

Computer Graphics with Open GL
Hearn Baker Carithers

Fourth Edition

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England and Associated Companies throughout the world

Visit us on the World Wide Web at: www.pearsoned.co.uk

© Pearson Education Limited 2014

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the
prior written permission of the publisher or a licence permitting restricted copying in the United Kingdom
issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark
in this text does not vest in the author or publisher any trademark ownership rights in such
trademarks, nor does the use of such trademarks imply any affi liation with or endorsement of this
book by such owners.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

 Printed in the United States of America

ISBN 10: 1-292-02425-9
ISBN 13: 978-1-292-02425-7

ISBN 10: 1-292-02425-9
ISBN 13: 978-1-292-02425-7

Table of Contents

P E A R S O N C U S T O M L I B R A R Y

I

1. Computer Graphics Hardware

1

1Donald D. Hearn/M. Pauline Baker, Warren Carithers

Computer Graphics Hardware Color Plates

27

27Donald D. Hearn/M. Pauline Baker, Warren Carithers

2. Computer Graphics Software

29

29Donald D. Hearn/M. Pauline Baker, Warren Carithers

3. Graphics Output Primitives

45

45Donald D. Hearn/M. Pauline Baker, Warren Carithers

4. Attributes of Graphics Primitives

99

99Donald D. Hearn/M. Pauline Baker, Warren Carithers

5. Implementation Algorithms for Graphics Primitives and Attributes

131

131Donald D. Hearn/M. Pauline Baker, Warren Carithers

6. Two-Dimensional Geometric Transformations

189

189Donald D. Hearn/M. Pauline Baker, Warren Carithers

7. Two-Dimensional Viewing

227

227Donald D. Hearn/M. Pauline Baker, Warren Carithers

8. Three-Dimensional Geometric Transformations

273

273Donald D. Hearn/M. Pauline Baker, Warren Carithers

9. Three-Dimensional Viewing

301

301Donald D. Hearn/M. Pauline Baker, Warren Carithers

Three-Dimensional Viewing Color Plate

353

353Donald D. Hearn/M. Pauline Baker, Warren Carithers

10. Hierarchical Modeling

355

355Donald D. Hearn/M. Pauline Baker, Warren Carithers

11. Computer Animation

365

365Donald D. Hearn/M. Pauline Baker, Warren Carithers

II

12. Three-Dimensional Object Representations

389

389Donald D. Hearn/M. Pauline Baker, Warren Carithers

Three-Dimensional Object Representations Color Plate

407

407Donald D. Hearn/M. Pauline Baker, Warren Carithers

13. Spline Representations

409

409Donald D. Hearn/M. Pauline Baker, Warren Carithers

14. Visible-Surface Detection Methods

465

465Donald D. Hearn/M. Pauline Baker, Warren Carithers

15. Illumination Models and Surface-Rendering Methods

493

493Donald D. Hearn/M. Pauline Baker, Warren Carithers

Illumination Models and Surface-Rendering Methods Color Plates

541

541Donald D. Hearn/M. Pauline Baker, Warren Carithers

16. Texturing and Surface-Detail Methods

543

543Donald D. Hearn/M. Pauline Baker, Warren Carithers

Texturing and Surface-Detail Methods Color Plates

567

567Donald D. Hearn/M. Pauline Baker, Warren Carithers

17. Color Models and Color Applications

569

569Donald D. Hearn/M. Pauline Baker, Warren Carithers

Color Models and Color Applications Color Plate

589

589Donald D. Hearn/M. Pauline Baker, Warren Carithers

18. Interactive Input Methods and Graphical User Interfaces

591

591Donald D. Hearn/M. Pauline Baker, Warren Carithers

Interactive Input Methods and Graphical User Interfaces Color Plates

631

631Donald D. Hearn/M. Pauline Baker, Warren Carithers

19. Global Illumination

633

633Donald D. Hearn/M. Pauline Baker, Warren Carithers

Global Illumination Color Plates

659

659Donald D. Hearn/M. Pauline Baker, Warren Carithers

20. Programmable Shaders

663

663Donald D. Hearn/M. Pauline Baker, Warren Carithers

Programmable Shaders Color Plates

693

693Donald D. Hearn/M. Pauline Baker, Warren Carithers

21. Algorithmic Modeling

695

695Donald D. Hearn/M. Pauline Baker, Warren Carithers

Algorithmic Modeling Color Plates

725

725Donald D. Hearn/M. Pauline Baker, Warren Carithers

III

22. Visualization of Data Sets

729

729Donald D. Hearn/M. Pauline Baker, Warren Carithers

Visualization of Data Sets Color Plates

735

735Donald D. Hearn/M. Pauline Baker, Warren Carithers

Appendix: Mathematics for Computer Graphics

737

737Donald D. Hearn/M. Pauline Baker, Warren Carithers

Appendix: Graphics File Formats

773

773Donald D. Hearn/M. Pauline Baker, Warren Carithers

Bibliography

789

789Donald D. Hearn/M. Pauline Baker, Warren Carithers

801

801Index

This page intentionally left blank

Computer Graphics Hardware

1 Video Display Devices

2 Raster-Scan Systems

3 Graphics Workstations and Viewing
Systems

4 Input Devices

5 Hard-Copy Devices

6 Graphics Networks

7 Graphics on the Internet

8 Summary

T he power and utility of computer graphics is widely recog-

nized, and a broad range of graphics hardware and soft-

ware systems is now available for applications in virtually

all fields. Graphics capabilities for both two-dimensional and three-

dimensional applications are now common, even on general-purpose

computers and handheld calculators. With personal computers, we

can use a variety of interactive input devices and graphics software

packages. For higher-quality applications, we can choose from a num-

ber of sophisticated special-purpose graphics hardware systems and

technologies. In this chapter, we explore the basic features of graphics

hardware components and graphics software packages.

From Chapter 2 of Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson

1

Computer Graphics Hardware

1 Video Display Devices
Typically, the primary output device in a graphics system is a video monitor.
Historically, the operation of most video monitors was based on the standard
cathode-ray tube (CRT) design, but several other technologies exist. In recent
years, flat-panel displays have become significantly more popular due to their
reduced power consumption and thinner designs.

Refresh Cathode-Ray Tubes
Figure 1 illustrates the basic operation of a CRT. A beam of electrons (cathode
rays), emitted by an electron gun, passes through focusing and deflection systems
that direct the beam toward specified positions on the phosphor-coated screen.
The phosphor then emits a small spot of light at each position contacted by the
electron beam. Because the light emitted by the phosphor fades very rapidly,
some method is needed for maintaining the screen picture. One way to do this
is to store the picture information as a charge distribution within the CRT. This
charge distribution can then be used to keep the phosphors activated. However,
the most common method now employed for maintaining phosphor glow is to
redraw the picture repeatedly by quickly directing the electron beam back over the
same screen points. This type of display is called a refresh CRT, and the frequency
at which a picture is redrawn on the screen is referred to as the refresh rate.

The primary components of an electron gun in a CRT are the heated metal
cathode and a control grid (Fig. 2). Heat is supplied to the cathode by directing
a current through a coil of wire, called the filament, inside the cylindrical cathode
structure. This causes electrons to be “boiled off” the hot cathode surface. In

F I G U R E 1
Basic design of a magnetic-deflection
CRT.

Base

Focusing
System

Magnetic
Deflection Coils

Connector
Pins

Electron
Gun

Phosphor-
Coated
Screen

Electron
Beam

F I G U R E 2
Operation of an electron gun with an
accelerating anode.

Focusing
Anode

Accelerating
Anode

Electron
Beam
PathCathode

Control
Grid

Heating
Filament

2

the vacuum inside the CRT envelope, the free, negatively charged electrons are
then accelerated toward the phosphor coating by a high positive voltage. The
accelerating voltage can be generated with a positively charged metal coating
on the inside of the CRT envelope near the phosphor screen, or an accelerating
anode, as in Figure 2, can be used to provide the positive voltage. Sometimes
the electron gun is designed so that the accelerating anode and focusing system
are within the same unit.

Intensity of the electron beam is controlled by the voltage at the control grid,
which is a metal cylinder that fits over the cathode. A high negative voltage
applied to the control grid will shut off the beam by repelling electrons and
stopping them from passing through the small hole at the end of the control-
grid structure. A smaller negative voltage on the control grid simply decreases
the number of electrons passing through. Since the amount of light emitted by
the phosphor coating depends on the number of electrons striking the screen, the
brightness of a display point is controlled by varying the voltage on the control
grid. This brightness, or intensity level, is specified for individual screen positions
with graphics software commands.

The focusing system in a CRT forces the electron beam to converge to a small
cross section as it strikes the phosphor. Otherwise, the electrons would repel each
other, and the beam would spread out as it approaches the screen. Focusing is
accomplished with either electric or magnetic fields. With electrostatic focusing,
the electron beam is passed through a positively charged metal cylinder so that
electrons along the center line of the cylinder are in an equilibrium position. This
arrangement forms an electrostatic lens, as shown in Figure 2, and the electron
beam is focused at the center of the screen in the same way that an optical lens
focuses a beam of light at a particular focal distance. Similar lens focusing effects
can be accomplished with a magnetic field set up by a coil mounted around the
outside of the CRT envelope, and magnetic lens focusing usually produces the
smallest spot size on the screen.

Additional focusing hardware is used in high-precision systems to keep the
beam in focus at all screen positions. The distance that the electron beam must
travel to different points on the screen varies because the radius of curvature for
most CRTs is greater than the distance from the focusing system to the screen
center. Therefore, the electron beam will be focused properly only at the center
of the screen. As the beam moves to the outer edges of the screen, displayed
images become blurred. To compensate for this, the system can adjust the focusing
according to the screen position of the beam.

As with focusing, deflection of the electron beam can be controlled with either
electric or magnetic fields. Cathode-ray tubes are now commonly constructed
with magnetic-deflection coils mounted on the outside of the CRT envelope, as
illustrated in Figure 1. Two pairs of coils are used for this purpose. One pair is
mounted on the top and bottom of the CRT neck, and the other pair is mounted
on opposite sides of the neck. The magnetic field produced by each pair of coils
results in a transverse deflection force that is perpendicular to both the direction
of the magnetic field and the direction of travel of the electron beam. Horizontal
deflection is accomplished with one pair of coils, and vertical deflection with the
other pair. The proper deflection amounts are attained by adjusting the current
through the coils. When electrostatic deflection is used, two pairs of parallel plates
are mounted inside the CRT envelope. One pair of plates is mounted horizontally
to control vertical deflection, and the other pair is mounted vertically to control
horizontal deflection (Fig. 3).

Spots of light are produced on the screen by the transfer of the CRT beam
energy to the phosphor. When the electrons in the beam collide with the phosphor

Computer Graphics Hardware

3

Computer Graphics Hardware

F I G U R E 3
Electrostatic deflection of the electron
beam in a CRT.

Base

Focusing
System

Connector
Pins

Electron
Gun

Horizontal
Deflection

Plates

Vertical
Deflection

Plates

Phosphor-
Coated
Screen

Electron
Beam

coating, they are stopped and their kinetic energy is absorbed by the phosphor.
Part of the beam energy is converted by friction into heat energy, and the remain-
der causes electrons in the phosphor atoms to move up to higher quantum-energy
levels. After a short time, the “excited” phosphor electrons begin dropping back
to their stable ground state, giving up their extra energy as small quantums of
light energy called photons. What we see on the screen is the combined effect of all
the electron light emissions: a glowing spot that quickly fades after all the excited
phosphor electrons have returned to their ground energy level. The frequency (or
color) of the light emitted by the phosphor is in proportion to the energy difference
between the excited quantum state and the ground state.

Different kinds of phosphors are available for use in CRTs. Besides color, a
major difference between phosphors is their persistence: how long they continue
to emit light (that is, how long it is before all excited electrons have returned to
the ground state) after the CRT beam is removed. Persistence is defined as the
time that it takes the emitted light from the screen to decay to one-tenth of its
original intensity. Lower-persistence phosphors require higher refresh rates to
maintain a picture on the screen without flicker. A phosphor with low persistence
can be useful for animation, while high-persistence phosphors are better suited
for displaying highly complex, static pictures. Although some phosphors have
persistence values greater than 1 second, general-purpose graphics monitors are
usually constructed with persistence in the range from 10 to 60 microseconds.

Figure 4 shows the intensity distribution of a spot on the screen. The
intensity is greatest at the center of the spot, and it decreases with a Gaussian
distribution out to the edges of the spot. This distribution corresponds to the
cross-sectional electron density distribution of the CRT beam.

F I G U R E 4
Intensity distribution of an illuminated
phosphor spot on a CRT screen.

F I G U R E 5
Two illuminated phosphor spots are
distinguishable when their separation
is greater than the diameter at which
a spot intensity has fallen to
60 percent of maximum.

The maximum number of points that can be displayed without overlap on
a CRT is referred to as the resolution. A more precise definition of resolution is
the number of points per centimeter that can be plotted horizontally and ver-
tically, although it is often simply stated as the total number of points in each
direction. Spot intensity has a Gaussian distribution (Fig. 4), so two adjacent
spots will appear distinct as long as their separation is greater than the diameter
at which each spot has an intensity of about 60 percent of that at the center of
the spot. This overlap position is illustrated in Figure 5. Spot size also depends
on intensity. As more electrons are accelerated toward the phosphor per second,
the diameters of the CRT beam and the illuminated spot increase. In addition,
the increased excitation energy tends to spread to neighboring phosphor atoms
not directly in the path of the beam, which further increases the spot diameter.
Thus, resolution of a CRT is dependent on the type of phosphor, the intensity
to be displayed, and the focusing and deflection systems. Typical resolution on
high-quality systems is 1280 by 1024, with higher resolutions available on many
systems. High-resolution systems are often referred to as high-definition systems.

4

The physical size of a graphics monitor, on the other hand, is given as the length of
the screen diagonal, with sizes varying from about 12 inches to 27 inches or more.
A CRT monitor can be attached to a variety of computer systems, so the number
of screen points that can actually be plotted also depends on the capabilities of
the system to which it is attached.

Raster-Scan Displays
The most common type of graphics monitor employing a CRT is the raster-scan
display, based on television technology. In a raster-scan system, the electron beam
is swept across the screen, one row at a time, from top to bottom. Each row is
referred to as a scan line. As the electron beam moves across a scan line, the beam
intensity is turned on and off (or set to some intermediate value) to create a pattern
of illuminated spots. Picture definition is stored in a memory area called the
refresh buffer or frame buffer, where the term frame refers to the total screen area.
This memory area holds the set of color values for the screen points. These stored
color values are then retrieved from the refresh buffer and used to control the
intensity of the electron beam as it moves from spot to spot across the screen. In this
way, the picture is “painted” on the screen one scan line at a time, as demonstrated
in Figure 6. Each screen spot that can be illuminated by the electron beam
is referred to as a pixel or pel (shortened forms of picture element). Since the
refresh buffer is used to store the set of screen color values, it is also sometimes
called a color buffer. Also, other kinds of pixel information, besides color, are
stored in buffer locations, so all the different buffer areas are sometimes referred
to collectively as the “frame buffer.” The capability of a raster-scan system to
store color information for each screen point makes it well suited for the realistic
display of scenes containing subtle shading and color patterns. Home television
sets and printers are examples of other systems using raster-scan methods.

Raster systems are commonly characterized by their resolution, which is the
number of pixel positions that can be plotted. Another property of video monitors

(a) (b)

(c) (d)

F I G U R E 6
A raster-scan system displays an object
as a set of discrete points across each
scan line.

Computer Graphics Hardware

5

Computer Graphics Hardware

is aspect ratio, which is now often defined as the number of pixel columns divided
by the number of scan lines that can be displayed by the system. (Sometimes this
term is used to refer to the number of scan lines divided by the number of pixel
columns.) Aspect ratio can also be described as the number of horizontal points
to vertical points (or vice versa) necessary to produce equal-length lines in both
directions on the screen. Thus, an aspect ratio of 4/3, for example, means that
a horizontal line plotted with four points has the same length as a vertical line
plotted with three points, where line length is measured in some physical units
such as centimeters. Similarly, the aspect ratio of any rectangle (including the total
screen area) can be defined to be the width of the rectangle divided by its height.

The range of colors or shades of gray that can be displayed on a raster system
depends on both the types of phosphor used in the CRT and the number of bits
per pixel available in the frame buffer. For a simple black-and-white system, each
screen point is either on or off, so only one bit per pixel is needed to control
the intensity of screen positions. A bit value of 1, for example, indicates that the
electron beam is to be turned on at that position, and a value of 0 turns the beam
off. Additional bits allow the intensity of the electron beam to be varied over
a range of values between “on” and “off.” Up to 24 bits per pixel are included
in high-quality systems, which can require several megabytes of storage for the
frame buffer, depending on the resolution of the system. For example, a system
with 24 bits per pixel and a screen resolution of 1024 by 1024 requires 3 MB of
storage for the refresh buffer. The number of bits per pixel in a frame buffer is
sometimes referred to as either the depth of the buffer area or the number of bit
planes. A frame buffer with one bit per pixel is commonly called a bitmap, and
a frame buffer with multiple bits per pixel is a pixmap, but these terms are also
used to describe other rectangular arrays, where a bitmap is any pattern of binary
values and a pixmap is a multicolor pattern.

As each screen refresh takes place, we tend to see each frame as a smooth
continuation of the patterns in the previous frame, so long as the refresh rate is
not too low. Below about 24 frames per second, we can usually perceive a gap
between successive screen images, and the picture appears to flicker. Old silent
films, for example, show this effect because they were photographed at a rate of
16 frames per second. When sound systems were developed in the 1920s, motion-
picture film rates increased to 24 frames per second, which removed flickering
and the accompanying jerky movements of the actors. Early raster-scan computer
systems were designed with a refresh rate of about 30 frames per second. This
produces reasonably good results, but picture quality is improved, up to a point,
with higher refresh rates on a video monitor because the display technology on the
monitor is basically different from that of film. A film projector can maintain the
continuous display of a film frame until the next frame is brought into view. But
on a video monitor, a phosphor spot begins to decay as soon as it is illuminated.
Therefore, current raster-scan displays perform refreshing at the rate of 60 to
80 frames per second, although some systems now have refresh rates of up to
120 frames per second. And some graphics systems have been designed with a
variable refresh rate. For example, a higher refresh rate could be selected for a
stereoscopic application so that two views of a scene (one from each eye position)
can be alternately displayed without flicker. But other methods, such as multiple
frame buffers, are typically used for such applications.

Sometimes, refresh rates are described in units of cycles per second, or hertz
(Hz), where a cycle corresponds to one frame. Using these units, we would
describe a refresh rate of 60 frames per second as simply 60 Hz. At the end of
each scan line, the electron beam returns to the left side of the screen to begin
displaying the next scan line. The return to the left of the screen, after refreshing

6

0
1
2
3

F I G U R E 7
Interlacing scan lines on a raster-scan display. First,
all points on the even-numbered (solid) scan lines
are displayed; then all points along the
odd-numbered (dashed) lines are displayed.

each scan line, is called the horizontal retrace of the electron beam. And at the
end of each frame (displayed in 1

80 to 1
60 of a second), the electron beam returns

to the upper-left corner of the screen (vertical retrace) to begin the next frame.
On some raster-scan systems and TV sets, each frame is displayed in two

passes using an interlaced refresh procedure. In the first pass, the beam sweeps
across every other scan line from top to bottom. After the vertical retrace, the
beam then sweeps out the remaining scan lines (Fig. 7). Interlacing of the scan
lines in this way allows us to see the entire screen displayed in half the time that
it would have taken to sweep across all the lines at once from top to bottom.
This technique is primarily used with slower refresh rates. On an older, 30 frame-
per-second, non-interlaced display, for instance, some flicker is noticeable. But
with interlacing, each of the two passes can be accomplished in 1

60 of a second,
which brings the refresh rate nearer to 60 frames per second. This is an effective
technique for avoiding flicker—provided that adjacent scan lines contain similar
display information.

Random-Scan Displays
When operated as a random-scan display unit, a CRT has the electron beam
directed only to those parts of the screen where a picture is to be displayed.
Pictures are generated as line drawings, with the electron beam tracing out the
component lines one after the other. For this reason, random-scan monitors are
also referred to as vector displays (or stroke-writing displays or calligraphic
displays). The component lines of a picture can be drawn and refreshed by a
random-scan system in any specified order (Fig. 8). A pen plotter operates in a
similar way and is an example of a random-scan, hard-copy device.

Refresh rate on a random-scan system depends on the number of lines to be
displayed on that system. Picture definition is now stored as a set of line-drawing
commands in an area of memory referred to as the display list, refresh display file,
vector file, or display program. To display a specified picture, the system cycles
through the set of commands in the display file, drawing each component line in
turn. After all line-drawing commands have been processed, the system cycles
back to the first line command in the list. Random-scan displays are designed to
draw all the component lines of a picture 30 to 60 times each second, with up to
100,000 “short” lines in the display list. When a small set of lines is to be displayed,
each refresh cycle is delayed to avoid very high refresh rates, which could burn
out the phosphor.

Random-scan systems were designed for line-drawing applications, such as
architectural and engineering layouts, and they cannot display realistic shaded
scenes. Since picture definition is stored as a set of line-drawing instructions rather
than as a set of intensity values for all screen points, vector displays generally have
higher resolutions than raster systems. Also, vector displays produce smooth line

Computer Graphics Hardware

7

Computer Graphics Hardware

F I G U R E 8
A random-scan system draws the
component lines of an object in any
specified order.

(a) (b)

(c) (d)

drawings because the CRT beam directly follows the line path. A raster system, by
contrast, produces jagged lines that are plotted as discrete point sets. However,
the greater flexibility and improved line-drawing capabilities of raster systems
have resulted in the abandonment of vector technology.

Color CRT Monitors
A CRT monitor displays color pictures by using a combination of phosphors
that emit different-colored light. The emitted light from the different phosphors
merges to form a single perceived color, which depends on the particular set of
phosphors that have been excited.

One way to display color pictures is to coat the screen with layers of different-
colored phosphors. The emitted color depends on how far the electron beam
penetrates into the phosphor layers. This approach, called the beam-penetration
method, typically used only two phosphor layers: red and green. A beam of
slow electrons excites only the outer red layer, but a beam of very fast electrons
penetrates the red layer and excites the inner green layer. At intermediate beam
speeds, combinations of red and green light are emitted to show two additional
colors: orange and yellow. The speed of the electrons, and hence the screen color
at any point, is controlled by the beam acceleration voltage. Beam penetration has
been an inexpensive way to produce color, but only a limited number of colors
are possible, and picture quality is not as good as with other methods.

Shadow-mask methods are commonly used in raster-scan systems (including
color TV) because they produce a much wider range of colors than the beam-
penetration method. This approach is based on the way that we seem to perceive
colors as combinations of red, green, and blue components, called the RGB color
model. Thus, a shadow-mask CRT uses three phosphor color dots at each pixel
position. One phosphor dot emits a red light, another emits a green light, and the
third emits a blue light. This type of CRT has three electron guns, one for each
color dot, and a shadow-mask grid just behind the phosphor-coated screen. The

8

Electron
Guns

B

G

R

Section
of

Shadow Mask

Magnified
Phosphor-Dot
Triangle

Red

Blue

Screen

Green

F I G U R E 9
Operation of a delta-delta,
shadow-mask CRT. Three electron
guns, aligned with the triangular
color-dot patterns on the screen, are
directed to each dot triangle by a
shadow mask.

light emitted from the three phosphors results in a small spot of color at each pixel
position, since our eyes tend to merge the light emitted from the three dots into
one composite color. Figure 9 illustrates the delta-delta shadow-mask method,
commonly used in color CRT systems. The three electron beams are deflected
and focused as a group onto the shadow mask, which contains a series of holes
aligned with the phosphor-dot patterns. When the three beams pass through a
hole in the shadow mask, they activate a dot triangle, which appears as a small
color spot on the screen. The phosphor dots in the triangles are arranged so that
each electron beam can activate only its corresponding color dot when it passes
through the shadow mask. Another configuration for the three electron guns is an
in-line arrangement in which the three electron guns, and the corresponding RGB
color dots on the screen, are aligned along one scan line instead of in a triangular
pattern. This in-line arrangement of electron guns is easier to keep in alignment
and is commonly used in high-resolution color CRTs.

We obtain color variations in a shadow-mask CRT by varying the intensity
levels of the three electron beams. By turning off two of the three guns, we get
only the color coming from the single activated phosphor (red, green, or blue).
When all three dots are activated with equal beam intensities, we see a white
color. Yellow is produced with equal intensities from the green and red dots only,
magenta is produced with equal blue and red intensities, and cyan shows up
when blue and green are activated equally. In an inexpensive system, each of the
three electron beams might be restricted to either on or off, limiting displays to
eight colors. More sophisticated systems can allow intermediate intensity levels
to be set for the electron beams, so that several million colors are possible.

Color graphics systems can be used with several types of CRT display devices.
Some inexpensive home-computer systems and video games have been designed
for use with a color TV set and a radio-frequency (RF) modulator. The purpose of
the RF modulator is to simulate the signal from a broadcast TV station. This means
that the color and intensity information of the picture must be combined and
superimposed on the broadcast-frequency carrier signal that the TV requires as
input. Then the circuitry in the TV takes this signal from the RF modulator, extracts
the picture information, and paints it on the screen. As we might expect, this
extra handling of the picture information by the RF modulator and TV circuitry
decreases the quality of displayed images.

Computer Graphics Hardware

9

Computer Graphics Hardware

Composite monitors are adaptations of TV sets that allow bypass of the broad-
cast circuitry. These display devices still require that the picture information be
combined, but no carrier signal is needed. Since picture information is combined
into a composite signal and then separated by the monitor, the resulting picture
quality is still not the best attainable.

Color CRTs in graphics systems are designed as RGB monitors. These moni-
tors use shadow-mask methods and take the intensity level for each electron gun
(red, green, and blue) directly from the computer system without any interme-
diate processing. High-quality raster-graphics systems have 24 bits per pixel in
the frame buffer, allowing 256 voltage settings for each electron gun and nearly
17 million color choices for each pixel. An RGB color system with 24 bits of storage
per pixel is generally referred to as a full-color system or a true-color system.

Flat-Panel Displays
Although most graphics monitors are still constructed with CRTs, other tech-
nologies are emerging that may soon replace CRT monitors. The term flat-panel
display refers to a class of video devices that have reduced volume, weight, and
power requirements compared to a CRT. A significant feature of flat-panel dis-
plays is that they are thinner than CRTs, and we can hang them on walls or wear
them on our wrists. Since we can even write on some flat-panel displays, they
are also available as pocket notepads. Some additional uses for flat-panel dis-
plays are as small TV monitors, calculator screens, pocket video-game screens,
laptop computer screens, armrest movie-viewing stations on airlines, advertise-
ment boards in elevators, and graphics displays in applications requiring rugged,
portable monitors.

We can separate flat-panel displays into two categories: emissive displays
and nonemissive displays. The emissive displays (or emitters) are devices that
convert electrical energy into light. Plasma panels, thin-film electroluminescent
displays, and light-emitting diodes are examples of emissive displays. Flat CRTs
have also been devised, in which electron beams are accelerated parallel to the
screen and then deflected 90 onto the screen. But flat CRTs have not proved to be as
successful as other emissive devices. Nonemissive displays (or nonemitters) use
optical effects to convert sunlight or light from some other source into graphics
patterns. The most important example of a nonemissive flat-panel display is a
liquid-crystal device.

Plasma panels, also called gas-discharge displays, are constructed by filling
the region between two glass plates with a mixture of gases that usually includes
neon. A series of vertical conducting ribbons is placed on one glass panel, and a
set of horizontal conducting ribbons is built into the other glass panel (Fig. 10).
Firing voltages applied to an intersecting pair of horizontal and vertical conduc-
tors cause the gas at the intersection of the two conductors to break down into
a glowing plasma of electrons and ions. Picture definition is stored in a refresh
buffer, and the firing voltages are applied to refresh the pixel positions (at the
intersections of the conductors) 60 times per second. Alternating-current methods
are used to provide faster application of the firing voltages and, thus, brighter dis-
plays. Separation between pixels is provided by the electric field of the conductors.
One disadvantage of plasma panels has been that they were strictly monochro-
matic devices, but systems are now available with multicolor capabilities.

Thin-film electroluminescent displays are similar in construction to plasma
panels. The difference is that the region between the glass plates is filled with a
phosphor, such as zinc sulfide doped with manganese, instead of a gas (Fig. 11).
When a sufficiently high voltage is applied to a pair of crossing electrodes, the

10

Conductors

Glass Plate

Glass Plate

Gas

F I G U R E 1 0
Basic design of a plasma-panel display
device.

Glass Plate

Phosphor

Glass Plate

Conductors

F I G U R E 1 1
Basic design of a thin-film
electroluminescent display device.

phosphor becomes a conductor in the area of the intersection of the two electrodes.
Electrical energy is absorbed by the manganese atoms, which then release the
energy as a spot of light similar to the glowing plasma effect in a plasma panel.
Electroluminescent displays require more power than plasma panels, and good
color displays are harder to achieve.

A third type of emissive device is the light-emitting diode (LED). A matrix of
diodes is arranged to form the pixel positions in the display, and picture definition
is stored in a refresh buffer. As in scan-line refreshing of a CRT, information is
read from the refresh buffer and converted to voltage levels that are applied to
the diodes to produce the light patterns in the display.

F I G U R E 1 2
A handheld calculator with an LCD
screen. (Courtesy of Texas
Instruments.)

Liquid-crystal displays (LCDs) are commonly used in small systems, such as
laptop computers and calculators (Fig. 12). These nonemissive devices produce
a picture by passing polarized light from the surroundings or from an internal
light source through a liquid-crystal material that can be aligned to either block
or transmit the light.

The term liquid crystal refers to the fact that these compounds have a crys-
talline arrangement of molecules, yet they flow like a liquid. Flat-panel displays
commonly use nematic (threadlike) liquid-crystal compounds that tend to keep
the long axes of the rod-shaped molecules aligned. A flat-panel display can then
be constructed with a nematic liquid crystal, as demonstrated in Figure 13. Two
glass plates, each containing a light polarizer that is aligned at a right angle to the
other plate, sandwich the liquid-crystal material. Rows of horizontal, transpar-
ent conductors are built into one glass plate, and columns of vertical conductors
are put into the other plate. The intersection of two conductors defines a pixel
position. Normally, the molecules are aligned as shown in the “on state” of Fig-
ure 13. Polarized light passing through the material is twisted so that it will pass
through the opposite polarizer. The light is then reflected back to the viewer. To
turn off the pixel, we apply a voltage to the two intersecting conductors to align the
molecules so that the light is not twisted. This type of flat-panel device is referred
to as a passive-matrix LCD. Picture definitions are stored in a refresh buffer, and
the screen is refreshed at the rate of 60 frames per second, as in the emissive

Computer Graphics Hardware

11

Computer Graphics Hardware

F I G U R E 1 3
The light-twisting, shutter effect used
in the design of most LCD devices.

Polarizer

On State

Transparent
Conductor

Nematic
Liquid Crystal

Polarizer

Transparent
Conductor

Polarizer

Off State

Transparent
Conductor

Nematic
Liquid Crystal

Polarizer

Transparent
Conductor

devices. Backlighting is also commonly applied using solid-state electronic
devices, so that the system is not completely dependent on outside light sources.
Colors can be displayed by using different materials or dyes and by placing a triad
of color pixels at each screen location. Another method for constructing LCDs is
to place a transistor at each pixel location, using thin-film transistor technology.
The transistors are used to control the voltage at pixel locations and to prevent
charge from gradually leaking out of the liquid-crystal cells. These devices are
called active-matrix displays.

Three-Dimensional Viewing Devices
Graphics monitors for the display of three-dimensional scenes have been devi-
sed using a technique that reflects a CRT image from a vibrating, flexible mirror
(Fig. 14). As the varifocal mirror vibrates, it changes focal length. These vibra-
tions are synchronized with the display of an object on a CRT so that each point
on the object is reflected from the mirror into a spatial position corresponding
to the distance of that point from a specified viewing location. This allows us to
walk around an object or scene and view it from different sides.

In addition to displaying three-dimensional images, these systems are
often capable of displaying two-dimensional cross-sectional “slices” of objects
selected at different depths, such as in medical applications to analyze data
from ultrasonography and CAT scan devices, in geological applications to
analyze topological and seismic data, in design applications involving solid
objects, and in three-dimensional simulations of systems, such as molecules and
terrain.

12

Timing and
Control
System

CRT

Viewer

Vibrating
Flexible
Mirror

Projected
3D Image

F I G U R E 1 4
Operation of a three-dimensional
display system using a vibrating mirror
that changes focal length to match the
depths of points in a scene.

F I G U R E 1 5
Glasses for viewing a stereoscopic
scene in 3D. (Courtesy of XPAND, X6D
USA Inc.)

Stereoscopic and Virtual-Reality Systems
Another technique for representing a three-dimensional object is to display
stereoscopic views of the object. This method does not produce true three-
dimensional images, but it does provide a three-dimensional effect by presenting
a different view to each eye of an observer so that scenes do appear to have
depth.

To obtain a stereoscopic projection, we must obtain two views of a scene
generated with viewing directions along the lines from the position of each eye
(left and right) to the scene. We can construct the two views as computer-generated
scenes with different viewing positions, or we can use a stereo camera pair to
photograph an object or scene. When we simultaneously look at the left view
with the left eye and the right view with the right eye, the two views merge into
a single image and we perceive a scene with depth.

One way to produce a stereoscopic effect on a raster system is to display each
of the two views on alternate refresh cycles. The screen is viewed through glasses,
with each lens designed to act as a rapidly alternating shutter that is synchronized
to block out one of the views. One such design (Figure 15) uses liquid-crystal
shutters and an infrared emitter that synchronizes the glasses with the views on
the screen.

Stereoscopic viewing is also a component in virtual-reality systems, where
users can step into a scene and interact with the environment. A headset contain-
ing an optical system to generate the stereoscopic views can be used in conjunc-
tion with interactive input devices to locate and manipulate objects in the scene.
A sensing system in the headset keeps track of the viewer’s position, so that the
front and back of objects can be seen as the viewer “walks through” and inter-
acts with the display. Another method for creating a virtual-reality environment

Computer Graphics Hardware

13

Computer Graphics Hardware

is to use projectors to generate a scene within an arrangement of walls, where a
viewer interacts with a virtual display using stereoscopic glasses and data gloves
(Section 4).

Lower-cost, interactive virtual-reality environments can be set up using a
graphics monitor, stereoscopic glasses, and a head-tracking device. The track-
ing device is placed above the video monitor and is used to record head move-
ments, so that the viewing position for a scene can be changed as head position
changes.

2 Raster-Scan Systems
Interactive raster-graphics systems typically employ several processing units. In
addition to the central processing unit (CPU), a special-purpose processor, called
the video controller or display controller, is used to control the operation of the
display device. Organization of a simple raster system is shown in Figure 16.
Here, the frame buffer can be anywhere in the system memory, and the video
controller accesses the frame buffer to refresh the screen. In addition to the video
controller, more sophisticated raster systems employ other processors as copro-
cessors and accelerators to implement various graphics operations.

Video Controller
Figure 17 shows a commonly used organization for raster systems. A fixed area
of the system memory is reserved for the frame buffer, and the video controller is
given direct access to the frame-buffer memory.

Frame-buffer locations, and the corresponding screen positions, are refer-
enced in Cartesian coordinates. In an application program, we use the commands

F I G U R E 1 6
Architecture of a simple raster-graphics
system.

CPU Video
Controller

System
Memory

System Bus

I/O Devices

Monitor

F I G U R E 1 7
Architecture of a raster system with a
fixed portion of the system memory
reserved for the frame buffer.

CPU

I/O Devices

Video
Controller

System
Memory

Frame
Buffer

System Bus

Monitor

14

within a graphics software package to set coordinate positions for displayed
objects relative to the origin of the Cartesian reference frame. Often, the coor-
dinate origin is referenced at the lower-left corner of a screen display area by the
software commands, although we can typically set the origin at any convenient
location for a particular application. Figure 18 shows a two-dimensional Carte-
sian reference frame with the origin at the lower-left screen corner. The screen
surface is then represented as the first quadrant of a two-dimensional system,
with positive x values increasing from left to right and positive y values increas-
ing from the bottom of the screen to the top. Pixel positions are then assigned
integer x values that range from 0 to xmax across the screen, left to right, and inte-
ger y values that vary from 0 to ymax, bottom to top. However, hardware processes
such as screen refreshing, as well as some software systems, reference the pixel
positions from the top-left corner of the screen.

In Figure 19, the basic refresh operations of the video controller are dia-
grammed. Two registers are used to store the coordinate values for the screen
pixels. Initially, the x register is set to 0 and the y register is set to the value for
the top scan line. The contents of the frame buffer at this pixel position are then
retrieved and used to set the intensity of the CRT beam. Then the x register is
incremented by 1, and the process is repeated for the next pixel on the top scan
line. This procedure continues for each pixel along the top scan line. After the
last pixel on the top scan line has been processed, the x register is reset to 0 and
the y register is set to the value for the next scan line down from the top of the
screen. Pixels along this scan line are then processed in turn, and the procedure is
repeated for each successive scan line. After cycling through all pixels along the
bottom scan line, the video controller resets the registers to the first pixel position
on the top scan line and the refresh process starts over.

Since the screen must be refreshed at a rate of at least 60 frames per second,
the simple procedure illustrated in Figure 19 may not be accommodated by
typical RAM chips if the cycle time is too slow. To speed up pixel processing,

x

y

F I G U R E 1 8
A Cartesian reference frame with
origin at the lower-left corner of a
video monitor.

x
Register

Horizontal and
Vertical Deflection
Voltages

Raster-Scan
Generator

Memory Address Pixel
Register Intensity

y
Register

Frame Buffer

F I G U R E 1 9
Basic video-controller refresh
operations.

Computer Graphics Hardware

15

Computer Graphics Hardware

video controllers can retrieve multiple pixel values from the refresh buffer on
each pass. The multiple pixel intensities are then stored in a separate register and
used to control the CRT beam intensity for a group of adjacent pixels. When that
group of pixels has been processed, the next block of pixel values is retrieved from
the frame buffer.

A video controller can be designed to perform a number of other operations.
For various applications, the video controller can retrieve pixel values from dif-
ferent memory areas on different refresh cycles. In some systems, for example,
multiple frame buffers are often provided so that one buffer can be used for
refreshing while pixel values are being loaded into the other buffers. Then the
current refresh buffer can switch roles with one of the other buffers. This pro-
vides a fast mechanism for generating real-time animations, for example, since
different views of moving objects can be successively loaded into a buffer without
interrupting a refresh cycle. Another video-controller task is the transformation
of blocks of pixels, so that screen areas can be enlarged, reduced, or moved from
one location to another during the refresh cycles. In addition, the video controller
often contains a lookup table, so that pixel values in the frame buffer are used
to access the lookup table instead of controlling the CRT beam intensity directly.
This provides a fast method for changing screen intensity values. Finally, some
systems are designed to allow the video controller to mix the frame-buffer
image with an input image from a television camera or other input device.

Raster-Scan Display Processor
Figure 20 shows one way to organize the components of a raster system that
contains a separate display processor, sometimes referred to as a graphics con-
troller or a display coprocessor. The purpose of the display processor is to free
the CPU from the graphics chores. In addition to the system memory, a separate
display-processor memory area can be provided.

A major task of the display processor is digitizing a picture definition given
in an application program into a set of pixel values for storage in the frame
buffer. This digitization process is called scan conversion. Graphics commands
specifying straight lines and other geometric objects are scan converted into a
set of discrete points, corresponding to screen pixel positions. Scan converting
a straight-line segment, for example, means that we have to locate the pixel
positions closest to the line path and store the color for each position in the frame

F I G U R E 2 0
Architecture of a raster-graphics
system with a display processor.

CPU

I/O Devices

Display
Processor

System Bus

Video
Controller

Display-
Processor
Memory

Frame
Buffer Monitor

System
Memory

16

buffer. Similar methods are used for scan converting other objects in a picture
definition. Characters can be defined with rectangular pixel grids, as in
Figure 21, or they can be defined with outline shapes, as in Figure 22. The
array size for character grids can vary from about 5 by 7 to 9 by 12 or more for
higher-quality displays. A character grid is displayed by superimposing the rect-
angular grid pattern into the frame buffer at a specified coordinate position. For
characters that are defined as outlines, the shapes are scan-converted into the
frame buffer by locating the pixel positions closest to the outline.

F I G U R E 2 1
A character defined as a rectangular
grid of pixel positions.

Display processors are also designed to perform a number of additional oper-
ations. These functions include generating various line styles (dashed, dotted, or
solid), displaying color areas, and applying transformations to the objects in a
scene. Also, display processors are typically designed to interface with interactive
input devices, such as a mouse.

F I G U R E 2 2
A character defined as an outline
shape.

In an effort to reduce memory requirements in raster systems, methods have
been devised for organizing the frame buffer as a linked list and encoding the
color information. One organization scheme is to store each scan line as a set of
number pairs. The first number in each pair can be a reference to a color value, and
the second number can specify the number of adjacent pixels on the scan line that
are to be displayed in that color. This technique, called run-length encoding, can
result in a considerable saving in storage space if a picture is to be constructed
mostly with long runs of a single color each. A similar approach can be taken
when pixel colors change linearly. Another approach is to encode the raster as a
set of rectangular areas (cell encoding). The disadvantages of encoding runs are
that color changes are difficult to record and storage requirements increase as the
lengths of the runs decrease. In addition, it is difficult for the display controller to
process the raster when many short runs are involved. Moreover, the size of the
frame buffer is no longer a major concern, because of sharp declines in memory
costs. Nevertheless, encoding methods can be useful in the digital storage and
transmission of picture information.

3 Graphics Workstations
and Viewing Systems

Most graphics monitors today operate as raster-scan displays, and both CRT
and flat-panel systems are in common use. Graphics workstations range from
small general-purpose computer systems to multi-monitor facilities, often with
ultra-large viewing screens. For a personal computer, screen resolutions vary
from about 640 by 480 to 1280 by 1024, and diagonal screen lengths measure from
12 inches to over 21 inches. Most general-purpose systems now have consider-
able color capabilities, and many are full-color systems. For a desktop workstation
specifically designed for graphics applications, the screen resolution can vary from
1280 by 1024 to about 1600 by 1200, with a typical screen diagonal of 18 inches
or more. Commercial workstations can also be obtained with a variety of devices
for specific applications.

High-definition graphics systems, with resolutions up to 2560 by 2048,
are commonly used in medical imaging, air-traffic control, simulation, and
CAD. Many high-end graphics workstations also include large viewing screens,
often with specialized features.

Multi-panel display screens are used in a variety of applications that require
“wall-sized” viewing areas. These systems are designed for presenting graphics
displays at meetings, conferences, conventions, trade shows, retail stores, muse-
ums, and passenger terminals. A multi-panel display can be used to show a large

Computer Graphics Hardware

17

Computer Graphics Hardware

view of a single scene or several individual images. Each panel in the system
displays one section of the overall picture. Color Plate 7 shows a 360 paneled
viewing system in the NASA control-tower simulator, which is used for train-
ing and for testing ways to solve air-traffic and runway problems at airports.
Large graphics displays can also be presented on curved viewing screens. A large,
curved-screen system can be useful for viewing by a group of people study-
ing a particular graphics application, such as the example in Color Plate 8. A
control center, featuring a battery of standard monitors, allows an operator to
view sections of the large display and to control the audio, video, lighting, and
projection systems using a touch-screen menu. The system projectors provide a
seamless, multichannel display that includes edge blending, distortion correction,
and color balancing. And a surround-sound system is used to provide the audio
environment.

4 Input Devices
Graphics workstations can make use of various devices for data input. Most sys-
tems have a keyboard and one or more additional devices specifically designed for
interactive input. These include a mouse, trackball, spaceball, and joystick. Some
other input devices used in particular applications are digitizers, dials, button
boxes, data gloves, touch panels, image scanners, and voice systems.

Keyboards, Button Boxes, and Dials
An alphanumeric keyboard on a graphics system is used primarily as a device for
entering text strings, issuing certain commands, and selecting menu options. The
keyboard is an efficient device for inputting such nongraphic data as picture labels
associated with a graphics display. Keyboards can also be provided with features
to facilitate entry of screen coordinates, menu selections, or graphics functions.

Cursor-control keys and function keys are common features on general-
purpose keyboards. Function keys allow users to select frequently accessed opera-
tions with a single keystroke, and cursor-control keys are convenient for selecting
a displayed object or a location by positioning the screen cursor. A keyboard
can also contain other types of cursor-positioning devices, such as a trackball or
joystick, along with a numeric keypad for fast entry of numeric data. In addi-
tion to these features, some keyboards have an ergonomic design that provides
adjustments for relieving operator fatigue.

For specialized tasks, input to a graphics application may come from a set of
buttons, dials, or switches that select data values or customized graphics oper-
ations. Buttons and switches are often used to input predefined functions, and
dials are common devices for entering scalar values. Numerical values within
some defined range are selected for input with dial rotations. A potentiometer
is used to measure dial rotation, which is then converted to the corresponding
numerical value.

Mouse Devices
A mouse is a small handheld unit that is usually moved around on a flat surface
to position the screen cursor. One or more buttons on the top of the mouse provide
a mechanism for communicating selection information to the computer; wheels
or rollers on the bottom of the mouse can be used to record the amount and
direction of movement. Another method for detecting mouse motion is with an
optical sensor. For some optical systems, the mouse is moved over a special mouse
pad that has a grid of horizontal and vertical lines. The optical sensor detects

18

F I G U R E 2 3
A wireless computer mouse designed with many user-programmable controls.
(Courtesy of Logitech®)

movement across the lines in the grid. Other optical mouse systems can operate
on any surface. Some mouse systems are cordless, communicating with computer
processors using digital radio technology.

Since a mouse can be picked up and put down at another position without
change in cursor movement, it is used for making relative changes in the position
of the screen cursor. One, two, three, or four buttons are included on the top of
the mouse for signaling the execution of operations, such as recording cursor
position or invoking a function. Most general-purpose graphics systems now
include a mouse and a keyboard as the primary input devices.

Additional features can be included in the basic mouse design to increase
the number of allowable input parameters and the functionality of the mouse.
The Logitech G700 wireless gaming mouse in Figure 23 features 13 separately-
programmable control inputs. Each input can be configured to perform a wide
range of actions, from traditional single-click inputs to macro operations contain-
ing multiple keystrongs, mouse events, and pre-programmed delays between
operations. The laser-based optical sensor can be configured to control the degree
of sensitivity to motion, allowing the mouse to be used in situations requiring dif-
ferent levels of control over cursor movement. In addition, the mouse can hold up
to five different configuration profiles to allow the configuration to be switched
easily when changing applications.

Trackballs and Spaceballs
A trackball is a ball device that can be rotated with the fingers or palm of the hand
to produce screen-cursor movement. Potentiometers, connected to the ball, mea-
sure the amount and direction of rotation. Laptop keyboards are often equipped
with a trackball to eliminate the extra space required by a mouse. A trackball also
can be mounted on other devices, or it can be obtained as a separate add-on unit
that contains two or three control buttons.

An extension of the two-dimensional trackball concept is the spaceball, which
provides six degrees of freedom. Unlike the trackball, a spaceball does not actually
move. Strain gauges measure the amount of pressure applied to the spaceball to
provide input for spatial positioning and orientation as the ball is pushed or pulled
in various directions. Spaceballs are used for three-dimensional positioning and
selection operations in virtual-reality systems, modeling, animation, CAD, and
other applications.

Joysticks
Another positioning device is the joystick, which consists of a small, vertical lever
(called the stick) mounted on a base. We use the joystick to steer the screen cursor
around. Most joysticks select screen positions with actual stick movement; others

Computer Graphics Hardware

19

Computer Graphics Hardware

respond to pressure on the stick. Some joysticks are mounted on a keyboard, and
some are designed as stand-alone units.

The distance that the stick is moved in any direction from its center posi-
tion corresponds to the relative screen-cursor movement in that direction.
Potentiometers mounted at the base of the joystick measure the amount of move-
ment, and springs return the stick to the center position when it is released. One
or more buttons can be programmed to act as input switches to signal actions that
are to be executed once a screen position has been selected.

In another type of movable joystick, the stick is used to activate switches that
cause the screen cursor to move at a constant rate in the direction selected. Eight
switches, arranged in a circle, are sometimes provided so that the stick can select
any one of eight directions for cursor movement. Pressure-sensitive joysticks, also
called isometric joysticks, have a non-movable stick. A push or pull on the stick is
measured with strain gauges and converted to movement of the screen cursor in
the direction of the applied pressure.

Data Gloves
A data glove is a device that fits over the user’s hand and can be used to grasp
a “virtual object.” The glove is constructed with a series of sensors that detect
hand and finger motions. Electromagnetic coupling between transmitting anten-
nas and receiving antennas are used to provide information about the position
and orientation of the hand. The transmitting and receiving antennas can each
be structured as a set of three mutually perpendicular coils, forming a three-
dimensional Cartesian reference system. Input from the glove is used to position
or manipulate objects in a virtual scene. A two-dimensional projection of the
scene can be viewed on a video monitor, or a three-dimensional projection can be
viewed with a headset.

Digitizers
A common device for drawing, painting, or interactively selecting positions is a
digitizer. These devices can be designed to input coordinate values in either a
two-dimensional or a three-dimensional space. In engineering or architectural
applications, a digitizer is often used to scan a drawing or object and to input
a set of discrete coordinate positions. The input positions are then joined with
straight-line segments to generate an approximation of a curve or surface shape.

One type of digitizer is the graphics tablet (also referred to as a data tablet),
which is used to input two-dimensional coordinates by activating a hand cursor
or stylus at selected positions on a flat surface. A hand cursor contains crosshairs
for sighting positions, while a stylus is a pencil-shaped device that is pointed at
positions on the tablet. The tablet size varies from 12 by 12 inches for desktop
models to 44 by 60 inches or larger for floor models. Graphics tablets provide a
highly accurate method for selecting coordinate positions, with an accuracy that
varies from about 0.2 mm on desktop models to about 0.05 mm or less on larger
models.

Many graphics tablets are constructed with a rectangular grid of wires embed-
ded in the tablet surface. Electromagnetic pulses are generated in sequence along
the wires, and an electric signal is induced in a wire coil in an activated stylus
or hand-cursor to record a tablet position. Depending on the technology, signal
strength, coded pulses, or phase shifts can be used to determine the position on
the tablet.

An acoustic (or sonic) tablet uses sound waves to detect a stylus position. Either
strip microphones or point microphones can be employed to detect the sound

20

emitted by an electrical spark from a stylus tip. The position of the stylus is cal-
culated by timing the arrival of the generated sound at the different microphone
positions. An advantage of two-dimensional acoustic tablets is that the micro-
phones can be placed on any surface to form the “tablet” work area. For example,
the microphones could be placed on a book page while a figure on that page is
digitized.

Three-dimensional digitizers use sonic or electromagnetic transmissions to
record positions. One electromagnetic transmission method is similar to that
employed in the data glove: A coupling between the transmitter and receiver
is used to compute the location of a stylus as it moves over an object surface. As
the points are selected on a nonmetallic object, a wire-frame outline of the surface
is displayed on the computer screen. Once the surface outline is constructed, it
can be rendered using lighting effects to produce a realistic display of the object.

Image Scanners
Drawings, graphs, photographs, or text can be stored for computer processing
with an image scanner by passing an optical scanning mechanism over the
information to be stored. The gradations of grayscale or color are then recorded
and stored in an array. Once we have the internal representation of a picture, we
can apply transformations to rotate, scale, or crop the picture to a particular screen
area. We can also apply various image-processing methods to modify the array
representation of the picture. For scanned text input, various editing operations
can be performed on the stored documents. Scanners are available in a variety
of sizes and capabilities, including small handheld models, drum scanners, and
flatbed scanners.

Touch Panels
As the name implies, touch panels allow displayed objects or screen positions to
be selected with the touch of a finger. A typical application of touch panels is for
the selection of processing options that are represented as a menu of graphical
icons. Some monitors are designed with touch screens. Other systems can be
adapted for touch input by fitting a transparent device containing a touch-sensing
mechanism over the video monitor screen. Touch input can be recorded using
optical, electrical, or acoustical methods.

Optical touch panels employ a line of infrared light-emitting diodes (LEDs)
along one vertical edge and along one horizontal edge of the frame. Light detec-
tors are placed along the opposite vertical and horizontal edges. These detectors
are used to record which beams are interrupted when the panel is touched. The
two crossing beams that are interrupted identify the horizontal and vertical coor-
dinates of the screen position selected. Positions can be selected with an accuracy
of about 1/4 inch. With closely spaced LEDs, it is possible to break two horizontal
or two vertical beams simultaneously. In this case, an average position between
the two interrupted beams is recorded. The LEDs operate at infrared frequencies
so that the light is not visible to a user.

An electrical touch panel is constructed with two transparent plates separated
by a small distance. One of the plates is coated with a conducting material, and
the other plate is coated with a resistive material. When the outer plate is touched,
it is forced into contact with the inner plate. This contact creates a voltage drop
across the resistive plate that is converted to the coordinate values of the selected
screen position.

In acoustical touch panels, high-frequency sound waves are generated in
horizontal and vertical directions across a glass plate. Touching the screen causes

Computer Graphics Hardware

21

Computer Graphics Hardware

part of each wave to be reflected from the finger to the emitters. The screen position
at the point of contact is calculated from a measurement of the time interval
between the transmission of each wave and its reflection to the emitter.

Light Pens
Light pens are pencil-shaped devices are used to select screen positions by detect-
ing the light coming from points on the CRT screen. They are sensitive to the short
burst of light emitted from the phosphor coating at the instant the electron beam
strikes a particular point. Other light sources, such as the background light in the
room, are usually not detected by a light pen. An activated light pen, pointed at a
spot on the screen as the electron beam lights up that spot, generates an electrical
pulse that causes the coordinate position of the electron beam to be recorded. As
with cursor-positioning devices, recorded light-pen coordinates can be used to
position an object or to select a processing option.

Although light pens are still with us, they are not as popular as they once were
because they have several disadvantages compared to other input devices that
have been developed. For example, when a light pen is pointed at the screen, part
of the screen image is obscured by the hand and pen. In addition, prolonged use of
the light pen can cause arm fatigue, and light pens require special implementations
for some applications because they cannot detect positions within black areas. To
be able to select positions in any screen area with a light pen, we must have some
nonzero light intensity emitted from each pixel within that area. In addition, light
pens sometimes give false readings due to background lighting in a room.

Voice Systems
Speech recognizers are used with some graphics workstations as input devices
for voice commands. The voice system input can be used to initiate graphics
operations or to enter data. These systems operate by matching an input against
a predefined dictionary of words and phrases.

A dictionary is set up by speaking the command words several times. The
system then analyzes each word and establishes a dictionary of word frequency
patterns, along with the corresponding functions that are to be performed.
Later, when a voice command is given, the system searches the dictionary for
a frequency-pattern match. A separate dictionary is needed for each operator
using the system. Input for a voice system is typically spoken into a microphone
mounted on a headset; the microphone is designed to minimize input of back-
ground sounds. Voice systems have some advantage over other input devices
because the attention of the operator need not switch from one device to another
to enter a command.

5 Hard-Copy Devices
We can obtain hard-copy output for our images in several formats. For presen-
tations or archiving, we can send image files to devices or service bureaus that
will produce overhead transparencies, 35mm slides, or film. Also, we can put our
pictures on paper by directing graphics output to a printer or plotter.

The quality of the pictures obtained from an output device depends on dot
size and the number of dots per inch, or lines per inch, that can be displayed.
To produce smooth patterns, higher-quality printers shift dot positions so that
adjacent dots overlap.

22

F I G U R E 2 4
A picture generated on a dot-matrix
printer, illustrating how the density of
dot patterns can be varied to produce
light and dark areas. (Courtesy of
Apple Computer, Inc.)

Printers produce output by either impact or nonimpact methods. Impact print-
ers press formed character faces against an inked ribbon onto the paper. A line
printer is an example of an impact device, with the typefaces mounted on bands,
chains, drums, or wheels. Nonimpact printers and plotters use laser techniques,
ink-jet sprays, electrostatic methods, and electrothermal methods to get images
onto paper.

Character impact printers often have a dot-matrix print head containing a rect-
angular array of protruding wire pins, with the number of pins varying depending
upon the quality of the printer. Individual characters or graphics patterns are
obtained by retracting certain pins so that the remaining pins form the pattern to
be printed. Figure 24 shows a picture printed on a dot-matrix printer.

In a laser device, a laser beam creates a charge distribution on a rotating drum
coated with a photoelectric material, such as selenium. Toner is applied to the
drum and then transferred to paper. Ink-jet methods produce output by squirting
ink in horizontal rows across a roll of paper wrapped on a drum. The electrically
charged ink stream is deflected by an electric field to produce dot-matrix patterns.
An electrostatic device places a negative charge on the paper, one complete row at a
time across the sheet. Then the paper is exposed to a positively charged toner. This
causes the toner to be attracted to the negatively charged areas, where it adheres
to produce the specified output. Another output technology is the electrothermal
printer. With these systems, heat is applied to a dot-matrix print head to output
patterns on heat-sensitive paper.

We can get limited color output on some impact printers by using different-
colored ribbons. Nonimpact devices use various techniques to combine three
different color pigments (cyan, magenta, and yellow) to produce a range of color
patterns. Laser and electrostatic devices deposit the three pigments on separate
passes; ink-jet methods shoot the three colors simultaneously on a single pass
along each print line.

Drafting layouts and other drawings are typically generated with ink-jet or
pen plotters. A pen plotter has one or more pens mounted on a carriage, or cross-
bar, that spans a sheet of paper. Pens with varying colors and widths are used to
produce a variety of shadings and line styles. Wet-ink, ballpoint, and felt-tip pens
are all possible choices for use with a pen plotter. Plotter paper can lie flat or it
can be rolled onto a drum or belt. Crossbars can be either movable or stationary,
while the pen moves back and forth along the bar. The paper is held in position
using clamps, a vacuum, or an electrostatic charge.

Computer Graphics Hardware

23

Computer Graphics Hardware

6 Graphics Networks
So far, we have mainly considered graphics applications on an isolated system
with a single user. However, multiuser environments and computer networks are
now common elements in many graphics applications. Various resources, such as
processors, printers, plotters, and data files, can be distributed on a network and
shared by multiple users.

A graphics monitor on a network is generally referred to as a graphics server,
or simply a server. Often, the monitor includes standard input devices such as a
keyboard and a mouse or trackball. In that case, the system can provide input, as
well as being an output server. The computer on the network that is executing a
graphics application program is called the client, and the output of the program is
displayed on a server. A workstation that includes processors, as well as a monitor
and input devices, can function as both a server and a client.

When operating on a network, a client computer transmits the instructions
for displaying a picture to the monitor (server). Typically, this is accomplished by
collecting the instructions into packets before transmission instead of sending the
individual graphics instructions one at a time over the network. Thus, graphics
software packages often contain commands that affect packet transmission, as
well as the commands for creating pictures.

7 Graphics on the Internet
A great deal of graphics development is now done on the global collection of
computer networks known as the Internet. Computers on the Internet commu-
nicate using transmission control protocol/internet protocol (TCP/IP). In addition,
the World Wide Web provides a hypertext system that allows users to locate and
view documents that can contain text, graphics, and audio. Resources, such as
graphics files, are identified by a uniform (or universal) resource locator (URL). Each
URL contains two parts: (1) the protocol for transferring the document, and (2)
the server that contains the document and, optionally, the location (directory)
on the server. For example, the URL http://www.siggraph.org/ indicates a docu-
ment that is to be transferred with the hypertext transfer protocol (http) and that
the server is www.siggraph.org, which is the home page of the Special Interest
Group in Graphics (SIGGRAPH) of the Association for Computing Machinery.
Another common type of URL begins with ftp://. This identifies a site that accepts
file transfer protocol (FTP) connections, through which programs or other files can
be downloaded.

Documents on the Internet can be constructed with the Hypertext Markup
Language (HTML). The development of HTML provided a simple method for
describing a document containing text, graphics, and references (hyperlinks)
to other documents. Although resources could be made available using HTML
and URL addressing, it was difficult originally to find information on the Inter-
net. Subsequently, the National Center for Supercomputing Applications (NCSA)
developed a “browser” called Mosaic, which made it easier for users to search for
Web resources. The Mosaic browser later evolved into the browser called Netscape
Navigator. In turn, Netscape Navigator inspired the creation of the Mozilla family
of browsers, whose most well-known member is, perhaps, Firefox.

HTML provides a simple method for developing graphics on the Internet,
but it has limited capabilities. Therefore, other languages have been developed
for Internet graphics applications.

24

8 Summary
In this chapter, we surveyed the major hardware and software features of
computer-graphics systems. Hardware components include video monitors,
hardcopy output devices, various kinds of input devices, and components for
interacting with virtual environments.

The predominant graphics display device is the raster refresh monitor, based
on television technology. A raster system uses a frame buffer to store the color
value for each screen position (pixel). Pictures are then painted onto the screen by
retrieving this information from the frame buffer (also called a refresh buffer) as the
electron beam in the CRT sweeps across each scan line from top to bottom. Older
vector displays construct pictures by drawing straight-line segments between
specified endpoint positions. Picture information is then stored as a set of line-
drawing instructions.

Many other video display devices are available. In particular, flat-panel dis-
play technology is developing at a rapid rate, and these devices are now used in a
variety of systems, including both desktop and laptop computers. Plasma panels
and liquid-crystal devices are two examples of flat-panel displays. Other dis-
play technologies include three-dimensional and stereoscopic-viewing systems.
Virtual-reality systems can include either a stereoscopic headset or a standard
video monitor.

For graphical input, we have a range of devices to choose from. Keyboards,
button boxes, and dials are used to input text, data values, or programming
options. The most popular “pointing” device is the mouse, but trackballs, space-
balls, joysticks, cursor-control keys, and thumbwheels are also used to position
the screen cursor. In virtual-reality environments, data gloves are commonly used.
Other input devices are image scanners, digitizers, touch panels, light pens, and
voice systems.

Hardcopy devices for graphics workstations include standard printers and
plotters, in addition to devices for producing slides, transparencies, and film out-
put. Printers produce hardcopy output using dot-matrix, laser, ink-jet, electro-
static, or electrothermal methods. Graphs and charts can be produced with an
ink-pen plotter or with a combination printer-plotter device.

REFERENCES
A general treatment of electronic displays is available in
Tannas (1985) and in Sherr (1993). Flat-panel devices are
discussed in Depp and Howard (1993). Additional infor-
mation on raster-graphics architecture can be found in
Foley et al. (1990). Three-dimensional and stereoscopic
displays are discussed in Johnson (1982) and in Grotch
(1983). Head-mounted displays and virtual-reality envi-
ronments are discussed in Chung et al. (1989).

EXERCISES
1 List the operating characteristics for the following

display technologies: raster refresh systems, vector
refresh systems, plasma panels, and LCDs.

2 List some applications appropriate for each of the
display technologies in the previous question.

3 Determine the resolution (pixels per centimeter) in
the x and y directions for the video monitor in use

on your system. Determine the aspect ratio, and
explain how relative proportions of objects can be
maintained on your system.

4 Consider three different raster systems with res-
olutions of 800 by 600, 1280 by 960, and 1680 by
1050. What size frame buffer (in bytes) is needed
for each of these systems to store 16 bits per pixel?
How much storage is required for each system if
32 bits per pixel are to be stored?

5 Suppose an RGB raster system is to be designed us-
ing an 8 inch by 10 inch screen with a resolution of
100 pixels per inch in each direction. If we want to
store 6 bits per pixel in the frame buffer, how much
storage (in bytes) do we need for the frame buffer?

6 How long would it take to load an 800 by 600
frame buffer with 16 bits per pixel, if 105 bits can be
transferred per second? How long would it take to

Computer Graphics Hardware

25

Computer Graphics Hardware

load a 32-bit-per-pixel frame buffer with a resolu-
tion of 1680 by 1050 using this same transfer rate?

7 Suppose we have a computer with 32 bits per word
and a transfer rate of 1 mip (one million instruc-
tions per second). How long would it take to fill the
frame buffer of a 300 dpi (dot per inch) laser printer
with a page size of 8.5 inches by 11 inches?

8 Consider two raster systems with resolutions of
800 by 600 and 1680 by 1050. How many pix-
els could be accessed per second in each of these
systems by a display controller that refreshes the
screen at a rate of 60 frames per second? What is
the access time per pixel in each system?

9 Suppose we have a video monitor with a display
area that measures 12 inches across and 9.6 inches
high. If the resolution is 1280 by 1024 and the
aspect ratio is 1, what is the diameter of each screen
point?

10 How much time is spent scanning across each row
of pixels during screen refresh on a raster system
with a resolution of 1680 by 1050 and a refresh rate
of 30 frames per second?

11 Consider a noninterlaced raster monitor with a res-
olution of n by m (m scan lines and n pixels per
scan line), a refresh rate of r frames per second,
a horizontal retrace time of thoriz, and a vertical
retrace time of t ert . What is the fraction of the to-
tal refresh time per frame spent in retrace of the
electron beam?

12 What is the fraction of the total refresh time per
frame spent in retrace of the electron beam for a
non-interlaced raster system with a resolution of
1680 by 1050, a refresh rate of 65 Hz, a horizon-
tal retrace time of 4 microseconds, and a vertical
retrace time of 400 microseconds?

13 Assuming that a certain full-color (24 bits per pixel)
RGB raster system has a 1024 by 1024 frame buffer,
how many distinct color choices (intensity levels)
would we have available? How many different col-
ors could we display at any one time?

14 Compare the advantages and disadvantages of a
three-dimensional monitor using a varifocal mir-
ror to those of a stereoscopic system.

15 List the different input and output components
that are typically used with virtual-reality systems.
Also, explain how users interact with a virtual
scene displayed with different output devices, such
as two-dimensional and stereoscopic monitors.

16 Explain how virtual-reality systems can be used in
design applications. What are some other applica-
tions for virtual-reality systems?

17 List some applications for large-screen displays.
18 Explain the differences between a general graph-

ics system designed for a programmer and one

designed for a specific application, such as archi-
tectural design.

IN MORE DEPTH
1

2 Find details about the graphical capabilities of the
graphics controller and the display device in your
system by looking up their specifications. Record
the following information:

What is the maximum resolution your graphics
controller is capable of rendering?
What is the maximum resolution of your dis-
play device?
What type of hardware does your graphics con-
troller contain?
What is the GPU’s clock speed?
How much of its own graphics memory does it
have?

If you have a relatively new system, it is unlikely
that you will be pushing the envelope of your
graphics hardware in your application develop-
ment for this text. However, knowing the capa-
bilities of your graphics system will provide you
with a sense of how much it will be able to handle.

In this course, you will design and build a graph-
ics application incrementally. You should have a
basic understanding of the types of applications
for which computer graphics are used. Try to for-
mulate a few ideas about one or more particular
applications you may be interested in developing
over the course of your studies. Keep in mind that
you will be asked to incorporate techniques cov-
ered in this text, as well as to show your

menting those concepts. As such, the appli-
cation should be simple enough that you can
realistically implement it in a reasonable amount of
time, but complex enough to afford the inclusion
of each of the relevant concepts in the text. One
obvious example is a video game of some sort in
which the user interacts with a virtual environment
that is initially displayed in two dimensions and
later in three dimensions. Some concepts to con-
sider would be two- and three-dimensional objects
of different forms (some simple, some moderately
complex with curved surfaces, etc.), complex shad-
ing of object surfaces, various lighting techniques,
and animation of some sort. Write a report with
at least three to four ideas that you will choose to
implement you acquire more knowledge of the
course material. Note that one type of application
may be more suited to demonstrate a given con-
cept than another.

understanding of alternative methods for imple-

26

C o l o r P l a t e 7
The 360◦ viewing screen in the NASA
airport control-tower simulator, called
the FutureFlight Central Facility.
(Courtesy of Silicon Graphics, Inc. and
NASA. © 2003 SGI. All rights
reserved.)

C o l o r P l a t e 8
A geophysical visualization presented
on a 25-foot semicircular screen,
which provides a 160◦ horizontal and
40◦ vertical field of view. (Courtesy of
Silicon Graphics, Inc., the Landmark
Graphics Corporation, and Trimension
Systems. © 2003 SGI. All rights
reserved.)

Computer Graphics Hardware
Color P lates

From Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson

27

This page intentionally left blank

Computer Graphics Software

1 Coordinate Representations

2 Graphics Functions

3 Software Standards

4 Other Graphics Packages

5 Introduction to OpenGL

6 Summary

T here are two broad classifications for computer-graphics

software: special-purpose packages and general program-

ming packages. Special-purpose packages are designed for

nonprogrammers who want to generate pictures, graphs, or charts

in some application area without worrying about the graphics pro-

cedures that might be needed to produce such displays. The inter-

face to a special-purpose package is typically a set of menus that

allow users to communicate with the programs in their own terms.

Examples of such applications include artists' painting programs and

various architectural, business, medical, and engineering CAD sys-

tems. By contrast, a general programming package provides a library

of graphics functions that can be used in a programming language

such as C, C++, Java, or Fortran. Basic functions in a typical graphics

library include those for specifying picture components (straight lines,

polygons, spheres, and other objects), setting color values, selecting

views of a scene, and applying rotations or other transformations.

Some examples of general graphics programming packages are

From Chapter of Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.

3
Pearson

29

Computer Graphics Software

GL (Graphics Library), OpenGL, VRML (Virtual-Reality Modeling Language), Java 2D, and

Java 3D. A set of graphics functions is often called a computer-graphics application
programming interface (CG API) because the library provides a software interface

between a programming language (such as C++) and the hardware. So when we write

an application program in C++, the graphics routines allow us to construct and display

a picture on an output device.

1 Coordinate Representations
To generate a picture using a programming package, we first need to give the
geometric descriptions of the objects that are to be displayed. These descriptions
determine the locations and shapes of the objects. For example, a box is specified
by the positions of its corners (vertices), and a sphere is defined by its center posi-
tion and radius. With few exceptions, general graphics packages require geomet-
ric descriptions to be specified in a standard, right-handed, Cartesian-coordinate
reference frame. If coordinate values for a picture are given in some other ref-
erence frame (spherical, hyperbolic, etc.), they must be converted to Cartesian
coordinates before they can be input to the graphics package. Some packages
that are designed for specialized applications may allow use of other coordi-
nate frames that are appropriate for those applications.

In general, several different Cartesian reference frames are used in the process
of constructing and displaying a scene. First, we can define the shapes of individ-
ual objects, such as trees or furniture, within a separate reference frame for each
object. These reference frames are called modeling coordinates, or sometimes
local coordinates or master coordinates. Once the individual object shapes have
been specified, we can construct (“model”) a scene by placing the objects into
appropriate locations within a scene reference frame called world coordinates.
This step involves the transformation of the individual modeling-coordinate
frames to specified positions and orientations within the world-coordinate frame.
As an example, we could construct a bicycle by defining each of its parts
(wheels, frame, seat, handlebars, gears, chain, pedals) in a separate modeling-
coordinate frame. Then, the component parts are fitted together in world coor-
dinates. If both bicycle wheels are the same size, we need to describe only one
wheel in a local-coordinate frame. Then the wheel description is fitted into the
world-coordinate bicycle description in two places. For scenes that are not too
complicated, object components can be set up directly within the overall world-
coordinate object structure, bypassing the modeling-coordinate and modeling-
transformation steps. Geometric descriptions in modeling coordinates and world
coordinates can be given in any convenient floating-point or integer values, with-
out regard for the constraints of a particular output device. For some scenes, we
might want to specify object geometries in fractions of a foot, while for other
applications we might want to use millimeters, or kilometers, or light-years.

After all parts of a scene have been specified, the overall world-coordinate
description is processed through various routines onto one or more output-device
reference frames for display. This process is called the viewing pipeline. World-
coordinate positions are first converted to viewing coordinates corresponding to the
view we want of a scene, based on the position and orientation of a hypothetical
camera. Then object locations are transformed to a two-dimensional (2D) projec-
tion of the scene, which corresponds to what we will see on the output device.
The scene is then stored in normalized coordinates, where each coordinate value
is in the range from −1 to 1 or in the range from 0 to 1, depending on the system.

30

World
Coordinates

Normalized
Coordinates

Video Monitor

Plotter

Other Output

Device
Coordinates

1

1

1

Viewing and
Projection Coordinates

Modeling
Coordinates

F I G U R E 1
The transformation sequence from modeling coordinates to device coordinates for a three-dimensional scene.
Object shapes can be individually defined in modeling-coordinate reference systems. Then the shapes are positioned
within the world-coordinate scene. Next, world-coordinate specifications are transformed through the viewing
pipeline to viewing and projection coordinates and then to normalized coordinates. At the final step, individual
device drivers transfer the normalized-coordinate representation of the scene to the output devices for display.

Normalized coordinates are also referred to as normalized device coordinates, since
using this representation makes a graphics package independent of the coordinate
range for any specific output device. We also need to identify visible surfaces and
eliminate picture parts outside the bounds for the view we want to show on the
display device. Finally, the picture is scan-converted into the refresh buffer of a
raster system for display. The coordinate systems for display devices are generally
called device coordinates, or screen coordinates in the case of a video monitor.
Often, both normalized coordinates and screen coordinates are specified in a left-
handed coordinate reference frame so that increasing positive distances from the
xy plane (the screen, or viewing plane) can be interpreted as being farther from
the viewing position.

Figure 1 briefly illustrates the sequence of coordinate transformations from
modeling coordinates to device coordinates for a display that is to contain a view
of two three-dimensional (3D) objects. An initial modeling-coordinate position
(xmc , ymc , zmc) in this illustration is transferred to world coordinates, then to view-
ing and projection coordinates, then to left-handed normalized coordinates, and
finally to a device-coordinate position (xdc , ydc) with the sequence:

(xmc , ymc , zmc) → (xwc , ywc , zwc) → (xvc , yvc , zvc) → (xpc , ypc , zpc)

→ (xnc , ync , znc) → (xdc , ydc)

Device coordinates (xdc , ydc) are integers within the range (0, 0) to (xmax, ymax) for
a particular output device. In addition to the two-dimensional positions (xdc , ydc)
on the viewing surface, depth information for each device-coordinate position is
stored for use in various visibility and surface-processing algorithms.

2 Graphics Functions
A general-purpose graphics package provides users with a variety of functions
for creating and manipulating pictures. These routines can be broadly classified

Computer Graphics Software

31

Computer Graphics Software

according to whether they deal with graphics output, input, attributes, transfor-
mations, viewing, subdividing pictures, or general control.

The basic building blocks for pictures are referred to as graphics output
primitives. They include character strings and geometric entities, such as points,
straight lines, curved lines, filled color areas (usually polygons), and shapes
defined with arrays of color points. In addition, some graphics packages pro-
vide functions for displaying more complex shapes such as spheres, cones, and
cylinders. Routines for generating output primitives provide the basic tools for
constructing pictures.

Attributes are properties of the output primitives; that is, an attribute
describes how a particular primitive is to be displayed. This includes color spec-
ifications, line styles, text styles, and area-filling patterns.

We can change the size, position, or orientation of an object within a scene
using geometric transformations. Some graphics packages provide an additional
set of functions for performing modeling transformations, which are used to con-
struct a scene where individual object descriptions are given in local coordinates.
Such packages usually provide a mechanism for describing complex objects (such
as an electrical circuit or a bicycle) with a tree (hierarchical) structure. Other pack-
ages simply provide the geometric-transformation routines and leave modeling
details to the programmer.

After a scene has been constructed, using the routines for specifying the object
shapes and their attributes, a graphics package projects a view of the picture onto
an output device. Viewing transformations are used to select a view of the scene,
the type of projection to be used, and the location on a video monitor where the
view is to be displayed. Other routines are available for managing the screen
display area by specifying its position, size, and structure. For three-dimensional
scenes, visible objects are identified and the lighting conditions are applied.

Interactive graphics applications use various kinds of input devices, including
a mouse, a tablet, and a joystick. Input functions are used to control and process
the data flow from these interactive devices.

Some graphics packages also provide routines for subdividing a picture
description into a named set of component parts. And other routines may be
available for manipulating these picture components in various ways.

Finally, a graphics package contains a number of housekeeping tasks, such as
clearing a screen display area to a selected color and initializing parameters. We
can lump the functions for carrying out these chores under the heading control
operations.

3 Software Standards
The primary goal of standardized graphics software is portability. When packages
are designed with standard graphics functions, software can be moved easily
from one hardware system to another and used in different implementations and
applications. Without standards, programs designed for one hardware system
often cannot be transferred to another system without extensive rewriting of the
programs.

International and national standards-planning organizations in many coun-
tries have cooperated in an effort to develop a generally accepted standard for
computer graphics. After considerable effort, this work on standards led to the
development of the Graphical Kernel System (GKS) in 1984. This system was
adopted as the first graphics software standard by the International Standards
Organization (ISO) and by various national standards organizations, including

32

the American National Standards Institute (ANSI). Although GKS was origi-
nally designed as a two-dimensional graphics package, a three-dimensional GKS
extension was soon developed. The second software standard to be developed
and approved by the standards organizations was Programmer’s Hierarchical
Interactive Graphics System (PHIGS), which is an extension of GKS. Increased
capabilities for hierarchical object modeling, color specifications, surface render-
ing, and picture manipulations are provided in PHIGS. Subsequently, an extension
of PHIGS, called PHIGS+, was developed to provide three-dimensional surface-
rendering capabilities not available in PHIGS.

As the GKS and PHIGS packages were being developed, the graphics work-
stations from Silicon Graphics, Inc. (SGI), became increasingly popular. These
workstations came with a set of routines called GL (Graphics Library), which
very soon became a widely used package in the graphics community. Thus,
GL became a de facto graphics standard. The GL routines were designed for
fast, real-time rendering, and soon this package was being extended to other
hardware systems. As a result, OpenGL was developed as a hardware-
independent version of GL in the early 1990s. This graphics package is
now maintained and updated by the OpenGL Architecture Review Board,
which is a consortium of representatives from many graphics companies and
organizations. The OpenGL library is specifically designed for efficient process-
ing of three-dimensional applications, but it can also handle two-dimensional
scene descriptions as a special case of three dimensions where all the z coordinate
values are 0.

Graphics functions in any package are typically defined as a set of specifica-
tions independent of any programming language. A language binding is then
defined for a particular high-level programming language. This binding gives
the syntax for accessing the various graphics functions from that language. Each
language binding is defined to make best use of the corresponding language capa-
bilities and to handle various syntax issues, such as data types, parameter passing,
and errors. Specifications for implementing a graphics package in a particular lan-
guage are set by the ISO. The OpenGL bindings for the C and C++ languages are
the same. Other OpenGL bindings are also available, such as those for Java and
Python.

Later in this book, we use the C/C++ binding for OpenGL as a framework
for discussing basic graphics concepts and the design and application of graphics
packages. Example programs in C++ illustrate applications of OpenGL and the
general algorithms for implementing graphics functions.

4 Other Graphics Packages
Many other computer-graphics programming libraries have been developed.
Some provide general graphics routines, and some are aimed at specific applica-
tions or particular aspects of computer graphics, such as animation, virtual reality,
or graphics on the Internet.

A package called Open Inventor furnishes a set of object-oriented routines for
describing a scene that is to be displayed with calls to OpenGL. The Virtual-Reality
Modeling Language (VRML), which began as a subset of Open Inventor, allows us
to set up three-dimensional models of virtual worlds on the Internet. We can
also construct pictures on the Web using graphics libraries developed for the Java
language. With Java 2D, we can create two-dimensional scenes within Java applets,
for example; or we can produce three-dimensional web displays with Java 3D.
With the RenderMan Interface from the Pixar Corporation, we can generate scenes

Computer Graphics Software

33

Computer Graphics Software

using a variety of lighting models. Finally, graphics libraries are often provided
in other types of systems, such as Mathematica, MatLab, and Maple.

5 Introduction to OpenGL
A basic library of functions is provided in OpenGL for specifying graphics prim-
itives, attributes, geometric transformations, viewing transformations, and many
other operations. As we noted in the last section, OpenGL is designed to be hard-
ware independent, so many operations, such as input and output routines, are
not included in the basic library. However, input and output routines and many
additional functions are available in auxiliary libraries that have been developed
for OpenGL programs.

Basic OpenGL Syntax
Function names in the OpenGL basic library (also called the OpenGL core
library) are prefixed with gl, and each component word within a function name
has its first letter capitalized. The following examples illustrate this naming
convention:

glBegin, glClear, glCopyPixels, glPolygonMode

Certain functions require that one (or more) of their arguments be assigned
a symbolic constant specifying, for instance, a parameter name, a value for a
parameter, or a particular mode. All such constants begin with the uppercase
letters GL. In addition, component words within a constant name are written in
capital letters, and the underscore () is used as a separator between all component
words in the name. The following are a few examples of the several hundred
symbolic constants available for use with OpenGL functions:

GL_2D, GL_RGB, GL_CCW, GL_POLYGON, GL_AMBIENT_AND_DIFFUSE

The OpenGL functions also expect specific data types. For example, an
OpenGL function parameter might expect a value that is specified as a 32-bit inte-
ger. But the size of an integer specification can be different on different machines.
To indicate a specific data type, OpenGL uses special built-in, data-type names,
such as

GLbyte, GLshort, GLint, GLfloat, GLdouble, GLboolean

Each data-type name begins with the capital letters GL, and the remainder of the
name is a standard data-type designation written in lowercase letters.

Some arguments of OpenGL functions can be assigned values using an array
that lists a set of data values. This is an option for specifying a list of values as a
pointer to an array, rather than specifying each element of the list explicitly as a
parameter argument. A typical example of the use of this option is in specifying
xyz coordinate values.

Related Libraries
In addition to the OpenGL basic (core) library, there are a number of associ-
ated libraries for handling special operations. The OpenGL Utility (GLU) pro-
vides routines for setting up viewing and projection matrices, describing complex
objects with line and polygon approximations, displaying quadrics and B-splines

34

using linear approximations, processing the surface-rendering operations, and
other complex tasks. Every OpenGL implementation includes the GLU library,
and all GLU function names start with the prefix glu. There is also an object-
oriented toolkit based on OpenGL, called Open Inventor, which provides rou-
tines and predefined object shapes for interactive three-dimensional applications.
This toolkit is written in C++.

To create a graphics display using OpenGL, we first need to set up a display
window on our video screen. This is simply the rectangular area of the screen
in which our picture will be displayed. We cannot create the display window
directly with the basic OpenGL functions since this library contains only device-
independent graphics functions, and window-management operations depend
on the computer we are using. However, there are several window-system libra-
ries that support OpenGL functions for a variety of machines. The OpenGL
Extension to the X Window System (GLX) provides a set of routines that are
prefixed with the letters glX. Apple systems can use the Apple GL (AGL) inter-
face for window-management operations. Function names for this library are
prefixed with agl. For Microsoft Windows systems, the WGL routines provide a
Windows-to-OpenGL interface. These routines are prefixed with the letters wgl.
The Presentation Manager to OpenGL (PGL) is an interface for the IBM OS/2,
which uses the prefix pgl for the library routines. The OpenGL Utility Toolkit
(GLUT) provides a library of functions for interacting with any screen-windowing
system. The GLUT library functions are prefixed with glut, and this library also
contains methods for describing and rendering quadric curves and surfaces.

Since GLUT is an interface to other device-specific window systems, we can
use it so that our programs will be device-independent. Information regarding the
latest version of GLUT and download procedures for the source code are available
at the following web site:

http://www.opengl.org/resources/libraries/glut/

Header Files
In all of our graphics programs, we will need to include the header file for the
OpenGL core library. For most applications we will also need GLU, and on many
systems we will need to include the header file for the window system. For
instance, with Microsoft Windows, the header file that accesses the WGL rou-
tines is windows.h. This header file must be listed before the OpenGL and GLU
header files because it contains macros needed by the Microsoft Windows version
of the OpenGL libraries. So the source file in this case would begin with

#include <windows.h>
#include <GL/gl.h>
#include <GL/glu.h>

However, if we use GLUT to handle the window-managing operations, we do not
need to include gl.h and glu.h because GLUT ensures that these will be inclu-
ded correctly. Thus, we can replace the header files for OpenGL and GLU with

#include <GL/glut.h>

(We could includegl.h andglu.h as well, but doing so would be redundant and
could affect program portability.) On some systems, the header files for OpenGL
and GLUT routines are found in different places in the filesystem. For instance,
on Apple OS X systems, the header file inclusion statement would be

#include <GLUT/glut.h>

Computer Graphics Software

35

Computer Graphics Software

In addition, we will often need to include header files that are required by the
C++ code. For example,

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

With the ISO/ANSI standard for C++, these header files are called cstdio, cst-
dlib, and cmath.

Display-Window Management Using GLUT
To get started, we can consider a simplified, minimal number of operations for
displaying a picture. Since we are using the OpenGL Utility Toolkit, our first step
is to initialize GLUT. This initialization function could also process any command-
line arguments, but we will not need to use these parameters for our first example
programs. We perform the GLUT initialization with the statement

glutInit (&argc, argv);

Next, we can state that a display window is to be created on the screen with
a given caption for the title bar. This is accomplished with the function

glutCreateWindow ("An Example OpenGL Program");

where the single argument for this function can be any character string that we
want to use for the display-window title.

Then we need to specify what the display window is to contain. For this,
we create a picture using OpenGL functions and pass the picture definition to
the GLUT routine glutDisplayFunc, which assigns our picture to the display
window. As an example, suppose we have the OpenGL code for describing a line
segment in a procedure called lineSegment. Then the following function call
passes the line-segment description to the display window:

glutDisplayFunc (lineSegment);

But the display window is not yet on the screen. We need one more GLUT
function to complete the window-processing operations. After execution of the
following statement, all display windows that we have created, including their
graphic content, are now activated:

glutMainLoop ();

This function must be the last one in our program. It displays the initial graphics
and puts the program into an infinite loop that checks for input from devices such
as a mouse or keyboard. Our first example will not be interactive, so the program
will just continue to display our picture until we close the display window. In
later chapters, we consider how we can modify our OpenGL programs to handle
interactive input.

Although the display window that we created will be in some default location
and size, we can set these parameters using additional GLUT functions. We use the
glutInitWindowPosition function to give an initial location for the upper-
left corner of the display window. This position is specified in integer screen

36

Display
Window

Video screen

An Example OpenGL Program

400

300

10050

F I G U R E 2
A 400 by 300 display window at position (50,
100) relative to the top-left corner of the video
display.

coordinates, whose origin is at the upper-left corner of the screen. For instance,
the following statement specifies that the upper-left corner of the display window
should be placed 50 pixels to the right of the left edge of the screen and 100 pixels
down from the top edge of the screen:

glutInitWindowPosition (50, 100);

Similarly, the glutInitWindowSize function is used to set the initial pixel
width and height of the display window. Thus, we specify a display window
with an initial width of 400 pixels and a height of 300 pixels (Fig. 2) with the
statement

glutInitWindowSize (400, 300);

After the display window is on the screen, we can reposition and resize it.
We can also set a number of other options for the display window, such as

buffering and a choice of color modes, with the glutInitDisplayMode func-
tion. Arguments for this routine are assigned symbolic GLUT constants. For exam-
ple, the following command specifies that a single refresh buffer is to be used for
the display window and that we want to use the color mode which uses red,
green, and blue (RGB) components to select color values:

glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);

The values of the constants passed to this function are combined using a logical or
operation. Actually, single buffering and RGB color mode are the default options.
But we will use the function now as a reminder that these are the options that
are set for our display. Later, we discuss color modes in more detail, as well as
other display options, such as double buffering for animation applications and
selecting parameters for viewing three-dimensional scenes.

A Complete OpenGL Program
There are still a few more tasks to perform before we have all the parts that we need
for a complete program. For the display window, we can choose a background
color. And we need to construct a procedure that contains the appropriate OpenGL
functions for the picture that we want to display.

Computer Graphics Software

37

Computer Graphics Software

Using RGB color values, we set the background color for the display window
to be white, as in Figure 2, with the OpenGL function:

glClearColor (1.0, 1.0, 1.0, 0.0);

The first three arguments in this function set the red, green, and blue component
colors to the value 1.0, giving us a white background color for the display window.
If, instead of 1.0, we set each of the component colors to 0.0, we would get a
black background. And if all three of these components were set to the same
intermediate value between 0.0 and 1.0, we would get some shade of gray. The
fourth parameter in the glClearColor function is called the alpha value for the
specified color. One use for the alpha value is as a “blending” parameter. When we
activate the OpenGL blending operations, alpha values can be used to determine
the resulting color for two overlapping objects. An alpha value of 0.0 indicates a
totally transparent object, and an alpha value of 1.0 indicates an opaque object.
Blending operations will not be used for a while, so the value of alpha is irrelevant
to our early example programs. For now, we will simply set alpha to 0.0.

Although the glClearColor command assigns a color to the display win-
dow, it does not put the display window on the screen. To get the assigned window
color displayed, we need to invoke the following OpenGL function:

glClear (GL_COLOR_BUFFER_BIT);

The argument GL COLOR BUFFER BIT is an OpenGL symbolic constant spec-
ifying that it is the bit values in the color buffer (refresh buffer) that are to be
set to the values indicated in the glClearColor function. (OpenGL has several
different kinds of buffers that can be manipulated.

In addition to setting the background color for the display window, we can
choose a variety of color schemes for the objects we want to display in a scene. For
our initial programming example, we will simply set the object color to be a dark
green

glColor3f (0.0, 0.4, 0.2);

The suffix 3f on the glColor function indicates that we are specifying the three
RGB color components using floating-point (f) values. This function requires that
the values be in the range from 0.0 to 1.0, and we have set red = 0.0, green = 0.4,
and blue = 0.2.

For our first program, we simply display a two-dimensional line segment.
To do this, we need to tell OpenGL how we want to “project” our picture onto
the display window because generating a two-dimensional picture is treated by
OpenGL as a special case of three-dimensional viewing. So, although we only
want to produce a very simple two-dimensional line, OpenGL processes our
picture through the full three-dimensional viewing operations. We can set the
projection type (mode) and other viewing parameters that we need with the fol-
lowing two functions:

glMatrixMode (GL_PROJECTION);
gluOrtho2D (0.0, 200.0, 0.0, 150.0);

This specifies that an orthogonal projection is to be used to map the contents
of a two-dimensional rectangular area of world coordinates to the screen, and
that the x-coordinate values within this rectangle range from 0.0 to 200.0 with
y-coordinate values ranging from 0.0 to 150.0. Whatever objects we define

:

38

within this world-coordinate rectangle will be shown within the display win-
dow. Anything outside this coordinate range will not be displayed. Therefore,
the GLU function gluOrtho2D defines the coordinate reference frame within the
display window to be (0.0, 0.0) at the lower-left corner of the display window and
(200.0, 150.0) at the upper-right window corner. Since we are only describing
a two-dimensional object, the orthogonal projection has no other effect than to
“paste” our picture into the display window that we defined earlier. For now, we
will use a world-coordinate rectangle with the same aspect ratio as the display
window, so that there is no distortion of our picture. Later, we will consider how
we can maintain an aspect ratio that does not depend upon the display-window
specification.

Finally, we need to call the appropriate OpenGL routines to create our line seg-
ment. The following code defines a two-dimensional, straight-line segment with
integer, Cartesian endpoint coordinates (180, 15) and (10, 145).

glBegin (GL_LINES);
glVertex2i (180, 15);
glVertex2i (10, 145);

glEnd ();

Now we are ready to put all the pieces together. The following OpenGL
program is organized into three functions. We place all initializations and related
one-time parameter settings in function init. Our geometric description of the
“picture” that we want to display is in function lineSegment, which is the
function that will be referenced by the GLUT function glutDisplayFunc. And
themain function contains the GLUT functions for setting up the display window
and getting our line segment onto the screen. Figure 3 shows the display window
and line segment generated by this program.

F I G U R E 3
The display window and line segment
produced by the example program.

Computer Graphics Software

39

Computer Graphics Software

#include <GL/glut.h> // (or others, depending on the system in use)

void init (void)
{

glClearColor (1.0, 1.0, 1.0, 0.0); // Set display-window color to white.

glMatrixMode (GL_PROJECTION); // Set projection parameters.
gluOrtho2D (0.0, 200.0, 0.0, 150.0);

}

void lineSegment (void)
{

glClear (GL_COLOR_BUFFER_BIT); // Clear display window.

glColor3f (0.0, 0.4, 0.2); // Set line segment color to green.
glBegin (GL_LINES);

glVertex2i (180, 15); // Specify line-segment geometry.
glVertex2i (10, 145);

glEnd ();

glFlush (); // Process all OpenGL routines as quickly as possible.
}

void main (int argc, char** argv)
{

glutInit (&argc, argv); // Initialize GLUT.
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB); // Set display mode.
glutInitWindowPosition (50, 100); // Set top-left display-window position.
glutInitWindowSize (400, 300); // Set display-window width and height.
glutCreateWindow ("An Example OpenGL Program"); // Create display window.

init (); // Execute initialization procedure.
glutDisplayFunc (lineSegment); // Send graphics to display window.
glutMainLoop (); // Display everything and wait.

}

At the end of procedure lineSegment is a function, glFlush, that we have
not yet discussed. This is simply a routine to force execution of our OpenGL
functions, which are stored by computer systems in buffers in different loca-
tions, depending on how OpenGL is implemented. On a busy network, for exam-
ple, there could be delays in processing some buffers. But the call to glFlush
forces all such buffers to be emptied and the OpenGL functions to be pro-
cessed.

The procedure lineSegment that we set up to describe our picture is
referred to as a display callback function. And this procedure is described as
being “registered” by glutDisplayFunc as the routine to invoke when-
ever the display window might need to be redisplayed. This can occur, for
example, if the display window is moved. In subsequent chapters, we will
look at other types of callback functions and the associated GLUT routines
that we use to register them. In general, OpenGL programs are organized
as a set of callback functions that are to be invoked when certain actions
occur.

40

T A B L E 1

OpenGL Error Codes

Symbolic Constant Meaning

GL INVALID ENUM A GLenum argument was out of range
GL INVALID VALUE A numeric argument was out of range
GL INVALID OPERATION An operation was illegal in the current OpenGL state
GL STACK OVERFLOW The command would cause a stack overflow
GL STACK UNDERFLOW The command would cause a stack underflow
GL OUT OF MEMORY There was not enough memory to execute a command

Error Handling in OpenGL
Many of the features of the OpenGL API are extremely powerful. Unfortunately,
they can also be very confusing, particularly for programmers who are just learn-
ing to use them. Although we would like to believe otherwise, it’s quite possible
(if not likely) that our OpenGL programs may contain errors. Accordingly, it is
worth spending a few moments discussing error handling in OpenGL programs.

The OpenGL and GLU libraries have a relatively simple method of recording
errors. When OpenGL detects an error in a call to a base library routine or a
GLU routine, it records an error code internally, and the routine which caused
the error is ignored (so that it has no effect on either the internal OpenGL state or
the contents of the frame buffer). However, OpenGL only records one error code
at a time. Once an error occurs, no other error code will be recorded until your
program explicitly queries the OpenGL error state:

GLenum code;

code = glGetError ();

This call returns the current error code and clears the internal error flag. If the
returned value is equal to the OpenGL symbolic constant GL NO ERROR, every-
thing is fine. Any other return value indicates that a problem has occurred.

The base OpenGL library defines a number of symbolic constants which
represent different error conditions; the ones which occur most often are listed
in Table 1. The GLU library also defines a number of error codes, but
most of them have almost meaningless names such as GLU NURBS ERROR1,
GLU NURBS ERROR2, and so on. (These are not actually meaningless names, but
their meaning won’t become clear until we discuss more advanced concepts in
later chapters.)

These symbolic constants are helpful, but printing them out directly is not
particularly informative. Fortunately, the GLU library contains a function that
returns a descriptive string for each of the GLU and GL errors. To use it, we first
retrieve the current error code, and then pass it as a parameter to this function.
The return value can be printed out using, for example, the C standard library
fprintf function:

#include <stdio.h>
GLenum code;

Computer Graphics Software

41

Computer Graphics Software

const GLubyte *string;

code = glGetError ();
string = gluErrorString (code);
fprintf(stderr, "OpenGL error: %s\n", string);

The value returned by gluErrorString points to a string located inside the
GLU library. It is not a dynamically-allocated string, so it must not be deallocated
by our program. It also must not be modified by our program (hence the const
modifier on the declaration of string).

We can easily encapsulate these function calls into a general error-reporting
function in our program. The following function will retrieve the current error
code, print the descriptive error string, and return the code to the calling routine:

#include <stdio.h>

GLenum errorCheck ()
{

GLenum code;
const GLubyte *string;

code = glGetError ();
if (code != GL_NO_ERROR)
{

string = gluErrorString (code);
fprintf(stderr, "OpenGL error: %s\n", string);

}

return code;
}

We encourage you to use a function like this in the OpenGL programs you develop.
It is usually a good idea to check for errors at least once in your display callback
routine, and more frequently if you are using OpenGL features you have never
used before, or if you are seeing unusual or unexpected results in the image your
program produces.

6 Summary
In this chapter, we surveyed the major features of graphics software systems.
Some software systems, such as CAD packages and paint programs, are designed
for particular applications. Other software systems provide a library of general
graphics routines that can be used within a programming language such as C++
to generate pictures for any application.

Standard graphics-programming packages developed and approved through
ISO and ANSI are GKS, 3D GKS, PHIGS, and PHIGS+. Other packages that have
evolved into standards are GL and OpenGL. Many other graphics libraries are
available for use in a programming language, including Open Inventor, VRML,
RenderMan, Java 2D, and Java 3D. Other systems, such as Mathematica, MatLab,
and Maple, often provide a set of graphics-programming functions.

Normally, graphics-programming packages require coordinate specifications
to be given in Cartesian reference frames. Each object for a scene can be defined

42

in a separate modeling Cartesian-coordinate system, which is then mapped to
a world-coordinate location to construct the scene. From world coordinates,
three-dimensional objects are projected to a two-dimensional plane, converted
to normalized device coordinates, and then transformed to the final display-
device coordinates. The transformations from modeling coordinates to normal-
ized device coordinates are independent of particular output devices that might
be used in an application. Device drivers are then used to convert normalized
coordinates to integer device coordinates.

Functions that are available in graphics programming packages can be
divided into the following categories: graphics output primitives, attributes, geo-
metric and modeling transformations, viewing transformations, input functions,
picture-structuring operations, and control operations.

The OpenGL system consists of a device-independent set of routines (called
the core library), the utility library (GLU), and the utility toolkit (GLUT). In the
auxiliary set of routines provided by GLU, functions are available for generat-
ing complex objects, for parameter specifications in two-dimensional viewing
applications, for dealing with surface-rendering operations, and for performing
some other supporting tasks. In GLUT, we have an extensive set of functions for
managing display windows, interacting with screen-window systems, and for
generating some three-dimensional shapes. We can use GLUT to interface with
any computer system, or we can use GLX, Apple GL, WGL, or another system-
specific software package.

REFERENCES
Standard sources for information on OpenGL are Woo,
et al. (1999), Shreiner (2000), and Shreiner (2010). Open
Inventor is explored in Wernecke (1994). McCarthy and
Descartes (1998) can be consulted for discussions of
VRML. Presentations on RenderMan can be found in
Upstill (1989) and Apodaca and Gritz (2000). Examples of
graphics programming in Java 2D are given in Knudsen
(1999), Hardy (2000), and Horstmann and Cornell (2001).
Graphics programming using Java 3D is explored in
Sowizral, et al. (2000); Palmer (2001); Selman (2002); and
Walsh and Gehringer (2002).

For information on PHIGS and PHIGS+, see
Howard, et al. (1991); Hopgood and Duce (1991);
Gaskins (1992); and Blake (1993). Information on the
two-dimensional GKS standard and on the evolution
of graphics standards is available in Hopgood, et al.
(1983). An additional reference for GKS is Enderle, et al.
(1984).

EXERCISES
1 What command could we use to set the color of an

OpenGL display window to dark gray? What com-
mand would we use to set the color of the display
window to white?

2 List the statements needed to set up an OpenGL
display window whose lower-left corner is at pixel
position (75, 200) and has a window width of 200
pixels and a height of 150 pixels.

3 List the OpenGL statements needed to draw a line
segment from the upper-right corner of a display
window of width 150 and height 250 to the lower-
left corner of the window.

4 Suppose we have written a function called rect-
anglewhose purpose is to draw a rectangle in the
middle of a given display window. What OpenGL
statement would be needed to make sure the rect-
angle is drawn correctly each time the display win-
dow needs to be repainted?

5 Explain what is meant by the term “OpenGL dis-
play callback function”.

6 Explain the difference between modeling coordi-
nates and world coordinates.

7 Explain what normalized coordinates are and why
they are useful for graphics software packages.

IN MORE DEPTH
1

tify and describe the objects that you will be
manipulating graphically in the application.
Explain desirable physical and visual proper-
ties of these objects in detail so that you
can concretely define what attributes you will
develop for them in later exercises. Consider the
following:

Computer Graphics Software

Develope a few application ideas and iden-

43

Computer Graphics Software

• Are the objects complex in shape or texture?
• Can the objects be approximated fairly well by

simpler shapes?
• Are some of the objects comprised of fairly com-

plex curved surfaces?
• Do the objects lend themselves to being repre-

sented two-dimensionally at first, even if unre-
alistically?

• Can the objects be represented as a hierarchi-
cally organized group of smaller objects, or
parts?

• Will the objects change position and orientation
dynamically in response to user input?

• Will the lighting conditions change in the appli-
cation, and do the object appearances change
under these varying conditions?

If all of the objects in your application yield a “no”
answer to any of these questions, consider modify-
ing the application or your design and implemen-
tation approach so that such properties are present
in at least one of the objects. Alternatively, come
up with two or more applications so that at least
one of them contains objects that satisfy each of

these properties. Draw a rough specification, using
visual diagrams and/or text, listing the proper-
ties of the objects in your application. You will use
and modify this specification as you continue to
develop your application.

2 You will be developing your application using the
OpenGL API. In order to do this, you will need
to have a working programming environment in
which you can edit, compile and run OpenGL pro-
grams. For this exercise, you should go through
the necessary steps to get this environment up
and running on your machine. Once you have the
environment set up, create a new project with the
source code given in the example in this chap-
ter that draws a single line in the display win-
dow. Make sure you can compile and run this
program. Information about getting an OpenGL
environment up and running on your system
can be found at http://www.opengl.org/ and
http://www.opengl.org/wiki/Getting started.
Make sure that you obtain all of the necessary
libraries, including the GLU and GLUT libraries.
The examples in this text are all written in C++.
Follow your instructor’s guidelines on the use of
other languages (provided OpenGL bindings can
be obtained for them).

44

Graphics Output Primitives

1 Coordinate Reference Frames

2 Specifying a Two-Dimensional
World-Coordinate Reference Frame
in OpenGL

3 OpenGL Point Functions

4 OpenGL Line Functions

5 OpenGL Curve Functions

6 Fill-Area Primitives

7 Polygon Fill Areas

8 OpenGL Polygon Fill-Area Functions

9 OpenGL Vertex Arrays

10 Pixel-Array Primitives

11 OpenGL Pixel-Array Functions

12 Character Primitives

13 OpenGL Character Functions

14 Picture Partitioning

15 OpenGL Display Lists

16 OpenGL Display-Window Reshape
Function

17 Summary
A general software package for graphics applications, some-

times referred to as a computer-graphics application pro-

gramming interface (CG API), provides a library of functions

that we can use within a programming language such as C++ to cre-

From Chapter 4 of Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Pearson Prentice Hall. All rights reserved.

ate pictures. The set of library functions can be subdivided into several

categories. One of the first things we need to do when creating a pic-

ture is to describe the component parts of the scene to be displayed.

Picture components could be trees and terrain, furniture and walls,

storefronts and street scenes, automobiles and billboards, atoms and

molecules, or stars and galaxies. For each type of scene, we need to

describe the structure of the individual objects and their coordinate loca-

tions within the scene. Those functions in a graphics package that we

use to describe the various picture components are called the graphics
output primitives, or simply primitives. The output primitives describ-

ing the geometry of objects are typically referred to as geometric

primitives. Point positions and straight-line segments are the simplest

45

geometric primitives. Additional geometric primitives that can be available in a graphics

package include circles and other conic sections, quadric surfaces, spline curves and sur-

faces, and polygon color areas. Also, most graphics systems provide some functions for

displaying character strings. After the geometry of a picture has been specified within

a selected coordinate reference frame, the output primitives are projected to a two-

dimensional plane, corresponding to the display area of an output device, and scan con-

verted into integer pixel positions within the frame buffer.

In this chapter, we introduce the output primitives available in OpenGL, and discuss

their use.

1 Coordinate Reference Frames
To describe a picture, we first decide upon a convenient Cartesian coordinate
system, called the world-coordinate reference frame, which could be either two-
dimensional or three-dimensional. We then describe the objects in our picture by
giving their geometric specifications in terms of positions in world coordinates.
For instance, we define a straight-line segment with two endpoint positions, and
a polygon is specified with a set of positions for its vertices. These coordinate
positions are stored in the scene description along with other information about
the objects, such as their color and their coordinate extents, which are the mini-
mum and maximum x, y, and z values for each object. A set of coordinate extents
is also described as a bounding box for an object. For a two-dimensional fig-
ure, the coordinate extents are sometimes called an object’s bounding rectangle.
Objects are then displayed by passing the scene information to the viewing rou-
tines, which identify visible surfaces and ultimately map the objects to positions
on the video monitor. The scan-conversion process stores information about the
scene, such as color values, at the appropriate locations in the frame buffer, and
the objects in the scene are displayed on the output device.

x

y

0

0

1 2 3 4 5

1

2

3

4

5

F I G U R E 1
Pixel positions referenced with respect
to the lower-left corner of a screen
area.

Screen Coordinates
Locations on a video monitor are referenced in integer screen coordinates, which
correspond to the pixel positions in the frame buffer. Pixel coordinate values give
the scan line number (the y value) and the column number (the x value along a
scan line). Hardware processes, such as screen refreshing, typically address pixel
positions with respect to the top-left corner of the screen. Scan lines are then
referenced from 0, at the top of the screen, to some integer value, ymax, at the
bottom of the screen, and pixel positions along each scan line are numbered from
0 to xmax, left to right. However, with software commands, we can set up any
convenient reference frame for screen positions. For example, we could specify
an integer range for screen positions with the coordinate origin at the lower-left
of a screen area (Figure 1), or we could use noninteger Cartesian values for a
picture description. The coordinate values we use to describe the geometry of a
scene are then converted by the viewing routines to integer pixel positions within
the frame buffer.

Scan-line algorithms for the graphics primitives use the defining coordinate
descriptions to determine the locations of pixels that are to be displayed. For

Graphics Output Primitives

46

example, given the endpoint coordinates for a line segment, a display algorithm
must calculate the positions for those pixels that lie along the line path between
the endpoints. Since a pixel position occupies a finite area of the screen, the
finite size of a pixel must be taken into account by the implementation algo-
rithms. For the present, we assume that each integer screen position references
the center of a pixel area.

Once pixel positions have been identified for an object, the appropriate color
values must be stored in the frame buffer. For this purpose, we will assume that
we have available a low-level procedure of the form

setPixel (x, y);

This procedure stores the current color setting into the frame buffer at integer
position (x, y), relative to the selected position of the screen-coordinate origin. We
sometimes also will want to be able to retrieve the current frame-buffer setting for
a pixel location. So we will assume that we have the following low-level function
for obtaining a frame-buffer color value:

getPixel (x, y, color);

In this function, parameter color receives an integer value corresponding to the
combined red, green, and blue (RGB) bit codes stored for the specified pixel at
position (x, y).

Although we need only specify color values at (x, y) positions for a two-
dimensional picture, additional screen-coordinate information is needed for
three-dimensional scenes. In this case, screen coordinates are stored as three-
dimensional values, where the third dimension references the depth of object
positions relative to a viewing position. For a two-dimensional scene, all depth
values are 0.

Absolute and Relative Coordinate Specifications
So far, the coordinate references that we have discussed are stated as absolute
coordinate values. This means that the values specified are the actual positions
within the coordinate system in use.

However, some graphics packages also allow positions to be specified
using relative coordinates. This method is useful for various graphics applica-
tions, such as producing drawings with pen plotters, artist’s drawing and painting
systems, and graphics packages for publishing and printing applications. Taking
this approach, we can specify a coordinate position as an offset from the last
position that was referenced (called the current position). For example, if loca-
tion (3, 8) is the last position that has been referenced in an application program,
a relative coordinate specification of (2, −1) corresponds to an absolute position
of (5, 7). An additional function is then used to set a current position before any
coordinates for primitive functions are specified. To describe an object, such as a
series of connected line segments, we then need to give only a sequence of relative
coordinates (offsets), once a starting position has been established. Options can be
provided in a graphics system to allow the specification of locations using either
relative or absolute coordinates. In the following discussions, we will assume
that all coordinates are specified as absolute references unless explicitly stated
otherwise.

Graphics Output Primitives

47

2 Specifying A Two-Dimensional
World-Coordinate Reference Frame
in OpenGL

glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
gluOrtho2D (xmin, xmax, ymin, ymax);

The display window will then be referenced by coordinates (xmin, ymin) at the
lower-left corner and by coordinates (xmax, ymax) at the upper-right corner, as
shown in Figure 2.

We can then designate one or more graphics primitives for display using the
coordinate reference specified in the gluOrtho2D statement. If the coordinate
extents of a primitive are within the coordinate range of the display window, all
of the primitive will be displayed. Otherwise, only those parts of the primitive
within the display-window coordinate limits will be shown. Also, when we set up
the geometry describing a picture, all positions for the OpenGL primitives must
be given in absolute coordinates, with respect to the reference frame defined in
the gluOrtho2D function.

F I G U R E 2
World-coordinate limits for a display
window, as specified in the
glOrtho2D function.

Video Screen

Display
Window

ymax

xmax

xmin

ymin

Graphics Output Primitives

The gluOrtho2D command is a function we can use to set up any two-
dimensional Cartesian reference frame. The arguments for this function are the
four values defining the x and y coordinate limits for the picture we want to dis-
play. Since the gluOrtho2D function specifies an orthogonal projection, we
need also to be sure that the coordinate values are placed in the OpenGL projec-
tion matrix. In addition, we could assign the identity matrix as the projection
matrix before defining the world-coordinate range. This would ensure that the
coordinate values were not accumulated with any values we may have previously
set for the projection matrix. Thus, for our initial two-dimensional examples, we
can define the coordinate frame for the screen display window with the follow-
ing statements:

48

3 OpenGL Point Functions
To specify the geometry of a point, we simply give a coordinate position in the
world reference frame. Then this coordinate position, along with other geometric
descriptions we may have in our scene, is passed to the viewing routines. Unless
we specify other attribute values, OpenGL primitives are displayed with a default
size and color. The default color for primitives is white, and the default point size
is equal to the size of a single screen pixel.

We use the following OpenGL function to state the coordinate values for a
single position:

glVertex* ();

where the asterisk (*) indicates that suffix codes are required for this function.
These suffix codes are used to identify the spatial dimension, the numerical data
type to be used for the coordinate values, and a possible vector form for the
coordinate specification. Calls to glVertex functions must be placed between a
glBegin function and a glEnd function. The argument of the glBegin function
is used to identify the kind of output primitive that is to be displayed, and glEnd
takes no arguments. For point plotting, the argument of the glBegin function is
the symbolic constant GL POINTS. Thus, the form for an OpenGL specification
of a point position is

glBegin (GL_POINTS);
glVertex* ();

glEnd ();

Although the term vertex strictly refers to a “corner” point of a polygon, the
point of intersection of the sides of an angle, a point of intersection of an
ellipse with its major axis, or other similar coordinate positions on geometric
structures, the glVertex function is used in OpenGL to specify coordinates for
any point position. In this way, a single function is used for point, line, and poly-
gon specifications—and, most often, polygon patches are used to describe the
objects in a scene.

Coordinate positions in OpenGL can be given in two, three, or four dimen-
sions. We use a suffix value of 2, 3, or 4 on the glVertex function to indi-
cate the dimensionality of a coordinate position. A four-dimensional specifica-
tion indicates a homogeneous-coordinate representation, where the homogeneous
parameter h (the fourth coordinate) is a scaling factor for the Cartesian-coordinate
values. Homogeneous-coordinate representations are useful for expressing

We also need to state which data type is to be used for the numerical-
value specifications of the coordinates. This is accomplished with a second
suffix code on the glVertex function. Suffix codes for specifying a numeri-
cal data type are i (integer), s (short), f (float), and d (double). Finally, the
coordinate values can be listed explicitly in the glVertex function, or a sin-
gle argument can be used that references a coordinate position as an array. If we
use an array specification for a coordinate position, we need to append v (for
“vector”) as a third suffix code.

Graphics Output Primitives

transformation operations in matrix form. Because OpenGL treats two-dimen-
sions as a special case of three dimensions, any (x, y) coordinate specification is
equivalent to a three-dimensional specification of (x, y, 0). Furthermore, OpenGL
represents vertices internally in four dimensions, so each of these specifications
are equivalent to the four-dimensional specification (x, y, 0, 1).

49

F I G U R E 3
Display of three point positions generated with
glBegin (GL POINTS). x

y

200

50 100 150

100

50

150

In the following example, three equally spaced points are plotted along a two-
dimensional, straight-line path with a slope of 2 (see Figure 3). Coordinates are
given as integer pairs:

glBegin (GL_POINTS);
glVertex2i (50, 100);
glVertex2i (75, 150);
glVertex2i (100, 200);

glEnd ();

Alternatively, we could specify the coordinate values for the preceding points in
arrays such as

int point1 [] = {50, 100};
int point2 [] = {75, 150};
int point3 [] = {100, 200};

and call the OpenGL functions for plotting the three points as

glBegin (GL_POINTS);
glVertex2iv (point1);
glVertex2iv (point2);
glVertex2iv (point3);

glEnd ();

In addition, here is an example of specifying two point positions in a three-
dimensional world reference frame. In this case, we give the coordinates as
explicit floating-point values:

glBegin (GL_POINTS);
glVertex3f (-78.05, 909.72, 14.60);
glVertex3f (261.91, -5200.67, 188.33);

glEnd ();

We could also define a C++ class or structure (struct) for specifying point
positions in various dimensions. For example,

class wcPt2D {
public:

GLfloat x, y;
};

Graphics Output Primitives

50

Using this class definition, we could specify a two-dimensional, world-coordinate
point position with the statements

wcPt2D pointPos;

pointPos.x = 120.75;
pointPos.y = 45.30;
glBegin (GL_POINTS);

glVertex2f (pointPos.x, pointPos.y);
glEnd ();

Also, we can use the OpenGL point-plotting functions within a C++ procedure
to implement the setPixel command.

4 OpenGL Line Functions
Graphics packages typically provide a function for specifying one or more
straight-line segments, where each line segment is defined by two endpoint
coordinate positions. In OpenGL, we select a single endpoint coordinate position
using the glVertex function, just as we did for a point position. And we enclose
a list of glVertex functions between the glBegin/glEnd pair. But now we use
a symbolic constant as the argument for the glBegin function that interprets a
list of positions as the endpoint coordinates for line segments. There are three
symbolic constants in OpenGL that we can use to specify how a list of endpoint
positions should be connected to form a set of straight-line segments. By default,
each symbolic constant displays solid, white lines.

A set of straight-line segments between each successive pair of endpoints in a
list is generated using the primitive line constant GL LINES. In general, this will
result in a set of unconnected lines unless some coordinate positions are repeated,
because OpenGL considers lines to be connected only if they share a vertex; lines
that cross but do not share a vertex are still considered to be unconnected. Nothing
is displayed if only one endpoint is specified, and the last endpoint is not processed
if the number of endpoints listed is odd. For example, if we have five coordinate
positions, labeled p1 through p5, and each is represented as a two-dimensional
array, then the following code could generate the display shown in Figure 4(a):

glBegin (GL_LINES);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);

glEnd ();

Thus, we obtain one line segment between the first and second coordinate
positions and another line segment between the third and fourth positions. In
this case, the number of specified endpoints is odd, so the last coordinate position
is ignored.

With the OpenGL primitive constantGL LINE STRIP, we obtain a polyline.
In this case, the display is a sequence of connected line segments between the first
endpoint in the list and the last endpoint. The first line segment in the polyline is
displayed between the first endpoint and the second endpoint; the second line
segment is between the second and third endpoints; and so forth, up to the last line
endpoint. Nothing is displayed if we do not list at least two coordinate positions.

Graphics Output Primitives

51

p3

p1

(c)

p4p2

p5

p3

p1

(b)

p4p2

p5

p3

p1

(a)

p4p2

F I G U R E 4
Line segments that can be displayed in OpenGL using a list of five endpoint coordinates. (a) An unconnected set of
lines generated with the primitive line constant GL LINES. (b) A polyline generated with
GL LINE STRIP. (c) A closed polyline generated with GL LINE LOOP.

Using the same five coordinate positions as in the previous example, we obtain
the display in Figure 4(b) with the code

glBegin (GL_LINE_STRIP);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);

glEnd ();

The third OpenGL line primitive isGL LINE LOOP, which produces a closed
polyline. Lines are drawn as with GL LINE STRIP, but an additional line is
drawn to connect the last coordinate position and the first coordinate position.
Figure 4(c) shows the display of our endpoint list when we select this line option,
using the code

glBegin (GL_LINE_LOOP);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);

glEnd ();

As noted earlier, picture components are described in a world-coordinate
reference frame that is eventually mapped to the coordinate reference for the
output device. Then the geometric information about the picture is scan-converted
to pixel positions.

5 OpenGL Curve Functions
Routines for generating basic curves, such as circles and ellipses, are not in-
cluded as primitive functions in the OpenGL core library. But this library does
contain functions for displaying Bézier splines, which are polynomials that are
defined with a discrete point set. And the OpenGL Utility (GLU) library has rou-
tines for three-dimensional quadrics, such as spheres and cylinders, as well as

Graphics Output Primitives

52

(a) (b)

(c)

F I G U R E 5
A circular arc approximated with
(a) three straight-line segments,
(b) six line segments, and
(c) twelve line segments.

routines for producing rational B-splines, which are a general class of splines
that include the simpler Bézier curves. Using rational B-splines, we can display
circles, ellipses, and other two-dimensional quadrics. In addition, there are rou-
tines in the OpenGL Utility Toolkit (GLUT) that we can use to display some
three-dimensional quadrics, such as spheres and cones, and some other shapes.
However, all these routines are more involved than the basic primitives we in-
troduce in this chapter.

Another method we can use to generate a display of a simple curve is to
approximate it using a polyline. We just need to locate a set of points along the
curve path and connect the points with straight-line segments. The more line
sections we include in the polyline, the smoother the appearance of the curve. As
an example, Figure 5 illustrates various polyline displays that could be used for
a circle segment.

A third alternative is to write our own curve-generation functions based on the
algorithms presented in following chapters.

6 Fill-Area Primitives
Another useful construct, besides points, straight-line segments, and curves, for
describing components of a picture is an area that is filled with some solid color or
pattern. A picture component of this type is typically referred to as a fill area or a
filled area. Most often, fill areas are used to describe surfaces of solid objects, but
they are also useful in a variety of other applications. Also, fill regions are usually
planar surfaces, mainly polygons. But, in general, there are many possible shapes
for a region in a picture that we might wish to fill with a color option. Figure 6
illustrates a few possible fill-area shapes. For the present, we assume that all
fill areas are to be displayed with a specified solid color.

Although any fill-area shape is possible, graphics libraries generally do not
support specifications for arbitrary fill shapes. Most library routines require that

Graphics Output Primitives

53

F I G U R E 6
Solid-color fill areas specified with
various boundaries. (a) A circular fill
region. (b) A fill area bounded by a
closed polyline. (c) A filled area
specified with an irregular curved
boundary. (a) (c)(b)

a fill area be specified as a polygon. Graphics routines can more efficiently pro-
cess polygons than other kinds of fill shapes because polygon boundaries are
described with linear equations. Moreover, most curved surfaces can be approx-
imated reasonably well with a set of polygon patches, just as a curved line can
be approximated with a set of straight-line segments. In addition, when light-
ing effects and surface-shading procedures are applied, an approximated curved
surface can be displayed quite realistically. Approximating a curved surface with
polygon facets is sometimes referred to as surface tessellation, or fitting the sur-
face with a polygon mesh. Figure 7 shows the side and top surfaces of a metal
cylinder approximated in an outline form as a polygon mesh. Displays of such
figures can be generated quickly as wire-frame views, showing only the polygon
edges to give a general indication of the surface structure. Then the wire-frame
model could be shaded to generate a display of a natural-looking material surface.
Objects described with a set of polygon surface patches are usually referred to as
standard graphics objects, or just graphics objects.

F I G U R E 7
Wire-frame representation for a
cylinder, showing only the front
(visible) faces of the polygon mesh
used to approximate the surfaces.

In general, we can create fill areas with any boundary specification, such as a
circle or connected set of spline-curve sections. And some of the polygon methods
discussed in the next section can be adapted to display fill areas with a nonlinear
border.

7 Polygon Fill Areas
Mathematically defined, a polygon is a plane figure specified by a set of three
or more coordinate positions, called vertices, that are connected in sequence by
straight-line segments, called the edges or sides of the polygon. Further, in basic
geometry, it is required that the polygon edges have no common point other than
their endpoints. Thus, by definition, a polygon must have all its vertices within
a single plane and there can be no edge crossings. Examples of polygons include
triangles, rectangles, octagons, and decagons. Sometimes, any plane figure with
a closed-polyline boundary is alluded to as a polygon, and one with no crossing
edges is referred to as a standard polygon or a simple polygon. In an effort to avoid
ambiguous object references, we will use the term polygon to refer only to those
planar shapes that have a closed-polyline boundary and no edge crossings.

For a computer-graphics application, it is possible that a designated set of
polygon vertices do not all lie exactly in one plane. This can be due to round-
off error in the calculation of numerical values, to errors in selecting coordinate
positions for the vertices, or, more typically, to approximating a curved surface
with a set of polygonal patches. One way to rectify this problem is simply to divide
the specified surface mesh into triangles. But in some cases, there may be reasons

Graphics Output Primitives

54

F I G U R E 9
Identifying a concave polygon by
calculating cross-products of
successive pairs of edge vectors.

y

x

V6

V1

E6

E1

E5

(E1 � E2)z � 0

E4

E3

E2

V2

V3

V4

V5

(E2 � E3)z � 0

(E3 � E4)z � 0

(E4 � E5)z � 0

(E5 � E6)z � 0

(E6 � E1)z � 0

Another way to identify a concave polygon is to look at the polygon vertex
positions relative to the extension line of any edge. If some vertices are on one
side of the extension line and some vertices are on the other side, the polygon is
concave.

Splitting Concave Polygons
Once we have identified a concave polygon, we can split it into a set of convex
polygons. This can be accomplished using edge vectors and edge cross-products;
or, we can use vertex positions relative to an edge extension line to determine
which vertices are on one side of this line and which are on the other. For the
following algorithms, we assume that all polygons are in the xy plane. Of course,
the original position of a polygon described in world coordinates may not be in
the xy plane, but we can always move it into that plan

3

2

1

0 1 2 3

E5

E4

E3
E2

E1

E6

F I G U R E 1 0
Splitting a concave polygon using the
vector method.

With the vector method for splitting a concave polygon, we first need to form
the edge vectors. Given two consecutive vertex positions, Vk and Vk+1, we define
the edge vector between them as

Ek = Vk+1 − Vk

Next we calculate the cross-products of successive edge vectors in order around
the polygon perimeter. If the z component of some cross-products is positive
while other cross-products have a negative z component, the polygon is concave.
Otherwise, the polygon is convex. This assumes that no series of three successive
vertices are collinear, in which case the cross-product of the two edge vectors for
these vertices would be zero. If all vertices are collinear, we have a degenerate
polygon (a straight line). We can apply the vector method by processing edge vec-
tors in counterclockwise order. If any cross-product has a negative z component
(as in Figure 9), the polygon is concave and we can split it along the line of the
first edge vector in the cross-product pair. The following example illustrates this
method for splitting a concave polygon.

E X A M P L E 1 The Vector Method for Splitting Concave Polygons

Figure 10 shows a concave polygon with six edges. Edge vectors for this
polygon can be expressed as

E1 = (1, 0, 0) E2 = (1, 1, 0)

E3 = (1, −1, 0) E4 = (0, 2, 0)

E5 = (−3, 0, 0) E6 = (0, −2, 0)

Graphics Output Primitives

e.

56

� 180�

� 180�

(a) (b)

F I G U R E 8
A convex polygon (a), and a concave
polygon (b).

to retain the original shape of the mesh patches, so methods have been devised
for approximating a nonplanar polygonal shape with a plane figure. We discuss
how these plane approximations are calculated in the section on plane equations.

Polygon Classifications
An interior angle of a polygon is an angle inside the polygon boundary that is
formed by two adjacent edges. If all interior angles of a polygon are less than
or equal to 180◦, the polygon is convex. An equivalent definition of a convex
polygon is that its interior lies completely on one side of the infinite extension
line of any one of its edges. Also, if we select any two points in the interior of a
convex polygon, the line segment joining the two points is also in the interior. A
polygon that is not convex is called a concave polygon. Figure 8 gives examples
of convex and concave polygons.

The term degenerate polygon is often used to describe a set of vertices that
are collinear or that have repeated coordinate positions. Collinear vertices gener-
ate a line segment. Repeated vertex positions can generate a polygon shape with
extraneous lines, overlapping edges, or edges that have a length equal to 0. Some-
times the term degenerate polygon is also applied to a vertex list that contains
fewer than three coordinate positions.

To be robust, a graphics package could reject degenerate or nonplanar vertex
sets. But this requires extra processing to identify these problems, so graphics
systems usually leave such considerations to the programmer.

Concave polygons also present problems. Implementations of fill algorithms
and other graphics routines are more complicated for concave polygons, so it is
generally more efficient to split a concave polygon into a set of convex polygons
before processing. As with other polygon preprocessing algorithms, concave poly-
gon splitting is often not included in a graphics library. Some graphics packages,
including OpenGL, require all fill polygons to be convex. And some systems
accept only triangular fill areas, which greatly simplifies many of the display
algorithms.

Identifying Concave Polygons
A concave polygon has at least one interior angle greater than 180◦. Also, the
extension of some edges of a concave polygon will intersect other edges, and some
pair of interior points will produce a line segment that intersects the polygon
boundary. Therefore, we can use any one of these characteristics of a concave
polygon as a basis for constructing an identification algorithm.

