming experience, including experience with Java and Android.

Java

If you’ve worked with other managed languages before, such as C#, then
moving to Java will be straightforward. If you’re more experienced with native
languages, then one of the main differences that you’ll need to keep in mind
is that Java on Android is a garbage-collected language that runs in a virtual
machine, which has both benefits and costs.

The following books will help bring your Java up to speed:

• The Java Programming Language [AGH05] by Ken Arnold, James Gosling,
and David Holmes

• Effective Java [Blo08] by Joshua Bloch

• Thinking in Java [Eck06] by Bruce Eckel

Welcome to OpenGL ES for Android! • xvi

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Android

Once you’re comfortable with Java, developing for Android just requires some
experience with the appropriate libraries and methods. To cover all of the
basics, I recommend reading Hello, Android [Bur10] by Ed Burnette. You can
also follow the first two lessons of Google’s Android training online:

• Building Your First App2

• Managing the Activity Lifecycle3

While it’s possible to go through most of this book with the emulator, having
an Android device on hand will make life much easier. We’ll go into more
detail about that soon, in Section 1.1, Installing the Tools, on page 1.

This should be enough to get you through this book. We’ll cover all of the
basics from first principles, so you don’t need prior experience in 3D graphics
programming, and while we’ll cover some math in this book, if you’ve taken
trigonometry and linear algebra in the past, then you’re well prepared! If not,
no fear: everything will be explained in detail as we go along.

How to Read This Book

Each chapter builds on the chapter before it, so this book is best read in
sequence. However, all of the code samples are available online (see Section
5, Online Resources, on page xviii), so if you want to check out a specific
chapter, you can always follow along by downloading the completed project
from the previous chapter and continuing on from there. This can also help
out if you ever get lost or want to start from a fresh base.

Conventions

We’ll use OpenGL to refer to OpenGL ES 2.0, the modern version of OpenGL
for mobile and the Web.

In most parts of the book, we’ll be working with the GLES20 class, which is part
of the Android Software Development Kit (SDK). Since most of our OpenGL
constants and methods will be in this class, I’ll generally omit the class name
and just mention the constant or method directly. We’ll use static imports
(see Section 1.5, Using Static Imports, on page 14) to omit the class name in
the code as well.

2. http://developer.android.com/training/basics/firstapp/index.html
3. http://developer.android.com/training/basics/activity-lifecycle/index.html

report erratum • discuss

How to Read This Book • xvii

http://developer.android.com/training/basics/firstapp/index.html
http://developer.android.com/training/basics/activity-lifecycle/index.html
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Online Resources

All of the resources for this book can be found at http://pragprog.com/book/kbogla,
where you can find code samples and accompanying images and textures. If
you have purchased the ebook, then you can also click on the hyperlink above
each code extract to download that extract directly. You can also join in the
discussions at the book’s website and help improve the book by submitting
your feedback and errata.

Please feel free to also visit Learn OpenGL ES, an OpenGL ES tutorial blog
that I maintain.4

The following is a list of some great online resources maintained by the
Khronos Group:5

• OpenGL ES 2.0 API Quick Reference Card6

• OpenGL ES 2.0 Reference Pages7

• OpenGL ES Shading Language (GLSL ES) Reference Pages8

• The OpenGL® ES Shading Language9

• OpenGL® ES Common Profile Specification Version 2.0.25
(Full Specification)10

I recommend printing out the reference card and keeping it handy, so you
can quickly refer to it when needed. Android uses the EGL (a native platform
interface) to help set up the display, so you may also find the Khronos EGL
API Registry to be useful.11

Let’s Get Started!

There are more people with powerful cell phones and tablets than ever before,
and the market continues to grow. Android’s software tools make it easy to
develop an application for Android, and Google’s Play Store makes it easy for
us to share our applications with the world. Let’s head over to Chapter 1,
Getting Started, on page 1, and get things started!

4. http://www.learnopengles.com/
5. http://www.khronos.org/
6. http://www.khronos.org/opengles/sdk/docs/reference_cards/OpenGL-ES-2_0-Reference-card.pdf
7. http://www.khronos.org/opengles/sdk/docs/man/
8. http://www.khronos.org/opengles/sdk/docs/manglsl/
9. http://www.khronos.org/registry/gles/specs/2.0/GLSL_ES_Specification_1.0.17.pdf
10. http://www.khronos.org/registry/gles/specs/2.0/es_full_spec_2.0.25.pdf
11. http://www.khronos.org/registry/egl/

Welcome to OpenGL ES for Android! • xviii

report erratum • discuss

http://pragprog.com/book/kbogla
http://www.learnopengles.com/
http://www.khronos.org/
http://www.khronos.org/opengles/sdk/docs/reference_cards/OpenGL-ES-2_0-Reference-card.pdf
http://www.khronos.org/opengles/sdk/docs/man/
http://www.khronos.org/opengles/sdk/docs/manglsl/
http://www.khronos.org/registry/gles/specs/2.0/GLSL_ES_Specification_1.0.17.pdf
http://www.khronos.org/registry/gles/specs/2.0/es_full_spec_2.0.25.pdf
http://www.khronos.org/registry/egl/
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

CHAPTER 1

Getting Started
In this chapter, we’re going to dive straight into creating our very first OpenGL
application for Android. As we progress through the chapters in this book,
each chapter will start off with an overview, and then we’ll go over the “game
plan”—our plan of attack for that chapter. Here’s our game plan to get things
started:

• First we’ll install and configure our development environment.

• We’ll then create our very first OpenGL application, which will initialize
OpenGL and handle Android’s activity life cycle. We’ll talk more about
the life cycle soon.

This will give us the base we need to draw stuff onto the screen.

Ready? Let’s go!

1.1 Installing the Tools

Here’s a basic list of things we’ll need to develop OpenGL for Android:

• A personal computer running Windows, OS X, or Linux
• A Java Development Kit (JDK)
• The Android Software Development Kit (SDK)
• An integrated development environment (IDE)
• A phone, tablet, or emulator supporting OpenGL ES 2.0

The first thing you’ll need is a personal computer suitable for development;
any recent computer running Windows, OS X or Linux should do. On that
computer, you’ll need to install a JDK, which you can download from Oracle’s
website.1 Google currently specifies JDK 6 for Android development, but later

1. www.oracle.com/technetwork/java/javase/downloads/index.html

report erratum • discuss

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

JDKs should work by default. On the off chance that they don’t, you’ll just
need to double-check that your compiler compliance level is set to 1.6.

You’ll also need to install the Android SDK bundle, which you can download
from the Android developer site.2 This bundle contains everything that you’ll
need for Android development, including an emulator with OpenGL ES 2.0
support and an IDE. Once you have the JDK installed, go ahead and unzip
the Android SDK bundle to the folder of your choice.

The Android SDK bundle comes with Eclipse, a popular IDE that’s officially
supported by Google with the Android development tools (ADT). We’ll be using
Eclipse for the rest of this book, but if you prefer to use something different,
another great choice is IntelliJ’s IDEA Community Edition. Google also
recently announced Android Studio, a spinoff of IntelliJ with new tools and
features specially focused on Android development.3,4

Configuring a New Emulator

Now that the tools are installed, let’s use the Android Virtual Device (AVD)
Manager to create a new virtual device:

1. Go to the folder where the Android SDK is installed. If you’re on Windows,
run SDKManager.exe to open the Android SDK Manager. On other platforms,
run sdk/tools/android.

2. Select Tools→Manage AVDs to open up the Android Virtual Device
Manager.

3. Select New to bring up the ‘Create new Android Virtual Device (AVD)’ dialog.

4. Select Galaxy Nexus as the device.

5. Check the checkbox next to Use Host GPU (graphics processing unit).

6. Give the virtual device a name and leave the rest of the settings on their
defaults. The window should look similar to the following figure.

7. Select OK to create the new emulator image (Figure 1, Creating a new
Android virtual device, on page 3).

You may now close the AVD and SDK managers.

2. http://developer.android.com/sdk/index.html
3. http://www.jetbrains.com/idea/
4. http://developer.android.com/sdk/installing/studio.html

Chapter 1. Getting Started • 2

report erratum • discuss

http://developer.android.com/sdk/index.html
http://www.jetbrains.com/idea/
http://developer.android.com/sdk/installing/studio.html
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 1—Creating a new Android virtual device

Using the Emulator

You can start an emulator instance by using the AVD manager, or you can
let your IDE take care of things automatically; the Android development tools
for Eclipse will launch an emulator if there isn’t one already running. It’s a
good idea to keep one emulator instance running so that you don’t have to
wait for it to start each time.

Obtaining a Device Supporting OpenGL ES 2.0.

You can work with the emulator, but it’s much better to have an actual device,
because emulators do not accurately reflect real-world performance and
results, and it can also be very slow, even on high-end hardware. The Nexus 7
is a great and inexpensive choice, and it can be purchased online at Google
Play.5

5. https://play.google.com/store/devices

report erratum • discuss

Installing the Tools • 3

https://play.google.com/store/devices
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Using an x86 Emulator

If your computer supports hardware virtualization, then you may also want to give
the x86 emulator a try. You’ll need to download the Intel x86 Atom System Image
under the latest available Android SDK in the SDK manager. You’ll also need to install
the Intel Hardware Accelerated Execution Manager, which is located all the way at
the bottom, under Extras.

Once you have the packages installed, the next step is to configure the Hardware
Accelerated Execution Manager. You’ll need to run the installer, which will be in your
SDK directory under extras/intel/Hardware_Accelerated_Execution_Manager. Run the executable
in that folder and follow the instructions. You may need to ensure that ‘Intel Virtual-
ization Technology (VT-x)’ is enabled in your BIOS system settings.

Now you just need to configure an emulator as described in Configuring a New Emu-
lator, on page 2, except this time you’ll choose an x86 emulator instead of an ARM
emulator. More instructions on VM acceleration are available at the Android developer
website.a

a. http://developer.android.com/tools/devices/emulator.html#accel-vm

1.2 Creating Our First Program

Now that we have our tools installed and configured, let’s go ahead and create
our first OpenGL program. This program will be very simple: all it will do is
initialize OpenGL and clear the screen continuously. That’s the minimum we
need to have an OpenGL program that actually does something.

If you want to follow along in the code, all of the source code and accompany-
ing data for this book can be downloaded from this book’s home page.6

Creating a New Project

Go ahead and create a new project by following these steps:

1. Select File→New→Android Application Project. When the dialog comes up,
enter the following details:

Application Name:
Enter ‘First Open GL Project’.

Package Name:
The package name is a unique identifier for our project. The convention
is to enter a Java-style package name, so let’s enter ‘com.firstopengl-
project.android’ as the name.

6. http://pragprog.com/book/kbogla

Chapter 1. Getting Started • 4

report erratum • discuss

http://developer.android.com/tools/devices/emulator.html#accel-vm
http://pragprog.com/book/kbogla
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Joe asks:

Why Do We Need to Continually Clear the Screen?
Clearing the screen seems wasteful if we’re already drawing over the entire screen on
each frame, so why do we need to do it?

Back in the days when everything was rendered in software, it usually was wasteful
to clear the screen. Developers would optimize by assuming that everything would
get painted over, so there would be no need to wipe away stuff from the previous
frame. They did this to save processing time that would otherwise have been wasted.
This sometimes led to the famous “hall of mirrors” effect, as seen in games such as
Doom: the resulting visual effect was like being in the middle of a hall of mirrors,
with old content repeated over and over.a

This optimization is no longer useful today. The latest GPUs work differently, and
they use special rendering techniques that can actually work faster if the screen is
cleared. By telling the GPU to clear the screen, we save time that would have been
wasted on copying over the previous frame. Because of the way that GPUs work today,
clearing the screen also helps to avoid problems like flickering or stuff not getting
drawn. Preserving old content can lead to unexpected and undesirable results.

You can learn more by reading the following links:

• http://developer.amd.com/gpu_assets/gdc2008_ribble_maurice_TileBasedGpus.pdf
• http://www.beyond3d.com/content/articles/38/

a. http://en.wikipedia.org/wiki/Noclip_mode

Minimum SDK:
Select ‘API 10: Android 2.3.3 (Gingerbread)’. This is the minimum
version with full OpenGL ES 2.0 support.

2. Use defaults for the rest; the form should now look similar to Figure 2,
Creating a new Android project in Eclipse, on page 6.

3. Select Next. Uncheck ‘Create custom launcher icon’ and make sure that
‘Create Activity’ is checked. You can choose to place the project in a dif-
ferent location if you prefer.

4. Select Next again to reach the Create Activity screen. Make sure ‘Blank
Activity’ is selected and then click Next again to reach the New Blank
Activity configuration screen. Set the activity name to ‘FirstOpenGLProject-
Activity’. Your screen should look similar to Figure 3, Creating a new
Android project: configuring the activity, on page 7.

5. Hit Finish to go ahead and build the project.

report erratum • discuss

Creating Our First Program • 5

http://developer.amd.com/gpu_assets/gdc2008_ribble_maurice_TileBasedGpus.pdf
http://www.beyond3d.com/content/articles/38/
http://en.wikipedia.org/wiki/Noclip_mode
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 2—Creating a new Android project in Eclipse

After hitting Finish, Eclipse will crunch for a while, and then your new project
will be ready.

1.3 Initializing OpenGL

Our next step is to go ahead and initialize OpenGL by using a special class
called GLSurfaceView. GLSurfaceView takes care of the grittier aspects of OpenGL
initialization, such as configuring the display and rendering on a background
thread. This rendering is done on a special area of the display, called a surface;
this is also sometimes referred to as a viewport.

The GLSurfaceView class also makes it easy to handle the standard Android
activity life cycle. In Android, activities can be created and destroyed, and
they are also paused and resumed when the user switches to another activity
and later returns. In accordance with this life cycle, we need to release
OpenGL’s resources when our activity is paused. GLSurfaceView provides helper
methods to take care of this for us.

You can learn more about the activity life cycle in Hello, Android [Bur10], by
Ed Burnette.

Chapter 1. Getting Started • 6

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 3—Creating a new Android project: configuring the activity

TextureViews

Behind the scenes, a GLSurfaceView actually creates its own window and punches a
“hole” in the view hierarchy to allow the underlying OpenGL surface to be displayed.
For many uses, this is good enough; however, since the GLSurfaceView is part of a sep-
arate window, it doesn’t animate or transform as well as a regular view.

Starting with Android 4.0 Ice Cream Sandwich, Android provides a TextureView that
can be used to render OpenGL without having a separate window or hole punching,
which means that the view can be manipulated, animated, and transformed as well
as any regular Android view. Since there’s no OpenGL initialization built into the
TextureView class, one way of using a TextureView is by performing your own OpenGL
initialization and running that on top of a TextureView; another is to grab the source
code of GLSurfaceView and adapt it onto a TextureView.a

a. For more information, take a look at https://groups.google.com/d/msg/android-developers/
U5RXFGpAHPE/IqHeIeGXhr0J and http://stackoverflow.com/q/12061419.

report erratum • discuss

Initializing OpenGL • 7

https://groups.google.com/d/msg/android-developers/U5RXFGpAHPE/IqHeIeGXhr0J
https://groups.google.com/d/msg/android-developers/U5RXFGpAHPE/IqHeIeGXhr0J
http://stackoverflow.com/q/12061419
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Creating an Instance of GLSurfaceView

Let’s open up our auto-generated activity class, FirstOpenGLProjectActivity. Press
Ctrl-Shift-T to bring up the Open Type dialog, and then start typing in
‘FirstOpenGLProjectActivity’. Select the class when it appears.

Eclipse Keyboard Shortcuts

The shortcuts on a Mac or on Linux can be different than those on Windows. For
example, the keyboard shortcut Ctrl -Shift-O , which is used to organize and bring in
new Java imports, is actually DBO on a Mac. You can look up the key bindings for
your platform by selecting the key assistance from Help→Key Assist.

It doesn’t look like much at the moment:

FirstOpenGLProject/src/com/firstopenglproject/android/FirstOpenGLProjectActivity.java
package com.firstopenglproject.android;

import android.os.Bundle;
import android.app.Activity;
import android.view.Menu;
public class FirstOpenGLProjectActivity extends Activity {

@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_first_open_glproject);

}
@Override
public boolean onCreateOptionsMenu(Menu menu) {

getMenuInflater().inflate(R.menu.activity_first_open_glproject, menu);
return true;

}
}

We’ll add a GLSurfaceView to the activity so we can initialize OpenGL. Add two
new member variables to the top of the class as follows:

FirstOpenGLProject/src/com/firstopenglproject/android/FirstOpenGLProjectActivity.java
public class FirstOpenGLProjectActivity extends Activity {

private GLSurfaceView glSurfaceView;
private boolean rendererSet = false;

We need to import GLSurfaceView, so press Ctrl-Shift-O to organize imports and
bring in the new class; we should do this any time we add in a new reference
to a class that needs to be imported. We’ll use rendererSet to remember if our
GLSurfaceView is in a valid state or not. Let’s remove the call to setContentView()
and add the following code to initialize our glSurfaceView:

Chapter 1. Getting Started • 8

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/FirstOpenGLProject/src/com/firstopenglproject/android/FirstOpenGLProjectActivity.java
http://media.pragprog.com/titles/kbogla/code/FirstOpenGLProject/src/com/firstopenglproject/android/FirstOpenGLProjectActivity.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

FirstOpenGLProject/src/com/firstopenglproject/android/FirstOpenGLProjectActivity.java
@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
glSurfaceView = new GLSurfaceView(this);

Checking If the System Supports OpenGL ES 2.0

Since we’ll only be writing code for 2.0, the next thing we’ll want to do is check
if the system actually supports OpenGL ES 2.0. Let’s do that by adding the
following lines to onCreate():

FirstOpenGLProject/src/com/firstopenglproject/android/FirstOpenGLProjectActivity.java
final ActivityManager activityManager =

(ActivityManager) getSystemService(Context.ACTIVITY_SERVICE);

final ConfigurationInfo configurationInfo =
activityManager.getDeviceConfigurationInfo();

final boolean supportsEs2 = configurationInfo.reqGlEsVersion >= 0x20000;

First, we get a reference to Android’s ActivityManager. We use this to get the
device configuration info, and then we access reqGlEsVersion to check the device’s
OpenGL ES version. If this is 0x20000 or greater, then we can use OpenGL ES
2.0.

This check doesn’t actually work on the emulator due to a bug with the GPU
emulation; so to make our code work there as well, let’s modify the check as
follows:

FirstOpenGLProject/src/com/firstopenglproject/android/FirstOpenGLProjectActivity.java
final boolean supportsEs2 =

configurationInfo.reqGlEsVersion >= 0x20000
|| (Build.VERSION.SDK_INT >= Build.VERSION_CODES.ICE_CREAM_SANDWICH_MR1
&& (Build.FINGERPRINT.startsWith("generic")
|| Build.FINGERPRINT.startsWith("unknown")
|| Build.MODEL.contains("google_sdk")
|| Build.MODEL.contains("Emulator")
|| Build.MODEL.contains("Android SDK built for x86")));

This code tests if the current device is an emulator build, and if it is, we
assume that it supports OpenGL ES 2.0. For this to actually work, we need
to be sure that we’re running on an emulator image that has been configured
for OpenGL ES 2.0, as described in Configuring a New Emulator, on page 2.

Configuring the Surface for OpenGL ES 2.0

The next step is to configure our rendering surface. Let’s add the following
lines of code:

report erratum • discuss

Initializing OpenGL • 9

http://media.pragprog.com/titles/kbogla/code/FirstOpenGLProject/src/com/firstopenglproject/android/FirstOpenGLProjectActivity.java
http://media.pragprog.com/titles/kbogla/code/FirstOpenGLProject/src/com/firstopenglproject/android/FirstOpenGLProjectActivity.java
http://media.pragprog.com/titles/kbogla/code/FirstOpenGLProject/src/com/firstopenglproject/android/FirstOpenGLProjectActivity.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

if (supportsEs2) {
// Request an OpenGL ES 2.0 compatible context.
glSurfaceView.setEGLContextClientVersion(2);

// Assign our renderer.
glSurfaceView.setRenderer(new FirstOpenGLProjectRenderer());
rendererSet = true;

} else {
Toast.makeText(this, "This device does not support OpenGL ES 2.0.",

Toast.LENGTH_LONG).show();
return;

}

If the device has support for OpenGL ES 2.0, then we configure our surface
view to use OpenGL ES 2.0 by calling setEGLContextClientVersion(2). We then call
setRenderer() to pass in a new instance of a custom Renderer class, which we’ll
soon create, and we remember that the renderer was set by setting rendererSet
to true. This renderer will be called by the GLSurfaceView when the surface is
created or changed, as well as when it’s time to draw a new frame.

What if a device doesn’t support OpenGL ES 2.0? It’s possible to add a fallback
renderer that supports OpenGL ES 1.0, but this situation is so rare these
days that it may not be worth the effort. According to the Android Developer
Dashboard,7 only around 9 percent of devices are GL 1.1 only, and this
number should keep shrinking as time goes on. In Updating the Android
Manifest and Excluding from Unsupported Devices, on page 280, we’ll learn how
to hide a published application on the market from devices that don’t support
OpenGL ES 2.0.

We need to add one more call to add our GLSurfaceView to the activity and display
it on the screen. Replace the old call to setContentView() with the following code
at the end of onCreate():

FirstOpenGLProject/src/com/firstopenglproject/android/FirstOpenGLProjectActivity.java
setContentView(glSurfaceView);

Handling Android’s Activity Life Cycle Events

We still need to handle Android’s activity life cycle events; otherwise we’re
going to crash if the user switches to another application. Let’s add the follow-
ing methods to round out our activity class:

FirstOpenGLProject/src/com/firstopenglproject/android/FirstOpenGLProjectActivity.java
@Override
protected void onPause() {

super.onPause();

7. http://developer.android.com/resources/dashboard/opengl.html

Chapter 1. Getting Started • 10

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/FirstOpenGLProject/src/com/firstopenglproject/android/FirstOpenGLProjectActivity.java
http://media.pragprog.com/titles/kbogla/code/FirstOpenGLProject/src/com/firstopenglproject/android/FirstOpenGLProjectActivity.java
http://developer.android.com/resources/dashboard/opengl.html
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

if (rendererSet) {
glSurfaceView.onPause();

}
}

@Override
protected void onResume() {

super.onResume();

if (rendererSet) {
glSurfaceView.onResume();

}
}

It’s very important to have these methods there so that our surface view can
properly pause and resume the background rendering thread as well as release
and renew the OpenGL context. If it doesn’t, our application may crash and
get killed by Android. We also make sure that a renderer was actually set, or
calling these methods will also cause the app to crash.

1.4 Creating a Renderer Class

Now we’re going to define a Renderer so that we can start clearing the screen.
Let’s take a quick overview of the methods defined by the Renderer interface:

onSurfaceCreated(GL10 glUnused, EGLConfig config)
GLSurfaceView calls this when the surface is created. This happens the first
time our application is run, and it may also be called when the device
wakes up or when the user switches back to our activity. In practice, this
means that this method may be called multiple times while our application
is running.

onSurfaceChanged(GL10 glUnused, int width, int height)
GLSurfaceView calls this after the surface is created and whenever the size
has changed. A size change can occur when switching from portrait to
landscape and vice versa.

onDrawFrame(GL10 glUnused)
GLSurfaceView calls this when it’s time to draw a frame. We must draw
something, even if it’s only to clear the screen. The rendering buffer will
be swapped and displayed on the screen after this method returns, so if
we don’t draw anything, we’ll probably get a bad flickering effect.

What’s going on with those unused arguments of type GL10? This is a vestige
of the OpenGL ES 1.0 API. We would use this parameter if we were writing

report erratum • discuss

Creating a Renderer Class • 11

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

an OpenGL ES 1.0 renderer, but for OpenGL ES 2.0, we call static methods
on the GLES20 class instead.

Rendering in a Background Thread

The renderer methods will be called on a separate thread by the GLSurfaceView. The
GLSurfaceView will render continuously by default, usually at the display’s refresh rate,
but we can also configure the surface view to render only on request by calling
GLSurfaceView.setRenderMode(), with GLSurfaceView.RENDERMODE_WHEN_DIRTY as the argument.

Since Android’s GLSurfaceView does rendering in a background thread, we must be
careful to call OpenGL only within the rendering thread, and Android UI calls only
within Android’s main thread. We can call queueEvent() on our instance of GLSurfaceView
to post a Runnable on the background rendering thread. From within the rendering
thread, we can call runOnUIThread() on our activity to post events on the main thread.

Creating a New Renderer

Let’s go ahead and create a new class in the same package. Let’s call it
FirstOpenGLProjectRenderer and have it implement Renderer. To create the new class,
right-click com.firstopenglproject.android in the Package Explorer and then select
New→Class. When the New Java Class window pops up, enter ‘FirstOpenGL-
ProjectRenderer’ as the name and select Finish.

We’ll start off with the following header and add our first method, which is
onSurfaceCreated():

FirstOpenGLProject/src/com/firstopenglproject/android/FirstOpenGLProjectRenderer.java
package com.firstopenglproject.android;

import static android.opengl.GLES20.GL_COLOR_BUFFER_BIT;
import static android.opengl.GLES20.glClear;
import static android.opengl.GLES20.glClearColor;
import static android.opengl.GLES20.glViewport;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView.Renderer;

public class FirstOpenGLProjectRenderer implements Renderer {
@Override
public void onSurfaceCreated(GL10 glUnused, EGLConfig config) {

glClearColor(1.0f, 0.0f, 0.0f, 0.0f);
}

Chapter 1. Getting Started • 12

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/FirstOpenGLProject/src/com/firstopenglproject/android/FirstOpenGLProjectRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

First we set the clear color in onSurfaceCreated() with a call to glClearColor(1.0f, 0.0f,
0.0f, 0.0f). The first three components correspond to red, green, and blue, and
the last corresponds to a special component called alpha, which is often used
for translucency and transparency. By setting the first component to 1 and
the rest to 0, we are setting red to full strength and the screen will become
red when cleared. We’ll discuss this color model in more detail in Section 2.6,
The OpenGL Color Model, on page 34.

The next step is to set the viewport size. Let’s add the following code:

FirstOpenGLProject/src/com/firstopenglproject/android/FirstOpenGLProjectRenderer.java
@Override
public void onSurfaceChanged(GL10 glUnused, int width, int height) {

// Set the OpenGL viewport to fill the entire surface.
glViewport(0, 0, width, height);

}

We set the viewport size in onSurfaceChanged() with a call to glViewport(0, 0, width,
height). This tells OpenGL the size of the surface it has available for rendering.

We’ll finish off the renderer class with the following code:

FirstOpenGLProject/src/com/firstopenglproject/android/FirstOpenGLProjectRenderer.java
@Override
public void onDrawFrame(GL10 glUnused) {

// Clear the rendering surface.
glClear(GL_COLOR_BUFFER_BIT);

}
}

We clear the screen in onDrawFrame() with a call to glClear(GL_COLOR_BUFFER_BIT).
This will wipe out all colors on the screen and fill the screen with the color
previously defined by our call to glClearColor().

We’re now ready to try out our code and see what happens. Go ahead and
press Ctrl-F11 to run the program. You should see a blank red screen, as seen
in Figure 4, Our first OpenGL project, on page 14.

Try changing the clear color and then running the program again to see what
happens! You should see the color on the screen match your changes to the
code.

If you’re using the emulator and it’s not working for you, and you’ve checked
that Use Host GPU is checked in the emulator settings, then try adding a call
to glSurfaceView.setEGLConfigChooser(8, 8, 8, 8, 16, 0); before the call to glSurface-
View.setRenderer().

report erratum • discuss

Creating a Renderer Class • 13

http://media.pragprog.com/titles/kbogla/code/FirstOpenGLProject/src/com/firstopenglproject/android/FirstOpenGLProjectRenderer.java
http://media.pragprog.com/titles/kbogla/code/FirstOpenGLProject/src/com/firstopenglproject/android/FirstOpenGLProjectRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 4—Our first OpenGL project

1.5 Using Static Imports

This is the first point where we use the import static directive. We’ll be using
this a lot in our code, as this directive helps to greatly reduce verbosity by
reducing a call like GLES20.glClear(GLES20.GL_COLOR_BUFFER_BIT); to glClear(GL_COL-
OR_BUFFER_BIT);. This makes a big difference when a significant amount of our
code is working with OpenGL and other utilities.

Unfortunately, Eclipse doesn’t have great support for static imports. To make
things easier, I recommend that you select Window→Preferences and then
select Java→Editor→Content Assist→Favorites and add the following types:

• android.opengl.GLES20
• android.opengl.GLUtils
• android.opengl.Matrix

This will help with autocomplete, but unfortunately it won’t fix ‘Organize
Imports’. To fix this, paste the code below to the top of your class:

Chapter 1. Getting Started • 14

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

import static android.opengl.GLES20.*;
import static android.opengl.GLUtils.*;
import static android.opengl.Matrix.*;

Now when you organize your imports, all of the required static imports will
be brought in automatically. Whenever you add in a reference that requires
a new import, you can fix it again by just going to the top of the class,
replacing the end of one of the static imports with an asterisk (*), and orga-
nizing imports again.

1.6 A Review

In this chapter, we learned how to create a new OpenGL project and clear the
screen. We installed and configured our development environment, created
a new project, initialized OpenGL, responded to Android’s activity life cycle,
and cleared the screen!

We now have a base that we can build on for all of our future projects. Take
a moment to breathe. In the next couple of chapters, we’ll continue to build
on this base, learn how to program the GPU, and add more features. When
you’re ready, let’s race to the next chapter.

report erratum • discuss

A Review • 15

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Part I

A Simple Game of Air Hockey

CHAPTER 2

Defining Vertices and Shaders
This chapter introduces our first project: a simple game of air hockey. As we
work on this project, we’ll learn about some of the major building blocks of
OpenGL along the way.

We’re going to start off by learning how to build objects by using a set of
independent points known as vertices, and then we’re going to learn how to
draw these objects by using shaders, small programs that tell OpenGL how
to draw an object. These two concepts are extremely important because just
about every object is built by joining together vertices into points, lines, and
triangles, and these primitives all get drawn by using shaders.

We’ll first learn about vertices so that we can build up our air hockey table
and position it in the world using OpenGL’s coordinate space. We’ll then follow
up by creating a set of very basic shaders to draw this air hockey table on
the screen. In the next chapter, we’ll also learn how to draw vertices as points,
lines, and triangles on the screen, and as we go through later chapters, we’ll
learn about colors, smooth shading, texturing, and touch interaction, as well
as about parallel and perspective projections.

By the time we’re done, our air hockey game will look like Figure 5, A simple
game of air hockey, on page 20.

2.1 Why Air Hockey?

Air hockey is a simple, popular game often found at bowling alleys and bars.
Although simple, it can also be incredibly addictive. Some of the top sellers
in Google Play, Android’s app market, are based on one variant or another of
this enjoyable game.

As we develop our game of air hockey, we’ll learn quite a few OpenGL concepts
along the way. We’ll learn how to define and draw a table to play on, as well

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 5—A simple game of air hockey

as how to add detail with colors, shades, and textures. We’ll also learn how
to respond to the user by acting on touch-screen events.

The Rules of the Game

To play a game of air hockey, we need a long rectangular table with two goals
(one on each end), a puck, and two mallets to strike the puck with. Each
round starts with the puck placed in the middle of the table. Each player then
tries to strike the puck into the opponent’s goal while preventing the opponent
from doing the same. The first player to reach seven goals wins the game.

As part of our game plan, the first thing that we’ll need to do is learn how to
define the structure of our air hockey table as well as how to write the code
that will draw this table on the screen. As we do this, we’ll be building up a
framework that we’ll be able to use as a base for future chapters. We’re going
to keep things easy for now and define the table as a single rectangle. We’ll

Chapter 2. Defining Vertices and Shaders • 20

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

also separate each player’s side by defining a single dividing line across the
middle of the table.

We’ll also need to represent the puck and the goalies somehow; we’ll define
these as individual points. By the end of this chapter, we’ll have our structure
in place and we’ll be ready to add the commands that will actually draw our
table to the screen.

2.2 Don’t Start from Scratch

Let’s get started by reusing our project from Chapter 1, Getting Started, on
page 1.

1. In Eclipse, select FirstOpenGLProject and make sure that the project is
open, and then press Ctrl-C . Now press Ctrl-V to duplicate the project.

2. When prompted, enter ‘AirHockey1’ as the project name. The location is
up to you.

3. Open the new project, and expand the src folder until you find the class
files FirstOpenGLProjectActivity.java and FirstOpenGLProjectRenderer.java, which we
created in Chapter 1, Getting Started, on page 1.

4. We’re going to rename our classes. First select FirstOpenGLProjectActivity.java
and open up the rename dialog by pressing Alt-Shift-R . Enter ‘AirHockey-
Activity’ (without the .java suffix) as the new name. Eclipse will append
the suffix to the file automatically. Select Finish to complete the renaming
process.

If Next highlights instead, press it to go to the Preview window, and then
press Finish to complete the renaming process.

5. Repeat the same steps to rename FirstOpenGLProjectRenderer.java to ‘AirHock-
eyRenderer.java’.

6. Open res/values/strings.xml, and change the value of the string defined by
‘app_name’ to ‘Air Hockey’.

7. Expand src in the tree and select the ‘com.firstopenglproject.android’
package. Press Alt-Shift-R to rename this to ‘com.airhockey.android’.

8. Open AndroidManifest.xml and change the package to ‘com.airhockey.android’.
Also change android:name for the activity to ‘com.airhockey.android.AirHock-
eyActivity’.

report erratum • discuss

Don’t Start from Scratch • 21

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

9. Eclipse may have added import com.firstopenglproject.android.R; to the top of
AirHockeyActivity, which may now be underlined as an error. If this happens,
just remove that line.

We’re now ready to begin with our new project.

2.3 Defining the Structure of Our Air Hockey Table

Before we can draw our table to the screen, we need to tell OpenGL what to
draw. The first step in that chain is to define the structure of our table in a
form that OpenGL understands. In OpenGL, the structure of everything begins
with a vertex.

Introducing Vertices

A vertex is simply a point representing one corner of a geometric object, with
various attributes associated with that point. The most important attribute
is the position, which represents where this vertex is located in space.

Building Our Table with Vertices

We said we would keep things easy for now, so what’s the most basic shape
we could use to represent the structure of our air hockey table? We could
use a rectangle. Since a rectangle has four corners, we would need four ver-
tices. A rectangle is a two-dimensional object, so each vertex would need a
position, with a coordinate for each dimension.

If we were to draw this out on a sheet of graph paper, we might end up with
something similar to the following figure:

Figure 6—Drawing a table on graph paper

Chapter 2. Defining Vertices and Shaders • 22

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Defining Vertices in Code

Let’s go ahead and write some code to store these vertices. We’ll represent
the vertices as a list of floating point numbers; and since we’re working in
two dimensions, we’ll use two floating point numbers per vertex: one for the
x position and one for the y position.

Since we have two components per vertex, let’s first create a constant to
contain that fact. Open up AirHockeyRenderer and add the following constant to
the top of the class:

AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
private static final int POSITION_COMPONENT_COUNT = 2;

Now add the following constructor before onSurfaceCreated():

AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
public AirHockeyRenderer() {

float[] tableVertices = {
0f, 0f,
0f, 14f,
9f, 14f,
9f, 0f

};
}

We define our vertex data using a sequential list of floating point numbers
so that we can store positions with decimal points. We’ll refer to this array
as our vertex attribute array. We’ve only stored the position for now, but later
on we’ll also store the color and other attributes using the same concept seen
here.

Points, Lines, and Triangles

Remember when I said that the easiest way to represent our hockey table
would be as a rectangle? Well, I’m about to throw a wrench in the works: in
OpenGL, we can only draw points, lines, and triangles.

The triangle is the most basic geometric shape around. We see it everywhere
in the world, such as in the structural components of a bridge, because it is
such a strong shape. It has three sides connected to three vertices. If we took
away one vertex, we’d end up with a line, and if we took away one more, we’d
have a point.

Points and lines can be used for certain effects, but only triangles can be used
to construct an entire scene of complex objects and textures. We build trian-
gles in OpenGL by grouping individual vertices together, and then we tell
OpenGL literally how to connect the dots. Everything we want to build needs

report erratum • discuss

Defining the Structure of Our Air Hockey Table • 23

http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

to be defined in terms of these points, lines, and triangles, and if we want to
build more complex shapes, such as an arch, then we need to use enough
points to approximate the curve.

So how can we define our air hockey table if we can’t use rectangles? Well, it
turns out that we can think of the table as two triangles joined together, as
seen in the next figure:

Figure 7—Drawing a table on graph paper: two triangles joined together

Let’s change the code to reflect the fact that we’ll now use two triangles instead
of one rectangle:

AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
float[] tableVerticesWithTriangles = {

// Triangle 1
0f, 0f,
9f, 14f,
0f, 14f,

// Triangle 2
0f, 0f,
9f, 0f,
9f, 14f

};

Our array now holds six vertices, which will be used to represent two triangles.
The first triangle is bounded by the points at (0, 0), (9, 14), and (0, 14). The
second triangle shares two of these positions and is bounded by (0, 0), (9, 0),
and (9, 14).

Whenever we want to represent an object in OpenGL, we need to think about
how we can compose it in terms of points, lines, and triangles.

Chapter 2. Defining Vertices and Shaders • 24

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

The Winding Order of a Triangle

You might notice that when we define our triangles we order the vertices in counter-
clockwise order; this is known as the winding order. When we’re consistent in using
the same winding order everywhere, we can often optimize performance by using the
winding order to figure out if a triangle belongs to the front or to the back of any
given object, and then we can ask OpenGL to skip the back triangles since we won’t
be able to see them anyway.

We’ll learn more about this later in Culling, on page 249.

Adding the Center Line and Two Mallets

We’re almost done defining our vertices. We just need to add a few more ver-
tices for the center line and our two mallets. We want to end up with some-
thing like the following figure:

Figure 8—Drawing a table on graph paper: with a line and two mallets

We’ll use a line for the center line and a point for each mallet. Add a comma
to the end of the array, and then add the following new vertices:

AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
// Line 1
0f, 7f,
9f, 7f,

// Mallets
4.5f, 2f,
4.5f, 12f

report erratum • discuss

Defining the Structure of Our Air Hockey Table • 25

http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

As you can see, we can also use decimal coordinates since our array is com-
posed of floating point values. In order to keep the Java compiler happy, we
need to add a small f after the number to inform the compiler that this
number should be interpreted as a float and not as a double. Doubles have
about double the precision (hence the name), so if we don’t add the f, Java
will see it as a precision-losing conversion and ask us to add an explicit cast.

2.4 Making the Data Accessible to OpenGL

We’ve finished defining our vertices, but we need to do an extra step before
OpenGL can access them. The main problem is that the environment where
our code runs and the environment where OpenGL runs don’t speak the same
language. There are two main concepts that we need to understand:

1. When we compile and run our Java code in the emulator or on a device,
it doesn’t run directly on the hardware. Instead, it runs through a special
environment known as the Dalvik virtual machine. Code running in this
virtual machine has no direct access to the native environment other than
via special APIs.

2. The Dalvik virtual machine also uses garbage collection. This means that
when the virtual machine detects that a variable, object, or some other
piece of memory is no longer being used, it will go ahead and release that
memory so that it can be reused. It might also move things around so
that it can use the space more efficiently.

The native environment does not work the same way, and it will not expect
blocks of memory to be moved around and freed automatically.

Android was designed in this way so that developers could develop applications
without worrying about the particular CPU or machine architecture and
without having to worry about low-level memory management. This usually
works well until we need to interface with a native system such as OpenGL.
OpenGL runs directly on top of the hardware as a native system library.
There’s no virtual machine, and there’s no garbage collection or memory
compaction.

Calling Native Code from Java

The Dalvik approach is one of the major strengths of Android, but if our code
is inside a virtual machine, then how can we communicate with OpenGL?
Well, there are two tricks. The first trick is to use the Java Native Interface
(JNI), and this trick is already done for us by the Android SDK guys. When

Chapter 2. Defining Vertices and Shaders • 26

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

we call methods in the android.opengl.GLES20 package, the SDK is actually using
JNI behind the scenes to call the native system library.

Copying Memory from Java’s Memory Heap to the Native Memory Heap

The second trick is to change how we allocate our memory. We have access
to a special set of classes in Java that will allocate a block of native memory
and copy our data to that memory. This native memory will be accessible to
the native environment, and it will not be managed by the garbage collector.

We’ll need to transfer the data, as seen in the next figure. Let’s add some code
at the top of our class, before the constructor:

AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
private static final int BYTES_PER_FLOAT = 4;
private final FloatBuffer vertexData;

Figure 9—Transferring data from Dalvik to OpenGL

We’ve added a constant, BYTES_PER_FLOAT, and a FloatBuffer. A float in Java has
32 bits of precision, while a byte has 8 bits of precision. This might seem like
an obvious point to make, but there are 4 bytes in every float. We’ll need to
refer to that in many places down the road. The FloatBuffer will be used to store
data in native memory.

Let’s add some more code, this time to the end of the constructor’s body:

report erratum • discuss

Making the Data Accessible to OpenGL • 27

http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
vertexData = ByteBuffer

.allocateDirect(tableVerticesWithTriangles.length * BYTES_PER_FLOAT)

.order(ByteOrder.nativeOrder())

.asFloatBuffer();

vertexData.put(tableVerticesWithTriangles);

Let’s take a look at each part. First we allocated a block of native memory
using ByteBuffer.allocateDirect(); this memory will not be managed by the garbage
collector. We need to tell the method how large the block of memory should
be in bytes. Since our vertices are stored in an array of floats and there are
4 bytes per float, we pass in tableVerticesWithTriangles.length * BYTES_PER_FLOAT.

The next line tells the byte buffer that it should organize its bytes in native
order. When it comes to values that span multiple bytes, such as 32-bit
integers, the bytes can be ordered either from most significant to least signif-
icant or from least to most. Think of this as similar to writing a number either
from left to right or right to left. It’s not important for us to know what that
order is, but it is important that we use the same order as the platform. We
do this by calling order(ByteOrder.nativeOrder()).

Finally, we’d rather not deal with individual bytes directly. We want to work
with floats, so we call asFloatBuffer() to get a FloatBuffer that reflects the underlying
bytes. We then copy data from Dalvik’s memory to native memory by calling
vertexData.put(tableVerticesWithTriangles). The memory will be freed when the process
gets destroyed, so we don’t normally need to worry about that. If you end up
writing code that creates a lot of ByteBuffers and does so over time, you may
want to read up on heap fragmentation and memory management techniques.1

Whew! It takes a few steps to get our data over from Dalvik into OpenGL, but
it’s vital that we understand how this works before moving on. Just like culture
and customs differ from country to country, we also have to be aware of
changes when we cross the border into native code.

2.5 Introducing the OpenGL Pipeline

We’ve now defined the structure of our hockey table, and we’ve copied the
data over to native memory, where OpenGL will be able to access it. Before
we can draw our hockey table to the screen, we need to send it through the
OpenGL pipeline, and to do this we need to use small subroutines known as
shaders (see Figure 10, An overview of the OpenGL pipeline, on page 30). These

1. http://en.wikipedia.org/wiki/Memory_pool

Chapter 2. Defining Vertices and Shaders • 28

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
http://en.wikipedia.org/wiki/Memory_pool
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Joe asks:

What Is Endianness?
Endianness is a way of describing how a hardware architecture orders the bits and
bytes that make up a number at a low level. The most common place where we see
this in action is with multibyte numbers, where we can either store them in big-
endian order, with the most significant byte first, or in little-endian order, with the
least significant byte first.

As an example, let’s take the decimal number 10000. If we convert this to binary, we
end up with 10011100010000. Now on a big-endian architecture, the bits will be
stored in this order:

00100111 00010000

On a small-endian architecture, they’ll be stored in this order:

00010000 00100111

Let’s take a look at that again, using hex this time. The decimal number 10000 is
2710 in the hex number system. This system is sometimes nice to work with when
looking at computer code because every two characters correspond to one 8-bit byte.
On a big-endian architecture, we’d store this number as follows:

27 10

On a small-endian architecture, the same number would be stored as follows:

10 27

We don’t normally need to worry about endianness. When we use a ByteBuffer, we just
need to make sure that it uses the same order as the hardware; otherwise our results
will be wildly wrong. You can read more about endianness on Wikipedia.a

a. http://en.wikipedia.org/wiki/Endianness

shaders tell the graphics processing unit (GPU) how to draw our data. There
are two types of shaders, and we need to define both of them before we can
draw anything to the screen.

1. A vertex shader generates the final position of each vertex and is run once
per vertex. Once the final positions are known, OpenGL will take the vis-
ible set of vertices and assemble them into points, lines, and triangles.

2. A fragment shader generates the final color of each fragment of a point,
line, or triangle and is run once per fragment. A fragment is a small,
rectangular area of a single color, analogous to a pixel on a computer
screen.

report erratum • discuss

Introducing the OpenGL Pipeline • 29

http://en.wikipedia.org/wiki/Endianness
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 10—An overview of the OpenGL pipeline

Once the final colors are generated, OpenGL will write them into a block
of memory known as the frame buffer, and Android will then display this
frame buffer on the screen.

For a quick reference on OpenGL and shaders, khronos.org has a great quick
reference card, which can be printed out and kept by your side.2

Joe asks:

Why Should We Use Shaders?
Before shaders were around, OpenGL used a fixed set of functions that let us control
a few limited things, such as how many lights there were in the scene or how much
fog to add. This fixed API was easy to use, but it wasn’t easy to extend. You had what
the APIs gave you, and that was it. If you wanted to add custom effects like cartoon
shading, you were pretty much out of luck.

As the underlying hardware improved over time, the guys behind OpenGL realized
that the API also had to evolve and keep up with the changes. In OpenGL ES 2.0,
they added a programmable API using shaders; and to keep things concise, they took
out the fixed API completely, so shaders must be used.

We now have shaders to control how each vertex gets drawn to the screen, and we
can also control how each fragment of every point, line, and triangle gets drawn. This
has opened up a new world of possibilities. We can now do per-pixel lighting and
other neat effects, like cartoon-cel shading. We can add any custom effect we dream
up, as long as we can express it in the shader language.

2. http://www.khronos.org/opengles/sdk/docs/reference_cards/OpenGL-ES-2_0-Reference-card.pdf

Chapter 2. Defining Vertices and Shaders • 30

report erratum • discuss

http://www.khronos.org/opengles/sdk/docs/reference_cards/OpenGL-ES-2_0-Reference-card.pdf
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Creating Our First Vertex Shader

Let’s create a simple vertex shader that will assign the positions as we’ve
defined them in our code. To do this, we’ll first need to create a new file for
the shader by following these steps:

1. First we need to create a new folder. Right-click the res folder in your
project, select New, select Folder, and name the new folder raw.

2. Now we need to create a new file. Right-click the new folder we’ve just
created, select New, select File, and name the new file simple_vertex_shader.glsl.

Now that the new file for the shader has been created, let’s add the following
code:

AirHockey1/res/raw/simple_vertex_shader.glsl
attribute vec4 a_Position;

void main()
{

gl_Position = a_Position;
}

These shaders are defined using GLSL, OpenGL’s shading language. This
shading language has a syntax structure that is similar to C. For more
information, refer to the quick reference card or to the full specification.3

This vertex shader will be called once for every single vertex that we’ve defined.
When it’s called, it will receive the current vertex’s position in the a_Position
attribute, which is defined to be a vec4.

A vec4 is a vector consisting of four components. In the context of a position,
we can think of the four components as the position’s x, y, z, and w coordi-
nates. x, y, and z correspond to a 3D position, while w is a special coordinate
that we’ll cover in more detail in Chapter 6, Entering the Third Dimension, on
page 95. If unspecified, OpenGL’s default behavior is to set the first three
coordinates of a vector to 0 and the last coordinate to 1.

Remember that we talked about how a vertex can have several attributes,
such as a color and a position? The attribute keyword is how we feed these
attributes into our shader.

We then define main(), the main entry point to the shader. All it does is copy
the position that we’ve defined to the special output variable gl_Position. Our

3. http://www.khronos.org/opengles/sdk/docs/reference_cards/OpenGL-ES-2_0-Reference-card.pdf and
http://www.khronos.org/registry/gles/specs/2.0/GLSL_ES_Specification_1.0.17.pdf, respectively.

report erratum • discuss

Introducing the OpenGL Pipeline • 31

http://media.pragprog.com/titles/kbogla/code/AirHockey1/res/raw/simple_vertex_shader.glsl
http://www.khronos.org/opengles/sdk/docs/reference_cards/OpenGL-ES-2_0-Reference-card.pdf
http://www.khronos.org/registry/gles/specs/2.0/GLSL_ES_Specification_1.0.17.pdf
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

shader must write something to gl_Position. OpenGL will use the value stored
in gl_Position as the final position for the current vertex and start assembling
vertices into points, lines, and triangles.

Creating Our First Fragment Shader

Now that we’ve created a vertex shader, we have a subroutine for generating
the final position of each vertex. We still need to create a subroutine for gen-
erating the final color of each fragment. Before we do that, let’s take some
time to learn more about what a fragment is and how one is generated.

The Art of Rasterization

Your mobile display is composed of thousands to millions of small, individual
components known as pixels. Each of these pixels appears to be capable of
displaying a single color out of a range of millions of different colors. However,
this is actually a visual trick: most displays can’t actually create millions of
different colors, so instead each pixel is usually composed of just three indi-
vidual subcomponents that emit red, green, and blue light, and because each
pixel is so small, our eyes blend the red, green, and blue light together to
create a huge range of possible colors. Put enough of these individual pixels
together and we can show a page of text or the Mona Lisa.

OpenGL creates an image that we can map onto the pixels of our mobile dis-
play by breaking down each point, line, and triangle into a bunch of small
fragments through a process known as rasterization. These fragments are
analogous to the pixels on your mobile display, and each one also consists
of a single solid color. To represent this color, each fragment has four compo-
nents: red, green, and blue for color, and alpha for transparency. We’ll go
into more detail about how this color model works in Section 2.6, The OpenGL
Color Model, on page 34.

In Figure 11, Rasterization: generating fragments, on page 33, we can see an
example of how OpenGL might rasterize a line onto a set of fragments. The
display system usually maps these fragments directly to the pixels on the
screen so that one fragment corresponds to one pixel. However, this isn’t
always true: a super high-res device might want to use bigger fragments so
that the GPU has less work to do.

Writing the Code

The main purpose of a fragment shader is to tell the GPU what the final color
of each fragment should be. The fragment shader will be called once for every

Chapter 2. Defining Vertices and Shaders • 32

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 11—Rasterization: generating fragments

fragment of the primitive, so if a triangle maps onto 10,000 fragments, then
the fragment shader will be called 10,000 times.

Let’s go ahead and write our fragment shader. Create a new file in your project,
/res/raw/simple_fragment_shader.glsl, and add the following code:

AirHockey1/res/raw/simple_fragment_shader.glsl
precision mediump float;

uniform vec4 u_Color;

void main()
{

gl_FragColor = u_Color;
}

Precision Qualifiers
The first line at the top of the file defines the default precision for all floating
point data types in the fragment shader. This is like choosing between float
and double in our Java code.

We can choose between lowp, mediump, and highp, which correspond to low
precision, medium precision, and high precision. However, highp is only sup-
ported in the fragment shader on some implementations.

Why didn’t we have to do this for the vertex shader? The vertex shader can
also have its default precision changed, but because accuracy is more
important when it comes to a vertex’s position, the OpenGL designers decided
to set vertex shaders to the highest setting, highp, by default.

report erratum • discuss

Introducing the OpenGL Pipeline • 33

http://media.pragprog.com/titles/kbogla/code/AirHockey1/res/raw/simple_fragment_shader.glsl
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

As you’ve probably guessed, higher precision data types are more accurate,
but they come at the cost of decreased performance. For our fragment shader,
we’ll select mediump for maximum compatibility and as a good tradeoff between
speed and quality.

Generating the Fragment’s Color
The rest of the fragment shader is similar to the vertex shader we defined
earlier. This time, we pass in a uniform called u_Color. Unlike an attribute that
is set on each vertex, a uniform keeps the same value for all vertices until we
change it again. Like the attribute we were using for position in the vertex
shader, u_Color is also a four-component vector, and in the context of a color,
its four components correspond to red, green, blue, and alpha.

We then define main(), the main entry point to the shader. It copies the color
that we’ve defined in our uniform to the special output variable gl_FragColor.
Our shader must write something to gl_FragColor. OpenGL will use this color
as the final color for the current fragment.

2.6 The OpenGL Color Model

OpenGL uses the additive RGB color model, which works with just the three
primary colors: red, green, and blue. Many colors can be created by mixing
these primary colors together in various proportions. For example, red and
green together create yellow, red and blue together create magenta, and blue
and green together create cyan. Add red, green, and blue together and you
get white (as seen in the following figure).

Figure 12—The RGB additive color model

Chapter 2. Defining Vertices and Shaders • 34

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

This model works differently than the subtractive paint model you might have
learned about in school: in the subtractive paint model, adding blue and
yellow makes green, and adding a bunch of colors together creates a dark
brown or black. This is because paint does not emit light; it absorbs it. The
more colors of paint we use, the more light is absorbed and the darker the
paint appears.

The additive RGB model follows the properties of light itself: when two beams
of light of different colors mix together, we don’t get a darker color; we get a
brighter color. When we observe a rainbow in the sky after a heavy rainfall,
we’re actually seeing all of the different colors of the visible light spectrum
that can combine to make white.

For the curious, Wikipedia goes into a lot more detail.4

Mapping Colors to the Display

OpenGL assumes that these colors all have a linear relationship with each
other: a red value of 0.5 should be twice as bright as a red value of 0.25, and
a red value of 1 should be twice as bright as a red value of 0.5. These primary
colors are clamped to the range [0, 1], with 0 representing the absence of that
particular primary color and 1 representing the maximum strength for that
color.

This color model maps well to the display hardware used by mobiles and
computer displays (however, in The Nonlinear Nature of Your Display, on page
269, we’ll learn that the mapping isn’t quite one to one). These displays almost
always use the three primary colors of red, green, and blue (some may include
yellow as an additional primary color, for a “purer yellow”), with 0 mapping
to an unlit pixel component and 1 mapping to full brightness for that color.
With this color model, almost every color that our eyes can see can be rendered
in OpenGL and displayed on the screen.

We’ll learn more about using colors in Chapter 4, Adding Color and Shade,
on page 59.

2.7 A Review

We spent most of the chapter just learning how to define our data and the
shaders that will move this data along the OpenGL pipeline. Let’s take a
moment to review the key concepts that we learned in this chapter:

4. http://en.wikipedia.org/wiki/RGB_color_model

report erratum • discuss

A Review • 35

http://en.wikipedia.org/wiki/RGB_color_model
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

• We first learned how to define a vertex attribute array and copy this array
over to native memory so that OpenGL can access it.

• We then wrote a vertex and a fragment shader. We learned that a shader
is just a special type of program that runs on the GPU.

In the next chapter, we’ll continue to build on the work in this chapter; by
the end of that chapter, we’ll be able to see our air hockey table and we’ll also
be ready to continue with further exercises. We’ll start out by learning how
to read in and compile the shaders that we’ve defined. Because vertex and
fragment shaders always go together, we’ll also learn how to link these shaders
together into an OpenGL program.

Once we’ve compiled and linked our shaders together, we’ll be able to put
everything together and tell OpenGL to draw the first version of our air
hockey table to the screen.

Chapter 2. Defining Vertices and Shaders • 36

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

CHAPTER 3

Compiling Shaders and
Drawing to the Screen

This chapter will continue the work that we started in the last chapter. As
our game plan for this chapter, we’ll first load and compile the shaders that
we’ve defined, and then we’ll link them together into an OpenGL program.
We’ll then be able to use this shader program to draw our air hockey table to
the screen.

Let’s open AirHockey1, the project we started in the previous chapter, and
pick up from where we left off.

3.1 Loading Shaders

Now that we’ve written the code for our shaders, the next step is to load them
into memory. To do that, we’ll first need to write a method to read in the code
from our resources folder.

Loading Text from a Resource

Create a new Java source package in your project, com.airhockey.android.util, and
in that package, create a new class called TextResourceReader. Add the following
code inside the class:

AirHockey1/src/com/airhockey/android/util/TextResourceReader.java
public static String readTextFileFromResource(Context context,

int resourceId) {
StringBuilder body = new StringBuilder();

try {
InputStream inputStream =

context.getResources().openRawResource(resourceId);
InputStreamReader inputStreamReader =

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/util/TextResourceReader.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

new InputStreamReader(inputStream);
BufferedReader bufferedReader = new BufferedReader(inputStreamReader);

String nextLine;

while ((nextLine = bufferedReader.readLine()) != null) {
body.append(nextLine);
body.append('\n');

}
} catch (IOException e) {

throw new RuntimeException(
"Could not open resource: " + resourceId, e);

} catch (Resources.NotFoundException nfe) {
throw new RuntimeException("Resource not found: " + resourceId, nfe);

}

return body.toString();
}

We’ve defined a method to read in text from a resource, readTextFileFromResource().
The way this will work is that we’ll call readTextFileFromResource() from our code,
and we’ll pass in the current Android context and the resource ID. The Android
context is required in order to access the resources. For example, to read in
the vertex shader, we might call the method as follows: readTextFileFromRe-
source(this.context, R.raw.simple_fragment_shader).

We also check for a couple of standard scenarios we might run into. The
resource might not exist, or there might be an error trying to read the resource.
In those cases, we trap the errors and throw a wrapped exception with an
explanation of what happened. If this code fails and an exception does get
thrown, we’ll have a better idea of what happened when we take a look at the
exception’s message and the stack trace.

Don’t forget to press Ctrl-Shift-O (DBO on a Mac) to bring in any missing
imports.

Reading in the Shader Code

We’re now going to add the calls to actually read in the shader code. Switch
to AirHockeyRender.java and add the following code after the call to glClearColor() in
onSurfaceCreated():

AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
String vertexShaderSource = TextResourceReader

.readTextFileFromResource(context, R.raw.simple_vertex_shader);
String fragmentShaderSource = TextResourceReader

.readTextFileFromResource(context, R.raw.simple_fragment_shader);

Chapter 3. Compiling Shaders and Drawing to the Screen • 38

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Don’t forget to bring in the import for TextResourceReader. The code won’t compile
because we don’t yet have a reference to an Android context. Add the following
to the top of the class:

AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
private final Context context;

Change the beginning of the constructor as follows:

AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
public AirHockeyRenderer(Context context) {

this.context = context;

We’ll also have to change AirHockeyActivity.java to pass in the Android context.
Open AirHockeyActivity.java and change the call to glSurfaceView.setRenderer() as
follows:

AirHockey1/src/com/airhockey/android/AirHockeyActivity.java
glSurfaceView.setRenderer(new AirHockeyRenderer(this));
rendererSet = true;

An Activity is an Android context, so we pass in a reference to this.

Keeping a Log of What’s Happening

As we start to write more involved code, it often helps a lot to see a trace of
what’s happening, just in case we’ve made a mistake somewhere. With
Android, we can use the Log class to log everything to the system log, which
we can then view in Eclipse using the LogCat view.

We don’t always want to log everything, so let’s add a new class called Logger-
Config to com.airhockey.android.util with the following code:

AirHockey1/src/com/airhockey/android/util/LoggerConfig.java
package com.airhockey.android.util;

public class LoggerConfig {
public static final boolean ON = true;

}

Whenever we want to log something, we’ll check to see if this constant is true
or false. To turn logging on or off, all we have to do is update the constant
and recompile the application.

3.2 Compiling Shaders

Now that we’ve read in the shader source from our files, the next step is to
compile each shader. We’ll create a new helper class that is going to create a
new OpenGL shader object, compile our shader code, and return the shader

report erratum • discuss

Compiling Shaders • 39

http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/AirHockeyActivity.java
http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/util/LoggerConfig.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

object for that shader code. Once we have this boilerplate code in place, we’ll
be able to reuse it in our future projects.

To begin, create a new class, ShaderHelper, and add the following code inside
the class:

AirHockey1/src/com/airhockey/android/util/ShaderHelper.java
private static final String TAG = "ShaderHelper";

public static int compileVertexShader(String shaderCode) {
return compileShader(GL_VERTEX_SHADER, shaderCode);

}

public static int compileFragmentShader(String shaderCode) {
return compileShader(GL_FRAGMENT_SHADER, shaderCode);

}

private static int compileShader(int type, String shaderCode) {

}

We’ll use this as the base for our shader helper. As before, don’t forget to
bring in the imports. If you are having issues with the static imports, please
see Section 1.5, Using Static Imports, on page 14; we’ll follow this style for the
rest of the book.

In the next section, we’ll build up compileShader() step by step:

Creating a New Shader Object

The first thing we should do is create a new shader object and check if the
creation was successful. Add the following code to compileShader():

AirHockey1/src/com/airhockey/android/util/ShaderHelper.java
final int shaderObjectId = glCreateShader(type);

if (shaderObjectId == 0) {
if (LoggerConfig.ON) {

Log.w(TAG, "Could not create new shader.");
}

return 0;
}

We create a new shader object with a call to glCreateShader() and store the ID
of that object in shaderObjectId. The type can be GL_VERTEX_SHADER for a vertex
shader, or GL_FRAGMENT_SHADER for a fragment shader. The rest of the code is
the same either way.

Chapter 3. Compiling Shaders and Drawing to the Screen • 40

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/util/ShaderHelper.java
http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/util/ShaderHelper.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Take note of how we create the object and check if it’s valid; this pattern is
used everywhere in OpenGL:

1. We first create an object using a call such as glCreateShader(). This call will
return an integer.

2. This integer is the reference to our OpenGL object. Whenever we want to
refer to this object in the future, we’ll pass the same integer back to
OpenGL.

3. A return value of 0 indicates that the object creation failed and is analo-
gous to a return value of null in Java code.

If the object creation failed, we’ll return 0 to the calling code. Why do we
return 0 instead of throwing an exception? Well, OpenGL doesn’t actually
throw any exceptions internally. Instead, we’ll get a return value of 0 or
OpenGL will inform us of the error through glGetError(), a method that lets us
ask OpenGL if any of our API calls have resulted in an error. We’ll follow the
same convention to stay consistent.

To learn more about glGetError() and other ways of debugging your OpenGL
code, see Appendix 2, Debugging, on page 305.

Uploading and Compiling the Shader Source Code

Let’s add the following code to upload our shader source code into the shader
object:

AirHockey1/src/com/airhockey/android/util/ShaderHelper.java
glShaderSource(shaderObjectId, shaderCode);

Once we have a valid shader object, we call glShaderSource(shaderObjectId, shaderCode)
to upload the source code. This call tells OpenGL to read in the source code
defined in the String shaderCode and associate it with the shader object referred to
by shaderObjectId. We can then call glCompileShader(shaderObjectId) to compile the shader:

glCompileShader(shaderObjectId);

This tells OpenGL to compile the source code that was previously uploaded
to shaderObjectId.