If we set up a vector for each polygon edge, then we can use the cross-product
of adjacent edges to test for concavity. All such vector products will be of the same
sign (positive or negative) for a convex polygon. Therefore, if some cross-products
yield a positive value and some a negative value, we have a concave polygon. Fig-
ure 9 illustrates the edge-vector, cross-product method for identifying concave
polygons.

Graphics Output Primitives

55

where the z component is 0, since all edges are in the xy plane. The cross-
product E j × Ek for two successive edge vectors is a vector perpendicular to
the xy plane with z component equal to E jx Eky − Ekx E jy:

E1 × E2 = (0, 0, 1) E2 × E3 = (0, 0, −2)

E3 × E4 = (0, 0, 2) E4 × E5 = (0, 0, 6)

E5 × E6 = (0, 0, 6) E6 × E1 = (0, 0, 2)

Since the cross-product E2 × E3 has a negative z component, we split the
polygon along the line of vector E2. The line equation for this edge has a
slope of 1 and a y intercept of −1. We then determine the intersection of this
line with the other polygon edges to split the polygon into two pieces. No
other edge cross-products are negative, so the two new polygons are both
convex. y

x

V1

V2 V3

V4

F I G U R E 1 1
Splitting a concave polygon using the
rotational method. After moving V2 to
the coordinate origin and rotating V3
onto the x axis, we find that V4 is
below the x axis. So we split the
polygon along the line of V2V3, which
is the x axis.

We can also split a concave polygon using a rotational method. Proceeding
counterclockwise around the polygon edges, we shift the position of the polygon
so that each vertex Vk in turn is at the coordinate origin. Then, we rotate the
polygon about the origin in a clockwise direction so that the next vertex Vk+1 is
on the x axis. If the following vertex, Vk+2, is below the x axis, the polygon is
concave. We then split the polygon along the x axis to form two new polygons,
and we repeat the concave test for each of the two new polygons. These steps are

Splitting a Convex Polygon into a Set of Triangles
Once we have a vertex list for a convex polygon, we could transform it into a
set of triangles. This can be accomplished by first defining any sequence of three
consecutive vertices to be a new polygon (a triangle). The middle triangle vertex
is then deleted from the original vertex list. Then the same procedure is applied to
this modified vertex list to strip off another triangle. We continue forming triangles
in this manner until the original polygon is reduced to just three vertices, which
define the last triangle in the set. A concave polygon can also be divided into
a set of triangles using this approach, although care must be taken that the new
diagonal edge formed by joining the first and third selected vertices does not cross
the concave portion of the polygon, and that the three selected vertices at each
step form an interior angle that is less than 180◦ (a “convex” angle).

Inside-Outside Tests
Various graphics processes often need to identify interior regions of objects. Iden-
tifying the interior of a simple object, such as a convex polygon, a circle, or
a sphere, is generally a straightforward process. But sometimes we must deal
with more complex objects. For example, we may want to specify a complex fill
region with intersecting edges, as in Figure 12. For such shapes, it is not always
clear which regions of the xy plane we should call “interior” and which regions
we should designate as “exterior” to the object boundaries. Two commonly used
algorithms for identifying interior areas of a plane figure are the odd-even rule
and the nonzero winding-number rule.

We apply the odd-even rule, also called the odd-parity rule or the even-odd
rule, by first conceptually drawing a line from any position P to a distant point

Graphics Output Primitives

repeated until we have tested all vertices in the polygon list. Figure 11 illustrates
the rotational method for splitting a concave polygon.

57

F I G U R E 1 2
Identifying interior and exterior regions
of a closed polyline that contains
self-intersecting segments.

Odd-Even Rule

(a)

Nonzero Winding-Number Rule

(b)

A

D

E

B

F

C

exterior

interior

G

A

D

E

B

F

C

exterior

interior

G

outside the coordinate extents of the closed polyline. Then we count the number of
line-segment crossings along this line. If the number of segments crossed by this
line is odd, then P is considered to be an interior point. Otherwise, P is an exterior
point. To obtain an accurate count of the segment crossings, we must be sure
that the line path we choose does not intersect any line-segment endpoints. Fig-
ure 12(a) shows the interior and exterior regions obtained using the odd-even
rule for a self-intersecting closed polyline. We can use this procedure, for example,
to fill the interior region between two concentric circles or two concentric polygons
with a specified color.

Another method for defining interior regions is the nonzero winding-number
rule, which counts the number of times that the boundary of an object “winds”
around a particular point in the counterclockwise direction. This count is called
the winding number, and the interior points of a two-dimensional object can be
defined to be those that have a nonzero value for the winding number. We apply
the nonzero winding number rule by initializing the winding number to 0 and
again imagining a line drawn from any position P to a distant point beyond the
coordinate extents of the object. The line we choose must not pass through any
endpoint coordinates. As we move along the line from position P to the distant
point, we count the number of object line segments that cross the reference line
in each direction. We add 1 to the winding number every time we intersect a
segment that crosses the line in the direction from right to left, and we subtract 1
every time we intersect a segment that crosses from left to right. The final value of
the winding number, after all boundary crossings have been counted, determines
the relative position of P. If the winding number is nonzero, P is considered to
be an interior point. Otherwise, P is taken to be an exterior point. Figure 12(b)
shows the interior and exterior regions defined by the nonzero winding-number
rule for a self-intersecting, closed polyline. For simple objects, such as polygons
and circles, the nonzero winding-number rule and the odd-even rule give the
same results. But for more complex shapes, the two methods may yield different
interior and exterior regions, as in the example of Figure 12.

One way to determine directional boundary crossings is to set up vectors
along the object edges (or boundary lines) and along the reference line. Then
we compute the vector cross-product of the vector u, along the line from P to
a distant point, with an object edge vector E for each edge that crosses the line.
Assuming that we have a two-dimensional object in the xy plane, the direction of
each vector cross-product will be either in the +z direction or in the −z direction.
If the z component of a cross-product u × E for a particular crossing is positive,
that segment crosses from right to left and we add 1 to the winding number.

Graphics Output Primitives

58

Otherwise, the segment crosses from left to right and we subtract 1 from the
winding number.

A somewhat simpler way to compute directional boundary crossings is to
use vector dot products instead of cross-products. To do this, we set up a vector
that is perpendicular to vector u and that has a right-to-left direction as we look
along the line from P in the direction of u. If the components of u are denoted
as (ux, uy), then the vector that is perpendicular to u has components (−uy, ux).

The nonzero winding-number rule tends to classify as interior some areas
that the odd-even rule deems to be exterior, and it can be more versatile in some
applications. In general, plane figures can be defined with multiple, disjoint com-
ponents, and the direction specified for each set of disjoint boundaries can be used
to designate the interior and exterior regions. Examples include characters (such
as letters of the alphabet and punctuation symbols), nested polygons, and concen-
tric circles or ellipses. For curved lines, the odd-even rule is applied by calculating
intersections with the curve paths. Similarly, with the nonzero winding-number
rule, we need to calculate tangent vectors to the curves at the crossover intersec-
tion points with the reference line from position P.

Variations of the nonzero winding-number rule can be used to define interior
regions in other ways. For example, we could define a point to be interior if its
winding number is positive or if it is negative; or we could use any other rule to
generate a variety of fill shapes. Sometimes, Boolean operations are used to specify
a fill area as a combination of two regions. One way to implement Boolean opera-
tions is by using a variation of the basic winding-number rule. With this scheme,
we first define a simple, nonintersecting boundary for each of two regions. Then
if we consider the direction for each boundary to be counterclockwise, the union
of two regions would consist of those points whose winding number is positive
(Figure 13). Similarly, the intersection of two regions with counterclockwise
boundaries would contain those points whose winding number is greater than
1, as illustrated in Figure 14. To set up a fill area that is the difference of two
regions (say, A − B), we can enclose region A with a counterclockwise border and
B with a clockwise border. Then the difference region (Figure 15) is the set of all
points whose winding number is positive.

F I G U R E 1 3
A fill area defined as a region that
has a positive value for the winding
number. This fill area is the union
of two regions, each with a
counterclockwise border direction.

F I G U R E 1 4
A fill area defined as a region with a
winding number greater than 1. This
fill area is the intersection of two
regions, each with a counterclockwise
border direction.

Graphics Output Primitives

Now, if the dot product of this perpendicular vector and a boundary-line vector
is positive, that crossing is from right to left and we add 1 to the winding number.
Otherwise, the boundary crosses our reference line from left to right, and we sub-
tract 1 from the winding number.

59

F I G U R E 1 5
A fill area defined as a region with a positive
value for the winding number. This fill area is
the difference, A − B, of two regions, where
region A has a positive border direction
(counterclockwise) and region B has a
negative border direction (clockwise).

A � B

Region A
Region B

Polygon Tables
Typically, the objects in a scene are described as sets of polygon surface facets.
In fact, graphics packages often provide functions for defining a surface shape
as a mesh of polygon patches. The description for each object includes coordi-
nate information specifying the geometry for the polygon facets and other sur-
face parameters such as color, transparency, and light-reflection properties. As
information for each polygon is input, the data are placed into tables that are to
be used in the subsequent processing, display, and manipulation of the objects in
the scene. These polygon data tables can be organized into two groups: geometric
tables and attribute tables. Geometric data tables contain vertex coordinates and
parameters to identify the spatial orientation of the polygon surfaces. Attribute
information for an object includes parameters specifying the degree of trans-
parency of the object and its surface reflectivity and texture characteristics.

Geometric data for the objects in a scene are arranged conveniently in three
lists: a vertex table, an edge table, and a surface-facet table. Coordinate values for
each vertex in the object are stored in the vertex table. The edge table contains
pointers back into the vertex table to identify the vertices for each polygon edge.
And the surface-facet table contains pointers back into the edge table to iden-
tify the edges for each polygon. This scheme is illustrated in Figure 16 for two

F I G U R E 1 6
Geometric data-table representation
for two adjacent polygon surface
facets, formed with six edges and five
vertices.

V1

V5

V4

V2

V3

E1

E2

E4 E5

E3 E6

S1

S2

VERTEX TABLE

V1: x1, y1, z1

V2: x2, y2, z2

V3: x3, y3, z3

V4: x4, y4, z4

V5: x5, y5, z5

E1: V1, V2

E2: V2, V3

E3: V3, V1

E4: V3, V4

E5: V4, V5

E6: V5, V1

S1: E1, E2, E3

S2: E3, E4, E5, E6

EDGE TABLE SURFACE-FACET
TABLE

Graphics Output Primitives

60

adjacent polygon facets on an object surface. In addition, individual objects and
their component polygon faces can be assigned object and facet identifiers for
easy reference.

Listing the geometric data in three tables, as in Figure 16, provides a conve-
nient reference to the individual components (vertices, edges, and surface facets)
for each object. Also, the object can be displayed efficiently by using data from
the edge table to identify polygon boundaries. An alternative arrangement is to
use just two tables: a vertex table and a surface-facet table. But this scheme is
less convenient, and some edges could get drawn twice in a wire-frame dis-
play. Another possibility is to use only a surface-facet table, but this dupli-
cates coordinate information, since explicit coordinate values are listed for each
vertex in each polygon facet. Also the relationship between edges and facets
would have to be reconstructed from the vertex listings in the surface-facet
table.

We can add extra information to the data tables of Figure 16 for faster
information extraction. For instance, we could expand the edge table to include
forward pointers into the surface-facet table so that a common edge between
polygons could be identified more rapidly (Figure 17). This is particularly useful
for rendering procedures that must vary surface shading smoothly across the
edges from one polygon to the next. Similarly, the vertex table could be expanded
to reference corresponding edges, for faster information retrieval.

Additional geometric information that is usually stored in the data tables
includes the slope for each edge and the coordinate extents for polygon edges,
polygon facets, and each object in a scene. As vertices are input, we can calculate
edge slopes, and we can scan the coordinate values to identify the minimum and
maximum x, y, and z values for individual lines and polygons. Edge slopes and
bounding-box information are needed in subsequent processing, such as surface
rendering and visible-surface identification algorithms.

E1: V1, V2, S1
E2: V2, V3, S1
E3: V3, V1, S1, S2
E4: V3, V4, S2
E5: V4, V5, S2
E6: V5, V1, S2

F I G U R E 1 7
Edge table for the surfaces of
Figure 16 expanded to include
pointers into the surface-facet table.

Because the geometric data tables may contain extensive listings of vertices
and edges for complex objects and scenes, it is important that the data be checked
for consistency and completeness. When vertex, edge, and polygon definitions
are specified, it is possible, particularly in interactive applications, that certain
input errors could be made that would distort the display of the objects. The
more information included in the data tables, the easier it is to check for errors.
Therefore, error checking is easier when three data tables (vertex, edge, and sur-
face facet) are used, since this scheme provides the most information. Some of
the tests that could be performed by a graphics package are (1) that every vertex
is listed as an endpoint for at least two edges, (2) that every edge is part of at
least one polygon, (3) that every polygon is closed, (4) that each polygon has at
least one shared edge, and (5) that if the edge table contains pointers to polygons,
every edge referenced by a polygon pointer has a reciprocal pointer back to the
polygon.

Plane Equations
To produce a display of a three-dimensional scene, a graphics system processes
the input data through several procedures. These procedures include transfor-
mation of the modeling and world-coordinate descriptions through the viewing
pipeline, identification of visible surfaces, and the application of rendering rou-
tines to the individual surface facets. For some of these processes, information
about the spatial orientation of the surface components of objects is needed. This
information is obtained from the vertex coordinate values and the equations that
describe the polygon surfaces.

Graphics Output Primitives

61

Each polygon in a scene is contained within a plane of infinite extent. The
general equation of a plane is

A x + B y + C z + D = 0 (1)

where (x, y, z) is any point on the plane, and the coefficients A, B, C , and D (called
plane parameters) are constants describing the spatial properties of the plane. We
can obtain the values of A, B, C , and D by solving a set of three plane equa-
tions using the coordinate values for three noncollinear points in the plane. For
this purpose, we can select three successive convex-polygon vertices, (x1, y1, z1),
(x2, y2, z2), and (x3, y3, z3), in a counterclockwise order and solve the following set
of simultaneous linear plane equations for the ratios A/D, B/D, and C/D:

(A/D)xk + (B/D)yk + (C/D)zk = −1, k = 1, 2, 3 (2)

The solution to this set of equations can be obtained in determinant form, using
Cramer’s rule, as

A =
∣
∣
∣
∣
∣
∣

1 y1 z1
1 y2 z2
1 y3 z3

∣
∣
∣
∣
∣
∣

B =
∣
∣
∣
∣
∣
∣

x1 1 z1
x2 1 z2
x3 1 z3

∣
∣
∣
∣
∣
∣

C =
∣
∣
∣
∣
∣
∣

x1 y1 1
x2 y2 1
x3 y3 1

∣
∣
∣
∣
∣
∣

D = −
∣
∣
∣
∣
∣
∣

x1 y1 z1
x2 y2 z2
x3 y3 z3

∣
∣
∣
∣
∣
∣

(3)

Expanding the determinants, we can write the calculations for the plane coeffi-
cients in the form

A = y1(z2 − z3) + y2(z3 − z1) + y3(z1 − z2)

B = z1(x2 − x3) + z2(x3 − x1) + z3(x1 − x2)

C = x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)

D = −x1(y2z3 − y3z2) − x2(y3z1 − y1z3) − x3(y1z2 − y2z1)

(4)

These calculations are valid for any three coordinate positions, including those
for which D = 0. When vertex coordinates and other information are entered into
the polygon data structure, values for A, B, C , and D can be computed for each
polygon facet and stored with the other polygon data.

It is possible that the coordinates defining a polygon facet may not be con-
tained within a single plane. We can solve this problem by dividing the facet into
a set of triangles; or we could find an approximating plane for the vertex list. One
method for obtaining an approximating plane is to divide the vertex list into sub-
sets, where each subset contains three vertices, and calculate plane parameters A,
B, C , D for each subset. The approximating plane parameters are then obtained as
the average value for each of the calculated plane parameters. Another approach
is to project the vertex list onto the coordinate planes. Then we take parameter A
proportional to the area of the polygon projection on the yz plane, parameter B
proportional to the projection area on the xz plane, and parameter C proportional
to the projection area on the xy plane. The projection method is often used in
ray-tracing applications.

Front and Back Polygon Faces
Because we are usually dealing with polygon surfaces that enclose an object
interior, we need to distinguish between the two sides of each surface. The side
of a polygon that faces into the object interior is called the back face, and the vis-
ible, or outward, side is the front face. Identifying the position of points in space

Graphics Output Primitives

62

relative to the front and back faces of a polygon is a basic task in many graphics
algorithms, as, for example, in determining object visibility. Every polygon is con-
tained within an infinite plane that partitions space into two regions. Any point
that is not on the plane and that is visible to the front face of a polygon surface
section is said to be in front of (or outside) the plane, and, thus, outside the object.
And any point that is visible to the back face of the polygon is behind (or inside)
the plane. A point that is behind (inside) all polygon surface planes is inside the
object. We need to keep in mind that this inside/outside classification is relative
to the plane containing the polygon, whereas our previous inside/outside tests
using the winding-number or odd-even rule were in reference to the interior of
some two-dimensional boundary.

Plane equations can be used to identify the position of spatial points relative
to the polygon facets of an object. For any point (x, y, z) not on a plane with
parameters A, B, C , D, we have

A x + B y + C z + D �= 0

Thus, we can identify the point as either behind or in front of a polygon sur-
face contained within that plane according to the sign (negative or positive) of
Ax + By + Cz + D:

if A x + B y + C z + D < 0, the point (x, y, z) is behind the plane
if A x + B y + C z + D > 0, the point (x, y, z) is in front of the plane

These inequality tests are valid in a right-handed Cartesian system, provided
the plane parameters A, B, C , and D were calculated using coordinate positions
selected in a strictly counterclockwise order when viewing the surface along a
front-to-back direction. For example, in Figure 18, any point outside (in front of)
the plane of the shaded polygon satisfies the inequality x −1 > 0, while any point
inside (in back of) the plane has an x-coordinate value less than 1.

x

y

z

1
1

1

F I G U R E 1 8
The shaded polygon surface of the
unit cube has the plane equation
x − 1 = 0.

Orientation of a polygon surface in space can be described with the normal
vector for the plane containing that polygon, as shown in Figure 19. This sur-
face normal vector is perpendicular to the plane and has Cartesian components
(A, B, C), where parameters A, B, and C are the plane coefficients calculated in
Equations 4. The normal vector points in a direction from inside the plane to
the outside; that is, from the back face of the polygon to the front face. x

z

y
N�(A, B, C)

F I G U R E 1 9
The normal vector N for a plane
described with the equation
Ax + B y + C z + D = 0 is
perpendicular to the plane and has
Cartesian components (A , B , C) .

As an example of calculating the components of the normal vector for a poly-
gon, which also gives us the plane parameters, we choose three of the vertices
of the shaded face of the unit cube in Figure 18. These points are selected in
a counterclockwise ordering as we view the cube from outside looking toward
the origin. Coordinates for these vertices, in the order selected, are then used in
Equations 4 to obtain the plane coefficients: A = 1, B = 0, C = 0, D = −1. Thus,
the normal vector for this plane is N = (1, 0, 0), which is in the direction of the
positive x axis. That is, the normal vector is pointing from inside the cube to the
outside and is perpendicular to the plane x = 1.

The elements of a normal vector can also be obtained using a vector cross-
product calculation. Assuming we have a convex-polygon surface facet and a
right-handed Cartesian system, we again select any three vertex positions, V1, V2,
and V3, taken in counterclockwise order when viewing from outside the object
toward the inside. Forming two vectors, one from V1 to V2 and the second from
V1 to V3, we calculate N as the vector cross-product:

N = (V2 − V1) × (V3 − V1) (5)

This generates values for the plane parameters A, B, and C . We can then obtain the
value for parameter D by substituting these values and the coordinates for one of

Graphics Output Primitives

63

the polygon vertices into Equation 1 and solving for D. The plane equation can
be expressed in vector form using the normal N and the position P of any point
in the plane as

N ·P = −D (6)

For a convex polygon, we could also obtain the plane parameters using the
cross-product of two successive edge vectors. And with a concave polygon, we
can select the three vertices so that the two vectors for the cross-product form an
angle less than 180◦. Otherwise, we can take the negative of their cross-product
to get the correct normal vector direction for the polygon surface.

8 OpenGL Polygon Fill-Area Functions
With one exception, the OpenGL procedures for specifying fill polygons are sim-
ilar to those for describing a point or a polyline. A glVertex function is used
to input the coordinates for a single polygon vertex, and a complete polygon is
described with a list of vertices placed between a glBegin/glEnd pair. How-
ever, there is one additional function that we can use for displaying a rectangle
that has an entirely different format.

By default, a polygon interior is displayed in a solid color, determined by

In OpenGL, a fill area must be specified as a convex polygon. Thus, a vertex list
for a fill polygon must contain at least three vertices, there can be no crossing edges,
and all interior angles for the polygon must be less than 180◦. And a single polygon
fill area can be defined with only one vertex list, which precludes any specifications
that contain holes in the polygon interior, such as that shown in Figure 20. We
could describe such a figure using two overlapping convex polygons.

Each polygon that we specify has two faces: a back face and a front face.
In OpenGL, fill color and other attributes can be set for each face separately,
and back/front identification is needed in both two-dimensional and three-
dimensional viewing routines. Therefore, polygon vertices should be specified
in a counterclockwise order as we view the polygon from “outside.” This identi-
fies the front face of that polygon.

F I G U R E 2 0
A polygon with a complex interior that cannot be specified with a
single vertex list.

Graphics Output Primitives

the current color settings. As options, we can fill a polygon with a pattern and we
can display polygon edges as line borders around the interior fill. There are six
different symbolic constants that we can use as the argument in the glBegin
function to describe polygon fill areas. These six primitive constants allow us to
display a single fill polygon, a set of unconnected fill polygons, or a set of con-
nected fill polygons.

64

250

200

150

100

50

50 100 150 200
F I G U R E 2 1
The display of a square fill area using the glRect function.

Because graphics displays often include rectangular fill areas, OpenGL pro-
vides a special rectangle function that directly accepts vertex specifications in the
xy plane. In some implementations of OpenGL, the following routine can be more
efficient than generating a fill rectangle using glVertex specifications:

glRect* (x1, y1, x2, y2);

One corner of this rectangle is at coordinate position (x1, y1), and the opposite
corner of the rectangle is at position (x2, y2). Suffix codes for glRect specify
the coordinate data type and whether coordinates are to be expressed as array
elements. These codes are i (for integer), s (for short), f (for float), d (for dou-
ble), and v (for vector). The rectangle is displayed with edges parallel to the xy
coordinate axes. As an example, the following statement defines the square shown
in Figure 21:

glRecti (200, 100, 50, 250);

If we put the coordinate values for this rectangle into arrays, we can generate the
same square with the following code:

int vertex1 [] = {200, 100};
int vertex2 [] = {50, 250};

glRectiv (vertex1, vertex2);

When a rectangle is generated with function glRect, the polygon edges are
formed between the vertices in the order (x1, y1), (x2, y1), (x2, y2), (x1, y2), and
then back to (x1, y1). Thus, in our example, we produced a vertex list with a
clockwise ordering. In many two-dimensional applications, the determination
of front and back faces is unimportant. But if we do want to assign different
properties to the front and back faces of the rectangle, then we should reverse the
order of the two vertices in this example so that we obtain a counterclockwise
ordering of the vertices.

Each of the other six OpenGL polygon fill primitives is specified with a sym-
bolic constant in the glBegin function, along with a a list of glVertex com-
mands. With the OpenGL primitive constant GL POLYGON, we can display a
single polygon fill area such as that shown in Figure 22(a). For this example,
we assume that we have a list of six points, labeled p1 through p6, specifying

Graphics Output Primitives

65

p1 p4

p3p2

p5p6

(a)

p1 p4

p3p2

p5p6

(b)

p1 p4

p3p2

p5p6

(c)

p1 p4

p3p2

p5p6

(d)

F I G U R E 2 2
Displaying polygon fill areas using a list of six vertex positions. (a) A single convex polygon fill area generated with
the primitive constant GL POLYGON. (b) Two unconnected triangles generated with GL TRIANGLES.
(c) Four connected triangles generated with GL TRIANGLE STRIP. (d) Four connected triangles generated
with GL TRIANGLE FAN.

two-dimensional polygon vertex positions in a counterclockwise ordering. Each
of the points is represented as an array of (x, y) coordinate values:

glBegin (GL_POLYGON);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);
glVertex2iv (p6);

glEnd ();

A polygon vertex list must contain at least three vertices. Otherwise, nothing is
displayed.

If we reorder the vertex list and change the primitive constant in the previous
code example to GL TRIANGLES, we obtain the two separated triangle fill areas
in Figure 22(b):

glBegin (GL_TRIANGLES);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p6);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);

glEnd ();

Graphics Output Primitives

66

In this case, the first three coordinate points define the vertices for one triangle, the
next three points define the next triangle, and so forth. For each triangle fill area,
we specify the vertex positions in a counterclockwise order. A set of unconnected
triangles is displayed with this primitive constant unless some vertex coordinates
are repeated. Nothing is displayed if we do not list at least three vertices; and if
the number of vertices specified is not a multiple of 3, the final one or two vertex
positions are not used.

By reordering the vertex list once more and changing the primitive constant
to GL TRIANGLE STRIP, we can display the set of connected triangles shown
in Figure 22(c):

glBegin (GL_TRIANGLE_STRIP);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p6);
glVertex2iv (p3);
glVertex2iv (p5);
glVertex2iv (p4);

glEnd ();

Assuming that no coordinate positions are repeated in a list of N vertices, we
obtain N − 2 triangles in the strip. Clearly, we must have N ≥ 3 or nothing is
displayed. In this example, N = 6 and we obtain four triangles. Each successive
triangle shares an edge with the previously defined triangle, so the ordering of
the vertex list must be set up to ensure a consistent display. One triangle is defined
for each vertex position listed after the first two vertices. Thus, the first three ver-
tices should be listed in counterclockwise order, when viewing the front (outside)
surface of the triangle. After that, the set of three vertices for each subsequent
triangle is arranged in a counterclockwise order within the polygon tables. This
is accomplished by processing each position n in the vertex list in the order n = 1,
n = 2, . . . , n = N − 2 and arranging the order of the corresponding set of three
vertices according to whether n is an odd number or an even number. If n is odd,
the polygon table listing for the triangle vertices is in the order n, n + 1, n + 2. If n
is even, the triangle vertices are listed in the order n + 1, n, n + 2. In the preceding
example, our first triangle (n = 1) would be listed as having vertices (p1, p2, p6).
The second triangle (n = 2) would have the vertex ordering (p6, p2, p3). Vertex or-
dering for the third triangle (n = 3) would be (p6, p3, p5). And the fourth triangle
(n = 4) would be listed in the polygon tables with vertex ordering (p5, p3, p4).

Another way to generate a set of connected triangles is to use the “fan”
approach illustrated in Figure 22(d), where all triangles share a common
vertex. We obtain this arrangement of triangles using the primitive constant
GL TRIANGLE FAN and the original ordering of our six vertices:

glBegin (GL_TRIANGLE_FAN);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);
glVertex2iv (p6);

glEnd ();

For N vertices, we again obtain N − 2 triangles, providing no vertex positions are
repeated, and we must list at least three vertices. In addition, the vertices must

Graphics Output Primitives

67

F I G U R E 2 3
Displaying quadrilateral fill areas using
a list of eight vertex positions. (a) Two
unconnected quadrilaterals generated
with GL QUADS. (b) Three
connected quadrilaterals generated
with GL QUAD STRIP.

p1

p4 p5

p8

p7

p6

p3p2

(a)

p1

p2
p3

p6

p7

p4 p5

p8

(b)

be specified in the proper order to define front and back faces for each triangle
correctly. The first coordinate position listed (in this case, p1) is a vertex for each
triangle in the fan. If we again enumerate the triangles and the coordinate positions
listed as n = 1, n = 2, . . . , n = N − 2, then vertices for triangle n are listed in the
polygon tables in the order 1, n + 1, n + 2. Therefore, triangle 1 is defined with
the vertex list (p1, p2, p3); triangle 2 has the vertex ordering (p1, p3, p4); triangle
3 has its vertices specified in the order (p1, p4, p5); and triangle 4 is listed with
vertices (p1, p5, p6).

Besides the primitive functions for triangles and a general polygon, OpenGL
provides for the specifications of two types of quadrilaterals (four-sided
polygons). With the GL QUADS primitive constant and the following list of eight
vertices, specified as two-dimensional coordinate arrays, we can generate the
display shown in Figure 23(a):

glBegin (GL_QUADS);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);
glVertex2iv (p6);
glVertex2iv (p7);
glVertex2iv (p8);

glEnd ();

Graphics Output Primitives

68

The first four coordinate points define the vertices for one quadrilateral, the next
four points define the next quadrilateral, and so on. For each quadrilateral fill
area, we specify the vertex positions in a counterclockwise order. If no vertex
coordinates are repeated, we display a set of unconnected four-sided fill areas. We
must list at least four vertices with this primitive. Otherwise, nothing is displayed.
And if the number of vertices specified is not a multiple of 4, the extra vertex
positions are ignored.

Rearranging the vertex list in the previous quadrilateral code example and
changing the primitive constant to GL QUAD STRIP, we can obtain the set of
connected quadrilaterals shown in Figure 23(b):

glBegin (GL_QUAD_STRIP);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p4);
glVertex2iv (p3);
glVertex2iv (p5);
glVertex2iv (p6);
glVertex2iv (p8);
glVertex2iv (p7);

glEnd ();

A quadrilateral is set up for each pair of vertices specified after the first two ver-
tices in the list, and we need to list the vertices so that we generate a correct
counterclockwise vertex ordering for each polygon. For a list of N vertices, we
obtain N

2 − 1 quadrilaterals, providing that N ≥ 4. If N is not a multiple of 4,
any extra coordinate positions in the list are not used. We can enumerate these
fill polygons and the vertices listed as n = 1, n = 2, . . . , n = N

2 − 1. Then poly-
gon tables will list the vertices for quadrilateral n in the vertex order number
2n − 1, 2n, 2n + 2, 2n + 1. For this example, N = 8 and we have 3 quadrilater-
als in the strip. Thus, our first quadrilateral (n = 1) is listed as having a vertex
ordering of (p1, p2, p3, p4). The second quadrilateral (n = 2) has the vertex order-
ing (p4, p3, p6, p5), and the vertex ordering for the third quadrilateral (n = 3) is
(p5, p6, p7, p8).

Most graphics packages display curved surfaces as a set of approximating
plane facets. This is because plane equations are linear, and processing the lin-
ear equations is much quicker than processing quadric or other types of curve
equations. So OpenGL and other packages provide polygon primitives to facil-
itate the approximation of a curved surface. Objects are modeled with polygon
meshes, and a database of geometric and attribute information is set up to facilitate
the processing of the polygon facets. In OpenGL, primitives that we can use for
this purpose are the triangle strip, the triangle fan, and the quad strip. Fast hardware-
implemented polygon renderers are incorporated into high-quality graphics sys-
tems with the capability for displaying millions of shaded polygons per second
(usually triangles), including the application of surface texture and special light-
ing effects.

Although the OpenGL core library allows only convex polygons, the GLU
library provides functions for dealing with concave polygons and other noncon-
vex objects with linear boundaries. A set of GLU polygon tessellation routines is
available for converting such shapes into a set of triangles, triangle meshes, trian-
gle fans, and straight-line segments. Once such objects have been decomposed,
they can be processed with basic OpenGL functions.

Graphics Output Primitives

69

9 OpenGL Vertex Arrays
Although our examples so far have contained relatively few coordinate positions,
describing a scene containing several objects can get much more complicated. To
illustrate, we first consider describing a single, very basic object: the unit cube
shown in Figure 24, with coordinates given in integers to simplify our discus-
sion. A straightforward method for defining the vertex coordinates is to use a
double-subscripted array, such as

GLint points [8][3] = { {0, 0, 0}, {0, 1, 0}, {1, 0, 0}, {1, 1, 0},
{0, 0, 1}, {0, 1, 1}, {1, 0, 1}, {1, 1, 1} };

Alternatively, we could first define a data type for a three-dimensional vertex
position and then give the coordinates for each vertex position as an element of a
single-subscripted array as, for example,

typedef GLint vertex3 [3];

vertex3 pt [8] = { {0, 0, 0}, {0, 1, 0}, {1, 0, 0}, {1, 1, 0},
{0, 0, 1}, {0, 1, 1}, {1, 0, 1}, {1, 1, 1} };

Next, we need to define each of the six faces of this object. For this, we could
make six calls either to glBegin (GL POLYGON) or to glBegin (GL QUADS).
In either case, we must be sure to list the vertices for each face in a counterclockwise
order when viewing that surface from the outside of the cube. In the following
code segment, we specify each cube face as a quadrilateral and use a function call
to pass array subscript values to the OpenGL primitive routines. Figure 25 shows
the subscript values for array pt corresponding to the cube vertex positions.

1

1

1

0

z

y

x

F I G U R E 2 4
A cube with an edge length of 1.

6

4 5

1

32

0

7

F I G U R E 2 5
Subscript values for array pt
corresponding to the vertex
coordinates for the cube shown
in Figure 24.

Graphics Output Primitives

70

void quad (GLint n1, GLint n2, GLint n3, GLint n4)
{

glBegin (GL_QUADS);
glVertex3iv (pt [n1]);
glVertex3iv (pt [n2]);
glVertex3iv (pt [n3]);
glVertex3iv (pt [n4]);

glEnd ();
}
void cube ()
{

quad (6, 2, 3, 7);
quad (5, 1, 0, 4);
quad (7, 3, 1, 5);
quad (4, 0, 2, 6);
quad (2, 0, 1, 3);
quad (7, 5, 4, 6);

}

Thus, the specification for each face requires six OpenGL functions, and we
have six faces to specify. When we add color specifications and other parame-
ters, our display program for the cube could easily contain 100 or more OpenGL
function calls. And scenes with many complex objects can require much more.

As we can see from the preceding cube example, a complete scene description
could require hundreds or thousands of coordinate specifications. In addition,
there are various attribute and viewing parameters that must be set for individual
objects. Thus, object and scene descriptions could require an enormous number of
function calls, which puts a demand on system resources and can slow execution
of the graphics programs. A further problem with complex displays is that object
surfaces (such as the cube in Figure 24) usually have shared vertex coordinates.
Using the methods we have discussed up to now, these shared positions may
need to be specified multiple times.

To alleviate these problems, OpenGL provides a mechanism for reducing the
number of function calls needed in processing coordinate information. Using a
vertex array, we can arrange the information for describing a scene so that we
need only a very few function calls. The steps involved are

1. Invoke the functionglEnableClientState (GL VERTEX ARRAY) to
activate the vertex-array feature of OpenGL.

2. Use the function glVertexPointer to specify the location and data
format for the vertex coordinates.

3. Display the scene using a routine such as glDrawElements, which can
process multiple primitives with very few function calls.

Using the pt array previously defined for the cube, we implement these three
steps in the following code example:

glEnableClientState (GL_VERTEX_ARRAY);
glVertexPointer (3, GL_INT, 0, pt);

GLubyte vertIndex [] = (6, 2, 3, 7, 5, 1, 0, 4, 7, 3, 1, 5,
4, 0, 2, 6, 2, 0, 1, 3, 7, 5, 4, 6);

glDrawElements (GL_QUADS, 24, GL_UNSIGNED_BYTE, vertIndex);

Graphics Output Primitives

71

With the first command, glEnableClientState (GL VERTEX ARRAY),
we activate a capability (in this case, a vertex array) on the client side of a client-
server system. Because the client (the machine that is running the main program)

glDisableClientState (GL_VERTEX_ARRAY);

We next give the location and format of the coordinates for the object vertices
in the function glVertexPointer. The first parameter in glVertexPointer
(3 in this example) specifies the number of coordinates used in each vertex
description. Data type for the vertex coordinates is designated using an
OpenGL symbolic constant as the second parameter in this function. For our
example, the data type isGL INT. Other data types are specified with the symbolic
constants GL BYTE, GL SHORT, GL FLOAT, and GL DOUBLE. With the third
parameter, we give the byte offset between consecutive vertices. The purpose of
this argument is to allow various kinds of data, such as coordinates and colors,
to be packed together in one array. Because we are giving only the coordinate
data, we assign a value of 0 to the offset parameter. The last parameter in the
glVertexPointer function references the vertex array, which contains
the coordinate values.

All the indices for the cube vertices are stored in array vertIndex. Each of
these indices is the subscript for array pt corresponding to the coordinate val-
ues for that vertex. This index list is referenced as the last parameter value in
function glDrawElements and is then used by the primitive GL QUADS, which
is the first parameter, to display the set of quadrilateral surfaces for the cube.
The second parameter specifies the number of elements in array vertIndex.
Because a quadrilateral requires just 4 vertices and we specified 24, the
glDrawElements function continues to display another cube face after each
successive set of 4 vertices until all 24 have been processed. Thus, we
accomplish the final display of all faces of the cube with this single func-
tion call. The third parameter in function glDrawElements gives the type
for the index values. Because our indices are small integers, we specified a
type of GL UNSIGNED BYTE. The two other index types that can be used are
GL UNSIGNED SHORT and GL UNSIGNED INT.

Additional information can be combined with the coordinate values in the
vertex arrays to facilitate the processing of a scene description. We can specify
color values and other attributes for objects in arrays that can be referenced by the
glDrawElements function. Also, we can interlace the various arrays for greater
efficiency.

10 Pixel-Array Primitives
In addition to straight lines, polygons, circles, and other primitives, graphics pack-
ages often supply routines to display shapes that are defined with a rectangular
array of color values. We can obtain the rectangular grid pattern by digitizing
(scanning) a photograph or other picture or by generating a shape with a graph-
ics program. Each color value in the array is then mapped to one or more screen
pixel positions. A pixel array of color values is typically referred to as a pixmap.

Graphics Output Primitives

retains the data for a picture, the vertex array must be there also. The server (our
workstation, for example) generates commands and displays the picture. Of
course, a single machine can be both client and server. The vertex-array feature of
OpenGL is deactivated with the command

72

y

x

n � 5 rows

m � 8 columns

ymax

ymin

xmin xmax

F I G U R E 2 6
Mapping an n by m color array onto a
region of the screen coordinates.

Parameters for a pixel array can include a pointer to the color matrix, the size
of the matrix, and the position and size of the screen area to be affected by the
color values. Figure 26 gives an example of mapping a pixel-color array onto a
screen area.

Another method for implementing a pixel array is to assign either the bit
value 0 or the bit value 1 to each element of the matrix. In this case, the array is
simply a bitmap, which is sometimes called a mask, that indicates whether a pixel
is to be assigned (or combined with) a preset color.

11 OpenGL Pixel-Array Functions
There are two functions in OpenGL that we can use to define a shape or pattern
specified with a rectangular array. One function defines a bitmap pattern, and
the other a pixmap pattern. Also, OpenGL provides several routines for saving,
copying, and manipulating arrays of pixel values.

OpenGL Bitmap Function
A binary array pattern is defined with the function

glBitmap (width, height, x0, y0, xOffset, yOffset, bitShape);

Parameters width and height in this function give the number of columns and
number of rows, respectively, in the array bitShape. Each element of bitShape
is assigned either a 1 or a 0. A value of 1 indicates that the corresponding pixel is
to be displayed in a previously defined color. Otherwise, the pixel is unaffected
by the bitmap. (As an option, we could use a value of 1 to indicate that a specified
color is to be combined with the color value stored in the refresh buffer at that
position.) Parameters x0 and y0 define the position that is to be considered the
“origin” of the rectangular array. This origin position is specified relative to the
lower-left corner of bitShape, and values for x0 and y0 can be positive or
negative. In addition, we need to designate a location in the frame buffer where
the pattern is to be applied. This location is called the current raster position,
and the bitmap is displayed by positioning its origin, (x0, y0), at the current

Graphics Output Primitives

73

raster position. Values assigned to parameters xOffset and yOffset are used
as coordinate offsets to update the frame-buffer current raster position after the
bitmap is displayed.

Coordinate values for x0, y0, xOffset, and yOffset, as well as the current
raster position, are maintained as floating-point values. Of course, bitmaps will
be applied at integer pixel positions. But floating-point coordinates allow a set of
bitmaps to be spaced at arbitrary intervals, which is useful in some applications,
such as forming character strings with bitmap patterns.

We use the following routine to set the coordinates for the current raster
position:

glRasterPos* ()

Parameters and suffix codes are the same as those for the glVertex function.
Thus, a current raster position is given in world coordinates, and it is transformed
to screen coordinates by the viewing transformations. For our two-dimensional
examples, we can specify coordinates for the current raster position directly in
integer screen coordinates. The default value for the current raster position is the
world-coordinate origin (0, 0, 0).

The color for a bitmap is the color that is in effect at the time that the
glRasterPos command is invoked. Any subsequent color changes do not affect
the bitmap.

Each row of a rectangular bit array is stored in multiples of 8 bits, where the
binary data is arranged as a set of 8-bit unsigned characters. But we can describe
a shape using any convenient grid size. For example, Figure 27 shows a bit
pattern defined on a 10-row by 9-column grid, where the binary data is specified
with 16 bits for each row. When this pattern is applied to the pixels in the frame
buffer, all bit values beyond the ninth column are ignored.

We apply the bit pattern of Figure 27 to a frame-buffer location with the
following code section:

GLubyte bitShape [20] = {
0x1c, 0x00, 0x1c, 0x00, 0x1c, 0x00, 0x1c, 0x00, 0x1c, 0x00,
0xff, 0x80, 0x7f, 0x00, 0x3e, 0x00, 0x1c, 0x00, 0x08, 0x00};

glPixelStorei (GL_UNPACK_ALIGNMENT, 1); // Set pixel storage mode.

glRasterPos2i (30, 40);
glBitmap (9, 10, 0.0, 0.0, 20.0, 15.0, bitShape);

F I G U R E 2 7
A bit pattern, specified in an array with
10 rows and 9 columns, is stored in
8-bit blocks of 10 rows with 16 bit
values per row.

0

0

0

0

1

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

1

1

1

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

1

1

0

0

1

1

1

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0�08

0�1C

0�3E

0�7F

0�FF

0�1C

0�1C

0�1C

0�1C

0�1C

0�00

0�00

0�00

0�00

0�80

0�00

0�00

0�00

0�00

0�00

10

12

16

0

Graphics Output Primitives

74

Array values for bitShape are specified row by row, starting at the bottom of
the rectangular-grid pattern. Next we set the storage mode for the bitmap with
the OpenGL routine glPixelStorei. The parameter value of 1 in this func-
tion indicates that the data values are to be aligned on byte boundaries. With
glRasterPos, we set the current raster position to (30, 40). Finally, function
glBitmap specifies that the bit pattern is given in array bitShape, and that this
array has 9 columns and 10 rows. The coordinates for the origin of this pattern are
(0.0, 0.0), which is the lower-left corner of the grid. We illustrate a coordinate offset
with the values (20.0, 15.0), although we do not use the offset in this example.

OpenGL Pixmap Function
A pattern defined as an array of color values is applied to a block of frame-buffer
pixel positions with the function

glDrawPixels (width, height, dataFormat, dataType, pixMap);

Again, parameters width and height give the column and row dimensions,
respectively, of the array pixMap. Parameter dataFormat is assigned an
OpenGL constant that indicates how the values are specified for the array. For
example, we could specify a single blue color for all pixels with the constant
GL BLUE, or we could specify three color components in the order blue, green,
red with the constant GL BGR. A number of other color specifications are possi-
ble. An OpenGL
to parameter
The lower-
as set by
displays a pixmap defined in a 128 × 128 array of RGB color values:

glDrawPixels (128, 128, GL_RGB, GL_UNSIGNED_BYTE, colorShape);

Because OpenGL provides several buffers, we can paste an array of
values into a particular buffer by selecting that buffer as the target of the
glDrawPixels routine. Some buffers store color values and some store other
kinds of pixel data. A depth buffer, for instance, is used to store object distances
(depths) from the viewing position, and a stencil buffer is used to store bound-
ary patterns for a scene. We select one of these two buffers by setting parameter
dataFormat in the glDrawPixels routine to either GL DEPTH COMPONENT
or GL STENCIL INDEX. For these buffers, we would need to set up the pixel
array using either depth values or stencil information.

There are four color buffers available in OpenGL that can be used for screen
refreshing. Two of the color buffers constitute a left-right scene pair for display-
ing stereoscopic views. For each of the stereoscopic buffers, there is a front-back
pair for double-buffered animation displays. In a particular implementation of
OpenGL, either stereoscopic viewing or double buffering, or both, might not be
supported. If neither stereoscopic effects nor double buffering is supported, then
there is only a single refresh buffer, which is designated as the front-left color
buffer. This is the default refresh buffer when double buffering is not available or
not in effect. If double buffering is in effect, the default is either the back-left and
back-right buffers or only the back-left buffer, depending on the current state of
stereoscopic viewing. Also, a number of user-defined, auxiliary color buffers are
supported that can be used for any nonrefresh purpose, such as saving a picture
that is to be copied later into a refresh buffer for display.

Graphics Output Primitives

constant, such as GL BYTE, GL INT, or GL FLOAT, is assigned
dataType to designate the data type for the color values in the array.

left corner of this color array is mapped to the current raster position,
the glRasterPos function. As an example, the following statement

75

We select a single color or auxiliary buffer or a combination of color buffers
for storing a pixmap with the following command:

glDrawBuffer (buffer);

A variety of OpenGL symbolic constants can be assigned to parameter buffer
to designate one or more “draw” buffers. For instance, we can pick a single
buffer with either GL FRONT LEFT, GL FRONT RIGHT, GL BACK LEFT, or
GL BACK RIGHT. We can select both front buffers with GL FRONT, and we
can select both back buffers with GL BACK. This is assuming that stereoscopic
viewing is in effect. Otherwise, the previous two symbolic constants designate a
single buffer. Similarly, we can designate either the left or right buffer pairs with
GL LEFT or GL RIGHT, and we can select all the available color buffers with
GL FRONT AND BACK. An auxiliary buffer is chosen with the constantGL AUXk,
where k is an integer value from 0 to 3, although more than four auxiliary buffers
may be available in some implementations of OpenGL.

OpenGL Raster Operations
In addition to storing an array of pixel values in a buffer, we can retrieve a block
of values from a buffer or copy the block into another buffer area, and we can
perform a variety of other operations on a pixel array. In general, the term raster
operation or raster op is used to describe any function that processes a pixel array
in some way. A raster operation that moves an array of pixel values from one place
to another is also referred to as a block transfer of pixel values. On a bilevel sys-
tem, these operations are called bitblt transfers (bit-block transfers), particularly
when the functions are hardware-implemented. On a multilevel system, the term
pixblt is sometimes used for block transfers.

We use the following function to select a rectangular block of pixel values in
a designated set of buffers:

glReadPixels (xmin, ymin, width, height,
dataFormat, dataType, array};

The lower-left corner of the rectangular block to be retrieved is at screen-
coordinate position (xmin, ymin). Parameters width, height, dataFormat,
and dataType are the same as in the glDrawPixels routine. The type of
data to be saved in parameter array depends on the selected buffer. We can
choose either the depth buffer or the stencil buffer by assigning either the
value GL DEPTH COMPONENT or the value GL STENCIL INDEX to parameter
dataFormat.

A particular combination of color buffers or an auxiliary buffer is selected for
the application of the glReadPixels routine with the function

glReadBuffer (buffer);

Symbolic constants for specifying one or more buffers are the same as in the
glDrawBuffer routine except that we cannot select all four of the color buffers.
The default buffer selection is the front left-right pair or just the front-left buffer,
depending on the status of stereoscopic viewing.

We can also copy a block of pixel data from one location to another within
the set of OpenGL buffers using the following routine:

glCopyPixels (xmin, ymin, width, height, pixelValues};

Graphics Output Primitives

76

The lower-left corner of the block is at screen-coordinate location (xmin, ymin),
and parameters width and height are assigned positive integer values to desig-
nate the number of columns and rows, respectively, that are to be copied. Param-
eter pixelValues is assigned either GL COLOR, GL DEPTH, or GL STENCIL to
indicate the kind of data we want to copy: color values, depth values, or stencil
values. In addition, the block of pixel values is copied from a source buffer to a
destination buffer, with its lower-left corner mapped to the current raster position.
We select the source buffer with the glReadBuffer command, and we select
the destination buffer with the glDrawBuffer command. Both the region to be
copied and the destination area should lie completely within the bounds of the
screen coordinates.

To achieve different effects as a block of pixel values is placed into a buffer with
glDrawPixels or glCopyPixels, we can combine the incoming values with
the old buffer values in various ways. As an example, we could apply logical
operations, such as and, or, and exclusive or, to combine the two blocks of pixel
values. In OpenGL, we select a bitwise, logical operation for combining incoming
and destination pixel color values with the functions

glEnable (GL_COLOR_LOGIC_OP);

glLogicOp (logicOp);

A variety of symbolic constants can be assigned to parameter logicOp,
including GL AND, GL OR, and GL XOR. In addition, either the incoming bit val-
ues or the destination bit values can be inverted (interchanging 0 and 1 values).
We use the constant GL COPY INVERTED to invert the incoming color bit values
and then replace the destination values with the inverted incoming values; and
we could simply invert the destination bit values without replacing them with
the incoming values using GL INVERT. The various invert operations can also
be combined with the logical and, or, and exclusive or operations. Other options
include clearing all the destination bits to the value 0 (GL CLEAR), or setting all
the destination bits to the value 1 (GL SET). The default value for the glLogicOp
routine isGL COPY, which simply replaces the destination values with the incom-
ing values.

Additional OpenGL routines are available for manipulating pixel arrays pro-
cessed by the glDrawPixels, glReadPixels, and glCopyPixels functions.
For example, the glPixelTransfer and glPixelMap routines can be used to
shift or adjust color values, depth values, or stencil values. We return to pixel oper-
ations in later chapters as we explore other facets of computer-graphics packages.

12 Character Primitives
Graphics displays often include textural information, such as labels on graphs
and charts, signs on buildings or vehicles, and general identifying information
for simulation and visualization applications. Routines for generating character
primitives are available in most graphics packages. Some systems provide an
extensive set of character functions, while other systems offer only minimal sup-
port for character generation.

Letters, numbers, and other characters can be displayed in a variety of sizes
and styles. The overall design style for a set (or family) of characters is called a
typeface. Today, there are thousands of typefaces available for computer appli-
cations. Examples of a few common typefaces are Courier, Helvetica, New York,

Graphics Output Primitives

77

Palatino, and Zapf Chancery. Originally, the term font referred to a set of cast
metal character forms in a particular size and format, such as 10-point Courier
Italic or 12-point Palatino Bold. A 14-point font has a total character height of
about 0.5 centimeter. In other words, 72 points is about the equivalent of 2.54 cen-
timeters (1 inch). The terms font and typeface are now often used interchangeably,
since most printing is no longer done with cast metal forms.

Fonts can be divided into two broad groups: serif and sans serif. Serif type has
small lines or accents at the ends of the main character strokes, while sans-serif

Fonts are also classified according to whether they are monospace or propor-
tional. Characters in a monospace font all have the same width. In a proportional
font, character width varies.

Two different representations are used for storing computer fonts. A simple
method for representing the character shapes in a particular typeface is to set
up a pattern of binary values on a rectangular grid. The set of characters is then
referred to as a bitmap font (or bitmapped font). A bitmapped character set is
also sometimes referred to as a raster font. Another, more flexible, scheme is to
describe character shapes using straight-line and curve sections, as in PostScript,
for example. In this case, the set of characters is called an outline font or a stroke
font. Figure 28 illustrates the two methods for character representation. When
the pattern in Figure 28(a) is applied to an area of the frame buffer, the 1 bits
designate which pixel positions are to be displayed in a specified color. To display
the character shape in Figure 28(b), the interior of the character outline is treated
as a fill area.

Bitmap fonts are the simplest to define and display: We just need to map
the character grids to a frame-buffer position. In general, however, bitmap fonts
require more storage space because each variation (size and format) must be saved
in a font cache. It is possible to generate different sizes and other variations, such
as bold and italic, from one bitmap font set, but this often does not produce good
results. We can increase or decrease the size of a character bitmap only in integer
multiples of the pixel size. To double the size of a character, we need to double
the number of pixels in the bitmap. This just increases the ragged appearance of
its edges.

In contrast to bitmap fonts, outline fonts can be increased in size without
distorting the character shapes. And outline fonts require less storage because
each variation does not require a distinct font cache. We can produce boldface,

F I G U R E 2 8
The letter “B” represented with an 8 × 8
bitmap pattern (a) and with an outline
shape defined with straight-line and curve
segments (b).

1 1 1 1 1 1 0 0

0 1 1 0 0 1 1 0

0 1 1 0 0 1 1 0

0 1 1 1 1 1 0 0

0 1 1 0 0 1 1 0

0 1 1 0 0 1 1 0

1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0

(a) (b)

Graphics Output Primitives

type does not have such accents. For example, this text is set in a serif font
(Palatino). But this sentence is printed in a sans-serif font (Univers). Serif type is
generally more readable; that is, it is easier to read in longer blocks of text. On the
other hand, the individual characters in sans-serif type are easier to recognize. For
this reason, sans-serif type is said to be more legible. Since sans-serif characters can
be recognized quickly, this font is good for labeling and short headings.

78

y
y

9441

x

x

0

50

100

50 100 150

*

*

*

*
*

* 4359
7485
59110
89121
122149

F I G U R E 2 9
A polymarker graph of a set of data values.

italic, or different sizes by manipulating the curve definitions for the character
outlines. But it does take more time to process the outline fonts because they must
be scan-converted into the frame buffer.

There is a variety of possible functions for implementing character displays.
Some graphics packages provide a function that accepts any character string and
a frame-buffer starting position for the string. Another type of function displays
a single character at one or more selected positions. Since this character routine
is useful for showing markers in a network layout or in displaying a point plot of
a discrete data set, the character displayed by this routine is sometimes referred
to as a marker symbol or polymarker, in analogy with a polyline primitive. In
addition to standard characters, special shapes such as dots, circles, and crosses
are often available as marker symbols. Figure 29 shows a plot of a discrete data
set using an asterisk as a marker symbol.

Geometric descriptions for characters are given in world coordinates, just as
they are for other primitives, and this information is mapped to screen coordinates
by the viewing transformations. A bitmap character is described with a rectan-
gular grid of binary values and a grid reference position. This reference position
is then mapped to a specified location in the frame buffer. An outline character is
defined by a set of coordinate positions that are to be connected with a series of
curves and straight-line segments and a reference position that is to be mapped
to a given frame-buffer location. The reference position can be specified either for
a single outline character or for a string of characters. In general, character rou-
tines can allow the construction of both two-dimensional and three-dimensional
character displays.

13 OpenGL Character Functions
Only low-level support is provided by the basic OpenGL library for displaying
individual characters and text strings. We can explicitly define any character as
a bitmap, as in the example shape shown in Figure 27, and we can store a set
of bitmap characters as a font list. A text string is then displayed by mapping a
selected sequence of bitmaps from the font list into adjacent positions in the frame
buffer.

However, some predefined character sets are available in the GLUT library,
so we do not need to create our own fonts as bitmap shapes unless we want to
display a font that is not available in GLUT. The GLUT library contains routines
for displaying both bitmapped and outline fonts. Bitmapped GLUT fonts are ren-
dered using the OpenGL glBitmap function, and the outline fonts are generated
with polyline (GL LINE STRIP) boundaries.

We can display a bitmap GLUT character with

glutBitmapCharacter (font, character);

Graphics Output Primitives

79

where parameter font is assigned a symbolic GLUT constant identifying a par-
ticular set of typefaces, and parameter character is assigned either the ASCII
code or the specific character we wish to display. Thus, to display the upper-
case letter “A,” we can either use the ASCII value 65 or the designation 'A'.
Similarly, a code value of 66 is equivalent to 'B', code 97 corresponds to the low-
ercase letter 'a', code 98 corresponds to 'b', and so forth. Both fixed-width fonts
and proportionally spaced fonts are available. We can select a fixed-width font
by assigning either GLUT BITMAP 8 BY 13 or GLUT BITMAP 9 BY 15 to
parameter font. And we can select a 10-point, proportionally spaced font with
either GLUT BITMAP TIMES ROMAN 10 or GLUT BITMAP HELVETICA 10.
A 12-point Times-Roman font is also available, as well as 12-point and 18-point
Helvetica fonts.

Each character generated by glutBitmapCharacter is displayed so that
the origin (lower-left corner) of the bitmap is at the current raster position. After
the character bitmap is loaded into the refresh buffer, an offset equal to the width
of the character is added to the x coordinate for the current raster position. As an
example, we could display a text string containing 36 bitmap characters with the
following code:

glRasterPosition2i (x, y);
for (k = 0; k < 36; k++)

glutBitmapCharacter (GLUT_BITMAP_9_BY_15, text [k]);

Characters are displayed in the color that was specified before the execution of
the glutBitmapCharacter function.

An outline character is displayed with the following function call:

glutStrokeCharacter (font, character);

For this function, we can assign parameter font either the value GLUT
STROKE ROMAN, which displays a proportionally spaced font, or the valueGLUT
STROKE MONO ROMAN, which displays a font with constant spacing. We control
the size and position of these characters by specifying transformation operations

14 Picture Partitioning
Some graphics libraries include routines for describing a picture as a collection of
named sections and for manipulating the individual sections of a picture. Using
these functions, we can create, edit, delete, or move a part of a picture indepen-
dently of the other picture components. In addition, we can use this feature of a

Various names are used for the subsections of a picture. Some graphics pack-
ages refer to them as structures, while other packages call them segments

Graphics Output Primitives

before executing the glutStrokeCharacter routine. After each character is
displayed, a coordinate offset is applied automatically so that the position for
displaying the next character is to the right of the current character. Text strings
generated with outline fonts are part of the geometric description for a two-
dimensional or three-dimensional scene because they are constructed with line
segments. Thus, they can be viewed fromvarious directions, and we can shrink or
expand them without distortion, or transform them in other ways. But they are
slower to render, compared to bitmapped fonts.

graphics package for hierarchical modeling, in which an object description is
given as a tree structure composed of a number of levels specifying the object
subparts.

80

or objects. Also, the allowable subsection operations vary greatly from one
package to another. Modeling packages, for example, provide a wide range of
operations that can be used to describe and manipulate picture elements. On
the other hand, for any graphics library, we can always structure and manage
the components of a picture using procedural elements available in a high-level
language such as C++.

15 OpenGL Display Lists
Often it can be convenient or more efficient to store an object description (or any
other set of OpenGL commands) as a named sequence of statements. We can
do this in OpenGL using a structure called a display list. Once a display list
has been created, we can reference the list multiple times with different display
operations. On a network, a display list describing a scene is stored on the server
machine, which eliminates the need to transmit the commands in the list each time
the scene is to be displayed. We can also set up a display list so that it is saved
for later execution, or we can specify that the commands in the list be executed
immediately. And display lists are particularly useful for hierarchical modeling,
where a complex object can be described with a set of simpler subparts.

Creating and Naming an OpenGL Display List
A set of OpenGL commands is formed into a display list by enclosing the com-
mands within the glNewList/glEndList pair of functions. For example,

glNewList (listID, listMode};
.
.
.

glEndList ();

This structure forms a display list with a positive integer value assigned
to parameter listID as the name for the list. Parameter listMode is
assigned an OpenGL symbolic constant that can be either GL COMPILE or
GL COMPILE AND EXECUTE. If we want to save the list for later execution, we
use GL COMPILE. Otherwise, the commands are executed as they are placed into
the list, in addition to allowing us to execute the list again at a later time.

As a display list is created, expressions involving parameters such as coor-
dinate positions and color components are evaluated so that only the param-
eter values are stored in the list. Any subsequent changes to these parameters
have no effect on the list. Because display-list values cannot be changed, we
cannot include certain OpenGL commands, such as vertex-list pointers, in a
display list.

We can create any number of display lists, and we execute a particular list of
commands with a call to its identifier. Further, one display list can be embedded
within another display list. But if a list is assigned an identifier that has already
been used, the new list replaces the previous list that had been assigned that
identifier. Therefore, to avoid losing a list by accidentally reusing its identifier, we
can let OpenGL generate an identifier for us, as follows:

listID = glGenLists (1);

This statement returns one (1) unused positive integer identifier to the variable
listID. A range of unused integer list identifiers is obtained if we change the
argument of glGenLists from the value 1 to some other positive integer. For

Graphics Output Primitives

81

instance, if we invoke glGenLists (6), then a sequence of six contiguous posi-
tive integer values is reserved and the first value in this list of identifiers is returned
to the variable listID. A value of 0 is returned by the glGenLists function if
an error occurs or if the system cannot generate the range of contiguous integers
requested. Therefore, before using an identifier obtained from the glGenLists
routine, we could check to be sure that it is not 0.

Although unused list identifiers can be generated with the glGenList
function, we can independently query the system to determine whether a
specific integer value has been used as a list name. The function to accomplish
this is

glIsList (listID};

A value of GL TRUE is returned if the value of listID is an integer that has
already been used as a display-list name. If the integer value has not been used
as a list name, the glIsList function returns the value GL FALSE.

Executing OpenGL Display Lists
We execute a single display list with the statement

glCallList (listID);

The following code segment illustrates the creation and execution of a display list.
We first set up a display list that contains the description for a regular hexagon,
defined in the xy plane using a set of six equally spaced vertices around the
circumference of a circle, whose center coordinates are (200, 200) and whose
radius is 150. Then we issue a call to function glCallList, which displays the
hexagon.

const double TWO_PI = 6.2831853;

GLuint regHex;

GLdouble theta;
GLint x, y, k;

/* Set up a display list for a regular hexagon.
* Vertices for the hexagon are six equally spaced
* points around the circumference of a circle.
*/
regHex = glGenLists (1); // Get an identifier for the display list.
glNewList (regHex, GL_COMPILE);

glBegin (GL_POLYGON);
for (k = 0; k < 6; k++) {

theta = TWO_PI * k / 6.0;
x = 200 + 150 * cos (theta);
y = 200 + 150 * sin (theta);
glVertex2i (x, y);

}
glEnd ();

glEndList ();

glCallList (regHex);

Graphics Output Primitives

82

Several display lists can be executed using the following two statements:

glListBase (offsetValue);

glCallLists (nLists, arrayDataType, listIDArray);

The integer number of lists that we want to execute is assigned to parameter
nLists, and parameter listIDArray is an array of display-list identifiers. In
general, listIDArray can contain any number of elements, and invalid display-
list identifiers are ignored. Also, the elements in listIDArray can be speci-
fied in a variety of data formats, and parameter arrayDataType is used to
indicate a data type, such as GL BYTE, GL INT, GL FLOAT, GL 3 BYTES, or
GL 4 BYTES. A display-list identifier is calculated by adding the value in an
element of listIDArray to the integer value of offsetValue that is given in
the glListBase function. The default value for offsetValue is 0.

This mechanism for specifying a sequence of display lists that are to be
executed allows us to set up groups of related display lists, whose identifiers
are formed from symbolic names or codes. A typical example is a font set where
each display-list identifier is the ASCII value of a character. When several font
sets are defined, we use parameter offsetValue in the glListBase function
to obtain a particular font described within the array listIDArray.

Deleting OpenGL Display Lists
We eliminate a contiguous set of display lists with the function call

glDeleteLists (startID, nLists);

ParameterstartIDgives the initial display-list identifier, and parameternLists
specifies the number of lists that are to be deleted. For example, the statement

glDeleteLists (5, 4);

eliminates the four display lists with identifiers 5, 6, 7, and 8. An identifier value
that references a nonexistent display list is ignored.

16 OpenGL Display-Window
Reshape Function

Graphics Output Primitives

To allow us to compensate for a change in display-window dimensions, the
GLUT library provides the following routine:

glutReshapeFunc (winReshapeFcn);

We can include this function in themainprocedure in our program, along with the
other GLUT routines, and it will be activated whenever the display-window size
is altered. The argument for this GLUT function is the name of a procedure that

After the generation of our picture, we often want to use the mouse pointer to
drag the display window to another screen location or to change its size.
Changing the size of a display window could change its aspect ratio and cause
objects to be distorted from their original shapes.

83

F I G U R E 3 0
The display window generated by the
example program illustrating the use
of the reshape function.

is to receive the new display-window width and height. We can then use the new
dimensions to reset the projection parameters and perform any other operations,
such as changing the display-window color. In addition, we could save the new
width and height values so that they could be used by other procedures in our
program.

As an example, the following program illustrates how we might structure the
winReshapeFcnprocedure. TheglLoadIdentity command is included in the
reshape function so that any previous values for the projection parameters will
not affect the new projection settings. This program displays the regular hexagon
discussed in Section 15. Although the hexagon center (at the position of the circle
center) in this example is specified in terms of the display-window parameters,
the position of the hexagon is unaffected by any changes in the size of the display
window. This is because the hexagon is defined within a display list, and only
the original center coordinates are stored in the list. If we want the position of the
hexagon to change when the display window is resized, we need to define the
hexagon in another way or alter the coordinate reference for the display window.
The output from this program is shown in Figure 30.

#include <GL/glut.h>
#include <math.h>
#include <stdlib.h>

const double TWO_PI = 6.2831853;

/* Initial display-window size. */
GLsizei winWidth = 400, winHeight = 400;
GLuint regHex;

class screenPt
{

private:
GLint x, y;

Graphics Output Primitives

84

public:
/* Default Constructor: initializes coordinate position to (0, 0). */
screenPt () {

x = y = 0;
}

void setCoords (GLint xCoord, GLint yCoord) {
x = xCoord;
y = yCoord;

}

GLint getx () const {
return x;

}

GLint gety () const {
return y;

}
};

static void init (void)
{

screenPt hexVertex, circCtr;
GLdouble theta;
GLint k;

/* Set circle center coordinates. */
circCtr.setCoords (winWidth / 2, winHeight / 2);

glClearColor (1.0, 1.0, 1.0, 0.0); // Display-window color = white.

/* Set up a display list for a red regular hexagon.
* Vertices for the hexagon are six equally spaced
* points around the circumference of a circle.
*/
regHex = glGenLists (1); // Get an identifier for the display list.
glNewList (regHex, GL_COMPILE);

glColor3f (1.0, 0.0, 0.0); // Set fill color for hexagon to red.
glBegin (GL_POLYGON);

for (k = 0; k < 6; k++) {
theta = TWO_PI * k / 6.0;

hexVertex.setCoords (circCtr.getx () + 150 * cos (theta),
circCtr.gety () + 150 * sin (theta));

glVertex2i (hexVertex.getx (), hexVertex.gety ());
}

glEnd ();
glEndList ();

}

void regHexagon (void)
{

glClear (GL_COLOR_BUFFER_BIT);

glCallList (regHex);

glFlush ();
}

Graphics Output Primitives

85

void winReshapeFcn (int newWidth, int newHeight)
{

glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
gluOrtho2D (0.0, (GLdouble) newWidth, 0.0, (GLdouble) newHeight);

glClear (GL_COLOR_BUFFER_BIT);
}

void main (int argc, char** argv)
{

glutInit (&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowPosition (100, 100);
glutInitWindowSize (winWidth, winHeight);
glutCreateWindow ("Reshape-Function & Display-List Example");

init ();
glutDisplayFunc (regHexagon);
glutReshapeFunc (winReshapeFcn);

glutMainLoop ();
}

17 Summary
The output primitives discussed in this chapter provide the basic tools for con-
structing pictures with individual points, straight lines, curves, filled color areas,
array patterns, and text. We specify primitives by giving their geometric descrip-
tions in a Cartesian, world-coordinate reference system.

A fill area is a planar region that is to be displayed in a solid color or color
pattern. Fill-area primitives in most graphics packages are polygons. But, in gen-
eral, we could specify a fill region with any boundary. Often, graphics systems
allow only convex polygon fill areas. In that case, a concave-polygon fill area
can be displayed by dividing it into a set of convex polygons. Triangles are the
easiest polygons to fill, because each scan line crossing a triangle intersects ex-
actly two polygon edges (assuming that the scan line does not pass through any
vertices).

The odd-even rule can be used to locate the interior points of a planar region.
Other methods for defining object interiors are also useful, particularly with irreg-
ular, self-intersecting objects. A common example is the nonzero winding-number
rule. This rule is more flexible than the odd-even rule for handling objects defined
with multiple boundaries. We can also use variations of the winding-number rule
to combine plane areas using Boolean operations.

Each polygon has a front face and a back face, which determines the spa-
tial orientation of the polygon plane. This spatial orientation can be determined
from the normal vector, which is perpendicular to the polygon plane and points

Graphics Output Primitives

86

in the direction from the back face to the front face. We can determine the com-
ponents of the normal vector from the polygon plane equation or by forming
a vector cross-product using three points in the plane, where the three points
are taken in a counterclockwise order and the angle formed by the three points
is less than 180◦. All coordinate values, spatial orientations, and other geomet-
ric data for a scene are entered into three tables: vertex, edge, and surface-facet
tables.

Additional primitives available in graphics packages include pattern arrays
and character strings. Pattern arrays can be used to specify two-dimensional
shapes, including a character set, using either a rectangular set of binary val-
ues or a set of color values. Character strings are used to provide picture and
graph labeling.

Using the primitive functions available in the basic OpenGL library, we can
generate points, straight-line segments, convex polygon fill areas, and either
bitmap or pixmap pattern arrays. Routines for displaying character strings are
available in GLUT. Other types of primitives, such as circles, ellipses, and concave-
polygon fill areas, can be constructed or approximated with these functions, or
they can be generated using routines in GLU and GLUT. All coordinate values
are expressed in absolute coordinates within a right-handed Cartesian-coordinate
reference system. Coordinate positions describing a scene can be given in either
a two-dimensional or a three-dimensional reference frame. We can use integer or
floating-point values to give a coordinate position, and we can also reference a
position with a pointer to an array of coordinate values. A scene description is then
transformed by viewing functions into a two-dimensional display on an output
device, such as a video monitor. Except for the glRect function, each coordinate
position for a set of points, lines, or polygons is specfied in a glVertex function.
And the set of glVertex functions defining each primitive is included between
a glBegin/glEnd pair of statements, where the primitive type is identified
with a symbolic constant as the argument for the glBegin function. When
describing a scene containing many polygon fill surfaces, we can generate the
display efficiently using OpenGL vertex arrays to specify geometric and other
data.

In Table 1, we list the basic functions for generating output primitives in
OpenGL. Some related routines are also listed in this table.

Example Programs
Here, we present a few example OpenGL programs illustrating the use of output
primitives. Each program uses one or more of the functions listed in Table 1.
A display window is set up for the output from each program.

The first program illustrates the use of a polyline, a set of polymarkers, and
bit-mapped character labels to generate a line graph for monthly data over a
period of one year. A proportionally spaced font is demonstrated, although a
fixed-width font is usually easier to align with graph positions. Because the
bitmaps are referenced at the lower-left corner by the raster-position func-
tion, we must shift the reference position to align the center of a text string
with a plotted data position. Figure 31 shows the output of the line-graph
program.

Graphics Output Primitives

87

T A B L E 1

Summary of OpenGL Output Primitive Functions and Related Routines

Function Description

gluOrtho2D Specifies a two-dimensional world-
coordinate reference.

glVertex* Selects a coordinate position. This function
must be placed within a glBegin/glEnd
pair.

glBegin (GL POINTS); Plots one or more point positions, each
specified in a glVertex function. The list
of positions is then closed with a glEnd
statement.

glBegin (GL LINES); Displays a set of straight-line segments,
whose endpoint coordinates are specified
in glVertex functions. The list of
endpoints is then closed with a glEnd
statement.

glBegin (GL LINE STRIP); Displays a polyline, specified using the
same structure as GL LINES.

glBegin (GL LINE LOOP); Displays a closed polyline, specified using
the same structure as GL LINES.

glRect* Displays a fill rectangle in the xy plane.

glBegin (GL POLYGON); Displays a fill polygon, whose vertices are
given in glVertex functions and
terminated with a glEnd statement.

glBegin (GL TRIANGLES); Displays a set of fill triangles using the
same structure as GL POLYGON.

glBegin (GL TRIANGLE STRIP); Displays a fill-triangle mesh, specified
using the same structure as GL POLYGON.

glBegin (GL TRIANGLE FAN); Displays a fill-triangle mesh in a fan shape
with all triangles connected to the first
vertex, specified with same structure as
GL POLYGON.

glBegin (GL QUADS); Displays a set of fill quadrilaterals,
specified with the same structure as
GL POLYGON.

glBegin (GL QUAD STRIP); Displays a fill-quadrilateral mesh, specified
with the same structure as GL POLYGON.

glEnableClientState Activates vertex-array features of
(GL VERTEX ARRAY); OpenGL.

glVertexPointer (size, type, Specifies an array of coordinate values.
stride, array);

glDrawElements (prim, num, Displays a specified primitive type from
type, array); array data.

Graphics Output Primitives

88

T A B L E 1

(continued)

Function Description

glNewList (listID, listMode) Defines a set of commands as a display
list, terminated with a glEndList
statement.

glGenLists Generates one or more display-list
identifiers.

glIsList Queries OpenGL to determine whether a
display-list identifier is in use.

glCallList Executes a single display list.

glListBase Specifies an offset value for an array of
display-list identifiers.

glCallLists Executes multiple display lists.

glDeleteLists Eliminates a specified sequence of display
lists.

glRasterPos* Specifies a two-dimensional or three-
dimensional current position for the
frame buffer. This position is used as a
reference for bitmap and pixmap
patterns.

glBitmap (w, h, x0, y0, Specifies a binary pattern that is to be
xShift, yShift, pattern); mapped to pixel positions relative to the

current position.

glDrawPixels (w, h, type, Specifies a color pattern that is to be
format, pattern); mapped to pixel positions relative to the

current position.

glDrawBuffer Selects one or more buffers for storing a
pixmap.

glReadPixels Saves a block of pixels in a selected array.

glCopyPixels Copies a block of pixels from one buffer
position to another.

glLogicOp Selects a logical operation for combining
two pixel arrays, after enabling with the
constant GL COLOR LOGIC OP.

glutBitmapCharacter Specifies a font and a bitmap character for
(font, char); display.

glutStrokeCharacter Specifies a font and an outline character for
(font, char); display.

glutReshapeFunc Specifies actions to be taken when
display-window dimensions are
changed.

Graphics Output Primitives

89

F I G U R E 3 1
A polyline and polymarker plot of data
points output by the lineGraph
routine.

#include <GL/glut.h>

GLsizei winWidth = 600, winHeight = 500; // Initial display window size.
GLint xRaster = 25, yRaster = 150; // Initialize raster position.

GLubyte label [36] = {'J', 'a', 'n', 'F', 'e', 'b', 'M', 'a', 'r',
'A', 'p', 'r', 'M', 'a', 'y', 'J', 'u', 'n',
'J', 'u', 'l', 'A', 'u', 'g', 'S', 'e', 'p',
'O', 'c', 't', 'N', 'o', 'v', 'D', 'e', 'c'};

GLint dataValue [12] = {420, 342, 324, 310, 262, 185,
190, 196, 217, 240, 312, 438};

void init (void)
{

glClearColor (1.0, 1.0, 1.0, 1.0); // White display window.
glMatrixMode (GL_PROJECTION);
gluOrtho2D (0.0, 600.0, 0.0, 500.0);

}

void lineGraph (void)
{

GLint month, k;
GLint x = 30; // Initialize x position for chart.

glClear (GL_COLOR_BUFFER_BIT); // Clear display window.
glColor3f (0.0, 0.0, 1.0); // Set line color to blue.

Graphics Output Primitives

90

glBegin (GL_LINE_STRIP); // Plot data as a polyline.
for (k = 0; k < 12; k++)

glVertex2i (x + k*50, dataValue [k]);
glEnd ();

glColor3f (1.0, 0.0, 0.0); // Set marker color to red.
for (k = 0; k < 12; k++) { // Plot data as asterisk polymarkers.

glRasterPos2i (xRaster + k*50, dataValue [k] - 4);
glutBitmapCharacter (GLUT_BITMAP_9_BY_15, '*');

}

glColor3f (0.0, 0.0, 0.0); // Set text color to black.
xRaster = 20; // Display chart labels.
for (month = 0; month < 12; month++) {

glRasterPos2i (xRaster, yRaster);
for (k = 3*month; k < 3*month + 3; k++)
glutBitmapCharacter (GLUT_BITMAP_HELVETICA_12, label [k]);

xRaster += 50;
}
glFlush ();

}

void winReshapeFcn (GLint newWidth, GLint newHeight)
{

glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
gluOrtho2D (0.0, GLdouble (newWidth), 0.0, GLdouble (newHeight));

glClear (GL_COLOR_BUFFER_BIT);
}

void main (int argc, char** argv)
{

glutInit (&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowPosition (100, 100);
glutInitWindowSize (winWidth, winHeight);
glutCreateWindow ("Line Chart Data Plot");

init ();
glutDisplayFunc (lineGraph);
glutReshapeFunc (winReshapeFcn);

glutMainLoop ();
}

We use the same data set in the second program to produce the bar chart in
Figure 32. This program illustrates an application of rectangular fill areas, as
well as bitmapped character labels.

Graphics Output Primitives

91

F I G U R E 3 2
A bar chart generated by the
barChart procedure.

void barChart (void)
{

GLint month, k;

glClear (GL_COLOR_BUFFER_BIT); // Clear display window.

glColor3f (1.0, 0.0, 0.0); // Set bar color to red.
for (k = 0; k < 12; k++)

glRecti (20 + k*50, 165, 40 + k*50, dataValue [k]);

glColor3f (0.0, 0.0, 0.0); // Set text color to black.
xRaster = 20; // Display chart labels.
for (month = 0; month < 12; month++) {

glRasterPos2i (xRaster, yRaster);
for (k = 3*month; k < 3*month + 3; k++)

glutBitmapCharacter (GLUT_BITMAP_HELVETICA_12,
label [h]);

xRaster += 50;
}
glFlush ();

}

F I G U R E 3 3
Output produced with the
pieChart procedure.

Pie charts are used to show the percentage contribution of individual parts to the
whole. The next program constructs a pie chart, using the midpoint routine for
generating a circle. Example values are used for the number and relative sizes of
the slices, and the output from this program appears in Figure 33.

Graphics Output Primitives

92

#include <GL/glut.h>
#include <stdlib.h>
#include <math.h>

const GLdouble twoPi = 6.283185;

class scrPt {
public:

GLint x, y;
};

GLsizei winWidth = 400, winHeight = 300; // Initial display window size.

void init (void)
{

glClearColor (1.0, 1.0, 1.0, 1.0);

glMatrixMode (GL_PROJECTION);
gluOrtho2D (0.0, 200.0, 0.0, 150.0);

}

. // Midpoint routines for displaying a circle.

.

.

void pieChart (void)
{

scrPt circCtr, piePt;
GLint radius = winWidth / 4; // Circle radius.

GLdouble sliceAngle, previousSliceAngle = 0.0;

GLint k, nSlices = 12; // Number of slices.
GLfloat dataValues[12] = {10.0, 7.0, 13.0, 5.0, 13.0, 14.0,

3.0, 16.0, 5.0, 3.0, 17.0, 8.0};
GLfloat dataSum = 0.0;

circCtr.x = winWidth / 2; // Circle center position.
circCtr.y = winHeight / 2;
circleMidpoint (circCtr, radius); // Call a midpoint circle-plot routine.

for (k = 0; k < nSlices; k++)
dataSum += dataValues[k];

for (k = 0; k < nSlices; k++) {
sliceAngle = twoPi * dataValues[k] / dataSum + previousSliceAngle;
piePt.x = circCtr.x + radius * cos (sliceAngle);
piePt.y = circCtr.y + radius * sin (sliceAngle);
glBegin (GL_LINES);

glVertex2i (circCtr.x, circCtr.y);
glVertex2i (piePt.x, piePt.y);

glEnd ();
previousSliceAngle = sliceAngle;

}
}

Graphics Output Primitives

93

void displayFcn (void)
{

glClear (GL_COLOR_BUFFER_BIT); // Clear display window.

glColor3f (0.0, 0.0, 1.0); // Set circle color to blue.

pieChart ();
glFlush ();

}

void winReshapeFcn (GLint newWidth, GLint newHeight)
{

glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
gluOrtho2D (0.0, GLdouble (newWidth), 0.0, GLdouble (newHeight));

glClear (GL_COLOR_BUFFER_BIT);

/* Reset display-window size parameters. */
winWidth = newWidth;
winHeight = newHeight;

}

void main (int argc, char** argv)
{

glutInit (&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowPosition (100, 100);
glutInitWindowSize (winWidth, winHeight);
glutCreateWindow ("Pie Chart");

init ();
glutDisplayFunc (displayFcn);
glutReshapeFunc (winReshapeFcn);

glutMainLoop ();
}

Some variations on the circle equations are displayed by our last example pro-
gram, which uses the parametric polar equations (6-28) to compute points along
the curve paths. These points are then used as the endpoint positions for straight-
line sections, displaying the curves as approximating polylines. The curves shown
in Figure 34 are generated by varying the radius r of a circle. Depending on how
we vary r , we can produce a limaçon, cardioid, spiral, or other similar figure.

(a) (b) (c) (d) (e)

F I G U R E 3 4
Curved figures displayed by the drawCurve procedure: (a) limaçon, (b) cardioid, (c) three-leaf curve,
(d) four-leaf curve, and (e) spiral.

Graphics Output Primitives

94

#include <GL/glut.h>
#include <stdlib.h>
#include <math.h>

#include <iostream.h>

struct screenPt
{

GLint x;
GLint y;

};

typedef enum { limacon = 1, cardioid, threeLeaf, fourLeaf, spiral } curveName;

GLsizei winWidth = 600, winHeight = 500; // Initial display window size.

void init (void)
{

glClearColor (1.0, 1.0, 1.0, 1.0);

glMatrixMode (GL_PROJECTION);
gluOrtho2D (0.0, 200.0, 0.0, 150.0);

}

void lineSegment (screenPt pt1, screenPt pt2)
{

glBegin (GL_LINES);
glVertex2i (pt1.x, pt1.y);
glVertex2i (pt2.x, pt2.y);

glEnd ();
}

void drawCurve (GLint curveNum)
{

/* The limacon of Pascal is a modification of the circle equation
* with the radius varying as r = a * cos (theta) + b, where a
* and b are constants. A cardioid is a limacon with a = b.
* Three-leaf and four-leaf curves are generated when
* r = a * cos (n * theta), with n = 3 and n = 2, respectively.
* A spiral is displayed when r is a multiple of theta.
*/

const GLdouble twoPi = 6.283185;
const GLint a = 175, b = 60;

GLfloat r, theta, dtheta = 1.0 / float (a);
GLint x0 = 200, y0 = 250; // Set an initial screen position.
screenPt curvePt[2];

glColor3f (0.0, 0.0, 0.0); // Set curve color to black.

curvePt[0].x = x0; // Initialize curve position.
curvePt[0].y = y0;

Graphics Output Primitives

95

switch (curveNum) {
case limacon: curvePt[0].x += a + b; break;
case cardioid: curvePt[0].x += a + a; break;
case threeLeaf: curvePt[0].x += a; break;
case fourLeaf: curvePt[0].x += a; break;
case spiral: break;
default: break;

}

theta = dtheta;
while (theta < two_Pi) {

switch (curveNum) {
case limacon:

r = a * cos (theta) + b; break;
case cardioid:

r = a * (1 + cos (theta)); break;
case threeLeaf:

r = a * cos (3 * theta); break;
case fourLeaf:

r = a * cos (2 * theta); break;
case spiral:

r = (a / 4.0) * theta; break;
default: break;

}

curvePt[1].x = x0 + r * cos (theta);
curvePt[1].y = y0 + r * sin (theta);
lineSegment (curvePt[0], curvePt[1]);

curvePt[0].x = curvePt[1].x;
curvePt[0].y = curvePt[1].y;
theta += dtheta;

}
}

void displayFcn (void)
{

GLint curveNum;

glClear (GL_COLOR_BUFFER_BIT); // Clear display window.

cout << "\nEnter the integer value corresponding to\n";
cout << "one of the following curve names.\n";
cout << "Press any other key to exit.\n";
cout << "\n1-limacon, 2-cardioid, 3-threeLeaf, 4-fourLeaf, 5-spiral: ";
cin >> curveNum;

if (curveNum == 1 || curveNum == 2 || curveNum == 3 || curveNum == 4
|| curveNum == 5)
drawCurve (curveNum);

else
exit (0);

glFlush ();
}

Graphics Output Primitives

96

void winReshapeFcn (GLint newWidth, GLint newHeight)
{

glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
gluOrtho2D (0.0, (GLdouble) newWidth, 0.0, (GLdouble) newHeight);

glClear (GL_COLOR_BUFFER_BIT);
}

void main (int argc, char** argv)
{

glutInit (&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowPosition (100, 100);
glutInitWindowSize (winWidth, winHeight);
glutCreateWindow ("Draw Curves");

init ();
glutDisplayFunc (displayFcn);
glutReshapeFunc (winReshapeFcn);

glutMainLoop ();
}

REFERENCES
Basic information on Bresenham’s algorithms can be
found in Bresenham (1965 and 1977). For midpoint meth-
ods, see Kappel (1985). Parallel methods for generating
lines and circles are discussed in Pang (1990) and in
Wright (1990). Many other methods for generating and
processing graphics primitives are discussed in Glass-
ner (1990), Arvo (1991), Kirk (1992), Heckbert (1994), and
Paeth (1995).

Additional programming examples using OpenGL
primitive functions are given in Woo et al. (1999). A list-
ing of all OpenGL primitive functions is available in
Shreiner (2000). For a complete reference to GLUT, see
Kilgard (1996).

EXERCISES
1 Set up geometric data tables as in Figure 16 for a

square pyramid (a square base with four triangular
sides that meet at a pinnacle).

2 Set up geometric data tables for a square pyra-
mid using just a vertex table and a surface-facet
table, then store the same information using just
the surface-facet table. Compare the two methods
for representing the unit cube with a representa-
tion using the three tables in the previous exercise.
Estimate the storage requirements for each.

3 Set up a procedure for establishing the geomet-
ric data tables for any input set of points defining
the polygon facets for the surface of a three-
dimensional object.

4 Devise routines for checking the three geometric
data tables in Figure 16 to ensure consistency and
completeness.

5 Calculate the plane parameters A, B, C , and D for
each face of a unit cube centered at the world co-
ordinate origin.

6 Write a program for calculating parameters A, B, C ,
and D for an input mesh of polygon-surface facets.

7 Write a procedure to determine whether an input
coordinate position is in front of a polygon surface
or behind it, given the plane parameters A, B, C ,
and D for the polygon.

8 Write a procedure to determine whether a given
point is inside or outside of a cube with a given set
of coordinates.

9 If the coordinate reference for a scene is changed
from a right-handed system to a left-handed sys-
tem, what changes could we make in the values
of surface plane parameters A, B, C , and D to en-
sure that the orientation of the plane is correctly
described?

10 Given that the first three vertices, V1, V2, and V3, of
a pentagon have been used to calculate plane pa-
rameters A = 15, B = 21, C = 9, D = 0, determine
from the final two vertices V4 = (2, −1, −1) and
V5 = (1, −2, 2) whether the pentagon is planar or
non-planar.

Graphics Output Primitives

97

11 Develop a procedure for identifying a nonplanar
vertex list for a quadrilateral.

12 Extend the algorithm of the previous exercise to
identify a nonplanar vertex list that contains more
than four coordinate positions.

13 Write a procedure to split a set of four polygon
vertex positions into a set of triangles.

14 Split the octagon given by the list of vertices V1, V2,
V3, V4, V5, V6, V7, V8 into a set of triangles and give
the vertices that make up each triangle.

15 Devise an algorithm for splitting a set of n polygon
vertex positions, with n > 4, into a set of triangles.

16 Set up an algorithm for identifying a degenerate
polygon vertex list that may contain repeated ver-
tices or collinear vertices.

17 Devise an algorithm for identifying a polygon ver-
tex list that contains intersecting edges.

18 Write a routine to identify concave polygons by
calculating cross-products of pairs of edge vectors.

19 Write a routine to split a concave polygon, using
the vector method.

20 Write a routine to split a concave polygon, using
the rotational method.

21 Devise an algorithm for determining interior re-
gions for any input set of vertices using the nonzero
winding-number rule and cross-product calcula-
tions to identify the direction for edge crossings.

22 Devise an algorithm for determining interior re-
gions for any input set of vertices using the nonzero
winding-number rule and dot-product calcula-
tions to identify the direction for edge crossings.

23 What regions of the self-intersecting polyline
shown in Figure 12 have a positive winding num-
ber? What are the regions that have a negative
winding number? What regions have a winding
number greater than 1?

24 Write a routine to implement a text-string function
that has two parameters: one parameter specifies a
world-coordinate position and the other parameter
specifies a text string.

25 Write a routine to implement a polymarker func-
tion that has two parameters: one parameter is
the character that is to be displayed and the other
parameter is a list of world-coordinate positions.

26 Modify the example program in Section 16 so
that the displayed hexagon is always at the cen-
ter of the display window, regardless of how the
display window may be resized.

27 Write a complete program for displaying a bar
chart. Input to the program is to include the data
points and the labeling required for the x and y
axes. The data points are to be scaled by the pro-
gram so that the graph is displayed across the full
area of a display window.

28 Write a program to display a bar chart in any
selected area of a display window.

29 Write a procedure to display a line graph for any
input set of data points in any selected area of
the screen, with the input data set scaled to fit
the selected screen area. Data points are to be
displayed as asterisks joined with straight-line
segments, and the x and y axes are to be labeled
according to input specifications. (Instead of aster-
isks, small circles or some other symbols could be
used to plot the data points.)

30 Using a circle function, write a routine to display
a pie chart with appropriate labeling. Input to the
routine is to include a data set giving the distri-
bution of the data over some set of intervals, the
name of the pie chart, and the names of the inter-
vals. Each section label is to be displayed outside
the boundary of the pie chart near the correspond-
ing pie section.

IN MORE DEPTH

Graphics Output Primitives

1

2 Choose one of the concave polygons you generated
in the previous exercise and set up the vertex, edge,
and surface facet tables for the shape as described
in Section 7. Now split the shape it into a set of
convex polygons using the vector method given in
the same section. Then split each of the resulting
convex polygons into a set of triangles using the
method described in Section 7 as well. Finally,
set up the vertex, edge, and surface facet tables
for the resulting set of triangles. Compare the two
table sets and the amount of memory needed to
store each.

For this exercise, draw a rough sketch of what a
single “snapshot” of your application might look
like and write a program to display this snapshot.
Choose a background color and default window
size. Make sure the snapshot includes at least a
few objects. Represent each object as a polygonal
approximation to the true object. Use a different
shape for each object type. Represent at least one
of the objects as a concave polygon. Make each
object its own color distinct from the background
color. It is a good idea to write a separate function
for each object (or each object type) in which
you define the representation. Use display lists to
create and display each object. Include a display
window reshape function to redraw the scene
appropriately if the window is if the window is
resized.

98

Attributes of Graphics Primitives

1 OpenGL State Variables

2 Color and Grayscale

3 OpenGL Color Functions

4 Point Attributes

5 OpenGL Point-Attribute Functions

6 Line Attributes

7 OpenGL Line-Attribute Functions

8 Curve Attributes

9 Fill-Area Attributes

10 OpenGL Fill-Area Attribute Functions

11 Character Attributes

12 OpenGL Character-Attribute
Functions

13 OpenGL Antialiasing Functions

14 OpenGL Query Functions

15 OpenGL Attribute Groups

Summary

I n general, a parameter that affects the way a primitive is

to be displayed is referred to as an attribute parameter.
Some attribute parameters, such as color and size, deter-

mine the fundamental characteristics of a primitive. Other attributes

specify how the primitive is to be displayed under special conditions.

Examples of special-condition attributes are the options such as vis-

ibility or detectability within an interactive object-selection program.

These special-condition attributes are explored in later chapters. Here,

we treat only those attributes that control the basic display properties

of graphics primitives, without regard for special situations. For exam-

ple, lines can be dotted or dashed, fat or thin, and blue or orange.

Areas might be filled with one color or with a multicolor pattern. Text

can appear reading from left to right, slanted diagonally across the

screen, or in vertical columns. Individual characters can be displayed

in different fonts, colors, and sizes. And we can apply intensity varia-

tions at the edges of objects to smooth out the raster stair-step effect.

16

From Chapter 5 of Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson

99

Attributes of Graphics Primitives

One way to incorporate attribute options into a graphics package is to extend the

parameter list associated with each graphics-primitive function to include the appro-

priate attribute values. A line-drawing function, for example, could contain additional

parameters to set the color, width, and other properties of a line. Another approach is to

maintain a system list of current attribute values. Separate functions are then included

in the graphics package for setting the current values in the attribute list. To generate a

primitive, the system checks the relevant attributes and invokes the display routine for

that primitive using the current attribute settings. Some graphics packages use a com-

bination of methods for setting attribute values, and other libraries, including OpenGL,

assign attributes using separate functions that update a system attribute list.

A graphics system that maintains a list for the current values of attributes and other

parameters is referred to as a state system or state machine. Attributes of output

primitives and some other parameters, such as the current frame-buffer position, are

referred to as state variables or state parameters. When we assign a value to one or

more state parameters, we put the system into a particular state, and that state remains

in effect until we change the value of a state parameter.

1 OpenGL State Variables
Attribute values and other parameter settings are specified with separate func-
tions that define the current OpenGL state. The state parameters in OpenGL
include color and other primitive attributes, the current matrix mode, the ele-
ments of the model-view matrix, the current position for the frame buffer, and the
parameters for the lighting effects in a scene. All OpenGL state parameters have
default values, which remain in effect until new values are specified. At any time,
we can query the system to determine the current value of a state parameter. In
the following sections of this chapter, we discuss only the attribute settings for
output primitives. Other state parameters are examined in later chapters.

All graphics primitives in OpenGL are displayed with the attributes in the
current state list. Changing one or more of the attribute settings affects only those
primitives that are specified after the OpenGL state is changed. Primitives that
were defined before the state change retain their attributes. Thus, we can display a
green line, change the current color to red, and define another line segment. Both
the green line and the red line will then be displayed. Also, some OpenGL state val-
ues can be specified withinglBegin/glEndpairs, along with the coordinate val-
ues, so that parameter settings can vary from one coordinate position to another.

2 Color and Grayscale
A basic attribute for all primitives is color. Various color options can be made
available to a user, depending on the capabilities and design objectives of a par-
ticular system. Color options can be specified numerically or selected from menus
or displayed slider scales. For a video monitor, these color codes are then con-
verted to intensity-level settings for the electron beams. With color plotters, the
codes might control ink-jet deposits or pen selections.

RGB Color Components
In a color raster system, the number of color choices available depends on the
amount of storage provided per pixel in the frame buffer. Also, color information

100

T A B L E 1

The eight RGB color codes for a 3-bit-per-pixel frame buffer

Stored Color Values
in Frame Buffer

Color Code RED GREEN BLUE Displayed Color

0 0 0 0 Black
1 0 0 1 Blue
2 0 1 0 Green
3 0 1 1 Cyan
4 1 0 0 Red
5 1 0 1 Magenta
6 1 1 0 Yellow
7 1 1 1 White

can be stored in the frame buffer in two ways: We can store red, green, and blue
(RGB) color codes directly in the frame buffer, or we can put the color codes into
a separate table and use the pixel locations to store index values referencing the
color-table entries. With the direct storage scheme, whenever a particular color
code is specified in an application program, that color information is placed in the
frame buffer at the location of each component pixel in the output primitives to
be displayed in that color. A minimum number of colors can be provided in this
scheme with 3 bits of storage per pixel, as shown in Table 1. Each of the three
bit positions is used to control the intensity level (either on or off, in this case) of
the corresponding electron gun in an RGB monitor. The leftmost bit controls the
red gun, the middle bit controls the green gun, and the rightmost bit controls the
blue gun. Adding more bits per pixel to the frame buffer increases the number
of color choices that we have. With 6 bits per pixel, 2 bits can be used for each
gun. This allows four different intensity settings for each of the three color guns,
and a total of 64 color options are available for each screen pixel. As more color
options are provided, the storage required for the frame buffer also increases.
With a resolution of 1024 × 1024, a full-color (24-bit per pixel) RGB system needs
3 MB of storage for the frame buffer.

Color tables are an alternate means for providing extended color capabilities
to a user without requiring large frame buffers. At one time, this was an impor-
tant consideration; but today, hardware costs have decreased dramatically and
extended color capabilities are fairly common, even in low-end personal com-
puter systems. So most of our examples will simply assume that RGB color codes
are stored directly in the frame buffer.

Color Tables
Figure 1 illustrates a possible scheme for storing color values in a color lookup
table (or color map). Sometimes a color table is referred to as a video lookup
table. Values stored in the frame buffer are now used as indices into the color
table. In this example, each pixel can reference any of the 256 table positions, and
each entry in the table uses 24 bits to specify an RGB color. For the hexadecimal
color code 0x0821, a combination green-blue color is displayed for pixel location
(x, y). Systems employing this particular lookup table allow a user to select any

Attributes of Graphics Primitives

101

Attributes of Graphics Primitives

y

x

196
196 2081

0

255

.

.

.

.

.

.

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1

Color
Lookup

Table To Red Gun

To Green Gun

To Blue Gun

F I G U R E 1
A color lookup table with 24 bits per entry that is accessed from a frame buffer with 8 bits per pixel. A value of
196 stored at pixel position (x , y) references the location in this table containing the hexadecimal value 0x0821
(a decimal value of 2081). Each 8-bit segment of this entry controls the intensity level of one of the three electron
guns in an RGB monitor.

256 colors for simultaneous display from a palette of nearly 17 million colors.
Compared to a full-color system, this scheme reduces the number of simulta-
neous colors that can be displayed, but it also reduces the frame-buffer storage
requirement to 1 MB. Multiple color tables are sometimes available for handling
specialized rendering applications, such as antialiasing, and they are used with
systems that contain more than one color output device.

A color table can be useful in a number of applications, and it can provide
a “reasonable” number of simultaneous colors without requiring large frame
buffers. For most applications, 256 or 512 different colors are sufficient for a sin-
gle picture. Also, table entries can be changed at any time, allowing a user to be
able to experiment easily with different color combinations in a design, scene,
or graph without changing the attribute settings for the graphics data structure.
When a color value is changed in the color table, all pixels with that color index
immediately change to the new color. Without a color table, we can change the
color of a pixel only by storing the new color at that frame-buffer location. Simi-
larly, data-visualization applications can store values for some physical quantity,
such as energy, in the frame buffer and use a lookup table to experiment with
various color combinations without changing the pixel values. Also, in visual-
ization and image-processing applications, color tables are a convenient means
for setting color thresholds so that all pixel values above or below a specified
threshold can be set to the same color. For these reasons, some systems provide
both capabilities for storing color information. A user can then elect either to use
color tables or to store color codes directly in the frame buffer.

Grayscale
Because color capabilities are now common in computer-graphics systems, we
use RGB color functions to set shades of gray, or grayscale, in an application
program. When an RGB color setting specifies an equal amount of red, green, and
blue, the result is some shade of gray. Values close to 0 for the color components
produce dark gray, and higher values near 1.0 produce light gray. Applications
for grayscale display methods include enhancing black-and-white photographs
and generating visualization effects.

102

Other Color Parameters
In addition to an RGB specification, other three-component color representations
are useful in computer-graphics applications. For example, color output on print-
ers is described with cyan, magenta, and yellow color components, and color
interfaces sometimes use parameters such as lightness and darkness to choose a
color. Also, color, and light in general, are complex subjects, and many terms and
concepts have been devised in the fields of optics, radiometry, and psychology
to describe the various aspects of light sources and lighting effects. Physically,
we can describe a color as electromagnetic radiation with a particular frequency
range and energy distribution, but then there are also the characteristics of our
perception of the color. Thus, we use the physical term intensity to quantify the
amount of light energy radiating in a particular direction over a period of time,
and we use the psychological term luminance to characterize the perceived bright-
ness of the light. We discuss these terms and other color concepts in greater detail

els for describing color.

3 OpenGL Color Functions

The OpenGL RGB and RGBA Color Modes

In the RGB (or RGBA) mode, we select the current color components with the
function

glColor* (colorComponents);

when we consider methods for modeling lighting effects and the various mod-

Most color settings for OpenGL primitives are made in the RGB mode. In addi-
tion to red, green, and blue color coefficients, there is a fourth component called
the alpha coefficient which is used to control color blending. The four-dimen-
sional color specification is called RGBA mode, and we can select it using the
OpenGL constant GLUT RGBA when we call glutInitDisplayMode. This
fourth color parameter can be used to control color blending for overlapping
primitives. An important application of color blending is in the simulation of
transparency effects. For these calculations, the value of alpha corresponds to
a transparency (or, opacity) setting. The alpha value is optional; the only differ-
ence between the RGB and RGBA modes is whether we are employing it for
color blending.

Attributes of Graphics Primitives

glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);

The first constant in the argument list states that we are using a single buffer for
the frame buffer, and the second constant puts us into the RGB mode, which is the
default color mode. If we wanted to specify colors by an index into a color table,
we would replace the OpenGL constant GLUT RGBwith GLUT INDEX. When we
specify a particular set of color values for primitives, we define the color state of
OpenGL. The current color is applied to all subsequently defined primitives until
we change the color settings. A new color specification affects only the objects we
define after the color change.

In an OpenGL color routines use one function to set the color for the display
window, and use another function to specify a color for the straight-line
segment. Set the color display mode to RGB with the statement

103

Attributes of Graphics Primitives

Suffix codes are similar to those for the glVertex function. We use a code of
either 3 or 4 to specify the RGB or RGBA mode along with the numerical data-type
code and an optional vector suffix. The suffix codes for the numerical data types
are b (byte), i (integer), s (short), f (float), and d (double), as well as unsigned
numerical values. Floating-point values for the color components are in the range
from 0.0 to 1.0, and the default color components for glColor, including the
alpha value, are (1.0, 1.0, 1.0, 1.0), which sets the RGB color to white and the alpha
value to 1.0. If we select the current color using an RGB specification (i.e., we
use glColor3 instead of glColor4), the alpha component will be automatically
set to 1.0 to indicate that we do not want color blending. As an example, the
following statement uses floating-point values in RGB mode to set the current
color for primitives to cyan (a combination of the highest intensities for green and
blue):

glColor3f (0.0, 1.0, 1.0);

Using an array specification for the three color components, we could set the color
in this example as

glColor3fv (colorArray);

An OpenGL color selection can be assigned to individual point positions within
glBegin/glEnd pairs.

Internally, OpenGL represents color information in floating-point format. We
can specify colors using integer values, but they will be converted automatically to
floating-point. The conversion is based on the data type we choose and the range
of values that we can specify in that type. For unsigned types, the minimum
value will be converted to a floating-point 0.0, and the maximum value to 1.0; for
signed values, the minimum will be converted to −1.0 and the maximum to 1.0.
For example, unsigned byte values (suffix code ub) have a range of 0 to 255, which
corresponds to the color specification system used by some windowing systems.
We could specify the cyan color used in our previous example this way:

glColor3ub (0, 255, 255);

However, if we were to use unsigned 32-bit integers (suffix code ui), the range
is 0 to 4,294,967,295! At this scale, small changes in color component values are
essentially invisible; to make a one-percent change in the intensity of a single color
component, for instance, we would need to change that component’s value by
42,949,673. For that reason, the most commonly used data types are floating-point
and small integer types.

OpenGL Color-Index Mode
Color specifications in OpenGL can also be given in the color-index mode, which
references values in a color table. Using this mode, we set the current color by
specifying an index into a color table as follows:

glIndex* (colorIndex);

ParametercolorIndex is assigned a nonnegative integer value. This index value
is then stored in the frame-buffer positions for subsequently specified primitives.
We can specify the color index in any of the following data types: unsigned byte,

104

integer, or floating point. The data type for parameter colorIndex is indicated
with a suffix code of ub, s, i, d, or f, and the number of index positions in a color
table is always a power of 2, such as 256 or 1024. The number of bits available
at each table position depends on the hardware features of the system. As an
example of specifying a color in index mode, the following statement sets the
current color index to the value 196:

glIndexi (196);

All primitives defined after this statement will be assigned the color stored at that
position in the color table until the current color is changed.

There are no functions provided in the core OpenGL library for loading values
into a color-lookup table because table-processing routines are part of a window
system. Also, some window systems support multiple color tables and full color,
while other systems may have only one color table and limited color choices.
However, we do have a GLUT routine that interacts with a window system to set
color specifications into a table at a given index position as follows:

glutSetColor (index, red, green, blue);

Color parameters red, green, and blue are assigned floating-point values in
the range from 0.0 to 1.0. This color is then loaded into the table at the position
specified by the value of parameter index.

Routines for processing three other color tables are provided as extensions
to the OpenGL core library. These routines are part of the Imaging Subset of
OpenGL. Color values stored in these tables can be used to modify pixel values as
they are processed through various buffers. Some examples of using these tables
are setting camera focusing effects, filtering out certain colors from an image,
enhancing certain intensities or making brightness adjustments, converting a
grayscale photograph to color, and antialiasing a display. In addition, we can
use these tables to change color models; that is, we can change RGB colors to
another specification using three other “primary” colors (such as cyan, magenta,
and yellow).

A particular color table in the Imaging Subset of OpenGL is activated
with the glEnable function using one of the table names: GL COLOR TABLE,
GL POST CONVOLUTION COLOR TABLE, or GL POST COLOR MATRIX
COLOR TABLE. We can then use routines in the Imaging Subset to select a partic-
ular color table, set color-table values, copy table values, or specify which com-
ponent of a pixel’s color we want to change and how we want to change it.

OpenGL Color Blending
In many applications, it is convenient to be able to combine the colors of over-
lapping objects or to blend an object with the background. Some examples are
simulating a paintbrush effect, forming a composite image of two or more pic-
tures, modeling transparency effects, and antialiasing the objects in a scene. Most
graphics packages provide methods for producing various color-mixing effects,
and these procedures are called color-blending functions or image-compositing
functions. In OpenGL, the colors of two objects can be blended by first loading
one object into the frame buffer, then combining the color of the second object
with the frame-buffer color. The current frame-buffer color is referred to as the
OpenGL destination color and the color of the second object is the OpenGL source
color. Blending methods can be performed only in RGB or RGBA mode. To apply

Attributes of Graphics Primitives

105

Attributes of Graphics Primitives

color blending in an application, we first need to activate this OpenGL feature
using the following function:

glEnable (GL_BLEND);

We turn off the color-blending routines in OpenGL with

glDisable (GL_BLEND);

If color blending is not activated, an object’s color simply replaces the frame-buffer
contents at the object’s location.

Colors can be blended in a number of different ways, depending on the effects
that we want to achieve, and we generate different color effects by specifying two
sets of blending factors. One set of blending factors is for the current object in the
frame buffer (the “destination object”), and the other set of blending factors is for
the incoming (“source”) object. The new, blended color that is then loaded into
the frame buffer is calculated as

(Sr Rs + Dr Rd , SgGs + DgGd , Sb Bs + Db Bd , Sa As + Da Ad) (1)

where the RGBA source color components are (Rs , Gs , Bs , As), the destina-
tion color components are (Rd , Gd , Bd , Ad), the source blending factors are
(Sr , Sg , Sb , Sa), and the destination blending factors are (Dr , Dg , Db , Da). Com-
puted values for the combined color components are clamped to the range from
0.0 to 1.0. That is, any sum greater than 1.0 is set to the value 1.0, and any sum
less than 0.0 is set to 0.0.

We select the blending-factor values with the OpenGL function

glBlendFunc (sFactor, dFactor);

Parameters sFactor and dFactor, the source and destination factors, are each
assigned an OpenGL symbolic constant specifying a predefined set of four blend-
ing coefficients. For example, the constant GL ZER0 yields the blending factors
(0.0, 0.0, 0.0, 0.0) andGL ONEgives us the set (1.0, 1.0, 1.0, 1.0). We could set all four
blending factors either to the destination alpha value or to the source alpha value
using GL DST ALPHA or GL SRC ALPHA. Other OpenGL constants that are
available for setting the blending factors include GL ONE MINUS DST ALPHA,
GL ONE MINUS SRC ALPHA, GL DST COLOR, and GL SRC COLOR. These
blending factors are often used for simulating transparency, and they are dis-
cussed in greater detail in Section 18-4. The default value for parameter sFactor
is GL ONE, and the default value for parameter dFactor is GL ZERO. Hence,
the default values for the blending factors result in the incoming color values
replacing the current values in the frame buffer.

OpenGL Color Arrays

glEnableClientState (GL_COLOR_ARRAY);

Then, for RGB color mode, we specify the location and format of the color com-
ponents with

glColorPointer (nColorComponents, dataType,
offset, colorArray);

We can also specify color values for a scene in combination with the coordinate
values in a vertex array. This can be done either in RGB mode or in color-index
mode. As with vertex arrays, we must first activate the color-array features of
OpenGL as follows:

106

Parameter nColorComponents is assigned a value of either 3 or 4, depending on
whether we are listing RGB or RGBA color components in the arraycolorArray.
An OpenGL symbolic constant such as GL INT or GL FLOAT is assigned to
parameter dataType to indicate the data type for the color values. For a separate
color array, we can assign the value 0 to parameter offset. However, if we
combine color data with vertex data in the same array, the offset value is the
number of bytes between each set of color components in the array.

typedef GLint vertex3 [3], color3 [3];

vertex3 pt [8] = { {0, 0, 0}, {0, 1, 0}, {1, 0, 0},
{1, 1, 0}, {0, 0, 1}, {0, 1, 1}, {1, 0, 1}, {1, 1, 1} };

color3 hue [8] = { {1, 0, 0}, {1, 0, 0}, {0, 0, 1},
{0, 0, 1}, {1, 0, 0}, {1, 0, 0}, {0, 0, 1}, {0, 0, 1} };

glEnableClientState (GL_VERTEX_ARRAY);
glEnableClientState (GL_COLOR_ARRAY);

glVertexPointer (3, GL_INT, 0, pt);
glColorPointer (3, GL_INT, 0, hue);

We can even stuff both the colors and the vertex coordinates into one inter-
laced array. Each of the pointers would then reference the single interlaced array
with an appropriate offset value. For example,

static GLint hueAndPt [] =
{1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0,
0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0,
1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1,
0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1};

glVertexPointer (3, GL_INT, 6*sizeof(GLint), hueAndPt[3]);
glColorPointer (3, GL_INT, 6*sizeof(GLint), hueAndPt[0]);

The first three elements of this array specify an RGB color value, the next three
elements specify a set of (x, y, z) vertex coordinates, and this pattern continues to
the last color-vertex specification. We set the offset parameter to the number of
bytes between successive color, or vertex, values, which is 6*sizeof(GLint)
for both. Color values start at the first element of the interlaced array, which
is hueAndPt [0], and vertex values start at the fourth element, which is
hueAndPt [3].

Because a scene generally contains several objects, each with multiple planar
surfaces, OpenGL provides a function in which we can specify all the vertex and
color arrays at once, as well as other types of information. If we change the color
and vertex values in this example to floating-point, we use this function in the
form

glInterleavedArrays (GL_C3F_V3F, 0, hueAndPt);

Attributes of Graphics Primitives

a color array. The following code fragment sets the color of all vertices on the
front face of the cube to blue, and all vertices of the back face are assigned the
color red:

As an example of using color arrays, we can modify a vertex-array to include

107

Attributes of Graphics Primitives

The first parameter is an OpenGL constant that indicates three-element floating-
point specifications for both color (C) and vertex coordinates (V). The elements of
arrayhueAndPt are to be interlaced with the color for each vertex listed before the
coordinates. This function also automatically enables both vertex and color arrays.

In color-index mode, we define an array of color indices with

glIndexPointer (type, stride, colorIndex);

Color indices are listed in the array colorIndex and the type and stride
parameters are the same as in glColorPointer. No size parameter is needed
because color-table indices are specified with a single value.

Other OpenGL Color Functions

glClearColor (red, green, blue, alpha);

Each color component in the designation (red, green, and blue), as well as the
alpha parameter, is assigned a floating-point value in the range from 0.0 to 1.0. The
default value for all four parameters is 0.0, which produces the color black. If each
color component is set to 1.0, the clear color is white. Shades of gray are obtained
with identical values for the color components between 0.0 and 1.0. The fourth
parameter, alpha, provides an option for blending the previous color with the
current color. This can occur only if we activate the blending feature of OpenGL;
color blending cannot be performed with values specified in a color table.

glClear (GL_COLOR_BUFFER_BIT);

We can also use theglClear function to set initial values for other buffers that are
available in OpenGL. These are the accumulation buffer, which stores blended-color
information, the depth buffer, which stores depth values (distances from the view-
ing position) for objects in a scene, and the stencil buffer, which stores information
to define the limits of a picture.

In color-index mode, we use the following function (instead of glClear-
Color) to set the display-window color:

glClearIndex (index);

The window background color is then assigned the color that is stored at position
index in the color table; and the window is displayed in this color when we issue
the glClear (GL COLOR BUFFER BIT) function.

Many other color functions are available in the OpenGL library for dealing
with a variety of tasks, such as changing color models, setting lighting effects for
a scene, specifying camera effects, and rendering the surfaces of an object. We
examine other color functions as we explore each of the component processes in
a computer-graphics system. For now, we limit our discussion to those functions
relating to color specifications for graphics primitives.

There are several color buffers in OpenGL that can be used as the current
refresh buffer for displaying a scene, and the glClearColor function specifies
the color for all the color buffers. We then apply the clear color to the color
buffers with the command

The following function selects RGB color components for a display window:

108

4 Point Attributes
Basically, we can set two attributes for points: color and size. In a state system,
the displayed color and size of a point is determined by the current values stored
in the attribute list. Color components are set with RGB values or an index into a
color table. For a raster system, point size is an integer multiple of the pixel size,
so that a large point is displayed as a square block of pixels.

5 OpenGL Point-Attribute Functions
The displayed color of a designated point position is controlled by the current
color values in the state list. Also, a color is specified with either the glColor
function or the glIndex function.

We set the size for an OpenGL point with

glPointSize (size);

and the point is then displayed as a square block of pixels. Parameter size is
assigned a positive floating-point value, which is rounded to an integer (unless
the point is to be antialiased). The number of horizontal and vertical pixels in
the display of the point is determined by parameter size. Thus, a point size
of 1.0 displays a single pixel, and a point size of 2.0 displays a 2 × 2 pixel array. If
we activate the antialiasing features of OpenGL, the size of a displayed block of
pixels will be modified to smooth the edges. The default value for point size is 1.0.

Attribute functions may be listed inside or outside of aglBegin/glEndpair.
For example, the following code segment plots three points in varying colors and
sizes. The first is a standard-size red point, the second is a double-size green point,
and the third is a triple-size blue point:

glColor3f (1.0, 0.0, 0.0);
glBegin (GL_POINTS);

glVertex2i (50, 100);
glPointSize (2.0);
glColor3f (0.0, 1.0, 0.0);
glVertex2i (75, 150);
glPointSize (3.0);
glColor3f (0.0, 0.0, 1.0);
glVertex2i (100, 200);

glEnd ();

6 Line Attributes
A straight-line segment can be displayed with three basic attributes: color, width,
and style. Line color is typically set with the same function for all graphics prim-
itives, while line width and line style are selected with separate line functions. In
addition, lines may be generated with other effects, such as pen and brush strokes.

Line Width
Implementation of line-width options depends on the capabilities of the output
device. A heavy line could be displayed on a video monitor as adjacent parallel
lines, while a pen plotter might require pen changes to draw a thick line.

Attributes of Graphics Primitives

109

Attributes of Graphics Primitives

Line Style
Possible selections for the line-style attribute include solid lines, dashed lines, and
dotted lines. We modify a line-drawing algorithm to generate such lines by setting
the length and spacing of displayed solid sections along the line path. With many
graphics packages, we can select the length of both the dashes and the inter-dash
spacing.

Pen and Brush Options
With some packages, particularly painting and drawing systems, we can select
different pen and brush styles directly. Options in this category include shape,

F I G U R E 2
Pen and brush shapes for line display.

For raster implementations, a standard-width line is generated with single
pixels at each sample position, as in the Bresenham algorithm. Thicker lines are
displayed as positive integer multiples of the standard line by plotting addition-
al pixels along adjacent parallel line paths.

size, and pattern for the pen or brush. Some example pen and brush shapes are
given in Figure 2.

110

7 OpenGL Line-Attribute Functions
We can control the appearance of a straight-line segment in OpenGL with three
attribute settings: line color, line width, and line style. We have already seen how to
make a color selection, and OpenGL provides a function for setting the width of a
line and another function for specifying a line style, such as a dashed or dotted line.

OpenGL Line-Width Function
Line width is set in OpenGL with the function

glLineWidth (width);

We assign a floating-point value to parameter width, and this value is rounded
to the nearest nonnegative integer. If the input value rounds to 0.0, the line is
displayed with a standard width of 1.0, which is the default width. However,
when antialiasing is applied to the line, its edges are smoothed to reduce the raster
stair-step appearance and fractional widths are possible. Some implementations
of the line-width function might support only a limited number of widths, and
some might not support widths other than 1.0.

The magnitude of the horizontal and vertical separa
points, �x and �y, are compared to determine whether to
using vertical pixel spans or horizontal pixel spans.

OpenGL Line-Style Function
By default, a straight-line segment is displayed as a solid line. However, we can
also display dashed lines, dotted lines, or a line with a combination of dashes and
dots, and we can vary the length of the dashes and the spacing between dashes
or dots. We set a current display style for lines with the OpenGL function

glLineStipple (repeatFactor, pattern);

Parameter pattern is used to reference a 16-bit integer that describes how the
line should be displayed. A 1 bit in the pattern denotes an “on” pixel position, and
a 0 bit indicates an “off” pixel position. The pattern is applied to the pixels along
the line path starting with the low-order bits in the pattern. The default pattern is
0xFFFF (each bit position has a value of 1), which produces a solid line. Integer pa-
rameter repeatFactor specifies how many times each bit in the pattern is to be
repeated before the next bit in the pattern is applied. The default repeat value is 1.

With a polyline, a specified line-style pattern is not restarted at the beginning
of each segment. It is applied continuously across all the segments, starting at the
first endpoint of the polyline and ending at the final endpoint for the last segment
in the series.

As an example of specifying a line style, suppose that parameter pattern is
assigned the hexadecimal representation 0x00FF and the repeat factor is 1. This
would display a dashed line with eight pixels in each dash and eight pixel po-
sitions that are “off” (an eight-pixel space) between two dashes. Also, because
low-order bits are applied first, a line begins with an eight-pixel dash starting
at the first endpoint. This dash is followed by an eight-pixel space, then another
eight-pixel dash, and so forth, until the second endpoint position is reached.

tions of the line end-
generate a thick line

Attributes of Graphics Primitives

111

Attributes of Graphics Primitives

Before a line can be displayed in the current line-style pattern, we must
activate the line-style feature of OpenGL. We accomplish this with the follow-
ing function:

glEnable (GL_LINE_STIPPLE);

If we forget to include this enable function, solid lines are displayed; that is, the
default pattern 0xFFFF is used to display line segments. At any time, we can turn
off the line-pattern feature with

glDisable (GL_LINE_STIPPLE);

This replaces the current line-style pattern with the default pattern (solid lines).
In the following program outline, we illustrate use of the OpenGL line-

attribute functions by plotting three line graphs in different styles and widths.
Figure 3 shows the data plots that could be generated by this program.

/* Define a two-dimensional world-coordinate data type. */
typedef struct { float x, y; } wcPt2D;

wcPt2D dataPts [5];

void linePlot (wcPt2D dataPts [5])
{

int k;

glBegin (GL_LINE_STRIP);
for (k = 0; k < 5; k++)

glVertex2f (dataPts [k].x, dataPts [k].y);

glFlush ();

glEnd ();
}

/* Invoke a procedure here to draw coordinate axes. */

glEnable (GL_LINE_STIPPLE);

/* Input first set of (x, y) data values. */
glLineStipple (1, 0x1C47); // Plot a dash-dot, standard-width polyline.
linePlot (dataPts);

/* Input second set of (x, y) data values. */
glLineStipple (1, 0x00FF); // Plot a dashed, double-width polyline.
glLineWidth (2.0);
linePlot (dataPts);

/* Input third set of (x, y) data values. */
glLineStipple (1, 0x0101); // Plot a dotted, triple-width polyline.
glLineWidth (3.0);
linePlot (dataPts);

glDisable (GL_LINE_STIPPLE);

112

F I G U R E 3
Plotting three data sets with three different
OpenGL line styles and line widths: single-width
dash-dot pattern, double-width dash pattern, and
triple-width dot pattern.

Other OpenGL Line Effects
In addition to specifying width, style, and a solid color, we can display lines with
color gradations. For example, we can vary the color along the path of a solid
line by assigning a different color to each line endpoint as we define the line. In
the following code segment, we illustrate this by assigning a blue color to one
endpoint of a line and a red color to the other endpoint. The solid line is then
displayed as a linear interpolation of the colors at the two endpoints:

glShadeModel (GL_SMOOTH);

glBegin (GL_LINES);
glColor3f (0.0, 0.0, 1.0);
glVertex2i (50, 50);
glColor3f (1.0, 0.0, 0.0);
glVertex2i (250, 250);

glEnd ();

Function glShadeModel can also be given the argument GL FLAT. In that case,
the line segment would have been displayed in a single color: the color of the
second endpoint, (250, 250). That is, we would have generated a red line. Actually,
GL SMOOTH is the default, so we would generate a smoothly interpolated color
line segment even if we did not include this function in our code.

We can produce other effects by displaying adjacent lines that have different
colors and patterns. In addition, we can use the color-blending features of OpenGL
by superimposing lines or other objects with varying alpha values. A brush stroke
and other painting effects can be simulated with a pixmap and color blending.
The pixmap can then be moved interactively to generate line segments. Individual
pixels in the pixmap can be assigned different alpha values to display lines as
brush or pen strokes.

8 Curve Attributes
Parameters for curve attributes are the same as those for straight-line segments. We
can display curves with varying colors, widths, dot-dash patterns, and available
pen or brush options. for adapting curve-drawing algorithms to accommodate
attribute selections are similar to those for line drawing.

Attributes of Graphics Primitives

113

Attributes of Graphics Primitives

F I G U R E 4
Curved lines drawn with a paint program using various shapes
and patterns. From left to right, the brush shapes are square,
round, diagonal line, dot pattern, and faded airbrush.

Painting and drawing programs allow pictures to be constructed interactively
by using a pointing device, such as a stylus and a graphics tablet, to sketch various
curve shapes. Some examples of such curve patterns are shown in Figure 4. An
additional pattern option that can be provided in a paint package is the display
of simulated brush strokes.

9 Fill-Area Attributes
Most graphics packages limit fill areas to polygons because they are described with
linear equations. A further restriction requires fill areas to be convex polygons,
so that scan lines do not intersect more than two boundary edges. However, in
general, we can fill any specified regions, including circles, ellipses, and other ob-
jects with curved boundaries. Also, application systems, such as paint programs,
provide fill options for arbitrarily shaped regions.

Fill Styles
A basic fill-area attribute provided by a general graphics library is the display
style of the interior. We can display a region with a single color, a specified fill
pattern, or in a “hollow” style by showing only the boundary of the region. These
three fill styles are illustrated in Figure 5. We can also fill selected regions of a
scene using various brush styles, color-blending combinations, or textures. Other
options include specifications for the display of the boundaries of a fill area.
For polygons, we could show the edges in different colors, widths, and styles;
and we can select different display attributes for the front and back faces of a
region.

Hollow
(a)

Solid
(b)

Patterned
(c)

F I G U R E 5
Basic polygon fill styles.

Fill patterns can be defined in rectangular color arrays that list different colors
for different positions in the array. Alternatively, a fill pattern could be specified
as a bit array that indicates which relative positions are to be displayed in a single
selected color. An array specifying a fill pattern is a mask that is to be applied
to the display area. Some graphics systems provide an option for selecting an
arbitrary initial position for overlaying the mask. From this starting position, the
mask is replicated in the horizontal and vertical directions until the display area
is filled with nonoverlapping copies of the pattern. Where the pattern overlaps
specified fill areas, the array pattern indicates which pixels should be displayed
in a particular color. This process of filling an area with a rectangular pattern is
called tiling, and a rectangular fill pattern is sometimes referred to as a tiling
pattern. Sometimes, predefined fill patterns are available in a system, such as the
hatch fill patterns shown in Figure 6.

Strictly speaking, OpenGL does not consider curves to be drawing primi-
tives in the same way that it considers points and lines to be primitives. Curves
can be drawn in several ways in OpenGL. Perhaps the simplest approach is to
approximate the shape of the curve using short line segments. Alternatively,
curved segments can be drawn using splines. These can be drawn using OpenGL
evaluator functions, or by using functions from the OpenGL Utility (GLU) library
which draw splines.

114

Diagonal
Hatch Fill

Diagonal
Crosshatch Fill

F I G U R E 6
Areas filled with hatch patterns.

Color-Blended Fill Regions
It is also possible to combine a fill pattern with background colors in various ways.
A pattern could be combined with background colors using a transparency factor
that determines how much of the background should be mixed with the object
color.

Some fill methods using blended colors have been referred to as soft-fill or
tint-fill algorithms. One use for these fill methods is to soften the fill colors at object
borders that have been blurred to antialias the edges. Another application of a
soft-fill algorithm is to allow repainting of a color area that was originally filled
with a semitransparent brush, where the current color is then a mixture of the
brush color and the background colors “behind” the area. In either case, we want
the new fill color to have the same variations over the area as the current fill color.

10 OpenGL Fill-Area Attribute Functions
In the OpenGL graphics package, fill-area routines are available for convex poly-
gons only. We generate displays of filled convex polygons in four steps:

1. Define a fill pattern.
2. Invoke the polygon-fill routine.
3. Activate the polygon-fill feature of OpenGL.
4. Describe the polygons to be filled.

A polygon fill pattern is displayed up to and including the polygon edges. Thus,
there are no boundary lines around the fill region unless we specifically add them
to the display.

In addition to specifying a fill pattern for a polygon interior, there are a number
of other options available. One option is to display a hollow polygon, where no
interior color or pattern is applied and only the edges are generated. A hollow
polygon is equivalent to the display of a closed polyline primitive. Another option
is to show the polygon vertices, with no interior fill and no edges. Also, we
designate different attributes for the front and back faces of a polygon fill area.

OpenGL Fill-Pattern Function
By default, a convex polygon is displayed as a solid-color region, using the current
color setting. To fill the polygon with a pattern in OpenGL, we use a 32 × 32 bit
mask. A value of 1 in the mask indicates that the corresponding pixel is to be
set to the current color, and a 0 leaves the value of that frame-buffer position
unchanged. The fill pattern is specified in unsigned bytes using the OpenGL data
typeGLubyte, just as we did with theglBitmap function. We define a bit pattern
with hexadecimal values as, for example,

GLubyte fillPattern [] = {
0xff, 0x00, 0xff, 0x00, ... };

The bits must be specified starting with the bottom row of the pattern, and con-

Attributes of Graphics Primitives

tinuing up to the topmost row (32) of the pattern. This pattern is replicated

115

Attributes of Graphics Primitives

F I G U R E 7
Tiling a rectangular fill pattern across a
display window to fill two convex
polygons. Start Position

 Display Window

Once we have set a mask, we can establish it as the current fill pattern with
the function

glPolygonStipple (fillPattern);

Next, we need to enable the fill routines before we specify the vertices for the
polygons that are to be filled with the current pattern. We do this with the
statement

glEnable (GL_POLYGON_STIPPLE);

Similarly, we turn off pattern filling with

glDisable (GL_POLYGON_STIPPLE);

Figure 8 illustrates how a 3 × 3 bit pattern, repeated over a 32 × 32 bit mask,
might be applied to fill a parallelogram.

OpenGL Texture and Interpolation Patterns

F I G U R E 8
A 3 × 3 bit pattern (a) superimposed
on a parallelogram to produce the fill
area in (b), where the top-right corner
of the pattern coincides with the
lower-left corner of the parallelogram.

Top-Right
Pattern
Corner

(a) (b)

Another method for filling polygons is to use texture patterns. This can produce
fill patterns that simulate the surface appearance of wood, brick, brushed steel,
or some other material. Also, we can obtain an interpolation coloring of a poly-
gon interior just as we did with the line primitive. To do this, we assign different
colors to polygon vertices. Interpolation fill of a polygon interior is used to pro-
duce realistic displays of shaded surfaces under various lighting conditions.

across the entire area of the display window, starting at the lower-left
window corner, and specified polygons are filled where the pattern overlaps
those polygons (Figure 7).

116

As an example of an interpolation fill, the following code segment assigns
either a blue, red, or green color to each of the three vertices of a triangle. The
polygon fill is then a linear interpolation of the colors at the vertices:

glShadeModel (GL_SMOOTH);

glBegin (GL_TRIANGLES);
glColor3f (0.0, 0.0, 1.0);
glVertex2i (50, 50);
glColor3f (1.0, 0.0, 0.0);
glVertex2i (150, 50);
glColor3f (0.0, 1.0, 0.0);
glVertex2i (75, 150);

glEnd ();

Of course, if a single color is set for the triangle as a whole, the polygon is filled with
that one color; and if we change the argument in the glShadeModel function
to GL FLAT in this example, the polygon is filled with the last color specified
(green). The value GL SMOOTH is the default shading, but we can include that
specification to remind us that the polygon is to be filled as an interpolation of
the vertex colors.

OpenGL Wire-Frame Methods
We can also choose to show only polygon edges. This produces a wire-frame or
hollow display of the polygon; or we could display a polygon by plotting a set of
points only at the vertex positions. These options are selected with the function

glPolygonMode (face, displayMode);

We use parameter face to designate which face of the polygon that we want
to show as edges only or vertices only. This parameter is then assigned either
GL FRONT,GL BACK, orGL FRONT AND BACK. Then, if we want only the poly-
gon edges displayed for our selection, we assign the constant GL LINE to param-
eterdisplayMode. To plot only the polygon vertex points, we assign the constant
GL POINT to parameter displayMode. A third option is GL FILL; but this is
the default display mode, so we usually invoke only glPolygonMode when we
want to set attributes for the polygon edges or vertices.

Another option is to display a polygon with both an interior fill and a different
color or pattern for its edges (or for its vertices). This is accomplished by specify-
ing the polygon twice: once with parameter displayMode set to GL FILL and
then again with displayMode set to GL LINE (or GL POINT). For example, the
following code section fills a polygon interior with a green color, and then the
edges are assigned a red color:

glColor3f (0.0, 1.0, 0.0);
/* Invoke polygon-generating routine. */

glColor3f (1.0, 0.0, 0.0);
glPolygonMode (GL_FRONT, GL_LINE);
/* Invoke polygon-generating routine again. */

For a three-dimensional polygon (one that does not have all vertices in the xy
plane), this method for displaying the edges of a filled polygon may produce
gaps along the edges. This effect, sometimes referred to as stitching, is caused by

Attributes of Graphics Primitives

117

Attributes of Graphics Primitives

differences between calculations in the scan-line fill algorithm and calculations in
the edge line-drawing algorithm. As the interior of a three-dimensional polygon
is filled, the depth value (distance from the xy plane) is calculated for each (x, y)
position. However, this depth value at an edge of the polygon is often not exactly
the same as the depth value calculated by the line-drawing algorithm for the same
(x, y) position. Therefore, when visibility tests are made, the interior fill color could
be used instead of an edge color to display some points along the boundary of a
polygon.

One way to eliminate the gaps along displayed edges of a three-dimensional
polygon is to shift the depth values calculated by the fill routine so that they do
not overlap with the edge depth values for that polygon. We do this with the
following two OpenGL functions:

glEnable (GL_POLYGON_OFFSET_FILL);
glPolygonOffset (factor1, factor2);

The first function activates the offset routine for scan-line filling, and the second
function is used to set a couple of floating-point values factor1 and factor2
that are used to calculate the amount of depth offset. The calculation for this depth
offset is

depthOffset = factor1 · maxSlope + factor2 · const (2)

where maxSlope is the maximum slope of the polygon and const is an imple-
mentation constant. For a polygon in the xy plane, the slope is 0. Otherwise, the
maximum slope is calculated as the change in depth of the polygon divided by
either the change in x or the change in y. A typical value for the two factors is
either 0.75 or 1.0, although some experimentation with the factor values is often
necessary to produce good results. As an example of assigning values to offset
factors, we can modify the previous code segment as follows:

glColor3f (0.0, 1.0, 0.0);
glEnable (GL_POLYGON_OFFSET_FILL);
glPolygonOffset (1.0, 1.0);
/* Invoke polygon-generating routine. */
glDisable (GL_POLYGON_OFFSET_FILL);

glColor3f (1.0, 0.0, 0.0);
glPolygonMode (GL_FRONT, GL_LINE);
/* Invoke polygon-generating routine again. */

Now the interior fill of the polygon is pushed a little farther away in depth, so that
it does not interfere with the depth values of its edges. It is also possible to imple-
ment this method by applying the offset to the line-drawing algorithm, by chang-
ing the argument of the glEnable function to GL POLYGON OFFSET LINE. In
this case, we want to use negative factors to bring the edge depth values closer.
Also, if we just wanted to display different color points at the vertex positions,
instead of highlighted edges, the argument in the glEnable function would be
GL POLYGON OFFSET POINT.

Another method for eliminating the stitching effect along polygon edges is to
use the OpenGL stencil buffer to limit the polygon interior filling so that it does
not overlap the edges. However, this approach is more complicated and generally
slower, so the polygon depth-offset method is preferred.

118

(a) (b)

F I G U R E 9
Dividing a concave polygon (a) into a
set of triangles (b) produces triangle
edges (dashed) that are interior to the
original polygon.

(a)
v3

v2

v1

(b)
v3

v2

v1

F I G U R E 1 0
The triangle in (a) can be displayed as
in (b) by setting the edge flag for
vertex v2 to the value GL FALSE,
assuming that the vertices are
specified in a counterclockwise order.

To display a concave polygon using OpenGL routines, we must first split it
into a set of convex polygons. We typically divide a concave polygon into a set
of triangles. Then we could display
the triangles. Similarly, if we want
the triangle vertices. To display the
form, however, we cannot just set the
would show all the triangle edges that
gon (Figure 9).

Fortunately, OpenGL provides a mechanism that allows us to eliminate
selected edges from a wire-frame display. Each polygon vertex is stored with
a one-bit flag that indicates whether or not that vertex is connected to the next
vertex by a boundary edge. So all we need do is set that bit flag to “off” and the
edge following that vertex will not be displayed. We set this flag for an edge with
the following function:

glEdgeFlag (flag);

To indicate that a vertex does not precede a boundary edge, we assign the OpenGL
constant GL FALSE to parameter flag. This applies to all subsequently speci-
fied vertices until the next call to glEdgeFlag is made. The OpenGL constant
GL TRUE turns the edge flag on again, which is the default. Function glEdge-
Flag can be placed between glBegin/glEnd pairs. As an illustration of the use
of an edge flag, the following code displays only two edges of the defined triangle
(Figure 10):

glPolygonMode (GL_FRONT_AND_BACK, GL_LINE);

glBegin (GL_POLYGON);
glVertex3fv (v1);
glEdgeFlag (GL_FALSE);
glVertex3fv (v2);
glEdgeFlag (GL_TRUE);
glVertex3fv (v3);

glEnd ();

the concave polygon as a fill region by filling
to show only the polygon vertices, we plot

original concave polygon in a wire-frame
display mode to GL LINE because that
are interior to the original concave poly-

Attributes of Graphics Primitives

119

Attributes of Graphics Primitives

glEnableClientState (GL_EDGE_FLAG_ARRAY);

glEdgeFlagPointer (offset, edgeFlagArray);

Parameter offset indicates the number of bytes between the values for the edge
flags in the array edgeFlagArray. The default value for parameter offset is 0.

OpenGL Front-Face Function
Although, by default, the ordering of polygon vertices controls the identification
of front and back faces, we can label selected surfaces in a scene independently
as front or back with the function

glFrontFace (vertexOrder);

If we set parameter vertexOrder to the OpenGL constant GL CW, then a subse-
quently defined polygon with a clockwise ordering for its vertices is considered
to be front-facing. This OpenGL feature can be used to swap faces of a polygon
for which we have specified vertices in a clockwise order. The constant GL CCW
labels a counterclockwise ordering of polygon vertices as front-facing, which is
the default ordering.

11 Character Attributes
We control the appearance of displayed characters with attributes such as font,
size, color, and orientation. In many packages, attributes can be set both for entire
character strings (text) and for individual characters that can be used for special
purposes such as plotting a data graph.

There are a great many possible text-display options. First, there is the choice
of font (or typeface), which is a set of characters with a particular design style
such as New York, Courier, Helvetica, London, Times Roman, and various spe-
cial symbol groups. The characters in a selected font can also be displayed with
assorted underlining styles (solid, ------ -dotted, double), in boldface, in italic, and in
OUTLINE or shadow styles.

Color settings for displayed text can be stored in the system attribute list and
used by the procedures that generate character definitions in the frame buffer.
When a character string is to be displayed, the current color is used to set pixel
values in the frame buffer corresponding to the character shapes and positions.

We could adjust text size by scaling the overall dimensions (height and
width) of characters or by scaling only the height or the width. Character size
(height) is specified by printers and compositors in points, where 1 point is about
0.035146 centimeters (or 0.013837 inch, which is approximately 1

72 inch). For ex-
ample, the characters in this book are set in a 10-point font. Point measurements
specify the size of the body of a character (Figure 11), but different fonts with
the same point specifications can have different character sizes, depending on
the design of the typeface. The distance between the bottomline and the topline of
the character body is the same for all characters in a particular size and typeface,
but the body width may vary. Proportionally spaced fonts assign a smaller body
width to narrow characters such as i, j, l, and f compared to broad characters

Polygon edge flags can also be specified in an array that could be combined
or associated with a vertex array (see Section 3). The statements for creating an
array of edge flags are

120

Top

Character
body

Kern

Cap

Base

Character
height

Character
body

Bottom

Kern

F I G U R E 1 1
Examples of character bodies.

such as W or M. Character height is defined as the distance between the baseline and
the capline of characters. Kerned characters, such as f and j in Figure 11, typically
extend beyond the character body limits, and letters with descenders (g, j, p, q , y)

extend below the baseline. Each character is positioned within the character body
by a font designer in such a way that suitable spacing is attained along and
between print lines when text is displayed with character bodies touching.

Sometimes, text size is adjusted without changing the width-to-height ratio
of characters. Figure 12 shows a character string displayed with three different
character heights, while maintaining the ratio of width to height. Examples of text
displayed with a constant height and varying widths are given in Figure 13.

Spacing between characters is another attribute that can often be assigned
to a character string. Figure 14 shows a character string displayed with three
different settings for the intercharacter spacing.

The orientation for a character string can be set according to the direction of
a character up vector. Text is then displayed so that the orientation of characters
from baseline to capline is in the direction of the up vector. For example, with the
direction of the up vector at 45◦, text would be displayed as shown in Figure 15.
A procedure for orienting text could rotate characters so that the sides of charac-
ter bodies, from baseline to capline, are aligned with the up vector. The rotated
character shapes are then scan converted into the frame buffer.

It is useful in many applications to be able to arrange character strings
vertically or horizontally. Examples of this are given in Figure 16. We could
also arrange the characters in a text string so that the string is displayed for-
ward or backward. Examples of text displayed with these options are shown in
Figure 17. A procedure for implementing text-path orientation adjusts the
position of the individual characters in the frame buffer according to the option
selected.

Character strings could also be oriented using a combination of up-vector and
text-path specifications to produce slanted text. Figure 18 shows the directions

Height 1

Height 3
Height 2

F I G U R E 1 2
Text strings displayed with different
character-height settings and a
constant width-to-height ratio.

width 0.5

width 1.0

width 2.0
F I G U R E 1 3
Text strings displayed with varying
sizes for the character widths and a
fixed height.

Spacing 0.0

S p a c i n g 0 . 5

S p a c i n g 1 . 0
F I G U R E 1 4
Text strings displayed with different
character-spacing values.

Attributes of Graphics Primitives

121

Attributes of Graphics Primitives

SLA
NTED

 TEXT

(b)

Up Vector
(a)

F I G U R E 1 5
Direction of the up vector (a) controls
the orientation of displayed text (b).

HORIZONTAL TEXT

V
E
R
T
I
C
A
L

T
E
X
T

F I G U R E 1 6
Text-path attributes can be set to
produce horizontal or vertical
arrangements of character strings.

Direction of
Character up Vector

(a)

Text Path Direction

U
P

D
OW

N

LEFT

RIG
H

T

(b)

F I G U R E 1 8
An up-vector specification (a) and
associated directions for the text
path (b).

(a)

(b)

D
O

W
N

S
T

R
IN

G

RIG
H

T STRING

F I G U R E 1 9
The 45◦ up vector in Figure 18
produces the display (a) for a down
path and the display (b) for a right
path.

of character strings generated by various text path settings for a 45◦ up vector.
Examples of character strings generated for text-path values down and right with
this up vector are illustrated in Figure 19.

Another possible attribute for character strings is alignment. This attribute
specifies how text is to be displayed with respect to a reference position. For ex-
ample, individual characters could be aligned according to the base lines or the
character centers. Figure 20 illustrates typical character positions for horizon-
tal and vertical alignments. String alignments are also possible, and Figure 21
shows common alignment positions for horizontal and vertical text labels.

g
n
i
r
t
s

stringgnirts

s
t
r
i
n
g

F I G U R E 1 7
A text string displayed with the four
text-path options: left, right, up, and
down.

In some graphics packages, a text-precision attribute is also available. This
parameter specifies the amount of detail and the particular processing options
that are to be used with a text string. For a low-precision text string, many at-
tribute selections, such as text path, are ignored, and faster procedures are used
for processing the characters through the viewing pipeline.

Finally, a library of text-processing routines often supplies a set of special char-
acters, such as a small circle or cross, which are useful in various applications. Most

122

often these characters are used as marker symbols in network layouts or in graph-
ing data sets. The attributes for these marker symbols are typically color and size.

12 OpenGL Character-Attribute Functions
We have two methods for displaying characters with the OpenGL package. Either
we can design a font set using the bitmap functions in the core library, or we
can invoke the GLUT character-generation routines. The GLUT library contains
functions for displaying predefined bitmap and stroke character sets. Therefore,
the character attributes we can set are those that apply to either bitmaps or line
segments.

STRING

S
T
R
I
N
G

Top
Cap

Base
Bottom

Half

Top
Cap

Base

Bottom

Half

Left Center Right

Left

Center

Right

F I G U R E 2 0
Character alignments for horizontal
and vertical strings.

RIGHT
ALIGNMENT

CENTER
ALIGNMENT

LEFT
ALIGNMENT

T
O
P

A
L
I
G
N
M
E
N
T

A
L
I
G
N
M
E
N
T

B
O
T
T
O
M

F I G U R E 2 1
Character-string alignments.

For either bitmap or outline fonts, the display color is determined by the
current color state. In general, the spacing and size of characters is deter-
mined by the font designation, such as GLUT BITMAP 9 BY 15 and GLUT
STROKE MONO ROMAN. However, we can also set the line width and line type for
the outline fonts. We specify the width for a line with the glLineWidth function,
and we select a line type with the glLineStipple function. The GLUT stroke
fonts will then be displayed using the current values we specified for the OpenGL
line-width and line-type attributes.

13 OpenGL Antialiasing Functions

glEnable (primitiveType);

where parameter primitiveType is assigned one of the symbolic constant
values GL POINT SMOOTH, GL LINE SMOOTH, or GL POLYGON SMOOTH

.Assuming that we are specifying color values using the RGBA mode, we also
need to activate the OpenGL color-blending operations as follows:

glEnable (GL_BLEND);

Next, we apply the color-blending method described in Section 3 using the
function

glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

The smoothing operations are more effective if we use large alpha values in the
color specifications for the objects.

We can accomplish some other text-display characteristics using transforma-
tion functions. The transformation routines allow us to scale, position, and rotate
the GLUT stroke characters in either two-dimensional space or three-dimension-
al space. In addition, the three-dimensional viewing transformations can be used
to generate other display effects.

Line segments and other graphics primitives generated by raster algorithms have
a jagged, or stair-step, appearance because the sampling process digitizes coor-
dinate points on an object to discrete integer pixel positions. This distortion of
information due to low-frequency sampling (undersampling) is called aliasing .
We can improve the appearance of displayed raster lines by applying antialias-
ing methods that compensate for the undersampling process.

OpenGL provides antialiasing support for three types of primitives. We acti-
vate the antialiasing routines with the function

Attributes of Graphics Primitives

123

Attributes of Graphics Primitives

Antialiasing can also be applied when we use color tables. However, in this
color mode, we must create a color ramp, which is a table of color graduations
from the background color to the object color. This color ramp is then used to
antialias object boundaries.

14 OpenGL Query Functions
We can retrieve current values for any of the state parameters, including attribute
settings, using OpenGL query functions. These functions copy specified state
values into an array, which we can save for later reuse or to check the current
state of the system if an error occurs.

For current attribute values we use an appropriate “glGet” function, such as

glGetBooleanv () glGetFloatv ()
glGetIntegerv () glGetDoublev ()

In each of the preceding functions, we specify two arguments. The first argument
is an OpenGL symbolic constant that identifies an attribute or other state param-
eter. The second argument is a pointer to an array of the data type indicated by
the function name. For instance, we can retrieve the current RGBA floating-point
color settings with

glGetFloatv (GL_CURRENT_COLOR, colorValues);

The current color components are then passed to the array colorValues. To
obtain the integer values for the current color components, we invoke the glGet-
Integerv function. In some cases, a type conversion may be necessary to return
the specified data type.

Other OpenGL constants, such as GL POINT SIZE, GL LINE WIDTH, and
GL CURRENT RASTER POSITION, can be used in these functions to return
current state values. Also, we could check the range of point sizes or line
widths that are supported using the constants GL POINT SIZE RANGE and
GL LINE WIDTH RANGE.

Although we can retrieve and reuse settings for a single attribute with the
glGet functions, OpenGL provides other functions for saving groups of attributes
and reusing their values. We consider the use of these functions for saving current
attribute settings in the next section.

There are many other state and system parameters that are often useful to
query. For instance, to determine how many bits per pixel are provided in the
frame buffer on a particular system, we can ask the system how many bits are
available for each individual color component, such as

glGetIntegerv (GL_RED_BITS, redBitSize);

Here, array redBitSize is assigned the number of red bits available in each of
the buffers (frame buffer, depth buffer, accumulation buffer, and stencil buffer).
Similarly, we can make an inquiry for the other color bits usingGL GREEN BITS,
GL BLUE BITS, GL ALPHA BITS, or GL INDEX BITS.

We can also find out whether edge flags have been set, whether a polygon
face was tagged as a front face or a back face, and whether the system supports
double buffering. In addition, we can inquire whether certain routines, such as
color blending, line stippling or antialiasing, have been enabled or disabled.

124

15 OpenGL Attribute Groups
Attributes and other OpenGL state parameters are arranged in attribute groups.
Each group contains a set of related state parameters. For instance, the point-
attribute group contains the size and point-smooth (antialiasing) parameters,
and the line-attribute group contains the width, stipple status, stipple pattern,
stipple repeat counter, and line-smooth status. Similarly, the polygon-attribute
group contains eleven polygon parameters, such as fill pattern, front-face flag, and
polygon-smooth status. Because color is an attribute for all primitives, it has its
own attribute group; and some parameters are included in more than one group.

About twenty different attribute groups are available in OpenGL, and all
parameters in one or more groups can be saved or reset with a single function.
We save all parameters within a specified group using the following command:

glPushAttrib (attrGroup);

Parameter attrGroup is assigned an OpenGL symbolic constant that identifies
an attribute group, such as GL POINT BIT, GL LINE BIT, or GL POLYGON
BIT. To save color parameters, we use the symbolic constant GL CURRENT BIT,
and we can save all state parameters in all attribute groups with the constant
GL ALL ATTRIB BITS. The glPushAttrib function places all parameters
within the specified group onto an attribute stack.

We can also save parameters within two or more groups by combining their
symbolic constants with a logical OR operation. The following statement places
all parameters for points, lines, and polygons on the attribute stack:

glPushAttrib (GL_POINT_BIT | GL_LINE_BIT | GL_POLYGON_BIT);

Once we have saved a group of state parameters, we can reinstate all values
on the attribute stack with this function:

glPopAttrib ();

No arguments are used in theglPopAttrib function because it resets the current
state of OpenGL using all values on the stack.

These commands for saving and resetting state parameters use a server
attribute stack. There is also a client attribute stack available in OpenGL for saving
and resetting client state parameters. The functions for accessing this stack are
glPushClientAttrib and glPopClientAttrib. Only two client attribute
groups are available: one for pixel-storage modes and the other for vertex arrays.
Pixel-storage parameters include information such as byte alignment and the
type of arrays used to store subimages of a display. Vertex-array parameters give
information about the current vertex-array state, such as the enable/disable state
of various arrays.

16 Summary
Attributes control the display characteristics of graphics primitives. In many
graphics systems, attribute values are stored as state variables and primitives
are generated using the current attribute values. When we change the value of a
state variable, it affects only those primitives defined after the change.

A common attribute for all primitives is color, which is most often specified
in terms of RGB (or RGBA) components. The red, green, and blue color values are

Attributes of Graphics Primitives

125

Attributes of Graphics Primitives

stored in the frame buffer, and they are used to control the intensity of the three
electron guns in an RGB monitor. Color selections can also be made using color-
lookup tables. In this case, a color in the frame buffer is indicated as a table index,
and the table location at that index stores a particular set of RGB color values.
Color tables are useful in data-visualization and image-processing applications,
and they can also be used to provide a wide range of colors without requiring a
large frame buffer. Often, computer-graphics packages provide options for using
either color tables or storing color values directly in the frame buffer.

The basic point attributes are color and size. Line attributes are color, width,
and style. Specifications for line width are given in terms of multiples of a stan-
dard, one-pixel-wide line. The line-style attributes include solid, dashed, and dot-
ted lines, as well as various brush or pen styles. These attributes can be applied
to both straight lines and curves.

Fill-area attributes include a solid-color fill, a fill pattern, and a hollow display
that shows only the area boundaries. Various pattern fills can be specified in color
arrays, which are then mapped to the interior of the region. Scan-line methods
are commonly used to fill polygons, circles, and ellipses.

Areas can also be filled using color blending. This type of fill has applications
in antialiasing and in painting packages. Soft-fill procedures provide a new fill
color for a region that has the same variations as the previous fill color.

Characters can be displayed in different styles (fonts), colors, sizes, spacing,
and orientations. To set the orientation of a character string, we can specify a
direction for the character up vector and a direction for the text path. In addition,
we can set the alignment of a text string in relation to the start coordinate position.
Individual characters, called marker symbols, can be used for applications such
as plotting data graphs. Marker symbols can be displayed in various sizes and
colors using standard characters or special symbols.

Because scan conversion is a digitizing process on raster systems, displayed
primitives have a jagged appearance. This is due to the undersampling of infor-
mation, which rounds coordinate values to pixel positions. We can improve the
appearance of raster primitives by applying antialiasing procedures that adjust
pixel intensities.

In OpenGL, attribute values for the primitives are maintained as state vari-
ables. An attribute setting remains in effect for all subsequently defined primitives
until that attribute value is changed. Changing an attribute value does not affect
previously displayed primitives. We can specify colors in OpenGL using either
the RGB (or RGBA) color mode or the color-index mode, which uses color-table
indices to select colors. Also, we can blend color values using the alpha color
component, and we can specify values in color arrays that are to be used in con-
junction with vertex arrays. In addition to color, OpenGL provides functions for
selecting point size, line width, line style, and convex-polygon fill style, as well
as providing functions for the display of polygon fill areas as either a set of edges
or a set of vertex points. We can also eliminate selected polygon edges from a dis-
play, and we can reverse the specification of front and back faces. We can generate
text strings in OpenGL using bitmaps or routines that are available in GLUT. At-
tributes that can be set for the display of GLUT characters include color, font, size,
spacing, line width, and line type. The OpenGL library also provides functions to
antialias the display of output primitives. We can use query functions to obtain
the current value for state variables, and we can also obtain all values within an
OpenGL attribute group using a single function.

Table 2 summarizes the OpenGL attribute functions discussed in this
chapter. In addition, the table lists some attribute-related functions.

126

T A B L E 2

Summary of OpenGL Attribute Functions

Function Description

glutInitDisplayMode Selects the color mode, which can be either
GLUT RGB or GLUT INDEX.

glColor* Specifies an RGB or RGBA color.

glIndex* Specifies a color using a color-table index.

glutSetColor (index, r, g, b); Loads a color into a color-table position.

glEnable (GL BLEND); Activates color blending.

glBlendFunc (sFact, dFact); Specifies factors for color blending.

glEnableClientState Activates color-array features of OpenGL.
(GL COLOR ARRAY);

glColorPointer Specifies an RGB color array.
(size, type, stride, array);

glIndexPointer Specifies a color array using color-index
(type, stride, array); mode.

glPointSize (size) Specifies a point size.

glLineWidth (width); Specifies a line width.

glEnable (GL LINE STIPPLE); Activates line style.

glEnable (GL POLYGON STIPPLE); Activates fill style.

glLineStipple (repeat, pattern); Specifies a line-style pattern.

glPolygonStipple (pattern); Specifies a fill-style pattern.

glPolygonMode Displays front or back face as either a set
of edges or a set of vertices.

glEdgeFlag Sets fill-polygon edge flag to GL TRUE
or GL FALSE to determine display
status for an edge.

glFrontFace Specifies front-face vertex order as
either GL CCW or GL CW.

glEnable Activates antialiasing with
GL POINT SMOOTH, GL LINE SMOOTH,
or GL POLYGON SMOOTH. (Also need
to activate color blending.)

glGet** Queries OpenGL to retrieve an attribute value
of a specific data type, identified by the
symbolic name of the attribute, placing the
result in an array parameter.

glPushAttrib Saves all state parameters within a
specified attribute group.

glPopAttrib (); Reinstates all state parameter values that
were last saved.

Attributes of Graphics Primitives

127

Attributes of Graphics Primitives

REFERENCES
Soft-fill techniques are given in Fishkin and Barsky
(1984). Antialiasing techniques are discussed in Pitteway
and Watinson (1980), Crow (1981), Turkowski (1982),
Fujimoto and Iwata (1983), Korein and Badler (1983),
Kirk and Arvo (1991), and Wu (1991). Grayscale appli-
cations are explored in Crow (1978). Other discussions
of attributes and state parameters are available in Glass-
ner (1990), Arvo (1991), Kirk (1992), Heckbert (1994), and
Paeth (1995).

Programming examples using OpenGL attribute
functions are given in Woo, et al. (1999). A complete list-
ing of OpenGL attribute functions is available in Shreiner
(2000), and GLUT character attributes are discussed in
Kilgard (1996).

EXERCISES
1 Use the glutSetColor function to set up a color

table for an input set of color values.
2 Using vertex and color arrays, set up the de-

scription for a scene containing at least six two-
dimensional objects.

3 Write a program to display the two-dimensional
scene description in the previous exercise.

4 Using vertex and color arrays, set up the descrip-
tion for a scene containing at least four three-
dimensional objects.

5 Write a program to display a two-dimensional,
grayscale “target” scene, where the target is made
up of a small, filled central circle and two concen-
tric rings around the circle spaced as far apart as
their thickness, which should be equal to the ra-
dius of the inner circle. The circle and rings are to
be described as point patterns on a white back-
ground. The rings/circle should ”fade in” from
their outer edges so that the inner portion of the
shape is darker than the outer portion. This can be
achieved by varying the sizes and inter-point spac-
ing of the points that make up the rings/circle. For
example, the edges of a ring can be modeled with
small, widely spaced, light-gray points, while the
inner portion can be modeled with larger, more
closely spaced, dark-gray points.

6 Modify the program in the previous exercise to dis-
play the circle and rings in various shades of red
instead of gray.

7 Modify the code segments in Section 7 for dis-
playing data line plots, so that the line-width pa-
rameter is passed to procedure linePlot.

8 Modify the code segments in Section 7 for dis-
playing data line plots, so that the line-style pa-
rameter is passed to procedure linePlot.

9 Complete the program in Section 7 for displaying
line plots using input values from a data file.

10 Complete the program in Section 7 for display-
ing line plots using input values from a data file. In
addition, the program should provide labeling for
the axes and the coordinates for the display area
on the screen. The data sets are to be scaled to fit
the coordinate range of the display window, and
each plotted line is to be displayed in a different
line style, width, and color.

11 Write a routine to display a bar graph in any speci-
fied screen area. Input is to include the data set, la-
beling for the coordinate axes, and the coordinates
for the screen area. The data set is to be scaled to fit
the designated screen area, and the bars are to be
displayed in designated colors or patterns.

12 Write a procedure to display two data sets defined
over the same x-coordinate range, with the data
values scaled to fit a specified region of the display
screen. The bars for one of the data sets are to be
displaced horizontally to produce an overlapping
bar pattern for easy comparison of the two sets of
data. Use a different color or a different fill pattern
for the two sets of bars.

13 Devise an algorithm for implementing a color
lookup table.

14 Suppose you have a system with an 10 inch by
14 inch video screen that can display 120 pixels per
inch. If a color lookup table with 256 positions is
used with this system, what is the smallest possible
size (in bytes) for the frame buffer?

15 Consider an RGB raster system that has a 1024-by-
786 frame buffer with 16 bits per pixel and a color
lookup table with 24 bits per pixel. (a) How many
distinct gray levels can be displayed with this sys-
tem? (b) How many distinct colors (including gray
levels) can be displayed? (c) How many colors can
be displayed at any one time? (d) What is the total
memory size? (e) Explain two methods for reduc-
ing memory size while maintaining the same color
capabilities.

16 Write a program to output a grayscale scatter plot
of two data sets defined over the same x- and
y-coordinate ranges. Inputs to the program are the
two sets of data. The data sets are to be scaled to
fit within a defined coordinate range for a display
window. Each data set is to be plotted using points
in a distinct shade of gray.

17 Modify the program in the previous exercise to
plot the two data sets in different colors instead of
shades of gray. Also, add a legend somewhere on
the plot bordered by a solid black line. The legend
should display the name of each data set (given
as input) in the color associated with that data
set.

128

IN MORE DEPTH 2 Set up a small color table that serves as a color
palette for your scene and draw the scene as it
exists after the previous exercise using this color
table instead of the standard OpenGL color func-
tions as before. Once you produce your color
table, compare its memory requirements and ren-
dering capabilities with the standard color assign-
ment method on your system. How many different
colors can be displayed simultaneously by using
the table? How much memory is saved when rep-
resenting the frame buffer by using the color table
instead of directly assigning colors to pixels? How
small can you make the color table without notic-
ing a significant difference in the rendering of the
scene? Discuss the advantages and disadvantages
to using the color table versus using direct color
assignment.

Attributes of Graphics Primitives

1 Develop an application and experiment with
different methods of shading the simple shapes.
Using the OpenGL functions for hollow, solid
color, and pattern fills of polygons, assign a fill
type to each shape in the scene and apply these
fills. At least one of the objects should have a hol-
low fill, one should be filled with a solid color,
and one should be filled with a bit pattern that
you specify yourself. Don’t worry if the fill pat-
terns do not necessarily make sense for the objects
in the scene. The goal here is to experiment with
the different fill attributes available in OpenGL. In
addition, experiment with different line drawing
attributes to draw the boundaries of the shapes in
your snapshot. Employ the use of solid boundary
lines as well as dotted ones, each of varying thick-
ness. Add the ability to turn anti-aliasing on and
off, and examine the visual differences between
the two cases.

129

This page intentionally left blank

Implementation Algorithms for
Graphics Primitives and Attributes

1 Line-Drawing Algorithms

2 Parallel Line Algorithms

3 Setting Frame-Buffer Values

4 Circle-Generating Algorithms

5 Ellipse-Generating Algorithms

6 Other Curves

7 Parallel Curve Algorithms

8 Pixel Addressing and Object
Geometry

9 Attribute Implementations for
Straight-Line Segments and Curves

10 General Scan-Line Polygon-Fill
Algorithm

11 Scan-Line Fill of Convex Polygons

12 Scan-Line Fill for Regions with
Curved Boundaries

13 Fill Methods for Areas with
Irregular Boundaries

14 Implementation Methods for Fill
Styles

15 Implementation Methods
for Antialiasing

16 Summary

I n this chapter, we discuss the device-level algorithms for im-

plementing OpenGL primitives. Exploring the implementa-

tion algorithms for a graphics library will give us valuable

insight into the capabilities of these packages. It will also provide us

with an understanding of how the functions work, perhaps how they

could be improved, and how we might implement graphics routines

ourselves for some special application. Research in computer graph-

ics is continually discovering new and improved implementation tech-

niques to provide us with methods for special applications, such as

Internet graphics, and for developing faster and more realistic graph-

ics displays in general.

From Chapter 6 of Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson

131

F I G U R E 1
Stair-step effect (jaggies) produced
when a line is generated as a series of
pixel positions.

1 Line-Drawing Algorithms
A straight-line segment in a scene is defined by the coordinate positions for the
endpoints of the segment. To display the line on a raster monitor, the graphics sys-
tem must first project the endpoints to integer screen coordinates and determine
the nearest pixel positions along the line path between the two endpoints. Then the
line color is loaded into the frame buffer at the corresponding pixel coordinates.
Reading from the frame buffer, the video controller plots the screen pixels. This
process digitizes the line into a set of discrete integer positions that, in general,
only approximates the actual line path. A computed line position of (10.48, 20.51),
for example, is converted to pixel position (10, 21). This rounding of coordinate
values to integers causes all but horizontal and vertical lines to be displayed with
a stair-step appearance (known as “the jaggies”), as represented in Figure 1. The
characteristic stair-step shape of raster lines is particularly noticeable on systems
with low resolution, and we can improve their appearance somewhat by dis-
playing them on high-resolution systems. More effective techniques for smooth-
ing a raster line are based on adjusting pixel intensities along the line path (see
Section 15 for details).

yend

y0

x0 xend

F I G U R E 2
Line path between endpoint positions
(x0, y0) and (xend, yend).

Line Equations
We determine pixel positions along a straight-line path from the geometric prop-
erties of the line. The Cartesian slope-intercept equation for a straight line is

y = m · x + b (1)

with m as the slope of the line and b as the y intercept. Given that the two endpoints
of a line segment are specified at positions (x0, y0) and (xend, yend), as shown in
Figure 2, we can determine values for the slope m and y intercept b with the
following calculations:

m = yend − y0

xend − x0
(2)

b = y0 − m · x0 (3)

Algorithms for displaying straight lines are based on Equation 1 and the calcu-
lations given in Equations 2 and 3.

For any given x interval δx along a line, we can compute the corresponding
y interval, δy, from Equation 2 as

δy = m · δx (4)

Similarly, we can obtain the x interval δx corresponding to a specified δy as

δx = δy
m

(5)

These equations form the basis for determining deflection voltages in analog dis-
plays, such as a vector-scan system, where arbitrarily small changes in deflection
voltage are possible. For lines with slope magnitudes |m| < 1, δx can be set pro-
portional to a small horizontal deflection voltage, and the corresponding vertical
deflection is then set proportional to δy as calculated from Equation 4. For lines

Implementation Algorithms for Graphics Primitives and Attributes

132

whose slopes have magnitudes |m| > 1, δy can be set proportional to a small ver-
tical deflection voltage with the corresponding horizontal deflection voltage set
proportional to δx, calculated from Equation 5. For lines with m = 1, δx = δy and
the horizontal and vertical deflections voltages are equal. In each case, a smooth
line with slope m is generated between the specified endpoints.

yend

y0

x0 xend

F I G U R E 3
Straight-line segment with five
sampling positions along the x axis
between x0 and xend.

On raster systems, lines are plotted with pixels, and step sizes in the horizontal
and vertical directions are constrained by pixel separations. That is, we must
“sample” a line at discrete positions and determine the nearest pixel to the line at
each sampled position. This scan-conversion process for straight lines is illustrated
in Figure 3 with discrete sample positions along the x axis.

DDA Algorithm
The digital differential analyzer (DDA) is a scan-conversion line algorithm based on
calculating either δy or δx, using Equation 4 or Equation 5. A line is sampled
at unit intervals in one coordinate and the corresponding integer values nearest
the line path are determined for the other coordinate.

We consider first a line with positive slope, as shown in Figure 2. If the slope
is less than or equal to 1, we sample at unit x intervals (δx = 1) and compute
successive y values as

yk+1 = yk + m (6)

Subscript k takes integer values starting from 0, for the first point, and increases
by 1 until the final endpoint is reached. Because m can be any real number
between 0.0 and 1.0, each calculated y value must be rounded to the nearest integer
corresponding to a screen pixel position in the x column that we are processing.

For lines with a positive slope greater than 1.0, we reverse the roles of x and y.
That is, we sample at unit y intervals (δy = 1) and calculate consecutive x values as

xk+1 = xk + 1
m

(7)

In this case, each computed x value is rounded to the nearest pixel position along
the current y scan line.

Equations 6 and 7 are based on the assumption that lines are to be pro-
cessed from the left endpoint to the right endpoint (Figure 2). If this processing is
reversed, so that the starting endpoint is at the right, then either we have δx = −1
and

yk+1 = yk − m (8)

or (when the slope is greater than 1) we have δy = −1 with

xk+1 = xk − 1
m

(9)

Similar calculations are carried out using Equations 6 through 9 to deter-
mine pixel positions along a line with negative slope. Thus, if the absolute value
of the slope is less than 1 and the starting endpoint is at the left, we set δx = 1 and
calculate y values with Equation 6. When the starting endpoint is at the right
(for the same slope), we set δx = −1 and obtain y positions using Equation 8.
For a negative slope with absolute value greater than 1, we use δy = −1 and
Equation 9, or we use δy = 1 and Equation 7.

This algorithm is summarized in the following procedure, which accepts as
input two integer screen positions for the endpoints of a line segment. Horizontal
and vertical differences between the endpoint positions are assigned to parame-
ters dx and dy. The difference with the greater magnitude determines the value of
parameter steps. This value is the number of pixels that must be drawn beyond
the starting pixel; from it, we calculate the x and y increments needed to generate

Implementation Algorithms for Graphics Primitives and Attributes

133

the next pixel position at each step along the line path. We draw the starting pixel
at position (x0, y0), and then draw the remaining pixels iteratively, adjusting x
and y at each step to obtain the next pixel’s position before drawing it. If the magni-
tude of dx is greater than the magnitude of dy and x0 is less than xEnd, the values
for the increments in the x and y directions are 1 and m, respectively. If the greater
change is in the x direction, but x0 is greater than xEnd, then the decrements −1
and −m are used to generate each new point on the line. Otherwise, we use a unit
increment (or decrement) in the y direction and an x increment (or decrement) of 1

m .

#include <stdlib.h>
#include <math.h>

inline int round (const float a) { return int (a + 0.5); }

void lineDDA (int x0, int y0, int xEnd, int yEnd)
{

int dx = xEnd - x0, dy = yEnd - y0, steps, k;
float xIncrement, yIncrement, x = x0, y = y0;

if (fabs (dx) > fabs (dy))
steps = fabs (dx);

else
steps = fabs (dy);

xIncrement = float (dx) / float (steps);
yIncrement = float (dy) / float (steps);

setPixel (round (x), round (y));
for (k = 0; k < steps; k++) {

x += xIncrement;
y += yIncrement;
setPixel (round (x), round (y));

}
}

10 11 12 13

10

11

12

13 Specified
Line Path

F I G U R E 4
A section of a display screen where a
straight-line segment is to be plotted,
starting from the pixel at column 10 on
scan line 11.

50 51 52 53

48

49

50

Specified
Line Path

F I G U R E 5
A section of a display screen where a
negative slope line segment is to be
plotted, starting from the pixel at
column 50 on scan line 50.

The DDA algorithm is a faster method for calculating pixel positions than one
that directly implements Equation 1. It eliminates the multiplication in Equa-
tion 1 by using raster characteristics, so that appropriate increments are applied
in the x or y directions to step from one pixel position to another along the line path.
The accumulation of round-off error in successive additions of the floating-point
increment, however, can cause the calculated pixel positions to drift away from
the true line path for long line segments. Furthermore, the rounding operations
and floating-point arithmetic in this procedure are still time-consuming. We can
improve the performance of the DDA algorithm by separating the increments
m and 1

m into integer and fractional parts so that all calculations are reduced
to integer operations. A method for calculating 1

m increments in integer steps
is discussed in Section 10. In the next section, we consider a more general scan-
line approach that can be applied to both lines and curves.

Bresenham’s Line Algorithm
In this section, we introduce an accurate and efficient raster line-generating algo-
rithm, developed by Bresenham, that uses only incremental integer calculations.
In addition, Bresenham’s line algorithm can be adapted to display circles and
other curves. Figures 4 and 5 illustrate sections of a display screen where

Implementation Algorithms for Graphics Primitives and Attributes

134

straight-line segments are to be drawn. The vertical axes show scan-line posi-
tions, and the horizontal axes identify pixel columns. Sampling at unit x intervals
in these examples, we need to decide which of two possible pixel positions is
closer to the line path at each sample step. Starting from the left endpoint shown
in Figure 4, we need to determine at the next sample position whether to plot
the pixel at position (11, 11) or the one at (11, 12). Similarly, Figure 5 shows a
negative-slope line path starting from the left endpoint at pixel position (50, 50).
In this one, do we select the next pixel position as (51, 50) or as (51, 49)? These
questions are answered with Bresenham’s line algorithm by testing the sign of
an integer parameter whose value is proportional to the difference between the
vertical separations of the two pixel positions from the actual line path.

yk

xk xk�1 xk�2 xk�3

yk�1

yk�2

yk�3

y � mx � b

F I G U R E 6
A section of the screen showing a pixel
in column xk on scan line yk that is to
be plotted along the path of a line
segment with slope 0 < m < 1.

yk

dupper

dlower

yk � 1
y

xk � 1

F I G U R E 7
Vertical distances between pixel
positions and the line y coordinate at
sampling position xk + 1.

To illustrate Bresenham’s approach, we first consider the scan-conversion
process for lines with positive slope less than 1.0. Pixel positions along a line
path are then determined by sampling at unit x intervals. Starting from the left
endpoint (x0, y0) of a given line, we step to each successive column (x position)
and plot the pixel whose scan-line y value is closest to the line path. Figure 6
demonstrates the kth step in this process. Assuming that we have determined that
the pixel at (xk , yk) is to be displayed, we next need to decide which pixel to plot
in column xk+1 = xk + 1. Our choices are the pixels at positions (xk + 1, yk) and
(xk + 1, yk + 1).

At sampling position xk + 1, we label vertical pixel separations from the
mathematical line path as dlower and dupper (Figure 7). The y coordinate on the
mathematical line at pixel column position xk + 1 is calculated as

y = m(xk + 1) + b (10)

Then
dlower = y − yk

= m(xk + 1) + b − yk (11)

and

dupper = (yk + 1) − y

= yk + 1 − m(xk + 1) − b (12)

To determine which of the two pixels is closest to the line path, we can set up an
efficient test that is based on the difference between the two pixel separations as
follows:

dlower − dupper = 2m(xk + 1) − 2yk + 2b − 1 (13)

A decision parameter pk for the kth step in the line algorithm can be obtained
by rearranging Equation 13 so that it involves only integer calculations. We
accomplish this by substituting m = �y/�x, where �y and �x are the vertical
and horizontal separations of the endpoint positions, and defining the decision
parameter as

pk = �x(dlower − dupper)

= 2�y · xk − 2�x · yk + c (14)

The sign of pk is the same as the sign of dlower − dupper, because �x > 0 for our
example. Parameter c is constant and has the value 2�y + �x(2b − 1), which is
independent of the pixel position and will be eliminated in the recursive calcula-
tions for pk . If the pixel at yk is “closer” to the line path than the pixel at yk + 1
(that is, dlower < dupper), then decision parameter pk is negative. In that case, we
plot the lower pixel; otherwise, we plot the upper pixel.

Implementation Algorithms for Graphics Primitives and Attributes

135

Coordinate changes along the line occur in unit steps in either the x or y
direction. Therefore, we can obtain the values of successive decision parameters
using incremental integer calculations. At step k + 1, the decision parameter is
evaluated from Equation 14 as

pk+1 = 2�y · xk+1 − 2�x · yk+1 + c

Subtracting Equation 14 from the preceding equation, we have

pk+1 − pk = 2�y(xk+1 − xk) − 2�x(yk+1 − yk)

However, xk+1 = xk + 1, so that

pk+1 = pk + 2�y − 2�x(yk+1 − yk) (15)

where the term yk+1 − yk is either 0 or 1, depending on the sign of parameter pk .
This recursive calculation of decision parameters is performed at each integer

x position, starting at the left coordinate endpoint of the line. The first parameter,
p0, is evaluated from Equation 14 at the starting pixel position (x0, y0) and with
m evaluated as �y/�x as follows:

p0 = 2�y − �x (16)

We summarize Bresenham line drawing for a line with a positive slope less
than 1 in the following outline of the algorithm. The constants 2�y and 2�y −
2�x are calculated once for each line to be scan-converted, so the arithmetic
involves only integer addition and subtraction of these two constants. Step 4 of
the algorithm will be performed a total of �x times.

Bresenham’s Line-Drawing Algorithm for |m| < 1.0

1. Input the two line endpoints and store the left endpoint in (x0, y0).

2. Set the color for frame-buffer position (x0, y0); i.e., plot the first point.

3. Calculate the constants �x, �y, 2�y, and 2�y − 2�x, and obtain the
starting value for the decision parameter as

p0 = 2�y − �x

4. At each xk along the line, starting at k = 0, perform the following test:
If pk < 0, the next point to plot is (xk + 1, yk) and

pk+1 = pk + 2�y

Otherwise, the next point to plot is (xk + 1, yk + 1) and

pk+1 = pk + 2�y − 2�x

5. Repeat step 4 �x − 1 more times.

E X A M P L E 1 Bresenham Line Drawing

To illustrate the algorithm, we digitize the line with endpoints (20, 10) and
(30, 18). This line has a slope of 0.8, with

�x = 10, �y = 8

The initial decision parameter has the value
p0 = 2�y − �x

= 6

Implementation Algorithms for Graphics Primitives and Attributes

136

and the increments for calculating successive decision parameters are

2�y = 16, 2�y − 2�x = −4

We plot the initial point (x0, y0) = (20, 10), and determine successive pixel
positions along the line path from the decision parameter as follows:

k pk (xk+1, yk+1) k pk (xk+1, yk+1)

0 6 (21, 11) 5 6 (26, 15)
1 2 (22, 12) 6 2 (27, 16)
2 −2 (23, 12) 7 −2 (28, 16)
3 14 (24, 13) 8 14 (29, 17)
4 10 (25, 14) 9 10 (30, 18)

A plot of the pixels generated along this line path is shown in Figure 8.

20 21 25 30

18

15

10

22

F I G U R E 8
Pixel positions along the line path between
endpoints (20, 10) and (30, 18), plotted with
Bresenham’s line algorithm.

An implementation of Bresenham line drawing for slopes in the range
0 < m < 1.0 is given in the following procedure. Endpoint pixel positions for the
line are passed to this procedure, and pixels are plotted from the left endpoint to
the right endpoint.

#include <stdlib.h>
#include <math.h>

/* Bresenham line-drawing procedure for |m| < 1.0. */
void lineBres (int x0, int y0, int xEnd, int yEnd)
{

int dx = fabs (xEnd - x0), dy = fabs(yEnd - y0);
int p = 2 * dy - dx;
int twoDy = 2 * dy, twoDyMinusDx = 2 * (dy - dx);
int x, y;

/* Determine which endpoint to use as start position. */
if (x0 > xEnd) {

x = xEnd;
y = yEnd;
xEnd = x0;

}

Implementation Algorithms for Graphics Primitives and Attributes

137

else {
x = x0;
y = y0;

}
setPixel (x, y);

while (x < xEnd) {
x++;
if (p < 0)

p += twoDy;
else {

y++;
p += twoDyMinusDx;

}
setPixel (x, y);

}
}

Bresenham’s algorithm is generalized to lines with arbitrary slope by consid-
ering the symmetry between the various octants and quadrants of the xy plane.
For a line with positive slope greater than 1.0, we interchange the roles of the x
and y directions. That is, we step along the y direction in unit steps and calculate
successive x values nearest the line path. Also, we could revise the program to
plot pixels starting from either endpoint. If the initial position for a line with pos-
itive slope is the right endpoint, both x and y decrease as we step from right to
left. To ensure that the same pixels are plotted regardless of the starting endpoint,
we always choose the upper (or the lower) of the two candidate pixels whenever
the two vertical separations from the line path are equal (dlower = dupper). For neg-
ative slopes, the procedures are similar, except that now one coordinate decreases
as the other increases. Finally, special cases can be handled separately: Horizontal
lines (�y = 0), vertical lines (�x = 0), and diagonal lines (|�x| = |�y|) can each
be loaded directly into the frame buffer without processing them through the
line-plotting algorithm.

Displaying Polylines
Implementation of a polyline procedure is accomplished by invoking a line-
drawing routine n − 1 times to display the lines connecting the n endpoints. Each
successive call passes the coordinate pair needed to plot the next line section,
where the first endpoint of each coordinate pair is the last endpoint of the previ-
ous section. Once the color values for pixel positions along the first line segment
have been set in the frame buffer, we process subsequent line segments starting
with the next pixel position following the first endpoint for that segment. In this
way, we can avoid setting the color of some endpoints twice. We discuss methods
for avoiding the overlap of displayed objects in more detail in Section 8.

2 Parallel Line Algorithms
The line-generating algorithms we have discussed so far determine pixel po-
sitions sequentially. Using parallel processing, we can calculate multiple pixel
positions along a line path simultaneously by partitioning the computations

Implementation Algorithms for Graphics Primitives and Attributes

138

among the various processors available. One approach to the partitioning prob-
lem is to adapt an existing sequential algorithm to take advantage of multiple
processors. Alternatively, we can look for other ways to set up the processing so
that pixel positions can be calculated efficiently in parallel. An important consid-
eration in devising a parallel algorithm is to balance the processing load among
the available processors.

Given np processors, we can set up a parallel Bresenham line algorithm by
subdividing the line path into np partitions and simultaneously generating line
segments in each of the subintervals. For a line with slope 0 < m < 1.0 and left
endpoint coordinate position (x0, y0), we partition the line along the positive x
direction. The distance between beginning x positions of adjacent partitions can
be calculated as

�xp = �x + np − 1
np

(17)

where �x is the width of the line, and the value for partition width �xp is com-
puted using integer division. Numbering the partitions, and the processors, as 0,
1, 2, up to np − 1, we calculate the starting x coordinate for the kth partition as

xk = x0 + k�xp (18)

For example, if we have np = 4 processors, with �x = 15, the width of the
partitions is 4 and the starting x values for the partitions are x0, x0 + 4, x0 + 8,
and x0 + 12. With this partitioning scheme, the width of the last (rightmost) sub-
interval will be smaller than the others in some cases. In addition, if the line
endpoints are not integers, truncation errors can result in variable-width partitions
along the length of the line.

To apply Bresenham’s algorithm over the partitions, we need the initial value
for the y coordinate and the initial value for the decision parameter in each parti-
tion. The change �yp in the y direction over each partition is calculated from the
line slope m and partition width �xp:

�yp = m�xp (19)

At the kth partition, the starting y coordinate is then

yk = y0 + round(k�yp) (20)

The initial decision parameter for Bresenham’s algorithm at the start of the kth
subinterval is obtained from Equation 14:

pk = (k�xp)(2�y) − round(k�yp)(2�x) + 2�y − �x (21)

Each processor then calculates pixel positions over its assigned subinterval
using the preceding starting decision parameter value and the starting coordinates
(xk , yk). Floating-point calculations can be reduced to integer arithmetic in the
computations for starting values yk and pk by substituting m = �y/�x and
rearranging terms. We can extend the parallel Bresenham algorithm to a line
with slope greater than 1.0 by partitioning the line in the y direction and calcu-
lating beginning x values for the partitions. For negative slopes, we increment
coordinate values in one direction and decrement in the other.

Another way to set up parallel algorithms on raster systems is to assign each
processor to a particular group of screen pixels. With a sufficient number of pro-
cessors, we can assign each processor to one pixel within some screen region. This

Implementation Algorithms for Graphics Primitives and Attributes

139

approach can be adapted to a line display by assigning one processor to each of
the pixels within the limits of the coordinate extents of the line and calculating
pixel distances from the line path. The number of pixels within the bounding box
of a line is �x ·�y (as illustrated in Figure 9). Perpendicular distance d from the
line in Figure 9 to a pixel with coordinates (x, y) is obtained with the calculation

d = A x + B y + C (22)

where

A = −�y
linelength

B = �x
linelength

C = x0�y − y0�x
linelength

with

linelength =
√

�x2 + �y2

Once the constants A, B, and C have been evaluated for the line, each processor
must perform two multiplications and two additions to compute the pixel dis-
tance d. A pixel is plotted if d is less than a specified line thickness parameter.

yend

y0

x0 xend

�x

�y

F I G U R E 9
Bounding box for a line with endpoint
separations �x and �y .

Instead of partitioning the screen into single pixels, we can assign to each
processor either a scan line or a column of pixels depending on the line slope. Each
processor then calculates the intersection of the line with the horizontal row or
vertical column of pixels assigned to that processor. For a line with slope |m| < 1.0,
each processor simply solves the line equation for y, given an x column value.
For a line with slope magnitude greater than 1.0, the line equation is solved for x
by each processor, given a scan line y value. Such direct methods, although slow
on sequential machines, can be performed efficiently using multiple processors.

3 Setting Frame-Buffer Values
A final stage in the implementation procedures for line segments and other objects
is to set the frame-buffer color values. Because scan-conversion algorithms gen-
erate pixel positions at successive unit intervals, incremental operations can also
be used to access the frame buffer efficiently at each step of the scan-conversion
process.

As a specific example, suppose the frame buffer array is addressed in row-
major order and that pixel positions are labeled from (0, 0) at the lower-left corner
to (xmax, ymax) at the top-right corner (Figure 10) of the screen. For a bilevel
system (one bit per pixel), the frame-buffer bit address for pixel position (x, y) is
calculated as

addr(x, y) = addr(0, 0) + y(xmax + 1) + x (23)

Moving across a scan line, we can calculate the frame-buffer address for the pixel
at (x + 1, y) as the following offset from the address for position (x, y):

addr(x + 1, y) = addr(x, y) + 1 (24)

Stepping diagonally up to the next scan line from (x, y), we get to the frame-buffer
address of (x + 1, y + 1) with the calculation

addr(x + 1, y + 1) = addr(x, y) + xmax + 2 (25)

Implementation Algorithms for Graphics Primitives and Attributes

140

0
0

(x, y)

Screen
xmax

(0, 0)

addr (0, 0) addr (x, y)

Frame Buffer

ymax

(1, 0) (2, 0) (xmax, ymax)(xmax, 0) (0, 1)

… …

F I G U R E 1 0
Pixel screen positions stored linearly in row-major order within the frame buffer.

where the constant xmax + 2 is precomputed once for all line segments. Similar
incremental calculations can be obtained from Equation 23 for unit steps in the
negative x and y screen directions. Each of the address calculations involves only
a single integer addition.

Methods for implementing these procedures depend on the capabilities of
a particular system and the design requirements of the software package. With
systems that can display a range of intensity values for each pixel, frame-buffer
address calculations include pixel width (number of bits), as well as the pixel
screen location.

4 Circle-Generating Algorithms
Because the circle is a frequently used component in pictures and graphs, a proce-
dure for generating either full circles or circular arcs is included in many graphics
packages. In addition, sometimes a general function is available in a graphics
library for displaying various kinds of curves, including circles and ellipses.

yc

xc

r
(x, y)

u

F I G U R E 1 1
Circle with center coordinates (xc , yc)
and radius r .

F I G U R E 1 2
Upper half of a circle plotted
with Equation 27 and with
(xc , yc) = (0, 0).

Properties of Circles
A circle (Figure 11) is defined as the set of points that are all at a given distance r
from a center position (xc , yc). For any circle point (x, y), this distance relationship
is expressed by the Pythagorean theorem in Cartesian coordinates as

(x − xc)
2 + (y − yc)

2 = r2 (26)

We could use this equation to calculate the position of points on a circle circumfer-
ence by stepping along the x axis in unit steps from xc −r to xc +r and calculating
the corresponding y values at each position as

y = yc ±
√

r2 − (xc − x)2 (27)

However, this is not the best method for generating a circle. One problem with
this approach is that it involves considerable computation at each step. Moreover,
the spacing between plotted pixel positions is not uniform, as demonstrated in
Figure 12. We could adjust the spacing by interchanging x and y (stepping
through y values and calculating x values) whenever the absolute value of the
slope of the circle is greater than 1; but this simply increases the computation and
processing required by the algorithm.

Another way to eliminate the unequal spacing shown in Figure 12 is to
calculate points along the circular boundary using polar coordinates r and θ

Implementation Algorithms for Graphics Primitives and Attributes

141

(Figure 11). Expressing the circle equation in parametric polar form yields the
pair of equations

x = xc + r cos θ

y = yc + r sin θ
(28)

When a display is generated with these equations using a fixed angular step size,
a circle is plotted with equally spaced points along the circumference. To reduce
calculations, we can use a large angular separation between points along the cir-
cumference and connect the points with straight-line segments to approximate
the circular path. For a more continuous boundary on a raster display, we can
set the angular step size at 1

r . This plots pixel positions that are approximately one
unit apart. Although polar coordinates provide equal point spacing, the trigono-
metric calculations are still time-consuming.

For any of the previous circle-generating methods, we can reduce computa-
tions by considering the symmetry of circles. The shape of the circle is similar in
each quadrant. Therefore, if we determine the curve positions in the first quad-
rant, we can generate the circle section in the second quadrant of the xy plane
by noting that the two circle sections are symmetric with respect to the y axis.
Also, circle sections in the third and fourth quadrants can be obtained from sec-
tions in the first and second quadrants by considering symmetry about the x axis.
We can take this one step further and note that there is also symmetry between
octants. Circle sections in adjacent octants within one quadrant are symmetric
with respect to the 45◦ line dividing the two octants. These symmetry conditions
are illustrated in Figure 13, where a point at position (x, y) on a one-eighth
circle sector is mapped into the seven circle points in the other octants of the
xy plane. Taking advantage of the circle symmetry in this way, we can generate
all pixel positions around a circle by calculating only the points within the sec-
tor from x = 0 to x = y. The slope of the curve in this octant has a magnitude
less than or equal to 1.0. At x = 0, the circle slope is 0, and at x = y, the slope
is −1.0.

(�y, x) (y, x)

(x, y)
45�

(x, �y)

(y, �x)(�y, �x)

(�x, �y)

(�x, y)

F I G U R E 1 3
Symmetry of a circle. Calculation of a
circle point (x , y) in one octant yields
the circle points shown for the other
seven octants.

Determining pixel positions along a circle circumference using symmetry and
either Equation 26 or Equation 28 still requires a good deal of computation.
The Cartesian equation 26 involves multiplications and square-root calcula-
tions, while the parametric equations contain multiplications and trigonometric
calculations. More efficient circle algorithms are based on incremental calculation
of decision parameters, as in the Bresenham line algorithm, which involves only
simple integer operations.

Bresenham’s line algorithm for raster displays is adapted to circle generation
by setting up decision parameters for finding the closest pixel to the circumference
at each sampling step. The circle equation 26, however, is nonlinear, so that
square-root evaluations would be required to compute pixel distances from a
circular path. Bresenham’s circle algorithm avoids these square-root calculations
by comparing the squares of the pixel separation distances.

However, it is possible to perform a direct distance comparison without a
squaring operation. The basic idea in this approach is to test the halfway position
between two pixels to determine if this midpoint is inside or outside the circle
boundary. This method is applied more easily to other conics; and for an integer
circle radius, the midpoint approach generates the same pixel positions as the
Bresenham circle algorithm. For a straight-line segment, the midpoint method is
equivalent to the Bresenham line algorithm. Also, the error involved in locating
pixel positions along any conic section using the midpoint test is limited to half
the pixel separation.

Implementation Algorithms for Graphics Primitives and Attributes

142

Midpoint Circle Algorithm
As in the raster line algorithm, we sample at unit intervals and determine the
closest pixel position to the specified circle path at each step. For a given radius
r and screen center position (xc , yc), we can first set up our algorithm to calculate
pixel positions around a circle path centered at the coordinate origin (0, 0). Then
each calculated position (x, y) is moved to its proper screen position by adding xc

to x and yc to y. Along the circle section from x = 0 to x = y in the first quadrant,
the slope of the curve varies from 0 to −1.0. Therefore, we can take unit steps in
the positive x direction over this octant and use a decision parameter to determine
which of the two possible pixel positions in any column is vertically closer to the
circle path. Positions in the other seven octants are then obtained by symmetry.

To apply the midpoint method, we define a circle function as

fcirc(x, y) = x2 + y2 − r2 (29)

Any point (x, y) on the boundary of the circle with radius r satisfies the equation
fcirc(x, y) = 0. If the point is in the interior of the circle, the circle function is
negative; and if the point is outside the circle, the circle function is positive. To
summarize, the relative position of any point (x, y) can be determined by checking
the sign of the circle function as follows:

fcirc(x, y)

⎧

⎪⎨

⎪⎩

< 0, if (x, y) is inside the circle boundary
= 0, if (x, y) is on the circle boundary
> 0, if (x, y) is outside the circle boundary

(30)

The tests in 30 are performed for the midpositions between pixels near the circle
path at each sampling step. Thus, the circle function is the decision parameter
in the midpoint algorithm, and we can set up incremental calculations for this
function as we did in the line algorithm.

x2 � y2 � r2 � 0yk

xk xk � 1 xk � 2

yk � 1 Midpoint

F I G U R E 1 4
Midpoint between candidate pixels at
sampling position xk + 1 along a
circular path.

Figure 14 shows the midpoint between the two candidate pixels at sampling
position xk + 1. Assuming that we have just plotted the pixel at (xk , yk), we next
need to determine whether the pixel at position (xk + 1, yk) or the one at position
(xk + 1, yk − 1) is closer to the circle. Our decision parameter is the circle function
29 evaluated at the midpoint between these two pixels:

pk = fcirc

(

xk + 1, yk − 1
2

)

= (xk + 1)2 +
(

yk − 1
2

)2

− r2 (31)

If pk < 0, this midpoint is inside the circle and the pixel on scan line yk is closer
to the circle boundary. Otherwise, the midposition is outside or on the circle
boundary, and we select the pixel on scan line yk − 1.

Successive decision parameters are obtained using incremental calculations.
We obtain a recursive expression for the next decision parameter by evaluating
the circle function at sampling position xk+1 + 1 = xk + 2:

pk+1 = fcirc

(

xk+1 + 1, yk+1 − 1
2

)

= [(xk + 1) + 1]2 +
(

yk+1 − 1
2

)2

− r2

or
pk+1 = pk + 2(xk + 1) + (

y2
k+1 − y2

k

) − (yk+1 − yk) + 1 (32)

where yk+1 is either yk or yk − 1, depending on the sign of pk .

Implementation Algorithms for Graphics Primitives and Attributes

143

Increments for obtaining pk+1 are either 2xk+1 +1 (if pk is negative) or 2xk+1 +
1−2yk+1. Evaluation of the terms 2xk+1 and 2yk+1 can also be done incrementally as

2xk+1 = 2xk + 2
2yk+1 = 2yk − 2

At the start position (0, r), these two terms have the values 0 and 2r , respectively.
Each successive value for the 2xk+1 term is obtained by adding 2 to the previous
value, and each successive value for the 2yk+1 term is obtained by subtracting 2
from the previous value.

The initial decision parameter is obtained by evaluating the circle function at
the start position (x0, y0) = (0, r):

p0 = fcirc

(

1, r − 1
2

)

= 1 +
(

r − 1
2

)2

− r2

or

p0 = 5
4

− r (33)

If the radius r is specified as an integer, we can simply round p0 to
p0 = 1 − r (for r an integer)

because all increments are integers.
As in Bresenham’s line algorithm, the midpoint method calculates pixel posi-

tions along the circumference of a circle using integer additions and subtractions,
assuming that the circle parameters are specified in integer screen coordinates.
We can summarize the steps in the midpoint circle algorithm as follows:

Midpoint Circle Algorithm

1. Input radius r and circle center (xc , yc), then set the coordinates for the
first point on the circumference of a circle centered on the origin as

(x0, y0) = (0, r)

2. Calculate the initial value of the decision parameter as

p0 = 5
4

− r

3. At each xk position, starting at k = 0, perform the following test: If
pk < 0, the next point along the circle centered on (0, 0) is (xk+1, yk) and

pk+1 = pk + 2xk+1 + 1

Otherwise, the next point along the circle is (xk + 1, yk − 1) and

pk+1 = pk + 2xk+1 + 1 − 2yk+1

where 2xk+1 = 2xk + 2 and 2yk+1 = 2yk − 2.

4. Determine symmetry points in the other seven octants.

5. Move each calculated pixel position (x, y) onto the circular path
centered at (xc , yc) and plot the coordinate values as follows:

x = x + xc , y = y + yc

6. Repeat steps 3 through 5 until x ≥ y.

Implementation Algorithms for Graphics Primitives and Attributes

144

E X A M P L E 2 Midpoint Circle Drawing

Given a circle radius r = 10, we demonstrate the midpoint circle algorithm by
determining positions along the circle octant in the first quadrant from x = 0
to x = y. The initial value of the decision parameter is

p0 = 1 − r = −9

For the circle centered on the coordinate origin, the initial point is (x0, y0) =
(0, 10), and initial increment terms for calculating the decision parameters
are

2x0 = 0, 2y0 = 20

Successive midpoint decision parameter values and the corresponding coordi-
nate positions along the circle path are listed in the following table:

k pk (xk+1, yk+1) 2xk+1 2yk+1

0 −9 (1, 10) 2 20
1 −6 (2, 10) 4 20
2 −1 (3, 10) 6 20
3 6 (4, 9) 8 18
4 −3 (5, 9) 10 18
5 8 (6, 8) 12 16
6 5 (7, 7) 14 14

A plot of the generated pixel positions in the first quadrant is shown in
Figure 15.

y y � x

x0

0

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

F I G U R E 1 5
Pixel positions (solid circles) along a circle path
centered on the origin and with radius r = 10,
as calculated by the midpoint circle algorithm.
Open (“hollow”) circles show the symmetry
positions in the first quadrant.

The following code segment illustrates procedures that could be used to
implement the midpoint circle algorithm. Values for a circle radius and for the
center coordinates of the circle are passed to procedure circleMidpoint. A
pixel position along the circular path in the first octant is then computed and
passed to procedure circlePlotPoints. This procedure sets the circle color
in the frame buffer for all circle symmetry positions with repeated calls to the
setPixel routine, which is implemented with the OpenGL point-plotting
functions.

Implementation Algorithms for Graphics Primitives and Attributes

145

#include <GL/glut.h>

class screenPt
{

private:
GLint x, y;

public:
/* Default Constructor: initializes coordinate position to (0, 0). */
screenPt () {

x = y = 0;
}
void setCoords (GLint xCoordValue, GLint yCoordValue) {

x = xCoordValue;
y = yCoordValue;

}

GLint getx () const {
return x;

}

GLint gety () const {
return y;

}
void incrementx () {

x++;
}
void decrementy () {

y--;
}

};

void setPixel (GLint xCoord, GLint yCoord)
{

glBegin (GL_POINTS);
glVertex2i (xCoord, yCoord);

glEnd ();
}

void circleMidpoint (GLint xc, GLint yc, GLint radius)
{

screenPt circPt;

GLint p = 1 - radius; // Initial value for midpoint parameter.

circPt.setCoords (0, radius); // Set coordinates for top point of circle.

void circlePlotPoints (GLint, GLint, screenPt);
/* Plot the initial point in each circle quadrant. */
circlePlotPoints (xc, yc, circPt);
/* Calculate next point and plot in each octant. */

Implementation Algorithms for Graphics Primitives and Attributes

146

while (circPt.getx () < circPt.gety ()) {
circPt.incrementx ();
if (p < 0)

p += 2 * circPt.getx () + 1;
else {

circPt.decrementy ();
p += 2 * (circPt.getx () - circPt.gety ()) + 1;

}
circlePlotPoints (xc, yc, circPt);

}
}

void circlePlotPoints (GLint xc, GLint yc, screenPt circPt)
{

setPixel (xc + circPt.getx (), yc + circPt.gety ());
setPixel (xc - circPt.getx (), yc + circPt.gety ());
setPixel (xc + circPt.getx (), yc - circPt.gety ());
setPixel (xc - circPt.getx (), yc - circPt.gety ());
setPixel (xc + circPt.gety (), yc + circPt.getx ());
setPixel (xc - circPt.gety (), yc + circPt.getx ());
setPixel (xc + circPt.gety (), yc - circPt.getx ());
setPixel (xc - circPt.gety (), yc - circPt.getx ());

}

5 Ellipse-Generating Algorithms
Loosely stated, an ellipse is an elongated circle. We can also describe an ellipse
as a modified circle whose radius varies from a maximum value in one direc-
tion to a minimum value in the perpendicular direction. The straight-line seg-
ments through the interior of the ellipse in these two perpendicular directions are
referred to as the major and minor axes of the ellipse.

y

F1

F2

P = (x, y)

x

d2

d1

F I G U R E 1 6
Ellipse generated about foci F1 and F2.

Properties of Ellipses
A precise definition of an ellipse can be given in terms of the distances from any
point on the ellipse to two fixed positions, called the foci of the ellipse. The sum
of these two distances is the same value for all points on the ellipse (Figure 16).
If the distances to the two focus positions from any point P = (x, y) on the ellipse
are labeled d1 and d2, then the general equation of an ellipse can be stated as

d1 + d2 = constant (34)

Expressing distances d1 and d2 in terms of the focal coordinates F1 = (x1, y1) and
F2 = (x2, y2), we have

√

(x − x1)2 + (y − y1)2 +
√

(x − x2)2 + (y − y2)2 = constant (35)

By squaring this equation, isolating the remaining radical, and squaring again,
we can rewrite the general ellipse equation in the form

A x2 + B y2 + C x y + D x + E y + F = 0 (36)

Implementation Algorithms for Graphics Primitives and Attributes

147

where the coefficients A, B, C , D, E , and F are evaluated in terms of the focal
coordinates and the dimensions of the major and minor axes of the ellipse. The
major axis is the straight-line segment extending from one side of the ellipse to the
other through the foci. The minor axis spans the shorter dimension of the ellipse,
perpendicularly bisecting the major axis at the halfway position (ellipse center)
between the two foci.

An interactive method for specifying an ellipse in an arbitrary orientation is to
input the two foci and a point on the ellipse boundary. With these three coordinate
positions, we can evaluate the constant in Equation 35. Then, the values for the
coefficients in Equation 36 can be computed and used to generate pixels along
the elliptical path.

y

yc

ry

rx

xc
x

F I G U R E 1 7
Ellipse centered at (xc , yc) with
semimajor axis r x and semiminor
axis r y .

Ellipse equations are greatly simplified if the major and minor axes are ori-
ented to align with the coordinate axes. In Figure 17, we show an ellipse in
“standard position,” with major and minor axes oriented parallel to the x and
y axes. Parameter rx for this example labels the semimajor axis, and parameter
ry labels the semiminor axis. The equation for the ellipse shown in Figure 17
can be written in terms of the ellipse center coordinates and parameters rx and
ry as

(
x − xc

rx

)2

+
(

y − yc

ry

)2

= 1 (37)

Using polar coordinates r and θ , we can also describe the ellipse in standard
position with the parametric equations

x = xc + rx cos θ

y = yc + ry sin θ
(38)

Angle θ , called the eccentric angle of the ellipse, is measured around the
perimeter of a bounding circle. If rx > ry, the radius of the bounding circle is
r = rx (Figure 18). Otherwise, the bounding circle has radius r = ry .

yc

y

xxc

r � rx

u

F I G U R E 1 8
The bounding circle and eccentric
angle θ for an ellipse with r x > r y .

As with the circle algorithm, symmetry considerations can be used to reduce
computations. An ellipse in standard position is symmetric between quadrants,
but, unlike a circle, it is not symmetric between the two octants of a quadrant.
Thus, we must calculate pixel positions along the elliptical arc throughout one
quadrant, then use symmetry to obtain curve positions in the remaining three
quadrants (Figure 19).

(�x, y)

ry

rx

(x, y)

(x, �y)(�x, �y)

F I G U R E 1 9
Symmetry of an ellipse. Calculation of
a point (x , y) in one quadrant yields
the ellipse points shown for the other
three quadrants.

Midpoint Ellipse Algorithm
Our approach here is similar to that used in displaying a raster circle. Given
parameters rx, ry, and (xc , yc), we determine curve positions (x, y) for an ellipse in
standard position centered on the origin, then we shift all the points using a fixed
offset so that the ellipse is centered at (xc , yc). If we wish also to display the ellipse
in nonstandard position, we could rotate the ellipse about its center coordinates
to reorient the major and minor axes in the desired directions. For the present,
we consider only the display of ellipses in standard position.

The midpoint ellipse method is applied throughout the first quadrant in two
parts. Figure 20 shows the division of the first quadrant according to the slope
of an ellipse with rx < ry. We process this quadrant by taking unit steps in the
x direction where the slope of the curve has a magnitude less than 1.0, and then
we take unit steps in the y direction where the slope has a magnitude greater
than 1.0.

Implementation Algorithms for Graphics Primitives and Attributes

148

At the next sampling position (xk+1 + 1 = xk + 2), the decision parameter for
region 1 is evaluated as

p1k+1 = fellipse

(

xk+1 + 1, yk+1 − 1
2

)

= r2
y[(xk + 1) + 1]2 + r2

x

(

yk+1 − 1
2

)2

− r2
xr2

y

or

p1k+1 = p1k + 2r2
y(xk + 1) + r2

y + r2
x

[(

yk+1 − 1
2

)2

−
(

yk − 1
2

)2
]

(44)

where yk+1 is either yk or yk − 1, depending on the sign of p1k .
Decision parameters are incremented by the following amounts:

increment =
⎧

⎨

⎩

2r2
y xk+1 + r2

y , if p1k < 0

2r2
y xk+1 + r2

y − 2r2
x yk+1, if p1k ≥ 0

Increments for the decision parameters can be calculated using only addition
and subtraction, as in the circle algorithm, because values for the terms 2r2

y x and
2r2

x y can be obtained incrementally. At the initial position (0, ry), these two terms
evaluate to

2r2
y x = 0 (45)

2r2
x y = 2r2

xry (46)

As x and y are incremented, updated values are obtained by adding 2r2
y to the

current value of the increment term in Equation 45 and subtracting 2r 2
x from

the current value of the increment term in Equation 46. The updated increment
values are compared at each step, and we move from region 1 to region 2 when
condition 42 is satisfied.

In region 1, the initial value of the decision parameter is obtained by evaluating
the ellipse function at the start position (x0, y0) = (0, ry):

p10 = fellipse

(

1, ry − 1
2

)

= r2
y + r2

x

(

ry − 1
2

)2

− r2
xr2

y

or

p10 = r2
y − r2

xry + 1
4

r2
x (47)

ry
2x2 � rx

2y2 � rx
2ry

2 � 0

yk

xk xk � 1 xk � 2

yk � 1
Midpoint

F I G U R E 2 2
Midpoint between candidate pixels at
sampling position yk − 1 along an
elliptical path.

Over region 2, we sample at unit intervals in the negative y direction, and the
midpoint is now taken between horizontal pixels at each step (Figure 22). For
this region, the decision parameter is evaluated as

p2k = fellipse

(

xk + 1
2

, yk − 1
)

= r2
y

(

xk + 1
2

)2

+ r2
x(yk − 1)2 − r2

xr2
y (48)

If p2k > 0, the midposition is outside the ellipse boundary, and we select the pixel
at xk . If p2k ≤ 0, the midpoint is inside or on the ellipse boundary, and we select
pixel position xk+1.

Implementation Algorithms for Graphics Primitives and Attributes

150

Regions 1 and 2 (Figure 20) can be processed in various ways. We can start
at position (0, ry) and step clockwise along the elliptical path in the first quadrant,
shifting from unit steps in x to unit steps in y when the slope becomes less than
−1.0. Alternatively, we could start at (rx, 0) and select points in a counterclockwise
order, shifting from unit steps in y to unit steps in x when the slope becomes
greater than −1.0. With parallel processors, we could calculate pixel positions in
the two regions simultaneously. As an example of a sequential implementation
of the midpoint algorithm, we take the start position at (0, ry) and step along the
ellipse path in clockwise order throughout the first quadrant.

y

ry

rx x

Slope � �1

Region
1

Region
2

F I G U R E 2 0
Ellipse processing regions. Over region
1, the magnitude of the ellipse slope
is less than 1.0; over region 2, the
magnitude of the slope is greater
than 1.0.

We define an ellipse function from Equation 37 with (x c, y c) = (0, 0) as

fellipse(x, y) = r2
y x2 + r2

x y2 − r2
xr2

y (39)

which has the following properties:

fellipse(x, y)

⎧

⎪⎨

⎪⎩

< 0, if (x, y) is inside the ellipse boundary
= 0, if (x, y) is on the ellipse boundary
> 0, if (x, y) is outside the ellipse boundary

(40)

Thus, the ellipse function fellipse(x, y) serves as the decision parameter in the
midpoint algorithm. At each sampling position, we select the next pixel along the
ellipse path according to the sign of the ellipse function evaluated at the midpoint
between the two candidate pixels.

Starting at (0, ry), we take unit steps in the x direction until we reach the
boundary between region 1 and region 2 (Figure 20). Then we switch to unit
steps in the y direction over the remainder of the curve in the first quadrant. At
each step we need to test the value of the slope of the curve. The ellipse slope is
calculated from Equation 39 as

dy
dx

= −2r2
y x

2r2
x y

(41)

At the boundary between region 1 and region 2, dy/dx = −1.0 and

2r2
y x = 2r2

x y

Therefore, we move out of region 1 whenever

2r2
y x ≥ 2r2

x y (42)

ry
2x2 � rx

2y2 � rx
2ry

2 � 0

yk

xk xk � 1

yk � 1 Midpoint

F I G U R E 2 1
Midpoint between candidate pixels at
sampling position xk + 1 along an
elliptical path.

Figure 21 shows the midpoint between the two candidate pixels at sampling
position xk+1 in the first region. Assuming position (xk , yk) has been selected in the
previous step, we determine the next position along the ellipse path by evaluating
the decision parameter (that is, the ellipse function 39) at this midpoint:

p1k = fellipse

(

xk + 1, yk − 1
2

)

= r2
y(xk + 1)2 + r2

x

(

yk − 1
2

)2

− r2
xr2

y (43)

If p1k < 0, the midpoint is inside the ellipse and the pixel on scan line yk is closer
to the ellipse boundary. Otherwise, the midposition is outside or on the ellipse
boundary, and we select the pixel on scan line yk − 1.

Implementation Algorithms for Graphics Primitives and Attributes

149

To determine the relationship between successive decision parameters in re-
gion 2, we evaluate the ellipse function at the next sampling step yk+1 −1 = yk −2:

p2k+1 = fellipse

(

xk+1 + 1
2

, yk+1 − 1
)

= r2
y

(

xk+1 + 1
2

)2

+ r2
x [(yk − 1) − 1]2 − r2

xr2
y (49)

or

p2k+1 = p2k − 2r2
x(yk − 1) + r2

x + r2
y

[(

xk+1 + 1
2

)2

−
(

xk + 1
2

)2
]

(50)

with xk+1 set either to xk or to xk + 1, depending on the sign of p2k .
When we enter region 2, the initial position (x0, y0) is taken as the last position

selected in region 1 and the initial decision parameter in region 2 is then

p20 = fellipse

(

x0 + 1
2

, y0 − 1
)

= r2
y

(

x0 + 1
2

)2

+ r2
x(y0 − 1)2 − r2

xr2
y (51)

To simplify the calculation of p20, we could select pixel positions in counterclock-
wise order starting at (rx, 0). Unit steps would then be taken in the positive y
direction up to the last position selected in region 1.

Assuming rx, ry, and the ellipse center are given in integer screen coordinates,
we need only incremental integer calculations to determine values for the decision
parameters in the midpoint ellipse algorithm. The increments r2

x , r2
y , 2r2

x , and 2r2
y

are evaluated once at the beginning of the procedure. In the following summary,
we list the steps for displaying an ellipse using the midpoint algorithm:

Midpoint Ellipse Algorithm

1. Input rx, ry, and ellipse center (xc , yc), and obtain the first point on an
ellipse centered on the origin as

(x0, y0) = (0, ry)

2. Calculate the initial value of the decision parameter in region 1 as

p10 = r2
y − r2

xry + 1
4

r2
x

3. At each xk position in region 1, starting at k = 0, perform the follow-
ing test: If p1k < 0, the next point along the ellipse centered on (0, 0)
is (xk+1, yk) and

p1k+1 = p1k + 2r2
y xk+1 + r2

y

Otherwise, the next point along the ellipse is (xk + 1, yk − 1) and

p1k+1 = p1k + 2r2
y xk+1 − 2r2

x yk+1 + r2
y

This midpoint algorithm can be adapted to generate an ellipse in nonstandard
position using the ellipse function Equation 36 and calculating pixel positions
over the entire elliptical path. Alternatively, we could reorient the ellipse axes to

Implementation Algorithms for Graphics Primitives and Attributes

standard position, apply the midpoint ellipse algorithm to determine curve posi-
tions, and then convert calculated pixel positions to path positions along the
original ellipse orientation.

151

with
2r2

y xk+1 = 2r2
y xk + 2r2

y , 2r2
x yk+1 = 2r2

x yk − 2r2
x

and continue until 2r2
y x ≥ 2r2

x y.

4. Calculate the initial value of the decision parameter in region 2 as

p20 = r2
y

(

x0 + 1
2

)2

+ r2
x(y0 − 1)2 − r2

xr2
y

where (x0, y0) is the last position calculated in region 1.

5. At each yk position in region 2, starting at k = 0, perform the following
test: If p2k > 0, the next point along the ellipse centered on (0, 0) is
(xk , yk − 1) and

p2k+1 = p2k − 2r2
x yk+1 + r2

x

Otherwise, the next point along the ellipse is (xk + 1, yk − 1) and

p2k+1 = p2k + 2r2
y xk+1 − 2r2

x yk+1 + r2
x

using the same incremental calculations for x and y as in region 1.
Continue until y = 0.

6. For both regions, determine symmetry points in the other three
quadrants.

7. Move each calculated pixel position (x, y) onto the elliptical path cen-
tered on (xc , yc) and plot these coordinate values:

x = x + xc , y = y + yc

E X A M P L E 3 Midpoint Ellipse Drawing

Given input ellipse parameters rx = 8 and ry = 6, we illustrate the steps in
the midpoint ellipse algorithm by determining raster positions along the el-
lipse path in the first quadrant. Initial values and increments for the decision
parameter calculations are

2r2
y x = 0 (with increment 2r2

y = 72)

2r2
x y = 2r2

xry (with increment −2r2
x = −128)

For region 1, the initial point for the ellipse centered on the origin is
(x0, y0) = (0, 6), and the initial decision parameter value is

p10 = r2
y − r2

xry + 1
4

r2
x = −332

Successive midpoint decision-parameter values and the pixel positions along
the ellipse are listed in the following table:

k p1k (xk+1, yk+1) 2r2
yxk+1 2r2

x yk+1

0 −332 (1, 6) 72 768
1 −224 (2, 6) 144 768
2 −44 (3, 6) 216 768
3 208 (4, 5) 288 640
4 −108 (5, 5) 360 640
5 288 (6, 4) 432 512
6 244 (7, 3) 504 384

Implementation Algorithms for Graphics Primitives and Attributes

152

We now move out of region 1 because 2r2
y x > 2r2

x y.
For region 2, the initial point is (x0, y0) = (7, 3) and the initial decision

parameter is

p20 = fellipse

(

7 + 1
2

, 2
)

= −151

The remaining positions along the ellipse path in the first quadrant are then
calculated as

k p1k (xk+1, yk+1) 2r2
yxk+1 2r2

x yk+1

0 −151 (8, 2) 576 256
1 233 (8, 1) 576 128
2 745 (8, 0) — —

A plot of the calculated positions for the ellipse within the first quadrant is
shown in Figure 23.

0

0

1 2 3 4 5 6 7 8

1

2

3

4

5

6

F I G U R E 2 3
Pixel positions along an elliptical path centered on the origin
with r x = 8 and r y = 6, using the midpoint algorithm to
calculate locations within the first quadrant.

In the following code segment, example procedures are given for implement-
ing the midpoint ellipse algorithm. Values for the ellipse parameters Rx, Ry,
xCenter, and yCenter are input to procedure ellipseMidpoint. Positions
along the curve in the first quadrant are then calculated and passed to procedure
ellipsePlotPoints. Symmetry is used to obtain ellipse positions in the other
three quadrants, and the setPixel routine sets the ellipse color in the frame-
buffer locations corresponding to these positions.

inline int round (const float a) { return int (a + 0.5); }

/* The following procedure accepts values for an ellipse
* center position and its semimajor and semiminor axes, then
* calculates ellipse positions using the midpoint algorithm.
*/
void ellipseMidpoint (int xCenter, int yCenter, int Rx, int Ry)
{

int Rx2 = Rx * Rx;
int Ry2 = Ry * Ry;
int twoRx2 = 2 * Rx2;
int twoRy2 = 2 * Ry2;
int p;
int x = 0;
int y = Ry;
int px = 0;
int py = twoRx2 * y;
void ellipsePlotPoints (int, int, int, int);

Implementation Algorithms for Graphics Primitives and Attributes

153

/* Plot the initial point in each quadrant. */
ellipsePlotPoints (xCenter, yCenter, x, y);

/* Region 1 */
p = round (Ry2 - (Rx2 * Ry) + (0.25 * Rx2));
while (px < py) {

x++;
px += twoRy2;
if (p < 0)

p += Ry2 + px;
else {

y--;
py -= twoRx2;
p += Ry2 + px - py;

}
ellipsePlotPoints (xCenter, yCenter, x, y);

}

/* Region 2 */
p = round (Ry2 * (x+0.5) * (x+0.5) + Rx2 * (y-1) * (y-1) - Rx2 * Ry2);
while (y > 0) {

y--;
py -= twoRx2;
if (p > 0)

p += Rx2 - py;
else {

x++;
px += twoRy2;
p += Rx2 - py + px;

}
ellipsePlotPoints (xCenter, yCenter, x, y);

}
}
void ellipsePlotPoints (int xCenter, int yCenter, int x, int y);
{

setPixel (xCenter + x, yCenter + y);
setPixel (xCenter - x, yCenter + y);
setPixel (xCenter + x, yCenter - y);
setPixel (xCenter - x, yCenter - y);

}

6 Other Curves
Various curve functions are useful in object modeling, animation path specifica-
tions, data and function graphing, and other graphics applications. Commonly
encountered curves include conics, trigonometric and exponential functions,
probability distributions, general polynomials, and spline functions. Displays of
these curves can be generated with methods similar to those discussed for the
circle and ellipse functions. We can obtain positions along curve paths directly
from explicit representations y = f (x) or from parametric forms. Alternatively,
we could apply the incremental midpoint method to plot curves described with
implicit functions f (x, y) = 0.

Implementation Algorithms for Graphics Primitives and Attributes

154

A simple method for displaying a curved line is to approximate it with
straight-line segments. Parametric representations are often useful in this case for
obtaining equally spaced positions along the curve path for the line endpoints.
We can also generate equally spaced positions from an explicit representation by
choosing the independent variable according to the slope of the curve. Where the
slope of y = f (x) has a magnitude less than 1, we choose x as the independent
variable and calculate y values at equal x increments. To obtain equal spacing
where the slope has a magnitude greater than 1, we use the inverse function,
x = f −1(y), and calculate values of x at equal y steps.

Straight-line or curve approximations are used to generate a line graph for
a set of discrete data values. We could join the discrete points with straight-
line segments, or we could use linear regression (least squares) to approximate
the data set with a single straight line. A nonlinear least-squares approach is
used to display the data set with some approximating function, usually a poly-
nomial.

As with circles and ellipses, many functions possess symmetries that can be
exploited to reduce the computation of coordinate positions along curve paths.
For example, the normal probability distribution function is symmetric about a
center position (the mean), and all points within one cycle of a sine curve can be
generated from the points in a 90◦ interval.

Conic Sections
In general, we can describe a conic section (or conic) with the second-degree
equation

A x2 + B y2 + C x y + D x + E y + F = 0 (52)

where the values for parameters A, B, C , D, E , and F determine the kind of
curve that we are to display. Given this set of coefficients, we can determine the
particular conic that will be generated by evaluating the discriminant B2 − 4AC :

B2 − 4AC

⎧

⎪⎨

⎪⎩

< 0, generates an ellipse (or circle)
= 0, generates a parabola
> 0, generates a hyperbola

(53)

For example, we get the circle equation 26 when A = B = 1, C = 0, D = −2xc ,
E = −2yc , and F = x2

c + y2
c − r2. Equation 52 also describes the “degenerate”

conics: points and straight lines.
In some applications, circular and elliptical arcs are conveniently specified

with the beginning and ending angular values for the arc, as illustrated in
Figure 24. Such arcs are sometimes defined by their endpoint coordinate posi-
tions. For either case, we could generate the arc with a modified midpoint method,
or we could display a set of approximating straight-line segments.

y

x

r

u2u1

F I G U R E 2 4
A circular arc, centered on the origin,
defined with beginning angle θ1,
ending angle θ2, and radius r .

y0

v0 g

x0

F I G U R E 2 5
Parabolic path of an object tossed into
a downward gravitational field at the
initial position (x0, y0).

Ellipses, hyperbolas, and parabolas are particularly useful in certain anima-
tion applications. These curves describe orbital and other motions for objects sub-
jected to gravitational, electromagnetic, or nuclear forces. Planetary orbits in the
solar system, for example, are approximated with ellipses; and an object projected
into a uniform gravitational field travels along a parabolic trajectory. Figure 25
shows a parabolic path in standard position for a gravitational field acting in the
negative y direction. The explicit equation for the parabolic trajectory of the object
shown can be written as

y = y0 + a(x − x0)
2 + b(x − x0) (54)

Implementation Algorithms for Graphics Primitives and Attributes

155

construct a cubic polynomial curve section between each pair of specified points.
Each curve section is then described in parametric form as

x = ax0 + ax1u + ax2u2 + ax3u3

y = ay0 + ay1u + ay2u2 + ay3u3
(58)

where parameter u varies over the interval from 0 to 1.0. Values for the coefficients
of u in the preceding equations are determined from boundary conditions on the
curve sections. One boundary condition is that two adjacent curve sections have
the same coordinate position at the boundary, and a second condition is to match
the two curve slopes at the boundary so that we obtain one continuous, smooth
curve (Figure 27). Continuous curves that are formed with polynomial pieces
are called spline curves, or simply splines.

7 Parallel Curve Algorithms
Methods for exploiting parallelism in curve generation are similar to those used
in displaying straight-line segments. We can either adapt a sequential algorithm
by allocating processors according to curve partitions, or we could devise other
methods and assign processors to screen partitions.

F I G U R E 2 7
A spline curve formed with individual
cubic polynomial sections between
specified coordinate positions.

A parallel midpoint method for displaying circles is to divide the circular arc
from 45◦ to 90◦ into equal subarcs and assign a separate processor to each subarc.
As in the parallel Bresenham line algorithm, we then need to set up computations
to determine the beginning y value and decision parameter pk value for each pro-
cessor. Pixel positions are calculated throughout each subarc, and positions in the
other circle octants can be obtained by symmetry. Similarly, a parallel ellipse mid-
point method divides the elliptical arc over the first quadrant into equal subarcs
and parcels these out to separate processors. Again, pixel positions in the other
quadrants are determined by symmetry. A screen-partitioning scheme for circles
and ellipses is to assign each scan line that crosses the curve to a separate pro-
cessor. In this case, each processor uses the circle or ellipse equation to calculate
curve intersection coordinates.

For the display of elliptical arcs or other curves, we can simply use the scan-
line partitioning method. Each processor uses the curve equation to locate the
intersection positions along its assigned scan line. With processors assigned to
individual pixels, each processor would calculate the distance (or distance
squared) from the curve to its assigned pixel. If the calculated distance is less
than a predefined value, the pixel is plotted.

8 Pixel Addressing and Object Geometry
In discussing the raster algorithms for displaying graphics primitives, we
assumed that frame-buffer coordinates referenced the center of a screen pixel
position. We now consider the effects of different addressing schemes and an
alternate pixel-addressing method used by some graphics packages, including
OpenGL.

An object description that is input to a graphics program is given in terms of
precise world-coordinate positions, which are infinitesimally small mathematical
points. However, when the object is scan-converted into the frame buffer, the
input description is transformed to pixel coordinates which reference finite screen

Implementation Algorithms for Graphics Primitives and Attributes

157

with constants a and b determined by the initial velocity v0 of the object and the
acceleration g due to the uniform gravitational force. We can also describe such
parabolic motions with parametric equations using a time parameter t, measured
in seconds from the initial projection point:

x = x0 + vx0 t

y = y0 + vy0 t − 1
2

gt2
(55)

Here, vx0 and vy0 are the initial velocity components, and the value of g near
the surface of the earth is approximately 980 cm/sec2. Object positions along the
parabolic path are then calculated at selected time steps.

x

Right
Branch

Left
Branch

ry

rx
y � x

rx�rx

�ry

ry

y

F I G U R E 2 6
Left and right branches of a hyperbola
in standard position with the symmetry
axis along the x axis.

Hyperbolic curves (Figure 26) are useful in various scientific-visualization
applications. Motions of objects along hyperbolic paths occur in connection
with the collision of charged particles and in certain gravitational problems. For
example, comets or meteorites moving around the sun may travel along hyper-
bolic paths and escape to outer space, never to return. The particular branch (left
or right, in Figure 26) describing the motion of an object depends on the forces
involved in the problem. We can write the standard equation for the hyperbola
centered on the origin in Figure 26 as

(
x
rx

)2

−
(

y
ry

)2

= 1 (56)

with x ≤ −rx for the left branch and x ≥ rx for the right branch. Because this
equation differs from the standard ellipse equation 39 only in the sign between
the x2 and y2 terms, we can generate points along a hyperbolic path with a slightly
modified ellipse algorithm.

Parabolas and hyperbolas possess a symmetry axis. For example, the parabola
described by Equation 55 is symmetric about the axis

x = x0 + vx0vy0/g

The methods used in the midpoint ellipse algorithm can be applied directly to
obtain points along one side of the symmetry axis of hyperbolic and parabolic
paths in the two regions: (1) where the magnitude of the curve slope is less than
1, and (2) where the magnitude of the slope is greater than 1. To do this, we first
select the appropriate form of Equation 52 and then use the selected function to
set up expressions for the decision parameters in the two regions.

Polynomials and Spline Curves
A polynomial function of nth degree in x is defined as

y =
n∑

k=0

ak xk

= a0 + a1x + · · · + an−1xn−1 + anxn (57)

where n is a nonnegative integer and the ak are constants, with an �= 0. We obtain
a quadratic curve when n = 2, a cubic polynomial when n = 3, a quartic curve
when n = 4, and so forth. We have a straight line when n = 1. Polynomials are
useful in a number of graphics applications, including the design of object shapes,
the specification of animation paths, and the graphing of data trends in a discrete
set of data points.

Designing object shapes or motion paths is typically accomplished by first
specifying a few points to define the general curve contour, then the selected
points are fitted with a polynomial. One way to accomplish the curve fitting is to

Implementation Algorithms for Graphics Primitives and Attributes

156

areas, and the displayed raster image may not correspond exactly with the relative
dimensions of the input object. If it is important to preserve the specified geometry
of world objects, we can compensate for the mapping of mathematical input points
to finite pixel areas. One way to do this is simply to adjust the pixel dimensions
of displayed objects so as to correspond to the dimensions given in the original
mathematical description of the scene. For example, if a rectangle is specified
as having a width of 40 cm, then we could adjust the screen display so that the
rectangle has a width of 40 pixels, with the width of each pixel representing one
centimeter. Another approach is to map world coordinates onto screen positions
between pixels, so that we align object boundaries with pixel boundaries instead
of pixel centers.

Screen Grid Coordinates
Figure 28 shows a screen section with grid lines marking pixel boundaries, one
unit apart. In this scheme, a screen position is given as the pair of integer values
identifying a grid-intersection position between two pixels. The address for any
pixel is now at its lower-left corner, as illustrated in Figure 29. A straight-line
path is now envisioned as between grid intersections. For example, the mathe-
matical line path for a polyline with endpoint coordinates (0, 0), (5, 2), and (1, 4)
would then be as shown in Figure 30.

0 1 2 3
0

1

2

3

4 5

4

5

F I G U R E 2 8
Lower-left section of a screen area
with coordinate positions referenced
by grid intersection lines.

0
0

1 2 3 4 5 6 7

1

2

3

4

5

6

7

F I G U R E 2 9
Illuminated pixel at raster
position (4, 5).

0 1 2 3
0

1

2

3

4 5

4

5

F I G U R E 3 0
Line path for two connected line
segments between screen
grid-coordinate positions.

Using screen grid coordinates, we now identify the area occupied by a pixel
with screen coordinates (x, y) as the unit square with diagonally opposite corners
at (x, y) and (x + 1, y + 1). This pixel-addressing method has several advantages:
it avoids half-integer pixel boundaries, it facilitates precise object representations,
and it simplifies the processing involved in many scan-conversion algorithms and
other raster procedures.

The algorithms for line drawing and curve generation discussed in the pre-
ceding sections are still valid when applied to input positions expressed as screen
grid coordinates. Decision parameters in these algorithms would now be a mea-
sure of screen grid separation differences, rather than separation differences from
pixel centers.

Maintaining Geometric Properties of Displayed Objects
When we convert geometric descriptions of objects into pixel representations,
we transform mathematical points and lines into finite screen areas. If we are to
maintain the original geometric measurements specified by the input coordinates
for an object, we need to account for the finite size of pixels when we transform
the object definition to a screen display.

Figure 31 shows the line plotted in the Bresenham line-algorithm exam-
ple of Section 1. Interpreting the line endpoints (20, 10) and (30, 18) as precise
grid-crossing positions, we see that the line should not extend past screen-grid
position (30, 18). If we were to plot the pixel with screen coordinates (30, 18), as
in the example given in Section 1, we would display a line that spans 11 hori-
zontal units and 9 vertical units. For the mathematical line, however, �x = 10 and
�y = 8. If we are addressing pixels by their center positions, we can adjust the
length of the displayed line by omitting one of the endpoint pixels. But if we think
of screen coordinates as addressing pixel boundaries, as shown in Figure 31, we
plot a line using only those pixels that are “interior” to the line path; that is,
only those pixels that are between the line endpoints. For our example, we would
plot the leftmost pixel at (20, 10) and the rightmost pixel at (29, 17). This displays a

Implementation Algorithms for Graphics Primitives and Attributes

158

20 21 25 30

18

15

10
22 23 24 26 27 28 29

16

11

12

13

14

17

F I G U R E 3 1
Line path and corresponding pixel display for grid
endpoint coordinates (20, 10) and (30, 18).

line that has the same geometric magnitudes as the mathematical line from (20, 10)
to (30, 18).

For an enclosed area, input geometric properties are maintained by display-
ing the area using only those pixels that are interior to the object boundaries. The
rectangle defined with the screen coordinate vertices shown in Figure 32(a),
for example, is larger when we display it filled with pixels up to and including
the border pixel lines joining the specified vertices [Figure 32(b)]. As defined, the
area of the rectangle is 12 units, but as displayed in Figure 32(b), it has an area of
20 units. In Figure 32(c), the original rectangle measurements are maintained by
displaying only the internal pixels. The right boundary of the input rectangle is
at x = 4. To maintain the rectangle width in the display, we set the rightmost pixel
grid coordinate for the rectangle at x = 3 because the pixels in this vertical column
span the interval from x = 3 to x = 4. Similarly, the mathematical top boundary of
the rectangle is at y = 3, so we set the top pixel row for the displayed rectangle
at y = 2.

0
0

1 2 3 4 5

1

2

3

4

(b)

0
0

1 2 3 4 5

1

2

3

4

(c)

0
0

1 2 3 4 5

1

2

3

4

(a)

F I G U R E 3 2
Conversion of rectangle
(a) with vertices at screen coordinates
(0, 0), (4, 0), (4, 3), and (0, 3) into
display (b), which includes the right
and top boundaries, and into display
(c), which maintains geometric
magnitudes.

These compensations for finite pixel size can be applied to other objects,
including those with curved boundaries, so that the raster display maintains the
input object specifications. A circle with radius 5 and center position (10, 10), for
instance, would be displayed as in Figure 33 by the midpoint circle algorithm

5 15(10, 10)

15

5

F I G U R E 3 3
A midpoint-algorithm plot of the circle equation
(x − 10) 2 + (y − 10) 2 = 52 using pixel-center
coordinates.

Implementation Algorithms for Graphics Primitives and Attributes

159

F I G U R E 3 4
Modification of the circle plot in
Figure 33 to maintain the specified
circle diameter of 10.

(x, �y � 1)

(x, y)

(�y � 1, x)(y, x)

(0, 0)

(�x � 1, �y � 1)

(�x � 1, y)

(y, �x � 1) (�y � 1, �x � 1)

using pixel centers as screen-coordinate positions. However, the plotted circle has
a diameter of 11. To plot the circle with the defined diameter of 10, we can modify
the circle algorithm to shorten each pixel scan line and each pixel column, as in
Figure 34. One way to do this is to generate points clockwise along the circular
arc in the third quadrant, starting at screen coordinates (10, 5). For each generated
point, the other seven circle symmetry points are generated by decreasing the x
coordinate values by 1 along scan lines and decreasing the y coordinate values
by 1 along pixel columns. Similar methods are applied in ellipse algorithms to
maintain the specified proportions in the display of an ellipse.

9 Attribute Implementations for
Straight-Line Segments and Curves

Recall that line segment primitives can be displayed with three basic attributes:
color, width, and style. Of these, line width and style are selected with separate
line functions.

Line Width
Implementation of line-width options depends on the capabilities of the output
device. For raster implementations, a standard-width line is generated with single
pixels at each sample position, as in the Bresenham algorithm. Thicker lines are
displayed as positive integer multiples of the standard line by plotting additional
pixels along adjacent parallel line paths. If a line has slope magnitude less than
or equal to 1.0, we can modify a line-drawing routine to display thick lines by
plotting a vertical span of pixels in each column (x position) along the line. The
number of pixels to be displayed in each column is set equal to the integer value
of the line width. In Figure 35, we display a double-width line by generating a
parallel line above the original line path. At each x sampling position, we calculate
the corresponding y coordinate and plot pixels at screen coordinates (x, y) and
(x, y + 1). We could display lines with a width of 3 or greater by alternately plotting
pixels above and below the single-width line path.

Implementation Algorithms for Graphics Primitives and Attributes

160

F I G U R E 3 7
Thick lines drawn with (a) butt caps,
(b) round caps, and (c) projecting
square caps. (c)(b)(a)

F I G U R E 3 8
Thick line segments connected with a
miter join (a), a round join (b), and a
bevel join (c). (a) (b) (c)

and add butt caps that are positioned half of the line width beyond the specified
endpoints.

Other methods for producing thick lines include displaying the line as a filled
rectangle or generating the line with a selected pen or brush pattern, as discussed
in the next section. To obtain a rectangle representation for the line boundary, we
calculate the position of the rectangle vertices along perpendiculars to the line
path so that the rectangle vertex coordinates are displaced from the original line-
endpoint positions by half the line width. The rectangular line then appears as
in Figure 37(a). We could add round caps to the filled rectangle, or we could
extend its length to display projecting square caps.

Generating thick polylines requires some additional considerations. In gen-
eral, the methods that we have considered for displaying a single line segment
will not produce a smoothly connected series of line segments. Displaying thick
polylines using horizontal and vertical pixel spans, for example, leaves pixel gaps
at the boundaries between line segments with different slopes where there is a
shift from horizontal pixel spans to vertical spans. We can generate thick poly-
lines that are smoothly joined at the cost of additional processing at the segment
endpoints. Figure 38 shows three possible methods for smoothly joining two
line segments. A miter join is accomplished by extending the outer boundaries of
each of the two line segments until they meet. A round join is produced by cap-
ping the connection between the two segments with a circular boundary whose
diameter is equal to the line width. A bevel join is generated by displaying the
line segments with butt caps and filling in the triangular gap where the segments
meet. If the angle between two connected line segments is very small, a miter join
can generate a long spike that distorts the appearance of the polyline. A graphics
package can avoid this effect by switching from a miter join to a bevel join when,
for example, the angle between any two consecutive segments is small.

Line Style
Raster line algorithms display line-style attributes by plotting pixel spans. For
dashed, dotted, and dot-dashed patterns, the line-drawing procedure outputs
sections of contiguous pixels along the line path, skipping over a number of
intervening pixels between the solid spans. Pixel counts for the span length and

Implementation Algorithms for Graphics Primitives and Attributes

162

F I G U R E 3 5
A double-wide raster line with slope
|m | < 1.0 generated with vertical
pixel spans.

F I G U R E 3 6
A raster line with slope |m | > 1.0
and a line width of 4 plotted using
horizontal pixel spans.

With a line slope greater than 1.0 in magnitude, we can display thick lines
using horizontal spans, alternately picking up pixels to the right and left of the
line path. This scheme is demonstrated in Figure 36, where a line segment with
a width of 4 is plotted using multiple pixels across each scan line. Similarly, a
thick line with slope less than or equal to 1.0 can be displayed using vertical pixel
spans. We can implement this procedure by comparing the magnitudes of the hor-
izontal and vertical separations (�x and �y) of the line endpoints. If |�x| ≥ |�y|,
pixels are replicated along columns. Otherwise, multiple pixels are plotted across
rows.

Although thick lines are generated quickly by plotting horizontal or vertical
pixel spans, the displayed width of a line (measured perpendicular to the line
path) depends on its slope. A 45◦ line will be displayed thinner by a factor of
1/

√
2 compared to a horizontal or vertical line plotted with the same-length pixel

spans.
Another problem with implementing width options using horizontal or ver-

tical pixel spans is that the method produces lines whose ends are horizontal
or vertical regardless of the slope of the line. This effect is more noticeable with
very thick lines. We can adjust the shape of the line ends to give them a better
appearance by adding line caps (Figure 37). One kind of line cap is the butt
cap, which has square ends that are perpendicular to the line path. If the specified
line has slope m, the square ends of the thick line have slope −1/m. Each of the
component parallel lines is then displayed between the two perpendicular lines
at each end of the specified line path. Another line cap is the round cap obtained
by adding a filled semicircle to each butt cap. The circular arcs are centered at
the middle of the thick line and have a diameter equal to the line thickness. A
third type of line cap is the projecting square cap. Here, we simply extend the line

Implementation Algorithms for Graphics Primitives and Attributes

161

inter-span spacing can be specified in a pixel mask, which is a pattern of binary
digits indicating which positions to plot along the line path. The linear mask
11111000, for instance, could be used to display a dashed line with a dash length of
five pixels and an inter-dash spacing of three pixels. Pixel positions corresponding
to the 1 bits are assigned the current color, and pixel positions corresponding to
the 0 bits are displayed in the background color. (a)

(b)

F I G U R E 3 9
Unequal-length dashes displayed with
the same number of pixels.

Plotting dashes with a fixed number of pixels results in unequal length dashes
for different line orientations, as illustrated in Figure 39. Both dashes shown
are plotted with four pixels, but the diagonal dash is longer by a factor of

√
2.

For precision drawings, dash lengths should remain approximately constant for
any line orientation. To accomplish this, we could adjust the pixel counts for the
solid spans and inter-span spacing according to the line slope. In Figure 39, we
can display approximately equal length dashes by reducing the diagonal dash
to three pixels. Another method for maintaining dash length is to treat dashes
as individual line segments. Endpoint coordinates for each dash are located and
passed to the line routine, which then calculates pixel positions along the dash
path.

Pen and Brush Options
Pen and brush shapes can be stored in a pixel mask that identifies the array of
pixel positions that are to be set along the line path. For example, a rectangular
pen could be implemented with the mask shown in Figure 40 by moving the
center (or one corner) of the mask along the line path, as in Figure 41. To avoid
setting pixels more than once in the frame buffer, we can simply accumulate the
horizontal spans generated at each position of the mask and keep track of the
beginning and ending x positions for the spans across each scan line.

Lines generated with pen (or brush) shapes can be displayed in various
widths by changing the size of the mask. For example, the rectangular pen line in
Figure 41 could be narrowed with a 2 × 2 rectangular mask or widened with a
4 × 4 mask. Also, lines can be displayed with selected patterns by superimposing
the pattern values onto the pen or brush mask.

(a) (b)

Line
Path

1
1
1

1
1
1

1
1
1

F I G U R E 4 0
A pixel mask (a) for a rectangular pen, and the associated array
of pixels (b) displayed by centering the mask over a specified
pixel position.

F I G U R E 4 1
Generating a line with the pen shape
of Figure 40.

Implementation Algorithms for Graphics Primitives and Attributes

163

F I G U R E 4 2
A circular arc of width 4 plotted with either vertical or
horizontal pixel spans, depending on the slope.

17

14

F I G U R E 4 3
A circular arc of width 4 and radius 16 displayed by filling
the region between two concentric arcs.

Curve Attributes
Methods for adapting curve-drawing algorithms to accommodate attribute selec-
tions are similar to those for line drawing. Raster curves of various widths can be
displayed using the method of horizontal or vertical pixel spans. Where the mag-
nitude of the curve slope is less than or equal to 1.0, we plot vertical spans; where
the slope magnitude is greater than 1.0, we plot horizontal spans. Figure 42
demonstrates this method for displaying a circular arc with a width of 4 in the
first quadrant. Using circle symmetry, we generate the circle path with vertical
spans in the octant from x = 0 to x = y, and then reflect pixel positions about the
line y = x to obtain the remainder of the curve shown. Circle sections in the other
quadrants are obtained by reflecting pixel positions in the first quadrant about
the coordinate axes. The thickness of curves displayed with this method is again
a function of curve slope. Circles, ellipses, and other curves will appear thinnest
where the slope has a magnitude of 1.

Another method for displaying thick curves is to fill in the area between two
parallel curve paths, whose separation distance is equal to the desired width. We
could do this using the specified curve path as one boundary and setting up the
second boundary either inside or outside the original curve path. This approach,
however, shifts the original curve path either inward or outward, depending on
which direction we choose for the second boundary. We can maintain the original
curve position by setting the two boundary curves at a distance of half the width
on either side of the specified curve path. An example of this approach is shown
in Figure 43 for a circle segment with a radius of 16 and a specified width of 4.
The boundary arcs are then set at a separation distance of 2 on either side of the
radius of 16. To maintain the proper dimensions of the circular arc, as discussed
in Section 8, we can set the radii for the concentric boundary arcs at r = 14 and
r = 17. Although this method is accurate for generating thick circles, it provides, in
general, only an approximation to the true area of other thick curves. For example,
the inner and outer boundaries of a fat ellipse generated with this method do not
have the same foci.

The pixel masks discussed for implementing line-style options could also
be used in raster curve algorithms to generate dashed or dotted patterns. For
example, the mask 11100 produces the dashed circular arc shown in Figure 44.

Implementation Algorithms for Graphics Primitives and Attributes

164

F I G U R E 4 4
A dashed circular arc displayed with a dash span of
3 pixels and an inter-dash spacing of 2 pixels.

F I G U R E 4 5
A circular arc displayed with a rectangular pen.

We can generate the dashes in the various octants using circle symmetry, but
we must shift the pixel positions to maintain the correct sequence of dashes and
spaces as we move from one octant to the next. Also, as in straight-line algorithms,
pixel masks display dashes and inter-dash spaces that vary in length according
to the slope of the curve. If we want to display constant length dashes, we need
to adjust the number of pixels plotted in each dash as we move around the circle
circumference. Instead of applying a pixel mask with constant spans, we plot
pixels along equal angular arcs to produce equal-length dashes.

Pen (or brush) displays of curves are generated using the same techniques
discussed for straight-line segments. We replicate a pen shape along the line path,
as illustrated in Figure 45 for a circular arc in the first quadrant. Here, the center
of the rectangular pen is moved to successive curve positions to produce the
curve shape shown. Curves displayed with a rectangular pen in this manner will
be thicker where the magnitude of the curve slope is 1. A uniform curve thickness
can be displayed by rotating the rectangular pen to align it with the slope direction
as we move around the curve or by using a circular pen shape. Curves drawn with
pen and brush shapes can be displayed in different sizes and with superimposed
patterns or simulated brush strokes.

10 General Scan-Line Polygon-Fill
Algorithm

y = constant.
Figure 46 illustrates the basic scan-line procedure for a solid-color fill of a

polygon. For each scan line that crosses the polygon, the edge intersections are

A scan-line fill of a region is performed by first determining the intersection
positions of the boundaries of the fill region with the screen scan lines. Then the
fill colors are applied to each section of a scan line that lies within the interior
of the fill region. The scan-line fill algorithm identifies the same interior regions
as the odd-even rule. The simplest area to fill is a polygon because each scan-
line intersection point with a polygon boundary is obtained by solving a pair
of simultaneous linear equations, where the equation for the scan line is simply

Implementation Algorithms for Graphics Primitives and Attributes

165

y

x
10 14 18 24

F I G U R E 4 6
Interior pixels along a scan line passing through a polygon fill area.

Scan Line y�

Scan Line y

1

1 2

2 1

1 1

F I G U R E 4 7
Intersection points along scan lines that intersect polygon vertices.
Scan line y generates an odd number of intersections, but scan
line y ′ generates an even number of intersections that can be
paired to identify correctly the interior pixel spans.

sorted from left to right, and then the pixel positions between, and including, each
intersection pair are set to the specified fill color. In the example of Figure 46,
the four pixel intersection positions with the polygon boundaries define two
stretches of interior pixels. Thus, the fill color is applied to the five pixels from
x = 10 to x = 14 and to the seven pixels from x = 18 to x = 24. If a pattern fill
is to be applied to the polygon, then the color for each pixel along a scan line is
determined from its overlap position with the fill pattern.

However, the scan-line fill algorithm for a polygon is not quite as simple
as Figure 46 might suggest. Whenever a scan line passes through a vertex, it
intersects two polygon edges at that point. In some cases, this can result in an
odd number of boundary intersections for a scan line. Figure 47 shows two scan
lines that cross a polygon fill area and intersect a vertex. Scan line y′ intersects
an even number of edges, and the two pairs of intersection points along this
scan line correctly identify the interior pixel spans. But scan line y intersects five
polygon edges. To identify the interior pixels for scan line y, we must count the
vertex intersection as only one point. Thus, as we process scan lines, we need to
distinguish between these cases.

We can detect the topological difference between scan line y and scan line y′

in Figure 47 by noting the position of the intersecting edges relative to the scan
line. For scan line y, the two edges sharing an intersection vertex are on opposite
sides of the scan line. But for scan line y′, the two intersecting edges are both
above the scan line. Thus, a vertex that has adjoining edges on opposite sides
of an intersecting scan line should be counted as just one boundary intersection
point. We can identify these vertices by tracing around the polygon boundary in
either clockwise or counterclockwise order and observing the relative changes in
vertex y coordinates as we move from one edge to the next. If the three endpoint
y values of two consecutive edges monotonically increase or decrease, we need
to count the shared (middle) vertex as a single intersection point for the scan
line passing through that vertex. Otherwise, the shared vertex represents a local
extremum (minimum or maximum) on the polygon boundary, and the two edge
intersections with the scan line passing through that vertex can be added to the
intersection list.

One method for implementing the adjustment to the vertex-intersection count
is to shorten some polygon edges to split those vertices that should be counted
as one intersection. We can process nonhorizontal edges around the polygon
boundary in the order specified, either clockwise or counterclockwise. As we

Implementation Algorithms for Graphics Primitives and Attributes

166

Scan Line y � 1

Scan Line y

Scan Line y � 1

(a) (b)

F I G U R E 4 8
Adjusting endpoint y values for a
polygon, as we process edges in order
around the polygon perimeter. The
edge currently being processed is
indicated as a solid line. In (a), the y
coordinate of the upper endpoint of
the current edge is decreased by 1. In
(b), the y coordinate of the upper
endpoint of the next edge is decreased
by 1.

Scan Line yk � 1 (xk � 1, yk � 1)

 (xk, yk) Scan Line yk

F I G U R E 4 9
Two successive scan lines intersecting
a polygon boundary.

process each edge, we can check to determine whether that edge and the next
nonhorizontal edge have either monotonically increasing or decreasing endpoint
y values. If so, the lower edge can be shortened to ensure that only one intersection
point is generated for the scan line going through the common vertex joining the
two edges. Figure 48 illustrates the shortening of an edge. When the endpoint y
coordinates of the two edges are increasing, the y value of the upper endpoint for
the current edge is decreased by 1, as in Figure 48(a). When the endpoint y values
are monotonically decreasing, as in Figure 48(b), we decrease the y coordinate
of the upper endpoint of the edge following the current edge.

Typically, certain properties of one part of a scene are related in some way to
the properties in other parts of the scene, and these coherence properties can be
used in computer-graphics algorithms to reduce processing. Coherence methods
often involve incremental calculations applied along a single scan line or between
successive scan lines. For example, in determining fill-area edge intersections, we
can set up incremental coordinate calculations along any edge by exploiting the
fact that the slope of the edge is constant from one scan line to the next. Figure 49
shows two successive scan lines crossing the left edge of a triangle. The slope of
this edge can be expressed in terms of the scan-line intersection coordinates:

m = yk+1 − yk

xk+1 − xk
(59)

Because the change in y coordinates between the two scan lines is simply

yk+1 − yk = 1 (60)

the x-intersection value xk+1 on the upper scan line can be determined from the
x-intersection value xk on the preceding scan line as

xk+1 = xk + 1
m

(61)

Each successive x intercept can thus be calculated by adding the inverse of the
slope and rounding to the nearest integer.

Implementation Algorithms for Graphics Primitives and Attributes

167

An obvious parallel implementation of the fill algorithm is to assign each scan
line that crosses the polygon to a separate processor. Edge intersection calculations
are then performed independently. Along an edge with slope m, the intersection
xk value for scan line k above the initial scan line can be calculated as

xk = x0 + k
m

(62)

In a sequential fill algorithm, the increment of x values by the amount 1
m along

an edge can be accomplished with integer operations by recalling that the slope
m is the ratio of two integers:

m = �y
�x

where �x and �y are the differences between the edge endpoint x and y coor-
dinate values. Thus, incremental calculations of x intercepts along an edge for
successive scan lines can be expressed as

xk+1 = xk + �x
�y

(63)

Using this equation, we can perform integer evaluation of the x intercepts by
initializing a counter to 0, then incrementing the counter by the value of �x each
time we move up to a new scan line. Whenever the counter value becomes equal to
or greater than �y, we increment the current x intersection value by 1 and decrease
the counter by the value �y. This procedure is equivalent to maintaining integer
and fractional parts for x intercepts and incrementing the fractional part until we
reach the next integer value.

As an example of this integer-incrementing scheme, suppose that we have
an edge with slope m = 7

3 . At the initial scan line, we set the counter to 0 and
the counter increment to 3. As we move up to the next three scan lines along this
edge, the counter is successively assigned the values 3, 6, and 9. On the third scan
line above the initial scan line, the counter now has a value greater than 7. So we
increment the x intersection coordinate by 1 and reset the counter to the value
9 − 7 = 2. We continue determining the scan-line intersections in this way until
we reach the upper endpoint of the edge. Similar calculations are carried out to
obtain intersections for edges with negative slopes.

We can round to the nearest pixel x intersection value, instead of truncating
to obtain integer positions, by modifying the edge-intersection algorithm so that
the increment is compared to �y/2. This can be done with integer arithmetic by
incrementing the counter with the value 2�x at each step and comparing the
increment to �y. When the increment is greater than or equal to �y, we increase
the x value by 1 and decrement the counter by the value of 2�y. In our previous
example with m = 7

3 , the counter values for the first few scan lines above the initial
scan line on this edge would now be 6, 12 (reduced to −2), 4, 10 (reduced to −4),
2, 8 (reduced to −6), 0, 6, and 12 (reduced to −2). Now x would be incremented
on scan lines 2, 4, 6, 9, and so forth, above the initial scan line for this edge.
The extra calculations required for each edge are 2�x = �x + �x and 2�y =
�y + �y, which are carried out as preprocessing steps.

To perform a polygon fill efficiently, we can first store the polygon boundary
in a sorted edge table that contains all the information necessary to process the scan
lines efficiently. Proceeding around the edges in either a clockwise or a counter-
clockwise order, we can use a bucket sort to store the edges, sorted on the smallest
y value of each edge, in the correct scan-line positions. Only nonhorizontal edges
are entered into the sorted edge table. As the edges are processed, we can also

Implementation Algorithms for Graphics Primitives and Attributes

168

Scan Line yC

Scan Line yD

Scan Line yA

E

D

A

B

C�

C

yC yB xC 1/mCB

yD

yA

1

0

yC� xD 1/mDC
yE xD 1/mDE

yE xA 1/mAE yB xA 1/mAB

Scan-
Line

Number

.

.

.

.

.

.

.

.

.

F I G U R E 5 0
A polygon and its sorted edge table, with edge DC shortened by one unit in the y direction.

shorten certain edges to resolve the vertex-intersection question. Each entry in
the table for a particular scan line contains the maximum y value for that edge,
the x-intercept value (at the lower vertex) for the edge, and the inverse slope of the
edge. For each scan line, the edges are in sorted order from left to right. Figure 50
shows a polygon and the associated sorted edge table.

Next, we process the scan lines from the bottom of the polygon to its top,
producing an active edge list for each scan line crossing the polygon boundaries.
The active edge list for a scan line contains all edges crossed by that scan line,
with iterative coherence calculations used to obtain the edge intersections.

Implementation of edge-intersection calculations can be facilitated by storing
�x and �y values in the sorted edge list. Also, to ensure that we correctly fill
the interior of specified polygons, we can apply the considerations discussed in
Section 8. For each scan line, we fill in the pixel spans for each pair of x intercepts
starting from the leftmost x intercept value and ending at one position before the
rightmost x intercept. Each polygon edge can be shortened by one unit in the
y direction at the top endpoint. These measures also guarantee that pixels in
adjacent polygons will not overlap.

11 Scan-Line Fill of Convex Polygons
When we apply a scan-line fill procedure to a convex polygon, there can be no
more than a single interior span for each screen scan line. So we need to process
the polygon edges only until we have found two boundary intersections for each
scan line crossing the polygon interior.

The general polygon scan-line algorithm discussed in the preceding section
can be simplified considerably for convex-polygon fill. We again use coordinate
extents to determine which edges cross a scan line. Intersection calculations with
these edges then determine the interior pixel span for that scan line, where any

Implementation Algorithms for Graphics Primitives and Attributes

169

vertex crossing is counted as a single boundary intersection point. When a scan
line intersects a single vertex (at an apex, for example), we plot only that point.
Some graphics packages further restrict fill areas to be triangles. This makes filling
even easier because each triangle has just three edges to process.

12 Scan-Line Fill for Regions with
Curved Boundaries

Because an area with curved boundaries is described with nonlinear equations,
a scan-line fill generally takes more time than a polygon scan-line fill. We can
use the same general approach detailed in Section 10, but the boundary inter-
section calculations are performed with curve equations. In addition, the slope
of the boundary is continuously changing, so we cannot use the straightforward
incremental calculations that are possible with straight-line edges.

For simple curves such as circles or ellipses, we can apply fill methods
similar to those for convex polygons. Each scan line crossing a circle or ellipse
interior has just two boundary intersections; and we can determine these two
intersection points along the boundary of a circle or an ellipse using the incre-
mental calculations in the midpoint method. Then we simply fill in the hori-
zontal pixel spans from one intersection point to the other. Symmetries between
quadrants (and between octants for circles) are used to reduce the boundary
calculations.

Similar methods can be used to generate a fill area for a curve section. For
example, an area bounded by an elliptical arc and a straight line section (Fig-
ure 51) can be filled using a combination of curve and line procedures. Sym-
metries and incremental calculations are exploited whenever possible to reduce
computations.

Filling other curve areas can involve considerably more processing. We could
use similar incremental methods in combination with numerical techniques to
determine the scan-line intersections, but usually such curve boundaries are
approximated with straight-line segments.

F I G U R E 5 1
Interior fill of an elliptical arc.

13 Fill Methods for Areas with
Irregular Boundaries

Another approach for filling a specified area is to start at an inside position and
“paint” the interior, point by point, out to the boundary. This is a particularly
useful technique for filling areas with irregular borders, such as a design created
with a paint program. Generally, these methods require an input starting position
inside the area to be filled and some color information about either the boundary
or the interior.

Boundary-Fill Algorithm
If the boundary of some region is specified in a single color, we can fill the inte-
rior of this region, pixel by pixel, until the boundary color is encountered. This

We can fill irregular regions with a single color or with a color pattern. For
a pattern fill, we overlay a color mask. As each pixel within the region is pro-
cessed, its color is determined by the corresponding values in the overlaid pattern.