Retrieving the Compilation Status

Let’s add the following code to check if OpenGL was able to successfully
compile the shader:

final int[] compileStatus = new int[1];
glGetShaderiv(shaderObjectId, GL_COMPILE_STATUS, compileStatus, 0);

report erratum • discuss

Compiling Shaders • 41

http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/util/ShaderHelper.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

To check whether the compile failed or succeeded, we first create a new int
array with a length of 1 and call it compileStatus. We then call glGetShaderiv(shader-
ObjectId, GLES20.GL_COMPILE_STATUS, compileStatus, 0). This tells OpenGL to read the
compile status associated with shaderObjectId and write it to the 0th element of
compileStatus.

This is another common pattern with OpenGL on Android. To retrieve a value,
we often use arrays with a length of 1 and pass the array into an OpenGL
call. In the same call, we tell OpenGL to store the result in the array’s first
element.

Retrieving the Shader Info Log

When we get the compile status, OpenGL will give us a simple yes or no
answer. Wouldn’t it also be interesting to know what went wrong and where
we screwed up? It turns out that we can get a human-readable message by
calling glGetShaderInfoLog(shaderObjectId). If OpenGL has anything interesting to
say about our shader, it will store the message in the shader’s info log.

Let’s add the following code to get the shader info log:

AirHockey1/src/com/airhockey/android/util/ShaderHelper.java
if (LoggerConfig.ON) {

// Print the shader info log to the Android log output.
Log.v(TAG, "Results of compiling source:" + "\n" + shaderCode + "\n:"

+ glGetShaderInfoLog(shaderObjectId));
}

We print this log to Android’s log output, wrapping everything in an if state-
ment that checks the value of LoggerConfig.ON. We can easily turn off these logs
by flipping the constant to false.

Verifying the Compilation Status and Returning the Shader Object ID

Now that we’ve logged the shader info log, we can check to see if the compila-
tion was successful:

AirHockey1/src/com/airhockey/android/util/ShaderHelper.java
if (compileStatus[0] == 0) {

// If it failed, delete the shader object.
glDeleteShader(shaderObjectId);

if (LoggerConfig.ON) {
Log.w(TAG, "Compilation of shader failed.");

}

return 0;
}

Chapter 3. Compiling Shaders and Drawing to the Screen • 42

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/util/ShaderHelper.java
http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/util/ShaderHelper.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

All we need to do is check if the value returned in the step Retrieving the
Compilation Status, on page 41, is 0 or not. If it’s 0, then compilation failed.
We no longer need the shader object in that case, so we tell OpenGL to delete
it and return 0 to the calling code. If the compilation succeeded, then our
shader object is valid and we can use it in our code.

That’s it for compiling a shader, so let’s return the new shader object ID:

AirHockey1/src/com/airhockey/android/util/ShaderHelper.java
return shaderObjectId;

Compiling the Shaders from Our Renderer Class

Now it’s time to make good use of the code that we’ve just created. Switch to
AirHockeyRenderer.java and add the following code to the end of onSurfaceCreated():

AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
int vertexShader = ShaderHelper.compileVertexShader(vertexShaderSource);
int fragmentShader = ShaderHelper.compileFragmentShader(fragmentShaderSource);

Let’s review the work we’ve done in this section. First we created a new class,
ShaderHelper, and added a method to create and compile a new shader object.
We also created LoggerConfig, a class to help us turn logging on and off at one
single point.

If you take a look again at ShaderHelper, you’ll see that we actually defined three
methods:

compileShader()
The compileShader(shaderCode) method takes in source code for a shader and
the shader’s type. The type can be GL_VERTEX_SHADER for a vertex shader, or
GL_FRAGMENT_SHADER for a fragment shader. If OpenGL was able to success-
fully compile the shader, then this method will return the shader object
ID to the calling code. Otherwise it will return zero.

compileVertexShader()
The compileVertexShader(shaderCode) method is a helper method that calls
compileShader() with shader type GL_VERTEX_SHADER.

compileFragmentShader()
The compileVertexShader(shaderCode) method is a helper method that calls
compileShader() with shader type GL_FRAGMENT_SHADER.

As you can see, the meat of the code is within compileShader(); all the other two
methods do is call it with either GL_VERTEX_SHADER or GL_FRAGMENT_SHADER.

report erratum • discuss

Compiling Shaders • 43

http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/util/ShaderHelper.java
http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

3.3 Linking Shaders Together into an OpenGL Program

Now that we’ve loaded and compiled a vertex shader and a fragment shader,
the next step is to bind them together into a single program.

Understanding OpenGL Programs

An OpenGL program is simply one vertex shader and one fragment shader
linked together into a single object. Vertex shaders and fragment shaders
always go together. Without a fragment shader, OpenGL wouldn’t know how
to draw the fragments that make up each point, line, and triangle; and without
a vertex shader, OpenGL wouldn’t know where to draw these fragments.

We know that the vertex shader calculates the final position of each vertex
on the screen. We also know that when OpenGL groups these vertices into
points, lines, and triangles and breaks them down into fragments, it will then
ask the fragment shader for the final color of each fragment. The vertex and
fragment shaders cooperate together to generate the final image on the screen.

Although vertex shaders and fragment shaders always go together, they don’t
necessarily have to remain monogamous: we can use the same shader in
more than one program at a time.

Let’s open up ShaderHelper and add the following code to the end of the class:

AirHockey1/src/com/airhockey/android/util/ShaderHelper.java
public static int linkProgram(int vertexShaderId, int fragmentShaderId) {

}

As we did for compileShader(), we’ll also build this method up step by step. Much
of the code will be similar in concept to compileShader().

Creating a New Program Object and Attaching Shaders

The first thing we’ll do is create a new program object with a call to glCreatePro-
gram() and store the ID of that object in programObjectId. Let’s add the following
code:

final int programObjectId = glCreateProgram();

if (programObjectId == 0) {
if (LoggerConfig.ON) {

Log.w(TAG, "Could not create new program");
}

return 0;
}

Chapter 3. Compiling Shaders and Drawing to the Screen • 44

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/util/ShaderHelper.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

The semantics are the same as when we created a new shader object earlier:
the integer returned is our reference to the program object, and we’ll get a
return value of 0 if the object creation failed.

The next step is to attach our shaders:

glAttachShader(programObjectId, vertexShaderId);
glAttachShader(programObjectId, fragmentShaderId);

Using glAttachShader(), we attach both our vertex shader and our fragment
shader to the program object.

Linking the Program

We’re now ready to join our shaders together. We’ll do this with a call to
glLinkProgram(programObjectId):

glLinkProgram(programObjectId);

To check whether the link failed or succeeded, we’ll follow the same steps as
we did for compiling the shader:

final int[] linkStatus = new int[1];
glGetProgramiv(programObjectId, GL_LINK_STATUS, linkStatus, 0);

We first create a new int array to hold the result. We then call glGetProgramiv(pro-
gramObjectId, GLES20.GL_LINK_STATUS, linkStatus, 0) to store the result in this array. We’ll
also check the program info log so that if something went wrong or if OpenGL
has anything interesting to say about our program, we’ll see it in Android’s log
output:

if (LoggerConfig.ON) {
// Print the program info log to the Android log output.
Log.v(TAG, "Results of linking program:\n"

+ glGetProgramInfoLog(programObjectId));
}

Verifying the Link Status and Returning the Program Object ID

We now need to check the link status: if it’s 0, that means that the link failed
and we can’t use this program object, so we should delete it and return 0 to
the calling code:

if (linkStatus[0] == 0) {
// If it failed, delete the program object.
glDeleteProgram(programObjectId);
if (LoggerConfig.ON) {

Log.w(TAG, "Linking of program failed.");
}
return 0;

}

report erratum • discuss

Linking Shaders Together into an OpenGL Program • 45

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Whew! If we made it this far, then our program linked successfully and we
can use it in our code. We’re now done, so let’s return the new program object
ID to our calling code:

AirHockey1/src/com/airhockey/android/util/ShaderHelper.java
return programObjectId;

Adding the Code to Our Renderer Class

Now that we have code to link our shaders together, let’s go ahead and call
that from our program. First let’s add the following member variable to the
top of AirHockeyRenderer:

AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
private int program;

This integer will store the ID of the linked program. Let’s link the shaders
together by adding the following call to the end of onSurfaceCreated():

AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
program = ShaderHelper.linkProgram(vertexShader, fragmentShader);

Now would probably be a good time to grab a cup of coffee and let your mind
rest for a few moments. In the next section, we’ll start making the final con-
nections and link our data to OpenGL.

3.4 Making the Final Connections

We spent a good part of the last two chapters laying down a basic foundation
for our application: we learned how to define the structure of an object using
an array of attributes, and we also learned how to create shaders, load and
compile them, and link them together into an OpenGL program.

Now it’s time to start building on this foundation and making the final con-
nections. In the next few steps, we’re going to put the pieces together, and
then we’ll be ready to draw the first version of our air hockey table to the
screen.

Validate Our OpenGL Program Object

Before we start using an OpenGL program, we should validate it first to see
if the program is valid for the current OpenGL state. According to the OpenGL
ES 2.0 documentation, it also provides a way for OpenGL to let us know why
the current program might be inefficient, failing to run, and so on.1

Let’s add the following method to ShaderHelper:

1. http://www.khronos.org/opengles/sdk/docs/man/xhtml/glValidateProgram.xml

Chapter 3. Compiling Shaders and Drawing to the Screen • 46

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/util/ShaderHelper.java
http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
http://www.khronos.org/opengles/sdk/docs/man/xhtml/glValidateProgram.xml
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

AirHockey1/src/com/airhockey/android/util/ShaderHelper.java
public static boolean validateProgram(int programObjectId) {

glValidateProgram(programObjectId);

final int[] validateStatus = new int[1];
glGetProgramiv(programObjectId, GL_VALIDATE_STATUS, validateStatus, 0);
Log.v(TAG, "Results of validating program: " + validateStatus[0]

+ "\nLog:" + glGetProgramInfoLog(programObjectId));

return validateStatus[0] != 0;
}

We call glValidateProgram() to validate the program, and then we check the results
with a call to glGetProgramiv(), using GL_VALIDATE_STATUS as the parameter name.
If OpenGL had anything interesting to say, it will be in the program log, so
we also print out the log with a call to glGetProgramInfoLog().

We should validate our program before we start using it, and we should also
validate only when we’re developing and debugging our application. Let’s add
the following to the end of onSurfaceCreated():

AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
if (LoggerConfig.ON) {

ShaderHelper.validateProgram(program);
}

This will call the validation code we defined earlier, but only if logging is turned
on. The next thing we should do is enable the OpenGL program that we’ve
worked so hard to create. Add the following code to the end of onSurfaceCreated():

AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
glUseProgram(program);

We call glUseProgram() to tell OpenGL to use the program defined here when
drawing anything to the screen.

Getting the Location of a Uniform

The next step is to get the location of the uniform that we defined in our
shader earlier on. When OpenGL links our shaders into a program, it will
actually associate each uniform defined in the vertex shader with a location
number. These location numbers are used to send data to the shader, and
we’ll need the location for u_Color so that we can set the color when we’re about
to draw.

Let’s take a quick look at our fragment shader:

report erratum • discuss

Making the Final Connections • 47

http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/util/ShaderHelper.java
http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

AirHockey1/res/raw/simple_fragment_shader.glsl
precision mediump float;

uniform vec4 u_Color;

void main()
{

gl_FragColor = u_Color;
}

In our shader, we’ve defined a uniform called u_Color, and in main() we assign the
value of this uniform to gl_FragColor. We’ll use this uniform to set the color of
what we’re drawing. We have to draw a table, a central dividing line, and two
mallets, and we’re going to draw them all using different colors.

Let’s add the following definitions to the top of AirHockeyRenderer:

AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
private static final String U_COLOR = "u_Color";
private int uColorLocation;

We’ve created a constant for the name of our uniform and a variable to hold
its location in the OpenGL program object. Uniform locations don’t get specified
beforehand, so we’ll need to query the location once the program’s been suc-
cessfully linked. A uniform’s location is unique to a program object: even if
we had the same uniform name in two different programs, that doesn’t mean
that they’ll share the same location.

Add the following to the end of onSurfaceCreated():

AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
uColorLocation = glGetUniformLocation(program, U_COLOR);

We call glGetUniformLocation() to get the location of our uniform, and we store
that location in uColorLocation. We’ll use that when we want to update the value
of this uniform later on.

Getting the Location of an Attribute

Like with uniforms, we also need to get the locations of our attributes before
we can use them. We can let OpenGL assign these attributes to location
numbers automatically, or we can assign the numbers ourselves with a call
to glBindAttribLocation() before we link the shaders together. We’ll let OpenGL
assign the attribute locations automatically, as it makes our code easier to
manage.

Let’s add the following definitions to the top of AirHockeyRenderer:

Chapter 3. Compiling Shaders and Drawing to the Screen • 48

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockey1/res/raw/simple_fragment_shader.glsl
http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
private static final String A_POSITION = "a_Position";
private int aPositionLocation;

Now we just need to add some code to get the attribute location once the
shaders have been linked together. Let’s add the following to the end of
onSurfaceCreated():

AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
aPositionLocation = glGetAttribLocation(program, A_POSITION);

We call glGetAttribLocation() to get the location of our attribute. With this location,
we’ll be able to tell OpenGL where to find the data for this attribute.

Associating an Array of Vertex Data with an Attribute

The next step is to tell OpenGL where to find data for our attribute a_Position.
Add the following code to the end of onSurfaceCreated():

AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
vertexData.position(0);
glVertexAttribPointer(aPositionLocation, POSITION_COMPONENT_COUNT, GL_FLOAT,

false, 0, vertexData);

Back when we started this chapter, we created an array of floating point values
to represent the positions of the vertices that make up our air hockey table.
We created a buffer in native memory, called vertexData, and copied these
positions over to this buffer.

Before we tell OpenGL to read data from this buffer, we need to make sure
that it’ll read our data starting at the beginning and not at the middle or the
end. Each buffer has an internal pointer that can be moved by calling
position(int), and when OpenGL reads from our buffer, it will start reading at
this position. To ensure that it starts reading at the very beginning, we call
position(0) to set the position to the beginning of our data.

We then call glVertexAttribPointer() to tell OpenGL that it can find the data for
a_Position in the buffer vertexData. This is a very important function, so let’s take
a closer look at what we’re passing in for each argument (Table 1, glVertexAt-
tribPointer parameters, on page 49):

glVertexAttribPointer(int index, int size, int type, boolean normalized, int stride, Buffer ptr)

This is the attribute location, and we pass in aPositionLoca-
tion to refer to the location that we retrieved earlier in
Getting the Location of an Attribute, on page 48.

int index

report erratum • discuss

Making the Final Connections • 49

http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

This is the data count per attribute, or how many compo-
nents are associated with each vertex for this attribute.

int size

Back in Section 2.3, Defining the Structure of Our Air
Hockey Table, on page 22, we decided to use two floating
point values per vertex: an x coordinate and a y coordi-
nate to represent the position. This means that we have
two components, and we had previously created the
constant POSITION_COMPONENT_COUNT to contain that fact, so
we pass that constant in here.

Note that we’re only passing two components per vertex,
but in the shader, a_Position is defined as a vec4, which has
four components. If a component is not specified, OpenGL
will set the first three components to 0 and the last
component to 1 by default.

This is the type of data. We defined our data as a list of
floating point values, so we pass in GL_FLOAT.

int type

This only applies if we use integer data, so we can safely
ignore it for now.

boolean normalized

The fifth argument, the stride, applies when we store
more than one attribute in a single array. We only have

int stride

one attribute in this chapter, so we can ignore this and
pass in 0 for now. We’ll talk about the stride in more
detail in Section 4.4, Rendering with the New Color
Attribute, on page 71.

This tells OpenGL where to read the data. Don’t forget
that it will start reading from the buffer’s current position,

Buffer ptr

so if we hadn’t called vertexData.position(0), it would probably
try to read past the end of the buffer and crash our
application.

Table 1—glVertexAttribPointer() parameters

Passing incorrect arguments to glVertexAttribPointer() can lead to strange results
and can even cause the program to crash. These kinds of crashes can be hard
to trace, so I can’t overstate how important it is to make sure that we get
these arguments right.

After calling glVertexAttribPointer(), OpenGL now knows where to read the data
for the attribute a_Position.

Chapter 3. Compiling Shaders and Drawing to the Screen • 50

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Enabling the Vertex Array

Now that we’ve linked our data to the attribute, we need to enable the attribute
with a call to glEnableVertexAttribArray() before we can start drawing. Add the fol-
lowing code after the call to glVertexAttribPointer():

AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
glEnableVertexAttribArray(aPositionLocation);

With this final call, OpenGL now knows where to find all the data it needs.

In this section, we retrieved the locations of the uniform u_Color and the
attribute a_Position. Each variable has a location, and OpenGL works with these
locations rather than with the name of the variable directly. We then called
glVertexAttribPointer() to tell OpenGL that it can find the data for the attribute
a_Position from vertexData.

3.5 Drawing to the Screen

With the final connections in place, we’re now ready to start drawing to the
screen! We’ll draw the table first, and then we’ll draw the dividing line and
the mallets.

Drawing the Table

Let’s add the following code after the call to glClear(), at the end of onDrawFrame():

AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
glUniform4f(uColorLocation, 1.0f, 1.0f, 1.0f, 1.0f);
glDrawArrays(GL_TRIANGLES, 0, 6);

First we update the value of u_Color in our shader code by calling glUniform4f().
Unlike attributes, uniforms don’t have default components, so if a uniform
is defined as a vec4 in our shader, we need to provide all four components.
We want to start out by drawing a white table, so we set red, green, and blue
to 1.0f for full brightness. The alpha value doesn’t matter, but we still need
to specify it since a color has four components.

Once we’ve specified the color, we then draw our table with a call to glDrawAr-
rays(GLES20.GL_TRIANGLES, 0, 6). The first argument tells OpenGL that we want to
draw triangles. To draw triangles, we need to pass in at least three vertices
per triangle. The second argument tells OpenGL to read in vertices starting
at the beginning of our vertex array, and the third argument tells OpenGL to
read in six vertices. Since there are three vertices per triangle, this call will
end up drawing two triangles.

report erratum • discuss

Drawing to the Screen • 51

http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Let’s take a quick look at our vertex array as we defined it back at the begin-
ning of this chapter:

AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
float[] tableVerticesWithTriangles = {

// Triangle 1
0f, 0f,
9f, 14f,
0f, 14f,

// Triangle 2
0f, 0f,
9f, 0f,
9f, 14f,

// Line 1
0f, 7f,
9f, 7f,

// Mallets
4.5f, 2f,
4.5f, 12f

};

Remember that when we called glVertexAttribPointer(), we told OpenGL that each
vertex’s position consists of two floating point components. Our call to
glDrawArrays() asks OpenGL to draw triangles using the first six vertices, so
OpenGL will draw them using these positions:

// Triangle 1
0f, 0f,
9f, 14f,
0f, 14f,

// Triangle 2
0f, 0f,
9f, 0f,
9f, 14f,

The first triangle drawn will be bounded by the points (0, 0), (9, 14), and
(0, 14), and the second will be bounded by (0, 0), (9, 0), and (9, 14).

Drawing the Dividing Line

The next step is to draw the center dividing line across the middle of the table.
Add the following code to the end of onDrawFrame():

glUniform4f(uColorLocation, 1.0f, 0.0f, 0.0f, 1.0f);
glDrawArrays(GL_LINES, 6, 2);

Chapter 3. Compiling Shaders and Drawing to the Screen • 52

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

We set the color to red by passing in 1.0f to the first component (red) and 0.0f
to green and blue. This time we also ask OpenGL to draw lines. We start six
vertices after the first vertex and ask OpenGL to draw lines by reading in two
vertices. Just like with Java arrays, we’re using zero-based numbering here:
0, 1, 2, 3, 4, 5, 6 means that the number 6 corresponds to six vertices after
the first vertex, or the seventh vertex. Since there are two vertices per line,
we’ll end up drawing one line using these positions:

AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
// Line 1
0f, 7f,
9f, 7f,

OpenGL will draw a line from (0, 7) to (9, 7).

Drawing the Mallets as Points

The last thing to do now is to draw the two mallets. Add the following code
to the end of onDrawFrame():

AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
// Draw the first mallet blue.
glUniform4f(uColorLocation, 0.0f, 0.0f, 1.0f, 1.0f);
glDrawArrays(GL_POINTS, 8, 1);

// Draw the second mallet red.
glUniform4f(uColorLocation, 1.0f, 0.0f, 0.0f, 1.0f);
glDrawArrays(GL_POINTS, 9, 1);

We ask OpenGL to draw points by passing in GL_POINTS to glDrawArrays(). For the
first mallet, we set the color to blue, start at offset 8, and draw one point
using one vertex. For the second mallet, we set the color to red, start at offset
9, and draw one point using one vertex. We’ll draw the points using these
positions:

AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
// Mallets
4.5f, 2f,
4.5f, 12f

OpenGL will draw the first point at (4.5, 2) and the second at (4.5, 12).

What Do We Have So Far?

Let’s run the application and see what comes out on the screen. Press Ctrl-F11
to run the application, and observe what appears on your device or in the
emulator. Your screen should look similar to the following figure. If you have
any issues, try cleaning the project in Eclipse first by selecting Project→Clean.

report erratum • discuss

Drawing to the Screen • 53

http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 13—Drawing to the screen: initial attempt

Well, something doesn’t look quite right there! The background is still that
garish red color we were using back in Chapter 1, Getting Started, on page
1, for one, and why do we only see the corner of our air hockey table? Before
we talk about that, let’s fix the clear color. Find the call to glClearColor() at the
beginning of onSurfaceCreated(), and update it to the following:

AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
glClearColor(0.0f, 0.0f, 0.0f, 0.0f);

This will tell OpenGL to clear the screen to black when we call glClear() instead
of red. Now that we’ve at least fixed that garish red color, we need to look at
why we can only see the corner of our air hockey table.

How Does OpenGL Map Coordinates to the Screen?

One of the big questions that we haven’t yet tackled is this: How does OpenGL
take the coordinates that we’ve given it and map those to actual physical
coordinates on the screen?

Chapter 3. Compiling Shaders and Drawing to the Screen • 54

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

The answer to this question is complicated, and we’ll learn more about it as
we progress through the chapters. For now, all we need to know is that
OpenGL will map the screen to the range [-1, 1] for both the x and the y
coordinates. This means that the left edge of the screen will correspond to -1
on the x-axis, while the right edge of the screen will correspond to +1. The
bottom edge of the screen will correspond to -1 on the y-axis, while the top
edge of the screen will correspond to +1.

This range stays the same regardless of the shape or size of the screen, and
everything that we draw needs to fit within this range if we want it to show
up on the screen. Let’s go back to the constructor and update the coordinates
defined in tableVerticesWithTriangles as follows:

AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
float[] tableVerticesWithTriangles = {

// Triangle 1
-0.5f, -0.5f,
0.5f, 0.5f,

-0.5f, 0.5f,

// Triangle 2
-0.5f, -0.5f,
0.5f, -0.5f,
0.5f, 0.5f,

// Line 1
-0.5f, 0f,
0.5f, 0f,

// Mallets
0f, -0.25f,
0f, 0.25f

};

Let’s run the app again. We should now see something similar to the following
figure:

report erratum • discuss

Drawing to the Screen • 55

http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 14—Drawing to the screen: second attempt

That looks much better, but where are our mallets? It turns out that for
points, OpenGL needs us to specify how large each point should appear on
the screen, and we haven’t done that yet.

Specifying the Size of Points

Let’s update our code so we can tell OpenGL how large the points should
appear on the screen. We can do this by adding the following line to simple_ver-
tex_shader.glsl, after the assignment to gl_Position:

AirHockey1/res/raw/simple_vertex_shader.glsl
gl_PointSize = 10.0;

By writing to another special output variable, gl_PointSize, we tell OpenGL that
the size of the points should be 10. Ten of what, you might ask? Well, when
OpenGL breaks the point down into fragments, it will generate fragments in
a square that is centered around gl_Position, and the length of each side of this

Chapter 3. Compiling Shaders and Drawing to the Screen • 56

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockey1/res/raw/simple_vertex_shader.glsl
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

square will be equal to gl_PointSize. The larger gl_PointSize is, the larger the point
drawn on the screen.

Let’s run the app one more time. We should now see the mallets as shown in
the following figure, each rendered as a single point.

Figure 15—Drawing to the screen: including the mallets

We’re finally there! Take a break, sit back, and reflect on everything that
you’ve learned in this chapter. This was a big lesson to get through, but we
made it and managed to get something displayed on the screen.

When you’re ready, let’s review what we’ve learned and do a couple of follow-
up exercises.

3.6 A Review

We had to write a lot of boilerplate code before we could finally display the
first version of our air hockey table, but the good thing is that we’ll be able

report erratum • discuss

A Review • 57

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

to reuse this code for our future projects. Let’s take a moment to review what
we learned in the chapter:

• How to create and compile a shader

• That vertex shaders and fragment shaders always go together—we also
learned how to link them together into an OpenGL program object.

• How to associate our vertex attribute array with an attribute variable
inside a vertex shader

We were then finally able to put everything together so that we could display
something on the screen.

Now might be a good time to review any parts of the chapter that might have
seemed unclear at the time, now that we’ve connected all of the dots. You can
access the code at this book’s home page.2

3.7 Exercises

Try drawing a puck in the center of the table. For something a bit more
challenging, see if you can add a border around the table. How would you do
it? As a hint, see if you can draw two rectangles, each with a different color.

Once you’ve completed these exercises, let’s move on to the next chapter and
learn how to make things be more colorful.

2. http://pragprog.com/book/kbogla

Chapter 3. Compiling Shaders and Drawing to the Screen • 58

report erratum • discuss

http://pragprog.com/book/kbogla
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

CHAPTER 4

Adding Color and Shade
In the real world, objects have varying color and shade. If we look at a wall
inside of our home, we can observe that it’s painted a single color. At the
same time, some parts of the wall will seem darker or brighter, depending on
how these parts of the wall are oriented to the surrounding light. Our brains
use these slight differences in shade as one of the main visual cues to help
make sense of what we see; artists have been using these cues to fool our
brains to no end since the beginning of time. In this chapter, we’re going to
learn from the artists and use varying color and shade to make our table look
less flat and more realistic.

In the previous chapter, it was quite a bit of work to get our air hockey table
drawn to the screen, including two mallets and a dividing line down the
middle of the table. There was a lot of preparatory work, including writing
code to load and compile shaders and to link them together into an OpenGL
program object.

The nice thing with OpenGL ES 2.0 is that a lot of the overhead comes at the
very beginning, and it’s going to get better from here on out. Although there
will be more code to come, we’ll be able to reuse all of this base code in each
subsequent chapter. In fact, adding varying color and shade to our scene will
be much easier now that we have a basic framework in place.

Here’s our game plan for this chapter:

• First we’ll learn how to define a color at each point as a vertex attribute
instead of using a single color for an entire object.

• We’ll then learn how to smoothly blend these colors between the different
vertices that make up an object.

Let’s start off by copying the project from Chapter 2, Defining Vertices and
Shaders, on page 19, over into a new project:

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

1. In Eclipse, select our project from the last chapter, AirHockey1, and press
Ctrl-C . Now, press Ctrl-V to duplicate the project.

2. When prompted, enter ‘AirHockey2’ as the project name. As in the previous
chapter, the location is up to you.

3. We can continue with the same application package name and class
names as before.

4.1 Smooth Shading

In Chapter 2, Defining Vertices and Shaders, on page 19, we learned how to
draw objects with a single color in a uniform, as seen in the following image:

We already know that that we’re limited to drawing points, lines, and triangles,
and we build everything up from that. Since we’re limited to those three
primitives, how can we represent a complex scene with many different colors
and shades?

One way we could do it is by using a million small triangles, each with a dif-
ferent color. If we use enough triangles, we can fool the viewer into seeing a
nice, complex scene with a rich variation of colors. While this could technically
work, the performance and memory overhead would also be horrible.

Instead of drawing a bunch of flat triangles, what if there was a way to blend
different colors across the same triangle? If we had a different color at each
point of a triangle and blended these colors across the surface of the triangle,
we would end up with a smoothly shaded triangle, such as the following one:

Chapter 4. Adding Color and Shade • 60

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Smooth Shading Is Done Between Vertices

OpenGL gives us a way to smoothly blend the colors at each vertex across a
line or across the surface of a triangle. We’ll use this type of shading to make
our table appear brighter in the middle and dimmer toward the edges, as if
there were a light hovering over the middle of the table. Before we can do that,
though, we’ll need to update the structure of our table. Right now we’re
drawing the table using two triangles, as seen in the following image:

How could we make this appear brighter in the middle? There’s no point in
the middle, so there’s nothing to blend toward or away from. We’ll need to
add a point in the middle so that we can blend colors between the middle of
the table and the edges. Our table structure will then look as follows:

The first thing we’ll need to do is update our table to match this new structure.

4.2 Introducing Triangle Fans

With a new point in the middle of the table, we’ll end up with four triangles
instead of two. We’ll center the new point at (0, 0). Let’s open up AirHockeyRen-
derer in the new project that we created at the beginning of this chapter and
update the triangles as follows:

AirHockey2/src/com/airhockey/android/AirHockeyRenderer.java
// Triangle Fan

0, 0,
-0.5f, -0.5f,
0.5f, -0.5f,
0.5f, 0.5f,

-0.5f, 0.5f,
-0.5f, -0.5f,

report erratum • discuss

Introducing Triangle Fans • 61

http://media.pragprog.com/titles/kbogla/code/AirHockey2/src/com/airhockey/android/AirHockeyRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

The first question you might be asking is, “Why did we only define six points?
Don’t we need to define three vertices per triangle?” While it’s true that we
need three vertices per triangle, we can sometimes reuse the same vertex in
more than one triangle. Let’s take a look at our new structure again, with
each unique point numbered:

Each edge vertex is used in two triangles, and the center vertex is used in all
four triangles! It would quickly become tiresome if we had to type out the
same coordinates again and again, so instead we tell OpenGL to reuse these
vertices. We can do that by drawing these vertices as a triangle fan. A triangle
fan looks something like the following image:

A triangle fan begins with a center vertex, using the next two vertices to create
the first triangle. Each subsequent vertex will create another triangle, fanning
around the original center point. To complete the fan, we just repeat the
second point at the end.

We’ll need to update our draw call so that OpenGL knows that this data rep-
resents a triangle fan. In onDrawFrame(), update the call to the first glDrawArrays()
as follows:

AirHockey2/src/com/airhockey/android/AirHockeyRenderer.java
glDrawArrays(GL_TRIANGLE_FAN, 0, 6);

Chapter 4. Adding Color and Shade • 62

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockey2/src/com/airhockey/android/AirHockeyRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

This will ask OpenGL to draw a triangle fan using the six new points that
we’ve defined. Let’s give the application a quick run, just to see that everything
still looks as we expect. It should look like the following figure:

Figure 16—Air hockey, before adding shading

Now that we’ve redefined the table with a center point, let’s learn how we can
add a color to each vertex as a second attribute.

4.3 Adding a New Color Attribute

Now that we’ve updated our table structure by adding an additional point in
the center of the table, we can now add a color attribute to each point. Let’s
update the entire array of data as follows:

AirHockey2/src/com/airhockey/android/AirHockeyRenderer.java
float[] tableVerticesWithTriangles = {

// Order of coordinates: X, Y, R, G, B

// Triangle Fan
0f, 0f, 1f, 1f, 1f,

report erratum • discuss

Adding a New Color Attribute • 63

http://media.pragprog.com/titles/kbogla/code/AirHockey2/src/com/airhockey/android/AirHockeyRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

-0.5f, -0.5f, 0.7f, 0.7f, 0.7f,
0.5f, -0.5f, 0.7f, 0.7f, 0.7f,
0.5f, 0.5f, 0.7f, 0.7f, 0.7f,

-0.5f, 0.5f, 0.7f, 0.7f, 0.7f,
-0.5f, -0.5f, 0.7f, 0.7f, 0.7f,

// Line 1
-0.5f, 0f, 1f, 0f, 0f,
0.5f, 0f, 1f, 0f, 0f,

// Mallets
0f, -0.25f, 0f, 0f, 1f,
0f, 0.25f, 1f, 0f, 0f

};

As you can see, we’ve added three additional numbers to each vertex. These
numbers represent red, green, and blue, and together they will form the color
for that particular vertex.

Converting Colors Using Android’s Color Class

When we use floating-point attributes, we need to specify each color component in a
range from 0 to 1, with 1 being the maximum value for that color component. Figuring
out the right numbers for a certain color might not be obvious, but by using Android’s
Color class, we can easily come up with the right values. For example, here’s what we
do to get the OpenGL color values for green:

float red = Color.red(Color.GREEN) / 255f;
float green = Color.green(Color.GREEN) / 255f;
float blue = Color.blue(Color.GREEN) / 255f;

We can also do this with web colors:

int parsedColor = Color.parseColor("#0099CC");

float red = Color.red(parsedColor) / 255f;
float green = Color.green(parsedColor) / 255f;
float blue = Color.blue(parsedColor) / 255f;

The values returned by Color.red(), Color.green(), and Color.blue() range from 0 to 255, so
to convert these into OpenGL colors, we just divide each component by 255.

Adding the Color Attribute to the Shaders

The next step will be to remove the color uniform from the shader and replace
it with an attribute. We’ll then update the Java code to reflect the new shader
code.

Open simple_vertex_shader.glsl and update it as follows:

Chapter 4. Adding Color and Shade • 64

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

AirHockey2/res/raw/simple_vertex_shader.glsl
attribute vec4 a_Position;
attribute vec4 a_Color;

varying vec4 v_Color;

void main()
{

v_Color = a_Color;

gl_Position = a_Position;
gl_PointSize = 10.0;

}

We added a new attribute, a_Color, and we also added a new varying called
v_Color. “What on earth is a varying?” you might ask. Remember that we said
we wanted our colors to vary across the surface of a triangle? Well, this is
done by using a special variable type known as a varying. To better understand
what a varying does, let’s go back and review how OpenGL combines vertices
together to create objects, as seen in Figure 11, Rasterization: generating
fragments, on page 33.

As we learned in Section 2.5, Introducing the OpenGL Pipeline, on page 28,
when OpenGL builds a line, it takes the two vertices that make up that line
and generates fragments for it. When OpenGL builds a triangle, it does the
same thing by using three vertices to build a triangle. The fragment shader
will then be run for every fragment generated.

A varying is a special type of variable that blends the values given to it and
sends these values to the fragment shader. Using the line above as an
example, if a_Color was red at vertex 0 and green at vertex 1, then by assigning
a_Color to v_Color, we’re telling OpenGL that we want each fragment to receive
a blended color. Near vertex 0, the blended color will be mostly red, and as
the fragments get closer to vertex 1, the color will start to become green.

Before we go into more detail on how this blending is done, let’s add the
varying to the fragment shader as well. Open simple_fragment_shader.glsl and
update it as follows:

AirHockey2/res/raw/simple_fragment_shader.glsl
precision mediump float;
varying vec4 v_Color;

void main()
{

gl_FragColor = v_Color;
}

report erratum • discuss

Adding a New Color Attribute • 65

http://media.pragprog.com/titles/kbogla/code/AirHockey2/res/raw/simple_vertex_shader.glsl
http://media.pragprog.com/titles/kbogla/code/AirHockey2/res/raw/simple_fragment_shader.glsl
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

We’ve replaced the uniform that was there before with our varying, v_Color. If
the fragment belongs to a line, then OpenGL will use the two vertices that
make up that line to calculate the blended color. If the fragment belongs to
a triangle, then OpenGL will use the three vertices that make up that triangle
to calculate the blended color.

Now that we’ve updated our shaders, we’ll also need to update our Java code
so that we pass in the new color attribute to a_Color in the vertex shader. Before
we do that, let’s take some time to learn more about how OpenGL can
smoothly blend colors from one point to another.

How Does a Varying Get Blended at Each Fragment?

We just learned that we can use a varying to produce a blended color at each
fragment of a line or triangle. We can blend more than just colors; we can
send any value to a varying, and OpenGL will take the two values belonging
to a line, or the three belonging to a triangle, and smoothly blend these values
across the primitive, with a different value for each fragment. This blending
is done using linear interpolation. To learn how this works, let’s first start
with the example of a line.

Linear Interpolation Along a Line

Let’s say that we had a line with a red vertex and a green vertex, and we
wanted to blend the colors from one to the other. The blended colors would
look something like this:

At the left side of the line, the color of each fragment is mostly red. As we
move toward the right, the fragments become less red, and in the middle,
they are somewhere in between red and green. As we get closer to the green
vertex, the fragments become more and more green.

We can see that each color scales linearly along the length of the line. Since
the left vertex of the line is red and the right vertex is green, the left end of
the line should be 100 percent red, the middle should be 50 percent red, and
the right should be 0 percent red:

Chapter 4. Adding Color and Shade • 66

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

The same thing happens with green. Since the left vertex is red and the right
vertex is green, the left end of the line will be 0 percent green, the middle will
be 50 percent green, and the right will be 100 percent green:

Once we add the two together, we end up with a blended line:

This is linear interpolation in a nutshell. The strength of each color depends
on the distance of each fragment from the vertex containing that color.

To calculate this, we can take the value at vertex 0 and the value at vertex 1,
and then we calculate the distance ratio for the current fragment. The distance
ratio is simply a ratio between 0 and 100 percent, with 0 percent being the
left vertex and 100 percent being the right vertex. As we move from left to
right, the distance ratio will increase linearly from 0 to 100 percent. Here’s
an example of a few distance ratios:

report erratum • discuss

Adding a New Color Attribute • 67

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

To calculate the actual blended value using linear interpolation, we can then
use the following formula:

blended_value = (vertex_0_value * (100% – distance_ratio)) + (vertex_1_value * distance_ratio)

This calculation is done for each component, so if we’re dealing with color
values, this calculation will be done for the red, green, blue, and alpha com-
ponents separately, with the results combined into a new color value.

Let’s try this out with our line example. Let the vertex_0_value equal red, with
an RGB value of (1, 0, 0), and the vertex_1_value equal green, with an RGB
value of (0, 1, 0). Let’s calculate the final color for a few positions on the line:

EquationDistance
ratio

Position

(vertex_0_value * (1 - distance_ratio)) + (vertex_1_value *
distance_ratio) =

0%Far left

((1, 0, 0) * (100% – 0%)) + ((0, 1, 0) * 0%) =

((1, 0, 0) * 100%) =

(1, 0, 0) (red)

(vertex_0_value * (1 – distance_ratio)) + (vertex_1_value *
distance_ratio) =

25%One-quarter along
the line

((1, 0, 0) * (100% – 25%)) + ((0, 1, 0) * 25%) =

((1, 0, 0) * 75%) + ((0, 1, 0) * 25%) =

(0.75, 0, 0) + (0, 0.25, 0) =

(0.75, 0.25, 0) (mostly red)

(vertex_0_value * (1 – distance_ratio)) + (vertex_1_value *
distance_ratio) =

50%Middle of the line

((1, 0, 0) * (100% – 50%)) + ((0, 1, 0) * 50%) =

((1, 0, 0) * 50%) + ((0, 1, 0) * 50%) =

(0.5, 0, 0) + (0, 0.5, 0) =

(0.5, 0.5, 0) (half red, half green)

(vertex_0_value * (1 – distance_ratio)) + (vertex_1_value *
distance_ratio) =

75%Three-quarters
along the line

((1, 0, 0) * (100% – 75%)) + ((0, 1, 0) * 75%) =

Chapter 4. Adding Color and Shade • 68

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

EquationDistance
ratio

Position

((1, 0, 0) * 25%) + ((0, 1, 0) * 75%) =

(0.25, 0, 0) + (0, 0.75, 0) =

(0.25, 0.75, 0) (mostly green)

(vertex_0_value * (1 – distance_ratio)) + (vertex_1_value *
distance_ratio) =

100%Far right

((1, 0, 0) * (100% – 100%)) + ((0, 1, 0) * 100%) =

((1, 0, 0) * 0%) + ((0, 1, 0) * 100%) =

(0, 1, 0) (green)

Table 2—Linear interpolation equation examples

Notice that at all times the weights of both colors add up to 100 percent. If
red is at 100 percent, green is at 0 percent. If red is 50 percent, green is 50
percent.

Using a varying, we can blend any two colors together. We’re also not limited
to colors: we can interpolate other attributes as well.

Now that we know how linear interpolation works with a line, let’s read on to
see how this works with a triangle.

Blending Across the Surface of a Triangle

Figuring out how linear interpolation works wasn’t so bad when we were
dealing with just two points; we learned that each color scales from 100 per-
cent to 0 percent from that color’s vertex to the other vertex on the line, and
that both scaled colors are added together to give the final color.

Linear interpolation across a triangle works with the same idea, but there are
now three points and three colors to deal with. Let’s look at a visual example:

report erratum • discuss

Adding a New Color Attribute • 69

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

This triangle has three colors associated with it: the top vertex is cyan, the
left vertex is magenta, and the right is yellow. Let’s break the triangle down
into the colors derived from each vertex:

Just like with the line, each color is strongest near its vertex and fades away
toward the other vertices. We also use ratios to determine the relative weights
of each color, except this time we use ratios of areas instead of lengths:

At any given point inside the triangle, three inner triangles can be created by
drawing a line from that point to each vertex. The ratios of the areas of these
inner triangles determine the weight of each color at that point. For example,
the strength of yellow at that point is determined by the area of the inner

Chapter 4. Adding Color and Shade • 70

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

triangle that is opposite of the yellow vertex. The closer the point gets to the
yellow vertex, the larger that triangle gets, and the more yellow the fragment
at that point will be.

Just like with the line, these weights always equal 100 percent. We can use
the following formula to calculate the color at any point inside the triangle:

blended_value = (vertex_0_value * vertex_0_weight) + (vertex_1_value * vertex_1_weight) + (ver-
tex_2_value * (100% – vertex_0_weight – vertex_1_weight))

Given that we understand how this works with a line, we don’t need to go
into specific examples here. The idea is the same, but we have three points
instead of two.

4.4 Rendering with the New Color Attribute

Now that we’ve added a color attribute to our data and we’ve updated the
vertex and fragment shaders to use this attribute, the next steps are to remove
the old code that passed in the color via a uniform and to tell OpenGL to read
in colors as a vertex attribute.

Updating Constants

Let’s add the following constants to the top of AirHockeyRenderer:

AirHockey2/src/com/airhockey/android/AirHockeyRenderer.java
private static final String A_COLOR = "a_Color";
private static final int COLOR_COMPONENT_COUNT = 3;
private static final int STRIDE =

(POSITION_COMPONENT_COUNT + COLOR_COMPONENT_COUNT) * BYTES_PER_FLOAT;

We’ll also need a new member variable:

AirHockey2/src/com/airhockey/android/AirHockeyRenderer.java
private int aColorLocation;

We can now remove the old constants and variables associated with u_Color.

Did you notice that we added a special constant, called STRIDE? As we now
have both a position and a color attribute in the same data array, OpenGL
can no longer assume that the next position follows immediately after the
previous position. Once OpenGL has read the position for a vertex, it will have
to skip over the color for the current vertex if it wants to read the position for
the next vertex. We’ll use the stride to tell OpenGL how many bytes are
between each position so that it knows how far it has to skip.

In Figure 17, A single vertex array with multiple attributes, on page 73, we
can see a visual example of how our vertex array is currently storing the data.

report erratum • discuss

Rendering with the New Color Attribute • 71

http://media.pragprog.com/titles/kbogla/code/AirHockey2/src/com/airhockey/android/AirHockeyRenderer.java
http://media.pragprog.com/titles/kbogla/code/AirHockey2/src/com/airhockey/android/AirHockeyRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

The stride tells OpenGL the interval between each position or each color.
Instead of using a stride, we could use multiple vertex arrays for each
attribute, as seen in Figure 18, Multiple vertex arrays, each with a single
attribute, on page 73. While packing everything into a single array is usually
more efficient, using multiple arrays might make more sense if we need to
update all of the colors or all of the positions on a regular basis.

Updating onSurfaceCreated()
The next step will be to update onSurfaceCreated() to reflect the new color
attribute. We first need to get the location of our new attribute, so let’s remove
the code associated with u_Color and add the following code:

AirHockey2/src/com/airhockey/android/AirHockeyRenderer.java
aColorLocation = glGetAttribLocation(program, A_COLOR);

We should also update the call to glVertexAttribPointer() to add in the stride:

AirHockey2/src/com/airhockey/android/AirHockeyRenderer.java
glVertexAttribPointer(aPositionLocation, POSITION_COMPONENT_COUNT, GL_FLOAT,

false, STRIDE, vertexData);

Now we can add in the code to tell OpenGL to associate our vertex data with
a_Color in the shader. Add the following code to the end of onSurfaceCreated():

AirHockey2/src/com/airhockey/android/AirHockeyRenderer.java
vertexData.position(POSITION_COMPONENT_COUNT);
glVertexAttribPointer(aColorLocation, COLOR_COMPONENT_COUNT, GL_FLOAT,

false, STRIDE, vertexData);

glEnableVertexAttribArray(aColorLocation);

This is an important bit of code, so let’s take the time to understand each
line carefully:

1. First we set the position of vertexData to POSITION_COMPONENT_COUNT, which is
set to 2. Why do we do this? Well, when OpenGL starts reading in the
color attributes, we want it to start at the first color attribute, not the first
position attribute.

We need to skip over the first position ourselves by taking the position
component size into account, so we set the position to POSITION_COMPO-
NENT_COUNT so that the buffer’s position is set to the position of the very
first color attribute. Had we set the position to 0 instead, OpenGL would
be reading in the position as the color.

2. We then call glVertexAttribPointer() to associate our color data with a_Color in
our shaders. The stride tells OpenGL how many bytes are between each

Chapter 4. Adding Color and Shade • 72

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockey2/src/com/airhockey/android/AirHockeyRenderer.java
http://media.pragprog.com/titles/kbogla/code/AirHockey2/src/com/airhockey/android/AirHockeyRenderer.java
http://media.pragprog.com/titles/kbogla/code/AirHockey2/src/com/airhockey/android/AirHockeyRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 17—A single vertex array with multiple attributes

Figure 18—Multiple vertex arrays, each with a single attribute

color, so that when it reads in the colors for all of the vertices, it knows
how many bytes it needs to skip to read the color for the next vertex. It’s
very important that the stride be specified in terms of bytes.

Even though a color in OpenGL has four components (red, green, blue,
and alpha), we don’t have to specify all of them. Unlike uniforms, OpenGL

report erratum • discuss

Rendering with the New Color Attribute • 73

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

will replace unspecified components in attributes with defaults: the first
three components will be set to 0, and the last component set to 1.

3. Finally, we enable the vertex attribute for the color attribute, just like we
did for the position attribute.

Updating onDrawFrame

We have just one more thing to do: update onDrawFrame(). All we have to do
here is delete the calls to glUniform4f(), because we no longer need them. Since
we’ve already associated our vertex data with a_Color, all we need to do is call
glDrawArrays(), and OpenGL will automatically read in the color attributes from
our vertex data.

Putting It All Together

Let’s run our program and see what we get; it should look like the following
figure:

Figure 19—Brightening the center with linear interpolation

Chapter 4. Adding Color and Shade • 74

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Our air hockey table looks nicer than before, and we can definitely see that
the table is now brighter in the center than on the edges. However, we can
also make out the shape of each triangle. The reason for this is because the
direction of the linear interpolation follows the triangle, so while things look
smooth within that triangle, we can sometimes still see where one triangle
ends and another begins.

To reduce or eliminate this effect, we can use more triangles or we can use a
lighting algorithm and calculate the color values on a per-fragment basis.
We’ll learn more about lighting algorithms in Chapter 13, Lighting Up the
World, on page 253.

4.5 A Review

Adding color to each vertex wasn’t so bad now that we have a basic framework
in place. To do this, we added a new attribute to our vertex data and vertex
shader, and we also told OpenGL how to read this data by using a stride. We
then learned how to interpolate this data across the surface of a triangle by
using a varying.

One important point to remember is that when we pass in our attribute data,
we need to make sure to also pass in the right values for the component
counts and the stride. If we get these wrong, we could end up with anything
from a garbled screen to a crash.

4.6 Exercises

See if you can add some color interpolation to the line cutting across the
middle of the screen. For a more challenging exercise, how would you change
the triangles that make up the air hockey table so that the edges are less
visible? Hint: You can try adding more triangles to the fan.

Once you’ve completed these exercises, we’ll start to learn about vectors and
matrices and learn how we can fix a pesky problem that appears when we
rotate from portrait to landscape.

report erratum • discuss

A Review • 75

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

CHAPTER 5

Adjusting to the Screen’s Aspect Ratio
You might not have noticed it yet, but we currently have an aspect ratio
problem with our air hockey table. To see what’s happening, open the latest
project from the previous chapter and go ahead and run the app on your
device or in the emulator. Once it’s running, rotate your device from portrait
to landscape (if using the emulator, press CTRL-F12).

The app should look like the next figure in portrait mode, and the subsequent
figure in landscape mode:

Figure 20—Air hockey in portrait

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 21—Air hockey in landscape

Our table is squashed in landscape mode! The reason why this is happening
is because we’ve been passing our coordinates into OpenGL directly, without
compensating for the aspect ratio of the screen. Every 2D and 3D application
shares one big problem: how does it decide what to display on the screen,
and how do they adjust for the screen dimensions? This problem also has a
common solution: in OpenGL, we can use a projection to map a part of our
world onto the screen, and we can map it in such a way that it looks correct
across different screen sizes and orientations. With the wide variety of devices
out there, it’s important to be able to adjust to all of them.

In this chapter, we’re going to learn why our table appears squashed and how
we can use a projection to fix the problem. Here’s our game plan:

• First we’ll review some basic linear algebra and learn how to multiply a
matrix and a vector together.

• Then we’ll learn how to define and use a projection with a matrix, which
will let us compensate for the screen’s orientation so that our table doesn’t
appear squashed.

As in the last chapter, let’s start off by copying the project from the last
chapter over into a new project. Let’s call this new project ‘AirHockeyOrtho’.
If you need a quick refresher, please follow the sequence in Section 2.2, Don't
Start from Scratch, on page 21.

5.1 We Have an Aspect Ratio Problem

We’re now pretty familiar with the fact that everything we render in OpenGL
gets mapped to a range of [-1, 1] on both the x- and y-axes; this is also true
of the z-axis. Coordinates in this range are known as normalized device coor-
dinates and are independent of the actual size or shape of the screen.

Chapter 5. Adjusting to the Screen’s Aspect Ratio • 78

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Unfortunately, because they are independent of the actual screen dimensions,
we can run into problems if we use them directly, such as a squashed table
in landscape mode.

Let’s say that our actual device resolution is 1280 x 720 in pixels, which is
a common resolution on new Android devices. Let’s also pretend for a moment
that we’re using the whole display for OpenGL, as it will make this discussion
easier.

If our device is in portrait mode, then [-1, 1] will range over 1280 pixels of
height but only 720 pixels of width. Our image would appear flattened along
the x-axis. The same problem happens along the y-axis if we’re in landscape
mode.

Normalized device coordinates assume that the coordinate space is a square,
as seen in the following image:

However, since the actual viewport might not be a square, the image will get
stretched in one direction and squashed in the other. An image defined in
normalized device coordinates would be squashed horizontally when seen on
a portrait device:

The same image would be squashed the other way when in landscape mode:

report erratum • discuss

We Have an Aspect Ratio Problem • 79

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Adjusting to the Aspect Ratio

We need to adjust the coordinate space so that it takes the screen shape into
account, and one way that we can do this is to keep the smaller range fixed
to [-1, 1] and adjust the larger range in proportion to the screen dimensions.

For example, in portrait, the width is 720 while the height is 1280, so we can
keep the width range at [-1, 1] and adjust the height range to [-1280/720,
1280/720] or [-1.78, 1.78]. We can also do the same thing in landscape mode,
with the width range set to [-1.78, 1.78] and the height range set to [-1, 1].

By adjusting the coordinate space that we have, we will end up changing the
space that we have available:

This way, objects will look the same in both portrait and landscape modes.

5.2 Working with a Virtual Coordinate Space

To adjust the coordinate space so that we can take screen orientation into
account, we need to stop working directly in normalized device coordinates
and start working in a virtual coordinate space. We then need to find some
way of converting coordinates from our virtual space back into normalized
device coordinates so that OpenGL can render them correctly. This conversion

Chapter 5. Adjusting to the Screen’s Aspect Ratio • 80

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

should take the screen orientation into account so that our air hockey table
will look correct in both portrait and landscape modes.

What we want to do is called an orthographic projection. With an orthographic
projection, everything always appears the same size, no matter how close or
far away it is. To better understand what this type of projection does, imagine
that we had a set of train tracks in our scene. This is what the tracks might
look like from directly overhead:

There’s also a special type of orthographic projection known as an isometric
projection, which is an orthographic projection shown from a side angle. This
type of projection can be used to recreate a classic 3D angle, as seen in some
city simulations and strategy games.

From Virtual Coordinates Back to Normalized Device Coordinates

When we use an orthographic projection to transform from virtual coordinates
back into normalized device coordinates, we’re actually defining a region
inside of our 3D world. Everything inside that region will get displayed on the
screen, and everything outside of that region will be clipped. In the following
image, we can see a simple scene with an enclosing cube (Figure 22, Scene
in an Orthographic Cube, on page 82).

When we use an orthographic projection matrix to map this cube onto the
screen, we’ll see Figure 23, An Orthographic Projection, on page 82.

report erratum • discuss

Working with a Virtual Coordinate Space • 81

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 22—Scene in an Orthographic Cube

Figure 23—An Orthographic Projection

Chapter 5. Adjusting to the Screen’s Aspect Ratio • 82

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

With an orthographic projection matrix, we can change the size of this cube
so that we can see more or less of our scene on the screen. We can also change
the shape of this cube to compensate for the screen’s aspect ratio.

Before we start using an orthographic projection, we’ll need to review some
basic linear algebra.

5.3 Linear Algebra 101

So much of OpenGL works with vectors and matrices, and one of the most
important uses of a matrix is in setting up orthographic and perspective
projections. One of the reasons for this is that at the heart of things, using a
matrix to do a projection just involves a bunch of “adds” and “multiplies” over
a set of data in sequence, and modern GPUs are very, very fast at that sort
of thing.

Let’s go back in time to when you were in high school or college and review
the basics of linear algebra. If you don’t remember, have bad memories, or
never took the class, there’s no need to worry; we’ll walk through the basic
math together. Once we understand the basic math, we’ll then learn how we
can use a matrix to do an orthographic projection.

Vectors

A vector is a one-dimensional array of elements. In OpenGL, a position is
usually a four-element vector, as is a color. Most of the vectors we work with
will generally have four elements. In the following example, we can see a
position vector with an x, a y, a z, and a w component.

We’ll explain the w component in more detail in Chapter 6, Entering the Third
Dimension, on page 95.

Matrices

A matrix is a two-dimensional array of elements. In OpenGL, we generally
use matrices to project vectors using an orthographic or perspective projection,
and we can also use them to do rotations, translations, and scaling of an
object. We do this by multiplying the matrix with each vector that we want
to transform.

report erratum • discuss

Linear Algebra 101 • 83

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

The following is an example of a matrix. The labeling will make sense once
we look at how to multiply a matrix and a vector together.

Matrix-Vector Multiplication

To multiply a vector with a matrix, we put the matrix on the left side and the
vector on the right side. We then start with the first row of the matrix and
multiply the first component of that row with the first component of the vector,
the second component of that row with the second component of the vector,
and so on. We then add all of the results for that row together to create the
first component of the result.

The following is an example of a complete matrix-vector multiply:

For the first row, we multiply xx and x, xy and y, xz and z, xw and w, and then
add all four results together to create the x component of the result.

The labeling of the matrix should hopefully make more sense now that we’ve
seen it in action. All four components of the first row of the matrix will affect
the resulting x, all four components of the second row will affect the resulting
y, and so on. Within each row of the matrix, the first component gets multi-
plied with the x of the vector, the second component gets multiplied with the
y, and so on.

The Identity Matrix

Let’s look at an example with some actual numbers. We’ll start off with a very
basic matrix, called the identity matrix. An identity matrix looks like the
following:

Chapter 5. Adjusting to the Screen’s Aspect Ratio • 84

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

The reason this is called an identity matrix is because we can multiply this
matrix with any vector and we’ll always get back the same vector, just like
we get back the same number if we multiply any number by 1.

Here’s an example of multiplying an identity matrix with a vector containing
1, 2, 3, and 4:

For the first row, we multiply the first component of the vector by 1 and ignore
the other components by multiplying them by 0. For the second row, we do
the same thing, except we preserve the second component of the vector. The
net result of all of this is that the answer will be identical to the original vector.

Let’s simplify those multiplies and add the results together. This is what we’ll
get:

Translations Using a Matrix

Now that we understand the identity matrix, let’s look at a very simple type
of matrix that gets used quite often in OpenGL: the translation matrix. With
this type of matrix, we can move one of our objects along a distance that we
specify. This matrix looks just like an identity matrix, with three additional
elements specified on the right-hand side:

report erratum • discuss

Linear Algebra 101 • 85

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Let’s look at an example with a position of (2, 2), with a default z of 0 and a
default w of 1. We want to translate the vector by 3 along the x-axis and 3
along the y-axis, so we’ll put 3 for xtranslation and 3 for ytranslation.

Here’s the result:

After we simplify the multiplies, we’re left with this:

Adding the results together gives us the final answer:

The position is now at (5, 5), which is what we expected.

The reason this works is that we built this matrix from an identity matrix, so
the first thing that will happen is that the original vector will be copied over.
Since the translation components are multiplied by w, and we normally
specify a position’s w component as 1 (remember that if we don’t specify the
w component, OpenGL sets it to 1 by default), the translation components
just get added to the result.

The effect of w is important to take note of here. In the next chapter, we’ll
learn about perspective projections, and a coordinate may not have a w value
of 1 after such a projection. If we try to do a translation or another type of

Chapter 5. Adjusting to the Screen’s Aspect Ratio • 86

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

transformation with that coordinate after we’ve done a projection and the w
component is no longer 1, then we’ll run into trouble and things will get
distorted.

We’ve learned just enough about vector and matrix math to get us on our
feet; let’s go ahead and learn how to define an orthographic projection.

5.4 Defining an Orthographic Projection

To define an orthographic projection, we’ll use Android’s Matrix class, which
resides in the android.opengl package. In that class there’s a method called
orthoM(), which will generate an orthographic projection for us. We’ll use that
projection to adjust the coordinate space, as we just discussed in Adjusting
to the Aspect Ratio, on page 80, and as we’ll soon see, an orthographic projec-
tion is very similar to a translation matrix.

Let’s take a look at all of the parameters for orthoM():

orthoM(float[] m, int mOffset, float left, float right, float bottom, float top, float near, float far)

The destination array—this array’s length should be at least
sixteen elements so it can store the orthographic projection
matrix.

float[] m

The offset into m into which the result is writtenint mOffset

The minimum range of the x-axisfloat left

The maximum range of the x-axisfloat right

The minimum range of the y-axisfloat bottom

The maximum range of the y-axisfloat top

The minimum range of the z-axisfloat near

The maximum range of the z-axisfloat far

When we call this method, it should produce the following orthographic pro-
jection matrix:

report erratum • discuss

Defining an Orthographic Projection • 87

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Don’t let the fractions overwhelm you: this is very similar to the translation
matrix that we saw in Translations Using a Matrix, on page 85. This ortho-
graphic projection matrix will map everything between left and right, bottom
and top, and near and far into the range -1 to 1 in normalized device coordi-
nates, and everything within this range will be visible on the screen.

The main difference is that the z-axis has a negative sign on it, which has
the effect of inverting the z coordinate. This means that as things get further
away, their z coordinate becomes more and more negative. The reason for
this is entirely due to history and convention.

Left-Handed and Right-Handed Coordinate Systems

To better understand the issue with the z-axis, we need to understand the
difference between a left-handed coordinate system and a right-handed
coordinate system. To see whether a coordinate system is left-handed or right-
handed, you take one of your hands and point your thumb along the positive
x-axis. You then take your index finder and point it along the positive y-axis.

Now, point your middle finger along the z-axis. If you need to use your left
hand to do this, then you’re looking at a left-handed coordinate system. If
you need to use your right hand, then this is a right-handed coordinate
system.

Try this out with Figure 24, Left-handed coordinate system, on page 89 and
Figure 25, Right-handed coordinate system, on page 89 by pointing your
middle finger along the z-axis, and remember to point your thumb along the
positive x-axis and your index finger along the positive y.

The choice of left-handed or right-handed really does not matter and is simply
a matter of convention. While normalized device coordinates use a left-handed
coordinate system, in earlier versions of OpenGL, everything else used the
right-handed system by default, with negative z increasing into the distance.
This is why Android’s Matrix will generate matrices that invert the z by default.

If you would prefer to use a left-handed coordinate system everywhere and
not just in normalized device coordinates, then you can just undo the inversion
on the z-axis done by orthoM().

Now that we have a basic feel for matrix math, we’re ready to add an ortho-
graphic projection to our code. If you’d like to review some specific examples,
you can head to Section A1.1, The Math Behind Orthographic Projections, on
page 297, and return here once you’re ready to proceed with the next section.

Chapter 5. Adjusting to the Screen’s Aspect Ratio • 88

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 24—Left-handed coordinate system

Figure 25—Right-handed coordinate system

5.5 Adding an Orthographic Projection

Let’s update our code to add in an orthographic projection and fix that
squashed table.

Updating the Shader

The first thing we need to do is update the shader so that it uses our matrix
to transform our positions. If you don’t yet have the AirHockeyOrtho project
open (we created this project back at the beginning of this chapter), go ahead
and open it up. Open simple_vertex_shader.glsl and update it as follows:

report erratum • discuss

Adding an Orthographic Projection • 89

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

AirHockeyOrtho/res/raw/simple_vertex_shader.glsl
uniform mat4 u_Matrix;

attribute vec4 a_Position;
attribute vec4 a_Color;

varying vec4 v_Color;

void main()
{

v_Color = a_Color;

gl_Position = u_Matrix * a_Position;
gl_PointSize = 10.0;

}

We’ve added a new uniform definition, u_Matrix, and we’ve defined it as a mat4,
meaning that this uniform will represent a 4 x 4 matrix. We’ve also updated
the line that assigns the position as follows:

AirHockeyOrtho/res/raw/simple_vertex_shader.glsl
gl_Position = u_Matrix * a_Position;

Instead of just passing through the position as we’ve defined it in our array,
we now multiply the matrix with the position. This will do the same math as
we talked about back in Matrix-Vector Multiplication, on page 84. It also means
that our vertex array will no longer be interpreted as normalized device coor-
dinates but will now be interpreted as existing in a virtual coordinate space,
as defined by the matrix. The matrix will transform the coordinates from this
virtual coordinate space back into normalized device coordinates.

Adding the Matrix Array and a New Uniform

Open up AirHockeyRenderer and add the following definition to the top of the
class:

AirHockeyOrtho/src/com/airhockey/android/AirHockeyRenderer.java
private static final String U_MATRIX = "u_Matrix";

This holds the name of the new uniform that we defined in our vertex shader.
We’ll also need a floating point array to store the matrix:

AirHockeyOrtho/src/com/airhockey/android/AirHockeyRenderer.java
private final float[] projectionMatrix = new float[16];

We’ll also need an integer to hold the location of the matrix uniform:

AirHockeyOrtho/src/com/airhockey/android/AirHockeyRenderer.java
private int uMatrixLocation;

Chapter 5. Adjusting to the Screen’s Aspect Ratio • 90

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockeyOrtho/res/raw/simple_vertex_shader.glsl
http://media.pragprog.com/titles/kbogla/code/AirHockeyOrtho/res/raw/simple_vertex_shader.glsl
http://media.pragprog.com/titles/kbogla/code/AirHockeyOrtho/src/com/airhockey/android/AirHockeyRenderer.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyOrtho/src/com/airhockey/android/AirHockeyRenderer.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyOrtho/src/com/airhockey/android/AirHockeyRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Then we just need to add the following to onSurfaceCreated():

AirHockeyOrtho/src/com/airhockey/android/AirHockeyRenderer.java
uMatrixLocation = glGetUniformLocation(program, U_MATRIX);

Creating the Orthographic Projection Matrix

The next step will be to update onSurfaceChanged(). Add the following lines after
the call to glViewport():

AirHockeyOrtho/src/com/airhockey/android/AirHockeyRenderer.java
final float aspectRatio = width > height ?

(float) width / (float) height :
(float) height / (float) width;

if (width > height) {
// Landscape
orthoM(projectionMatrix, 0, -aspectRatio, aspectRatio, -1f, 1f, -1f, 1f);

} else {
// Portrait or square
orthoM(projectionMatrix, 0, -1f, 1f, -aspectRatio, aspectRatio, -1f, 1f);

}

This code will create an orthographic projection matrix that will take the
screen’s current orientation into account. It will set up a virtual coordinate
space the way we described in Adjusting to the Aspect Ratio, on page 80.
There’s more than one Matrix class in Android, so you’ll want to make sure
that you’re importing android.opengl.Matrix.

First we calculate the aspect ratio by taking the greater of the width and
height and dividing it by the smaller of the width and height. This value will
be the same regardless of whether we’re in portrait or landscape.

We then call orthoM(float[] m, int mOffset, float left, float right, float bottom, float top, float near,
float far). If we’re in landscape mode, we’ll expand the coordinate space of the
width so that instead of ranging from -1 to 1, the width will range from
-aspectRatio to aspectRatio. The height will stay from -1 to 1. If we’re in portrait
mode, we expand the height instead and keep the width at -1 to 1.

Sending the Matrix to the Shader

The last change to do in AirHockeyRenderer is to send the orthographic projection
matrix to the shader. We do that by adding the following line of code to
onDrawFrame(), just after the call to glClear():

AirHockeyOrtho/src/com/airhockey/android/AirHockeyRenderer.java
glUniformMatrix4fv(uMatrixLocation, 1, false, projectionMatrix, 0);

report erratum • discuss

Adding an Orthographic Projection • 91

http://media.pragprog.com/titles/kbogla/code/AirHockeyOrtho/src/com/airhockey/android/AirHockeyRenderer.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyOrtho/src/com/airhockey/android/AirHockeyRenderer.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyOrtho/src/com/airhockey/android/AirHockeyRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Viewing Our Changes

We can now run the application and see what we have. It should look similar
to the following figures in portrait mode and landscape mode:

Figure 26—Air hockey in portrait mode using an orthographic projection

Figure 27—Air hockey in landscape mode using an orthographic projection

Updating the Table Data

Our table now looks the same in both portrait and landscape mode, which is
what we wanted, but it still doesn’t look quite right. What happened is that
the table was being squished to appear narrower in portrait mode, and now
that there’s no more squishing we can see the table as we’ve defined it.

Chapter 5. Adjusting to the Screen’s Aspect Ratio • 92

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Let’s update the table structure to make it taller (as seen in the next two fig-
ures); update only the y positions (the second column) of tableVerticesWithTriangles
to match the data as follows:

AirHockeyOrtho/src/com/airhockey/android/AirHockeyRenderer.java
float[] tableVerticesWithTriangles = {

// Order of coordinates: X, Y, R, G, B

// Triangle Fan
0f, 0f, 1f, 1f, 1f,

-0.5f, -0.8f, 0.7f, 0.7f, 0.7f,
0.5f, -0.8f, 0.7f, 0.7f, 0.7f,
0.5f, 0.8f, 0.7f, 0.7f, 0.7f,

-0.5f, 0.8f, 0.7f, 0.7f, 0.7f,
-0.5f, -0.8f, 0.7f, 0.7f, 0.7f,

// Line 1
-0.5f, 0f, 1f, 0f, 0f,
0.5f, 0f, 1f, 0f, 0f,

// Mallets
0f, -0.4f, 0f, 0f, 1f,
0f, 0.4f, 1f, 0f, 0f

};

Figure 28—Air hockey in portrait mode, slightly taller

report erratum • discuss

Adding an Orthographic Projection • 93

http://media.pragprog.com/titles/kbogla/code/AirHockeyOrtho/src/com/airhockey/android/AirHockeyRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 29—Air hockey in landscape mode, slightly taller

Now it looks a little more like the shape we’d expect of an air hockey table
and it keeps its shape in both portrait and landscape modes.

5.6 A Review

We took the time to learn some of the basics behind linear algebra and used
it to understand what happens when we multiply a matrix with a vector. We
then learned how to define an orthographic projection matrix, which allows
us to redefine our coordinate space, and we used this matrix to fix the distor-
tion that we had whenever we rotated from portrait to landscape mode.

If any part of the matrix math appeared unclear, you might want to go back
and review Section 5.3, Linear Algebra 101, on page 83; we’ll be spending
more and more time with vectors and matrices from here to the end of the
book!

5.7 Exercises

Try adjusting the orthographic matrix to make the table appear larger and
smaller, as well as pan it around on the screen. To make this happen, you’ll
want to play with the left, right, top, and bottom values passed to orthoM().

Once you’ve completed these exercises, get ready and hold on to your seat,
because we’re going to be entering the third dimension.

Chapter 5. Adjusting to the Screen’s Aspect Ratio • 94

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

CHAPTER 6

Entering the Third Dimension
Imagine that you’re at an arcade, standing in front of an air hockey table and
looking over the table toward your opponent. What would the table look like
from your perspective? Your end of the table would appear larger, and you
would be looking down at the table from an angle, rather than from directly
overhead. After all, nobody plays a game of air hockey by standing on top of
the table and looking straight down.

OpenGL is great at rendering things in 2D, but it really begins to shine when
we add a third dimension to the mix. In this chapter, we’ll learn how to enter
the third dimension so we can get that visual feel of staring down our opponent
from across the table.

Here’s our game plan for the chapter:

• First we’ll learn about OpenGL’s perspective division and how to use the
w component to create the illusion of 3D on a 2D screen.

• Once we understand the w component, we’ll learn how to set up a per-
spective projection so that we can see the table in 3D.

Let’s start off by copying the project from last chapter over into a new project,
called ‘AirHockey3D’.

6.1 The Art of 3D

For centuries, artists have been fooling people into perceiving a flat two-
dimensional painting as a complete three-dimensional scene. One of the tricks
they use is called linear projection, and it works by joining together parallel
lines at an imaginary vanishing point to create the illusion of perspective.

We can see a classic example of this effect when standing on a straight pair
of railway tracks; as we look at the rails receding into the distance, they

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

appear to get closer together, until they seem to vanish at a single point on
the horizon:

The railroad ties also appear to get smaller as they get further away from us.
If we measured the apparent size of each railroad tie, their measured size
would decrease in proportion to their distance from our eyes.

In the following image, observe how the measured width of each railroad tie
decreases with distance:

This trick is all that is needed to create a realistic 3D projection; let’s go ahead
and learn how OpenGL actually does it.

6.2 Transforming a Coordinate from the Shader to the Screen

We are now familiar with normalized device coordinates, and we know that
in order for a vertex to display on the screen, its x, y, and z components all
need to be in the range of [-1, 1]. Let’s take a look at the following flow chart
to review how a coordinate gets transformed from the original gl_Position written
by the vertex shader to the final coordinate onscreen:

There are two transformation steps and three different coordinate spaces.

Chapter 6. Entering the Third Dimension • 96

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Clip Space

When the vertex shader writes a value out to gl_Position, OpenGL expects this
position to be in clip space. The logic behind clip space is very simple: for any
given position, the x, y, and z components all need to be between -w and w
for that position. For example, if a position’s w is 1, then the x, y, and z
components all need to be between -1 and 1. Anything outside this range will
not be visible on the screen.

The reason why it depends on the position’s w will be apparent once we learn
about perspective division.

Perspective Division

Before a vertex position becomes a normalized device coordinate, OpenGL
actually performs an extra step known as perspective division. After perspective
division, positions will be in normalized device coordinates, in which every
visible coordinate will lie in the range of [-1, 1] for the x, y, and z components,
regardless of the size or shape of the rendering area.

To create the illusion of 3D on the screen, OpenGL will take each gl_Position
and divide the x, y, and z components by the w component. When the w
component is used to represent distance, this causes objects that are further
away to be moved closer to the center of the rendering area, which then acts
like a vanishing point. This is how OpenGL fools us into seeing a scene in
3D, using the same trick that artists have been using for centuries.

For example, let’s say that we have an object with two vertices, each at the
same location in 3D space, with the same x, y, and z components, but with
different w components. Let’s say these two coordinates are (1, 1, 1, 1) and (1,
1, 1, 2). Before OpenGL uses these as normalized device coordinates, it will do
a perspective divide and divide the first three components by w; each coordi-
nate will be divided as follows: (1/1, 1/1, 1/1) and (1/2, 1/2, 1/2). After this division,
the normalized device coordinates will be (1, 1, 1) and (0.5, 0.5, 0.5). The coordinate
with the larger w was moved closer to (0, 0, 0), the center of the rendering area
in normalized device coordinates.

In the following image, we can see an example of this effect in action, as a
coordinate with the same x, y, and z will be brought ever closer to the center
as the w value increases:

report erratum • discuss

Transforming a Coordinate from the Shader to the Screen • 97

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

In OpenGL, the 3D effect is linear and done along straight lines. In real life,
things are more complicated (imagine a fish-eye lens), but this sort of linear
projection is a reasonable approximation.

Homogenous Coordinates

Because of the perspective division, coordinates in clip space are often referred
to as homogenous coordinates,1 introduced by August Ferdinand Möbius in
1827. The reason they are called homogenous is because several coordinates
in clip space can map to the same point. For example, take the following
points:

(1, 1, 1, 1), (2, 2, 2, 2), (3, 3, 3, 3), (4, 4, 4, 4), (5, 5, 5, 5)

After perspective division, all of these points will map to (1, 1, 1) in normalized
device coordinates.

The Advantages of Dividing by W

You might be wondering why we don’t simply divide by z instead. After all, if
we interpret z as the distance and had two coordinates, (1, 1, 1) and (1, 1, 2),
we could then divide by z to get two normalized coordinates of (1, 1) and (0.5,
0.5).

While this can work, there are additional advantages to adding w as a fourth
component. We can decouple the perspective effect from the actual z coordi-
nate, so we can switch between an orthographic and a perspective projection.
There’s also a benefit to preserving the z component as a depth buffer, which
we’ll cover in Removing Hidden Surfaces with the Depth Buffer, on page 245.

1. http://en.wikipedia.org/wiki/Homogeneous_coordinates

Chapter 6. Entering the Third Dimension • 98

report erratum • discuss

http://en.wikipedia.org/wiki/Homogeneous_coordinates
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Viewport Transformation

Before we can see the final result, OpenGL needs to map the x and y compo-
nents of the normalized device coordinates to an area on the screen that the
operating system has set aside for display, called the viewport; these mapped
coordinates are known as window coordinates. We don’t really need to be too
concerned about these coordinates beyond telling OpenGL how to do the
mapping. We’re currently doing this in our code with a call to glViewport() in
onSurfaceChanged().

When OpenGL does this mapping, it will map the range (-1, -1, -1) to (1, 1, 1) to
the window that has been set aside for display. Normalized device coordinates
outside of this range will be clipped. As we learned in Chapter 5, Adjusting
to the Screen's Aspect Ratio, on page 77, this range is always the same,
regardless of the width or height of the viewport.

6.3 Adding the W Component to Create Perspective

It will be easier to understand the effects of the w component if we actually
see it in action, so let’s add it to our table vertex data and see what happens.
Since we’ll now be specifying the x, y, z, and w components of a position, let’s
begin by updating POSITION_COMPONENT_COUNT as follows:

AirHockey3D/src/com/airhockey/android/AirHockeyRenderer.java
private static final int POSITION_COMPONENT_COUNT = 4;

We must always make sure that we’re giving OpenGL the right component
count for everything that we use; otherwise we’ll either have a corrupt screen,
nothing will display at all, or we might even crash our application.

The next step is to update all of our vertices:

AirHockey3D/src/com/airhockey/android/AirHockeyRenderer.java
float[] tableVerticesWithTriangles = {

// Order of coordinates: X, Y, Z, W, R, G, B

// Triangle Fan
0f, 0f, 0f, 1.5f, 1f, 1f, 1f,

-0.5f, -0.8f, 0f, 1f, 0.7f, 0.7f, 0.7f,
0.5f, -0.8f, 0f, 1f, 0.7f, 0.7f, 0.7f,
0.5f, 0.8f, 0f, 2f, 0.7f, 0.7f, 0.7f,

-0.5f, 0.8f, 0f, 2f, 0.7f, 0.7f, 0.7f,
-0.5f, -0.8f, 0f, 1f, 0.7f, 0.7f, 0.7f,

// Line 1
-0.5f, 0f, 0f, 1.5f, 1f, 0f, 0f,
0.5f, 0f, 0f, 1.5f, 1f, 0f, 0f,

report erratum • discuss

Adding the W Component to Create Perspective • 99

http://media.pragprog.com/titles/kbogla/code/AirHockey3D/src/com/airhockey/android/AirHockeyRenderer.java
http://media.pragprog.com/titles/kbogla/code/AirHockey3D/src/com/airhockey/android/AirHockeyRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

// Mallets
0f, -0.4f, 0f, 1.25f, 0f, 0f, 1f,
0f, 0.4f, 0f, 1.75f, 1f, 0f, 0f

};

We added a z and a w component to our vertex data. We’ve updated all of the
vertices so that the ones near the bottom of the screen have a w of 1 and the
ones near the top of the screen have a w of 2; we also updated the line and
the mallets to have a fractional w that’s in between. This should have the
effect of making the top part of the table appear smaller than the bottom, as
if we were looking into the distance. We set all of our z components to zero,
since we don’t need to actually have anything in z to get the perspective effect.

OpenGL will automatically do the perspective divide for us using the w values
that we’ve specified, and our current orthographic projection will just copy
these w values over; so let’s go ahead and run our project to see what it looks
like. It should look similar to the next figure:

Things are starting to look more 3D! We were able to do this just by putting
in our own w. However, what if we wanted to make things more dynamic, like
changing the angle of the table or zooming in and out? Instead of hard-coding
the w values, we’ll use matrices to generate the values for us. Go ahead and
revert the changes that we’ve made; in the next section, we’ll learn how to
use a perspective projection matrix to generate the w values automatically.

Chapter 6. Entering the Third Dimension • 100

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

6.4 Moving to a Perspective Projection

Before we go into the matrix math behind a perspective projection, let’s
examine things at a visual level. In the previous chapter, we used an ortho-
graphic projection matrix to compensate for the aspect ratio of the screen by
adjusting the width and height of the area that gets transformed into normal-
ized device coordinates.

In the following image, we visualize an orthographic projection as a cube
enclosing the entire scene, representing what OpenGL will end up rendering
to the viewport and what we’ll be able to see:

Figure 30, The Projected Scene, on page 102 shows the same scene from a dif-
ferent viewpoint:

The Frustum

Once we switch to a projection matrix, parallel lines in the scene will meet
together at a vanishing point on the screen and objects will become smaller
as they get further and further away. Instead of a cube, the region of space
that we can see will look like Figure 31, Projection through a Frustum, on page
102.

report erratum • discuss

Moving to a Perspective Projection • 101

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 30—The Projected Scene

Figure 31—Projection through a Frustum

This shape is called a frustum,2 and this viewing space is created with a per-
spective projection matrix and the perspective divide. A frustum is simply a

2. http://en.wikipedia.org/wiki/Frustum

Chapter 6. Entering the Third Dimension • 102

report erratum • discuss

http://en.wikipedia.org/wiki/Frustum
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

cube that has been turned into a truncated pyramid by making the far side
larger than the near side. The bigger the difference, the wider the field of view
and the more that we can see.

With a frustum, there is also a focal point. This focal point can be found by
following the lines that extend from the large end to the small end of the
frustum and then following them past the small end until they meet together.
When you view a scene with a perspective projection, that scene will appear
as if your head was placed at this focal point. The distance between the focal
point and the small end of the frustum is known as the focal length, and this
influences the ratio between the small and large ends of the frustum and the
corresponding field of vision.

In the following image, we can see the scene inside the frustum, as seen from
the focal point:

Another interesting property of the focal point is that it is also the place where
both ends of the frustum will appear to take up the same amount of space
on the screen. The far end of the frustum is larger, but because it’s also further
away, it takes up the same amount of space. This is the same effect that we
see during a solar eclipse: the moon is much smaller than the sun, but
because it’s also so much closer, it appears to be just large enough to cover
up the disk of the sun! It all depends on our vantage point.

6.5 Defining a Perspective Projection

To recreate the magic of 3D, our perspective projection matrix needs to work
together with the perspective divide. The projection matrix can’t do the per-
spective divide by itself, and the perspective divide needs something to work
with.

An object should move toward the center of the screen and decrease in size
as it gets further away from us, so the most important task for our projection

report erratum • discuss

Defining a Perspective Projection • 103

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

matrix is to create the proper values for w so that when OpenGL does the
perspective divide, far objects will appear smaller than near objects. One of
the ways that we can do that is by using the z component as the distance
from the focal point and then mapping this distance to w. The greater the
distance, the greater the w and the smaller the resulting object.

We won’t go more into the math here, but if you want more details, you can
jump ahead to Section A1.2, The Math Behind Perspective Projections, on page
300, and return here once you’re ready to continue with the next section.

Adjusting for the Aspect Ratio and Field of Vision

Let’s take a look at a more general-purpose projection matrix, which will allow
us to adjust for the field of vision as well as for the screen’s aspect ratio:

Here’s a quick explanation of the variables defined in this matrix:

If we imagine the scene as captured by a camera, then this variable
represents the focal length of that camera. The focal length is calcu-

a

lated by 1/tangent of (field of vision/2). The field of vision must be
less than 180 degrees.

For example, with a field of vision of 90 degrees, the focal length will
be set to 1/tangent of (90°/2), which is equal to 1/1, or 1.

This should be set to the aspect ratio of the screen, which is equal
to width/height.

aspect

This should be set to the distance to the far plane and must be pos-
itive and greater than the distance to the near plane.

f

This should be set to the distance to the near plane and must be
positive. For example, if this is set to 1, the near plane will be located
at a z of -1.

n

Table 3—Projection matrix variables

As the field of vision gets smaller and the focal length gets longer, a smaller
range of x and y values will map onto the range [-1, 1] in normalized device
coordinates. This has the effect of making the frustum narrower.

Chapter 6. Entering the Third Dimension • 104

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

In the following image, the frustum on the left has a field of vision of 90
degrees, while the frustum on the right has a field of vision of 45 degrees:

You can see that the focal length between the focal point and the near side
of the frustum is slightly longer for the 45-degree frustum.

Here are the same frustums as seen from their points of focus:

There are usually few distortion issues with a narrower field of vision. On the
other hand, as the field of vision gets wider, the edges of the final image will
appear more and more distorted. In real life, a wide field of vision would make
everything look curved, like the effect seen from using a fish-eye lens on a
camera. Since OpenGL uses linear projection along straight lines, the final
image gets stretched out instead.

6.6 Creating a Projection Matrix in Our Code

We’re now ready to add a perspective projection to our code. Android’s Matrix
class contains two methods for this, frustumM() and perspectiveM(). Unfortunately,
frustumM() has a bug that affects some types of projections,3 and perspectiveM()
was only introduced in Android Ice Cream Sandwich and is not available on
earlier versions of Android. We could simply target Ice Cream Sandwich and
above, but then we’d be leaving out a large part of the market that still runs
earlier versions of Android.

3. http://code.google.com/p/android/issues/detail?id=35646

report erratum • discuss

Creating a Projection Matrix in Our Code • 105

http://code.google.com/p/android/issues/detail?id=35646
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Instead, we can create our own method to implement the matrix as defined
in the previous section. Open up the project we created back at the beginning
of this chapter and add a new class called MatrixHelper to the package
com.airhockey.android.util. We’ll implement a method very similar to the perspectiveM()
in Android’s Matrix class.

Creating Our Own perspectiveM

Add the following method signature to the beginning of MatrixHelper:

AirHockey3D/src/com/airhockey/android/util/MatrixHelper.java
public static void perspectiveM(float[] m, float yFovInDegrees, float aspect,

float n, float f) {

Calculating the Focal Length

The first thing we’ll do is calculate the focal length, which will be based on
the field of vision across the y-axis. Add the following code just after the
method signature:

AirHockey3D/src/com/airhockey/android/util/MatrixHelper.java
final float angleInRadians = (float) (yFovInDegrees * Math.PI / 180.0);

final float a = (float) (1.0 / Math.tan(angleInRadians / 2.0));

We use Java’s Math class to calculate the tangent, and since it wants the angle
in radians, we convert the field of vision from degrees to radians. We then
calculate the focal length as described in the previous section.

Writing Out the Matrix

We can now write out the matrix values. Add the following code to complete
the method:

AirHockey3D/src/com/airhockey/android/util/MatrixHelper.java
m[0] = a / aspect;
m[1] = 0f;
m[2] = 0f;
m[3] = 0f;

m[4] = 0f;
m[5] = a;
m[6] = 0f;
m[7] = 0f;

m[8] = 0f;
m[9] = 0f;
m[10] = -((f + n) / (f - n));
m[11] = -1f;

Chapter 6. Entering the Third Dimension • 106

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockey3D/src/com/airhockey/android/util/MatrixHelper.java
http://media.pragprog.com/titles/kbogla/code/AirHockey3D/src/com/airhockey/android/util/MatrixHelper.java
http://media.pragprog.com/titles/kbogla/code/AirHockey3D/src/com/airhockey/android/util/MatrixHelper.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

m[12] = 0f;
m[13] = 0f;
m[14] = -((2f * f * n) / (f - n));
m[15] = 0f;

}

This writes out the matrix data to the floating-point array defined in the
argument m, which needs to have at least sixteen elements. OpenGL stores
matrix data in column-major order, which means that we write out data one
column at a time rather than one row at a time. The first four values refer to
the first column, the second four values to the second column, and so on.

We’ve now finished our perspectiveM(), and we’re ready to use it in our code.
Our method is very similar to the one found in the Android source code,4 with
a few slight changes to make it more readable.

6.7 Switching to a Projection Matrix

We’ll now switch to using the perspective projection matrix. Open up AirHock-
eyRenderer and remove all of the code from onSurfaceChanged(), except for the call
to glViewport(). Add the following code:

AirHockey3D/src/com/airhockey/android/AirHockeyRenderer.java
MatrixHelper.perspectiveM(projectionMatrix, 45, (float) width

/ (float) height, 1f, 10f);

This will create a perspective projection with a field of vision of 45 degrees.
The frustum will begin at a z of -1 and will end at a z of -10.

After adding the import for MatrixHelper, go ahead and run the program. You’ll
probably notice that our air hockey table has disappeared! Since we didn’t
specify a z position for our table, it’s located at a z of 0 by default. Since our
frustum begins at a z of -1, we won’t be able to see the table unless we move
it into the distance.

Instead of hard-coding the z values, let’s use a translation matrix to move
the table out before we project it using the projection matrix. By convention,
we’ll call this matrix the model matrix.

Moving Objects Around with a Model Matrix

Let’s add the following matrix definition to the top of the class:

AirHockey3D/src/com/airhockey/android/AirHockeyRenderer.java
private final float[] modelMatrix = new float[16];

4. http://grepcode.com/file_/repository.grepcode.com/java/ext/com.google.android/android/4.0.4_r1.2/android/
opengl/Matrix.java/?v=source

report erratum • discuss

Switching to a Projection Matrix • 107

http://media.pragprog.com/titles/kbogla/code/AirHockey3D/src/com/airhockey/android/AirHockeyRenderer.java
http://media.pragprog.com/titles/kbogla/code/AirHockey3D/src/com/airhockey/android/AirHockeyRenderer.java
http://grepcode.com/file_/repository.grepcode.com/java/ext/com.google.android/android/4.0.4_r1.2/android/opengl/Matrix.java/?v=source
http://grepcode.com/file_/repository.grepcode.com/java/ext/com.google.android/android/4.0.4_r1.2/android/opengl/Matrix.java/?v=source
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

We’ll use this matrix to move the air hockey table into the distance. At the
end of onSurfaceChanged(), add the following code:

AirHockey3D/src/com/airhockey/android/AirHockeyRenderer.java
setIdentityM(modelMatrix, 0);
translateM(modelMatrix, 0, 0f, 0f, -2f);

This sets the model matrix to the identity matrix and then translates it by -2
along the z-axis. When we multiply our air hockey table coordinates with this
matrix, they will end up getting moved by 2 units along the negative z-axis.

Multiplying Once Versus Multiplying Twice

We now have a choice: we still need to apply this matrix to each vertex, so
our first option is to add the extra matrix to the vertex shader. We multiply
each vertex by the model matrix to move it 2 units along the negative z-axis,
and then we multiply each vertex by the projection matrix so that OpenGL
can do the perspective divide and transform the vertices into normalized
device coordinates.

Instead of going through all of this trouble, there’s a better way: we can
multiply the model and projection matrices together into a single matrix and
then pass this matrix into the vertex shader. That way we can stay with one
matrix in the shader.

Matrix Multiplication
Matrix-matrix multiplication works much like matrix-vector multiplication.
For example, let’s say that we had two generic matrices, as follows:

To get the first element of the result, we multiply the first row of the first
matrix by the first column of the second matrix and add together the results:

Chapter 6. Entering the Third Dimension • 108

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockey3D/src/com/airhockey/android/AirHockeyRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Then for the second element of the result, we multiply the second row of the
first matrix by the first column of the second matrix and add together the
results:

This continues for each subsequent element of the result matrix.

Order of Multiplication
Now that we know how to multiply two matrices together, we need to be
careful to make sure that we multiply them in the right order. We can either
multiply with the projection matrix on the left side and the model matrix on
the right side, or with the model matrix on the left side and the projection
matrix on the right side.

Unlike with regular multiplication, the order matters! If we get the order
wrong, things might look weird or we might not see anything at all! The fol-
lowing is an example of two matrices multiplied in one particular order:

Here are the same two matrices multiplied in the reverse order:

With a different order, the results are also different.

Selecting the Appropriate Order
To figure out which order we should use, let’s look at the math when we only
use a projection matrix:

vertexclip = ProjectionMatrix * vertexeye

vertexeye represents the position of the vertex in our scene before multiplying
it with a projection matrix. Once we add a model matrix to move the table,
the math looks like this:

vertexeye = ModelMatrix * vertexmodel

vertexclip = ProjectionMatrix * vertexeye

report erratum • discuss

Switching to a Projection Matrix • 109

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

vertexmodel represents the position of the vertex before we use the model matrix
to push it out into the scene. Combine the two expressions, and we end up
with this:

vertexclip = ProjectionMatrix * ModelMatrix * vertexmodel

To replace these two matrices with one, we have to multiply the projection
matrix by the model matrix, with the projection matrix on the left side and
the model matrix on the right side.

Updating the Code to Use One Matrix
Let’s wrap up the new matrix code and add the following to onSurfaceChanged()
after the call to translateM():

AirHockey3D/src/com/airhockey/android/AirHockeyRenderer.java
final float[] temp = new float[16];
multiplyMM(temp, 0, projectionMatrix, 0, modelMatrix, 0);
System.arraycopy(temp, 0, projectionMatrix, 0, temp.length);

Whenever we multiply two matrices, we need a temporary area to store the
result. If we try to write the result directly, the results are undefined!

We first create a temporary floating-point array to store the temporary result;
then we call multiplyMM() to multiply the projection matrix and model matrix
together into this temporary array. Next we call System.arraycopy() to store the
result back into projectionMatrix, which now contains the combined effects of
the model matrix and the projection matrix.

If we run the application now, it should look like Figure 32, Using a projection
and a model matrix, on page 111. Pushing the air hockey table into the distance
brought it into our frustum, but the table is still standing upright. After a
quick recap, we’ll learn how to rotate the table so that we see it from an angle
rather than upright.

A Quick Recap

Let’s take a quick recap of what we’ve just covered in the past few sections:

• We learned how to use an extra matrix to move the air hockey table into
the screen before passing it through the projection matrix.

• We learned how to multiply two matrices together.

• We then learned how to combine the projection and model matrices so
that we don’t have to modify the vertex shader to accept an additional
matrix and multiply by both matrices every single time.

Chapter 6. Entering the Third Dimension • 110

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockey3D/src/com/airhockey/android/AirHockeyRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 32—Using a projection and a model matrix

6.8 Adding Rotation

Now that we have a projection matrix configured and a model matrix in place
to move our table around, all we need to do is rotate the table so that we’re
looking at it from across an angle. We’ll be able to do this with one line of
code using a rotation matrix. We haven’t worked with rotations yet, so let’s
spend some time to learn more about how these rotations work.

The Direction of Rotation

The first thing we need to figure out is around which axis we need to rotate
and by how much. Let’s take another look at Figure 25, Right-handed coordi-
nate system, on page 89. To figure out how an object would rotate around a
given axis, we’ll use the right-hand rule: take your right hand, make a fist,
and point your thumb in the direction of the positive axis. The curl of your
fingers shows you how an object would rotate around that axis, given a positive
angle of rotation. Take a look at the next figure and see how when you point

report erratum • discuss

Adding Rotation • 111

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

your thumb in the direction of the positive x-axis, the direction of rotation
follows the curl of your fingers around the axis.

Figure 33—Rotation around the x-axis

Try this out with the x-, y-, and z-axes. If we rotate around the y-axis, our
table will spin horizontally around its top and bottom ends. If we rotate around
the z-axis, the table will spin around in a circle. What we want to do is rotate
the table backward around the x-axis, as this will bring the table more level
with our eyes.

Rotation Matrices

To do the actual rotation, we’ll use a rotation matrix. Matrix rotation uses
the trigonometric functions of sine and cosine to convert the rotation angle
into scaling factors. The following is the matrix definition for a rotation around
the x-axis:

Then you have a matrix for a rotation around the y-axis:

Finally, there’s also one for a rotation around the z-axis:

Chapter 6. Entering the Third Dimension • 112

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

It’s also possible to combine all of these into a general rotation matrix based
on an arbitrary angle and vector.5

Let’s try out a rotation around the x-axis as a test. We’ll start with a point
that is one unit above the origin, with a y of 1, and rotate it 90 degrees around
the x-axis. First, let’s prepare the rotation matrix:

Let’s multiply this matrix with our point and see what happens:

The point has been moved from (0, 1, 0) to (0, 0, 1). If we look back at Figure
33, Rotation around the x-axis, on page 112, and use the right-hand rule with
the x-axis, we can see how a positive rotation would move a point in a circle
around the x-axis.

Adding the Rotation to Our Code

We’re now ready to add the rotation to our code. Go back to onSurfaceChanged(),
and adjust the translation and add a rotation as follows:

AirHockey3D/src/com/airhockey/android/AirHockeyRenderer.java
translateM(modelMatrix, 0, 0f, 0f, -2.5f);
rotateM(modelMatrix, 0, -60f, 1f, 0f, 0f);

We push the table a little farther, because once we rotate it the bottom end
will be closer to us. We then rotate it by -60 degrees around the x-axis, which
brings the table at a nice angle, as if we were standing in front of it.

The table should now look like the following:

5. http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle

report erratum • discuss

Adding Rotation • 113

http://media.pragprog.com/titles/kbogla/code/AirHockey3D/src/com/airhockey/android/AirHockeyRenderer.java
http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 34—Air hockey table with a varying w component

6.9 A Review

This was a rather intense chapter. The matrix math got more involved as we
learned about perspective projections and how they work with OpenGL’s
perspective divide. We then learned how to move and rotate our table with a
second matrix.

The good news is that we don’t need to have a perfect understanding of the
underlying math and theory behind projections and rotations in order to use
them. With just a basic understanding of what a frustum is and how matrices
help us move stuff around, you will find it a lot easier to work with OpenGL
down the road.

6.10 Exercises

Try adjusting the field of vision, and observe the effect that has on the air
hockey table. You can also try moving the table around in different ways.

Once you’ve completed these exercises, we’ll start making our table look nicer.
In the next chapter we’re going to start working with textures.

Chapter 6. Entering the Third Dimension • 114

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

CHAPTER 7

Adding Detail with Textures
We’ve managed to get a lot done with just simple shapes and colors. There’s
something missing though: what if we could paint onto our shapes and add
refined detail? Like artists, we can start out with basic shapes and color and
add extra detail onto our surfaces by using textures. A texture is simply an
image or a picture that has been uploaded into OpenGL.

We can add an incredible amount of detail with textures. Think of a beautiful
3D game you might have played recently. At the heart of things, the game is
just using points, lines, and triangles, like any other 3D program. However,
with the detail of textures and the touch of a skilled artist, these triangles
can be textured to build a beautiful 3D scene.

Once we start using textures, we’ll also start using more than one shader
program. To make this easier to manage, we’ll learn how to adapt our code
so that we can use multiple shader programs and sources of vertex data and
switch between them.

Here’s our game plan for this chapter:

• We’ll start out with an introduction to textures, and then we’ll write code
to load a texture into OpenGL.

• We’ll learn how to display that texture, adapting our code to support
multiple shader programs.

• We’ll also cover the different texture filtering modes and what they do.

When we’re done, our air hockey table should look like the next figure. Let’s
start off by copying the project from the last chapter over into a new project
called ‘AirHockeyTextured’.

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 35—Air hockey table with a filtered texture

7.1 Understanding Textures

Textures in OpenGL can be used to represent images, pictures, and even
fractal data that are generated by a mathematical algorithm. Each two-
dimensional texture is composed of many small texels, which are small blocks
of data analogous to the fragments and pixels that we’ve talked about previ-
ously. The most common way to use a texture is to load in the data directly
from an image file.

We’ll use the image in Figure 36, The Surface Image, on page 117 as our new
air hockey table surface and load it in as a texture:

All of the images used in the code can be downloaded from this book’s home
page. I recommend storing the texture in your project’s /res/drawable-nodpi/ folder.1

1. http://pragprog.com/book/kbogla

Chapter 7. Adding Detail with Textures • 116

report erratum • discuss

http://pragprog.com/book/kbogla
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 36—The Surface Image

Each two-dimensional texture has its own coordinate space, ranging from
(0, 0) at one corner to (1, 1) at the other corner. By convention, one dimension
is called S and the other is called T. When we want to apply a texture to a
triangle or set of triangles, we’ll specify a set of ST texture coordinates for
each vertex so that OpenGL knows which parts of the texture it needs to draw
across each triangle. These texture coordinates are also sometimes referred
to as UV texture coordinates, as seen in Figure 37, OpenGL 2D texture coordi-
nates, on page 118.

There is no inherent orientation for an OpenGL texture, since we can use
different coordinates to orient it any which way we like. However, there is a
default orientation for most computer image files: they are usually specified
with the y-axis pointing downward (as seen in Figure 38, Computer images:
the y-axis points downward, on page 118): the y value increases as we move
toward the bottom of the image. This doesn’t cause any trouble for us so long
as we remember that if we want to view our image with the right orientation,
then our texture coordinates need to take this into account.

In standard OpenGL ES 2.0, textures don’t have to be square, but each
dimension should be a power of two (POT). This means that each dimension
should be a number like 128, 256, 512, and so on. The reason for this is that
non-POT textures are very restricted in where they can be used, while POT
textures are fine for all uses.

There is also a maximum texture size that varies from implementation to
implementation but is usually something large, like 2048 x 2048.

report erratum • discuss

Understanding Textures • 117

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 37—OpenGL 2D texture coordinates

Figure 38—Computer images: the y-axis points downward

Chapter 7. Adding Detail with Textures • 118

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

7.2 Loading Textures into OpenGL

Our first task will be to load data from an image file into an OpenGL texture.
To start out, let’s create a new class in the com.airhockey.android.util package called
TextureHelper. We’ll begin with the following method signature:

AirHockeyTextured/src/com/airhockey/android/util/TextureHelper.java
public static int loadTexture(Context context, int resourceId) {

This method will take in an Android context and a resource ID and will return
the ID of the loaded OpenGL texture. To start off, we’ll generate a new texture
ID using the same type of pattern as when we’ve created other OpenGL objects:

AirHockeyTextured/src/com/airhockey/android/util/TextureHelper.java
final int[] textureObjectIds = new int[1];
glGenTextures(1, textureObjectIds, 0);

if (textureObjectIds[0] == 0) {
if (LoggerConfig.ON) {

Log.w(TAG, "Could not generate a new OpenGL texture object.");
}
return 0;

}

We generate one texture object by calling glGenTextures(1, textureObjectId, 0), passing
in 1 as the first parameter. OpenGL will store the generated IDs in textureObjec-
tIds. We also check that the call to glGenTextures() succeeded by continuing only
if it’s not equal to zero; otherwise we log the error and return 0. Since TAG is
not yet defined, let’s add a definition for it to the top of the class:

AirHockeyTextured/src/com/airhockey/android/util/TextureHelper.java
private static final String TAG = "TextureHelper";

Loading in Bitmap Data and Binding to the Texture

The next step is to use Android’s APIs to read in the data from our image files.
OpenGL can’t read data from a PNG or JPEG file directly because these files
are encoded into specific compressed formats. OpenGL needs the raw data
in an uncompressed form, so we’ll need to use Android’s built-in bitmap
decoder to decompress our image files into a form that OpenGL understands.

Let’s continue implementing loadTexture() and decompress the image into an
Android bitmap:

AirHockeyTextured/src/com/airhockey/android/util/TextureHelper.java
final BitmapFactory.Options options = new BitmapFactory.Options();
options.inScaled = false;

final Bitmap bitmap = BitmapFactory.decodeResource(

report erratum • discuss

Loading Textures into OpenGL • 119

http://media.pragprog.com/titles/kbogla/code/AirHockeyTextured/src/com/airhockey/android/util/TextureHelper.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyTextured/src/com/airhockey/android/util/TextureHelper.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyTextured/src/com/airhockey/android/util/TextureHelper.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyTextured/src/com/airhockey/android/util/TextureHelper.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

context.getResources(), resourceId, options);

if (bitmap == null) {
if (LoggerConfig.ON) {

Log.w(TAG, "Resource ID " + resourceId + " could not be decoded.");
}

glDeleteTextures(1, textureObjectIds, 0);
return 0;

}

We first create a new instance of BitmapFactory.Options called options, and we set
inScaled to false. This tells Android that we want the original image data instead
of a scaled version of the data.

We then call BitmapFactory.decodeResource() to do the actual decode, passing in
the Android context, resource ID, and the decoding options that we’ve just
defined. This call will decode the image into bitmap or will return null if it failed.
We check against that failure and delete the OpenGL texture object if the
bitmap is null. If the decode succeeded, we continue processing the texture.

Before we can do anything else with our newly generated texture object, we
need to tell OpenGL that future texture calls should be applied to this texture
object. We do that with a call to glBindTexture():

AirHockeyTextured/src/com/airhockey/android/util/TextureHelper.java
glBindTexture(GL_TEXTURE_2D, textureObjectIds[0]);

The first parameter, GL_TEXTURE_2D, tells OpenGL that this should be treated
as a two-dimensional texture, and the second parameter tells OpenGL which
texture object ID to bind to.

Understanding Texture Filtering

We’ll also need to specify what should happen when the texture is expanded
or reduced in size, using texture filtering. When we draw a texture onto the
rendering surface, the texture’s texels may not map exactly onto the fragments
generated by OpenGL. There are two cases: “minification” and magnification.
Minification happens when we try to cram several texels onto the same frag-
ment, and magnification happens when we spread one texel across many
fragments. We can configure OpenGL to use a texture filter for each case.

To start out, we’ll cover two basic filtering modes: nearest-neighbor filtering
and bilinear interpolation. There are additional filtering modes that we’ll soon
cover in more detail. We’ll use the following image to illustrate each filtering
mode:

Chapter 7. Adding Detail with Textures • 120

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockeyTextured/src/com/airhockey/android/util/TextureHelper.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Nearest-Neighbor Filtering

This selects the nearest texel for each fragment. When we magnify the texture,
it will look rather blocky, as follows:

Each texel is clearly visible as a small square.

When we minify the texture, many of the details will be lost, as we don’t have
enough fragments for all of the texels:

Bilinear Filtering

Bilinear filtering uses bilinear interpolation to smooth the transitions between
pixels. Instead of using the nearest texel for each fragment, OpenGL will use
the four neighboring texels and interpolate them together using the same
type of linear interpolation that we discussed back in How Does a Varying
Get Blended at Each Fragment?, on page 66. We call it bilinear because it is
done along two dimensions. The following is the same texture as before,
magnified using bilinear interpolation:

report erratum • discuss

Loading Textures into OpenGL • 121

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

The texture now looks much smoother than before. There’s still some blocki-
ness present because we’ve expanded the texture so much, but it’s not as
apparent as it was with nearest-neighbor filtering.

Mipmapping

While bilinear filtering works well for magnification, it doesn’t work as well
for minification beyond a certain size. The more we reduce the size of a texture
on the rendering surface, the more texels will get crammed onto each fragment.
Since OpenGL’s bilinear filtering will only use four texels for each fragment,
we still lose a lot of detail. This can cause noise and shimmering artifacts
with moving objects as different texels get selected with each frame.

To combat these artifacts, we can use mipmapping, a technique that generates
an optimized set of textures at different sizes. When generating the set of
textures, OpenGL can use all of the texels to generate each level, ensuring
that all of the texels will also be used when filtering the texture. At render
time, OpenGL will select the most appropriate level for each fragment based
on the number of texels per fragment.

Figure 39, Mipmapped Textures, on page 123 is a mipmapped set of textures
combined onto a single image for clarity:

With mipmaps, more memory will be used, but the rendering can also be
faster because the smaller levels take less space in the GPU’s texture cache.

To better understand how mipmapping improves the quality of minification,
let’s compare and contrast our cute Android, minified to 12.5 percent of the
original texel size using bilinear filtering, as shown in Figure 40, Minified with
Bilinear Filtering, on page 123.

Chapter 7. Adding Detail with Textures • 122

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 39—Mipmapped Textures

Figure 40—Minified with Bilinear Filtering

With this kind of quality, we may as well have stayed with nearest-neighbor
filtering. Let’s take a look at what we get when we add mipmaps Figure 41,
Minified with Mipmapping, on page 124.

With mipmaps enabled, OpenGL will select the closest appropriate texture
level and then do bilinear interpolation using that optimized texture. Each
level was built with information from all of the texels, so the resulting image
looks much better, with much more of the detail preserved.

report erratum • discuss

Loading Textures into OpenGL • 123

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 41—Minified with Mipmapping

Trilinear Filtering

When we use mipmaps with bilinear filtering, we can sometimes see a
noticeable jump or line in the rendered scene where OpenGL switches between
different mipmap levels. We can switch to trilinear filtering to tell OpenGL to
also interpolate between the two closest mipmap levels, using a total of eight
texels per fragment. This helps to eliminate the transition between each
mipmap level and results in a smoother image.

Setting Default Texture Filtering Parameters

Now that we know about texture filtering, let’s continue loadTexture() and add
the following code:

AirHockeyTextured/src/com/airhockey/android/util/TextureHelper.java
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

We set each filter with a call to glTexParameteri(): GL_TEXTURE_MIN_FILTER refers to
minification, while GL_TEXTURE_MAG_FILTER refers to magnification. For minifica-
tion, we select GL_LINEAR_MIPMAP_LINEAR, which tells OpenGL to use trilinear
filtering. We set the magnification filter to GL_LINEAR, which tells OpenGL to
use bilinear filtering.

Table 4, OpenGL texture filtering modes, on page 125 and Table 5, Allowable
texture filtering modes for each case, on page 125 explain the possible options
as well as the valid options for minification and magnification.

Chapter 7. Adding Detail with Textures • 124

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockeyTextured/src/com/airhockey/android/util/TextureHelper.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Nearest-neighbor filteringGL_NEAREST
Nearest-neighbor filtering with mipmapsGL_NEAREST_MIPMAP_NEAREST
Nearest-neighbor filtering with interpolation
between mipmap levels

GL_NEAREST_MIPMAP_LINEAR

Bilinear filteringGL_LINEAR
Bilinear filtering with mipmapsGL_LINEAR_MIPMAP_NEAREST
Trilinear filtering (bilinear filtering with inter-
polation between mipmap levels)

GL_LINEAR_MIPMAP_LINEAR

Table 4—OpenGL texture filtering modes

GL_NEAREST
GL_NEAREST_MIPMAP_NEAREST
GL_NEAREST_MIPMAP_LINEAR
GL_LINEAR
GL_LINEAR_MIPMAP_NEAREST
GL_LINEAR_MIPMAP_LINEAR

Minification

GL_NEAREST
GL_LINEAR

Magnification

Table 5—Allowable texture filtering modes for each case

Loading the Texture into OpenGL and Returning the ID

We can now load the bitmap data into OpenGL with an easy call to GLUtils.
texImage2D():

AirHockeyTextured/src/com/airhockey/android/util/TextureHelper.java
texImage2D(GL_TEXTURE_2D, 0, bitmap, 0);

This call tells OpenGL to read in the bitmap data defined by bitmap and copy
it over into the texture object that is currently bound.

Now that the data’s been loaded into OpenGL, we no longer need to keep the
Android bitmap around. Under normal circumstances, it might take a few
garbage collection cycles for Dalvik to release this bitmap data, so we should
call recycle() on the bitmap object to release the data immediately:

AirHockeyTextured/src/com/airhockey/android/util/TextureHelper.java
bitmap.recycle();

Generating mipmaps is also a cinch. We can tell OpenGL to generate all of
the necessary levels with a quick call to glGenerateMipmap():

report erratum • discuss

Loading Textures into OpenGL • 125

http://media.pragprog.com/titles/kbogla/code/AirHockeyTextured/src/com/airhockey/android/util/TextureHelper.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyTextured/src/com/airhockey/android/util/TextureHelper.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

AirHockeyTextured/src/com/airhockey/android/util/TextureHelper.java
glGenerateMipmap(GL_TEXTURE_2D);

Now that we’ve finished loading the texture, a good practice is to then unbind
from the texture so that we don’t accidentally make further changes to this
texture with other texture calls:

AirHockeyTextured/src/com/airhockey/android/util/TextureHelper.java
glBindTexture(GL_TEXTURE_2D, 0);

Passing 0 to glBindTexture() unbinds from the current texture. The last step is
to return the texture object ID:

AirHockeyTextured/src/com/airhockey/android/util/TextureHelper.java
return textureObjectIds[0];

We now have a method that will be able to read in an image file from our
resources folder and load the image data into OpenGL. We’ll get back a texture
ID that we can use as a reference to this texture or get 0 if the load failed.

7.3 Creating a New Set of Shaders

Before we can draw the texture to the screen, we’ll have to create a new set
of shaders that will accept a texture and apply it to the fragments being drawn.
These new shaders will be similar to the ones we’ve been working with until
now, with just a couple of slight changes to add support for texturing.

Creating the New Vertex Shader

Create a new file under your project’s /res/raw/ directory, and call it texture_ver-
tex_shader.glsl. Add the following contents:

AirHockeyTextured/res/raw/texture_vertex_shader.glsl
uniform mat4 u_Matrix;

attribute vec4 a_Position;
attribute vec2 a_TextureCoordinates;

varying vec2 v_TextureCoordinates;

void main()
{

v_TextureCoordinates = a_TextureCoordinates;
gl_Position = u_Matrix * a_Position;

}

Most of this shader code should look familiar: we’ve defined a uniform for our
matrix, and we also have an attribute for our position. We use these to set
the final gl_Position. Now for the new stuff: we’ve also added a new attribute for

Chapter 7. Adding Detail with Textures • 126

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockeyTextured/src/com/airhockey/android/util/TextureHelper.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyTextured/src/com/airhockey/android/util/TextureHelper.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyTextured/src/com/airhockey/android/util/TextureHelper.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyTextured/res/raw/texture_vertex_shader.glsl
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

our texture coordinates, called a_TextureCoordinates. It’s defined as a vec2 because
there are two components: the S coordinate and the T coordinate. We send
these coordinates on to the fragment shader as an interpolated varying called
v_TextureCoordinates.

Creating the New Fragment Shader

In the same directory, create a new file called texture_fragment_shader.glsl, and
add the following contents:

AirHockeyTextured/res/raw/texture_fragment_shader.glsl
precision mediump float;

uniform sampler2D u_TextureUnit;
varying vec2 v_TextureCoordinates;

void main()
{

gl_FragColor = texture2D(u_TextureUnit, v_TextureCoordinates);
}

To draw the texture on an object, OpenGL will call the fragment shader for
each fragment, and each call will receive the texture coordinates in v_Texture-
Coordinates. The fragment shader will also receive the actual texture data via
the uniform u_TextureUnit, which is defined as a sampler2D. This variable type
refers to an array of two-dimensional texture data.

The interpolated texture coordinates and the texture data are passed in to
the shader function texture2D(), which will read in the color value for the texture
at that particular coordinate. We then set the fragment to that color by
assigning the result to gl_FragColor.

The next couple of sections will be somewhat more involved: we’re going to
create a new set of classes and place our existing code for our table data and
shader programs into these classes. We’ll then switch between them at
runtime.

7.4 Creating a New Class Structure for Our Vertex Data

We’ll start off by separating our vertex data into separate classes, with one
class to represent each type of physical object. We’ll create one class for our
table and another for our mallet. We won’t need one for the line, since there’s
already a line on our texture.

We’ll also create a separate class to encapsulate the actual vertex array and
to reduce code duplication. Our class structure will look as follows:

report erratum • discuss

Creating a New Class Structure for Our Vertex Data • 127

http://media.pragprog.com/titles/kbogla/code/AirHockeyTextured/res/raw/texture_fragment_shader.glsl
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

We’ll create Mallet to manage the mallet data and Table to manage the table
data; and each class will have an instance of VertexArray, which will encapsulate
the FloatBuffer storing the vertex array.

We’ll start off with VertexArray. Create a new package in your project called
com.airhockey.android.data, and in that package, create a new class called VertexArray.
Add the following code inside the class:

AirHockeyTextured/src/com/airhockey/android/data/VertexArray.java
private final FloatBuffer floatBuffer;

public VertexArray(float[] vertexData) {
floatBuffer = ByteBuffer

.allocateDirect(vertexData.length * BYTES_PER_FLOAT)

.order(ByteOrder.nativeOrder())

.asFloatBuffer()

.put(vertexData);
}

public void setVertexAttribPointer(int dataOffset, int attributeLocation,
int componentCount, int stride) {
floatBuffer.position(dataOffset);
glVertexAttribPointer(attributeLocation, componentCount, GL_FLOAT,

false, stride, floatBuffer);
glEnableVertexAttribArray(attributeLocation);

floatBuffer.position(0);
}

This code contains a FloatBuffer that will be used to store our vertex array data
in native code, as explained in Section 2.4, Making the Data Accessible to
OpenGL, on page 26. The constructor takes in an array of Java floating-point
data and writes it to the buffer.

We’ve also created a generic method to associate an attribute in our shader
with the data. This follows the same pattern as we explained in Associating
an Array of Vertex Data with an Attribute, on page 49.

Chapter 7. Adding Detail with Textures • 128

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockeyTextured/src/com/airhockey/android/data/VertexArray.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Let’s find a new place for BYTES_PER_FLOAT, since we’ll end up using it in several
classes. To do this, let’s create a new class called Constants in com.airhockey.android
and add the following code:

AirHockeyTextured/src/com/airhockey/android/Constants.java
package com.airhockey.android;

public class Constants {
public static final int BYTES_PER_FLOAT = 4;

}

We can then update VertexArray to refer to the new constant.

Adding the Table Data

We’ll now define a class to store our table data; this class will store the position
data for our table, and we’ll also add texture coordinates to apply the texture
to the table.

Adding the Class Constants

Create a new package called com.airhockey.android.objects; in that new package,
create a new class called Table and add the following code inside the class:

AirHockeyTextured/src/com/airhockey/android/objects/Table.java
private static final int POSITION_COMPONENT_COUNT = 2;
private static final int TEXTURE_COORDINATES_COMPONENT_COUNT = 2;
private static final int STRIDE = (POSITION_COMPONENT_COUNT

+ TEXTURE_COORDINATES_COMPONENT_COUNT) * BYTES_PER_FLOAT;

We defined our position component count, texture component count, and
stride as shown.

Adding the Vertex Data

The next step is to define our vertex data with the following code:

AirHockeyTextured/src/com/airhockey/android/objects/Table.java
private static final float[] VERTEX_DATA = {

// Order of coordinates: X, Y, S, T

// Triangle Fan
0f, 0f, 0.5f, 0.5f,

-0.5f, -0.8f, 0f, 0.9f,
0.5f, -0.8f, 1f, 0.9f,
0.5f, 0.8f, 1f, 0.1f,

-0.5f, 0.8f, 0f, 0.1f,
-0.5f, -0.8f, 0f, 0.9f };

This array contains the vertex data for our air hockey table. We’ve defined
the x and y positions and the S and T texture coordinates. You might notice

report erratum • discuss

Creating a New Class Structure for Our Vertex Data • 129

http://media.pragprog.com/titles/kbogla/code/AirHockeyTextured/src/com/airhockey/android/Constants.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyTextured/src/com/airhockey/android/objects/Table.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyTextured/src/com/airhockey/android/objects/Table.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

that the T component is running in the opposite direction of the y component.
This is so that the image is oriented with the right side up, as explained in
Section 7.1, Understanding Textures, on page 116. It doesn’t actually matter
when we use a symmetrical texture, but it will matter in other cases, so it’s
a good rule to keep in mind.

Clipping the Texture
We also used T coordinates of 0.1f and 0.9f. Why? Well, our table is 1 unit
wide and 1.6 units tall. Our texture image is 512 x 1024 in pixels, so if the
width corresponds to 1 unit, the texture is actually 2 units tall. To avoid
squashing the texture, we use the range 0.1 to 0.9 instead of 0.0 to 1.0 to
clip the edges and just draw the center portion.

The following image illustrates the concept:

Instead of clipping, we could also stick with texture coordinates from 0.0 to
1.0 and prestretch our texture so that it looks correct after being squished
onto the air hockey table. This way we won’t use any memory on parts of the
texture that won’t be shown (Figure 42, Prestretching, on page 131).

Initializing and Drawing the Data

We’ll now create a constructor for Table. This constructor will use VertexArray
to copy the data over into a FloatBuffer in native memory.

AirHockeyTextured/src/com/airhockey/android/objects/Table.java
private final VertexArray vertexArray;

public Table() {
vertexArray = new VertexArray(VERTEX_DATA);

}

Chapter 7. Adding Detail with Textures • 130

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockeyTextured/src/com/airhockey/android/objects/Table.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 42—Prestretching

We’ll also add a method to bind the vertex array to a shader program:

AirHockeyTextured/src/com/airhockey/android/objects/Table.java
public void bindData(TextureShaderProgram textureProgram) {

vertexArray.setVertexAttribPointer(
0,
textureProgram.getPositionAttributeLocation(),
POSITION_COMPONENT_COUNT,
STRIDE);

vertexArray.setVertexAttribPointer(
POSITION_COMPONENT_COUNT,
textureProgram.getTextureCoordinatesAttributeLocation(),
TEXTURE_COORDINATES_COMPONENT_COUNT,
STRIDE);

}

The method body calls setVertexAttribPointer() for each attribute, getting the
location of each attribute from the shader program. This will bind the position
data to the shader attribute referenced by getPositionAttributeLocation() and bind
the texture coordinate data to the shader attribute referenced by getTextureCo-
ordinatesAttributeLocation(). We’ll define these methods when we create the shader
classes.

We just need to add in one last method so we can draw the table:

report erratum • discuss

Creating a New Class Structure for Our Vertex Data • 131

http://media.pragprog.com/titles/kbogla/code/AirHockeyTextured/src/com/airhockey/android/objects/Table.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

AirHockeyTextured/src/com/airhockey/android/objects/Table.java
public void draw() {

glDrawArrays(GL_TRIANGLE_FAN, 0, 6);
}

Adding the Mallet Data

Create another class in the same package and call it Mallet. Add the following
code inside the class:

AirHockeyTextured/src/com/airhockey/android/objects/Mallet.java
private static final int POSITION_COMPONENT_COUNT = 2;
private static final int COLOR_COMPONENT_COUNT = 3;
private static final int STRIDE =

(POSITION_COMPONENT_COUNT + COLOR_COMPONENT_COUNT)
* BYTES_PER_FLOAT;

private static final float[] VERTEX_DATA = {
// Order of coordinates: X, Y, R, G, B
0f, -0.4f, 0f, 0f, 1f,
0f, 0.4f, 1f, 0f, 0f };

private final VertexArray vertexArray;

public Mallet() {
vertexArray = new VertexArray(VERTEX_DATA);

}

public void bindData(ColorShaderProgram colorProgram) {
vertexArray.setVertexAttribPointer(

0,
colorProgram.getPositionAttributeLocation(),
POSITION_COMPONENT_COUNT,
STRIDE);

vertexArray.setVertexAttribPointer(
POSITION_COMPONENT_COUNT,
colorProgram.getColorAttributeLocation(),
COLOR_COMPONENT_COUNT,
STRIDE);

}

public void draw() {
glDrawArrays(GL_POINTS, 0, 2);

}

This follows the same pattern as the table, and we’re still drawing the mallets
as points, just like before.

Our vertex data is now defined: we have one class to represent the table data,
another to represent the mallet data, and a third class to make it easier to
manage the vertex data itself. Next up is defining classes for our shader
programs.

Chapter 7. Adding Detail with Textures • 132

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockeyTextured/src/com/airhockey/android/objects/Table.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyTextured/src/com/airhockey/android/objects/Mallet.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

7.5 Adding Classes for Our Shader Programs

In this section, we’ll create one class for our texture shader program and
another for our color shader program; we’ll use the texture shader program
to draw the table and use the color shader program to draw the mallets. We’ll
also create a base class for common functionality. We don’t have to worry
about the line anymore now that it’s part of the texture.

Let’s start out by adding a helper function to ShaderHelper. Open up that class,
and add the following method to the end:

AirHockeyTextured/src/com/airhockey/android/util/ShaderHelper.java
public static int buildProgram(String vertexShaderSource,

String fragmentShaderSource) {
int program;

// Compile the shaders.
int vertexShader = compileVertexShader(vertexShaderSource);
int fragmentShader = compileFragmentShader(fragmentShaderSource);

// Link them into a shader program.
program = linkProgram(vertexShader, fragmentShader);

if (LoggerConfig.ON) {
validateProgram(program);

}

return program;
}

This helper function will compile the shaders defined by vertexShaderSource and
fragmentShaderSource and link them together into a program. If logging is turned
on, it will also validate the program. We’ll use this helper function to build
up our base class.

Create a new package called com.airhockey.android.programs, and create a new class
in that package called ShaderProgram. Add the following code inside the class:

report erratum • discuss

Adding Classes for Our Shader Programs • 133

http://media.pragprog.com/titles/kbogla/code/AirHockeyTextured/src/com/airhockey/android/util/ShaderHelper.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

AirHockeyTextured/src/com/airhockey/android/programs/ShaderProgram.java
// Uniform constants
protected static final String U_MATRIX = "u_Matrix";
protected static final String U_TEXTURE_UNIT = "u_TextureUnit";

// Attribute constants
protected static final String A_POSITION = "a_Position";
protected static final String A_COLOR = "a_Color";
protected static final String A_TEXTURE_COORDINATES = "a_TextureCoordinates";

// Shader program
protected final int program;
protected ShaderProgram(Context context, int vertexShaderResourceId,

int fragmentShaderResourceId) {
// Compile the shaders and link the program.
program = ShaderHelper.buildProgram(

TextResourceReader.readTextFileFromResource(
context, vertexShaderResourceId),

TextResourceReader.readTextFileFromResource(
context, fragmentShaderResourceId));

}

public void useProgram() {
// Set the current OpenGL shader program to this program.
glUseProgram(program);

}

We start out the class by defining some common constants. In the constructor,
we call the helper function that we’ve just defined, and we use it to build an
OpenGL shader program with the specified shaders. We close off the class
with useProgram(), which will call glUseProgram() to tell OpenGL to use program for
subsequent rendering.

Adding the Texture Shader Program

We’ll now define a class to set up and represent our texture shader program.
Create a new class called TextureShaderProgram that extends ShaderProgram, and
add the following code inside the class:

AirHockeyTextured/src/com/airhockey/android/programs/TextureShaderProgram.java
// Uniform locations
private final int uMatrixLocation;
private final int uTextureUnitLocation;

// Attribute locations
private final int aPositionLocation;
private final int aTextureCoordinatesLocation;

We’ve added four ints to hold the locations of our uniforms and attributes.

Chapter 7. Adding Detail with Textures • 134

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockeyTextured/src/com/airhockey/android/programs/ShaderProgram.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyTextured/src/com/airhockey/android/programs/TextureShaderProgram.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Initializing the Shader Program

The next step is to create a constructor to initialize the shader program. Let’s
add the following code:

AirHockeyTextured/src/com/airhockey/android/programs/TextureShaderProgram.java
public TextureShaderProgram(Context context) {

super(context, R.raw.texture_vertex_shader,
R.raw.texture_fragment_shader);

// Retrieve uniform locations for the shader program.
uMatrixLocation = glGetUniformLocation(program, U_MATRIX);
uTextureUnitLocation = glGetUniformLocation(program, U_TEXTURE_UNIT);

// Retrieve attribute locations for the shader program.
aPositionLocation = glGetAttribLocation(program, A_POSITION);
aTextureCoordinatesLocation =

glGetAttribLocation(program, A_TEXTURE_COORDINATES);
}

This constructor will call the superclass with our selected resources, and the
superclass will build the shader program. We’ll then read in and save the
uniform and attribute locations.

Setting Uniforms and Returning Attribute Locations

Next up is passing the matrix and texture into their uniforms. Let’s add the
following code:

AirHockeyTextured/src/com/airhockey/android/programs/TextureShaderProgram.java
public void setUniforms(float[] matrix, int textureId) {

// Pass the matrix into the shader program.
glUniformMatrix4fv(uMatrixLocation, 1, false, matrix, 0);

// Set the active texture unit to texture unit 0.
glActiveTexture(GL_TEXTURE0);

// Bind the texture to this unit.
glBindTexture(GL_TEXTURE_2D, textureId);

// Tell the texture uniform sampler to use this texture in the shader by
// telling it to read from texture unit 0.
glUniform1i(uTextureUnitLocation, 0);

}

The first step is to pass the matrix in to its uniform, which is straightforward
enough. The next part needs more explanation. When we draw using textures
in OpenGL, we don’t pass the texture directly in to the shader. Instead, we
use a texture unit to hold the texture. We do this because a GPU can only

report erratum • discuss

Adding Classes for Our Shader Programs • 135

http://media.pragprog.com/titles/kbogla/code/AirHockeyTextured/src/com/airhockey/android/programs/TextureShaderProgram.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyTextured/src/com/airhockey/android/programs/TextureShaderProgram.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

draw so many textures at the same time. It uses these texture units to repre-
sent the active textures currently being drawn.