Implementation Algorithms for Graphics Primitives and Attributes

170

(a) (b)

F I G U R E 5 2
Example of color boundaries for a boundary-fill procedure.

method, called the boundary-fill algorithm, is employed in interactive paint-
ing packages, where interior points are easily selected. Using a graphics tablet
or other interactive device, an artist or designer can sketch a figure outline, se-
lect a fill color from a color menu, specify the area boundary color, and pick an
interior point. The figure interior is then painted in the fill color. Both inner and
outer boundaries can be set up to define an area for boundary fill, and Figure 52
illustrates examples for specifying color regions.

Basically, a boundary-fill algorithm starts from an interior point (x, y) and
tests the color of neighboring positions. If a tested position is not displayed in
the boundary color, its color is changed to the fill color and its neighbors are
tested. This procedure continues until all pixels are processed up to the designated
boundary color for the area.

(a)

(b)

F I G U R E 5 3
Fill methods applied to a 4-connected
area (a) and to an 8-connected area
(b). Hollow circles represent pixels to
be tested from the current test
position, shown as a solid color.

Figure 53 shows two methods for processing neighboring pixels from a
current test position. In Figure 53(a), four neighboring points are tested. These
are the pixel positions that are right, left, above, and below the current pixel.
Areas filled by this method are called 4-connected. The second method, shown
in Figure 53(b), is used to fill more complex figures. Here the set of neighboring
positions to be tested includes the four diagonal pixels, as well as those in the
cardinal directions. Fill methods using this approach are called 8-connected. An
8-connected boundary-fill algorithm would correctly fill the interior of the area
defined in Figure 54, but a 4-connected boundary-fill algorithm would fill only
part of that region.

The following procedure illustrates a recursive method for painting a
4-connected area with a solid color, specified in parameter fillColor, up to
a boundary color specified with parameter borderColor. We can extend this
procedure to fill an 8-connected region by including four additional statements
to test the diagonal positions (x ± 1, y ± 1).

Start Position
(a) (b)

F I G U R E 5 4
The area defined within the color boundary (a) is only partially filled
in (b) using a 4-connected boundary-fill algorithm.

Implementation Algorithms for Graphics Primitives and Attributes

171

void boundaryFill4 (int x, int y, int fillColor, int borderColor)
{

int interiorColor;

/* Set current color to fillColor, then perform the following operations. */
getPixel (x, y, interiorColor);
if ((interiorColor != borderColor) && (interiorColor != fillColor)) {

setPixel (x, y); // Set color of pixel to fillColor.
boundaryFill4 (x + 1, y , fillColor, borderColor);
boundaryFill4 (x - 1, y , fillColor, borderColor);
boundaryFill4 (x , y + 1, fillColor, borderColor);
boundaryFill4 (x , y - 1, fillColor, borderColor)

}
}

Recursive boundary-fill algorithms may not fill regions correctly if some inte-
rior pixels are already displayed in the fill color. This occurs because the algorithm
checks the next pixels both for boundary color and for fill color. Encountering a
pixel with the fill color can cause a recursive branch to terminate, leaving other
interior pixels unfilled. To avoid this, we can first change the color of any inte-
rior pixels that are initially set to the fill color before applying the boundary-fill
procedure.

Also, because this procedure requires considerable stacking of neighboring
points, more efficient methods are generally employed. These methods fill hor-
izontal pixel spans across scan lines, instead of proceeding to 4-connected or
8-connected neighboring points. Then we need only stack a beginning position
for each horizontal pixel span, instead of stacking all unprocessed neighboring
positions around the current position. Starting from the initial interior point with
this method, we first fill in the contiguous span of pixels on this starting scan line.
Then we locate and stack starting positions for spans on the adjacent scan lines,
where spans are defined as the contiguous horizontal string of positions bounded
by pixels displayed in the border color. At each subsequent step, we retrieve the
next start position from the top of the stack and repeat the process.

An example of how pixel spans could be filled using this approach is
illustrated for the 4-connected fill region in Figure 55. In this example, we first
process scan lines successively from the start line to the top boundary. After all
upper scan lines are processed, we fill in the pixel spans on the remaining scan
lines in order down to the bottom boundary. The leftmost pixel position for each
horizontal span is located and stacked, in left-to-right order across successive scan
lines, as shown in Figure 55. In (a) of this figure, the initial span has been filled,
and starting positions 1 and 2 for spans on the next scan lines (below and above)
are stacked. In Figure 55(b), position 2 has been unstacked and processed to
produce the filled span shown, and the starting pixel (position 3) for the single
span on the next scan line has been stacked. After position 3 is processed, the
filled spans and stacked positions are as shown in Figure 55(c). Figure 55(d)
shows the filled pixels after processing all spans in the upper-right portion of the
specified area. Position 5 is next processed, and spans are filled in the upper-left
portion of the region; then position 4 is picked up to continue the processing for
the lower scan lines.

Implementation Algorithms for Graphics Primitives and Attributes

172

Filled Pixel Spans Stacked Positions

2

1

3

1

6

5

4

1

(a)

(b)

(c)

(d)

5

4

1

2

1

1

3

1

65

4

1

5

4

F I G U R E 5 5
Boundary fill across pixel spans for a
4-connected area: (a) Initial scan line
with a filled pixel span, showing the
position of the initial point (hollow)
and the stacked positions for pixel
spans on adjacent scan lines. (b) Filled
pixel span on the first scan line above
the initial scan line and the current
contents of the stack. (c) Filled pixel
spans on the first two scan lines above
the initial scan line and the current
contents of the stack. (d) Completed
pixel spans for the upper-right portion
of the defined region and the
remaining stacked positions to be
processed.

Implementation Algorithms for Graphics Primitives and Attributes

173

Flood-Fill Algorithm
Sometimes we want to fill in (or recolor) an area that is not defined within a single
color boundary. Figure 56 shows an area bordered by several different color
regions. We can paint such areas by replacing a specified interior color instead of
searching for a particular boundary color. This fill procedure is called a flood-fill
algorithm. We start from a specified interior point (x, y) and reassign all pixel
values that are currently set to a given interior color with the desired fill color.
If the area that we want to paint has more than one interior color, we can first
reassign pixel values so that all interior points have the same color. Using either
a 4-connected or 8-connected approach, we then step through pixel positions
until all interior points have been repainted. The following procedure flood fills
a 4-connected region recursively, starting from the input position.

F I G U R E 5 6
An area defined within multiple color
boundaries.

void floodFill4 (int x, int y, int fillColor, int interiorColor)
{

int color;

/* Set current color to fillColor, then perform the following operations. */
getPixel (x, y, color);
if (color = interiorColor) {

setPixel (x, y); // Set color of pixel to fillColor.
floodFill4 (x + 1, y, fillColor, interiorColor);
floodFill4 (x - 1, y, fillColor, interiorColor);
floodFill4 (x, y + 1, fillColor, interiorColor);
floodFill4 (x, y - 1, fillColor, interiorColor)

}
}

We can modify the above procedure to reduce the storage requirements of
the stack by filling horizontal pixel spans, as discussed for the boundary-fill
algorithm. In this approach, we stack only the beginning positions for those pixel
spans having the value interiorColor. The steps in this modified flood-fill
algorithm are similar to those illustrated in Figure 55 for a boundary fill. Start-
ing at the first position of each span, the pixel values are replaced until a value
other than interiorColor is encountered.

14 Implementation Methods for Fill Styles
There are two basic procedures for filling an area on raster systems, once the
definition of the fill region has been mapped to pixel coordinates. One procedure
first determines the overlap intervals for scan lines that cross the area. Then, pixel
positions along these overlap intervals are set to the fill color. Another method for
area filling is to start from a given interior position and “paint” outward, pixel-
by-pixel, from this point until we encounter specified boundary conditions. The
scan-line approach is usually applied to simple shapes such as circles or regions
with polyline boundaries, and general graphics packages use this fill method. Fill
algorithms that use a starting interior point are useful for filling areas with more
complex boundaries and in interactive painting systems.

Implementation Algorithms for Graphics Primitives and Attributes

174

Fill Styles
We can implement a pattern fill by determining where the pattern overlaps those
scan lines that cross a fill area. Beginning from a specified start position for a
pattern fill, we map the rectangular patterns vertically across scan lines and hor-
izontally across pixel positions on the scan lines. Each replication of the pattern
array is performed at intervals determined by the width and height of the mask.
Where the pattern overlaps the fill area, pixel colors are set according to the values
stored in the mask.

Hatch fill could be applied to regions by drawing sets of line segments to
display either single hatching or cross-hatching. Spacing and slope for the hatch
lines could be set as parameters in a hatch table. Alternatively, hatch fill can be
specified as a pattern array that produces sets of diagonal lines.

A reference point (xp, yp) for the starting position of a fill pattern can be set at
any convenient position, inside or outside the fill region. For instance, the refer-
ence point could be set at a polygon vertex; or the reference point could be chosen
as the lower-left corner of the bounding rectangle (or bounding box) determined
by the coordinate extents of the region. To simplify selection of the reference coor-
dinates, some packages always use the coordinate origin of the display window
as the pattern start position. Always setting (xp, yp) at the coordinate origin also
simplifies the tiling operations when each element of a pattern is to be mapped to
a single pixel. For example, if the row positions in the pattern array are referenced
from bottom to top, starting with the value 1, a color value is then assigned to
pixel position (x, y) in screen coordinates from pattern position (y mod ny + 1,
x mod nx+1). Here, ny and nx specify the number of rows and number of columns
in the pattern array. Setting the pattern start position at the coordinate origin, how-
ever, effectively attaches the pattern fill to the screen background rather than to
the fill regions. Adjacent or overlapping areas filled with the same pattern would
show no apparent boundary between the areas. Also, repositioning and refill-
ing an object with the same pattern can result in a shift in the assigned pixel
values over the object interior. A moving object would appear to be transparent
against a stationary pattern background instead of moving with a fixed interior
pattern.

Color-Blended Fill Regions
Color-blended regions can be implemented using either transparency factors to
control the blending of background and object colors, or using simple logical
or replace operations as shown in Figure 57, which demonstrates how these
operations would combine a 2 × 2 fill pattern with a background pattern for a
binary (black-and-white) system.

The linear soft-fill algorithm repaints an area that was originally painted by
merging a foreground color F with a single background color B, where F �= B.
Assuming we know the values for F and B, we can check the current contents
of the frame buffer to determine how these colors were combined. The current
color P of each pixel within the area to be refilled is some linear combination of F
and B:

P = tF + (1 − t)B (64)

where the transparency factor t has a value between 0 and 1 for each pixel. For
values of t less than 0.5, the background color contributes more to the interior
color of the region than does the fill color. If our color values are represented
using separate red, green, and blue (RGB) components, Equation 64 holds for

Implementation Algorithms for Graphics Primitives and Attributes

175

F I G U R E 5 7
Combining a fill pattern with a
background pattern using logical
operations and, or, and xor (exclusive
or), and using simple replacement.

Pattern Background

Pixel Values

and

or

xorxor

replace

each component of the colors, with

P = (PR, PG , PB), F = (FR, FG , FB), B = (BR, BG , BB) (65)

We can thus calculate the value of parameter t using one of the RGB color com-
ponents as follows:

t = Pk − Bk

Fk − Bk
(66)

where k = R, G, or B; and Fk �= Bk . Theoretically, parameter t has the same value
for each RGB component, but the round-off calculations to obtain integer codes
can result in different values of t for different components. We can minimize this
round-off error by selecting the component with the largest difference between
F and B. This value of t is then used to mix the new fill color NF with the back-
ground color. We can accomplish this mixing using either a modified flood-fill or
boundary-fill procedure, as described in Section 13.

Similar color-blending procedures can be applied to an area whose fore-
ground color is to be merged with multiple background color areas, such as a
checkerboard pattern. When two background colors B1 and B2 are mixed with
foreground color F, the resulting pixel color P is

P = t0F + t1B1 + (1 − t0 − t1)B2 (67)

where the sum of the color-term coefficients t0, t1, and (1 − t0 − t1) must equal
1. We can set up two simultaneous equations using two of the three RGB color
components to solve for the two proportionality parameters, t0 and t1. These
parameters are then used to mix the new fill color with the two background colors
to obtain the new pixel color. With three background colors and one foreground
color, or with two background and two foreground colors, we need all three RGB
equations to obtain the relative amounts of the four colors. For some foreground
and background color combinations, however, the system of two or three RGB

Implementation Algorithms for Graphics Primitives and Attributes

176

equations cannot be solved. This occurs when the color values are all very similar
or when they are all proportional to each other.

15 Implementation Methods
for Antialiasing

Line segments and other graphics primitives generated by the raster algorithms
discussed earlier in this chapter have a jagged, or stair-step, appearance because
the sampling process digitizes coordinate points on an object to discrete integer
pixel positions. This distortion of information due to low-frequency sampling
(undersampling) is called aliasing. We can improve the appearance of displayed
raster lines by applying antialiasing methods that compensate for the undersam-
pling process.

An example of the effects of undersampling is shown in Figure 58. To avoid
losing information from such periodic objects, we need to set the sampling fre-
quency to at least twice that of the highest frequency occurring in the object,
referred to as the Nyquist sampling frequency (or Nyquist sampling rate) fs :

fs = 2 fmax (68)

Another way to state this is that the sampling interval should be no larger than
one-half the cycle interval (called the Nyquist sampling interval). For x-interval
sampling, the Nyquist sampling interval �xs is

�xs = �xcycle

2
(69)

where �xcycle = 1/ fmax. In Figure 58, our sampling interval is one and one-half
times the cycle interval, so the sampling interval is at least three times too large.
If we want to recover all the object information for this example, we need to cut
the sampling interval down to one-third the size shown in the figure.

One way to increase sampling rate with raster systems is simply to display
objects at higher resolution. However, even at the highest resolution possible with
current technology, the jaggies will be apparent to some extent. There is a limit
to how big we can make the frame buffer and still maintain the refresh rate at
60 frames or more per second. To represent objects accurately with continuous
parameters, we need arbitrarily small sampling intervals. Therefore, unless hard-
ware technology is developed to handle arbitrarily large frame buffers, increased
screen resolution is not a complete solution to the aliasing problem.

With raster systems that are capable of displaying more than two intensity
levels per color, we can apply antialiasing methods to modify pixel intensities. By

* * * * * Sampling
Positions(a)

(b)

F I G U R E 5 8
Sampling the periodic shape in (a) at the
indicated positions produces the aliased
lower-frequency representation in (b).

Implementation Algorithms for Graphics Primitives and Attributes

177

appropriately varying the intensities of pixels along the boundaries of primitives,
we can smooth the edges to lessen their jagged appearance.

A straightforward antialiasing method is to increase sampling rate by treating
the screen as if it were covered with a finer grid than is actually available. We can
then use multiple sample points across this finer grid to determine an appropriate
intensity level for each screen pixel. This technique of sampling object character-
istics at a high resolution and displaying the results at a lower resolution is called
supersampling (or postfiltering, because the general method involves comput-
ing intensities at subpixel grid positions and then combining the results to obtain
the pixel intensities). Displayed pixel positions are spots of light covering a finite
area of the screen, and not infinitesimal mathematical points. Yet in the line and
fill-area algorithms we have discussed, the intensity of each pixel is determined
by the location of a single point on the object boundary. By supersampling, we
obtain intensity information from multiple points that contribute to the overall
intensity of a pixel.

An alternative to supersampling is to determine pixel intensity by calculating
the areas of overlap of each pixel with the objects to be displayed. Antialiasing by
computing overlap areas is referred to as area sampling (or prefiltering, because
the intensity of the pixel as a whole is determined without calculating subpixel
intensities). Pixel overlap areas are obtained by determining where object bound-
aries intersect individual pixel boundaries.

Raster objects can also be antialiased by shifting the display location of pixel
areas. This technique, called pixel phasing, is applied by “micropositioning” the
electron beam in relation to object geometry. For example, pixel positions along a
straight-line segment can be moved closer to the defined line path to smooth out
the raster stair-step effect.

Supersampling Straight-Line Segments
We can perform supersampling in several ways. For a straight-line segment, we
can divide each pixel into a number of subpixels and count the number of sub-
pixels that overlap the line path. The intensity level for each pixel is then set to
a value that is proportional to this subpixel count. An example of this method is
given in Figure 59. Each square pixel area is divided into nine equal-sized square
subpixels, and the shaded regions show the subpixels that would be selected by
Bresenham’s algorithm. This scheme provides for three intensity settings above
zero, because the maximum number of subpixels that can be selected within
any pixel is three. For this example, the pixel at position (10, 20) is set to the
maximum intensity (level 3); pixels at (11, 21) and (12, 21) are each set to the next
highest intensity (level 2); and pixels at (11, 20) and (12, 22) are each set to the
lowest intensity above zero (level 1). Thus, the line intensity is spread out over
a greater number of pixels to smooth the original jagged effect. This procedure
displays a somewhat blurred line in the vicinity of the stair steps (between hori-
zontal runs). If we want to use more intensity levels to antialiase the line with this
method, we increase the number of sampling positions across each pixel. Sixteen
subpixels gives us four intensity levels above zero; twenty-five subpixels gives us
five levels; and so on.

In the supersampling example of Figure 59, we considered pixel areas of
finite size, but we treated the line as a mathematical entity with zero width.
Actually, displayed lines have a width approximately equal to that of a pixel.
If we take the finite width of the line into account, we can perform supersam-
pling by setting pixel intensity proportional to the number of subpixels inside the
polygon representing the line area. A subpixel can be considered to be inside the

Implementation Algorithms for Graphics Primitives and Attributes

178

22

21

20
10 11 12

F I G U R E 5 9
Supersampling subpixel positions along a
straight-line segment whose left endpoint is at
screen coordinates (10, 20).

22

21

20
10 11 12

F I G U R E 6 0
Supersampling subpixel positions in relation to
the interior of a line of finite width.

line if its lower-left corner is inside the polygon boundaries. An advantage of this
supersampling procedure is that the number of possible intensity levels for each
pixel is equal to the total number of subpixels within the pixel area. For the exam-
ple in Figure 59, we can represent this line with finite width by positioning the
polygon boundaries parallel to the line path as in Figure 60. In addition, each
pixel can now be set to one of nine possible brightness levels above zero.

Another advantage of supersampling with a finite-width line is that the total
line intensity is distributed over more pixels. In Figure 60, we now have the
pixel at grid position (10, 21) turned on (at intensity level 1), and we also pick
up contributions from pixels immediately below and immediately to the left of
position (10, 21). Also, if we have a color display, we can extend the method to
take background colors into account. A particular line might cross several different
color areas, and we can average subpixel intensities to obtain pixel color settings.
For instance, if five subpixels within a particular pixel area are determined to be
inside the boundaries for a red line and the remaining four subpixels fall within
a blue background area, we can calculate the color for this pixel as

pixelcolor = (5 · red + 4 · blue)

9
The trade-off for these gains from supersampling a finite-width line is that

identifying interior subpixels requires more calculations than simply determining
which subpixels are along the line path. Also, we need to take into account the
positioning of the line boundaries in relation to the line path. This positioning
depends on the slope of the line. For a 45◦ line, the line path is centered on
the polygon area; but for either a horizontal or a vertical line, we want the line
path to be one of the polygon boundaries. For example, a horizontal line passing
through grid coordinates (10, 20) could be represented as the polygon bounded
by horizontal grid lines y = 20 and y = 21. Similarly, the polygon representing
a vertical line through (10, 20) can have vertical boundaries along grid lines x =
10 and x = 11. For lines with slope |m| < 1, the mathematical line path will
be positioned proportionately closer to either the lower or the upper polygon
boundary depending upon where the line intersects the polygon; in Figure 59,
for instance, the line intersects the pixel at (10, 20) closer to the lower boundary,
but intersects the pixel at (11, 20) closer to the upper boundary. Similarly, for lines
with slope |m| > 1, the line path is placed closer to the left or right polygon
boundary depending on where it intersects the polygon.

Implementation Algorithms for Graphics Primitives and Attributes

179

Subpixel Weighting Masks
Supersampling algorithms are often implemented by giving more weight to sub-
pixels near the center of a pixel area because we would expect these subpixels to
be more important in determining the overall intensity of a pixel. For the 3 × 3
pixel subdivisions we have considered so far, a weighting scheme as in Figure 61
could be used. The center subpixel here is weighted four times that of the cor-
ner subpixels and twice that of the remaining subpixels. Intensities calculated for
each of the nine subpixels would then be averaged so that the center subpixel is
weighted by a factor of 1

4 ; the top, bottom, and side subpixels are each weighted
by a factor of 1

8 ; and the corner subpixels are each weighted by a factor of 1
16 . An

array of values specifying the relative importance of subpixels is usually referred
to as a weighting mask. Similar masks can be set up for larger subpixel grids. Also,
these masks are often extended to include contributions from subpixels belonging
to neighboring pixels, so that intensities can be averaged with adjacent pixels to
provide a smoother intensity variation between pixels.

1 2 1

2

1

4

2

2

1

1 2 1

2

1

4

2

2

1

F I G U R E 6 1
Relative weights for a grid of
3 × 3 subpixels.

Area Sampling Straight-Line Segments
We perform area sampling for a straight line by setting pixel intensity proportional
to the area of overlap of the pixel with the finite-width line. The line can be treated
as a rectangle, and the section of the line area between two adjacent vertical (or
two adjacent horizontal) screen grid lines is then a polygon. Overlap areas for
pixels are calculated by determining how much of the polygon overlaps each
pixel in that column (or row). In Figure 60, the pixel with screen grid coordinates
(10, 20) is about 90 percent covered by the line area, so its intensity would be set
to 90 percent of the maximum intensity. Similarly, the pixel at (10, 21) would be
set to an intensity of about 15 percent of maximum. A method for estimating
pixel overlap areas is illustrated by the supersampling example in Figure 60.
The total number of subpixels within the line boundaries is approximately equal
to the overlap area, and this estimation is improved by using finer subpixel grids.

Filtering Techniques
A more accurate method for antialiasing lines is to use filtering techniques. The
method is similar to applying a weighted pixel mask, but now we imagine a con-
tinuous weighting surface (or filter function) covering the pixel. Figure 62 shows
examples of rectangular, conical, and Gaussian filter functions. Methods for apply-
ing the filter function are similar to those for applying a weighting mask, but now
we integrate over the pixel surface to obtain the weighted average intensity. To
reduce computation, table lookups are commonly used to evaluate the integrals.

Pixel Phasing
On raster systems that can address subpixel positions within the screen grid,
pixel phasing can be used to antialias objects. A line display is smoothed with
this technique by moving (micropositioning) pixel positions closer to the line
path. Systems incorporating pixel phasing are designed so that the electron beam
can be shifted by a fraction of a pixel diameter. The electron beam is typically
shifted by 1

4 , 1
2 , or 3

4 of a pixel diameter to plot points closer to the true path of
a line or object edge. Some systems also allow the size of individual pixels to be
adjusted as an additional means for distributing intensities. Figure 63 illustrates
the antialiasing effects of pixel phasing on a variety of line paths.

Implementation Algorithms for Graphics Primitives and Attributes

180

Box Filter Cone Filter Gaussian Filter
(a) (b) (c)

F I G U R E 6 2
Common filter functions used to
antialias line paths. The volume of
each filter is normalized to 1.0, and
the height gives the relative weight at
any subpixel position.

(a) (b)

F I G U R E 6 3
Jagged lines (a), plotted on the Merlin
9200 system, are smoothed (b) with
an antialiasing technique called pixel
phasing. This technique increases the
number of addressable points on the
system from 768 by 576 to 3072 by
2304. (Courtesy of Peritek Corp.)

Compensating for Line-Intensity Differences
Antialiasing a line to soften the stair-step effect also compensates for another raster
effect, illustrated in Figure 64. Both lines are plotted with the same number of
pixels, yet the diagonal line is longer than the horizontal line by a factor of

√
2. For

example, if the horizontal line had a length of 10 centimeters, the diagonal line
would have a length of more than 14 centimeters. The visual effect of this is that
the diagonal line appears less bright than the horizontal line, because the diagonal
line is displayed with a lower intensity per unit length. A line-drawing algorithm
could be adapted to compensate for this effect by adjusting the intensity of each

Implementation Algorithms for Graphics Primitives and Attributes

181

F I G U R E 6 4
Unequal length lines displayed with the same number of
pixels in each line.

line according to its slope. Horizontal and vertical lines would be displayed with
the lowest intensity, while 45◦ lines would be given the highest intensity. But
if antialiasing techniques are applied to a display, intensities are compensated
automatically. When the finite width of a line is taken into account, pixel intensities
are adjusted so that the line displays a total intensity proportional to its length.

Antialiasing Area Boundaries
The antialiasing concepts that we have discussed for lines can also be applied to
the boundaries of areas to remove their jagged appearance. We can incorporate
these procedures into a scan-line algorithm to smooth out the boundaries as the
area is generated.

If system capabilities permit the repositioning of pixels, we could smooth
area boundaries by shifting pixel positions closer to the boundary. Other methods
adjust pixel intensity at a boundary position according to the percent of the pixel
area that is interior to the object. In Figure 65, the pixel at position (x, y) has
about half its area inside the polygon boundary. Therefore, the intensity at that
position would be adjusted to one-half its assigned value. At the next position
(x + 1, y + 1) along the boundary, the intensity is adjusted to about one-third the
assigned value for that point. Similar adjustments, based on the percent of pixel
area coverage, are applied to the other intensity values around the boundary.

Supersampling methods can be applied by determining the number of sub-
pixels that are in the interior of an object. A partitioning scheme with four subareas
per pixel is shown in Figure 66. The original 4 × 4 grid of pixels is turned into
an 8 × 8 grid, and we now process eight scan lines across this grid instead of
four. Figure 67 shows one of the pixel areas in this grid that overlaps an object

x x � 1

y

y � 1

F I G U R E 6 5
Adjusting pixel intensities along an area
boundary.

F I G U R E 6 6
A 4 × 4 pixel section of a raster display
subdivided into an 8 × 8 grid.

Scan Line 1

Scan Line 2

Surfa
ce

Boundar
y

Subdivided
Pixel Area

F I G U R E 6 7
A subdivided pixel area with three subdivisions
inside an object boundary line.

Implementation Algorithms for Graphics Primitives and Attributes

182

boundary. Along the two scan lines, we determine that three of the subpixel areas
are inside the boundary. So we set the pixel intensity at 75 percent of its maximum
value.

Another method for determining the percentage of pixel area within a fill
region, developed by Pitteway and Watkinson, is based on the midpoint line
algorithm. This algorithm selects the next pixel along a line by testing the location
of the midposition between two pixels. As in the Bresenham algorithm, we set up
a decision parameter p whose sign tells us which of the next two candidate pixels
is closer to the line. By slightly modifying the form of p, we obtain a quantity that
also gives the percentage of the current pixel area that is covered by an object.

We first consider the method for a line with slope m in the range from 0 to 1. In
Figure 68, a straight-line path is shown on a pixel grid. Assuming that the pixel
at position (xk , yk) has been plotted, the next pixel nearest the line at x = xk + 1 is
either the pixel at yk or the one at yk + 1. We can determine which pixel is nearer
with the calculation

y − ymid = [m(xk + 1) + b] − (yk + 0.5) (70)

This gives the vertical distance from the actual y coordinate on the line to the
halfway point between pixels at position yk and yk + 1. If this difference calculation
is negative, the pixel at yk is closer to the line. If the difference is positive, the pixel
at yk + 1 is closer. We can adjust this calculation so that it produces a positive
number in the range from 0 to 1 by adding the quantity 1 − m:

p = [m(xk + 1) + b] − (yk + 0.5) + (1 − m) (71)

Now the pixel at yk is nearer if p < 1 − m, and the pixel at yk + 1 is nearer if
p > 1 − m.

Parameter p also measures the amount of the current pixel that is overlapped
by the area. For the pixel at (xk , yk) in Figure 69, the interior part of the pixel is
trapezoidal and has an area that can be calculated as

area = m · xk + b − yk + 0.5 (72)

This expression for the overlap area of the pixel at (xk , yk) is the same as that for
parameter p in Equation 71. Therefore, by evaluating p to determine the next
pixel position along the polygon boundary, we also determine the percentage of
area coverage for the current pixel.

We can generalize this algorithm to accommodate lines with negative slopes
and lines with slopes greater than 1. This calculation for parameter p could then

y � mx � b

yk � 1

xk�1xk

yk � 0.5
yk

F I G U R E 6 8
Boundary edge of a fill area passing
through a pixel grid section.

Boundary

Line

Overlap
Area

y � m(xk � 0.5) � b

y � m(xk � 0.5) � b

yk � 0.5

yk � 0.5

xk � 0.5 xk � 0.5xk

yk

F I G U R E 6 9
Overlap area of a pixel rectangle, centered at
position (xk , yk), with the interior of a polygon
fill area.

Implementation Algorithms for Graphics Primitives and Attributes

183

be incorporated into a midpoint line algorithm to locate pixel positions along
a polygon edge and, concurrently, adjust pixel intensities along the boundary
lines. Also, we can adjust the calculations to reference pixel coordinates at their
lower-left coordinates and maintain area proportions, as discussed in Section 8.

F I G U R E 7 0
Polygons with more than one
boundary line passing through
individual pixel regions.

At polygon vertices and for very skinny polygons, as shown in Figure 70,
we have more than one boundary edge passing through a pixel area. For these
cases, we need to modify the Pitteway-Watkinson algorithm by processing all
edges passing through a pixel and determining the correct interior area.

Filtering techniques discussed for line antialiasing can also be applied to area
edges. In addition, the various antialiasing methods can be applied to polygon
areas or to regions with curved boundaries. Equations describing the boundaries
are used to estimate the amount of pixel overlap with the area to be displayed,
and coherence techniques are used along and between scan lines to simplify the
calculations.

16 Summary
Three methods that can be used to locate pixel positions along a straight-line
path are the DDA algorithm, Bresenham’s algorithm, and the midpoint method.
Bresenham’s line algorithm and the midpoint line method are equivalent, and
they are the most efficient. Color values for the pixel positions along the line path
are efficiently stored in the frame buffer by incrementally calculating the memory
addresses. Any of the line-generating algorithms can be adapted to a parallel
implementation by partitioning the line segments and distributing the partitions
among the available processors.

Circles and ellipses can be efficiently and accurately scan-converted using
midpoint methods and taking curve symmetry into account. Other conic sections
(parabolas and hyperbolas) can be plotted with similar methods. Spline curves,
which are piecewise continuous polynomials, are widely used in animation and
in CAD. Parallel implementations for generating curve displays can be accom-
plished with methods similar to those for parallel line processing.

To account for the fact that displayed lines and curves have finite widths, we
can adjust the pixel dimensions of objects to coincide to the specified geometric
dimensions. This can be done with an addressing scheme that references pixel
positions at their lower-left corner, or by adjusting line lengths.

Scan-line methods are commonly used to fill polygons, circles, and ellipses.
Across each scan line, the interior fill is applied to pixel positions between each
pair of boundary intersections, left to right. For polygons, scan-line intersections
with vertices can result in an odd number of intersections. This can be resolved
by shortening some polygon edges. Scan-line fill algorithms can be simplified if
fill areas are restricted to convex polygons. A further simplification is achieved if
all fill areas in a scene are triangles. The interior pixels along each scan line are
assigned appropriate color values, depending on the fill-attribute specifications.
Painting programs generally display fill regions using a boundary-fill method
or a flood-fill method. Each of these two fill methods requires an initial interior
point. The interior is then painted pixel by pixel from the initial point out to the
region boundaries.

Soft-fill procedures provide a new fill color for a region that has the same
variations as the previous fill color. One example of this approach is the lin-
ear soft-fill algorithm that assumes that the previous fill was a linear combina-
tion of foreground and background colors. This same linear relationship is then

Implementation Algorithms for Graphics Primitives and Attributes

184

determined from the frame buffer settings and used to repaint the area in a new
color.

We can improve the appearance of raster primitives by applying antialiasing
procedures that adjust pixel intensities. One method for doing this is to supersam-
ple. That is, we consider each pixel to be composed of subpixels and we calculate
the intensity of the subpixels and average the values of all subpixels. We can also
weight the subpixel contributions according to position, giving higher weights to
the central subpixels. Alternatively, we can perform area sampling and determine
the percentage of area coverage for a screen pixel, then set the pixel intensity pro-
portional to this percentage. Another method for antialiasing is to build special
hardware configurations that can shift pixel positions.

REFERENCES
Basic information on Bresenham’s algorithms can be
found in Bresenham (1965 and 1977). For midpoint meth-
ods, see Kappel (1985). Parallel methods for generating
lines and circles are discussed in Pang (1990) and in
Wright (1990). Many other methods for generating and
processing graphics primitives are discussed in Foley,
et al. (1990), Glassner (1990), Arvo (1991), Kirk (1992),
Heckbert (1994), and Paeth (1995).

Soft-fill techniques are given in Fishkin and Barsky
(1984). Antialiasing techniques are discussed in Pitteway
and Watinson (1980), Crow (1981), Turkowski (1982),
Fujimoto and Iwata (1983), Korein and Badler (1983),
Kirk and Arvo (1991), and Wu (1991). Gray-scale appli-
cations are explored in Crow (1978). Other discussions
of attributes and state parameters are available in Glass-
ner (1990), Arvo (1991), Kirk (1992), Heckbert (1994), and
Paeth (1995).

EXERCISES
1 Implement a polyline function using the DDA

algorithm, given any number (n) of input points.
A single point is to be plotted when n = 1.

2 Extend Bresenham’s line algorithm to generate
lines with any slope, taking symmetry between
quadrants into account.

3 Implement a polyline function, using the algorithm
from the previous exercise, to display the set of
straight lines connecting a list of n input points.
For n = 1, the routine displays a single point.

4 Use the midpoint method to derive decision
parameters for generating points along a straight-
line path with slope in the range 0 < m < 1. Show
that the midpoint decision parameters are the same
as those in the Bresenham line algorithm.

5 Use the midpoint method to derive decision
parameters that can be used to generate straight-
line segments with any slope.

6 Set up a parallel version of Bresenham’s line algo-
rithm for slopes in the range 0 < m < 1.

7 Set up a parallel version of Bresenham’s algorithm
for straight lines with any slope.

8 Suppose you have a system with an 8 inch by
10 inch video monitor that can display 100 pix-
els per inch. If memory is organized in one byte
words, the starting frame buffer address is 0, and
each pixel is assigned one byte of storage, what is
the frame buffer address of the pixel with screen
coordinates (x, y)?

9 Suppose you have a system with a 12 inch by
14 inch video monitor that can display 120 pix-
els per inch. If memory is organized in one byte
words, the starting frame buffer address is 0, and
each pixel is assigned one byte of storage, what is
the frame buffer address of the pixel with screen
coordinates (x, y)?

10 Suppose you have a system with a 12 inch by
14 inch video monitor that can display 120 pix-
els per inch. If memory is organized in one byte
words, the starting frame buffer address is 0, and
each pixel is assigned 4 bits of storage, what is the
frame buffer address of the pixel with screen coor-
dinates (x, y)?

11 Incorporate the iterative techniques for calculat-
ing frame-buffer addresses (Section 3) into the
Bresenham line algorithm.

12 Revise the midpoint circle algorithm to display cir-
cles with input geometric magnitudes preserved
(Section 8).

13 Set up a procedure for a parallel implementation
of the midpoint circle algorithm.

14 Derive decision parameters for the midpoint
ellipse algorithm assuming the start position is
(rx , 0) and points are to be generated along the
curve path in counterclockwise order.

Implementation Algorithms for Graphics Primitives and Attributes

185

15 Set up a procedure for a parallel implementation
of the midpoint ellipse algorithm.

16 Devise an efficient algorithm that takes advantage
of symmetry properties to display a sine function
over one cycle.

17 Modify the algorithm in the preceding exercise to
display a sine curve over any specified angular
interval.

18 Devise an efficient algorithm, taking function sym-
metry into account, to display a plot of damped
harmonic motion:

y = Ae−kx sin(ωx + θ)

where ω is the angular frequency and θ is the phase
of the sine function. Plot y as a function of x for
several cycles of the sine function or until the max-
imum amplitude is reduced to A

10 .
19 Use the algorithm developed in the previous exer-

cise to write a program that displays one cycle of a
sine curve. The curve should begin at the left edge
of the display window and complete at the right
edge, and the amplitude should be scaled so that
the maximum and minimum values of the curve
are equal to the maximum and minimum y values
of the display window.

20 Using the midpoint method, and taking symme-
try into account, develop an efficient algorithm for
scan conversion of the following curve over the
interval −10 ≤ x ≤ 10.

y = 1
12

x3

21 Use the algorithm developed in the previous ex-
ercise to write a program that displays a portion
of a sine curve determined by an input angular
interval. The curve should begin at the left edge
of the display window and complete at the right
edge, and the amplitude should be scaled so that
the maximum and minimum values of the curve
are equal to the maximum and minimum y values
of the display window.

22 Use the midpoint method and symmetry consid-
erations to scan convert the parabola

x = y2 − 5

over the interval −10 ≤ x ≤ 10.
23 Use the midpoint method and symmetry consid-

erations to scan convert the parabola

y = 50 − x2

over the interval −5 ≤ x ≤ 5.
24 Set up a midpoint algorithm, taking symmetry

considerations into account to scan convert any

parabola of the form

y = ax2 + b

with input values for parameters a , b, and the range
for x.

25 Define an efficient polygon-mesh representation
for a cylinder and justify your choice of represen-
tation.

26 Implement a general line-style function by modify-
ing Bresenham’s line-drawing algorithm to display
solid, dashed, or dotted lines.

27 Implement a line-style function using a midpoint
line algorithm to display solid, dashed, or dotted
lines.

28 Devise a parallel method for implementing a line-
style function.

29 Devise a parallel method for implementing a line-
width function.

30 A line specified by two endpoints and a width can
be converted to a rectangular polygon with four
vertices and then displayed using a scan-line
method. Develop an efficient algorithm for com-
puting the four vertices needed to define such a
rectangle, with the line endpoints and line width
as input parameters.

31 Implement a line-width function in a line-drawing
program so that any one of three line widths can
be displayed.

32 Write a program to output a line graph of three
data sets defined over the same x-coordinate range.
Input to the program is to include the three
sets of data values and the labels for the graph.
The data sets are to be scaled to fit within a
defined coordinate range for a display window.
Each data set is to be plotted with a different line
style.

33 Modify the program in the previous exercise to plot
the three data sets in different colors, as well as dif-
ferent line styles.

34 Set up an algorithm for displaying thick lines
with butt caps, round caps, or projecting square
caps. These options can be provided in an option
menu.

35 Devise an algorithm for displaying thick polylines
with a miter join, a round join, or a bevel join. These
options can be provided in an option menu.

36 Implement pen and brush menu options for a line-
drawing procedure, including at least two options:
round and square shapes.

37 Modify a line-drawing algorithm so that the inten-
sity of the output line is set according to its slope.
That is, by adjusting pixel intensities according to
the value of the slope, all lines are displayed with
the same intensity per unit length.

Implementation Algorithms for Graphics Primitives and Attributes

186

38 Define and implement a function for controlling
the line style (solid, dashed, dotted) of displayed
ellipses.

39 Define and implement a function for setting the
width of displayed ellipses.

40 Modify the scan-line algorithm to apply any spec-
ified rectangular fill pattern to a polygon interior,
starting from a designated pattern position.

41 Write a program to scan convert the interior of a
specified ellipse into a solid color.

42 Write a procedure to fill the interior of a given
ellipse with a specified pattern.

43 Write a procedure for filling the interior of any
specified set of fill-area vertices, including one with
crossing edges, using the nonzero winding number
rule to identify interior regions.

44 Modify the boundary-fill algorithm for a
4-connected region to avoid excessive stacking
by incorporating scan-line methods.

45 Write a boundary-fill procedure to fill an
8-connected region.

46 Explain how an ellipse displayed with the mid-
point method could be properly filled with a
boundary-fill algorithm.

47 Develop and implement a flood-fill algorithm to
fill the interior of any specified area.

48 Define and implement a procedure for changing
the size of an existing rectangular fill pattern.

49 Write a procedure to implement a soft-fill algo-
rithm. Carefully define what the soft-fill algorithm
is to accomplish and how colors are to be com-
bined.

50 Devise an algorithm for adjusting the height and
width of characters defined as rectangular grid
patterns.

51 Implement routines for setting the character up
vector and the text path for controlling the display
of character strings.

52 Write a program to align text as specified by input
values for the alignment parameters.

53 Develop procedures for implementing marker
attributes (size and color).

54 Implement an antialiasing procedure by extending
Bresenham’s line algorithm to adjust pixel intensi-
ties in the vicinity of a line path.

55 Implement an antialiasing procedure for the mid-
point line algorithm.

56 Develop an algorithm for antialiasing elliptical
boundaries.

57 Modify the scan-line algorithm for area fill to
incorporate antialiasing. Use coherence techniques
to reduce calculations on successive scan lines.

58 Write a program to implement the Pitteway-
Watkinson antialiasing algorithm as a scan-line
procedure to fill a polygon interior, using the
OpenGL point-plotting function.

IN MORE DEPTH
1 Write routines to implement Bresenham’s line-

drawing algorithm and the DDA line-drawing
algorithm and use them to draw the outlines of
the shapes in the current snapshot of your appli-
cation. Record the runtimes of the algorithms and
compare the performance of the two. Next exam-
ine the polygons that represent the objects in your
scene and either choose a few that would be better
represented using ellipses or other curves or add a
few objects with this property. Implement a mid-
point algorithm to draw the ellipses or curves that
represent these objects and use it to draw the out-
lines of those objects. Discuss ways in which you
could improve the performance of the algorithms
you developed if you had direct access to parallel
hardware.

2 Implement the general scan-line polygon-fill
algorithm to fill in the polygons that make up
the objects in your scene with solid colors. Next,
implement a scan-line curve-filling algorithm to fill
the curved objects you added in the previous exer-
cise. Finally, implement a boundary fill algorithm
to fill all of the objects in your scene. Compare the
run times of the two approaches to filling in the
shapes in your scene.

Implementation Algorithms for Graphics Primitives and Attributes

187

This page intentionally left blank

Two-Dimensional Geometric
Transformations

1 Basic Two-Dimensional Geometric
Transformations

2 Matrix Representations and
Homogeneous Coordinates

3 Inverse Transformations

4 Two-Dimensional Composite
Transformations

5 Other Two-Dimensional
Transformations

6 Raster Methods for Geometric
Transformations

7 OpenGL Raster Transformations

8 Transformations between
Two-Dimensional Coordinate
Systems

9 OpenGL Functions for
Two-Dimensional Geometric
Transformations

10 OpenGL Geometric-Transformation
Programming Examples

11 Summary S o far, we have seen how we can describe a scene in

terms of graphics primitives, such as line segments and fill

areas, and the attributes associated with these primitives.

Also, we have explored the scan-line algorithms for displaying output

primitives on a raster device. Now, we take a look at transformation

operations that we can apply to objects to reposition or resize them.

These operations are also used in the viewing routines that convert a

world-coordinate scene description to a display for an output device.

In addition, they are used in a variety of other applications, such as

computer-aided design (CAD) and computer animation. An architect,

for example, creates a layout by arranging the orientation and size of

the component parts of a design, and a computer animator develops

a video sequence by moving the “camera” position or the objects

in a scene along specified paths. Operations that are applied to the

geometric description of an object to change its position, orientation,

or size are called geometric transformations.
Sometimes geometric transformations are also referred to as

modeling transformations, but some graphics packages make a

From Chapter of Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson

7

189

distinction between the two. In general, modeling transformations are used to con-

struct a scene or to give the hierarchical description of a complex object that is com-

posed of several parts, which in turn could be composed of simpler parts, and so

forth. For example, an aircraft consists of wings, tail, fuselage, engine, and other com-

ponents, each of which can be specified in terms of second-level components, and

so on, down the hierarchy of component parts. Thus, the aircraft can be described

in terms of these components and an associated “modeling” transformation for each

one that describes how that component is to be fitted into the overall aircraft design.

Geometric transformations, on the other hand, can be used to describe how objects

might move around in a scene during an animation sequence or simply to view them

from another angle. Therefore, some graphics packages provide two sets of transforma-

tion routines, while other packages have a single set of functions that can be used for

both geometric transformations and modeling transformations.

1 Basic Two-Dimensional Geometric
Transformations

The geometric-transformation functions that are available in all graphics pack-
ages are those for translation, rotation, and scaling. Other useful transformation
routines that are sometimes included in a package are reflection and shearing
operations. To introduce the general concepts associated with geometric trans-
formations, we first consider operations in two dimensions.
stand the basic concepts, we can easily write routines to perform geometric trans-
formations on objects in a two-dimensional scene.

Two-Dimensional Translation
We perform a translation on a single coordinate point by adding offsets to its
coordinates so as to generate a new coordinate position. In effect, we are moving
the original point position along a straight-line path to its new location. Simi-
larly, a translation is applied to an object that is defined with multiple coordinate
positions, such as a quadrilateral, by relocating all the coordinate positions by the
same displacement along parallel paths. Then the complete object is displayed at
the new location.

y

x

P

T

P�

F I G U R E 1
Translating a point from position P to
position P′ using a translation
vector T.

To translate a two-dimensional position, we add translation distances tx and
ty to the original coordinates (x, y) to obtain the new coordinate position (x′, y′)
as shown in Figure 1.

x′ = x + tx, y′ = y + ty (1)

The translation distance pair (tx, ty) is called a translation vector or shift vector.
We can express Equations 1 as a single matrix equation by using the follow-

ing column vectors to represent coordinate positions and the translation vector:

P =
[

x
y

]

, P′ =
[

x′

y′

]

, T =
[

tx

ty

]

(2)

This allows us to write the two-dimensional translation equations in the matrix
form

P′ = P + T (3)

 Once we under-

Two-Dimensional Geometric Transformations

190

y

x

5

10

50 10 15 20

(a)

y

x

5

10

50 10 15 20

(b)

F I G U R E 2
Moving a polygon from position (a) to position (b) with the
translation vector (−5.50, 3.75).

Translation is a rigid-body transformation that moves objects without defor-
mation. That is, every point on the object is translated by the same amount.
A straight-line segment is translated by applying Equation 3 to each of the
two line endpoints and redrawing the line between the new endpoint positions.
A polygon is translated similarly. We add a translation vector to the coordinate
position of each vertex and then regenerate the polygon using the new set of
vertex coordinates. Figure 2 illustrates the application of a specified translation
vector to move an object from one position to another.

The following routine illustrates the translation operations. An input transla-
tion vector is used to move the n vertices of a polygon from one world-coordinate
position to another, and OpenGL routines are used to regenerate the translated
polygon.

class wcPt2D {
public:

GLfloat x, y;
};

void translatePolygon (wcPt2D * verts, GLint nVerts, GLfloat tx, GLfloat ty)
{

GLint k;

for (k = 0; k < nVerts; k++) {
verts [k].x = verts [k].x + tx;
verts [k].y = verts [k].y + ty;

}
glBegin (GL_POLYGON);

for (k = 0; k < nVerts; k++)
glVertex2f (verts [k].x, verts [k].y);

glEnd ();
}

If we want to delete the original polygon, we could display it in the back-
ground color before translating it. Other methods for deleting picture components

Two-Dimensional Geometric Transformations

191

are available in some graphics packages. Also, if we want to save the original poly-
gon position, we can store the translated positions in a different array.

Similar methods are used to translate other objects. To change the position of
a circle or ellipse, we translate the center coordinates and redraw the figure in the
new location. For a spline curve, we translate the points that define the curve path
and then reconstruct the curve sections between the new coordinate positions.

Two-Dimensional Rotation
We generate a rotation transformation of an object by specifying a rotation axis
and a rotation angle. All points of the object are then transformed to new positions
by rotating the points through the specified angle about the rotation axis.

A two-dimensional rotation of an object is obtained by repositioning the object
along a circular path in the xy plane. In this case, we are rotating the object about
a rotation axis that is perpendicular to the xy plane (parallel to the coordinate
z axis). Parameters for the two-dimensional rotation are the rotation angle θ and
a position (xr , yr), called the rotation point (or pivot point), about which the
object is to be rotated (Figure 3). The pivot point is the intersection position
of the rotation axis with the xy plane. A positive value for the angle θ defines a
counterclockwise rotation about the pivot point, as in Figure 3, and a negative
value rotates objects in the clockwise direction.

yr

xr

u

F I G U R E 3
Rotation of an object through angle θ

about the pivot point (xr , yr).

(x�, y�)

(x, y)r

r
u

f

F I G U R E 4
Rotation of a point from position (x , y)
to position (x ′, y ′) through an angle θ

relative to the coordinate origin. The
original angular displacement of the
point from the x axis is φ.

To simplify the explanation of the basic method, we first determine the trans-
formation equations for rotation of a point position P when the pivot point is
at the coordinate origin. The angular and coordinate relationships of the origi-
nal and transformed point positions are shown in Figure 4. In this figure, r is
the constant distance of the point from the origin, angle φ is the original angu-
lar position of the point from the horizontal, and θ is the rotation angle. Using
standard trigonometric identities, we can express the transformed coordinates in
terms of angles θ and φ as

x′ = r cos(φ + θ) = r cos φ cos θ − r sin φ sin θ

y′ = r sin(φ + θ) = r cos φ sin θ + r sin φ cos θ

The original coordinates of the point in polar coordinates are

x = r cos φ , y = r sin φ

Substituting expressions 5 into 4, we obtain the transformation equations for
rotating a point at position (x, y) through an angle θ about the origin:

x′ = x cos θ − y sin θ

y′ = x sin θ + y cos θ

With the column-vector representations 2 for coordinate positions, we can write
the rotation equations in the matrix form

P′ = R · P

where the rotation matrix is

R =
[

cos θ − sin θ

sin θ cos θ

]

(8)

A column-vector representation for a coordinate position P, as in Equa-
tions 2, is standard mathematical notation. However, early graphics systems
sometimes used a row-vector representation for point positions. This changes the
order in which the matrix multiplication for a rotation would be performed. But
now, graphics packages such as OpenGL, Java, PHIGS, and GKS all follow the
standard column-vector convention.

 (4)

 (5)

 (6)

 (7)

Two-Dimensional Geometric Transformations

192

(xr, yr)

(x�, y�)

(x, y)r r
u
f

F I G U R E 5
Rotating a point from position (x , y)
to position (x ′, y ′) through an angle θ

about rotation point (xr , yr).

Rotation of a point about an arbitrary pivot position is illustrated in
Figure 5. Using the trigonometric relationships indicated by the two right trian-
gles in this figure, we can generalize Equations 6 to obtain the transformation
equations for rotation of a point about any specified rotation position (xr , yr):

x′ = xr + (x − xr) cos θ − (y − yr) sin θ

y′ = yr + (x − xr) sin θ + (y − yr) cos θ
(9)

These general rotation equations differ from Equations 6 by the inclusion of
additive terms, as well as the multiplicative factors on the coordinate values.
The matrix expression 7 could be modified to include pivot coordinates by
including the matrix addition of a column vector whose elements contain the
additive (translational) terms in Equations 9. There are better ways, however, to
formulate such matrix equations, and in Section 2, we discuss a more consistent
scheme for representing the transformation equations.

As with translations, rotations are rigid-body transformations that move
objects without deformation. Every point on an object is rotated through the same
angle. A straight-line segment is rotated by applying Equations 9 to each of the
two line endpoints and redrawing the line between the new endpoint positions.
A polygon is rotated by displacing each vertex using the specified rotation angle
and then regenerating the polygon using the new vertices. We rotate a curve by
repositioning the defining points for the curve and then redrawing it. A circle or
an ellipse, for instance, can be rotated about a noncentral pivot point by moving
the center position through the arc that subtends the specified rotation angle. In
addition, we could rotate an ellipse about its center coordinates simply by rotating
the major and minor axes.

In the following code example, a polygon is rotated about a specified world-
coordinate pivot point. Parameters input to the rotation procedure are the original
vertices of the polygon, the pivot-point coordinates, and the rotation angle theta
specified in radians. Following the transformation of the vertex positions, the
polygon is regenerated using OpenGL routines.

class wcPt2D {
public:

GLfloat x, y;
};

void rotatePolygon (wcPt2D * verts, GLint nVerts, wcPt2D pivPt,
GLdouble theta)

{
wcPt2D * vertsRot;
GLint k;

for (k = 0; k < nVerts; k++) {
vertsRot [k].x = pivPt.x + (verts [k].x - pivPt.x) * cos (theta)

- (verts [k].y - pivPt.y) * sin (theta);
vertsRot [k].y = pivPt.y + (verts [k].x - pivPt.x) * sin (theta)

+ (verts [k].y - pivPt.y) * cos (theta);
}
glBegin {GL_POLYGON};

for (k = 0; k < nVerts; k++)
glVertex2f (vertsRot [k].x, vertsRot [k].y);

glEnd ();
}

Two-Dimensional Geometric Transformations

193

Two-Dimensional Scaling
To alter the size of an object, we apply a scaling transformation. A simple two-
dimensional scaling operation is performed by multiplying object positions (x, y)
by scaling factors sx and sy to produce the transformed coordinates (x′, y′):

x′ = x · sx, y′ = y · sy

Scaling factor sx scales an object in the x direction, while sy scales in the y direc-
tion. The basic two-dimensional scaling equations 10 can also be written in the
following matrix form:

[
x′

y′

]

=
[

sx 0
0 sy

]

·
[

x
y

]

or

P′ = S · P

where S is the 2 × 2 scaling matrix in Equation 11.
Any positive values can be assigned to the scaling factors sx and sy. Values

less than 1 reduce the size of objects; values greater than 1 produce enlargements.
Specifying a value of 1 for both sx and sy leaves the size of objects unchanged.
When sx and sy are assigned the same value, a uniform scaling is produced,
which maintains relative object proportions. Unequal values for sx and sy result
in a differential scaling that is often used in design applications, where pictures
are constructed from a few basic shapes that can be adjusted by scaling and
positioning transformations (Figure 6). In some systems, negative values can
also be specified for the scaling parameters. This not only resizes an object, it
reflects it about one or more of the coordinate axes.

(a)

(b)

F I G U R E 6
Turning a square (a) into a rectangle
(b) with scaling factors sx = 2 and
sy = 1.

x� x

F I G U R E 7
A line scaled with Equation 12 using
sx = sy = 0.5 is reduced in size and
moved closer to the coordinate origin.

Objects transformed with Equation 11 are both scaled and repositioned.
Scaling factors with absolute values less than 1 move objects closer to the
coordinate origin, while absolute values greater than 1 move coordinate posi-
tions farther from the origin. Figure 7 illustrates scaling of a line by assigning
the value 0.5 to both sx and sy in Equation 11. Both the line length and the
distance from the origin are reduced by a factor of 1

2 .

y

x

P1

P2

P3

(xf, yf)

F I G U R E 8
Scaling relative to a chosen fixed point
(x f , y f). The distance from each
polygon vertex to the fixed point is
scaled by Equations 13.

We can control the location of a scaled object by choosing a position, called the
fixed point, that is to remain unchanged after the scaling transformation. Coor-
dinates for the fixed point, (x f , yf), are often chosen at some object position, such
as its centroid (see Appendix A), but any other spatial position can be selected.
Objects are now resized by scaling the distances between object points and the

point (Figure 8). For a coordinate position (x, y), the scaled coordinates
(x′, y′) are then calculated from the following relationships:

x′ − x f = (x − x f)sx, y′ − yf = (y − yf)sy

We can rewrite Equations 13 to separate the multiplicative and additive
terms as

x′ = x · sx + x f (1 − sx)

y′ = y · sy + yf (1 − sy)

where the additive terms x f (1 − sx) and yf (1 − sy) are constants for all points in
the object.

Including coordinates for a fixed point in the scaling equations is similar to
including coordinates for a pivot point in the rotation equations. We can set up

 (10)

 (11)

 (12)

 (13)

 (14)

fixed

Two-Dimensional Geometric Transformations

194

a column vector whose elements are the constant terms in Equations 14, then
add this column vector to the product S · P in Equation 12. In the next section,
we discuss a matrix formulation for the transformation equations that involves
only matrix multiplication.

Polygons are scaled by applying transformations 14 to each vertex, then
regenerating the polygon using the transformed vertices. For other objects,
we apply the scaling transformation equations to the parameters defining the
objects. To change the size of a circle, we can scale its radius and calculate the
new coordinate positions around the circumference. And to change the size of an
ellipse, we apply scaling parameters to its two axes and then plot the new ellipse
positions about its center coordinates.

The following procedure illustrates an application of the scaling calculations
for a polygon. Coordinates for the polygon vertices and for the fixed point are
input parameters, along with the scaling factors. After the coordinate transforma-
tions, OpenGL routines are used to generate the scaled polygon.

class wcPt2D {
public:

GLfloat x, y;
};

void scalePolygon (wcPt2D * verts, GLint nVerts, wcPt2D fixedPt,
GLfloat sx, GLfloat sy)

{
wcPt2D vertsNew;
GLint k;

for (k = 0; k < nVerts; k++) {
vertsNew [k].x = verts [k].x * sx + fixedPt.x * (1 - sx);
vertsNew [k].y = verts [k].y * sy + fixedPt.y * (1 - sy);

}
glBegin {GL_POLYGON};

for (k = 0; k < nVerts; k++)
glVertex2f (vertsNew [k].x, vertsNew [k].y);

glEnd ();
}

2 Matrix Representations and
Homogeneous Coordinates

Many graphics applications involve sequences of geometric transformations. An
animation might require an object to be translated and rotated at each increment
of the motion. In design and picture construction applications, we perform trans-
lations, rotations, and scalings to fit the picture components into their proper
positions. The viewing transformations involve sequences of translations and
rotations to take us from the original scene specification to the display on an out-
put device. Here, we consider how the matrix representations discussed in the
previous sections can be reformulated so that such transformation sequences can
be processed efficiently.

Two-Dimensional Geometric Transformations

195

We have seen in Section 1 that each of the three basic two-dimensional
transformations (translation, rotation, and scaling) can be expressed in the general
matrix form

P′ = M1 · P + M2

with coordinate positions P and P′ represented as column vectors. Matrix M1 is
a 2 × 2 array containing multiplicative factors, and M2 is a two-element column
matrix containing translational terms. For translation, M1 is the identity matrix.
For rotation or scaling, M2 contains the translational terms associated with the
pivot point or scaling fixed point. To produce a sequence of transformations with
these equations, such as scaling followed by rotation and then translation, we
could calculate the transformed coordinates one step at a time. First, coordinate
positions are scaled, then these scaled coordinates are rotated, and finally, the
rotated coordinates are translated. A more efficient approach, however, is to com-
bine the transformations so that the final coordinate positions are obtained directly
from the initial coordinates, without calculating intermediate coordinate values.
We can do this by reformulating Equation 15 to eliminate the matrix addition
operation.

Homogeneous Coordinates
Multiplicative and translational terms for a two-dimensional geometric transfor-
mation can be combined into a single matrix if we expand the representations
to 3 × 3 matrices. Then we can use the third column of a transformation matrix
for the translation terms, and all transformation equations can be expressed as
matrix multiplications. But to do so, we also need to expand the matrix repre-
sentation for a two-dimensional coordinate position to a three-element column
matrix. A standard technique for accomplishing this is to expand each two-
dimensional coordinate-position representation (x, y) to a three-element repre-
sentation (xh , yh , h), called homogeneous coordinates, where the homogeneous
parameter h is a nonzero value such that

x = xh

h
, y = yh

h

Therefore, a general two-dimensional homogeneous coordinate representation
could also be written as (h·x, h·y, h). For geometric transformations, we can choose
the homogeneous parameter h to be any nonzero value. Thus, each coordinate
point (x, y) has an infinite number of equivalent homogeneous representations.
A convenient choice is simply to set h = 1. Each two-dimensional position is then
represented with homogeneous coordinates (x, y, 1). Other values for parameter
h are needed, for example, in matrix formulations of three-dimensional viewing
transformations.

The term homogeneous coordinates is used in mathematics to refer to the effect
of this representation on Cartesian equations. When a Cartesian point (x, y) is
converted to a homogeneous representation (xh , yh , h), equations containing x and
y, such as f (x, y) = 0, become homogeneous equations in the three parameters
xh , yh , and h. This just means that if each of the three parameters is replaced by
any value v times that parameter, the value v can be factored out of the equations.

Expressing positions in homogeneous coordinates allows us to represent all
geometric transformation equations as matrix multiplications, which is the stan-
dard method used in graphics systems. Two-dimensional coordinate positions
are represented with three-element column vectors, and two-dimensional trans-
formation operations are expressed as 3 × 3 matrices.

 (15)

 (16)

Two-Dimensional Geometric Transformations

196

Two-Dimensional Translation Matrix
Using a homogeneous-coordinate approach, we can represent the equations for a
two-dimensional translation of a coordinate position using the following matrix
multiplication:

⎡

⎣

x′

y′

1

⎤

⎦ =
⎡

⎣

1 0 tx

0 1 ty

0 0 1

⎤

⎦ ·
⎡

⎣

x
y
1

⎤

⎦

This translation operation can be written in the abbreviated form

P′ = T(tx, ty) · P

with T(tx, ty) as the 3 × 3 translation matrix in Equation 17. In situations where
there is no ambiguity about the translation parameters, we can simply represent
the translation matrix as T.

Two-Dimensional Rotation Matrix
Similarly, two-dimensional rotation transformation equations about the coordi-
nate origin can be expressed in the matrix form

⎡

⎣

x′

y′

1

⎤

⎦ =
⎡

⎣

cos θ −sinθ 0
sin θ cos θ 0

0 0 1

⎤

⎦ ·
⎡

⎣

x
y
1

⎤

⎦

or as

P′ = R(θ) · P

The rotation transformation operator R(θ) is the 3 × 3 matrix in Equation 19
with rotation parameter θ . We can also write this rotation matrix simply as R.

In some graphics libraries, a two-dimensional rotation function generates
only rotations about the coordinate origin, as in Equation 19. A rotation about
any other pivot point must then be performed as a sequence of transformation
operations. An alternative approach in a graphics package is to provide additional
parameters in the rotation routine for the pivot-point coordinates. A rotation
routine that includes a pivot-point parameter then sets up a general rotation
matrix without the need to invoke a succession of transformation functions.

Two-Dimensional Scaling Matrix
Finally, a scaling transformation relative to the coordinate origin can now be
expressed as the matrix multiplication

⎡

⎣

x′

y′

1

⎤

⎦ =
⎡

⎣

sx 0 0
0 sy 0
0 0 1

⎤

⎦ ·
⎡

⎣

x
y
1

⎤

⎦

or

P′ = S(sx, sy) · P (22)

The scaling operator S(sx, sy) is the 3 × 3 matrix in Equation 21 with parameters
sx and sy. And, in most cases, we can represent the scaling matrix simply as S.

Some libraries provide a scaling function that can generate only scaling with
respect to the coordinate origin, as in Equation 21. In this case, a scaling trans-
formation relative to another reference position is handled as a succession of
transformation operations. However, other systems do include a general scaling
routine that can construct the homogeneous matrix for scaling with respect to a
designated fixed point.

 (19)

 (20)

 (18)

 (17)

 (21)

Two-Dimensional Geometric Transformations

197

3 Inverse Transformations
For translation, we obtain the inverse matrix by negating the translation distances.
Thus, if we have two-dimensional translation distances tx and ty, the inverse
translation matrix is

T−1 =
⎡

⎣

1 0 −tx

0 1 −ty

0 0 1

⎤

⎦

This produces a translation in the opposite direction, and the product of a trans-
lation matrix and its inverse produces the identity matrix.

An inverse rotation is accomplished by replacing the rotation angle by its
negative. For example, a two-dimensional rotation through an angle θ about the
coordinate origin has the inverse transformation matrix

R−1 =
⎡

⎣

cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎤

⎦

Negative values for rotation angles generate rotations in a clockwise direction,
so the identity matrix is produced when any rotation matrix is multiplied by its
inverse. Because only the sine function is affected by the change in sign of the
rotation angle, the inverse matrix can also be obtained by interchanging rows
and columns. That is, we can calculate the inverse of any rotation matrix R by
evaluating its transpose (R−1 = RT).

We form the inverse matrix for any scaling transformation by replacing
the scaling parameters with their reciprocals. For two-dimensional scaling with
parameters sx and sy applied relative to the coordinate origin, the inverse trans-
formation matrix is

S−1 =

⎡

⎢
⎢
⎢
⎢
⎣

1
sx

0 0

0
1
sy

0

0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

The inverse matrix generates an opposite scaling transformation, so the multipli-
cation of any scaling matrix with its inverse produces the identity matrix.

4 Two-Dimensional Composite
Transformations

Using matrix representations, we can set up a sequence of transformations as a
composite transformation matrix by calculating the product of the individual
transformations. Forming products of transformation matrices is often referred
to as a concatenation, or composition, of matrices. Because a coordinate posi-
tion is represented with a homogeneous column matrix, we must premultiply
the column matrix by the matrices representing any transformation sequence.
Also, because many positions in a scene are typically transformed by the same
sequence, it is more efficient to first multiply the transformation matrices to form
a single composite matrix. Thus, if we want to apply two transformations to point
position P, the transformed location would be calculated as

P′ = M2 · M1 · P

= M · P

 (23)

 (24)

 (25)

 (26)

Two-Dimensional Geometric Transformations

198

The coordinate position is transformed using the composite matrix M, rather than
applying the individual transformations M1 and then M2.

Composite Two-Dimensional Translations
If two successive translation vectors (t1x, t1y) and (t2x, t2y) are applied to a two-
dimensional coordinate position P, the final transformed location P′ is calcu-
lated as

P′ = T(t2x, t2y) · {T(t1x, t1y) · P}
= {T(t2x, t2y) · T(t1x, t1y)} · P

where P and P′ are represented as three-element, homogeneous-coordinate col-
umn vectors. We can verify this result by calculating the matrix product for the
two associative groupings. Also, the composite transformation matrix for this
sequence of translations is

⎡

⎣

1 0 t2x

0 1 t2y

0 0 1

⎤

⎦ ·
⎡

⎣

1 0 t1x

0 1 t1y

0 0 1

⎤

⎦ =
⎡

⎣

1 0 t1x + t2x

0 1 t1y + t2y

0 0 1

⎤

⎦

or

T(t2x, t2y) · T(t1x, t1y) = T(t1x + t2x, t1y + t2y)

which demonstrates that two successive translations are additive.

Composite Two-Dimensional Rotations
Two successive rotations applied to a point P produce the transformed position

P′ = R(θ2) · {R(θ1) · P}
= {R(θ2) · R(θ1)} · P

By multiplying the two rotation matrices, we can verify that two successive rota-
tions are additive:

R(θ2) · R(θ1) = R(θ1 + θ2)

so that the final rotated coordinates of a point can be calculated with the composite
rotation matrix as

P′ = R(θ1 + θ2) · P

Composite Two-Dimensional Scalings
Concatenating transformation matrices for two successive scaling operations in
two dimensions produces the following composite scaling matrix:

⎡

⎣

s2x 0 0
0 s2y 0
0 0 1

⎤

⎦ ·
⎡

⎣

s1x 0 0
0 s1y 0
0 0 1

⎤

⎦ =
⎡

⎣

s1x · s2x 0 0
0 s1y · s2y 0
0 0 1

⎤

⎦

or

S(s2x, s2y) · S(s1x, s1y) = S(s1x · s2x, s1y · s2y) (34)

The resulting matrix in this case indicates that successive scaling operations are
multiplicative. That is, if we were to triple the size of an object twice in succession,
the final size would be nine times that of the original.

 (27)

 (28)

 (29)

 (30)

 (31)

 (32)

 (33)

Two-Dimensional Geometric Transformations

199

F I G U R E 9
A transformation sequence for rotating
an object about a specified pivot point
using the rotation matrix R(θ) of
transformation 19.

(b)

Translation of
Object so that

Pivot Point
(xr, yr) is at

Origin

(a)

Original Position
of Object and

Pivot Point

(xr, yr)

(c)

Rotation
about
Origin

(d)

Translation of
Object so that
the Pivot Point

is Returned
to Position

(xr, yr)

(xr, yr)

General Two-Dimensional Pivot-Point Rotation
When a graphics package provides only a rotate function with respect to the coor-
dinate origin, we can generate a two-dimensional rotation about any other pivot
point (xr , yr) by performing the following sequence of translate-rotate-translate
operations:

1. Translate the object so that the pivot-point position is moved to the coor-
dinate origin.

2. Rotate the object about the coordinate origin.
3. Translate the object so that the pivot point is returned to its original

position.

This transformation sequence is illustrated in Figure 9. The composite trans-
formation matrix for this sequence is obtained with the concatenation

⎡

⎣

1 0 xr

0 1 yr

0 0 1

⎤

⎦ ·
⎡

⎣

cos θ −sin θ 0
sin θ cos θ 0

0 0 1

⎤

⎦ ·
⎡

⎣

1 0 −xr

0 1 −yr

0 0 1

⎤

⎦

=
⎡

⎣

cos θ −sin θ xr (1 − cos θ) + yr sin θ

sin θ cos θ yr (1 − cos θ) − xr sin θ

0 0 1

⎤

⎦

which can be expressed in the form

T(xr , yr) · R(θ) · T(−xr , −yr) = R(xr , yr , θ)

where T(−xr , −yr) = T−1(xr , yr). In general, a rotate function in a graphics
library could be structured to accept parameters for pivot-point coordinates, as
well as the rotation angle, and to generate automatically the rotation matrix of
Equation 35.

General Two-Dimensional Fixed-Point Scaling
Figure 10 illustrates a transformation sequence to produce a two-dimensional
scaling with respect to a selected fixed position (x f , yf), when we have a function
that can scale relative to the coordinate origin only. This sequence is

1. Translate the object so that the fixed point coincides with the coordinate
origin.

 (35)

 (36)

Two-Dimensional Geometric Transformations

200

(b)

Translate Object
so that Fixed Point
(xf, yf) is at Origin

(a)

Original Position
of Object and

Fixed Point

(xf, yf)

(c)

Scale Object
with Respect

to Origin

(xf, yf)

(d)

Translate Object
so that the Fixed
Point is Returned
to Position (xf, yf)

F I G U R E 1 0
A transformation sequence for scaling
an object with respect to a specified
fixed position using the scaling matrix
S(sx , sy) of transformation 21.

2. Scale the object with respect to the coordinate origin.
3. Use the inverse of the translation in step (1) to return the object to its

original position.

Concatenating the matrices for these three operations produces the required
scaling matrix:

⎡

⎣

1 0 x f

0 1 yf

0 0 1

⎤

⎦ ·
⎡

⎣

sx 0 0
0 sy 0
0 0 1

⎤

⎦ ·
⎡

⎣

1 0 −x f

0 1 −yf

0 0 1

⎤

⎦ =
⎡

⎣

sx 0 x f (1 − sx)

0 sy yf (1 − sy)

0 0 1

⎤

⎦

or

T(x f , yf) · S(sx, sy) · T(−x f , −yf) = S(x f , yf , sx, sy)

This transformation is generated automatically in systems that provide a scale
function that accepts coordinates for the fixed point.

General Two-Dimensional Scaling Directions
Parameters sx and sy scale objects along the x and y directions. We can scale
an object in other directions by rotating the object to align the desired scaling
directions with the coordinate axes before applying the scaling transformation.

s1

s2

y

xu

F I G U R E 1 1
Scaling parameters s1 and s2 along
orthogonal directions defined
by the angular displacement θ .

Suppose we want to apply scaling factors with values specified by parameters
s1 and s2 in the directions shown in Figure 11. To accomplish the scaling without
changing the orientation of the object, we first perform a rotation so that the
directions for s1 and s2 coincide with the x and y axes, respectively. Then the
scaling transformation S(s1, s2) is applied, followed by an opposite rotation to
return points to their original orientations. The composite matrix resulting from
the product of these three transformations is

R−1(θ) · S(s1, s2) · R(θ) =
⎡

⎣

s1 cos2 θ + s2 sin2 θ (s2 − s1) cos θ sin θ 0
(s2 − s1) cos θ sin θ s1 sin2 θ + s2 cos2 θ 0

0 0 1

⎤

⎦

As an example of this scaling transformation, we turn a unit square into a
parallelogram (Figure 12) by stretching it along the diagonal from (0, 0) to (1, 1).
We first rotate the diagonal onto the y axis using θ = 45◦, then we double its length
with the scaling values s1 = 1 and s2 = 2, and then we rotate again to return the
diagonal to its original orientation.

In Equation 39, we assumed that scaling was to be performed relative to
the origin. We could take this scaling operation one step further and concatenate
the matrix with translation operators, so that the composite matrix would include
parameters for the specification of a scaling fixed position.

 (37)

 (38)

 (39)

Two-Dimensional Geometric Transformations

201

F I G U R E 1 2
A square (a) is converted to a
parallelogram (b) using the composite
transformation matrix 39, with
s1 = 1, s2 = 2, and θ = 45◦.

(1/2, 3/2)

(0, 0)

(3/2, 1/2)

(2, 2)

(b)

y

x

(0, 1)

(0, 0) (1, 0)

(1, 1)

(a)

y

x

Matrix Concatenation Properties
Multiplication of matrices is associative. For any three matrices, M1, M2, and M3,
the matrix product M3 · M2 · M1 can be performed by first multiplying M3 and
M2 or by first multiplying M2 and M1:

M3 · M2 · M1 = (M3 · M2) · M1 = M3 · (M2 · M1)

Therefore, depending upon the order in which the transformations are specified,
we can construct a composite matrix either by multiplying from left to right
(premultiplying) or by multiplying from right to left (postmultiplying). Some
graphics packages require that transformations be specified in the order in which
they are to be applied. In that case, we would first invoke transformation M1,
then M2, then M3. As each successive transformation routine is called, its matrix
is concatenated on the left of the previous matrix product. Other graphics systems,
however, postmultiply matrices, so that this transformation sequence would have
to be invoked in the reverse order: the last transformation invoked (which is M1
for this example) is the first to be applied, and the first transformation that is
called (M3 in this case) is the last to be applied.

Transformation products, on the other hand, may not be commutative. The
matrix product M2 · M1 is not equal to M1 · M2, in general. This means that if we
want to translate and rotate an object, we must be careful about the order in which
the composite matrix is evaluated (Figure 13). For some special cases—such as
a sequence of transformations that are all of the same kind—the multiplication of
transformation matrices is commutative. As an example, two successive rotations
could be performed in either order and the final position would be the same. This
commutative property holds also for two successive translations or two successive
scalings. Another commutative pair of operations is rotation and uniform scaling
(sx = sy).

(a)

Final
Position

(b)

Final
Position

F I G U R E 1 3
Reversing the order in which a sequence of transformations is performed may affect the transformed position of
an object. In (a), an object is first translated in the x direction, then rotated counterclockwise through an angle
of 45◦. In (b), the object is first rotated 45◦ counterclockwise, then translated in the x direction.

 (40)

Two-Dimensional Geometric Transformations

202

General Two-Dimensional Composite Transformations
and Computational Efficiency
A two-dimensional transformation, representing any combination of translations,
rotations, and scalings, can be expressed as

⎡

⎣

x′

y′

1

⎤

⎦ =
⎡

⎣

rsxx rsxy trsx

rsyx rsyy trsy

0 0 1

⎤

⎦ ·
⎡

⎣

x
y
1

⎤

⎦

The four elements rs jk are the multiplicative rotation-scaling terms in the transfor-
mation, which involve only rotation angles and scaling factors. Elements trsx and
trsy are the translational terms, containing combinations of translation distances,
pivot-point and fixed-point coordinates, rotation angles, and scaling parameters.
For example, if an object is to be scaled and rotated about its centroid coordi-
nates (xc , yc) and then translated, the values for the elements of the composite
transformation matrix are

T(tx, ty) · R(xc , yc , θ) · S(xc , yc , sx, sy)

=
⎡

⎣

sx cos θ −sy sin θ xc(1 − sx cos θ) + ycsy sin θ + tx

sx sin θ sy cos θ yc(1 − sy cos θ) − xcsx sin θ + ty

0 0 1

⎤

⎦

Although Equation 41 requires nine multiplications and six additions, the
explicit calculations for the transformed coordinates are

x′ = x · rsxx + y · rsxy + trsx, y′ = x · rsyx + y · rsyy + trsy

Thus, we need actually perform only four multiplications and four additions
to transform coordinate positions. This is the maximum number of computations
required for any transformation sequence, once the individual matrices have been
concatenated and the elements of the composite matrix evaluated. Without con-
catenation, the individual transformations would be applied one at a time, and the
number of calculations could be increased significantly. An efficient implementa-
tion for the transformation operations, therefore, is to formulate transformation
matrices, concatenate any transformation sequence, and calculate transformed co-
ordinates using Equations 43. On parallel systems, direct matrix multiplications
with the composite transformation matrix of Equation 41 can be equally efficient.

Because rotation calculations require trigonometric evaluations and sev-
eral multiplications for each transformed point, computational efficiency can
become an important consideration in rotation transformations. In animations and
other applications that involve many repeated transformations and small rotation
angles, we can use approximations and iterative calculations to reduce computa-
tions in the composite transformation equations. When the rotation angle is small,
the trigonometric functions can be replaced with approximation values based on
the first few terms of their power series expansions. For small-enough angles (less
than 10◦), cos θ is approximately 1.0 and sin θ has a value very close to the value of
θ in radians. If we are rotating in small angular steps about the origin, for instance,
we can set cos θ to 1.0 and reduce transformation calculations at each step to two
multiplications and two additions for each set of coordinates to be rotated. These
rotation calculations are

x′ = x − y sin θ , y′ = x sin θ + y

where sin θ is evaluated once for all steps, assuming the rotation angle does not
change. The error introduced by this approximation at each step decreases as the
rotation angle decreases; but even with small rotation angles, the accumulated

 (41)

 (42)

 (43)

 (44)

Two-Dimensional Geometric Transformations

203

error over many steps can become quite large. We can control the accumulated
error by estimating the error in x′ and y′ at each step and resetting object posi-
tions when the error accumulation becomes too great. Some animation applica-
tions automatically reset object positions at fixed intervals, such as every 360◦ or
every 180◦.

Composite transformations often involve inverse matrices. For example,
transformation sequences for general scaling directions and for some reflections
and shears (Section 5) require inverse rotations. As we have noted, the inverse
matrix representations for the basic geometric transformations can be generated
with simple procedures. An inverse translation matrix is obtained by changing
the signs of the translation distances, and an inverse rotation matrix is obtained
by performing a matrix transpose (or changing the sign of the sine terms). These
operations are much simpler than direct inverse matrix calculations.

Two-Dimensional Rigid-Body Transformation
If a transformation matrix includes only translation and rotation parameters, it
is a rigid-body transformation matrix. The general form for a two-dimensional
rigid-body transformation matrix is

⎡

⎣

rxx rxy trx

ryx ryy try

0 0 1

⎤

⎦

where the four elements r jk are the multiplicative rotation terms, and the elements
trx and try are the translational terms. A rigid-body change in coordinate position
is also sometimes referred to as a rigid-motion transformation. All angles and
distances between coordinate positions are unchanged by the transformation. In
addition, matrix 45 has the property that its upper-left 2 × 2 submatrix is an
orthogonal matrix. This means that if we consider each row (or each column) of the
submatrix as a vector, then the two row vectors (rxx, rxy) and (ryx, ryy) (or the two
column vectors) form an orthogonal set of unit vectors. Such a set of vectors is
also referred to as an orthonormal vector set. Each vector has unit length as follows:

r2
xx + r2

xy = r2
yx + r2

yy = 1

and the vectors are perpendicular (their dot product is 0):

rxxryx + rxyryy = 0

Therefore, if these unit vectors are transformed by the rotation submatrix, then
the vector (rxx, rxy) is converted to a unit vector along the x axis and the vector (ryx,
ryy) is transformed into a unit vector along the y axis of the coordinate system:

⎡

⎣

rxx rxy 0
ryx ryy 0
0 0 1

⎤

⎦ ·
⎡

⎣

rxx

rxy

1

⎤

⎦ =
⎡

⎣

1
0
1

⎤

⎦

⎡

⎣

rxx rxy 0
ryx ryy 0
0 0 1

⎤

⎦ ·
⎡

⎣

ryx

ryy

1

⎤

⎦ =
⎡

⎣

0
1
1

⎤

⎦

For example, the following rigid-body transformation first rotates an object
through an angle θ about a pivot point (xr , yr) and then translates the object:

T(tx, ty) · R(xr , yr , θ) =
⎡

⎣

cos θ − sin θ xr (1 − cos θ) + yr sin θ + tx

sin θ cos θ yr (1 − cos θ) − xr sin θ + ty

0 0 1

⎤

⎦ (50)

 (49)

 (48)

 (47)

 (46)

 (45)

Two-Dimensional Geometric Transformations

204

y

x

(a)

y

x

(b)

u�

v�

F I G U R E 1 4
The rotation matrix for revolving an
object from position (a) to position (b)
can be constructed with the values of
the unit orientation vectors u′ and v′

relative to the original orientation.

Here, orthogonal unit vectors in the upper-left 2 × 2 submatrix are (cos θ , − sin θ)
and (sin θ , cos θ), and

⎡

⎣

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎤

⎦ ·
⎡

⎣

cos θ

− sin θ

1

⎤

⎦ =
⎡

⎣

1
0
1

⎤

⎦

Similarly, unit vector (sin θ , cos θ) is converted by the preceding transformation
matrix to the unit vector (0, 1) in the y direction.

Constructing Two-Dimensional Rotation Matrices
The orthogonal property of rotation matrices is useful for constructing the matrix
when we know the final orientation of an object, rather than the amount of angular
rotation necessary to put the object into that position. This orientation information
could be determined by the alignment of certain objects in a scene or by reference
positions within the coordinate system. For example, we might want to rotate an
object to align its axis of symmetry with the viewing (camera) direction, or we
might want to rotate one object so that it is above another object. Figure 14 shows
an object that is to be aligned with the unit direction vectors u′ and v′. Assuming
that the original object orientation, as shown in Figure 14(a), is aligned with
the coordinate axes, we construct the desired transformation by assigning the
elements of u′ to the first row of the rotation matrix and the elements of v′ to the
second row. In a modeling application, for instance, we can use this method to
obtain the transformation matrix within an object’s local coordinate system when
we know what its orientation is to be within the overall world-coordinate scene. A
similar transformation is the conversion of object descriptions from one coordinate
system to another, and we take up these methods in more detail in Section 8.

Two-Dimensional Composite-Matrix Programming Example
An implementation example for a sequence of geometric transformations is given
in the following program. Initially, the composite matrix, compMatrix, is con-
structed as the identity matrix. For this example, a left-to-right concatenation
order is used to construct the composite transformation matrix, and we invoke
the transformation routines in the order that they are to be executed. As each of
the basic transformation routines (scale, rotate, and translate) is invoked, a matrix
is set up for that transformation and left-concatenated with the composite matrix.
When all transformations have been specified, the composite transformation is
applied to transform a triangle. The triangle is first scaled with respect to its cen-
troid position, then the triangle is rotated about its centroid, and, lastly, it is
translated. Figure 15 shows the original and final positions of the triangle that
is transformed by this sequence. Routines in OpenGL are used to dispaly the
initial and final position of the triangle.

 (51)

Two-Dimensional Geometric Transformations

205

F I G U R E 1 5
A triangle (a) is transformed into
position (b) using the composite-
matrix calculations in procedure
transformVerts2D.

50

50

100

150

200

50

100

150

200

100

(a) (b)

150 200

Centroid

x

y

50 100 150 200 x

y

Centroid

#include <GL/glut.h>
#include <stdlib.h>
#include <math.h>

/* Set initial display-window size. */
GLsizei winWidth = 600, winHeight = 600;

/* Set range for world coordinates. */
GLfloat xwcMin = 0.0, xwcMax = 225.0;
GLfloat ywcMin = 0.0, ywcMax = 225.0;

class wcPt2D {
public:

GLfloat x, y;
};

typedef GLfloat Matrix3x3 [3][3];

Matrix3x3 matComposite;

const GLdouble pi = 3.14159;

void init (void)
{

/* Set color of display window to white. */
glClearColor (1.0, 1.0, 1.0, 0.0);

}

/* Construct the 3 x 3 identity matrix. */
void matrix3x3SetIdentity (Matrix3x3 matIdent3x3)
{

GLint row, col;

for (row = 0; row < 3; row++)
for (col = 0; col < 3; col++)

matIdent3x3 [row][col] = (row == col);
}

Two-Dimensional Geometric Transformations

206

/* Premultiply matrix m1 times matrix m2, store result in m2. */
void matrix3x3PreMultiply (Matrix3x3 m1, Matrix3x3 m2)
{

GLint row, col;
Matrix3x3 matTemp;

for (row = 0; row < 3; row++)
for (col = 0; col < 3 ; col++)

matTemp [row][col] = m1 [row][0] * m2 [0][col] + m1 [row][1] *
m2 [1][col] + m1 [row][2] * m2 [2][col];

for (row = 0; row < 3; row++)
for (col = 0; col < 3; col++)

m2 [row][col] = matTemp [row][col];
}

void translate2D (GLfloat tx, GLfloat ty)
{

Matrix3x3 matTransl;

/* Initialize translation matrix to identity. */
matrix3x3SetIdentity (matTransl);

matTransl [0][2] = tx;
matTransl [1][2] = ty;

/* Concatenate matTransl with the composite matrix. */
matrix3x3PreMultiply (matTransl, matComposite);

}

void rotate2D (wcPt2D pivotPt, GLfloat theta)
{

Matrix3x3 matRot;

/* Initialize rotation matrix to identity. */
matrix3x3SetIdentity (matRot);

matRot [0][0] = cos (theta);
matRot [0][1] = -sin (theta);
matRot [0][2] = pivotPt.x * (1 - cos (theta)) +

pivotPt.y * sin (theta);
matRot [1][0] = sin (theta);
matRot [1][1] = cos (theta);
matRot [1][2] = pivotPt.y * (1 - cos (theta)) -

pivotPt.x * sin (theta);

/* Concatenate matRot with the composite matrix. */
matrix3x3PreMultiply (matRot, matComposite);

}

void scale2D (GLfloat sx, GLfloat sy, wcPt2D fixedPt)
{

Matrix3x3 matScale;

Two-Dimensional Geometric Transformations

207

/* Set geometric transformation parameters. */
wcPt2D pivPt, fixedPt;
pivPt = centroidPt;
fixedPt = centroidPt;

GLfloat tx = 0.0, ty = 100.0;
GLfloat sx = 0.5, sy = 0.5;
GLdouble theta = pi/2.0;

glClear (GL_COLOR_BUFFER_BIT); // Clear display window.

glColor3f (0.0, 0.0, 1.0); // Set initial fill color to blue.
triangle (verts); // Display blue triangle.

/* Initialize composite matrix to identity. */
matrix3x3SetIdentity (matComposite);

/* Construct composite matrix for transformation sequence. */
scale2D (sx, sy, fixedPt); // First transformation: Scale.
rotate2D (pivPt, theta); // Second transformation: Rotate
translate2D (tx, ty); // Final transformation: Translate.

/* Apply composite matrix to triangle vertices. */
transformVerts2D (nVerts, verts);

glColor3f (1.0, 0.0, 0.0); // Set color for transformed triangle.
triangle (verts); // Display red transformed triangle.

glFlush ();
}

void winReshapeFcn (GLint newWidth, GLint newHeight)
{

glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
gluOrtho2D (xwcMin, xwcMax, ywcMin, ywcMax);

glClear (GL_COLOR_BUFFER_BIT);
}

void main (int argc, char ** argv)
{

glutInit (&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowPosition (50, 50);
glutInitWindowSize (winWidth, winHeight);
glutCreateWindow ("Geometric Transformation Sequence");

init ();
glutDisplayFunc (displayFcn);
glutReshapeFunc (winReshapeFcn);

glutMainLoop ();
}

Two-Dimensional Geometric Transformations

209

/* Initialize scaling matrix to identity. */
matrix3x3SetIdentity (matScale);

matScale [0][0] = sx;
matScale [0][2] = (1 - sx) * fixedPt.x;
matScale [1][1] = sy;
matScale [1][2] = (1 - sy) * fixedPt.y;

/* Concatenate matScale with the composite matrix. */
matrix3x3PreMultiply (matScale, matComposite);

}

/* Using the composite matrix, calculate transformed coordinates. */
void transformVerts2D (GLint nVerts, wcPt2D * verts)
{

GLint k;
GLfloat temp;

for (k = 0; k < nVerts; k++) {
temp = matComposite [0][0] * verts [k].x + matComposite [0][1] *

verts [k].y + matComposite [0][2];
verts [k].y = matComposite [1][0] * verts [k].x + matComposite [1][1] *

verts [k].y + matComposite [1][2];
verts [k].x = temp;

}
}

void triangle (wcPt2D *verts)
{

GLint k;

glBegin (GL_TRIANGLES);
for (k = 0; k < 3; k++)

glVertex2f (verts [k].x, verts [k].y);
glEnd ();

}

void displayFcn (void)
{

/* Define initial position for triangle. */
GLint nVerts = 3;
wcPt2D verts [3] = { {50.0, 25.0}, {150.0, 25.0}, {100.0, 100.0} };

/* Calculate position of triangle centroid. */
wcPt2D centroidPt;

GLint k, xSum = 0, ySum = 0;
for (k = 0; k < nVerts; k++) {

xSum += verts [k].x;
ySum += verts [k].y;

}
centroidPt.x = GLfloat (xSum) / GLfloat (nVerts);
centroidPt.y = GLfloat (ySum) / GLfloat (nVerts);

Two-Dimensional Geometric Transformations

208

5 Other Two-Dimensional Transformations
Basic transformations such as translation, rotation, and scaling are standard com-
ponents of graphics libraries. Some packages provide a few additional trans-
formations that are useful in certain applications. Two such transformations are
reflection and shear.

Reflection
A transformation that produces a mirror image of an object is called a reflection.
For a two-dimensional reflection, this image is generated relative to an axis of
reflection by rotating the object 180◦ about the reflection axis. We can choose
an axis of reflection in the xy plane or perpendicular to the xy plane. When the
reflection axis is a line in the xy plane, the rotation path about this axis is in a plane
perpendicular to the xy plane. For reflection axes that are perpendicular to the xy
plane, the rotation path is in the xy plane. Some examples of common reflections
follow.

Reflection about the line y = 0 (the x axis) is accomplished with the transfor-
mation matrix

⎡

⎣

1 0 0
0 −1 0
0 0 1

⎤

⎦

This transformation retains x values, but “flips” the y values of coordinate posi-
tions. The resulting orientation of an object after it has been reflected about the x
axis is shown in Figure 16. To envision the rotation transformation path for this
reflection, we can think of the flat object moving out of the xy plane and rotating
180◦ through three-dimensional space about the x axis and back into the xy plane
on the other side of the x axis.

x

y

Original
Position

Reflected
Position

32

1

3�2�

1�

F I G U R E 1 6
Reflection of an object about the
x axis.

A reflection about the line x = 0 (the y axis) flips x coordinates while keeping
y coordinates the same. The matrix for this transformation is

⎡

⎣

−1 0 0
0 1 0
0 0 1

⎤

⎦

Figure 17 illustrates the change in position of an object that has been reflected
about the line x = 0. The equivalent rotation in this case is 180◦ through three-
dimensional space about the y axis.

x

y

Original
Position

Reflected
Position

2

3

1

2�

3�

1�

F I G U R E 1 7
Reflection of an object about the
y axis.

We flip both the x and y coordinates of a point by reflecting relative to an axis
that is perpendicular to the xy plane and that passes through the coordinate origin.
This reflection is sometimes referred to as a reflection relative to the coordinate
origin, and it is equivalent to reflecting with respect to both coordinate axes. The
matrix representation for this reflection is

⎡

⎣

−1 0 0
0 −1 0
0 0 1

⎤

⎦

An example of reflection about the origin is shown in Figure 18. The reflection
matrix 54 is the same as the rotation matrix R(θ) with θ = 180 .◦

rotating the object in the xy plane half a revolution about the origin.
 We are simply

 (52)

 (53)

 (54)

Two-Dimensional Geometric Transformations

210

Original
Position

Reflected
Position

y

x
1

3

2

2�

1�

3�

F I G U R E 1 8
Reflection of an object relative to the
coordinate origin. This transformation can be
accomplished with a rotation in the x y plane
about the coordinate origin.

1

3

2
2�

3�

y

yrfl

xxrfl

Preflect

1�

F I G U R E 1 9
Reflection of an object relative to an axis
perpendicular to the x y plane and passing
through point Preflect.

Reflection 54 can be generalized to any reflection point in the xy plane
(Figure 19). This reflection is the same as a 180◦ rotation in the xy plane about
the reflection point.

Original
Position

Reflected
Position

y � x
y

x

1
1�

3�

2�

3

2

F I G U R E 2 0
Reflection of an object with respect to
the line y = x .

If we choose the reflection axis as the diagonal line y = x (Figure 20), the
reflection matrix is

⎡

⎣

0 1 0
1 0 0
0 0 1

⎤

⎦

We can derive this matrix by concatenating a sequence of rotation and coordinate-
axis reflection matrices. One possible sequence is shown in Figure 21. Here, we
first perform a clockwise rotation with respect to the origin through a 45◦ angle,
which rotates the line y = x onto the x axis. Next, we perform a reflection with
respect to the x axis. The final step is to rotate the line y = x back to its orig-
inal position with a counterclockwise rotation through 45◦. Another equivalent
sequence of transformations is to first reflect the object about the x axis, then rotate
it counterclockwise 90◦.

To obtain a transformation matrix for reflection about the diagonal y = −x,
we could concatenate matrices for the transformation sequence: (1) clockwise
rotation by 45◦, (2) reflection about the y axis, and (3) counterclockwise rotation
by 45◦. The resulting transformation matrix is

⎡

⎣

0 −1 0
−1 0 0
0 0 1

⎤

⎦

Figure 22 shows the original and final positions for an object transformed with
this reflection matrix.

Reflections about any line y = mx + b in the xy plane can be accomplished
with a combination of translate-rotate-reflect transformations. In general, we

 (55)

 (56)

Two-Dimensional Geometric Transformations

211

first translate the line so that it passes through the origin. Then we can rotate
the line onto one of the coordinate axes and reflect about that axis. Finally, we
restore the line to its original position with the inverse rotation and translation
transformations.

45�

(c)

45�

y � x

(a)

(b)

y

x

F I G U R E 2 1
Sequence of transformations to
produce a reflection about the line
y = x : A clockwise rotation of 45◦

(a), a reflection about the x axis (b),
and a counterclockwise rotation
by 45◦ (c).

We can implement reflections with respect to the coordinate axes or coordinate
origin as scaling transformations with negative scaling factors. Also, elements of
the reflection matrix can be set to values other than ±1. A reflection parameter
with a magnitude greater than 1 shifts the mirror image of a point farther from
the reflection axis, and a parameter with magnitude less than 1 brings the mirror
image of a point closer to the reflection axis. Thus, a reflected object can also be
enlarged, reduced, or distorted.

Shear
A transformation that distorts the shape of an object such that the trans-
formed shape appears as if the object were composed of internal layers that had
been caused to slide over each other is called a shear. Two common shearing
transformations are those that shift coordinate x values and those that shift y
values.

An x-direction shear relative to the x axis is produced with the transformation
matrix

⎡

⎣

1 shx 0
0 1 0
0 0 1

⎤

⎦

which transforms coordinate positions as

x′ = x + shx · y, y′ = y

Any real number can be assigned to the shear parameter shx. A coordinate position
(x, y) is then shifted horizontally by an amount proportional to its perpendicular
distance (y value) from the x axis. Setting parameter shx to the value 2, for exam-
ple, changes the square in Figure 23 into a parallelogram. Negative values for
shx shift coordinate positions to the left.

y � �x

Reflected
Position

Original
Position

2

3

1

1� 3�

2�

F I G U R E 2 2
Reflection with respect to the line
y = −x .

y y

(0, 1) (1, 1)

(0, 0) (0, 0)(1, 0) (1, 0)x x

(a) (b)

(2, 1) (3, 1)

F I G U R E 2 3
A unit square (a) is converted to a parallelogram (b) using the x -direction shear
matrix 57 with shx = 2.

 (58)

 (57)

Two-Dimensional Geometric Transformations

212

y y

(0, 1) (1, 1)

(0, 0)

yref � �1

(1, 0) x x

(a)

yref � �1

(2, 1)(1, 1)

(1/2, 0) (3/2, 0)

(b)

F I G U R E 2 4
A unit square (a) is transformed to a
shifted parallelogram (b) with
sh x = 0.5 and yref = −1 in the
shear matrix 59.

y

(0, 1) (1, 1)

(0, 0)xref = – 1 (1, 0) x

(a)

y

(0, 3/2)

(0, 1/2)

(1, 2)

(1, 1)

xref = – 1 x

(b)

F I G U R E 2 5
A unit square (a) is turned into a
shifted parallelogram (b) with
parameter values sh y = 0.5 and
x ref = −1 in the y -direction shearing
transformation 61.

We can generate x-direction shears relative to other reference lines with
⎡

⎣

1 shx −shx · yref
0 1 0
0 0 1

⎤

⎦

Now, coordinate positions are transformed as

x′ = x + shx(y − yref), y′ = y

An example of this shearing transformation is given in Figure 24 for a shear
parameter value of 1

2 relative to the line yref = −1.
A y-direction shear relative to the line x = xref is generated with the transfor-

mation matrix
⎡

⎣

1 0 0
shy 1 −shy · xref
0 0 1

⎤

⎦

which generates the transformed coordinate values

x′ = x, y′ = y + shy(x − xref)

This transformation shifts a coordinate position vertically by an amount propor-
tional to its distance from the reference line x = xref. Figure 25 illustrates the
conversion of a square into a parallelogram with shy = 0.5 and xref = −1.

Shearing operations can be expressed as sequences of basic transformations.
The x-direction shear matrix 57, for example, can be represented as a composite
transformation involving a series of rotation and scaling matrices. This compos-
ite transformation scales the unit square of Figure 23 along its diagonal, while
maintaining the original lengths and orientations of edges parallel to the x axis.
Shifts in the positions of objects relative to shearing reference lines are equivalent
to translations.

 (59)

 (60)

 (61)

 (62)

Two-Dimensional Geometric Transformations

213

6 Raster Methods for Geometric
Transformations

The characteristics of raster systems suggest an alternate method for performing
certain two-dimensional transformations. Raster systems store picture informa-
tion as color patterns in the frame buffer. Therefore, some simple object transfor-
mations can be carried out rapidly by manipulating an array of pixel values. Few
arithmetic operations are needed, so the pixel transformations are particularly
efficient.

unctions that manipulate rectangular pixel arrays are called
tions

 raster opera-
and moving a block of pixel values from one position to another is termed

a block transfer, a bitblt, or a pixblt. Routines for performing some raster opera-
tions are usually available in a graphics package.

Figure 26 illustrates a two-dimensional translation implemented as a block
transfer of a refresh-buffer area. All bit settings in the rectangular area shown are
copied as a block into another part of the frame buffer. We can erase the pattern
at the original location by assigning the background color to all pixels within that
block (assuming that the pattern to be erased does not overlap other objects in
the scene).

(a)

(b)

P0

Pmin

Pmax

F I G U R E 2 6
Translating an object from screen
position (a) to the destination position
shown in (b) by moving a rectangular
block of pixel values. Coordinate
positions Pmin and Pmax specify the
limits of the rectangular block to be
moved, and P0 is the destination
reference position.

Rotations in 90-degree increments are accomplished easily by rearranging
the elements of a pixel array. We can rotate a two-dimensional object or pattern
90◦ counterclockwise by reversing the pixel values in each row of the array, then
interchanging rows and columns. A 180◦ rotation is obtained by reversing the
order of the elements in each row of the array, then reversing the order of the rows.
Figure 27 demonstrates the array manipulations that can be used to rotate a pixel
block by 90◦ and by 180◦.

For array rotations that are not multiples of 90◦, we need to do some extra
processing. The general procedure is illustrated in Figure 28. Each destination
pixel area is mapped onto the rotated array and the amount of overlap with
the rotated pixel areas is calculated. A color for a destination pixel can then be
computed by averaging the colors of the overlapped source pixels, weighted by
their percentage of area overlap. Alternatively, we could use an approximation
method, as in antialiasing, to determine the color of the destination pixels.

We can use similar methods to scale a block of pixels. Pixel areas in the original
block are scaled, using specified values for sx and sy, and then mapped onto a set of
destination pixels. The color of each destination pixel is then assigned according
to its area of overlap with the scaled pixel areas (Figure 29).

An object can be reflected using raster transformations that reverse row or
column values in a pixel block, combined with translations. Shears are produced
with shifts in the positions of array values along rows or columns.

1
4
7

10

2
5
8

11

3
6
9

12

(a) (b)

3
2
1

6
5
4

9
8
7

12
11
10

12
9
6
3

11
8
5
2

10
7
4
1

(c)

F I G U R E 2 7
Rotating an array of pixel values. The original array is shown in (a), the
positions of the array elements after a 90◦ counterclockwise rotation are
shown in (b), and the positions of the array elements after a 180◦ rotation
are shown in (c).

F

Two-Dimensional Geometric Transformations

214

Destination
Pixel Areas

Destination
Pixel Array

Rotated
Pixel

Array

u

F I G U R E 2 8
A raster rotation for a rectangular block of pixels can be accomplished by
mapping the destination pixel areas onto the rotated block.

Destination
Pixel Array

Scaled
Array

(xf , yf)

F I G U R E 2 9
Mapping destination pixel areas onto a scaled array of pixel values. Scaling
factors sx = sy = 0.5 are applied relative to fixed point (x f , y f).

7 OpenGL Raster Transformations

glCopyPixels (xmin, ymin, width, height, GL_COLOR);

The first four parameters in this function give the location and dimensions of the
pixel block; and the OpenGL symbolic constantGL COLOR specifies that it is color
values are to be copied. This array of pixels is to be copied to a rectangular area of
a refresh buffer whose lower-left corner is at the location specified by the current
raster position. Pixel-color values are copied as either RGBA values or color-table
indices, depending on the current setting for the color mode. Both the region
to be copied (the source) and the destination area should lie completely within
the bounds of the screen coordinates. This translation can be carried out on any
of the OpenGL buffers used for refreshing, or even between different buffers. A
source buffer for the glCopyPixels function is chosen with the glReadBuffer
routine, and a destination buffer is selected with the glDrawBuffer routine.

We can rotate a block of pixel-color values in 90-degree increments by first
saving the block in an array, then rearranging the elements of the array and placing
it back in the refresh buffer. A block of RGB color values in a buffer can be saved
in an array with the function

glReadPixels (xmin, ymin, width, height, GL_RGB,
GL_UNSIGNED_BYTE, colorArray);

If color-table indices are stored at the pixel positions, we replace the constant
GL RGB with GL COLOR INDEX. To rotate the color values, we rearrange the
rows and columns of the color array, as described in the previous section. Then
we put the rotated array back in the buffer with

glDrawPixels (width, height, GL_RGB, GL_UNSIGNED_BYTE,
colorArray);

The lower-left corner of this array is placed at the current raster position.
We select the source buffer containing the original block of pixel values with
glReadBuffer, and we designate a destination buffer with glDrawBuffer.

You should already be familiar with most of the OpenGL functions for per-
forming raster operations. A translation of a rectangular array of pixel-color val-
ues from one buffer area to another can be accomplished in OpenGL as the fol-
lowing copy operation:

Two-Dimensional Geometric Transformations

215

A two-dimensional scaling transformation can be performed as a raster
operation in OpenGL by specifying scaling factors and then invoking either
glCopyPixels or glDrawPixels. For the raster operations, we set the scal-
ing factors with

glPixelZoom (sx, sy);

where parameters sx and sy can be assigned any nonzero floating-point values.
Positive values greater than 1.0 increase the size of an element in the source array,
and positive values less than 1.0 decrease element size. A negative value for sx or
sy, or both, produces a reflection and scales the array elements. Thus, if sx = sy
= −3.0, the source array is reflected with respect to the current raster position and
each color element of the array is mapped to a 3 × 3 block of destination pixels. If
the center of a destination pixel lies within the rectangular area of a scaled color
element of an array, it is assigned the color of that array element. Destination pixels
whose centers are on the left or top boundary of the scaled array element are also
assigned the color of that element. The default value for both sx and sy is 1.0.

We can also combine raster transformations with logical operations to pro-
duce various effects. With the exclusive or operator, for example, two successive
copies of a pixel array to the same buffer area restores the values that were origi-
nally present in that area. This technique can be used in an animation application
to translate an object across a scene without altering the background pixels.

8 Transformations between
Two-Dimensional Coordinate Systems

Computer-graphics applications involve coordinate transformations from one ref-
erence frame to another during various stages of scene processing. The viewing
routines transform object descriptions from world coordinates to device coor-
dinates. For modeling and design applications, individual objects are typically
defined in their own local Cartesian references. These local-coordinate descrip-
tions must then be transformed into positions and orientations within the overall
scene coordinate system. A facility-management program for office layouts, for
instance, has individual coordinate descriptions for chairs and tables and other
furniture that can be placed into a floor plan, with multiple copies of the chairs
and other items in different positions.

Also, scenes are sometimes described in non-Cartesian reference frames that
take advantage of object symmetries. Coordinate descriptions in these systems
must be converted to Cartesian world coordinates for processing. Some examples
of non-Cartesian systems are polar coordinates, spherical coordinates, elliptical
coordinates, and parabolic coordinates.

dimensional Cartesian frame to another.

0 x0 x axis

y axis

y� a
xis

x� a
xis

y0
u

F I G U R E 3 0
A Cartesian x ′ y ′ system positioned at
(x0, y0) with orientation θ in an x y
Cartesian system.

Figure 30 shows a Cartesian x ′ y ′ system specified with coordinate origin
(x0, y0) and orientation angle θ in a Cartesian xy reference frame. To transform
object descriptions from xy coordinates to x′y′ coordinates, we set up a transfor-
mation that superimposes the x′y′ axes onto the xy axes. This is done in two steps:

1. Translate so that the origin (x0, y0) of the x′y′ system is moved to the origin
(0, 0) of the xy system.

2. Rotate the x′ axis onto the x axis.

Here, we consider only the transforma-
tions involved in converting from one two-

Two-Dimensional Geometric Transformations

216

Translation of the coordinate origin is accomplished with the matrix
transformation

T(−x0, −y0) =
⎡

⎣

1 0 −x0
0 1 −y0

0 0 1

⎤

⎦

The orientation of the two systems after the translation operation would then
appear as in Figure 31. To get the axes of the two systems into coincidence, we
then perform the clockwise rotation

R(−θ) =
⎡

⎣

cos θ sin θ 0
−sin θ cos θ 0

0 0 1

⎤

⎦

Concatenating these two transformation matrices gives us the complete composite
matrix for transforming object descriptions from the xy system to the x′y′ system:

Mxy,x′ y′ = R(−θ) · T(−x0, −y0)

x x axis

y axis

y� a
xis

y�
x� a

xis

x�

y P

u

F I G U R E 3 1
Position of the reference frames shown
in Figure 30 after translating the
origin of the x ′ y ′ system to the
coordinate origin of the x y system.

An alternate method for describing the orientation of the x′y′ coordinate sys-
tem is to specify a vector V that indicates the direction for the positive y′ axis, as
shown in Figure 32. We can specify vector V as a point in the xy reference frame
relative to the origin of the xy system, which we can convert to the unit vector

v = V
|V| = (vx, vy)

We obtain the unit vector u along the x′ axis by applying a 90◦ clockwise rotation
to vector v:

u = (vy, −vx)

= (ux, uy)

In Section 4, we noted that the elements of any rotation matrix could be expressed
as elements of a set of orthonormal vectors. Therefore, the matrix to rotate the
x′y′ system into coincidence with the xy system can be written as

R =
⎡

⎣

ux uy 0
vx vy 0
0 0 1

⎤

⎦

For example, suppose that we choose the orientation for the y′ axis as V = (−1, 0).
Then the x′ axis is in the positive y direction, and the rotation transformation
matrix is ⎡

⎣

0 1 0
−1 0 0
0 0 1

⎤

⎦

0 x axis

y axis

y� a
xis

x� a
xis

y0

x0

P0
V

F I G U R E 3 2
Cartesian system x ′ y ′ with origin at
P0 = (x0, y0) and y ′ axis parallel to vector V.

 (63)

 (64)

 (65)

 (66)

 (67)

 (68)

Two-Dimensional Geometric Transformations

217

F I G U R E 3 3
A Cartesian x ′ y ′ system defined with two coordinate
positions, P0 and P1, within an x y reference frame.

P0

V � P1 � P0

P1

0 x axis

y axis

y� a
xis

x� a
xis

y0

x0

Equivalently, we can obtain this rotation matrix from Equation 64 by setting the
orientation angle as θ = 90◦.

In an interactive application, it may be more convenient to choose the direc-
tion of V relative to position P0 than to specify it relative to the xy-coordinate
origin. Unit vectors u and v would then be oriented as shown in Figure 33. The
components of v are now calculated as

v = P1 − P0

|P1 − P0|
and u is obtained as the perpendicular to v that forms a right-handed Cartesian
system.

9 OpenGL Functions for Two-Dimensional
Geometric Transformations

In the core library of OpenGL, a separate function is available for each of the basic
geometric transformations. Because OpenGL is designed as a three-dimensional
graphics application programming interface (API), all transformations are spec-
ified in three dimensions. Internally, all coordinate positions are represented
as four-element column vectors, and all transformations are represented using
4 × 4 matrices. Fortunately, performing two-dimensional transformations within
OpenGL is generally just a matter of using a value for the transformation in the
third (z) dimension that causes no change in that dimension.

To perform a translation, we invoke the translation routine and set the com-
ponents for the three-dimensional translation vector. In the rotation function, we
specify the angle and the orientation for a rotation axis that intersects the coor-
dinate origin. In addition, a scaling function is used to set the three coordinate
scaling factors relative to the coordinate origin. In each case, the transformation
routine sets up a 4 × 4 matrix that is applied to the coordinates of objects that are
referenced after the transformation call.

Basic OpenGL Geometric Transformations
A 4 × 4 translation matrix is constructed with the following routine:

glTranslate* (tx, ty, tz);

Translation parameters tx, ty, and tz can be assigned any real-number values,
and the single suffix code to be affixed to this function is either f (float) or d (dou-
ble). For two-dimensional applications, we set tz = 0.0; and a two-dimensional
position is represented as a four-element column matrix with the z component
equal to 0.0. The translation matrix generated by this function is used to transform

 (69)

Two-Dimensional Geometric Transformations

218

positions of objects defined after this function is invoked. For example, we trans-
late subsequently defined coordinate positions 25 units in the x direction and −10
units in the y direction with the statement

glTranslatef (25.0, -10.0, 0.0);

Similarly, a 4 × 4 rotation matrix is generated with

glRotate* (theta, vx, vy, vz);

where the vector v = (vx, vy, vz) can have any floating-point values for its com-
ponents. This vector defines the orientation for a rotation axis that passes through
the coordinate origin. If v is not specified as a unit vector, then it is normalized
automatically before the elements of the rotation matrix are computed. The suffix
code can be eitherf ord, and parametertheta is to be assigned a rotation angle in
degrees, which the routine converts to radians for the trigonometric calculations.
The rotation specified here will be applied to positions defined after this function
call. Rotation in two-dimensional systems is rotation about the z axis, specified
as a unit vector with x and y components of zero, and a z component of 1.0. For
example, the statement

glRotatef (90.0, 0.0, 0.0, 1.0);

sets up the matrix for a 90◦ rotation about the z axis. We should note here that
internally, this function generates a rotation matrix using quaternions. This method
is more efficient when rotation is about an arbitrarily-specific axis.

We obtain a 4 × 4 scaling matrix with respect to the coordinate origin with
the following routine:

glScale* (sx, sy, sz);

The suffix code is again either f or d, and the scaling parameters can be assigned
any real-number values. Scaling in a two-dimensional system involves changes
in the x and y dimensions, so a typical two-dimensional scaling operation has a
z scaling factor of 1.0 (which causes no change in the z coordinate of positions).
Because the scaling parameters can be any real-number value, this function will
also generate reflections when negative values are assigned to the scaling param-
eters. For example, the following statement produces a matrix that scales by a
factor of 2 in the x direction, scales by a factor of 3 in the y direction, and reflects
with respect to the x axis:

glScalef (2.0, -3.0, 1.0);

A zero value for any scaling parameter can cause a processing error because an
inverse matrix cannot be calculated. The scale-reflect matrix is applied to subse-
quently defined objects.

It is important to note that internally OpenGL uses composite matrices to hold
transformations. As a result, transformations are cumulative—that is, if we apply
a translation and then apply a rotation, objects whose positions are specified after
that will have both transformations applied to them. If that is not the behavior we
desired, we must be able to remove the effects of previous transformations. This
requires additional functions for manipulating the composite matrices.

Two-Dimensional Geometric Transformations

219

OpenGL Matrix Operations
glMatrixMode routine is used to set the projection mode,

nates the matrix that is to be used for the projection transformation. This trans-
formation. This transformation determines how a scene is to be projected onto
the screen. We use the same routine to set up a matrix for the geometric trans-
formations. In this case, however, the matrix is referred to as the modelview
matrix, and it is used to store and combine the geometric transformations. It is
also used to combine the geometric transformations with the transformation to a
viewing-coordinate system. We specify the modelview mode with the statement

glMatrixMode (GL_MODELVIEW);

which designates the 4 × 4 modelview matrix as the current matrix. The OpenGL
transformation routines discussed in the previous section are all applied to what-
ever composite matrix is the current matrix, so it is important to use glMatrix-
Mode to change to the modelview matrix before applying geometric transforma-
tions. Following this call, OpenGL transformation routines are used to modify
the modelview matrix, which is then applied to transform coordinate positions
in a scene. Two other modes that we can set with the glMatrixMode function
are the texture mode and the color mode. The texture matrix is used for mapping
texture patterns to surfaces, and the color matrix is used to convert from one
color model to another. We discuss viewing, projection, texture, and color trans-
formations in later chapters. For now, we limit our discussion to the details of the
geometric transformations. The default argument for the glMatrixMode func-
tion is GL MODELVIEW.

Once we are in the modelview mode (or any other mode), a call to a transfor-
mation routine generates a matrix that is multiplied by the current matrix for that
mode. In addition, we can assign values to the elements of the current matrix, and
there are two functions in the OpenGL library for this purpose. With the following
function, we assign the identity matrix to the current matrix:

glLoadIdentity ();

Alternatively, we can assign other values to the elements of the current matrix
using

glLoadMatrix* (elements16);

A single-subscripted, 16-element array of floating-point values is specified with
parameter elements16, and a suffix code of either f or d is used to designate
the data type. The elements in this array must be specified in column-major order.
That is, we first list the four elements in the first column, and then we list the four
elements in the second column, the third column, and finally the fourth column.
To illustrate this ordering, we initialize the modelview matrix with the following
code:

glMatrixMode (GL_MODELVIEW);

GLfloat elems [16];
GLint k;

for (k = 0; k < 16; k++)
elems [k] = float (k);

glLoadMatrixf (elems);

The which desig-

Two-Dimensional Geometric Transformations

220

which produces the matrix

M =

⎡

⎢
⎢
⎣

0.0 4.0 8.0 12.0
1.0 5.0 9.0 13.0
2.0 6.0 10.0 14.0
3.0 7.0 11.0 15.0

⎤

⎥
⎥
⎦

We can also concatenate a specified matrix with the current matrix as follows:

glMultMatrix* (otherElements16);

Again, the suffix code is either f or d, and parameter otherElements16 is a
16-element, single-subscripted array that lists the elements of some other matrix
in column-major order. The current matrix is postmultiplied by the matrix specified
in glMultMatrix, and this product replaces the current matrix. Thus, assuming
that the current matrix is the modelview matrix, which we designate as M, then
the updated modelview matrix is computed as

M = M · M′

where M′ represents the matrix whose elements are specified by parameter
otherElements16 in the preceding glMultMatrix statement.

The glMultMatrix function can also be used to set up any transformation
sequence with individually defined matrices. For example,

glMatrixMode (GL_MODELVIEW);

glLoadIdentity (); // Set current matrix to the identity.
glMultMatrixf (elemsM2); // Postmultiply identity with matrix M2.
glMultMatrixf (elemsM1); // Postmultiply M2 with matrix M1.

produces the following current modelview matrix:

M = M2 · M1

The first transformation to be applied in this sequence is the last one specified in
the code. Thus, if we set up a transformation sequence in an OpenGL program,
we can think of the individual transformations as being loaded onto a stack, so the
last operation specified is the first one applied. This is not what actually happens,
but the stack analogy may help you remember that in an OpenGL program, a
transformation sequence is applied in the opposite order from which it is specified.

It is also important to keep in mind that OpenGL stores matrices in column-
major order. In addition, a reference to a matrix element such as m jk in OpenGL is
a reference to the element in column j and row k. This is the reverse of the standard
mathematical convention, where the row number is referenced first. However, we
can usually avoid errors in row-column references by always specifying matrices
in OpenGL as 16-element, single-subscript arrays and listing the elements in a
column-major order.

Two-Dimensional Geometric Transformations

221

OpenGL actually maintains a stack of composite matrices for each of the four
modes that we can select with the glMatrixMode routine.

10 OpenGL Geometric-Transformation
Programming Examples

In the following code segment, we apply each of the basic geometric transforma-
tions, one at a time, to a rectangle. Initially, the modelview matrix is the identity
matrix and we display a blue rectangle. Next, we reset the current color to red,
specify two-dimensional translation parameters, and display the red translated
rectangle (Figure 34). Because we do not want to combine transformations, we
next reset the current matrix to the identity. Then a rotation matrix is constructed
and concatenated with the current matrix (the identity matrix). When the origi-
nal rectangle is again referenced, it is rotated about the z axis and displayed in
red (Figure 35). We repeat this process once more to generate the scaled and
reflected rectangle shown in Figure 36.

glMatrixMode (GL_MODELVIEW);

glColor3f (0.0, 0.0, 1.0);
glRecti (50, 100, 200, 150); // Display blue rectangle.

glColor3f (1.0, 0.0, 0.0);
glTranslatef (-200.0, -50.0, 0.0); // Set translation parameters.
glRecti (50, 100, 200, 150); // Display red, translated rectangle.

glLoadIdentity (); // Reset current matrix to identity.
glRotatef (90.0, 0.0, 0.0, 1.0); // Set 90-deg. rotation about z axis.
glRecti (50, 100, 200, 150); // Display red, rotated rectangle.

glLoadIdentity (); // Reset current matrix to identity.
glScalef (-0.5, 1.0, 1.0); // Set scale-reflection parameters.
glRecti (50, 100, 200, 150); // Display red, transformed rectangle.

F I G U R E 3 4
Translating a rectangle using the
OpenGL function glTranslatef
(−200.0, −50.0, 0.0).

Original PositionTranslated
Position

�150 �100 �50 50 100 150 200

200

150

100

50

Two-Dimensional Geometric Transformations

222

Original Position

Rotated Position

�150 �100 �50 50

200

150

100

50

100 150 200

F I G U R E 3 5
Rotating a rectangle about the z axis
using the OpenGL function
glRotatef (90.0, 0.0,
0.0, 1.0).

Original Position

�150 �100 �50 50

200

150

50

100 150 200

Scaled-Reflected
 Position

F I G U R E 3 6
Scaling and reflecting a rectangle using
the OpenGL function glScalef
(−0.5, 1.0, 1.0).

11 Summary
The basic geometric transformations are translation, rotation, and scaling. Transla-
tion moves an object in a straight-line path from one position to another. Rotation
moves an object from one position to another along a circular path around a spec-
ified rotation axis. For two-dimensional applications, the rotation path is in the xy
plane about an axis that is parallel to the z axis. Scaling transformations change
the dimensions of an object relative to a fixed position.

We can express two-dimensional transformations as 3 × 3 matrix operators,
so that sequences of transformations can be concatenated into a single composite
matrix. Performing geometric transformations with matrices is an efficient for-
mulation because it allows us to reduce computations by applying a composite
matrix to an object description to obtain its transformed position. To do this, we
express coordinate positions as column matrices. We choose a column-matrix rep-
resentation for coordinate points because this is the standard mathematical con-
vention, and most graphics packages now follow this convention. A three-element
column matrix (vector) is referred to as a homogeneous-coordinate representa-
tion. For geometric transformations, the homogeneous coefficient is assigned the
value 1.

As with two-dimensional systems, transformations between three-
dimensional Cartesian coordinate systems are accomplished with a sequence of
translate-rotate transformations that brings the two systems into coincidence.

Two-Dimensional Geometric Transformations

223

T A B L E 1

Summary of OpenGL Geometric Transformation Functions

Function Description

glTranslate* Specifies translation parameters.

glRotate* Specifies parameters for rotation about any axis
through the origin.

glScale* Specifies scaling parameters with respect to
coordinate origin.

glMatrixMode Specifies current matrix for geometric-viewing
transformations, projection transformations,
texture transformations, or color transformations.

glLoadIdentity Sets current matrix to identity.

glLoadMatrix* (elems); Sets elements of current matrix.

glMultMatrix* (elems); Postmultiplies the current matrix by the
specified matrix.

glPixelZoom Specifies two-dimensional scaling parameters for
raster operations.

However, in a three-dimensional system, we must specify two of the three axis
directions, not just one (as in a two-dimensional system).

The OpenGL basic library contains three functions for applying individual
translate, rotate, and scale transformations to coordinate positions. Each func-
tion generates a matrix that is premultiplied by the modelview matrix. Thus,
a sequence of geometric-transformation functions must be specified in reverse
order: the last transformation invoked is the first to be applied to coordinate
positions. Transformation matrices are applied to subsequently defined objects.
In addition to accumulating transformation sequences in the modelview matrix,
we can set this matrix to the identity or some other matrix. We can also form
products with the modelview matrix and any specified matrices. Several opera-
tions are available in OpenGL for performing raster transformations. A block of
pixels can be translated, rotated, scaled, or reflected with these OpenGL raster
operations.

Table 1 summarizes the OpenGL geometric-transformation functions and
matrix routines discussed in this chapter.

REFERENCES
For additional techniques involving matrices and geo-
metric transformations, see Glassner (1990), Arvo (1991),
Kirk (1992), Heckbert (1994), and Paeth (1995). Discus-
sions of homogeneous coordinates in computer graphics
can be found in Blinn and Newell (1978) and in Blinn
(1993, 1996, and 1998).

Additional programming examples using OpenGL
geometric-transformation functions are given in

Woo, et al. (1999). Programming examples for
the OpenGL geometric-transformation functions
are also available at Nate Robins’s tutorial web-
site: http://www.xmission.com/∼nate/opengl.html.
Finally, a complete listing of OpenGL geometric-
transformation functions is provided in Shreiner
(2000).

Two-Dimensional Geometric Transformations

224

EXERCISES
1 Write an animation program that implements the

example two-dimensional rotation procedure of
Section 1. An input polygon is to be rotated
repeatedly in small steps around a pivot point in
the xy plane. Small angles are to be used for each
successive step in the rotation, and approximations
to the sine and cosine functions are to be used
to speed up the calculations. To avoid excessive
accumulation of round-off errors, reset the origi-
nal coordinate values for the object at the start of
each new revolution.

2 Show that the composition of two rotations is
additive by concatenating the matrix representa-
tions for R(θ1) and R(θ2) to obtain

R(θ1) · R(θ2) = R(θ1 + θ2)

3 Modify the two-dimensional transformation
matrix (39), for scaling in an arbitrary direction,
to include coordinates for any specified scaling
fixed point (x f , y f).

4 Prove that the multiplication of transformation ma-
trices for each of the following sequences is com-
mutative:
(a) Two successive rotations.
(b) Two successive translations.
(c) Two successive scalings.

5 Prove that a uniform scaling and a rotation form a
commutative pair of operations but that, in gen-
eral, scaling and rotation are not commutative
operations.

6 Multiple the individual scale, rotate, and translate
matrices in Equation 42 to verify the elements in
the composite transformation matrix.

7 Modify the example program in Section 4 so that
transformation parameters can be specified as user
input.

8 Modify the program from the previous exercise so
that the transformation sequence can be applied
to any polygon, with vertices specified as user
input.

9 Modify the example program in Section 4 so that
the order of the geometric transformation sequence
can be specified as user input.

10 Show that transformation matrix (55), for a
reflection about the line y = x, is equivalent to a
reflection relative to the x axis followed by a coun-
terclockwise rotation of 90◦.

11 Show that transformation matrix (56), for a
reflection about the line y = −x, is equivalent to a
reflection relative to the y axis followed by a coun-
terclockwise rotation of 90◦.

12 Show that two successive reflections about either
the x axis or the y axis is equivalent to a single

rotation in the xy plane about the coordinate
origin.

13 Determine the form of the two-dimensional trans-
formation matrix for a reflection about any line:
y = mx + b.

14 Show that two successive reflections about any line
in the xy plane that intersects the coordinate origin
is equivalent to a rotation in the xy plane about the
origin.

15 Determine a sequence of basic transformations
that is equivalent to the x-direction shearing
matrix (57).

16 Determine a sequence of basic transformations
that is equivalent to the y-direction shearing
matrix (61).

17 Set up a shearing procedure to display two-
dimensional italic characters, given a vector font
definition. That is, all character shapes in this font
are defined with straight-line segments, and italic
characters are formed with shearing transforma-
tions. Determine an appropriate value for the shear
parameter by comparing italics and plain text in
some available font. Define a simple vector font
for input to your routine.

18 Derive the following equations for transform-
ing a coordinate point P = (x, y) in one two-
dimensional Cartesian system to the coordinate
values (x′, y′) in another Cartesian system that is
rotated counterclockwise by an angle θ relative
to the first system. The transformation equations
can be obtained by projecting point P onto each
of the four axes and analyzing the resulting right
triangles.

x′ = x cos θ + y sin θ y′ = −x sin θ + y cos θ

19 Write a procedure to compute the elements of the
matrix for transforming object descriptions from
one two-dimensional Cartesian coordinate system
to another. The second coordinate system is to be
defined with an origin point P0 and a vector V that
gives the direction for the positive y′ axis of this
system.

20 Set up procedures for implementing a block trans-
fer of a rectangular area of a frame buffer, using
one function to read the area into an array and
another function to copy the array into the des-
ignated transfer area.

21 Determine the results of performing two succes-
sive block transfers into the same area of a frame
buffer using the various Boolean operations.

22 What are the results of performing two successive
block transfers into the same area of a frame buffer
using the binary arithmetic operations?

Two-Dimensional Geometric Transformations

225

frame buffer using any specified Boolean operation
or a replacement (copy) operation.

24 Write a routine to implement rotations in incre-
ments of 90◦ in frame-buffer block transfers.

25 Write a routine to implement rotations by any spec-
ified angle in a frame-buffer block transfer.

26 Write a routine to implement scaling as a raster
transformation of a pixel block.

27 Write a program to display an animation of a black
square on a white background tracing a circular,
clockwise path around the display window with
the path’s center at the display window’s center
(like the tip of the minute hand on a clock). The
orientation of the square should not change. Use
only basic OpenGL geometric transformations to
do this.