We can swap textures in and out of texture units if we need to switch textures,
though this may slow down rendering if we do it too often. We can also use
several texture units to draw more than one texture at the same time.

We start out this part by setting the active texture unit to texture unit 0 with
a call to glActiveTexture(), and then we bind our texture to this unit with a call
to glBindTexture(). We then pass in the selected texture unit to u_TextureUnit in the
fragment shader by calling glUniform1i(uTextureUnitLocation, 0).

We’re almost done with our texture shader class; we just need a way of getting
the attribute locations so we can bind them to the correct vertex array data.
Add the following code to finish off the class:

AirHockeyTextured/src/com/airhockey/android/programs/TextureShaderProgram.java
public int getPositionAttributeLocation() {

return aPositionLocation;
}

public int getTextureCoordinatesAttributeLocation() {
return aTextureCoordinatesLocation;

}

Adding the Color Shader Program

Create another class in the same package and call it ColorShaderProgram. This
class should also extend ShaderProgram, and it will follow the same pattern as
TextureShaderProgram, with a constructor, a method to set uniforms, and methods
to get attribute locations. Add the following code inside the class:

AirHockeyTextured/src/com/airhockey/android/programs/ColorShaderProgram.java
// Uniform locations
private final int uMatrixLocation;

// Attribute locations
private final int aPositionLocation;
private final int aColorLocation;

public ColorShaderProgram(Context context) {
super(context, R.raw.simple_vertex_shader,

R.raw.simple_fragment_shader);
// Retrieve uniform locations for the shader program.
uMatrixLocation = glGetUniformLocation(program, U_MATRIX);
// Retrieve attribute locations for the shader program.
aPositionLocation = glGetAttribLocation(program, A_POSITION);
aColorLocation = glGetAttribLocation(program, A_COLOR);

}

Chapter 7. Adding Detail with Textures • 136

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockeyTextured/src/com/airhockey/android/programs/TextureShaderProgram.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyTextured/src/com/airhockey/android/programs/ColorShaderProgram.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

public void setUniforms(float[] matrix) {
// Pass the matrix into the shader program.
glUniformMatrix4fv(uMatrixLocation, 1, false, matrix, 0);

}

public int getPositionAttributeLocation() {
return aPositionLocation;

}

public int getColorAttributeLocation() {
return aColorLocation;

}

We’ll use this program for drawing our mallets.

By decoupling the shader programs from the data that gets drawn with these
programs, we’ve made it easier to reuse our code. For example, we could draw
any object with a color attribute using our color shader program, not just the
mallets.

7.6 Drawing Our Texture

Now that we’ve divided our vertex data and shader programs into different
classes, let’s update our renderer class to draw using our texture. Open up
AirHockeyRenderer, and delete everything except onSurfaceChanged(), as that’s the
only method we won’t change. Add the following members and constructor:

AirHockeyTextured/src/com/airhockey/android/AirHockeyRenderer.java
private final Context context;

private final float[] projectionMatrix = new float[16];
private final float[] modelMatrix = new float[16];

private Table table;
private Mallet mallet;

private TextureShaderProgram textureProgram;
private ColorShaderProgram colorProgram;

private int texture;

public AirHockeyRenderer(Context context) {
this.context = context;

}

We’ve kept around variables for the context and matrices, and we’ve also
added variables for our vertex arrays, shader programs, and texture. The
constructor has been reduced to just saving a copy of the Android context.

report erratum • discuss

Drawing Our Texture • 137

http://media.pragprog.com/titles/kbogla/code/AirHockeyTextured/src/com/airhockey/android/AirHockeyRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Initializing Our Variables

Let’s add the following onSurfaceCreated() to initialize our new variables:

AirHockeyTextured/src/com/airhockey/android/AirHockeyRenderer.java
@Override
public void onSurfaceCreated(GL10 glUnused, EGLConfig config) {

glClearColor(0.0f, 0.0f, 0.0f, 0.0f);

table = new Table();
mallet = new Mallet();

textureProgram = new TextureShaderProgram(context);
colorProgram = new ColorShaderProgram(context);

texture = TextureHelper.loadTexture(context, R.drawable.air_hockey_surface);
}

We set the clear color to black, initialize our vertex arrays and shader pro-
grams, and load in our texture using the helper function we defined back in
Section 7.2, Loading Textures into OpenGL, on page 119.

Drawing with the Texture

We won’t cover onSurfaceChanged() because it stays the same. Let’s add the fol-
lowing onDrawFrame() to draw the table and mallets:

AirHockeyTextured/src/com/airhockey/android/AirHockeyRenderer.java
@Override
public void onDrawFrame(GL10 glUnused) {

// Clear the rendering surface.
glClear(GL_COLOR_BUFFER_BIT);

// Draw the table.
textureProgram.useProgram();
textureProgram.setUniforms(projectionMatrix, texture);
table.bindData(textureProgram);
table.draw();

// Draw the mallets.
colorProgram.useProgram();
colorProgram.setUniforms(projectionMatrix);
mallet.bindData(colorProgram);
mallet.draw();

}

We clear the rendering surface, and then the first thing we do is draw the
table. First we call textureProgram.useProgram() to tell OpenGL to use this program,
and then we pass in the uniforms with a call to textureProgram.setUniforms(). The

Chapter 7. Adding Detail with Textures • 138

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockeyTextured/src/com/airhockey/android/AirHockeyRenderer.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyTextured/src/com/airhockey/android/AirHockeyRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

next step is to bind the vertex array data and our shader program with a call
to table.bindData(). We can then finally draw the table with a call to table.draw().

We repeat the same sequence with the color shader program to draw the
mallets.

Running the Program and Seeing the Results

Go ahead and run the program; it should look just like Figure 35, Air hockey
table with a filtered texture, on page 116. You might notice an error in your
logcat debug log, such as E/IMGSRV(20095): :0: HardwareMipGen: Failed to generate texture
mipmap levels (error=3), even though there will be no corresponding OpenGL error.
This might mean that your implementation doesn’t support non-square tex-
tures when calling glGenerateMipMap().

An easy fix for this is to squash the texture so that it is square. Because the
texture is being applied onto a rectangular surface, it will get stretched out
and will still look the same as before.

7.7 A Review

We now know how to load in a texture and display it on our air hockey table;
we’ve also learned how to reorganize our program so that we can easily switch
between multiple shader programs and vertex arrays in our code. We can
adjust our textures to fit the shape they’re being drawn on, either by adjusting
the texture coordinates or by prestretching or squashing the texture itself.

Textures don’t get drawn directly—they get bound to texture units, and then
we pass in these texture units to the shaders. We can still draw different
textures in our scene by swapping them in and out of texture units, but
excessive swapping may degrade performance. We can also use more than
one texture unit to draw several textures at the same time.

7.8 Exercises

Try loading in a different image, and use an additional texture unit to blend
this image with the current one. You can try adding or multiplying the values
together when you assign them to gl_FragColor in your fragment shader.

Once you’ve completed these exercises, we’ll learn how to improve the look
of our mallets in the next chapter.

report erratum • discuss

A Review • 139

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

CHAPTER 8

Building Simple Objects
We’ve come a long way with our air hockey project: our table is now at a good
angle, and it looks better now that we have a texture. However, our mallets
don’t actually look anything like a real mallet, since we’re currently drawing
each one as a point. Could you imagine playing air hockey with a small dot
as a mallet? Many applications combine simple shapes to build up more
complicated objects, and we’ll learn how to do that here so we can build a
better mallet.

We’re also missing an easy way to pan, rotate, and move around in the scene.
Many 3D applications implement this by using a view matrix; changes made
to this matrix affect the entire scene, as if we were looking at things from a
moving camera. We’ll add a view matrix to make it easier to rotate and move
around.

Let’s go over our game plan for the chapter:

• First we’ll learn how to group triangles into triangle strips and fans and
then combine these together into a single object.

• We’ll also learn how to define the view matrix and integrate it into our
matrix hierarchy.

Once we’ve finished these tasks, we’ll be able to move the scene around with
one line of code, and we’ll also have mallets that look more like something
we could actually use to hit a puck. Speaking of a puck, we don’t have one
yet, so we’ll add that too.

To start out, let’s copy our project from the previous chapter, and let’s name
the new project ‘AirHockeyWithBetterMallets’.

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

8.1 Combining Triangle Strips and Triangle Fans

To build a mallet, or a puck for that matter, let’s first try to imagine the shape
at a higher level. A puck can be represented as a flat cylinder, as follows:

A mallet is just a bit more complex and can be represented as two cylinders,
one on top of the other:

I know what you’re thinking: a real air hockey mallet is more than just two
cylinders stuck together. Bear with me; once we learn the basics, you may
feel just confident enough to build up a more detailed mallet.

To figure out how to build these objects in OpenGL, let’s imagine how we’d
build this out of paper: first we’d cut out a circle for the cylinder top. We’d
then take a flat piece of paper, cut it to the right size, and roll it into a tube.
To make the cylinder, we could then put the circle on top of the tube. We
would need one of these cylinders for the puck and two for the mallet.

It turns out that this is actually pretty easy to do with OpenGL. To build the
circle, we can use a triangle fan. We first covered triangle fans back in Section
4.2, Introducing Triangle Fans, on page 61, when we used one to build our
table out of six vertices and four triangles. We can also use a triangle fan to
represent a circle; we just need to use a lot more triangles and arrange the
outside vertices in the shape of a circle.

To build the side of the cylinder, we can use a related concept known as a
triangle strip. Like a triangle fan, a triangle strip lets us define many triangles
without duplicating the shared points over and over; but instead of fanning
around in a circle, a triangle strip is built like a bridge girder, with the triangles
laid out next to each other:

Chapter 8. Building Simple Objects • 142

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Like with the triangle fan, the first three vertices of a triangle strip define the
first triangle. Each additional vertex after that defines an additional triangle.
To build the side of the cylinder using a triangle strip, we just need to roll the
strip around in a tube and make sure that the last two vertices line up with
the first two.

8.2 Adding a Geometry Class

We now have a good idea of what we need to build a puck and a mallet: for
the puck, we need one triangle fan for the top and one triangle strip for the
side; for the mallet, we need two triangle fans and two triangle strips. To make
it easier to build these objects, we’ll define a Geometry class to hold some basic
shape definitions and an ObjectBuilder to do the actual building.

Joe asks:

Why Not Just Use a Library?
There are decent 3D libraries for Android out there, ranging from libgdx,a a thin open-
source wrapper, to more advanced commercial frameworks such as Unity3D.b These
libraries can help improve your productivity, but only once you’ve developed a basic
understanding of OpenGL, 3D rendering, and how the pieces fit together at a low
level; otherwise things will make little sense and you may as well be working with
black magic. As an example, frameworks like Spring and Hibernate can make Java
more productive, but it would be jumping the gun to start using them without
knowing anything about how Java works.

Studying these libraries can also be a great way to learn how to develop your own
components. Java3D and jMonkeyEngine are among the more commonly used
frameworks on the Java desktop; they are a good place to start, as their documentation
is easily accessible online.c

a. http://code.google.com/p/libgdx/
b. http://unity3d.com/
c. http://www.oracle.com/technetwork/java/javase/tech/index-jsp-138252.html and

http://jmonkeyengine.com/, respectively.

report erratum • discuss

Adding a Geometry Class • 143

http://code.google.com/p/libgdx/
http://unity3d.com/
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-138252.html
http://jmonkeyengine.com/
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Let’s start out with our Geometry class. Create a new class called Geometry in
the package com.airhockey.android.util. Add the following code inside the class:

AirHockeyWithImprovedMallets/src/com/airhockey/android/util/Geometry.java
public static class Point {

public final float x, y, z;
public Point(float x, float y, float z) {

this.x = x;
this.y = y;
this.z = z;

}

public Point translateY(float distance) {
return new Point(x, y + distance, z);

}
}

We’ve added a class to represent a point in 3D space, along with a helper
function to translate the point along the y-axis. We’ll also need a definition
for a circle; add the following after Point:

AirHockeyWithImprovedMallets/src/com/airhockey/android/util/Geometry.java
public static class Circle {

public final Point center;
public final float radius;

public Circle(Point center, float radius) {
this.center = center;
this.radius = radius;

}

public Circle scale(float scale) {
return new Circle(center, radius * scale);

}
}

We also have a helper function to scale the circle’s radius. Last up is a defini-
tion for a cylinder:

AirHockeyWithImprovedMallets/src/com/airhockey/android/util/Geometry.java
public static class Cylinder {

public final Point center;
public final float radius;
public final float height;

public Cylinder(Point center, float radius, float height) {
this.center = center;
this.radius = radius;
this.height = height;

}
}

Chapter 8. Building Simple Objects • 144

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockeyWithImprovedMallets/src/com/airhockey/android/util/Geometry.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyWithImprovedMallets/src/com/airhockey/android/util/Geometry.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyWithImprovedMallets/src/com/airhockey/android/util/Geometry.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

A cylinder is like an extended circle, so we have a center, a radius, and a
height.

You’ll probably have noticed that we’ve defined our geometry classes as
immutable; whenever we make a change, we return a new object. This helps
to make the code easier to work with and understand, but when you need
top performance, you might want to stick with simple floating-point arrays
and mutate them with static functions.

8.3 Adding an Object Builder

Now we can start writing our object builder class. Let’s create a class in the
package com.airhockey.android.objects called ObjectBuilder. Start out with the following
code inside the class:

AirHockeyWithImprovedMallets/src/com/airhockey/android/objects/ObjectBuilder.java
private static final int FLOATS_PER_VERTEX = 3;
private final float[] vertexData;
private int offset = 0;

private ObjectBuilder(int sizeInVertices) {
vertexData = new float[sizeInVertices * FLOATS_PER_VERTEX];

}

There’s nothing too fancy here so far. We’ve defined a constant to represent
how many floats we need for a vertex, an array to hold these vertices, and a
variable to keep track of the position in the array for the next vertex. Our
constructor initializes the array based on the required size in vertices.

We’ll soon define a couple of static methods to generate a puck and a mallet.
These static methods will create a new ObjectBuilder instance with the proper
size, call instance methods on ObjectBuilder to add vertices to vertexData, and
return the generated data back to the caller.

Let’s set a few requirements for how our object builder should work:

• The caller can decide how many points the object should have. The more
points, the smoother the puck or mallet will look.

• The object will be contained in one floating-point array. After the object
is built, the caller will have one array to bind to OpenGL and one command
to draw the object.

• The object will be centered at the caller’s specified position and will lie
flat on the x-z plane. In other words, the top of the object will point straight
up.

Let’s start out with a method to calculate the size of a cylinder top in vertices:

report erratum • discuss

Adding an Object Builder • 145

http://media.pragprog.com/titles/kbogla/code/AirHockeyWithImprovedMallets/src/com/airhockey/android/objects/ObjectBuilder.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

AirHockeyWithImprovedMallets/src/com/airhockey/android/objects/ObjectBuilder.java
private static int sizeOfCircleInVertices(int numPoints) {

return 1 + (numPoints + 1);
}

A cylinder top is a circle built out of a triangle fan; it has one vertex in the
center, one vertex for each point around the circle, and the first vertex around
the circle is repeated twice so that we can close the circle off.

The following is a method to calculate the size of a cylinder side in vertices:

AirHockeyWithImprovedMallets/src/com/airhockey/android/objects/ObjectBuilder.java
private static int sizeOfOpenCylinderInVertices(int numPoints) {

return (numPoints + 1) * 2;
}

A cylinder side is a rolled-up rectangle built out of a triangle strip, with two
vertices for each point around the circle, and with the first two vertices
repeated twice so that we can close off the tube.

Building a Puck with a Cylinder

We can now create a static method to generate a puck. Go ahead and create
a new method called createPuck() and define it as follows:

AirHockeyWithImprovedMallets/src/com/airhockey/android/objects/ObjectBuilder.java
static GeneratedData createPuck(Cylinder puck, int numPoints) {

int size = sizeOfCircleInVertices(numPoints)
+ sizeOfOpenCylinderInVertices(numPoints);

ObjectBuilder builder = new ObjectBuilder(size);

Circle puckTop = new Circle(
puck.center.translateY(puck.height / 2f),
puck.radius);

builder.appendCircle(puckTop, numPoints);
builder.appendOpenCylinder(puck, numPoints);

return builder.build();
}

The first thing we do is figure out how many vertices we need to represent
the puck, and then we instantiate a new ObjectBuilder with that size. A puck is
built out of one cylinder top (equivalent to a circle) and one cylinder side, so
the total size in vertices will be equal to sizeOfCircleInVertices(numPoints) + sizeOfOpen-
CylinderInVertices(numPoints).

Chapter 8. Building Simple Objects • 146

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockeyWithImprovedMallets/src/com/airhockey/android/objects/ObjectBuilder.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyWithImprovedMallets/src/com/airhockey/android/objects/ObjectBuilder.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyWithImprovedMallets/src/com/airhockey/android/objects/ObjectBuilder.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

We then calculate where the top of the puck should be and call appendCircle()
to create it. We also generate the side of the puck by calling appendOpenCylinder(),
and then we return the generated data by returning the results of build(). None
of these methods exist yet, so we’ll need to create them.

Why do we move the top of the puck by puck.height / 2f? Let’s take a look at the
following image:

The puck is vertically centered at center.y, so it’s fine to place the cylinder side
there. The cylinder top, however, needs to be placed at the top of the puck.
To do that, we move it up by half of the puck’s overall height.

Building a Circle with a Triangle Fan

The next step is to write the code to build the top of the puck using a triangle
fan. We’ll write the data into vertexData, and we’ll use offset to keep track of
where we’re writing in the array.

Create a new method called appendCircle(), and add the following code:

AirHockeyWithImprovedMallets/src/com/airhockey/android/objects/ObjectBuilder.java
private void appendCircle(Circle circle, int numPoints) {

// Center point of fan
vertexData[offset++] = circle.center.x;
vertexData[offset++] = circle.center.y;
vertexData[offset++] = circle.center.z;

// Fan around center point. <= is used because we want to generate
// the point at the starting angle twice to complete the fan.
for (int i = 0; i <= numPoints; i++) {

float angleInRadians =
((float) i / (float) numPoints)

* ((float) Math.PI * 2f);

vertexData[offset++] =
circle.center.x

+ circle.radius * FloatMath.cos(angleInRadians);
vertexData[offset++] = circle.center.y;
vertexData[offset++] =

circle.center.z
+ circle.radius * FloatMath.sin(angleInRadians);

}
}

report erratum • discuss

Adding an Object Builder • 147

http://media.pragprog.com/titles/kbogla/code/AirHockeyWithImprovedMallets/src/com/airhockey/android/objects/ObjectBuilder.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 43—Unit circle

To build the triangle fan, we first define a center vertex at circle.center, and then
we fan around the center point, taking care to repeat the first point around
the circle twice. We then use trigonometry functions and the concept of a unit
circle (see the preceding figure) to generate our points.

To generate points around a circle, we first need a loop that will range over
the entire circle from 0 to 360 degrees, or 0 to 2 times pi in radians. To find
the x position of a point around the circle, we call cos(angle), and to find the z
position, we call sin(angle); we scale both by the circle’s radius.

Since our circle is going to be lying flat on the x-z plane, the y component of
the unit circle maps to our y position.

Adding a Draw Command for the Triangle Fan

We’ll also need to tell OpenGL how to draw the top of the puck. Since a puck
is built out of two primitives, a triangle fan for the top and a triangle strip for
the side, we need a way to combine these draw commands together so that
later on we can just call puck.draw(). One way we can do this is by adding each
draw command into a draw list.

Let’s create an interface to represent a single draw command. Add the following
code to the top of ObjectBuilder:

AirHockeyWithImprovedMallets/src/com/airhockey/android/objects/ObjectBuilder.java
static interface DrawCommand {

void draw();
}

We’ll also need an instance variable to hold the collated draw commands.
Add the following definition after vertexData:

Chapter 8. Building Simple Objects • 148

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockeyWithImprovedMallets/src/com/airhockey/android/objects/ObjectBuilder.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

AirHockeyWithImprovedMallets/src/com/airhockey/android/objects/ObjectBuilder.java
private final List<DrawCommand> drawList = new ArrayList<DrawCommand>();

We can now add a draw command for our triangle fan. Modify appendCircle() by
adding the following variable definitions at the top:

AirHockeyWithImprovedMallets/src/com/airhockey/android/objects/ObjectBuilder.java
final int startVertex = offset / FLOATS_PER_VERTEX;
final int numVertices = sizeOfCircleInVertices(numPoints);

Since we’re only using one array for the object, we need to tell OpenGL the
right vertex offsets for each draw command. We calculate the offset and length
and store them into startVertex and numVertices. Now we can add the following
to the end of appendCircle():

AirHockeyWithImprovedMallets/src/com/airhockey/android/objects/ObjectBuilder.java
drawList.add(new DrawCommand() {

@Override
public void draw() {

glDrawArrays(GL_TRIANGLE_FAN, startVertex, numVertices);
}

});

With this code, we create a new inner class that calls glDrawArrays() and we add
the inner class to our draw list. To draw the puck later, we just have to execute
each draw() method in the list.

Building a Cylinder Side with a Triangle Strip

The next step is building the side of the puck with a triangle strip. Let’s start
off by adding the following code after appendCircle():

AirHockeyWithImprovedMallets/src/com/airhockey/android/objects/ObjectBuilder.java
private void appendOpenCylinder(Cylinder cylinder, int numPoints) {

final int startVertex = offset / FLOATS_PER_VERTEX;
final int numVertices = sizeOfOpenCylinderInVertices(numPoints);
final float yStart = cylinder.center.y - (cylinder.height / 2f);
final float yEnd = cylinder.center.y + (cylinder.height / 2f);

Just like before, we figure out the starting vertex and the number of vertices
so that we can use them in our draw command. We also figure out where the
puck should start and end—the positions should be as follows:

report erratum • discuss

Adding an Object Builder • 149

http://media.pragprog.com/titles/kbogla/code/AirHockeyWithImprovedMallets/src/com/airhockey/android/objects/ObjectBuilder.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyWithImprovedMallets/src/com/airhockey/android/objects/ObjectBuilder.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyWithImprovedMallets/src/com/airhockey/android/objects/ObjectBuilder.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyWithImprovedMallets/src/com/airhockey/android/objects/ObjectBuilder.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Add the following code to generate the actual triangle strip:

AirHockeyWithImprovedMallets/src/com/airhockey/android/objects/ObjectBuilder.java
for (int i = 0; i <= numPoints; i++) {

float angleInRadians =
((float) i / (float) numPoints)

* ((float) Math.PI * 2f);

float xPosition =
cylinder.center.x

+ cylinder.radius * FloatMath.cos(angleInRadians);

float zPosition =
cylinder.center.z

+ cylinder.radius * FloatMath.sin(angleInRadians);

vertexData[offset++] = xPosition;
vertexData[offset++] = yStart;
vertexData[offset++] = zPosition;

vertexData[offset++] = xPosition;
vertexData[offset++] = yEnd;
vertexData[offset++] = zPosition;

}

We use the same math as before to generate vertices around the circle, except
this time we generate two vertices for each point around the circle: one for
the top of the cylinder and one for the bottom. We repeat the positions of the
first two points so that we can close off the cylinder.

Add the following to finish the method:

AirHockeyWithImprovedMallets/src/com/airhockey/android/objects/ObjectBuilder.java
drawList.add(new DrawCommand() {

@Override
public void draw() {

glDrawArrays(GL_TRIANGLE_STRIP, startVertex, numVertices);
}

});
}

We use GL_TRIANGLE_STRIP to tell OpenGL to draw a triangle strip.

Returning the Generated Data

To make createPuck() work, we just need to define the build() method. We’ll use
this to return the generated data inside of a GeneratedData object. We haven’t
defined this class yet, so let’s add the following class to the top of ObjectBuilder
just after DrawCommand:

Chapter 8. Building Simple Objects • 150

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockeyWithImprovedMallets/src/com/airhockey/android/objects/ObjectBuilder.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyWithImprovedMallets/src/com/airhockey/android/objects/ObjectBuilder.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

AirHockeyWithImprovedMallets/src/com/airhockey/android/objects/ObjectBuilder.java
static class GeneratedData {

final float[] vertexData;
final List<DrawCommand> drawList;

GeneratedData(float[] vertexData, List<DrawCommand> drawList) {
this.vertexData = vertexData;
this.drawList = drawList;

}
}

This is just a holder class so that we can return both the vertex data and the
draw list in a single object. Now we just need to define build():

AirHockeyWithImprovedMallets/src/com/airhockey/android/objects/ObjectBuilder.java
private GeneratedData build() {

return new GeneratedData(vertexData, drawList);
}

That’s everything we need for createPuck() to work. Let’s take a quick moment
to review the flow:

• First we call the static method createPuck() from outside the class. This
method creates a new ObjectBuilder with the right array size to hold all of
the data for the puck. It also creates a display list so that we can draw
the puck later on.

• Inside createPuck(), we call appendCircle() and appendOpenCylinder() to generate
the top and sides of the puck. Each method adds its data to vertexData and
a draw command to drawList.

• Finally, we call build() to return the generated data.

Building a Mallet with Two Cylinders

We can now use what we’ve learned to build a mallet. A mallet can be built
out of two cylinders, so building a mallet is almost like building two pucks
of different sizes. We’ll define the mallet a certain way, as seen in Figure 44,
Mallet Definition, on page 152.

The handle height will be about 75 percent of the overall height, and the base
height will be 25 percent of the overall height. We can also say that the han-
dle’s width is about one-third the overall width. With these definitions in
place, we’ll be able to calculate where to place the two cylinders that make
up the mallet.

When writing out these definitions, it sometimes helps to take a sheet of paper
and draw the object out and then plot where everything is relative to the

report erratum • discuss

Adding an Object Builder • 151

http://media.pragprog.com/titles/kbogla/code/AirHockeyWithImprovedMallets/src/com/airhockey/android/objects/ObjectBuilder.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyWithImprovedMallets/src/com/airhockey/android/objects/ObjectBuilder.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 44—Mallet Definition

center and sides of the objects. To create our mallet, we’ll need to figure out
the y position for each cylinder top as well as the center position for each
cylinder.

Let’s add a new method called createMallet() just after createPuck(). We’ll start off
with the following code:

AirHockeyWithImprovedMallets/src/com/airhockey/android/objects/ObjectBuilder.java
static GeneratedData createMallet(

Point center, float radius, float height, int numPoints) {
int size = sizeOfCircleInVertices(numPoints) * 2

+ sizeOfOpenCylinderInVertices(numPoints) * 2;

ObjectBuilder builder = new ObjectBuilder(size);

// First, generate the mallet base.
float baseHeight = height * 0.25f;

Circle baseCircle = new Circle(
center.translateY(-baseHeight),
radius);

Cylinder baseCylinder = new Cylinder(
baseCircle.center.translateY(-baseHeight / 2f),
radius, baseHeight);

builder.appendCircle(baseCircle, numPoints);
builder.appendOpenCylinder(baseCylinder, numPoints);

We create a new ObjectBuilder of the proper size, and then we generate the base
of the mallet. This code is quite similar to what we did in createPuck().

Chapter 8. Building Simple Objects • 152

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockeyWithImprovedMallets/src/com/airhockey/android/objects/ObjectBuilder.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

When you optimize imports, Eclipse might give you the choice to import
com.airhockey.android.util.Geometry.Point, which is our Point class, or android.Graphics.Point,
which is a different Point class in the Android SDK. You’ll want to make sure
to select our Point class.

Let’s add the following code to generate the handle:

AirHockeyWithImprovedMallets/src/com/airhockey/android/objects/ObjectBuilder.java
float handleHeight = height * 0.75f;
float handleRadius = radius / 3f;

Circle handleCircle = new Circle(
center.translateY(height * 0.5f),
handleRadius);

Cylinder handleCylinder = new Cylinder(
handleCircle.center.translateY(-handleHeight / 2f),
handleRadius, handleHeight);

builder.appendCircle(handleCircle, numPoints);
builder.appendOpenCylinder(handleCylinder, numPoints);

We follow the same steps as before but with different coordinates and different
sizes. Let’s add a call to build() to complete the method:

AirHockeyWithImprovedMallets/src/com/airhockey/android/objects/ObjectBuilder.java
return builder.build();

}

That’s it for our ObjectBuilder class! We can now generate pucks and mallets;
and when we want to draw them, all we need to do is bind the vertex data to
OpenGL and call object.draw().

8.4 Updating Our Objects

Now that we have an object builder, we’ll need to update our Mallet class since
we’re no longer drawing it as a point. We’ll also need to add a new Puck class.
Let’s start with the puck. Create a new class in the same package called Puck,
and add the following code to the class:

AirHockeyWithImprovedMallets/src/com/airhockey/android/objects/Puck.java
private static final int POSITION_COMPONENT_COUNT = 3;

public final float radius, height;

private final VertexArray vertexArray;
private final List<DrawCommand> drawList;

public Puck(float radius, float height, int numPointsAroundPuck) {
GeneratedData generatedData = ObjectBuilder.createPuck(new Cylinder(

new Point(0f, 0f, 0f), radius, height), numPointsAroundPuck);

report erratum • discuss

Updating Our Objects • 153

http://media.pragprog.com/titles/kbogla/code/AirHockeyWithImprovedMallets/src/com/airhockey/android/objects/ObjectBuilder.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyWithImprovedMallets/src/com/airhockey/android/objects/ObjectBuilder.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyWithImprovedMallets/src/com/airhockey/android/objects/Puck.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

this.radius = radius;
this.height = height;

vertexArray = new VertexArray(generatedData.vertexData);
drawList = generatedData.drawList;

}

When a new Puck is created, it will generate the object data, store the vertices
in a native buffer with vertexArray, and store the draw list in drawList.

Let’s complete the class:

AirHockeyWithImprovedMallets/src/com/airhockey/android/objects/Puck.java
public void bindData(ColorShaderProgram colorProgram) {

vertexArray.setVertexAttribPointer(0,
colorProgram.getPositionAttributeLocation(),
POSITION_COMPONENT_COUNT, 0);

}
public void draw() {

for (DrawCommand drawCommand : drawList) {
drawCommand.draw();

}
}

The first method, bindData() follows the same pattern that we also follow with
Table and Mallet: it binds the vertex data to the attributes defined by the shader
program. The second method, draw(), just goes through the display list created
by ObjectBuilder.createPuck().

We’ll also need to update the Mallet class. Replace everything inside the class
with the following code:

AirHockeyWithImprovedMallets/src/com/airhockey/android/objects/Mallet.java
private static final int POSITION_COMPONENT_COUNT = 3;

public final float radius;
public final float height;

private final VertexArray vertexArray;
private final List<DrawCommand> drawList;

public Mallet(float radius, float height, int numPointsAroundMallet) {
GeneratedData generatedData = ObjectBuilder.createMallet(new Point(0f,

0f, 0f), radius, height, numPointsAroundMallet);

this.radius = radius;
this.height = height;

vertexArray = new VertexArray(generatedData.vertexData);
drawList = generatedData.drawList;

}

Chapter 8. Building Simple Objects • 154

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockeyWithImprovedMallets/src/com/airhockey/android/objects/Puck.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyWithImprovedMallets/src/com/airhockey/android/objects/Mallet.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

public void bindData(ColorShaderProgram colorProgram) {
vertexArray.setVertexAttribPointer(0,

colorProgram.getPositionAttributeLocation(),
POSITION_COMPONENT_COUNT, 0);

}
public void draw() {

for (DrawCommand drawCommand : drawList) {
drawCommand.draw();

}
}

This follows the same pattern as for Puck.

8.5 Updating Shaders

We’ll also need to update our color shader. We defined our puck and mallet
with a per-vertex position but not with a per-vertex color. Instead we’ll have
to pass in the color as a uniform. The first thing we’ll do to make these changes
is add a new constant to ShaderProgram:

AirHockeyWithImprovedMallets/src/com/airhockey/android/programs/ShaderProgram.java
protected static final String U_COLOR = "u_Color";

The next step is to update ColorShaderProgram. Go ahead and remove all references
to aColorLocation, including getColorAttributeLocation(), and then add the following
uniform location definition:

AirHockeyWithImprovedMallets/src/com/airhockey/android/programs/ColorShaderProgram.java
private final int uColorLocation;

Update the constructor to set the uniform location:

uColorLocation = glGetUniformLocation(program, U_COLOR);

To complete the changes, update setUniforms() as follows:

public void setUniforms(float[] matrix, float r, float g, float b) {
glUniformMatrix4fv(uMatrixLocation, 1, false, matrix, 0);
glUniform4f(uColorLocation, r, g, b, 1f);

}

We’ll also need to update the actual shaders. Update the contents of simple_ver-
tex_shader.glsl as follows:

AirHockeyWithImprovedMallets/res/raw/simple_vertex_shader.glsl
uniform mat4 u_Matrix;
attribute vec4 a_Position;
void main()
{

gl_Position = u_Matrix * a_Position;
}

report erratum • discuss

Updating Shaders • 155

http://media.pragprog.com/titles/kbogla/code/AirHockeyWithImprovedMallets/src/com/airhockey/android/programs/ShaderProgram.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyWithImprovedMallets/src/com/airhockey/android/programs/ColorShaderProgram.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyWithImprovedMallets/res/raw/simple_vertex_shader.glsl
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Update simple_fragment_shader.glsl as follows:

AirHockeyWithImprovedMallets/res/raw/simple_fragment_shader.glsl
precision mediump float;

uniform vec4 u_Color;

void main()
{

gl_FragColor = u_Color;
}

Our shaders should now be up-to-date.

8.6 Integrating Our Changes

The hardest part of this chapter is done. We learned how to build a puck and
a mallet out of simple geometric shapes, and we’ve also updated our shaders
to reflect the changes. All that’s left is to integrate the changes into AirHock-
eyRenderer; at the same time, we’ll also learn how to add the concept of a
camera by adding a view matrix.

So why would we want to add another matrix? When we first started our air
hockey project, we originally didn’t use any matrices at all. We first added an
orthographic matrix to adjust for the aspect ratio, and then we switched to
a perspective matrix to get a 3D projection. We then added a model matrix
to start moving stuff around. A view matrix is really just an extension of a
model matrix; it’s used for the same purposes, but it applies equally to every
object in the scene.

A Simple Matrix Hierarchy

Let’s take a moment to review the three main types of matrices we’ll use to
get an object onto the screen:

Model matrix
A model matrix is used to place objects into world-space coordinates. For
example, we might have our puck model and our mallet model initially
centered at (0, 0, 0). Without a model matrix, our models will be stuck
there: if we wanted to move them, we’d have to update each and every
vertex ourselves. Instead of doing that, we can use a model matrix and
transform our vertices by multiplying them with the matrix. If we want
to move our puck to (5, 5), we just need to prepare a model matrix that
will do this for us.

Chapter 8. Building Simple Objects • 156

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockeyWithImprovedMallets/res/raw/simple_fragment_shader.glsl
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

View matrix
A view matrix is used for the same reasons as a model matrix, but it
equally affects every object in the scene. Because it affects everything, it
is functionally equivalent to a camera: move the camera around, and
you’ll see things from a different viewpoint.

The advantage of using a separate matrix is that it lets us prebake a
bunch of transformations into a single matrix. As an example, imagine
we wanted to rotate the scene around and move it a certain amount into
the distance. One way we could do this is by issuing the same rotate and
translate calls for every single object. While that works, it’s easier to just
save these transformations into a separate matrix and apply that to every
object.

Projection matrix
Finally, we have the projection matrix. This matrix helps to create the
illusion of 3D, and it usually only changes whenever the screen changes
orientation.

Let’s also review how a vertex gets transformed from its original position to
the screen:

vertexmodel

This is a vertex in model coordinates. An example would be the positions
contained inside the table vertices.

vertexworld

This is a vertex that has been positioned in the world with a model matrix.

vertexeye

This is a vertex relative to our eyes or camera. We use a view matrix to
move all vertices in the world around relative to our current viewing
position.

vertexclip

This is a vertex that has been processed with a projection matrix. The
next step will be to do the perspective divide, as explained in Perspective
Division, on page 97.

vertexndc

This is a vertex in normalized device coordinates. Once a vertex is in these
coordinates, OpenGL will map it onto the viewport, and you’ll be able to
see it on your screen.

Here’s what the chain looks like:

report erratum • discuss

Integrating Our Changes • 157

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

vertexclip = ProjectionMatrix * vertexeye

vertexclip = ProjectionMatrix * ViewMatrix * vertexworld

vertexclip = ProjectionMatrix * ViewMatrix * ModelMatrix * vertexmodel

We’ll need to apply each matrix in this order to get the right results.

Adding the New Objects to Our Air Hockey Table

Let’s go ahead and add a view matrix to AirHockeyRender, and we’ll also work in
our new mallets and puck at the same time. We’ll first add a few new matrix
definitions to the top of the class:

AirHockeyWithImprovedMallets/src/com/airhockey/android/AirHockeyRenderer.java
private final float[] viewMatrix = new float[16];
private final float[] viewProjectionMatrix = new float[16];
private final float[] modelViewProjectionMatrix = new float[16];

We’ll store our view matrix in viewMatrix, and the other two matrices will be
used to hold the results of matrix multiplications. Let’s also add a definition
for our new puck just after mallet:

AirHockeyWithImprovedMallets/src/com/airhockey/android/AirHockeyRenderer.java
private Puck puck;

Don’t forget to update your imports. The next step is to initialize our mallet and
puck objects. We’ll create them with a specific size in onSurfaceCreated(), as follows:

AirHockeyWithImprovedMallets/src/com/airhockey/android/AirHockeyRenderer.java
mallet = new Mallet(0.08f, 0.15f, 32);
puck = new Puck(0.06f, 0.02f, 32);

The radius and height for the puck and mallet are set to an arbitrary size so
that they look proportionate to the table. Each object will be created with 32
points around the circle.

Initializing the New Matrices

The next step is to update onSurfaceChanged() and initialize the view matrix.
Update onSurfaceChanged() to match the following contents:

AirHockeyWithImprovedMallets/src/com/airhockey/android/AirHockeyRenderer.java
@Override
public void onSurfaceChanged(GL10 glUnused, int width, int height) {

// Set the OpenGL viewport to fill the entire surface.
glViewport(0, 0, width, height);
MatrixHelper.perspectiveM(projectionMatrix, 45, (float) width

/ (float) height, 1f, 10f);
setLookAtM(viewMatrix, 0, 0f, 1.2f, 2.2f, 0f, 0f, 0f, 0f, 1f, 0f);

}

Chapter 8. Building Simple Objects • 158

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockeyWithImprovedMallets/src/com/airhockey/android/AirHockeyRenderer.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyWithImprovedMallets/src/com/airhockey/android/AirHockeyRenderer.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyWithImprovedMallets/src/com/airhockey/android/AirHockeyRenderer.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyWithImprovedMallets/src/com/airhockey/android/AirHockeyRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

The first part of the method is pretty standard: we set the viewport, and we
set up a projection matrix. The next part is new: we call setLookAtM() to create
a special type of view matrix:

setLookAtM(float[] rm, int rmOffset, float eyeX, float eyeY, float eyeZ, float centerX, float centerY,
float centerZ, float upX, float upY, float upZ)

This is the destination array. This array’s length
should be at least sixteen elements so that it can
store the view matrix.

float[] rm

setLookAtM() will begin writing the result at this offset
into rm.

int rmOffset

This is where the eye will be. Everything in the
scene will appear as if we’re viewing it from this
point.

float eyeX, eyeY, eyeZ

This is where the eye is looking; this position will
appear in the center of the scene.

float centerX, centerY,
centerZ

If we were talking about your eyes, then this is
where your head would be pointing. An upY of 1
means your head would be pointing straight up.

float upX, upY, upZ

Table 6—setLookAtM() parameters

We call setLookAtM() with an eye of (0, 1.2, 2.2), meaning your eye will be 1.2
units above the x-z plane and 2.2 units back. In other words, everything in
the scene will appear 1.2 units below you and 2.2 units in front of you. A
center of (0, 0, 0) means you’ll be looking down toward the origin in front of
you, and an up of (0, 1, 0) means that your head will be pointing straight up
and the scene won’t be rotated to either side.

Updating onDrawFrame

A couple of last changes remain before we can run our program and see the
new changes. Add the following code to onDrawFrame() just after the call to
glClear():

AirHockeyWithImprovedMallets/src/com/airhockey/android/AirHockeyRenderer.java
multiplyMM(viewProjectionMatrix, 0, projectionMatrix, 0, viewMatrix, 0);

This will cache the results of multiplying the projection and view matrices
together into viewProjectionMatrix. Replace the rest of onDrawFrame() as follows:

report erratum • discuss

Integrating Our Changes • 159

http://media.pragprog.com/titles/kbogla/code/AirHockeyWithImprovedMallets/src/com/airhockey/android/AirHockeyRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

AirHockeyWithImprovedMallets/src/com/airhockey/android/AirHockeyRenderer.java
positionTableInScene();
textureProgram.useProgram();
textureProgram.setUniforms(modelViewProjectionMatrix, texture);
table.bindData(textureProgram);
table.draw();

// Draw the mallets.
positionObjectInScene(0f, mallet.height / 2f, -0.4f);
colorProgram.useProgram();
colorProgram.setUniforms(modelViewProjectionMatrix, 1f, 0f, 0f);
mallet.bindData(colorProgram);
mallet.draw();

positionObjectInScene(0f, mallet.height / 2f, 0.4f);
colorProgram.setUniforms(modelViewProjectionMatrix, 0f, 0f, 1f);
// Note that we don't have to define the object data twice -- we just
// draw the same mallet again but in a different position and with a
// different color.
mallet.draw();

// Draw the puck.
positionObjectInScene(0f, puck.height / 2f, 0f);
colorProgram.setUniforms(modelViewProjectionMatrix, 0.8f, 0.8f, 1f);
puck.bindData(colorProgram);
puck.draw();

This code is mostly the same as it was in the last project, but there are a few
key differences. The first difference is that we call positionTableInScene() and posi-
tionObjectInScene() before we draw those objects. We’ve also updated setUniforms()
before drawing the mallets, and we’ve added code to draw the puck.

Did you also notice that we’re drawing two mallets with the same mallet data?
We could use the same set of vertices to draw hundreds of objects if we
wanted to: all we have to do is update the model matrix before drawing each
object.

Let’s add the definition for positionTableInScene():

AirHockeyWithImprovedMallets/src/com/airhockey/android/AirHockeyRenderer.java
private void positionTableInScene() {

// The table is defined in terms of X & Y coordinates, so we rotate it
// 90 degrees to lie flat on the XZ plane.
setIdentityM(modelMatrix, 0);
rotateM(modelMatrix, 0, -90f, 1f, 0f, 0f);
multiplyMM(modelViewProjectionMatrix, 0, viewProjectionMatrix,

0, modelMatrix, 0);
}

Chapter 8. Building Simple Objects • 160

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockeyWithImprovedMallets/src/com/airhockey/android/AirHockeyRenderer.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyWithImprovedMallets/src/com/airhockey/android/AirHockeyRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

The table is originally defined in terms of x and y coordinates, so to get it to
lie flat on the ground, we rotate it 90 degrees back around the x-axis. Note
that unlike previous lessons, we don’t also translate the table into the distance
because we want to keep the table at (0, 0, 0) in world coordinates, and the
view matrix is already taking care of making the table visible for us.

The last step is to combine all the matrices together by multiplying viewProjec-
tionMatrix and modelMatrix and storing the result in modelViewProjectionMatrix, which
will then get passed into the shader program.

Let’s also add the definition for positionObjectInScene():

AirHockeyWithImprovedMallets/src/com/airhockey/android/AirHockeyRenderer.java
private void positionObjectInScene(float x, float y, float z) {

setIdentityM(modelMatrix, 0);
translateM(modelMatrix, 0, x, y, z);
multiplyMM(modelViewProjectionMatrix, 0, viewProjectionMatrix,

0, modelMatrix, 0);
}

The mallets and puck are already defined to lie flat on the x-z plane, so there’s
no need for rotation. We translate them based on the parameters passed in
so that they’re placed at the proper position above the table.

Go ahead and run the program. If everything went according to plan, then it
should look just like Figure 45, Air hockey with improved mallets, on page 162.
The new mallets and puck should appear, with the view centered on the table.
The mallets may appear a little too solid; we’ll learn how to improve this in
Chapter 13, Lighting Up the World, on page 253.

8.7 A Review

Congratulations on making it through another intense chapter! We learned
all about generating triangle strips and triangle fans and how to put them
together into objects. We also learned how to encapsulate the drawing calls
when building these objects so that we can easily tie them together into a
single command.

We also introduced the idea of a matrix hierarchy: one matrix for the projec-
tion, one for the camera, and one to move objects around in the world. Splitting
things up in this way makes it easier to manipulate the scene and move stuff
around.

8.8 Exercises

As your first exercise, rotate your viewpoint slowly around the table by adding
one single method call to onDrawFrame().

report erratum • discuss

A Review • 161

http://media.pragprog.com/titles/kbogla/code/AirHockeyWithImprovedMallets/src/com/airhockey/android/AirHockeyRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 45—Air hockey with improved mallets

For a more challenging exercise, take a look at the following figure:

Chapter 8. Building Simple Objects • 162

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

How would you update the mallet generator to more closely approximate this
type of mallet? You can still build the mallet out of simple geometric shapes.
Here’s one way you might want to approach it:

• Two regular cylinder sides: one for the handle, one for the outside of the
base

• Two rings: one for the top of the base and one for the inside of the base

• One sloped cylinder side for the inside of the base to connect the two rings

• A half-sphere to cap the top of the mallet

Of course, your imagination is the limit, and you can be as creative as you
want to be. When you’re ready, we’ll learn how to move the mallets around
with our fingers in the next chapter!

report erratum • discuss

Exercises • 163

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

CHAPTER 9

Adding Touch Feedback:
Interacting with Our Air Hockey Game

Good user interactivity through touch support is the cornerstone of many
games and applications; it can give the user a sense of playing with something
real, even if they’re just looking at pixels on a screen. Some mobile games
have become extremely popular just because they came up with a new touch
paradigm; a certain game involving birds comes to mind.

We now have better-looking mallets in our air hockey game, but wouldn’t it
be nice if we could actually use them? In this chapter, we’re going to start
making our program more interactive by adding touch support. We’ll learn
how to add 3D intersection tests and collision detection so that we can grab
our mallet and drag it around the screen.

Here’s our game plan for the chapter:

• We’ll begin by adding touch interactivity to our air hockey project. We’ll
go over the math and plumbing required to get this to work.

• We’ll then learn how to make our mallet interact with the puck and stay
within bounds.

When we’ve finished with the chapter, we’ll be able to strike the puck with
the mallet and watch it bounce around the table! To start out, let’s copy our
project from the previous chapter into a new project called ‘AirHockeyTouch’.

9.1 Adding Touch Support to Our Activity

We’ll begin by hooking into Android’s touch event system. The first thing we’ll
need to do is hold onto a reference to our renderer, so let’s open up AirHockey-
Activity and modify the call to setRenderer() as follows:

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

AirHockeyTouch/src/com/airhockey/android/AirHockeyActivity.java
final AirHockeyRenderer airHockeyRenderer = new AirHockeyRenderer(this);

if (supportsEs2) {
// ...
glSurfaceView.setRenderer(airHockeyRenderer);

We’ll refer to this reference in our touch handler to inform the renderer of
new touch events.

Listening to Touch Events

Let’s start writing our touch handler by adding the following code just before
the call to setContentView():

AirHockeyTouch/src/com/airhockey/android/AirHockeyActivity.java
glSurfaceView.setOnTouchListener(new OnTouchListener() {

@Override
public boolean onTouch(View v, MotionEvent event) {

if (event != null) {
// Convert touch coordinates into normalized device
// coordinates, keeping in mind that Android's Y
// coordinates are inverted.
final float normalizedX =

(event.getX() / (float) v.getWidth()) * 2 - 1;
final float normalizedY =

-((event.getY() / (float) v.getHeight()) * 2 - 1);

In Android, we can listen in on a view’s touch events by calling setOnTouchLis-
tener(). When a user touches that view, we’ll receive a call to onTouch().

The first thing we do is check if there’s an event to handle. In Android, the
touch events will be in the view’s coordinate space, so the upper left corner
of the view will map to (0, 0), and the lower right corner will map to the view’s
dimensions. For example, if our view was 480 pixels wide by 800 pixels tall,
then the lower right corner would map to (480, 800).

We’ll need to work with normalized device coordinates in our renderer (see
Section 5.1, We Have an Aspect Ratio Problem, on page 78, so we convert the
touch event coordinates back into normalized device coordinates by inverting
the y-axis and scaling each coordinate into the range [-1, 1].

Forwarding Touch Events to Our Renderer

Let’s finish off the touch handler:

AirHockeyTouch/src/com/airhockey/android/AirHockeyActivity.java
if (event.getAction() == MotionEvent.ACTION_DOWN) {

glSurfaceView.queueEvent(new Runnable() {
@Override

Chapter 9. Adding Touch Feedback: Interacting with Our Air Hockey Game • 166

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockeyTouch/src/com/airhockey/android/AirHockeyActivity.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyTouch/src/com/airhockey/android/AirHockeyActivity.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyTouch/src/com/airhockey/android/AirHockeyActivity.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

public void run() {
airHockeyRenderer.handleTouchPress(

normalizedX, normalizedY);
}

});
} else if (event.getAction() == MotionEvent.ACTION_MOVE) {

glSurfaceView.queueEvent(new Runnable() {
@Override
public void run() {

airHockeyRenderer.handleTouchDrag(
normalizedX, normalizedY);

}
});

}

return true;
} else {

return false;
}

}
});

We check to see if the event is either an initial press or a drag event, because
we’ll need to handle each case differently. An initial press corresponds to
MotionEvent.ACTION_DOWN, and a drag corresponds to MotionEvent.ACTION_MOVE.

It’s important to keep in mind that Android’s UI runs in the main thread while
GLSurfaceView runs OpenGL in a separate thread, so we need to communicate
between the two using thread-safe techniques. We use queueEvent() to dispatch
calls to the OpenGL thread, calling airHockeyRenderer.handleTouchPress() for a press
and airHockeyRenderer.handleTouchDrag() for a drag. These methods don’t exist at
the moment, so we’ll create them soon.

We finish off the handler by returning true to tell Android that we’ve consumed
the touch event. If the event was null, then we return false instead.

Open up AirHockeyRenderer and add stubs for handleTouchPress() and handleTouchDrag():

AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
public void handleTouchPress(float normalizedX, float normalizedY) {

}

public void handleTouchDrag(float normalizedX, float normalizedY) {

}

As a small exercise, add some logging statements here, run the application,
and see what happens when you touch the screen.

report erratum • discuss

Adding Touch Support to Our Activity • 167

http://media.pragprog.com/titles/kbogla/code/AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

9.2 Adding Intersection Tests

Now that we have the touched area of the screen in normalized device coordi-
nates, we’ll need to determine if that touched area contains the mallet. We’ll
need to perform an intersection test, a very important operation when working
with 3D games and applications. Here’s what we’ll need to do:

1. First we’ll need to convert the 2D screen coordinate back into 3D space
and see what we’re touching. We’ll do this by casting the touched point
into a ray that spans the 3D scene from our point of view.

2. We’ll then need to check to see if this ray intersects with the mallet. To
make things easier, we’ll pretend that the mallet is actually a bounding
sphere of around the same size and then we’ll test against that sphere.

Let’s start off by creating two new member variables:

AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
private boolean malletPressed = false;
private Point blueMalletPosition;

We’ll use malletPressed to keep track of whether the mallet is currently pressed
or not. We’ll also store the mallet’s position in blueMalletPosition. We’ll need to
initialize this to a default value, so let’s add the following to onSurfaceCreated():

AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
blueMalletPosition = new Point(0f, mallet.height / 2f, 0.4f);

We can then update handleTouchPress() as follows:

AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
public void handleTouchPress(float normalizedX, float normalizedY) {

Ray ray = convertNormalized2DPointToRay(normalizedX, normalizedY);

// Now test if this ray intersects with the mallet by creating a
// bounding sphere that wraps the mallet.
Sphere malletBoundingSphere = new Sphere(new Point(

blueMalletPosition.x,
blueMalletPosition.y,
blueMalletPosition.z),

mallet.height / 2f);

// If the ray intersects (if the user touched a part of the screen that
// intersects the mallet's bounding sphere), then set malletPressed =
// true.
malletPressed = Geometry.intersects(malletBoundingSphere, ray);

}

Chapter 9. Adding Touch Feedback: Interacting with Our Air Hockey Game • 168

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

To see if the touched point intersects the mallet, we first cast the touched
point to a ray, wrap the mallet with a bounding sphere, and then test to see
if the ray intersects that sphere.

This might make more sense if we look at things visually. Let’s consider an
imaginary scene with our air hockey table, a puck, and two mallets, and let’s
imagine that we’re touching the screen at the darkened circle in the following
image:

We’re clearly touching one of the mallets. However, our touched area is in 2D
space and the mallet is in 3D space. How do we test if the touched point
intersects with the mallet?

To test this, we first convert the 2D point into two 3D points: one at the near
end of the 3D frustum and one at the far end of the 3D frustum (if the word
“frustum” is making your head a little foggy, now might be a good time to
head back to The Frustum, on page 101, and take a few moments to review).
We then draw a line between these two points to create a ray. If we look at
our scene from the side, here’s how the ray would intersect the 3D scene:

report erratum • discuss

Adding Intersection Tests • 169

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

To make the math easier, we’ll pretend that the mallet is a sphere when we
do the test.

Let’s start off by defining convertNormalized2DPointToRay() and solving the first part
of the puzzle: converting the touched point into a 3D ray.

Extending a Two-Dimensional Point into a Three-Dimensional Line

Normally when we project a 3D scene onto a 2D screen, we use a perspective
projection and the perspective divide to transform our vertices into normalized
device coordinates (see Perspective Division, on page 97).

Now we want to go the other way: we have the normalized device coordinates
of the touched point, and we want to figure out where in the 3D world that
touched point corresponds to. To convert a touched point into a 3D ray, we
essentially need to undo the perspective projection and the perspective divide.

We currently have touched x and y coordinates, but we have no idea how
near or far the touched point should be. To resolve the ambiguity, we’ll map
the touched point to a line in 3D space: the near end of the line will map to
the near end of the frustum defined by our projection matrix, and the far end
of the line will map to the far end of the frustum.

To do this conversion, we’ll need an inverted matrix that will undo the effects
of the view and projection matrices. Let’s add the following definition to the
list of matrix definitions:

AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
private final float[] invertedViewProjectionMatrix = new float[16];

In onDrawFrame(), add the following line of code after the call to multiplyMM():

AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
invertM(invertedViewProjectionMatrix, 0, viewProjectionMatrix, 0);

This call will create an inverted matrix that we’ll be able to use to convert the
two-dimensional touch point into a pair of three-dimensional coordinates. If
we move around in our scene, it will affect which part of the scene is under-
neath our fingers, so we also want to take the view matrix into account. We
do this by taking the inverse of the combined view and projection matrices.

Reversing the Perspective Projection and Perspective Divide

Now we can start defining convertNormalized2DPointToRay(). Let’s start out with the
following code:

Chapter 9. Adding Touch Feedback: Interacting with Our Air Hockey Game • 170

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
private Ray convertNormalized2DPointToRay(

float normalizedX, float normalizedY) {
// We'll convert these normalized device coordinates into world-space
// coordinates. We'll pick a point on the near and far planes, and draw a
// line between them. To do this transform, we need to first multiply by
// the inverse matrix, and then we need to undo the perspective divide.
final float[] nearPointNdc = {normalizedX, normalizedY, -1, 1};
final float[] farPointNdc = {normalizedX, normalizedY, 1, 1};

final float[] nearPointWorld = new float[4];
final float[] farPointWorld = new float[4];

multiplyMV(
nearPointWorld, 0, invertedViewProjectionMatrix, 0, nearPointNdc, 0);

multiplyMV(
farPointWorld, 0, invertedViewProjectionMatrix, 0, farPointNdc, 0);

To map the touched point to a ray, we set up two points in normalized device
coordinates: one point is the touched point with a z of -1, and the other point
is the touched point with a z of +1. We store these points in nearPointNdc and
farPointNdc, respectively. Since we have no idea what the w component should
be, we put a w of 1 for both. We then multiply each point with invertedViewPro-
jectionMatrix to get a coordinate in world space.

We also need to undo the perspective divide. There’s an interesting property
of the inverted view projection matrix: after we multiply our vertices with the
inverted view projection matrix, nearPointWorld and farPointWorld will actually
contain an inverted w value. This is because normally the whole point of a
projection matrix is to create different w values so that the perspective divide
can do its magic; so if we use an inverted projection matrix, we’ll also get an
inverted w. All we need to do is divide x, y, and z with these inverted w’s, and
we’ll undo the perspective divide.

Let’s continue the definition for convertNormalized2DPointToRay():

AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
divideByW(nearPointWorld);
divideByW(farPointWorld);

We’ll also need to define divideByW():

AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
private void divideByW(float[] vector) {

vector[0] /= vector[3];
vector[1] /= vector[3];
vector[2] /= vector[3];

}

report erratum • discuss

Adding Intersection Tests • 171

http://media.pragprog.com/titles/kbogla/code/AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Defining a Ray

We’ve now successfully converted a touched point into two points in world
space. We can now use these two points to define a ray that spans the 3D
scene. Let’s finish off convertNormalized2DPointToRay():

AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
Point nearPointRay =

new Point(nearPointWorld[0], nearPointWorld[1], nearPointWorld[2]);

Point farPointRay =
new Point(farPointWorld[0], farPointWorld[1], farPointWorld[2]);

return new Ray(nearPointRay,
Geometry.vectorBetween(nearPointRay, farPointRay));

}

We’ll also need to add a definition for Ray. Let’s add the following to our
Geometry class:

AirHockeyTouch/src/com/airhockey/android/util/Geometry.java
public static class Ray {

public final Point point;
public final Vector vector;

public Ray(Point point, Vector vector) {
this.point = point;
this.vector = vector;

}
}

A ray consists of a starting point and a vector representing the direction of
the ray. To create this vector, we call vectorBetween() to create a vector ranging
from the near point to the far point.

Let’s add a basic definition for Vector to our Geometry class:

AirHockeyTouch/src/com/airhockey/android/util/Geometry.java
public static class Vector {

public final float x, y, z;

public Vector(float x, float y, float z) {
this.x = x;
this.y = y;
this.z = z;

}
}

We’ll also need a definition for vectorBetween():

Chapter 9. Adding Touch Feedback: Interacting with Our Air Hockey Game • 172

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyTouch/src/com/airhockey/android/util/Geometry.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyTouch/src/com/airhockey/android/util/Geometry.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

AirHockeyTouch/src/com/airhockey/android/util/Geometry.java
public static Vector vectorBetween(Point from, Point to) {

return new Vector(
to.x - from.x,
to.y - from.y,
to.z - from.z);

}

We’ve now finished the first part of the puzzle: converting a touched point
into a 3D ray. Now we need to add the intersection test.

Performing the Intersection Test

Earlier we mentioned that doing the intersection test would be much easier
if we pretended that our mallet was a sphere. In fact, if we look back at handle-
TouchPress(), we’re defining a bounding sphere with similar dimensions as the
mallet:

AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
Sphere malletBoundingSphere = new Sphere(new Point(

blueMalletPosition.x,
blueMalletPosition.y,
blueMalletPosition.z),

mallet.height / 2f);

We still need to define Sphere, so let’s go ahead and add the following code to
our Geometry class:

AirHockeyTouch/src/com/airhockey/android/util/Geometry.java
public static class Sphere {

public final Point center;
public final float radius;

public Sphere(Point center, float radius) {
this.center = center;
this.radius = radius;

}
}

Taking another look at handleTouchPress(), we still need to cover the intersection
test:

AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
malletPressed = Geometry.intersects(malletBoundingSphere, ray);

Using a Triangle to Calculate the Distance

Before we define the code for this, let’s visualize the intersection test, as it
will make things easier to understand:

report erratum • discuss

Adding Intersection Tests • 173

http://media.pragprog.com/titles/kbogla/code/AirHockeyTouch/src/com/airhockey/android/util/Geometry.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyTouch/src/com/airhockey/android/util/Geometry.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

To do this test, we need to follow these steps:

1. We need to figure out the distance between the sphere and the ray. We
do this by first defining two points on the ray: the initial point and the
end point, found by adding the ray’s vector to the initial point. We then
create an imaginary triangle between these two points and the center of
the sphere, and then we get the distance by calculating the height of that
triangle.

2. We then compare that distance to the sphere’s radius. If that distance is
smaller than the radius, then the ray intersects the sphere.

A more detailed explanation behind this algorithm can be found on Wolfram
MathWorld.1

Let’s start writing out the code. Add the following method to the Geometry class:

AirHockeyTouch/src/com/airhockey/android/util/Geometry.java
public static boolean intersects(Sphere sphere, Ray ray) {

return distanceBetween(sphere.center, ray) < sphere.radius;
}

This method will determine the distance between the sphere center and the
ray and check if that distance is less than the sphere radius. If it is, then the
sphere and the ray intersect.

Calculating the Distance with Vector Math

Go ahead and write out the following code for distanceBetween():

AirHockeyTouch/src/com/airhockey/android/util/Geometry.java
public static float distanceBetween(Point point, Ray ray) {

Vector p1ToPoint = vectorBetween(ray.point, point);
Vector p2ToPoint = vectorBetween(ray.point.translate(ray.vector), point);

1. http://mathworld.wolfram.com/Point-LineDistance3-Dimensional.html

Chapter 9. Adding Touch Feedback: Interacting with Our Air Hockey Game • 174

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockeyTouch/src/com/airhockey/android/util/Geometry.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyTouch/src/com/airhockey/android/util/Geometry.java
http://mathworld.wolfram.com/Point-LineDistance3-Dimensional.html
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

// The length of the cross product gives the area of an imaginary
// parallelogram having the two vectors as sides. A parallelogram can be
// thought of as consisting of two triangles, so this is the same as
// twice the area of the triangle defined by the two vectors.
// http://en.wikipedia.org/wiki/Cross_product#Geometric_meaning
float areaOfTriangleTimesTwo = p1ToPoint.crossProduct(p2ToPoint).length();
float lengthOfBase = ray.vector.length();

// The area of a triangle is also equal to (base * height) / 2. In
// other words, the height is equal to (area * 2) / base. The height
// of this triangle is the distance from the point to the ray.
float distanceFromPointToRay = areaOfTriangleTimesTwo / lengthOfBase;
return distanceFromPointToRay;

}

This method may look a little intense, but it’s only doing the triangle method
that we just mentioned.

First we define two vectors: one from the first point of the ray to the sphere
center and one from the second point of the ray to the sphere center. These
two vectors together define a triangle.

To get the area of this triangle, we first need to calculate the cross product
of these two vectors.2 Calculating the cross product will give us a third vector
that is perpendicular to the first two vectors, but more importantly for us,
the length of this vector will be equal to twice the area of the triangle defined
by the first two vectors.

Once we have the area of the triangle, we can use the triangle formula to
calculate the height of the triangle, which will give us the distance from the
ray to the center of the sphere. The height will be equal to (area * 2) / lengthOfBase.
We have the area * 2 in areaOfTriangleTimesTwo, and we can calculate the length
of the base by taking the length of ray.vector. To calculate the height of the tri-
angle, we just need to divide one by the other. Once we have this distance,
we can compare it to the sphere’s radius to see if the ray intersects the sphere.

To get this to work, we’ll need to add a new method to Point:

AirHockeyTouch/src/com/airhockey/android/util/Geometry.java
public Point translate(Vector vector) {

return new Point(
x + vector.x,
y + vector.y,
z + vector.z);

}

2. http://en.wikipedia.org/wiki/Cross_product

report erratum • discuss

Adding Intersection Tests • 175

http://media.pragprog.com/titles/kbogla/code/AirHockeyTouch/src/com/airhockey/android/util/Geometry.java
http://en.wikipedia.org/wiki/Cross_product
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

We’ll also need to add a couple of extra methods to our Vector class:

AirHockeyTouch/src/com/airhockey/android/util/Geometry.java
public float length() {

return FloatMath.sqrt(
x * x

+ y * y
+ z * z);

}

// http://en.wikipedia.org/wiki/Cross_product
public Vector crossProduct(Vector other) {

return new Vector(
(y * other.z) - (z * other.y),
(z * other.x) - (x * other.z),
(x * other.y) - (y * other.x));

}

The first method, length(), returns the length of a vector by applying Pythago-
ras’s theorem.3 The second, crossProduct(), calculates the cross product between
two vectors.4

An Example of a Ray-Sphere Intersection Test

Let’s walk through the code with an actual example, using the following image
for our coordinate points:

We have a ray located at (0, 0, 0) with a vector of (6, 6, 0). Since we need two
points, we add the vector to the first point, which gives us a second point at
(6, 6, 0). We also have a sphere with a radius of 2 and a center point at
(5, 1, 0).

The first thing we do is assign the vectors p1ToPoint and p2ToPoint. For p1ToPoint,
we’ll set it to the vector between the ray’s starting point and the center of the

3. http://en.wikipedia.org/wiki/Pythagorean_theorem
4. http://en.wikipedia.org/wiki/Cross_product

Chapter 9. Adding Touch Feedback: Interacting with Our Air Hockey Game • 176

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockeyTouch/src/com/airhockey/android/util/Geometry.java
http://en.wikipedia.org/wiki/Pythagorean_theorem
http://en.wikipedia.org/wiki/Cross_product
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

sphere, so we’ll set it to (5, 1, 0) - (0, 0, 0) = (5, 1, 0). For p2ToPoint, we set it to
the vector between the ray’s second point and the center of the sphere, so
we’ll set it to (5, 1, 0) - (6, 6, 0) = (-1, -5, 0).

The next step is to get the height of the triangle. First we get the double area
by taking the length of the cross product of p1ToPoint and p2ToPoint. We won’t
go through all of the intermediary steps, but if you follow the math, you should
end up with a cross product of (0, 0, -24) and a length of 24. In other words,
the area of the triangle is equal to 24 divided by 2.

To get the height of the triangle, we need to multiply the area by 2 and divide
that by the base. The area multiplied by 2 is equal to 24, so now we just need
to find the base by taking the length of the ray vector, (6, 6, 0). The length of
this vector is approximately 8.49, so if we solve for the height, we end up with
24 / 8.49 = 2.82.

Now we can do our final test. 2.82 is greater than the radius of 2, so this ray
definitely does not intersect with this sphere.

Our definition for handleTouchPress() is now complete. Give the application a run,
and add some debug statements to see what happens when you tap on the
mallet with your finger.

9.3 Moving Around an Object by Dragging

Now that we’re able to test if the mallet has been touched, we’ll work on
solving the next part of the puzzle: Where does the mallet go when we drag
it around? We can think of things in this way: the mallet lies flat on the table,
so when we move our finger around, the mallet should move with our finger
and continue to lie flat on the table. We can figure out the right position by
doing a ray-plane intersection test.

Let’s complete the definition for handleTouchDrag():

AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
public void handleTouchDrag(float normalizedX, float normalizedY) {

if (malletPressed) {
Ray ray = convertNormalized2DPointToRay(normalizedX, normalizedY);
// Define a plane representing our air hockey table.
Plane plane = new Plane(new Point(0, 0, 0), new Vector(0, 1, 0));
// Find out where the touched point intersects the plane
// representing our table. We'll move the mallet along this plane.
Point touchedPoint = Geometry.intersectionPoint(ray, plane);
blueMalletPosition =

new Point(touchedPoint.x, mallet.height / 2f, touchedPoint.z);
}

}

report erratum • discuss

Moving Around an Object by Dragging • 177

http://media.pragprog.com/titles/kbogla/code/AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

We only want to drag the mallet around if we had initially pressed on it with
a finger, so first we check to see that malletPressed is true. If it is, then we do
the same ray conversion that we were doing in handleTouchPress(). Once we have
the ray representing the touched point, we find out where that ray intersects
with the plane represented by our air hockey table, and then we move the
mallet to that point.

Let’s add the code for Plane to Geometry:

AirHockeyTouch/src/com/airhockey/android/util/Geometry.java
public static class Plane {

public final Point point;
public final Vector normal;

public Plane(Point point, Vector normal) {
this.point = point;
this.normal = normal;

}
}

This definition of a plane is very simple: it consists of a normal vector and a
point on that plane; the normal vector of a plane is simply a vector that is
perpendicular to that plane. There are other possible definitions of a plane,
but this is the one that we’ll work with.

In the following image, we can see an example of a plane located at (0, 0, 0)
with a normal of (0, 1, 0):

There’s also a ray at (-2, 1, 0) with a vector of (1, -1, 0). We’ll use this plane
and ray to explain the intersection test. Let’s add the following code to calcu-
late the intersection point:

Chapter 9. Adding Touch Feedback: Interacting with Our Air Hockey Game • 178

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockeyTouch/src/com/airhockey/android/util/Geometry.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

AirHockeyTouch/src/com/airhockey/android/util/Geometry.java
public static Point intersectionPoint(Ray ray, Plane plane) {

Vector rayToPlaneVector = vectorBetween(ray.point, plane.point);

float scaleFactor = rayToPlaneVector.dotProduct(plane.normal)
/ ray.vector.dotProduct(plane.normal);

Point intersectionPoint = ray.point.translate(ray.vector.scale(scaleFactor));
return intersectionPoint;

}

To calculate the intersection point, we need to figure out how much we need
to scale the ray’s vector until it touches the plane exactly; this is the scaling
factor. We can then translate the ray’s point by this scaled vector to find the
intersection point.

To calculate the scaling factor, we first create a vector between the ray’s
starting point and a point on the plane. We then calculate the dot product
between that vector and the plane’s normal.5

The dot product of two vectors is directly related to (though usually not
equivalent to) the cosine between those two vectors. As an example, if we had
two parallel vectors of (1, 0, 0) and (1, 0, 0), then the angle between them
would be 0 degrees and the cosine of this angle would be 1. If we had two
perpendicular vectors of (1, 0, 0) and (0, 0, 1), then the angle between them
would be 90 degrees and the cosine of this angle would be 0.

To figure out the scaling amount, we can take the dot product between the
ray-to-plane vector and the plane normal and divide that by the dot product
between the ray vector and the plane normal. This will give us the scaling
factor that we need.

A special case happens when the ray is parallel to the plane: in this case,
there is no possible intersection point between the ray and the plane. The ray
will be perpendicular to the plane normal, the dot product will be 0, and we’ll
get a division by 0 when we try to calculate the scaling factor. We’ll end up
with an intersection point that is full of floating-point NaNs, which is short-
hand for “not a number.”

Don’t worry if you don’t understand this in complete detail. The important
part is that it works; for the mathematically curious, there’s a good explanation
on Wikipedia that you can read to learn more.6

5. http://en.wikipedia.org/wiki/Dot_product
6. http://en.wikipedia.org/wiki/Line-plane_intersection

report erratum • discuss

Moving Around an Object by Dragging • 179

http://media.pragprog.com/titles/kbogla/code/AirHockeyTouch/src/com/airhockey/android/util/Geometry.java
http://en.wikipedia.org/wiki/Dot_product
http://en.wikipedia.org/wiki/Line-plane_intersection
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

We’ll need to fill in the missing blanks by adding the following code to Vector:

AirHockeyTouch/src/com/airhockey/android/util/Geometry.java
public float dotProduct(Vector other) {

return x * other.x
+ y * other.y
+ z * other.z;

}

public Vector scale(float f) {
return new Vector(

x * f,
y * f,
z * f);

}

The first method, dotProduct(), calculates the dot product between two vectors.7

The second, scale(), scales each component of the vector evenly by the scale
amount.

An Example of a Ray-Plane Intersection Test

As before, we’ll also walk through an example just to see how the numbers
pan out. Let’s use the following example of a plane with a ray:

We have a plane at (0, 0, 0) with a normal of (0, 1, 0), and we have a ray at
(-2, 1, 0) with a vector of (1, -1, 0). If we extend the vector far enough, where
would this ray hit the plane? Let’s go through the math and find out.

First we need to assign rayToPlaneVector to the vector between the plane and the
ray. This should get set to (0, 0, 0) - (-2, 1, 0) = (2, -1, 0).

Then the next step is to calculate scaleFactor. Once we calculate the dot prod-
ucts, the equation reduces to -1/-1, which gives us a scaling factor of 1.

7. http://en.wikipedia.org/wiki/Dot_product

Chapter 9. Adding Touch Feedback: Interacting with Our Air Hockey Game • 180

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockeyTouch/src/com/airhockey/android/util/Geometry.java
http://en.wikipedia.org/wiki/Dot_product
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

To get the intersection point, we just need to translate the ray point by the
scaled ray vector. The ray vector is scaled by 1, so we can just add the vector
to the point to get (-2, 1, 0) + (1, -1, 0) = (-1, 0, 0). This is where the ray
intersects with the plane.

We’ve now added everything we needed to get handleTouchDrag() to work. There’s
only one part left: we need to go back to AirHockeyRenderer and actually use the
new point when drawing the blue mallet. Let’s update onDrawFrame() and update
the second call to positionObjectInScene() as follows:

AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
positionObjectInScene(blueMalletPosition.x, blueMalletPosition.y,

blueMalletPosition.z);

Go ahead and give this a run; you should now be able to drag the mallet
around on the screen and watch it follow your fingertip!

9.4 Adding Collision Detection

Now that you’ve had a chance to have a bit of fun and drag the mallet around,
you’ve probably noticed our first problem: the mallet can go way out of bounds,
as seen in Figure 46, An out-of-bounds mallet, on page 182. In this section,
we’ll add some basic collision detection to keep our mallet where it belongs.
We’ll also add some really basic physics to let us smack the puck around the
table.

Keeping the Player’s Mallet Within Bounds

Let’s start off by adding the following bounds definitions to AirHockeyRenderer:

AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
private final float leftBound = -0.5f;
private final float rightBound = 0.5f;
private final float farBound = -0.8f;
private final float nearBound = 0.8f;

These correspond to the edges of the air hockey table. Now we can update
handleTouchDrag() and replace the current assignment to blueMalletPosition with the
following code:

AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
blueMalletPosition = new Point(

clamp(touchedPoint.x,
leftBound + mallet.radius,
rightBound - mallet.radius),

mallet.height / 2f,
clamp(touchedPoint.z,

0f + mallet.radius,
nearBound - mallet.radius));

report erratum • discuss

Adding Collision Detection • 181

http://media.pragprog.com/titles/kbogla/code/AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 46—An out-of-bounds mallet

If we look back and review handleTouchDrag(), we’ll remember that touchedPoint
represents the intersection between where we touched the screen and the
plane that the air hockey table lies on. The mallet wants to move to this point.

To keep the mallet from exceeding the bounds of the table, we clamp touchedPoint
to the table bounds. The mallet can’t surpass either edge of the table. We also
take the dividing line of the table into account by using 0f instead of farBound,
so that the player cannot cross over to the other side, and we also take the
mallet’s radius into account, so that the edge of the mallet cannot go beyond
the edge of the player’s bounds.

We also need to add a definition for clamp():

AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
private float clamp(float value, float min, float max) {

return Math.min(max, Math.max(value, min));
}

Go ahead and give the application another run. You should now find that
your blue mallet refuses to go out of bounds.

Adding Velocity and Direction

Now we can add some code to smack the puck with the mallet. To get an idea
of how the puck should react, we need to answer a couple of questions:

• How fast is the mallet going?
• In which direction is the mallet moving?

To be able to answer these questions, we need to keep track of how the mallet
is moving over time. The first thing we’ll do is add a new member variable to
AirHockeyRenderer called previousBlueMalletPosition:

Chapter 9. Adding Touch Feedback: Interacting with Our Air Hockey Game • 182

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
private Point previousBlueMalletPosition;

We’ll set a value by adding the following code to handleTouchDrag(), just before
the assignment to blueMalletPosition:

AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
previousBlueMalletPosition = blueMalletPosition;

Now the next step is to store a position for the puck as well as a velocity and
direction. Add the following member variables to AirHockeyRenderer:

AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
private Point puckPosition;
private Vector puckVector;

We’ll use the vector to store both the speed and the direction of the puck. We
need to initialize these variables, so let’s add the following to onSurfaceCreated():

AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
puckPosition = new Point(0f, puck.height / 2f, 0f);
puckVector = new Vector(0f, 0f, 0f);

Now we can add the following collision code to the end of handleTouchDrag(),
making sure to keep it inside if (malletPressed) {:

AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
float distance =

Geometry.vectorBetween(blueMalletPosition, puckPosition).length();

if (distance < (puck.radius + mallet.radius)) {
// The mallet has struck the puck. Now send the puck flying
// based on the mallet velocity.
puckVector = Geometry.vectorBetween(

previousBlueMalletPosition, blueMalletPosition);
}

This code will first check the distance between the blue mallet and the puck,
and then it will see if that distance is less than both of their radii put
together. If it is, then the mallet has struck the puck and we take the previous
mallet position and the current mallet position to create a direction vector
for the puck. The faster the mallet is going, the bigger that vector is going to
be and the faster the puck is going to go.

We’ll need to update onDrawFrame() so that the puck moves on each frame. Let’s
add the following code to the beginning of onDrawFrame():

AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
puckPosition = puckPosition.translate(puckVector);

report erratum • discuss

Adding Collision Detection • 183

http://media.pragprog.com/titles/kbogla/code/AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

As the last step, we’ll also need to update the call to positionObjectInScene() just
before we draw the puck, as follows:

AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
positionObjectInScene(puckPosition.x, puckPosition.y, puckPosition.z);

Run the program another time, and check what happens when you hit the
puck with your mallet.

Adding Reflection Against Boundaries

Now we have another problem: our puck can move, but as we can see in
Figure 47, An out-of-bounds puck, on page 185, it just keeps going, and going,
and going…

To fix this, we’ll have to add bounds checking to the puck as well and bounce
it off the sides of the table whenever it hits one of the sides.

We can add the following code to onDrawFrame() after the call to puckPosi-
tion.translate():

AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
if (puckPosition.x < leftBound + puck.radius
|| puckPosition.x > rightBound - puck.radius) {

puckVector = new Vector(-puckVector.x, puckVector.y, puckVector.z);
}
if (puckPosition.z < farBound + puck.radius
|| puckPosition.z > nearBound - puck.radius) {

puckVector = new Vector(puckVector.x, puckVector.y, -puckVector.z);
}
// Clamp the puck position.
puckPosition = new Point(

clamp(puckPosition.x, leftBound + puck.radius, rightBound - puck.radius),
puckPosition.y,
clamp(puckPosition.z, farBound + puck.radius, nearBound - puck.radius)

);

We first check if the puck has gone either too far to the left or too far to the
right. If it has, then we reverse its direction by inverting the x component of
the vector.

We then check if the puck has gone past the near or far edges of the table.
In that case, we reverse its direction by inverting the z component of the
vector. Don’t get confused by the z checks—the further away something is,
the smaller the z, since negative z points into the distance.

Finally, we bring the puck back within the confines of the table by clamping
it to the table bounds. If we try things again, our puck should now bounce
around inside the table instead of flying off the edge.

Chapter 9. Adding Touch Feedback: Interacting with Our Air Hockey Game • 184

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 47—An out-of-bounds puck

Adding Friction

There’s still one big problem with the way that the puck moves: it never slows
down! That doesn’t look very realistic, so we’ll add some dampening code to
slow the puck over time. At the end of the puck-related code in onDrawFrame(),
add the following method to slow down the puck each frame:

AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
puckVector = puckVector.scale(0.99f);

If we run it again, we’ll see the puck slow down and eventually come to a stop.
We can make things more realistic by adding an additional dampening to the
bounces. Add the following code twice, once inside the body of each bounce
check:

AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
puckVector = puckVector.scale(0.9f);

We’ll now see the puck slow down some more when it bounces off the sides.

9.5 A Review and Wrap-Up

We covered some interesting topics in this chapter: first we learned how to
grab and move a mallet around with our fingers, and then we learned how to
get the puck bouncing around the table. You might have noticed an overlap-
ping problem along the way; we’ll learn how to take care of that in Removing
Hidden Surfaces with the Depth Buffer, on page 245.

report erratum • discuss

A Review and Wrap-Up • 185

http://media.pragprog.com/titles/kbogla/code/AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
http://media.pragprog.com/titles/kbogla/code/AirHockeyTouch/src/com/airhockey/android/AirHockeyRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Some of the math might have been above our heads, but the important part
is to understand the concepts at a high level so that we know how to use
them. There are many great libraries out there to make things easier, such
as Bullet Physics and JBox2D.8

There are many ways to extend what we’ve learned: for example, you could
create a bowling game where a ball gets flung by the player and you watch
that ball head down the lane to knock out the pins at the far side. Touch
interaction is what really sets mobile apart, and there are many ways to be
imaginative.

We’ve now come to the end of our air hockey project. Take a moment to sit back
and reflect on everything that we’ve learned, as we really have come a long way.
We are not that far off from having a complete game either; all we’d need is some
sounds, a basic opponent AI, a menu, a few effects here and there, and we’d be
good to go. There are libraries out there that can take care of some of these tasks,
such as libgdx.9 You can also explore these aspects of game development in more
detail with a book like Beginning Android Games [Zec12].

We’ve also learned quite a few important concepts along the way. We started
out by figuring out how shaders work, and we built things up by learning
about colors, matrices, and textures, and we even learned how to build simple
objects and move them with our fingers. Feel proud of what you have learned
and accomplished, as we’ve come this way all on our own, working directly
with OpenGL at a low level.

9.6 Exercises

Before we head on to the next part of the book, let’s take some time to complete
the following exercises:

• Since we’re not changing the view matrix on every frame, what could you
do to optimize the updates to viewProjectionMatrix and invertedViewProjectionMatrix?

• The puck currently reacts the same whether the mallet strikes it directly
or on the side. Update the collision code to take the striking angle into
account; Figure 43, Unit circle, on page 148, might give you an idea of how
to approach this.

• Update the collision code so that the puck also interacts with the mallets
when it’s moving on its own; for bonus points, make its motion frame-
rate independent. Hint: Store your movement vector as units per second,

8. http://bulletphysics.org/ and http://www.jbox2d.org/, respectively.
9. https://code.google.com/p/libgdx/

Chapter 9. Adding Touch Feedback: Interacting with Our Air Hockey Game • 186

report erratum • discuss

http://bulletphysics.org/
http://www.jbox2d.org/
https://code.google.com/p/libgdx/
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

and figure out how much time has elapsed between each frame to calculate
the movement delta for that frame.

For future reference, it’s also a good idea to spend some time researching
cross products and dot products online, looking at visual examples to better
understand how they work.

Once you’ve completed these exercises, let’s head to the next chapter.

report erratum • discuss

Exercises • 187

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Part II

Building a 3D World

CHAPTER 10

Spicing Things Up with Particles
We’re going to change directions and start exploring more of the art behind
OpenGL. Over the next few chapters, we’ll start building up a landscape with
mountains, clouds, and a few effects thrown in just for fun.

As we reach the end of this project, we’ll wrap things up by turning this
landscape into a 3D live wallpaper that can run on your Android’s home
screen. Like 3D games, 3D live wallpapers have really exploded in popularity
as Android phones get faster and ship with larger and more vibrant screens.
These live wallpapers are also easier to create in some ways, as the focus is
more on the art and the aesthetics, and there’s usually no game logic to
worry about.

Beauty is in the eye of the beholder, and the skills that help in programming
aren’t necessarily the same ones that help in being an artist. However, we’ll
learn many of the techniques that we can use to make things look nice and
realistic. We’ll learn how to use lighting, blending, and more, and how we can
put them together to create a scene. By the time we complete this part of the
book, our project will look like Figure 48, A simple scene, with point lights
against a night backdrop, on page 192.

In this chapter, we’ll start off our new project by exploring the world of parti-
cles—simple objects drawn as a set of points. With particles, we can use a
combination of basic physics and rendering to come up with some really neat
effects. We can create fountains that shoot droplets in the air and watch them
fall back to earth. We can simulate the effects of rain, or we can create
explosions and fireworks. The math behind particles doesn’t need to be
complicated, making them easy to add to any 3D scene.

Before we get started, let’s review our game plan for this chapter:

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 48—A simple scene, with point lights against a night backdrop

• First we’ll cover what we need to set up a particle system.

• We’ll then add a few fountains to shoot some particles up into the air.

• We’ll also learn how to improve the look of the particles by using tech-
niques such as blending and point sprites.

We can reuse a lot of our code from AirHockeyTouch, but we’ll need to do
some cleanup first. To start off our project, copy AirHockeyTouch over into a
new project called ‘Particles’, and then follow these steps to get things spruced
up:

1. Rename the base package to com.particles.android. You’ll need to update your
Java packages and the references in AndroidManifest.xml.

2. Rename the activity to ParticlesActivity and the renderer to ParticlesRenderer.

3. Remove all classes from com.particles.android.objects.

4. Remove ColorShaderProgram and TextureShaderProgram from com.particles.android.programs.

Chapter 10. Spicing Things Up with Particles • 192

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

5. Remove the contents of ParticlesRenderer, leaving only the constructor and
empty method definitions for the Renderer interface methods. We’ll build
these up as we work through this chapter.

6. Remove the touch listener from ParticlesActivity.

7. Change the app name to ‘Particles’ by modifying the value of app_name in
strings.xml.

8. Finally, remove everything from the /res/raw/ and /res/drawable-nodpi/ folders.

We now have a clean base from which to get started.

10.1 Creating a Set of Shaders for a Simple Particle System

Let’s start things off by adding a very simple particle system to represent a
fountain. We can imagine this as a fountain of water lit up by a light under-
neath, or we can imagine it as a fireworks fountain, like we might see at a
fireworks show. To get this fountain started, we’ll need to take care of a few
technical details.

First, we need some way of representing all of the particles in memory. We
could use an array of Java objects for this, but it can be expensive to create
and delete a bunch of objects during runtime, and there’s no easy way to
send the data over to OpenGL. We can store all of the particle data inline
instead, inside a single array, such as seen in Figure 49, Layout of the particles
in memory, on page 194. To add a particle, we’ll just need to increase the par-
ticle count, write the data to our particle array, and copy over the changed
contents to our native buffer. When we run out of space, we can recycle the
array by starting over at the beginning.

We’ll also need a way to draw each particle. We can represent each particle
as a single vertex and draw these vertices as a set of points, each with a
unique position and color.

Finally, we’ll also need some way of updating the particles. We can do some
of this work on the GPU by putting the logic in a shader program. We’ll store
a direction vector and a creation time for each particle; with the creation time,
we can figure out how much time has elapsed since the particle was created,
and then we can use the elapsed time with the direction vector and the position
to figure out the particle’s current position. We’ll use a floating-point number
to store the time, with 0.0 representing when we began running our particle
system.

With these basic requirements in place, we can come up with an initial set
of specifications for our shader program. First we’ll need a uniform for the

report erratum • discuss

Creating a Set of Shaders for a Simple Particle System • 193

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 49—Layout of the particles in memory

projection matrix and a uniform for the current time, so that the shader can
figure out how much time has elapsed since each particle was created. We’ll
also need four attributes corresponding to the particle’s properties: position,
color, direction vector, and creation time.

Adding the Code for the Shaders

Let’s start things off by adding the code for the shaders. Go ahead and create
a new vertex shader called particle_vertex_shader.glsl inside of the /res/raw/ folder.
First we’ll start off with the definitions:

Particles/res/raw/particle_vertex_shader.glsl
uniform mat4 u_Matrix;
uniform float u_Time;

attribute vec3 a_Position;
attribute vec3 a_Color;
attribute vec3 a_DirectionVector;
attribute float a_ParticleStartTime;

varying vec3 v_Color;
varying float v_ElapsedTime;

These definitions implement our requirements for the particle shader. We’ll
need to use the color and the elapsed time in the fragment shader as well, so
we’ve also created two varyings for these two variables. Let’s complete the vertex
shader:

Chapter 10. Spicing Things Up with Particles • 194

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/Particles/res/raw/particle_vertex_shader.glsl
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Particles/res/raw/particle_vertex_shader.glsl
void main()
{

v_Color = a_Color;
v_ElapsedTime = u_Time - a_ParticleStartTime;
vec3 currentPosition = a_Position + (a_DirectionVector * v_ElapsedTime);
gl_Position = u_Matrix * vec4(currentPosition, 1.0);
gl_PointSize = 10.0;

}

We first send the color on to the fragment shader, as seen on the third line,
and then we calculate how much time has elapsed since this particle was
created and send that on to the fragment shader as well. To calculate the
current position of the particle, we multiply the direction vector with the
elapsed time and add that to the position. The more time elapses, the further
the particle will go.

To complete the shader code, we project the particle with the matrix, and
since we’re rendering the particle as a point, we set the point size to 10 pixels.

It’s important to ensure that we don’t accidentally mess up the w component
when doing our math, so we use 3-component vectors to represent the position
and the direction, converting to a full 4-component vector only when we need
to multiply it with u_Matrix. This ensures that our math above only affects the
x, y, and z components.

Now we can go ahead and add the fragment shader. Create a new file called
particle_fragment_shader.glsl in the same place as the vertex shader and add the
following code:

Particles/res/raw/particle_fragment_shader.glsl
precision mediump float;
varying vec3 v_Color;
varying float v_ElapsedTime;
void main()
{

gl_FragColor = vec4(v_Color / v_ElapsedTime, 1.0);
}

This shader will brighten up young particles and dim old particles by dividing
the color by the elapsed time. What happens if there’s a divide by zero?
According to the specification, this can lead to an unspecified result but must
not lead to termination of the shader program.1 For a more predictable result,
you can always add a small number to the denominator.

1. http://www.khronos.org/registry/gles/specs/2.0/GLSL_ES_Specification_1.0.17.pdf

report erratum • discuss

Creating a Set of Shaders for a Simple Particle System • 195

http://media.pragprog.com/titles/kbogla/code/Particles/res/raw/particle_vertex_shader.glsl
http://media.pragprog.com/titles/kbogla/code/Particles/res/raw/particle_fragment_shader.glsl
http://www.khronos.org/registry/gles/specs/2.0/GLSL_ES_Specification_1.0.17.pdf
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Wrapping the Shaders with a Java Class

With the shader code completed, we can now wrap the shader using a Java
class using the same pattern that we used in the first part of the book. First
let’s add some new constants to ShaderProgram:

Particles/src/com/particles/android/programs/ShaderProgram.java
protected static final String U_TIME = "u_Time";

protected static final String A_DIRECTION_VECTOR = "a_DirectionVector";
protected static final String A_PARTICLE_START_TIME = "a_ParticleStartTime";

With these new constants in place, we can go ahead and add a new class to
the package com.particles.android.programs called ParticleShaderProgram, which extends
ShaderProgram and starts out with the following code inside the class:

Particles/src/com/particles/android/programs/ParticleShaderProgram.java
// Uniform locations
private final int uMatrixLocation;
private final int uTimeLocation;

// Attribute locations
private final int aPositionLocation;
private final int aColorLocation;
private final int aDirectionVectorLocation;
private final int aParticleStartTimeLocation;

Let’s complete the class definition:

Particles/src/com/particles/android/programs/ParticleShaderProgram.java
public ParticleShaderProgram(Context context) {

super(context, R.raw.particle_vertex_shader,
R.raw.particle_fragment_shader);

// Retrieve uniform locations for the shader program.
uMatrixLocation = glGetUniformLocation(program, U_MATRIX);
uTimeLocation = glGetUniformLocation(program, U_TIME);

// Retrieve attribute locations for the shader program.
aPositionLocation = glGetAttribLocation(program, A_POSITION);
aColorLocation = glGetAttribLocation(program, A_COLOR);
aDirectionVectorLocation = glGetAttribLocation(program, A_DIRECTION_VECTOR);
aParticleStartTimeLocation =

glGetAttribLocation(program, A_PARTICLE_START_TIME);
}

public void setUniforms(float[] matrix, float elapsedTime) {
glUniformMatrix4fv(uMatrixLocation, 1, false, matrix, 0);
glUniform1f(uTimeLocation, elapsedTime);

}

Chapter 10. Spicing Things Up with Particles • 196

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/Particles/src/com/particles/android/programs/ShaderProgram.java
http://media.pragprog.com/titles/kbogla/code/Particles/src/com/particles/android/programs/ParticleShaderProgram.java
http://media.pragprog.com/titles/kbogla/code/Particles/src/com/particles/android/programs/ParticleShaderProgram.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

public int getPositionAttributeLocation() {
return aPositionLocation;

}
public int getColorAttributeLocation() {

return aColorLocation;
}
public int getDirectionVectorAttributeLocation() {

return aDirectionVectorLocation;
}
public int getParticleStartTimeAttributeLocation() {

return aParticleStartTimeLocation;
}

This wraps up the class using the same patterns from Part I.

10.2 Adding the Particle System

Now we can start creating the particle system. Let’s create a new class called
ParticleSystem inside the package com.particles.android.objects, starting off with the
following code in the class:

Particles/src/com/particles/android/objects/ParticleSystem.java
private static final int POSITION_COMPONENT_COUNT = 3;
private static final int COLOR_COMPONENT_COUNT = 3;
private static final int VECTOR_COMPONENT_COUNT = 3;
private static final int PARTICLE_START_TIME_COMPONENT_COUNT = 1;

private static final int TOTAL_COMPONENT_COUNT =
POSITION_COMPONENT_COUNT

+ COLOR_COMPONENT_COUNT
+ VECTOR_COMPONENT_COUNT
+ PARTICLE_START_TIME_COMPONENT_COUNT;

private static final int STRIDE = TOTAL_COMPONENT_COUNT * BYTES_PER_FLOAT;

So far we just have some basic definitions for the component counts and the
stride between particles. Let’s continue to build out the class:

Particles/src/com/particles/android/objects/ParticleSystem.java
private final float[] particles;
private final VertexArray vertexArray;
private final int maxParticleCount;

private int currentParticleCount;
private int nextParticle;

public ParticleSystem(int maxParticleCount) {
particles = new float[maxParticleCount * TOTAL_COMPONENT_COUNT];
vertexArray = new VertexArray(particles);
this.maxParticleCount = maxParticleCount;

}

report erratum • discuss

Adding the Particle System • 197

http://media.pragprog.com/titles/kbogla/code/Particles/src/com/particles/android/objects/ParticleSystem.java
http://media.pragprog.com/titles/kbogla/code/Particles/src/com/particles/android/objects/ParticleSystem.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

We now have a floating-point array to store the particles, a VertexArray to rep-
resent the data that we’ll send to OpenGL, and maxParticleCount to hold the
maximum number of particles, since the size of the array is fixed. We’ll use
currentParticleCount and nextParticle to keep track of the particles in the array.

Let’s start building up a new method called addParticle():

Particles/src/com/particles/android/objects/ParticleSystem.java
public void addParticle(Point position, int color, Vector direction,

float particleStartTime) {
final int particleOffset = nextParticle * TOTAL_COMPONENT_COUNT;

int currentOffset = particleOffset;
nextParticle++;

if (currentParticleCount < maxParticleCount) {
currentParticleCount++;

}

if (nextParticle == maxParticleCount) {
// Start over at the beginning, but keep currentParticleCount so
// that all the other particles still get drawn.
nextParticle = 0;

}

To create the new particle, we first pass in the position, color, direction, and
the particle creation time. The color is passed in as an Android color, and
we’ll use Android’s Color class to parse the color into its separate components.

Before we can add a new particle to our array, we need to calculate where it
needs to go. Our array is sort of like an amorphous blob, with all of the parti-
cles stored together. To calculate the right offset, we use nextParticle to store
the number of the next particle, with the first particle starting at zero. We
can then get the offset by multiplying nextParticle by the number of components
per particle. We store this offset in particleOffset and currentOffset; we’ll use parti-
cleOffset to remember where our new particle started, and currentOffset to
remember the position for each attribute of the new particle.

Each time a new particle is added, we increment nextParticle by 1, and when
we reach the end, we start over at 0 so we can recycle the oldest particles.
We also need to keep track of how many particles need to be drawn, and we
do this by incrementing currentParticleCount each time a new particle is added,
keeping it clamped to the maximum.

Now that we’ve updated our bookkeeping, let’s write out the new particle data
to our array:

Chapter 10. Spicing Things Up with Particles • 198

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/Particles/src/com/particles/android/objects/ParticleSystem.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Particles/src/com/particles/android/objects/ParticleSystem.java
particles[currentOffset++] = position.x;
particles[currentOffset++] = position.y;
particles[currentOffset++] = position.z;

particles[currentOffset++] = Color.red(color) / 255f;
particles[currentOffset++] = Color.green(color) / 255f;
particles[currentOffset++] = Color.blue(color) / 255f;

particles[currentOffset++] = direction.x;
particles[currentOffset++] = direction.y;
particles[currentOffset++] = direction.z;

particles[currentOffset++] = particleStartTime;

First we write out the position, then the color (using Android’s Color class to
parse each component), then the direction vector, and finally the particle
creation time. Android’s Color class returns components in a range from 0 to
255, while OpenGL expects the color to be from 0 to 1, so we convert from
Android to OpenGL by dividing each component by 255 (see Converting Colors
Using Android's Color Class, on page 64, for more detail).

We still need to copy the new particle over to our native buffer so that OpenGL
can access the new data, so let’s finish up addParticle() with the following method
call:

Particles/src/com/particles/android/objects/ParticleSystem.java
vertexArray.updateBuffer(particles, particleOffset, TOTAL_COMPONENT_COUNT);

We want to copy over only the new data so that we don’t waste time copying
over data that hasn’t changed, so we pass in the start offset for the new par-
ticle and the count. We’ll also need to add the definition for updateBuffer() as a
new method inside of VertexArray. Let’s do that by adding the following code to
the end of that class:

Particles/src/com/particles/android/data/VertexArray.java
public void updateBuffer(float[] vertexData, int start, int count) {

floatBuffer.position(start);
floatBuffer.put(vertexData, start, count);
floatBuffer.position(0);

}

Now we can return to ParticleSystem and add a binding function:

Particles/src/com/particles/android/objects/ParticleSystem.java
public void bindData(ParticleShaderProgram particleProgram) {

int dataOffset = 0;
vertexArray.setVertexAttribPointer(dataOffset,

particleProgram.getPositionAttributeLocation(),

report erratum • discuss

Adding the Particle System • 199

http://media.pragprog.com/titles/kbogla/code/Particles/src/com/particles/android/objects/ParticleSystem.java
http://media.pragprog.com/titles/kbogla/code/Particles/src/com/particles/android/objects/ParticleSystem.java
http://media.pragprog.com/titles/kbogla/code/Particles/src/com/particles/android/data/VertexArray.java
http://media.pragprog.com/titles/kbogla/code/Particles/src/com/particles/android/objects/ParticleSystem.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

POSITION_COMPONENT_COUNT, STRIDE);
dataOffset += POSITION_COMPONENT_COUNT;

vertexArray.setVertexAttribPointer(dataOffset,
particleProgram.getColorAttributeLocation(),
COLOR_COMPONENT_COUNT, STRIDE);

dataOffset += COLOR_COMPONENT_COUNT;

vertexArray.setVertexAttribPointer(dataOffset,
particleProgram.getDirectionVectorAttributeLocation(),
VECTOR_COMPONENT_COUNT, STRIDE);

dataOffset += VECTOR_COMPONENT_COUNT;

vertexArray.setVertexAttribPointer(dataOffset,
particleProgram.getParticleStartTimeAttributeLocation(),
PARTICLE_START_TIME_COMPONENT_COUNT, STRIDE);

}

This is just some more boiler-plate code that follows the same pattern as in
previous chapters, binding our vertex data to the right attributes in the
shader program and taking care to respect the same ordering as the one we
used in addParticle(). If we mix up the color with the direction vector or make a
similar sort of mistake, we’ll get rather funny results when we try to draw the
particles.

Let’s finish up the class by adding a draw function:

Particles/src/com/particles/android/objects/ParticleSystem.java
public void draw() {

glDrawArrays(GL_POINTS, 0, currentParticleCount);
}

We now have a particle system in place. This system will let us add particles
up to a certain limit, recycle old particles, and efficiently locate the particles
next to each other in memory.

Adding a Particle Fountain

With the particle system in place, we now need something that will actually
generate some particles for us and add them to the particle system. Let’s start
creating our particle fountain by adding a new class called ParticleShooter to the
same package as ParticleSystem with the following code:

Particles/src/com/particles/android/objects/ParticleShooter.java
private final Point position;
private final Vector direction;
private final int color;

Chapter 10. Spicing Things Up with Particles • 200

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/Particles/src/com/particles/android/objects/ParticleSystem.java
http://media.pragprog.com/titles/kbogla/code/Particles/src/com/particles/android/objects/ParticleShooter.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

public ParticleShooter(Point position, Vector direction, int color) {
this.position = position;
this.direction = direction;
this.color = color;

}

We’ve given our particle shooter its own position, direction, and color; we’ll
just pass these over directly to the particle system when we create the new
particles. Let’s continue the particle shooter:

Particles/src/com/particles/android/objects/ParticleShooter.java
public void addParticles(ParticleSystem particleSystem, float currentTime,

int count) {
for (int i = 0; i < count; i++) {

particleSystem.addParticle(position, color, direction, currentTime);
}

}

In addParticles(), we pass in the particle system and how many particles we want
to add, as well as the current time for the particle system. We now have all
of our components in place, and we just need to add a few calls to our renderer
class to glue everything together.

10.3 Drawing the Particle System

We just need to add some code to ParticlesRenderer and then we can finally see
our particles in action. Let’s start out with the following definitions:

Particles/src/com/particles/android/ParticlesRenderer.java
private final Context context;

private final float[] projectionMatrix = new float[16];
private final float[] viewMatrix = new float[16];
private final float[] viewProjectionMatrix = new float[16];

private ParticleShaderProgram particleProgram;
private ParticleSystem particleSystem;
private ParticleShooter redParticleShooter;
private ParticleShooter greenParticleShooter;
private ParticleShooter blueParticleShooter;
private long globalStartTime;

public ParticlesRenderer(Context context) {
this.context = context;

}

We have our standard variables for the Android context and our matrices,
and we have our particle shader, system, and three particle shooters. We also
have a variable for the global start time and a standard constructor.

report erratum • discuss

Drawing the Particle System • 201

http://media.pragprog.com/titles/kbogla/code/Particles/src/com/particles/android/objects/ParticleShooter.java
http://media.pragprog.com/titles/kbogla/code/Particles/src/com/particles/android/ParticlesRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Let’s define the body for onSurfaceCreated():

Particles/src/com/particles/android/ParticlesRenderer.java
@Override
public void onSurfaceCreated(GL10 glUnused, EGLConfig config) {

glClearColor(0.0f, 0.0f, 0.0f, 0.0f);

particleProgram = new ParticleShaderProgram(context);
particleSystem = new ParticleSystem(10000);
globalStartTime = System.nanoTime();

final Vector particleDirection = new Vector(0f, 0.5f, 0f);

redParticleShooter = new ParticleShooter(
new Point(-1f, 0f, 0f),
particleDirection,
Color.rgb(255, 50, 5));

greenParticleShooter = new ParticleShooter(
new Point(0f, 0f, 0f),
particleDirection,
Color.rgb(25, 255, 25));

blueParticleShooter = new ParticleShooter(
new Point(1f, 0f, 0f),
particleDirection,
Color.rgb(5, 50, 255));

}

We set the clear color to black, initialize our particle shader program, and
initialize a new particle system with a maximum limit of ten thousand parti-
cles, and then we set the global start time to the current system time using
System.nanoTime() as the base. We want the particle system to run on a floating-
point time basis so that when the particle system is initialized, the current
time will be 0.0 and a particle created at that time will have a creation time
of 0.0. Five seconds later, a new particle will have a creation time of 5.0. To
do this, we can take the difference between the current system time and
globalStartTime, and since System.nanoTime() returns the time in nanoseconds, we’ll
just need to divide the difference by 1 trillion to convert this into seconds.

The next part of the method sets up our three particle fountains. Each fountain
is represented by a particle shooter, and each shooter will shoot its particles
in the direction of particleDirection, or straight up along the y-axis. We’ve aligned
the three fountains from left to right, and we’ve set the colors so that the first
one is red, the second is green, and the third is blue.

Let’s add the definition for onSurfaceChanged():

Chapter 10. Spicing Things Up with Particles • 202

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/Particles/src/com/particles/android/ParticlesRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Particles/src/com/particles/android/ParticlesRenderer.java
@Override
public void onSurfaceChanged(GL10 glUnused, int width, int height) {

glViewport(0, 0, width, height);

MatrixHelper.perspectiveM(projectionMatrix, 45, (float) width
/ (float) height, 1f, 10f);

setIdentityM(viewMatrix, 0);
translateM(viewMatrix, 0, 0f, -1.5f, -5f);
multiplyMM(viewProjectionMatrix, 0, projectionMatrix, 0,

viewMatrix, 0);
}

This is a standard definition, with a regular perspective projection and a view
matrix that pushes things down and into the distance.

Let’s complete the renderer by adding the following definition for onDrawFrame():

Particles/src/com/particles/android/ParticlesRenderer.java
@Override
public void onDrawFrame(GL10 glUnused) {

glClear(GL_COLOR_BUFFER_BIT);

float currentTime = (System.nanoTime() - globalStartTime) / 1000000000f;

redParticleShooter.addParticles(particleSystem, currentTime, 5);
greenParticleShooter.addParticles(particleSystem, currentTime, 5);
blueParticleShooter.addParticles(particleSystem, currentTime, 5);

particleProgram.useProgram();
particleProgram.setUniforms(viewProjectionMatrix, currentTime);
particleSystem.bindData(particleProgram);
particleSystem.draw();

}

Each time a new frame is drawn, we calculate the current time and pass it
into the shader. That will tell the shader how far each particle has moved
since it was created. We also generate five new particles for each fountain,
and then we draw the particles with the particle shader program.

Go ahead and run the program. After a few seconds, it should look like Figure
50, Particles, first pass, on page 204.

We now have something that works, and we can see the brightening and
dimming effect as a particle ages, but it still looks strange, doesn’t it?
Shouldn’t the particles spread out as they move upward, and shouldn’t they
also fall back down as gravity takes hold? We’ll solve these problems and
more in the next few steps.

report erratum • discuss

Drawing the Particle System • 203

http://media.pragprog.com/titles/kbogla/code/Particles/src/com/particles/android/ParticlesRenderer.java
http://media.pragprog.com/titles/kbogla/code/Particles/src/com/particles/android/ParticlesRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 50—Particles, first pass

10.4 Spreading Out the Particles

The first thing we’ll do is spread out our particles, and we’ll also vary the
speed of each particle to give each particle fountain some more variety. Let’s
go back to ParticleShooter and add the following member variables to the class:

Particles/src/com/particles/android/objects/ParticleShooter.java
private final float angleVariance;
private final float speedVariance;

private final Random random = new Random();

private float[] rotationMatrix = new float[16];
private float[] directionVector = new float[4];
private float[] resultVector = new float[4];

Each shooter will have an angle variance that will control the spread of parti-
cles and a speed variance to alter the speed of each particle. We also have a
matrix and two vectors, so we can use Android’s Matrix class to do some math.

Chapter 10. Spicing Things Up with Particles • 204

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/Particles/src/com/particles/android/objects/ParticleShooter.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Let’s update the constructor signature as follows:

Particles/src/com/particles/android/objects/ParticleShooter.java
public ParticleShooter(

Point position, Vector direction, int color,
float angleVarianceInDegrees, float speedVariance) {

We can then add the following code to assign the new member variables:

Particles/src/com/particles/android/objects/ParticleShooter.java
this.angleVariance = angleVarianceInDegrees;
this.speedVariance = speedVariance;

directionVector[0] = direction.x;
directionVector[1] = direction.y;
directionVector[2] = direction.z;

Now we just need to update addParticles() to apply the angle and speed variance.
Update the body of the for loop as follows:

Particles/src/com/particles/android/objects/ParticleShooter.java
setRotateEulerM(rotationMatrix, 0,

(random.nextFloat() - 0.5f) * angleVariance,
(random.nextFloat() - 0.5f) * angleVariance,
(random.nextFloat() - 0.5f) * angleVariance);

multiplyMV(
resultVector, 0,
rotationMatrix, 0,
directionVector, 0);

float speedAdjustment = 1f + random.nextFloat() * speedVariance;

Vector thisDirection = new Vector(
resultVector[0] * speedAdjustment,
resultVector[1] * speedAdjustment,
resultVector[2] * speedAdjustment);

particleSystem.addParticle(position, color, thisDirection, currentTime);

To alter the shooting angle, we use Android’s Matrix.setRotateEulerM() to create a
rotation matrix that will alter the angle by a random amount of angleVariance,
which is in degrees. We then multiply this matrix with the direction vector to
get a slightly rotated vector. To adjust the speed, we multiply each component
of the direction vector with an equal random adjustment of speedVariance. Once
that’s done, we add the new particle by calling particleSystem.addParticle().

With these changes, we no longer need to keep around the direction member
variable, so go ahead and remove that. We now need to update ParticlesRenderer

report erratum • discuss

Spreading Out the Particles • 205

http://media.pragprog.com/titles/kbogla/code/Particles/src/com/particles/android/objects/ParticleShooter.java
http://media.pragprog.com/titles/kbogla/code/Particles/src/com/particles/android/objects/ParticleShooter.java
http://media.pragprog.com/titles/kbogla/code/Particles/src/com/particles/android/objects/ParticleShooter.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

to adjust for the new constructor parameters. Modify onSurfaceCreated() so that
the particle shooters are created as follows:

Particles/src/com/particles/android/ParticlesRenderer.java
final float angleVarianceInDegrees = 5f;
final float speedVariance = 1f;

redParticleShooter = new ParticleShooter(
new Point(-1f, 0f, 0f),
particleDirection,
Color.rgb(255, 50, 5),
angleVarianceInDegrees,
speedVariance);

greenParticleShooter = new ParticleShooter(
new Point(0f, 0f, 0f),
particleDirection,
Color.rgb(25, 255, 25),
angleVarianceInDegrees,
speedVariance);

blueParticleShooter = new ParticleShooter(
new Point(1f, 0f, 0f),
particleDirection,
Color.rgb(5, 50, 255),
angleVarianceInDegrees,
speedVariance);

We’ve set things up so that each particle fountain has an angle variance of 5
degrees and a speed variance of 1 unit. Go ahead and run the app to see what
we get this time. It should look like Figure 51, Particles with angle and speed
variance, on page 207.

Things are already looking a lot better! Now we need to add some gravity to
pull those particles back down to earth.

10.5 Adding Gravity

What goes up must come down. Isaac Newton became famous because he
observed the effects of gravity on apples falling from a tree; our particles will
look better if we add some gravity to them as well.

On earth, everyone feels an acceleration of 9.8 meters per second squared,
and if we ignore the effects of wind resistance, then the longer something
falls, the faster it goes. We can easily reproduce this effect in our code by
adding a gravity adjustment to our vertex shader. Let’s open up particle_ver-
tex_shader.glsl and add the following line of code after the assignment to
v_ElapsedTime:

Chapter 10. Spicing Things Up with Particles • 206

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/Particles/src/com/particles/android/ParticlesRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 51—Particles with angle and speed variance

Particles/res/raw/particle_vertex_shader.glsl
float gravityFactor = v_ElapsedTime * v_ElapsedTime / 8.0;

This will calculate an accelerating gravity factor by applying the gravitational
acceleration formula and squaring the elapsed time; we also divide things by
8 to dampen the effect. The number 8 is arbitrary: we could use any other
number that also makes things look good on the screen. Now we need to apply
the gravity to our current position, so let’s add the following code to the vertex
shader after the assignment to currentPosition:

Particles/res/raw/particle_vertex_shader.glsl
currentPosition.y -= gravityFactor;

Let’s run the app again and see what happens. It should look like Figure 52,
Adding gravity to the particles, on page 208.

Now we can see that each particle slows down as it moves upward, and
eventually it starts falling back down toward earth. We can still improve the
look: some of the darker particles overlap the brighter ones, and that looks
kind of strange.

report erratum • discuss

Adding Gravity • 207

http://media.pragprog.com/titles/kbogla/code/Particles/res/raw/particle_vertex_shader.glsl
http://media.pragprog.com/titles/kbogla/code/Particles/res/raw/particle_vertex_shader.glsl
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 52—Adding gravity to the particles

10.6 Mixing the Particles with Additive Blending

When we do different effects in OpenGL, we often have to think back to the
effect that we’re trying to reproduce. If we imagine our three particle streams
as a fireworks fountain, like the one we’d see at a fireworks show, then we’d
expect the particles to give off light; and the more of them there are, the
brighter things should be. One of the ways that we can reproduce this effect
is by using additive blending.

Let’s enable blending by adding the following code to ParticlesRenderer in the
onSurfaceCreated() method:

Particles/src/com/particles/android/ParticlesRenderer.java
glEnable(GL_BLEND);
glBlendFunc(GL_ONE, GL_ONE);

That’s it! First we enable blending, and then we set the blending mode to
additive blending. To better understand how this works, let’s look at OpenGL’s
default blending equation:

output = (source factor * source fragment) + (destination factor * destination fragment)

Chapter 10. Spicing Things Up with Particles • 208

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/Particles/src/com/particles/android/ParticlesRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

In OpenGL, blending works by blending the result of the fragment shader
with the color that’s already there in the frame buffer. The value for source
fragment comes from our fragment shader, destination fragment is what’s
already there in the frame buffer, and the values for source factor and desti-
nation factor are configured by calling glBlendFunc(). In the code that we just
added, we called glBlendFunc() with each factor set to GL_ONE, which changes the
blending equation as follows:

output = (GL_ONE * source fragment) + (GL_ONE * destination fragment)

GL_ONE is just a placeholder for 1, and since multiplying anything by 1 results
in the same number, the equation can be simplified as follows:

output = source fragment + destination fragment

With this blending mode, the fragments from our fragment shader will be
added to the fragments already on the screen, and that’s how we get additive
blending. There are many more blending modes possible, which you can
review online at the Khronos website.2

Let’s run our particle app again and see how things look; they should now
look like Figure 53, Blending the particles together with additive blending, on
page 210.

Our particles now look brightened up, and they blend together. Something
to keep in mind is that OpenGL clamps the value of each color component,
so if we add solid green to solid green, we’ll still have solid green. However, if
we add just a tiny bit of red and add the colors together enough times, we’ll
actually shift the hue and end up with yellow. Add in a bit of blue to the yellow
enough times and we end up with white.

We can come up with some neat effects by taking OpenGL’s clamping
behavior into consideration. For example, in the next figure, our red fireworks
fountain actually becomes somewhat yellow where it’s brightest, and this is
because we added in a bit of green and a bit less blue to the base color.

10.7 Customizing the Appearance of Our Points

You may have noticed that our points are being rendered as small squares,
with the number of pixels on each side equal to the value of gl_PointSize. Using
another special OpenGL variable, gl_PointCoord, we can actually customize the
appearance of our points. For each point, when the fragment shader is run,
we’ll get a two-dimensional gl_PointCoord coordinate with each component

2. http://www.khronos.org/opengles/sdk/docs/man/xhtml/glBlendFunc.xml

report erratum • discuss

Customizing the Appearance of Our Points • 209

http://www.khronos.org/opengles/sdk/docs/man/xhtml/glBlendFunc.xml
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 53—Blending the particles together with additive blending

ranging from 0 to 1 on each axis, depending on which fragment in the point
is currently being rendered.

To see how this works, we’ll first use gl_PointCoord to draw our fragments as
circles instead of squares. How can we do this? Well, each point will be ren-
dered with fragments that range from 0 to 1 on each axis relative to gl_PointCoord,
so that places the center of the point at (0.5, 0.5), with 0.5 units of room on
each side. In other words, we can say that the radius of the point is also 0.5.
To draw a circle, all we need to do is draw only the fragments that lie within
that radius.

First let’s crank up the point size so that this will be easier to see. Let’s update
the value of gl_PointSize in particle_vertex_shader.glsl as follows:

Particles/res/raw/particle_vertex_shader.glsl
gl_PointSize = 25.0;

Now let’s update the fragment shader as follows:

Chapter 10. Spicing Things Up with Particles • 210

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/Particles/res/raw/particle_vertex_shader.glsl
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Particles/res/raw/particle_fragment_shader.glsl
precision mediump float;
varying vec3 v_Color;
varying float v_ElapsedTime;
void main()
{

float xDistance = 0.5 - gl_PointCoord.x;
float yDistance = 0.5 - gl_PointCoord.y;
float distanceFromCenter =

sqrt(xDistance * xDistance + yDistance * yDistance);

if (distanceFromCenter > 0.5) {
discard;

} else {
gl_FragColor = vec4(v_Color / v_ElapsedTime, 1.0);

}
}

This is a somewhat expensive way of drawing a point as a circle, but it works.
The way this works is that for each fragment, we calculate the distance to
the center of the point with Pythagoras’s theorem.3 If that distance is greater
than the radius of 0.5, then the current fragment is not part of the circle and
we use the special keyword discard to tell OpenGL to forget about this fragment.
Otherwise, we draw the fragment as before.

Let’s give things another run; our app should now look like Figure 54, Particles
drawn as circles, on page 212.

10.8 Drawing Each Point as a Sprite

The technique we just learned works, but sometimes a texture works better.
Using the same gl_PointCoord and a texture, we can actually draw each point
as a point sprite. We’ll change our particle shader to use the texture shown
in Figure 55, Texture for Particles, on page 212 for each particle.

This texture (particle_texture.png) and all of the textures that we’ll use in future
chapters can be downloaded from this book’s home page. I recommend storing
this texture in your project’s /res/drawable-nodpi/ folder.4

We’ll use the knowledge that we’ve learned in Chapter 7, Adding Detail with
Textures, on page 115, to implement texturing in this project. First let’s update
the fragment shader by adding the following uniform:

Particles/res/raw/particle_fragment_shader.glsl
uniform sampler2D u_TextureUnit;

3. http://en.wikipedia.org/wiki/Pythagorean_theorem
4. http://pragprog.com/book/kbogla

report erratum • discuss

Drawing Each Point as a Sprite • 211

http://media.pragprog.com/titles/kbogla/code/Particles/res/raw/particle_fragment_shader.glsl
http://media.pragprog.com/titles/kbogla/code/Particles/res/raw/particle_fragment_shader.glsl
http://en.wikipedia.org/wiki/Pythagorean_theorem
http://pragprog.com/book/kbogla
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 54—Particles drawn as circles

Figure 55—Texture for Particles

Chapter 10. Spicing Things Up with Particles • 212

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Remove all the circle logic that we added in the previous section, and update
the assignment to gl_FragColor as follows:

Particles/res/raw/particle_fragment_shader.glsl
gl_FragColor = vec4(v_Color / v_ElapsedTime, 1.0)

* texture2D(u_TextureUnit, gl_PointCoord);

This will draw a texture on the point using gl_PointCoord for the texture coordi-
nates. The texture color will be multiplied with the point color, so the points
will be colored the same way as before.

Now we need to add the new uniform to ParticleShaderProgram. First add the fol-
lowing member variable:

Particles/src/com/particles/android/programs/ParticleShaderProgram.java
private final int uTextureUnitLocation;

Now add the following to the end of the constructor:

Particles/src/com/particles/android/programs/ParticleShaderProgram.java
uTextureUnitLocation = glGetUniformLocation(program, U_TEXTURE_UNIT);

We need to update the signature for setUniforms() as follows:

Particles/src/com/particles/android/programs/ParticleShaderProgram.java
public void setUniforms(float[] matrix, float elapsedTime, int textureId) {

We also need to add the following to the end of setUniforms():

Particles/src/com/particles/android/programs/ParticleShaderProgram.java
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, textureId);
glUniform1i(uTextureUnitLocation, 0);

This texture binding is explained in more detail in Setting Uniforms and
Returning Attribute Locations, on page 135.

We just need to load in the new texture, and we’ll be ready to run the app.
Open up ParticlesRenderer, and add the following new member variable:

Particles/src/com/particles/android/ParticlesRenderer.java
private int texture;

Add the following to the end of onSurfaceCreated():

Particles/src/com/particles/android/ParticlesRenderer.java
texture = TextureHelper.loadTexture(context, R.drawable.particle_texture);

Now we can update the call to particleProgram.setUniforms() in onDrawFrame() as
follows:

Particles/src/com/particles/android/ParticlesRenderer.java
particleProgram.setUniforms(viewProjectionMatrix, currentTime, texture);

report erratum • discuss

Drawing Each Point as a Sprite • 213

http://media.pragprog.com/titles/kbogla/code/Particles/res/raw/particle_fragment_shader.glsl
http://media.pragprog.com/titles/kbogla/code/Particles/src/com/particles/android/programs/ParticleShaderProgram.java
http://media.pragprog.com/titles/kbogla/code/Particles/src/com/particles/android/programs/ParticleShaderProgram.java
http://media.pragprog.com/titles/kbogla/code/Particles/src/com/particles/android/programs/ParticleShaderProgram.java
http://media.pragprog.com/titles/kbogla/code/Particles/src/com/particles/android/programs/ParticleShaderProgram.java
http://media.pragprog.com/titles/kbogla/code/Particles/src/com/particles/android/ParticlesRenderer.java
http://media.pragprog.com/titles/kbogla/code/Particles/src/com/particles/android/ParticlesRenderer.java
http://media.pragprog.com/titles/kbogla/code/Particles/src/com/particles/android/ParticlesRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Run the app again; things should look similar to the following figure:

Figure 56—Drawing the particles as point sprites

10.9 A Review

We’ve covered some of the basics of a particle system, but really we’ve only
scratched the surface. So much can be done with particles, including realistic-
looking flames, rain and snow effects, and more. We’ve learned how to draw
particles with OpenGL’s GL_POINTS mode, but we also went into further detail
by learning how to use gl_PointCoord with the discard keyword to come up with
custom point shapes; we can also customize the appearance of our points
even further by using textures. With these capabilities, we can come up with
some really neat effects.

10.10 Exercises

Now that we’ve covered the basics of a particle system, let’s take it further
and create some firework bursts in the air. Depending on how you implement
things, your app might look as shown in the next figure.

Here are some challenges that you’ll want to consider as you work on this
exercise:

Chapter 10. Spicing Things Up with Particles • 214

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

• How does one create the trails? Will you update the particle positions in
Java code and use that to create new particles? Or can you modify the
particle creation times and create effects with that?

• There’s a tradeoff between particle count and size and what the device is
capable of. At some point, too many particles will slow down the frame
rate.

• Should the fireworks create smoke?

As a research exercise, do some more reading on particle systems and on how
particles can be generated on the CPU and GPU. Using your favorite search
engine, read up on how these particles can be used for many different effects,
including fire, rain, snow, and smoke.

Figure 57—A particle fireworks example

When you’re ready, let’s move on to the next chapter!

report erratum • discuss

Exercises • 215

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

CHAPTER 11

Adding a Skybox
We started out with a dark void, and then we added some visual form by
adding three particle fountains to the scene. However, our world is still
mostly black and void. Our fountains are floating in the dark, with no surface
to keep the particles from falling into the abyss.

To start things off, we’ll learn how to add a backdrop to our scene, which will
help to provide a sense of visual context. Many games and wallpapers use a
combination of 2D art and 3D techniques to come up with their backdrops,
and in this chapter, we’ll learn how to set our fountains against a sky backdrop
by using a skybox, which is a technique we can use to add a 360-degree
panorama. These skyboxes were first seen in many popular games in the late
90s, and they continue to be used today. They’re also used plenty outside of
the game world; the 360-degree panorama that we can see when using Google
Street View is just one example.

Let’s take a look at our game plan for this chapter:

• We’ll learn how to define a skybox using cube mapping, a method of
stitching together six different textures into a cube.

• We’ll also take our first look at index arrays, a way of reducing vertex
duplication by storing only unique vertices in a vertex array and linking
them together by referring to those vertices with index offsets instead of
duplicating the vertex data. Index arrays can reduce memory use and
increase performance when there is a lot of vertex reuse.

To get started, we’ll continue the project we began in the last chapter. Let’s
copy that over into a new project called ‘Skybox’.

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

11.1 Creating a Skybox

A skybox is a way of representing a 3D panorama that can be seen in every
direction, no matter which way you turn your head. One of the most classic
ways of rendering a skybox is to use a cube surrounding the viewer, with a
detailed texture on each face of the cube; this is also known as a cube map.
When we draw the skybox, we just need to make sure that it appears behind
everything else in the scene.

When we use a skybox, we use a cube to represent the sky, so normally we’d
expect the sky to look like a giant cube, with highly visible joints between
each face. However, there’s a trick that makes the edges of the cube disappear:
each face of the cube is a picture taken with a 90-degree field of view and a
planar projection, the same type that we’d expect from OpenGL itself.1 When
we position the viewer in the middle of the cube and use a perspective projec-
tion with a regular field of vision, everything lines up just right, the edges of
the cube disappear, and we have a seamless panorama.

Even though the images themselves should be created with a field of vision
of 90 degrees, the OpenGL scene itself can use a wide range of angles, such
as 45 degrees or 60 degrees. The trick will work well as long as excessive
angles are not used, as the rectilinear nature of OpenGL’s perspective projec-
tion will cause increasing distortion around the edges.2

In the next figure, we can see an example of the six faces of a cube map texture
lined up next to each other, showing how each face blends with the one next
to it.