28 Repeat the previous exercise using OpenGL matrix
operations.

29 Modify the program in Exercise 27 to have the
square rotate clockwise about its own center as it
moves along its path. The square should complete
one revolution about its center for each quarter of
its path around the window that it completes. Use
only basic OpenGL geometric transformations to
do this.

30 Repeat the previous exercise using OpenGL matrix
operations.

31 Modify the program in Exercise 29 to have the
square additionally “pulse” as it moves along its
path. That is, for every revolution about its own
center that it makes, it should go through one
pulse cycle that begins with the square at full size,
reduces smoothly in size down to 50normal size
by the end of the cycle. Do this using only basic
OpenGL geometric transformations.

32 Repeat the previous exercise using only OpenGL
matrix operations.

IN MORE DEPTH
1 In this exercise, you’ll set up the routines neces-

sary to make a crude animation of the objects in
your application using two-dimensional geomet-
ric transformations. Decide on some simple motion
behaviors for the objects in your application that
can be achieved with the types of transformations
discussed in this chapter (translations, rotations,
scaling, shearing, and reflections). These behaviors
may be motion patterns that certain objects will
always be exhibiting, or they may be trajectories
that are triggered or guided by user input (you can
generate fixed example trajectories since we have
not yet included user input). Set up the transforma-
tion matrices needed to produce these behaviors
via composition of matrices. The matrices should
be defined in homogeneous coordinates. If two
or more objects act as a single “unit” in certain
behaviors that are easier to model in terms of rel-
ative positions, you can use the techniques in Sec-
tion 8 to convert the local transformations of the
objects relative to each other (in their own coor-
dinate frame) into transformations in the world
coordinate frame.

2 Use the matrices you designed in the previous
exercise to produce an animation of the behav-
iors of the objects in your scene. You should
employ the OpenGL matrix operations and have
the matrices produce small changes in position
for each of the objects in the scene. The scene
should then be redrawn several times per second
to produce the animation, with the transformations
being applied each time. Set the animation up so
that it “loops”; that is, the behaviors should either
be cyclical, or once the trajectories you designed
for the objects have completed, the positions of
all of the objects in the scene should be reset to
their starting positions and the animation begun
again.

 23 Implement a routine to perform block transfers in a

Two-Dimensional Geometric Transformations

226

Two-Dimensional Viewing

1 The Two-Dimensional Viewing
Pipeline

2 The Clipping Window

3 Normalization and Viewport
Transformations

4 OpenGL Two-Dimensional
Viewing Functions

5 Clipping Algorithms

6 Two-Dimensional Point Clipping

7 Two-Dimensional Line Clipping

8 Polygon Fill-Area Clipping

9 Curve Clipping

10 Text Clipping

11 Summary

e now examine in more detail the procedures for displa-

ying views of a two-dimensional picture on an output de-

vice. Typically, a graphics package allows a user to specify

From Chapter 8 of Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson

W
which part of a defined picture is to be displayed and where

that part is to be placed on the display device. Any convenient Cartesian

coordinate system, referred to as the world-coordinate reference

frame, can be used to define the picture. For a two-dimensional picture,

a view is selected by specifying a region of the xy plane that

contains the total picture or any part of it. A user can select a single

area for display, or several areas could be selected for simultaneous

display or for an animated panning sequence across a scene.

The picture parts within the selected areas are then mapped onto

specified areas of the device coordinates. When multiple view areas

are selected, these areas can be placed in separate display locations,

or some areas could be inserted into other, larger display areas.

227

Two-dimensional viewing transformations from world to device coordinates involve trans-

lation, rotation, and scaling operations, as well as procedures for deleting those parts of

the picture that are outside the limits of a selected scene area.

1 The Two-Dimensional Viewing Pipeline
A section of a two-dimensional scene that is selected for display is called a clipping
window because all parts of the scene outside the selected section are “clipped”
off. The only part of the scene that shows up on the screen is what is inside
the clipping window. Sometimes the clipping window is alluded to as the world
window or the viewing window. And, at one time, graphics systems referred to the
clipping window simply as “the window,” but there are now so many windows
in use on computers that we need to distinguish between them. For example, a
window-management system can create and manipulate several areas on a video
screen, each of which is called “a window,” for the display of graphics and text.
So we will always use the term clipping window to refer to a selected section of
a scene that is eventually converted to pixel patterns within a display window
on the video monitor. Graphics packages allow us also to control the placement
within the display window using another “window” called the viewport. Objects
inside the clipping window are mapped to the viewport, and it is the viewport
that is then positioned within the display window. The clipping window selects
what we want to see; the viewport indicates where it is to be viewed on the output
device.

By changing the position of a viewport, we can view objects at different posi-
tions on the display area of an output device. Multiple viewports can be used to
display different sections of a scene at different screen positions. Also, by vary-
ing the size of viewports, we can change the size and proportions of displayed
objects. We achieve zooming effects by successively mapping different-sized clip-
ping windows onto a fixed-size viewport. As the clipping windows are made
smaller, we zoom in on some part of a scene to view details that are not shown
with the larger clipping windows. Similarly, more overview is obtained by zoom-
ing out from a section of a scene with successively larger clipping windows. And
panning effects are achieved by moving a fixed-size clipping window across the
various objects in a scene.

Usually, clipping windows and viewports are rectangles in standard posi-
tion, with the rectangle edges parallel to the coordinate axes. Other window or
viewport geometries, such as general polygon shapes and circles, are used in
some applications, but these shapes take longer to process. We first consider only
rectangular viewports and clipping windows, as illustrated in Figure 1.

F I G U R E 1
A clipping window and associated
viewport, specified as rectangles
aligned with the coordinate axes.

ywmax

xwmin

World Coordinates

Clipping Window

ywmin

Viewport
yvmax

xvminxwmax

Viewport Coordinates

xvmax

yvmin

Two-Dimensional Viewing

228

Construct
World-Coordinate

Scene Using
Modeling-Coordinate

Transformations

MC

Convert
World

Coordinates
to

Viewing
Coordinates

Transform Viewing
Coordinates to

Normalized
Coordinates

WC VC NC
Map Normalized
Coordinates to

Device
Coordinates

DC

F I G U R E 2
Two-dimensional viewing-transformation pipeline.

The mapping of a two-dimensional, world-coordinate scene description to
device coordinates is called a two-dimensional viewing transformation. Some-
times this transformation is simply referred to as the window-to-viewport transfor-
mation or the windowing transformation. But, in general, viewing involves more
than just the transformation from clipping-window coordinates to viewport
coordinates. In analogy with three-dimensional viewing, we can describe the steps
for two-dimensional viewing as indicated in Figure 2. Once a world-coordinate
scene has been constructed, we could set up a separate two-dimensional, viewing-
coordinate reference frame for specifying the clipping window. But the clipping
window is often just defined in world coordinates, so viewing coordinates for
two-dimensional applications are the same as world coordinates. (For a three-
dimensional scene, however, we need a separate viewing frame to specify the
parameters for the viewing position, direction, and orientation.)

To make the viewing process independent of the requirements of any output
device, graphics systems convert object descriptions to normalized coordinates
and apply the clipping routines. Some systems use normalized coordinates in the
range from 0 to 1, and others use a normalized range from −1 to 1. Depending
upon the graphics library in use, the viewport is defined either in normalized
coordinates or in screen coordinates after the normalization process. At the final
step of the viewing transformation, the contents of the viewport are transferred
to positions within the display window.

Clipping is usually performed in normalized coordinates. This allows us to
reduce computations by first concatenating the various transformation matrices.
Clipping procedures are of fundamental importance in computer graphics. They
are used not only in viewing transformations, but also in window-manager sys-
tems, in painting and drawing packages to erase picture sections, and in many
other applications.

2 The Clipping Window
To achieve a particular viewing effect in an application program, we could design
our own clipping window with any shape, size, and orientation we choose. For
example, we might like to use a star pattern, an ellipse, or a figure with spline
boundaries as a clipping window. But clipping a scene using a concave polygon
or a clipping window with nonlinear boundaries requires more processing than
clipping against a rectangle. We need to perform more computations to determine
where an object intersects a circle than to find out where it intersects a straight line.
The simplest window edges to clip against are straight lines that are parallel to the
coordinate axes. Therefore, graphics packages commonly allow only rectangular
clipping windows aligned with the x and y axes.

If we want some other shape for a clipping window, then we must implement
our own clipping and coordinate-transformation algorithms, or we could just edit

Two-Dimensional Viewing

229

the picture to produce a certain shape for the display frame around the scene.
For example, we could trim the edges of a picture with any desired pattern by
overlaying polygons that are filled with the background color. In this way, we
could generate any desired border effects or even put interior holes in the picture.

Rectangular clipping windows in standard position are easily defined by
giving the coordinates of two opposite corners of each rectangle. If we would
like to get a rotated view of a scene, we could either define a rectangular clip-
ping window in a rotated viewing-coordinate frame or, equivalently, we could
rotate the world-coordinate scene. Some systems provide options for selecting a
rotated, two-dimensional viewing frame, but usually the clipping window must
be specified in world coordinates.

Viewing-Coordinate Clipping Window
A general approach to the two-dimensional viewing transformation is to set up a
viewing-coordinate system within the world-coordinate frame. This viewing frame
provides a reference for specifying a rectangular clipping window with any
selected orientation and position, as in Figure 3. To obtain a view of the world-
coordinate scene as determined by the clipping window of Figure 3, we just
need to transfer the scene description to viewing coordinates. Although many
graphics packages do not provide functions for specifying a clipping window in
a two-dimensional viewing-coordinate system, this is the standard approach for
defining a clipping region for a three-dimensional scene.

World Coordinates

y world

y view

x view

y0

x0 x world

Clipping
Window

F I G U R E 3
A rotated clipping window defined in
viewing coordinates.

We choose an origin for a two-dimensional viewing-coordinate frame at some
world position P0 = (x0, y0), and we can establish the orientation using a world
vector V that defines the yview direction. Vector V is called the two-dimensional
view up vector. An alternative method for specifying the orientation of the view-
ing frame is to give a rotation angle relative to either the x or y axis in the world
frame. From this rotation angle, we can then obtain the view up vector. Once we

The first step in the transformation sequence is to translate the viewing origin
to the world origin. Next, we rotate the viewing system to align it with the world
frame. Given the orientation vector V, we can calculate the components of unit
vectors v = (vx, vy) and u = (ux, uy) for the yview and xview axes, respectively.
These unit vectors are used to form the first and second rows of the rotation
matrix R that aligns the viewing xview yview axes with the world xw yw axes.

Object positions in world coordinates are then converted to viewing coordi-
nates with the composite two-dimensional transformation matrix

MWC,VC = R · T (1)

where T is the translation matrix that takes the viewing origin P0 to the world
origin, and R is the rotation matrix that rotates the viewing frame of reference into
coincidence with the world-coordinate system. Figure 4 illustrates the steps in
this coordinate transformation.

World-Coordinate Clipping Window
A routine for defining a standard, rectangular clipping window in world coordi-
nates is typically provided in a graphics-programming library. We simply specify
two world-coordinate positions, which are then assigned to the two opposite

have established the parameters that define the viewing-coordinate frame, we
transform the scene description to the viewing system. This involves a sequence
of transformations equivalent to superimposing the viewing frame on the world
frame.

Two-Dimensional Viewing

230

(a)

x0 x world

y
world

y0

y view

x view

T

(b)

x world
x view

y
view

R

y
world

F I G U R E 4
A viewing-coordinate frame is moved
into coincidence with the world frame
by (a) applying a translation matrix T
to move the viewing origin to the
world origin, then (b) applying a
rotation matrix R to align the axes of
the two systems.

corners of a standard rectangle. Once the clipping window has been established,
the scene description is processed through the viewing routines to the output
device.

(a)

y0

x0

y world

x world

V

(b)

Clipping Window

y world

x world

F I G U R E 5
A triangle (a), with a selected
reference point and orientation vector,
is translated and rotated to position (b)
within a clipping window.

If we want to obtain a rotated view of a two-dimensional scene, as discussed
in the previous section, we perform exactly the same steps as described there, but
without considering a viewing frame of reference. Thus, we simply rotate (and
possibly translate) objects to a desired position and set up the clipping window—
all in world coordinates. For example, we could display a rotated view of the
triangle in Figure 5(a) by rotating it into the position we want and setting up
a standard clipping rectangle. In analogy with the coordinate transformation de-
scribed in the previous section, we could also translate the triangle to the world
origin and define a clipping window around the triangle. In that case, we define an

3 Normalization and Viewport
Transformations

With some graphics packages, the normalization and window-to-viewport trans-
formations are combined into one operation. In this case, the viewport coordinates
are often given in the range from 0 to 1 so that the viewport is positioned within
a unit square. After clipping, the unit square containing the viewport is mapped
to the output display device. In other systems, the normalization and clipping
routines are applied before the viewport transformation. For these systems, the
viewport boundaries are specified in screen coordinates relative to the display-
window position.

Mapping the Clipping Window into a Normalized Viewport
To illustrate the general procedures for the normalization and viewport transfor-
mations, we first consider a viewport defined with normalized coordinate values
between 0 and 1. Object descriptions are transferred to this normalized space
using a transformation that maintains the same relative placement of a point in

orientation vector and choose a reference point such as the triangle’s centroid.
Then we translate the reference point to the world origin and rotate the orientation
vector onto the yworld axis using transformation matrix 1. With the triangle in the
desired orientation, we can use a standard clipping window in world coordinates
to capture the view of the rotated triangle. The transformed position of the trian-
gle and the selected clipping window are shown in Figure 5(b).

Two-Dimensional Viewing

231

ywmax

(xw, yw)

Clipping Window

ywmin

xwmin xwmax

(xv, yv)

Normalization
Viewport

yvmax

1

yvmin

xvmin xvmax 10

F I G U R E 6
A point (x w, y w) in a world-coordinate clipping window is mapped to viewport coordinates
(x v, y v), within a unit square, so that the relative positions of the two points in their
respective rectangles are the same.

the viewport as it had in the clipping window. If a coordinate position is at the
center of the clipping window, for instance, it would be mapped to the center of
the viewport. Figure 6 illustrates this window-to-viewport mapping. Position
(xw, yw) in the clipping window is mapped to position (xv, yv) in the associated
viewport.

To transform the world-coordinate point into the same relative position within
the viewport, we require that

xv − xvmin

xvmax − xvmin
= xw − xwmin

xwmax − xwmin

yv − yvmin

yvmax − yvmin
= yw − ywmin

ywmax − ywmin

(2)

Solving these expressions for the viewport position (xv, yv), we have

xv = sxxw + tx

yv = sy yw + ty
(3)

where the scaling factors are

sx = xvmax − xvmin

xwmax − xwmin

sy = yvmax − yvmin

ywmax − ywmin

(4)

and the translation factors are

tx = xwmaxxvmin − xwminxvmax

xwmax − xwmin

ty = ywmax yvmin − ywmin yvmax

ywmax − ywmin

(5)

Because we are simply mapping world-coordinate positions into a viewport
that is positioned near the world origin, we can also derive Equations 3 using
any transformation sequence that converts the rectangle for the clipping window
into the viewport rectangle. For example, we could obtain the transformation
from world coordinates to viewport coordinates with the following sequence:

1. Scale the clipping window to the size of the viewport using a fixed-point
position of (xwmin, ywmin).

2. Translate (xwmin, ywmin) to (xvmin, yvmin).

Two-Dimensional Viewing

232

The scaling transformation in step (1) can be represented with the two-
dimensional matrix

S =
⎡

⎣

sx 0 xwmin(1 − sx)

0 sy ywmin(1 − sy)

0 0 1

⎤

⎦ (6)

where sx and sy are the same as in Equations 4. The two-dimensional matrix
representation for the translation of the lower-left corner of the clipping window
to the lower-left viewport corner is

T =
⎡

⎣

1 0 xvmin − xwmin
0 1 yvmin − ywmin
0 0 1

⎤

⎦ (7)

And the composite matrix representation for the transformation to the normalized
viewport is

Mwindow, normviewp = T · S =
⎡

⎣

sx 0 tx

0 sy ty

0 0 1

⎤

⎦ (8)

which gives us the same result as in Equations 3. Any other clipping-window ref-
erence point, such as the top-right corner or the window center, could be used for
the scale–translate operations. Alternatively, we could first translate any clipping-
window position to the corresponding location in the viewport, and then scale
relative to that viewport location.

The window-to-viewport transformation maintains the relative placement of
object descriptions. An object inside the clipping window is mapped to a corre-
sponding position inside the viewport. Similarly, an object outside the clipping
window is outside the viewport.

Relative proportions of objects, on the other hand, are maintained only if the
aspect ratio of the viewport is the same as the aspect ratio of the clipping window.
In other words, we keep the same object proportions if the scaling factors sx and
sy are the same. Otherwise, world objects will be stretched or contracted in either
the x or y directions (or both) when displayed on the output device.

The clipping routines can be applied using either the clipping-window bound-
aries or the viewport boundaries. After clipping, the normalized coordinates are
transformed into device coordinates. And the unit square can be mapped onto the
output device using the same procedures as in the window-to-viewport transfor-
mation, with the area inside the unit square transferred to the total display area
of the output device.

Mapping the Clipping Window into a Normalized Square
Another approach to two-dimensional viewing is to transform the clipping win-
dow into a normalized square, clip in normalized coordinates, and then transfer
the scene description to a viewport specified in screen coordinates. This transfor-
mation is illustrated in Figure 7 with normalized coordinates in the range from
−1 to 1. The clipping algorithms in this transformation sequence are now stan-
dardized so that objects outside the boundaries x = ±1 and y = ±1 are detected
and removed from the scene description. At the final step of the viewing trans-
formation, the objects in the viewport are positioned within the display window.

We transfer the contents of the clipping window into the normalization square
using the same procedures as in the window-to-viewport transformation. The
matrix for the normalization transformation is obtained from Equation 8 by
substituting −1 for xvmin and yvmin and substituting +1 for xvmax and yvmax.

Two-Dimensional Viewing

233

ywmax

ywmin

xwmin xwmax

(xw, yw)

Clipping Window 1

1�1

�1

(xnorm, ynorm)
Normalization

Square yvmax

yvmin

xvmin xvmax

(xv, yv)

Screen
Viewport

F I G U R E 7
A point (x w, y w) in a clipping window is mapped to a normalized coordinate position (xnorm, ynorm), then to a
screen-coordinate position (x v, y v) in a viewport. Objects are clipped against the normalization square before the
transformation to viewport coordinates occurs.

Making these substitutions in the expressions for tx, ty, sx, and sy, we have

Mwindow, normsquare =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

2
xwmax − xwmin

0 − xwmax + xwmin

xwmax − xwmin

0
2

ywmax − ywmin
− ywmax + ywmin

ywmax − ywmin

0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(9)

Similarly, after the clipping algorithms have been applied, the normalized
square with edge length equal to 2 is transformed into a specified viewport. This
time, we get the transformation matrix from Equation 8 by substituting −1 for
xwmin and ywmin and substituting +1 for xwmax and ywmax:

Mnormsquare, viewport =

⎡

⎢
⎢
⎢
⎢
⎣

xvmax − xvmin

2
0

xvmax + xvmin

2

0
yvmax − yvmin

2
yvmax + yvmin

2
0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

(10)

The last step in the viewing process is to position the viewport area in the
display window. Typically, the lower-left corner of the viewport is placed at a
coordinate position specified relative to the lower-left corner of the display win-
dow. Figure 8 demonstrates the positioning of a viewport within a display
window.

As before, we maintain the initial proportions of objects by choosing the aspect
ratio of the viewport to be the same as the clipping window. Otherwise, objects

F I G U R E 8
A viewport at coordinate position
(xs , ys) within a display window.

yscreen

xscreen

Viewport

A Red TriangleDisplay
Window

ys

xs

Video Screen

Two-Dimensional Viewing

234

will be stretched or contracted in the x or y directions. Also, the aspect ratio of the
display window can affect the proportions of objects. If the viewport is mapped
to the entire area of the display window and the size of the display window is
changed, objects may be distorted unless the aspect ratio of the viewport is also
adjusted.

Display of Character Strings
Character strings can be handled in one of two ways when they are mapped
through the viewing pipeline to a viewport. The simplest mapping maintains a
constant character size. This method could be employed with bitmap character
patterns. But outline fonts could be transformed the same as other primitives; we
just need to transform the defining positions for the line segments in the outline
character shapes. Algorithms for determining the pixel patterns for the trans-
formed characters are then applied when the other primitives in the scene are
processed.

Split-Screen Effects and Multiple Output Devices
By selecting different clipping windows and associated viewports for a scene, we
can provide simultaneous display of two or more objects, multiple picture parts,
or different views of a single scene. And we can position these views in different
parts of a single display window or in multiple display windows on the screen.
In a design application, for example, we can display a wire-frame view of an
object in one viewport while also displaying a fully rendered view of the object
in another viewport. In addition, we could list other information or menus in a
third viewport.

It is also possible that two or more output devices could be operating con-
currently on a particular system, and we can set up a clipping-window/viewport
pair for each output device. A mapping to a selected output device is some-
times referred to as a workstation transformation. In this case, viewports could
be specified in the coordinates of a particular display device, or each viewport
could be specified within a unit square, which is then mapped to a chosen output
device. Some graphics systems provide a pair of workstation functions for this
purpose. One function is used to designate a clipping window for a selected output
device, identified by a workstation number, and the other function is used to set
the associated viewport for that device.

4 OpenGL Two-Dimensional
Viewing Functions

Actually, the basic OpenGL library has no functions specifically for two-
dimensional viewing because it is designed primarily for three-dimensional
applications. But we can adapt the three-dimensional viewing routines to a two-
dimensional scene, and the core library contains a viewport function. In addition,
the GLU library provides a function for specifying a two-dimensional clipping
window, and we have GLUT library functions for handling display windows.
Therefore, we can use these two-dimensional routines, along with the OpenGL
viewport function, for all the viewing operations we need.

OpenGL Projection Mode
Before we select a clipping window and a viewport in OpenGL, we need to
establish the appropriate mode for constructing the matrix to transform from
world coordinates to screen coordinates. With OpenGL, we cannot set up a

Two-Dimensional Viewing

235

separate two-dimensional viewing-coordinate system as in Figure 3, and we
must set the parameters for the clipping window as part of the projection trans-
formation. Therefore, we must first select the projection mode. We do this with
the same function we used to set the modelview mode for the geometric trans-
formations. Subsequent commands for defining a clipping window and viewport
will then be applied to the projection matrix.

glMatrixMode (GL_PROJECTION);

This designates the projection matrix as the current matrix, which is originally
set to the identity matrix. However, if we are going to loop back through this
statement for other views of a scene, we can also set the initialization as

glLoadIdentity ();

This ensures that each time we enter the projection mode, the matrix will be reset
to the identity matrix so that the new viewing parameters are not combined with
the previous ones.

GLU Clipping-Window Function
To define a two-dimensional clipping window, we can use the GLU function:

gluOrtho2D (xwmin, xwmax, ywmin, ywmax);

Coordinate positions for the clipping-window boundaries are given as double-
precision numbers. This function specifies an orthogonal projection for map-
ping the scene to the screen. For a three-dimensional scene, this means that
objects would be projected along parallel lines that are perpendicular to the two-
dimensional xy display screen. But for a two-dimensional application, objects
are already defined in the xy plane. Therefore, the orthogonal projection has no
effect on our two-dimensional scene other than to convert object positions to nor-
malized coordinates. Nevertheless, we must specify the orthogonal projection
because our two-dimensional scene is processed through the full three-
dimensional OpenGL viewing pipeline. In fact, we could specify the clip-
ping window using the three-dimensional OpenGL core-library version of the
gluOrtho2D functio .

Normalized coordinates in the range from −1 to 1 are used in the OpenGL
clipping routines. And the gluOrtho2D function sets up a three-dimensional
version of transformation matrix 9 for mapping objects within the clipping
window to normalized coordinates. Objects outside the normalized square (and
outside the clipping window) are eliminated from the scene to be displayed.

If we do not specify a clipping window in an application program, the default
coordinates are (xwmin, ywmin) = (−1.0, −1.0) and (xwmax, ywmax) = (1.0, 1.0).
Thus the default clipping window is the normalized square centered on the coor-
dinate origin with a side length of 2.0.

OpenGL Viewport Function
We specify the viewport parameters with the OpenGL function

glViewport (xvmin, yvmin, vpWidth, vpHeight);

where all parameter values are given in integer screen coordinates relative to the
display window. Parameters xvmin and yvmin specify the position of the lower-
left corner of the viewport relative to the lower-left corner of the display window,
and the pixel width and height of the viewport are set with parameters vpWidth

Two-Dimensional Viewing

n

236

and vpHeight. If we do not invoke the glViewport function in a program, the
default viewport size and position are the same as the size and position of the
display window.

After the clipping routines have been applied, positions within the normal-
ized square are transformed into the viewport rectangle using Matrix 10. Coor-
dinates for the upper-right corner of the viewport are calculated for this transfor-
mation matrix in terms of the viewport width and height:

xvmax = xvmin + vpWidth, yvmax = yvmin + vpHeight (11)

For the final transformation, pixel colors for the primitives within the viewport
are loaded into the refresh buffer at the specified screen locations.

Multiple viewports can be created in OpenGL for a variety of applications
(see Section 3). We can obtain the parameters for the currently active viewport
using the query function

glGetIntegerv (GL_VIEWPORT, vpArray);

where vpArray is a single-subscript, four-element array. This Get function
returns the parameters for the current viewport to vpArray in the order xvmin,
yvmin, vpWidth, and vpHeight. In an interactive application, for example,
we can use this function to obtain parameters for the viewport that contains the
screen cursor.

Creating a GLUT Display Window
Because the GLUT library interfaces with any window-management system, we
use the GLUT routines for creating and manipulating display windows so that
our example programs will be independent of any specific machine. To access
these routines, we first need to initialize GLUT with the following function:

glutInit (&argc, argv);

Parameters for this initialization function are the same as those for the main
procedure, and we can use glutInit to process command-line arguments.

We have three functions in GLUT for defining a display window and choosing
its dimensions and position:

glutInitWindowPosition (xTopLeft, yTopLeft);
glutInitWindowSize (dwWidth, dwHeight);
glutCreateWindow ("Title of Display Window");

The first of these functions gives the integer, screen-coordinate position for the
top-left corner of the display window, relative to the top-left corner of the screen. If
either coordinate is negative, the display-window position on the screen is deter-
mined by the window-management system. With the second function, we choose
a width and height for the display window in positive integer pixel dimensions.
If we do not use these two functions to specify a size and position, the default
size is 300 by 300 and the default position is (−1, −1), which leaves the posi-
tioning of the display window to the window-management system. In any case,
the display-window size and position specified with GLUT routines might be
ignored, depending on the state of the window-management system or the other
requirements currently in effect for it. Thus, the window system might position
and size the display window differently. The third function creates the display
window, with the specified size and position, and assigns a title, although the use

Two-Dimensional Viewing

237

of the title also depends on the windowing system. At this point, the display win-
dow is defined but not shown on the screen until all the GLUT setup operations
are complete.

Setting the GLUT Display-Window Mode and Color
Various display-window parameters are selected with the GLUT function

glutInitDisplayMode (mode);

We use this function to choose a color mode (RGB or index) and different buffer
combinations, and the selected parameters are combined with the logical or
operation. The default mode is single buffering and the RGB (or RGBA) color
mode, which is the same as setting this mode with the statement

glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);

The color mode specification GLUT RGB is equivalent to GLUT RGBA. A back-
ground color for the display window is chosen in RGB mode with the OpenGL
routine

glClearColor (red, green, blue, alpha);

In color-index mode, we set the display-window color with

glClearIndex (index);

where parameter index is assigned an integer value corresponding to a position
within the color table.

GLUT Display-Window Identifier
Multiple display windows can be created for an application, and each is assigned
a positive-integer display-window identifier, starting with the value 1 for the
first window that is created. At the time that we initiate a display window, we
can record its identifier with the statement

windowID = glutCreateWindow ("A Display Window");

Once we have saved the integer display-window identifier in variable name
windowID, we can use the identifier number to change display parameters or
to delete the display window.

Deleting a GLUT Display Window
The GLUT library also includes a function for deleting a display window that we
have created. If we know the display window’s identifier, we can eliminate it with
the statement

glutDestroyWindow (windowID);

Current GLUT Display Window
When we specify any display-window operation, it is applied to the current dis-
play window, which is either the last display window that we created or the one
we select with the following command:

glutSetWindow (windowID);

Two-Dimensional Viewing

238

In addition, at any time, we can query the system to determine which window is
the current display window:

currentWindowID = glutGetWindow ();

A value of 0 is returned by this function if there are no display windows or if the
current display window was destroyed.

Relocating and Resizing a GLUT Display Window
We can reset the screen location for the current display window with

glutPositionWindow (xNewTopLeft, yNewTopLeft);

where the coordinates specify the new position for the upper-left display-window
corner, relative to the upper-left corner of the screen. Similarly, the following
function resets the size of the current display window:

glutReshapeWindow (dwNewWidth, dwNewHeight);

With the following command, we can expand the current display window to fill
the screen:

glutFullScreen ();

The exact size of the display window after execution of this routine
depends on the window-management system. A subsequent call to either
glutPositionWindow or glutReshapeWindow will cancel the request for an
expansion to full-screen size.

Whenever the size of a display window is changed, its aspect ratio may

glutReshapeFunc (winReshapeFcn);

This GLUT routine is activated when the size of a display window is changed,
and the new width and height are passed to its argument: the function
winReshapeFcn, in this example. Thus, winReshapeFcn is the “callback func-
tion” for the “reshape event.” We can then use this callback function to change
the parameters for the viewport so that the original aspect ratio of the scene is
maintained. In addition, we could also reset the clipping-window boundaries,
change the display-window color, adjust other viewing parameters, and perform
any other tasks.

Managing Multiple GLUT Display Windows
The GLUT library also has a number of routines for manipulating a display win-
dow in various ways. These routines are particularly useful when we have mul-
tiple display windows on the screen and we want to rearrange them or locate a
particular display window.

We use the following routine to convert the current display window to an
icon in the form of a small picture or symbol representing the window:

glutIconifyWindow ();

The label on this icon will be the same name that we assigned to the window, but
we can change this with the following command:

glutSetIconTitle ("Icon Name");

change and objects may be distorted from their original shapes. We can adjust for
a change in display-window dimensions using the statement

Two-Dimensional Viewing

239

We also can change the name of the display window with a similar command:

glutSetWindowTitle ("New Window Name");

With multiple display windows open on the screen, some windows may
overlap or totally obscure other display windows. We can choose any display
window to be in front of all other windows by first designating it as the current
window, and then issuing the “pop-window” command:

glutSetWindow (windowID);
glutPopWindow ();

In a similar way, we can “push” the current display window to the back so that it
is behind all other display windows. This sequence of operations is

glutSetWindow (windowID);
glutPushWindow ();

We can also take the current window off the screen with

glutHideWindow ();

In addition, we can return a “hidden” display window, or one that has been
converted to an icon, by designating it as the current display window and then
invoking the function

glutShowWindow ();

GLUT Subwindows
Within a selected display window, we can set up any number of second-level
display windows, which are called subwindows. This provides a means for parti-
tioning display windows into different display sections. We create a subwindow
with the following function:

glutCreateSubWindow (windowID, xBottomLeft, yBottomLeft,
width, height);

Parameter windowID identifies the display window in which we want to set up
the subwindow. With the remaining parameters, we specify the subwindow’s size
and the placement of its lower-left corner relative to the lower-left corner of the
display window.

Subwindows are assigned a positive integer identifier in the same way that
first-level display windows are numbered, and we can place a subwindow inside
another subwindow. Also, each subwindow can be assigned an individual display
mode and other parameters. We can even reshape, reposition, push, pop, hide,
and show subwindows, just as we can with first-level display windows. But we
cannot convert a GLUT subwindow to an icon.

Selecting a Display-Window Screen-Cursor Shape
We can use the following GLUT routine to request a shape for the screen cursor
that is to be used with the current window:

glutSetCursor (shape);

Two-Dimensional Viewing

240

The possible cursor shapes that we can select are an arrow pointing in a cho-
sen direction, a bidirectional arrow, a rotating arrow, a crosshair, a wristwatch, a
question mark, or even a skull and crossbones. For example, we can assign the
symbolic constant GLUT CURSOR UP DOWN to parameter shape to obtain an
up-down arrow. A rotating arrow is chosen with GLUT CURSOR CYCLE, a wrist-
watch shape is selected with GLUT CURSOR WAIT, and a skull and crossbones
is obtained with the constant GLUT CURSOR DESTROY. A cursor shape can be
assigned to a display window to indicate a particular kind of application, such
as an animation. However, the exact shapes that we can use are system depen-
dent.

Viewing Graphics Objects in a GLUT Display Window
After we have created a display window and selected its position, size, color, and
other characteristics, we indicate what is to be shown in that window. If more
than one display window has been created, we first designate the one we want
as the current display window. Then we invoke the following function to assign
something to that window:

glutDisplayFunc (pictureDescrip);

The argument is a routine that describes what is to be displayed in the cur-
rent window. This routine, called pictureDescrip for this example, is referred
to as a callback function because it is the routine that is to be executed when-
ever GLUT determines that the display-window contents should be renewed.
Routine pictureDescrip usually contains the OpenGL primitives and
attributes that define a picture, although it could specify other constructs such
as a menu display.

If we have set up multiple display windows, then we repeat this process for
each of the display windows or subwindows. Also, we may need to call glut-
DisplayFunc after the glutPopWindow command if the display window has
been damaged during the process of redisplaying the windows. In this case, the
following function is used to indicate that the contents of the current display
window should be renewed:

glutPostRedisplay ();

This routine is also used when an additional object, such as a pop-up menu, is to
be shown in a display window.

Executing the Application Program
When the program setup is complete and the display windows have been created
and initialized, we need to issue the final GLUT command that signals execution
of the program:

glutMainLoop ();

At this time, display windows and their graphic contents are sent to the screen.
The program also enters the GLUT processing loop that continually checks for
new “events,” such as interactive input from a mouse or a graphics tablet.

Two-Dimensional Viewing

241

Other GLUT Functions

Sometimes it is convenient to designate a function that is to be executed when
there are no other events for the system to process. We can do that with

glutIdleFunc (function);

The parameter for this GLUT routine could reference a background function or
a procedure to update parameters for an animation when no other processes are
taking place.

Finally, we can use the following function to query the system about some of
the current state parameters:

glutGet (stateParam);

This function returns an integer value corresponding to the symbolic constant we
select for its argument. For example, we can obtain the x-coordinate position for
the top-left corner of the current display window, relative to the top-left corner
of the screen, with the constant GLUT WINDOW X; and we can retrieve the cur-
rent display-window width or the screen width with GLUT WINDOW WIDTH or
GLUT SCREEN WIDTH.

OpenGL Two-Dimensional Viewing Program Example
As a demonstration of the use of the OpenGL viewport function, we use a split-
screen effect to show two views of a triangle in the xy plane with its centroid
at the world-coordinate origin. First, a viewport is defined in the left half of the
display window, and the original triangle is displayed there in blue. Using the
same clipping window, we then define another viewport for the right half of the
display window, and the fill color is changed to red. The triangle is then rotated
about its centroid and displayed in the second viewport.

#include <GL/glut.h>

class wcPt2D {
public:

GLfloat x, y;
};

The GLUT library provides a wide variety of routines to handle processes that are
system dependent and to add features to the basic OpenGL library. For example,
this library contains functions for generating bitmap and outline characters and it
provides functions for loading values into a color table. In addition, some GLUT
functions are available for displaying three-dimensional objects, either as solids
or in a wireframe representation. These objects include a sphere, a torus, and the
five regular polyhedra (cube, tetrahedron, octahedron, dodecahedron, and
icosahedron).

Two-Dimensional Viewing

We also have GLUT functions for obtaining and processing interactive input
and for creating and managing menus. Individual routines are provided by GLUT
for input devices such as a mouse, keyboard, graphics tablet, and spaceball.

,

242

void init (void)
{

/* Set color of display window to white. */
glClearColor (1.0, 1.0, 1.0, 0.0);

/* Set parameters for world-coordinate clipping window. */
glMatrixMode (GL_PROJECTION);
gluOrtho2D (-100.0, 100.0, -100.0, 100.0);

/* Set mode for constructing geometric transformation matrix. */
glMatrixMode (GL_MODELVIEW);

}

void triangle (wcPt2D *verts)
{

GLint k;

glBegin (GL_TRIANGLES);
for (k = 0; k < 3; k++)

glVertex2f (verts [k].x, verts [k].y);
glEnd ();

}

void displayFcn (void)
{

/* Define initial position for triangle. */
wcPt2D verts [3] = { {-50.0, -25.0}, {50.0, -25.0}, {0.0, 50.0} };

glClear (GL_COLOR_BUFFER_BIT); // Clear display window.

glColor3f (0.0, 0.0, 1.0); // Set fill color to blue.
glViewport (0, 0, 300, 300); // Set left viewport.
triangle (verts); // Display triangle.

/* Rotate triangle and display in right half of display window. */
glColor3f (1.0, 0.0, 0.0); // Set fill color to red.
glViewport (300, 0, 300, 300); // Set right viewport.
glRotatef (90.0, 0.0, 0.0, 1.0); // Rotate about z axis.
triangle (verts); // Display red rotated triangle.

glFlush ();
}
void main (int argc, char ** argv)
{

glutInit (&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowPosition (50, 50);
glutInitWindowSize (600, 300);
glutCreateWindow ("Split-Screen Example");

init ();
glutDisplayFunc (displayFcn);

glutMainLoop ();
}

Two-Dimensional Viewing

243

5 Clipping Algorithms
Generally, any procedure that eliminates those portions of a picture that are either
inside or outside a specified region of space is referred to as a clipping algorithm
or simply clipping. Usually a clipping region is a rectangle in standard position,
although we could use any shape for a clipping application.

The most common application of clipping is in the viewing pipeline,
where clipping is applied to extract a designated portion of a scene (either
two-dimensional or three-dimensional) for display on an output device. Clip-
ping methods are also used to antialias object boundaries, to construct objects
using solid-modeling methods, to manage a multiwindow environment, and to
allow parts of a picture to be moved, copied, or erased in drawing and painting
programs.

Clipping algorithms are applied in two-dimensional viewing procedures to
identify those parts of a picture that are within the clipping window. Everything
outside the clipping window is then eliminated from the scene description that
is transferred to the output device for display. An efficient implementation of
clipping in the viewing pipeline is to apply the algorithms to the normalized
boundaries of the clipping window. This reduces calculations, because all geo-
metric and viewing transformation matrices can be concatenated and applied to
a scene description before clipping is carried out. The clipped scene can then be
transferred to screen coordinates for final processing.

In the following sections, we explore two-dimensional algorithms for

• Point clipping
• Line clipping (straight-line segments)
• Fill-area clipping (polygons)
• Curve clipping
• Text clipping

Point, line, and polygon clipping are standard components of graphics packages.
But similar methods can be applied to other objects, particularly conics, such as
circles, ellipses, and spheres, in addition to spline curves and surfaces. Usually,
however, objects with nonlinear boundaries are approximated with straight-line
segments or polygon surfaces to reduce computations.

Unless otherwise stated, we assume that the clipping region is a rectangu-
lar window in standard position, with boundary edges at coordinate positions
xwmin, xwmax, ywmin, and ywmax. These boundary edges typically correspond to a
normalized square, in which the x and y values range either from 0 to 1 or from
−1 to 1.

6 Two-Dimensional Point Clipping
For a clipping rectangle in standard position, we save a two-dimensional point
P = (x, y) for display if the following inequalities are satisfied:

xwmin ≤ x ≤ xwmax

ywmin ≤ y ≤ ywmax
(12)

If any of these four inequalities is not satisfied, the point is clipped (not saved for
display).

Although point clipping is applied less often than line or polygon clipping,
it is useful in various situations, particularly when pictures are modeled with
particle systems. For example, point clipping can be applied to scenes involving

Two-Dimensional Viewing

244

clouds, sea foam, smoke, or explosions that are modeled with “particles,” such as
the center coordinates for small circles or spheres.

7 Two-Dimensional Line Clipping
Figure 9 illustrates possible positions for straight-line segments in relationship
to a standard clipping window. A line-clipping algorithm processes each line in a
scene through a series of tests and intersection calculations to determine whether
the entire line or any part of it is to be saved. The expensive part of a line-clipping
procedure is in calculating the intersection positions of a line with the window
edges. Therefore, a major goal for any line-clipping algorithm is to minimize
the intersection calculations. To do this, we can first perform tests to determine
whether a line segment is completely inside the clipping window or completely
outside. It is easy to determine whether a line is completely inside a clipping
window, but it is more difficult to identify all lines that are entirely outside the
window. If we are unable to identify a line as completely inside or completely
outside a clipping rectangle, we must then perform intersection calculations to
determine whether any part of the line crosses the window interior.

We test a line segment to determine if it is completely inside or outside a
selected clipping-window edge by applying the point-clipping tests of the previ-
ous section. When both endpoints of a line segment are inside all four clipping
boundaries, such as the line from P1 to P2 in Figure 9, the line is completely inside
the clipping window and we save it. And when both endpoints of a line segment
are outside any one of the four boundaries (as with line P3P4 in Figure 9), that
line is completely outside the window and it is eliminated from the scene descrip-
tion. But if both these tests fail, the line segment intersects at least one clipping
boundary and it may or may not cross into the interior of the clipping window.

One way to formulate the equation for a straight-line segment is to use the
following parametric representation, where the coordinate positions (x0, y0) and
(xend, yend) designate the two line endpoints:

x = x0 + u(xend − x0)

y = y0 + u(yend − y0) 0 ≤ u ≤ 1
(13)

We can use this parametric representation to determine where a line segment
crosses each clipping-window edge by assigning the coordinate value for that
edge to either x or y and solving for parameter u. For example, the left window
boundary is at position xwmin, so we substitute this value for x, solve for u, and
calculate the corresponding y-intersection value. If this value of u is outside the
range from 0 to 1, the line segment does not intersect that window border line.

Clipping
Window

P1

P3

P4

P9

P5

P7

P2

P6

P8
P10

Before Clipping

(a)

Clipping
Window

P1

P5�

P7�

P2

P6
P8�

After Clipping

(b)

F I G U R E 9
Clipping straight-line segments using a
standard rectangular clipping window.

Two-Dimensional Viewing

245

However, if the value of u is within the range from 0 to 1, part of the line is inside
that border. We can then process this inside portion of the line segment against
the other clipping boundaries until either we have clipped the entire line or we
find a section that is inside the window.

Processing line segments in a scene using the simple clipping approach
described in the preceding paragraph is straightforward, but not very efficient.
It is possible to reformulate the initial testing and the intersection calculations to
reduce processing time for a set of line segments, and a number of faster line
clippers have been developed. Some of the algorithms are designed explic-
itly for two-dimensional pictures and some are easily adapted to sets of three-
dimensional line segments.

Cohen-Sutherland Line Clipping
This is one of the earliest algorithms to be developed for fast line clipping, and
variations of this method are widely used. Processing time is reduced in the
Cohen-Sutherland method by performing more tests before proceeding to the
intersection calculations. Initially, every line endpoint in a picture is assigned
a four-digit binary value, called a region code, and each bit position is used to
indicate whether the point is inside or outside one of the clipping-window bound-
aries. We can reference the window edges in any order, and Figure 10 illustrates
one possible ordering with the bit positions numbered 1 through 4 from right
to left. Thus, for this ordering, the rightmost position (bit 1) references the left
clipping-window boundary, and the leftmost position (bit 4) references the top
window boundary. A value of 1 (or true) in any bit position indicates that the
endpoint is outside that window border. Similarly, a value of 0 (or false) in any
bit position indicates that the endpoint is not outside (it is inside or on) the corre-
sponding window edge. Sometimes, a region code is referred to as an “out” code
because a value of 1 in any bit position indicates that the spatial point is outside
the corresponding clipping boundary.

bit

4

Top

Bottom

Right

Left

bit

3

bit

2

bit

1

F I G U R E 1 0
A possible ordering for the clipping-
window boundaries corresponding to
the bit positions in the Cohen-
Sutherland endpoint region code.

Each clipping-window edge divides two-dimensional space into an inside
half space and an outside half space. Together, the four window borders create
nine regions, and Figure 11 lists the value for the binary code in each of these
regions. Thus, an endpoint that is below and to the left of the clipping window is
assigned the region code 0101, and the region-code value for any endpoint inside
the clipping window is 0000.

Bit values in a region code are determined by comparing the coordinate values
(x, y) of an endpoint to the clipping boundaries. Bit 1 is set to 1 if x < xwmin, and

F I G U R E 1 1
The nine binary region codes for
identifying the position of a line
endpoint, relative to the
clipping-window boundaries.

1001 1000

0100

1010

00100001
0000

Clipping Window

0101 0110

Two-Dimensional Viewing

246

the other three bit values are determined similarly. Instead of using inequality
testing, we can determine the values for a region-code more efficiently using
bit-processing operations and the following two steps: (1) Calculate differences
between endpoint coordinates and clipping boundaries. (2) Use the resultant sign
bit of each difference calculation to set the corresponding value in the region code.
For the ordering scheme shown in Figure 10, bit 1 is the sign bit of x − xw min;
bit 2 is the sign bit of xwmax − x; bit 3 is the sign bit of y − ywmin; and bit 4 is the
sign bit of ywmax − y.

Once we have established region codes for all line endpoints, we can quickly
determine which lines are completely inside the clip window and which are com-
pletely outside. Any lines that are completely contained within the window edges
have a region code of 0000 for both endpoints, and we save these line segments.
Any line that has a region-code value of 1 in the same bit position for each endpoint
is completely outside the clipping rectangle, and we eliminate that line segment.
As an example, a line that has a region code of 1001 for one endpoint and a code
of 0101 for the other endpoint is completely to the left of the clipping window, as
indicated by the value of 1 in the first bit position of each region code.

We can perform the inside-outside tests for line segments using logical opera-
tors. When the or operation between two endpoint region codes for a line segment
is false (0000), the line is inside the clipping window. Therefore, we save the line
and proceed to test the next line in the scene description. When the and operation
between the two endpoint region codes for a line is true (not 0000), the line is
completely outside the clipping window, and we can eliminate it from the scene
description.

Lines that cannot be identified as being completely inside or completely out-
side a clipping window by the region-code tests are next checked for intersec-
tion with the window border lines. As shown in Figure 12, line segments can
intersect clipping boundary lines without entering the interior of the window.
Therefore, several intersection calculations might be necessary to clip a line seg-
ment, depending on the order in which we process the clipping boundaries. As
we process each clipping-window edge, a section of the line is clipped, and the
remaining part of the line is checked against the other window borders. We con-
tinue eliminating sections until either the line is totally clipped or the remaining
part of the line is inside the clipping window. For the following discussion, we
assume that the window edges are processed in the following order: left, right,
bottom, top. To determine whether a line crosses a selected clipping boundary,
we can check corresponding bit values in the two endpoint region codes. If one
of these bit values is 1 and the other is 0, the line segment crosses that boundary.

P2

P3

P4

P1

P2�

P3�
P1�

P2�

Clipping
Window

F I G U R E 1 2
Lines extending from one clipping-window region to
another may cross into the clipping window, or they
could intersect one or more clipping boundaries
without entering the window.

Two-Dimensional Viewing

247

Figure 12 illustrates two line segments that cannot be identified immedi-
ately as completely inside or completely outside the clipping window. The region
codes for the line from P1 to P2 are 0100 and 1001. Thus, P1 is inside the left clip-
ping boundary and P2 is outside that boundary. We then calculate the intersection
position P′

2, and we clip off the line section from P2 to P′
2. The remaining portion

of the line is inside the right border line, and so we next check the bottom border.
Endpoint P1 is below the bottom clipping edge and P′

2 is above it, so we determine
the intersection position at this boundary (P′

1). We eliminate the line section from
P1 to P′

1 and proceed to the top window edge. There we determine the intersection
position to be P′′

2. The final step is to clip off the section above the top boundary
and save the interior segment from P′

1 to P′′
2. For the second line, we find that point

P3 is outside the left boundary and P4 is inside. Thus, we calculate the intersection
position P′

3 and eliminate the line section from P3 to P′
3. By checking region codes

for the endpoints P′
3 and P4, we find that the remainder of the line is below the

clipping window and can be eliminated as well.
It is possible, when clipping a line segment using this approach, to calculate

an intersection position at all four clipping boundaries, depending on how the
line endpoints are processed and what ordering we use for the boundaries. Figure
13 shows the four intersection positions that could be calculated for a line seg-
ment that is processed against the clipping-window edges in the order left, right,
bottom, top. Therefore, variations of this basic approach have been developed in
an effort to reduce the intersection calculations.

To determine a boundary intersection for a line segment, we can use the slope-
intercept form of the line equation. For a line with endpoint coordinates (x0, y0)
and (xend, yend), the y coordinate of the intersection point with a vertical clipping
border line can be obtained with the calculation

y = y0 + m(x − x0) (14)

where the x value is set to either xwmin or xwmax, and the slope of the line is
calculated as m = (yend − y0)/(xend − x0). Similarly, if we are looking for the
intersection with a horizontal border, the x coordinate can be calculated as

x = x0 + y − y0

m
(15)

with y set either to ywmin or to ywmax.

F I G U R E 1 3
Four intersection positions (labeled from 1 to 4) for a line
segment that is clipped against the window boundaries in
the order left, right, bottom, top.

(xo, yo)

(xend, yend)

1

4

2

3

Clipping
Window

Two-Dimensional Viewing

248

An implementation of the two-dimensional, Cohen-Sutherland line-clipping
algorithm is given in the following procedures.

class wcPt2D {
public:

GLfloat x, y;
};

inline GLint round (const GLfloat a) { return GLint (a + 0.5); }

/* Define a four-bit code for each of the outside regions of a
* rectangular clipping window.
*/
const GLint winLeftBitCode = 0x1;
const GLint winRightBitCode = 0x2;
const GLint winBottomBitCode = 0x4;
const GLint winTopBitCode = 0x8;

/* A bit-mask region code is also assigned to each endpoint of an input
* line segment, according to its position relative to the four edges of
* an input rectangular clip window.
*
* An endpoint with a region-code value of 0000 is inside the clipping
* window, otherwise it is outside at least one clipping boundary. If
* the 'or' operation for the two endpoint codes produces a value of
* false, the entire line defined by these two endpoints is saved
* (accepted). If the 'and' operation between two endpoint codes is
* true, the line is completely outside the clipping window, and it is
* eliminated (rejected) from further processing.
*/
inline GLint inside (GLint code) { return GLint (!code); }
inline GLint reject (GLint code1, GLint code2)

{ return GLint (code1 & code2); }
inline GLint accept (GLint code1, GLint code2)

{ return GLint (!(code1 | code2)); }

GLubyte encode (wcPt2D pt, wcPt2D winMin, wcPt2D winMax)
{
GLubyte code = 0x00;

if (pt.x < winMin.x)
code = code | winLeftBitCode;

if (pt.x > winMax.x)
code = code | winRightBitCode;

if (pt.y < winMin.y)
code = code | winBottomBitCode;

if (pt.y > winMax.y)
code = code | winTopBitCode;

return (code);
}

Two-Dimensional Viewing

249

void swapPts (wcPt2D * p1, wcPt2D * p2)
{
wcPt2D tmp;

tmp = *p1; *p1 = *p2; *p2 = tmp;
}

void swapCodes (GLubyte * c1, GLubyte * c2)
{
GLubyte tmp;

tmp = *c1; *c1 = *c2; *c2 = tmp;
}

void lineClipCohSuth (wcPt2D winMin, wcPt2D winMax, wcPt2D p1, wcPt2D p2)
{
GLubyte code1, code2;
GLint done = false, plotLine = false;
GLfloat m;

while (!done) {
code1 = encode (p1, winMin, winMax);
code2 = encode (p2, winMin, winMax);
if (accept (code1, code2)) {
done = true;
plotLine = true;

}
else
if (reject (code1, code2))
done = true;

else {
/* Label the endpoint outside the display window as p1. */
if (inside (code1)) {
swapPts (&p1, &p2);
swapCodes (&code1, &code2);

}
/* Use slope m to find line-clipEdge intersection. */
if (p2.x != p1.x)
m = (p2.y - p1.y) / (p2.x - p1.x);

if (code1 & winLeftBitCode) {
p1.y += (winMin.x - p1.x) * m;
p1.x = winMin.x;

}
else
if (code1 & winRightBitCode) {
p1.y += (winMax.x - p1.x) * m;
p1.x = winMax.x;

}
else
if (code1 & winBottomBitCode) {
/* Need to update p1.x for nonvertical lines only. */
if (p2.x != p1.x)
p1.x += (winMin.y - p1.y) / m;

p1.y = winMin.y;
}

Two-Dimensional Viewing

250

else
if (code1 & winTopBitCode) {
if (p2.x != p1.x)
p1.x += (winMax.y - p1.y) / m;

p1.y = winMax.y;
}

}
}
if (plotLine)
lineBres (round (p1.x), round (p1.y), round (p2.x), round (p2.y));

}

Liang-Barsky Line Clipping
Faster line-clipping algorithms have been developed that do more line testing
before proceeding to the intersection calculations. One of the earliest efforts in
this direction is an algorithm developed by Cyrus and Beck, which is based on
analysis of the parametric line equations. Later, Liang and Barsky independently
devised an even faster form of the parametric line-clipping algorithm.

For a line segment with endpoints (x0, y0) and (xend, yend), we can describe the
line with the parametric form

x = x0 + u�x

y = y0 + u�y 0 ≤ u ≤ 1
(16)

where �x = xend − x0 and �y = yend − y0. In the Liang-Barsky algorithm, the
parametric line equations are combined with the point-clipping conditions 12
to obtain the inequalities

xwmin ≤ x0 + u�x ≤ xwmax

ywmin ≤ y0 + u�y ≤ ywmax
(17)

which can be expressed as

u pk ≤ qk , k = 1, 2, 3, 4 (18)

where parameters p and q are defined as

p1 = −�x, q1 = x0 − xwmin

p2 = �x, q2 = xwmax − x0

p3 = −�y, q3 = y0 − ywmin

p4 = �y, q4 = ywmax − y0

(19)

Any line that is parallel to one of the clipping-window edges has pk = 0 for the
value of k corresponding to that boundary, where k = 1, 2, 3, and 4 correspond
to the left, right, bottom, and top boundaries, respectively. If, for that value of k,
we also find qk < 0, then the line is completely outside the boundary and can
be eliminated from further consideration. If qk ≥ 0, the line is inside the parallel
clipping border.

When pk < 0, the infinite extension of the line proceeds from the outside
to the inside of the infinite extension of this particular clipping-window edge. If
pk > 0, the line proceeds from the inside to the outside. For a nonzero value of pk ,
we can calculate the value of u that corresponds to the point where the infinitely

Two-Dimensional Viewing

251

extended line intersects the extension of window edge k as

u = qk

pk
(20)

For each line, we can calculate values for parameters u1 and u2 that define that
part of the line that lies within the clip rectangle. The value of u1 is determined by
looking at the rectangle edges for which the line proceeds from the outside to the
inside (p < 0). For these edges, we calculate rk = qk/pk . The value of u1 is taken
as the largest of the set consisting of 0 and the various values of r . Conversely,
the value of u2 is determined by examining the boundaries for which the line
proceeds from inside to outside (p > 0). A value of rk is calculated for each of
these boundaries, and the value of u2 is the minimum of the set consisting of 1 and
the calculated r values. If u1 > u2, the line is completely outside the clip window
and it can be rejected. Otherwise, the endpoints of the clipped line are calculated
from the two values of parameter u.

This algorithm is implemented in the following code sections. Line intersec-
tion parameters are initialized to the values u1 = 0 and u2 = 1. For each clipping
boundary, the appropriate values for p and q are calculated and used by the
function clipTest to determine whether the line can be rejected or whether
the intersection parameters are to be adjusted. When p < 0, parameter r is used
to update u1; when p > 0, parameter r is used to update u2. If updating u1 or
u2 results in u1 > u2, we reject the line. Otherwise, we update the appropriate u
parameter only if the new value results in a shortening of the line. When p = 0 and
q < 0, we can eliminate the line because it is parallel to and outside this boundary.
If the line has not been rejected after all four values of p and q have been tested,
the endpoints of the clipped line are determined from values of u1 and u2.

class wcPt2D
{

private:
GLfloat x, y;

public:
/* Default Constructor: initialize position as (0.0, 0.0). */
wcPt3D () {

x = y = 0.0;
}

setCoords (GLfloat xCoord, GLfloat yCoord) {
x = xCoord;
y = yCoord;

}

GLfloat getx () const {
return x;

}

GLfloat gety () const {
return y;

}
};

inline GLint round (const GLfloat a) { return GLint (a + 0.5); }

Two-Dimensional Viewing

252

GLint clipTest (GLfloat p, GLfloat q, GLfloat * u1, GLfloat * u2)
{
GLfloat r;
GLint returnValue = true;

if (p < 0.0) {
r = q / p;
if (r > *u2)
returnValue = false;

else
if (r > *u1)
*u1 = r;

}
else
if (p > 0.0) {
r = q / p;
if (r < *u1)
returnValue = false;

else if (r < *u2)
*u2 = r;

}
else
/* Thus p = 0 and line is parallel to clipping boundary. */
if (q < 0.0)
/* Line is outside clipping boundary. */
returnValue = false;

return (returnValue);
}

void lineClipLiangBarsk (wcPt2D winMin, wcPt2D winMax, wcPt2D p1, wcPt2D p2)
{
GLfloat u1 = 0.0, u2 = 1.0, dx = p2.getx () - p1.getx (), dy;

if (clipTest (-dx, p1.getx () - winMin.getx (), &u1, &u2))
if (clipTest (dx, winMax.getx () - p1.getx (), &u1, &u2)) {
dy = p2.gety () - p1.gety ();
if (clipTest (-dy, p1.gety () - winMin.gety (), &u1, &u2))
if (clipTest (dy, winMax.gety () - p1.gety (), &u1, &u2)) {
if (u2 < 1.0) {
p2.setCoords (p1.getx () + u2 * dx, p1.gety () + u2 * dy);

}
if (u1 > 0.0) {
p1.setCoords (p1.getx () + u1 * dx, p1.gety () + u1 * dy);

}
lineBres (round (p1.getx ()), round (p1.gety ()),

round (p2.getx ()), round (p2.gety ()));
}

}
}

In general, the Liang-Barsky algorithm is more efficient than the Cohen-
Sutherland line-clipping algorithm. Each update of parameters u1 and u2 requires
only one division; and window intersections of the line are computed only once,
when the final values of u1 and u2 have been computed. In contrast, the Cohen

Two-Dimensional Viewing

253

and Sutherland algorithm can calculate intersections repeatedly along a line path,
even though the line may be completely outside the clip window. In addition, each
Cohen-Sutherland intersection calculation requires both a division and a multi-
plication. The two-dimensional Liang-Barsky algorithm can be extended to clip
three-dimensional lines.

Nicholl-Lee-Nicholl Line Clipping
By creating more regions around the clipping window, the Nicholl-Lee-Nicholl
(NLN) algorithm avoids multiple line-intersection calculations. In the Cohen-
Sutherland method, for example, multiple intersections could be calculated along
the path of a line segment before an intersection on the clipping rectangle is
located or the line is completely rejected. These extra intersection calculations
are eliminated in the NLN algorithm by carrying out more region testing before
intersection positions are calculated. Compared to both the Cohen-Sutherland
and the Liang-Barsky algorithms, the Nicholl-Lee-Nicholl algorithm performs
fewer comparisons and divisions. The trade-off is that the NLN algorithm can be
applied only to two-dimensional clipping, whereas both the Liang-Barsky and
the Cohen-Sutherland methods are easily extended to three-dimensional scenes.

Initial testing to determine whether a line segment is completely inside the
clipping window or outside the window limits can be accomplished with region-
code tests, as in the previous two algorithms. If a trivial acceptance or rejection of
the line is not possible, the NLN algorithm proceeds to set up additional clipping
regions.

For a line with endpoints P0 and Pend, we first determine the position of
point P0 for the nine possible regions relative to the clipping window. Only the
three regions shown in Figure 14 need be considered. If P0 lies in any one of
the other six regions, we can move it to one of the three regions in Figure 14
using a symmetry transformation. For example, the region directly above the clip
window can be transformed to the region left of the window using a reflection
about the line y = −x, or we could use a 90◦ counterclockwise rotation.

Assuming that P0 and Pend are not both inside the clipping window, we next
determine the position of Pend relative to P0. To do this, we create some new regions
in the plane, depending on the location of P0. Boundaries of the new regions are
semi-infinite line segments that start at the position of P0 and pass through the
clipping-window corners. If P0 is inside the clipping window, we set up the four
regions shown in Figure 15. Then, depending on which one of the four regions
(L, T, R, or B) contains Pend, we compute the line-intersection position with the
corresponding window boundary.

If P0 is in the region to the left of the window, we set up the four regions labeled
L, LT, LR, and LB in Figure 16. These four regions again determine a unique

P0 P0

P0

P0 inside Clipping Window

(a) (b) (c)

P0 in an Edge Region P0 in a Corner Region

F I G U R E 1 4
Three possible positions for a line endpoint P0 in the NLN line-clipping algorithm.

Two-Dimensional Viewing

254

T

B

P0

RL

F I G U R E 1 5
The four regions used in the NLN
algorithm when P0 is inside the
clipping window and Pend is outside.

LT

LB

P0 LRL

L

L

F I G U R E 1 6
The four clipping regions used in the
NLN algorithm when P0 is directly to
the left of the clip window.

clipping-window edge for the line segment, relative to the position of Pend. For
instance, if Pend is in any one of the three regions labeled L, we clip the line at the left
window border and save the line segment from this intersection point to Pend. If
Pend is in region LT, we save the line segment from the left window boundary to the
top boundary. Similar processing is carried out for regions LR and LB. However,
if Pend is not in any of the four regions L, LT, LR, or LB, the entire line is clipped.

For the third case, when P0 is to the left and above the clipping window, we
use the regions in Figure 17. In this case, we have the two possibilities shown,
depending on the position of P0 within the top-left corner of the clipping window.
When P0 is closer to the left clipping boundary of the window, we use the regions
in (a) of this figure. Otherwise, when P0 is closer to the top clipping boundary of
the window, we use the regions in (b). If Pend is in one of the regions T, L, TR, TB,
LR, or LB, this determines a unique clipping-window border for the intersection
calculations. Otherwise, the entire line is rejected.

To determine the region in which Pend is located, we compare the slope of the
line segment to the slopes of the boundaries of the NLN regions. For example, if
P0 is left of the clipping window (Figure 16), then Pend is in region LT if

slopeP0PT R < slopeP0Pend < slopeP0PT L (21)

or
yT − y0

xR − x0
<

yend − y0

xend − x0
<

yT − y0

xL − x0
(22)

TB

P0

TR

T

T

L

LB

P0

(a)

or TR

LR

T

L
L

LB

(b)

F I G U R E 1 7
The two possible sets of clipping
regions used in the NLN algorithm
when P0 is above and to the left of the
clipping window.

Two-Dimensional Viewing

255

We clip the entire line if

(yT − y0)(xend − x0) < (xL − x0)(yend − y0) (23)

The coordinate-difference calculations and product calculations used in the
slope tests are saved and also used in the intersection calculations. From the
parametric equations

x = x0 + (xend − x0)u

y = y0 + (yend − y0)u

we calculate an x-intersection position on the left window boundary as x = xL ,
with u = (xL − x0)/(xend − x0), so that the y-intersection position is

y = y0 + yend − y0

xend − x0
(xL − x0) (24)

An intersection position on the top boundary has y = yT and u = (yT − y0)/(yend −
y0), with

x = x0 + xend − x0

yend − y0
(yT − y0) (25)

Line Clipping Using Nonrectangular Polygon Clip Windows
In some applications, it may be desirable to clip lines against arbitrarily shaped
polygons. Methods based on parametric line equations, such as either the Cyrus-
Beck algorithm or the Liang-Barsky algorithm, can be readily extended to clip
lines against convex polygon windows. We do this by modifying the algorithm
to include the parametric equations for the boundaries of the clipping region.
Preliminary screening of line segments can be accomplished by processing lines
against the coordinate extents of the clipping polygon.

For concave-polygon clipping regions, we could still apply these parametric
clipping procedures if we first split the concave polygon into a set of convex
polygons. Another approach is
clipping area so that it is modified
clipping operations can be applied
nents, as illustrated in Figure 18. The
clipped by the concave window with
clipping regions are obtained, in this
V1. Then the line is clipped in two
vex polygon with vertices V1 , V2, V3,
[Figure 18(b)]. (2) The internal line
polygon with vertices V1 , V5 , and
segment P′′

1P′
2.

Line Clipping Using Nonlinear Clipping-Window Boundaries
Circles or other curved-boundary clipping regions are also possible, but they
require more processing because the intersection calculations involve nonlinear
equations. At the first step, lines could be clipped against the bounding rectan-
gle (coordinate extents) of the curved clipping region. Lines that are outside the
coordinate extents are eliminated. To identify lines that are inside a circle, for
instance, we could calculate the distance of the line endpoints from the circle cen-
ter. If the square of this distance for both endpoints of a line is less than or equal
to the radius squared, we can save the entire line. The remaining lines are then
processed through the intersection calculations, which must solve simultaneous
circle-line equations.

Two-Dimensional Viewing

simply to add one or more edges to the concave
to a convex-polygon shape. Then a series of
using the modified convex polygon compo-

line segment P1P2 in (a) of this figure is to be
vertices V1, V2, V3, V4, and V5. Two convex
case, by adding a line segment from V4 to
passes: (1) Line P1P2 is clipped by the con-
and V4 to yield the clipped segment P′

1P′
2

segment P′
1P′

2 is clipped off using the convex
V4 [Figure 18(c)] to yield the final clipped line

256

(a)

P1

V4

V5
V2

V1

V3
Concave Polygon
Clipping Window

P2

(c)

Clip Interior
Line Segment

V4

V5

V1

P2�
P1�

P1�

(b)

Clip Exterior
Line Segments

P1

V4

V2

V1

V3

P2

P2�
P1�

F I G U R E 1 8
A concave- polygon clipping window
(a), with vertex list (V1, V2, V3, V4,
V5), is modified to the convex polygon
(V1, V2, V3, V4) in (b). The external

segments of line P1P2 are then
snipped off using this convex clipping
window. The resulting line segment,
P′

1P′
2, is next processed against the

triangle (V1, V5, V4) (c) to clip off the

internal line segment P′
1P′′

1 to produce

the final clipped line P′′
1P′

2.

8 Polygon Fill-Area Clipping
Graphics packages typically support only fill areas that are polygons, and often
only convex polygons. To clip a polygon fill area, we cannot apply a line-clipping
method to the individual polygon edges directly because this approach would not,
in general, produce a closed polyline. Instead, a line clipper would often produce
a disjoint set of lines with no complete information about how we might form
a closed boundary around the clipped fill area. Figure 19 illustrates a possible
output from a line-clipping procedure applied to the edges of a polygon fill area.
What we require is a procedure that will output one or more closed polylines for
the boundaries of the clipped fill area, so that the polygons can be scan-converted
to fill the interiors with the assigned color or pattern, as in Figure 20.

We can process a polygon fill area against the borders of a clipping window
using the same general approach as in line clipping. A line segment is defined by
its two endpoints, and these endpoints are processed through a line-clipping pro-
cedure by constructing a new set of clipped endpoints at each clipping-window
boundary. Similarly, we need to maintain a fill area as an entity as it is processed
through the clipping stages. Thus, we can clip a polygon fill area by determining
the new shape for the polygon as each clipping-window edge is processed, as
demonstrated in Figure 21. Of course, the interior fill for the polygon would not
be applied until the final clipped border had been determined.

Two-Dimensional Viewing

257

Before Clipping After Clipping

(a) (b)

F I G U R E 1 9
A line-clipping algorithm applied to
the line segments of the polygon boundary in (a)
generates the unconnected set of lines in (b).

Before Clipping After Clipping

(a) (b)

F I G U R E 2 0
Display of a correctly clipped polygon fill area.

Original
Polygon

Clip
Left

Clip
Right

Clip
Bottom

Clip
Top

F I G U R E 2 1
Processing a polygon fill area against successive clipping-window boundaries.

F I G U R E 2 2
A polygon fill area with coordinate
extents outside the right clipping
boundary.

Clipping Window

Coordinate Extents
of Polygon Fill Area

Just as we first tested a line segment to determine whether it could be com-
pletely saved or completely clipped, we can do the same with a polygon fill
area by checking its coordinate extents. If the minimum and maximum coordi-
nate values for the fill area are inside all four clipping boundaries, the fill area is
saved for further processing. If these coordinate extents are all outside any of the
clipping-window borders, we eliminate the polygon from the scene description
(Figure 22).

When we cannot identify a fill area as being completely inside or completely
outside the clipping window, we then need to locate the polygon intersection
positions with the clipping boundaries. One way to implement convex-polygon

Two-Dimensional Viewing

258

(b)(a)

Clipping
Window

2�

1�

1

2�

2

3�

1�

3�

3

2�

1�

2�

3�

1�

3�

Clip

F I G U R E 2 3
A convex-polygon fill area (a), defined
with the vertex list {1, 2, 3}, is clipped
to produce the fill-area shape shown
in (b), which is defined with the output
vertex list {1′, 2′, 2′′, 3′, 3′′, 1′′}.

clipping is to create a new vertex list at each clipping boundary, and then pass
this new vertex list to the next boundary clipper. The output of the final clipping
stage is the vertex list for the clipped polygon (Figure 23). For concave-polygon
clipping, we would need to modify this basic approach so that multiple vertex
lists could be generated.

Sutherland--Hodgman Polygon Clipping
An efficient method for clipping a convex-polygon fill area, developed by Suther-
land and Hodgman, is to send the polygon vertices through each clipping stage
so that a single clipped vertex can be immediately passed to the next stage. This
eliminates the need for an output set of vertices at each clipping stage, and it
allows the boundary-clipping routines to be implemented in parallel. The final
output is a list of vertices that describe the edges of the clipped polygon fill area.

Because the Sutherland-Hodgman algorithm produces only one list of output
vertices, it cannot correctly generate the two output polygons in Figure 20(b) that
are the result of clipping the concave polygon shown in Figure 20(a). However,
more processing steps can be added to the algorithm to allow it to produce multi-
ple output vertex lists, so that general concave-polygon clipping could be accomo-
dated. And the basic Sutherland-Hodgman algorithm is able to process concave
polygons when the clipped fill area can be described with a single vertex list.

The general strategy in this algorithm is to send the pair of endpoints for each
successive polygon line segment through the series of clippers (left, right, bottom,
and top). As soon as a clipper completes the processing of one pair of vertices, the
clipped coordinate values, if any, for that edge are sent to the next clipper. Then
the first clipper processes the next pair of endpoints. In this way, the individual
boundary clippers can be operating in parallel.

There are four possible cases that need to be considered when processing a
polygon edge against one of the clipping boundaries. One possibility is that the
first edge endpoint is outside the clipping boundary and the second endpoint
is inside. Or, both endpoints could be inside this clipping boundary. Another
possibility is that the first endpoint is inside the clipping boundary and the second
endpoint is outside. And, finally, both endpoints could be outside the clipping
boundary.

To facilitate the passing of vertices from one clipping stage to the next, the
output from each clipper can be formulated as shown in Figure 24. As each
successive pair of endpoints is passed to one of the four clippers, an output is
generated for the next clipper according to the results of the following tests:

1. If the first input vertex is outside this clipping-window border and the
second vertex is inside, both the intersection point of the polygon edge
with the window border and the second vertex are sent to the next clipper.

Two-Dimensional Viewing

259

V1
V1�

Output: V1�, V2

(1)

V2

out in

V1

Output: V2

(2)

V2

in in

V1
V1�

Output: V1�

(3)

V2

in out

V1

Output: none

(4)

V2

out out

F I G U R E 2 4
The four possible outputs generated by the left clipper, depending on the position of a pair of endpoints relative to
the left boundary of the clipping window.

F I G U R E 2 5
Processing a set of polygon
vertices, {1, 2, 3}, through the
boundary clippers using the
Sutherland-Hodgman algorithm.
The final set of clipped vertices is
{1′, 2, 2′, 2′′}.

Clipping
Window

Left
Clipper

Right
Clipper

Bottom
Clipper

Top
Clipper

3�

3
2�

2�
2

1�

1

Input
Edge:

{1, 2}:

{2, 3}:

{3, 1}:

(in – in) {2}

(in – out) {2�}

(out – in) {3�, 1}

{2, 2�}: (in – in) {2�}

{2�, 3�}: (in – in) {3�}

{3�, 1}: (in – in) {1}

{1, 2}: (in – in) {2} {1, 2}: (out – in) {1�, 2}

{2, 2�}: (in – in) {2�}

{2�, 3�}: (in – out) {2�}

{3�, 1}: (out – out) { }

{2�, 1�}: (in – in) {1�}

{2�, 2�}: (in – in) {2�}

{1�, 2}: (in – in) {2}

{2, 2�}: (in – in) {2�}

2. If both input vertices are inside this clipping-window border, only the
second vertex is sent to the next clipper.

3. If the first vertex is inside this clipping-window border and the second
vertex is outside, only the polygon edge-intersection position with the
clipping-window border is sent to the next clipper.

4. If both input vertices are outside this clipping-window border, no vertices
are sent to the next clipper.

The last clipper in this series generates a vertex list that describes the final clipped
fill area.

Figure 25 provides an example of the Sutherland-Hodgman polygon-
clipping algorithm for a fill area defined with the vertex set {1, 2, 3}. As soon
as a clipper receives a pair of endpoints, it determines the appropriate output
using the tests illustrated in Figure 24. These outputs are passed in succession
from the left clipper to the right, bottom, and top clippers. The output from the

Two-Dimensional Viewing

260

return (iPt);
}

void clipPoint (wcPt2D p, Boundary winEdge, wcPt2D wMin, wcPt2D wMax,
wcPt2D * pOut, int * cnt, wcPt2D * first[], wcPt2D * s)

{
wcPt2D iPt;

/* If no previous point exists for this clipping boundary,
* save this point.
*/
if (!first[winEdge])
first[winEdge] = &p;

else
/* Previous point exists. If p and previous point cross
* this clipping boundary, find intersection. Clip against
* next boundary, if any. If no more clip boundaries, add
* intersection to output list.
*/
if (cross (p, s[winEdge], winEdge, wMin, wMax)) {
iPt = intersect (p, s[winEdge], winEdge, wMin, wMax);
if (winEdge < Top)
clipPoint (iPt, b+1, wMin, wMax, pOut, cnt, first, s);

else {
pOut[*cnt] = iPt; (*cnt)++;

}
}

/* Save p as most recent point for this clip boundary. */
s[winEdge] = p;

/* For all, if point inside, proceed to next boundary, if any. */
if (inside (p, winEdge, wMin, wMax))
if (winEdge < Top)
clipPoint (p, winEdge + 1, wMin, wMax, pOut, cnt, first, s);

else {
pOut[*cnt] = p; (*cnt)++;

}
}

void closeClip (wcPt2D wMin, wcPt2D wMax, wcPt2D * pOut,
GLint * cnt, wcPt2D * first [], wcPt2D * s)

{
wcPt2D pt;
Boundary winEdge;

for (winEdge = Left; winEdge <= Top; winEdge++) {
if (cross (s[winEdge], *first[winEdge], winEdge, wMin, wMax)) {
pt = intersect (s[winEdge], *first[winEdge], winEdge, wMin, wMax);
if (winEdge < Top)
clipPoint (pt, winEdge + 1, wMin, wMax, pOut, cnt, first, s);

else {
pOut[*cnt] = pt; (*cnt)++;

}
}

}
}

Two-Dimensional Viewing

262

top clipper is the set of vertices defining the clipped fill area. For this example,
the output vertex list is {1′, 2, 2′, 2′′}.

A sequential implementation of the Sutherland-Hodgman polygon-clipping
algorithm is demonstrated in the following set of procedures. An input set of
vertices is converted to an output vertex list by clipping it against the four edges
of the axis-aligned rectangular clipping region.

typedef enum { Left, Right, Bottom, Top } Boundary;
const GLint nClip = 4;

GLint inside (wcPt2D p, Boundary b, wcPt2D wMin, wcPt2D wMax)
{
switch (b) {
case Left: if (p.x < wMin.x) return (false); break;
case Right: if (p.x > wMax.x) return (false); break;
case Bottom: if (p.y < wMin.y) return (false); break;
case Top: if (p.y > wMax.y) return (false); break;
}
return (true);

}

GLint cross (wcPt2D p1, wcPt2D p2, Boundary winEdge, wcPt2D wMin, wcPt2D wMax)
{
if (inside (p1, winEdge, wMin, wMax) == inside (p2, winEdge, wMin, wMax))
return (false);

else return (true);
}

wcPt2D intersect (wcPt2D p1, wcPt2D p2, Boundary winEdge,
wcPt2D wMin, wcPt2D wMax)

{
wcPt2D iPt;
GLfloat m;

if (p1.x != p2.x) m = (p1.y - p2.y) / (p1.x - p2.x);
switch (winEdge) {
case Left:
iPt.x = wMin.x;
iPt.y = p2.y + (wMin.x - p2.x) * m;
break;

case Right:
iPt.x = wMax.x;
iPt.y = p2.y + (wMax.x - p2.x) * m;
break;

case Bottom:
iPt.y = wMin.y;
if (p1.x != p2.x) iPt.x = p2.x + (wMin.y - p2.y) / m;
else iPt.x = p2.x;
break;

case Top:
iPt.y = wMax.y;
if (p1.x != p2.x) iPt.x = p2.x + (wMax.y - p2.y) / m;
else iPt.x = p2.x;
break;

}

Two-Dimensional Viewing

261

GLint polygonClipSuthHodg (wcPt2D wMin, wcPt2D wMax, GLint n, wcPt2D * pIn, wcPt2D * pOut)
{
/* Parameter "first" holds pointer to first point processed for
* a boundary; "s" holds most recent point processed for boundary.
*/
wcPt2D * first[nClip] = { 0, 0, 0, 0 }, s[nClip];
GLint k, cnt = 0;

for (k = 0; k < n; k++)
clipPoint (pIn[k], Left, wMin, wMax, pOut, &cnt, first, s);

closeClip (wMin, wMax, pOut, &cnt, first, s);
return (cnt);

}

When a concave polygon is clipped with the Sutherland-Hodgman algorithm,
extraneous lines may be displayed. An example of this effect is demonstrated in
Figure 26. This occurs when the clipped polygon should have two or more
separate sections. But since there is only one output vertex list, the last vertex in
the list is always joined to the first vertex.

There are several things we can do to display clipped concave polygons

Weiler-Atherton Polygon Clipping
This algorithm provides a general polygon-clipping approach that can be used
to clip a fill area that is either a convex polygon or a concave polygon. Moreover,
the method was developed as a means for identifying visible surfaces in a three-
dimensional scene. Therefore, we could also use this approach to clip any polygon
fill area against a clipping window with any polygon shape.

Clipping Window

(a) (b)

F I G U R E 2 6
Clipping the concave polygon in (a) using the
Sutherland-Hodgman algorithm produces the two
connected areas in (b).

correctly. For one, we could split a concave polygon into two or more convex
polygons and process each convex polygon separately using the Sutherland-
Hodgman algorithm. Another possibility is to modify the Sutherland- Hodgman
method so that the final vertex list is checked for multiple intersection points
along any clipping-window boundary. If we find more than two vertex positions
along any clipping boundary, we can separate the list of vertices into two or
more lists that correctly identify the separate sections of the clipped fill area. This
may require extensive analysis to determine whether some points along the clip-
ping boundary should be paired or whether they represent single vertex points
that have been clipped.Athird possibility is to use a more general polygon clipper
that has been designed to process concave polygons correctly.

Two-Dimensional Viewing

263

Instead of simply clipping the fill-area edges as in the Sutherland-Hodgman
method, the Weiler-Atherton algorithm traces around the perimeter of the fill
polygon searching for the borders that enclose a clipped fill region. In this way,
multiple fill regions, as in Figure 26(b), can be identified and displayed as sepa-
rate, unconnected polygons. To find the edges for a clipped fill area, we follow a
path (either counterclockwise or clockwise) around the fill area that detours along
a clipping-window boundary whenever a polygon edge crosses to the outside of
that boundary. The direction of a detour at a clipping-window border is the same
as the processing direction for the polygon edges.

We can usually determine whether the processing direction is counterclock-
wise or clockwise from the ordering of the vertex list that defines a polygon fill
area. In most cases, the vertex list is specified in a counterclockwise order as a
means for defining the front face of the polygon. Thus, the cross-product of two
successive edge vectors that form a convex angle determines the direction for the
normal vector, which is in the direction from the back face to the front face of the
polygon. If we do not know the vertex ordering, we could calculate the normal

For a counterclockwise traversal of the polygon fill-area vertices, we apply
the following Weiler-Atherton procedures:

1. Process the edges of the polygon fill area in a counterclockwise order until
an inside-outside pair of vertices is encountered for one of the clipping
boundaries; that is, the first vertex of the polygon edge is inside the clip
region and the second vertex is outside the clip region.

2. Follow the window boundaries in a counterclockwise direction from the
exit-intersection point to another intersection point with the polygon. If
this is a previously processed point, proceed to the next step. If this is a
new intersection point, continue processing polygon edges in a counter-
clockwise order until a previously processed vertex is encountered.

3. Form the vertex list for this section of the clipped fill area.
4. Return to the exit-intersection point and continue processing the polygon

edges in a counterclockwise order.

Figure 27 illustrates the Weiler-Atherton clipping of a concave polygon
against a standard, rectangular clipping window for a counterclockwise traversal
of the polygon edges. For a clockwise edge traversal, we would use a clockwise
clipping-window traversal.

Starting from the vertex labeled 1 in Figure 27(a), the next polygon vertex to
process in a counterclockwise order is labeled 2. Thus, this edge exits the clipping
window at the top boundary. We calculate this intersection position (point 1′)
and make a left turn there to process the window borders in a counterclockwise
direction. Proceeding along the top border of the clipping window, we do not
intersect a polygon edge before reaching the left window boundary. Therefore,
we label this position as vertex 1′′ and follow the left boundary to the intersection
position 1′′′. We then follow this polygon edge in a counterclockwise direction,
which returns us to vertex 1. This completes a circuit of the window boundaries
and identifies the vertex list {1, 1′, 1′′, 1′′′} as a clipped region of the original fill
area. Processing of the polygon edges is then resumed at point 1′. The edge defined
by points 2 and 3 crosses to the outside of the left boundary, but points 2 and 2′

vector, or we can locate the interior of the fill area from any reference position.
Then, if we sequentially process the edges so that the polygon interior is always
on our left, we obtain a counterclockwise traversal. Otherwise, with the interior
to our right, we have a clockwise traversal.

Two-Dimensional Viewing

264

Clipping
Window

(a) (b)

(resum
e)

(resume)

(stop)

2�

1�

1

2

1�

1�

4�

4

5�

5

1�

1�

1

1�

4�

5�

5

3

6
F I G U R E 2 7
A concave polygon (a), defined with
the vertex list {1, 2, 3, 4, 5, 6}, is
clipped using the Weiler-Atherton
algorithm to generate the two lists
{1, 1′, 1′′, 1′′′} and {4′, 5, 5′}, which
represent the separate polygon fill
areas shown in (b).

Clipping
Window

Clipped
Fill Area

Polygon
Fill Area

1

F I G U R E 2 8
Clipping a polygon fill area against a
concave-polygon clipping window using the
Weiler-Atherton algorithm.

are above the top clipping-window border and points 2′ and 3 are to the left of the
clipping region. Also, the edge with endpoints 3 and 4 is outside the left clipping
boundary, but the next edge (from endpoint 4 to endpoint 5) reenters the clipping
region and we pick up intersection point 4′. The edge with endpoints 5 and 6
exits the window at intersection position 5′, so we detour down the left clipping
boundary to obtain the closed vertex list {4′, 5, 5′}. We resume the polygon edge
processing at position 5′, which returns us to the previously processed point 1′′′.
At this point, all polygon vertices and edges have been processed, so the fill area
is completely clipped.

Polygon Clipping Using Nonrectangular Polygon Clip Windows
The Liang-Barsky algorithm and other parametric line-clipping methods are par-
ticularly well suited for processing polygon fill areas against convex-polygon
clipping windows. In this approach, we use a parametric representation for the
edges of both the fill area and the clipping window, and both polygons are repre-
sented with a vertex list. We first compare the positions of the bounding rectangles
for the fill area and the clipping polygon. If we cannot identity the fill area as com-
pletely outside the clipping polygon, we can use inside-outside tests to process the
parametric edge equations. After completing all the region tests, we solve pairs
of simultaneous parametric line equations to determine the window intersection
positions.

We can also process any polygon fill area against any polygon-shaped clip-
ping window (convex or concave), as in Figure 28, using the edge-traversal
approach of the Weiler-Atherton algorithm. In this case, we need to maintain
a vertex list for the clipping window as well as for the fill area, with both lists
arranged in a counterclockwise (or clockwise) order. In addition, we need to apply

Two-Dimensional Viewing

265

inside-outside tests to determine whether a fill-area vertex is inside or outside a
particular clipping-window boundary. As in the previous examples, we follow
the window boundaries whenever a fill-area edge exits a clipping boundary. This
clipping method can also be used when either the fill area or the clipping window
contains holes that are defined with polygon borders. In addition, we can use this
basic approach in constructive solid-geometry applications to identify the result
of a union, intersection, or difference operation on two polygons. In fact, locating
the clipped region of a fill area is equivalent to determining the intersection of
two planar areas.

Polygon Clipping Using Nonlinear Clipping-Window Boundaries
One method for processing a clipping window with curved boundaries is to
approximate the boundaries with straight-line sections and use one of the algo-
rithms for clipping against a general polygon-shaped clipping window. Alter-
natively, we could use the same general procedures that we discussed for line
segments. First, we can compare the coordinate extents of the fill area to the
coordinate extents of the clipping window. Depending on the shape of the clip-
ping window, we may also be able to perform some other region tests based on
symmetric considerations. For fill areas that cannot be identified as completely
inside or completely outside the clipping window, we ultimately need to calculate
the window intersection positions with the fill area.

9 Curve Clipping
Areas with curved boundaries can be clipped with methods similar to those dis-
cussed in the previous sections. If the objects are approximated with straight-line
boundary sections, we use a polygon-clipping method. Otherwise, the clipping
procedures involve nonlinear equations, and this requires more processing than
for objects with linear boundaries.

We can first test the coordinate extents of an object against the clipping bound-
aries to determine whether it is possible to accept or reject the entire object trivially.
If not, we could check for object symmetries that we might be able to exploit in
the initial accept/reject tests. For example, circles have symmetries between quad-
rants and octants, so we could check the coordinate extents of these individual
circle regions. We cannot reject the complete circular fill area in Figure 29 just
by checking its overall coordinate extents. But half of the circle is outside the right
clipping border (or outside the top border), the upper-left quadrant is above the
top clipping border, and the remaining two octants can be similarly eliminated.

Clipping Window

F I G U R E 2 9
A circle fill area, showing the quadrant
and octant sections that are outside
the clipping-window boundaries.

Before Clipping

After Clipping

F I G U R E 3 0
Clipping a circle fill area.

An intersection calculation involves substituting a clipping-boundary posi-
tion (xwmin, xwmax, ywmin, or ywmax) in the nonlinear equation for the object bound-
ary and solving for the other coordinate value. Once all intersection positions have
been evaluated, the defining positions for the object can be stored for later use
by the scan-line fill procedures. Figure 30 illustrates circle clipping against a
rectangular window. For this example, the circle radius and the endpoints of the
clipped arc can be used to fill the clipped region, by invoking the circle algorithm
to locate positions along the arc between the intersection endpoints.

Similar procedures can be applied when clipping a curved object against a
general polygon clipping region. On the first pass, we could compare the bound-
ing rectangle of the object with the bounding rectangle of the clipping region. If
this does not save or eliminate the entire object, we next solve the simultaneous
line-curve equations to determine the clipping intersection points.

Two-Dimensional Viewing

266

10 Text Clipping
Several techniques can be used to provide text clipping in a graphics package.
In a particular application, the choice of clipping method depends on how char-
acters are generated and what requirements we have for displaying character
strings.

The simplest method for processing character strings relative to the limits
of a clipping window is to use the all-or-none string-clipping strategy shown in
Figure 31. If all of the string is inside the clipping window, we display the entire
string. Otherwise, the entire string is eliminated. This procedure is implemented
by examining the coordinate extents of the text string. If the coordinate limits of
this bounding rectangle are not completely within the clipping window, the string
is rejected.

An alternative is to use the all-or-none character-clipping strategy. Here we
eliminate only those characters that are not completely inside the clipping window
(Figure 32). In this case, the coordinate extents of individual characters are
compared to the window boundaries. Any character that is not completely within
the clipping-window boundary is eliminated.

A third approach to text clipping is to clip the components of individual
characters. This provides the most accurate display of clipped character strings,
but it requires the most processing. We now treat characters in much the same way
that we treated lines or polygons. If an individual character overlaps a clipping
window, we clip off only the parts of the character that are outside the window
(Figure 33). Outline character fonts defined with line segments are processed in
this way using a polygon-clipping algorithm. Characters defined with bit maps
are clipped by comparing the relative position of the individual pixels in the
character grid patterns to the borders of the clipping region.

Before Clipping

STRING 1

After Clipping

STRING 2

STRING 2

F I G U R E 3 1
Text clipping using the coordinate
extents for an entire string.

STRING 3

Before Clipping

STRING 4

TRING 3

After Clipping

NG 1

STRING 4

STR

STRING 1

STRING 2

F I G U R E 3 2
Text clipping using the bounding
rectangle for individual characters in a
string.

Before Clipping

STRING 1

STRIN
G 2

After Clipping

STRING 1

ST

F I G U R E 3 3
Text clipping performed on the
components of individual characters.

Two-Dimensional Viewing

267

11 Summary
The two-dimensional viewing-transformation pipeline is a series of operations
that result in the display of a world-coordinate picture that has been defined in the
xy plane. After we construct the scene, it can be mapped to a viewing-coordinate
reference frame, then to a normalized coordinate system where clipping routines
can be applied. Finally, the scene is transferred to device coordinates for display.
Normalized coordinates can be specified in the range from 0 to 1 or in the range
from −1 to 1, and they are used to make graphics packages independent of the
output-device requirements.

We select part of a scene for display on an output device using a clipping
window, which can be described in the world-coordinate system or in a viewing-
coordinate frame defined relative to world coordinates. The contents of the clip-
ping window are transferred to a viewport for display on an output device. In
some systems, a viewport is specified within normalized coordinates. Other sys-
tems specify the viewport in device coordinates. Typically, the clipping window
and viewport are rectangles whose edges are parallel to the coordinate axes. An
object is mapped to the viewport so that it has the same relative position in the
viewport as it has in the clipping window. To maintain the relative proportions
of an object, the viewport must have the same aspect ratio as the corresponding
clipping window. In addition, we can set up any number of clipping windows
and viewports for a scene.

Clipping algorithms are usually implemented in normalized coordinates, so
that all geometric transformations and viewing operations that are independent of
device coordinates can be concatenated into one transformation matrix. With the
viewport specified in device coordinates, we can clip a two-dimensional scene
against a normalized, symmetric square, with normalized coordinates varying
from −1 to 1, before transferring the contents of the normalized, symmetric square
to the viewport.

All graphics packages include routines for clipping straight-line segments
and polygon fill areas. Packages that contain functions for specifying single point
positions or text strings also include clipping routines for those graphics primi-
tives. Because the clipping calculations are time-consuming, the development of
improved clipping algorithms continues to be an area of major concern in com-
puter graphics. Cohen and Sutherland developed a line-clipping algorithm that
uses a region code to identify the position of a line endpoint relative to the clipping-
window boundaries. Endpoint region codes are used to identify quickly those
lines that are completely inside the clipping window and some of the lines that are
completely outside. For the remaining lines, intersection positions at the window
boundaries must be calculated. Liang and Barsky developed a faster line-clipping
algorithm that represents line segments with parametric equations, similar to the
Cyrus-Beck algorithm. This approach allows more testing to be accomplished
before proceeding to the intersection calculations. The Nicholl-Lee-Nicholl (NLN)
algorithm further reduces intersection calculations by using more region testing
in the xy plane. Parametric line-clipping methods are extended easily to convex
clipping windows and to three-dimensional scenes. However, the NLN approach
applies only to two-dimensional line segments.

Algorithms for clipping straight-line segments against concave-polygon clip-
ping windows have also been developed. One approach is to split a concave clip-
ping window into a set of convex polygons and apply the parametric line-clipping
methods. Another approach is to add edges to the concave window to modify it
to a convex shape. Then a series of exterior and interior clipping operations can
be performed to obtain the clipped line segment.

Two-Dimensional Viewing

268

T A B L E 1

Summary of OpenGL Two-Dimensional Viewing Functions

Function Description

gluOrtho2D Specifies clipping-window coordinates as parameters for a
two-dimensional orthogonal projection.

glViewport Specifies screen-coordinate parameters for a viewport.

glGetIntegerv Uses arguments GL VIEWPORT and vpArray to obtain
parameters for the currently active viewport.

glutInit Initializes the GLUT library.

glutInitWindowPosition Specifies coordinates for the top-left corner of a display
window.

glutInitWindowSize Specifies width and height for a display window.

glutCreateWindow Creates a display window (which is assigned an integer
identifier) and specify a display-window title.

glutInitDisplayMode Selects parameters such as buffering and color mode for a
display window.

glClearColor Specifies a background RGB color for a display window.

glClearIndex Specifies a background color for a display window using
color-index mode.

glutDestroyWindow Specifies an identifier number for a display window that
is to be deleted.

glutSetWindow Specifies the identifier number for a display window that
is to be the current display window.

glutPositionWindow Resets the screen location for the current display window.

glutReshapeWindow Resets the width and height for the current display
window.

glutFullScreen Sets current display window to the size of the video screen.

glutReshapeFunc Specifies a function that is to be invoked when display-
window size is changed.

glutIconifyWindow Converts the current display window to an icon.

glutSetIconTitle Specifies a label for a display-window icon.

glutSetWindowTitle Specifies new title for the current display window.

glutPopWindow Moves current display window to the “top”; i.e., in front of
all other windows.

glutPushWindow Moves current display window to the “bottom”; i.e.,
behind all other windows.

glutShowWindow Returns the current display window to the screen.

glutCreateSubWindow Creates a second-level window within a display window.

glutSetCursor Selects a shape for the screen cursor.

glutDisplayFunc Invokes a function to create a picture within the current
display window.

glutPostRedisplay Renews the contents of the current display window.

glutMainLoop Executes the computer-graphics program.

glutIdleFunc Specifies a function to execute when the system is idle.

glutGet Queries the system about a specified state parameter.

Two-Dimensional Viewing

269

Although clipping windows with curved boundaries are rarely used, we
can apply similar line-clipping methods. However, intersection calculations now
involve nonlinear equations.

A polygon fill area is defined with a vertex list, and polygon-clipping pro-
cedures must retain information about how the clipped edges are to be con-
nected as the polygon proceeds through the various processing stages. In the
Sutherland-Hodgman algorithm, pairs of fill-area vertices are processed by each
boundary clipper in turn, and clipping information for that edge is passed
immediately to the next clipper, which allows the four clipping routines (left,
right, bottom, and top) to be operating in parallel. This algorithm provides
an efficient method for clipping convex-polygon fill areas. However, when a
clipped concave polygon contains disjoint sections, the Sutherland-Hodgman
algorithm produces extraneous connecting line segments. Extensions of para-
metric line clippers, such as the Liang-Barsky method, can also be used to clip
convex polygon fill areas. Both convex and concave fill areas can be clipped
correctly with the Weiler-Atherton algorithm, which uses a boundary-traversal
approach.

Fill areas can be clipped against convex clipping windows using an extension
of the parametric line-representation approach. And the Weiler-Atherton method
can clip any polygon fill area using any polygon-shaped clipping window. Fill
areas can be clipped against windows with nonlinear boundaries by using a poly-
gon approximation for the window or by processing the fill area against the curved
window boundaries.

The fastest text-clipping method is the all-or-none strategy, which completely
clips a text string if any part of the string is outside any clipping-window bound-
ary. Alternatively, we could clip a text string by eliminating only those characters
in the string that are not completely inside the clipping window. And the most
accurate text-clipping method is to apply either point, line, polygon, or curve clip-
ping to the individual characters in a string, depending on whether characters are
defined as point grids or outline fonts.

Although OpenGL is designed for three-dimensional applications, a two-
dimensional GLU function is provided for specifying a standard, rectangular
clipping window in world coordinates. In OpenGL, the clipping-window coordi-
nates are parameters for the projection transformation. Therefore, we first need to
invoke the projection matrix mode. Next we can specify the viewport, using a func-
tion in the basic OpenGL library, and a display window, using GLUT functions. A
wide range of GLUT functions are available for setting various display-window
parameters. Table 1 summarizes the OpenGL two-dimensional viewing func-
tions. In addition, the table lists some viewing-related functions.

REFERENCES
Line-clipping algorithms are discussed in Sproull and
Sutherland (1968), Cyrus and Beck (1978), Liang and
Barsky (1984), and Nicholl, Lee, and Nicholl (1987).
Methods for improving the speed of the Cohen-
Sutherland line-clipping algorithm are given in Duva-
nenko (1990).

Basic polygon-clipping methods are presented in
Sutherland and Hodgman (1974) and in Liang and

Barsky (1983). General techniques for clipping arbitrarily
shaped polygons against each other are given in Weiler
and Atherton (1977) and in Weiler (1980).

Viewing operations in OpenGL are discussed
in Woo, et al. (1999). Display-window GLUT rou-
tines are discussed in Kilgard (1996), and additional
information on GLUT can be obtained online at
http://reality.sgi.com/opengl/glut3/glut3.html.

Two-Dimensional Viewing

270

EXERCISES
1 Write a procedure to calculate the elements of

matrix 1 for transforming two-dimensional
world coordinates to viewing coordinates, given
the viewing coordinate origin P0 and the view up
vector V.

2 Derive matrix 8 for transferring the contents of
a clipping window to a viewport by first scal-
ing the window to the size of the viewport, then
translating the scaled window to the viewport
position. Use the center of the clipping window as
the reference point for the scaling and translation
operations.

3 Write a procedure to calculate the elements of
matrix 9 for transforming a clipping window to
the symmetric normalized square.

4 Write a set of procedures to implement the two-
dimensional viewing pipeline without clipping
operations. Your program should allow a scene to
be constructed with modeling-coordinate transfor-
mations, a specified viewing system, and a trans-
formation to the symmetric normalized square. As
an option, a viewing table could be implemented
to store different sets of viewing transformation
parameters.

5 Write a complete program to implement the
Cohen-Sutherland line-clipping algorithm.

6 Modify the program in the previous exercise to pro-
duce an animation of a single line whose length
is longer than the diagonal length of the viewing
window. The midpoint of the line should be placed
at the center of the viewing window and the line
should rotate clockwise by a small amount in each
frame. The clipping algorithm implemented in the
previous exercise should clip the line appropriately
in each frame.

7 Carefully discuss the rationale behind the various
tests and methods for calculating the intersection
parameters u1 and u2 in the Liang-Barsky line-
clipping algorithm.

8 Compare the number of arithmetic operations per-
formed in the Cohen-Sutherland and the Liang-
Barsky line-clipping algorithms for several differ-
ent line orientations relative to a clipping window.

9 Write a complete program to implement the Liang-
Barsky line-clipping algorithm.

10 Modify the program in the previous exercise to pro-
duce an animation similar to the one described in
Exercise 6. The clipping algorithm implemented
in the previous exercise should clip the line appro-
priately in each frame.

11 Devise symmetry transformations for mapping the
intersection calculations for the three regions in
Figure 14 to the other six regions of the xy plane.

12 Set up a detailed algorithm for the Nicholl-Lee-
Nicholl approach to line clipping for any input pair
of line endpoints.

13 Compare the number of arithmetic operations
performed in the NLN algorithm to both the
Cohen-Sutherland and Liang-Barsky line-clipping
algorithms, for several different line orientations
relative to a clipping window.

14 Adapt the Liang-Barsky line-clipping algorithm to
polygon clipping.

15 Use the implementation of Liang-Barsky polygon
clipping developed in the previous exercise to
write a program that displays an animation of
a moving hexagon in the display window. The
hexagon should be displayed as moving into the
window from the top-left corner of the window
diagonally towards the bottom-right corner and off
the screen. Once the hexagon has exited the win-
dow completely the animation should repeat.

16 Set up a detailed algorithm for Weiler-Atherton
polygon clipping, assuming that the clipping win-
dow is a rectangle in standard position.

17 Use the implementation of Weiler-Atherton poly-
gon clipping developed in the previous exercise to
write a program that produces a similar animation
to the one described in Exercise 14.

18 Devise an algorithm for Weiler-Atherton polygon
clipping, where the clipping window can be any
convex polygon.

19 Devise an algorithm for Weiler-Atherton polygon
clipping, where the clipping window can be any
specified polygon (convex or concave).

20 Write a routine to clip an ellipse in standard posi-
tion against a rectangular window.

21 Assuming that all characters in a text string have
the same width, develop a text-clipping algorithm
that clips a string according to the all-or-none
character-clipping strategy.

22 Use the implementation of text clipping developed
in the previous exercise to write a program that
displays an animation of a moving marquee in the
display window. That is, a sequence of characters
should be displayed as moving into the window
from the left side, across the window horizontally,
and out of the window on the right side. Once all
of the characters have exited the viewport on the
right side the animation should repeat.

23 Develop a text-clipping algorithm that clips indi-
vidual characters, assuming that the characters are
defined in a pixel grid of a specified size.

24 Use the implementation of text clipping developed
in the previous exercise to write a program that per-
forms the same behavior as that in Exercise 21.

Two-Dimensional Viewing

271

IN MORE DEPTH
1 Implement both the Sutherland-Hodgman and

Weiler-Atherton polygon-clipping algorithms in
two separate routines. Use them to clip the objects
in the current snapshot of your scene against a
sub-rectangle of the full scene extents. Compare
the performance of the two algorithms. Make any
modifications necessary to handle clipping of con-
cave polygons in your scene using the Sutherland-
Hodgman algorithm. The routines should take in
the position and size of a rectangular clipping win-
dow and clip the objects in the scene against it.

2

Two-Dimensional Viewing

Use the GLUT commands discussed in this chap-
ter to set up a display window in which you will
display a portion of the animated scene that you
developed. More specifically, define a rectangle
whose size is moderately smaller than the coordi-

nate extents of all the objects in your scene. This
rectangle will act as a clipping window against
which you will employ the clipping algorithms
you implemented in the previous exercise. The
animation should be run continuously, but the
objects in the scene should be clipped in each
frame against the clipping window, and only this
portion of the scene displayed in the display win-
dow. Additionally, add the ability to move the clip-
ping window around the scene via keyboard input
by using the directional arrows. Each keystroke
should move the clipping window by a small
amount in the appropriate direction. Run the ani-
mation using both the Sutherland-Hodgman and
Weiler-Atherton algorithms and note any differ-
ences in performance.

272

Three-Dimensional
Geometric Transformations

1 Three-Dimensional Translation

2 Three-Dimensional Rotation

3 Three-Dimensional Scaling

4 Composite Three-Dimensional
Transformations

5 Other Three-Dimensional
Transformations

6 Transformations between
Three-Dimensional Coordinate
Systems

7 Affine Transformations

8 OpenGL Geometric-Transformation
Functions

9 OpenGL Three-Dimensional
Geometric- Transformation
Programming Examples

10 Summary

M ethods for geometric transformations in three dimensions

are extended from two-dimensional methods by includ-

ing considerations for the z coordinate. In most cases, this

extension is relatively straighforward. However, in some cases—

particularly, rotation—the extension to three dimensions is less

obvious.

When we discussed two-dimensional rotations in the xy plane,

we needed to consider only rotations about axes that were perpendic-

ular to the xy plane. In three-dimensional space, we can now select

any spatial orientation for the rotation axis. Some graphics packages

handle three-dimensional rotation as a composite of three rotations,

one for each of the three Cartesian axes. Alternatively, we can set up

general rotation equations, given the orientation of a rotation axis

and the required rotation angle.

A three-dimensional position, expressed in homogeneous coor-

dinates, is represented as a four-element column vector. Thus, each

geometric transformation operator is now a 4 × 4 matrix, which

From Chapter 9 of Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson

273

premultiplies a coordinate column vector. In addition, as in two dimensions, any sequence

of transformations is represented as a single matrix, formed by concatenating the matri-

ces for the individual transformations in the sequence. Each successive matrix in a trans-

formation sequence is concatenated to the left of previous transformation matrices.

1 Three-Dimensional Translation
A position P = (x, y, z) in three-dimensional space is translated to a location P′ =
(x′, y′, z′) by adding translation distances tx, ty, and tz to the Cartesian coordinates
of P:

x′ = x + tx, y′ = y + ty, z′ = z + tz

Figure 1 illustrates three-dimensional point translation.
We can express these three-dimensional translation operations in matrix form.

But now the coordinate positions, P and P ′, are represented in homogeneous
coordinates with four-element column matrices, and the translation operator T
is a 4 × 4 matrix:

⎡

⎢
⎢
⎣

x′

y′

z′

1

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1

⎤

⎥
⎥
⎦

·

⎡

⎢
⎢
⎣

x
y
z
1

⎤

⎥
⎥
⎦

(2)

or

P′ = T · P (3)

An object is translated in three dimensions by transforming each of the defin-
ing coordinate positions for the object, then reconstructing the object at the new
location. For an object represented as a set of polygon surfaces, we translate each
vertex for each surface (Figure 2) and redisplay the polygon facets at the trans-
lated positions.

The following program segment illustrates construction of a translation
matrix, given an input set of translation parameters.

F I G U R E
Moving a coordinate position with translation vector
T = (tx , ty , tz) .

y axis

x axis
z axis

(x, y, z)

(x�, y�, z�)

T � (tx, ty, tz)

 (1)

Three-Dimensional Geometric Transformations

1

274

T � (tx, ty, tz)

(x�, y�, z�)

(x, y, z)

y axis

x axis
z axis

F I G U R E 2
Shifting the position of a three-dimensional object
using translation vector T.

typedef GLfloat Matrix4x4 [4][4];

/* Construct the 4 x 4 identity matrix. */
void matrix4x4SetIdentity (Matrix4x4 matIdent4x4)
{

GLint row, col;

for (row = 0; row < 4; row++)
for (col = 0; col < 4 ; col++)

matIdent4x4 [row][col] = (row == col);
}

void translate3D (GLfloat tx, GLfloat ty, GLfloat tz)
{

Matrix4x4 matTransl3D;

/* Initialize translation matrix to identity. */
matrix4x4SetIdentity (matTransl3D);

matTransl3D [0][3] = tx;
matTransl3D [1][3] = ty;
matTransl3D [2][3] = tz;

}

An inverse of a three-dimensional translation matrix is obtained using the
same procedures that we applied in a two-dimensional translation. That is,
we negate the translation distances tx, ty, and tz. This produces a translation in the
opposite direction, and the product of a translation matrix and its inverse is the
identity matrix.

2 Three-Dimensional Rotation
We can rotate an object about any axis in space, but the easiest rotation axes to
handle are those that are parallel to the Cartesian-coordinate axes. Also, we can use
combinations of coordinate-axis rotations (along with appropriate translations)
to specify a rotation about any other line in space. Therefore, we first consider the
operations involved in coordinate-axis rotations, then we discuss the calculations
needed for other rotation axes.

By convention, positive rotation angles produce counterclockwise rotations
about a coordinate axis, assuming that we are looking in the negative direction
along that coordinate axis (Figure 3). This agrees with our earlier discussion of

Three-Dimensional Geometric Transformations

275

F I G U R E 3
Positive rotations about a coordinate axis are
counterclockwise, when looking along the positive
half of the axis toward the origin.

y

x

z

(a)

y

x

z
(b)

y

x

z
(c)

rotations in two dimensions, where positive rotations in the xy plane are counter-
clockwise about a pivot point (an axis that is parallel to the z axis).

Three-Dimensional Coordinate-Axis Rotations
The two-dimensional z-axis rotation equations are easily extended to three
dimensions, as follows:

x′ = x cos θ − y sin θ

y′ = x sin θ + y cos θ (4)

z′ = z

Parameter θ specifies the rotation angle about the z axis, and z-coordinate val-
ues are unchanged by this transformation. In homogeneous-coordinate form, the
three-dimensional z-axis rotation equations are

⎡

⎢
⎢
⎣

x′

y′

z′

1

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦

·

⎡

⎢
⎢
⎣

x
y
z
1

⎤

⎥
⎥
⎦

(5)

Three-Dimensional Geometric Transformations

276

y

x

z
F I G U R E 4
Rotation of an object about the z axis.

which we can write more compactly as

P′ = Rz(θ) · P (6)

Figure 4 illustrates rotation of an object about the z axis.
Transformation equations for rotations about the other two coordinate axes

can be obtained with a cyclic permutation of the coordinate parameters x, y, and
z in Equations 4:

x → y → z → x (7)

Thus, to obtain the x-axis and y-axis rotation transformations, we cyclically
replace x with y, y with z, and z with x, as illustrated in Figure 5.

Substituting permutations 7 into Equations 4, we get the equations for an
x-axis rotation:

y′ = y cos θ − z sin θ

z′ = y sin θ + z cos θ (8)

x′ = x

Rotation of an object around the x axis is demonstrated in Figure 6.
A cyclic permutation of coordinates in Equations 8 gives us the transforma-

tion equations for a y-axis rotation:

z′ = z cos θ − x sin θ

x′ = z sin θ + x cos θ (9)

y′ = y

An example of y-axis rotation is shown in Figure 7.
An inverse three-dimensional rotation matrix is obtained in the same way

as the inverse rotations in two dimensions. We just replace the angle θ with −θ .

y

x

z

z

y

x

x

z

y

F I G U R E 5
Cyclic permutation of the Cartesian-coordinate axes to produce the three sets of coordinate-axis rotation
equations.

Three-Dimensional Geometric Transformations

277

y

x

z

F I G U R E 6
Rotation of an object about the x axis.

y

x
z

F I G U R E 7
Rotation of an object about the y axis.

Negative values for rotation angles generate rotations in a clockwise direction,
and the identity matrix is produced when we multiply any rotation matrix by its
inverse. Because only the sine function is affected by the change in sign of the
rotation angle, the inverse matrix can also be obtained by interchanging rows and
columns. That is, we can calculate the inverse of any rotation matrix R by forming
its transpose (R−1 = RT).

General Three-Dimensional Rotations
A rotation matrix for any axis that does not coincide with a coordinate axis can
be set up as a composite transformation involving combinations of translations
and the coordinate-axis rotations. We first move the designated rotation axis onto
one of the coordinate axes. Then we apply the appropriate rotation matrix for
that coordinate axis. The last step in the transformation sequence is to return the
rotation axis to its original position.

In the special case where an object is to be rotated about an axis that is parallel
to one of the coordinate axes, we attain the desired rotation with the following
transformation sequence:

1. Translate the object so that the rotation axis coincides with the parallel
coordinate axis.

2. Perform the specified rotation about that axis.
3. Translate the object so that the rotation axis is moved back to its original

position.

The steps in this sequence are illustrated in Figure 8. A coordinate position P is
transformed with the sequence shown in this figure as

P′ = T−1 · Rx(θ) · T · P (10)

where the composite rotation matrix for the transformation is

R(θ) = T−1 · Rx(θ) · T (11)

This composite matrix is of the same form as the two-dimensional transformation
sequence for rotation about an axis that is parallel to the z axis (a pivot point that
is not at the coordinate origin).

When an object is to be rotated about an axis that is not parallel to one of
the coordinate axes, we must perform some additional transformations. In this

Three-Dimensional Geometric Transformations

278

y

xz

y

xz

y

xz

y

xz

Rotation Axis

Rotation Axis

(a)
Original Position of Object

(b)
Translate Rotation Axis onto x Axis

(d)
Translate Rotation

Axis to Original Position

(c)
Rotate Object Through Angle u

u

F I G U R E 8
Sequence of transformations for
rotating an object about an axis that is
parallel to the x axis.

case, we also need rotations to align the rotation axis with a selected coordinate
axis and then to bring the rotation axis back to its original orientation. Given the
specifications for the rotation axis and the rotation angle, we can accomplish the
required rotation in five steps:

1. Translate the object so that the rotation axis passes through the coordinate
origin.

2. Rotate the object so that the axis of rotation coincides with one of the
coordinate axes.

3. Perform the specified rotation about the selected coordinate axis.
4. Apply inverse rotations to bring the rotation axis back to its original

orientation.
5. Apply the inverse translation to bring the rotation axis back to its original

spatial position.

We can transform the rotation axis onto any one of the three coordinate axes.
The z axis is often a convenient choice, and we next consider a transformation
sequence using the z-axis rotation matrix (Figure 9).

A rotation axis can be defined with two coordinate positions, as in Figure 10,
or with one coordinate point and direction angles (or direction cosines) between
the rotation axis and two of the coordinate axes. We assume that the rotation axis
is defined by two points, as illustrated, and that the direction of rotation is to be
counterclockwise when looking along the axis from P2 to P1. The components of
the rotation-axis vector are then computed as

V = P2 − P1

= (x2 − x1, y2 − y1, z2 − z1) (12)

The unit rotation-axis vector u is

u = V
|V| = (a , b, c) (13)

Three-Dimensional Geometric Transformations

279

F I G U R E 9
Five transformation steps for obtaining
a composite matrix for rotation about
an arbitrary axis, with the rotation axis
projected onto the z axis.

y

x

z

y

x

z

y

x

z

y

x

z

y

x

z

y

x

z

Initial
Position

P1

P2

Step 5
Translate the
Rotation Axis
to Its Original

Position

P1

P2

Step 1
Translate

P1 to the Origin

P1�

P2�

P1�

P2�

P2��

Step 4
Rotate the Axis
to Its Original
Orientation

Step 2
Rotate P2�

onto the z Axis

Step 3
Rotate the

Object Around the
z Axis

P1�

P2��

P1�

u

where the components a , b, and c are the direction cosines for the rotation axis:

a = x2 − x1

|V| , b = y2 − y1

|V| , c = z2 − z1

|V| (14)

If the rotation is to be in the opposite direction (clockwise when viewing from P2
to P1), then we would reverse axis vector V and unit vector u so that they point
in the direction from P2 to P1.

y

x

z

u
P2

P1

F I G U R E 1 0
An axis of rotation (dashed line)
defined with points P1 and P2. The
direction for the unit axis vector u is
determined by the specified rotation
direction.

The first step in the rotation sequence is to set up the translation matrix
that repositions the rotation axis so that it passes through the coordinate ori-
gin. Because we want a counterclockwise rotation when viewing along the axis
from P2 to P1 (Figure 10), we move the point P1 to the origin. (If the rotation had
been specified in the opposite direction, we would move P2 to the origin.) This
translation matrix is

T =

⎡

⎢
⎢
⎣

1 0 0 −x1
0 1 0 −y1
0 0 1 −z1
0 0 0 1

⎤

⎥
⎥
⎦

(15)

which repositions the rotation axis and the object as shown in Figure 11.

y

x

z

u

F I G U R E 1 1
Translation of the rotation axis to the
coordinate origin.

Next, we formulate the transformations that will put the rotation axis onto
the z axis. We can use the coordinate-axis rotations to accomplish this alignment
in two steps, and there are a number of ways to perform these two steps. For this
example, we first rotate about the x axis, then rotate about the y axis. The x-axis
rotation gets vector u into the xz plane, and the y-axis rotation swings u around
to the z axis. These two rotations are illustrated in Figure 12 for one possible
orientation of vector u.

Because rotation calculations involve sine and cosine functions, we can use
standard vector operations to obtain elements of the two rotation matrices.
A vector dot product can be used to determine the cosine term, and a vector
cross -product can be used to calculate the sine term.

Three-Dimensional Geometric Transformations

280

y

x
z

u

(a)

y

x
z

(b)

u

a

F I G U R E 1 2
Unit vector u is rotated about the x axis to bring it into the x z plane
(a), then it is rotated around the y axis to align it with the z axis (b).

y

x

z

u� u

uz � (0, 0, 1)

a

F I G U R E 1 3
Rotation of u around the x axis into
the x z plane is accomplished by
rotating u′ (the projection of u in the
y z plane) through angle α onto the z
axis.

We establish the transformation matrix for rotation around the x axis by
determining the values for the sine and cosine of the rotation angle necessary
to get u into the xz plane. This rotation angle is the angle between the projection
of u in the yz plane and the positive z axis (Figure 13). If we represent the projec-
tion of u in the yz plane as the vector u′ = (0, b, c), then the cosine of the rotation
angle α can be determined from the dot product of u′ and the unit vector uz along
the z axis:

cos α = u′ · uz

|u′| |uz| = c
d

(16)

where d is the magnitude of u′:

d =
√

b2 + c2 (17)

Similarly, we can determine the sine of α from the cross-product of u′ and uz. The
coordinate-independent form of this cross-product is

u′ × uz = ux |u′| |uz| sin α (18)

and the Cartesian form for the cross-product gives us

u′ × uz = ux · b (19)

Equating the right sides of Equations 18 and 19, and noting that |u z| = 1 and
|u′| = d , we have

d sin α = b

or

sin α = b
d

(20)

Now that we have determined the values for cos α and sin α in terms of the
components of vector u, we can set up the matrix elements for rotation of this
vector about the x axis and into the xz plane:

Rx(α) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0

0
c
d

− b
d

0

0
b
d

c
d

0

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(21)

y

x

z

uz � (0, 0, 1)

u� � (a, 0, d)

b

F I G U R E
Rotation of unit vector u′′ (vector u
after rotation into the x z plane) about
the y axis. Positive rotation angle β

aligns u′′ with vector uz .

The next step in the formulation of the transformation sequence is to deter-
mine the matrix that will swing the unit vector in the xz plane counterclockwise
around the y axis onto the positive z axis. Figure 14 shows the orientation of

Three-Dimensional Geometric Transformations

1 4

281

the unit vector in the xz plane, resulting from the rotation about the x axis. This
vector, labeled u′′, has the value a for its x component, because rotation about the
x axis leaves the x component unchanged. Its z component is d (the magnitude of
u′), because vector u′ has been rotated onto the z axis. Also, the y component of
u′′ is 0 because it now lies in the xz plane. Again, we can determine the cosine
of rotation angle β from the dot product of unit vectors u′′ and uz. Thus,

cos β = u′′ · uz

|u′′| |uz| = d (22)

because |uz| = |u′′| = 1. Comparing the coordinate-independent form of the
cross-product

u′′ × uz = uy |u′′| |uz| sin β (23)

with the Cartesian form

u′′ × uz = uy · (−a) (24)

we find that

sin β = −a (25)

Therefore, the transformation matrix for rotation of u′′ about the y axis is

Ry(β) =

⎡

⎢
⎢
⎣

d 0 −a 0
0 1 0 0
a 0 d 0
0 0 0 1

⎤

⎥
⎥
⎦

(26)

With transformation matrices 15, 21, and 26, we have aligned the rota-
tion axis with the positive z axis. The specified rotation angle θ can now be applied
as a rotation about the z axis as follows:

Rz(θ) =

⎡

⎢
⎢
⎣

cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦

(27)

To complete the required rotation about the given axis, we need to transform
the rotation axis back to its original position. This is done by applying the inverse
of transformations 15, 21, and 26. The transformation matrix for rotation
about an arbitrary axis can then be expressed as the composition of these seven
individual transformations:

R(θ) = T−1 · R−1
x (α) · R−1

y (β) · Rz(θ) · Ry(β) · Rx(α) · T (28)

A somewhat quicker, but perhaps less intuitive, method for obtaining the
composite rotation matrix Ry(β) ·Rx(α) is to use the fact that the composite matrix
for any sequence of three-dimensional rotations is of the form

R =

⎡

⎢
⎢
⎣

r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 1

⎤

⎥
⎥
⎦

(29)

The upper-left 3 × 3 submatrix of this matrix is orthogonal. This means that the
rows (or the columns) of this submatrix form a set of orthogonal unit vectors that

Three-Dimensional Geometric Transformations

282

are rotated by matrix R onto the x, y, and z axes, respectively:

R ·

⎡

⎢
⎢
⎣

r11
r12
r13
1

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

1
0
0
1

⎤

⎥
⎥
⎦

, R ·

⎡

⎢
⎢
⎣

r21
r22
r23
1

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

0
1
0
1

⎤

⎥
⎥
⎦

, R ·

⎡

⎢
⎢
⎣

r31
r32
r33
1

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

0
0
1
1

⎤

⎥
⎥
⎦

(30)

y

x

z

u�z � u
u�y

u�x

F I G U R E
Local coordinate system for a rotation
axis defined by unit vector u.

Therefore, we can set up a local coordinate system with one of its axes aligned on
the rotation axis. Then the unit vectors for the three coordinate axes are used to
construct the columns of the rotation matrix. Assuming that the rotation axis is
not parallel to any coordinate axis, we could form the following set of local unit
vectors (Figure 15).

u′
z = u

u′
y = u × ux

|u × ux|
u′

x = u′
y × u′

z

(31)

If we express the elements of the unit local vectors for the rotation axis as

u′
x = (u′

x1, u′
x2, u′

x3)

u′
y = (u′

y1, u′
y2, u′

y3)

u′
z = (u′

z1, u′
z2, u′

z3)

(32)

then the required composite matrix, which is equal to the product Ry(β) · Rx(α),
is

R =

⎡

⎢
⎢
⎢
⎣

u′
x1 u′

x2 u′
x3 0

u′
y1 u′

y2 u′
y3 0

u′
z1 u′

z2 u′
z3 0

0 0 0 1

⎤

⎥
⎥
⎥
⎦

(33)

This matrix transforms the unit vectors u′
x, u′

y, and u′
z onto the x, y, and z axes,

respectively. This aligns the rotation axis with the z axis, because u′
z = u.

Quaternion Methods for Three-Dimensional Rotations
A more efficient method for generating a rotation about an arbitrarily selected axis
is to use a quaternion representation for the rotation transformation. Quaternions,
which are extensions of two-dimensional complex numbers, are useful in a num-
ber of computer-graphics procedures, including the generation of fractal objects.
They require less storage space than 4 × 4 matrices, and it is simpler to write
quaternion procedures for transformation sequences. This is particularly important
in animations, which often require complicated motion sequences and motion
interpolations between two given positions of an object.

One way to characterize a quaternion is as an ordered pair, consisting of a
scalar part and a vector part:

q = (s, v)

We can also think of a quaternion as a higher-order complex number with one
real part (the scalar part) and three complex parts (the elements of vector v). A
rotation about any axis passing through the coordinate origin is accomplished by
first setting up a unit quaternion with the scalar and vector parts as follows:

s = cos
θ

2
, v = u sin

θ

2
(34)

Three-Dimensional Geometric Transformations

1 5

283

where u is a unit vector along the selected rotation axis and θ is the specified
rotation angle about this axis (Figure 16). Any point position P that is to be
rotated by this quaternion can be represented in quaternion notation as

P = (0, p)

with the coordinates of the point as the vector part p = (x, y, z). The rotation of
the point is then carried out with the quaternion operation

P′ = qPq−1 (35)

where q−1 = (s, −v) is the inverse of the unit quaternion q with the scalar and
vector parts given in Equations 34. This transformation produces the following
new quaternion:

P′ = (0, p′) (36)

The second term in this ordered pair is the rotated point position p′, which is
evaluated with vector dot and cross-products as

p′ = s2p + v(p · v) + 2s(v × p) + v × (v × p) (37)

Values for parameters s and v are obtained from the expressions in 34. Many
computer graphics systems use efficient hardware implementations of these vec-
tor calculations to perform rapid three-dimensional object rotations.

y

x

z

u

u

F I G U R E
Unit quaternion parameters θ and u
for rotation about a specified axis.

Transformation 35 is equivalent to rotation about an axis that passes through
the coordinate origin. This is the same as the sequence of rotation transformations
in Equation 28 that aligns the rotation axis with the z axis, rotates about z, and
then returns the rotation axis to its original orientation at the coordinate origin.

We can evaluate the terms in Equation 37 using the definition for quaternion
multiplication. Also, designating the components of the vector part of q as v =
(a , b, c) , we obtain the elements for the composite rotation matrix R−1

x (α) · R−1
y (β)

· Rz(θ) · Ry(β) · Rx(α) in a 3 × 3 form as

MR(θ) =
⎡

⎣

1 − 2b2 − 2c2 2ab − 2sc 2ac + 2sb
2ab + 2sc 1 − 2a2 − 2c2 2bc − 2sa
2ac − 2sb 2bc + 2sa 1 − 2a2 − 2b2

⎤

⎦ (38)

The calculations involved in this matrix can be greatly reduced by substituting
explicit values for parameters a , b, c, and s, and then using the following trigono-
metric identities to simplify the terms:

cos2 θ

2
− sin2 θ

2
= 1 − 2 sin2 θ

2
= cos θ , 2 cos

θ

2
sin

θ

2
= sin θ

Thus, we can rewrite Matrix 38 as

MR(θ) =
⎡

⎣

u2
x(1 − cos θ) + cos θ uxuy(1 − cos θ) − uz sin θ uxuz(1 − cos θ) + uy sin θ

uyux(1 − cos θ) + uz sin θ u2
y(1 − cos θ) + cos θ uyuz(1 − cos θ) − ux sin θ

uzux(1 − cos θ) − uy sin θ uzuy(1 − cos θ) + ux sin θ u2
z(1 − cos θ) + cos θ

⎤

⎦

(39)

where ux, uy, and uz are the components of the unit axis vector u.
To complete the transformation sequence for rotating about an arbitrarily

placed rotation axis, we need to include the translations that move the rotation
axis to the coordinate axis and return it to its original position. Thus, the complete
quaternion rotation expression, corresponding to Equation 28, is

R(θ) = T−1 · MR · T (40)

Three-Dimensional Geometric Transformations

16

284

For example, we can perform a rotation about the z axis by setting rotation-
axis vector u to the unit z-axis vector (0, 0, 1). Substituting the components of this
vector into Matrix 39, we get the 3×3 version of the z-axis rotation matrix Rz(θ)

in Equation . Similarly, substituting the unit-quaternion rotation values into
Equation 35 produces the rotated coordinate values in Equations 4.