1. http://en.wikipedia.org/wiki/Planar_projection
2. http://en.wikipedia.org/wiki/Rectilinear_lens

Chapter 11. Adding a Skybox • 218

report erratum • discuss

http://en.wikipedia.org/wiki/Planar_projection
http://en.wikipedia.org/wiki/Rectilinear_lens
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

To create the skybox in our scene, we’ll store each face of the cube in a sepa-
rate texture, and then we’ll tell OpenGL to stitch these textures into a cube
map and apply it to a cube. When OpenGL renders the cube with linear
interpolation enabled, many GPUs will actually blend the texels between
neighboring faces, making the cube edges seamless. In fact, seamless cube
mapping support is guaranteed on OpenGL ES 3.0.

The Advantages and Disadvantages of Skybox Techniques

While a cube map by itself works great for a simple skybox, there are a few disadvan-
tages that come with the simplicity. The effect only works well if the skybox is rendered
from the center of the cube, so anything that’s part of the skybox will always appear
to be at the same distance from viewers, no matter how far they travel. Since the
skybox is usually composed of prerendered textures, the scene is also necessarily
static, with clouds that don’t move. And depending on the viewer’s field of vision, the
cube map textures might need to be very high resolution to look good on the screen,
eating up a lot of texture memory and bandwidth.

Many modern games and applications usually work around these limitations by
complementing the traditional skybox technique with a separate 3D scene with its
own dynamic elements and clouds. This separate 3D scene will still be rendered
behind everything else; but the camera can also move around this separate scene
and elements inside that scene can be animated, giving the viewer the illusion of
being in a gigantic 3D world.

11.2 Loading a Cube Map into OpenGL

In the accompanying online resources for this chapter, you’ll find the example
cube map separated into six separate textures in the /res/drawable-nodpi/ folder,
one for each face of the cube. Let’s add a new method to our TextureHelper class
to load these textures into an OpenGL cube map. We’ll call this method load-
CubeMap(), and we’ll start off with the following code:

Skybox/src/com/particles/android/util/TextureHelper.java
public static int loadCubeMap(Context context, int[] cubeResources) {

final int[] textureObjectIds = new int[1];
glGenTextures(1, textureObjectIds, 0);

if (textureObjectIds[0] == 0) {
if (LoggerConfig.ON) {

Log.w(TAG, "Could not generate a new OpenGL texture object.");
}
return 0;

}
final BitmapFactory.Options options = new BitmapFactory.Options();
options.inScaled = false;
final Bitmap[] cubeBitmaps = new Bitmap[6];

report erratum • discuss

Loading a Cube Map into OpenGL • 219

http://media.pragprog.com/titles/kbogla/code/Skybox/src/com/particles/android/util/TextureHelper.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

When we call this method, we’ll pass in six image resources, one for each face
of the cube. The order matters, so we’ll use these images in a standard order
that we can document in the comments for the method. To start things off,
we create one OpenGL texture object, just like we do when loading a regular
texture. We also have six bitmaps to temporarily hold the image resource
data in memory as we lead each image from its resource and transfer the
data over to OpenGL.

Let’s load the images into the bitmap array:

Skybox/src/com/particles/android/util/TextureHelper.java
for (int i = 0; i < 6; i++) {

cubeBitmaps[i] =
BitmapFactory.decodeResource(context.getResources(),

cubeResources[i], options);

if (cubeBitmaps[i] == null) {
if (LoggerConfig.ON) {

Log.w(TAG, "Resource ID " + cubeResources[i]
+ " could not be decoded.");

}
glDeleteTextures(1, textureObjectIds, 0);
return 0;

}
}

We decode all six images into memory, making sure that each load was a
success before continuing. Next we’ll configure the texture filters:

Skybox/src/com/particles/android/util/TextureHelper.java
glBindTexture(GL_TEXTURE_CUBE_MAP, textureObjectIds[0]);

glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

Since each cube map texture will always be viewed from the same viewpoint,
it’s less necessary to use the mipmapping technique described in Mipmapping,
on page 122, so we can just use regular bilinear filtering and save on texture
memory. If we know that the cube map resolution is significantly higher than
the device resolution, then we can also shrink each texture before uploading
it to OpenGL.

Let’s add the following code to associate each image with the appropriate face
of the cube map:

Skybox/src/com/particles/android/util/TextureHelper.java
texImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_X, 0, cubeBitmaps[0], 0);
texImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X, 0, cubeBitmaps[1], 0);

Chapter 11. Adding a Skybox • 220

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/Skybox/src/com/particles/android/util/TextureHelper.java
http://media.pragprog.com/titles/kbogla/code/Skybox/src/com/particles/android/util/TextureHelper.java
http://media.pragprog.com/titles/kbogla/code/Skybox/src/com/particles/android/util/TextureHelper.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

texImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, 0, cubeBitmaps[2], 0);
texImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Y, 0, cubeBitmaps[3], 0);

texImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, 0, cubeBitmaps[4], 0);
texImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Z, 0, cubeBitmaps[5], 0);

When we call this method, we’ll pass in the cube faces in this order: left, right,
bottom, top, front, and back. So long as the caller of this method also passes
in the faces in the same order, we’re good.

First we map the left and right textures to the negative and positive x faces,
the bottom and top textures to the negative and positive y faces, and the front
texture to the negative z and the back texture to the positive z, as if we were
using a left-handed coordinate system. The convention for a cube map is to
use a left-handed coordinate system when inside the cube and a right-handed
coordinate system when outside the cube.3 This will matter when we render
our skybox: if we mix up the conventions, our skybox will appear flipped
across the z-axis.

Let’s wrap up the method with the following code:

Skybox/src/com/particles/android/util/TextureHelper.java
glBindTexture(GL_TEXTURE_2D, 0);

for (Bitmap bitmap : cubeBitmaps) {
bitmap.recycle();

}

return textureObjectIds[0];
}

We unbind from the texture, recycle all of the bitmaps, and return the OpenGL
texture object ID back to the caller.

When dealing with large cube map textures, this style of loading the textures
can be memory-intensive, so if you know you’ll be running on memory-con-
strained devices, one alternative is to load one bitmap at a time and load it
into the appropriate face, reusing the bitmap for each subsequent face.

11.3 Creating a Cube

For our next task, we’re going to create a new cube object for our skybox, and
we’ll also create our first index array. A cube is a good candidate for indexing
because it only has 8 unique vertices. With 3 position components per vertex,
we’ll need 24 floats to store these vertices.

3. http://www.opengl.org/registry/specs/ARB/texture_cube_map.txt

report erratum • discuss

Creating a Cube • 221

http://media.pragprog.com/titles/kbogla/code/Skybox/src/com/particles/android/util/TextureHelper.java
http://www.opengl.org/registry/specs/ARB/texture_cube_map.txt
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Let’s say that we decide to draw the cube with 2 triangles per face, so we have
12 triangles in all. With 3 vertices per triangle, if we were drawing the cube
with a vertex array alone, we’d need 36 vertices or 108 floats, with a lot of
the data duplicated. With an index array, we don’t need to repeat all of the
vertex data. Instead, we only need to repeat the indices. This allows us to
reduce the overall size of the data.

Let’s create a new class under com.particles.android.objects called Skybox, starting
off with the following code inside the class:

Skybox/src/com/particles/android/objects/Skybox.java
private static final int POSITION_COMPONENT_COUNT = 3;
private final VertexArray vertexArray;
private final ByteBuffer indexArray;

public Skybox() {
// Create a unit cube.
vertexArray = new VertexArray(new float[] {

-1, 1, 1, // (0) Top-left near
1, 1, 1, // (1) Top-right near

-1, -1, 1, // (2) Bottom-left near
1, -1, 1, // (3) Bottom-right near

-1, 1, -1, // (4) Top-left far
1, 1, -1, // (5) Top-right far

-1, -1, -1, // (6) Bottom-left far
1, -1, -1 // (7) Bottom-right far

});

The VertexArray holds our vertex array, and we’ll soon use the ByteBuffer to hold
our index array. Let’s finish the constructor with the following code:

Skybox/src/com/particles/android/objects/Skybox.java
indexArray = ByteBuffer.allocateDirect(6 * 6)

.put(new byte[] {
// Front
1, 3, 0,
0, 3, 2,

// Back
4, 6, 5,
5, 6, 7,

// Left
0, 2, 4,
4, 2, 6,

// Right
5, 7, 1,
1, 7, 3,

Chapter 11. Adding a Skybox • 222

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/Skybox/src/com/particles/android/objects/Skybox.java
http://media.pragprog.com/titles/kbogla/code/Skybox/src/com/particles/android/objects/Skybox.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

// Top
5, 1, 4,
4, 1, 0,

// Bottom
6, 2, 7,
7, 2, 3

});
indexArray.position(0);

}

This index array refers to each vertex by an index offset. For example, 0 refers
to the first vertex in the vertex array, and 1 refers to the second vertex. With
this index array, we’ve bound all of the vertices into groups of triangles, with
two triangles per face of the cube.

Let’s take a closer look at the difference by examining just the front face of
the cube:

Skybox/src/com/particles/android/objects/Skybox.java
1, 3, 0,
0, 3, 2,

Now let’s look at how we would have defined it if we were only using a vertex
array:

1, 1, 1, // Top-right near
1, -1, 1, // Bottom-right near

-1, 1, 1, // Top-left near
-1, 1, 1, // Top-left near
1, -1, 1, // Bottom-right near

-1, -1, 1, // Bottom-left near

With an index array, we can refer to each vertex by position instead of
repeating the same vertex data over and over.

Let’s add the following code to finish up the class:

Skybox/src/com/particles/android/objects/Skybox.java
public void bindData(SkyboxShaderProgram skyboxProgram) {

vertexArray.setVertexAttribPointer(0,
skyboxProgram.getPositionAttributeLocation(),
POSITION_COMPONENT_COUNT, 0);

}

public void draw() {
glDrawElements(GL_TRIANGLES, 36, GL_UNSIGNED_BYTE, indexArray);

}

The bindData() method is standard, and all we’re missing is the skybox shader
class for it to compile. To draw the cube, we call glDrawElements(GL_TRIANGLES, 36,

report erratum • discuss

Creating a Cube • 223

http://media.pragprog.com/titles/kbogla/code/Skybox/src/com/particles/android/objects/Skybox.java
http://media.pragprog.com/titles/kbogla/code/Skybox/src/com/particles/android/objects/Skybox.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

GL_UNSIGNED_BYTE, indices), which tells OpenGL to draw the vertices that we bound
in bindData() with the index array defined by indices and to interpret the indices
as unsigned bytes. With OpenGL ES 2, indices need to either be unsigned
bytes (8-bit integers with a range of 0–255), or unsigned shorts (16-bit integers
with a range of 0–65535).

Earlier on we had defined our index array as a ByteBuffer, so we tell OpenGL
to interpret this data as a stream of unsigned bytes. Java’s byte is actually
signed, meaning it ranges from -128 to 127, but this won’t be a problem so
long as we stick to the positive part of that range.

11.4 Adding a Skybox Shader Program

Let’s continue by creating a vertex shader for our skybox. Create a new file
in your raw resource folder called skybox_vertex_shader.glsl, and add the following
contents:

Skybox/res/raw/skybox_vertex_shader.glsl
uniform mat4 u_Matrix;
attribute vec3 a_Position;
varying vec3 v_Position;

void main()
{

v_Position = a_Position;
v_Position.z = -v_Position.z;

gl_Position = u_Matrix * vec4(a_Position, 1.0);
gl_Position = gl_Position.xyww;

}

First we pass on the vertex position to the fragment shader, as seen on the
first line inside main(), and then we invert the position’s z component on the
next line; this gives the fragment shader a position that will be interpolated
across each face of the cube so that we can later use this position to look up
the right part of the skybox texture. The z component is flipped so that we
can convert from the world’s right-handed coordinate space to the left-handed
coordinate space expected for the skybox. If we skip this step, the skybox will
still work, but the textures will appear flipped.

After we project the position into clip coordinates by multiplying a_Position with
the matrix, we set the z component to be equal to the w component with the
following code:

Skybox/res/raw/skybox_vertex_shader.glsl
gl_Position = gl_Position.xyww;

Chapter 11. Adding a Skybox • 224

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/Skybox/res/raw/skybox_vertex_shader.glsl
http://media.pragprog.com/titles/kbogla/code/Skybox/res/raw/skybox_vertex_shader.glsl
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Converting Between Signed and Unsigned Data Types

Sometimes sticking to the signed part of a data type’s range isn’t possible. When we’re
working with unsigned bytes, we can store any number from 0 to 255. However, Java
will normally only let us store numbers in the range of -128 to 127, and 255 is defi-
nitely outside of that range. While we can’t write code that says byte b = 255;, there is
a way to fool Java into interpreting the number as a signed byte.

Let’s take a look at the binary value for 255: in binary, we would represent this
number as 11111111. We just need to find a way of telling Java to put these bits into
the byte. It turns out that we can do this if we use Java’s bit masking to mask off the
last eight bits of the number 255 as follows:

byte b = (byte) (255 & 0xff);

This works because Java will interpret the number literal of 255 as being a 32-bit
integer, which is big enough to hold the number 255. However, once we’ve assigned
255 to the byte, Java will actually see this byte as -1 instead of as 255, because to
Java this byte is signed, and it will interpret the value using two’s complement.a

However, OpenGL or anywhere else expecting unsigned numbers will see the byte as
255.

To read the value back in Java, we can’t just read it directly because Java sees it as
-1. Instead, we need to use a larger Java data type to hold the result. For example,
we could do the conversion with the following code:

short s = (short) (b & 0xff);

We can’t just use short s = b; because Java will do sign extension and our short will
still be -1. By telling Java to mask off the last eight bits, we implicitly convert to an
integer, and then Java will correctly interpret the last eight bits of that integer as
255. Our short will then be set to 255, as we expected.

a. http://en.wikipedia.org/wiki/Two's_complement

This is a trick that makes sure that every part of the skybox will lie on the
far plane in normalized device coordinates and thus behind everything else
in the scene. This trick works because perspective division divides everything
by w, and w divided by itself will equal 1. After the perspective divide, z will
end up on the far plane of 1.

This “trick” might seem unnecessary right now, since if we wanted the skybox
to appear behind everything else we could just draw it first and then draw
everything else on top of it. There are performance reasons behind this trick
though, which we’ll cover in more detail in Removing Hidden Surfaces with
the Depth Buffer, on page 245.

report erratum • discuss

Adding a Skybox Shader Program • 225

http://en.wikipedia.org/wiki/Two's_complement
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Let’s continue with the fragment shader. Add a new file called skybox_frag-
ment_shader.glsl, and add the following code:

Skybox/res/raw/skybox_fragment_shader.glsl
precision mediump float;

uniform samplerCube u_TextureUnit;
varying vec3 v_Position;

void main()
{

gl_FragColor = textureCube(u_TextureUnit, v_Position);
}

To draw the skybox using the cube texture, we call textureCube() with the
interpolated cube face position as the texture coordinates for that fragment.

Let’s add the matching Java class to wrap this shader program by adding a
new class called SkyboxShaderProgram that extends ShaderProgram to the package
com.particles.android.programs, with the following code inside the class:

Skybox/src/com/particles/android/programs/SkyboxShaderProgram.java
private final int uMatrixLocation;
private final int uTextureUnitLocation;
private final int aPositionLocation;

public SkyboxShaderProgram(Context context) {
super(context, R.raw.skybox_vertex_shader,

R.raw.skybox_fragment_shader);

uMatrixLocation = glGetUniformLocation(program, U_MATRIX);
uTextureUnitLocation = glGetUniformLocation(program, U_TEXTURE_UNIT);
aPositionLocation = glGetAttribLocation(program, A_POSITION);

}

public void setUniforms(float[] matrix, int textureId) {
glUniformMatrix4fv(uMatrixLocation, 1, false, matrix, 0);

glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_CUBE_MAP, textureId);
glUniform1i(uTextureUnitLocation, 0);

}

public int getPositionAttributeLocation() {
return aPositionLocation;

}

By now we’re getting used to wrapping our shader programs and this is all
pretty straightforward. Since we’re using a cube map texture, we bind the
texture with GL_TEXTURE_CUBE_MAP.

Chapter 11. Adding a Skybox • 226

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/Skybox/res/raw/skybox_fragment_shader.glsl
http://media.pragprog.com/titles/kbogla/code/Skybox/src/com/particles/android/programs/SkyboxShaderProgram.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

11.5 Adding the Skybox to Our Scene

Now that we have the cube model and shader code written up, let’s add the
skybox to our scene. Open up ParticlesRenderer, and add the following members
to the top of the class:

Skybox/src/com/particles/android/ParticlesRenderer.java
private SkyboxShaderProgram skyboxProgram;
private Skybox skybox;
private int skyboxTexture;

At the same time, rename the existing texture member variable from the last
chapter to particleTexture. Bring in any missing imports, and then we’ll initialize
these new variables in onSurfaceCreated() with the following code:

Skybox/src/com/particles/android/ParticlesRenderer.java
skyboxProgram = new SkyboxShaderProgram(context);
skybox = new Skybox();
skyboxTexture = TextureHelper.loadCubeMap(context,

new int[] { R.drawable.left, R.drawable.right,
R.drawable.bottom, R.drawable.top,
R.drawable.front, R.drawable.back});

Now that we’re using a skybox, we don’t want translations applied to the
scene to also apply to the skybox. For that reason, we’ll need to use a different
matrix for the skybox and for the particles, so remove all of the lines after the
call to perspectiveM() in onSurfaceChanged(); we’ll set these matrices up in
onDrawFrame() instead. Let’s update onDrawFrame() as follows:

Skybox/src/com/particles/android/ParticlesRenderer.java
@Override
public void onDrawFrame(GL10 glUnused) {

glClear(GL_COLOR_BUFFER_BIT);
drawSkybox();
drawParticles();

}

First we’ll draw the skybox, and then we’ll draw the particles on top of the
skybox. Let’s add the method to draw the skybox:

Skybox/src/com/particles/android/ParticlesRenderer.java
private void drawSkybox() {

setIdentityM(viewMatrix, 0);
multiplyMM(viewProjectionMatrix, 0, projectionMatrix, 0, viewMatrix, 0);
skyboxProgram.useProgram();
skyboxProgram.setUniforms(viewProjectionMatrix, skyboxTexture);
skybox.bindData(skyboxProgram);
skybox.draw();

}

report erratum • discuss

Adding the Skybox to Our Scene • 227

http://media.pragprog.com/titles/kbogla/code/Skybox/src/com/particles/android/ParticlesRenderer.java
http://media.pragprog.com/titles/kbogla/code/Skybox/src/com/particles/android/ParticlesRenderer.java
http://media.pragprog.com/titles/kbogla/code/Skybox/src/com/particles/android/ParticlesRenderer.java
http://media.pragprog.com/titles/kbogla/code/Skybox/src/com/particles/android/ParticlesRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

We’ll draw the skybox centered around (0, 0, 0) so that we’ll appear to be in
the middle of the skybox and everything will appear visually correct.

Let’s add the code to draw the particles:

Skybox/src/com/particles/android/ParticlesRenderer.java
private void drawParticles() {

float currentTime = (System.nanoTime() - globalStartTime) / 1000000000f;

redParticleShooter.addParticles(particleSystem, currentTime, 1);
greenParticleShooter.addParticles(particleSystem, currentTime, 1);
blueParticleShooter.addParticles(particleSystem, currentTime, 1);

setIdentityM(viewMatrix, 0);
translateM(viewMatrix, 0, 0f, -1.5f, -5f);
multiplyMM(viewProjectionMatrix, 0, projectionMatrix, 0, viewMatrix, 0);

glEnable(GL_BLEND);
glBlendFunc(GL_ONE, GL_ONE);

particleProgram.useProgram();
particleProgram.setUniforms(viewProjectionMatrix, currentTime, particleTexture);
particleSystem.bindData(particleProgram);
particleSystem.draw();

glDisable(GL_BLEND);
}

This is similar to the last chapter, with the particle fountains being pushed
down and into the distance, except that we now do the matrix update inside
of drawParticles(), and we turn blending on and off within the method itself. We
do this because we don’t want blending turned on when we draw the skybox
itself.

Now that we’re enabling and disabling blending only when drawing the parti-
cles, go ahead and remove the calls to glEnable(GL_BLEND) and glBlendFunc() from
onSurfaceCreated().

Let’s test out our new skybox and see what we get. If all goes well, then it
should look like Figure 58, A stormy skybox, on page 229.

We now have a stormy sky backdrop to complement our scene! It still looks
somewhat strange to see those fountains floating in the middle of the air, but
we’ll address that soon by adding in some terrain in the next chapter.

11.6 Panning the Camera Around the Scene

Currently we can only see a very small part of the skybox on our screen.
Wouldn’t it be nice if we could pan around and see the rest of the skybox?

Chapter 11. Adding a Skybox • 228

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/Skybox/src/com/particles/android/ParticlesRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 58—A stormy skybox

We can easily do that by listening for touch events and using those touch
events to rotate the skybox and scene together.

Open up ParticlesActivity, and add the following code before the call to
setContentView():

Skybox/src/com/particles/android/ParticlesActivity.java
glSurfaceView.setOnTouchListener(new OnTouchListener() {

float previousX, previousY;

@Override
public boolean onTouch(View v, MotionEvent event) {

if (event != null) {
if (event.getAction() == MotionEvent.ACTION_DOWN) {

previousX = event.getX();
previousY = event.getY();

} else if (event.getAction() == MotionEvent.ACTION_MOVE) {
final float deltaX = event.getX() - previousX;
final float deltaY = event.getY() - previousY;

report erratum • discuss

Panning the Camera Around the Scene • 229

http://media.pragprog.com/titles/kbogla/code/Skybox/src/com/particles/android/ParticlesActivity.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

previousX = event.getX();
previousY = event.getY();

glSurfaceView.queueEvent(new Runnable() {
@Override
public void run() {

particlesRenderer.handleTouchDrag(
deltaX, deltaY);

}
});

}

return true;
} else {

return false;
}

}
});

This code defines a touch listener that will measure how far you’ve dragged
your finger between each successive call to onTouch(). When you first touch
the screen, the current touch position will be recorded in previousX and previousY.

As you drag your finger across the screen, you’ll get a bunch of drag events,
and each time you do, you’ll first take the difference between the new position
and the old position and store that into deltaX and deltaY, and then you’ll update
previousX and previousY. The deltas will be passed into the particle renderer by
calling handleTouchDrag(). We need to create this method, so let’s return to Parti-
clesRenderer and add the following to the class:

Skybox/src/com/particles/android/ParticlesRenderer.java
private float xRotation, yRotation;

public void handleTouchDrag(float deltaX, float deltaY) {
xRotation += deltaX / 16f;
yRotation += deltaY / 16f;

if (yRotation < -90) {
yRotation = -90;

} else if (yRotation > 90) {
yRotation = 90;

}
}

This method will take in the distance the user dragged in each direction and
add it to xRotation and yRotation, which represent the rotation in degrees. We
don’t want the touch to be too sensitive, so we scale down the effect by 16,

Chapter 11. Adding a Skybox • 230

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/Skybox/src/com/particles/android/ParticlesRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

and we don’t want to rotate too far up and down, so we clamp the y rotation
between +90 degrees and -90 degrees.

Let’s apply the rotations to our skybox and scene. First let’s update drawSkybox()
by replacing the current matrix code with the following code:

Skybox/src/com/particles/android/ParticlesRenderer.java
setIdentityM(viewMatrix, 0);
rotateM(viewMatrix, 0, -yRotation, 1f, 0f, 0f);
rotateM(viewMatrix, 0, -xRotation, 0f, 1f, 0f);
multiplyMM(viewProjectionMatrix, 0, projectionMatrix, 0, viewMatrix, 0);

Now we just need to rotate the particles as well:

Skybox/src/com/particles/android/ParticlesRenderer.java
setIdentityM(viewMatrix, 0);
rotateM(viewMatrix, 0, -yRotation, 1f, 0f, 0f);
rotateM(viewMatrix, 0, -xRotation, 0f, 1f, 0f);
translateM(viewMatrix, 0, 0f, -1.5f, -5f);
multiplyMM(viewProjectionMatrix, 0, projectionMatrix, 0, viewMatrix, 0);

Rotating the matrix by the y rotation first and the x rotation second gives you
an “FPS-style” rotation (where FPS stands for first person shooter), so rotating
up or down always brings you toward your head or your feet, and rotating
left or right always rotates you around in a circle about your feet.

Now if you give the app another run and drag your finger across the screen,
you can pan the camera around and see other parts of the skybox, as seen
in the next figure:

report erratum • discuss

Panning the Camera Around the Scene • 231

http://media.pragprog.com/titles/kbogla/code/Skybox/src/com/particles/android/ParticlesRenderer.java
http://media.pragprog.com/titles/kbogla/code/Skybox/src/com/particles/android/ParticlesRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

11.7 A Review

In this chapter we learned how to add a skybox by using a cube and cube
mapping to apply a skybox texture onto the cube. We also learned about index
arrays and how they can help reduce memory usage when an object has a
lot of shared vertices.

While we used cube maps in this chapter for the skybox, they can be used
for other things too. A cube map can also be used as an environment map on
an object to make it appear reflective or shiny. Index arrays will also come
quite in handy when dealing with more complex objects and scenes, though
it is always best to benchmark and compare the choices and then use the
one that performs the best.

11.8 Exercises

As your first exercise, add a small cube to the scene and apply the cube map
to this cube. For a more advanced exercise, add movement to the camera
(you could use the volume keys to move forward and backward, for example)
to move the scene without also moving the skybox.

When you’re ready, let’s move on to the next chapter.

Chapter 11. Adding a Skybox • 232

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

CHAPTER 12

Adding Terrain
Now that we have a nice backdrop with some stormy clouds on the horizon,
it’s time for us to start adding in some substance to our world. In this chapter,
we’ll learn how to use a height map to add some terrain to the scene. As we
do this, we’ll touch many new areas of OpenGL and learn how to use the
depth buffer for preventing overdraw, and we’ll also learn how to store vertex
and index data directly on the GPU for better performance.

Height maps are an easy way to add terrain to a scene, and they can easily
be generated or edited using a regular paint program. The depth buffer itself
is a fundamental part of OpenGL, and it helps us easily render more complex
scenes without worrying too much about how that scene is put together.

Here’s our game plan:

• First we’ll look at how to create a height map and load it into our applica-
tion using vertex buffer objects and index buffer objects.

• We’ll then take our first look at culling and the depth buffer, two tech-
niques for occluding hidden objects.

Let’s continue the project from last chapter by copying the code over into a
new project called ‘Heightmap’.

12.1 Creating a Height Map

A height map is simply a two-dimensional map of heights, much like a
topography map that you can find in an atlas. A simple way to create a height
map is to use a grayscale image, with the light areas representing high ground
and the dark areas representing low ground. Since it’s just an image, we can
draw our own height map using any regular paint program and end up with

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

something like the next figure. You can even download height maps of real
terrain off the Internet from places like the National Elevation Dataset.1

Figure 59—A height map example

We’ll use the height map from the preceding figure for this project, which can
be downloaded from this book’s website.2 Place this image in your project’s
/res/drawable-nodpi/ folder; in the next step, we’ll load this height map data in.

12.2 Creating Vertex and Index Buffer Objects

To load in the height map, we’re going to use two new OpenGL objects: a
vertex buffer object and an index buffer object. These two objects are analogous
to the vertex arrays and index arrays that we’ve been using in previous
chapters, except that the graphics driver can choose to place them directly
in the GPU’s memory. This can lead to better performance for objects that we
don’t change often once they’ve been created, such as a height map. These
buffer objects aren’t always faster, though, so it does pay to compare both
options.

Creating a Vertex Buffer Object

To load in these buffer objects, we’ll need to create some supporting code.
Let’s create a new class called VertexBuffer in the com.particles.android.data, with
the following member variable and constructor:

1. http://ned.usgs.gov/
2. http://pragprog.com/book/kbogla/

Chapter 12. Adding Terrain • 234

report erratum • discuss

http://ned.usgs.gov/
http://pragprog.com/book/kbogla/
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Heightmap/src/com/particles/android/data/VertexBuffer.java
private final int bufferId;

public VertexBuffer(float[] vertexData) {
// Allocate a buffer.
final int buffers[] = new int[1];
glGenBuffers(buffers.length, buffers, 0);
if (buffers[0] == 0) {

throw new RuntimeException("Could not create a new vertex buffer object.");
}
bufferId = buffers[0];

// Bind to the buffer.
glBindBuffer(GL_ARRAY_BUFFER, buffers[0]);

// Transfer data to native memory.
FloatBuffer vertexArray = ByteBuffer

.allocateDirect(vertexData.length * BYTES_PER_FLOAT)

.order(ByteOrder.nativeOrder())

.asFloatBuffer()

.put(vertexData);
vertexArray.position(0);

// Transfer data from native memory to the GPU buffer.
glBufferData(GL_ARRAY_BUFFER, vertexArray.capacity() * BYTES_PER_FLOAT,

vertexArray, GL_STATIC_DRAW);

// IMPORTANT: Unbind from the buffer when we're done with it.
glBindBuffer(GL_ARRAY_BUFFER, 0);

}

To send vertex data into a vertex buffer object, we first create a new buffer
object using glGenBuffers(). This method takes in an array, so we create a new
one-element array to store the new buffer ID. We then bind to the buffer with
a call to glBindBuffer(), passing in GL_ARRAY_BUFFER to tell OpenGL that this is a
vertex buffer.

To copy the data into the buffer object, we have to first transfer it into native
memory just like we used to do with VertexArray. Once it’s there, we can
transfer the data into the buffer object with a call to glBufferData(). Let’s take a
look at this method’s parameters in more detail (see Table 7, glBufferData
parameters, on page 236).

When we’re done loading data into the buffer, we need to make sure that we
unbind from the buffer by calling glBindBuffer() with 0 as the buffer ID; otherwise
calls to functions like glVertexAttribPointer() elsewhere in our code will not work
properly.

report erratum • discuss

Creating Vertex and Index Buffer Objects • 235

http://media.pragprog.com/titles/kbogla/code/Heightmap/src/com/particles/android/data/VertexBuffer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

glBufferData(int target, int size, Buffer data, int usage)
This should be GL_ARRAY_BUFFER for a vertex buffer object, or
GL_ELEMENT_ARRAY_BUFFER for an index buffer object.

int target

This is the size of the data in bytes.int size

This should be a Buffer object that was created with allocateDi-
rect().

Buffer data

This tells OpenGL the expected usage pattern for this buffer
object. Here are the options:

int usage

GL_STREAM_DRAW
This object will only be modified once and only used a
few times.

GL_STATIC_DRAW
This object will be modified once, but it will be used
many times.

GL_DYNAMIC_DRAW
This object will be both modified and used many times.

These are hints rather than constraints so that OpenGL can
do optimizations on its end. We’ll want to use GL_STATIC_DRAW
most of the time.

Table 7—glBufferData parameters

We’ll also need a wrapper to glVertexAttribPointer() like we had with our old
VertexArray class, so let’s add a new method called setVertexAttribPointer():

Heightmap/src/com/particles/android/data/VertexBuffer.java
public void setVertexAttribPointer(int dataOffset, int attributeLocation,

int componentCount, int stride) {
glBindBuffer(GL_ARRAY_BUFFER, bufferId);
glVertexAttribPointer(attributeLocation, componentCount, GL_FLOAT,

false, stride, dataOffset);
glEnableVertexAttribArray(attributeLocation);
glBindBuffer(GL_ARRAY_BUFFER, 0);

}

The main differences here are that we now need to bind to the buffer before
calling glVertexAttribPointer(), and we use a slightly different glVertexAttribPointer()
that takes in an int instead of a Buffer as the last parameter. This integer tells
OpenGL the offset in bytes for the current attribute; this could be 0 for the
first attribute or a specific byte offset for subsequent attributes.

Chapter 12. Adding Terrain • 236

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/Heightmap/src/com/particles/android/data/VertexBuffer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

As before, we make sure to unbind from the buffer before returning from the
method.

Creating an Index Buffer Object

We’ll also need a wrapper class for the index buffer, so go ahead and create
a new class called IndexBuffer in the same package as VertexBuffer. You can
copy/paste over the member variable and constructor from VertexBuffer and
make the following changes:

• Use short[] and ShortBuffer as the types.

• Use GL_ELEMENT_ARRAY_BUFFER instead of GL_ARRAY_BUFFER.

• To get the size in bytes, add the new constant BYTES_PER_SHORT to Constants
with the value 2, and use that instead of BYTES_PER_FLOAT when you call
glBufferData().

We’ll need to use the buffer ID when we use it to draw, so let’s add an accessor
for it:

Heightmap/src/com/particles/android/data/IndexBuffer.java
public int getBufferId() {

return bufferId;
}

Now that we have our supporting code in place, let’s get that height map
loaded in.

12.3 Loading in the Height Map

To load the height map into OpenGL, we need to load in the image data and
convert it into a set of vertices, one for each pixel. Each vertex will have a
position based on its position in the image and a height based on the bright-
ness of the pixel. Once we have all of the vertices loaded in, we’ll use the index
buffer to group them into triangles that we can draw with OpenGL.

Generating the Vertex Data

Let’s create a new class called Heightmap in the com.particles.android.objects package,
adding the following code inside the class to start out:

Heightmap/src/com/particles/android/objects/Heightmap.java
private static final int POSITION_COMPONENT_COUNT = 3;

private final int width;
private final int height;
private final int numElements;
private final VertexBuffer vertexBuffer;

report erratum • discuss

Loading in the Height Map • 237

http://media.pragprog.com/titles/kbogla/code/Heightmap/src/com/particles/android/data/IndexBuffer.java
http://media.pragprog.com/titles/kbogla/code/Heightmap/src/com/particles/android/objects/Heightmap.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

private final IndexBuffer indexBuffer;

public Heightmap(Bitmap bitmap) {
width = bitmap.getWidth();
height = bitmap.getHeight();

if (width * height > 65536) {
throw new RuntimeException("Heightmap is too large for the index buffer.");

}
numElements = calculateNumElements();
vertexBuffer = new VertexBuffer(loadBitmapData(bitmap));
indexBuffer = new IndexBuffer(createIndexData());

}

We pass in an Android bitmap, load the data into a vertex buffer, and create
an index buffer for those vertices. Let’s start adding the definition for loadBitmap-
Data():

Heightmap/src/com/particles/android/objects/Heightmap.java
private float[] loadBitmapData(Bitmap bitmap) {

final int[] pixels = new int[width * height];
bitmap.getPixels(pixels, 0, width, 0, 0, width, height);
bitmap.recycle();

final float[] heightmapVertices =
new float[width * height * POSITION_COMPONENT_COUNT];

int offset = 0;

To efficiently read in all of the bitmap data, we first extract all of the pixels
with a call to getPixels(), and then we recycle the bitmap since we won’t need
to keep it around. Since there will be one vertex per pixel, we create a new
array for the vertices with the same width and height as the bitmap.

Let’s add some code to convert the bitmap pixels into height map data:

Heightmap/src/com/particles/android/objects/Heightmap.java
for (int row = 0; row < height; row++) {

for (int col = 0; col < width; col++) {
final float xPosition = ((float)col / (float)(width - 1)) - 0.5f;
final float yPosition =

(float)Color.red(pixels[(row * height) + col]) / (float)255;
final float zPosition = ((float)row / (float)(height - 1)) - 0.5f;

heightmapVertices[offset++] = xPosition;
heightmapVertices[offset++] = yPosition;
heightmapVertices[offset++] = zPosition;

}
}
return heightmapVertices;

}

Chapter 12. Adding Terrain • 238

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/Heightmap/src/com/particles/android/objects/Heightmap.java
http://media.pragprog.com/titles/kbogla/code/Heightmap/src/com/particles/android/objects/Heightmap.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

To generate each vertex of the height map, we first calculate the vertex’s
position; the height map will be 1 unit wide in each direction and centered
at an x-z of (0, 0), so with these loops, the upper left corner of the bitmap will
map to (-0.5, -0.5), and the lower right corner will map to (0.5, 0.5).

We assume that the image is grayscale, so we read the red component of the
pixel and divide that by 255 to get the height. A pixel value of 0 will correspond
to a height of 0, and a pixel value of 255 will correspond to a height of 1. Once
we’ve calculated the position and the height, we can write out the new vertex
to the array.

Before we move on, let’s take a closer look at this loop. Why do we read the
bitmap row by row, scanning each column from left to right? Why not read
the bitmap column by column instead? The reason we read the data row by
row is because that’s how the bitmap is laid out sequentially in memory, and
CPUs are much better at caching and moving data around when they can do
it in sequence.

It’s also important to note the way we are accessing the pixels. When we
extracted the pixels using getPixels(), Android gave us a one-dimensional array.
How then do we know where to read in the pixels? We can calculate the right
place with the following formula:

pixelOffset = currentRow * height + currentColumn

Using this formula, we can use two loops to read in a one-dimensional array
as if it were a two-dimensional bitmap.

Generating the Index Data

Back in the constructor, we figured out how many index elements we needed
by calling calculateNumElements(), and we saved the result in numElements. Let’s go
ahead and create that method now:

Heightmap/src/com/particles/android/objects/Heightmap.java
private int calculateNumElements() {

return (width - 1) * (height - 1) * 2 * 3;
}

The way this works is that for every group of 4 vertices in the height map,
we’ll generate 2 triangles, 3 indices for each triangle, for a total of 6 indices.
We can calculate how many groups we need by multiplying (width - 1) by
(height - 1), and then we just multiply that by 2 triangles per group and 3
elements per triangle to get the total element count. For example, a height
map of 3 x 3 will have (3 - 1) x (3 - 1) = 2 x 2 = 4 groups. With two triangles
per group and 3 elements per triangle, that’s a total of 24 elements.

report erratum • discuss

Loading in the Height Map • 239

http://media.pragprog.com/titles/kbogla/code/Heightmap/src/com/particles/android/objects/Heightmap.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Let’s generate the indices with the following code:

Heightmap/src/com/particles/android/objects/Heightmap.java
private short[] createIndexData() {

final short[] indexData = new short[numElements];
int offset = 0;

for (int row = 0; row < height - 1; row++) {
for (int col = 0; col < width - 1; col++) {

short topLeftIndexNum = (short) (row * width + col);
short topRightIndexNum = (short) (row * width + col + 1);
short bottomLeftIndexNum = (short) ((row + 1) * width + col);
short bottomRightIndexNum = (short) ((row + 1) * width + col + 1);

// Write out two triangles.
indexData[offset++] = topLeftIndexNum;
indexData[offset++] = bottomLeftIndexNum;
indexData[offset++] = topRightIndexNum;

indexData[offset++] = topRightIndexNum;
indexData[offset++] = bottomLeftIndexNum;
indexData[offset++] = bottomRightIndexNum;

}
}

return indexData;
}

This method creates an array of shorts with the required size, and then it
loops through the rows and columns, creating triangles for each group of four
vertices. We don’t even need the actual pixel data to do this; all we need is
the width and the height. We first learned about indices back in Section 11.3,
Creating a Cube, on page 221, and this code follows the same pattern.

Something interesting happens if you try to store index values greater than
32,767: the cast to short will cause the number to wrap around into a negative
value. However, due to two’s complement, these negative numbers will have
the right value when OpenGL reads them in as unsigned values (see Converting
Between Signed and Unsigned Data Types, on page 225). As long as we don’t
have more than 65,536 elements to index, we’ll be fine.

Tips & Gotchas

There are a few things to watch out for when using buffer objects. Technically,
Android supports OpenGL ES 2 starting from Android 2.2 (Froyo), but
unfortunately these bindings are broken, and vertex and index buffers are
unusable from Java without writing a custom Java Native Interface (JNI)
binding.

Chapter 12. Adding Terrain • 240

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/Heightmap/src/com/particles/android/objects/Heightmap.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

The good news is that these bindings were fixed in Android’s Gingerbread
release, and as of the time of this writing, only 9 percent of the market is still
on Froyo, so this problem isn’t as big of a deal as it used to be.

Just like with Java’s ByteBuffers, using OpenGL buffer objects improperly can
lead to native crashes, which can be difficult to debug. If your application
suddenly disappears and you see something like “Segmentation fault” in the
Android log, it’s a good idea to double-check all of your calls involving the
buffers, especially calls to glVertexAttribPointer().

12.4 Drawing the Height Map

Now that we have the height map loaded in, let’s get it drawn to the screen.
Create a new file called heightmap_vertex_shader.glsl in your /res/raw folder, and add
the following code:

Heightmap/res/raw/heightmap_vertex_shader.glsl
uniform mat4 u_Matrix;
attribute vec3 a_Position;
varying vec3 v_Color;

void main()
{

v_Color = mix(vec3(0.180, 0.467, 0.153), // A dark green
vec3(0.660, 0.670, 0.680), // A stony gray
a_Position.y);

gl_Position = u_Matrix * vec4(a_Position, 1.0);
}

This vertex shader uses a new shader function, mix(), to smoothly interpolate
between two different colors. We set up our height map so that the height is
between 0 and 1, and we use this height as the ratio between the two colors.
The height map will appear green near the bottom and gray near the top.

Let’s add a matching fragment shader called heightmap_fragment_shader.glsl:

Heightmap/res/raw/heightmap_fragment_shader.glsl
precision mediump float;

varying vec3 v_Color;

void main()
{

gl_FragColor = vec4(v_Color, 1.0);
}

To wrap this shader in Java, add a new class called HeightmapShaderProgram to
com.particles.android.programs using the same pattern as the other classes in that

report erratum • discuss

Drawing the Height Map • 241

http://media.pragprog.com/titles/kbogla/code/Heightmap/res/raw/heightmap_vertex_shader.glsl
http://media.pragprog.com/titles/kbogla/code/Heightmap/res/raw/heightmap_fragment_shader.glsl
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

package. Once that’s done, go back to Heightmap and add the following methods
to the end of the class:

Heightmap/src/com/particles/android/objects/Heightmap.java
public void bindData(HeightmapShaderProgram heightmapProgram) {

vertexBuffer.setVertexAttribPointer(0,
heightmapProgram.getPositionAttributeLocation(),
POSITION_COMPONENT_COUNT, 0);

}

public void draw() {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, indexBuffer.getBufferId());
glDrawElements(GL_TRIANGLES, numElements, GL_UNSIGNED_SHORT, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);

}

We’ll use bindData() to tell OpenGL where to get the data when we call draw().
In draw(), we tell OpenGL to draw the data using the index buffer. This call
uses a slightly different glDrawElements() than the one we used in the last
chapter: like with glVertexAttribPointer(), the last parameter is changed from a
Buffer reference to an int offset, which is used to tell OpenGL at which index
to start reading.

As before, we also bind the buffer before use and make sure to unbind it
afterward.

Adding the Height Map and New Matrices to ParticlesRenderer

With our components in place, let’s head to ParticlesRenderer and glue everything
together. First we’ll need to add a couple of new matrices to the top of the
class, so let’s update the list of matrices as follows:

Heightmap/src/com/particles/android/ParticlesRenderer.java
private final float[] modelMatrix = new float[16];
private final float[] viewMatrix = new float[16];
private final float[] viewMatrixForSkybox = new float[16];
private final float[] projectionMatrix = new float[16];

private final float[] tempMatrix = new float[16];
private final float[] modelViewProjectionMatrix = new float[16];

We’ll also need two new members for the height map and the height map
shader program:

Heightmap/src/com/particles/android/ParticlesRenderer.java
private HeightmapShaderProgram heightmapProgram;
private Heightmap heightmap;

Initialize these in onSurfaceCreated():

Chapter 12. Adding Terrain • 242

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/Heightmap/src/com/particles/android/objects/Heightmap.java
http://media.pragprog.com/titles/kbogla/code/Heightmap/src/com/particles/android/ParticlesRenderer.java
http://media.pragprog.com/titles/kbogla/code/Heightmap/src/com/particles/android/ParticlesRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Heightmap/src/com/particles/android/ParticlesRenderer.java
heightmapProgram = new HeightmapShaderProgram(context);
heightmap = new Heightmap(((BitmapDrawable)context.getResources()

.getDrawable(R.drawable.heightmap)).getBitmap());

We need to make a few more changes to reduce the amount of copy/paste
with our matrix code. We can do this by using one matrix to represent a
camera for all of our objects and a second matrix for the skybox that repre-
sents just the rotation.

Add a new method to the class called updateViewMatrices() as follows:

Heightmap/src/com/particles/android/ParticlesRenderer.java
private void updateViewMatrices() {

setIdentityM(viewMatrix, 0);
rotateM(viewMatrix, 0, -yRotation, 1f, 0f, 0f);
rotateM(viewMatrix, 0, -xRotation, 0f, 1f, 0f);
System.arraycopy(viewMatrix, 0, viewMatrixForSkybox, 0, viewMatrix.length);

// We want the translation to apply to the regular view matrix, and not
// the skybox.
translateM(viewMatrix, 0, 0, -1.5f, -5f);

}

With this code, we can use viewMatrix to apply the same rotation and translation
to the height map and particles, and we can use viewMatrixForSkybox to apply
the rotation to the skybox.

This follows the same idea as the matrix hierarchy we introduced back in A
Simple Matrix Hierarchy, on page 156. Let’s call this new method by adding a
call to updateViewMatrices() to the end of handleTouchDrag(). We’ll also need to replace
the code inside onSurfaceChanged() after the call to perspectiveM() with another call
to updateViewMatrices(), as follows:

Heightmap/src/com/particles/android/ParticlesRenderer.java
@Override
public void onSurfaceChanged(GL10 glUnused, int width, int height) {

glViewport(0, 0, width, height);
MatrixHelper.perspectiveM(projectionMatrix, 45, (float) width

/ (float) height, 1f, 10f);
updateViewMatrices();

}

We also need a couple of new helper methods to multiply the matrices
together into a final, combined model-view projection matrix, depending on
whether we’re drawing the skybox or drawing something else. Add the following
two methods to the class:

report erratum • discuss

Drawing the Height Map • 243

http://media.pragprog.com/titles/kbogla/code/Heightmap/src/com/particles/android/ParticlesRenderer.java
http://media.pragprog.com/titles/kbogla/code/Heightmap/src/com/particles/android/ParticlesRenderer.java
http://media.pragprog.com/titles/kbogla/code/Heightmap/src/com/particles/android/ParticlesRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Heightmap/src/com/particles/android/ParticlesRenderer.java
private void updateMvpMatrix() {

multiplyMM(tempMatrix, 0, viewMatrix, 0, modelMatrix, 0);
multiplyMM(modelViewProjectionMatrix, 0, projectionMatrix, 0, tempMatrix, 0);

}
private void updateMvpMatrixForSkybox() {

multiplyMM(tempMatrix, 0, viewMatrixForSkybox, 0, modelMatrix, 0);
multiplyMM(modelViewProjectionMatrix, 0, projectionMatrix, 0, tempMatrix, 0);

}

We need to use a temporary matrix to hold the intermediate result, as these
methods will mess up the matrix if we use the same matrix as both a destina-
tion and as an operand. Now we can update drawSkybox() by deleting the
existing matrix code and replacing it with the following:

Heightmap/src/com/particles/android/ParticlesRenderer.java
setIdentityM(modelMatrix, 0);
updateMvpMatrixForSkybox();

For drawParticles(), replace the existing matrix code with the following:

Heightmap/src/com/particles/android/ParticlesRenderer.java
setIdentityM(modelMatrix, 0);
updateMvpMatrix();

Once that’s done, we can fix our setUniforms() calls for the skybox and particles by
replacing the missing viewProjectionMatrix references with modelViewProjectionMatrix. We’re
now taking care of the camera’s rotation and pushing things into the scene with
the view matrix, so we no longer need to copy/paste the matrix setup code for
every object. By calling setIdentityM(modelMatrix, 0), we’re resetting the model matrix
to the identity matrix, which does nothing, so when we multiply all of the matrices
together in updateMvpMatrix(), only the view and projection matrices will take effect.

Drawing the Height Map

With the matrix stuff out of the way, let’s go ahead and draw the height map!
In onDrawFrame(), add a call to drawHeightmap() just after the call to glClear(). Add
the body of that method as follows:

Heightmap/src/com/particles/android/ParticlesRenderer.java
private void drawHeightmap() {

setIdentityM(modelMatrix, 0);
scaleM(modelMatrix, 0, 100f, 10f, 100f);
updateMvpMatrix();
heightmapProgram.useProgram();
heightmapProgram.setUniforms(modelViewProjectionMatrix);
heightmap.bindData(heightmapProgram);
heightmap.draw();

}

Chapter 12. Adding Terrain • 244

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/Heightmap/src/com/particles/android/ParticlesRenderer.java
http://media.pragprog.com/titles/kbogla/code/Heightmap/src/com/particles/android/ParticlesRenderer.java
http://media.pragprog.com/titles/kbogla/code/Heightmap/src/com/particles/android/ParticlesRenderer.java
http://media.pragprog.com/titles/kbogla/code/Heightmap/src/com/particles/android/ParticlesRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

This time we use the model matrix to make the height map one hundred times
wider in the x and z directions and only ten times taller in the y direction,
since we don’t want the mountains to be too extreme. Wait—won’t this mess
up the color interpolation in our shader, since that’s dependent on the vertex’s
y position? It won’t, because in the shader we’re reading in the vertex’s position
before we multiply it with the matrix.

We’ll need to update the projection matrix to give us enough room, so in
onSurfaceChanged(), change the last parameter to perspectiveM() to 100f; this will
set up the projection so that we can draw stuff up to a hundred units distant
before it gets clipped by the far plane.

12.5 Occluding Hidden Objects

We now have everything in place, so let’s run the app to see what happens.
You might be surprised to find that the terrain doesn’t show up at all! Let’s
take a look at onDrawFrame() to see what might be going on:

Heightmap/src/com/particles/android/ParticlesRenderer.java
glClear(GL_COLOR_BUFFER_BIT);
drawHeightmap();
drawSkybox();
drawParticles();

We first draw the height map, but then we draw the skybox right after, oblit-
erating everything that was there before. Switch the two draw calls so that
the skybox is drawn first and the height map is drawn second, and see what
happens.

The terrain should now show up, but you’ll likely see some strange artifacts,
as seen in Figure 60, Terrain with strange artifacts, on page 246. The reason
for this is because we have the same overwriting problem with the terrain
itself: different parts are being drawn over each other, with no regard as to
which parts of the terrain are actually closer to the viewer. You might also
notice that the particles still fall “into the earth,” which doesn’t make much
sense.

Removing Hidden Surfaces with the Depth Buffer

Can we sort all of the triangles so that we draw things in order from back to
front—that is, so that things appear as expected? This is one possible solution,
but it suffers from two big problems: first, the draw order is dependent on
the current viewpoint, and computing it can be complex; and second, this
solution is also wasteful, as we will spend a lot of time drawing stuff that will
never be seen because it will get drawn over by something closer.

report erratum • discuss

Occluding Hidden Objects • 245

http://media.pragprog.com/titles/kbogla/code/Heightmap/src/com/particles/android/ParticlesRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 60—Terrain with strange artifacts

OpenGL gives us a better solution in the form of the depth buffer, a special
buffer that records the depth of every fragment on the screen. When this
buffer is turned on, OpenGL performs a depth test for every fragment: if the
fragment is closer than what’s already there, draw it; otherwise discard it.

Let’s revert the draw order in onDrawFrame() so that the height map is drawn
first, and then let’s turn on the depth buffer by adding a call to glEn-
able(GL_DEPTH_TEST) inside onSurfaceCreated(), just after the call to glClearColor(). We’ll
also need to update the call to glClear() in onDrawFrame() to glClear(GL_COL-
OR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT). This tells OpenGL to also clear the depth
buffer on every new frame.

Let’s give the app another run to see what we get. The terrain now works fine,
and the particles no longer fall into the ground, but as we can see in the next
figure, our skybox is now really messed up.

Chapter 12. Adding Terrain • 246

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 61—Problems rendering the skybox

Depth Testing

Back in Section 11.4, Adding a Skybox Shader Program, on page 224, we con-
figured our skybox shader program so that the skybox would be drawn on
the far plane. Now that depth testing is turned on, this causes a problem for
us because by default OpenGL will only let the fragments through if they’re
either closer than another fragment or closer than the far plane. We probably
shouldn’t see any of the skybox at all, but floating point imprecision lets some
of it show through.

To fix this, we can either change the skybox shader so it’s drawn slightly
closer, or we can change the depth test to let the fragments through. Let’s
edit drawSkybox() to change the depth test as follows:

glDepthFunc(GL_LEQUAL);
«draw»
glDepthFunc(GL_LESS);

report erratum • discuss

Occluding Hidden Objects • 247

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

By default, the depth test is set to GL_LESS, which means “let the new fragment
through if it’s closer than whatever’s already there, or closer than the far
plane.” By changing this to GL_LEQUAL just for the skybox, we change the
meaning to “let the new fragment through if it’s closer or at the same distance
as what’s already there.” We then reset the test back to the default so that
everything else still gets drawn as expected.

The Depth Buffer and Translucent Objects

If we run the app again, the skybox should now look fine, but we still have a
strange issue with the particles, as we can see in the next figure. They now
get clipped by the ground, but they also seem to be occluding each other!
This doesn’t make sense, because we want the particles to be translucent
and to blend with each other. We need a way for the particles to not block
each other while still clipping them where they touch the ground.

Figure 62—Problems with the depth buffer and translucent objects

Chapter 12. Adding Terrain • 248

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

In OpenGL, it’s possible to disable depth updates while keeping the tests
turned on. This means that the particles will be tested against the ground;
however, they will not write new information into the depth buffer, so they
will not block each other. This will work fine since we are drawing the particles
last.

Let’s turn off depth writes by updating drawParticles() as follows:

glDepthMask(false);
«draw»
glDepthMask(true);

Give the app another run; everything should now look as expected.

The Depth Buffer and the Perspective Divide

The depth buffer stores depth values after the perspective divide has been
done, which creates a nonlinear relationship between the depth value and
the distance. This has the effect of providing a lot of depth precision close to
the near plane and a lot less precision further away, which can lead to arti-
facts. For this reason, the ratio between the perspective projection’s near and
far planes should not be larger than necessary for the current scene (that is,
a near value of 1 and a far value of 100 is probably fine, but a near value of
0.001 and a far value of 100,000 could lead to problems).

Culling

OpenGL also provides us another easy way of increasing performance through
hidden surface removal by enabling culling. By default, OpenGL renders all
polygon surfaces as if they were two-sided. You can easily see this in effect
by editing updateViewMatrices() and changing the last parameter of the call to
translateM() to 15f; this should place our viewpoint right underneath the height
map. If we look around, everything looks rather strange, and we’d never expect
to see terrain “inside out” like Figure 63, Underneath the height map, on page
250.

There’s no use in ever rendering the underside of the terrain, so we can cut
down on draw overhead by telling OpenGL to turn off two-sided drawing. We
can do this by going back to onSurfaceCreated() and adding a call to
glEnable(GL_CULL_FACE). OpenGL will then look at the winding order of each trian-
gle, which is the order in which we defined the vertices. If this winding order
appears counterclockwise from our point of view, then the triangle will be
drawn; otherwise it will be discarded.

report erratum • discuss

Occluding Hidden Objects • 249

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 63—Underneath the height map

I didn’t point it out at the time, but we’ve actually been careful to define all
of our objects with the correct triangle order from the expected viewpoints,
so once we enable culling, it just works without any further effort on our part.

12.6 A Review

In this chapter, we learned how to load in a height map from a file and convert
it into a form that OpenGL can draw using vertex buffer objects and index
buffer objects. Height maps can be a great way of representing terrain, but
because they are based off of two-dimensional maps, they cannot easily rep-
resent “holes” in the terrain, such as caves or arches. Height maps also have
fixed resolution in all dimensions that is based on the source image’s width,
height, and precision per pixel.

We also covered depth testing and culling, two techniques that make it a lot
easier for us to render objects properly and increase performance at the same
time. When we created the skybox shader back in Section 11.4, Adding a

Chapter 12. Adding Terrain • 250

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Skybox Shader Program, on page 224, we mentioned that putting the skybox
on the far plane and drawing it after other objects would result in a perfor-
mance boost. One reason this happens is because when we have the depth
buffer enabled, the GPU discards non-visible fragments, saving time on
drawing them into the frame. Another reason is because many mobile GPUs
use tile-based rendering, allowing these GPUs to quickly discard large areas
of hidden geometry.3

It can be a good idea to take advantage of this hardware culling and draw
things like the skybox after all other opaque objects, so that the GPU will be
able to see that most of the skybox is occluded by the terrain and save time
by skipping those parts.

12.7 Exercises

We covered quite a few new features in this chapter, so let’s take the time to
explore them in more detail:

• Read up about glCullFace() and glFrontFace(). Then, as an experiment, add a
call to glFrontFace(GL_CW) in onSurfaceCreated().

• Change the terrain fragment shader to render the terrain with the fragment
depth as the color (Hint: You can use gl_FragCoord.z to get the current depth
value in a range from 0 to 1; don’t forget that this value is nonlinear).

• Add a texture to the height map. To make things more interesting, blend
between two different textures, depending on the height.

• Once you have that working, add a flat plane of water to cover up the
bottom.

• Change the height map implementation to use triangle strips and to
degenerate triangles (you can find out how to do this with your favorite
search engine, or at Learn OpenGL ES4). Don’t worry, these degenerates
aren’t evil—they are actually a good way of storing a height map in a more
compact and efficient form.

As a research exercise, you can also read up about voxels, an alternative to
height maps that store the terrain as a 3D array. Minecraft is a famous
example of these.

When you’re ready, let’s head to the next chapter!

3. http://developer.apple.com/library/ios/#documentation/3DDrawing/Conceptual/OpenGLES_ProgrammingGuide/
OpenGLESPlatforms/OpenGLESPlatforms.html

4. http://www.learnopengles.com/android-lesson-eight-an-introduction-to-index-buffer-objects-ibos/

report erratum • discuss

Exercises • 251

http://developer.apple.com/library/ios/#documentation/3DDrawing/Conceptual/OpenGLES_ProgrammingGuide/OpenGLESPlatforms/OpenGLESPlatforms.html
http://developer.apple.com/library/ios/#documentation/3DDrawing/Conceptual/OpenGLES_ProgrammingGuide/OpenGLESPlatforms/OpenGLESPlatforms.html
http://www.learnopengles.com/android-lesson-eight-an-introduction-to-index-buffer-objects-ibos/
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

CHAPTER 13

Lighting Up the World
The simulation of light has been a major research topic in the world of com-
puter graphics, and we can see the impacts of this research not only in the
steady visual improvement of games over time but also in areas like computer-
generated imagery (CGI) in movies and TV shows.

The use of lighting algorithms can make a big difference in the way a scene
looks. Day can pass into night, areas can fall into shadow, and a mountain
can reveal peaks, valleys, and crevices; even a 2D scene can take advantage
of the properties of light for things like visual depth, explosions, and other
special effects. In this chapter, we’re going to learn how to use some simple
lighting algorithms to add some contrast to our mountains, and then we’ll
darken into a night backdrop and make those particle fountains glow.

Let’s go over our game plan for this chapter:

• We’ll first learn how to implement diffuse reflection using a directional
light source, making it appear as if the scene were lit up by the sun in
the skybox, and then we’ll learn how to minimize dark shadows by adding
some ambient lighting.

• We’ll then switch out our skybox for a darker skybox and turn down the
brightness, and we’ll learn how to use point lights to light up each particle
fountain.

Let’s get the show started by copying over the project from the previous
chapter into a new project called ‘Lighting’.

13.1 Simulating the Effects of Light

When we see the world around us, we are really seeing the cumulative effect
of trillions upon trillions of tiny little particles called photons. These photons
are emitted by energy sources like the sun; and after traveling a long distance,

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

they will bounce off some objects and get refracted by others, until they
finally strike the retinas in the backs of our eyes. Our eyes and brain take it
from there and reconstruct the activity of all of these photons into the world
that we can see around us.

Computer graphics have historically simulated the effects of light by either
simulating the behavior of actual photons or by using shortcuts to fake that
behavior. One way of simulating the behavior of the actual photons is with a
ray tracer. A ray tracer simulates the photons by shooting rays into the scene
and calculating how those rays interact with the objects in the scene. This
technique is quite powerful, and it can lend itself well to really good reflections
and refractions and other special effects like caustics (the patterns you see
when light passes through water, for example).

Unfortunately, ray tracing is usually too expensive to use for real-time render-
ing. Instead, most games and apps simplify things and approximate the way
that light works at a higher level, rather than simulating it directly. Simple
lighting algorithms can go a long way, and there are also ways of faking
reflections, refractions, and more. These techniques can use OpenGL to put
most of the workload on the GPU and run blazing fast, even on a mobile
phone.

Using Light in OpenGL

To add light to an OpenGL scene, we can generally organize the different light
sources into the following groups:

Ambient light
Ambient light appears to come from all directions, lighting up everything
in the scene to the same extent. This approximates the type of lighting
we get from large, equal sources of light, like the sky, and ambient light
can also be used to fake the way that light can bounce off many objects
before reaching our eyes, so shadows are usually never pitch black.

Directional lights
Directional light appears to come from one direction, as if the light source
was extremely far away. This is similar to the type of lighting we get from
the sun or the moon.

Point lights
Point lights appear to be casting their light from somewhere nearby, and
the intensity of the light decreases with distance. This is good for repre-
senting close sources of light that cast their light in all directions, like a
light bulb or a candle.

Chapter 13. Lighting Up the World • 254

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Spot lights
Spot lighting is similar to point lighting, with the added restriction of
being focused in a particular direction. This is the type of light we would
get from a flashlight, or as the name suggests, a spot light in an enclosure.

We can also group the way that light reflects off an object into two main
categories:

Diffuse reflection
Diffuse reflection spreads out equally in all directions and is good for
representing materials with an unpolished surface, like a carpet or an
exterior concrete wall. These types of surfaces appear similar from many
different points of view.

Specular reflection
Specular reflection reflects more strongly in a particular direction and is
good for materials that are polished or shiny, like smooth metal or a
recently waxed car.

Many materials combine aspects of both; take an asphalt road surface, for
example. A road generally appears the same from many directions, but when
the sun is low in the sky and the conditions are right, one direction can reflect
enough sun glare to the point of blinding drivers and causing a road hazard.

13.2 Implementing a Directional Light with Lambertian Reflectance

To implement diffuse reflection, we can use a simple technique known as
Lambertian reflectance. Named after Johann Heinrich Lambert, a Swiss
mathematician and astronomer who lived in the eighteenth century, Lamber-
tian reflectance describes a surface that reflects the light hitting it in all
directions, so that it appears the same from all viewpoints. Its appearance
depends only on its orientation and distance from a light source.

Let’s look at an example with a flat surface and a single, directional light
source that does not diminish with distance, so the only thing that matters
is the orientation of the surface with respect to the light. In Figure 64, A sur-
face directly facing a light source, on page 256, we can see the surface facing
the light source head on. At this angle, it’s capturing and reflecting as much
light as it can. In the subsequent figure, the surface has now been rotated
45 degrees with respect to the light source, so it’s no longer able to capture
and reflect as much of the light.

How much less light does the surface reflect at 45 degrees? If we measure
the cross section, we’ll see that it’s only about 0.707 times as wide as when
the surface is not rotated. This relationship follows the cosine of the angle

report erratum • discuss

Implementing a Directional Light with Lambertian Reflectance • 255

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 64—A surface directly facing a light source

(see Figure 43, Unit circle, on page 148); and to figure out how much light a
surface receives, all we need to do is figure out how much light it would receive
if it were facing the light directly and then multiply that by the cosine of the
angle.

Here’s an example: if a Lambertian surface would normally reflect 5 lumens
of light from a directional light source when at 0 degrees, then it will reflect
(5 * cos 45°) = ~3.5 lumens of light when oriented at 45 degrees with respect
to the light source. Understanding this relationship is all we need to know to
understand Lambertian reflectance.

Figure 65—A surface at an angle to a light source

Chapter 13. Lighting Up the World • 256

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Calculating the Orientation of the Height Map

Before we can add Lambertian reflectance to our height map, we need some
way of knowing what the orientation of the surface is. Since a height map is
not a flat surface, we’ll need to calculate this orientation for every point on
the height map. We can represent the orientation by using a surface normal,
a special type of vector that is perpendicular to the surface and has a unit
length of 1; we first learned about these back in Section 9.3, Moving Around
an Object by Dragging, on page 177.

Since a surface normal is used for surfaces and not for points, we’ll calculate
the normal for each point by joining together the neighboring points to create
a plane. We’ll represent this plane with two vectors: one from the right point
to the left point, and another from the top point to the bottom point. If we
calculate the cross product of these two vectors, we’ll get a vector that is
perpendicular to the plane, and we can then normalize that vector to get the
surface normal for the center point.1

Let’s take a look at the following figure as an example.

Figure 66—Generating a surface normal for a point on a height map

Let’s say that each point is spaced one unit apart, with x increasing to the
right and z increasing downward. The heights for the top, left, right, and
bottom points are 0.2, 0.1, 0.1, and 0.1, respectively. To calculate the vector

1. http://en.wikipedia.org/wiki/Cross_product

report erratum • discuss

Implementing a Directional Light with Lambertian Reflectance • 257

http://en.wikipedia.org/wiki/Cross_product
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

going from right to left, we subtract the left point from the right point to get
a vector of (-2, 0, 0), and we do the same thing with the top and bottom points
to get a vector of (0, -0.1, 2). Once we have these two vectors, we calculate
their cross product to get a vector of (0, 4, 0.2), and we normalize that vector
to get a surface normal of (0, 0.9988, 0.05).

Why do we use a vector from right to left and not, for instance, from left to
right? We want the surface normal to point upward, away from the height
map, so we use the right-hand rule of a cross product to figure out which
direction each vector needs to be in so that the cross product will be in the
correct direction.2

Now that we know what to do, let’s open up our Heightmap class and start
making some changes to the code. First, we’ll add some new constants:

Lighting/src/com/particles/android/objects/Heightmap.java
private static final int NORMAL_COMPONENT_COUNT = 3;
private static final int TOTAL_COMPONENT_COUNT =

POSITION_COMPONENT_COUNT + NORMAL_COMPONENT_COUNT;
private static final int STRIDE =

(POSITION_COMPONENT_COUNT + NORMAL_COMPONENT_COUNT) * BYTES_PER_FLOAT;

We’ll change the vertex buffer so that it stores both the positions and the
normals together, and to do this, we also need to know the total component
count and the stride. Let’s update the assignment to heightmapVertices in load-
BitmapData() to add some space for the normals:

Lighting/src/com/particles/android/objects/Heightmap.java
final float[] heightmapVertices =

new float[width * height * TOTAL_COMPONENT_COUNT];

This will ensure that we have enough space for both the positions and the
normals. Still inside loadBitmapData(), head to the section inside the loop where
we generate the position and update it as follows:

Lighting/src/com/particles/android/objects/Heightmap.java
final Point point = getPoint(pixels, row, col);

heightmapVertices[offset++] = point.x;
heightmapVertices[offset++] = point.y;
heightmapVertices[offset++] = point.z;

We’ve factored out the generation of the position into a separate method,
which we’ll add soon. Let’s add some code to get the neighboring points and
generate the surface normal for the current point:

2. http://en.wikipedia.org/wiki/Cross_product#Definition

Chapter 13. Lighting Up the World • 258

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/Lighting/src/com/particles/android/objects/Heightmap.java
http://media.pragprog.com/titles/kbogla/code/Lighting/src/com/particles/android/objects/Heightmap.java
http://media.pragprog.com/titles/kbogla/code/Lighting/src/com/particles/android/objects/Heightmap.java
http://en.wikipedia.org/wiki/Cross_product#Definition
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Lighting/src/com/particles/android/objects/Heightmap.java
final Point top = getPoint(pixels, row - 1, col);
final Point left = getPoint(pixels, row, col - 1);
final Point right = getPoint(pixels, row, col + 1);
final Point bottom = getPoint(pixels, row + 1, col);

final Vector rightToLeft = Geometry.vectorBetween(right, left);
final Vector topToBottom = Geometry.vectorBetween(top, bottom);
final Vector normal = rightToLeft.crossProduct(topToBottom).normalize();

heightmapVertices[offset++] = normal.x;
heightmapVertices[offset++] = normal.y;
heightmapVertices[offset++] = normal.z;

To generate the normal, we follow the algorithm we outlined earlier: first we
get the neighboring points, then we use these points to create two vectors
representing a plane, and finally we take the cross product of those two vectors
and normalize that to get the surface normal. We haven’t defined normalize()
yet, so let’s open up the Geometry class, find the definition for Vector, and add
the method as follows:

Lighting/src/com/particles/android/util/Geometry.java
public Vector normalize() {

return scale(1f / length());
}

Let’s continue Heightmap by adding the missing definition for getPoint():

Lighting/src/com/particles/android/objects/Heightmap.java
private Point getPoint(int[] pixels, int row, int col) {

float x = ((float)col / (float)(width - 1)) - 0.5f;
float z = ((float)row / (float)(height - 1)) - 0.5f;

row = clamp(row, 0, width - 1);
col = clamp(col, 0, height - 1);

float y = (float)Color.red(pixels[(row * height) + col]) / (float)255;

return new Point(x, y, z);
}

private int clamp(int val, int min, int max) {
return Math.max(min, Math.min(max, val));

}

This code works much the same as it did before when the code was inside
the loop, but we now have clamping for the cases when a neighboring point
is out of bounds. For example, when we generate the normal for (0, 0) and
retrieve the points to the top and to the left, these points don’t actually exist

report erratum • discuss

Implementing a Directional Light with Lambertian Reflectance • 259

http://media.pragprog.com/titles/kbogla/code/Lighting/src/com/particles/android/objects/Heightmap.java
http://media.pragprog.com/titles/kbogla/code/Lighting/src/com/particles/android/util/Geometry.java
http://media.pragprog.com/titles/kbogla/code/Lighting/src/com/particles/android/objects/Heightmap.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

in the height map. In this case, we pretend that they do and we give them
the same height as the center vertex. This way, we can still generate a surface
normal for that vertex.

Let’s finish up our changes and update bindData() as follows:

Lighting/src/com/particles/android/objects/Heightmap.java
public void bindData(HeightmapShaderProgram heightmapProgram) {

vertexBuffer.setVertexAttribPointer(0,
heightmapProgram.getPositionAttributeLocation(),
POSITION_COMPONENT_COUNT, STRIDE);

vertexBuffer.setVertexAttribPointer(
POSITION_COMPONENT_COUNT * BYTES_PER_FLOAT,
heightmapProgram.getNormalAttributeLocation(),
NORMAL_COMPONENT_COUNT, STRIDE);

}

Since we’re now storing both the position and the normal data in the same
vertex buffer object, we now have to pass the stride to our setVertexAttribPointer()
helper that calls glVertexAttribPointer(), so that OpenGL knows how many bytes
to skip between each element. For the second call to setVertexAttribPointer(), it’s
very important that we also specify the starting offset for the normals in terms
of bytes; otherwise OpenGL will read part of the position and part of the
normal together and interpret that as the normal, which would look
extremely weird.

Adding a Directional Light to the Shader

Now that our height map includes the normals, our next task is to update
the height map shader and add support for directional lighting. Let’s start off
by adding a new uniform to heightmap_vertex_shader.glsl:

Lighting/res/raw/heightmap_vertex_shader.glsl
uniform vec3 u_VectorToLight;

This vector will contain a normalized vector pointing toward our directional
light source. We’ll also need a new attribute for the height map normals:

Lighting/res/raw/heightmap_vertex_shader.glsl
attribute vec3 a_Normal;

Now that we have that in place, let’s add the following to the main body of
the shader after the first assignment to v_Color:

Lighting/res/raw/heightmap_vertex_shader.glsl
vec3 scaledNormal = a_Normal;
scaledNormal.y *= 10.0;
scaledNormal = normalize(scaledNormal);

Chapter 13. Lighting Up the World • 260

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/Lighting/src/com/particles/android/objects/Heightmap.java
http://media.pragprog.com/titles/kbogla/code/Lighting/res/raw/heightmap_vertex_shader.glsl
http://media.pragprog.com/titles/kbogla/code/Lighting/res/raw/heightmap_vertex_shader.glsl
http://media.pragprog.com/titles/kbogla/code/Lighting/res/raw/heightmap_vertex_shader.glsl
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

You may remember that when we draw our height map, we are currently
expanding it by using scaleM() to make it ten times taller and a hundred times
wider, so in other words, the height map is now ten times wider than it is
tall. Scaling things in this way changes the shape of the height map, meaning
that our pregenerated normals are no longer correct. To compensate for this,
we scale the normal in the opposite direction, making the normal ten times
taller than it is wide. After renormalizing the normal, it will now match the
new geometry.

The reason this works involves some advanced math, so you’ll have to take
this on faith for now. Later on, we’ll look at a more general way of adjusting
the normals in Adding Point Lighting to the Shader, on page 265.

Now that we’ve adjusted the surface normal, let’s calculate the Lambertian
reflectance:

Lighting/res/raw/heightmap_vertex_shader.glsl
float diffuse = max(dot(scaledNormal, u_VectorToLight), 0.0);
v_Color *= diffuse;

To calculate the cosine of the angle between the surface and the light, we
calculate the dot product of the vector to the light and the surface normal.
The reason this works is because when two vectors are normalized, the dot
product of those two vectors will give us the cosine of the angle between them,
which is exactly what we need to calculate the Lambertian reflectance.3

To avoid negative results, we clamp the minimum cosine to 0 with max(), and
then we apply the lighting by multiplying the current vertex’s color with the
cosine. The cosine will be between 0 and 1, so the final color will be somewhere
between black and the original color.

Updating the Shader Wrapping Code

We now need to update our wrapper class to account for the new changes.
Let’s start off by adding the following new constants to ShaderProgram:

Lighting/src/com/particles/android/programs/ShaderProgram.java
protected static final String U_VECTOR_TO_LIGHT = "u_VectorToLight";
protected static final String A_NORMAL = "a_Normal";

Let’s switch to HeightmapShaderProgram and add new member variables for the
directional light uniform location and the normal attribute location:

3. http://en.wikipedia.org/wiki/Dot_product

report erratum • discuss

Implementing a Directional Light with Lambertian Reflectance • 261

http://media.pragprog.com/titles/kbogla/code/Lighting/res/raw/heightmap_vertex_shader.glsl
http://media.pragprog.com/titles/kbogla/code/Lighting/src/com/particles/android/programs/ShaderProgram.java
http://en.wikipedia.org/wiki/Dot_product
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Lighting/src/com/particles/android/programs/HeightmapShaderProgram.java
private final int uVectorToLightLocation;
private final int aNormalLocation;

Let’s assign the new locations by adding the following to the end of the
constructor:

Lighting/src/com/particles/android/programs/HeightmapShaderProgram.java
uVectorToLightLocation = glGetUniformLocation(program, U_VECTOR_TO_LIGHT);
aNormalLocation = glGetAttribLocation(program, A_NORMAL);

We’ll need to update setUniforms() as follows so that we can update the new
uniform:

Lighting/src/com/particles/android/programs/HeightmapShaderProgram.java
public void setUniforms(float[] matrix, Vector vectorToLight) {

glUniformMatrix4fv(uMatrixLocation, 1, false, matrix, 0);
glUniform3f(uVectorToLightLocation,

vectorToLight.x, vectorToLight.y, vectorToLight.z);
}

Let’s finish up the changes to the class with a new accessor for the normal
attribute location:

Lighting/src/com/particles/android/programs/HeightmapShaderProgram.java
public int getNormalAttributeLocation() {

return aNormalLocation;
}

With that in place, we can glue things together in the renderer class and see
our new lighting in action.

Seeing Our Directional Light in Action

Let’s open up ParticlesRenderer and define the actual vector to our light source:

Lighting/src/com/particles/android/ParticlesRenderer.java
private final Vector vectorToLight = new Vector(0.61f, 0.64f, -0.47f).normalize();

This vector points approximately toward the sun in the skybox. You can cal-
culate a similar result with these steps:

1. Create a vector pointing toward (0, 0, -1), that is, pointing straight ahead.

2. Rotate this vector in the reverse direction of the scene rotation.

3. Add logging statements to print out the current direction of the vector,
and then run the app and rotate the scene until the sun is centered in
the middle of the screen.

Chapter 13. Lighting Up the World • 262

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/Lighting/src/com/particles/android/programs/HeightmapShaderProgram.java
http://media.pragprog.com/titles/kbogla/code/Lighting/src/com/particles/android/programs/HeightmapShaderProgram.java
http://media.pragprog.com/titles/kbogla/code/Lighting/src/com/particles/android/programs/HeightmapShaderProgram.java
http://media.pragprog.com/titles/kbogla/code/Lighting/src/com/particles/android/programs/HeightmapShaderProgram.java
http://media.pragprog.com/titles/kbogla/code/Lighting/src/com/particles/android/ParticlesRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

We also normalize the vector so that we can pass it into the shader and use
it to calculate the Lambertian reflectance. Let’s pass in the vector to the
shader by updating the call to heightmapProgram.setUniforms() in drawHeightmap() as
follows:

Lighting/src/com/particles/android/ParticlesRenderer.java
heightmapProgram.setUniforms(modelViewProjectionMatrix, vectorToLight);

That’s it! Give the app a run and see what we get; it should look similar to
the following figure:

Figure 67—Our first attempt at directional lighting

We can now see the shape and form of the mountains, but you’ll probably
notice that the dark areas are far too dark. The problem is that we have no
global illumination; in real life, light diffuses through the sky and reflects off
many objects before it reaches our eyes, so shadows cast by the sun are
nowhere near pitch black. We can fake this in our scene by adding an ambient
light level that will apply equally to everything. Let’s return to heightmap_ver-
tex_shader.glsl and add the following code after the line that multiplies v_Color
with the diffuse reflection:

Lighting/res/raw/heightmap_vertex_shader.glsl
float ambient = 0.2;
v_Color += ambient;

report erratum • discuss

Implementing a Directional Light with Lambertian Reflectance • 263

http://media.pragprog.com/titles/kbogla/code/Lighting/src/com/particles/android/ParticlesRenderer.java
http://media.pragprog.com/titles/kbogla/code/Lighting/res/raw/heightmap_vertex_shader.glsl
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

This will add a base level of illumination to the entire height map, so nothing
appears too dark. Let’s give it another shot and see what we get. As we can
see in the next figure, the shadows look a lot more reasonable now.

Figure 68—Adding ambient lighting

13.3 Adding Point Lights

We’re now ready to add some point lights to our scene so we can make our
particle fountains glow. We won’t be able to see this too well with a bright
backdrop, so the first thing we’ll do is switch over to a night skybox. You can
download the night skybox from the website and place it in your project’s
/res/drawable-nodpi folder.4

To switch to the night skybox, let’s return to ParticlesRenderer and update the
assignment to skyboxTexture as follows:

Lighting/src/com/particles/android/ParticlesRenderer.java
skyboxTexture = TextureHelper.loadCubeMap(context,
new int[] { R.drawable.night_left, R.drawable.night_right,

R.drawable.night_bottom, R.drawable.night_top,
R.drawable.night_front, R.drawable.night_back});

We can then update the vector to the light as follows:

4. http://pragprog.com/book/kbogla/

Chapter 13. Lighting Up the World • 264

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/Lighting/src/com/particles/android/ParticlesRenderer.java
http://pragprog.com/book/kbogla/
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Lighting/src/com/particles/android/ParticlesRenderer.java
private final Vector vectorToLight = new Vector(0.30f, 0.35f, -0.89f).normalize();

This new vector points toward the moon in the skybox. We’ll also need to tone
down the light strength in the shader, so let’s return to heightmap_vertex_shader.glsl
and add the following adjustment to the diffuse reflectance before we multiply
it with v_Color:

Lighting/res/raw/heightmap_vertex_shader.glsl
diffuse *= 0.3;

We should also tone down the ambient lighting:

Lighting/res/raw/heightmap_vertex_shader.glsl
float ambient = 0.1;

If you go ahead and run the app now, you should see a night backdrop and
the height map darkened to match.

Understanding Point Light Sources

Since we’re sticking to diffuse reflectance with the Lambertian reflectance
model, the math for our point lights will be similar to that for our directional
light. However, there are a couple of key differences that we’ll need to keep
in mind:

• For a directional light, we just stored a vector to that light, since that
vector is the same for all points in a scene. For a point light, we’ll store
the position instead, and we’ll use that position to calculate a vector to
the point light for each point in the scene.

• In real life, the brightness of a point light source tends to decrease with
the square of the distance; this is known as the inverse square law.5 We’ll
use the point light’s position to figure out the distance for each point in
the scene.

Adding Point Lighting to the Shader

To implement point lights, we’ll need to make some changes to our shader,
and we’ll use this opportunity to take a more structured and general approach
to lighting in the shader. Let’s take a look at some of the most important
changes:

• We’ll put our positions and normals into eye space, a space where all
positions and normals are relative to the camera’s position and orientation;

5. http://en.wikipedia.org/wiki/Inverse-square_law

report erratum • discuss

Adding Point Lights • 265

http://media.pragprog.com/titles/kbogla/code/Lighting/src/com/particles/android/ParticlesRenderer.java
http://media.pragprog.com/titles/kbogla/code/Lighting/res/raw/heightmap_vertex_shader.glsl
http://media.pragprog.com/titles/kbogla/code/Lighting/res/raw/heightmap_vertex_shader.glsl
http://en.wikipedia.org/wiki/Inverse-square_law
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

we’ll do this so that we can compare distances and orientations with
everything in the same coordinate space. The reason why we use eye
space instead of world space is because specular lighting also depends
on the position of the camera, and even though we’re not using specular
lighting in this chapter, it’s still a good idea to learn how to use eye space
so that we can use it in the future.

• To put a position into eye space, we just multiply it with the model matrix
to put it into world space, and then we multiply it with the view matrix
to get it into eye space. To simplify matters, we can multiply the view
matrix with the model matrix to get a single matrix called the modelview
matrix, and we use that matrix to put our positions into eye space.

• This also works for the normals if the modelview matrix only contains
translations or rotations, but what if we’ve also scaled an object? If the
scale was done equally in all directions, then we just need to renormalize
the normals so that their length remains 1, but if the object was also
flattened in one direction, then we have to compensate for that as well.

When we added the directional lighting, we knew exactly how much the
height map was scaled by, so we were able to directly compensate for
that. This is not a flexible solution, and the general way of doing this is
by inverting the modelview matrix, transposing the inverted matrix, mul-
tiplying the normal with that matrix, and then normalizing the result.
The reason this works involves some advanced math; if you’re curious,
there are a couple of great explanations linked here that go into a lot more
detail.6

Let’s begin by replacing heightmap_vertex_shader.glsl with the following contents:

Lighting/res/raw/heightmap_vertex_shader.glsl
uniform mat4 u_MVMatrix;
uniform mat4 u_IT_MVMatrix;
uniform mat4 u_MVPMatrix;

uniform vec3 u_VectorToLight; // In eye space
uniform vec4 u_PointLightPositions[3]; // In eye space
uniform vec3 u_PointLightColors[3];

attribute vec4 a_Position;
attribute vec3 a_Normal;

varying vec3 v_Color;

6. http://arcsynthesis.org/gltut/index.html and http://www.cs.uaf.edu/2007/spring/cs481/lecture/01_23_matri-
ces.html, respectively.

Chapter 13. Lighting Up the World • 266

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/Lighting/res/raw/heightmap_vertex_shader.glsl
http://arcsynthesis.org/gltut/index.html
http://www.cs.uaf.edu/2007/spring/cs481/lecture/01_23_matrices.html
http://www.cs.uaf.edu/2007/spring/cs481/lecture/01_23_matrices.html
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

vec3 materialColor;
vec4 eyeSpacePosition;
vec3 eyeSpaceNormal;

vec3 getAmbientLighting();
vec3 getDirectionalLighting();
vec3 getPointLighting();

We’ll now use u_MVMatrix to represent the modelview matrix, u_IT_MVMatrix to
represent the transpose of the inverse of that matrix, and u_MVPMatrix to repre-
sent the combined model view projection matrix, as we were doing with u_Matrix
before.

The directional light vector remains the same as before, except that we now
expect it to be in eye space. We pass in the point light positions with u_Point-
LightPositions, which is also in eye space, and we pass in the colors with u_Point-
LightColors. These last two uniforms are defined as arrays so that we can pass
in multiple vectors through one uniform.

For the attributes, we now represent the position as a vec4, reducing the
number of vec3 and vec4 conversions required. We don’t need to change our
vertex data, as OpenGL will use a default of 1 for the fourth component, but
be careful: uniforms don’t work the same way, and they must have all com-
ponents specified.

Our varying remains the same as before; after the varying, we’ve added some
new variables that we’ll use to calculate the lighting, and we also have decla-
rations for three new functions, which we’ll define later on in the shader.

Let’s continue the shader with the following code:

Lighting/res/raw/heightmap_vertex_shader.glsl
void main()
{

materialColor = mix(vec3(0.180, 0.467, 0.153), // A dark green
vec3(0.660, 0.670, 0.680), // A stony gray
a_Position.y);

eyeSpacePosition = u_MVMatrix * a_Position;

// The model normals need to be adjusted as per the transpose
// of the inverse of the modelview matrix.
eyeSpaceNormal = normalize(vec3(u_IT_MVMatrix * vec4(a_Normal, 0.0)));

v_Color = getAmbientLighting();
v_Color += getDirectionalLighting();
v_Color += getPointLighting();

gl_Position = u_MVPMatrix * a_Position;
}

report erratum • discuss

Adding Point Lights • 267

http://media.pragprog.com/titles/kbogla/code/Lighting/res/raw/heightmap_vertex_shader.glsl
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

In the main body of the shader, we assign the material color as before, and
then we calculate the current position and normal in eye space. We then
calculate each type of light, adding the result color to v_Color, and then we
project the position as before.

Let’s continue with the following code:

Lighting/res/raw/heightmap_vertex_shader.glsl
vec3 getAmbientLighting()
{

return materialColor * 0.1;
}

vec3 getDirectionalLighting()
{

return materialColor * 0.3
* max(dot(eyeSpaceNormal, u_VectorToLight), 0.0);

}

These two functions calculate the ambient and directional lighting just as we
were doing before. Let’s finish off the shader with the following function for
point lighting:

Lighting/res/raw/heightmap_vertex_shader.glsl
vec3 getPointLighting()
{

vec3 lightingSum = vec3(0.0);

for (int i = 0; i < 3; i++) {
vec3 toPointLight = vec3(u_PointLightPositions[i])

- vec3(eyeSpacePosition);
float distance = length(toPointLight);
toPointLight = normalize(toPointLight);

float cosine = max(dot(eyeSpaceNormal, toPointLight), 0.0);
lightingSum += (materialColor * u_PointLightColors[i] * 5.0 * cosine)

/ distance;
}

return lightingSum;
}

The way this works is that we loop through each point light, calculating the
lighting for each and adding the result to lightingSum. This code calculates the
light level with Lambertian reflectance, just like the directional lighting did
before, but there are a few important differences:

Chapter 13. Lighting Up the World • 268

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/Lighting/res/raw/heightmap_vertex_shader.glsl
http://media.pragprog.com/titles/kbogla/code/Lighting/res/raw/heightmap_vertex_shader.glsl
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

• For each point light, we calculate the vector from the current position to
that light, and we also calculate the distance from the current position
to that light.

• Once we have the normalized vector, we can calculate the Lambertian
reflectance. We then multiply the material color with the point light color
to apply that color to the current vertex. We scale the result up by 5 to
make things a bit brighter, and then we multiply that by the cosine to
apply the Lambertian reflectance.

• Before adding the result to lightingSum, we diminish the light intensity with
distance by dividing the result from the previous step by the distance.

With this last calculation in place, our shader is now complete.

The Nonlinear Nature of Your Display

Lighting and colors can sometimes be tricky to get right in OpenGL due to a
difference of opinion between OpenGL and your display. To OpenGL, colors
lie on a linear spectrum, so a color value of 1.0 is twice as bright as a color
value of 0.5. However, due to the nonlinear nature of many displays, the
actual difference in brightness on your display could be much greater than
this.

The reason things work this way is partly due to history. Once upon a time,
we all used big, bulky CRT monitors as our main displays, and these monitors
worked by shooting an electron beam at a phosphor screen. These phosphors
tended to have an exponential response rather than a linear response, so that
1.0 was much more than twice as bright as 0.5. For compatibility and other
reasons, many displays maintain similar behavior today.7

This nonlinear behavior can muck up our lighting, making things appear
darker than they should. Normally, light falloff should be done by dividing
the intensity by the distance squared, but to keep our point lights from falling
off too quickly, we can remove the exponent and just divide by the distance.

Updating the Shader Wrapping Code

We now need to update our shader wrapping code to match our new shader.

Let’s open up ShaderProgram and add some new constants:

7. See http://stackoverflow.com/questions/6397817/color-spaces-gamma-and-image-enhancement and
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch24.html.

report erratum • discuss

Adding Point Lights • 269

http://stackoverflow.com/questions/6397817/color-spaces-gamma-and-image-enhancement
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch24.html
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Lighting/src/com/particles/android/programs/ShaderProgram.java
protected static final String U_MV_MATRIX = "u_MVMatrix";
protected static final String U_IT_MV_MATRIX = "u_IT_MVMatrix";
protected static final String U_MVP_MATRIX = "u_MVPMatrix";
protected static final String U_POINT_LIGHT_POSITIONS =

"u_PointLightPositions";
protected static final String U_POINT_LIGHT_COLORS = "u_PointLightColors";

We’ll need to make some changes to HeightmapShaderProgram as well. Remove
uMatrixLocation and the associated code, and add the following new members:

private final int uMVMatrixLocation;
private final int uIT_MVMatrixLocation;
private final int uMVPMatrixLocation;
private final int uPointLightPositionsLocation;
private final int uPointLightColorsLocation;

We’ll also need to update the constructor:

uMVMatrixLocation = glGetUniformLocation(program, U_MV_MATRIX);
uIT_MVMatrixLocation = glGetUniformLocation(program, U_IT_MV_MATRIX);
uMVPMatrixLocation = glGetUniformLocation(program, U_MVP_MATRIX);

uPointLightPositionsLocation =
glGetUniformLocation(program, U_POINT_LIGHT_POSITIONS);

uPointLightColorsLocation =
glGetUniformLocation(program, U_POINT_LIGHT_COLORS);

To finish up the changes, let’s remove the current setUniforms() and build a new
one, starting with the following code:

public void setUniforms(float[] mvMatrix,
float[] it_mvMatrix,
float[] mvpMatrix,
float[] vectorToDirectionalLight,
float[] pointLightPositions,
float[] pointLightColors) {

glUniformMatrix4fv(uMVMatrixLocation, 1, false, mvMatrix, 0);
glUniformMatrix4fv(uIT_MVMatrixLocation, 1, false, it_mvMatrix, 0);
glUniformMatrix4fv(uMVPMatrixLocation, 1, false, mvpMatrix, 0);

We now pass in several matrices, as well as the directional light and point
light positions and colors. The first three lines of the method body send all
of the matrices on to the shader. Let’s pass in the lighting data and complete
the method with the following code:

glUniform3fv(uVectorToLightLocation, 1, vectorToDirectionalLight, 0);

glUniform4fv(uPointLightPositionsLocation, 3, pointLightPositions, 0);
glUniform3fv(uPointLightColorsLocation, 3, pointLightColors, 0);

}

Chapter 13. Lighting Up the World • 270

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/Lighting/src/com/particles/android/programs/ShaderProgram.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

The first line passes on the directional light vector to the shader, and the next
two lines pass the point light positions and colors on to the shader as well.
We had defined these last two uniforms in the shader as arrays with a length
of three vectors each, so for each uniform, we call glUniform*fv() with the second
parameter set to 3, which is the count. This tells OpenGL that it needs to
read in three vectors from the array into the uniform.

Updating the Renderer Class

Now we just need to update ParticlesRenderer so we can define and pass in these
new uniforms. First we’ll need a couple of new matrices at the top of the class:

Lighting/src/com/particles/android/ParticlesRenderer.java
private final float[] modelViewMatrix = new float[16];
private final float[] it_modelViewMatrix = new float[16];

Let’s update updateMvpMatrix() to set these new matrices:

private void updateMvpMatrix() {
multiplyMM(modelViewMatrix, 0, viewMatrix, 0, modelMatrix, 0);
invertM(tempMatrix, 0, modelViewMatrix, 0);
transposeM(it_modelViewMatrix, 0, tempMatrix, 0);
multiplyMM(

modelViewProjectionMatrix, 0,
projectionMatrix, 0,
modelViewMatrix, 0);

}

This sets modelViewMatrix to the combined modelview matrix and it_modelViewMatrix
to the transpose of the inverse of that matrix. Back at the top of the class,
we’ll also need to add some new members for the new lights:

final float[] vectorToLight = {0.30f, 0.35f, -0.89f, 0f};

private final float[] pointLightPositions = new float[]
{-1f, 1f, 0f, 1f,
0f, 1f, 0f, 1f,
1f, 1f, 0f, 1f};

private final float[] pointLightColors = new float[]
{1.00f, 0.20f, 0.02f,
0.02f, 0.25f, 0.02f,
0.02f, 0.20f, 1.00f};

The new definition for vectorToLight should replace the previous definition; you’ll
soon see why we need to have it stored in a plain floating-point array. We
also store the positions and colors for each point light in their respective
arrays, with the positions and colors roughly matching the positions and
colors we gave to each particle shooter. The main differences are that each

report erratum • discuss

Adding Point Lights • 271

http://media.pragprog.com/titles/kbogla/code/Lighting/src/com/particles/android/ParticlesRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

point light is raised one unit above its particle shooter, and since the terrain
itself is green, the green light has been dimmed somewhat so it doesn’t over-
power the red light and the blue light.

Now we just need to replace the call to setUniforms() in drawHeightmap() with the
following code:

Lighting/src/com/particles/android/ParticlesRenderer.java
// Put the light positions into eye space.
final float[] vectorToLightInEyeSpace = new float[4];
final float[] pointPositionsInEyeSpace = new float[12];
multiplyMV(vectorToLightInEyeSpace, 0, viewMatrix, 0, vectorToLight, 0);
multiplyMV(pointPositionsInEyeSpace, 0, viewMatrix, 0, pointLightPositions, 0);
multiplyMV(pointPositionsInEyeSpace, 4, viewMatrix, 0, pointLightPositions, 4);
multiplyMV(pointPositionsInEyeSpace, 8, viewMatrix, 0, pointLightPositions, 8);

heightmapProgram.setUniforms(modelViewMatrix, it_modelViewMatrix,
modelViewProjectionMatrix, vectorToLightInEyeSpace,
pointPositionsInEyeSpace, pointLightColors);

We need to put the directional light vector and point light positions in eye
space, and to do this, we use Android’s Matrix class to multiply them with the
view matrix. The positions were already in world space, so there was no need
to also multiply them with a model matrix beforehand. Once that’s done, we
pass all of the data into the shader with a call to heightmapProgram.setUniforms().

Let’s give it a shot! If everything went well, your screen should look similar
to Figure 69, Point lights against a night backdrop, on page 273.

13.4 A Review

We covered a lot of material in this chapter, learning all about ambient
lighting, directional lights, and point lights, and we also learned how to
implement diffuse reflection with Lambertian reflectance. These lighting
equations can go a long way in helping us come up with games and live
wallpapers that look quite neat.

The framework that we’ve put in place here can also be used to expand into
more complicated types of lighting, such as specular reflection. As the calcu-
lations get more involved, we’ll generally build on what we did before, just as
point lighting built on what we did for directional lighting.

13.5 Exercises

Here are some exercises to let you explore these concepts in some more depth
and detail:

Chapter 13. Lighting Up the World • 272

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/Lighting/src/com/particles/android/ParticlesRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 69—Point lights against a night backdrop

• Move the directional lighting calculations out of the shader and store the
results in the height map vertex buffer as a single additional float per
vertex, so that we only have to calculate this once.

• Adjust the lighting to make it dynamic. One way you can do this is by
turning the particle shooters on and off and then adjusting the brightness
of each shooter based on how many particles are still above the ground.
If you’re feeling particularly creative, you can even time this to a beat.

• Move the lighting calculations into the fragment shader so that the lighting
is calculated for each fragment rather than for each vertex. When you
pass your data to the fragment shader, keep in mind that you should only
use a varying for data that can reasonably be linearly interpolated; otherwise
you don’t really gain anything. You can safely pass the vertex normals,
but you’ll need to renormalize them in the fragment shader.

We also have a couple of research exercises to follow up on what we’ve learned:

report erratum • discuss

Exercises • 273

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

• See if there’s a way to optimize the height map normal generation and
remove redundant steps. A tool like Wolfram Alpha can help you do this
automatically.8

• Find out about the other ways that we can tesselate and use a height
map to improve the visual look of things. Here are a couple of linked
resources to get you started.9

When you’re ready, let’s head to the next chapter and turn this lighting project
into a live wallpaper that can run on your Android’s home screen!

8. http://www.wolframalpha.com/ or http://www.flipcode.com/archives/Calculating_Vertex_Nor-
mals_for_Height_Maps.shtml.

9. http://web.eecs.umich.edu/~sugih/courses/eecs494/fall06/lectures/workshop-terrain.pdf and
http://mtnphil.wordpress.com/2012/10/15/terrain-triangulation-summary/.

Chapter 13. Lighting Up the World • 274

report erratum • discuss

http://www.wolframalpha.com/
http://www.flipcode.com/archives/Calculating_Vertex_Normals_for_Height_Maps.shtml
http://www.flipcode.com/archives/Calculating_Vertex_Normals_for_Height_Maps.shtml
http://web.eecs.umich.edu/~sugih/courses/eecs494/fall06/lectures/workshop-terrain.pdf
http://mtnphil.wordpress.com/2012/10/15/terrain-triangulation-summary/
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

CHAPTER 14

Creating a Live Wallpaper
Ever since the early days of Android, users have been able to replace their
device’s home screen background with a live wallpaper, a special type of
application that can draw a dynamic and animated background. These live
wallpapers have proven to be quite popular, with many of them going into
the millions of downloads! In this chapter, you’ll learn how to implement your
own live wallpaper using OpenGL and the same GLSurfaceView that we’ve been
using to date.

Let’s take a look at our live wallpaper game plan:

• We’ll first learn how to wrap our lighting project from the last chapter
with a live wallpaper service and a customized GLSurfaceView.

• We’ll then learn how to optimize the performance and battery usage.

We’ll begin by continuing the Lighting project from the previous chapter,
copying it over into a new project called ‘LiveWallpaper’. When we’re done,
our live wallpaper will look similar to Figure 70, Our live wallpaper, running
on the home screen, on page 276.

14.1 Implementing the Live Wallpaper Service

To implement a live wallpaper, we’ll use an Android service, which is a special
type of application component that can be used to provide features to the rest
of the system. Android provides the base live wallpaper implementation with
WallpaperService, and to create a live wallpaper, all we need to do is extend this
base class with our own custom implementation.1

1. http://developer.android.com/reference/android/service/wallpaper/WallpaperService.html and http://android-
developers.blogspot.ca/2010/02/live-wallpapers.html, respectively.

report erratum • discuss

http://developer.android.com/reference/android/service/wallpaper/WallpaperService.html
http://android-developers.blogspot.ca/2010/02/live-wallpapers.html
http://android-developers.blogspot.ca/2010/02/live-wallpapers.html
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 70—Our live wallpaper, running on the home screen

Extending WallpaperService

Let’s start off by creating a new package called com.particles.android.wallpaper. In
that new package, let’s create a new class called GLWallpaperService as follows:

LiveWallpaper/src/com/particles/android/wallpaper/GLWallpaperService.java
public class GLWallpaperService extends WallpaperService {

@Override
public Engine onCreateEngine() {

return new GLEngine();
}

}

The wallpaper service itself is very simple: there’s just one method to override,
onCreateEngine(), and to implement a live wallpaper, all we need to do is override
that method to return a new instance of a WallpaperService.Engine. This engine
will contain the actual implementation of the live wallpaper, with life cycle
events that are quite similar to the ones we learned about for the Activity class
back in Chapter 1, Getting Started, on page 1.

Chapter 14. Creating a Live Wallpaper • 276

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/LiveWallpaper/src/com/particles/android/wallpaper/GLWallpaperService.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Extending WallpaperService.Engine

Let’s add a basic implementation of the engine to GLWallpaperService as an inner
class:

LiveWallpaper/src/com/particles/android/wallpaper/GLWallpaperService.java
public class GLEngine extends Engine {

@Override
public void onCreate(SurfaceHolder surfaceHolder) {

super.onCreate(surfaceHolder);
}

@Override
public void onVisibilityChanged(boolean visible) {

super.onVisibilityChanged(visible);
}
@Override
public void onDestroy() {

super.onDestroy();
}

}

These life cycle events will get called by Android as follows:

onCreate(SurfaceHolder surfaceHolder)
When WallpaperService is created by the system, it will create its own render-
ing surface for the application to draw on. It will then initialize the
wallpaper engine via a call to onCreate() and pass this surface in as a Sur-
faceHolder, which is an abstract interface to the surface.

onVisibilityChanged(boolean visible)
This will be called whenever the live wallpaper becomes visible or hidden.
The behavior is similar to the onPause() and onResume() callbacks of an Activ-
ity, and we’ll need to pause rendering whenever the live wallpaper is hidden
and resume rendering when it becomes visible again.

onDestroy()
This is called when the live wallpaper is destroyed. Like with other Android
components, it’s always possible that the system doesn’t call onDestroy()
when the process is killed.

For our live wallpaper to behave properly, we just need to implement these
life cycle callbacks and handle them in much the same way as we do in
ParticlesActivity.

Let’s start out with onCreate() and initialize OpenGL in the same way that we
currently do in ParticlesActivity; let’s add two new member variables to GLEngine
and update onCreate() as follows:

report erratum • discuss

Implementing the Live Wallpaper Service • 277

http://media.pragprog.com/titles/kbogla/code/LiveWallpaper/src/com/particles/android/wallpaper/GLWallpaperService.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

LiveWallpaper/src/com/particles/android/wallpaper/GLWallpaperService.java
private WallpaperGLSurfaceView glSurfaceView;
private boolean rendererSet;

@Override
public void onCreate(SurfaceHolder surfaceHolder) {

super.onCreate(surfaceHolder);
glSurfaceView = new WallpaperGLSurfaceView(GLWallpaperService.this);

// Check if the system supports OpenGL ES 2.0.
ActivityManager activityManager =

(ActivityManager) getSystemService(Context.ACTIVITY_SERVICE);
ConfigurationInfo configurationInfo = activityManager

.getDeviceConfigurationInfo();

final boolean supportsEs2 =
configurationInfo.reqGlEsVersion >= 0x20000

// Check for emulator.
|| (Build.VERSION.SDK_INT >= Build.VERSION_CODES.ICE_CREAM_SANDWICH_MR1
&& (Build.FINGERPRINT.startsWith("generic")
|| Build.FINGERPRINT.startsWith("unknown")
|| Build.MODEL.contains("google_sdk")
|| Build.MODEL.contains("Emulator")
|| Build.MODEL.contains("Android SDK built for x86")));

final ParticlesRenderer particlesRenderer =
new ParticlesRenderer(GLWallpaperService.this);

if (supportsEs2) {
glSurfaceView.setEGLContextClientVersion(2);
glSurfaceView.setRenderer(particlesRenderer);
rendererSet = true;

} else {
Toast.makeText(GLWallpaperService.this,

"This device does not support OpenGL ES 2.0.",
Toast.LENGTH_LONG).show();

return;
}

}

This is more or less the same OpenGL initialization code that we’ve been using
in every chapter; the main difference is that we’re using this inside of a live
wallpaper service rather than in an activity, and since GLSurfaceView is primar-
ily meant to work with activities, we’ll need to create a customized version
with a few minor changes.

Creating a Custom GLSurfaceView

Let’s add a customized GLSurfaceView to GLEngine as an inner class:

Chapter 14. Creating a Live Wallpaper • 278

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/LiveWallpaper/src/com/particles/android/wallpaper/GLWallpaperService.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

LiveWallpaper/src/com/particles/android/wallpaper/GLWallpaperService.java
class WallpaperGLSurfaceView extends GLSurfaceView {

WallpaperGLSurfaceView(Context context) {
super(context);

}
@Override
public SurfaceHolder getHolder() {

return getSurfaceHolder();
}
public void onWallpaperDestroy() {

super.onDetachedFromWindow();
}

}

Normally, a GLSurfaceView is added to an activity’s view hierarchy and renders
to a surface within that activity. Since a live wallpaper does things somewhat
differently, we need to change the behavior. The GLSurfaceView will call getHolder()
to get access to its surface within the activity, so we just need to override
getHolder() to return the live wallpaper’s rendering surface instead; we do this
by calling [WallpaperService.Engine].getSurfaceHolder().

We also need to change the way we clean up a GLSurfaceView. A GLSurfaceView
normally cleans itself up when it’s detached from the window, and it normally
finds out about this when the activity’s view hierarchy calls onDetachedFromWin-
dow(). Since we won’t be adding the GLSurfaceView to an activity, we create a new
method called onWallpaperDestroy(), and we’ll call this when the wallpaper is
destroyed so that the GLSurfaceView knows that it’s time to clean up.

Completing the Wallpaper Engine

Now that we have our custom GLSurfaceView in place, let’s finish up the rest of
the wallpaper engine:

@Override
public void onVisibilityChanged(boolean visible) {

super.onVisibilityChanged(visible);
if (rendererSet) {

if (visible) {
glSurfaceView.onResume();

} else {
glSurfaceView.onPause();

}
}

}
@Override
public void onDestroy() {

super.onDestroy();
glSurfaceView.onWallpaperDestroy();

}

report erratum • discuss

Implementing the Live Wallpaper Service • 279

http://media.pragprog.com/titles/kbogla/code/LiveWallpaper/src/com/particles/android/wallpaper/GLWallpaperService.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

We pause and resume the GLSurfaceView based on whether the live wallpaper
is visible or not, and we clean things up in the onDestroy(). Now that we have
that in place, our live wallpaper service is ready for testing.

Adding an XML Descriptor

Now we need to add an XML file that will describe our live wallpaper to
Android. To do this, let’s create a new folder called xml in the /res folder, and
inside that new folder, create a new file called wallpaper.xml with the following
contents:

LiveWallpaper/res/xml/wallpaper.xml
<?xml version="1.0" encoding="utf-8"?>
<wallpaper xmlns:android="http://schemas.android.com/apk/res/android"

android:thumbnail="@drawable/ic_wallpaper" />

This XML file gives Android additional info about our live wallpaper, such as
what icon should be displayed in the list of live wallpapers. The ic_wallpaper
drawable can be downloaded from this book’s website and placed in /res/drawable-
xhdpi.2

Updating the Android Manifest and Excluding from Unsupported Devices

We just need to make a couple of changes to AndroidManifest.xml, and then we’ll
be able to test out our new live wallpaper! Open up AndroidManifest.xml and add
the following after <uses-sdk>:

LiveWallpaper/AndroidManifest.xml
<uses-feature android:name="android.software.live_wallpaper" />
<uses-feature android:glEsVersion="0x00020000" android:required="true" />

These tags let Android know that this application contains a live wallpaper
and that it also requires OpenGL ES 2.0 or greater. App stores like Google
Play use these tags to filter search results and to hide applications from
unsupported devices.

We also need to add a reference to the live wallpaper service. Let’s add the
following inside the <application> tag, after the <activity> tag:

LiveWallpaper/AndroidManifest.xml
<service

android:name=".wallpaper.GLWallpaperService"
android:label="@string/app_name"
android:permission="android.permission.BIND_WALLPAPER" >
<intent-filter>

<action android:name="android.service.wallpaper.WallpaperService" />

2. http://pragprog.com/book/kbogla/

Chapter 14. Creating a Live Wallpaper • 280

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/LiveWallpaper/res/xml/wallpaper.xml
http://media.pragprog.com/titles/kbogla/code/LiveWallpaper/AndroidManifest.xml
http://media.pragprog.com/titles/kbogla/code/LiveWallpaper/AndroidManifest.xml
http://pragprog.com/book/kbogla/
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

</intent-filter>
<meta-data

android:name="android.service.wallpaper"
android:resource="@xml/wallpaper" />

</service>

When our application is installed on a device, this <service> tag and its contents
tell Android that GLWallpaperService is a live wallpaper service, and that it can
retrieve additional info about that service from /res/xml/wallpaper.xml. Once an
application has been released to the market, the android:name= of the <service>
should not be changed because changing it will cause the live wallpaper to
be reset when the app is upgraded.3

Trying Out the New Live Wallpaper

Now that we’ve completed the implementation, let’s build and run the app
and see things in action. When we run the application from Eclipse, our
activity opens by default. We want to check out the live wallpaper instead, so
let’s follow these steps to add our new live wallpaper to the home screen:

1. First head to your device’s home screen, and then press and hold an
empty part of the screen until a menu appears.

2. Select ‘Live Wallpapers’, and then select our live wallpaper from the list
that appears.

3. Select ‘Set wallpaper’. You should then see the live wallpaper appear on
your home screen, as we saw in Figure 70, Our live wallpaper, running on
the home screen, on page 276.

Figure 71, Steps to add a live wallpaper, on page 282 shows the sequence of
these steps.

Try switching between home screens, go to the app drawer (the list of all of
your installed applications), and then head back to the home screen and see
what happens! What do you notice about the performance and the behavior?

Scrolling the Background Along with the Home Screen

The first thing you might have noticed is that the live wallpaper doesn’t move
when we swipe back and forth between different pages on the home screen.
We can implement this by implementing the onOffsetsChanged() method in GLEngine
as follows:4

3. http://android-developers.blogspot.ca/2011/06/things-that-cannot-change.html
4. http://developer.android.com/reference/android/service/wallpaper/WallpaperService.Engine.html#onOff-

setsChanged(float, float, float, float, int, int)

report erratum • discuss

Implementing the Live Wallpaper Service • 281

http://android-developers.blogspot.ca/2011/06/things-that-cannot-change.html
http://developer.android.com/reference/android/service/wallpaper/WallpaperService.Engine.html#onOffsetsChanged(float, float, float, float, int, int)
http://developer.android.com/reference/android/service/wallpaper/WallpaperService.Engine.html#onOffsetsChanged(float, float, float, float, int, int)
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 71—Steps to add a live wallpaper

LiveWallpaper/src/com/particles/android/wallpaper/GLWallpaperService.java
@Override
public void onOffsetsChanged(final float xOffset, final float yOffset,

float xOffsetStep, float yOffsetStep, int xPixelOffset, int yPixelOffset) {
glSurfaceView.queueEvent(new Runnable() {

@Override
public void run() {

particlesRenderer.handleOffsetsChanged(xOffset, yOffset);
}

});
}

When the user scrolls the home screen, onOffsetsChanged() will be called with x
and y offsets, each between 0 and 1. We’ll pass these offsets on to the renderer,
and in the renderer, we’ll call handleOffsetsChanged() and use these offsets to
move the scene. This method hasn’t been implemented yet, so we’ll do that
soon.

First, pull out particlesRenderer from onCreate() into a member variable of GLEngine
so that we can access it from onOffsetsChanged(). Once that’s done, let’s switch
to ParticlesRenderer and add a couple of new member variables to hold the offsets:

LiveWallpaper/src/com/particles/android/ParticlesRenderer.java
private float xOffset, yOffset;

Let’s add the implementation for handleOffsetsChanged():

Chapter 14. Creating a Live Wallpaper • 282

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/LiveWallpaper/src/com/particles/android/wallpaper/GLWallpaperService.java
http://media.pragprog.com/titles/kbogla/code/LiveWallpaper/src/com/particles/android/ParticlesRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

LiveWallpaper/src/com/particles/android/ParticlesRenderer.java
public void handleOffsetsChanged(float xOffset, float yOffset) {

// Offsets range from 0 to 1.
this.xOffset = (xOffset - 0.5f) * 2.5f;
this.yOffset = (yOffset - 0.5f) * 2.5f;
updateViewMatrices();

}

When handleOffsetsChanged() gets called, we’ll adjust the offsets so that they range
from -2.5 to +2.5 instead of 0 to 1, so that we’ll scroll from around the left
particle fountain to around the right particle fountain. Let’s use these offsets
to update the view matrix by adjusting the call to translateM() inside of update-
ViewMatrices(), as follows:

LiveWallpaper/src/com/particles/android/ParticlesRenderer.java
translateM(viewMatrix, 0, 0 - xOffset, -1.5f - yOffset, -5f);

We can think of translateM() as moving the entire scene from side to side, so
when the user moves left on the home screen, we want our viewpoint to move
left as well, which means that we want the entire scene to move right. We do
that here by subtracting xOffset and yOffset from the x and y parts of the
translateM() call.

Give the live wallpaper another shot, and try switching between different
home screens. You should now see the background and the particle fountains
move as well.

14.2 Playing Nicely with the Rest of the System

Users tend to have fairly high expectations of a live wallpaper—not only does
it need to look great on their home screen, but it also needs to be frugal with
the device’s resources. People tend to get pretty upset if a live wallpaper drains
half of their battery in an hour or if it lags their device. They also expect a
live wallpaper to stop consuming the battery when it gets sent to the back-
ground and quickly start back up when they return to the home screen.

Limiting the Frame Rate

By default, Android will ask OpenGL to render the frames in line with the
display refresh rate, usually at around 60 frames per second. This can chew
through battery power pretty quickly, so to reduce the impact on the battery
and on system performance, we can add a frame rate limiter to render fewer
frames per second and consume less battery. Let’s return to ParticlesRenderer
and add a new member variable to the top of the class:

report erratum • discuss

Playing Nicely with the Rest of the System • 283

http://media.pragprog.com/titles/kbogla/code/LiveWallpaper/src/com/particles/android/ParticlesRenderer.java
http://media.pragprog.com/titles/kbogla/code/LiveWallpaper/src/com/particles/android/ParticlesRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

LiveWallpaper/src/com/particles/android/ParticlesRenderer.java
private long frameStartTimeMs;

This variable will store the elapsed time in milliseconds between each frame.
Let’s modify the beginning of onDrawFrame() as follows:

LiveWallpaper/src/com/particles/android/ParticlesRenderer.java
@Override
public void onDrawFrame(GL10 glUnused) {

limitFrameRate(24);

Each time we render a new frame, we’ll call limitFrameRate() to limit the frame
rate to 24 frames per second. Let’s add the definition for this new method:

LiveWallpaper/src/com/particles/android/ParticlesRenderer.java
private void limitFrameRate(int framesPerSecond) {

long elapsedFrameTimeMs = SystemClock.elapsedRealtime() - frameStartTimeMs;
long expectedFrameTimeMs = 1000 / framesPerSecond;
long timeToSleepMs = expectedFrameTimeMs - elapsedFrameTimeMs;

if (timeToSleepMs > 0) {
SystemClock.sleep(timeToSleepMs);

}
frameStartTimeMs = SystemClock.elapsedRealtime();

}

When we call this method, we first calculate how much time has elapsed since
the last frame was rendered, and then we calculate how much time we have
left before we need to render the next frame. We then pause the thread for
that length of time so that we slow things down to the requested frame rate.

For example, let’s say that normally a frame renders in 20 milliseconds, which
is 50 frames per second, and we want to slow each frame down to 40 millisec-
onds, or 25 frames per second. When we call limitFrameRate(25) from onDrawFrame(),
we’ll find that elapsedFrameTimeMs is around 20 milliseconds, and since we want
to slow things down to 25 frames per second, we’ll have an expectedFrameTimeMs
of 40 milliseconds. Once we subtract the elapsed frame time from the
expected frame time, we’ll have a timeToSleepMs of 20 milliseconds, and then
we’ll call SystemClock.sleep(timeToSleepMs) to sleep until it’s time to draw the next
frame.

To log the actual frame rate, let’s add a constant and two more member
variables to the class:

LiveWallpaper/src/com/particles/android/ParticlesRenderer.java
private static final String TAG = "ParticlesRenderer";
private long startTimeMs;
private int frameCount;

Chapter 14. Creating a Live Wallpaper • 284

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/LiveWallpaper/src/com/particles/android/ParticlesRenderer.java
http://media.pragprog.com/titles/kbogla/code/LiveWallpaper/src/com/particles/android/ParticlesRenderer.java
http://media.pragprog.com/titles/kbogla/code/LiveWallpaper/src/com/particles/android/ParticlesRenderer.java
http://media.pragprog.com/titles/kbogla/code/LiveWallpaper/src/com/particles/android/ParticlesRenderer.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

We’ll log the frame rate by calling a new method called logFrameRate() from the
beginning of onDrawFrame(), just after the call to limitFrameRate():

LiveWallpaper/src/com/particles/android/ParticlesRenderer.java
@Override
public void onDrawFrame(GL10 glUnused) {

limitFrameRate(24);
logFrameRate();

Now we just need to add in the definition for logFrameRate():

LiveWallpaper/src/com/particles/android/ParticlesRenderer.java
private void logFrameRate() {

if (LoggerConfig.ON) {
long elapsedRealtimeMs = SystemClock.elapsedRealtime();
double elapsedSeconds = (elapsedRealtimeMs - startTimeMs) / 1000.0;

if (elapsedSeconds >= 1.0) {
Log.v(TAG, frameCount / elapsedSeconds + "fps");
startTimeMs = SystemClock.elapsedRealtime();
frameCount = 0;

}
frameCount++;

}
}

This method will measure and log the frame count for each elapsed second.
Try it out and see what frame rate you end up with.

Preserving the EGL Context

You may have noticed that when we move away from the home screen and
return to it later, the scene is reloaded and the particles reinitialized, often
with a noticeable delay. This happens because when we pause the GLSurfaceView,
it releases all of the OpenGL resources by default, and when we resume it
later, our surface is recreated and onSurfaceCreated() is called again, requiring
us to reload all of the data.

Behind the scenes, GLSurfaceView is actually using an API called the EGL Native
Platform Graphics Interface.5 When we initialize OpenGL by using a GLSurface-
View, an EGL context is created, and all of the textures, buffers, and other
resources that OpenGL might use are linked to this context. These contexts
are a limited resource on older devices, so our GLSurfaceView will normally
release the context and flush all of OpenGL’s resources whenever we ask it
to pause.

5. http://www.khronos.org/egl

report erratum • discuss

Playing Nicely with the Rest of the System • 285

http://media.pragprog.com/titles/kbogla/code/LiveWallpaper/src/com/particles/android/ParticlesRenderer.java
http://media.pragprog.com/titles/kbogla/code/LiveWallpaper/src/com/particles/android/ParticlesRenderer.java
http://www.khronos.org/egl
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Many newer devices can afford to keep multiple contexts around, and starting
with Android 3.0 Honeycomb, we can preserve the EGL context by calling
GLSurfaceView.setPreserveEGLContextOnPause(true). If the context can be preserved,
then our live wallpaper will be able to resume immediately without having to
reload all of the OpenGL data.

Let’s update the onCreate() method of GLWallpaperService.GLEngine by adding the
following code just after the call to glSurfaceView.setEGLContextClientVersion():

LiveWallpaper/src/com/particles/android/wallpaper/GLWallpaperService.java
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {

glSurfaceView.setPreserveEGLContextOnPause(true);
}

This code first checks that the current version of Android is Honeycomb or
later, and then we ask the GLSurfaceView to preserve the EGL context on pause.
Even if this code might run on an earlier version of Android, we don’t need
to use Java reflection to make the method call as long as we wrap the code
with a version check.

Give the live wallpaper another shot, and try switching to the app drawer and
then returning to the home screen. You should now find that the wallpaper
resumes much more quickly and the particles don’t get reset.

14.3 A Review

Congratulations on completing another project and on creating your first live
wallpaper! We learned how to put our particle scene onto the home screen,
and we also took a look at how to reduce resource and battery usage by
reducing the frame rate while keeping things efficient by holding onto the
EGL context between pauses and resumes.

As we built up this project, we also covered many core aspects of OpenGL,
such as how to use vertex and index buffers, how to do hidden surface removal
with a depth buffer, and how to add effects by using blending and lighting
techniques. You won’t always need to use all of these techniques, and indeed,
many of the most popular games on the Android market get away with using
simple and cute 2D graphics. However, now that you have these techniques
at hand, you have a base from which you can learn more, as well as the
flexibility and tools to bring your artistic visions to life.

14.4 Exercises

We’ve covered a lot of the basics of live wallpapers in this chapter, but there’s
still a lot of low-hanging fruit left for us to pick. Let’s start off with the following
exercises:

Chapter 14. Creating a Live Wallpaper • 286

report erratum • discuss

http://media.pragprog.com/titles/kbogla/code/LiveWallpaper/src/com/particles/android/wallpaper/GLWallpaperService.java
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

• To optimize performance, let’s change the way we initialize the particle
system and reduce the total particle count from 10,000 to something a
lot lower. Once that’s done, let’s optimize things further by removing
particles that fall below the terrain. One way you can do this is by swap-
ping each particle to be removed with the last good active particle in the
array.

When you make these changes, try updating the behavior so that the
particle system doesn’t get reset if onSurfaceCreated() is called a second time.

• Android live wallpapers support an additional settings activity, which can
be configured by adding an android:settingsActivity= attribute to the <wallpaper>
tag in /res/xml/wallpaper.xml. Add a settings screen with an easy way of altering
the live wallpaper’s frame rendering rate per second.6

• New to Android 4.2 Jelly Bean, Android also supports Daydreams, inter-
active screen savers that take over when the device is idle and charging.
Try implementing the same OpenGL scene as a Daydream.7

Another way of implementing a live wallpaper with OpenGL is by reimplement-
ing much of GLSurfaceView rather than by subclassing it. You can learn more
about this approach and implement it by following the linked resources.8

When you’re ready, let’s head over to the next chapter and take the next step.

6. http://www.learnopengles.com/how-to-use-opengl-es-2-in-an-android-live-wallpaper/
7. http://android-developers.blogspot.ca/2012/12/daydream-interactive-screen-savers.html
8. http://www.rbgrn.net/content/354-glsurfaceview-adapted-3d-live-wallpapers, https://github.com/GLWallpaperSer-

vice/GLWallpaperService/blob/master/GLWallpaperService/src/net/rbgrn/android/glwallpaperservice/GLWallpa-
perService.java, and http://www.learnopengles.com/how-to-use-opengl-es-2-in-an-android-live-wallpaper/.

report erratum • discuss

Exercises • 287

http://www.learnopengles.com/how-to-use-opengl-es-2-in-an-android-live-wallpaper/
http://android-developers.blogspot.ca/2012/12/daydream-interactive-screen-savers.html
http://www.rbgrn.net/content/354-glsurfaceview-adapted-3d-live-wallpapers
https://github.com/GLWallpaperService/GLWallpaperService/blob/master/GLWallpaperService/src/net/rbgrn/android/glwallpaperservice/GLWallpaperService.java
https://github.com/GLWallpaperService/GLWallpaperService/blob/master/GLWallpaperService/src/net/rbgrn/android/glwallpaperservice/GLWallpaperService.java
https://github.com/GLWallpaperService/GLWallpaperService/blob/master/GLWallpaperService/src/net/rbgrn/android/glwallpaperservice/GLWallpaperService.java
http://www.learnopengles.com/how-to-use-opengl-es-2-in-an-android-live-wallpaper/
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

CHAPTER 15

Taking the Next Step
We’ve finally made it to the last chapter! To start off, we’ll take a look at a
couple of ways of expanding our reach beyond Android alone. We’ll go over a
couple of cross-platform frameworks and approaches that can help out with
this, and we’ll evaluate the pros and cons of each approach.

We’ll also take some time to review some of the more advanced areas of
OpenGL that go beyond what we’ve learned in this book, including multitex-
turing, anisotropic filtering, and antialiasing (AA), as well as techniques that
can be particularly useful in 2D games and applications, such as billboarding
and texture atlasing. We’ll also take a quick look at what’s coming down the
pipeline in OpenGL ES 3.0.

As we review the material, you can also follow a sample implementation of
some of these techniques by downloading this book’s code files and importing
the project in the TakingTheNextStep folder.1

15.1 Looking Toward Other Platforms

If you’re thinking about moving beyond Android some day and expanding
your reach, then you’ll definitely want to give some thought to portability and
cross-platform code. OpenGL ES 2 is well supported on many major platforms,
including iOS and the Web via WebGL; however, these other platforms are
often built around other programming languages. On iOS, Objective C is the
primary development language, and on the Web, JavaScript is the primary
development language.

Since rewriting code for each platform tends to take more resources, cross-
platform development can have a lot of appeal. On one end of the spectrum,
you have proprietary environments that use the same language on all

1. http://pragprog.com/book/kbogla/

report erratum • discuss

http://pragprog.com/book/kbogla/
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

platforms and abstract everything away from you; on the other end of the
spectrum, you can do everything yourself and build up your own framework.
Occupying the middle ground are open source frameworks such as libgdx
(created by Mario Zechner) and Cocos2d-x (founded by Zhe Wang), which
allow you to support multiple platforms without rewriting too much of the
code.2

When thinking about cross-platform development, there are a couple of
important points to keep in mind: first, you want to make sure that it doesn’t
take more work than just maintaining a separate code base for each platform;
and second, you also want to avoid falling into the trap of tailoring everything
to the lowest common denominator, leading to a bad experience on all
platforms.

We’ll take a quick look at how you can use either libgdx or Cocos2d-x as a
framework for your code and the pros and cons of each approach.

Building upon Java by Using Libgdx

Libgdx is a popular open source game development library that uses Java
and supports both OpenGL ES 1 and 2. In addition to great support for
Android, it even supports other platforms by including a different back end
for each platform and a translation layer to translate the Java code. It does
this for the Web by using Google Web Toolkit to compile Java into JavaScript,
and it does this for iOS by using a tool called ikvmc to compile Java into .NET
intermediate language, which can then be turned into an iOS binary by using
a .NET compiler such as Xamarin.iOS.

By using Java as the main programming language, you can avoid manual
memory management, stack and heap corruption, undefined behavior, and
other related issues that can come up when using another programming
language such as C or C++. On the other hand, it will be more difficult to
control the performance when garbage collection and multiple translation
layers are involved.