In the following code, we give examples of procedures that could be used to
construct a three-dimensional rotation matrix. The quaternion representation in
Equation 40 is used to set up the matrix elements for a general three-dimensional
rotation.

class wcPt3D {
public:

GLfloat x, y, z;
};
typedef float Matrix4x4 [4][4];

Matrix4x4 matRot;

/* Construct the 4 x 4 identity matrix. */
void matrix4x4SetIdentity (Matrix4x4 matIdent4x4)
{

GLint row, col;

for (row = 0; row < 4; row++)
for (col = 0; col < 4 ; col++)

matIdent4x4 [row][col] = (row == col);
}

/* Premultiply matrix m1 by matrix m2, store result in m2. */
void matrix4x4PreMultiply (Matrix4x4 m1, Matrix4x4 m2)
{

GLint row, col;
Matrix4x4 matTemp;

for (row = 0; row < 4; row++)
for (col = 0; col < 4 ; col++)

matTemp [row][col] = m1 [row][0] * m2 [0][col] + m1 [row][1] *
m2 [1][col] + m1 [row][2] * m2 [2][col] +
m1 [row][3] * m2 [3][col];

for (row = 0; row < 4; row++)
for (col = 0; col < 4; col++)

m2 [row][col] = matTemp [row][col];
}

void translate3D (GLfloat tx, GLfloat ty, GLfloat tz)
{

Matrix4x4 matTransl3D;

/* Initialize translation matrix to identity. */
matrix4x4SetIdentity (matTransl3D);

matTransl3D [0][3] = tx;
matTransl3D [1][3] = ty;
matTransl3D [2][3] = tz;

Three-Dimensional Geometric Transformations

5

285

/* Concatenate translation matrix with matRot. */
matrix4x4PreMultiply (matTransl3D, matRot);

}

void rotate3D (wcPt3D p1, wcPt3D p2, GLfloat radianAngle)
{

Matrix4x4 matQuaternionRot;

GLfloat axisVectLength = sqrt ((p2.x - p1.x) * (p2.x - p1.x) +
(p2.y - p1.y) * (p2.y - p1.y) +
(p2.z - p1.z) * (p2.z - p1.z));

GLfloat cosA = cos (radianAngle);
GLfloat oneC = 1 - cosA;
GLfloat sinA = sin (radianAngle);
GLfloat ux = (p2.x - p1.x) / axisVectLength;
GLfloat uy = (p2.y - p1.y) / axisVectLength;
GLfloat uz = (p2.z - p1.z) / axisVectLength;

/* Set up translation matrix for moving p1 to origin. */
translate3D (-p1.x, -p1.y, -p1.z);

/* Initialize matQuaternionRot to identity matrix. */
matrix4x4SetIdentity (matQuaternionRot);

matQuaternionRot [0][0] = ux*ux*oneC + cosA;
matQuaternionRot [0][1] = ux*uy*oneC - uz*sinA;
matQuaternionRot [0][2] = ux*uz*oneC + uy*sinA;
matQuaternionRot [1][0] = uy*ux*oneC + uz*sinA;
matQuaternionRot [1][1] = uy*uy*oneC + cosA;
matQuaternionRot [1][2] = uy*uz*oneC - ux*sinA;
matQuaternionRot [2][0] = uz*ux*oneC - uy*sinA;
matQuaternionRot [2][1] = uz*uy*oneC + ux*sinA;
matQuaternionRot [2][2] = uz*uz*oneC + cosA;

/* Combine matQuaternionRot with translation matrix. */
matrix4x4PreMultiply (matQuaternionRot, matRot);

/* Set up inverse matTransl3D and concatenate with
* product of previous two matrices.
*/
translate3D (p1.x, p1.y, p1.z);

}

void displayFcn (void)
{

/* Input rotation parameters. */

/* Initialize matRot to identity matrix: */
matrix4x4SetIdentity (matRot);

/* Pass rotation parameters to procedure rotate3D. */

/* Display rotated object. */
}

Three-Dimensional Geometric Transformations

286

F I G U R E 1 7
Doubling the size of an object with transformation 41 also
moves the object farther from the origin.

y

xz

3 Three-Dimensional Scaling
The matrix expression for the three-dimensional scaling transformation of a
position P = (x, y, z) relative to the coordinate origin is a simple extension of
two-dimensional scaling. We just include the parameter for z-coordinate scaling
in the transformation matrix:

⎡

⎢
⎢
⎣

x′

y′

z′

1

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

⎤

⎥
⎥
⎦

·

⎡

⎢
⎢
⎣

x
y
z
1

⎤

⎥
⎥
⎦

(41)

The three-dimensional scaling transformation for a point position can be repre-
sented as

P′ = S · P (42)

where scaling parameters sx, sy, and sz are assigned any positive values. Explicit
expressions for the scaling transformation relative to the origin are

x′ = x · sx, y′ = y · sy, z′ = z · sz (43)

Scaling an object with transformation 41 changes the position of the object
relative to the coordinate origin. A parameter value greater than 1 moves a point
farther from the origin in the corresponding coordinate direction. Similarly, a
parameter value less than 1 moves a point closer to the origin in that coordinate
direction. Also, if the scaling parameters are not all equal, relative dimensions of a
transformed object are changed. We preserve the original shape of an object with
a uniform scaling: sx = sy = sz. The result of scaling an object uniformly, with each
scaling parameter set to 2, is illustrated in Figure .

Because some graphics packages provide only a routine that scales relative
to the coordinate origin, we can always construct a scaling transformation with
respect to any selected fixed position (x f , yf , z f) using the following transformation
sequence:

1. Translate the fixed point to the origin.
2. Apply the scaling transformation relative to the coordinate origin using

Equation 41.
3. Translate the fixed point back to its original position.

This sequence of transformations is demonstrated in Figure 18. The matrix
representation for an arbitrary fixed-point scaling can then be expressed as the

Three-Dimensional Geometric Transformations

17

287

concatenation of these translate-scale-translate transformations:

T(x f , yf , z f) · S(sx, sy, sz) · T(−x f , −yf , −z f) =

⎡

⎢
⎢
⎣

sx 0 0 (1 − sx)x f

0 sy 0 (1 − sy)yf

0 0 sz (1 − sz)z f

0 0 0 1

⎤

⎥
⎥
⎦

(44)

y

xz

(a)

(xF, yF, zF)

Original Position

(xF, yF, zF)

y

xz

(b)

Translate

(xF, yF, zF)

y

xz

(c)

Scale

(xF, yF, zF)

y

xz

(d)

Inverse Translate

F I G U R E 1 8
A sequence of transformations for
scaling an object relative to a selected
fixed point, using Equation 41.

We can set up programming procedures for constructing a three-dimensional
scaling matrix using either a translate-scale-translate sequence or a direct incorpo-
ration of the fixed-point coordinates. In the following code example, we demon-
strate a direct construction of a three-dimensional scaling matrix relative to a
selected fixed point using the calculations in Equation 44:

class wcPt3D
{

private:
GLfloat x, y, z;

public:
/* Default Constructor:
* Initialize position as (0.0, 0.0, 0.0).
*/
wcPt3D () {

x = y = z = 0.0;
}

setCoords (GLfloat xCoord, GLfloat yCoord, GLfloat zCoord) {
x = xCoord;
y = yCoord;
z = zCoord;

}

GLfloat getx () const {
return x;

}

GLfloat gety () const {
return y;

}

GLfloat getz () const {
return z;

}
};

typedef float Matrix4x4 [4][4];

void scale3D (GLfloat sx, GLfloat sy, GLfloat sz, wcPt3D fixedPt)
{

Matrix4x4 matScale3D;

/* Initialize scaling matrix to identity. */
matrix4x4SetIdentity (matScale3D);

Three-Dimensional Geometric Transformations

288

matScale3D [0][0] = sx;
matScale3D [0][3] = (1 - sx) * fixedPt.getx ();
matScale3D [1][1] = sy;
matScale3D [1][3] = (1 - sy) * fixedPt.gety ();
matScale3D [2][2] = sz;
matScale3D [2][3] = (1 - sz) * fixedPt.getz ();

}

An inverse, three-dimensional scaling matrix is set up for either Equation 41
or Equation 44 by replacing each scaling parameter (s x, sy, and sz)with its recip-
rocal. However, this inverse transformation is undefined if any scaling parameter
is assigned the value 0. The inverse matrix generates an opposite scaling trans-
formation, and the concatenation of a three-dimensional scaling matrix with its
inverse yields the identity matrix.

4 Composite Three-Dimensional
Transformations

As with two-dimensional transformations, we form a composite three-
dimensional transformation by multiplying the matrix representations for
the individual operations in the transformation sequence. Any of the two-
dimensional transformation sequences, such as scaling in noncoordinate direct-
ions, can be carried out in three-dimensional space.

We can implement a transformation sequence by concatenating the individual
matrices from right to left or from left to right, depending on the order in which
the matrix representations are specified. Of course, the rightmost term in a matrix
product is always the first transformation to be applied to an object and the
leftmost term is always the last transformation. We need to use this ordering for
the matrix product because coordinate positions are represented as four-element
column vectors, which are premultiplied by the composite 4 × 4 transformation
matrix.

The following program provides example routines for constructing a three-
dimensional composite transformation matrix. The three basic geometric trans-
formations are combined in a selected order to produce a single composite matrix,
which is initialized to the identity matrix. For this example, we first rotate, then
scale, then translate. We choose a left-to-right evaluation of the composite matrix
so that the transformations are called in the order that they are to be applied.
Thus, as each matrix is constructed, it is concatenated on the left of the current
composite matrix to form the updated product matrix.

class wcPt3D {
public:

GLfloat x, y, z;
};
typedef GLfloat Matrix4x4 [4][4];

Matrix4x4 matComposite;

/* Construct the 4 x 4 identity matrix. */
void matrix4x4SetIdentity (Matrix4x4 matIdent4x4)

Three-Dimensional Geometric Transformations

289

{
GLint row, col;

for (row = 0; row < 4; row++)
for (col = 0; col < 4 ; col++)

matIdent4x4 [row][col] = (row == col);
}

/* Premultiply matrix m1 by matrix m2, store result in m2. */
void matrix4x4PreMultiply (Matrix4x4 m1, Matrix4x4 m2)
{

GLint row, col;
Matrix4x4 matTemp;

for (row = 0; row < 4; row++)
for (col = 0; col < 4 ; col++)

matTemp [row][col] = m1 [row][0] * m2 [0][col] + m1 [row][1] *
m2 [1][col] + m1 [row][2] * m2 [2][col] +
m1 [row][3] * m2 [3][col];

for (row = 0; row < 4; row++)
for (col = 0; col < 4; col++)

m2 [row][col] = matTemp [row][col];
}

/* Procedure for generating 3-D translation matrix. */
void translate3D (GLfloat tx, GLfloat ty, GLfloat tz)
{

Matrix4x4 matTransl3D;

/* Initialize translation matrix to identity. */
matrix4x4SetIdentity (matTransl3D);

matTransl3D [0][3] = tx;
matTransl3D [1][3] = ty;
matTransl3D [2][3] = tz;

/* Concatenate matTransl3D with composite matrix. */
matrix4x4PreMultiply (matTransl3D, matComposite);

}

/* Procedure for generating a quaternion rotation matrix. */
void rotate3D (wcPt3D p1, wcPt3D p2, GLfloat radianAngle)
{

Matrix4x4 matQuatRot;

float axisVectLength = sqrt ((p2.x - p1.x) * (p2.x - p1.x) +
(p2.y - p1.y) * (p2.y - p1.y) +
(p2.z - p1.z) * (p2.z - p1.z));

float cosA = cosf (radianAngle);
float oneC = 1 - cosA;
float sinA = sinf (radianAngle);
float ux = (p2.x - p1.x) / axisVectLength;
float uy = (p2.y - p1.y) / axisVectLength;
float uz = (p2.z - p1.z) / axisVectLength;

/* Set up translation matrix for moving p1 to origin,

Three-Dimensional Geometric Transformations

290

* and concatenate translation matrix with matComposite.
*/
translate3D (-p1.x, -p1.y, -p1.z);

/* Initialize matQuatRot to identity matrix. */
matrix4x4SetIdentity (matQuatRot);

matQuatRot [0][0] = ux*ux*oneC + cosA;
matQuatRot [0][1] = ux*uy*oneC - uz*sinA;
matQuatRot [0][2] = ux*uz*oneC + uy*sinA;
matQuatRot [1][0] = uy*ux*oneC + uz*sinA;
matQuatRot [1][1] = uy*uy*oneC + cosA;
matQuatRot [1][2] = uy*uz*oneC - ux*sinA;
matQuatRot [2][0] = uz*ux*oneC - uy*sinA;
matQuatRot [2][1] = uz*uy*oneC + ux*sinA;
matQuatRot [2][2] = uz*uz*oneC + cosA;

/* Concatenate matQuatRot with composite matrix. */
matrix4x4PreMultiply (matQuatRot, matComposite);

/* Construct inverse translation matrix for p1 and
* concatenate with composite matrix.
*/
translate3D (p1.x, p1.y, p1.z);

}

/* Procedure for generating a 3-D scaling matrix. */
void scale3D (Gfloat sx, GLfloat sy, GLfloat sz, wcPt3D fixedPt)
{

Matrix4x4 matScale3D;

/* Initialize scaling matrix to identity. */
matrix4x4SetIdentity (matScale3D);

matScale3D [0][0] = sx;
matScale3D [0][3] = (1 - sx) * fixedPt.x;
matScale3D [1][1] = sy;
matScale3D [1][3] = (1 - sy) * fixedPt.y;
matScale3D [2][2] = sz;
matScale3D [2][3] = (1 - sz) * fixedPt.z;

/* Concatenate matScale3D with composite matrix. */
matrix4x4PreMultiply (matScale3D, matComposite);

}

void displayFcn (void)
{

/* Input object description. */
/* Input translation, rotation, and scaling parameters. */

/* Set up 3-D viewing-transformation routines. */

/* Initialize matComposite to identity matrix: */
matrix4x4SetIdentity (matComposite);

/* Invoke transformation routines in the order they

Three-Dimensional Geometric Transformations

291

* are to be applied:
*/
rotate3D (p1, p2, radianAngle); // First transformation: Rotate.
scale3D (sx, sy, sz, fixedPt); // Second transformation: Scale.
translate3D (tx, ty, tz); // Final transformation: Translate.

/* Call routines for displaying transformed objects. */
}

5 Other Three-Dimensional Transformations
In addition to translation, rotation, and scaling, the other transformations
discussed for two-dimensional applications are also useful in many three-
dimensional situations. These additional transformations include reflection,
shear, and transformations between coordinate-reference frames.

Three-Dimensional Reflections
A reflection in a three-dimensional space can be performed relative to a selected
reflection axis or with respect to a reflection plane. In general, three-dimensional
reflection matrices are set up similarly to those for two dimensions. Reflections rel-
ative to a given axis are equivalent to 180◦ rotations about that axis. Reflections
with respect to a plane are similar; when the reflection plane is a coordinate
plane (xy, xz, or yz), we can think of the transformation as a 180◦ rotation in
four-dimensional space with a conversion between a left-handed frame and a
right-handed frame.

An example of a reflection that converts coordinate specifications from a right-
handed system to a left-handed system (or vice versa) is shown in Figure 19. This
transformation changes the sign of z coordinates, leaving the values for the x and
y coordinates unchanged. The matrix representation for this reflection relative to
the xy plane is

Mzreflect =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

⎤

⎥
⎥
⎦

(45)

Transformation matrices for inverting x coordinates or y coordinates are
defined similarly, as reflections relative to the yz plane or to the xz plane,
respectively. Reflections about other planes can be obtained as a combination
of rotations and coordinate-plane reflections.

F I G U R E 1 9
Conversion of coordinate
specifications between a right-handed
and a left-handed system can be
carried out with the reflection
transformation 45.

y

x

z

y

x

z

Reflection
Relative to the

xy Plane

Three-Dimensional Geometric Transformations

292

Three-Dimensional Shears
These transformations can be used to modify object shapes, just as in two-
dimensional applications. They are also applied in three-dimensional viewing
transformations for perspective projections. For three-dimensional
we can also generate shears relative to the z axis.

y

x

z
(a)

y

x

z
(b)

F I G U R E 2 0
A unit cube (a) is sheared relative to
the origin (b) by Matrix 46, with
shzx = shzy = 1.

A general z-axis shearing transformation relative to a selected reference
position is produced with the following matrix:

Mzshear =

⎡

⎢
⎢
⎣

1 0 shzx −shzx · zref
0 1 shzy −shzy · zref
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦

(46)

Shearing parameters shzx and shzy can be assigned any real values. The effect of
this transformation matrix is to alter the values for the x and y coordinates by an
amount that is proportional to the distance from zref, while leaving the z coordinate
unchanged. Plane areas that are perpendicular to the z axis are thus shifted by an
amount equal to z− zref. An example of the effect of this shearing matrix on a unit
cube is shown in Figure 20 for shearing values sh zx = shzy = 1 and a reference
position zref = 0. Three-dimensional transformation matrices for an x-axis shear
and a y-axis shear are similar to the two-dimensional matrices. We just need to
add a row and a column for the z-coordinate shearing parameters.

6 Transformations between
Three-Dimensional Coordinate Systems

Coordinate-system trans
ages to construct (model) scenes and to implement viewing routines for both
two-dimensional and three-dimensional applications. A transformation matrix for
transferring a two-dimensional scene description from one coordinate system to
another is constructed with operations for superimposing the coordinate axes of
the two systems. The same procedures apply to three-dimensional scene transfers.

We again consider only Cartesian reference frames, and we assume that an
x′y′z′ system is defined with respect to an xyz system. To transfer the xyz coor-
dinate descriptions to the x′y′z′ system, we first set up a translation that brings
the x′y′z′ coordinate origin to the position of the xyz origin. This is followed by a
sequence of rotations that align corresponding coordinate axes. If different scales
are used in the two coordinate systems, a scaling transformation may also be
necessary to compensate for the differences in coordinate intervals.

Figure 21 shows an x′y′z′coordinate system with origin (x0, y0, z0) and unit
axis vectors defined relative to an xyz reference frame. The coordinate origin of

F I G U R E 2 1
An x ′ y ′z ′ coordinate system defined within
an x y z system. A scene description is
transferred to the new coordinate reference
using a transformation sequence that
superimposes the x ′ y ′z ′ frame on the
x y z axes.

y

x

z

y�

(0, 0, 0)

x�(x0, y0, z0)

u�z

u�y

u�x

z�

applications,

formations are employed in computer-graphics pack-

Three-Dimensional Geometric Transformations

293

the x′y′z′ system is brought into coincidence with the xyz origin using the trans-
lation matrix T(−x0, −y0, −z0). Also, we can use the unit axis vectors to form the
coordinate-axis rotation matrix

R =

⎡

⎢
⎢
⎢
⎣

u′
x1 u′

x2 u′
x3 0

u′
y1 u′

y2 u′
y3 0

u′
z1 u′

z2 u′
z3 0

0 0 0 1

⎤

⎥
⎥
⎥
⎦

(47)

which transforms unit vectors u′
x, u′

y, and u′
z onto the x, y, and z axes, respectively.

The complete coordinate transformation sequence is then given by the composite
matrix R · T. This matrix correctly transforms coordinate descriptions from one
Cartesian system to another, even if one system is left-handed and the other is
right-handed.

7 Affine Transformations
A coordinate transformation of the form

x′ = axxx + axy y + axzz + bx

y′ = ayxx + ayy y + ayzz + by

z′ = azxx + azy y + azzz + bz

(48)

is called an affine transformation. Each of the transformed coordinates x′, y′, and
z′ is a linear function of the original coordinates x, y, and z, and parameters ai j and
bk are constants determined by the transformation type. Affine transformations
(in two dimensions, three dimensions, or higher dimensions) have the general
properties that parallel lines are transformed into parallel lines, and finite points
map to finite points.

Translation, rotation, scaling, reflection, and shear are examples of affine trans-
formations. We can always express any affine transformation as some composition
of these five transformations. Another example of an affine transformation is the
conversion of coordinate descriptions for a scene from one reference system to
another because this transformation can be described as a combination of trans-
lation and rotation. An affine transformation involving only translation, rotation,
and reflection preserves angles and lengths, as well as parallel lines. For each of
these three transformations, line lengths and the angle between any two lines
remain the same after the transformation.

8 OpenGL Geometric-Transformation
Functions

same functions used to perform transformations in three dimensions. For con-
venience, those functions are listed in Table 1

OpenGL Matrix Stacks

lected with the glMatrixMode routine and is used to select the modelview

The basic OpenGL functions for performing geometric transformations are the

at the end of the chapter.

You are already familiar with the OpenGL modelview mode. This mode is se-

Three-Dimensional Geometric Transformations

294

composite transformation matrix as the target of subsequent OpenGL transfor-
mation calls.

For each of the four modes (modelview, projection, texture, and color) that we
can select with the glMatrixMode function, OpenGL maintains a matrix stack.
Initially, each stack contains only the identity matrix. At any time during the pro-
cessing of a scene, the top matrix on each stack is called the “current matrix”
for that mode. After we specify the viewing and geometric transformations, the
top of the modelview matrix stack is the 4 × 4 composite matrix that combines
the viewing transformations and the various geometric transformations that we
want to apply to a scene. In some cases, we may want to create multiple views and
transformation sequences, and then save the composite matrix for each. Therefore,
OpenGL supports a modelview stack depth of at least 32, and some implemen-
tations may allow more than 32 matrices to be saved on the modelview stack.
We can determine the number of positions available in the modelview stack for a
particular implementation of OpenGL with

glGetIntegerv (GL_MAX_MODELVIEW_STACK_DEPTH, stackSize);

which returns a single integer value to array stackSize. The other three matrix
modes have a minimum stack depth of 2, and we can determine the maxi-
mum available depth of each for a particular implementation using one of the
following OpenGL symbolic constants: GL MAX PROJECTION STACK DEPTH,
GL MAX TEXTURE STACK DEPTH, or GL MAX COLOR STACK DEPTH.

We can also find out how many matrices are currently in the stack with

glGetIntegerv (GL_MODELVIEW_STACK_DEPTH, numMats);

Initially, the modelview stack contains only the identity matrix, so the value 1 is
returned by this function if we issue the query before any stack processing has
occurred. Similar symbolic constants are available for determining the number of
matrices currently in the other three stacks.

We have two functions available in OpenGL for processing the matrices in
a stack. These stack-processing functions are more efficient than manipulating
the stack matrices individually, particularly when the stack functions are imple-
mented in hardware. For example, a hardware implementation can copy multiple
matrix elements simultaneously. And we can maintain an identity matrix on the
stack, so that initializations of the current matrix can be performed faster than by
using repeated calls to glLoadIdentity.

With the following function, we copy the current matrix at the top of the active
stack and store that copy in the second stack position:

glPushMatrix ();

This gives us duplicate matrices at the top two positions of the stack. The other
stack function is

glPopMatrix ();

which destroys the matrix at the top of the stack, and the second matrix in the
stack becomes the current matrix. To “pop” the top of the stack, there must be at
least two matrices in the stack. Otherwise, we generate an error.

Three-Dimensional Geometric Transformations

295

9 OpenGL Three-Dimensional Geometric-
Transformation Programming Examples
Usually, it is more efficient to use the stack-processing functions than to use the

matrix-manipulation functions. This is particularly true when we want to make
several changes in the viewing or geometric transformations. In the following
code, we perform rectangle transformations using stack processing instead of the
glLoadIdentity function:

glMatrixMode (GL_MODELVIEW);

glColor3f (0.0, 0.0, 1.0); // Set current color to blue.
glRecti (50, 100, 200, 150); // Display blue rectangle.

glPushMatrix (); // Make copy of identity (top) matrix.
glColor3f (1.0, 0.0, 0.0); // Set current color to red.

glTranslatef (-200.0, -50.0, 0.0); // Set translation parameters.
glRecti (50, 100, 200, 150); // Display red, translated rectangle.

glPopMatrix (); // Throw away the translation matrix.
glPushMatrix (); // Make copy of identity (top) matrix.

glRotatef (90.0, 0.0, 0.0, 1.0); // Set 90-deg. rotation about z axis.
glRecti (50, 100, 200, 150); // Display red, rotated rectangle.

glPopMatrix (); // Throw away the rotation matrix.
glScalef (-0.5, 1.0, 1.0); // Set scale-reflection parameters.
glRecti (50, 100, 200, 150); // Display red, transformed rectangle.

For our next geometric-transformation programming example, we give an
OpenGL version of the three-dimensional, composite-transformation code in Sec-
tion 4. Because OpenGL postmultiplies transformation matrices as they are
called, we must now invoke the transformations in the opposite order from which
they are to be applied. Thus, each subsequent transformation call concatenates the
designated transformation matrix on the right of the composite matrix. Because
we have not yet explored the three-dimensional OpenGL viewing routines, this

rogram could be completed using
and applying the geometric transformations to objects in the xy plane.

class wcPt3D {
public:

GLfloat x, y, z;
};

/* Procedure for generating a matrix for rotation about

p two-dimensional OpenGL viewing operations

Three-Dimensional Geometric Transformations

296

* an axis defined with points p1 and p2.
*/
void rotate3D (wcPt3D p1, wcPt3D p2, GLfloat thetaDegrees)
{

/* Set up components for rotation-axis vector. */
float vx = (p2.x - p1.x);
float vy = (p2.y - p1.y);
float vz = (p2.z - p1.z);

/* Specify translate-rotate-translate sequence in reverse order: */
glTranslatef (p1.x, p1.y, p1.z); // Move p1 back to original position.
/* Rotate about axis through origin: */
glRotatef (thetaDegrees, vx, vy, vz);
glTranslatef (-p1.x, -p1.y, -p1.z); // Translate p1 to origin.

}

/* Procedure for generating a matrix for a scaling
* transformation with respect to an arbitrary fixed point.
*/
void scale3D (GLfloat sx, GLfloat sy, GLfloat sz, wcPt3D fixedPt)
{

/* Specify translate-scale-translate sequence in reverse order: */
/* (3) Translate fixed point back to original position: */
glTranslatef (fixedPt.x, fixedPt.y, fixedPt.z);
glScalef (sx, sy, sz); // (2) Scale with respect to origin.
/* (1) Translate fixed point to coordinate origin: */
glTranslatef (-fixedPt.x, -fixedPt.y, -fixedPt.z);

}

void displayFcn (void)
{

/* Input object description. */
/* Set up 3D viewing-transformation routines. */
/* Display object. */

glMatrixMode (GL_MODELVIEW);

/* Input translation parameters tx, ty, tz. */
/* Input the defining points, p1 and p2, for the rotation axis. */
/* Input rotation angle in degrees. */
/* Input scaling parameters: sx, sy, sz, and fixedPt. */

/* Invoke geometric transformations in reverse order: */
glTranslatef (tx, ty, tz); // Final transformation: Translate.
scale3D (sx, sy, sz, fixedPt); // Second transformation: Scale.
rotate3D (p1, p2, thetaDegrees); // First transformation: Rotate.

/* Call routines for displaying transformed objects. */
}

10 Summary
We can express three-dimensional transformations as 4 × 4 matrix operators, so
that sequences of transformations can be concatenated into a single composite

Three-Dimensional Geometric Transformations

297

T A B L E 1

Summary of OpenGL Geometric Transformation Functions

Function Description

glTranslate* Specifies translation parameters.

glRotate* Specifies parameters for rotation about any axis
through the origin.

glScale* Specifies scaling parameters with respect to
coordinate origin.

glMatrixMode Specifies current matrix for geometric-viewing
transformations, projection transformations,
texture transformations, or color transformations.

glLoadIdentity Sets current matrix to identity.

glLoadMatrix* (elems); Sets elements of current matrix.

glMultMatrix* (elems); Postmultiplies the current matrix by the
specified matrix.

glGetIntegerv Gets max stack depth or current number of matrices
in the stack for the selected matrix mode.

glPushMatrix Copies the top matrix in the stack and store copy in
the second stack position.

glPopMatrix Erases the top matrix in the stack and moves the
second matrix to the top of the stack.

glPixelZoom Specifies two-dimensional scaling parameters for
raster operations.

matrix to allow efficient application of multiple transformations. We use a four-
element column matrix (vector) representation for three-dimensional coordinate
points, representing them using a homogeneous coordinate representation.

We can create composite transformations through matrix multiplications of
translation, rotation, scaling, and other transformations. In general, matrix mul-
tiplications are not commutative. The upper-left 3 × 3 submatrix of a rigid-body
transformation is an orthogonal matrix. Thus, rotation matrices can be formed by
setting the upper-left, 3×3 submatrix equal to the elements of two orthogonal unit
vectors. When the angle is small, we can reduce rotation computations by using
first-order approximations for the sine and cosine functions. Over many rotational
steps, however, the approximation error can accumulate to a significant value.

Transformations between Cartesian coordinate systems in three dimensions
are accomplished with a sequence of translate-rotate transformations that brings
the two systems into coincidence. We specify the coordinate origin and axis vectors
for one reference frame relative to the original coordinate reference frame. The
transfer of object descriptions from the original coordinate system to the second
system is calculated as the matrix product of a translation that moves the new
origin to the old coordinate origin and a rotation to align the two sets of axes. The
rotation needed to align the two frames can be obtained from the orthonormal set
of axis vectors for the new system.

Three-Dimensional Geometric Transformations

298

The OpenGL library provides functions for applying individual translate,
rotate, and scale transformations to coordinate positions. Each function generates
a matrix that is premultiplied by the modelview matrix. Transformation matrices
are applied to subsequently defined objects. In addition to accumulating transfor-
mation sequences in the modelview matrix, we can set this matrix to the identity
or some other matrix, and can also form products with the modelview matrix
and any specified matrices. All matrices are stored in stacks, and OpenGL main-
tains four stacks for the various types of transformations that we use in graphics
applications. We can use an OpenGL query function to determine the current stack
size or the maximum allowable stack depth for a system. Two stack-processing
routines are available: one for copying the top matrix in a stack to the second
position, and one for removing the top matrix.

Table 1 summarizes the OpenGL geometric-transformation functions and
matrix routines discussed in this chapter.

REFERENCES
For additional techniques involving matrices and geo-
metric transformations, see Glassner (1990), Arvo (1991),
Kirk (1992), Heckbert (1994), and Paeth (1995). Discus-
sions of homogeneous coordinates in computer graphics
can be found in Blinn and Newell (1978) and in Blinn
(1993, 1996, and 1998).

Additional programming examples using OpenGL
geometric-transformation functions are given in Woo,
et al. (1999). Programming examples for the OpenGL
geometric-transformation functions are also available at
Nate Robins’s tutorial website: http://www.xmission.
com/∼nate/opengl.html. Finally, a complete listing of
OpenGL geometric-transformation functions is pro-
vided in Shreiner (2000).

EXERCISES
1 Show that rotation matrix 33 is equal to the com-

posite matrix Ry(β) · Rx(α).
2 By evaluating the terms in Equation 37, derive

the elements for the general rotation matrix given
in Equation 38.

3 Prove that the quaternion rotation matrix 38
reduces to the matrix representation in Equation
5 when the rotation axis is the coordinate z axis.

4 Prove that Equation 40 is equivalent to the
general rotation transformation given in Equa-
tion 28.

5 Using trigonometric identities, derive the elements
of the quaternion-rotation matrix 39 from 38.

6 Develop a procedure for animating a three-
dimensional object by incrementally rotating it
about any specified axis. Use appropriate approx-
imations to the trigonometric equations to speed
up the calculations, and reset the object to its

initial position after each complete revolution
about the axis.

7 Derive the three-dimensional transformation
matrix for scaling an object by a scaling factor s in
a direction defined by the direction cosines α, β,
and γ .

8 Develop a routine to reflect a three-dimensional
object about an arbitrarily selected plane.

9 Write a procedure to shear a three-dimensional
object with respect to any specified axis, using in-
put values for the shearing parameters.

10 Develop a procedure for converting an object
definition in one three-dimensional coordinate ref-
erence to any other coordinate system defined rel-
ative to the first system.

11 Develop a routine to scale an object by a given fac-
tor in each dimension relative to a given point con-
tained within the object.

Three-Dimensional Geometric Transformations

299

12 Write a program to perform a series of transforma-
tions on a 30 × 30 square whose centroid lies at
(−20, −20, 0) and that is contained in the xy plane.
Use three-dimensional OpenGL matrix operations
to perform the transformations. The square should
first be reflected in the x axis, then rotated counter-
clockwise by 45◦ about its center, then sheared in
the x direction by a value of 2.

13 Modify the program from the previous exercise so
that the transformation sequence can be applied to
any two-dimensional polygon, with vertices spec-
ified as user input.

14 Modify the example program in the previous exer-
cise so that the order of the geometric transforma-
tion sequence can be specified as user input.

1 Modify the example program from the previ-
ous exercise so that the geometric transformation
parameters are specified as user input.

IN MORE DEPTH
1 You have not yet been exposed to the material nec-

essary to construct three-dimensional representa-
tions of the objects in your application, so you
can instead embed the two-dimensional polyg-
onal approximations to those objects in a three
dimensional scene and perform three-dimensional

transformations on those approximations using
the techniques in this chapter. In this exercise, you
will set up a set of transformations to produce an
animation. Define the three-dimensional
formation matrices to do this using homogeneous
coordinate representations. If
act as a single ”unit” in certain
easier to model in terms of rel
can use the techniques in Sec
local transformations of the
other (in their own coordi
formations in the world coordinate frame.

2

5

trans-

two or more objects
behaviors that are

ative positions, you
t ion 6 to convert the

objects relative to each
nate frame) into trans-

Use the matrices you designed in the previous
exercise to produce an animation. You should em-
ploy the OpenGL matrix operations for three-
dimensional transformations and have the matri-
ces produce small changes in position for each of
the objects in the scene. Since you haven t yet cov-
ered the material necessary for generating views
of a threedimensional scene, simply display the
animation using a two-dimensional orthogonal
projection, with all of the polygons in the scene
being contained in the xy plane. The transfor-
mations themselves, however, are still three-
dimensional.

Three-Dimensional Geometric Transformations

300

Three-Dimensional Viewing

1 Overview of Three-Dimensional
Viewing Concepts

2 The Three-Dimensional Viewing
Pipeline

3 Three-Dimensional
Viewing-Coordinate Parameters

4 Transformation from World
to Viewing Coordinates

5 Projection Transformations

6 Orthogonal Projections

7 Oblique Parallel Projections

8 Perspective Projections

9 The Viewport Transformation and
Three-Dimensional Screen
Coordinates

10 OpenGL Three-Dimensional
Viewing Functions

11 Three-Dimensional Clipping
Algorithms

12 OpenGL Optional Clipping Planes

13 Summary
F or two-dimensional graphics applications, viewing opera-

tions transfer positions from the world-coordinate plane to

pixel positions in the plane of the output device. Using

the rectangular boundaries for the clipping window and the view-

port, a two-dimensional package clips a scene and maps it to device

coordinates. Three-dimensional viewing operations, however, are

more involved, because we now have many more choices as to how

we can construct a scene and how we can generate views of the

scene on an output device.

From Chapter 1 of Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson

0

301

1 Overview of Three-Dimensional
Viewing Concepts

When we model a three-dimensional scene, each object in the scene is typically
defined with a set of surfaces that form a closed boundary around the object
interior. And, for some applications, we may need also to specify information
about the interior structure of an object. In addition to procedures that generate
views of the surface features of an object, graphics packages sometimes provide
routines for displaying internal components or cross-sectional views of a solid
object. Viewing functions process the object descriptions through a set of pro-
cedures that ultimately project a specified view of the objects onto the surface
of a display device. Many processes in three-dimensional viewing, such as the
clipping routines, are similar to those in the two-dimensional viewing pipeline.
But three-dimensional viewing involves some tasks that are not present in two-
dimensional viewing. For example, projection routines are needed to transfer the
scene to a view on a planar surface, visible parts of a scene must be identified, and,
for a realistic display, lighting effects and surface characteristics must be taken
into account.

Viewing a Three-Dimensional Scene
To obtain a display of a three-dimensional world-coordinate scene, we first set
up a coordinate reference for the viewing, or “camera,” parameters. This coordi-
nate reference defines the position and orientation for a view plane (or projection
plane) that corresponds to a camera film plane (Figure 1). Object descriptions
are then transferred to the viewing reference coordinates and projected onto the
view plane. We can generate a view of an object on the output device in wire-
frame (outline) form, or we can apply lighting and surface-rendering techniques
to obtain a realistic shading of the visible surfaces.

View
Plane

F I G U R E 1
Coordinate reference for obtaining a
selected view of a three-dimensional
scene.

Projections
Unlike a camera picture, we can choose different methods for projecting a scene
onto the view plane. One method for getting the description of a solid object
onto a view plane is to project points on the object surface along parallel lines.
This technique, called parallel projection, is used in engineering and architectural
drawings to represent an object with a set of views that show accurate dimensions
of the object, as in Figure 2.

Another method for generating a view of a three-dimensional scene is to
project points to the view plane along converging paths. This process, called a
perspective projection, causes objects farther from the viewing position to be dis-
played smaller than objects of the same size that are nearer to the viewing position.
A scene that is generated using a perspective projection appears more realistic,
because this is the way that our eyes and a camera lens form images. Parallel lines
along the viewing direction appear to converge to a distant point in the back-
ground, and objects in the background appear to be smaller than objects in the
foreground.

F I G U R E 2
Three parallel-projection views of an
object, showing relative proportions
from different viewing positions.

Top Side Front

Three-Dimensional Viewing

302

Depth Cueing
With few exceptions, depth information is important in a three-dimensional scene
so that we can easily identify, for a particular viewing direction, which is the
front and which is the back of each displayed object. Figure 3 illustrates the
ambiguity that can result when a wire-frame object is displayed without depth
information. There are several ways in which we can include depth information
in the two-dimensional representation of solid objects. (a)

(b)

(c)

F I G U R E 3
The wire-frame representation of the
pyramid in (a) contains no depth
information to indicate whether the
viewing direction is (b) downward
from a position above the apex or
(c) upward from a position below
the base.

A simple method for indicating depth with wire-frame displays is to vary
the brightness of line segments according to their distances from the viewing
position. Figure 4 shows a wire-frame object displayed with depth cueing. The
lines closest to the viewing position are displayed with the highest intensity,
and lines farther away are displayed with decreasing intensities. Depth cueing is
applied by choosing a maximum and a minimum intensity value and a range of
distances over which the intensity is to vary.

Another application of depth cuing is modeling the effect of the atmosphere
on the perceived intensity of objects. More distant objects appear dimmer to us
than nearer objects due to light scattering by dust particles, haze, and smoke.
Some atmospheric effects can even change the perceived color of an object, and
we can model these effects with depth cueing.

Identifying Visible Lines and Surfaces
We can also clarify depth relationships in a wire-frame display using techniques
other than depth cueing. One approach is simply to highlight the visible lines
or to display them in a different color. Another technique, commonly used for
engineering drawings, is to display the nonvisible lines as dashed lines. Or we
could remove the nonvisible lines from the display, as in Figures 3(b) and
3(c). But removing the hidden lines also removes information about the shape
of the back surfaces of an object, and wire-frame representations are generally
used to get an indication of an object’s overall appearance, front and back.

F I G U R E 4
A wire-frame object displayed with
depth cueing, so that the brightness of
lines decreases from the front of the
object to the back.

When a realistic view of a scene is to be produced, back parts of the objects
are completely eliminated so that only the visible surfaces are displayed. In this
case, surface-rendering procedures are applied so that screen pixels contain only
the color patterns for the front surfaces.

Surface Rendering
Added realism is attained in displays by rendering object surfaces using the light-
ing conditions in the scene and the assigned surface characteristics. We set the
lighting conditions by specifying the color and location of the light sources, and
we can also set background illumination effects. Surface properties of objects
include whether a surface is transparent or opaque and whether the surface is
smooth or rough. We set values for parameters to model surfaces such as glass,
plastic, wood-grain patterns, and the bumpy appearance of an orange. In Color
Plate 9 surface-rendering methods are combined with perspective and visible-
surface identification to generate a degree of realism in a displayed scene.

Exploded and Cutaway Views
Many graphics packages allow objects to be defined as hierarchical structures, so
that internal details can be stored. Exploded and cutaway views of such objects
can then be used to show the internal structure and relationship of the object parts.
An alternative to exploding an object into its component parts is a cutaway view,
which removes part of the visible surfaces to show internal structure.

Three-Dimensional Viewing

303

Three-Dimensional and Stereoscopic Viewing
Other methods for adding a sense of realism to a computer-generated scene

Stereoscopic devices present two views of a scene: one for the left eye and the
other for the right eye. The viewing positions correspond to the eye positions of
the viewer. These two views are typically displayed on alternate refresh cycles of a
raster monitor. When we view the monitor through special glasses that alternately
darken first one lens and then the other, in synchronization with the monitor
refresh cycles, we see the scene displayed with a three-dimensional effect.

2 The Three-Dimensional Viewing Pipeline
Procedures for generating a computer-graphics view of a three-dimensional scene
are somewhat analogous to the processes involved in taking a photograph. First
of all, we need to choose a viewing position corresponding to where we would
place a camera. We choose the viewing position according to whether we want
to display a front, back, side, top, or bottom view of the scene. We could also
pick a position in the middle of a group of objects or even inside a single object,
such as a building or a molecule. Then we must decide on the camera orientation
(Figure 5). Which way do we want to point the camera from the viewing
position, and how should we rotate it around the line of sight to set the “up”
direction for the picture? Finally, when we snap the shutter, the scene is cropped
to the size of a selected clipping window, which corresponds to the aperture or
lens type of a camera, and light from the visible surfaces is projected onto the
camera film.

We need to keep in mind, however, that the camera analogy can be carried only
so far, because we have more flexibility and many more options for generating
views of a scene with a computer-graphics program than we do with a real camera.
We can choose to use either a parallel projection or a perspective projection, we
can selectively eliminate parts of a scene along the line of sight, we can move the
projection plane away from the “camera” position, and we can even get a picture
of objects in back of our synthetic camera.

Some of the viewing operations for a three-dimensional scene are the same as,

F I G U R E 5
Photographing a scene involves selection of the camera
position and orientation. z

y

x

Three-Dimensional Viewing

include three-dimensional displays and stereoscopic views. Three-dimensional
views can be obtained by reflecting a raster image from a vibrating, flexible mir-
ror. The vibrations of the mirror are synchronized with the display of the scene
on the cathode ray tube (CRT). As the mirror vibrates, the focal length varies so
that each point in the scene is reflected to a spatial position corresponding to its
depth.

or similar to, those used in the two-dimensional viewing pipeline. A two-dimen-
sional viewport is used to position a projected view of the threedimensional
scene on the output device, and a two-dimensional clipping window is used to

304

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

MC WC VC

Viewport
Transformation

Normalization
Transformation

and
Clipping

PC NC DC

F I G U R E 1 0 - 6
General three-dimensional transformation pipeline, from modeling coordinates (MC) to world coordinates (WC) to
viewing coordinates (VC) to projection coordinates (PC) to normalized coordinates (NC) and, ultimately, to device
coordinates (DC).

Figure 6 shows the general processing steps for creating and transforming a
three-dimensional scene to device coordinates. Once the scene has been modeled
in world coordinates, a viewing-coordinate system is selected and the descrip-
tion of the scene is converted to viewing coordinates. The viewing coordinate
system defines the viewing parameters, including the position and orientation
of the projection plane (view plane), which we can think of as the camera film
plane. A two-dimensional clipping window, corresponding to a selected camera
lens, is defined on the projection plane, and a three-dimensional clipping region
is established. This clipping region is called the view volume, and its shape and
size depends on the dimensions of the clipping window, the type of projection
we choose, and the selected limiting positions along the viewing direction. Pro-
jection operations are performed to convert the viewing-coordinate description
of the scene to coordinate positions on the projection plane. Objects are mapped
to normalized coordinates, and all parts of the scene outside the view volume are
clipped off. The clipping operations can be applied after all device-independent
coordinate transformations (from world coordinates to normalized coordinates)
are completed. In this way, the coordinate transformations can be concatenated
for maximum efficiency.

As in two-dimensional viewing, the viewport limits could be given in normal-
ized coordinates or in device coordinates. In developing the viewing algorithms,
we will assume that the viewport is to be specified in device coordinates and
that normalized coordinates are transferred to viewport coordinates, following
the clipping operations. There are also a few other tasks that must be performed,
such as identifying visible surfaces and applying the surface-rendering proce-
dures. The final step is to map viewport coordinates to device coordinates within
a selected display window. Scene descriptions in device coordinates are some-
times expressed in a left-handed reference frame so that positive distances from
the display screen can be used to measure depth values in the scene.

Three-Dimensional Viewing

select a view that is to be mapped to the viewport. In addition, we set up a dis-
play window in screen coordinates, just as we do in a two-dimensional applica-
tion. Clipping windows, viewports, and display windows are usually specified
as rectangles with their edges parallel to the coordinate axes. In three-dimensional
viewing, however, the clipping window is positioned on a selected view plane,
and scenes are clipped against an enclosing volume of space, which is defined
by a set of clipping planes. The viewing position, view plane, clipping window,
and clipping planes are all specified within the viewing-coordinate reference
frame.

305

3 Three-Dimensional Viewing-Coordinate
Parameters

referred to as the eye position or the camera position.) And we specify a view-up
vector V, which defines the yview direction. For three-dimensional space, we also
need to assign a direction for one of the remaining two coordinate axes. This
is typically accomplished with a second vector that defines the zview axis, with
the viewing direction along this axis. Figure 7 illustrates the positioning of a
three-dimensional viewing-coordinate frame within a world system.

yview

zview

xview

P0 � (x0, y0, z0)

xw
zw

yw

F I G U R E 7
A right-handed viewing-coordinate
system, with axes xview, yview, and
zview, relative to a right-handed
world-coordinate frame. The View-Plane Normal Vector

Because the viewing direction is usually along the zview axis, the view plane, also
called the projection plane, is normally assumed to be perpendicular to this axis.
Thus, the orientation of the view plane, as well as the direction for the positive zview
axis, can be defined with a view-plane normal vector N, as shown in Figure 8.

An additional scalar parameter is used to set the position of the view plane
at some coordinate value zvp along the zview axis, as illustrated in Figure 9.
This parameter value is usually specified as a distance from the viewing origin
along the direction of viewing, which is often taken to be in the negative zview
direction. Thus, the view plane is always parallel to the xview yview plane, and the
projection of objects to the view plane corresponds to the view of the scene that
will be displayed on the output device.

Vector N can be specified in various ways. In some graphics systems, the
direction for N is defined to be along the line from the world-coordinate origin
to a selected point position. Other systems take N to be in the direction from a
reference point Pref to the viewing origin P0, as in Figure 10. In this case, the
reference point is often referred to as a look-at point within the scene, with the
viewing direction opposite to the direction of N.

We could also define the view-plane normal vector, and other vector direc-
tions, using direction angles. These are the three angles, α, β, and γ , that a spatial line
makes with the x, y, and z axes, respectively. But it is usually much easier to specify
a vector direction with two point positions in a scene than with direction angles.

View
Plane

N

P0

xw
zw

yw

yview
xview zview

F I G U R E 8
Orientation of the view plane and
view-plane normal vector N.

zview

xview

yview

zvp � 0

zvp � 0

zvp � 0

F I G U R E 9
Three possible positions for the view
plane along the zview axis.

Three-Dimensional Viewing

Establishing a three-dimensional viewing reference frame is similar to set-
ting up the two-dimensional viewing reference frame. We first select a
world-coordinate position P0 =(x0, y0, z0) for the viewing origin, which is
called the view point or viewing position. (Sometimes the view point is also

306

xw
zw

yw

Pref

yview xview

zview

P0N

F I G U R E 1 0
Specifying the view-plane normal vector N as
the direction from a selected reference point
Pref to the viewing-coordinate origin P0.

The View-Up Vector
Once we have chosen a view-plane normal vector N, we can set the direction for
the view-up vector V. This vector is used to establish the positive direction for
the yview axis.

Adjusted
V

Input
V

N

F I G U R E 1 1
Adjusting the input direction of the
view-up vector V to an orientation
perpendicular to the view-plane
normal vector N.

Usually, V is defined by selecting a position relative to the world-coordinate
origin, so that the direction for the view-up vector is from the world origin to this
selected position. Because the view-plane normal vector N defines the direction
for the zview axis, vector V should be perpendicular to N. But, in general, it can
be difficult to determine a direction for V that is precisely perpendicular to N.
Therefore, viewing routines typically adjust the user-defined orientation of vector
V, as shown in Figure 11, so that V is projected onto a plane that is perpendicular
to the view-plane normal vector.

We can choose any direction for the view-up vector V, so long as it is not
parallel to N. A convenient choice is often in a direction parallel to the world yw

axis; that is, we could set V = (0, 1, 0).

The uvn Viewing-Coordinate Reference Frame
Left-handed viewing coordinates are sometimes used in graphics packages, with
the viewing direction in the positive zview direction. With a left-handed system,
increasing zview values are interpreted as being farther from the viewing posi-
tion along the line of sight. But right-handed viewing systems are more common,
because they have the same orientation as the world-reference frame. This allows
a graphics package to deal with only one coordinate orientation for both world
and viewing references. Although some early graphics packages defined view-
ing coordinates within a left-handed frame, right-handed viewing coordinates
are now used by the graphics standards. However, left-handed coordinate ref-
erences are often used to represent screen coordinates and for the normalization
transformation.

Because the view-plane normal N defines the direction for the zview axis and
the view-up vector V is used to obtain the direction for the yview axis, we need
only determine the direction for the xview axis. Using the input values for N and V,
we can compute a third vector, U, that is perpendicular to both N and V. Vector U
then defines the direction for the positive xview axis. We determine the correct
direction for U by taking the vector cross product of V and N so as to form a
right-handed viewing frame. The vector cross product of N and U also produces
the adjusted value for V, perpendicular to both N and U, along the positive yview
axis. Following these procedures, we obtain the following set of unit axis vectors
for a right-handed viewing coordinate system.

n = N
|N| = (nx, ny, nz)

u = V × n
|V × n| = (ux, uy, uz) (1)

v = n × u = (vx, vy, vz)

Three-Dimensional Viewing

307

The coordinate system formed with these unit vectors is often described as a uvn
viewing-coordinate reference frame (Figure 12).

u
v

n

yview

xview

zview

F I G U R E 1 2
A right-handed viewing system defined
with unit vectors u, v, and n.

Generating Three-Dimensional Viewing Effects
By varying the viewing parameters, we can obtain different views of objects in
a scene. For instance, from a fixed viewing position, we could change the direc-
tion of N to display objects at positions around the viewing-coordinate origin.
We could also vary N to create a composite display consisting of multiple views
from a fixed camera position. We can simulate a wide viewing angle by producing
seven views of the scene from the same viewing position, but with slight shifts in
the viewing direction; the views are then combined to form a composite display.
Similarly, we generate stereoscopic views by shifting the viewing direction as well
as shifting the view point slightly to simulate the two eye positions.

In interactive applications, the normal vector N is the viewing parameter that
is most often changed. Of course, when we change the direction for N, we also have
to change the other axis vectors to maintain a right-handed viewing-coordinate
system.

If we want to simulate an animation panning effect, as when a camera moves
through a scene or follows an object that is moving through a scene, we can keep

And to display different views of an object, such as a side view and a front view,

different views of an object or group of objects can be generated using geometric
transformations without changing the viewing parameters.

4 Transformation from World
to Viewing Coordinates

In the three-dimensional viewing pipeline, the first step after a scene has been
constructed is to transfer object descriptions to the viewing-coordinate reference
frame. This conversion of object descriptions is equivalent to a sequence of trans-
formations that superimposes the viewing reference frame onto the world frame.
We can accomplish this conversion using the methods for transforming between

F I G U R E 1 3
Panning across a scene by changing the
viewing position, with a fixed direction
for N.

P0

N

P0

N

P0

N

xw

zw

yw

Three-Dimensional Viewing

the direction for N fixed as we move the view point, as illustrated in Figure 13.

we could move the view point around the object, as in Figure 14. Alternatively,

308

N

N

N

Pref

F I G U R E 1 4
Viewing an object from different
directions using a fixed reference point.

coordinate system :

1. Translate the viewing-coordinate origin to the origin of the world-
coordinate system.

2. Apply rotations to align the xview, yview, and zview axes with the world xw,
yw, and zw axes, respectively.

The viewing-coordinate origin is at world position P0 = (x0, y0, z0). Therefore,
the matrix for translating the viewing origin to the world origin is

T =

⎡

⎢
⎢
⎣

1 0 0 −x0
0 1 0 −y0
0 0 1 −z0
0 0 0 1

⎤

⎥
⎥
⎦

(2)

For the rotation transformation, we can use the unit vectors u, v, and n to
form the composite rotation matrix that superimposes the viewing axes onto the
world frame. This transformation matrix is

R =

⎡

⎢
⎢
⎣

ux uy uz 0
vx vy vz 0
nx ny nz 0
0 0 0 1

⎤

⎥
⎥
⎦

(3)

where the elements of matrix R are the components of the uvn axis vectors.
The coordinate transformation matrix is then obtained as the product of the

preceding translation and rotation matrices:

MWC, VC = R · T

=

⎡

⎢
⎢
⎣

ux uy uz −u · P0
vx vy vz −v · P0
nx ny nz −n · P0
0 0 0 1

⎤

⎥
⎥
⎦

(4)

Three-Dimensional Viewing

s

309

Translation factors in this matrix are calculated as the vector dot product of each
of the u, v, and n unit vectors with P0, which represents a vector from the world
origin to the viewing origin. In other words, the translation factors are the negative
projections of P0 on each of the viewing-coordinate axes (the negative components
of P0 in viewing coordinates). These matrix elements are evaluated as

−u · P0 = −x0ux − y0uy − z0uz

−v · P0 = −x0vx − y0vy − z0vz (5)

−n · P0 = −x0nx − y0ny − z0nz

Matrix 4 transfers world-coordinate object descriptions to the viewing refer-
ence frame.

5 Projection Transformations
In the next phase of the three-dimensional viewing pipeline, after the transforma-
tion to viewing coordinates, object descriptions are projected to the view plane.
Graphics packages generally support both parallel and perspective projections.

In a parallel projection, coordinate positions are transferred to the view plane
along parallel lines. Figure 15 illustrates a parallel projection for a straight-
line segment defined with endpoint coordinates P1 and P2. A parallel projection
preserves relative proportions of objects, and this is the method used in computer-
aided drafting and design to produce scale drawings of three-dimensional objects.
All parallel lines in a scene are displayed as parallel when viewed with a parallel
projection. There are two general methods for obtaining a parallel-projection view
of an object: We can project along lines that are perpendicular to the view plane,
or we can project at an oblique angle to the view plane.

For a perspective projection, object positions are transformed to projection
coordinates along lines that converge to a point behind the view plane. An exam-
ple of a perspective projection for a straight-line segment, defined with endpoint

6 Orthogonal Projections
A transformation of object descriptions to a view plane along lines that are all
parallel to the view-plane normal vector N is called an orthogonal projection (or,

P1

P2

P2�

View
Plane

P1�

F I G U R E 1 5
Parallel projection of a line segment
onto a view plane.

P1

P2

P2�

P1�

View
Plane

Convergence
Point

F I G U R E 1 6
Perspective projection of a line
segment onto a view plane.

Three-Dimensional Viewing

coordinates P1 and P2, is given in Figure 16. Unlike a parallel projection, a perspec-
tive projection does not preserve relative proportions of objects. But perspective
views of a scene are more realistic because distant objects in the projected display
are reduced in size.

310

Plan View

Side Elevation View

Front Elevation View

F I G U R E 1 7
Orthogonal projections of an object,
displaying plan and elevation views.

equivalently, an orthographic projection). This produces a parallel-projection
transformation in which the projection lines are perpendicular to the view plane.
Orthogonal projections are most often used to produce the front, side, and top

projections of an object are called elevations; and a top orthogonal projection is
called a plan view. Engineering and architectural drawings commonly employ
these orthographic projections, because lengths and angles are accurately depicted
and can be measured from the drawings.

Axonometric and Isometric Orthogonal Projections
We can also form orthogonal projections that display more than one face of an
object. Such views are called axonometric orthogonal projections. The most com-
monly used axonometric projection is the isometric projection, which is generated
by aligning the projection plane (or the object) so that the plane intersects each
coordinate axis in which the object is defined, called the principal axes, at the same

We can obtain the isometric projection shown in this figure by aligning the view-
plane normal vector along a cube diagonal. There are eight positions, one in each
octant, for obtaining an isometric view. All three principal axes are foreshortened
equally in an isometric projection, so that relative proportions are maintained.
This is not the case in a general axonometric projection, where scaling factors
may be different for the three principal directions.

Orthogonal Projection Coordinates
With the projection direction parallel to the zview axis, the transformation equa-
tions for an orthogonal projection are trivial. For any position (x, y, z) in viewing
coordinates, as in Figure 19, the projection coordinates are

xp = x, yp = y (6)

Three-Dimensional Viewing

views of an object, as shown in Figure 17. Front, side, and rear orthogonal

distance from the origin. Figure 18 shows an isometric projection for a cube.

311

F I G U R E 1 8
An isometric projection of a cube.

y
1

5

4

6

2 3

7

 1�
 4�

 6�

 2�
 3�

 7�

 8�

x

z View
Plane

F I G U R E 1 9
An orthogonal projection of a spatial
position onto a view plane.

(x, y)

(x, y, z)

View
Plane

xview

zview

yview

The z-coordinate value for any projection transformation is preserved for use in
the visibility determination procedures. And each three-dimensional coordinate
point in a scene is converted to a position in normalized space.

Clipping Window and Orthogonal-Projection View Volume
In the camera analogy, the type of lens is one factor that determines how much of
the scene is transferred to the film plane. A wide-angle lens takes in more of the
scene than a regular lens. For computer-graphics applications, we use the rectan-
gular clipping window for this purpose. As in two-dimensional viewing, graphics
packages typically require that clipping rectangles be placed in specific positions.
In OpenGL, we set up a clipping window for three-dimensional viewing just as
we did for two-dimensional viewing, by choosing two-dimensional coordinate
positions for its lower-left and upper-right corners. For three-dimensional view-
ing, the clipping window is positioned on the view plane with its edges parallel

shape or orientation for the clipping window, we must develop our own viewing
procedures.

The edges of the clipping window specify the x and y limits for the part of
the scene that we want to display. These limits are used to form the top, bot-
tom, and two sides of a clipping region called the orthogonal-projection view
volume. Because projection lines are perpendicular to the view plane, these four
boundaries are planes that are also perpendicular to the view plane and that pass

Three-Dimensional Viewing

to the xview and yview axes, as shown in Figure 20. If we want to use some other

312

Clipping
Window

zview xview

yview

View Plane

(xwmin, ywmin)

(xwmax, ywmax)

F I G U R E 2 0
A clipping window on the view plane,
with minimum and maximum
coordinates given in the viewing
reference system.

Clipping
Window

zview

zview

Clipping

Side View
(a)

Top View
(b)

Window

F I G U R E 2 1
Infinite orthogonal-projection view
volume.

through the edges of the clipping window to form an infinite clipping region, as
in Figure 21.

We can limit the extent of the orthogonal view volume in the zview direction
by selecting positions for one or two additional boundary planes that are parallel
to the view plane. These two planes are called the near-far clipping planes, or the
front-back clipping planes. The near and far planes allow us to exclude objects
that are in front of or behind the part of the scene that we want to display. With
the viewing direction along the negative zview axis, we usually have zfar < znear,
so that the far plane is father out along the negative zview axis. Some graphics
libraries provide these two planes as options, and other libraries require them.
When the near and far planes are specified, we obtain a finite orthogonal view

possible placement for the view plane. Our view of the scene will then contain
only those objects within the view volume, with all parts of the scene outside the
view volume eliminated by the clipping algorithms.

Graphics packages provide varying degrees of flexibility in the positioning
of the near and far clipping planes, including options for specifying additional
clipping planes at other positions in the scene. In general, the near and far planes
can be in any relative position to each other to achieve various viewing effects,
including positions that are on opposite sides of the view point. Similarly, the view
plane can sometimes be placed in any position relative to the near and far clipping
planes, although it is often taken to be coincident with the near clipping plane.
However, providing numerous positioning options for the clipping and view
planes usually results in less efficient processing of a three-dimensional scene.

Three-Dimensional Viewing

volume that is a rectangular parallelepiped, as shown in Figure 22 along with one

313

F I G U R E 2 2
A finite orthogonal view volume with
the view plane “in front” of the near
plane.

Orthogonal-Projection
View Volume

Far
Plane

Near
Plane

yview

xview

zview

Clipping
Window

Normalization Transformation for an Orthogonal Projection
Using an orthogonal transfer of coordinate positions onto the view plane, we
obtain the projected position of any spatial point (x, y, z) as simply (x, y). Thus,
once we have established the limits for the view volume, coordinate descriptions
inside this rectangular parallelepiped are the projection coordinates, and they
can be mapped into a normalized view volume without any further projection
processing. Some graphics packages use a unit cube for this normalized view
volume, with each of the x, y, and z coordinates normalized in the range from 0
to 1. Another normalization-transformation approach is to use a symmetric cube,
with coordinates in the range from −1 to 1.

Because screen coordinates are often specified in a left-handed reference frame
(Figure 23), normalized coordinates also are often specified in a left-handed
system. This allows positive distances in the viewing direction to be directly
interpreted as distances from the screen (the viewing plane). Thus, we can convert
projection coordinates into positions within a left-handed normalized-coordinate
reference frame, and these coordinate positions will then be transferred to left-
handed screen coordinates by the viewport transformation.

To illustrate the normalization transformation, we assume that the
orthogonal-projection view volume is to be mapped into the symmetric

F I G U R E 2 3
A left-handed screen-coordinate
reference frame.

Viewport

Display
Window

A Pyramid

xscreen

zscreen

yscreen

Video Screen

Three-Dimensional Viewing

314

zview

xview

yview

Orthogonal-Projection
View Volume

Normalized
View Volume

xnorm

znorm
ynorm

(xwmax, ywmax, zfar)

(xwmin, ywmin, znear)

(1, 1, 1)

(�1, �1, �1)

F I G U R E 2 4
Normalization transformation from an
orthogonal-projection view volume to
the symmetric normalization cube
within a left-handed reference frame.

normalization cube within a left-handed reference frame. Also, z-coordinate po-
sitions for the near and far planes are denoted as znear and zfar, respectively. Fig-
ure 24 illustrates this normalization transformation. Position (xmin, ymin, znear)

is mapped to the normalized position (−1, −1, −1), and position (xmax, ymax, zfar)

is mapped to (1, 1, 1).
Transforming the rectangular-parallelepiped view volume to a normalized

Mortho,norm =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2
xwmax − xwmin

0 0 − xwmax + xwmin

xwmax − xwmin

0
2

ywmax − ywmin
0 − ywmax + ywmin

ywmax − ywmin

0 0
−2

znear − zfar

znear + zfar

znear − zfar

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(7)
This matrix is multiplied on the right by the composite viewing transformation
R·T (Section 4) to produce the complete transformation from world coordinates
to normalized orthogonal-projection coordinates.

At this stage of the viewing pipeline, all device-independent coordinate trans-
formations are completed and can be concatenated into a single composite matrix.
Thus, the clipping procedures are most efficiently performed following the nor-
malization transformation. After clipping, procedures for visibility testing, sur-
face rendering, and the viewport transformation can be applied to generate the
final screen display of the scene.

7 Oblique Parallel Projections
In general, a parallel-projection view of a scene is obtained by transferring object
descriptions to the view plane along projection paths that can be in any selected

Three-Dimensional Viewing

cube is similar to the methods for converting the clipping window into the nor-
malized symmetric square. The normalization transformation for the orthogonal
view volume is

315

F I G U R E 2 5
An oblique parallel projection of a
cube, shown in a top view (a),
produces a view (b) containing
multiple surfaces of the cube.

View Plane

(a)

View Plane

(b)

direction relative to the view-plane normal vector. When the projection path is
not perpendicular to the view plane, this mapping is called an oblique parallel
projection. Using this projection, we can produce combinations such as a front,
side, and top view of an object, as in Figure 25. Oblique parallel projections
are defined by a vector direction for the projection lines, and this direction can be
specified in various ways.

Oblique Parallel Projections in Drafting and Design
For applications in engineering and architectural design, an oblique parallel pro-
jection is often specified with two angles, α and φ, as shown in Figure 26. A
spatial position (x, y, z), in this illustration, is projected to (xp, yp, zvp) on a view
plane, which is at location zvp along the viewing z axis. Position (x, y, zvp) is the
corresponding orthogonal-projection point. The oblique parallel projection line
from (x, y, z) to (xp, yp, zvp) has an intersection angle α with the line on the projec-
tion plane that joins (xp, yp, zvp) and (x, y, zvp). This view-plane line, with length
L , is at an angle φ with the horizontal direction in the projection plane. Angle α

can be assigned a value between 0 and 90◦, and angle φ can vary from 0 to 360◦.
We can express the projection coordinates in terms of x, y, L , and φ as

xp = x + L cos φ

yp = y + L sin φ
(8)

F I G U R E 2 6
An oblique parallel projection of
coordinate position (x , y , z) to
position (x p , y p , zvp) on a projection
plane at position zvp along the zview
axis.

View
Plane

(xp, yp, zvp)

(x, y, z)

(x, y, zvp)

L

yview

xview

zview

a

f

Three-Dimensional Viewing

316

View Plane
(a)

View Plane

L1

(b)

f F I G U R E 2 7
An oblique parallel projection (a) of a
cube (top view) onto a view plane that
is coincident with the front face of the
cube produces the combination front,
side, and top view shown in (b).

Length L depends on the angle α and the perpendicular distance of the point
(x, y, z) from the view plane:

tan α = zvp − z
L

(9)

Thus

L = zvp − z
tan α

= L1(zvp − z) (10)

where L1 = cot α, which is also the value of L when zvp − z = 1. We can then write
the oblique parallel projection equations 8 as

xp = x + L1(zvp − z) cos φ

yp = y + L1(zvp − z) sin φ
(11)

An orthogonal projection is obtained when L1 = 0 (which occurs at the projection
angle α = 90◦).

Cavalier and Cabinet Oblique Parallel Projections
Typical choices for angleφ are 30◦ and 45◦, which display a combination view of the
front, side, and top (or front, side, and bottom) of an object. Two commonly used
values for α are those for which tan α = 1 and tan α = 2. For the first case, α = 45◦

and the views obtained are called cavalier projections. All lines perpendicular to
the projection plane are projected with no change in length. Examples of cavalier
projections for a cube are given in Figure 28.

When the projection angle α is chosen so that tan α = 2, the resulting view
is called a cabinet projection. For this angle (≈ 63.4◦), lines perpendicular to the
viewing surface are projected at half their length. Cabinet projections appear
more realistic than cavalier projections because of this reduction in the length of
perpendiculars. Figure 29 shows examples of cabinet projections for a cube.

Three-Dimensional Viewing

Equations 11 represent a z-axis shearing transformation. In fact, the effect of
an oblique parallel projection is to shear planes of constant z and project them
onto the view plane. The (x, y) positions on each plane of constant z are shifted
by an amount proportional to the distance of the plane from the view plane, so
that angles, distances, and parallel lines in the plane are projected accurately.
This effect is shown in Figure 27, where the view plane is positioned at the front
face of a cube. The back plane of the cube is sheared and overlapped with the
front plane in the projection to the viewing surface. A side edge of the cube con-
necting the front and back planes is projected into a line of length L1 that makes
an angle with a horizontal line in the projection plane.φ

317

F I G U R E 2 8
Cavalier projections of a cube onto a
view plane for two values of angle φ.
The depth of the cube is projected with
a length equal to that of the width and
height. (a) (b)

f � 45� f � 30�

(a) (b)

f � 45� f � 30�

F I G U R E 2 9
Cabinet projections of a cube onto a
view plane for two values of angle φ.
The depth is projected with a length
that is one half that of the width and
height of the cube. (a) (b)

f � 45� f � 30�

Oblique Parallel-Projection Vector
In graphics programming libraries that support oblique parallel projections, the
direction of projection to the view plane is specified with a parallel-projection vec-
tor, Vp. This direction vector can be designated with a reference position relative to
the view point, as we did with the view-plane normal vector, or with any other two
points. Some packages use a reference point relative to the center of the clipping
window to define the direction for a parallel projection. If the projection vector is
specified in world coordinates, it must first be transformed to viewing coordinates
using the rotation matrix discussed in Section 4. (The projection vector is unaf-
fected by the translation, because it is simply a direction with no fixed position.)

Once the projection vector Vp is established in viewing coordinates, all points
in the scene are transferred to the view plane along lines that are parallel to this
vector. Figure 30 illustrates an oblique parallel projection of a spatial point to
the view plane. We can denote the components of the projection vector relative
to the viewing-coordinate frame as Vp = (Vpx, Vpy, Vpz), where Vpy/Vpx = tan φ.
Then, comparing similar triangles in Figure 30, we have

xp − x
zvp − z

= Vpx

Vpz

yp − y
zvp − z

= Vpy

Vpz

And we can write the equivalent of the oblique parallel-projection equations 11
in terms of the projection vector as

xp = x + (zvp − z)
Vpx

Vpz

yp = y + (zvp − z)
Vpy

Vpz

(12)

Three-Dimensional Viewing

318

View
Plane

(x, y, z)

xview

yview

zview

a

f

L

(x, y, zvp)

(xp, yp, zvp)

Vp

F I G U R E 3 0
Oblique parallel projection of position
(x , y , z) to a view plane along a
projection line defined with vector Vp .

The oblique parallel-projection coordinates in 12 reduce to the orthogonal-
projection coordinates 6 when Vpx = Vpy = 0.

Clipping Window and Oblique Parallel-Projection View Volume
A view volume for an oblique parallel projection is set up using the same proce-
dures as in an orthogonal projection. We select a clipping window on the view
plane with coordinate positions (xwmin, ywmin) and (xwmax, ywmax), for the lower-
left and upper-right corners of the clipping rectangle. The top, bottom, and sides
of the view volume are then defined by the direction of projection and the edges
of the clipping window. In addition, we can limit the extent of the view volume
by adding a near plane and a far plane, as in Figure 31. The finite oblique
parallel-projection view volume is an oblique parallelepiped.

Oblique parallel projections may be affected by changes in the position of the
view plane, depending on how the projection direction is to be specified. In some
systems, the oblique parallel-projection direction is parallel to the line connecting
a reference point to the center of the clipping window. Therefore, moving the
position of the view plane or clipping window without adjusting the reference
point changes the shape of the view volume.

Oblique Parallel-Projection Transformation Matrix
Using the projection-vector parameters from the equations in 12, we can
express the elements of the transformation matrix for an oblique parallel

Far Plane

Near Plane

View
Volume

Vp

View Plane
Clipping Window

F I G U R E 3 1
Top view of a finite view volume for
an oblique parallel projection in the
direction of vector Vp .

Three-Dimensional Viewing

319

projection as

Moblique =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 − Vpx

Vpz
zvp

Vpx

Vpz

0 1 − Vpy

Vpz
zvp

Vpy

Vpz

0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(13)

This matrix shifts the values of the x and y coordinates by an amount proportional
to the distance from the view plane, which is at position zvp on the zview axis. The z
values of spatial positions are unchanged. If Vpx = Vpy = 0, we have an orthogonal
projection and matrix 13 is reduced to the identity matrix.

For a general oblique parallel projection, matrix 13 represents a z-axis
shearing transformation. All coordinate positions within the oblique view vol-
ume are sheared by an amount proportional to their distance from the view
plane. The effect is to shear the oblique view volume into a rectangular paral-
lelepiped, as illustrated in Figure 32. Thus, positions inside the view volume are
sheared into orthogonal-projection coordinates by the oblique parallel-projection
transformation.

Normalization Transformation for an Oblique Parallel Projection
Because the oblique parallel-projection equations convert object descriptions to
orthogonal-coordinate positions, we can apply the normalization procedures fol-
lowing this transformation. The oblique view volume has been converted to a
rectangular parallelepiped, so we use the same procedures as in Section 6.

Following the normalization example in Section 6, we again map to the
symmetric normalized cube within a left-handed coordinate frame. Thus, the
complete transformation, from viewing coordinates to normalized coordinates,
for an oblique parallel projection is

Moblique,norm = Mortho,norm · Moblique (14)

Clipping Window Clipping Window
View Plane

Near Plane

Far Plane

Shear Transformation

(a)
Oblique-Projection

View Volume

(b)
Transformed

Oblique
View Volume

Vp

F I G U R E 3 2
Top view of an oblique parallel-projection transformation. The oblique view volume is converted into a rectangular
parallelepiped, and objects in the view volume, such as the green block, are mapped to orthogonal-projection
coordinates.

Three-Dimensional Viewing

320

Transformation Moblique is matrix 13, which converts the scene description
to orthogonal-projection coordinates; and transformation Mortho,norm is matrix
7, which maps the contents of the orthogonal view volume to the symmet-
ric normalization cube.

To complete the viewing transformations (with the exception of the map-
ping to viewport screen coordinates), we concatenate matrix 14 to the left
of the transformation MWC,VC from Section 4. Clipping routines can then be
applied to the normalized view volume, followed by the determination of visible
objects, the surface-rendering procedures, and the viewport transformation.

8 Perspective Projections
Although a parallel-projection view of a scene is easy to generate and preserves
relative proportions of objects, it does not provide a realistic representation. To
simulate a camera picture, we need to consider that reflected light rays from
the objects in a scene follow converging paths to the camera film plane. We can
approximate this geometric-optics effect by projecting objects to the view plane
along converging paths to a position called the projection reference point (or
center of projection). Objects are then displayed with foreshortening effects, and
projections of distant objects are smaller than the projections of objects of the same
size that are closer to the view plane (Figure 33).

Perspective-Projection Transformation Coordinates
We can sometimes select the projection reference point as another viewing pa-
rameter in a graphics package, but some systems place this convergence point

(xpr p, ypr p, zpr p). The projection line intersects the view plane at the coordinate
position (xp, yp, zvp), where zvp is some selected position for the view plane on
the zview axis. We can write equations describing coordinate positions along this
perspective-projection line in parametric form as

x′ = x − (x − xpr p)u

y′ = y − (y − ypr p)u 0 ≤ u ≤ 1 (15)

z′ = z − (z − zpr p)u

Coordinate position (x′, y′, z′) represents any point along the projection line. When
u = 0, we are at position P = (x, y, z). At the other end of the line, u = 1 and

Projection
Reference

Point

View
Plane

F I G U R E 3 3
A perspective projection of two
equal-length line segments at different
distances from the view plane.

Three-Dimensional Viewing

at a fixed position, such as at the view point. Figure 34 shows the projection
path of a spatial position (x, y, z) to a general projection reference point at

321

F I G U R E 3 4
A perspective projection of a point P
with coordinates (x , y , z) to a
selected projection reference point.
The intersection position on the view
plane is (x p , y p , zv p) .

P � (x, y, z)

xview

yview

zview

(xprp, yprp, zprp)(xp, yp, zvp)

View Plane

we have the projection reference-point coordinates (xpr p, ypr p, zpr p). On the view
plane, z′ = zvp and we can solve the z′ equation for parameter u at this position
along the projection line:

u = zvp − z
zpr p − z

(16)

Substituting this value of u into the equations for x′ and y′, we obtain the general
perspective-transformation equations

xp = x
(

zpr p − zvp

zpr p − z

)

+ xpr p

(
zvp − z
zpr p − z

)

yp = y
(

zpr p − zvp

zpr p − z

)

+ ypr p

(
zvp − z
zpr p − z

) (17)

Calculations for a perspective mapping are more complex than the
parallel-projection equations, because the denominators in the perspective
calculations 17 are functions of the z coordinate of the spatial position. There-
fore, we now need to formulate the perspective-transformation procedures a little
differently so that this mapping can be concatenated with the other viewing trans-
formations. But first we take a look at some of the properties of Equations 17.

Perspective-Projection Equations: Special Cases
Various restrictions are often placed on the parameters for a perspective pro-
jection. Depending on a particular graphics package, positioning for either the
projection reference point or the view plane may not be completely optional.

To simplify the perspective calculations, the projection reference point could
be limited to positions along the zview axis, then

1. xpr p = ypr p = 0:

xp = x
(

zpr p − zvp

zpr p − z

)

, yp = y
(

zpr p − zvp

zpr p − z

)

(18)

Sometimes the projection reference point is fixed at the coordinate origin, and

2. (xpr p, ypr p, zpr p) = (0, 0, 0) :

xp = x
(

zvp

z

)

, yp = y
(

zvp

z

)

(19)

If the view plane is the uv plane and there are no restrictions on the placement of
the projection reference point, then we have

Three-Dimensional Viewing

322

3. zvp = 0:

xp = x
(

zpr p

zpr p − z

)

− xpr p

(
z

zpr p − z

)

yp = y
(

zpr p

zpr p − z

)

− ypr p

(
z

zpr p − z

) (20)

With the uv plane as the view plane and the projection reference point on the zview
axis, the perspective equations are

4. xpr p = ypr p = zvp = 0:

xp = x
(

zpr p

zpr p − z

)

, yp = y
(

zpr p

zpr p − z

)

(21)

Of course, we cannot have the projection reference point on the view plane.
In that case, the entire scene would project to a single point. The view plane
is usually placed between the projection reference point and the scene, but, in
general, the view plane could be placed anywhere except at the projection point.
If the projection reference point is between the view plane and the scene, objects
are inverted on the view plane (Figure 35). With the scene between the view
plane and the projection point, objects are simply enlarged as they are projected
away from the viewing position onto the view plane.

Perspective effects also depend on the distance between the projection ref-
erence point and the view plane, as illustrated in Figure 36. If the projection

View Plane

(xprp, yprp, zprp)

F I G U R E 3 5
A perspective-projection view of an
object is upside down when the
projection reference point is between
the object and the view plane.

Clipping
Window

Clipping
Window

Clipping
Window

Projection
Reference

Point

Projection
Reference

Point

Projection
Reference
Very Far

from View
Plane

(a)

(b)

(c)

F I G U R E 3 6
Changing perspective effects by
moving the projection reference
point away from the view plane.

Three-Dimensional Viewing

323

reference point is close to the view plane, perspective effects are emphasized; that
is, closer objects will appear much larger than more distant objects of the same size.
Similarly, as the projection reference point moves farther from the view plane, the
difference in the size of near and far objects decreases. When the projection refer-
ence point is very far from the view plane, a perspective projection approaches a
parallel projection.

Vanishing Points for Perspective Projections
When a scene is projected onto a view plane using a perspective mapping, lines
that are parallel to the view plane are projected as parallel lines. But any par-
allel lines in the scene that are not parallel to the view plane are projected into
converging lines. The point at which a set of projected parallel lines appears to
converge is called a vanishing point. Each set of projected parallel lines has a
separate vanishing point.

For a set of lines that are parallel to one of the principal axes of an object,
the vanishing point is referred to as a principal vanishing point. We control the
number of principal vanishing points (one, two, or three) with the orientation
of the projection plane, and perspective projections are accordingly classified as
one-point, two-point, or three-point projections. The number of principal vanish-
ing points in a projection is equal to the number of principal axes that intersect
the view plane. Figure 37 illustrates the appearance of one-point and two-
point perspective projections for a cube. In the projected view (b), the view plane
is aligned parallel to the xy object plane so that only the object z axis is inter-
sected. This orientation produces a one-point perspective projection with a z-axis

F I G U R E 3 7
Principal vanishing points for
perspective-projection views of a cube.
When the cube in (a) is projected to a
view plane that intersects only the
z axis, a single vanishing point in the z
direction (b) is generated. When the
cube is projected to a view plane that
intersects both the z and x axes, two
vanishing points (c) are produced.

y

x

z

Principle
Axes for

Cube
One-Point
Perspective
Projection

Two-Point
Perspective
Projection

z-axis
Vanishing
Point

x-axis
Vanishing
Point

Vanishing Point

(a)
(b)

(c)

Three-Dimensional Viewing

324

vanishing point. For the view shown in (c), the projection plane intersects both
the x and z axes but not the y axis. The resulting two-point perspective projec-
tion contains both x-axis and z-axis vanishing points. There is not much increase
in the realism of a three-point perspective projection compared to a two-point
projection, so three-point projections are not used as often in architectural and
engineering drawings.

Perspective-Projection View Volume
We again create a view volume by specifying the position of a rectangular clipping
window on the view plane. But now the bounding planes for the view volume are
not parallel, because the projection lines are not parallel. The bottom, top, and sides
of the view volume are planes through the window edges that all intersect at the
projection reference point. This forms a view volume that is an infinite rectangular
pyramid with its apex at the center of projection (Figure 38). All objects outside
this pyramid are eliminated by the clipping routines. A perspective-projection
view volume is often referred to as a pyramid of vision because it approximates
the cone of vision of our eyes or a camera. The displayed view of a scene includes
only those objects within the pyramid, just as we cannot see objects beyond our
peripheral vision, which are outside the cone of vision.

By adding near and far clipping planes that are perpendicular to the zview
axis (and parallel to the view plane), we chop off parts of the infinite, perspective-
projection view volume to form a truncated pyramid, or frustum, view volume.
Figure 39 illustrates the shape of a finite, perspective-projection view volume
with a view plane that is placed between the near clipping plane and the projection
reference point. Sometimes the near and far planes are required in a graphics
package, and sometimes they are optional.

Usually, both the near and far clipping planes are on the same side of the
projection reference point, with the far plane farther from the projection point
than the near plane along the viewing direction. And, as in a parallel projection,
we can use the near and far planes simply to enclose the scene to be viewed. But
with a perspective projection, we could also use the near clipping plane to take out
large objects close to the view plane that could project into unrecognizable shapes
within the clipping window. Similarly, the far clipping plane could be used to cut
out objects far from the projection reference point that might project to small blots
on the view plane. Some systems restrict the placement of the view plane relative
to the near and far planes, and other systems allow it to be placed anywhere except

Center of
Projection

Clipping
Window

F I G U R E 3 8
An infinite, pyramid view volume
for a perspective projection.

Three-Dimensional Viewing

325

F I G U R E 3 9
A perspective-projection frustum view
volume with the view plane “in front”
of the near clipping plane.

Rectangular
Frustum
View Volume

Clipping
Window

Projection
Reference
Point

Near Clipping
Plane

Far Clipping
Plane

at the position of the projection reference point. If the view plane is “behind” the
projection reference point, objects are inverted, as shown in Figure 35.

Perspective-Projection Transformation Matrix
Unlike a parallel projection, we cannot directly use the coefficients of the x and y
coordinates in equations 17 to form the perspective-projection matrix elements,
because the denominators of the coefficients are functions of the z coordinate.
But we can use a three-dimensional, homogeneous-coordinate representation to
express the perspective-projection equations in the form

xp = xh

h
, yp = yh

h
(22)

where the homogeneous parameter has the value

h = zpr p − z (23)

The numerators in 22 are the same as in equations 17:

xh = x(zpr p − zvp) + xpr p(zvp − z)

yh = y(zpr p − zvp) + ypr p(zvp − z)
(24)

Thus, we can set up a transformation matrix to convert a spatial position to
homogeneous coordinates so that the matrix contains only the perspective param-
eters and not coordinate values. The perspective-projection transformation of a
viewing-coordinate position is then accomplished in two steps. First, we calculate
the homogeneous coordinates using the perspective-transformation matrix:

Ph = Mpers · P (25)

where Ph is the column-matrix representation of the homogeneous point
(xh , yh , zh , h) and P is the column-matrix representation of the coordinate posi-
tion (x, y, z, 1). (Actually, the perspective matrix would be concatenated with the
other viewing-transformation matrices, and then the composite matrix would be
applied to the world-coordinate description of a scene to produce homogeneous
coordinates.) Second, after other processes have been applied, such as the nor-
malization transformation and clipping routines, homogeneous coordinates are
divided by parameter h to obtain the true transformation-coordinate positions.

Three-Dimensional Viewing

326

Setting up matrix elements for obtaining the homogeneous-coordinate xh and
yh values in 24 is straightforward, but we must also structure the matrix to
preserve depth (z-value) information. Otherwise, the z coordinates are distorted
by the homogeneous-division parameter h. We can do this by setting up the matrix
elements for the z transformation so as to normalize the perspective-projection zp

coordinates. There are various ways that we could choose the matrix elements to
produce the homogeneous coordinates 24 and the normalized z p value for a
spatial position (x, y, z). The following matrix gives one possible way to formulate
a perspective-projection matrix.

Mpers =

⎡

⎢
⎢
⎢
⎣

zpr p − zvp 0 −xpr p xpr pzpr p

0 zpr p − zvp −ypr p ypr pzpr p

0 0 sz tz

0 0 −1 zpr p

⎤

⎥
⎥
⎥
⎦

(26)

Parameters sz and tz are the scaling and translation factors for normalizing the
projected values of z-coordinates. Specific values for sz and tz depend on the
normalization range we select.

Matrix 26 converts the description of a scene into homogeneous parallel-
projection coordinates. However, the frustum view volume can have any ori-
entation, so that these transformed coordinates could correspond to an oblique
parallel projection. This occurs if the frustum view volume is not symmetric. If the
frustum view volume for the perspective projection is symmetric, the resulting
parallel-projection coordinates correspond to an orthogonal projection. We next
consider these two possibilities.

Symmetric Perspective-Projection Frustum
The line from the projection reference point through the center of the clipping
window and on through the view volume is the centerline for a perspective-
projection frustum. If this centerline is perpendicular to the view plane, we have
a symmetric frustum (with respect to its centerline) as in Figure 40.

Because the frustum centerline intersects the view plane at the coordinate
location (xpr p, ypr p, zvp), we can express the corner positions for the clipping

Frustum Centerline

Far Clipping
Plane

Near Clipping Plane

View Plane

Clipping
Window

(xprp, yprp, zvp)

(xprp, yprp, zprp)

View Volume

F I G U R E 4 0
A symmetric perspective-projection
frustum view volume, with the view plane
between the projection reference point
and the near clipping plane. This frustum is
symmetric about its centerline when
viewed from above, below, or either side.

Three-Dimensional Viewing

327

window in terms of the window dimensions:

xwmin = xpr p − width
2

, xwmax = xpr p + width
2

ywmin = ypr p − height
2

, ywmax = ypr p + height
2

Therefore, we could specify a symmetric perspective-projection view of a scene
using the width and height of the clipping window instead of the window coor-
dinates. This uniquely establishes the position of the clipping window, because it
is symmetric about the x and y coordinates of the projection reference point.

Another way to specify a symmetric perspective projection is to use parame-
ters that approximate the properties of a camera lens. A photograph is produced
with a symmetric perspective projection of a scene onto the film plane. Reflected
light rays from the objects in a scene are collected on the film plane from within
the “cone of vision” of the camera. This cone of vision can be referenced with a
field-of-view angle, which is a measure of the size of the camera lens. A large
field-of-view angle, for example, corresponds to a wide-angle lens. In computer
graphics, the cone of vision is approximated with a symmetric frustum, and we
can use a field-of-view angle to specify an angular size for the frustum. Typically,
the field-of-view angle is the angle between the top clipping plane and the bottom
clipping plane of the frustum, as shown in Figure 41.

For a given projection reference point and view-plane position, the field-of-
view angle determines the height of the clipping window (Figure 42), but not
the width. We need an additional parameter to define completely the clipping-
window dimensions, and this second parameter could be either the window width
or the aspect ratio (width/height) of the clipping window. From the right triangles
in the diagram of Figure 42, we see that

tan
(

θ

2

)

= height/2
zpr p − zvp

(27)

so that the clipping-window height can be calculated as

height = 2(zpr p − zvp) tan
(

θ

2

)

(28)

F I G U R E 4 1
Field-of-view angle θ for a symmetric
perspective-projection view volume,
with the clipping window between the
near clipping plane and the projection
reference point.

Frustum
View Volume

Clipping
Window

Projection
Reference
Point

yview

xview

zview

u

Three-Dimensional Viewing

328

zprp � zvp

height
u

2

Clipping Window

Projection
Reference Point

yview

zview

F I G U R E 4 2
Relationship between the field-of-view
angle θ , the height of the clipping
window, and the distance between the
projection reference point and the
view plane.

Therefore, the diagonal elements with the value zpr p − zvp in matrix 26 could
be replaced by either of the following two expressions.

zpr p − zvp = height
2

cot
(

θ

2

)

= width · cot(θ/2)

2 · aspect
(29)

In some graphics libraries, fixed positions are used for the view plane and
the projection reference point, so that a symmetric perspective projection is
completely specified by the field-of-view angle, the aspect ratio of the clipping
window, and the distances from the viewing position to the near and far clip-
ping planes. The same aspect ratio is usually applied to the specification of the
viewport.

If the field-of-view angle is decreased in a particular application, the foreshort-
ening effects of a perspective projection are also decreased. This is comparable to
moving the projection reference point farther from the view plane. Also, decreas-
ing the field-of-view angle decreases the height of the clipping window, and this
provides a method for zooming in on small regions of a scene. Similarly, a large
field-of-view angle results in a large clipping-window height (a zoom out), and it
increases perspective effects, which is what we achieve when we set the projec-
tion reference point close to the view plane. Figure 43 illustrates the effects of
various field-of-view angles for a fixed-width clipping window.

When the perspective-projection view volume is a symmetric frustum, the
perspective transformation maps locations inside the frustum to orthogonal-
projection coordinates within a rectangular parallelepiped. The centerline of the
parallelepiped is the frustum centerline, because this line is already perpendicular
to the view plane (Figure 44). This is a consequence of the fact that all posi-
tions along a projection line within the frustum map to the same point (xp, yp) on
the view plane. Thus, each projection line is converted by the perspective trans-
formation to a line that is perpendicular to the view plane and, thus, parallel to
the frustum centerline. With the symmetric frustum converted to an orthogonal-
projection view volume, we can next apply the normalization transformation.

Oblique Perspective-Projection Frustum
If the centerline of a perspective-projection view volume is not perpendicular to
the view plane, we have an oblique frustum. Figure 45 illustrates the general

Three-Dimensional Viewing

329

F I G U R E 4 3
Increasing the size of the field-of-view angle
increases the height of the clipping window
and increases the perspective-projection
foreshortening.

20�

Projection
Reference
Point

Clipping
Window

(a)

40�

(b)

60�

(c)

F I G U R E 4 4
A symmetric frustum view volume is
mapped to an orthogonal
parallelepiped by a perspective-
projection transformation.

Centerline

Symmetric
Frustum

View Volume

Far Plane

Near Plane

View Plane
Clipping
Window

Projection Reference Point

Parallelepiped
View Volume

Perspective Mapping

Three-Dimensional Viewing

330

Frustum Centerline

Far Clipping Plane

Near Clipping Plane

View Plane

Clipping
Window

(xprp, yprp, zprp)

View
Volume

F I G U R E 4 5
An oblique frustum, as viewed from at
least one side or a top view, with the
view plane positioned between the
projection reference point and the near
clipping plane.

appearance of an oblique perspective-projection view volume. In this case, we can
first transform the view volume to a symmetric frustum and then to a normalized
view volume.

An oblique perspective-projection view volume can be converted to a sym-

z-axis reference position. In this case, the reference position is zpr p, which is the
z coordinate of the projection reference point. And we need to shift by an amount
that will move the center of the clipping window to position (xpr p, ypr p) on the
view plane. Because the frustum centerline passes through the center of the clip-
ping window, this shift adjusts the centerline so that it is perpendicular to the
view plane, as in Figure 40.

The computations for the shearing transformation, as well as for the per-
spective and normalization transformations, are greatly reduced if we take the
projection reference point to be the viewing-coordinate origin. We could do this
with no loss in generality by translating all coordinate positions in a scene so that
our selected projection reference point is shifted to the coordinate origin. Or we
could have initially set up the viewing-coordinate reference frame so that its ori-
gin is at the projection point that we want for a scene. And, in fact, some graphics
libraries do fix the projection reference point at the coordinate origin.

Taking the projection reference point as (xpr p, ypr p, zpr p) = (0, 0, 0), we obtain
the elements of the required shearing matrix as

Mz shear =

⎡

⎢
⎢
⎣

1 0 shzx 0
0 1 shzy 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦

(30)

We can also simplify the elements of the perspective-projection matrix a bit more
if we place the view plane at the position of the near clipping plane. And, because
we now want to move the center of the clipping window to coordinates (0, 0)

Three-Dimensional Viewing

metric frustum by applying a z-axis shearing-transformation matrix. This trans-
formation shifts all positions on any plane that is perpendicular to the z axis by
an amount that is proportional to the distance of the plane from a specified

331

on the view plane, we need to choose values for the shearing parameters such
that

⎡

⎢
⎢
⎣

0
0

znear

1

⎤

⎥
⎥
⎦

= Mz shear ·

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

xwmin + xwmax

2
ywmin + ywmax

2
znear

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(31)

Therefore, the parameters for this shearing transformation are

shzx = − xwmin + xwmax

2 znear

shzy = − ywmin + ywmax

2 znear

(32)

Similarly, with the projection reference point at the viewing-coordinate origin
and with the near clipping plane as the view plane, the perspective-projection
matrix 26 is simplified to

Mpers =

⎡

⎢
⎢
⎣

−znear 0 0 0
0 −znear 0 0
0 0 sz tz

0 0 −1 0

⎤

⎥
⎥
⎦

(33)

Expressions for the z-coordinate scaling and translation parameters will be deter-
mined by the normalization requirements.

Concatenating the simplified perspective-projection matrix 33 with the
shear matrix 30, we obtain the following oblique perspective-projection matrix
for converting coordinate positions in a scene to homogeneous orthogonal-
projection coordinates. The projection reference point for this transformation is
the viewing-coordinate origin, and the near clipping plane is the view plane.

Mobliquepers = Mpers · Mz shear

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−znear 0
xwmin + xwmax

2
0

0 −znear
ywmin + ywmax

2
0

0 0 sz tz

0 0 −1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(34)

Although we no longer have options for the placement of the projection reference
point and the view plane, this matrix provides an efficient method for generating a
perspective-projection view of a scene without sacrificing a great deal of flexibility.

If we choose the clipping-window coordinates so that xwmax = −xwmin and
ywmax = −ywmin, the frustum view volume is symmetric and matrix 34 reduces
to matrix 33. This is because the projection reference point is now at the origin
of the viewing-coordinate frame. We could also use Equations 29, with z pr p = 0
and zvp = znear, to express the first two diagonal elements of this matrix in terms
of the field-of-view angle and the clipping-window dimensions.

Normalized Perspective-Projection Transformation Coordinates
Matrix 34 transforms object positions in viewing coordinates to perspective-
projection homogeneous coordinates. When we divide the homogeneous
coordinates by the homogeneous parameter h, we obtain the actual projection
coordinates, which are orthogonal-projection coordinates. Thus, this perspective

Three-Dimensional Viewing

332

Transformed
Frustum
View Volume

Normalized
View
Volume

(xwmax, ywmax, zfar)

(xwmin, ywmin, znear)
ynorm

znorm

xnorm

xview

(1, 1, 1)

(�1, �1, �1)

Normalization

Clipping
Window

Projection
Reference
Point

yview

zview

F I G U R E 4 6
Normalization transformation from a
transformed perspective-projection
view volume (rectangular
parallelepiped) to the symmetric
normalization cube within a
left-handed reference frame, with the
near clipping plane as the view plane
and the projection reference point at
the viewing-coordinate origin.

projection transforms all points within the frustum view volume to positions
within a rectangular parallelepiped view volume. The final step in the perspec-
tive transformation process is to map this parallelepiped to a normalized view
volume.

We follow the same normalization procedure that we used for a parallel
projection. The transformed frustum view volume, which is a rectangular par-
allelepiped, is mapped to a symmetric normalized cube within a left-handed ref-
erence frame (Figure 46). We have already included the normalization param-
eters for z coordinates in the perspective-projection matrix 34, but we still need
to determine the values for these parameters when we transform to the symmetric
normalization cube. Also, we need to determine the normalization transforma-
tion parameters for x and y coordinates. Because the centerline of the rectangular
parallelepiped view volume is now the zview axis, no translation is needed in
the x and y normalization transformations: We require only the x and y scaling
parameters relative to the coordinate origin. The scaling matrix for accomplishing
the xy normalization is

Mxy scale =

⎡

⎢
⎢
⎣

sx 0 0 0
0 sy 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦

(35)

Concatenating the xy-scaling matrix with matrix 34 produces the following
normalization matrix for a perspective-projection transformation.

Mnormpers = Mxy scale · Mobliquepers

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−znearsx 0 sx
xwmin + xwmax

2
0

0 −znearsy sy
ywmin + ywmax

2
0

0 0 sz tz

0 0 −1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(36)

From this transformation, we obtain the homogeneous coordinates:
⎡

⎢
⎢
⎣

xh

yh

zh

h

⎤

⎥
⎥
⎦

= Mnormpers ·

⎡

⎢
⎢
⎣

x
y
z
1

⎤

⎥
⎥
⎦

(37)

Three-Dimensional Viewing

333

And the projection coordinates are

xp = xh

h
= −znearsxx + sx(xwmin + xwmax)/2

−z

yp = yh

h
= −znearsy y + sy(ywmin + ywmax)/2

−z
(38)

zp = zh

h
= szz + tz

−z

To normalize this perspective transformation, we want the projection coordi-
nates to be (xp, yp, zp) = (−1, −1, −1) when the input coordinates are (x, y, z) =
(xwmin, ywmin, znear), and we want the projection coordinates to be (xp, yp, zp) =
(1, 1, 1) when the input coordinates are (x, y, z) = (xwmax, ywmax, zfar). Therefore,
when we solve equations 38 for the normalization parameters using these
conditions, we obtain

sx = 2
xwmax − xwmin

, sy = 2
ywmax − ywmin

sz = znear + zfar

znear − zfar
, tz = 2 znear zfar

znear − zfar

(39)

And the elements of the normalized transformation matrix for a general
perspective-projection are

Mnormpers =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2znear

xwmax − xwmin
0

xwmax + xwmin

xwmax − xwmin
0

0
−2znear

ywmax − ywmin

ywmax + ywmin

ywmax − ywmin
0

0 0
znear + zfar

znear − zfar
− 2znearzfar

znear − zfar

0 0 −1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(40)

If the perspective-projection view volume was originally specified as a symmetric
frustum, we can express the elements of the normalized perspective transforma-
tion in terms of the field-of-view angle and the dimensions of the clipping window.
Thus, using Equations 29, with the projection reference point at the origin and
the view plane at the position of the near clipping plane, we have

Mnormsymmpers =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cot
(

θ
2

)

aspect
0 0 0

0 cot
(

θ

2

)

0 0

0 0
znear + zfar

znear − zfar
− 2znear zfar

znear − zfar

0 0 −1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(41)

The complete transformation from world coordinates to normalized
perspective-projection coordinates is the composite matrix formed by concate-
nating this perspective matrix on the left of the viewing-transformation product
R · T. Next, the clipping routines can be applied to the normalized view vol-
ume. The remaining tasks are visibility determination, surface rendering, and the
transformation to the viewport.

Three-Dimensional Viewing

334

9 The Viewport Transformation and
Three-Dimensional Screen Coordinates

Once we have completed the transformation to normalized projection coordi-
nates, clipping can be applied efficiently to the symmetric cube (or the unit cube).
Following the clipping procedures, the contents of the normalized view volume
can be transferred to screen coordinates. For the x and y positions in the normal-
ized clipping window, this procedure is the same as the two-dimensional view-

The x and y transformation equations from the normalized clipping window
to positions within a rectangular viewport are given in matrix 8-10. We can adapt
that matrix to three-dimensional applications by including parameters for the
transformation of z values to screen coordinates. Often the normalized z values
within the symmetric cube are renormalized on the range from 0 to 1.0. This
allows the video screen to be referenced as z = 0, and depth processing can be
conveniently carried out over the unit interval from 0 to 1. If we include this z
renormalization, the transformation from the normalized view volume to three-
dimensional screen coordinates is

Mnormviewvol,3D screen =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xvmax − xvmin

2
0 0

xvmax + xvmin

2

0
yvmax − yvmin

2
0

yvmax + yvmin

2

0 0
1
2

1
2

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(42)
In normalized coordinates, the znorm = −1 face of the symmetric cube corresponds
to the clipping-window area. And this face of the normalized cube is mapped
to the rectangular viewport, which is now referenced at zscreen = 0. Thus, the
lower-left corner of the viewport screen area is at position (xvmin, yvmin, 0) and
the upper-right corner is at position (xvmax, yvmax, 0).

Each xy position on the viewport corresponds to a position in the refresh
buffer, which contains the color information for that point on the screen. And the
depth value for each screen point is stored in another buffer area, called the depth
buffer. In later chapters, we explore the algorithms for determining the visible
surface positions and their colors.

We position the rectangular viewport on the screen just as we did for two-
dimensional applications. The lower-left corner of the viewport is usually placed
at a coordinate position specified relative to the lower-left corner of the display
window. And object proportions are maintained if we set the aspect ratio of this
viewport area to be the same as the clipping window.

10 OpenGL Three-Dimensional
Viewing Functions

The OpenGL Utility library (GLU) includes a function for specifying the three-
dimensional viewing parameters and another function for setting up a symmetric

Three-Dimensional Viewing

port transformation. But positions throughout the three-dimensional view vol-
ume also have a depth (z coordinate), and we need to retain this depth informa-
tion for the visibility testing and surface-rendering algorithms. So we can now
think of the viewport transformation as a mapping to three-dimensional screen
coordinates.

335

perspective-projection transformation. Other functions, such as those for an or-
thogonal projection, an oblique perspective projection, and the viewport transfor-
mation, are contained in the basic OpenGL library. In addition, GLUT functions
are available for defining and manipulating display windows.

OpenGL Viewing-Transformation Function
When we designate the viewing parameters in OpenGL, a matrix is formed and
concatenated with the current modelview matrix. Consequently, this viewing
matrix is combined with any geometric transformations we may have also spec-
ified. This composite matrix is then applied to transform object descriptions in
world coordinates to viewing coordinates. We set the modelview mode with the
statement:

glMatrixMode (GL_MODELVIEW);

Viewing parameters are specified with the following GLU function, which
is in the OpenGL Utility library because it invokes the translation and rotation
routines in the basic OpenGL library.

gluLookAt (x0, y0, z0, xref, yref, zref, Vx, Vy, Vz);

Values for all parameters in this function are to be assigned double-precision,
floating-point values. This function designates the origin of the viewing reference
frame as the world-coordinate position P0 = (x0, y0, z0), the reference posi-
tion as Pref = (xref, yref, zref), and the view-up vector as V = (Vx, Vy, Vz).
The positive zview axis for the viewing frame is in the direction N = P0 − Pref,
and the unit axis vectors for the viewing reference frame are calculated with
Equations 1.

Because the viewing direction is along the −zview axis, the reference position
Pref is also referred to as the “look-at point.” This is usually taken to be some
position in the center of the scene that we can use as a reference for specifying
the projection parameters. And we can think of the reference position as the point
at which we want to aim a camera that is located at the viewing origin. The up
orientation for the camera is designated with vector V, which is adjusted to a
direction perpendicular to N.

Viewing parameters specified with the gluLookAt function are used to form
the viewing-transformation matrix 4 that we derived in Section 4. This
matrix is formed as a combination of a translation, which shifts the viewing origin
to the world origin, and a rotation, which aligns the viewing axes with the world
axes.

If we do not invoke the gluLookAt function, the default OpenGL viewing
parameters are

P0 = (0, 0, 0)

Pref = (0, 0, −1)

V = (0, 1, 0)

For these default values, the viewing reference frame is the same as the world
frame, with the viewing direction along the negative zworld axis. In many appli-
cations, we can conveniently use the default values for the viewing parameters.

OpenGL Orthogonal-Projection Function
Projection matrices are stored in the OpenGL projection mode. So, to set up
a projection-transformation matrix, we must first invoke that mode with the

Three-Dimensional Viewing

336

statement

glMatrixMode (GL_PROJECTION);

Then, when we issue any transformation command, the resulting matrix will be
concatenated with the current projection matrix.

Orthogonal-projection parameters are chosen with the function

glOrtho (xwmin, xwmax, ywmin, ywmax, dnear, dfar);

All parameter values in this function are to be assigned double-precision, floating-
point numbers. We use glOrtho to select the clipping-window coordinates and
the distances to the near and far clipping planes from the viewing origin. There
is no option in OpenGL for the placement of the view plane. The near clipping
plane is always also the view plane, and therefore the clipping window is always
on the near plane of the view volume.

Function glOrtho generates a parallel projection that is perpendicular to
the view plane (the near clipping plane). Thus, this function creates a finite
orthogonal-projection view volume for the specified clipping planes and clip-
ping window. In OpenGL, the near and far clipping planes are not optional; they
must always be specified for any projection transformation.

Parameters dnear and dfar denote distances in the negative zview direction
from the viewing-coordinate origin. For example, if dfar = 55.0, then the far
clipping plane is at the coordinate position zfar = −55.0. A negative value for either
parameter denotes a distance “behind” the viewing origin, along the positive zview
axis. We can assign any values (positive, negative, or zero) to these parameters,
so long as dnear< dfar.

The resulting view volume for this projection transformation is a rectangular
parallelepiped. Coordinate positions within this view volume are transformed to
locations within the symmetric normalized cube in a left-handed reference frame
using matrix 7, with z near = − dnear and zfar = − dfar.

Default parameter values for the OpenGL orthogonal-projection function are
±1, which produce a view volume that is a symmetric normalized cube in the
right-handed viewing-coordinate system. This default is equivalent to issuing
the statement

glOrtho (-1.0, 1.0, -1.0, 1.0, -1.0, 1.0);

The default clipping window is thus a symmetric normalized square, and the
default view volume is a symmetric normalized cube with znear = 1.0 (behind
the viewing position) and zfar = −1.0. Figure 47 shows the appearance and
position of the default orthogonal-projection view volume.

For two-dimensional applications, we used the gluOrtho2D function to set
up the clipping window. We could also have used theglOrtho function to specify
the clipping window, as long as parametersdnearanddfarwere assigned values
that were on opposite sides of the coordinate origin. In fact, a call to gluOrtho2D
is equivalent to a call to glOrtho with dnear = −1.0 and dfar = 1.0.

There is no OpenGL function for generating an oblique projection. To produce
an oblique-projection view of a scene, we could set up our own projection matrix
as in Equation 14. Then we need to make this the current OpenGL projection

Three-Dimensional Viewing

matrix. Another way to generate an oblique-projection view is to rotate the scene
into an appropriate position so that an orthogonal projection in the zview direc-
tion yields the desired view.

337

OpenGL Symmetric Perspective-Projection Function
There are two functions available for producing a perspective-projection view of a
scene. One of these functions generates a symmetric frustum view volume about
the viewing direction (the negative zview axis). The other function can be used for
either a symmetric-perspective projection or an oblique-perspective projection.
For both functions, the projection reference point is the viewing-coordinate origin
and the near clipping plane is the view plane.

A symmetric, perspective-projection, frustum view volume is set up with the
GLU function

gluPerspective (theta, aspect, dnear, dfar);

with each of the four parameters assigned a double-precision, floating-point num-
ber. The first two parameters define the size and position of the clipping window
on the near plane, and the second two parameters specify the distances from
the view point (coordinate origin) to the near and far clipping planes. Param-
eter theta represents the field-of-view angle, which is the angle between the
top and bottom clipping planes (Figure 41). This angle can be assigned any
value from 0◦ to 180◦. Parameter aspect is assigned a value for the aspect ratio
(width/height) of the clipping window.

For a perspective projection in OpenGL, the near and far clipping planes must
always be somewhere along the negative zview axis; neither can be “behind” the
viewing position. This restriction does not apply to an orthogonal projection, but
it precludes the inverted perspective projection of an object when the view plane is
behind the view point. Therefore, bothdnear anddfarmust be assigned positive
numerical values, and the positions of the near and far planes are calculated as
znear = −dnear and zfar = −dfar.

If we do not specify a projection function, our scene is displayed using the
default orthogonal projection. In this case, the view volume is the symmetric
normalized cube shown in Figure 47.

The frustum view volume set up by the gluPerspective function is sym-
metric about the negative zview axis. And the description of a scene is converted
to normalized, homogeneous projection coordinates with matrix 41.

OpenGL General Perspective-Projection Function
We can use the following function to specify a perspective projection that has
either a symmetric frustum view volume or an oblique frustum view volume.

F I G U R E 4 7
Default orthogonal-projection view
volume. Coordinate extents for this
symmetric cube are from −1 to +1 in
each direction. The near clipping plane
is at znear = 1, and the far clipping
plane is at zfar = −1.

xview

zview

yview

Clipping
Window

Far Clipping Plane

Near Clipping Plane

1

1
1

Three-Dimensional Viewing

338

glFrustum (xwmin, xwmax, ywmin, ywmax, dnear, dfar);

All parameters in this function are assigned double-precision, floating-point num-
bers. As in the other viewing-projection functions, the near plane is the view
plane and the projection reference point is at the viewing position (coordinate ori-
gin). This function has the same parameters as the orthogonal, parallel-projection
function, but now the near and far clipping-plane distances must be positive.
The first four parameters set the coordinates for the clipping window on the
near plane, and the last two parameters specify the distances from the coor-
dinate origin to the near and far clipping planes along the negative zview axis.
Locations for the near and far planes are calculated as znear = −dnear and
zfar = −dfar.

The clipping window can be specified anywhere on the near plane. If we select
the clipping window coordinates so that xwmin = −xwmax and ywmin = −ywmax,
we obtain a symmetric frustum (about the negative zview axis as its centerline).

Again, if we do not explicitly invoke a projection command, OpenGL applies
the default orthogonal projection to the scene. The view volume in this case is the
symmetric cube (Figure 47).

OpenGL Viewports and Display Windows
After the clipping routines have been applied in normalized coordinates, the
contents of the normalized clipping window, along with the depth information,
are transferred to three-dimensional screen coordinates. The color value for each
xy position on the viewport is stored in the refresh buffer (color buffer), and the
depth information for each xy position is stored in the depth buffer.

A rectangular viewport is defined with the follow

glViewport (xvmin, yvmin, vpWidth, vpHeight);

The first two parameters in this function specify the integer screen position of the
lower-left corner of the viewport relative to the lower-left corner of the display
window. And the last two parameters give the integer width and height of the
viewport. To maintain the proportions of objects in a scene, we set the aspect ratio
of the viewport equal to the aspect ratio of the clipping window.

OpenGL Three-Dimensional Viewing Program Example
A perspective-projection view of a square, as shown in Figure 48, is displayed
using the following program example. The square is defined in the xy plane,
and a viewing-coordinate origin is selected to view the front face at an angle.
Choosing the center of the square as the look-at point, we obtain a perspective
view using the glFrustum function. If we move the viewing origin around to
the other side of the polygon, the back face would be displayed as a wire-frame
object.

Three-Dimensional Viewing

 ing OpenGL function.

Display windows are created and managed with GLUT routines. The default
viewport in OpenGL is the size and position of the current display window.

339

F I G U R E 4 8
Output display generated by the
three-dimensional viewing example
program.

#include <GL/glut.h>

GLint winWidth = 600, winHeight = 600; // Initial display-window size.

GLfloat x0 = 100.0, y0 = 50.0, z0 = 50.0; // Viewing-coordinate origin.
GLfloat xref = 50.0, yref = 50.0, zref = 0.0; // Look-at point.
GLfloat Vx = 0.0, Vy = 1.0, Vz = 0.0; // View-up vector.

/* Set coordinate limits for the clipping window: */
GLfloat xwMin = -40.0, ywMin = -60.0, xwMax = 40.0, ywMax = 60.0;

/* Set positions for near and far clipping planes: */
GLfloat dnear = 25.0, dfar = 125.0;

void init (void)
{

glClearColor (1.0, 1.0, 1.0, 0.0);

glMatrixMode (GL_MODELVIEW);
gluLookAt (x0, y0, z0, xref, yref, zref, Vx, Vy, Vz);

glMatrixMode (GL_PROJECTION);
glFrustum (xwMin, xwMax, ywMin, ywMax, dnear, dfar);

}

void displayFcn (void)
{

glClear (GL_COLOR_BUFFER_BIT);

Three-Dimensional Viewing

340

/* Set parameters for a square fill area. */
glColor3f (0.0, 1.0, 0.0); // Set fill color to green.
glPolygonMode (GL_FRONT, GL_FILL);
glPolygonMode (GL_BACK, GL_LINE); // Wire-frame back face.
glBegin (GL_QUADS);

glVertex3f (0.0, 0.0, 0.0);
glVertex3f (100.0, 0.0, 0.0);
glVertex3f (100.0, 100.0, 0.0);
glVertex3f (0.0, 100.0, 0.0);

glEnd ();

glFlush ();
}

void reshapeFcn (GLint newWidth, GLint newHeight)
{

glViewport (0, 0, newWidth, newHeight);

winWidth = newWidth;
winHeight = newHeight;

}

void main (int argc, char** argv)
{

glutInit (&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowPosition (50, 50);
glutInitWindowSize (winWidth, winHeight);
glutCreateWindow ("Perspective View of A Square");

init ();
glutDisplayFunc (displayFcn);
glutReshapeFunc (reshapeFcn);
glutMainLoop ();

}

11 Three-Dimensional Clipping Algorithms

of the clipping window in two-dimensional clipping algorithms. Similarly, we
can apply three-dimensional clipping algorithms to the normalized boundaries
of the view volume. This allows the viewing pipeline and the clipping procedures
to be implemented in a highly efficient way. All device-independent transforma-
tions (geometric and viewing) are concatenated and applied before executing the
clipping routines. And each of the clipping boundaries for the normalized view
volume is a plane that is parallel to one of the Cartesian planes, regardless of the
projection type and original shape of the view volume. Depending on whether
the view volume has been normalized to a unit cube or to a symmetric cube with
edge length 2, the clipping planes have coordinate positions either at 0 and 1
or at −1 and 1. For the symmetric cube, the equations for the three-dimensional

Previously, we discussed the advantages of using the normalized boundaries

Three-Dimensional Viewing

341

clipping planes are

xwmin = −1, xwmax = 1
ywmin = −1, ywmax = 1 (43)

zwmin = −1, zwmax = 1

The x and y clipping boundaries are the normalized limits for the clipping win-
dow, and the z clipping boundaries are the normalized positions for the near and
far clipping planes.

Clipping algorithms for three-dimensional viewing identify and save all
object sections within the normalized view volume for display on the output
device. All parts of objects that are outside the view-volume clipping planes are
eliminated. And the algorithms are now extensions of two-dimensional meth-
ods, using the normalized boundary planes of the view volume instead of the
straight-line boundaries of the normalized clipping window.

Clipping in Three-Dimensional Homogeneous Coordinates
Computer-graphics libraries process spatial positions as four-dimensional
homogeneous coordinates so that all transformations can be represented as 4 by
4 matrices. As each coordinate position enters the viewing pipeline, it is converted
to a four-dimensional representation:

(x, y, z) → (x, y, z, 1)

After a position has passed through the geometric, viewing, and projection trans-
formations, it is now in the homogeneous form

⎡

⎢
⎢
⎣

xh

yh

zh

h

⎤

⎥
⎥
⎦

= M ·

⎡

⎢
⎢
⎣

x
y
z
1

⎤

⎥
⎥
⎦

(44)

where matrix M represents the concatenation of all the various transformations
from world coordinates to normalized, homogeneous projection coordinates, and
the homogeneous parameter h may no longer have the value 1. In fact, h can have
any real value, depending on how we represented objects in the scene and the
type of projection we used.

If the homogeneous parameter h does have the value 1, the homogeneous
coordinates are the same as the Cartesian projection coordinates. This is often
the case for a parallel-projection transformation. But a perspective projection pro-
duces a homogeneous parameter that is a function of the z coordinate for any
spatial position. The perspective-projection homogeneous parameter can even be
negative. This occurs when coordinate positions are behind the projection refer-
ence point. Also, rational spline representations for object surfaces are often for-
mulated in homogeneous coordinates, where the homogeneous parameter can be
positive or negative. Therefore, if clipping is performed in projection coordinates
after division by the homogeneous parameter h, some coordinate information can
be lost and objects may not be clipped correctly.

An effective method for dealing with all possible projection transformations
and object representations is to apply the clipping routines to the homogeneous-
coordinate representations of spatial positions. And, because all view volumes can
be converted to a normalized cube, a single clipping procedure can be imple-
mented in hardware to clip objects in homogeneous coordinates against the nor-
malized clipping planes.

Three-Dimensional Viewing

342

bit
6

bit
5

bit
4

bit
3

bit
2

bit
1

Far

Near

Top

Bottom

Right

Left

F I G U R E 4 9
A possible ordering for the view-volume clipping
boundaries corresponding to the region-code bit
positions.

Three-Dimensional Region Codes

=

−1 ≤ xh

h
≤ 1, − 1 ≤ yh

h
≤ 1, − 1 ≤ zh

h
≤ 1 (45)

Unless we have encountered an error, the value of the homogeneous parameter h is
nonzero. Before implementing region-code procedures, we can first check for the
possibility of a homogeneous parameter with either a zero value or an extremely
small magnitude. Also, the homogeneous parameter can be either positive or
negative. Therefore, assuming h �= 0, we can write the preceding inequalities in
the form

−h ≤ xh ≤ h, −h ≤ yh ≤ h, −h ≤ zh ≤ h if h > 0

h ≤ xh ≤ −h, h ≤ yh ≤ −h, h ≤ zh ≤ −h if h < 0
(46)

In most cases h > 0, and we can then assign the bit values in the region code
for a coordinate position according to the tests:

bit 1 = 1 if h + xh < 0 (left)
bit 2 = 1 if h − xh < 0 (right)
bit 3 = 1 if h + yh < 0 (bottom)
bit 4 = 1 if h − yh < 0 (top)
bit 5 = 1 if h + zh < 0 (near)
bit 6 = 1 if h − zh < 0 (far)

(47)

These bit values can be set using the same approach as in two-dimensional clip-
ping. That is, we simply use the sign bit of one of the calculations h ± xh , h ± yh ,
or h ± zh to set the corresponding region-code bit value. Figure 50 lists the
27 region codes for a view volume. In those cases where h < 0 for some point,
we could apply clipping using the second set of inequalities in 46 or we could
negate the coordinates and clip using the tests for h > 0.

Three-Dimensional Viewing

We extend the concept of a region code to three dimensions by simply adding a
couple of additional bit positions to accommodate the near and far clipping
planes. Thus, we now use a six-bit region code, as illustrated in Figure 49. Bit
positions in this region-code example are numbered from right to left, referenc-
ing the left, right, bottom, top, near, and far clipping planes, in that order.

For a three-dimensional scene, we need to apply the clipping routines to the
projection coordinates, which have been transformed to a normalized space.
After the projection transformation, each point in a scene has the four-compo-
nent representation P (xh, yh, zh, h). Assuming that we are clipping against the
boundaries of the normalized symmetric cube (Eqs. 43), then a point is inside
this normalized view volume if the projection coordinates of the point satisfy the
following six inequalities:

343

F I G U R E 5 0
Values for the three-dimensional,
six-bit region code that identifies
spatial positions relative to the
boundaries of a view volume.

011001 011000 011010

010001 010000

Region Codes
In Front of Near Plane

(a)

010010

010101 010100 010110

x

z

y

Top

Bottom

Left

Right

Near

Far

(c)

(b)

001001 001000 001010

Region Codes
Between Near and Far Planes

(b)

000101 000100 000110

101001 101000 101010

100001 100000

Region Codes
Behind Far Plane

(c)

100010

100101 100100 100110

(a)

000001 000000 000010

Three-Dimensional Point and Line Clipping
For standard point positions and straight-line segments that are defined in a scene
that is not behind the projection reference point, all homogeneous parameters are
positive and the region codes can be established using the conditions in 47.
Then, once we have set up the region code for each position in a scene, we can
easily identify a point position as outside the view volume or inside the view
volume. For instance, a region code of 101000 tells us that the point is above and
directly behind the view volume, while the region code 000000 indicates a point
within the volume (Figure 50). Thus, for point clipping, we simply eliminate
any individual point whose region code is not 000000. In other words, if any one
of the tests in 47 is negative, the point is outside the view volume.

Methods for three-dimensional line clipping are essentially the same as for
two-dimensional lines. We can first test the line endpoint region codes for trivial
acceptance or rejection of the line. If the region code for both endpoints of a line
is 000000, the line is completely inside the view volume. Equivalently, we can
trivially accept the line if the logical or operation on the two endpoint region
codes produces a value of 0. And we can trivially reject the line if the logical and
operation on the two endpoint region codes produces a value that is not 0. This
nonzero value indicates that both endpoint region codes have a 1 value in the same
bit position, and hence the line is completely outside one of the clipping planes. As
an example of this, the line from P3 to P4 in Figure 51 has the endpoint region-
code values of 010101 and 100110. So this line is completely below the bottom
clipping plane. If a line fails these two tests, we next analyze the line equation to
determine whether any part of the line should be saved.

Three-Dimensional Viewing

344

P1 (000010)

P4 (100110)

P3 (010101)

P2 (001001)

Normalized
View Volume

F I G U R E 5 1
Three-dimensional region codes for
two line segments. Line P1P2
intersects the right and top clipping
boundaries of the view volume, while
line P3P4 is completely below the
bottom clipping plane.

P = P1 + (P2 − P1)u 0 ≤ u ≤ 1 (48)

When the line parameter has the value u = 0, we are at position P1. And u = 1
brings us to the other end of the line, P2. Writing the parametric line equation
explicitly, in terms of the homogeneous coordinates, we have

xh = xh1 + (xh2 − xh1)u

yh = yh1 + (yh2 − yh1)u 0 ≤ u ≤ 1 (49)
zh = zh1 + (zh2 − zh1)u

h = h1 + (h2 − h1)u

Using the endpoint region codes for a line segment, we can first determine
which clipping planes are intersected. If one of the endpoint region codes has a
0 value in a certain bit position while the other code has a 1 value in the same bit
position, then the line crosses that clipping boundary. In other words, one of the
tests in 47 generates a negative value, while the same test for the other endpoint
of the line produces a nonnegative value. To find the intersection position with this
clipping plane, we first use the appropriate equations in 49 to determine the cor-
responding value of parameter u. Then we calculate the intersection coordinates.

As an example of the intersection-calculation procedure, we consider the
line segment P1P2 in Figure 51. This line intersects the right clipping plane,
which can be described with the equation xmax = 1. Therefore, we determine the
intersection value for parameter u by setting the x-projection coordinate equal to 1:

xp = xh

h
= xh1 + (xh2 − xh1)u

h1 + (h2 − h1)u
= 1 (50)

Solving for parameter u, we obtain

u = xh1 − h1

(xh1 − h1) − (xh2 − h2)
(51)

Three-Dimensional Viewing

Equations for three-dimensional line segments are conveniently expressed in
parametric form, and the clipping methods of Cyrus-Beck or Liang-Barsky can be
extended to three-dimensional scenes. For a line segment with endpoints P1 = (xh1,
yh1, zh1, h1) and P2 = (xh2, yh2, zh2, h2), we can write the parametric equation describing
any point position along the line as

345

Next, we determine the values yp and zp on this clipping plane, using the calcu-
lated value for u. In this case, the yp and zp intersection values are within the ±1
boundaries of the view volume and the line does cross into the view-volume in-
terior. So we next proceed to locate the intersection position with the top clipping
plane. That completes the processing for this line segment, because the intersec-
tion points with the top and right clipping planes identify the part of the line
that is inside the view volume and all the line sections that are outside the view
volume.

When a line intersects a clipping boundary but does not enter the view-
volume interior, we continue the line processing as in two-dimensional clipping.
The section of the line outside that clipping boundary is eliminated, and we
update the region-code information and the values for parameter u for the part
of the line inside that boundary. Then we test the remaining section of the line
against the other clipping planes for possible rejection or for further intersection
calculations.

Line segments in three-dimensional scenes are usually not isolated. They are
most often components in the description for the solid objects in the scene, and
we need to process the lines as part of the surface-clipping routines.

Three-Dimensional Polygon Clipping
Graphics packages typically deal only with scenes that contain “graphics objects.”
These are objects whose boundaries are described with linear equations, so that
each object is composed of a set of surface polygons. Therefore, to clip objects in a
three-dimensional scene, we apply the clipping routines to the polygon surfaces.
Figure 52, for example, highlights the surface sections of a pyramid that are to
be clipped, and the dashed lines show sections of the polygon surfaces that are
inside the view volume.

We can first test a polyhedron for trivial acceptance or rejection using its
coordinate extents, a bounding sphere, or some other measure of its coordinate
limits. If the coordinate limits of the object are inside all clipping boundaries, we
save the entire object. If the coordinate limits are all outside any one of the clipping
boundaries, we eliminate the entire object.

When we cannot save or eliminate the entire object, we can next process
the vertex lists for the set of polygons that define the object surfaces. Applying

F I G U R E 5 2
Three-dimensional object clipping.
Surface sections that are outside the
view-volume clipping planes are
eliminated from the object description,
and new surface facets may need to be
constructed.

Normalized
View Volume

Three-Dimensional Viewing

346

methods similar to those in two-dimensional polygon clipping, we can clip edges
to obtain new vertex lists for the object surfaces. We may also need to create some
new vertex lists for additional surfaces that result from the clipping operations.
And the polygon tables are updated to add any new polygon surfaces and to
revise the connectivity and shared-edge information about the surfaces.

To simplify the clipping of general polyhedra, polygon surfaces are often
divided into triangular sections and described with triangle strips. We can then
clip the triangle strips using the Sutherland-Hodgman approach. Each triangle
strip is processed in turn against the six clipping planes to obtain the final ver-
tex list for the strip.

For concave polygons, we can apply splitting methods to obtain a set of tri-
angles, for example, and then clip the triangles. Alternatively, we could clip three-
dimensional concave polygons using the Weiler-Atherton algorithm.

Three-Dimensional Curve Clipping
As in polyhedra clipping, we first check to determine whether the coordinate
extents of a curved object, such as a sphere or a spline surface, are completely
inside the view volume. Then we can check to determine whether the object is
completely outside any one of the six clipping planes.

If the trivial rejection-acceptance tests fail, we locate the intersections with
the clipping planes. To do this, we solve the simultaneous set of surface equa-
tions and the clipping-plane equation. For this reason, most graphics packages
do not include clipping routines for curved objects. Instead, curved surfaces are
approximated as a set of polygon patches, and the objects are then clipped using
polygon-clipping routines. When surface-rendering procedures are applied to
polygon patches, they can provide a highly realistic display of a curved surface.

Arbitrary Clipping Planes
It is also possible, in some graphics packages, to clip a three-dimensional scene
using additional planes that can be specified in any spatial orientation. This option
is useful in a variety of applications. For example, we might want to isolate or
clip off an irregularly shaped object, eliminate part of a scene at an oblique angle
for a special effect, or slice off a section of an object along a selected axis to show
a cross-sectional view of its interior.