Building on C and C++ by Using Cocos2d-x

Instead of using Java, you can also use C or C++ with compilers available for
almost all platforms. Cocos2d-x is a popular game development framework
that uses C++ and OpenGL ES 2 to target Android, iOS, and other platforms
with a minimum of abstractions and translation layers; as the name hints,
Cocos2d-x is also optimized for 2D games. Since C and C++ compile directly

2. https://code.google.com/p/libgdx/ and http://www.cocos2d-x.org/, respectively.

Chapter 15. Taking the Next Step • 290

report erratum • discuss

https://code.google.com/p/libgdx/
http://www.cocos2d-x.org/
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

to machine code, this approach is often popular with game developers looking
for the best performance and control (Java also has decent performance, but
the Dalvik VM is not as good as desktop JVMs at producing fast JIT code).

One of the main downsides of this approach is that Android’s support for C
and C++ is definitely not as good as it is for Java, and then you’re also opening
up Pandora’s box of stack and heap corruption, undefined behavior, and
other subtle errors that can destabilize the program, though recent versions
of GCC and Clang do have a lot of great diagnostics to help out with this. For
now, C and C++ are also more difficult to port to the Web, though this may
not always be the case: Google is helping to bring native languages to the
Web with Native Client, and there are even compilers out there that can
compile C++ into JavaScript, which can then run in a browser.

15.2 Learning About More Advanced Techniques

Now that we’ve made it this far, let’s take some time to go over a few of the
more advanced ways of rendering things in OpenGL.

Multitexturing

Back in Chapter 7, Adding Detail with Textures, on page 115, we learned that
we can easily apply a texture by specifying a set of texture coordinates and
by using a texture unit to pass in the actual texture. OpenGL ES 2.0 actually
provides support for multiple texture units, with most GPUs supporting at
least two of them. This can be used to blend between two textures to apply
various effects. In the sample project, we use multitexturing to draw the terrain
with a blend between a grassy texture at low elevations and a stony texture
at higher elevations.

Anisotropic Filtering

In the same chapter, we also learned that OpenGL supports a few texture
filtering modes, including nearest-neighbor and bilinear without mipmaps,
and bilinear and trilinear with mipmaps. Enabling mipmapping increases
both the performance and the quality, but one problem with standard
mipmapping is that it’s optimized for rendering textures head on rather than
at an angle. If we look at the ground in the sample project, we can see that
it gets excessively smeared with distance. We could always turn off mipmap-
ping, but that both lowers performance and makes the far areas of the scene
very jumpy and noisy.

We can often improve on the quality of textures at an angle by using
anisotropic filtering, a type of texture filtering that takes the viewing angle

report erratum • discuss

Learning About More Advanced Techniques • 291

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

into account. In the following figure, you can see an example of trilinear filter-
ing versus 15x anisotropic filtering, the maximum supported on a Nexus 7’s
Tegra 3. With anisotropic filtering, textures at an oblique viewing angle can
look much better with a lot less smearing; the trade-off is that performance
may be reduced. Higher levels of anisotropic filtering will filter more oblique
surfaces with improved quality.

Figure 72—Trilinear filtering versus 15x anistotropic filtering

OpenGL leaves the actual implementation up to the hardware, and not all
GPUs will support anisotropic filtering. In the sample project, you’ll see how
to check for support as well as how to enable the maximum amount of
anisotropic filtering if it’s supported.

Antialiasing

Antialiasing is a rendering technique that is used to reduce aliasing, which
often manifests itself in the form of “jaggies” along the edges of triangles in a
3D scene.3 There are many different ways of antialiasing a scene, and each
method comes with its own pros and cons.

In the old days, applications would often antialias a scene by simply rendering
the same scene several times in a row, with a slightly different perspective
projection for each render. The antialias would be applied by blending these
renders together. In OpenGL ES, some GPUs can antialias through OpenGL
itself by using multisample antialiasing, and some NVIDIA chipsets also sup-
port coverage antialiasing. In the following figure, you can see an example of
regular rendering versus NVIDIA’s coverage antialiasing using the 2x coverage
mode.

3. http://en.wikipedia.org/wiki/Aliasing

Chapter 15. Taking the Next Step • 292

report erratum • discuss

http://en.wikipedia.org/wiki/Aliasing
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 73—Regular rendering versus NVIDIA’s 2x coverage antialiasing

With the high resolutions and small pixels prevalent on mobile devices,
antialiasing is not as important as it used to be on the desktop. Also,
antialiasing can consume a lot of additional resources for a small gain in
image quality. However, it can make sense in some applications, and in the
sample project, we’ve adapted code from Google’s Game Developers Conference
(GDC) 2011 demo (a great sample of different OpenGL ES 2 techniques) to
show you how to enable antialiasing in your own projects (Figure 74, A
slightly modified GDC 11 demo, on page 294).4

Billboarding and Other 2D Techniques

In Chapter 10, Spicing Things Up with Particles, on page 191, we learned how
to render particles as 2D textures by using point sprites. Billboarding is
another way of rendering a 2D sprite in a 3D scene, and the way that it works
is by drawing a rectangular quad of two triangles, rendering a texture on this
quad with transparent areas, and orienting this quad so that it always faces
the camera no matter which direction it’s facing. This can work well for the
same sort of things that we’d use point sprites for, with the advantage of there
being no point size limit.

For some other things, like grass, a better technique is to use the same 2D
quads, but instead of changing their orientation so that they always face the
camera, we instead keep their orientation fixed, and we use several of them
together and position them in ways so that they overlap each other. This can
be seen to great effect in games like Assassin’s Creed 3 when traveling in the
forested areas. This technique can be a little heavy for today’s mobile phones
and tablets, but as devices like the Ouya (an Android-based game console)
take off, we can expect to see these sorts of techniques used more and more
often.

4. https://code.google.com/p/gdc2011-android-opengl/

report erratum • discuss

Learning About More Advanced Techniques • 293

https://code.google.com/p/gdc2011-android-opengl/
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 74—A slightly modified GDC 11 demo

Using a Texture Atlas

Switching textures can be expensive, so why not put a bunch of different
textures together into one giant texture and then use different parts of this
texture for different objects? This giant texture is known as a texture atlas,
and using one can lead to a performance boost for certain types of games,
especially 2D sprite-based and tile-based games. Using a texture atlas can
also boost performance for in-game custom font rendering.

Texture atlases do have a few downsides: mipmaps can blend together data
from adjacent subtextures, and sometimes fitting all of the textures together
in the texture atlas can be a pain. There are tools that can help out with this,
and libgdx, one of the cross-platform frameworks that we talked about back
in Building upon Java by Using Libgdx, on page 290, has one of these tools
built in.5

5. https://code.google.com/p/libgdx/wiki/TexturePacker

Chapter 15. Taking the Next Step • 294

report erratum • discuss

https://code.google.com/p/libgdx/wiki/TexturePacker
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Introducing OpenGL ES 3.0

In August 2012, the Khronos Group announced the release of the OpenGL
ES 3.0 specification, an iterative improvement building on OpenGL ES 2.0.
The new specification hasn’t had time to roll out and doesn’t appear on
Android’s device dashboard at the moment, but sooner or later, devices will
start supporting 3.0. The following are some of the new features that we can
expect:6

• The texturing has been greatly improved, with support for many new
texture types and features. High quality ETC2/EAC texture compression
is now built in as a standard feature, and cube maps are now guaranteed
to be seamless.7

• The rendering pipeline now supports multiple rendering targets as well
as advanced features such as occlusion queries and instanced rendering.

• The specification includes an expanded set of required texture and buffer
formats, reducing the differences between different implementations.

These new features improve the capabilities of OpenGL ES 2, bringing in some
advanced capabilities and making it easier for developers to port code from
desktop OpenGL. Your device may even currently support some of these fea-
tures (such as seamless cube mapping), either by default or as an OpenGL
extension.

15.3 Sharing Your Artistic Vision with the World

There’s a lot more that we haven’t covered. There are all kinds of advanced
effects that can be done through the power of OpenGL ES 2, such as specular
lighting, fog, reflections, shadows, and various post-processing effects like
high dynamic range lighting and depth of field.

We don’t currently see too many of these more advanced effects in the mobile
world, in part because most of the GPUs out there aren’t yet powerful enough,
and also in part because they can be overkill for your typical side scroller or
3D running game. This will change over time, as we see Android increasingly
used in other areas such as game consoles and also as the phones and tablets
themselves become more and more powerful. OpenGL ES 2 brings a lot of
power to the table, and we’ve only scratched the surface of what’s truly
possible.

6. http://www.khronos.org/news/press/khronos-releases-opengl-es-3.0-specification
7. http://en.wikipedia.org/wiki/Ericsson_Texture_Compression#ETC2_and_EAC

report erratum • discuss

Sharing Your Artistic Vision with the World • 295

http://www.khronos.org/news/press/khronos-releases-opengl-es-3.0-specification
http://en.wikipedia.org/wiki/Ericsson_Texture_Compression#ETC2_and_EAC
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

We’ve now reached the end of our adventure together. OpenGL ES 2 is a
powerful graphics library with a lot of potential, and you now have the tools
to draw on some of that potential. As you continue the journey on your own,
stay adventurous, stay curious, and share your artistic vision with the world.

Chapter 15. Taking the Next Step • 296

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

APPENDIX 1

The Matrix Math Behind the Projections
There are two main types of projections in OpenGL: orthographic and perspec-
tive. Both projections are used for transforming coordinates from a virtual
world space into normalized device coordinates ranging from -1 to 1 on each
axis. The projection defines what will be visible and how big it will appear.

Before we continue, you might want to give Section 5.3, Linear Algebra 101,
on page 83, another read.

A1.1 The Math Behind Orthographic Projections

We’ll start off with orthographic projections, as they’re easier to understand.
An orthographic projection maps part of our 3D world onto the screen, and
it does so in a way such that everything appears the same size, no matter
how near or far it is. For this reason, this type of projection is great for doing
2D games and art.

Creating an Identity Orthographic Projection

The following is a basic definition of an orthographic projection matrix:

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Given this matrix, all coordinates between left and right, bottom and top, and
near and far will be mapped into normalized device coordinates, and anything
within this range will be visible on the screen.

Let’s take a look at this in action: for our first example, we’ll create an identity
orthographic projection. Let’s build the matrix by passing in -1 for left, bottom,
and near, and +1 for right, top, and far. A basic substitution would give us
the following matrix:

Simplifying the negations gives us the following:

The next step is to add and subtract the terms together:

Finally, we evaluate the fractions and end up with the final matrix:

Appendix 1. The Matrix Math Behind the Projections • 298

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

It looks almost exactly like the identity matrix! This happens because normal-
ized device coordinates range from -1 to 1 on each axis, so when we also pass
in -1 and 1 as our ranges, we are essentially asking for an orthographic pro-
jection that leaves its coordinates unchanged, just like an identity matrix.
The main difference is that the z-axis is inverted. This is entirely due to con-
vention, as explained in Left-Handed and Right-Handed Coordinate Systems,
on page 88.

Creating a Regular Orthographic Projection

For our next example, let’s create an orthographic projection that will actually
do something. What if we don’t like negative numbers and we want to specify
all of our coordinates in the range [0, 1] instead of [-1, 1]? This means that
left, bottom, and near will be 0, and right, top, and far will be 1.

When we call orthoM(), we are saying that we want a matrix that will map [0,
1] onto the range [-1, 1] for the x, y, and z components. Here’s what the initial
matrix would look like:

We won’t go through all of the simplification steps this time. Let’s just look
at the final result:

To “prove” that this matrix will indeed transform a coordinate in the range
[0, 1] to the range [-1, 1] (remembering the special inversion of the z-axis),

report erratum • discuss

The Math Behind Orthographic Projections • 299

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

let’s try it out with a few different vectors. First we’ll start with a vector at the
minimum range, with all components at 0:

As expected, everything maps to -1 in normalized device coordinates. Now
we’ll try a vector in the middle:

The result is also in the middle in normalized device coordinates, with x, y,
and z all set to zero. Now let’s try a vector at the maximum range of 1:

This time, everything is also at the maximum range in normalized device
coordinates.

Note that before multiplying it with the matrix, we specified a negative z in
the vector instead of a positive z; even though we specified near as 0 and far
as 1, we actually have to pass in a range from 0 to -1. This is just us adjusting
for the inverted z-axis, as described in Left-Handed and Right-Handed Coor-
dinate Systems, on page 88.

A1.2 The Math Behind Perspective Projections

Perspective projections work somewhat differently. They also map part of the
virtual world onto the screen, but they do so by using perspective: the further
away something is, the smaller it will appear on the screen. The projection
matrix can’t do this by itself, so it uses a fourth component, w, in conjunction
with the perspective divide. You can read more in Perspective Division, on
page 97.

Appendix 1. The Matrix Math Behind the Projections • 300

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

The following is a very basic perspective projection matrix. This matrix
assumes a right-handed coordinate space (see Left-Handed and Right-Handed
Coordinate Systems, on page 88), with the near plane beginning at a z of -1.
As a quick exercise, see if you can guess where the far end lies, remembering
that OpenGL will divide each component by w:

Let’s take a look at what’s happening in this matrix:

• The first two rows of this matrix simply copy over the x and y components
without modifying them.

• The third row of this matrix copies over the z component, inverting it at
the same time. The -2 in the fourth column will be multiplied with a ver-
tex’s w, which defaults to 1, so this row of the matrix ends up setting the
final z to -1z - 2. For example, a z of -1 will be set to -1, a z of -2 will be
set to 0, a z of -3 will be set to 1, and so on.

Why do we use -2 and not some other number? With a -1 in the third
column, a -2 in the fourth column is simply the number that will map
the near plane of the frustum to the near plane in normalized device
coordinates (-1 will map to -1); and since the same z of -1 will create a w
of 1, the z value will remain -1 after the perspective divide.

As another exercise, the mathematically inclined may wish to derive a
formal proof of this. Songho.ca has an excellent write-up on how these
values can be derived.1 However, a formal proof is not required to under-
stand how to use a projection matrix.

• The fourth row sets the final w to the negative z. Once OpenGL does the
perspective divide, this will have the effect of shrinking objects that are
further away.

Let’s see what happens when we multiply this matrix with a point on the near
end of the frustum:

1. http://www.songho.ca/opengl/gl_projectionmatrix.html

report erratum • discuss

The Math Behind Perspective Projections • 301

http://www.songho.ca/opengl/gl_projectionmatrix.html
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

With a z of -1, the result has a z of -1 and a w of 1. Let’s take a look at two
more points, each further away than the previous one:

As the point gets further away, both z and w get larger and larger.

Dividing by W

We’ve explored the first part of the magic of perspective projection: defining
a matrix that will create a w value that increases as distance increases. There’s
another step remaining, however: the perspective divide. After OpenGL divides
each component by w, we’ll end up with the following results:

Appendix 1. The Matrix Math Behind the Projections • 302

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Let’s try this out with some points that are even further away. The following
is a point at a z of -100:

Here is a point at a z of -10,000:

With this type of projection matrix, the far end of the frustum actually lies at
infinity. Eric Lengyel refers to this as an “infinite projection matrix.”2 No
matter how far away the z, it will approach but not quite match the far plane
of 1 in normalized device coordinates within the limits of the hardware’s
precision.

You might also have noticed that after OpenGL divides everything by w, the
relationship between our input z and our output z is no longer linear. Going
from an input z of -1 to -2 increases the output z from -1 to 0, but going from
an input z of -10,000 to -20,000 only has a very small effect on the output
z. This nonlinear relationship has important implications when it comes to
rendering objects at different distances in our scene, which we cover in more
detail in Removing Hidden Surfaces with the Depth Buffer, on page 245.

2. http://www.terathon.com/gdc07_lengyel.pdf.

report erratum • discuss

The Math Behind Perspective Projections • 303

http://www.terathon.com/gdc07_lengyel.pdf
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

APPENDIX 2

Debugging
As we develop our OpenGL applications, sooner or later we’ll run into a strange
issue that needs to be debugged. Maybe our objects don’t get rendered as we
expected, or maybe our app crashes with a segmentation fault.1 In this
appendix, you’ll be introduced to a few different ways of troubleshooting these
issues, as well as to some of the common pitfalls to watch out for.

A2.1 Debugging with glGetError

With OpenGL, one of the first ways to troubleshoot a problem is by checking
if we made a call or passed in an argument that OpenGL didn’t like. We can
do this by calling glGetError() to get the state of OpenGL’s error flags. Here are
some of the most common error codes:

GL_INVALID_ENUM
We passed in a value to a function that doesn’t accept that value. For
example, maybe we passed in GL_FLOAT to glEnable() or something else that
doesn’t make sense for that function.

GL_INVALID_VALUE
One of the numeric arguments we passed in to a function was out of
range.

GL_INVALID_OPERATION
We tried to perform an invalid operation for the given OpenGL state.

In addition to glGetError(), we also have more specific ways of looking for an
error, such as the methods we learned about back in Retrieving the Shader
Info Log, on page 42. To catch the errors close to where they occur, it’s a good
idea to call glGetError() often. Since more than one error flag can be recorded

1. http://en.wikipedia.org/wiki/Segmentation_fault

report erratum • discuss

http://en.wikipedia.org/wiki/Segmentation_fault
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

at a time, the OpenGL manual also recommends calling it in a loop until it
returns GL_NO_ERROR.

Let’s test this out with an example. Open up one of the projects from this
book and add a call to glEnable(GL_TEXTURE_2D) at the beginning of onSurfaceCreated().
After the call to glEnable(), add another call to glGetError() and check the return
value. When you run the program, you should see that glGetError() returns
GL_INVALID_ENUM, since GL_TEXTURE_2D is not one of the constants accepted by
glEnable() on OpenGL ES 2.0.

With OpenGL ES 1, we could ask our GLSurfaceView to wrap every call to OpenGL
by giving us a wrapped interface in our renderer callback methods. Unfortu-
nately, this doesn’t work with OpenGL ES 2, since we’re calling static methods
directly on the GLES20 class. One way we can work around this is by creating
our own wrapper class that wraps each OpenGL function and loops through
glGetError() after each one. If we use that class and an OpenGL error occurs,
we’ll know about it pretty close to the source of that error.

A2.2 Using Tracer for OpenGL ES

Starting with Android 4.1, OpenGL applications can also be debugged with
the Tracer for OpenGL ES tool.2 This tool can capture the stream of OpenGL
commands sent for each frame rendered, their execution time, and the OpenGL
state for each frame. You can run the tracer by following these steps:

• Switch to the tracer perspective in Eclipse by selecting Window→Open
Perspective→Other and then select Tracer for OpenGL ES.

• Click the trace capture button in the toolbar; it looks like the following
image:

• A trace options window will appear, as seen in the following figure. Select
the device or emulator instance to debug (keeping in mind that trace
results will be more accurate and relevant on a device), enter the package
name and the activity to launch, and then enter the destination for the
trace file.

2. http://developer.android.com/tools/help/gltracer.html and http://www.teamblubee.com/2012/09/22/android-
openggl-and-slow-rendering/.

Appendix 2. Debugging • 306

report erratum • discuss

http://developer.android.com/tools/help/gltracer.html
http://www.teamblubee.com/2012/09/22/android-openggl-and-slow-rendering/
http://www.teamblubee.com/2012/09/22/android-openggl-and-slow-rendering/
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 75—OpenGL ES trace options

Next you’ll see a window with the trace in progress. Once you’re done tracing,
select Stop Tracing. You’ll then see a detailed window appear with all of the
trace information, as seen in Figure 76, OpenGL ES trace results, on page 308.

The trace results contain a frame selector to see all of the information for a
given frame. Once a frame is selected, you’ll be able to see a lot of details for
that frame, including the list of OpenGL calls, the time each call took, a
snapshot of the frame, the total time for each different type of OpenGL call,
and the current OpenGL state. You may want to take the execution times
with a grain of salt, as I’ve noticed that they can sometimes be greatly
understated.

In addition to the OpenGL tracer that comes with the Android SDK, many
GPU vendors also provide their own tools; for example, NVIDIA provides
PerfHUD ES for Tegra GPUs,3 and PowerVR provides PVRTrace for PowerVR
GPUs.4 These tools can often dive even deeper; for example, PerfHUD ES gives
you detailed shader compilation info and lets you edit and recompile shaders
in real time, and it even shows you how each frame gets drawn, step by step.5

3. https://developer.nvidia.com/nvidia-perfhud-es
4. http://www.imgtec.com/powervr/insider/pvrtrace.asp
5. http://www.curious-creature.org/2012/12/01/android-performance-case-study/

report erratum • discuss

Using Tracer for OpenGL ES • 307

https://developer.nvidia.com/nvidia-perfhud-es
http://www.imgtec.com/powervr/insider/pvrtrace.asp
http://www.curious-creature.org/2012/12/01/android-performance-case-study/
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Figure 76—OpenGL ES trace results

Joe asks:

Why Doesn’t the Tracer Work for Me?
The tracer should work so long as your device is running Android 4.1 or later; how-
ever, if you have a Nexus device running Android 4.2.2, then unfortunately you may
be running into a regression that breaks the tracer. If this happens to you, check out
the linked bug reports, because the issue might be fixed by the time you read this.a

For now you can also work around this problem by downgrading your device to
Android 4.1. To do this, you’ll need to download a stock factory image for your Nexus
device from the Google Developers website,b and then you’ll need to follow a guide to
flash your device with the stock factory image; the guide linked here should work for
your Nexus device.c Please keep in mind that flashing a device isn’t for the faint of
heart, as you could void your warranty or turn your device into an expensive paper-
weight if something goes wrong.

a. https://code.google.com/p/android/issues/detail?id=52446 and https://code.google.com/p/android/
issues/detail?id=53426.

b. https://developers.google.com/android/nexus/images
c. http://forums.androidcentral.com/nexus-4-rooting-roms-hacks/223923-guide-nexus-4-factory-image-

restore.html

Appendix 2. Debugging • 308

report erratum • discuss

https://code.google.com/p/android/issues/detail?id=52446
https://code.google.com/p/android/issues/detail?id=53426
https://code.google.com/p/android/issues/detail?id=53426
https://developers.google.com/android/nexus/images
http://forums.androidcentral.com/nexus-4-rooting-roms-hacks/223923-guide-nexus-4-factory-image-restore.html
http://forums.androidcentral.com/nexus-4-rooting-roms-hacks/223923-guide-nexus-4-factory-image-restore.html
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

A2.3 Pitfalls to Watch Out For

Sometimes the problem isn’t obvious: glGetError() doesn’t return anything
unusual, and the traces appear fine. Other times, the app might blow up with
a segmentation fault at an unexpected place, robbing us of the chance to put
in a breakpoint and figure out what’s going on. When these problems occur,
we have to fall back to standard debugging techniques and narrow things
down until we find the problem.6

One of the easiest methods to get wrong is glVertexAttribPointer() (see Associating
an Array of Vertex Data with an Attribute, on page 49 for a refresher), and
getting it wrong will often lead to strange display issues and segmentation
faults. As an example, let’s say that we have a vertex array for an object with
a position attribute, a color attribute, and a normal attribute, with three floats
per attribute, or nine floats in all. To bind to each attribute, we add the
following code:

private static final int POSITION_COUNT = 3;
private static final int COLOR_COUNT = 3;
private static final int NORMAL_COUNT = 3;
private static final int STRIDE = POSITION_COUNT + COLOR_COUNT + NORMAL_COUNT;

«body»

floatBuffer.position(0);
glVertexAttribPointer(positionAttributeLocation, POSITION_COUNT,

GL_FLOAT, true, STRIDE, floatBuffer);

floatBuffer.position(POSITION_COUNT);
glVertexAttribPointer(colorAttributeLocation, COLOR_COUNT,

GL_FLOAT, false, STRIDE, floatBuffer);

floatBuffer.position(COLOR_COUNT);
glVertexAttribPointer(normalAttributeLocation, NORMAL_COUNT,

GL_SHORT, false, STRIDE, floatBuffer);

Can you spot the bugs? Here are a couple:

• We forgot to specify the stride in terms of bytes.

• When we set the float buffer starting position for the normals, we’re mis-
takenly setting it to COLOR_COUNT, which is 3. What we really want to be
doing is setting it to POSITION_COUNT + COLOR_COUNT, since the normals start
at the sixth float.

6. http://blog.regehr.org/archives/849

report erratum • discuss

Pitfalls to Watch Out For • 309

http://blog.regehr.org/archives/849
http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

What else do you see? There are many other places where this can also go
wrong; for example, we could call floatBuffer.position(COLOR_COUNT * BYTES_PER_FLOAT),
which wouldn’t make sense since the argument there should be in terms of
floats, not bytes. It also doesn’t make sense to pass in GL_SHORT when we meant
to pass in GL_FLOAT. When something goes wrong, one of the first things you
should check is your calls to glVertexAttribPointer().

Here are some other ideas for tackling a few of the more common pitfalls that
you may run across:

• Check that your shaders compile and that there are no warning or error
messages in the shader log. Sometimes even if a shader compiles fine,
the calculations might be incorrect or useless. You can narrow down the
problem by simplifying the shader and replacing calculations with hard-
coded values and then giving the app another run to see how things look.

Another way of debugging a shader is by checking for a condition and
then drawing the fragment one color if the condition is true and another
color if the condition is false.

• It’s also easy to forget to unbind from an OpenGL object or to reset a
particular state. For example, if adding a call to glBindBuffer(GL_ARRAY_BUFFER,
0) fixes the problem, then you probably forgot to unbind from a vertex
buffer object. You can then work backward from there and find the place
where that call is supposed to go.

• If an object doesn’t display, sometimes you can figure out what’s going
on by disabling depth testing or culling. If it shows up, then the problem
might be its position in the scene, or it might be the way that culling is
configured or the object’s triangle winding order (see Culling, on page 249).

• Some GPUs won’t display a texture if its dimensions are not a power of
two (see Section 7.1, Understanding Textures, on page 116). Sometimes the
textures might also turn completely black or white if you use an image
format that has an alpha channel for transparency and your shader code
doesn’t take that into account.

It’s always possible that there’s a bug with the driver or GPU itself, so some-
times it also helps to compare between different devices or between the device
and the emulator. With consistent searching and narrowing down on the
problem, the culprit can usually be found and fixed.

Appendix 2. Debugging • 310

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Bibliography
[AGH05] Ken Arnold, James Gosling, and David Holmes. The Java Programming

Language. Prentice Hall, Englewood Cliffs, NJ, 4th, 2005.

[Blo08] Joshua Bloch. Effective Java. Addison-Wesley, Reading, MA, 2008.

[Bur10] Ed Burnette. Hello, Android: Introducing Google’s Mobile Development
Platform, Third Edition. The Pragmatic Bookshelf, Raleigh, NC and Dallas,
TX, 2010.

[Eck06] Bruce Eckel. Thinking in Java. Prentice Hall, Englewood Cliffs, NJ, Fourth,
2006.

[Zec12] Mario Zechner. Beginning Android Games. Apress, New York City, NY,
2012.

report erratum • discuss

http://pragprog.com/titles/kbogla/errata/add
http://forums.pragprog.com/forums/kbogla

Index
SYMBOLS
* (asterisk), using at end of

static imports, 15

DIGITS
2D techniques, 293

2D touch points, extending
into 3D line, 170

3D libraries, 143, 290–291

3D ray, converting 2D touch
points into 3D ray, 171–173

3D world
adding gravity to parti-

cles, 206–207
adding particle system to

represent fountain in,
193–201

adding point light source
to fountains, 264–272

adding rotation in, 111–
113

adding skybox shader
program, 224–226

adding skybox to scene,
227–228

adding w component to
create perspective, 99–
100

art of, 95–96
blending particles in

fountains, 208–209
creating cube object for

skybox, 221–224
creating height map for

terrain, 233–234
creating live wallpaper,

275–286
creating skybox, 218–219
creating vertex buffer ob-

jects, 234–237

customizing appearance
of points in fountains,
209–211

drawing height map,
241–245

drawing particle system,
201–203

drawing points as sprites,
211–214

implementing directional
light with, 255–264

loading cube maps into
OpenGL, 219–221

loading height map, 237–
241

model matrix in, 107–110
occluding hidden objects

for terrain, 245–249
organizing light sources,

254–255
orthographic projections

in defining region of,
81–83

panning camera behind
scene, 229–232

perspective projections
in, 99–105

projection matrix in, 104–
107

simulating effects of light,
253–254

spreading out particles of
fountains, 204–206

A
Activity, 39

activity life cycle
handling events, 10–11
using GLSurfaceView

class for handling, 6

addParticle() method, 198

additive blending, mixing
particles with, 208–209

air hockey game
about, 19–21
adding Geometry class,

143–145
adding classes for shader

programs, 133–137
adding collision detec-

tion, 181–185
adding intersection tests,

168–177
adding new color at-

tribute, 63–71
adding rotation in, 111–

113
adding w component to

create perspective, 99–
100

art of, 95–96
art of 3D, 114
building mallet, 142–

143, 151–153, 159–161
building puck, 142–143,

145–151, 158–161
compiling shaders, 39–43
creating class structure

for vertex data, 127–
132

creating shaders for tex-
turing, 126–127

defining structure of air
hockey table, 22–26

drawing hockey table
with texture, 137–139

drawing to screen, 51–57
drawing vertices as trian-

gle fan, 61–63
linking shaders together

in OpenGL program,
44–46

loading shaders into
memory, 37–39

making data accessible
to OpenGL, 26–28

model matrix in, 107–110
moving around objects by

dragging, 177–181
orthographic projections

in, 87–94
perspective projections

in, 99–105
projection matrix in, 104–

107
rendering with new color

attributes, 71–75
sending hockey table da-

ta through OpenGL
pipeline, 29–34

smooth shading, 60–61,
66–71

touch support for, 165–
167

using textures in, 116–
126

ambient light source
about, 254
adding, 263–264
calculating, 268
toning down, 265

Android
about, xv
about developing for, xvii
installing tools to develop

OpenGL for, 1–2
support for C and C++,

291

Android 4.0 Ice Cream Sand-
wich, render OpenGL using
TextureViews in, 7

Android manifest, updating,
280

Android SDK
installing, 2
using JNI, 27

Android Virtual Device (AVD)
Manager, creating virtual
device using, 2

anisotropic filtering, 291–292

antialiasing, 292–293

Arnold, Ken, The Java Pro-
gramming Language, xvi

asFloatBuffer() method, 28

aspect ratio, adjusting, 77
about, 78–80

orthographic projections
in, 87–94

working with virtual coor-
dinate space, 80–83

asterisk (*), using at end of
static imports, 15

attribute keyword, vertex, 32

attributes, see also vertex ar-
rays

adding new color, 63–71
getting location of, 48
rendering with new color,

71–75
vs. uniforms, 32

AVD (Android Virtual Device)
Manager, creating virtual
device using, 2–3

B
background thread, rendering

in, 12

battery power, frame rate
and, 283

Beginning Android Games
(Zechner), xi, 186

bilinear filtering
about, 121
bilinear filtering, 220
minification and, 122
texture filtering modes,

125

Billboarding, 293

bindData() method, 154, 242

bitmap array, loading images
into, 220

bitmap data, loading, 119–
120, 125–126

bitmap pixels, converting into
height map data, 238–239

blending, 208

Bloch, Joshua, Effective Java,
xvi

boolean normalized parame-
ter, passing to glVertexAt-
tribPointer(), 49

buffer data parameter,
glBufferData() method, 235

Buffer ptr parameter, passing
to glVertexAttribPointer(),
50

Bullet Physics library, 186

Burnette, Ed, Hello, Android,
xvii, 6

ByteBuffers, creating a lot of,
28

C
C and C++, using cocos2d-x

to build, 290–291

calculateNumElements()
method, 238–239

camera, panning behind
scene, 229–232

center line (dividing line)
adding code in hockey

table for, 25
drawing hockey table, 52

CGI (computer-generated im-
agery), simulating effects of
light, 253–254

circles
building, 142–143, 147–

148
drawing fragments from

squares to, 209–211

clamp() method, 182

cleaning projects, in Eclipse,
53

clearing screen
about, 5
in onDrawFrame(), 13

clip space, logic behind, 96

cocos2d-x library, building C
and C++ using, 290–291

collision detection, adding,
181–185

color attribute, rendering with
new, 71–75

Color class, using in convert-
ing colors, 64

color model, 34–35

color shader program, 133,
136–137

colors
blending at vertex, 61
formula for calculating

inside triangle, 71
using varying to produce

blended color, 65–66

compilation status, retrieving,
41–43

compileFragmentShader()
method, 43

compileShader() method, 43

compileVertexShader()
method, 43

computer-generated imagery
(CGI), simulating effects of
light, 253–254

Index • 314

coordinate space, adjusting
virtual, 80–83

coordinates, transforming
from shader to screen, 96–
99

createMallet() method, 151–
153

createPuck() method, 146–
147, 150

cross-platform development,
289–291

crossProduct() method, 176

cube maps, loading, 219–221

cubes, creating for skybox,
221–224

culling
enabling, 249
troubleshooting objects

that do not display
and, 310

cylinder
building side of, 149–150
calculating size of top,

145–147

D
Dalvik VM (Virtual Machine)

making data accessible
using, 26–28

producing JIT code using,
291

releasing bitmap data,
125

data type range, converting
between signed and un-
signed in, 225

debugging
display of textures, 310
forgetting to unbind

OpenGL objects, 310
with glGetError, 305–306
glVertexAttribPointer(),

309–310
objects do not display,

310
shaders, 310
using Tracer for OpenGL

ES, 306–307

depth buffer
perspective divide and,

249
removing hidden surfaces

with, 245–246
translucent objects and,

248–249

depth testing, 247

devices, excluding unsupport-
ed, 280

diffuse reflection, 255

directional light source
about, 254
calculating, 268
implementing with Lam-

bertian reflectance,
255–264

vs. point light source,
265

display
mapping colors to, 35
mapping pixels onto, 32

display, mobile, nonlinear
nature of, 269, see al-
so screen

distance ratios, calculating,
67

distanceBetween() method,
174

dividing line (center line)
adding code in hockey

table for, 25
drawing hockey table, 52

dotProduct() method, 180

dragging, moving around ob-
jects by, 177–181

draw command, creating for
triangle fan, 148

draw() method, 131–132,
149, 154, 242

drawHeightmap() method,
244

E
Eckel, Bruce, Thinking in Ja-

va, xvi

Eclipse
about, 2
cleaning projects in, 53
creating new project in,

5–6
keyboard shortcuts, 8
support for static im-

ports, 14
viewing logs in, 39

Effective Java (Bloch), xvi

EGL Native Platform Graphics
Interface, 285

emulator
checking system for sup-

port of OpenGL ES 2.0
in GPU, 9

creating new, 2

launching, 3
running Java code in, 26
using x86, 4
vs. devices, 3

endianness, 29

environment map, 232

error codes, glGetError(), 305

eye space, 265–266

F
filtering, texture

about, 120
anisotropic, 291–292
bilinear, 121–122, 125,

220
configuring, 220–221
mipmap technique, 122–

123, 125, 220
modes, 124–125
nearest-neighbor, 121,

124–125
setting default parame-

ters, 124–125
trilinear, 124–125, 292

flickering problem, avoiding,
5

float parameters
orthoM(), 87
setLookAtM(), 159

float[] m parameter, orthoM(),
87

float[] rm parameter, set-
LookAtM(), 159

FloatBuffers, 27–28, 127, 130

floats, in Java, 27

focal length, calculating, 106–
107

forwarding touch events to
renderer, 166–167

fountains
adding gravity to, 206–

207
adding particle system to

represent, 193–201
adding point light source,

264–272
adding scene behind,

227–228
blending particles in,

208–209
customizing appearance

of points, 209–211
drawing particle, 201–

203

Index • 315

drawing points as sprites,
211–214

spreading out particles
of, 204–206

fragment shader, creating
particle, 195

fragment shaders, see al-
so shaders

about, 29
adding varying variable

to, 65–66
calculating distance ra-

tios for, 67–69
compiling, 43
creating, 32–34
creating for skybox, 226
creating for texturing,

127
vertex shaders and, 44

frame rate, limiting, 283–285

frustum, 101–103

frustumM() method, 105

G
Game Developers Conference

(GDC) 2011 demo, 293–294

garbage collection, Dalvik VM
using, 26

Geometry class
adding, 143–145
adding Plane to, 178
adding definition of Vec-

tor to, 172–173
defining Sphere in, 173

getPixels() method, 238–239

getPositionAttributeLocation()
method, 131

glAttachShader() method, 45

glBindBuffer() method, 235

glBufferData() method, param-
eters, 236–235

glClearColor() method
clearing rendering sur-

face in onDrawFrame()
using, 13

updating, 54

glDrawArrays() method, 53

glDrawElements() method,
224, 242

glEnableVertexAttribArray()
method, 51

glGetAttribLocation() method,
48

glGetError() method
about, 41
debugging with, 305–306

glGetProgramiv() method, 46

glGetUniformLocation()
method, 48

glUseProgram() method, 47

glVertexAttribPointer()
method, 46, 235–237, 241,
309–310

glVertexAttribPointer() param-
eters, 49–50

gl_FragColor, 48

gl_PointCoord
drawing fragments from

squares to circles, 210
using with texture, 211–

214

gl_PointSize, 57, 210

GL_FRAGMENT_SHADER, 43

GL_INVALID_ENUM error
code, 305

GL_INVALID_OPERATION er-
ror code, 305

GL_INVALID_VALUE error
code, 305

GL_VERTEX_SHADER, 43

GLES20 class, about, xvii

GLSurfaceView class
changes to preserve EGL

context to, 285–286
customizing to GLEngine,

278
initializing OpenGL us-

ing, 6–11
rendering in background

thread, 12

GLWallpaperService class
adding implementation of

engine to, 277
creating, 276

Google
Game Developers Confer-

ence 2011 demo, 293–
294

Native Client, 291

GPU (graphics processing
unit)

checking system for sup-
port of OpenGL ES 2.0
in emulation of, 9

clearing screen in, 5

shaders telling how to
draw data to, 29–34

troubleshooting display
of textures, 310

H
“hall of mirrors” effect, 5

handleOffsetsChanged()
method, 282

handleTouchDrag() method,
167, 177–180, 183

handleTouchPress() method,
167–168, 173–177

Hardware Accelerated Execu-
tion Manager, configuring,
4

heap fragmentation, 28

height maps
about, 233
adding directional light-

ing to shaders, 260–
261

adding point lighting to
shaders, 266–268

calculating orientation of
points on, 257–260

creating, 233–234
drawing, 241–245
loading, 237–241

Hello, Android (Burnette),
xvii, 6

Hibernate framework, 143

homogenous coordinates, 98

I
IDEA Community Edition, In-

telliJ’s, 2

identity matrix, 84

index array, creating, 221–
224

index buffer, 237–238

index data, generating, 239–
241

int (integer), adding to Render-
er class, 46

int index parameter, passing
to glVertexAttribPointer()
method, 49

int mOffset parameter, or-
thoM(), 87

int size parameter
glBufferData() method,

235
passing to glVertexAttrib-

Pointer(), 49

Index • 316

int stride parameter, passing
to glVertexAttribPointer(),
50

int target parameter,
glBufferData() method, 236

int type parameter, passing
to glVertexAttribPointer(),
49

int usage parameter,
glBufferData() method, 235

integer (int), adding to Render-
er class, 46

Intel Hardware Accelerated
Execution Manager, in-
stalling, 4

Intel x86 Atom System Image,
downloading, 4

IntelliJ’s IDEA Community
Edition, 2

intersection tests, performing,
168–177

J
jMonkeyEngine framework,

143

Java
about moving to, xvi
allocating block of naitive

memory, 27
floats in, 27
running code in emula-

tor, 26
using libgdx to build up-

on, 290

Java class, wrapping shaders
with, 196–197

Java Native Interface (JNI),
27, 241

The Java Programming Lan-
guage (Arnold et al), xvi

Java Virtual Machines
(JVMs), producing JIT code
using, 291

Java3D framework, 143

JavaScript, compiling C++ in-
to, 291

JBox2D library, 186

JDK (Java Development Kit),
downloading, 1–2

JIT code, producing fast, 291

JNI (Java Native Interface),
27, 241

JVMs (Java Virtual Ma-
chines), producing JIT code
using, 291

L
Lambert, Johann Heinrich,

255

Lambertian reflectance, imple-
menting directional light
with, 255–264

Learn OpenGL ES (blog), xviii

left-handed coordinate sys-
tem, vs. right-handed coor-
dinate system, 88

length() method, 176

libgdx library
about, 143
building upon Java us-

ing, 290

libraries
3D, 143, 290–291
Bullet Physics, 186
cocos2d-x, 290–291
JBox2D, 186
libgdx, 143, 290

life cycle events, for extending
wallpaper service engine,
277

life cycle, activity
handling events, 10–11
using GLSurfaceView

class for handling, 6

light, simulation of
about, 253–254
adding point light source,

264–272
implementing directional

light with, 255–264
organizing light sources,

254–255

linear algebra, 83–87

linear interpolation, 66–69

lines
about, 23
OpenGL mapping coordi-

nates to screen, 54–56
using varying to produce

blended color at frag-
ment of, 65–66

linking shaders together in
OpenGL program, 44–46

listening to touch events, 166

live wallpaper
about, 275
implementing, 275–283
limiting resources needed

for, 283–286

loadBitmapData() methed,
238

loadCubeMap() method, 219

Log class, 39

logFrameRate() method, 285

LoggerConfig class, turning
logging on or off using, 39

logging
getting shader info log,

42
printing output, 42
retrieving compilation

status, 41–43
to system log, 39

M
magnification

allowable texture filtering
modes for, 125

texels and, 120

mallet
adding code in hockey

table for, 25
adding data of, 132
building, 142–143, 151–

153, 159–161
creating class to manage

data of, 127
drawing as points hockey

table, 53
keeping within bounds,

181–182
moving around by drag-

ging, 177–181
smacking puck with,

182–184

Mallet class, updating, 154–
155

matrices
about, 83–84
model matrix, 107–110,

156
multiplication of vectors

and, 84
order of multiplication of,

109
projection matrix, 104–

107, 109–110, 157
setting up for skybox,

227
view matrix, 156

Matrix array, adding, 90

Matrix class
in defining orthographic

projection, 87–88
methods in, 105

matrix hierarchy, 156–158,
161

Index • 317

MatrixHelper class, creating,
106–107

memory
copying from Java memo-

ry heap to native mem-
ory heap, 27–28

loading shaders into, 37–
39

minification
allowable texture filtering

modes for, 125
texels and, 120

mipmap technique
about, 122–126
cube map texture using,

220
generating mipmaps,

125–126
in minification, 122–123
texture filtering modes,

125

mobile devices, excluding un-
supported, 280

mobile display, see al-
so screen

mapping colors to, 35
mapping pixels onto, 32
nonlinear nature of, 269

model matrix, 107–110, 156

multiplyMM() method, 110

multitexturing, 291

Möbius, August Ferdinand,
homogenous coordinates
introduced by, 98

N
Native Client, Google’s, 291

nearest-neighbor filtering
about, 121
texture filtering modes,

124–125

Nexus 7, purchasing, 3

nonlinear nature of displays,
269

NVIDIA coverage antialiasing,
293

O
object builder class, adding,

145–153

onCreate() method
in implementation of en-

gine to GLWallpaperSer-
vice, 277

initializing OpenGL, 277–
278

updating to preserve EGL
context, 286

onDestroy() method, in imple-
mentation of engine to
GLWallpaperService, 277

onDrawFrame() method
clearing screen in, 13
converting 2D touch

points into 3D coordi-
nates, 170

defined by Renderer inter-
face, 11

definition in ParticlesRen-
derer, 203

drawing hockey table
with texture, 138–139

setting up matrices for
skybox using, 227

updating for drawing
height map, 244

updating so puck moves
on each frame, 183–
184

updating to move mallet
by dragging, 181

updating to reflect new
color attribute, 74

updating to reflect puck
and mallet changes,
159–161

onOffsetsChanged() method,
281

onSurfaceChanged() method
defined by Renderer inter-

face, 11
setting viewport size, 13

onSurfaceCreated() method
in creating new Renderer,

12
defined by Renderer inter-

face, 11
defining body of fountain,

202
enable blending in foun-

tains, 208
initializing height map

shader program in, 242
updating to reflect new

color attribute, 72–74

onVisibilityChanged(), in im-
plementation of engine to
GLWallpaperService, 277

online resources, for OpenGL
ES, xviii

OpenGL
color model, 34–35
creating first program, 4–

6
creating object and

checking validity in, 41
initializing, 6–11
installing tools to develop

for Android in, 1–2
mapping coordinates to

screen, 54–56
pipeline, 29–34
shading language of, 31
transferring data from

Dalvik VM, 26–28
validating program ob-

ject, 46–47

OpenGL ES
about, xv
about versions of, xi

OpenGL ES 2.0
Android support for, 241
checking system for sup-

port of, 9
configuring rendering

surface for, 9–10

OpenGL ES 3.0, introducing,
295

orthoM() parameters, 87

orthographic projections
about, 81–83
adding, 89–94
creating matrix, 91
defining, 87–88
math behind, 297–298

Ouya game console, 293

P
particle system

adding to represent foun-
tain, 193–201

drawing, 201–203

particles
about, 191
adding gravity to, 206–

207
adding particle system to

represent fountains,
193–201

blending, 208–209
drawing fountains, 201–

203
spreading out, 204–206

ParticlesRenderer, 1, see al-
so Renderer class

adding code for skybox,
227–228

Index • 318

adding drawing particle
system to, 201–203

adding height map to,
242–244

changing to allow
scrolling background
along with home
screen, 282–283

changing to limit frame
rate, 284–285

defining vector of light
source, 262–264

enable blending in, 208
switching to night sky-

box, 264–265
updating for adding point

light source, 271–272

ParticleSystem class, creat-
ing, 197–200

perspective divide
depth buffer and, 249
reversing, 170–172

perspective division, 97–99

perspective projections
defining, 103–105
math behind, 300–303
moving to, 101–103
reversing, 170–172

perspectiveM() method, 105–
107

pixels, making onto mobile
display, 32

plane
adding to Geometry class,

178
ray relationships to, 178–

179

platforms, portability of code
to other, 289–291

point light source
about, 254
adding, 264–272
vs. directional light

source, 265

points
about, 23
calculating orientation on

height maps of, 257–
260

customizing appearance
of, 209–211

drawing as sprites, 211–
214

specifying size of, 56–57

portability of code, to other
platforms, 289–291

positionObjectInScene()
method, 184

positionTableInScene()
method, 159–160

precision qualifiers, 33–34

projection matrix
about, 157
creating, 105–107
switching to, 107
variables, 104

projects, creating new, 4–6

puck
adding bounds checking

for, 184–185
adding friction for, 185
building, 142–143, 145–

151, 158–161
smacking with mallet,

182–184

Puck class, 153

Pythagorean theorem, 176

Q
queueEvent() method, 167

R
rasterization, 32

ray
defining, 172–173
mapping touch points to,

171
parallel to plane, 179
to plane vector, 178

ray tracer, simulating effects
of light using, 254

ray-plane intersection test,
180

ray-sphere intersection test,
176

rectangles
creating from triangles,

23–24
defining vertices, 22–26
drawing hockey table

from triangles, 51–52

recycle() method, calling on
bitmap object, 125

renderer, forwarding touch
events to, 166–167

Renderer class, 1, see al-
so ParticlesRenderer

adding integer to, 46
compiling shaders from,

43
creating, 11–13

rendererSet, 8, 10

rendering
configuring for using

OpenGL ES 2.0, 9–10
with new color attribute,

71–75
on background thread,

6, 12
vs. NVIDIA coverage an-

tialiasing, 293

resources, online, for OpenGL
ES, xviii

RGB additive color model, 35

right-handed coordinate sys-
tem, vs. left-handed coordi-
nate system, 88

rotation, adding to hockey ta-
ble, 111–114

S
scale() method, 180

scaling factor, 178

screen, 37, 77, see also as-
pect ratio, adjusting

drawing to, 51–57
OpenGL mapping coordi-

nates to, 54–56
transforming coordinates

from shader to, 96–99
transforming vertex from

original position to
screen, 157–158

setLookAtM() parameters, 159

setOnTouchListener() method,
166

setVertexAttribPointer()
method, 131, 235

ShaderHelper class
creating, 40
methods defined by, 43

shaders, 37
about using, 30
adding classes for pro-

grams, 133–137
adding color attribute to,

64–66
adding directional light-

ing to, 260–261
adding point lighting to,

265–269
compiling, 39–43
creating, 40–41
creating for particle sys-

tem set of, 193–197
creating for skybox, 224–

226

Index • 319

creating for texturing,
126–127

creating fragment, 32–34
creating vertex, 31–32
debugging, 310
linking together in

OpenGL program, 44–
46

loading into memory, 37–
39

transforming coordinates
to screen from, 96–99

types of, 29
updating color, 155–156
updating when adding

orthographic projec-
tion, 89–90

shading, smooth, 60–61, 66–
71

shading language, 31

simulation of light
about, 253–254
adding point light source,

264–272
implementing directional

light with, 255–264
organizing light sources,

254–255

skybox
about, 218–219
adding to scene, 227–228
advantages vs. disadvan-

tages of, 219
creating cube object for,

221–224
creating shaders for,

224–226
loading cube maps into

OpenGL, 219–221
problems rendering, 246–

248
switching to night, 264–

265

smooth shading, 60–61, 66–
71

specular reflection, 255

Sphere, defining in Geometry
class, 173

spot lighting source, 255

Spring framework, 143

sprites, drawing points as,
211–214

static imports, using, 14–15

STRIDE constant, 71–72

surface, rendering back-
ground thread on, 6

T
table data

creating class to manage,
127, 129

updating in adjusting as-
pect ratio, 92–94

terrain
creating height maps for,

233–234
occluding hidden objects

for, 245–249

texels
about, 116
minification and, 120

texture atlas, using, 294

texture filtering
about, 120
anisotropic, 291–292
bilinear, 121–122, 125,

220
configuring, 220–221
mipmap technique, 122–

126, 220
modes, 124–125
nearest-neighbor, 121,

124–125
setting default parame-

ters, 124–125
trilinear, 124–125, 292

texture shader program, 133–
134

texture units, 136

TextureHelper class
adding loadCubeMap()

method to, 219
creating, 119

textures
about, 116–117
clipping, 130
drawing, 137–139
drawing points as sprites,

211–214
loading into OpenGL,

119–126
troubleshooting display

of, 310

TextureViews, render OpenGL
using, 7

Thinking in Java (Eckel), xvi

touch handler, writing, 166–
167

touch listener, defining, 230

touch points, converting 2D
touch points into 3D ray,
171–173

touch support, adding, 165–
167

Tracer for OpenGL ES tool
troubleshooting, 308
using, 306–307

translateM() method, in allow-
ing scrolling background
along with home screen,
282–283

translation matrix, 85–87

translucent objects, depth
buffer and, 248–249

triangle fan
building circle using,

142–143, 147–148
creating draw command

for, 148
drawing vertices as, 61–

63

triangle strip
about, 142–143
building side of cylinder

with, 146, 149–150

triangles
building scenes using,

23–24
calculating distance us-

ing, 173–174
drawing hockey table us-

ing, 51–52
formula for calculating

color inside, 71
smooth shading, 60–61,

66–71
winding order of, 25

trilinear filtering, 124–125,
292

troubleshooting
display of textures, 310
forgetting to unbind

OpenGL objects, 310
with glGetError, 305–306
glVertexAttribPointer(),

309–310
objects do not display,

310
shaders, 310
using Tracer for OpenGL

ES, 306–307

U
unbind OpenGL objects, for-

getting to, 310

uniforms
adding, 90
adding to height map

vector, 260

Index • 320

getting location of, 47–48
reading vectors from ar-

ray into, 271
returning attribute loca-

tions and setting, 135–
136

vs. attributes, 32

Unity3D framework, 143

unsupported devices, exclud-
ing, 280

updateViewMatrices() method,
243

V
validating, OpenGL program

object, 46–47

validity of objects, checking,
41

varying variable, 65–71

vector math, calculating dis-
tance using, 174

vectors
about, 83
defining light source,

262–264
multiplication of matrices

and, 84–87

vertex arrays, 115, see al-
so vertex data

associating with at-
tribute, 49–50, 128

defining vertex data in,
129

enabling, 51
with multiple attributes,

73

vertex attribute array, defin-
ing, 23

vertex buffer objects, creating,
234–237

vertex data, 115, see also ver-
tex arrays

adding w component to
table, 99–100

associating array with at-
tribute, 49–50

associating with color in
shader, 73

creating class structure
for, 127–132

defining, 23, 129
generating in loading

height map, 237–239
sending to buffer objects,

235

vertex shaders, see al-
so shaders

about, 29
applying model matrix to,

107
compiling, 43
creating, 31–32
creating for skybox, 224–

226
creating for texturing,

126–127
creating particle, 194–

195
fragment shaders and, 44
updating, 67–69

vertexData buffer, 49

vertices
about, 22
calculating size of cylin-

der top in, 145–148
defining, 22–26
making data accessible

to OpenGL, 26–28
transforming from origi-

nal position to screen,
157–158

view matrix, 156

viewpoint, rendering back-
ground thread on, 6

viewport, setting size of, 13

virtual coordinate space, ad-
justing, 80–83

VM (Virtual Machine), Dalvik
making data accessible

using, 26–28
releasing bitmap data,

125

W
w component

adding to create perspec-
tive, 99–100

advantages of dividing by,
98–99

dividing by, 302–303
using to represent dis-

tance, 97–98

wallpaper, live
about, 275
implementing, 275–283
limiting resources needed

for, 283–286

winding order, about, 25

Wolfram MathWorld, 174

X
x86 Atom System Image, In-

tel, downloading, 4

XML descriptor, 280

Z
Zechner, Mario, Beginning

Android Games, xi, 186

Index • 321

More Android Programming
Learn more about Android as a programmer and a power user.

Google’s Android is shaking up the mobile market in
a big way. With Android, you can write programs that
run on any compatible cell phone or tablet in the world.
It’s a mobile platform you can’t afford not to learn, and
this book gets you started. Hello, Android has been
updated to Android 2.3.3, with revised code throughout
to reflect this updated version. That means that the
book is now up-to-date for tablets such as the Kindle
Fire. All examples were tested for forwards and back-
wards compatibility on a variety of devices and versions
of Android from 1.5 to 4.0. (Note: the Kindle Fire does
not support home screen widgets or wallpaper, so those
samples couldn’t be tested on the Fire.)

Ed Burnette
(280 pages) ISBN: 9781934356562. $34.95
http://pragprog.com/book/eband3

Become an Android power user and get the most out
of your Android phone or tablet! You’ll find out how to
take advantage of this completely open, tinker-friendly
platform and personalize your phone or tablet’s look
and feel—even if you have no programming experience.
You’ll customize your phone’s home screen and apps,
and then create a series of tasks that automate your
device in unique and interesting ways, from creating
your own talking clock to having Android sound an
alert when approaching a specific geographic location.
It’s something that only the open nature of the Android
operating system can offer.

Mike Riley
(220 pages) ISBN: 9781937785543. $36
http://pragprog.com/book/mrand

http://pragprog.com/book/eband3
http://pragprog.com/book/mrand

Android Games
You can develop for Android using Lua and Processing in addition to Java. Come see what
you’re missing.

Develop cross-platform mobile games with Corona us-
ing the Lua programming language! Corona is experi-
encing explosive growth among mobile game develop-
ers, and this book gets you up to speed on how to use
this versatile platform. You’ll use the Corona SDK to
simplify game programming and take a fun, no-non-
sense approach to write and add must-have gameplay
features. You’ll find out how to create all the gaming
necessities: menus, sprites, movement, perspective
and sound effects, levels, loading and saving, and game
physics. Along the way, you’ll learn about Corona’s
API functions and build three common kinds of mobile
games from scratch that can run on the iPhone, iPad,
Kindle Fire, Nook Color, and all other Android smart-
phones and tablets.

Silvia Domenech
(220 pages) ISBN: 9781937785574. $36
http://pragprog.com/book/sdcorona

Create mobile apps for Android phones and tablets
faster and more easily than you ever imagined. Use
“Processing,” the free, award-winning, graphics-savvy
language and development environment, to work with
the touchscreens, hardware sensors, cameras, network
transceivers, and other devices and software in the
latest Android phones and tablets.

Daniel Sauter
(392 pages) ISBN: 9781937785062. $35
http://pragprog.com/book/dsproc

http://pragprog.com/book/sdcorona
http://pragprog.com/book/dsproc

Welcome to the New Web
You need a better JavaScript and better recipes that professional web developers use every
day. Start here.

CoffeeScript is JavaScript done right. It provides all of
JavaScript’s functionality wrapped in a cleaner, more
succinct syntax. In the first book on this exciting new
language, CoffeeScript guru Trevor Burnham shows
you how to hold onto all the power and flexibility of
JavaScript while writing clearer, cleaner, and safer
code.

Trevor Burnham
(160 pages) ISBN: 9781934356784. $29
http://pragprog.com/book/tbcoffee

Modern web development takes more than just HTML
and CSS with a little JavaScript mixed in. Clients want
more responsive sites with faster interfaces that work
on multiple devices, and you need the latest tools and
techniques to make that happen. This book gives you
more than 40 concise, tried-and-true solutions to to-
day’s web development problems, and introduces new
workflows that will expand your skillset.

Brian P. Hogan, Chris Warren, Mike Weber, Chris
Johnson, Aaron Godin
(344 pages) ISBN: 9781934356838. $35
http://pragprog.com/book/wbdev

http://pragprog.com/book/tbcoffee
http://pragprog.com/book/wbdev

Seven Databases, Seven Languages
There’s so much new to learn with the latest crop of NoSQL databases. And instead of
learning a language a year, how about seven?

Data is getting bigger and more complex by the day,
and so are your choices in handling it. From traditional
RDBMS to newer NoSQL approaches, Seven Databases
in Seven Weeks takes you on a tour of some of the
hottest open source databases today. In the tradition
of Bruce A. Tate’s Seven Languages in Seven Weeks,
this book goes beyond your basic tutorial to explore
the essential concepts at the core of each technology.

Eric Redmond and Jim R. Wilson
(354 pages) ISBN: 9781934356920. $35
http://pragprog.com/book/rwdata

You should learn a programming language every year,
as recommended by The Pragmatic Programmer. But
if one per year is good, how about Seven Languages in
Seven Weeks? In this book you’ll get a hands-on tour
of Clojure, Haskell, Io, Prolog, Scala, Erlang, and Ruby.
Whether or not your favorite language is on that list,
you’ll broaden your perspective of programming by
examining these languages side-by-side. You’ll learn
something new from each, and best of all, you’ll learn
how to learn a language quickly.

Bruce A. Tate
(330 pages) ISBN: 9781934356593. $34.95
http://pragprog.com/book/btlang

http://pragprog.com/book/rwdata
http://pragprog.com/book/btlang

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
http://pragprog.com/book/kbogla
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
http://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community
http://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with
our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
http://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you'd like to have a paper copy of the book. It's available
for purchase at our store: http://pragprog.com/book/kbogla

Contact Us
http://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://pragprog.com/write-for-usWrite for Us:

+1 800-699-7764Or Call:

http://pragprog.com/book/kbogla
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
http://pragprog.com/book/kbogla
http://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://pragprog.com/write-for-us

	Cover
	Table of Contents
	Foreword
	Acknowledgments
	Welcome to OpenGL ES for Android!
	What Will We Cover?
	Who Should Read This book?
	How to Read This Book
	Conventions
	Online Resources
	Let's Get Started!

	1. Getting Started
	Installing the Tools
	Creating Our First Program
	Initializing OpenGL
	Creating a Renderer Class
	Using Static Imports
	A Review

	Part I—A Simple Game of Air Hockey
	2. Defining Vertices and Shaders
	Why Air Hockey?
	Don't Start from Scratch
	Defining the Structure of Our Air Hockey Table
	Making the Data Accessible to OpenGL
	Introducing the OpenGL Pipeline
	The OpenGL Color Model
	A Review

	3. Compiling Shaders and Drawing to the Screen
	Loading Shaders
	Compiling Shaders
	Linking Shaders Together into an OpenGL Program
	Making the Final Connections
	Drawing to the Screen
	A Review
	Exercises

	4. Adding Color and Shade
	Smooth Shading
	Introducing Triangle Fans
	Adding a New Color Attribute
	Rendering with the New Color Attribute
	A Review
	Exercises

	5. Adjusting to the Screen's Aspect Ratio
	We Have an Aspect Ratio Problem
	Working with a Virtual Coordinate Space
	Linear Algebra 101
	Defining an Orthographic Projection
	Adding an Orthographic Projection
	A Review
	Exercises

	6. Entering the Third Dimension
	The Art of 3D
	Transforming a Coordinate from the Shader to the Screen
	Adding the W Component to Create Perspective
	Moving to a Perspective Projection
	Defining a Perspective Projection
	Creating a Projection Matrix in Our Code
	Switching to a Projection Matrix
	Adding Rotation
	A Review
	Exercises

	7. Adding Detail with Textures
	Understanding Textures
	Loading Textures into OpenGL
	Creating a New Set of Shaders
	Creating a New Class Structure for Our Vertex Data
	Adding Classes for Our Shader Programs
	Drawing Our Texture
	A Review
	Exercises

	8. Building Simple Objects
	Combining Triangle Strips and Triangle Fans
	Adding a Geometry Class
	Adding an Object Builder
	Updating Our Objects
	Updating Shaders
	Integrating Our Changes
	A Review
	Exercises

	9. Adding Touch Feedback: Interacting with Our Air Hockey Game
	Adding Touch Support to Our Activity
	Adding Intersection Tests
	Moving Around an Object by Dragging
	Adding Collision Detection
	A Review and Wrap-Up
	Exercises

	Part II—Building a 3D World
	10. Spicing Things Up with Particles
	Creating a Set of Shaders for a Simple Particle System
	Adding the Particle System
	Drawing the Particle System
	Spreading Out the Particles
	Adding Gravity
	Mixing the Particles with Additive Blending
	Customizing the Appearance of Our Points
	Drawing Each Point as a Sprite
	A Review
	Exercises

	11. Adding a Skybox
	Creating a Skybox
	Loading a Cube Map into OpenGL
	Creating a Cube
	Adding a Skybox Shader Program
	Adding the Skybox to Our Scene
	Panning the Camera Around the Scene
	A Review
	Exercises

	12. Adding Terrain
	Creating a Height Map
	Creating Vertex and Index Buffer Objects
	Loading in the Height Map
	Drawing the Height Map
	Occluding Hidden Objects
	A Review
	Exercises

	13. Lighting Up the World
	Simulating the Effects of Light
	Implementing a Directional Light with Lambertian Reflectance
	Adding Point Lights
	A Review
	Exercises

	14. Creating a Live Wallpaper
	Implementing the Live Wallpaper Service
	Playing Nicely with the Rest of the System
	A Review
	Exercises

	15. Taking the Next Step
	Looking Toward Other Platforms
	Learning About More Advanced Techniques
	Sharing Your Artistic Vision with the World

	A1. The Matrix Math Behind the Projections
	The Math Behind Orthographic Projections
	The Math Behind Perspective Projections

	A2. Debugging
	Debugging with glGetError
	Using Tracer for OpenGL ES
	Pitfalls to Watch Out For

	Bibliography
	Index
	– SYMBOLS –
	– DIGITS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– X –
	– Z –