Optional clipping planes can be specified along with the description of a scene,
so that the clipping operations can be performed prior to the projection transfor-
mation. However, this also means that the clipping routines are implemented in
software.

A clipping plane can be specified with the plane parameters A, B, C , and D.
The plane then divides three-dimensional space into two parts, so that all parts
of a scene that lie on one side of the plane are clipped off. Assuming that objects
behind the plane are to be clipped, then any spatial position (x, y, z) that satisfies
the following inequality is eliminated from the scene.

Ax + By + Cz + D < 0 (52)

As an example, if the plane-parameter array has the values (A, B, C, D) =
(1.0, 0.0, 0.0, 8.0), then any coordinate position satisfying x + 8.0 < 0.0 (or,
x < −8.0) is clipped from the scene.

To clip a line segment, we can first test its two endpoints to see if the line
is completely behind the clipping plane or completely in front of the plane. We
can represent inequality 52 in a vector form using the plane normal vector

Three-Dimensional Viewing

347

F I G U R E 5 3
Clipping a line segment against a
plane with normal vector N.

P1

P2

P

N � (A, B, C)

N = (A, B, C). Then, for a line segment with endpoint positions P1 and P2, we
clip the entire line if both endpoints satisfy

N · Pk + D < 0, k = 1, 2 (53)

We save the entire line if both endpoints satisfy

N · Pk + D ≥ 0, k = 1, 2 (54)

Otherwise, the endpoints are on opposite sides of the clipping plane, as in
Figure 53, and we calculate the line intersection point.

To calculate the line-intersection point with the clipping plane, we can use
the following parametric representation for the line segment:

P = P1 + (P2 − P1)u, 0 ≤ u ≤ 1 (55)

Point P is on the clipping plane if it satisfies the plane equation

N · P + D = 0 (56)

Substituting the expression for P from Equation 55, we have

N · [P1 + (P2 − P1)u] + D = 0 (57)

Solving this equation for parameter u, we obtain

u = −D − N · P1

N · (P2 − P1)
(58)

We then substitute this value of u into the vector parametric line representation
55 to obtain values for the x, y, and z intersection coordinates. For the example
in Figure 53, the line segment from P1 to P is clipped and we save the section
of the line from P to P2.

For polyhedra, such as the pyramid in Figure 54, we apply similar clipping
procedures. We first test to see if the object is completely behind or completely
in front of the clipping plane. If not, we process the vertex list for each polygon
surface. Line-clipping methods are applied to each polygon edge in succession,
just as in view-volume clipping, to produce the surface vertex lists. But in this
case, we have to deal with only one clipping plane.

Clipping a curved object against a single clipping plane is easier than clipping
the object against the six planes of a view volume. However, we still need to solve
a set of nonlinear equations to locate intersections, unless we approximate the
curve boundaries with straight-line sections.

Three-Dimensional Viewing

348

N � (A, B, C)

F I G U R E 5 4
Clipping the surfaces of a pyramid
against a plane with normal vector N.
The surfaces in front of the plane are
saved, and the surfaces of the pyramid
behind the plane are eliminated.

12 OpenGL Optional Clipping Planes
In addition to the six clipping planes enclosing the view volume, OpenGL pro-
vides for the specification of additional clipping planes in a scene. Unlike the
view-volume clipping planes, which are each perpendicular to one of the coordi-
nate axes, these additional planes can have any orientation.

We designate an optional clipping plane and activate clipping against that
plane with the statements

glClipPlane (id, planeParameters);
glEnable (id);

Parameter id is used as an identifier for a clipping plane. This parameter is as-
signed one of the valuesGL CLIP PLANE0,GL CLIP PLANE1, and so forth, up
to a facility-defined maximum. The plane is then defined using the four-element
array planeParameters, whose elements are the double-precision, floating-
point values for the four plane-equation parameters A, B, C , and D. An activated
clipping plane that has been assigned the identifier id is turned off with

glDisable (id);

The plane parameters A, B, C , and D are transformed to viewing coordinates
and used to test viewing-coordinate positions in a scene. Subsequent changes in
viewing or geometric-transformation parameters do not affect the stored plane
parameters. Therefore, if we set up optional clipping planes before specifying
any geometric or viewing transformations, the stored plane parameters are the
same as the input parameters. Also, because the clipping routines for these planes
are applied in viewing coordinates, and not in the normalized coordinate space,
the performance of a program can be degraded when optional clipping planes
are activated.

Three-Dimensional Viewing

349

Any points that are “behind” an activated OpenGL clipping plane are elimi-
nated. Thus, a viewing-coordinate position (x, y, z) is clipped if it satisfies condi-
tion 52.

Six optional clipping planes are available in any OpenGL implementation,
but more might be provided. We can find out how many optional clipping planes
are possible for a particular OpenGL implementation with the inquiry

glGetIntegerv (GL_MAX_CLIP_PLANES, numPlanes);

Parameter numPlanes is the name of an integer array that is to be assigned an
integer value equal to the number of optional clipping planes that we can use.

The default for the glClipPlane function is that the clipping-plane param-
eters A, B, C , and D are each assigned a value of 0 for all optional planes. And,
initially, all optional clipping planes are disabled.

13 Summary
Viewing procedures for three-dimensional scenes follow the general approach
used in two-dimensional viewing. We first create a world-coordinate scene, either
from the definitions of objects in modeling coordinates or directly in world coor-
dinates. Then we set up a viewing-coordinate reference frame and transfer object
descriptions from world coordinates to viewing coordinates. Object descriptions
are then processed through various routines to device coordinates.

Unlike two-dimensional viewing, however, three-dimensional viewing
requires projection routines to transform object descriptions to a viewing plane
before the transformation to device coordinates. Also, three-dimensional view-
ing operations involve more spatial parameters. We can use the camera analogy
to describe three-dimensional viewing parameters. A viewing-coordinate refer-
ence frame is established with a view reference point (the camera position), a
view-plane normal vector N (the camera lens direction), and a view-up vector
V (the camera up direction). The view-plane position is then established along
the viewing z axis, and object descriptions are projected to this plane. Either
parallel-projection or perspective-projection methods can be used to transfer
object descriptions to the view plane.

Parallel projections are either orthographic or oblique, and they can be speci-
fied with a projection vector. Orthographic parallel projections that display more
than one face of an object are called axonometric projections. An isometric view
of an object is obtained with an axonometric projection that foreshortens each
principal axis by the same amount. Commonly used oblique projections are the
cavalier projection and the cabinet projection. Perspective projections of objects
are obtained with projection lines that meet at the projection reference point. Par-
allel projections maintain object proportions, but perspective projections decrease
the size of distant objects. Perspective projections cause parallel lines to appear
to converge to a vanishing point, provided the lines are not parallel to the view
plane. Engineering and architectural displays can be generated with one-point,
two-point, or three-point perspective projections, depending on the number of
principal axes that intersect the view plane. An oblique perspective projection is
obtained when the line from the projection reference point to the center of the
clipping window is not perpendicular to the view plane.

Objects in a three-dimensional scene can be clipped against a view volume
to eliminate unwanted sections of the scene. The top, bottom, and sides of the
view volume are formed with planes that are parallel to the projection lines and
that pass through the clipping-window edges. Near and far planes (also called
front and back planes) are used to create a closed view volume. For a parallel

Three-Dimensional Viewing

350

T A B L E 1

Summary of OpenGL Three-Dimensional Viewing Functions

Function Description

gluLookAt Specifies three-dimensional viewing parameters.

glOrtho Specifies parameters for a clipping window and the near
and far clipping planes for an orthogonal projection.

gluPerspective Specifies field-of-view angle and other parameters for
a symmetric perspective projection.

glFrustum Specifies parameters for a clipping window and near and
far clipping planes for a perspective projection
(symmetric or oblique).

glClipPlane Specifies parameters for an optional clipping plane.

projection, the view volume is a parallelepiped. For a perspective projection, the
view volume is a frustum. In either case, we can convert the view volume to a
normalized cube with boundaries either at 0 and 1 for each coordinate or at −1
and 1 for each coordinate. Efficient clipping algorithms process objects in a scene
against the bounding planes of the normalized view volume. Clipping is generally
carried out in graphics packages in four-dimensional homogeneous coordinates
following the projection and view-volume normalization transformations. Then,
homogeneous coordinates are converted to three-dimensional, Cartesian projec-
tion coordinates. Additional clipping planes, with arbitrary orientations, can also
be used to eliminate selected parts of a scene or to produce special effects.

A function is available in the OpenGL Utility library for specifying three-
dimensional viewing parameters (see Table 1). This library also includes a
function for setting up a symmetric perspective-projection transformation. Three
other viewing functions are available in the OpenGL basic library for specifying an
orthographic projection, a general perspective projection, and optional clipping
planes. Table 1 summarizes the OpenGL viewing functions discussed in this
chapter. In addition, the table lists some viewing-related functions.

REFERENCES
Discussions of three-dimensional viewing and clipping
algorithms can be found in Weiler and Atherton (1977),
Weiler (1980), Cyrus and Beck (1978), and Liang and
Barsky (1984). Homogeneous-coordinate clipping algo-
rithms are described in Blinn and Newell (1978), Riesen-
feld (1981), and Blinn (1993, 1996, and 1998). Various
programming techniques for three-dimensional viewing
are discussed in Glassner (1990), Arvo (1991), Kirk (1992),
Heckbert (1994), and Paeth (1995).

A complete listing of three-dimensional OpenGL
viewing functions is given in Shreiner (2000).
For OpenGL programming examples using three-
dimensional viewing, see Woo, et al. (1999). Addi-
tional programming examples can be found at Nate
Robins’s tutorial website: www.xmission.com/∼nate/
opengl.html.

EXERCISES
1 Write a procedure to set up the matrix that

transforms world-coordinate positions to three-
dimensional viewing coordinates, given P0, N,
and V. The view-up vector can be in any direc-
tion that is not parallel to N.

2 Write a procedure to transform the vertices of
a polyhedron to projection coordinates using a
parallel projection with any specified projection
vector.

3 Write a program to obtain different parallel-
projection views of a polyhedron by allowing the
user to rotate the polyhedron via the keyboard.

4 Write a procedure to perform a one-point perspec-
tive projection of an object.

Three-Dimensional Viewing

351

5 Write a procedure to perform a two-point per-
spective projection of an object.

6 Develop a routine to perform a three-point per-
spective projection of an object.

7 Write a program that uses the routines in the
previous three exercises to display a three-
dimensional cube using a one-, two-, or three-
point perspective projection according to input
taken from the keyboard, which should be used to
switch between projections. The program should
also allow the user to rotate the cube in the xz
plane around its center. Examine the visual differ-
ences of the three different types of projections.

8 Write a routine to convert a perspective projection
frustum to a regular parallelepiped.

9 Modify the two-dimensional Cohen-Sutherland
line-clipping algorithm to clip three-dimensional
lines against the normalized symmetric view vol-
ume square.

10 Write a program to generate a set of 10 ran-
dom lines, each of which has one endpoint
within a normalized symmetric view volume and
one without. Implement the three-dimensional
Cohen-Sutherland line-clipping algorithm de-
signed in the previous exercise to clip the set of
lines against the viewing volume.

11 Modify the two-dimensional Liang-Barsky line-
clipping algorithm to clip three-dimensional lines
against a specified regular parallelepiped.

12 Write a program similar to that in Exercise 10
that generates a set of 10 random lines, each par-
tially outside of a specified regular parallelepiped
viewing volume. Use the three-dimensional
Liang-Barsky line-clipping algorithm developed
in the previous exercise to clip the lines against
the viewing volume.

13 Modify the two-dimensional Liang-Barsky line-
clipping algorithm to clip a given polyhedron
against a specified regular parallelepiped.

14 Write a program to display a cube in a regular par-
allelepiped viewing volume and allow the user to
translate the cube along each axis using keyboard
input. Implement the algorithm in the previous
exercise to clip the cube when it extends over any
of the edges of the viewing volume.

15 Write a routine to perform line clipping in homo-
geneous coordinates.

16 Devise an algorithm to clip a polyhedron against a
defined frustum. Compare the operations needed
in this algorithm to those needed in an algorithm
that clips against a regular parallelepiped.

17 Extend the Sutherland-Hodgman polygon-
clipping algorithm to clip a convex polyhedron
against a normalized symmetric view volume.

18 Write a routine to implement the preceding
exercise.

19 Write a program similar to the one in Exercise
14 to display a cube in a normalized symmet-
ric view volume that can be translated around the
viewing volume via keyboard input. Use the im-
plementation of the polygon-clipping algorithm
developed in the previous exercise to clip the cube
when it extends over the edge of the viewing
volume.

20 Write a routine to perform polyhedron clipping
in homogeneous coordinates.

21 Modify the program example in Section 10 to
allow a user to specify a view for either the front
or the back of the square.

22 Modify the program example in Section 10 to
allow the perspective viewing parameters to be
specified as user input.

23 Modify the program example in Section 10 to
produce a view of any input polyhedron.

24 Modify the program in the preceding exercise
to generate a view of the polyhedron using an
orthographic projection.

25 Modify the program in the preceding exercise
to generate a view of the polyhedron using an
oblique parallel projection.

IN MORE DEPTH
1 In this exercise, you will give “depth” to the

polygons that represent the objects in your scene
and clip them against a normalized view vol-
ume. First, choose new z-coordinates and three-
dimensional orientations for the polygons in your
scene that are appropriate to the snapshot of your
application. That is, they should be taken out
of the xy plane in which they have been con-
strained so far and given appropriate depth. Once
you have done this, implement an extension of
the Sutherland-Hodgman polygon-clipping algo-
rithm that allows clipping of convex polygons
against a normalized symmetric view volume.
You will use this algorithm in the next exercise
to produce a view of some portion of your three-
dimensional scene.

2 Choose a view of the scene from the previous
exercise that produces a view volume in which
all objects are not fully contained. Apply the
algorithm for polygon clipping that you devel-
oped in the previous exercise against the view
volume. Write routines to display the scene using
a parallel projection and a perspective projection.
Use the OpenGL three-dimensional viewing func-
tions to do this, choosing appropriate parameters
to specify the viewing volume in each case. Allow
the user to switch between the two projections via
keyboard input and note the differences in the
visual appearance of the scene in the two cases.

Three-Dimensional Viewing

352

C o l o r P l a t e 9
A realistic room display, achieved with a perspective
projection, illumination effects, and selected surface
properties. (Courtesy of John Snyder, Jed Lengyel, Devendra
Kalra, and Al Barr, California Institute of Technology. © 1992
Caltech.)

Three-Dimensional Viewing
Color P lates

From Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson

353

This page intentionally left blank

Hierarchical Modeling

1 Basic Modeling Concepts

2 Modeling Packages

3 General Hierarchical Modeling
Methods

4 Hierarchical Modeling Using OpenGL
Display Lists

5 Summary

I n setting up the definition of a complex object or system, it is

usually easiest to specify the subparts first and then describe

how the subparts fit together to form the overall object or

system. For instance, a bicycle can be described in terms of a frame,

wheels, fenders, handlebars, seat, chain, and pedals, along with the

rules for positioning these components to form the bicycle. A hierar-

chical description of this type can be given as a tree structure, con-

sisting of the subparts as the tree nodes and the construction rules as

the tree branches.

Architectural and engineering systems, such as building layouts,

automobile design, electronic circuits, and home appliances, are now

routinely developed using computer-aided design (CAD) packages.

And graphical design methods are used also for representing eco-

nomic, financial, organizational, scientific, social, and environmental

systems. Simulations are often constructed to study the behavior of

a system under various conditions, and the outcome of a simulation

can serve as an instructional tool or as a basis for making decisions

From Chapter of Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson

11

355

about the system. Design packages generally provide routines for creating and managing

hierarchical models, and some packages also contain predefined shapes, such as wheels,

doors, gears, shafts, and electric-circuit components.

1 Basic Modeling Concepts
The creation and manipulation of a system representation is termed modeling.
Any single representation is called a model of the system, which could be defined
graphically or purely descriptively, such as a set of equations that describe the
relationships among system parameters. Graphical models are often referred to as
geometric models, because the component parts of a system are represented with
geometric entities such as straight-line segments, polygons, polyhedra, cylinders,
or spheres. Because we are concerned here only with graphics applications, we
will use the term model to mean a computer-generated, geometric representation
of a system.

System Representations
Figure 1 shows a graphical representation for a logic circuit, illustrating the fea-
tures common to many system models. Component parts of the system are dis-
played as geometric structures, called symbols, and relationships among the
symbols are represented in this example with a network of connecting lines. Three
standard symbols are used to represent logic gates for the Boolean operations: and,
or, and not. The connecting lines define relationships in terms of input and output
flow (from left to right) through the system parts. One symbol, the and gate, is
displayed at two different positions within the logic circuit. Repeated positioning
of a few basic symbols is a common method for building complex models. Each
such occurrence of a symbol within a model is called an instance of that symbol.
We have one instance for the or and not symbols in Figure 1 and two instances
of the and symbol.

In many cases, the particular graphical symbols chosen to represent the parts
of a system are dictated by the system description. For circuit models, stan-
dard electrical or logic symbols are used. But with models representing abstract
concepts, such as political, financial, or economic systems, symbols may be any
convenient geometric pattern.

Information describing a model is usually provided as a combination of
geometric and nongeometric data. Geometric information includes coordinate
positions for locating the component parts, output primitives and attribute func-
tions to define the structure of the parts, and data for constructing connections
between the parts. Nongeometric information includes text labels, algorithms
describing the operating characteristics of the model, and rules for determining
the relationships or connections between component parts, if these are not speci-
fied as geometric data.

F I G U R E 1
Model of a logic circuit.

Binary
Input

Binary
Output

and

or

notand

Hierarchical Modeling

356

T A B L E 1

Data table defining the structure and position of each gate in the circuit of
Figure 1

Symbol Geometric Identifying
Code Description Label

Gate 1 (Coordinates and other parameters) and
Gate 2 : or
Gate 3 : not
Gate 4 : and

There are two methods for specifying the information needed to construct and
manipulate a model. One method is to store the information in a data structure,
such as a table or linked list. The other method is to specify the information in
procedures. In general, a model specification will contain both data structures and
procedures, although some models are defined completely with data structures
and others use only procedural specifications. An application to perform solid
modeling of objects might use mostly information taken from some data structure
to define coordinate positions, with very few procedures. A weather model, on
the other hand, may need mostly procedures to calculate plots of temperature
and pressure variations.

As an example of how combinations of data structures and procedures can be
used, we consider some alternative model specifications for the logic circuit
of Figure 1. One method is to define the logic components in a data table
(Table 1), with processing procedures used to specify how the network con-
nections are to be made and how the circuit operates. Geometric data in this table
include coordinates and parameters necessary for drawing and positioning the
gates. These symbols could all be drawn as polygons, or they could be formed as
combinations of straight-line segments and elliptical arcs. Labels for each of the
component parts also have been included in the table, although the labels could
be omitted if the symbols are displayed as commonly recognized shapes. Proce-
dures would then be used to display the gates and construct the connecting lines,
based on the coordinate positions of the gates and a specified order for connecting
them. An additional procedure is used to produce the circuit output (binary val-
ues) for any given input. This procedure could be set up to display only the final
output, or it could be designed to display intermediate output values to illustrate
the internal functioning of the circuit.

Alternatively, we might specify graphical information for the circuit model in
data structures. The connecting lines, as well as the gates, could then be defined
in a data table that explicitly lists endpoints for each of the lines in the circuit.
A single procedure might then display the circuit and calculate the output. At
the other extreme, we could completely define the model in procedures, using no
external data structures.

Symbol Hierarchies
Many models can be organized as a hierarchy of symbols. The basic elements
for the model are defined as simple geometric shapes appropriate to the type of
model under consideration. These basic symbols can be used to form composite
objects, sometimes called modules, which themselves can be grouped to form

Hierarchical Modeling

357

F I G U R E 2
A one-level hierarchical description of
a circuit formed with logic gates.

and Gate not Gate or Gate

Logic
Circuit

and Gate

higher-level objects, and so on, for the various components of the model. In the
simplest case, we can describe a model by a one-level hierarchy of component
parts, as in Figure 2. For this circuit example, we assume that the gates are
positioned and connected to each other with straight lines according to connection
rules that are specified with each gate description. The basic symbols in this
hierarchical description are the logic gates. Although the gates themselves could
be described as hierarchies—formed from straight lines, elliptical arcs, and text—
that description would not be a convenient one for constructing logic circuits,
in which the simplest building blocks are gates. For an application in which we
were interested in designing different geometric shapes, the basic symbols could
be defined as straight-line segments and arcs.

An example of a two-level symbol hierarchy appears in Figure 3. Here,
a facility layout is planned as an arrangement of work areas. Each work area
is outfitted with a collection of furniture. The basic symbols are the furniture
items: worktable, chair, shelves, file cabinet, and so forth. Higher-order objects
are the work areas, which are put together with different furniture organizations.
An instance of a basic symbol is defined by specifying its position, size, and
orientation within each work area. Positions are given as coordinate locations in
the work areas, and orientations are specified as rotations that determine which
way the symbols are facing. At the first level below the root node for the facility
tree, each work area is defined by specifying its position, size, and orientation
within the facility layout. The boundary for each work area might be defined
with a divider that encloses the work area and provides aisles within the facility.

More complex symbol hierarchies are formed with repeated groupings of
symbol clusters at each higher level. The facility layout of Figure 3 could be
extended to include symbol clusters that form different rooms, different floors

Work Area 1 Work Area 2

Facility

Work Area 3

Worktable Chair File
Cabinet Worktable Chair Shelves Worktable Chair Shelves File

Cabinet

. . .

. . .

F I G U R E 3
A two-level hierarchical description for a facility layout.

Hierarchical Modeling

358

of a building, different buildings within a complex, and different complexes at
widely separated geographical locations.

2 Modeling Packages
Although system models can be designed and manipulated using a gen-
eral computer-graphics package, specialized modeling systems are available to
facilitate modeling in particular applications. Modeling systems provide a means
for defining and rearranging model representations in terms of symbol hierar-
chies, which are then processed by graphics routines for display. General-purpose
graphics systems often do not provide routines to accommodate extensive model-
ing applications. But some graphics packages, such as GL and PHIGS, do include
integrated sets of modeling and graphics functions.

If a graphics library contains no modeling functions, we can often use a
modeling-package interface to the graphics routines. Alternatively, we could cre-
ate our own modeling routines using the geometric transformations and other
functions available in the graphics library.

Specialized modeling packages, such as some CAD systems, are defined and
structured according to the type of application the package has been designed to
handle. These packages provide menus of symbol shapes and functions for the
intended application. And they can be designed for either two-dimensional or
three-dimensional modeling.

3 General Hierarchical Modeling Methods
We create a hierarchical model of a system by nesting the descriptions of its
subparts into one another to form a tree organization. As each node is placed into
the hierarchy, it is assigned a set of transformations to position it appropriately
into the overall model. For an office-facility design, work areas and offices are
formed with arrangements of furniture items. The offices and work areas are
then placed into departments, and so forth on up the hierarchy. An example of
the use of multiple coordinate systems and hierarchical modeling with three-
dimensional objects is given in Figure 4. This figure illustrates simulation of
tractor movement. As the tractor moves, the tractor coordinate system and front-
wheel coordinate system move in the world coordinate system. The front wheels
rotate in the wheel system, and the wheel system rotates in the tractor system
when the tractor turns.

yt

yw

xtzt

xwzw

ztw
xtw

ytw

Front-Wheel
System

Tractor
System

World
System F I G U R E 4

Possible coordinate systems used in
simulating tractor movement. A
rotation of the front-wheel system
causes the tractor to turn. Both the
wheel and tractor reference frames
move in the world coordinate system.

Hierarchical Modeling

359

x Chair

�3

Arrays for Chair
Coordinates

Chair

(a)

0 5�5
�5

0

5

y Chair

�3
3
3
1
2
1

�3

x Worktable y Worktable

Arrays for
Worktable Coordinates

3
3

�3
3
0

�3

0
�8
�8

8
8
0

0
0
6
6

�10
�10

Worktable

(b)

�5 0 5 10�10

�10

�5

0

5

10

F I G U R E 5
Objects defined in local coordinates.

Local Coordinates
In general design applications, models are constructed with instances (trans-
formed copies) of the geometric shapes that are defined in a basic symbol set.
Each instance is positioned, with the proper orientation, in the world-coordinate
reference of the overall structure of the model. The various graphical objects to be
used in an application are each defined relative to the world-coordinate reference
system, which is referred to as the local coordinate system for that object. Local
coordinates are also called modeling coordinates, or sometimes master coordinates.
Figure 5 illustrates local-coordinate definitions for two symbols that could be
used in a two-dimensional facility-layout application.

Modeling Transformations
To construct a graphical model, we apply transformations to the local-coordinate
definitions of symbols to produce instances of the symbols within the overall
structure of the model. Transformations applied to the modeling-coordinate def-
initions of symbols to give them a particular position and orientation within
a model are referred to as modeling transformations. The typical transformations
available in a modeling package are translation, rotation, and scaling, but other
transformations might also be used in some applications.

Creating Hierarchical Structures
A first step in a hierarchical modeling application is to construct modules that are
compositions of basic symbols. The modules themselves may then be combined
into higher-level modules, and so on. We define each initial module as a list of
symbol instances, along with appropriate transformation parameters for each
symbol. At the next level, we define each higher-level module as a list of symbol
and lower-level module instances along with their transformation parameters.
This process is continued up to the root of the tree, which represents the total
model in world coordinates.

Hierarchical Modeling

360

In a modeling package, a module is created with a sequence of commands of
the form

createModule1
setSymbolTransformation1
insertSymbol1
setSymbolTransformation2
insertSymbol2
.
.
.

closeModule1

Each instance of a basic symbol is assigned a set of transformation parameters for
that module. Similarly, modules are combined to form higher-level modules with
functions such as

createModule6
setModuleTransformation1
insertModule1
setModuleTransformation2
insertModule2

setSymbolTransformation5
insertSymbol5
.
.
.

closeModule6

The transformation function for each module or symbol specifies how that object
is to be fitted into the higher-level module. Often, options are provided so that
a specified transformation matrix could premultiply, postmultiply, or replace the
current transformation matrix.

Although a basic set of symbols could be available in a modeling package,
the symbol set might not contain the shapes we need for a particular application.
In that case, we can create additional shapes within a modeling program. As an
example, the following pseudocode illustrates the specification of a simple model
for a bicycle:

createWheelSymbol

createFrameSymbol

createBicycleModule
setFrameTransformation
insertFrameSymbol

Hierarchical Modeling

361

setFrontWheelTransformation
insertWheelSymbol

setBackWheelTransformation
insertWheelSymbol

closeBicycleModule

A number of other modeling routines are usually available in a system
designed for hierarchical modeling. Modules often can be selectively displayed
or temporarily taken out of a system representation. This allows a designer to
experiment with different shapes and design structures. And selected modules
could be highlighted or moved around in the display during the design process.

4 Hierarchical Modeling Using OpenGL
Display Lists

Complex objects can be described in OpenGL using nested display lists to form
a hierarchical model. Each symbol and module for the model is created with a
glNewList function. And we insert one display list into another display list
using the glCallList function within the definition of the higher-order list.
Geometric transformations can be associated with each inserted object to specify
a position, orientation, and size within the higher-level module. As an example,
the following code could be used to describe a bicycle that is simply composed
of a frame and two identical wheels:

glNewList (bicycle, GL_COMPILE);
glCallList (frame);

glPushMatrix ();
glTranslatef (tx1, ty1, tz1);
glCallList (wheel);

glPopMatrix ();

glPushMatrix ();
glTranslatef (tx2, ty2, tz2);
glCallList (wheel);

glPopMatrix ();
glEndList ();

This code creates a new display list which, when executed, will invoke
glCallList to execute two additional display lists which will draw the frame
and the wheels of the bicycle. Because we are positioning the two wheels rela-
tive to the location of the frame of the bicycle, when we draw each wheel we
use a call to glPushMatrix before applying the translation which positions the
wheel, followed by a call to glPopMatrix after drawing the wheel to restore
the transformation matrix to its previous state. This isolates the per-wheel trans-
lations; without these calls to to glPushMatrix and glPopMatrix, the transla-
tions would be cumulative rather than separate—in effect, we would position the

Hierarchical Modeling

362

second wheel relative to the position of the first, rather than relative to the position
of the frame.

Just as this display list is composed from other lists, so could the frame
display list be composed from individual display lists describing the handlebars,
chain, pedals, and other components, and the wheel display could be composed
from other lists describing the wheel rim, its spokes, and the tire that surrounds
the rim.

5 Summary
The term “model,” in computer-graphics applications, refers to a graphical rep-
resentation for some system. Basic components of a system are represented as
symbols, defined in local-coordinate reference frames, which are also referred
to as modeling, or master, coordinates. We create a model, such as an electrical
circuit, by placing instances of the symbols at selected locations with prescribed
orientations.

Many models are constructed as symbol hierarchies. We can construct a
hierarchical model by nesting modules, which are composed of instances of basic
symbols and other modules. This nesting process may continue down to sym-
bols that are defined with graphical output primitives and their attributes. As
each symbol or module is nested within a higher-level module, an associated
modeling transformation is specified for the nested structure.

A hierarchical model can be set up in OpenGL using display lists. The
glNewList function can be used to define the overall structure of a system and its
component modules. Individual symbol structures or other modules are inserted
within a module using the glCallList function, preceded by an appropriate
set of transformations to specify the position, orientation, and size of the inserted
component.

REFERENCE
Examples of modeling applications using OpenGL are
given in Woo, et al. (1999).

EXERCISES
1 Discuss model representations that would be ap-

propriate for several distinctly different kinds of
systems. Also discuss how graphical representa-
tions might be implemented for each system.

2 Devise a two-dimensional neighborhood layout
package. A menu of various building structures
(e.g., residential buildings, commercial buildings,
roads, etc.) is to be provided to a designer, who can
use a mouse to select and place an object in any lo-
cation within a given tract of land that constitutes
a neighborhood (a one-level hierarchy). Instance
transformations can be limited to translations and
rotations.

3 Extend the previous exercise so that build-
ing structures can also be scaled along each
dimension.

4 Devise a two-dimensional city-planning pack-
age that presents a menu of building structure
(e.g., residential buildings, commercial buildings,
roads, etc.) to a designer. A two-level hierar-
chy is to be used so that building structures can
be placed into various neighborhoods, and the
neighborhoods can be arranged within a larger
area comprising the land a given city can occupy.
Building structures are to be placed into neigh-
borhoods using only translation and rotation
instance transformations.

5 Extend the previous exercise so that building
structures can also be scaled along each dimen-
sion.

6 Write a set of routines for creating and displaying
symbols for logic-circuit design. As a minimum,
the symbol set should include the and, or, and not
gates shown in Figure 1.

7 Develop a modeling package for designing logic
circuits that will allow a designer to position

Hierarchical Modeling

363

electrical symbols within a circuit network. Use
the symbol set from the previous exercise, and
use only translations to place an instance of one
of the menu shapes into the network. Once a com-
ponent has been placed in the network, it is to
be connected to other specified components with
straight-line segments.

8 Suppose you are designing a “creature creator”
for a video game. The player should be given ac-
cess to a list of various forms from a fixed set of
body parts: heads, bodies, arms, and legs. A crea-
ture must have exactly one head and one body,
but may have any number of arms or legs. Write a
set of routines for editing creatures (a single crea-
ture in this instance would be a module) in the
proposed game. Your routines should provide for
the ability to replace one body part instance for
another, insert additional arms or legs, and delete
existing arms or legs.

9 Given the coordinate extents of all displayed
objects in a model, write a routine to delete any
selected object.

10 Write procedures to display and to delete a spec-
ified module in a model.

11 Write a routine that will selectively take modules
out of a model display or return them to the dis-
play.

12 Write a procedure to highlight a selected module
in some way. For example, the selected module
could be displayed in a different color or it could
be enclosed within a rectangular outline.

13 Write a procedure to highlight a selected module
in a model by causing the module’s scale to oscil-
late slightly.

IN MORE DEPTH
1 Recall that in previous exercises, you may have

organized a subset of the objects in your scene into
a group that behaves in a way that is easier mod-

eled in terms of relative positions and orientations
within the group. Then, you used transformations
from those local modeling coordinates to world
coordinates to convert local transformations of
the objects in the group into transformations in
the world coordinate system. In this exercise, you
will take this concept further, or implement it if
you haven’t already. Consider the ways in which
the objects in your application interact, and iden-
tify groups of objects that make sense to model as
a single unit. Alternatively, if none of the objects
in your scene exhibit this property, consider mod-
eling single objects in terms of several polygons
that change position, scale, or orientation relative
to other polygons that make up the object model.
This will require that you modify the representa-
tion of each object so that it is composed of more
than a single polygon. You will learn more about
three-dimensional object representations in later
chapters, but this temporary solution will allow
you to experiment with hierarchical modeling for
now. If possible, try to build a hierarchy of two or
more levels to get the full appreciation of the util-
ity of organizing objects hierarchically. For each
group of objects that comprise a group, identify
the subcomponents and how they interact with
each other.

2

Hierarchical Modeling

Use the hierarchical organization of the objects
that you developed in the previous exercise to
replicate the simple animation of your scene. The
transformations that you developed earlier may
need to be modified because you altered the z
coordinates and orientations of the objects in your
scene. Set up display lists to define each group
and perform the appropriate transformations on
each by using the matrix stack appropriately, as
described in Section 4. Use the perspective pro-
jection viewing scheme that you developed to
display the animation in the display window.

364

Computer Animation

1 Raster Methods for Computer
Animation

2 Design of Animation Sequences

3 Traditional Animation Techniques

4 General Computer-Animation
Functions

5 Computer-Animation Languages

6 Key-Frame Systems

7 Motion Specifications

8 Character Animation

9 Periodic Motions

10 OpenGL Animation Procedures

11 Summary

C omputer-graphics methods are now commonly used to pro-

duce animations for a variety of applications, including

entertainment (motion pictures and cartoons), advertis-

ing, scientific and engineering studies, and training and education.

Although we tend to think of animation as implying object motion,

the term computer animation generally refers to any time sequence

of visual changes in a picture. In addition to changing object posi-

tions using translations or rotations, a computer-generated anima-

tion could display time variations in object size, color, transparency,

or surface texture. Advertising animations often transition one object

shape into another: for example, transforming a can of motor oil

into an automobile engine. We can also generate computer anima-

tions by varying camera parameters, such as position, orientation, or

focal length, and variations in lighting effects or other parameters and

procedures associated with illumination and rendering can be used to

produce computer animations.

Another consideration in computer-generated animation is

realism. Many applications require realistic displays. An accurate

From Chapter 1 of Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson

2

365

representation of the shape of a thunderstorm or other natural phenomena described

with a numerical model is important for evaluating the reliability of the model. Simi-

larly, simulators for training aircraft pilots and heavy-equipment operators must produce

reasonably accurate representations of the environment. Entertainment and advertising

applications, on the other hand, are sometimes more interested in visual effects. Thus,

scenes may be displayed with exaggerated shapes and unrealistic motions and transfor-

mations. However, there are many entertainment and advertising applications that do

require accurate representations for computer-generated scenes. Also, in some scien-

tific and engineering studies, realism is not a goal. For example, physical quantities are

often displayed with pseudo-colors or abstract shapes that change over time to help the

researcher understand the nature of the physical process.

Two basic methods for constructing a motion sequence are real-time animation
and frame-by-frame animation. In a real-time computer-animation, each stage of the

sequence is viewed as it is created. Thus the animation must be generated at a rate that

is compatible with the constraints of the refresh rate. For a frame-by-frame animation,

each frame of the motion is separately generated and stored. Later, the frames can be

recorded on film, or they can be displayed consecutively on a video monitor in “real-time

playback” mode. Simple animation displays are generally produced in real time, while

more complex animations are constructed more slowly, frame by frame. However, some

applications require real-time animation, regardless of the complexity of the animation.

A flight-simulator animation, for example, is produced in real time because the video

displays must be generated in immediate response to changes in the control settings.

In such cases, special hardware and software systems are often developed to allow the

complex display sequences to be developed quickly.

1 Raster Methods for Computer Animation
Most of the time, we can create simple animation sequences in our programs using
real-time methods. In general, though, we can produce an animation sequence
on a raster-scan system one frame at a time, so that each completed frame could
be saved in a file for later viewing. The animation can then be viewed by cycling
through the completed frame sequence, or the frames could be transferred to film.
If we want to generate an animation in real time, however, we need to produce the
motion frames quickly enough so that a continuous motion sequence is displayed.
For a complex scene, one frame of the animation could take most of the refresh
cycle time to construct. In that case, objects generated first would be displayed
for most of the frame refresh time, but objects generated toward the end of the
refresh cycle would disappear almost as soon as they were displayed. For very
complex animations, the frame construction time could be greater than the time to
refresh the screen, which can lead to erratic motion and fractured frame displays.
Because the screen display is generated from successively modified pixel values
in the refresh buffer, we can take advantage of some of the characteristics of the
raster screen-refresh process to produce motion sequences quickly.

Double Buffering
One method for producing a real-time animation with a raster system is to
employ two refresh buffers. Initially, we create a frame for the animation in one

Computer Animation

366

of the buffers. Then, while the screen is being refreshed from that buffer, we
construct the next frame in the other buffer. When that frame is complete, we
switch the roles of the two buffers so that the refresh routines use the second
buffer during the process of creating the next frame in the first buffer. This
alternating buffer process continues throughout the animation. Graphics libraries
that permit such operations typically have one function for activating the double-
buffering routines and another function for interchanging the roles of the two
buffers.

When a call is made to switch two refresh buffers, the interchange could be
performed at various times. The most straightforward implementation is to switch
the two buffers at the end of the current refresh cycle, during the vertical retrace
of the electron beam. If a program can complete the construction of a frame within
the time of a refresh cycle, say 1

60 of a second, each motion sequence is displayed
in synchronization with the screen refresh rate. However, if the time to construct
a frame is longer than the refresh time, the current frame is displayed for two
or more refresh cycles while the next animation frame is being generated. For
example, if the screen refresh rate is 60 frames per second and it takes 1

50 of a
second to construct an animation frame, each frame is displayed on the screen
twice and the animation rate is only 30 frames each second. Similarly, if the frame
construction time is 1

25 of a second, the animation frame rate is reduced to 20 frames
per second because each frame is displayed three times.

Irregular animation frame rates can occur with double buffering when the
frame construction time is very nearly equal to an integer multiple of the screen
refresh time. As an example of this, if the screen refresh rate is 60 frames per second,
then an erratic animation frame rate is possible when the frame construction
time is very close to 1

60 of a second, or 2
60 of a second, or 3

60 of a second, and so
forth. Because of slight variations in the implementation time for the routines that
generate the primitives and their attributes, some frames could take a little more
time to construct and some a little less time. Thus, the animation frame rate can
change abruptly and erratically. One way to compensate for this effect is to add
a small time delay to the program. Another possibility is to alter the motion or
scene description to shorten the frame construction time.

Generating Animations Using Raster Operations
We can also generate real-time raster animations for limited applications using
block transfers of a rectangular array of pixel values. This animation technique is

We can also animate objects along two-dimensional motion paths using color-
table transformations. Here we predefine the object at successive positions along
the motion path and set the successive blocks of pixel values to color-table entries.
The pixels at the first position of the object are set to a foreground color, and the
pixels at the other object positions are set to the background color. The animation

Computer Animation

often used in game-playing programs. A simple method for translating an object
from one location to another in the xy plane is to transfer the group of pixel val-
ues that define the shape of the object to the new location. Two-dimensional rota-
tions in multiples of 90º are also simple to perform, although we can rotate rec-
tangular blocks of pixels through other angles using antialiasing procedures. For
a rotation that is not a multiple of 90º, we need to estimate the percentage of area
coverage for those pixels that overlap the rotated block. Sequences of raster oper-
ations can be executed to produce realtime animation for either two-dimension-
al or three-dimensional objects, so long as we restrict the animation to motions
in the projection plane. Then no viewing or visible-surface algorithms need be
invoked.

367

is then accomplished by changing the color-table values so that the object color at
successive positions along the animation path becomes the foreground color as
the preceding position is set to the background color (Figure 1).

2 Design of Animation Sequences
Constructing an animation sequence can be a complicated task, particularly when
it involves a story line and multiple objects, each of which can move in a different
way. A basic approach is to design such animation sequences using the following
development stages:

• Storyboard layout
• Object definitions
• Key-frame specifications
• Generation of in-between frames

The storyboard is an outline of the action. It defines the motion sequence as
a set of basic events that are to take place. Depending on the type of animation to
be produced, the storyboard could consist of a set of rough sketches, along with
a brief description of the movements, or it could just be a list of the basic ideas for
the action. Originally, the set of motion sketches was attached to a large board that
was used to present an overall view of the animation project. Hence, the name
“storyboard.”

An object definition is given for each participant in the action. Objects can be
defined in terms of basic shapes, such as polygons or spline surfaces. In addition,
a description is often given of the movements that are to be performed by each
character or object in the story.

F I G U R E 1
Real-time raster color-table animation.

A key frame is a detailed drawing of the scene at a certain time in the ani-
mation sequence. Within each key frame, each object (or character) is positioned
according to the time for that frame. Some key frames are chosen at extreme
positions in the action; others are spaced so that the time interval between key
frames is not too great. More key frames are specified for intricate motions than for
simple, slowly varying motions. Development of the key frames is generally the
responsibility of the senior animators, and often a separate animator is assigned
to each character in the animation.

In-betweens are the intermediate frames between the key frames. The total
number of frames, and hence the total number of in-betweens, needed for an
animation is determined by the display media that is to be used. Film requires
24 frames per second, and graphics terminals are refreshed at the rate of 60 or
more frames per second. Typically, time intervals for the motion are set up so that
there are from three to five in-betweens for each pair of key frames. Depending
on the speed specified for the motion, some key frames could be duplicated. As
an example, a 1-minute film sequence with no duplication requires a total of
1,440 frames. If five in-betweens are required for each pair of key frames, then
288 key frames would need to be developed.

There are several other tasks that may be required, depending on the appli-
cation. These additional tasks include motion verification, editing, and the pro-
duction and synchronization of a soundtrack. Many of the functions needed to
produce general animations are now computer-generated. Figures 2 and 3
show examples of computer-generated frames for animation sequences.

Computer Animation

368

F I G U R E 2
One frame from the award-winning computer-animated short film
Luxo Jr. The film was designed using a key-frame animation system
and cartoon animation techniques to provide lifelike actions of the
lamps. Final images were rendered with multiple light sources and
procedural texturing techniques. (Courtesy of Pixar. c© 1986 Pixar.)

F I G U R E 3
One frame from the short film Tin Toy, the first
computer-animated film to win an Oscar. Designed using a
key-frame animation system, the film also required extensive
facial-expression modeling. Final images were rendered using
procedural shading, self-shadowing techniques, motion blur, and
texture mapping. (Courtesy of Pixar. c© 1988 Pixar.)

3 Traditional Animation Techniques
Film animators use a variety of methods for depicting and emphasizing motion
sequences. These include object deformations, spacing between animation frames,
motion anticipation and follow-through, and action focusing.

One of the most important techniques for simulating acceleration effects,
particularly for nonrigid objects, is squash and stretch. Figure 4 shows how
this technique is used to emphasize the acceleration and deceleration of a bouncing
ball. As the ball accelerates, it begins to stretch. When the ball hits the floor and
stops, it is first compressed (squashed) and then stretched again as it accelerates
and bounces upwards.

Another technique used by film animators is timing, which refers to the spac-
ing between motion frames. A slower moving object is represented with more
closely spaced frames, and a faster moving object is displayed with fewer frames
over the path of the motion. This effect is illustrated in Figure 5, where the
position changes between frames increase as a bouncing ball moves faster.

Object movements can also be emphasized by creating preliminary actions
that indicate an anticipation of a coming motion. For example, a cartoon character

Stretch

Squash

F I G U R E 4
A bouncing-ball illustration of the “squash and stretch” technique
for emphasizing object acceleration.

0

F I G U R E 5
The position changes between motion frames for a bouncing ball
increase as the speed of the ball increases.

Computer Animation

369

might lean forward and rotate its body before starting to run; or a character might
perform a “windup” before throwing a ball. Similarly, follow-through actions
can be used to emphasize a previous motion. After throwing a ball, a character
can continue the arm swing back to its body; or a hat can fly off a character that
is stopped abruptly. An action also can be emphasized with staging, which refers
to any method for focusing on an important part of a scene, such as a character
hiding something.

4 General Computer-Animation Functions
Many software packages have been developed either for general animation
design or for performing specialized animation tasks. Typical animation functions
include managing object motions, generating views of objects, producing cam-
era motions, and the generation of in-between frames. Some animation packages,
such as Wavefront for example, provide special functions for both the overall ani-
mation design and the processing of individual objects. Others are special-purpose
packages for particular features of an animation, such as a system for generating
in-between frames or a system for figure animation.

A set of routines is often provided in a general animation package for stor-
ing and managing the object database. Object shapes and associated parameters
are stored and updated in the database. Other object functions include those
for generating the object motion and those for rendering the object surfaces.
Movements can be generated according to specified constraints using two-
dimensional or three-dimensional transformations. Standard functions can then
be applied to identify visible surfaces and apply the rendering algorithms.

Another typical function set simulates camera movements. Standard camera
motions are zooming, panning, and tilting. Finally, given the specification for the
key frames, the in-betweens can be generated automatically.

5 Computer-Animation Languages
We can develop routines to design and control animation sequences within a
general-purpose programming language, such as C, C++, Lisp, or Fortran, but
several specialized animation languages have been developed. These languages
typically include a graphics editor, a key-frame generator, an in-between genera-
tor, and standard graphics routines. The graphics editor allows an animator to
design and modify object shapes, using spline surfaces, constructive solid-
geometry methods, or other representation schemes.

An important task in an animation specification is scene description. This
includes the positioning of objects and light sources, defining the photometric
parameters (light-source intensities and surface illumination properties), and
setting the camera parameters (position, orientation, and lens characteristics).
Another standard function is action specification, which involves the layout of
motion paths for the objects and camera. We need the usual graphics routines:
viewing and perspective transformations, geometric transformations to generate
object movements as a function of accelerations or kinematic path specifications,
visible-surface identification, and the surface-rendering operations.

Key-frame systems were originally designed as a separate set of animation
routines for generating the in-betweens from the user-specified key frames. Now,
these routines are often a component in a more general animation package. In the
simplest case, each object in a scene is defined as a set of rigid bodies connected
at the joints and with a limited number of degrees of freedom. As an example, the

Computer Animation

370

Shoulder
Swivel

Elbow
Extension

Arm
Sweep

Yaw

Roll
Pitch

Base F I G U R E 6
Degrees of freedom for a stationary, single-armed robot.

single-armed robot in Figure 6 has 6 degrees of freedom, which are referred
to as arm sweep, shoulder swivel, elbow extension, pitch, yaw, and roll. We can
extend the number of degrees of freedom for this robot arm to 9 by allowing
three-dimensional translations for the base (Figure 7). If we also allow base
rotations, the robot arm can have a total of 12 degrees of freedom. The human
body, in comparison, has more than 200 degrees of freedom.

F I G U R E 7
Translational and rotational degrees of
freedom for the base of the robot arm.

Parameterized systems allow object motion characteristics to be specified as
part of the object definitions. The adjustable parameters control such object charac-
teristics as degrees of freedom, motion limitations, and allowable shape changes.

Scripting systems allow object specifications and animation sequences to be
defined with a user-input script. From the script, a library of various objects and
motions can be constructed.

6 Key-Frame Systems
A set of in-betweens can be generated from the specification of two (or more)
key frames using a key-frame system. Motion paths can be given with a kinematic
description as a set of spline curves, or the motions can be physically based by
specifying the forces acting on the objects to be animated.

For complex scenes, we can separate the frames into individual components
or objects called cels (celluloid transparencies). This term developed from cartoon-
animation techniques where the background and each character in a scene were
placed on a separate transparency. Then, with the transparencies stacked in the
order from background to foreground, they were photographed to obtain the com-
pleted frame. The specified animation paths are then used to obtain the next cel
for each character, where the positions are interpolated from the key-frame times.

With complex object transformations, the shapes of objects may change over
time. Examples are clothes, facial features, magnified detail, evolving shapes, and
exploding or disintegrating objects. For surfaces described with polygon meshes,
these changes can result in significant changes in polygon shape such that the
number of edges in a polygon could be different from one frame to the next.
These changes are incorporated into the development of the in-between frames
by adding or subtracting polygon edges according to the requirements of the
defining key frames.

Morphing
Transformation of object shapes from one form to another is termed morphing,
which is a shortened form of “metamorphosing.” An animator can model morph-
ing by transitioning polygon shapes through the in-betweens from one key frame
to the next.

Computer Animation

371

Given two key frames, each with a different number of line segments speci-
fying an object transformation, we can first adjust the object specification in one
of the frames so that the number of polygon edges (or the number of polygon
vertices) is the same for the two frames. This preprocessing step is illustrated in
Figure 8. A straight-line segment in key frame k is transformed into two line
segments in key frame k + 1. Because key frame k + 1 has an extra vertex, we add
a vertex between vertices 1 and 2 in key frame k to balance the number of ver-
tices (and edges) in the two key frames. Using linear interpolation to generate the
in-betweens, we transition the added vertex in key frame k into vertex 3′ along
the straight-line path shown in Figure 9. An example of a triangle linearly
expanding into a quadrilateral is given in Figure 10.

We can state general preprocessing rules for equalizing key frames in terms of
either the number of edges or the number of vertices to be added to a key frame. We
first consider equalizing the edge count, where parameters Lk and Lk+1 denote the
number of line segments in two consecutive frames. The maximum and minimum
number of lines to be equalized can be determined as

Lmax = max(Lk , Lk+1), Lmin = min(Lk , Lk+1) (1)

Next we compute the following two quantities:

Ne = Lmax mod Lmin

Ns = int
(

Lmax

Lmin

) (2)

1

2

Key
Frame k

1�

2�

3�

Key
Frame k � 1

F I G U R E 8
An edge with vertex positions 1 and 2 in key frame k evolves
into two connected edges in key frame k + 1.

1
1�

3�

2�

2 Halfway
FrameKey

Frame
k

Key
Frame
k � 1

Added
point

F I G U R E 9
Linear interpolation for transforming a line segment in key
frame k into two connected line segments in key frame k + 1.

Halfway
Frame

Key
Frame

k
Key

Frame
k � 1

added
point

F I G U R E 1 0
Linear interpolation for transforming a triangle into a quadrilateral.

Computer Animation

372

The preprocessing steps for edge equalization are then accomplished with the
following two procedures:

1. Divide Ne edges of keyframemin into Ns + 1 sections.
2. Divide the remaining lines of keyframemin into Ns sections.

As an example, if Lk = 15 and Lk+1 = 11, we would divide four lines of keyframek+1
into two sections each. The remaining lines of keyframek+1 are left intact.

If we equalize the vertex count, we can use parameters Vk and Vk+1 to
denote the number of vertices in the two consecutive key frames. In this case,
we determine the maximum and minimum number of vertices as

Vmax = max(Vk , Vk+1), Vmin = min(Vk , Vk+1) (3)

Then we compute the following two values:

Nls = (Vmax − 1) mod (Vmin − 1)

Np = int
(

Vmax − 1
Vmin − 1

) (4)

These two quantities are then used to perform vertex equalization with the fol-
lowing procedures:

1. Add Np points to Nls line sections of keyframemin.
2. Add Np − 1 points to the remaining edges of keyframemin.

For the triangle-to-quadrilateral example, Vk = 3 and Vk+1 = 4. Both Nls and Np

are 1, so we would add one point to one edge of keyframek . No points would be
added to the remaining lines of keyframek .

Simulating Accelerations
Curve-fitting techniques are often used to specify the animation paths between
key frames. Given the vertex positions at the key frames, we can fit the positions
with linear or nonlinear paths. Figure 11 illustrates a nonlinear fit of key-
frame positions. To simulate accelerations, we can adjust the time spacing for the
in-betweens.

If the motion is to occur at constant speed (zero acceleration), we use equal-
interval time spacing for the in-betweens. For instance, with n in-betweens and

Key
Frame

k

In-
Between

Key
Frame
k � 2Key

Frame
k � 1

F I G U R E 1 1
Fitting key-frame vertex positions with
nonlinear splines.

Computer Animation

373

F I G U R E 1 2
In-between positions for motion at
constant speed. t1 t2�t

t

key-frame times of t1 and t2 (Figure 12), the time interval between the key
frames is divided into n+1 equal subintervals, yielding an in-between spacing of

�t = t2 − t1
n + 1

(5)

The time for the j th in-between is
tB j = t1 + j�t, j = 1, 2, . . . , n (6)

and this time value is used to calculate coordinate positions, color, and other
physical parameters for that frame of the motion.

Speed changes (nonzero accelerations) are usually necessary at some point in
an animation film or cartoon, particularly at the beginning and end of a motion
sequence. The startup and slowdown portions of an animation path are often
modeled with spline or trigonometric functions, but parabolic and cubic time
functions have been applied to acceleration modeling. Animation packages com-
monly furnish trigonometric functions for simulating accelerations.

To model increasing speed (positive acceleration), we want the time spacing
between frames to increase so that greater changes in position occur as the object
moves faster. We can obtain an increasing size for the time interval with the
function

1 − cos θ , 0 < θ < π/2
For n in-betweens, the time for the j th in-between would then be calculated as

tB j = t1 + �t
[

1 − cos
jπ

2(n + 1)

]

, j = 1, 2, . . . , n (7)

where �t is the time difference between the two key frames. Figure 13 gives
a plot of the trigonometric acceleration function and the in-between spacing for
n = 5.

We can model decreasing speed (deceleration) using the function sin θ , with
0 < θ < π/2. The time position of an in-between is then determined as

tB j = t1 + �t sin
jπ

2(n + 1)
, j = 1, 2, . . . , n (8)

t1

tB1 tB5

t

0.5

0 j1

1.0

1 – cos u

2 3 4 5

cos u

F I G U R E 1 3
A trigonometric acceleration function and the corresponding in-between spacing for n = 5 and θ = j π/12 in
Equation 7, producing increased coordinate changes as the object moves through each time interval.

Computer Animation

374

t1 t2

tB1 tB5

t

0.5

0 j1

1.0

sinu

2 3 4 5

F I G U R E 1 4
A trigonometric deceleration function and the corresponding in-between spacing for n = 5 and θ = j π/12 in
Equation 8, producing decreased coordinate changes as the object moves through each time interval.

A plot of this function and the decreasing size of the time intervals is shown in
Figure 14 for five in-betweens.

Often, motions contain both speedups and slowdowns. We can model a com-
bination of increasing–decreasing speed by first increasing the in-between time
spacing and then decreasing this spacing. A function to accomplish these time
changes is

1
2
(1 − cos θ), 0 < θ < π/2

The time for the j th in-between is now calculated as

tB j = t1 + �t
{

1 − cos[jπ/(n + 1)]
2

}

, j = 1, 2, . . . , n (9)

with �t denoting the time difference between the two key frames. Time intervals
for a moving object first increase and then decrease, as shown in Figure 15.

t1 t2

tB1 tB5

t

0.5

0 j1

�0.5

�1.0

1.0

2 3 4 5

cosu

1� cosu
2

F I G U R E 1 5
The trigonometric accelerate–decelerate function (1 − cos θ)/2 and the corresponding in-between spacing for
n = 5 in Equation 9.

Computer Animation

375

Processing the in-betweens is simplified by initially modeling “skeleton”
(wire-frame) objects so that motion sequences can be interactively adjusted. After
the animation sequence is completely defined, objects can be fully rendered.

7 Motion Specifications
General methods for describing an animation sequence range from an explicit
specification of the motion paths to a description of the interactions that produce
the motions. Thus, we could define how an animation is to take place by giving
the transformation parameters, the motion path parameters, the forces that are to
act on objects, or the details of how objects interact to produce motion.

Direct Motion Specification
The most straightforward method for defining an animation is direct motion spec-
ification of the geometric-transformation parameters. Here, we explicitly set the
values for the rotation angles and translation vectors. Then the geometric trans-
formation matrices are applied to transform coordinate positions. Alternatively,
we could use an approximating equation involving these parameters to specify
certain kinds of motions. We can approximate the path of a bouncing ball, for
instance, with a damped, rectified, sine curve (Figure 16):

y(x) = A| sin(ωx + θ0)|e−kx (10)

where A is the initial amplitude (height of the ball above the ground), ω is the
angular frequency, θ0 is the phase angle, and k is the damping constant.
This method for motion specification is particularly useful for simple user-
programmed animation sequences.

Goal-Directed Systems
At the opposite extreme, we can specify the motions that are to take place in gen-
eral terms that abstractly describe the actions in terms of the final results. In other
words, an animation is specified in terms of the final state of the movements. These
systems are referred to as goal-directed, since values for the motion parameters are
determined from the goals of the animation. For example, we could specify that

F I G U R E 1 6
Approximating the motion of a
bouncing ball with a damped sine
function (Eq. 10).

x

y

Computer Animation

376

we want an object to “walk” or to “run” to a particular destination; or we could
state that we want an object to “pick up” some other specified object. The input
directives are then interpreted in terms of component motions that will accomplish
the described task. Human motions, for instance, can be defined as a hierarchical
structure of submotions for the torso, limbs, and so forth. Thus, when a goal, such
as “walk to the door” is given, the movements required of the torso and limbs to
accomplish this action are calculated.

Kinematics and Dynamics
We can also construct animation sequences using kinematic or dynamic descrip-
tions. With a kinematic description, we specify the animation by giving motion
parameters (position, velocity, and acceleration) without reference to causes or
goals of the motion. For constant velocity (zero acceleration), we designate the
motions of rigid bodies in a scene by giving an initial position and velocity vec-
tor for each object. For example, if a velocity is specified as (3, 0, −4) km per
sec, then this vector gives the direction for the straight-line motion path and the
speed (magnitude of velocity) is calculated as 5 km per sec. If we also specify
accelerations (rate of change of velocity), we can generate speedups, slowdowns,
and curved motion paths. Kinematic specification of a motion can also be given
by simply describing the motion path. This is often accomplished using spline
curves.

An alternate approach is to use inverse kinematics. Here, we specify the initial
and final positions of objects at specified times and the motion parameters are
computed by the system. For example, assuming zero acceleration, we can deter-
mine the constant velocity that will accomplish the movement of an object from
the initial position to the final position. This method is often used with complex
objects by giving the positions and orientations of an end node of an object, such
as a hand or a foot. The system then determines the motion parameters of other
nodes to accomplish the desired motion.

Dynamic descriptions, on the other hand, require the specification of the forces
that produce the velocities and accelerations. The description of object behavior in
terms of the influence of forces is generally referred to as physically based modeling.
Examples of forces affecting object motion include electromagnetic, gravitational,
frictional, and other mechanical forces.

Object motions are obtained from the force equations describing physical
laws, such as Newton’s laws of motion for gravitational and frictional processes,
Euler or Navier-Stokes equations describing fluid flow, and Maxwell’s equations
for electromagnetic forces. For example, the general form of Newton’s second law
for a particle of mass m is

F = d
dt

(mv) (11)

where F is the force vector and v is the velocity vector. If mass is constant, we solve
the equation F = ma, with a representing the acceleration vector. Otherwise, mass
is a function of time, as in relativistic motions or the motions of space vehicles
that consume measurable amounts of fuel per unit time. We can also use inverse
dynamics to obtain the forces, given the initial and final positions of objects and
the type of motion required.

Applications of physically based modeling include complex rigid-body sys-
tems and such nonrigid systems as cloth and plastic materials. Typically, numer-
ical methods are used to obtain the motion parameters incrementally from the
dynamical equations using initial conditions or boundary values.

Computer Animation

377

8 Character Animation
Animation of simple objects is relatively straightforward. When we consider
the animation of more complex figures such as humans or animals, however, it
becomes much more difficult to create realistic animation. Consider the animation
of walking or running human (or humanoid) characters. Based upon observations
in their own lives of walking or running people, viewers will expect to see ani-
mated characters move in particular ways. If an animated character’s movement
doesn’t match this expectation, the believability of the character may suffer. Thus,
much of the work involved in character animation is focused on creating believ-
able movements.

Articulated Figure Animation
A basic technique for animating people, animals, insects, and other critters is to
model them as articulated figures, which are hierarchical structures composed of
a set of rigid links that are connected at rotary joints (Figure 17). In less formal
terms, this just means that we model animate objects as moving stick figures, or
simplified skeletons, that can later be wrapped with surfaces representing skin,
hair, fur, feathers, clothes, or other outer coverings.

F I G U R E 1 7
A simple articulated figure with nine
joints and twelve connecting links, not
counting the oval head.

The connecting points, or hinges, for an articulated figure are placed at the
shoulders, hips, knees, and other skeletal joints, which travel along specified
motion paths as the body moves. For example, when a motion is specified for an
object, the shoulder automatically moves in a certain way and, as the shoulder
moves, the arms move. Different types of movement, such as walking, running,
or jumping, are defined and associated with particular motions for the joints and
connecting links.

A series of walking leg motions, for instance, might be defined as in
Figure 18. The hip joint is translated forward along a horizontal line, while
the connecting links perform a series of movements about the hip, knee, and
angle joints. Starting with a straight leg [Figure 18(a)], the first motion is a knee
bend as the hip moves forward [Figure 18(b)]. Then the leg swings forward,
returns to the vertical position, and swings back, as shown in Figures 18(c),
(d), and (e). The final motions are a wide swing back and a return to the straight

(a) (b) (c) (d) (e) (f) (g)

Hip
Joint

F I G U R E 1 8
Possible motions for a set of connected links representing a walking leg.

Computer Animation

378

vertical position, as in Figures 18(f) and (g). This motion cycle is repeated for
the duration of the animation as the figure moves over a specified distance or time
interval.

As a figure moves, other movements are incorporated into the various joints.
A sinusoidal motion, often with varying amplitude, can be applied to the hips so
that they move about on the torso. Similarly, a rolling or rocking motion can be
imparted to the shoulders, and the head can bob up and down.

Both kinematic-motion descriptions and inverse kinematics are used in figure
animations. Specifying the joint motions is generally an easier task, but inverse
kinematics can be useful for producing simple motion over arbitrary terrain. For
a complicated figure, inverse kinematics may not produce a unique animation
sequence: Many different rotational motions may be possible for a given set of
initial and final conditions. In such cases, a unique solution may be possible by
adding more constraints, such as conservation of momentum, to the system.

Motion Capture
An alternative to determining the motion of a character computationally is to
digitally record the movement of a live actor and to base the movement of an
animated character on that information. This technique, known as motion capture
or mo-cap, can be used when the movement of the character is predetermined
(as in a scripted scene). The animated character will perform the same series of
movements as the live actor.

The classic motion capture technique involves placing a set of markers at
strategic positions on the actor’s body, such as the arms, legs, hands, feet, and
joints. It is possible to place the markers directly on the actor, but more commonly
they are affixed to a special skintight body suit worn by the actor. The actor is
them filmed performing the scene. Image processing techniques are then used
to identify the positions of the markers in each frame of the film, and their posi-
tions are translated to coordinates. These coordinates are used to determine the
positioning of the body of the animated character. The movement of each marker
from frame to frame in the film is tracked and used to control the corresponding
movement of the animated character.

To accurately determine the positions of the markers, the scene must be filmed
by multiple cameras placed at fixed positions. The digitized marker data from each
recording can then be used to triangulate the position of each marker in three
dimensions. Typical motion capture systems will use up to two dozen cameras,
but systems with several hundred cameras exist.

Optical motion capture systems rely on the reflection of light from a marker
into the camera. These can be relatively simple passive systems using photo-
reflective markers that reflect illumination from special lights placed near the
cameras, or more advanced active systems in which the markers are powered
and emit light. Active systems can be constructed so that the markers illuminate
in a pattern or sequence, which allows each marker to be uniquely identified in
each frame of the recording, simplifying the tracking process.

Non-optical systems rely on the direct transmission of position information
from the markers to a recording device. Some non-optical systems use inertial sen-
sors that provide gyroscope-based position and orientation information. Others
use magnetic sensors that measure changes in magnetic flux. A series of transmit-
ters placed around the stage generate magnetic fields that induce current in the
magnetic sensors; that information is then transmitted to receivers.

Some motion capture systems record more than just the gross movements
of the parts of the actor’s body. It is possible to record even the actor’s

Computer Animation

379

facial movements. Often called performance capture systems, these typically use a
camera trained on the actor’s face and small light-emitting diode (LED) lights
that illuminate the face. Small photoreflective markers attached to the face reflect
the light from the LEDs and allow the camera to capture the small movements of
the muscles of the face, which can then be used to create realistic facial animation
on a computer-generated character.

9 Periodic Motions
When we construct an animation with repeated motion patterns, such as a rotat-

A typical example of an undersampled periodic-motion display is the wagon
wheel in a Western movie that appears to be turning in the wrong direction.
Figure 19 illustrates one complete cycle in the rotation of a wagon wheel with
one red spoke that makes 18 clockwise revolutions per second. If this motion is
recorded on film at the standard motion-picture projection rate of 24 frames per
second, then the first five frames depicting this motion would be as shown in
Figure 20. Because the wheel completes 3

4 of a turn every 1
24 of a second, only

one animation frame is generated per cycle, and the wheel thus appears to be
rotating in the opposite (counterclockwise) direction.

In a computer-generated animation, we can control the sampling rate in a
periodic motion by adjusting the motion parameters. For example, we can set the

(a)
0 sec.

(b)
1/72 sec.

(c)
1/36 sec.

(d)
1/24 sec.

(e)
1/18 sec.

F I G U R E 1 9
Five positions for a red spoke during one cycle of a wheel motion that is turning at the rate of 18 revolutions per
second.

Frame 0
0 sec.

Frame 1
1/24 sec.

Frame 2
2/24 sec.

Frame 3
3/24 sec.

Frame 4
4/24 sec.

F I G U R E 2 0
The first five film frames of the rotating wheel in Figure 19 produced at the rate of 24 frames per second.

Computer Animation

ing object, we need to be sure that the motion is sampled frequently enough to
represent the movements correctly. In other words, the motion must be synchro-
nized with the frame-generation rate so that we display enough frames per cycle
to show the true motion. Otherwise, the animation may be displayed incorrectly.

380

angular increment for the motion of a rotating object so that multiple frames are
generated in each revolution. Thus, a 3◦ increment for a rotation angle produces
120 motion steps during one revolution, and a 4◦ increment generates 90 steps.
For faster motion, larger rotational steps could be used, so long as the number
of samples per cycle is not too small and the motion is clearly displayed. When
complex objects are to be animated, we also must take into account the effect
that the frame construction time might have on the refresh rate, as discussed in
Section 1. The motion of a complex object can be much slower than we want it
to be if it takes too long to construct each frame of the animation.

Another factor that we need to consider in the display of a repeated motion

10 OpenGL Animation Procedures

Double-buffering operations, if available, are activated using the following
GLUT command:

glutInitDisplayMode (GLUT_DOUBLE);

This provides two buffers, called the front buffer and the back buffer, that we can use
alternately to refresh the screen display. While one buffer is acting as the refresh
buffer for the current display window, the next frame of an animation can be
constructed in the other buffer. We specify when the roles of the two buffers are
to be interchanged using

glutSwapBuffers ();

To determine whether double-buffer operations are available on a system, we
can issue the following query:

glGetBooleanv (GL_DOUBLEBUFFER, status);

A value of GL TRUE is returned to array parameter status if both front and back
buffers are available on a system. Otherwise, the returned value is GL FALSE.

For a continuous animation, we can also use

glutIdleFunc (animationFcn);

where parameter animationFcn can be assigned the name of a procedure that is
to perform the operations for incrementing the animation parameters. This pro-
cedure is continuously executed whenever there are no display-window events
that must be processed. To disable the glutIdleFunc, we set its argument to the
value NULL or the value 0.

An example animation program is given in the following code, which con-
tinuously rotates a regular hexagon in the xy plane about the z axis. The origin of

Computer Animation

is the effect of round-off in the calculations for the motion parameters. We can
reset parameter values periodically to prevent the accumulated error from pro-
ducing erratic motions. For a continuous rotation, we could reset parameter val-
ues once every cycle (360º).

Raster operations and color-index assignment functions are available in the core
library, and routines for changing color-table values are provided in GLUT.
Other raster-animation operations are available only as GLUT routines because
they depend on the window system in use. In addition, computer-animation fea-
tures such as double buffering may not be included in some hardware systems.

381

three-dimensional screen coordinates is placed at the center of the display win-
dow so that the z axis passes through this center position. In procedure init,
we use a display list to set up the description of the regular hexagon, whose
center position is originally at the screen-coordinate position (150, 150) with a
radius (distance from the polygon center to any vertex) of 100 pixels. In the dis-
play function, displayHex, we specify an initial 0◦ rotation about the z axis
and invoke the glutSwapBuffers routine. To activate the rotation, we use pro-
cedure mouseFcn, which continually increments the rotation angle by 3◦ once
we press the middle mouse button. The calculation of the incremented rota-
tion angle is performed in procedure rotateHex, which is called by the
glutIdleFunc routine in procedure mouseFcn. We stop the rotation by press-
ing the right mouse button, which causes the glutIdleFunc to be invoked with
a NULL argument.

#include <GL/glut.h>
#include <math.h>
#include <stdlib.h>

const double TWO_PI = 6.2831853;

GLsizei winWidth = 500, winHeight = 500; // Initial display window size.
GLuint regHex; // Define name for display list.
static GLfloat rotTheta = 0.0;

class scrPt {
public:

GLint x, y;
};

static void init (void)
{

scrPt hexVertex;
GLdouble hexTheta;
GLint k;

glClearColor (1.0, 1.0, 1.0, 0.0);

/* Set up a display list for a red regular hexagon.
* Vertices for the hexagon are six equally spaced
* points around the circumference of a circle.
*/
regHex = glGenLists (1);
glNewList (regHex, GL_COMPILE);

glColor3f (1.0, 0.0, 0.0);
glBegin (GL_POLYGON);

for (k = 0; k < 6; k++) {
hexTheta = TWO_PI * k / 6;
hexVertex.x = 150 + 100 * cos (hexTheta);
hexVertex.y = 150 + 100 * sin (hexTheta);
glVertex2i (hexVertex.x, hexVertex.y);

}
glEnd ();

glEndList ();
}

Computer Animation

382

void displayHex (void)
{

glClear (GL_COLOR_BUFFER_BIT);

glPushMatrix ();
glRotatef (rotTheta, 0.0, 0.0, 1.0);
glCallList (regHex);
glPopMatrix ();

glutSwapBuffers ();

glFlush ();
}

void rotateHex (void)
{

rotTheta += 3.0;
if (rotTheta > 360.0)

rotTheta -= 360.0;

glutPostRedisplay ();
}

void winReshapeFcn (GLint newWidth, GLint newHeight)
{

glViewport (0, 0, (GLsizei) newWidth, (GLsizei) newHeight);

glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
gluOrtho2D (-320.0, 320.0, -320.0, 320.0);

glMatrixMode (GL_MODELVIEW);
glLoadIdentity ();

glClear (GL_COLOR_BUFFER_BIT);
}

void mouseFcn (GLint button, GLint action, GLint x, GLint y)
{

switch (button) {
case GLUT_MIDDLE_BUTTON: // Start the rotation.

if (action == GLUT_DOWN)
glutIdleFunc (rotateHex);

break;
case GLUT_RIGHT_BUTTON: // Stop the rotation.

if (action == GLUT_DOWN)
glutIdleFunc (NULL);

break;
default:

break;
}

}

Computer Animation

383

void main (int argc, char** argv)
{

glutInit (&argc, argv);
glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB);
glutInitWindowPosition (150, 150);
glutInitWindowSize (winWidth, winHeight);
glutCreateWindow ("Animation Example");

init ();
glutDisplayFunc (displayHex);
glutReshapeFunc (winReshapeFcn);
glutMouseFunc (mouseFcn);

glutMainLoop ();
}

11 Summary
An animation sequence can be constructed frame by frame, or it can be generated
in real time. When separate frames of an animation are constructed and stored,
the frames can later be transferred to film or displayed in rapid succession on a
video monitor. Animations involving complex scenes and motions are commonly
produced one frame at a time, while simpler motion sequences are displayed in
real time.

On a raster system, double-buffering methods can be used to facilitate motion
displays. One buffer is used to refresh the screen, while a second buffer is being
loaded with the screen values for the next frame of the motion. Then the roles of
the two buffers are interchanged, usually at the end of a refresh cycle.

Another raster method for displaying an animation is to perform motion
sequences using block transfers of pixel values. Translations are accomplished by
a simple move of a rectangular block of pixel colors from one frame-buffer position
to another. And rotations in 90◦ increments can be performed with combinations
of translations and row-column interchanges within the pixel array.

Color-table methods can be used for simple raster animations by storing an
image of an object at multiple locations in the frame buffer, using different color-
table values. One image is stored in the foreground color, and the copies of the
image at the other locations are assigned a background color. By rapidly inter-
changing the foreground and background color values stored in the color table,
we can display the object at various screen positions.

Several developmental stages can be used to produce an animation, start-
ing with the storyboard, object definitions, and specification of key frames. The
storyboard is an outline of the action, and the key frames define the details of the
object motions for selected positions in the animation. Once the key frames have
been established, in-between frames are generated to construct a smooth motion
from one key frame to the next. A computer animation can involve motion spec-
ifications for the “camera,” as well as motion paths for the objects and characters
involved in the animation.

Various techniques have been developed for simulating and emphasizing
motion effects. Squash and stretch effects are standard methods for stressing

Computer Animation

384

accelerations, and the timing between motion frames can be varied to produce
speed variations. Other methods include a preliminary windup motion, a follow-
through at the end of an action, and staging methods that focus on an important
action in a scene. Trigonometric functions are typically used to generate the time
spacing for in-between frames when the motions involve accelerations.

Animations can be generated with special-purpose software or with a general-
purpose graphics package. Systems that are available for automated computer
animation include key-frame systems, parameterized systems, and scripting
systems.

Many animations include morphing effects, in which one object shape is trans-
formed into another. These effects are accomplished by using the in-between
frames to transition the defining points and lines in one object into the points and
lines of the other object.

Motions in an animation can be described with direct motion specifications
or they can be goal-directed. Thus, an animation can be defined in terms of trans-
lation and rotation parameters, or motions can be described with equations or
with kinematic or dynamic parameters. Kinematic motion descriptions specify
positions, velocities, and accelerations; dynamic motion descriptions are given in
terms of the forces acting on the objects in a scene.

Articulated figures are often used to model the motions of people and animals.
Rigid links, connected at rotary joints, are defined in a hierarchical structure.
When a motion is imparted to an object, each subpart is programmed to move in
a particular way in response to the overall motion.

Motion capture techniques provide an alternative to computed character
motion. They can be used to produce more realistic movement for articulated
characters.

The sampling rate for periodic motions should produce enough frames per
cycle to display the animation correctly. Otherwise, erratic or misleading motions
may result.

In addition to the raster ops and color-table methods, a few functions are avail-
able in the OpenGL Utility Toolkit (GLUT) for developing animation programs.
These provide routines for double-buffering operations and for incrementing
motion parameters during idle-processing intervals. In Table 1, we list the
GLUT functions for producing animations with OpenGL programs.

T A B L E 1

Summary of OpenGL Animation Functions

Function Description

glutInitDisplayMode (GLUT DOUBLE) Activates double-buffering operations.

glutSwapBuffers Interchanges front and back refresh
buffers.

glGetBooleanv (GL DOUBLEBUFFER, Queries a system to determine whether
status) double buffering is available.

glutIdleFunc Specifies a function for incrementing
animation parameters.

Computer Animation

385

REFERENCES
Computer-animation systems are discussed in
Thalmann and Thalmann (1985), Watt and Watt (1992),
O’Rourke (1998), Maestri (1999 and 2002), Kerlow
(2000), Gooch and Gooch (2001), Parent (2002), Pocock
and Rosebush (2002), and Strothotte and Schlechtweg
(2002). Traditional animation techniques are explored in
Lasseter (1987), Thomas, Johnston, and Johnston (1995),
and Thomas and Lefkon (1997). Morphing methods are
discussed in Hughes (1992), Kent, Carlson, and Parent
(1992), Sederberg and Greenwood (1992), and Gomes,
et al. (1999). Facial animation is discussed in Parke and
Waters (2008). Motion capture techniques are discussed
in Menache (2000).

Various algorithms for animation applications are
available in Glassner (1990), Arvo (1991), Kirk (1992),
Gascuel (1993), Snyder, et al. (1993), and Paeth (1995).
And a discussion of animation techniques in OpenGL is
given in Woo, et al. (1999).

EXERCISES
1 Design a storyboard layout and accompanying

key frames for an animation of a simple stick fig-
ure, as in Figure 17.

2 Write a program to generate the in-betweens for
the key frames specified in Exercise 1 using
linear interpolation.

3 Expand the animation sequence in Exercise 1
to include two or more moving objects.

4 Write a program to generate the in-betweens for
the key frames in Exercise 3 using linear inter-
polation.

5 Write a morphing program to transform any
given polygon into another specified polygon,
using five in-betweens.

6 Write a morphing program to transform a
sphere into a specified polyhedron, using five
in-betweens.

7 Set up an animation specification involving accel-
erations and implementing Eq. 7.

8 Set up an animation specification involving both
accelerations and decelerations, implementing
the in-between spacing calculations given in
Equations 7 and 8.

9 Set up an animation specification implement-
ing the acceleration–deceleration calculations of
Equation 9.

10 Write a program to simulate the linear, two-
dimensional motion of a filled circle inside a given
rectangular area. The circle is to be given an initial
position and velocity, and the circle is to rebound
from the walls with the angle of reflection equal
to the angle of incidence.

11 Convert the program of the previous exercise into
a two-player ball and paddle game by replacing

two opposite sides of the rectangle with short line
segments that can be moved back and forth along
each of the rectangle edges. Interactive movement
of each line segment simulates a paddle that can
be positioned to prevent the bouncing ball from
escaping that side of the rectangle. Each time the
circle escapes from the interior of the rectangle the
score of the player assigned to the opposite side is
increased. Initial input parameters include circle
position, direction, and speed. The game scores
can be displayed in one corner of the display
window.

12 Modify the ball and paddle game in the previous
exercise to vary the speed of the bouncing ball.
After each successful block by a player, the speed
of the ball is incremented by a small amount.

13 Modify the game in the previous exercise to
include two balls, each initialized to the same
speed but different positions and opposite
directions.

14 Modify the two-dimensional bouncing ball inside
a rectangle to a three-dimensional motion of a
sphere bouncing around inside a parallelepiped.
Interactive viewing parameters can be set to view
the motion from different directions.

15 Write a program to implement the simulation of
a bouncing ball using Eq. 10.

16 Expand the program in the previous exercise to
include squash and stretch effects.

17 Write a program to implement the motion of a
bouncing ball using dynamics. The motion of the
ball is to be governed by a downward gravita-
tional force and a ground-plane friction force. Ini-
tially, the ball is to be projected into space with a
given velocity vector.

18 Write a program to implement dynamic motion
specifications. Specify a scene with two or more
objects, initial motion parameters, and specified
forces. Then generate the animation from the
solution of the force equations. (For example, the
objects could be the earth, moon, and sun with
attractive gravitational forces that are propor-
tional to mass and inversely proportional to dis-
tance squared.)

19 Modify the rotating hexagon program in Sec-
tion 10 to allow a user to interactively choose
a three-dimensional object from a list of menu
options to be rotated about the y axis. Use a per-
spective projection to display the object.

20 Modify the program in the previous exercise so
that the rotation about the y axis is an elliptical
path in the xz plane.

21 Modify the program in the previous exercise to
allow interactive variation of the rotation speed.

Computer Animation

386

IN MORE DEPTH
1 The goal of this chapter’s exercises is to increase

the sophistication of the animation of your devel-
oping application. You may do this by modifying
or adding to the existing animation that you have
developed, or by using the techniques that you
have learned so far to design a different anima-
tion of some portion of your application. In either
case, draw a storyboard of your planned anima-
tion and outline the methods that you will use to
implement it. Identify key frames that represent
critical points in the animation. Consider meth-
ods by which you can generate the in-between
frames that will move the objects in the scene
realistically from one key frame to the next. Sketch
a timeline that will help you determine the rate
at which each object or group of objects should

move in between each key frame. Try to have
some objects exhibit nonzero accelerations in your
animation. If possible, include an instance of lin-
early interpolated morphing from one polygon or
set of polygons to another. If your application con-
tains objects that behave like a physical dynamical
system, try to incorporate dynamics in the form
of physical models to produce the animation.
Finally, make an attempt to include periodic
motion in the animation if appropriate.

2 Given the storyboard and specification that you
designed in the previous exercise, implement the
animation in an OpenGL program with just a
single buffer as previously done, and then with
a double buffer. Note any differences in the qual-
ity of the animation between the two cases.

Computer Animation

387

This page intentionally left blank

Three-Dimensional Object
Representations

1 Polyhedra

2 OpenGL Polyhedron Functions

3 Curved Surfaces

4 Quadric Surfaces

5 Superquadrics

6 OpenGL Quadric-Surface and
Cubic-Surface Functions

7 Summary

G raphics scenes can contain many different kinds of objects

and material surfaces: trees, flowers, clouds, rocks, water,

bricks, wood paneling, rubber, paper, marble, steel, glass,

plastic, and cloth, just to mention a few. So it may not be surprising

that there is no single method that we can use to describe objects

that will include all the characteristics of these different materials.

Polygon and quadric surfaces provide precise descriptions for

simple Euclidean objects such as polyhedrons and ellipsoids. They are

examples of boundary representations (B-reps), which describe

a three-dimensional object as a set of surfaces that separate the

object interior from the environment. In this chapter, we consider

the features of these types of representation schemes and how they

are used in computer-graphics applications.

From Chapter of Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson

1 3

389

1 Polyhedra
The most commonly used boundary representation for a three-dimensional
graphics object is a set of surface polygons that enclose the object interior. Many
graphics systems store all object descriptions as sets of surface polygons. This
simplifies and speeds up the surface rendering and display of objects because all
surfaces are described with linear equations. For this reason, polygon descriptions
are often referred to as standard graphics objects. In some cases, a polygonal repre-
sentation is the only one available, but many packages also allow object surfaces
to be described with other schemes, such as spline surfaces, which are usually con-
verted to polygonal representations for processing through the viewing pipeline.

To describe an object as a set of polygon facets, we give the list of vertex coordi-
nates for each polygon section over the object surface. The vertex coordinates
and edge information for the surface sections are then stored in tables along with
other information, such as the surface normal vector for each polygon. Some
graphics packages provide routines for generating a polygon-surface mesh as a
set of triangles or quadrilaterals. This allows us to describe a large section of an
object’s bounding surface, or even the entire surface, with a single command.
And some packages also provide routines for displaying common shapes, such
as a cube, sphere, or cylinder, represented with polygon surfaces. Sophisticated
graphics systems use fast hardware-implemented polygon renderers that have the
capability for displaying a million or more shaded polygons (usually triangles) per
second, including the application of surface texture and special lighting effects.

2 OpenGL Polyhedron Functions
We have two methods for specifying polygon surfaces in an OpenGL program.
Using the polygon primitives we can generate a variety of polyhedron shapes and
surface meshes. In addition, we can use GLUT functions to display the five reg-
ular polyhedra.

OpenGL Polygon Fill-Area Functions
A set of polygon patches for a section of an object surface, or a complete
description for a polyhedron, can be given using the OpenGL primitive constants
GL POLYGON, GL TRIANGLES, GL TRIANGLE STRIP, GL TRIANGLE FAN,
GL QUADS, and GL QUAD STRIP. For example, we could tessellate the lateral
(axial) surface of a cylinder using a quadrilateral strip. Similarly, all faces of a par-
allelogram can be described with a set of rectangles, and all faces of a triangular
pyramid could be specified using a set of connected triangular surfaces.

GLUT Regular Polyhedron Functions
Some standard shapes—the five regular polyhedra—are predefined by routines
in the GLUT library. These polyhedra, also called the Platonic solids, are distin-
guished by the fact that all the faces of any regular polyhedron are identical reg-
ular polygons. Thus, all edges in a regular polyhedron are equal, all edge angles
are equal, and all angles between faces are equal. Polyhedra are named according
to the number of faces in each of the solids, and the five regular polyhedra are the
regular tetrahedron (or triangular pyramid, with 4 faces), the regular hexahedron
(or cube, with 6 faces), the regular octahedron (8 faces), the regular dodecahedron
(12 faces), and the regular icosahedron (20 faces).

Three-Dimensional Object Representations

390

Ten functions are provided in GLUT for generating these solids: five of
the functions produce wire-frame objects, and five display the polyhedra facets
as shaded fill areas. The displayed surface characteristics for the fill areas are
determined by the material properties and the lighting conditions that we set for
a scene. Each regular polyhedron is described in modeling coordinates, so that
each is centered at the world-coordinate origin.

We obtain the four-sided, regular triangular pyramid using either of these
two functions:

glutWireTetrahedron ();

or

glutSolidTetrahedron ();

This polyhedron is generated with its center at the world-coordinate origin and
with a radius (distance from the center of the tetrahedron to any vertex) equal
to

√
3.
The six-sided regular hexahedron (cube) is displayed with

glutWireCube (edgeLength);

or

glutSolidCube (edgeLength);

Parameter edgeLength can be assigned any positive, double-precision floating-
point value, and the cube is centered on the coordinate origin.

To display the eight-sided regular octahedron, we invoke either of the follow-
ing commands:

glutWireOctahedron ();

or

glutSolidOctahedron ();

This polyhedron has equilateral triangular faces, and the radius (distance from
the center of the octahedron at the coordinate origin to any vertex) is 1.0.

The twelve-sided regular dodecahedron, centered at the world-coordinate
origin, is generated with

glutWireDodecahedron ();

or

glutSolidDodecahedron ();

Each face of this polyhedron is a pentagon.
The following two functions generate the twenty-sided regular icosahedron:

glutWireIcosahedron ();

or

glutSolidIcosahedron ();

Default radius (distance from the polyhedron center at the coordinate origin to
any vertex) for the icosahedron is 1.0, and each face is an equilateral triangle.

Three-Dimensional Object Representations

391

F I G U R E 1
A perspective view of the five GLUT
polyhedra, scaled and positioned
within a display window by procedure
displayWirePolyhedra.

Example GLUT Polyhedron Program
Using the GLUT functions for the Platonic solids, the following program gener-
ates a transformed, wire-frame perspective display of these polyhedrons. All five
solids are positioned within one display window (shown in Figure 1).

#include <GL/glut.h>

GLsizei winWidth = 500, winHeight = 500; // Initial display-window size.

void init (void)
{

glClearColor (1.0, 1.0, 1.0, 0.0); // White display window.
}

void displayWirePolyhedra (void)
{

glClear (GL_COLOR_BUFFER_BIT); // Clear display window.

glColor3f (0.0, 0.0, 1.0); // Set line color to blue.

/* Set viewing transformation. */
gluLookAt (5.0, 5.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

/* Scale cube and display as wire-frame parallelepiped. */
glScalef (1.5, 2.0, 1.0);
glutWireCube (1.0);

Three-Dimensional Object Representations

392

/* Scale, translate, and display wire-frame dodecahedron. */
glScalef (0.8, 0.5, 0.8);
glTranslatef (-6.0, -5.0, 0.0);
glutWireDodecahedron ();

/* Translate and display wire-frame tetrahedron. */
glTranslatef (8.6, 8.6, 2.0);
glutWireTetrahedron ();

/* Translate and display wire-frame octahedron. */
glTranslatef (-3.0, -1.0, 0.0);
glutWireOctahedron ();

/* Scale, translate, and display wire-frame icosahedron. */
glScalef (0.8, 0.8, 1.0);
glTranslatef (4.3, -2.0, 0.5);
glutWireIcosahedron ();

glFlush ();
}

void winReshapeFcn (GLint newWidth, GLint newHeight)
{

glViewport (0, 0, newWidth, newHeight);

glMatrixMode (GL_PROJECTION);
glFrustum (-1.0, 1.0, -1.0, 1.0, 2.0, 20.0);

glMatrixMode (GL_MODELVIEW);

glClear (GL_COLOR_BUFFER_BIT);
}

void main (int argc, char** argv)
{

glutInit (&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowPosition (100, 100);
glutInitWindowSize (winWidth, winHeight);
glutCreateWindow ("Wire-Frame Polyhedra");

init ();
glutDisplayFunc (displayWirePolyhedra);
glutReshapeFunc (winReshapeFcn);

glutMainLoop ();
}

3 Curved Surfaces
Equations for objects with curved boundaries can be expressed in either a para-
metric or a nonparametric form. The various objects that are often useful in graphics

Three-Dimensional Object Representations

393

applications include quadric surfaces, superquadrics, polynomial and exponen-
tial functions, and spline surfaces. These input object descriptions typically are
tessellated to produce polygon-mesh approximations for the surfaces.

4 Quadric Surfaces
A frequently used class of objects are the quadric surfaces, which are described
with second-degree equations (quadratics). They include spheres, ellipsoids, tori,
paraboloids, and hyperboloids. Quadric surfaces, particularly spheres and ellip-
soids, are common elements of graphics scenes, and routines for generating these
surfaces are often available in graphics packages. Also, quadric surfaces can be
produced with rational spline representations.

Sphere
In Cartesian coordinates, a spherical surface with radius r centered on the coor-
dinate origin is defined as the set of points (x, y, z) that satisfy the equation

x2 + y2 + z2 = r2 (1)

z axis

y axis

x axis

P = (x, y, z)

r

u

f

F I G U R E 2
Parametric coordinate position
(r , θ , φ) on the surface of a sphere
with radius r .

z axis

y axis

x axis

P

u

f
r

F I G U R E 3
Spherical coordinate parameters
(r , θ , φ) , using colatitude for angle φ.

z

y

x

rx

rz

ry

F I G U R E 4
An ellipsoid with radii r x , r y , and r z ,
centered on the coordinate origin.

We can also describe the spherical surface in parametric form, using latitude and
longitude angles (Figure 2):

x = r cos φ cos θ , − π/2 ≤ φ ≤ π/2

y = r cos φ sin θ , − π ≤ θ ≤ π (2)

z = r sin φ

The parametric representation in Equations 2 provides a symmetric range
for the angular parameters θ and φ. Alternatively, we could write the parametric
equations using standard spherical coordinates, where angle φ is specified as the
colatitude (Figure 3). Then, φ is defined over the range 0 ≤ φ ≤ π , and θ is
often taken in the range 0 ≤ θ ≤ 2π . We could also set up the representation using
parameters u and v defined over the range from 0 to 1 by substituting φ = πu
and θ = 2πv.

Ellipsoid
An ellipsoidal surface can be described as an extension of a spherical surface
where the radii in three mutually perpendicular directions can have different
values (Figure 4). The Cartesian representation for points over the surface of an
ellipsoid centered on the origin is

(
x
rx

)2

+
(

y
ry

)2

+
(

z
rz

)2

= 1 (3)

And a parametric representation for the ellipsoid in terms of the latitude angle φ

and the longitude angle θ in Figure 2 is

x = rx cos φ cos θ , − π/2 ≤ φ ≤ π/2

y = ry cos φ sin θ , − π ≤ θ ≤ π (4)

z = rz sin φ

Three-Dimensional Object Representations

394

Top ViewSide View

0 y axis

(x, y, z)

x axis

u

0

z axis

raxial

r
y axis

(0, y, z)

f

F I G U R E 5
A torus, centered on the coordinate
origin, with a circular cross-section and
with the torus axis along the z axis.

Torus
A doughnut-shaped object is called a torus or anchor ring. Most often it is described
as the surface generated by rotating a circle or an ellipse about a coplanar axis
line that is external to the conic. The defining parameters for a torus are then the
distance of the conic center from the rotation axis and the dimensions of the conic.
A torus generated by the rotation of a circle with radius r in the yz plane about
the z axis is shown in Figure 5. With the circle center on the y axis, the axial
radius, raxial, of the resulting torus is equal to the distance along the y axis to the
circle center from the z axis (the rotation axis); and the cross-sectional radius of
the torus is the radius of the generating circle.

The equation for the cross-sectional circle shown in the side view of
Figure 5 is

(y − raxial)
2 + z2 = r2

Rotating this circle about the z axis produces the torus whose surface positions
are described with the Cartesian equation

(√

x2 + y2 − raxial
)2 + z2 = r2 (5)

The corresponding parametric equations for the torus with a circular cross-section
are

x = (raxial + r cos φ) cos θ , − π ≤ φ ≤ π

y = (raxial + r cos φ) sin θ , − π ≤ θ ≤ π (6)

z = r sin φ

We could also generate a torus by rotating an ellipse, instead of a circle, about
the z axis. For an ellipse in the yz plane with semimajor and semiminor axes
denoted as ry and rz, we can write the ellipse equation as

(
y − raxial

ry

)2

+
(

z
rz

)2

= 1

where raxial is the distance along the y axis from the rotation z axis to the ellipse
center. This generates a torus that can be described with the Cartesian equation

(√

x2 + y2 − raxial

ry

)

+
(

z
rz

)2

= 1 (7)

Three-Dimensional Object Representations

395

The corresponding parametric representation for the torus with an elliptical cross-
section is

x = (raxial + ry cos φ) cos θ , − π ≤ φ ≤ π

y = (raxial + ry cos φ) sin θ , − π ≤ θ ≤ π (8)

z = rz sin φ

Other variations on the preceding torus equations are possible. For example,
we could generate a torus surface by rotating either a circle or an ellipse along an
elliptical path around the rotation axis.

5 Superquadrics
The class of objects called Superquadrics is a generalization of the quadric rep-
resentations. Superquadrics are formed by incorporating additional parameters
into the quadric equations to provide increased flexibility for adjusting object
shapes. One additional parameter is added to curve equations, and two addi-
tional parameters are used in surface equations.

Superellipse
We obtain a Cartesian representation for a superellipse from the corresponding
equation for an ellipse by allowing the exponent on the x and y terms to be variable.
One way to do this is to write the Cartesian superellipse equation in the form

(
x
rx

)2/s

+
(

y
ry

)2/s

= 1 (9)

where parameter s can be assigned any real value. When s = 1, we have an ordi-
nary ellipse.

Corresponding parametric equations for the superellipse of Equation 9 can
be expressed as

x = rx coss θ , − π ≤ θ ≤ π

y = ry sins θ
(10)

Figure 6 illustrates superellipse shapes that can be generated using various
values for parameter s.

F I G U R E 6
Superellipses plotted with values for parameter s ranging from 0.5 to 3.0 and with r x = r y .

Three-Dimensional Object Representations

396

Superellipsoid
A Cartesian representation for a superellipsoid is obtained from the equation for
an ellipsoid by incorporating two exponent parameters as follows:

[(
x
rx

)2/s2

+
(

y
ry

)2/s2
]s2/s1

+
(

z
rz

)2/s1

= 1 (11)

For s1 = s2 = 1, we have an ordinary ellipsoid.
We can then write the corresponding parametric representation for the

superellipsoid of Equation 11 as

x = rx coss1 φ coss2 θ , − π/2 ≤ φ ≤ π/2
y = ry coss1 φ sins2 θ , − π ≤ θ ≤ π (12)

z = rz sins1 φ

Color Plate 10 illustrates superellipsoid shapes that can be generated using various
values for parameters s1 and s2. These and other superquadric shapes can be
combined to create more complex structures, such as depictions of furniture,
threaded bolts, and other hardware.

6 OpenGL Quadric-Surface and
Cubic-Surface Functions

A sphere and a number of other three-dimensional quadric-surface objects can
be displayed using functions that are included in the OpenGL Utility Toolkit
(GLUT) and in the OpenGL Utility (GLU). In addition, GLUT has one function
for displaying a teapot shape that is defined with bicubic surface patches. The
GLUT functions, which are easy to incorporate into an application program, have
two versions each. One version of each function displays a wire-frame surface, and
the other displays the surface as a rendered set of fill-area polygon patches. With
the GLUT functions, we can display a sphere, cone, torus, or the teapot. Quadric-
surface GLU functions are a little more involved to set up, but they provide a few
more options. With the GLU functions, we can display a sphere, cylinder, tapered
cylinder, cone, flat circular ring (or hollow disk), and a section of a circular ring
(or disk).

GLUT Quadric-Surface Functions
We generate a GLUT sphere with either of these two functions:

glutWireSphere (r, nLongitudes, nLatitudes);

or

glutSolidSphere (r, nLongitudes, nLatitudes);

where the sphere radius is determined by the double-precision floating-point
number assigned to parameter r. Parameters nLongitudes and nLatitudes
are used to select the integer number of longitude and latitude lines that will
be used to approximate the spherical surface as a quadrilateral mesh. Edges of
the quadrilateral surface patches are straight-line approximations of the longitude
and latitude lines. The sphere is defined in modeling coordinates, centered at the
world-coordinate origin with its polar axis along the z axis.

Three-Dimensional Object Representations

397

A GLUT cone is obtained with

glutWireCone (rBase, height, nLongitudes, nLatitudes);

or

glutSolidCone (rBase, height, nLongitudes, nLatitudes);

We set double-precision, floating-point values for the radius of the cone base and
for the cone height using parameters rbase and height, respectively. As with a
GLUT sphere, parameters nLongitudes and nLatitudes are assigned integer
values that specify the number of orthogonal surface lines for the quadrilateral
mesh approximation. A cone longitude line is a straight-line segment along the
cone surface from the apex to the base that lies in a plane containing the cone
axis. Each latitude line is displayed as a set of straight-line segments around
the circumference of a circle on the cone surface that is parallel to the cone base
and that lies in a plane perpendicular to the cone axis. The cone is described in
modeling coordinates, with the center of the base at the world-coordinate origin
and with the cone axis along the world z axis.

Wire-frame or surface-shaded displays of a torus with a circular cross-section
are produced with

glutWireTorus (rCrossSection, rAxial, nConcentrics,
nRadialSlices);

or

glutSolidTorus (rCrossSection, rAxial, nConcentrics,
nRadialSlices);

The torus obtained with these GLUT routines can be described as the surface gen-
erated by rotating a circle with radius rCrossSection about the coplanar z axis,
where the distance of the circle center from the z axis is rAxial (see Section 4).
We select a size for the torus using double-precision, floating-point values for
these radii in the GLUT functions. And the size of the quadrilaterals in the
approximating surface mesh for the torus is set with integer values for parameters
nConcentrics and nRadialSlices. Parameter nConcentrics specifies the
number of concentric circles (with center on the z axis) to be used on the torus
surface, and parameter nRadialSlices specifies the number of radial slices
through the torus surface. These two parameters designate the number of orthog-
onal grid lines over the torus surface, with the grid lines displayed as straight-line
segments (the boundaries of the quadrilaterals) between intersection positions.
The displayed torus is centered on the world-coordinate origin, with its axis along
the world z axis.

GLUT Cubic-Surface Teapot Function
During the early development of computer-graphics methods, sets of polygon-
mesh data tables were constructed for the description of several three-dimensional
objects that could be used to test rendering techniques. These objects included
the surfaces of a Volkswagen automobile and a teapot, developed at the Uni-
versity of Utah. The data set for the Utah teapot, as constructed by Martin
Newell in 1975, contains 306 vertices, defining 32 bicubic Bézier surface patches.
Since determining the surface coordinates for a complex object is time-consuming,

Three-Dimensional Object Representations

398

these data sets, particularly the teapot surface mesh, became widely used.
We can display the teapot, as a mesh of over 1,000 bicubic surface patches,

using either of the following two GLUT functions:

glutWireTeapot (size);

or

glutSolidTeapot (size);

The teapot surface is generated using OpenGL Bézier curve functions
Parameter size sets the double-precision floating-point value for the maximum
radius of the teapot bowl. The teapot is centered on the world-coordinate origin
coordinate origin with its vertical axis along the y axis.

GLU Quadric-Surface Functions
To generate a quadric surface using GLU functions, we need to assign a name
to the quadric, activate the GLU quadric renderer, and designate values for the
surface parameters. In addition, we can set other parameter values to control the
appearance of a GLU quadric surface.

The following statements illustrate the basic sequence of calls for displaying
a wire-frame sphere centered on the world-coordinate origin:

GLUquadricObj *sphere1;

sphere1 = gluNewQuadric ();
gluQuadricDrawStyle (sphere1, GLU_LINE);

gluSphere (sphere1, r, nLongitudes, nLatitudes);

A name for the quadric object is defined in the first statement, and, for this
example, we have chosen the name sphere1. This name is then used in other
GLU functions to reference this particular quadric surface. Next, the quadric ren-
derer is activated with the gluNewQuadric function, and then the display mode
GLU LINE is selected forsphere1with thegluQuadricDrawStyle command.
Thus, the sphere is displayed in a wire-frame form with a straight-line segment
between each pair of surface vertices. Parameter r is assigned a double-precision
value for the sphere radius, and the sphere surface is divided into a set of poly-
gon facets by the equally spaced longitude and latitude lines. We specify the
integer number of longitude lines and latitude lines as values for parameters
nLongitudes and nLatitudes.

Three other display modes are available for GLU quadric surfaces. Using
the symbolic constant GLU POINT in the gluQuadricDrawStyle, we display a
quadric surface as a point plot. For the sphere, a point is displayed at each surface
vertex formed by the intersection of a longitude line and a latitude line. Another
option is the symbolic constant GLU SILHOUETTE. This produces a wire-frame
display without the shared edges between two coplanar polygon facets. And
with the symbolic constant GLU FILL, we display the polygon patches as shaded
fill areas.

.

Three-Dimensional Object Representations

399

We generate displays of the other GLU quadric-surface primitives using the
same basic sequence of commands. To produce a view of a cone, cylinder, or
tapered cylinder, we replace the gluSphere function with

gluCylinder (quadricName, rBase, rTop, height, nLongitudes,
nLatitudes);

The base of this object is in the xy plane (z = 0), and the axis is the z axis. We assign a
double-precision radius value to the base of this quadric surface using parameter
rBase, and we assign a radius to the top of the quadric surface using parameter
rTop. IfrTop= 0.0, we get a cone; ifrTop= rBase, we obtain a cylinder. Otherwise,
a tapered cylinder is displayed. A double-precision height value is assigned to
parameter height, and the surface is divided into a number of equally spaced
vertical and horizontal lines as determined by the integer values assigned to
parameters nLongitudes and nLatitudes.

A flat, circular ring or solid disk is displayed in the xy plane (z = 0) and
centered on the world-coordinate origin with

gluDisk (ringName, rInner, rOuter, nRadii, nRings);

We set double-precision values for an inner radius and an outer radius with
parameters rInner and rOuter. If rInner = 0, the disk is solid. Otherwise, it
is displayed with a concentric hole in the center of the disk. The disk surface is
divided into a set of facets with integer parameters nRadii and nRings, which
specify the number of radial slices to be used in the tessellation and the number
of concentric circular rings, respectively. Orientation for the ring is defined with
respect to the z axis, with the front of the ring facing in the +z direction and the
back of the ring facing in the −z direction.

We can specify a section of a circular ring with the following GLU function:

gluPartialDisk (ringName, rInner, rOuter, nRadii, nRings,
startAngle, sweepAngle);

The double-precision parameter startAngle designates an angular position
in degrees in the xy plane measured clockwise from the positive y axis. Simi-
larly, parameter sweepAngle denotes an angular distance in degrees from the
startAngle position. Thus, a section of a flat, circular disk is displayed from
angular position startAngle to startAngle + sweepAngle. For example, if
startAngle= 0.0 and sweepAngle= 90.0, then the section of the disk lying in
the first quadrant of the xy plane is displayed.

Allocated memory for any GLU quadric surface can be reclaimed and the
surface eliminated with

gluDeleteQuadric (quadricName);

Also, we can define the front and back directions for any quadric surface with the
following orientation function:

gluQuadricOrientation (quadricName, normalVectorDirection);

Parameter normalVectorDirection is assigned either GLU OUTSIDE or
GLU INSIDE to indicate a direction for the surface normal vectors, where
“outside” indicates the front-face direction and “inside” indicates the

Three-Dimensional Object Representations

400

back-face direction. The default value isGLU OUTSIDE. For the flat, circular ring,
the default front-face direction is in the direction of the positive z axis (“above”
the disk). Another option is the generation of surface-normal vectors, as follows:

gluQuadricNormals (quadricName, generationMode);

A symbolic constant is assigned to parameter generationMode to indicate how
surface-normal vectors should be generated. The default is GLU NONE, which
means that no surface normals are to be generated and no lighting conditions
typically are applied to the quadric surface. For flat surface shading (a constant
color value for each surface), we use the symbolic constant GLU FLAT. This pro-
duces one surface normal for each polygon facet. When other lighting and shading
conditions are to be applied, we use the constant GLU SMOOTH, which generates
a normal vector for each surface vertex position.

Other options for GLU quadric surfaces include setting surface-texture
parameters. In addition, we can designate a function that is to be invoked if
an error occurs during the generation of a quadric surface:

gluQuadricCallback (quadricName, GLU_ERROR, function);

Example Program Using GLUT and GLU
Quadric-Surface Functions
Three quadric-surface objects (sphere, cone, and cylinder) are displayed in a wire-
frame representation by the following example program. We set the view-up
direction as the positive z axis so that the axis for all displayed objects is vertical.
The three objects are positioned at different locations within a single display
window, as shown in Figure 7.

F I G U R E 7
Display of a GLUT sphere, GLUT cone,
and GLU cylinder, positioned within a
display window by procedure
wireQuadSurfs.

Three-Dimensional Object Representations

401

#include <GL/glut.h>

GLsizei winWidth = 500, winHeight = 500; // Initial display-window size.

void init (void)
{

glClearColor (1.0, 1.0, 1.0, 0.0); // Set display-window color.
}

void wireQuadSurfs (void)
{

glClear (GL_COLOR_BUFFER_BIT); // Clear display window.

glColor3f (0.0, 0.0, 1.0); // Set line-color to blue.

/* Set viewing parameters with world z axis as view-up direction. */
gluLookAt (2.0, 2.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0);

/* Position and display GLUT wire-frame sphere. */
glPushMatrix ();
glTranslatef (1.0, 1.0, 0.0);
glutWireSphere (0.75, 8, 6);
glPopMatrix ();

/* Position and display GLUT wire-frame cone. */
glPushMatrix ();
glTranslatef (1.0, -0.5, 0.5);
glutWireCone (0.7, 2.0, 7, 6);
glPopMatrix ();

/* Position and display GLU wire-frame cylinder. */
GLUquadricObj *cylinder; // Set name for GLU quadric object.
glPushMatrix ();
glTranslatef (0.0, 1.2, 0.8);
cylinder = gluNewQuadric ();
gluQuadricDrawStyle (cylinder, GLU_LINE);
gluCylinder (cylinder, 0.6, 0.6, 1.5, 6, 4);
glPopMatrix ();

glFlush ();
}

void winReshapeFcn (GLint newWidth, GLint newHeight)
{

glViewport (0, 0, newWidth, newHeight);

glMatrixMode (GL_PROJECTION);
glOrtho (-2.0, 2.0, -2.0, 2.0, 0.0, 5.0);

glMatrixMode (GL_MODELVIEW);

glClear (GL_COLOR_BUFFER_BIT);
}

void main (int argc, char** argv)
{

glutInit (&argc, argv);

Three-Dimensional Object Representations

402

glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowPosition (100, 100);
glutInitWindowSize (winWidth, winHeight);
glutCreateWindow ("Wire-Frame Quadric Surfaces");

init ();
glutDisplayFunc (wireQuadSurfs);
glutReshapeFunc (winReshapeFcn);

glutMainLoop ();
}

7 Summary
Many representations have been developed for modeling the wide variety of
objects and materials that we might want to display in a computer-graphics scene.
In most cases, a three-dimensional object representation is rendered by a software
package as a standard graphics object, whose surfaces are displayed as a polygon
mesh.

Functions for displaying some common quadric surfaces, such as spheres and
ellipsoids, are often available in graphics packages. Extensions of the quadrics,
called superquadrics, provide additional parameters for creating a wider variety
of object shapes.

Polygon surface facets for a standard graphics object can be specified in
OpenGL using the polygon, triangle, or quadrilateral primitive functions. Also,
GLUT routines are available for displaying the five regular polyhedra. Spheres,
cones, and other quadric-surface objects can be displayed with GLUT and GLU
functions, and a GLUT routine is provided for the generation of the cubic-surface
Utah teapot. Tables 1 and 2 summarize the OpenGL polyhedron and quadric func-
tions discussed in this chapter.

T A B L E 1

Summary of OpenGL Polyhedron Functions

Function Description

glutWireTetrahedron Displays a wire-frame tetrahedron.

glutSolidTetrahedron Displays a surface-shaded tetrahedron.

glutWireCube Displays a wire-frame cube.

glutSolidCube Displays a surface-shaded cube.

glutWireOctahedron Displays a wire-frame octahedron.

glutSolidOctahedron Displays a surface-shaded octahedron.

glutWireDodecahedron Displays a wire-frame dodecahedron.

glutSolidDodecahedron Displays a surface-shaded dodecahedron.

glutWireIcosahedron Displays a wire-frame icosahedron.

glutSolidIcosahedron Displays a surface-shaded icosahedron.

Three-Dimensional Object Representations

403

T A B L E 2

Summary of OpenGL Quadric-Surface and Cubic-Surface Functions

Function Description

glutWireSphere Displays a wire-frame GLUT sphere.

glutSolidSphere Displays a surface-shaded GLUT sphere.

glutWireCone Displays a wire-frame GLUT cone.

glutSolidCone Displays a surface-shaded GLUT cone.

glutWireTorus Displays a wire-frame GLUT torus with a circular
cross-section.

glutSolidTorus Displays a surface-shaded, circular cross-section
GLUT torus.

glutWireTeapot Displays a wire-frame GLUT teapot.

glutSolidTeapot Displays a surface-shaded GLUT teapot.

gluNewQuadric Activates the GLU quadric renderer for an object
name that has been defined with the declaration:
GLUquadricObj *nameOfObject;

gluQuadricDrawStyle Selects a display mode for a predefined GLU object name.

gluSphere Displays a GLU sphere.

gluCylinder Displays a GLU cone, cylinder, or tapered cylinder.

gluDisk Displays a GLU flat, circular ring or solid disk.

gluPartialDisk Displays a section of a GLU flat, circular ring or solid disk.

gluDeleteQuadric Eliminates a GLU quadric object.

gluQuadricOrientation Defines inside and outside orientations for a
GLU quadric object.

gluQuadricNormals Specifies how surface-normal vectors should be
generated for a GLU quadric object.

gluQuadricCallback Specifies a callback error function for a GLU quadric object.

REFERENCES
A detailed discussion of superquadrics is contained in
Barr (1981). Programming techniques for various repre-
sentations can be found in Glassner (1990), Arvo (1991),
Kirk (1992), Heckbert (1994), and Paeth (1995). Kilgard
(1996) discusses the GLUT functions for displaying poly-
hedrons, quadric surfaces, and the Utah teapot. And a
complete listing of the OpenGL functions in the core
library and in GLU is presented in Shreiner (2000).

EXERCISES
1 Set up an algorithm for converting a given sphere

to a polygon-mesh representation.

2 Set up an algorithm for converting a given ellip-
soid to a polygon-mesh representation.

3 Set up an algorithm for converting a given cylin-
der to a polygon-mesh representation.

4 Set up an algorithm for converting a given
superellipsoid to a polygon-mesh representation.

5 Set up an algorithm for converting a given torus
with a circular cross section to a polygon mesh
representation.

6 Set up an algorithm for converting a given torus
with an ellipsoidal cross section to a polygon
mesh representation.

Three-Dimensional Object Representations

404

7 Write a program that displays a sphere in the
display window and allows the user to switch
between solid and wire-frame views of the sphere,
translate the sphere along any dimension, rotate
the sphere around its center in any direction, and
change the size of the sphere (i.e., its radius).

8 Write a program that displays a torus in the
display window and allows the user to switch
between solid and wire-frame views of the torus,
translate the torus along any dimension, rotate
the torus around its center in any direction, and
change the sizes of the torus’ defining properties
(i.e., the radius of its cross section ellipse and its
axial radius).

9 Write a program that displays a sphere of fixed
radius at world coordinate origin and allows the
user to adjust the number of longitude and lati-
tude lines used to approximate the sphere’s sur-
face as a quadrilateral mesh. The user should
also be able to switch between solid and wire-
frame views of the sphere. Vary the resolu-
tion of the mesh approximation and observe the
visual appearance of the sphere in both solid and
wire-frame mode.

10 Write a program that displays a cylinder of fixed
height and radius at world coordinate origin and
allows the user to adjust the number of lon-
gitude and latitude lines used to approximate
the cylinder’s surface as a quadrilateral mesh.
The user should also be able to switch between
solid and wire-frame views of the cylinder. Vary
the resolution of the mesh approximation and
observe the visual appearance of the cylinder in
both solid and wire-frame mode.

IN MORE DEPTH
1 The material presented in this chapter will allow

you to increase the complexity of the repre-
sentations of the objects in your application
by constructing more complex three-dimensional

shapes. Choose the most appropriate three-
dimensional shapes introduced in this chapter
to replace the polygonal approximations of the
objects in your application with which you have
been working so far. Be sure to include at least a
few curved-surface objects, using the GLU and
GLUT functions for generating spheres, ellip-
soids, and other quadric and cubic surfaces. Use
the shaded fill areas to render the objects, not
wire-frame views. Choose a reasonable setting for
the number of latitude and longitude lines used
to generate the polygon mesh approximation to
these curved-surface objects. Write routines to call
the appropriate functions and display the shapes
in the appropriate positions and orientations in
the scene. Use techniques in hierarchical model-
ing to generate objects that are better approximat-
ed as a group of these more-primitive shapes if
appropriate.

2 In this exercise, you will experiment with vary-
ing the resolution of the polygon meshes that
serve as the approximations to the curved-surface
objects specified in the previous exercise. Choose
a minimum number of latitude and longitude
lines at which the representation of the objects is
minimally acceptable as far as visual appearance
goes. Using this as a baseline, render the scene
from the previous exercise several times, each
time increasing the number of latitude and lon-
gitude lines that define the mesh approximations
of the objects by some fixed amount. For each set-
ting of resolution, record the amount of time that
it takes to render the scene using shaded fill areas
to render the objects. Continue doing this until
the resolution produces little or no noticeable dif-
ference in approximation quality. Then, make a
plot of rendering time as a function of resolution
parameters (number of latitude and longitude
lines) and discuss the properties of the plot. Is
there an ideal setting for this scene that balances
visual quality with performance?

Three-Dimensional Object Representations

405

This page intentionally left blank

C o l o r P l a t e 1 0
Superellipsoids plotted with values for parameters s1 and s2 ranging
from 0.0 to 2.5 and with r x = r y = r z .

Three-Dimensional Object
Representations Color Plate

From Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson

407

This page intentionally left blank

Spline Representations

1 Interpolation and Approximation
Splines

2 Parametric Continuity Conditions

3 Geometric Continuity Conditions

4 Spline Specifications

5 Spline Surfaces

6 Trimming Spline Surfaces

7 Cubic-Spline Interpolation Methods

8 Bézier Spline Curves

9 Bézier Surfaces

10 B-Spline Curves

11 B-Spline Surfaces

12 Beta-Splines

13 Rational Splines

14 Conversion Between Spline
Representations

15 Displaying Spline Curves and Surfaces

16 OpenGL Approximation-Spline
Functions

17 Summary
S plines are another example of boundary representation

modeling techniques. In drafting terminology, a spline is a

flexible strip used to produce a smooth curve through a des-

ignated set of points. Several small weights are distributed along the

length of the strip to hold it in position on the drafting table as the

curve is drawn. The term spline curve originally referred to a curve

drawn in this manner. We can mathematically describe such a curve

with a piecewise cubic polynomial function whose first and second

derivatives are continuous across the various curve sections. In com-

puter graphics, the term spline curve now refers to any composite

curve formed with polynomial sections satisfying any specified conti-

nuity conditions at the boundary of the pieces. A spline surface can

be described with two sets of spline curves. There are several differ-

ent kinds of spline specifications that are used in computer-graphics

applications. Each individual specification simply refers to a particular

type of polynomial with certain prescribed boundary conditions.

From Chapter 14 of Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson

409

Splines are used to design curve and surface shapes, to digitize drawings, and

to specify animation paths for the objects or the camera position in a scene. Typical

computer-aided design (CAD) applications for splines include the design of automobile

bodies, aircraft and spacecraft surfaces, ship hulls, and home appliances.

1 Interpolation and Approximation Splines

F I G U R E 1
A set of six control points interpolated
with piecewise continuous polynomial
sections.

We specify a spline curve by giving a set of coordinate positions, called control
points, which indicate the general shape of the curve. These coordinate positions
are then fitted with piecewise-continuous, parametric polynomial functions in one
of two ways. When polynomial sections are fitted so that all the control points
are connected, as in Figure 1, the resulting curve is said to interpolate the set
of control points. On the other hand, when the generated polynomial curve is
plotted so that some, or all, of the control points are not on the curve path, the re-
sulting curve is said to approximate the set of control points (Figure 2). Similar
methods are used to construct interpolation or approximation spline surfaces.

F I G U R E 2
A set of six control points
approximated with piecewise
continuous polynomial sections.

Interpolation methods are commonly used to digitize drawings or to specify
animation paths. Approximation methods are used primarily as design tools to
create object shapes. Figure 3 shows the screen display of an approximation
spline surface for a design application. Straight lines connect the control-point
positions above the surface.

A spline curve or surface is defined, modified, and manipulated with oper-
ations on the control points. By interactively selecting spatial positions for the
control points, a designer can set up an initial shape. After the polynomial fit
is displayed for a given set of control points, the designer can then reposition
some of or all the control points to restructure the shape of the object. Geomet-
ric transformations (translation, rotation, and scaling) are applied to the object
by transforming the control points. In addition, CAD packages sometimes insert
extra control points to aid a designer in adjusting the object shapes.

A set of control points forms a boundary for a region of space that is called the
convex hull. One way to envision the shape of a convex hull for a two-dimensional
curve is to imagine a rubber band stretched around the positions of the control

F I G U R E 3
An approximation spline surface for a
CAD application in automotive design.
Surface contours are plotted with
polynomial curve sections, and the
surface control points are connected
with straight-line segments. (Courtesy
of Evans & Sutherland.)

Spline Representations

410

p2

p3p0

p3

p1

(a)

(b)

p2

p1

p0

F I G U R E 4
Convex-hull shapes (dashed lines) for
two sets of control points in the x y
plane.

p3

p2

p0

p0

p1

p3

p2

(a)
(b)

p1 F I G U R E 5
Control-graph shapes (dashed lines)
for two sets of control points in the x y
plane.

points so that each control point is either on the perimeter of this boundary or
inside it (Figure 4). Thus, the convex hull for a two-dimensional spline curve is
a convex polygon. In three-dimensional space, the convex hull for a set of spline
control points forms a convex polyhedron. Convex hulls provide a measure for
the deviation of a curve or surface from the region of space near the control points.
In most cases, a spline is bounded by its convex hull, which ensures that the object
shape follows the control points without erratic oscillations. Also, the convex hull
provides a measure of the coordinate extents of a designed curve or surface, so it
is useful in clipping and viewing routines.

A polyline connecting the sequence of control points for an approximation
spline curve is usually displayed to remind a designer of the control-point posi-
tions and ordering. This set of connected line segments is called the control graph
for the curve. Often the control graph is alluded to as the “control polygon” or
the “characteristic polygon,” even though the control graph is a polyline and not
a polygon. Figure 5 shows the shape of the control graph for the control-point
sequences in Figure 4. For a spline surface, two sets of polyline control-point
connectors form the edges for the polygon facets in a quadrilateral mesh for
the surface control graph, as in Figure 3.

2 Parametric Continuity Conditions
To ensure a smooth transition from one section of a piecewise parametric spline to
the next, we can impose various continuity conditions at the connection points.
If each section of a spline curve is described with a set of parametric coordinate

Spline Representations

411

functions of the form

x = x(u), y = y(u), z = z(u), u1 ≤ u ≤ u2

we set parametric continuity by matching the parametric derivatives of adjoining
curve sections at their common boundary.

Zero-order parametric continuity, represented as C0 continuity, means sim-
ply that the curves meet. That is, the values of x, y, and z evaluated at u2 for the
first curve section are equal, respectively, to the values of x, y, and z evaluated at
u1 for the next curve section. First-order parametric continuity, referred to as C1

continuity, means that the first parametric derivatives (tangent lines) of the coor-
dinate functions in Equation 1 for two successive curve sections are equal at
their joining point. Second-order parametric continuity, or C2 continuity, means
that both the first and second parametric derivatives of the two curve sections are
the same at the intersection. Higher-order parametric continuity conditions are
defined similarly. Figure 6 shows examples of C 0, C 1, and C 2 continuity.

(a)

(b)

(c)

F I G U R E 6
Piecewise construction of a curve by
joining two curve segments using
different orders of continuity:
(a) zero-order continuity only,
(b) first-order continuity, and
(c) second-order continuity.

With second-order parametric continuity, the rates of change of the tangent
vectors of connecting sections are equal at their intersection. Thus, the tangent line
transitions smoothly from one section of the curve to the next [Figure 6(c)]. With
first-order parametric continuity, however, the rate of change of tangent vectors for
the two sections can be quite different [Figure 6(b)], so that the general shapes
of the two adjacent sections can change abruptly. First-order parametric continu-
ity is often sufficient for digitizing drawings and some design applications, while
second-order parametric continuity is useful for setting up animation paths for
camera motion and for many precision CAD requirements. A camera traveling
along the curve path in Figure 6(b) with equal steps in parameter u would
experience an abrupt change in acceleration at the boundary of the two sections,
producing a discontinuity in the motion sequence. But if the camera was trav-
eling along the path in Figure 6(c), the frame sequence for the motion would
smoothly transition across the boundary.

3 Geometric Continuity Conditions
Another method for joining two successive curve sections is to specify conditions
for geometric continuity. In this case, we require only that the parametric deriva-
tives of the two sections are proportional to each other at their common boundary,
instead of requiring equality.

Zero-order geometric continuity, described as G0 continuity, is the same as
zero-order parametric continuity. That is, two successive curve sections must
have the same coordinate position at the boundary point. First-order geometric
continuity, or G1 continuity, means that the parametric first derivatives are pro-
portional at the intersection of two successive sections. If we denote the parametric
position on the curve as P(u), the direction of the tangent vector P′(u), but not
necessarily its magnitude, will be the same for two successive curve sections at
their common point under G1 continuity. Second-order geometric continuity,
or G2 continuity, means that both the first and second parametric derivatives of
the two curve sections are proportional at their boundary. Under G2 continuity,
curvatures of two curve sections will match at the joining position.

A curve generated with geometric continuity conditions is similar to one
generated with parametric continuity, but with slight differences in curve shape.
Figure 7 provides a comparison of geometric and parametric continuity. With
geometric continuity, the curve is pulled toward the section with the greater mag-
nitude for the tangent vector.

Spline Representations

(1)

412

p0
p1

p2

C1

C2

(a) (b)

p0
p1

p2

C1

C3

F I G U R E 7
Three control points fitted with two curve sections joined with (a) parametric continuity and (b)
geometric continuity, where the tangent vector of curve C 3 at point P1 has a greater magnitude
than the tangent vector of curve C 1 at P1.

4 Spline Specifications
There are three equivalent methods for specifying a particular spline representa-
tion, given the degree of the polynomial and the control-point positions: (1) We
can state the set of boundary conditions that are imposed on the spline; or
(2) we can state the matrix that characterizes the spline; or (3) we can state the set
of blending functions (or basis functions) that determine how specified constraints
on the curve are combined to calculate positions along the curve path.

To illustrate these three equivalent specifications, suppose we have the fol-
lowing parametric cubic polynomial representation for the x coordinate along the
path of a spline-curve section:

x(u) = ax u3 + bx u2 + cx u + dx, 0 ≤ u ≤ 1 (2)

Boundary conditions for this curve can be set for the endpoint coordinate positions
x(0) and x(1) and for the parametric first derivatives at the endpoints: x′(0) and
x′(1). These four boundary conditions are sufficient to determine the values of the
four coefficients ax, bx, cx, and dx.

From the boundary conditions, we can obtain the matrix that characterizes
this spline curve by first rewriting Equation 2 as the following matrix product:

x(u) = [u3 u2 u 1]

⎡

⎢
⎢
⎣

ax

bx

cx

dx

⎤

⎥
⎥
⎦

= U · C (3)

where U is the row matrix of powers of parameter u and C is the coefficient column
matrix. Using Equation 3, we can write the boundary conditions in matrix form
and solve for the coefficient matrix C as

C = Mspline · Mgeom (4)

where Mgeom is a four-element column matrix containing the geometric constraint
values (boundary conditions) on the spline, and Mspline is the 4 by 4 matrix that
transforms the geometric constraint values to the polynomial coefficients and
provides a characterization for the spline curve. Matrix Mgeom contains control-
point coordinate values and other geometric constraints that have been specified.
Thus, we can substitute the matrix representation for C into Equation 3 to
obtain

x(u) = U · Mspline · Mgeom (5)

The matrix Mspline, characterizing a spline representation, sometimes called the
basis matrix, is particularly useful for transforming from one spline representation
to another.

Spline Representations

413

Finally, we can expand Equation 5 to obtain a polynomial representation
for coordinate x in terms of the geometric constraint parameters gk , such as the
control-point coordinates and slope of the curve at the control points:

x(u) =
3∑

k=0

gk · BFk(u) (6)

The polynomials BFk(u), for k = 0, 1, 2, 3, are called blending functions or ba-
sis functions because they combine (blend) the geometric constraint values to
obtain coordinate positions along the curve. In subsequent sections, we explore
the features of the various spline curves and surfaces that are useful in computer-
graphics applications, including the specification of their matrix and blending-
function representations.

5 Spline Surfaces
The usual procedure for defining a spline surface is to specify two sets of spline
curves using a mesh of control points over some region of space. If we denote the
control-point positions as pku,kv

, then any point position on the spline surface can
be computed as the product of the spline-curve blending functions as follows:

P(u, v) =
∑

ku,kv

pku,kv
BFku(u)BFkv

(v) (7)

Surface parameters u and v often vary over the range from 0 to 1, but this range
depends on the type of spline curves we use. One method for designating the
three-dimensional control-point positions is to select height values above a two-
dimensional mesh of positions on a ground plane.

6 Trimming Spline Surfaces
In CAD applications, a surface design may require some features that are not
implemented just by adjusting control-point positions. For instance, a section of
a spline surface may need to be snipped off to fit two design pieces together, or
a hole may be needed so that a conduit can pass through the surface. For these
applications, graphics packages often provide functions to generate trimming
curves that can be used to take out sections of a spline surface, as illustrated
in Figure 8. Trimming curves are typically defined in parametric uv surface
coordinates, and often they must be specified as closed curves.

F I G U R E 8
Modification of a surface section using trimming curves.

Trimming
Curves

Spline Representations

414

7 Cubic-Spline Interpolation Methods
This class of splines is most often used to set up paths for object motions or
to provide a representation for an existing object or drawing, but interpolation
splines are also used sometimes to design object shapes. Cubic polynomials offer
a reasonable compromise between flexibility and speed of computation. Com-
pared to higher-order polynomials, cubic splines require less calculations and
storage space, and they are more stable. Compared to quadratic polynomials
and straight-line segments, cubic splines are more flexible for modeling object
shapes.

Given a set of control points, cubic interpolation splines are obtained by fitting
the input points with a piecewise cubic polynomial curve that passes through
every control point. Suppose that we have n + 1 control points specified with
coordinates

pk = (xk , yk , zk), k = 0, 1, 2, . . . , n

A cubic interpolation fit of these points is illustrated in Figure 9. We can describe
the parametric cubic polynomial that is to be fitted between each pair of control
points with the following set of equations:

x(u) = ax u3 + bx u2 + cx u + dx

y(u) = ay u3 + by u2 + cy u + dy, (0 ≤ u ≤ 1) (8)

z(u) = az u3 + bz u2 + cz u + dz

For each of these three equations, we need to determine the values for the four
coefficients a , b, c, and d in the polynomial representation for each of the n curve
sections between the n + 1 control points. We do this by setting enough boundary
conditions at the control-point positions between curve sections so that we can
obtain numerical values for all the coefficients. In the following sections, we dis-
cuss common methods for setting the boundary conditions for cubic interpolation
splines.

Natural Cubic Splines
One of the first spline curves to be developed for graphics applications is the
natural cubic spline. This interpolation curve is a mathematical representation of
the original drafting spline. We formulate a natural cubic spline by requiring that
two adjacent curve sections have the same first and second parametric derivatives
at their common boundary. Thus, natural cubic splines have C2 continuity.

If we have n + 1 control points, as in Figure 9, then we have n curve
sections with a total of 4n polynomial coefficients to be determined. At each of
the n − 1 interior control points, we have four boundary conditions: The two
curve sections on either side of a control point must have the same first and
second parametric derivatives at that control point, and each curve must pass
through that control point. This gives us 4n − 4 equations to be satisfied by the 4n
polynomial coefficients. We obtain an additional equation from the first control
point p0, the position of the beginning of the curve, and another condition from
control point pn, which must be the last point on the curve. However, we still need

p0

p1
pk

p2

pn

pk�1
…

…

F I G U R E 9
A piecewise continuous cubic-spline
interpolation of n + 1 control points.

Spline Representations

415

two more conditions to be able to determine values for all the coefficients. One
method for obtaining the two additional conditions is to set the second derivatives
at p0 and pn equal to 0. Another approach is to add two extra control points (called
dummy points), one at each end of the original control-point sequence. That is, we
add a control point labeled p−1 at the beginning of the curve and a control point
labeled pn+1 at the end. Then all the original control points are interior points, and
we have the necessary 4n boundary conditions.

pk

pk � 1

P(u) � (x(u), y(u), z(u))

F I G U R E 1 0
Parametric point function P(u) for a
Hermite curve section between control
points pk and pk+1.

Although natural cubic splines are a mathematical model for the drafting
spline, they have a major disadvantage. If the position of any of the control points
is altered, the entire curve is affected. Thus, natural cubic splines allow for no
“local control,” so that we cannot restructure part of the curve without specifying
an entirely new set of control points. For this reason, other representations for a
cubic-spline interpolation have been developed.

Hermite Interpolation
A Hermite spline (named after the French mathematician Charles Hermite) is an
interpolating piecewise cubic polynomial with a specified tangent at each control
point. Unlike the natural cubic splines, Hermite splines can be adjusted locally
because each curve section depends only on its endpoint constraints.

If P(u) represents a parametric cubic point function for the curve section
between control points pk and pk+1, as shown in Figure 10, then the boundary
conditions that define this Hermite curve section are

P(0) = pk

P(1) = pk+1

P′(0) = Dpk

P′(1) = Dpk+1

(9)

with Dpk and Dpk+1 specifying the values for the parametric derivatives (slope
of the curve) at control points pk and pk+1, respectively.

We can write the vector equivalent of Equations 8 for this Hermite curve
section as

P(u) = a u3 + b u2 + c u + d, 0 ≤ u ≤ 1 (10)

where the x component of P(u) is x(u) = ax u3 + bx u2 + cx u + dx, and similarly
for the y and z components. The matrix equivalent of Equation 10 is

P(u) = [u3 u2 u 1] ·

⎡

⎢
⎢
⎣

a
b
c
d

⎤

⎥
⎥
⎦

(11)

and the derivative of the point function can be expressed as

P′(u) = [3u2 2u 1 0] ·

⎡

⎢
⎢
⎣

a
b
c
d

⎤

⎥
⎥
⎦

(12)

Substituting endpoint values 0 and 1 for parameter u into the preceding two equa-
tions, we can express the Hermite boundary conditions 9 in the matrix form

⎡

⎢
⎢
⎢
⎣

pk

pk+1

Dpk

Dpk+1

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

0 0 0 1
1 1 1 1
0 0 1 0
3 2 1 0

⎤

⎥
⎥
⎦

·

⎡

⎢
⎢
⎣

a
b
c
d

⎤

⎥
⎥
⎦

(13)

Spline Representations

416

Solving this equation for the polynomial coefficients, we get
⎡

⎢
⎢
⎣

a
b
c
d

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

0 0 0 1
1 1 1 1
0 0 1 0
3 2 1 0

⎤

⎥
⎥
⎦

−1

·

⎡

⎢
⎢
⎢
⎣

pk

pk+1

Dpk

Dpk+1

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

⎤

⎥
⎥
⎦

·

⎡

⎢
⎢
⎢
⎣

pk

pk+1

Dpk

Dpk+1

⎤

⎥
⎥
⎥
⎦

= MH ·

⎡

⎢
⎢
⎢
⎣

pk

pk+1

Dpk

Dpk+1

⎤

⎥
⎥
⎥
⎦

(14)

where MH , the Hermite matrix, is the inverse of the boundary constraint matrix.
Equation 11 can thus be written in terms of the boundary conditions as

P(u) = [u3 u2 u 1] · MH ·

⎡

⎢
⎢
⎢
⎣

pk

pk+1

Dpk

Dpk+1

⎤

⎥
⎥
⎥
⎦

(15)

Finally, we can determine expressions for the polynomial Hermite blending
functions, Hk(u) for k = 0, 1, 2, 3, by carrying out the matrix multiplications in
Equation 15 and collecting coefficients for the boundary constraints to obtain
the polynomial form

P(u) = pk(2u3 − 3u2 + 1) + pk+1(−2u3 + 3u2) + Dpk(u
3 − 2u2 + u)

+ Dpk+1(u
3 − u2)

= pk H0(u) + pk+1 H1 + Dpk H2 + Dpk+1 H3 (16)

Figure 11 shows the shape of the four Hermite blending functions.
Hermite polynomials can be useful for some digitizing applications, where

it may not be too difficult to specify or approximate the curve slopes. But for
most problems in computer graphics, it is more useful to generate spline curves
without requiring input values for curve slopes or other geometric information,
in addition to control-point coordinates. Cardinal splines and Kochanek-Bartels
splines, discussed in the following two sections, are variations on the Hermite
splines that do not require input values for the curve derivatives at the control
points. Procedures for these splines compute parametric derivatives from the
coordinate positions of the control points.

Cardinal Splines
As with Hermite splines, the cardinal splines are interpolating piecewise cubic
polynomials with specified endpoint tangents at the boundary of each curve sec-
tion. The difference is that we do not input the values for the endpoint tangents.
For a cardinal spline, the slope at a control point is calculated from the coordinates
of the two adjacent control points.

Spline Representations

417

(a)

0.2 0.4 0.6 0.8 1
u

0.2

0.4

0.6

0.8

1
H0(u)

(d)

0.2 0.4 0.6 0.8 1
u

0.2

0.4

0.6

0.8

1

�0.2

(c)

0.2 0.4 0.6 0.8 1
u

0.2

0.4

0.6

0.8

1
H2(u) H3(u)

0

0 0

0

(b)

0.2 0.4 0.6 0.8 1
u

0.2

0.4

0.6

0.8

1
H1(u)

F I G U R E 1 1
The Hermite blending functions.

A cardinal spline section is completely specified with four consecutive
control-point positions. The middle two control points are the section endpoints,
and the other two points are used in the calculation of the endpoint slopes. If
we take P(u) as the representation for the parametric cubic point function for the
curve section between control points pk and pk+1, as in Figure 12, then the four
control points from pk−1 to pk+1 are used to set the boundary conditions for the
cardinal-spline section as

P(0) = pk

P(1) = pk+1

P′(0) = 1
2
(1 − t)(pk+1 − pk−1)

P′(1) = 1
2
(1 − t)(pk+2 − pk)

(17)

pk � 1

pk � 2

pk
p(u)

pk � 1

F I G U R E 1 2
Parametric point function P(u) for a
cardinal-spline section between
control points pk and pk+1.

pk � 2pk � 1

pk pk � 1

F I G U R E 1 3
Tangent vectors at the endpoints of a
cardinal-spline section are parallel to
the chords formed with neighboring
control points (dashed lines).

Thus, the slopes at control points pk and pk+1 are taken to be proportional, respec-
tively, to the chords pk−1pk+1 and pkpk+2 (Figure 13). Parameter t is called the
tension parameter because it controls how loosely or tightly the cardinal spline
fits the input control points. Figure 14 illustrates the shape of a cardinal curve
for very small and very large values of tension t. When t = 0, this class of curves
is referred to as Catmull-Rom splines, or Overhauser splines.

Spline Representations

418

t � 0
(Looser Curve)

t � 0
(Tighter Curve)

F I G U R E 1 4
Effect of the tension parameter on the
shape of a cardinal-spline section.

Using methods similar to those for Hermite splines, we can convert the bound-
ary conditions 17 into the matrix form

P(u) = [u3 u2 u 1] · MC ·

⎡

⎢
⎢
⎢
⎣

pk−1

pk

pk+1

pk+2

⎤

⎥
⎥
⎥
⎦

(18)

where the cardinal matrix is

MC =

⎡

⎢
⎢
⎣

−s 2 − s s − 2 s
2s s − 3 3 − 2s −s
−s 0 s 0
0 1 0 0

⎤

⎥
⎥
⎦

(19)

with s = (1 − t)/2.
Expanding Equation 18 into polynomial form, we have

P(u) = pk−1(−s u3 + 2s u2 − s u) + pk[(2 − s)u3 + (s − 3)u2 + 1]
+ pk+1[(s − 2)u3 + (3 − 2s)u2 + s u] + pk+2(s u3 − s u2)

= pk−1 CAR0(u) + pk CAR1(u) + pk+1 CAR2(u) + pk+2 CAR3(u) (20)

where the polynomials CARk(u) for k = 0, 1, 2, 3 are the cardinal-spline blending
(basis) functions. Figure 15 gives a plot of the basis functions for cardinal
splines with t = 0.

(a)

0.2 0.4 0.6 0.8 1
u

CAR0(u)

1

0.8

0.6

0.4

0.2

0

�0.2

(d)

0.2 0.4 0.6 0.8 1
u

CAR3(u)

1

0.8

0.6

0.4

0.2

0

�0.2

(b)

0.2 0.4 0.6 0.8 1
u

CAR1(u)

1

0.8

0.6

0.4

0.2

0

(c)

0.2 0.4 0.6 0.8 1
u

CAR2(u)

1

0.8

0.6

0.4

0.2

0

F I G U R E 1 5
The cardinal-spline blending functions for t = 0 (s = 0.5).

Spline Representations

419

Examples of curves produced with the cardinal-spline blending functions
are given in Figures 16, 17, and 18. In Figure 16, four cardinal-spline
sections are plotted to form a closed curve. The first curve section is generated
using the control-point set {p0, p1, p2, p3}, the second curve is produced with
the control-point set {p1, p2, p3, p0}, the third curve section has control points
{p2, p3, p0, p1}, and the final curve section has control points {p3, p0, p1, p2}. In
Figure 17, a closed curve is obtained with a single cardinal-spline section by
setting the position of the third control point to the coordinate position of the

F I G U R E 1 6
A closed curve with four cardinal-
spline sections, obtained with a cyclic
permutation of the control points and
with tension parameter t = 0.

2

1

4

p1
p2

p0
p3

6 8 10

�1

2

3

4

5

6

7

F I G U R E 1 7
A cardinal- spline loop produced with
curve endpoints at the same
coordinate position. The tension
parameter is set to the value 0. 10

10

8

6

4

2

0 8642

p0 p3

p1 � p2

F I G U R E 1 8
A self-intersecting cardinal-spline
curve section produced with closely
spaced curve endpoint positions. The
tension parameter is set to the value 0.

2.50

2.25

2.00

1.75

1.50

1.25

1.00
2 4 6 8 10

p0 p3

p2p1

Spline Representations

420

p0

p2

p1 p3
p4

b � 0 b � 0

p0 p1 p3
p4

p2

F I G U R E 1 9
Effect of the bias parameter on the
shape of a Kochanek-Bartels spline
section.

second control point. In Figure 18, a self-intersecting cardinal-spline section is
produced by setting the position of the third control point very near the coordinate
position of the second control point. The resulting self-intersection is due to the
constraints on the curve slope at the endpoints p1 and p2.

Kochanek-Bartels Splines
These interpolating cubic polynomials are extensions of the cardinal splines.
Two additional parameters are introduced into the constraint equations defining
Kochanek-Bartels splines to provide further flexibility in adjusting the shapes of
curve sections.

Given four consecutive control points, labeled pk−1, pk , pk+1, and pk+2, we
define the boundary conditions for a Kochanek-Bartels curve section between pk

and pk+1 as

P(0) = pk

P(1) = pk+1

P′(0)in = 1
2
(1 − t)[(1 + b)(1 − c)(pk − pk−1)

+ (1 − b)(1 + c)(pk+1 − pk)]

P′(1)out = 1
2
(1 − t)[(1 + b)(1 + c)(pk+1 − pk)

+ (1 − b)(1 − c)(pk+2 − pk+1)]

(21)

where t is the tension parameter, b is the bias parameter, and c is the continuity
parameter. In the Kochanek-Bartels formulation, parametric derivatives might
not be continuous across section boundaries.

Tension parameter t has the same interpretation as in the cardinal spline
formulation; that is, it controls the looseness or tightness of the curve sections.
Bias, b, is used to adjust the curvature at each end of a section so that curve
sections can be skewed toward one end or the other (Figure 19). Parameter c
controls the continuity of the tangent vector across the boundaries of sections. If
c is assigned a nonzero value, there is a discontinuity in the slope of the curve
across section boundaries.

Kochanek-Bartels splines were designed to model animation paths. In par-
ticular, abrupt changes in the motion of an object can be simulated with nonzero
values for parameter c. These motion changes are used in cartoon animations, for
example, when a cartoon character stops quickly, changes direction, or collides
with some other object.

8 Bézier Spline Curves
This spline approximation method was developed by the French engineer Pierre
Bézier for use in the design of Renault automobile bodies. Bézier splines have a
number of properties that make them highly useful and convenient for curve and

Spline Representations

421

surface design. They are also easy to implement. For these reasons, Bézier splines
are widely available in various CAD systems, in general graphics packages, and
in assorted drawing and painting packages.

In general, a Bézier curve section can be fitted to any number of control points,
although some graphic packages limit the number of control points to four. The
degree of the Bézier polynomial is determined by the number of control points
to be approximated and their relative position. As with the interpolation splines,
we can specify the Bézier curve path in the vicinity of the control points using
blending functions, a characterizing matrix, or boundary conditions. For general
Bézier curves, with no restrictions on the number of control points, the blending-
function specification is the most convenient representation.

Bézier Curve Equations
We first consider the general case of n + 1 control-point positions, denoted as
pk = (xk , yk , zk), with k varying from 0 to n. These coordinate points are blended
to produce the following position vector P(u), which describes the path of an
approximating Bézier polynomial function between p0 and pn:

P(u) =
n∑

k=0

pk BEZk,n(u), 0 ≤ u ≤ 1 (22)

The Bézier blending functions BEZk,n(u) are the Bernstein polynomials

BEZk,n(u) = C(n, k)uk(1 − u)n−k (23)

where parameters C(n, k) are the binomial coefficients

C(n, k) = n!
k!(n − k)!

(24)

Equation 22 represents a set of three parametric equations for the individual
curve coordinates:

x(u) =
n∑

k=0

xk BEZk,n(u)

y(u) =
n∑

k=0

yk BEZk,n(u) (25)

z(u) =
n∑

k=0

zk BEZk,n(u)

In most cases, a Bézier curve is a polynomial of a degree that is one less than
the designated number of control points: Three points generate a parabola, four
points a cubic curve, and so forth. Figure 20 demonstrates the appearance
of some Bézier curves for various selections of control points in the xy plane
(z = 0). With certain control-point placements, however, we obtain degenerate
Bézier polynomials. For example, a Bézier curve generated with three collinear
control points is a straight-line segment; and a set of control points that are all at
the same coordinate position produce a Bézier “curve” that is a single point.

Recursive calculations can be used to obtain successive binomial-coefficient
values as

C(n, k) = n − k + 1
k

C(n, k − 1) (26)

for n ≥ k. Also, the Bézier blending functions satisfy the recursive relationship

BEZk,n(u) = (1 − u)BEZk,n−1(u) + u BEZk−1,n−1(u), n > k ≥ 1 (27)

with BEZk,k = uk and BEZ0,k = (1 − u)k .

Spline Representations

422

p0

p0

p3

p0

p1

p3

p2

p1 p2p1

p2

p0

p1

p3

p0

p1 p3

p4

p2

p2

(a) (b) (c)

(d)

(e)

F I G U R E 2 0
Examples of two-dimensional Bézier
curves generated with three, four, and
five control points. Dashed lines
connect the control-point positions.

Example Bézier Curve-Generating Program
An implementation for calculating the Bézier blending functions and generating
a two-dimensional, cubic Bézier-spline curve is given in the following program.
Four control points are defined in the xy plane, and 1000 pixel positions are plotted
along the curve path using a pixel width of 4. Values for the binomial coefficients
are calculated in procedure binomialCoeffs, and coordinate positions along
the curve path are calculated in procedure computeBezPt. These values are
passed to procedure bezier, and pixel positions are plotted using the OpenGL
point-plotting routines. Alternatively, we could have approximated the curve
path with straight-line sections, using fewer points. More efficient methods for
generating coordinate positions along the path of a spline curve are explored in
Section 15. For this example, the world-coordinate limits are set so that only the
curve points are displayed within the viewport (Figure 21). If we also wanted
to plot the control-point positions, the control graph, or the convex hull, we would
need to extend the limits of the world-coordinate clipping window.

#include <GL/glut.h>
#include <stdlib.h>
#include <math.h>

/* Set initial size of the display window. */
GLsizei winWidth = 600, winHeight = 600;

/* Set size of world-coordinate clipping window. */
GLfloat xwcMin = -50.0, xwcMax = 50.0;
GLfloat ywcMin = -50.0, ywcMax = 50.0;

Spline Representations

423

F I G U R E 2 1
A Bézier curve displayed by the
example program.

class wcPt3D {
public:

GLfloat x, y, z;
};

void init (void)
{

/* Set color of display window to white. */
glClearColor (1.0, 1.0, 1.0, 0.0);

}

void plotPoint (wcPt3D bezCurvePt)
{

glBegin (GL_POINTS);
glVertex2f (bezCurvePt.x, bezCurvePt.y);

glEnd ();
}

/* Compute binomial coefficients C for given value of n. */
void binomialCoeffs (GLint n, GLint * C)
{

GLint k, j;

for (k = 0; k <= n; k++) {
/* Compute n!/(k!(n - k)!). */

Spline Representations

424

C [k] = 1;
for (j = n; j >= k + 1; j--)
C [k] *= j;

for (j = n - k; j >= 2; j--)
C [k] /= j;

}
}

void computeBezPt (GLfloat u, wcPt3D * bezPt, GLint nCtrlPts,
wcPt3D * ctrlPts, GLint * C)

{
GLint k, n = nCtrlPts - 1;
GLfloat bezBlendFcn;

bezPt->x = bezPt->y = bezPt->z = 0.0;

/* Compute blending functions and blend control points. */
for (k = 0; k < nCtrlPts; k++) {

bezBlendFcn = C [k] * pow (u, k) * pow (1 - u, n - k);
bezPt->x += ctrlPts [k].x * bezBlendFcn;
bezPt->y += ctrlPts [k].y * bezBlendFcn;
bezPt->z += ctrlPts [k].z * bezBlendFcn;

}
}

void bezier (wcPt3D * ctrlPts, GLint nCtrlPts, GLint nBezCurvePts)
{

wcPt3D bezCurvePt;
GLfloat u;
GLint *C, k;

/* Allocate space for binomial coefficients */
C = new GLint [nCtrlPts];

binomialCoeffs (nCtrlPts - 1, C);
for (k = 0; k <= nBezCurvePts; k++) {

u = GLfloat (k) / GLfloat (nBezCurvePts);
computeBezPt (u, &bezCurvePt, nCtrlPts, ctrlPts, C);
plotPoint (bezCurvePt);

}
delete [] C;

}

void displayFcn (void)
{

/* Set example number of control points and number of
* curve positions to be plotted along the Bezier curve.
*/
GLint nCtrlPts = 4, nBezCurvePts = 1000;

wcPt3D ctrlPts [4] = { {-40.0, -40.0, 0.0}, {-10.0, 200.0, 0.0},
{10.0, -200.0, 0.0}, {40.0, 40.0, 0.0} };

glClear (GL_COLOR_BUFFER_BIT); // Clear display window.

Spline Representations

425

glPointSize (4);
glColor3f (1.0, 0.0, 0.0); // Set point color to red.

bezier (ctrlPts, nCtrlPts, nBezCurvePts);
glFlush ();

}

void winReshapeFcn (GLint newWidth, GLint newHeight)
{

/* Maintain an aspect ratio of 1.0. */
glViewport (0, 0, newHeight, newHeight);

glMatrixMode (GL_PROJECTION);
glLoadIdentity ();

gluOrtho2D (xwcMin, xwcMax, ywcMin, ywcMax);

glClear (GL_COLOR_BUFFER_BIT);
}

void main (int argc, char** argv)
{

glutInit (&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowPosition (50, 50);
glutInitWindowSize (winWidth, winHeight);
glutCreateWindow ("Bezier Curve");

init ();
glutDisplayFunc (displayFcn);
glutReshapeFunc (winReshapeFcn);

glutMainLoop ();
}

Properties of Bézier Curves
A very useful property of a Bézier curve is that the curve connects the first and
last control points. Thus, a basic characteristic of any Bézier curve is that

P(0) = p0

P(1) = pn
(28)

Values for the parametric first derivatives of a Bézier curve at the endpoints
can be calculated from control-point coordinates as

P′(0) = −np0 + np1

P′(1) = −npn−1 + npn
(29)

From these expressions, we see that the slope at the beginning of the curve is
along the line joining the first two control points, and the slope at the end of the
curve is along the line joining the last two endpoints. Similarly, the parametric
second derivatives of a Bézier curve at the endpoints are calculated as

P′′(0) = n(n − 1)[(p2 − p1) − (p1 − p0)]
P′′(1) = n(n − 1)[(pn−2 − pn−1) − (pn−1 − pn)]

(30)

Spline Representations

426

Another important property of any Bézier curve is that it lies within the convex
hull (convex polygon boundary) of the control points. This follows from the fact
that the Bézier blending functions are all positive and their sum is always 1:

n∑

k=0

BEZk,n(u) = 1 (31)

so that any curve position is simply the weighted sum of the control-point
positions. The convex-hull property for a Bézier curve ensures that the polynomial
smoothly follows the control points without erratic oscillations.

Design Techniques Using Bézier Curves

p2

p1 p4

p3

p0 � p5

F I G U R E 2 2
A closed Bézier curve generated by
specifying the first and last control
points at the same location.

A closed Bézier curve is generated when we set the last control-point position to
the coordinate position of the first control point, as in the example shown in Fig-
ure 22. Also, specifying multiple control points at a single coordinate position
gives more weight to that position. In Figure 23, a single coordinate position is
input as two control points, and the resulting curve is pulled nearer to this position.

We can fit a Bézier curve to any number of control points, but this requires the
calculation of polynomial functions of higher degree. When complicated curves
are to be generated, they can be formed by piecing together several Bézier sections
of lower degree. Generating smaller Bézier-curve sections also gives us better local
control over the shape of the curve. Because Bézier curves connect the first and
last control points, it is easy to match curve sections (zero-order continuity). Also,
Bézier curves have the important property that the tangent to the curve at an
endpoint is along the line joining that endpoint to the adjacent control point.
Therefore, to obtain first-order continuity between curve sections, we can pick
control points p0′ and p1′ for the next curve section to be along the same straight
line as control points pn−1 and pn of the preceding section (Figure 24). If the
first curve section has n control points and the next curve section has n′ control
points, then we match curve tangents by placing control point p1′ at the position

p1′ = pn + n
n′ (pn − pn−1) (32)

p1 � p2

p0 p4

p3

F I G U R E 2 3
A Bézier curve can be made to pass
closer to a given coordinate position
by assigning multiple control points to
that position.

To simplify the placement of p1′ , we can require only geometric continuity and
place p1′ anywhere along the line of pn−1 and pn.

We obtain C2 continuity by using the expressions in Equations 30 to match
parametric second derivatives for two adjacent Bézier sections. This establishes
a coordinate position for control point p2′ , in addition to the fixed positions for

p2

p0

p1

p0�

p1� p2�

p3�

F I G U R E 2 4
Piecewise approximation curve formed
with two Bézier sections. Zero-order
and first-order continuity is attained
between the two curve sections by
setting p0′ = p2 and by setting p1′

along the line formed with points p1
and p2.

Spline Representations

427

p0′ and p1′ that we need for C0 and C1 continuity. However, requiring second-
order continuity for Bézier curve sections can be unnecessarily restrictive. This
is particularly true with cubic curves, which have only four control points per
section. In this case, second-order continuity fixes the position of the first three
control points and leaves us only one point that we can use to adjust the shape of
the curve segment.

Cubic Bézier Curves
Many graphics packages provide functions for displaying only cubic splines.
This allows reasonable design flexibility while avoiding the increased calculations
needed with higher-order polynomials. Cubic Bézier curves are generated with
four control points. The four blending functions for cubic Bézier curves, obtained
by substituting n = 3 into Equation 23, are

BEZ0,3 = (1 − u)3

BEZ1,3 = 3u(1 − u)2

BEZ2,3 = 3u2(1 − u)

BEZ3,3 = u3

(33)

Plots of the four cubic Bézier blending functions are given in Figure 25.
The form of the blending functions determine how the control points influence the
shape of the curve for values of parameter u over the range from 0 to 1. At u = 0,

(a)

0.2 0.4 0.6 0.8 1
u u

0.2

0

0.4

0.6

0.8

1

BEZ0,3(u)

BEZ2,3(u) BEZ3,3(u)

BEZ1,3(u)

(d)

0.2 0.4 0.6 0.8 1

0.2

0

0.4

0.6

0.8

1

(b)

0.2 0.4 0.6 0.8 1

0.2

0

0.4

0.6

0.8

1

(c)

0.2 0.4 0.6 0.8 1

0.2

0

0.4

0.6

0.8

1

u u

F I G U R E 2 5
The four Bézier blending functions for cubic curves (n = 3).

Spline Representations

428

the only nonzero blending function is BEZ0,3, which has the value 1. At u = 1, the
only nonzero function is BEZ3,3(1) = 1. Thus, a cubic Bézier curve always begins
at control point p0 and ends at the position of control point p3. The other functions,
BEZ1,3 and BEZ2,3, influence the shape of the curve at intermediate values of the
parameter u so that the resulting curve tends toward the points p1 and p2. Blend-
ing function BEZ1,3 is maximized at u = 1/3, and BEZ2,3 is maximized at u = 2/3.

We note in Figure 25 that each of the four blending functions is nonzero
over the entire range of parameter u between the endpoint positions. Thus, Bézier
curves do not allow for local control of the curve shape. If we reposition any one
of the control points, the entire curve is affected.

At the end positions of the cubic Bézier curve, the parametric first derivatives
(slopes) are

P′(0) = 3(p1 − p0), P′(1) = 3(p3 − p2)

and the parametric second derivatives are

P′′(0) = 6(p0 − 2p1 + p2), P′′(1) = 6(p1 − 2p2 + p3)

We can construct complex spline curves using a series of cubic-Bézier sections.
Using expressions for the parametric derivatives, we can equate curve tangents
to attain C1 continuity between the curve sections. In addition, we could use the
expressions for the second derivatives to obtain C2 continuity, although this leaves
us with no options for the placement of the first three control points.

A matrix formulation for the cubic-Bézier curve function is obtained by
expanding the polynomial expressions for the blending functions and restruc-
turing the equations as

P(u) = [u3 u2 u 1] · MBez ·

⎡

⎢
⎢
⎣

p0
p1
p2
p3

⎤

⎥
⎥
⎦

(34)

where the Bézier matrix is

MBez =

⎡

⎢
⎢
⎣

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎤

⎥
⎥
⎦

(35)

We could also introduce additional parameters to allow adjustment of curve
“tension” and “bias,” as we did with the interpolating splines. But more ver-
satile types of splines (such as B-splines and beta-splines, discussed later in this
chapter) are often provided with this capability.

9 Bézier Surfaces
Two sets of orthogonal Bézier curves can be used to design an object surface. The
parametric vector function for the Bézier surface is formed as the tensor product
of Bézier blending functions:

P(u, v) =
m∑

j=0

n∑

k=0

p j,k BEZ j,m(v) BEZk,n(u) (36)

with p j,k specifying the location of the (m + 1) by (n + 1) control points.
Figure 26 illustrates two Bézier surface plots. The control points are con-

nected by dashed lines, and the solid lines show curves of constant u and

Spline Representations

429

F I G U R E 2 6
Wire-frame Bézier surfaces constructed
with (a) 9 control points arranged in a
3 × 3 mesh and (b) 16 control points
arranged in a 4 × 4 mesh. Dashed
lines connect the control points. (a) (b)

constant v. Each curve of constant u is plotted by varying v over the interval
from 0 to 1, with u fixed at one of the values in this unit interval. Curves of
constant v are plotted similarly.

Bézier surfaces have the same properties as Bézier curves, and they provide
a convenient method for interactive design applications. To specify the three-
dimensional coordinate positions for the control points, we could first construct
a rectangular grid in the xy “ground” plane. We then choose elevations above the
ground plane at the grid intersections as the z-coordinate values for the control
points.

Figure 27 illustrates a surface formed with two Bézier sections. As with
curves, a smooth transition from one section to the other is assured by establish-
ing both zero-order and first-order continuity at the boundary line. Zero-order
continuity is obtained by matching control points at the boundary. First-order
continuity is obtained by choosing control points along a straight line across the
boundary and by maintaining a constant ratio of collinear line segments for each
set of specified control points across section boundaries.

F I G U R E 2 7
A composite Bézier surface
constructed with two Bézier sections,
joined at the indicated boundary line.
The dashed lines connect the control
points. First-order continuity is
established by making the ratio of
length L 1 to length L 2 constant for
each collinear line of control points
across the boundary between the
surface sections.

Boundary Line

L1 L2

Spline Representations

430

10 B-Spline Curves
This spline category is the most widely used, and B-spline functions are com-
monly available in CAD systems and many graphics-programming packages.
Like Bézier splines, B-splines are generated by approximating a set of control
points. But B-splines have two advantages over Bézier splines: (1) the degree
of a B-spline polynomial can be set independently of the number of control
points (with certain limitations), and (2) B-splines allow local control over the
shape of a spline. The tradeoff is that B-splines are more complex than Bézier
splines.

B-Spline Curve Equations
We can write a general expression for the calculation of coordinate positions along
a B-spline curve using a blending-function formulation as

P(u) =
n∑

k=0

pk Bk,d(u), umin ≤ u ≤ umax, 2 ≤ d ≤ n + 1 (37)

where pk is an input set of n + 1 control points. There are several differences
between this B-spline formulation and the expression for a Bézier spline curve.
The range of parameter u now depends on how we choose the other B-spline
parameters. And the B-spline blending functions Bk,d are polynomials of degree
d − 1, where d is the degree parameter. (Sometimes parameter d is alluded to
as the “order” of the polynomial, but this can be misleading because the term
order is also often used to mean simply the degree of the polynomial.) The degree
parameter d can be assigned any integer value in the range from 2 up to the
number of control points (n + 1). Actually, we could also set the value of the
degree parameter at 1, but then our “curve” is just a point plot of the control
points. Local control for B-splines is achieved by defining the blending functions
over subintervals of the total range of u.

Blending functions for B-spline curves are defined by the Cox-deBoor recur-
sion formulas:

Bk,1(u) =
{

1 if uk ≤ u ≤ uk+1

0 otherwise

Bk,d(u) = u − uk

uk+d−1 − uk
Bk,d−1(u) + uk+d − u

uk+d − uk+1
Bk+1,d−1(u)

(38)

where each blending function is defined over d subintervals of the total range
of u. Each subinterval endpoint u j is referred to as a knot, and the entire set of
selected subinterval endpoints is called a knot vector. We can choose any values
for the subinterval endpoints, subject to the condition u j ≤ u j+1. Values for umin
and umax then depend on the number of control points we select, the value we
choose for the degree parameter d, and how we set up the subintervals (knot
vector). Because it is possible to choose the elements of the knot vector so that
some denominators in the Cox-deBoor calculations evaluate to 0, this formulation
assumes that any terms evaluated as 0/0 are to be assigned the value 0.

Figure 28 demonstrates the local-control characteristics of B-splines. In
addition to local control, B-splines allow us to vary the number of control points
used to design a curve without changing the degree of the polynomial. Also, we
can increase the number of values in the knot vector to aid in curve design. When
we do this, however, we must add control points because the size of the knot
vector depends on parameter n.

Spline Representations

431

F I G U R E 2 8
Local modification of a B-spline curve.
Changing one of the control points in
(a) produces curve (b), which is
modified only in the neighborhood of
the altered control point. (a) (b)

B-spline curves have the following properties:

• The polynomial curve has degree d −1 and Cd−2 continuity over the range
of u.

• For n+1 control points, the curve is described with n+1 blending functions.
• Each blending function Bk,d is defined over d subintervals of the total range

of u, starting at knot value uk .
• The range of parameter u is divided into n+d subintervals by the n+d +1

values specified in the knot vector.
• With knot values labeled as {u0, u1, . . . , un+d}, the resulting B-spline curve

is defined only in the interval from knot value ud−1 up to knot value un+1.
(Some blending functions are undefined outside this interval.)

• Each section of the spline curve (between two successive knot values) is
influenced by d control points.

• Any one control point can affect the shape of at most d curve sections.

In addition, a B-spline curve lies within the convex hull of at most d + 1 control
points, so that B-splines are tightly bound to the input positions. For any value
of u in the interval from knot value ud−1 to un+1, the sum over all basis functions
is 1, as follows:

n∑

k=0

Bk,d(u) = 1 (39)

Given the control-point positions and the value of the degree parameter d,
we then need to specify the knot values to obtain the blending functions using
the recurrence relations 38. There are three general classifications for knot vec-
tors: uniform, open uniform, and nonuniform. B-splines are commonly described
according to the selected knot vector class.

Uniform Periodic B-Spline Curves
When the spacing between knot values is constant, the resulting curve is called a
uniform B-spline. For example, we can set up a uniform knot vector as

{−1.5, −1.0, −0.5, 0.0, 0.5, 1.0, 1.5, 2.0}
Often knot values are normalized to the range between 0 and 1, as in

{0.0, 0.2, 0.4, 0.6, 0.8, 1.0}

Spline Representations

432

(a)

10 2 3 4 5 6
u

u

u

0.2

0.4

0.6

0.8

1

B0,3(u) B1,3(u)

B2,3(u) B3,3(u)

(c)

10 2 3 4 5 6

0.2

0.4

0.6

0.8

1

(b)
10 2 3 4 5 6

0.2

0.4

0.6

0.8

1

(d)

10 2 3 4 5 6

0.2

0.4

0.6

0.8

1

u

F I G U R E 2 9
Periodic B-spline blending functions for n = d = 3 and a uniform, integer knot vector.

It is convenient in many applications to set up uniform knot values with a sepa-
ration of 1 and a starting value of 0. The following knot vector is an example of
this specification scheme:

{0, 1, 2, 3, 4, 5, 6, 7}
Uniform B-splines have periodic blending functions. That is, for given values

of n and d, all blending functions have the same shape. Each successive blending
function is simply a shifted version of the previous function:

Bk,d(u) = Bk+1,d(u + �u) = Bk+2,d(u + 2�u) (40)

where �u is the interval between adjacent knot values. Figure 29 shows the
quadratic, uniform B-spline blending functions generated in the following exam-
ple for a curve with four control points.

E X A M P L E 1 Uniform, Quadratic B-Splines

To illustrate the formulation of B-spline blending functions for a uniform,
integer knot vector, we select parameter values d = n = 3. The knot vector
must then contain n + d + 1 = 7 knot values:

{0, 1, 2, 3, 4, 5, 6}
and the range for parameter u is from 0 to 6, with n + d = 6 subintervals.

Spline Representations

433

Each of the four blending functions spans d = 3 subintervals of the total
range for u. Using the recurrence relations 38, we obtain the first blending
function as

B0,3(u) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
2

u2, for 0 ≤ u < 1

1
2

u(2 − u) + 1
2
(u − 1)(3 − u), for 1 ≤ u < 2

1
2
(3 − u)2, for 2 ≤ u < 3

We obtain the next periodic blending function using Equation 40, substitut-
ing u − 1 for u in B0,3, and shifting the starting positions up by 1:

B1,3(u) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
2
(u − 1)2, for 1 ≤ u < 2

1
2
(u − 1)(3 − u) + 1

2
(u − 2)(4 − u), for 2 ≤ u < 3

1
2
(4 − u)2, for 3 ≤ u < 4

Similarly, the remaining two periodic functions are obtained by successively
shifting B1,3 to the right:

B2,3(u) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
2
(u − 2)2, for 2 ≤ u < 3

1
2
(u − 2)(4 − u) + 1

2
(u − 3)(5 − u), for 3 ≤ u < 4

1
2
(5 − u)2, for 4 ≤ u < 5

B3,3(u) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
2
(u − 3)2, for 3 ≤ u < 4

1
2
(u − 3)(5 − u) + 1

2
(u − 4)(6 − u), for 4 ≤ u < 5

1
2
(6 − u)2, for 5 ≤ u < 6

A plot of the four periodic, quadratic blending functions is given in
Figure 29, which demonstrates the local feature of B-splines. The first con-
trol point is multiplied by blending function B0,3(u). Therefore, changing the
position of the first control point affects the shape of the curve only up to u = 3.
Similarly, the last control point influences the shape of the spline curve in the
interval where B3,3 is defined.

Figure 29 also illustrates the limits of the B-spline curve for this example.
All blending functions are present in the interval from ud−1 = 2 to un+1 = 4.
Below 2 and above 4, not all blending functions are present. This interval,
from 2 to 4, is the range of the polynomial curve, and the interval in which
Equation 39 is valid. Thus, the sum of all blending functions is 1 within this
interval. Outside this interval, we cannot sum all blending functions, since they
are not all defined below 2 and above 4.

Spline Representations

434

Because the range of the resulting polynomial curve is from 2 to 4, we can deter-
mine the starting and ending position of the curve by evaluating theblending
functions at these points to obtain

Pstart = 1
2
(p0 + p1), Pend = 1

2
(p2 + p3)

Thus, the curve starts at the midposition between the first two control points
and ends at the midposition between the last two control points.

We can also determine the parametric derivatives at the starting and ending
positions of the curve. Taking the derivatives of the blending functions and
substituting the endpoint values for parameter u, we find that

P′
start = p1 − p0, P′

end = p3 − p2

The parametric slope of the curve at the start position is parallel to the line
joining the first two control points, and the parametric slope at the end of the
curve is parallel to the line joining the last two control points.

An example plot of the quadratic periodic B-spline curve is given in Fig-
ure 30 for four control points selected in the xy plane.

p0 p3

p2p1

F I G U R E 3 0
A quadratic, periodic B-spline fitted to
four control points in the x y plane.

In the preceeding example, we noted that the quadratic curve starts between
the first two control points and ends at a position between the last two control
points. This result is valid for a quadratic periodic B-spline fitted to any number of
distinct control points. In general, for higher-order polynomials, the start and end
positions are each weighted averages of d − 1 control points. We can pull a spline
curve closer to any control-point position by specifying that position multiple
times.

General expressions for the boundary conditions for periodic B-splines can
be obtained by reparameterizing the blending functions so that parameter u is
mapped onto the unit interval from 0 to 1. Beginning and ending conditions are
then obtained at u = 0 and u = 1.

Cubic Periodic B-Spline Curves

p0 p3

p2p1

p4p5

F I G U R E 3 1
A closed, periodic, piecewise, cubic
B-spline constructed using a cyclic
specification of four control points for
each curve section.

Because cubic periodic B-splines are commonly used in graphics packages, we
consider the formulation for this class of splines. Periodic splines are particu-
larly useful for generating certain closed curves. For example, the closed curve in
Figure 31 can be generated in sections by cyclically specifying four of the six
control points for each section. Also, if the coordinate positions for three consec-
utive control points are identical, the curve passes through that point.

For cubic B-spline curves, d = 4 and each blending function spans four sub-
intervals of the total range of u. If we are to fit the cubic to four control points,
then we could use the integer knot vector

{0, 1, 2, 3, 4, 5, 6, 7}

and recurrence relations 38 to obtain the periodic blending functions, as we
did in the last section for quadratic periodic B-splines.

To derive the curve equations for a periodic, cubic B-spline, we consider an
alternate formulation by starting with the boundary conditions and obtaining the
blending functions normalized to the interval 0 ≤ u ≤ 1. Using this formulation,
we can also obtain the characteristic matrix easily. The boundary conditions for

Spline Representations

435

periodic cubic B-splines with four control points, labeled p0, p1, p2, and p3, are

P(0) = 1
6
(p0 + 4p1 + p2)

P(1) = 1
6
(p1 + 4p2 + p3)

P′(0) = 1
2
(p2 − p0)

P′(1) = 1
2
(p3 − p1)

(41)

These boundary conditions are similar to those for cardinal splines: Curve sections
are defined with four control points, and parametric derivatives (slopes) at the
beginning and end of each curve section are parallel to the chords joining adjacent
control points. The B-spline curve section starts at a position near p1 and ends at
a position near p2.

A matrix formulation for a cubic periodic B-spline with four control points
can then be written as

P(u) = [u3 u2 u 1] · MB ·

⎡

⎢
⎢
⎣

p0
p1
p2
p3

⎤

⎥
⎥
⎦

(42)

where the B-spline matrix for periodic cubic polynomials is

MB = 1
6

⎡

⎢
⎢
⎣

−1 3 −3 1
3 −6 3 0

−3 0 3 0
1 4 1 0

⎤

⎥
⎥
⎦

(43)

This matrix can be obtained by solving for the coefficients in a general cubic
polynomial expression, using the specified four boundary conditions.

We can also modify the B-spline equations to include a tension parameter t
(as in cardinal splines). The matrix for the periodic cubic B-spline, with tension
parameter t, is

MBt = 1
6

⎡

⎢
⎢
⎣

−t 12 − 9t 9t − 12 t
3t 12t − 18 18 − 15t 0

−3t 0 3t 0
t 6 − 2t t 0

⎤

⎥
⎥
⎦

(44)

which reduces to MB when t = 1.
We obtain the periodic cubic B-spline blending functions over the parameter

range from 0 to 1 by expanding the matrix representation into polynomial form.
For example, using the tension value t = 1, we have

B0,3(u) = 1
6
(1 − u)3, 0 ≤ u ≤ 1

B1,3(u) = 1
6
(3u3 − 6u2 + 4)

B2,3(u) = 1
6
(−3u3 + 3u2 + 3u + 1)

B3,3(u) = 1
6

u3

(45)

Spline Representations

436

Open Uniform B-Spline Curves
This class of B-splines is a cross between uniform B-splines and nonuniform
B-splines. Sometimes it is treated as a special type of uniform B-spline, and some-
times it is considered to be in the nonuniform B-spline classification. For the open
uniform B-splines, or simply open B-splines, the knot spacing is uniform except
at the ends, where knot values are repeated d times.

Here are two examples of open, uniform, integer knot vectors, each with a
starting value of 0:

{0, 0, 1, 2, 3, 3} for d = 2 and n = 3
{0, 0, 0, 0, 1, 2, 2, 2, 2} for d = 4 and n = 4

(46)

We can normalize these knot vectors to the unit interval from 0 to 1 as

{0, 0, 0.33, 0.67, 1, 1} for d = 2 and n = 3
{0, 0, 0, 0, 0.5, 1, 1, 1, 1} for d = 4 and n = 4

(47)

For any values of parameters d and n, we can generate an open uniform knot
vector with integer values using the calculations

u j =

⎧

⎪⎨

⎪⎩

0 for 0 ≤ j < d
j − d + 1 for d ≤ j ≤ n
n − d + 2 for j > n

(48)

for values of j ranging from 0 to n + d . With this assignment, the first d knots are
assigned the value 0, and the last d knots have the value n − d + 2.

Open uniform B-splines have characteristics that are very similar to Bézier
splines. In fact, when d = n + 1 (degree of the polynomial is n), open B-splines
reduce to Bézier splines, and all knot values are either 0 or 1. For example, with
a cubic open B-spline (d = 4) and four control points, the knot vector is

{0, 0, 0, 0, 1, 1, 1, 1}
The polynomial curve for an open B-spline connects the first and last control
points. Also, the parametric slope of the curve at the first control point is parallel
to the straight line formed by the first two control points, and the parametric slope
at the last control point is parallel to the line defined by the last two control points.
Thus, the geometric constraints for matching curve sections are the same as for
Bézier curves.

As with Bézier curves, specifying multiple control points at the same coordi-
nate position pulls any B-spline curve closer to that position. Since open B-splines
start at the first control point and end at the last control point, a closed curve can
be generated by setting the first and last control points at the same coordinate
position.

E X A M P L E 2 Open Uniform, Quadratic B-Splines

From conditions 48 with d = 3 and n = 4 (five control points), we obtain
the following eight values for the knot vector:

{u0, u1, u2, u3, u4, u5, u6, u7} = {0, 0, 0, 1, 2, 3, 3, 3}
The total range of u is divided into seven subintervals, and each of the five
blending functions Bk,3 is defined over three subintervals, starting at knot
position uk . Thus B0,3 is defined from u0 = 0 to u3 = 1, B1,3 is defined

Spline Representations

437

from u1 = 0 to u4 = 2, and B4,3 is defined from u4 = 2 to u7 = 3. Explicit poly-
nomial expressions are obtained for the blending functions from recurrence
relations 38 as

B0,3(u) = (1 − u)2 0 ≤ u < 1

B1,3(u) =

⎧

⎪⎪⎨

⎪⎪⎩

1
2

u(4 − 3u) 0 ≤ u < 1

1
2
(2 − u)2 1 ≤ u < 2

B2,3(u) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
2

u2 0 ≤ u < 1

1
2

u(2 − u) + 1
2
(u − 1)(3 − u) 1 ≤ u < 2

1
2
(3 − u)2 2 ≤ u < 3

B3,3(u) =

⎧

⎪⎪⎨

⎪⎪⎩

1
2
(u − 1)2 1 ≤ u < 2

1
2
(3 − u)(3u − 5) 2 ≤ u < 3

B4,3(u) = (u − 2)2 2 ≤ u < 3

Figure 32 shows the shape of the these five blending functions. The local
features of B-splines are again demonstrated. Blending function B0,3 is nonzero
only in the subinterval from 0 to 1, so the first control point influences the curve
only in this interval. Similarly, function B4,3 is 0 outside the interval from 2 to
3, and the position of the last control point does not affect the shape of the
beginning and middle parts of the curve.

Matrix formulations for open B-splines are not generated as conveniently as
they are for periodic uniform B-splines. This is due to the multiplicity of knot
values at the beginning and end of the knot vector.

Nonuniform B-Spline Curves
For this class of splines, we can specify any values and intervals for the knot
vector. With nonuniform B-splines, we can choose multiple internal knot values
and unequal spacing between the knot values. Some examples are

{0, 1, 2, 3, 3, 4}
{0, 2, 2, 3, 3, 6}

{0, 0, 0, 1, 1, 3, 3, 3}
{0, 0.2, 0.6, 0.9, 1.0}

Nonuniform B-splines provide increased flexibility in controlling a curve
shape. With unequally spaced intervals in the knot vector, we obtain different
shapes for the blending functions in different intervals, which can be used in
designing the spline features. By increasing knot multiplicity, we can produce
subtle variations in the curve path and introduce discontinuities. Multiple knot
values also reduce the continuity by 1 for each repeat of a particular value.

Spline Representations

438

(a)

0.50 1 1.5 2 2.5 3
u

0.2

0.4

0.6

0.8

1

B0,3(u)

(c)

0.50 1 1.5 2 2.5 3
u

0.2

0.4

0.6

0.8

1
B2,3(u)

(b)

0.50 1 1.5 2 2.5 3
u

0.2

0.4

0.6

0.8

1

B1,3(u)

(d)

0.50 1 1.5 2 2.5 3
u

0.2

0.4

0.6

0.8

1
B3,3(u)

(e)

0.50 1 1.5 2 2.5 3
u

0.2

0.4

0.6

0.8

1

B4,3(u)

F I G U R E 3 2
Open, uniform B-spline blending functions for n = 4 and d = 3.

We obtain the blending functions for a nonuniform B-spline using methods
similar to those discussed for uniform and open B-splines. Given a set of n + 1
control points, we set the degree of the polynomial and select the knot values.
Then, using the recurrence relations, we could either obtain the set of blending
functions or evaluate curve positions directly for the display of the curve. Graphics
packages often restrict the knot intervals to be either 0 or 1 to reduce computations.
A set of characteristic matrices can then be stored and used to compute values
along the spline curve without evaluating the recurrence relations for each curve
point to be plotted.

Spline Representations

439

11 B-Spline Surfaces
Formulation of a B-spline surface is similar to that for Bézier splines. We can
obtain a vector point function over a B-spline surface using the tensor product of
B-spline blending functions in the form

P(u, v) =
nu∑

ku=0

nv∑

kv=0

pku,kv
Bku,du(u)Bkv ,dv

(v) (49)

where the vector values for pku,kv
specify the positions of the (nu + 1) by (nv + 1)

control points.

uj � 1

uj � 1

uj
Pj � 1(u) Pj(u)

F I G U R E 3 3
Position vectors along curve sections
to the left and right of knot u j .

B-spline surfaces exhibit the same properties as those of their component
B-spline curves. A surface can be constructed from selected values for degree
parameters du and dv , which set the degrees for the orthogonal surface polynomi-
als at du − 1 and dv − 1. For each surface parameter u and v, we also select values
for the knot vectors, which determines the parameter range for the blending
functions.

12 Beta-Splines
A generalization of B-splines are the beta-splines, also referred to as β-splines,
that are formulated by imposing geometric continuity conditions on the first and
second parametric derivatives. The continuity parameters for beta-splines are
called β parameters.

Beta-Spline Continuity Conditions
For a specified knot vector, we designate the spline sections to the left and right
of a particular knot u j with the position vectors P j−1(u) and P j (u) (Figure 33).
Zero-order continuity (positional continuity), G0, at u j is obtained by requiring that

P j−1(u j) = P j (u j) (50)

First-order continuity (unit tangent continuity), G1, is obtained by requiring
tangent vectors to be proportional:

β1P′
j−1(u j) = P′

j (u j), β1 > 0 (51)

Here, parametric first derivatives are proportional, and the unit tangent vectors
are continuous across the knot.

Second-order continuity (curvature vector continuity), G2, is imposed with the
condition

β2
1 P′′

j−1(u j) + β2P′
j−1(u j) = P′′

j (u j) (52)

where β2 can be assigned any real number and β1 > 0. The curvature vector pro-
vides a measure of the amount of bending for the curve at position u j . When
β1 = 1 and β2 = 0, beta-splines reduce to B-splines.

Parameter β1 is called the bias parameter since it controls the skewness of the
curve. For β1 > 1, the curve tends to flatten to the right in the direction of the unit
tangent vector at the knots. For 0 < β1 < 1, the curve tends to flatten to the left.
The effect of β1 on the shape of the spline curve is shown in Figure 34.

Parameter β2 is called the tension parameter since it controls how tightly or
loosely the spline fits the control graph. As β2 increases, the curve approaches the
shape of the control graph, as shown in Figure 35.

Spline Representations

440

b1 � 1 b1 �� 1

F I G U R E 3 4
Effect of parameter β1 on the shape of
a beta-spline curve.

b2 � 0 b2 �� 1

F I G U R E 3 5
Effect of parameter β2 on the shape of
a beta-spline curve.

Cubic Periodic Beta-Spline Matrix Representation
Applying the beta-spline boundary conditions to a cubic polynomial with a
uniform knot vector, we obtain the matrix representation for a periodic beta-
spline as

Mβ = 1
δ

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−2β3
1 2

(

β2 + β3
1 + β2

1 + β1
) −2

(

β2 + β2
1 + β1 + 1

)

2

6β3
1 −3

(

β2 + 2β3
1 + 2β2

1

)

3
(

β2 + 2β2
1

)

0

−6β3
1 6

(

β3
1 − β1

)

6β1 0

2β3
1 β2 + 4

(

β2
1 + β1

)

2 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(53)

where δ = β2 + 2β3
1 + 4β2

1 + 4β1 + 2.
We obtain the B-spline matrix MB when β1 = 1 and β2 = 0. And we have the

B-spline tension matrix MBt (Eq. 44) when

β1 = 1, β2 = 12
t

(1 − t)

13 Rational Splines
A rational function is simply the ratio of two polynomials. Thus, a rational spline
is the ratio of two spline functions. For example, a rational B-spline curve can be
described with the position vector

P(u) =
∑n

k=0 ωkpk Bk,d(u)
∑n

k=0 ωk Bk,d(u)
(54)

where the pk are the n+1 control-point positions. Parameters ωk are weight factors
for the control points. The greater the value of a particular ωk , the closer the curve
is pulled toward the control point pk weighted by that parameter. When all weight
factors are set to the value 1, we have the standard B-spline curve, because the
denominator in Equation 54 is then just the sum of the blending functions,
which has the value 1 (Equation 39).

Rational splines have two important advantages, compared to nonrational
splines. First, they provide an exact representation for quadric curves (conics),
such as circles and ellipses. Nonrational splines, which are polynomials, can only
approximate conics. This allows graphics packages to model all curve shapes
with one representation—rational splines—without needing a library of curve

Spline Representations

441

functions to handle different design shapes. The second advantage of rational
splines is that they are invariant with respect to a perspective viewing trans-

Homogeneous coordinate representations are used for rational splines
because the denominator can be treated as the homogeneous factor h in a four-
dimensional representation of the control points. Thus, a rational spline can be
thought of as the projection of a four-dimensional nonrational spline into three-
dimensional space.

In general, constructing a rational B-spline representation is carried out using
the same procedures that we employed to obtain a nonrational representation.
Given the set of control points, the degree of the polynomial, the weighting factors,
and the knot vector, we apply the recurrence relations to obtain the blending
functions. With some CAD systems, we construct a conic section by specifying
three points on an arc. A rational homogeneous-coordinate spline representation
is then determined by computing control-point positions that would generate the
selected conic type.

As an example of describing conic sections with rational splines, we can use a
quadratic B-spline function (d = 3), three control points, and the open knot vector

{0, 0, 0, 1, 1, 1}
which is the same as a quadratic Bézier spline. We then set the weighting functions
to the values

ω0 = ω2 = 1

ω1 = r
1 − r

, 0 ≤ r < 1
(55)

and the rational B-spline representation is

P(u) = p0 B0,3(u) + [r/(1 − r)]p1 B1,3(u) + p2 B2,3(u)

B0,3(u) + [r/(1 − r)]B1,3(u) + B2,3(u)
(56)

We then obtain the various conics (Figure 36) with the following values for
parameter r :

r > 1/2, ω1 > 1 Hyperbola section
r = 1/2, ω1 = 1 Parabola section
r < 1/2, ω1 < 1 Ellipse section
r = 0, ω1 = 0 Straight-line segment

We can generate a one-quarter arc of a unit circle in the first quadrant of
the xy plane (Figure 37) by setting ω1 = cos φ and by choosing the control
points as

p0 = (0, 1), p1 = (1, 1), p2 = (1, 0)

A complete circle can be obtained by generating sections in the other three quad-
rants using similar control-point placements. Or we could produce a complete
circle from the first-quadrant section using geometric transformations in the
xy plane. For example, we can reflect the one-quarter circular arc about the x
and y axes to produce the circular arcs in the other three quadrants.

Spline Representations

formation. This means that we can apply a perspective viewing transformation
to the control points of the rational curve, and we will obtain the correct view of
the curve. Nonrational splines, on the other hand, are not invariant with respect
to a perspective viewing transformation. Typically, graphics design packages use
nonuniform knot vector representations for constructing rational B-splines.
These splines are referred to as nonuniform rational B-splines (NURBs).

442

p1

p0

p2

hyperbola
 (r � 1/2, v1 � 1)

parabola
 (r � 1/2, v1 � 1)

straight line
(r � 0, v1 � 0)

ellipse
 (r � 1/2, v1 � 1)

F I G U R E 3 6
Conic sections generated using various values for
the rational-spline weighting factor ω1.

y

x

p0 � (0, 1) p1 � (1, 1)

p2 � (1, 0)

f

F I G U R E 3 7
A circular arc in the first quadrant of
the x y plane.

A homogeneous representation for a unit circular arc in the first quadrant of
the xy plane is

⎡

⎢
⎢
⎢
⎣

xh(u)

yh(u)

zh(u)

h(u)

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

1 − u2

2u
0

1 + u2

⎤

⎥
⎥
⎥
⎦

(57)

This homogeneous representation yields the parametric circle equations for the
first quadrant as

x = xh(u)

h(u)
= 1 − u2

1 + u2

y = yh(u)

h(u)
= 2u

1 + u2

(58)

14 Conversion Between Spline
Representations

Sometimes it is desirable to be able to switch from one spline representation to
another. For instance, a Bézier representation is most convenient for subdividing
a spline curve, while a B-spline representation offers greater design flexibility.
Therefore, we might design a curve using B-spline sections, then convert to an
equivalent Bézier representation to display the object using a recursive subdivi-
sion procedure to locate coordinate positions along the curve.

Suppose that we have a spline description of an object that can be expressed
with the following matrix product:

P(u) = U · Mspline1 · Mgeom1 (59)

where Mspline1 is the matrix characterizing the spline representation and Mgeom1
is the column matrix of geometric constraints (for example, control-point coor-
dinates). To transform to a second representation with spline matrix Mspline2, we
must determine the geometric constraint matrix Mgeom2 that produces the same

Spline Representations

443

vector point function for the object. That is,

P(u) = U · Mspline2 · Mgeom2 (60)

or

U · Mspline2 · Mgeom2 = U · Mspline1 · Mgeom1 (61)

Solving for Mgeom2, we have

Mgeom2 = M−1
spline2 · Mspline1 · Mgeom1

= Ms1,s2 · Mgeom1 (62)

Thus, the required transformation matrix that converts from the first spline rep-
resentation to the second is

Ms1,s2 = M−1
spline2 · Mspline1 (63)

A nonuniform B-spline cannot be characterized with a general spline matrix.
But we can rearrange the knot sequence to change the nonuniform B-spline to
a Bézier representation. Then the Bézier matrix could be converted to any other
form.

The following example calculates the transformation matrix for conver-
sion from a periodic, cubic B-spline representation to a cubic Bézier spline
representation:

MB,Bez =

⎡

⎢
⎢
⎣

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎤

⎥
⎥
⎦

−1

· 1
6

⎡

⎢
⎢
⎣

−1 3 −3 1
3 −6 3 0

−3 0 3 0
1 4 1 0

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

1 4 1 0
0 4 2 0
0 2 4 0
0 1 4 1

⎤

⎥
⎥
⎦

(64)

The transformation matrix for converting from a cubic Bézier representation to a
periodic, cubic B-spline representation is

MBez, B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1
6

1
2

−1
2

1
6

1
2

−1
1
2

0

−1
2

0
1
2

0

1
6

2
3

1
6

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−1

·

⎡

⎢
⎢
⎣

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

6 −7 2 0
0 2 −1 0
0 −1 2 0
0 2 −7 6

⎤

⎥
⎥
⎦

(65)

15 Displaying Spline Curves and Surfaces
To display a spline curve or surface, we must determine coordinate positions
on the curve or surface that project to pixel positions on the display device.
This means that we must evaluate the parametric polynomial spline functions
in certain increments over the range of the functions, and several methods have
been developed for accomplishing this evaluation efficiently.

Spline Representations

444

Horner’s Rule
The simplest method for evaluating a polynomial, other than direct calculation
of each term in succession, is Horner’s rule, which performs the calculations by
successive factoring. This requires one multiplication and one addition at each
step. For a polynomial of degree n, there are n steps.

For example, suppose that we have a cubic-spline representation where the
x coordinate is expressed as

x(u) = axu3 + bxu2 + cxu + dx (66)

with similar expressions for the y and z coordinates. For a particular value of
parameter u, we evaluate this polynomial in the following factored order:

x(u) = [(ax u + bx)u + cx]u + dx (67)

The calculation of each x value requires three multiplications and three additions,
so that the determination of each coordinate position (x, y, z) along a cubic-spline
curve requires nine multiplications and nine additions.

Additional factoring manipulations could be applied to reduce the number of
computations required by Horner’s method, especially for higher-order polyno-
mials (degree greater than 3). But repeated determination of coordinate positions
over the range of a spline function can be computed much faster using forward-
difference calculations or spline-subdivision methods.

Forward-Difference Calculations
A fast method for evaluating polynomial functions is to generate successive values
recursively by incrementing previously calculated values as, for example,

xk+1 = xk + �xk (68)

Thus, once we know the increment and the value of xk at any step, we get the
next value simply by adding the increment to xk . The increment �xk at each step
is called the forward difference. For the parametric curve representation, we obtain
the forward differences from the intervals we select for parameter u. If we divide
the total range of u into subintervals of fixed size δ, then two successive x positions
occur at xk = x(uk) and xk+1 = x(uk+1), where

uk+1 = uk + δ, k = 0, 1, 2, . . . (69)

and u0 = 0.
As an illustration of this method, we first consider the polynomial represen-

tation x(u) = ax u + bx for the x-coordinate position along a linear-spline curve.
Two successive x-coordinate positions are represented as

xk = ax uk + bx

xk+1 = ax(uk + δ) + bx

(70)

Subtracting the two equations, we obtain the forward difference:
�xk = xk+1 − xk = axδ (71)

In this case, the forward difference is a constant. With higher-order polynomials,
the forward difference is itself a polynomial function of parameter u. This forward-
difference polynomial has degree one less than the original polynomial.

For the cubic-spline representation in Equation 66, two successive x-
coordinate positions have the polynomial representations

xk = ax u3
k + bx u2

k + cx uk + dx

xk+1 = ax(uk + δ)3 + bx(uk + δ)2 + cx(uk + δ) + dx
(72)

The forward difference now evaluates to

�xk = 3axδ u2
k + (3ax δ2 + 2bx δ)uk + (ax δ3 + bx δ2 + cx δ) (73)

Spline Representations

445

which is a quadratic function of parameter uk . Because �xk is a polynomial func-
tion of u, we can use the same incremental procedure to obtain successive values
of �xk . That is,

�xk+1 = �xk + �2xk (74)

where the second forward difference is the linear function

�2xk = 6axδ
2uk + 6axδ

3 + 2bxδ
2 (75)

Repeating this process once more, we can write

�2xk+1 = �2xk + �3xk (76)

with the third forward difference as the constant expression

�3xk = 6axδ
3 (77)

x0 = dx

�x0 = axδ
3 + bxδ

2 + cxδ

�2x0 = 6axδ
3 + 2bxδ

2

(78)

Once these initial values have been computed, the calculation for each successive
x-coordinate position requires only three additions.

We can apply forward-difference methods to determine positions along spline
curves of any degree n. Each successive coordinate position (x, y, z) is evaluated
with a series of 3n additions. For surfaces, the incremental calculations are applied
to both parameter u and parameter v.

Subdivision Methods
Recursive spline-subdivision procedures are used to repeatedly divide a given curve
section in half, increasing the number of control points at each step. Subdivision
methods are useful for displaying approximation spline curves since we can con-
tinue the subdivision process until the control graph approximates the curve path.
Control-point coordinates can then be plotted as curve positions. Another appli-
cation of subdivision is to generate more control points for shaping a curve. Thus,
we could design a general curve shape with a few control points, then apply a
subdivision procedure to obtain additional control points. With the added control
points, we can then make fine adjustments to small sections of the curve.

Spline subdivision is applied to a Bézier curve section most easily because
the curve begins at the first control point and ends at the last control point, the
range of parameter u is always between 0 and 1, and it is easy to determine when
the control points are “near enough” to the curve path. Bézier subdivision can be
applied to other spline representations with the following sequence of actions:

1. Convert the current spline representation to a Bézier representation.
2. Apply the Bézier subdivision algorithm.
3. Convert the Bézier representation to the original spline representation.

Figure 38 shows the first step in a recursive subdivision of a cubic Bézier
curve section. Positions along the Bézier curve are described with the parametric
point function P(u) for 0 ≤ u ≤ 1. At the first subdivision step, we use the halfway
point P(0.5) to divide the original curve into two segments. The first segment is
then described with the point function P1(s), and the second segment is described

Spline Representations

Equations 68, 74, 76, and 77 provide an incremental forward difference calculation of
points along the cubic curve. Starting at u0
values for the x coordinate and its first two forward differences are

= 0 with a constant step size , the initialδ

-

446

p2p1

Before
Subdivision

p3p0

p11
p12

p22

p21
p13 � p20

After
Subdivision

p23p10

F I G U R E 3 8
Subdividing a cubic Bézier curve section
into two segments, each with four control
points.

with P2(t), where

s = 2u, for 0.0 ≤ u ≤ 0.5
t = 2u − 1, for 0.5 ≤ u ≤ 1.0

(79)

Each of the two curve segments has the same number of control points as the
original curve. Also, the boundary conditions (position and parametric slope) at
the ends of each of the two curve segments must match the position and slope
values for the original curve function P(u). This gives us four conditions for each
curve segment that we can use to determine the control-point positions. For the
first segment, the four control points are

p1,0 = p0

p1,1 = 1
2
(p0 + p1)

p1,2 = 1
4
(p0 + 2p1 + p2)

p1,3 = 1
8
(p0 + 3p1 + 3p2 + p3)

(80)

For the second segment, we obtain the four control points

p2,0 = 1
8
(p0 + 3p1 + 3p2 + p3)

p2,1 = 1
4
(p1 + 2p2 + p3)

p2,2 = 1
2
(p2 + p3)

p2,3 = p3

(81)

An efficient order for computing the new set of control points can be set up using
only add and shift (division by 2) operations as

p1,0 = p0

p1,1 = 1
2
(p0 + p1)

T = 1
2
(p1 + p2)

p1,2 = 1
2
(p1,1 + T)

p2,3 = p3

p2,2 = 1
2
(p2 + p3)

p2,1 = 1
2
(T + p2,2)

p2,0 = 1
2
(p1,2 + p2,1)

p1,3 = p2,0

(82)

Spline Representations

447

The preceding steps can be repeated any number of times, depending on
whether we are subdividing the curve to gain more control points or trying to
locate approximate curve positions. When we are subdividing to obtain a set of
display points, we can terminate the subdivision procedure when the curve seg-
ments are small enough. One way to determine this is to check the distance from
the first control point to the last control point for each segment. If this distance is
“sufficiently” small, we can stop subdividing. Another test is to check the distances
between adjacent pairs of control points. Alternatively, we could stop subdividing
when the set of control points for each segment is nearly along a straight-line path.

Subdivision methods can be applied to Bézier curves of any degree. For a
Bézier polynomial of degree n − 1, the 2n control points for each of the initial two
curve segments are

p1,k = 1
2k

k∑

j=0

C(k, j)p j , k = 0, 1, 2, . . . , n

p2,k = 1
2n−k

n∑

j=k

C(n − k, n − j)p j

(83)

where C(k, j) and C(n − k, n − j) are the binomial coefficients.
Subdivision methods can be applied directly to nonuniform B-splines

by adding values to the knot vector. In general, however, these methods are not
as efficient as Bézier subdivision.

16 OpenGL Approximation-Spline
Functions

Both Bézier splines and B-splines can be displayed using OpenGL functions, as
well as trimming curves for spline surfaces. The core library contains the Bézier
functions, and the OpenGL Utility (GLU) has the B-spline and trimming-curve
functions. Bézier functions are often hardware implemented, and the GLU func-
tions provide a B-spline interface that accesses OpenGL point-plotting and line-
drawing routines.

OpenGL Bézier-Spline Curve Functions
We specify parameters and activate the routines for Bézier-curve display with the
OpenGL functions

glMap1* (GL_MAP1_VERTEX_3, uMin, uMax, stride, nPts, *ctrlPts);
glEnable (GL_MAP1_VERTEX_3);

We deactivate the routines with

glDisable (GL_MAP1_VERTEX_3);

A suffix code of f or d is used with glMap1 to indicate either floating-point or
double precision for the data values. Minimum and maximum values for the
curve parameter u are specified in uMin and uMax, although these values for a
Bézier curve are typically set to 0 and 1.0, respectively. The three-dimensional,
floating-point, Cartesian-coordinate values for the Bézier control points are listed
in array ctrlPts, and the number of elements in this array is given as a positive
integer using parameter nPts. Parameter stride is assigned an integer offset
that indicates the number of data values between the beginning of one coordi-
nate position in array ctrlPts and the beginning of the next coordinate posi-
tion. For a list of three-dimensional control-point positions, we set stride= 3. A

Spline Representations

448

higher value for stride would be used if we specified the control points using
four-dimensional homogeneous coordinates or intertwined the coordinate val-
ues with other data, such as color values. To express control-point positions in
four-dimensional homogeneous coordinates (x, y, z, h), we need only change the
value of stride and change the symbolic constant in glMap1 and in glEnable
to GL MAP1 VERTEX 4.

After we have set up the Bézier parameters and activated the curve-generation
routines, we need to evaluate positions along the spline path and display the
resulting curve. A coordinate position along the curve path is calculated with

glEvalCoord1* (uValue);

where parameter uValue is assigned some value in the interval from uMin to
uMax. The suffix code for this function can be either f or d, and we can also use
the suffix code v to indicate that the value for the argument is given in an array.
Function glEvalCoord1 calculates a coordinate position using Equation 22
with the parameter value

u = uvalue − umin

umax − umin
(84)

which maps the uValue to the interval from 0 to 1.0.
When glEvalCoord1 processes a value for the curve parameter u, it gener-

ates a glVertex3 function. To obtain a Bézier curve, we thus repeatedly invoke
the glEvalCoord1 function to produce a set of points along the curve path,
using selected values in the range from uMin to uMax. Joining these points with
straight-line segments, we can approximate the spline curve as a polyline.

As an example of the OpenGL Bézier-curve routines, the following code uses
the four control-point positions from the program in Section 8 to generate a
two-dimensional cubic Bézier curve. In this instance, 50 points are plotted along
the curve path, and the curve points are connected with straight-line segments.
The curve path is then displayed as a blue polyline, and the control points are
plotted as red points of size 5 (Figure 39).

F I G U R E 3 9
A set of four control points and the
associated Bézier curve, displayed with
OpenGL routines as an approximating
polyline.

Spline Representations

449

GLfloat ctrlPts [4][3] = { {-40.0, 40.0, 0.0}, {-10.0, 200.0, 0.0},
{10.0, -200.0, 0.0}, {40.0, 40.0, 0.0} };

glMap1f (GL_MAP1_VERTEX_3, 0.0, 1.0, 3, 4, *ctrlPts);
glEnable (GL_MAP1_VERTEX_3);

GLint k;

glColor3f (0.0, 0.0, 1.0); // Set line color to blue.
glBegin (GL_LINE_STRIP); // Generate Bezier "curve".

for (k = 0; k <= 50; k++)
glEvalCoord1f (GLfloat (k) / 50.0);

glEnd ();

glColor (1.0, 0.0, 0.0); // Set point color to red.
glPointSize (5.0); // Set point size to 5.0.
glBegin (GL_POINTS); // Plot control points.

for (k = 0; k < 4; k++);
glVertex3fv (&ctrlPts [k][0]);

glEnd ();

Although the previous example generated a spline curve with evenly spaced
parameter values, we can use theglEvalCoord1f function to obtain any spacing
for parameter u. Usually, however, a spline curve is generated with evenly spaced
parameter values, and OpenGL provides the following functions, which we can
use to produce a set of uniformly spaced parameter values:

glMapGrid1* (n, u1, u2);
glEvalMesh1 (mode, n1, n2);

The suffix code for glMapGrid1 can be either f or d. Parameter n specifies the
integer number of equal subdivisions over the range from u1 to u2, and param-
eters n1 and n2 specify an integer range corresponding to u1 and u2. Parameter
mode is assigned either GL POINT or GL LINE, depending on whether we want
to display the curve using discrete points (a dotted curve) or using straight-line
segments. For a curve that is to be displayed as a polyline, the output of these two
functions is the same as the output from the following code, except that the argu-
ment of glEvalCoord1 is set either to u1 or to u2 if k = 0 or k = n, respectively,
to avoid round-off error. In other words, with mode = GL LINE, the preceding
OpenGL commands are equivalent to

glBegin (GL_LINE_STRIP);
for (k = n1; k <= n2; k++)

glEvalCoord1f (u1 + k * (u2 - u1) / n);
glEnd ();

Thus, in the previous programming example, we could replace the block of code
containing the loop for generating the Bézier curve with the following statements.

glColor3f (0.0, 0.0, 1.0);
glMapGrid1f (50, 0.0, 1.0);
glEvalMesh1 (GL_LINE, 0, 50);

Spline Representations

450

Using theglMapGrid1andglEvalMesh1 functions, we can divide a curve into a
number of segments and select the parameter spacing for each segment according
to its curvature. Therefore, a segment with more oscillations could be assigned
more intervals, and a flatter section of the curve could be assigned fewer intervals.

Instead of displaying Bézier curves, we can use the glMap1 function to desig-
nate values for other kinds of data, and seven other OpenGL symbolic constants
are available for this purpose. With the symbolic constant GL MAP1 COLOR 4,
we use the array ctrlPts to specify a list of four-element (red, green, blue,
alpha) colors. Then a linearly interpolated set of colors can be generated for use
in an application, and these generated color values do not change the current
setting for the color state. Similarly, we can designate a list of values from a
color-index table with GL MAP1 INDEX, and a list of three-dimensional, surface-
normal vectors is specified in array ctrlPtswhen we use the symbolic constant
GL MAP1 NORMAL. The remaining four symbolic constants are used with lists of
surface-texture information.

Multiple glMap1 functions can be activated simultaneously, and calls to
glEvalCoord1 or to glMapGrid1 and glEvalMesh1 then produce data
points for each data type that is enabled. This allows us to generate combina-
tions of coordinate positions, color values, surface-normal vectors, and surface-
texture data. Note, however, we cannot activate GL MAP1 VERTEX 3 and
GL MAP1 VERTEX 4 simultaneously, and we can activate only one of the
surface-texture generators at any one time.

OpenGL Bézier-Spline Surface Functions
Activation and parameter specification for the OpenGL Bézier-surface routines
are accomplished with

glMap2* (GL_MAP2_VERTEX_3, uMin, uMax, uStride, nuPts,
vMin, vMax, vStride, nvPts, *ctrlPts);

glEnable (GL_MAP2_VERTEX_3);

A suffix code of f or d is used with glMap2 to indicate either floating-point or
double precision for the data values. For a surface, we specify minimum and
maximum values for both parameter u and parameter v. The three-dimensional
Cartesian coordinates for the Bézier control points are listed in the double-
subscripted arrayctrlPts, and the integer size of the array is given with parame-
tersnuPts andnvPts. If control points are to be specified using four-dimensional
homogeneous coordinates, we use the symbolic constant GL MAP2 VERTEX 4
instead of GL MAP2 VERTEX 3. The integer offset between the beginning of
coordinate values for control point p j,k and the beginning of coordinate values
for p j+1,k is given in uStride; and the integer offset between the beginning of
coordinate values for control point p j,k and the beginning of coordinate values
for p j,k+1 is given in vStride. This allows the coordinate data to be intertwined
with other data, so that we need to specify only the offsets to locate coordinate
values. We deactivate the Bézier-surface routines with

glDisable {GL_MAP2_VERTEX_3}

Coordinate positions on the Bézier surface can be calculated with

glEvalCoord2* (uValue, vValue);

or

glEvalCoord2*v (uvArray);

Spline Representations

451

Parameter uValue is assigned some value in the interval from uMin to uMax,
and parameter vValue is assigned some value in the interval from vMin to vMax.
With the vector version, uvArray = (uValue, vValue). The suffix code for either
function can be f or d. Function glEvalCoord2 calculates a coordinate position
using Equation 36 with the parameter values

u = uValue − uMin
uMax − uMin

, v = vValue − vMin
vMax − vMin

(85)

which maps each of uValue and vValue to the interval from 0 to 1.0.
To display a Bézier surface, we repeatedly invoke glEvalCoord2, which

generates a series of glVertex3 functions. This is similar to generating a spline
curve, except that we now have two parameters, u and v. For example, a surface
defined with 16 control points, arranged in a 4 × 4 grid, can be displayed as a set
of surface lines with the following code. The offset for the coordinate values in the
u direction is 3, and the offset in the v direction is 12. Each coordinate position is
specified with three values, and the y coordinate for each group of four positions
is constant.

GLfloat ctrlPts [4][4][3] = {
{ {-1.5, -1.5, 4.0}, {-0.5, -1.5, 2.0},
{-0.5, -1.5, -1.0}, { 1.5, -1.5, 2.0} },

{ {-1.5, -0.5, 1.0}, {-0.5, -0.5, 3.0},
{ 0.5, -0.5, 0.0}, { 1.5, -0.5, -1.0} },

{ {-1.5, 0.5, 4.0}, {-0.5, 0.5, 0.0},
{ 0.5, 0.5, 3.0}, { 1.5, 0.5, 4.0} },

{ {-1.5, 1.5, -2.0}, {-0.5, 1.5, -2.0},
{ 0.5, 1.5, 0.0}, { 1.5, 1.5, -1.0} }

};

glMap2f (GL_MAP2_VERTEX_3, 0.0, 1.0, 3, 4,
0.0, 1.0, 12, 4, &ctrlPts[0][0][0]);

glEnable (GL_MAP2_VERTEX_3);

GLint k, j;

glColor3f (0.0, 0.0, 1.0);
for (k = 0; k <= 8; k++)
{

glBegin (GL_LINE_STRIP); // Generate Bezier surface lines.
for (j = 0; j <= 40; j++)

glEvalCoord2f (GLfloat (j) / 40.0, GLfloat (k) / 8.0);
glEnd ();
glBegin (GL_LINE_STRIP);
for (j = 0; j <= 40; j++)

glEvalCoord2f (GLfloat (k) / 8.0, GLfloat (j) / 40.0);
glEnd ();

}

Instead of using the glEvalCoord2 function, we can generate evenly spaced
parameter values over the surface with

glMapGrid2* (nu, u1, u2, nv, v1, v2);
glEvalMesh2 (mode, nu1, nu2, nv1, nv2);

Spline Representations

452

The suffix code forglMapGrid2 is again eitherf ord, and parametermode can be
assigned the value GL POINT, GL LINE, or GL FILL. A two-dimensional grid
of points is produced, with nu equally spaced intervals between u1 and u2, and
with nv equally spaced intervals between v1 and v2. The corresponding integer
range for parameter u is nu1 to nu2, and the corresponding integer range for
parameter v is nv1 to nv2.

For a surface that is to be displayed as a grid of polylines, the output of
glMapGrid2 and glEvalMesh2 is the same as the following program sequence
except for the conditions that avoid round-off error at the beginning and end-
ing values of the loop variables. At the beginning of the loops, the argument of
glEvalCoord1 is set to (u1, v1), and at the end of the loops, the argument of
glEvalCoord1 is set to (u2, v2).

for (k = nu1; k <= nu2; k++) {
glBegin (GL_LINES);

for (j = nv1; j <= nv2; j++)
glEvalCoord2f (u1 + k * (u2 - u1) / nu,

v1 + j * (v2 - v1) / nv);
glEnd ();

}
for (j = nv1; j <= nv2; j++) {

glBegin (GL_LINES);
for (k = nu1; k <= nu2; k++)

glEvalCoord2f (u1 + k * (u2 - u1) / nu,
v1 + j * (v2 - v1) / nv);

glEnd ();
}

Similarly, for a surface displayed as a set of filled-polygon facets (mode =
GL FILL), the output of glMapGrid2 and glEvalMesh2 is the same as the
following program sequence, except for the round-off avoiding conditions for the
beginning and ending values of the loop variables:

for (k = nu1; k < nu2; k++) {
glBegin (GL_QUAD_STRIP);

for (j = nv1; j <= nv2; j ++) {
glEvalCoord2f (u1 + k * (u2 - u1) / nu,

v1 + j * (v2 - v1) / nv);
glEvalCoord2f (u1 + (k + 1) * (u2 - u1) / nu,

v1 + j * (v2 - v1) / nv);

We can use the glMap2 function to designate values for other kinds
of data, just as we did with glMap1. Similar symbolic constants, such as
GL MAP2 COLOR 4 and GL MAP2 NORMAL, are available for this purpose. And
we can activate multipleglMap2 functions to generate various data combinations.

GLU B-Spline Curve Functions
Although the GLU B-spline routines are referred to as NURBs functions, they can
be used to generate B-splines that are neither nonuniform nor rational. Thus, we

Spline Representations

453

can use these GLU routines to display a polynomial B-spline that has uniform
knot spacing. And the GLU routines can also be used to produce Bézier splines,
rational or nonrational. To generate a B-spline (or Bézier spline), we need to define
a name for the spline, activate the GLU B-spline renderer, and then define the
spline parameters.

The following statements illustrate the basic sequence of calls for displaying
a B-spline curve:

GLUnurbsObj *curveName;

curveName = gluNewNurbsRenderer ();
gluBeginCurve (curveName);

gluNurbsCurve (curveName, nknots, *knotVector, stride, *ctrlPts,
degParam, GL_MAP1_VERTEX_3);

gluEndCurve (curveName);

In the first statement, we assign a name to the curve, then we invoke the GLU
B-spline rendering routines for that curve using the gluNewNurbsRenderer
command. A value of 0 is assigned tocurveNamewhen there is not enough mem-
ory available to create a B-spline curve. Inside agluBeginCurve/gluEndCurve
pair, we next state the attributes for the curve using a gluNurbsCurve function.
This allows us to set up multiple curve sections, and each section is referenced with
a distinct curve name. ParameterknotVectordesignates the set of floating-point
knot values, and integer parameter nknots specifies the number of elements in
the knot vector. The degree of the polynomial is degParam − 1. We list the values
for the three-dimensional, control-point coordinates in array parameterctrlPts,
which contains nknots− degParam elements. And the integer offset between the
start of successive coordinate positions in array ctrlPts is specified by integer
parameterstride. If the control-point positions are contiguous (not interspersed
between other data types), the value of stride is set to 3. We eliminate a defined
B-spline with

gluDeleteNurbsRenderer (curveName);

As an example of the use of GLU routines to display a spline curve, the
following code generates a cubic, Bézier polynomial. To obtain this cubic curve,
we set the degree parameter to the value 4. We use four control points, and we
select an eight-element, open-uniform knot sequence with four repeated values
at each end.

GLfloat knotVector [8] = {0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0};
GLfloat ctrlPts [4][3] = { {-4.0, 0.0, 0.0}, {-2.0, 8.0, 0.0},

{2.0, -8.0, 0.0}, {4.0, 0.0, 0.0} };
GLUnurbsObj *cubicBezCurve;

cubicBezCurve = gluNewNurbsRenderer ();
gluBeginCurve (cubicBezCurve);

gluNurbsCurve (cubicBezCurve, 8, knotVector, 3, &ctrlPts [0][0],
4, GL_MAP1_VERTEX_3);

gluEndCurve(cubicBezCurve);

Spline Representations

454

To create a rational B-spline curve, we replace the symbolic con-
stant GL MAP1 VERTEX 3 with GL MAP1 VERTEX 4. Four-dimensional,
homogeneous coordinates (xh , yh , zh , h) are then used to specify the control points,
and the resulting homogeneous division produces the desired rational polyno-
mial form.

We can also use the gluNurbsCurve function to specify lists of color values,
normal vectors, or surface-texture properties, just as we did with the glMap1 and
glMap2 functions. Any of the symbolic constants, such as GL MAP1 COLOR 4
or GL MAP1 NORMAL, can be used as the last argument in the gluNurbsCurve
function. Each call is then listed inside the gluBeginCurve/gluEndCurve pair,
with two restrictions: We cannot list more than one function for each data type,
and we must include exactly one function to generate the B-spline curve.

A B-spline curve is divided automatically into a number of sections and dis-
played as a polyline by the GLU routines. However, a variety of B-spline rendering
options can also be selected with repeated calls to the following GLU function:

gluNurbsProperty (splineName, property, value);

Parameter splineName is assigned the name of a B-spline, parameter
hboxproperty is assigned a GLU symbolic constant that identifies the ren-
dering property that we want to set, and parameter value is assigned either
a floating-point numerical value or a GLU symbolic constant that sets the value
for the selected property. Several gluNurbsProperty functions can be specified
following the gluNewNurbsRenderer statement. Many of the properties that
can be set using the gluNurbsProperty function are surface parameters, as
described in the next section.

GLU B-Spline Surface Functions
The following statements illustrate a basic sequence of calls for generating a
B-spline surface:

GLUnurbsObj *surfName

surfName = gluNewNurbsRenderer ();
gluNurbsProperty (surfName, property1, value1);
gluNurbsProperty (surfName, property2, value2);
gluNurbsProperty (surfName, property3, value3);

.

.

.
gluBeginSurface (surfName);

gluNurbsSurface (surfName, nuKnots, uKnotVector, nvKnots,
vKnotVector, uStride, vStride, &ctrlPts [0][0][0],
uDegParam, vDegParam, GL_MAP2_VERTEX_3);

gluEndSurface (surfName);

In general, the GLU statements and parameters for defining a B-spline surface are
similar to those for a B-spline curve. After invoking the B-spline rendering routines
with gluNewNurbsRenderer, we could specify a number of optional surface-
property values. Attributes for the surface are then set with a gluNurbsSurface

Spline Representations

455

call. Multiple surfaces, each with a distinct identifying name, can be defined in
this way. A value of 0 is returned to variable surfName by the system when
there is not enough memory available to store a B-spline object. Parameters
uKnotVector and vKnotVector designate the arrays of floating-point knot
values in the parametric u and v directions. We specify the number of elements
in each knot vector with parameters nuKnots and nvKnots. The degree of the
polynomial in parameter u is given by the value of uDegParam−1, and the degree
of the polynomial in parameter v is the value of vDegParam−1. We list the floating-
point values for the three-dimensional, control-point coordinates in array param-
eter ctrlPts, which contains (nuKnots− uDegParam) × (nvKnots− vDegParam)
elements. The integer offset between the start of successive control points in the
parametric u direction is specified with integer parameter uStride, and the off-
set in the parametric v direction is specified with integer parameter vStride.
We erase a spline surface to free its allocated memory with the same function
(gluDeleteNurbsRenderer) we used for a B-spline curve.

A B-spline surface, by default, is displayed automatically as a set of poly-
gon fill areas by the GLU routines, but we can choose other display options and
parameters. Nine properties, with two or more possible values for each property,
can be set for a B-spline surface. As an example of property setting, the following
statements specify a wire-frame, triangularly tessellated display for a surface:

gluNurbsProperty (surfName, GLU_NURBS_MODE,
GLU_NURBS_TESSELLATOR);

gluNurbsProperty (surfName, GLU_DISPLAY_MODE,
GLU_OUTLINE_POLYGON};

The GLU tessellating routines divide the surface into a set of triangles and
display each triangle as a polygon outline. In addition, these triangle primi-
tives can be retrieved using the gluNurbsCallback function. Other values for
property GLU DISPLAY MODE are GLU OUTLINE PATCH and GLU FILL (the
default value). With the value GLU OUTLINE PATCH, we also obtain a wire-
frame display, but the surface is not divided into triangular sections. Instead, the
original surface is outlined, along with any trimming curves that have been spec-
ified. The only other value that can be set for the property GLU NURBS MODE is
GLU NURBS RENDERER (the default value), which renders objects without mak-
ing tessellated data available for callback.

We set the number of sampling points per unit length with the properties
GLU U STEP and GLU V STEP. The default value for each is 100. To set the u
or v sampling values, we also must set the property GLU SAMPLING METHOD
to the value GLU DOMAIN DISTANCE. Several other values can be used
with the property GLU SAMPLING METHOD to specify how surface tessel-
lation is to be carried out. Properties GLU SAMPLING TOLERANCE and
GLU PARAMETRIC TOLERANCE are used to set maximum sampling lengths.
By setting property GLU CULLING to the value GL TRUE, we can improve
rendering performance by not tessellating objects that are outside the view-
ing volume. The default value for GLU culling is GL FALSE, and the property
GLU AUTO LOAD MATRIX allows the matrices for the viewing, projection, and
viewport transformations to be downloaded from the OpenGL server when its
value isGL TRUE (the default value). Otherwise, if we set the value toGL FALSE,
an application must supply these matrices using the gluLoadSamplingMatri-
ces function.

Spline Representations

456

To determine the current value of a B-spline property, we use the following
query function:

gluGetNurbsProperty (splineName, property, value);

For a specified splineName and property, the corresponding value is returned
to parameter value.

When the property GLU AUTO LOAD MATRIX is set to the value GL FALSE,
we invoke

gluLoadSamplingMatrices (splineName, modelviewMat, projMat,
viewport);

This function specifies the modelview matrix, projection matrix, and viewport
that are to be used in the sampling and culling routines for a spline object. The
current modelview and projection matrices can be obtained with calls to the
glGetFloatv function, and the current viewport can be obtained with a call
to glGetIntegerv.

Various events associated with spline objects are processed using

gluNurbsCallback (splineName, event, fcn);

Parameter event is assigned a GLU symbolic constant, and parameter fcn
specifies a function that is to be invoked when the event corresponding to
the GLU constant is encountered. For example, if we set parameter event to
GLU NURBS ERROR, then fcn is called when an error occurs. Other events
are used by the GLU spline routines to return the OpenGL polygons generated
by the tessellation process. The symbolic constant GL NURBS BEGIN indicates
the start of a primitive such as line segments, triangles, or quadrilaterals, and
GL NURBS END indicates the end of the primitive. The function argument for the
beginning of a primitive is then a symbolic constant such as GL LINE STRIP,
GL TRIANGLES, or GL QUAD STRIP. Symbolic constant GL NURBS VERTEX
indicates that three-dimensional coordinate data are to be supplied, and a vertex
function is called. Additional constants are available for indicating other data,
such as color values.

Data values for the gluNurbsCallback function are supplied by

gluNurbsCallbackData (splineName, dataValues);

Parameter splineName is assigned the name of the spline object that is to be
tessellated, and parameter dataValues is assigned a list of data values.

GLU Surface-Trimming Functions
A set of one or more two-dimensional trimming curves is specified for a B-spline
surface with the following statements:

gluBeginTrim (surfName);
gluPwlCurve (surfName, nPts, *curvePts, stride, GLU_MAP1_TRIM_2);
.
.
.

gluEndTrim (surfName);

Spline Representations

457

F I G U R E 4 0
An outer trimming curve around the
perimeter of the unit square is specified in a
counterclockwise direction, and the inner
trimming curve sections are defined in a
clockwise direction. 0.2

0.2

0.4

0.6

0.8

1.0

0.0 0.4 0.6 0.8 1.0

Parameter surfName is the name of the B-spline surface to be trimmed. A set of
floating-point coordinates for the trimming curve is specified in array parameter
curvePts, which contains nPts coordinate positions. An integer offset between
successive coordinate positions is given in parameterstride. The specified curve
coordinates are used to generate a piecewise linear trimming function for the
B-spline surface. In other words, the generated trimming “curve” is a polyline.
If the curve points are to be given in three-dimensional, homogeneous (u, v, h)
parameter space, then the final argument in gluPwlCurve is set to the GLU
symbolic constant GLU MAP1 TRIM 3.

We can also use one or more gluNurbsCurve functions as a trimming
curve. In addition, we can construct trimming curves that are combinations of
gluPwlCurve functions and gluNurbsCurve functions. Any specified GLU
trimming “curve” must be nonintersecting, and it must be a closed curve.

The following code illustrates the GLU trimming functions for a cubic Bézier
surface. We first set the coordinate points for an outermost trimming curve. These
positions are specified in a counterclockwise direction completely around the unit
square. Next, we set the coordinate points for an innermost trimming curve in
two sections, and these positions are specified in a clockwise direction. And the
knot vectors for both the surface and the first inner trim-curve section are set up
to produce cubic Bézier curves. A plot of the inner and outer trimming curves on
the unit square is shown in Figure 40.

GLUnurbsObj *bezSurface;

GLfloat outerTrimPts [5][2] = { {0.0, 0.0}, {1.0, 0.0}, {1.0, 1.0),
{0.0, 1.0}, {0.0, 0.0} };

GLfloat innerTrimPts1 [3][2] = { {0.25, 0.5}, {0.5, 0.75},
{0.75, 0.5) };

GLfloat innerTrimPts2 [4][2] = { {0.75, 0.5}, {0.75, 0.25},
{0.25, 0.25), {0.25, 0.5} };

GLfloat surfKnots [8] = (0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0);
GLfloat trimCurveKnots [8] = (0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0);

Spline Representations

458

bezSurface = gluNewNurbsRenderer ();

gluBeginSurface (bezSurface);
gluNurbsSurface (bezSurface, 8, surfKnots, 8, surfKnots, 4 * 3, 3,

&ctrlPts [0][0][0], 4, 4, GL_MAP2_VERTEX_3);
gluBeginTrim (bezSurface);

/* Counterclockwise outer trim curve. */
gluPwlCurve (bezSurface, 5, &outerTrimPts [0][0], 2,

GLU_MAP1_TRIM_2);
gluEndTrim (bezSurface);
gluBeginTrim (bezSurface);

/* Clockwise inner trim-curve sections. */
gluPwlCurve (bezSurface, 3, &innerTrimPts1 [0][0], 2,

GLU_MAP1_TRIM_2);
gluNurbsCurve (bezSurface, 8, trimCurveKnots, 2,

&innerTrimPts2 [0][0], 4, GLU_MAP1_TRIM_2):
gluEndTrim (bezSurface);

gluEndSurface (bezSurface);

17 Summary
The most widely used methods for representing objects in CAD applications
are the spline representations, which are piecewise continuous polynomial func-
tions. A spline curve or surface is defined with a set of control points and
the boundary conditions on the spline sections. Lines connecting the sequence
of control points form the control graph, and all control points are within
the convex hull of a spline object. The boundary conditions can be specified
using parametric or geometric derivatives, and most spline representations use
parametric boundary conditions. Interpolation splines connect all control points;
approximation splines do not connect all control points. A spline surface can be
described with the tensor product of two polynomials. Cubic polynomials are
commonly used for the interpolation representations, which include the Hermite,
cardinal, and Kochanek-Bartels splines. Bézier splines provide a simple and pow-
erful approximation method for describing curved lines and surfaces, however
the polynomial degree is determined by the number of control points and local
control over curve shapes is difficult to attain. B-splines, which include Bézier
splines as a special case, are a more versatile approximation representation, but
they require the specification of a knot vector. Beta splines are generalizations of
B-splines that are specified with geometric boundary conditions. Rational splines
are formulated as the ratio of two spline representations. Rational splines can be
used to describe quadrics, and they are invariant with respect to a perspective
viewing transformation. A rational B-spline with a nonuniform knot vector is
commonly referred to as a NURB. To determine the coordinate positions along a
spline curve or surface, we can use forward-difference calculations or subdivision
methods.

The core library of OpenGL contains functions for producing Bézier splines,
and GLU functions are furnished for specifying B-splines and spline-surface trim-
ming curves. Tables 1 and 2 summarize the OpenGL spline functions dis-
cussed in this chapter.

Spline Representations

459

T A B L E 1

Summary of OpenGL Bezier Functions

Function Description

glMap1 Specifies parameters for Bézier-curve display,
color values, etc., and activate these
routines using glEnable.

glEvalCoord1 Calculates a coordinate position for
a Bézier curve.

glMapGrid1 Specifies the number of equally spaced subdivisions
between two Bézier-curve parameters.

glEvalMesh1 Specifies the display mode and integer range
for a Bézier-curve display.

glMap2 Specifies parameters for a Bézier-surface display,
color values, etc., and activate these
routines using glEnable.

glEvalCoord2 Calculates a coordinate position for
a Bézier surface.

glMapGrid2 Specifies a two-dimensional grid of equally
spaced subdivisions over a Bézier surface.

glEvalMesh2 Specifies the display mode and integer
range for the two-dimensional
Bézier-surface grid.

T A B L E 2

Summary of OpenGL B-Spline Functions

Function Description

gluNewNurbsRenderer Activates the GLU B-spline renderer for an
object name that has been defined with the
declaration GLUnurbsObj *bsplineName.

gluBeginCurve Begins the assignment of parameter values for a
specified B-spline curve with one or more sections.

gluEndCurve Signals the end of the B-spline curve parameter
specifications.

gluNurbsCurve Specifies the parameter values for a named
B-spline curve section.

gluDeleteNurbsRenderer Eliminates a specified B-spline.

gluNurbsProperty Specifies rendering options for a designated B-spline.

gluGetNurbsProperty Determines the current value of a designated
property for a particular B-spline.

Spline Representations

460

T A B L E 2

Summary of OpenGL B-Spline Functions (Continued)

Function Description

gluBeginSurface Begins the assignment of parameter values for a
specified B-spline surface with one or more sections.

gluEndSurface Signals the end of the B-spline surface parameter
specifications.

gluNurbsSurface Specifies the parameter values for a named
B-spline surface section.

gluLoadSamplingMatrices Specifies viewing and geometric transformation
matrices to be used in sampling and
culling routines for a B-spline.

gluNurbsCallback Specifies a callback function for a designated
B-spline and associated event.

gluNurbsCallbackData Specifies data values that are to be passed
to the event callback function.

gluBeginTrim Begins the assignment of trimming-curve
parameter values for a B-spline surface.

gluEndTrim Signals the end of the trimming curve
parameter specifications.

gluPwlCurve Specifies trimming-curve parameter values for a
B-spline surface.

REFERENCES
Sources of information on parametric curve and surface
representations include Bézier (1972), Barsky and Beatty
(1983), Barsky (1984), Kochanek and Bartels (1984),
Huitric and Nahas (1985), Mortenson (1985), Farin (1988),
Rogers and Adams (1990), and Piegl and Tiller (1997).

Programming techniques for various representa-
tions can be found in Glassner (1990), Arvo (1991), Kirk
(1992), Heckbert (1994), and Paeth (1995). Additional
programming examples for the OpenGL Bézier-spline,
B-spline, and trimming-curve functions can be found in
Woo, et al. (1999). And a complete listing of the OpenGL
functions in the core library and in GLU is presented in
Shreiner (2000).

EXERCISES
1 Write a routine to display a two-dimensional

cardinal-spline curve, given an input set of con-
trol points in the xy plane.

2 Write a program using the routine developed
in the previous exercise to display a two-

dimensional cardinal spline curve in the xy plane
along with the control points used to generate
the curve. The curve should be drawn in black
(on a white background) and the control points
should be drawn in blue. Additionally, allow the
user to modify the control points via keyboard
input. The user should be able to cycle through
the control points and move each one around in
the xy plane. The currently selected control point
should be drawn in red. The curve should be
redrawn each time a control point is moved.

3 Write a routine to display a two-dimensional
Kochanek-Bartels curve, given an input set of con-
trol points in the xy plane.

4 Write a program using the routine developed in
the previous exercise similar to the program in
Exercise 2. Control points should be drawn
in addition to the curve on a white background
and the user should be able to edit the control
points in the same manner. The curve should be
redrawn each time a control point is moved.

Spline Representations

461

5 What are the Bézier-curve blending functions for
three control points specified in the xy plane?
Plot each function and identify the minimum and
maximum blending-function values.

6 What are the Bézier-curve blending functions for
five control points specified in the xy plane? Plot
each function and identify the minimum and
maximum blending-function values.

7 Modify the program example in Section 8
play any cubic Bézier curve, given a set of four
input control points in the xy plane.

8 Modify the program example in Section 8
play a Bézier curve of degree n − 1, given a set of
n input control points in the xy plane.

9 Complete the OpenGL programming example in
Section
a set of four input control points in the xy plane.

10 Modify the program in the previous exercise to
allow the user to edit the control points using
keyboard input as in Exercise 2. The currently
selected control point should be drawn in red, and
the others in blue. The curve should be drawn in
black and redrawn each time a control point is
moved.

11 Modify the OpenGL program example in Sec-
tion
given a set of four input control points in xyz
space. Use an orthogonal projection to display the
curve, with the viewing parameters specified as
input.

12 Write a routine that can be used to design
two-dimensional Bézier curve shapes that have
first-order piecewise continuity. The number and
position of the control points for each section of
the curve are to be specified as input.

13 Use the routine developed in the previous exer-
cise to allow the user to edit the control points us-
ing keyboard input as in Exercise 2. Controls
points should be displayed in the same manner.

14 Write a routine that can be used to design
two-dimensional Bézier curve shapes that have
second-order piecewise continuity. The number
and position of the control points for each section
of the curve are to be specified as input.

15 Use the routine developed in the previous exer-
cise to allow the user to edit the control points
using keyboard input as in Exercise 2. Controls
points should be displayed in the same manner.

16 Modify the program example in Section 8
play any cubic Bézier curve, given a set of four
input control points in the xy plane, using the sub-
division method to calculate curve points.

17 Modify the program example in Sectio dis-
play any cubic Bézier curve, given a set of four

input control points in the xy plane, using for-
ward differences to calculate curve points.

18 What are the blending functions for a two-
dimensional, uniform, periodic B-spline curve
with d = 5?

19 What are the blending functions for a two-
dimensional, uniform, periodic B-spline curve
with d = 6?

20 Modify the programming example in Section
to display a two-dimensional, uniform, periodic
B-spline curve, given an input set of control
points, using forward differences to calculate
positions along the curve path.

21 Modify the program in the previous example to
display the B-spline curve using OpenGL func-
tions.

22 Modify the program in the previous exercise to
allow the user to edit the control points using key-
board input as in Exercise 2. Controls points
should be displayed in the same manner.

23 Write a routine to display any specified conic in
the xy plane using a rational Bézier-spline repre-
sentation.

24 Write a routine to display any specified conic in
the xy plane using a rational B-spline representa-
tion.

25 Develop an algorithm for calculating the normal
vector to a Bézier surface at a given point P(u, v).

26 Derive expressions for calculating the forward
differences for a given quadratic curve.

27 Derive expressions for calculating the forward
differences for a given cubic curve.

IN MORE DEPTH
1 In this chapter’s exercises, you will experiment

with creating and displaying three-dimensional
spline surfaces to represent some of the more com-
plex curved objects in your application. Choose
some objects that fit this category in your scene
and sketch out either a Bézier spline or B-spline
representation of their surfaces using the methods
discussed in the chapter. Once you have chosen
a representation, use the OpenGL functions for
displaying spline surfaces to render the objects
in the scene using the default resolution of eval-
uation points (or a reasonable one, in the case of
Bézier surfaces). Then, use the visual rendering of
the objects to adjust the spline model to improve
the visual accuracy of the objects. Use trimming
curves where appropriate to produce the right
object shapes.

2

Spline Representations

 to dis-

 to dis-

8 to display any cubic Bézier curve, given

8 to display any spatial cubic Bézier curve,

 to dis-

n 8 to
Experiment with varying the resolution of
the polygon meshes that serve as the
approximations to the spline surfaces that

10

462

you defined in the previous exercise. For Bézier
surfaces, choose a minimum number of evalua-
tion points in each dimension at which the rep-
resentation of the objects is minimally acceptable
as far as visual appearance goes. Do the same for
any B-spline representations, varying the number
of sampling points instead. Using this as a base-
line, render the scene from the previous exercise
several times, each time increasing the number
of evaluation or sampling points that define the

mesh approximations of the objects by some fixed
amount. For each setting of resolution, record the
amount of time that it takes to render the scene
using shaded fill areas to render the objects. Con-
tinue doing this until the resolution produces lit-
tle or no noticeable difference in approximation
quality. Then, make a plot of rendering time as a
function of resolution and discuss the properties
of the plot. Is there an ideal setting for each object
that balances visual quality with performance?

Spline Representations

463

This page intentionally left blank

Visible-Surface Detection Methods

1 Classification of Visible-Surface
Detection Algorithms

2 Back-Face Detection

3 Depth-Buffer Method

4 A-Buffer Method

5 Scan-Line Method

6 Depth-Sorting Method

7 BSP-Tree Method

8 Area-Subdivision Method

9 Octree Methods

10 Ray-Casting Method

11 Comparison of Visibility-Detection
Methods

12 Curved Surfaces

13 Wire-Frame Visibility Methods

14 OpenGL Visibility-Detection
Functions

15 Summary A major consideration in the generation of realistic graphics

displays is determining what is visible within a scene from a

chosen viewing position. There are a number of approaches

we can take to accomplish this, and numerous algorithms have been

devised for efficient identification and display of visible objects for

different types of applications. Some methods require more memory,

some involve more processing time, and some apply only to special

types of objects. Which method we select for a particular application

can depend on such factors as the complexity of the scene, type of

objects to be displayed, available equipment, and whether static or

animated displays are to be generated. The various algorithms are

referred to as visible-surface detection methods. Sometimes these

methods are also referred to as hidden-surface elimination meth-

ods, although there can be subtle differences between identifying

visible surfaces and eliminating hidden surfaces. With a wire-frame

display, for example, we may not want to eliminate the hidden sur-

faces, but rather to display them with dashed boundaries or in some

other way to retain information about their shape.

From Chapter of Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson

16

465

1 Classification of Visible-Surface
Detection Algorithms

We can broadly classify visible-surface detection algorithms according to whether
they deal with the object definitions or with their projected images. These two
approaches are called object-space methods and image-space methods, respec-
tively. An object-space method compares objects and parts of objects to each other
within the scene definition to determine which surfaces, as a whole, we should
label as visible. In an image-space algorithm, visibility is decided point by point
at each pixel position on the projection plane. Most visible-surface algorithms use
image-space methods, although object-space methods can be used effectively to
locate visible surfaces in some cases. Line-display algorithms, for instance, gener-
ally use object-space methods to identify visible lines in wire-frame displays, but
many image-space visible-surface algorithms can be adapted easily to visible-line
detection.

Although there are major differences in the basic approaches taken by the vari-
ous visible-surface detection algorithms, most use sorting and coherence methods
to improve performance. Sorting is used to facilitate depth comparisons by order-
ing the individual surfaces in a scene according to their distance from the view
plane. Coherence methods are used to take advantage of regularities in a scene.
An individual scan line can be expected to contain intervals (runs) of constant
pixel intensities, and scan-line patterns often change little from one line to the
next. Animation frames contain changes only in the vicinity of moving objects.
And constant relationships can often be established between the objects in a scene.

2 Back-Face Detection
A fast and simple object-space method for locating the back faces of a polyhedron

Ax + By + Cz + D < 0 (1)

where A, B, C , and D are the plane parameters for the polygon. When this position
is along the line of sight to the surface, we must be looking at the back of the
polygon. Therefore, we could use the viewing position to test for back faces.

We can simplify the back-face test by considering the direction of the normal
vector N for a polygon surface. If Vview is a vector in the viewing direction from
our camera position, as shown in Figure 1, then a polygon is a back face if

Vview ·N > 0 (2)

Furthermore, if object descriptions have been converted to projection coordinates
and our viewing direction is parallel to the viewing zv axis, then we need to
consider only the z component of the normal vector N.

In a right-handed viewing system with the viewing direction along the neg-
ative zv axis (Figure 2), a polygon is a back face if the z component, C , of its
normal vector N satisfies C < 0. Also, we cannot see any face whose normal has
z component C = 0, because our viewing direction is grazing that polygon. Thus,
in general, we can label any polygon as a back face if its normal vector has a z
component value that satisfies the inequality

C ≤ 0 (3)

is based on front-back tests. A point (x, y, z) is behind a polygon surface if

Visible-Surface Detection Methods

466

Vview

N � (A, B, C)

F I G U R E 1
A surface normal vector N and the viewing-direction
vector Vview.

Vview

yv

xv

zv

N � (A, B, C)

F I G U R E 2
A polygon surface with plane parameter C < 0 in a
right-handed viewing coordinate system is identified as
a back face when the viewing direction is along the
negative zv axis.

Similar methods can be used in packages that employ a left-handed viewing
system. In these packages, plane parameters A, B, C , and D can be calculated
from polygon vertex coordinates specified in a clockwise direction (instead of the
counterclockwise direction used in a right-handed system). Inequality 1 then
remains a valid test for points behind the polygon. Also, back faces have normal
vectors that point away from the viewing position and are identified by C ≥ 0
when the viewing direction is along the positive zv axis.

By examining parameter C for the different plane surfaces describing an
object, we can immediately identify all the back faces. For a single convex polyhe-
dron, such as the pyramid in Figure 2, this test identifies all the hidden surfaces
in the scene, because each surface is either completely visible or completely hid-
den. Also, if a scene contains only nonoverlapping convex polyhedra, then again
all hidden surfaces are identified with the back-face method.

F I G U R E 3
View of a concave polyhedron with
one face partially hidden by other
faces of the object.

For other objects, such as the concave polyhedron in Figure 3, more tests
must be carried out to determine whether there are additional faces that are totally
or partially obscured by other faces. A general scene can be expected to contain
overlapping objects along the line of sight, and we then need to determine where
the obscured objects are partly or completely hidden by other objects. In general,
back-face removal can be expected to eliminate about half of the polygon surfaces
in a scene from further visibility tests.

3 Depth-Buffer Method
A commonly used image-space approach for detecting visible surfaces is the
depth-buffer method, which compares surface depth values throughout a scene
for each pixel position on the projection plane. Each surface of a scene is processed
separately, one pixel position at a time, across the surface. The algorithm is usually
applied to scenes containing only polygon surfaces, because depth values can
be computed very quickly and the method is easy to implement. But we could
also apply the same procedures to nonplanar surfaces. This visibility-detection
approach is also frequently alluded to as the z-buffer method, because object depth is
usually measured along the z axis of a viewing system. However, rather than using
actual z coordinates within the scene, depth-buffer algorithms often compute a
distance from the view plane along the z axis.

Figure 4 shows three surfaces at varying distances along the orthographic
projection line from position (x, y) on a view plane. These surfaces can be pro-
cessed in any order. As each surface is processed, its depth from the view plane is
compared to previously processed surfaces. If a surface is closer than any previ-
ously processed surfaces, its surface color is calculated and saved, along with its

Visible-Surface Detection Methods

467

F I G U R E 4
Three surfaces overlapping pixel
position (x , y) on the view plane. The
visible surface, S1, has the smallest
depth value.

S3

S2

S1

yv

xv

zv

(x, y)

View Plane

depth. The visible surfaces in a scene are represented by the set of surface colors
that have been saved after all surface processing is completed. Implementation
of the depth-buffer algorithm is typically carried out in normalized coordinates,
so that depth values range from 0 at the near clipping plane (the view plane) to
1.0 at the far clipping plane.

As implied by the name of this method, two buffer areas are required. A
depth buffer is used to store depth values for each (x, y) position as surfaces
are processed, and the frame buffer stores the surface-color values for each pixel
position. Initially, all positions in the depth buffer are set to 1.0 (maximum depth),
and the frame buffer (refresh buffer) is initialized to the background color. Each
surface listed in the polygon tables is then processed, one scan line at a time, by
calculating the depth value at each (x, y) pixel position. This calculated depth is
compared to the value previously stored in the depth buffer for that pixel position.
If the calculated depth is less than the value stored in the depth buffer, the new
depth value is stored. Then the surface color at that position is computed and
placed in the corresponding pixel location in the frame buffer.

The depth-buffer processing steps are summarized in the following algorithm.
This algorithm assumes that depth values are normalized on the range from 0.0 to
1.0 with the view plane at depth = 0 and the farthest depth = 1. We can also apply
this algorithm for any other depth range, and some graphics packages allow the
user to specify the depth range over which the depth-buffer algorithm is to be
applied. Within the algorithm, the variable z represents the depth of the polygon
(that is, its distance from the view plane along the negative z axis).

Depth-Buffer Algorithm

1. Initialize the depth buffer and frame buffer so that for all buffer posi-
tions (x, y),

depthBuff (x, y) = 1.0, frameBuff (x, y) = backgndColor

Visible-Surface Detection Methods

468

2. Process each polygon in a scene, one at a time, as follows:

• For each projected (x, y) pixel position of a polygon, calculate the
depth z (if not already known).

• If z < depthBuff (x, y), compute the surface color at that
position and set

depthBuff (x, y) = z, frameBuff (x, y) = surfColor (x, y)

After all surfaces have been processed, the depth buffer contains depth
values for the visible surfaces and the frame buffer contains the corre-
sponding color values for those surfaces.

Given the depth values for the vertex positions of any polygon in a scene, we
can calculate the depth at any other point on the plane containing the polygon.
At surface position (x, y), the depth is calculated from the plane equation as

z = −Ax − By − D
C

(4)

For any scan line (Figure 5), adjacent horizontal x positions across the line differ
by ±1, and vertical y values on adjacent scan lines differ by ±1. If the depth of
position (x, y) has been determined to be z, then the depth z′ of the next position
(x + 1, y) along the scan line is obtained from Eq. 4 as

z′ = −A(x + 1) − By − D
C

(5)

or

z′ = z − A
C

(6)

The ratio −A/C is constant for each surface, so succeeding depth values across a
scan line are obtained from preceding values with a single addition.

y
y � 1

x x � 1

F I G U R E 5
From position (x , y) on a scan line,
the next position across the line has
coordinates (x + 1, y) , and the
position immediately below on the
next line has coordinates (x , y − 1) .

Processing pixel positions from left to right across each scan line, we start
by calculating the depth on a left polygon edge that intersects that scan line
(Figure 6). For each successive position across the scan line, we then calculate
the depth value using Eq. 6.

We can implement the depth-buffer algorithm by starting at a top vertex of
the polygon. Then, we could recursively calculate the x-coordinate values down
a left edge of the polygon. The x value for the beginning position on each scan line
can be calculated from the beginning (edge) x value of the previous scan line as

x′ = x − 1
m

left-edge
intersection

top scan line

bottom scan line

y scan line

F I G U R E 6
Scan lines intersecting a polygon
surface.

Visible-Surface Detection Methods

469

F I G U R E 7
Intersection positions on successive
scan lines along a left polygon edge.

y scan line
y – 1 scan line

x x�

where m is the slope of the edge (Figure 7). Depth values down this edge are
obtained recursively as

z′ = z + A/m + B
C

(7)

If we are processing down a vertical edge, the slope is infinite and the recursive
calculations reduce to

z′ = z + B
C

One slight complication with this approach is that while pixel positions are
at integer (x, y) coordinates, the actual point of intersection of a scan line with
the edge of a polygon may not be. As a result, it may be necessary to adjust
the intersection point by rounding its fractional part up or down, as is done in
scan-line polygon fill algorithms.

An alternative approach is to use a midpoint method or Bresenham-type
algorithm for determining the starting x values along edges for each scan line.
The method can be applied to curved surfaces by determining depth and color
values at each surface projection point.

For polygon surfaces, the depth-buffer method is very easy to implement, and
it requires no sorting of the surfaces in a scene. But it does require the availability
of a second buffer in addition to the refresh buffer. A system with a resolution of
1280 × 1024, for example, would require over 1.3 million positions in the depth
buffer, with each position containing enough bits to represent the number of
depth increments needed. One way to reduce storage requirements is to process
one section of the scene at a time, using a smaller depth buffer. After each view
section is processed, the buffer is reused for the next section.

In addition, the basic depth-buffer algorithm often performs needless calcula-
tions. Objects are processed in an arbitrary order, so that a color can be computed
for a surface point that is later replaced by a closer surface. To alleviate this prob-
lem, some graphics packages provide options that allow a user to adjust the depth
range for surface testing. This allows distant objects, for example, to be excluded
from the depth tests. Using this option, we could even exclude objects that are
very close to the projection plane. Hardware implementations of the depth-buffer
algorithm are typically an integral component of sophisticated computer-graphics
systems.

4 A-Buffer Method
An extension of the depth-buffer ideas is the A-buffer procedure (at the other
end of the alphabet from “z-buffer,” where z represents depth). This depth-buffer
extension is an antialiasing, area-averaging, visibility-detection method devel-
oped at Lucasfilm Studios for inclusion in the surface-rendering system called

Visible-Surface Detection Methods

470

foreground
transparent
surface

background
opaque
surface

F I G U R E 8
Viewing an opaque surface through a
transparent surface requires multiple color inputs
and the application of color-blending operations.

REYES (an acronym for “Renders Everything You Ever Saw”). The buffer region
for this procedure is referred to as the accumulation buffer, because it is used to
store a variety of surface data, in addition to depth values.

A drawback of the depth-buffer method is that it identifies only one visible
surface at each pixel position. In other words, it deals only with opaque surfaces
and cannot accumulate color values for more than one surface, as is necessary
if transparent surfaces are to be displayed (Figure 8). The A-buffer method
expands the depth-buffer algorithm so that each position in the buffer can ref-
erence a linked list of surfaces. This allows a pixel color to be computed as a
combination of different surface colors for transparency or antialiasing effects.

Each position in the A-buffer has two fields:

• Depth field: Stores a real-number value (positive, negative, or zero).
• Surface data field: Stores surface data or a pointer.

If the depth field is nonnegative, the number stored at that position is the depth of
a surface that overlaps the corresponding pixel area. The surface data field then
stores various surface information, such as the surface color for that position and
the percent of pixel coverage, as illustrated in Figure 9(a). If the depth field for
a position in the A-buffer is negative, this indicates multiple-surface contributions
to the pixel color. The color field then stores a pointer to a linked list of surface
data, as in Figure 9(b). Surface information in the A-buffer includes

• RGB intensity components
• Opacity parameter (percent of transparency)
• Depth
• Percent of area coverage
• Surface identifier
• Other surface-rendering parameters

The A-buffer visibility-detection scheme can be implemented using meth-
ods similar to those in the depth-buffer algorithm. Scan lines are processed to

depth � 0 RGB and
other info

depth � 0 Surf1
info

Surf 2
info

(a)

(b)

���

F I G U R E 9
Two possible organizations for surface information in an A-buffer representation for a pixel position.
When a single surface overlaps the pixel, the surface depth, color, and other information are stored
as in (a). When more than one surface overlaps the pixel, a linked list of surface data is stored
as in (b).

Visible-Surface Detection Methods

471

determine how much of each surface covers each pixel position across the indi-
vidual scan lines. Surfaces are subdivided into a polygon mesh and clipped against
the pixel boundaries. Using the opacity factors and percent of surface coverage,
the rendering algorithms calculate the color for each pixel as an average of the
contributions from the overlapping surfaces.

5 Scan-Line Method
This image-space method for identifying visible surfaces computes and compares
depth values along the various scan lines for a scene. As each scan line is processed,
all polygon surface projections intersecting that line are examined to determine
which are visible. Across each scan line, depth calculations are performed to
determine which surface is nearest to the view plane at each pixel position. When
the visible surface has been determined for a pixel, the surface color for that
position is entered into the frame buffer.

“on” or “off” to indicate whether a position along a scan line is inside or outside
the surface. Pixel positions across each scan line are processed from left to right.
At the left intersection with the surface projection of a convex polygon, the surface
flag is turned on; at the right intersection point along the scan line, it is turned
off. For a concave polygon, scan-line intersections can be sorted from left to right,
with the surface flag set to “on” between each intersection pair.

Figure 10 illustrates the scan-line method for locating visible portions of
surfaces for pixel positions along a scan line. The active list for scan line 1 contains
information from the edge table for edges AB, BC, EH, and FG. For positions along
this scan line between edges AB and BC, only the flag for surface S1 is on. Therefore,
no depth calculations are necessary, and color values are calculated from the
surface properties and lighting conditions for surface S1. Similarly, between edges

F I G U R E 1 0
Scan lines crossing the view-plane
projection of two surfaces, S1 and S2.
Dashed lines indicate the boundaries
of hidden surface sections.

Scan Line 2

Scan Line 1

Scan Line 3

yv

xv

A

H

D

C

F
E

G

B

S1 S2

Surfaces are processed using the information stored in the polygon tables.
The edge table contains coordinate endpoints for each line in the scene, the
inverse slope of each line, and pointers into the surface-facet table to identify the
surfaces bounded by each line. The surface-facet table contains the plane coeffi-
cients, surface material properties, other surface data, and possibly pointers into
the edge table. To facilitate the search for surfaces crossing a given scan line,
an active list of edges is formed for each scan line as it is processed. The active
edge list contains only those edges that cross the current scan line, sorted in order
of increasing x. In addition, we define a flag for each surface that is set to

Visible-Surface Detection Methods

472

Subdividing
Line

(b) (c)

Subdividing
Line

Subdividing
Line

(a)

F I G U R E 1 1
Intersecting and cyclically overlapping surfaces that alternately obscure one another.

EH and FG, only the flag for surface S2 is on. No other positions along scan line
1 intersect surfaces, so the color for those pixels is the background color, which
could be loaded into the frame buffer as part of the initialization routine.

For scan lines 2 and 3 in Figure 10, the active edge list contains edges AD,
EH, BC, and FG. Along scan line 2 from edge AD to edge EH, only the flag for
surface S1 is on. But between edges EH and BC, the flags for both surfaces are on.
Therefore, a depth calculation is necessary, using the plane coefficients for the two
surfaces, when we encounter edge EH. For this example, the depth of surface S1
is assumed to be less than that of S2, so the color values for surface S1 are assigned
to the pixels across the scan line until boundary BC is encountered. Then the
surface flag for S1 goes off, and the colors for surface S2 are stored up to edge
FG. No other depth calculations are necessary, because we assume that surface S2
remains behind S1 once we have determined the depth relationship at edge EH.

We can take advantage of coherence along the scan lines as we pass from
one scan line to the next. In Figure 10, scan line 3 has the same active list
of edges as scan line 2. No changes have occurred in line intersections, so it is
again unnecessary to make depth calculations between edges EH and BC. The
two surfaces must be in the same orientation as determined on scan line 2, so the
colors for surface S1 can be entered without further depth calculations.

Any number of overlapping polygon surfaces can be processed with this scan-
line method. Flags for the surfaces are set to indicate whether a position is inside
or outside, and depth calculations are performed only at the edges of overlapping
surfaces. This procedure works correctly only if surfaces do not cut through or
otherwise cyclically overlap each other (Figure 11). If any kind of cyclic overlap
is present in a scene, we can divide the surfaces to eliminate the overlaps. The
dashed lines in this figure indicate where planes could be subdivided to form two
distinct surfaces, so that the cyclic overlaps are eliminated.

6 Depth-Sorting Method
Using both image-space and object-space operations, the depth-sorting method
performs the following basic functions:

1. Surfaces are sorted in order of decreasing depth.
2. Surfaces are scan-converted in order, starting with the surface of greatest

depth.

Visible-Surface Detection Methods

473

F I G U R E 1 2
Two surfaces with no depth overlap. zv

xv

zmax

zmin

z�max

z�min

S

S�

Sorting operations are carried out in both image and object space, and the scan
conversion of the polygon surfaces is performed in image space.

This visibility-detection method is often referred to as the painter’s algorithm.
In creating an oil painting, an artist first paints the background colors. Next, the
most distant objects are added, then the nearer objects, and so forth. At the final
step, the foreground is painted on the canvas over the background and the more
distant objects. Each color layer covers up the previous layer. Using a similar
technique, we first sort surfaces according to their distance from the view plane.
The color values for the farthest surface can then be entered into the refresh buffer.
Taking each succeeding surface in turn (in decreasing depth order), we “paint”
the surface onto the frame buffer over the colors of the previously processed
surfaces.

Painting polygon surfaces into the frame buffer according to depth is carried
out in several steps. Assuming we are viewing along the z direction, surfaces are
ordered on the first pass according to the smallest z value on each surface. The
surface S at the end of the list (with the greatest depth) is then compared to the
other surfaces in the list to determine whether there are any depth overlaps. If
no depth overlaps occur, S is the most distant surface and it is scan-converted.
Figure 12 shows two surfaces that overlap in the xy plane but have no depth
overlap. This process is then repeated for the next surface in the list. So long as
no overlaps occur, each surface is processed in depth order until all have been
scan-converted. If a depth overlap is detected at any point in the list, we need
to make some additional comparisons to determine whether any of the surfaces
should be reordered.

We make the following tests for each surface that has a depth overlap with S.
If any one of these tests is true, no reordering is necessary for S and the surface
being tested. The tests are listed in order of increasing difficulty:

1. The bounding rectangles (coordinate extents) in the xy directions for the
two surfaces do not overlap.

2. Surface S is completely behind the overlapping surface relative to the
viewing position.

3. The overlapping surface is completely in front of S relative to the viewing
position.

4. The boundary-edge projections of the two surfaces onto the view plane
do not overlap.

We perform these tests in the order listed and proceed to the next overlapping
surface as soon as we find that one of the tests is true. If all the overlapping surfaces

Visible-Surface Detection Methods

474

xv

zv

xmaxxmin x�maxx�min

S�

S

F I G U R E 1 3
Two surfaces with depth overlap but
no overlap in the x direction.

xv

zv

S�

S

F I G U R E 1 4
Surface S is completely behind the
overlapping surface S ′.

xv

zv

S�

S

F I G U R E 1 5
Overlapping surface S ′ is completely
in front of surface S , but S is not
completely behind S ′.

(a) (b)

F I G U R E 1 6
Two polygon surfaces with overlapping bounding rectangles in the x y plane.

pass at least one of these tests, then S is the most distant surface. No reordering
is then necessary, therefore, and S is scan-converted.

Test 1 is performed in two parts. We check for overlap first in the x direction,
then in the y direction. If there is no surface overlap in either of these directions,
the two planes cannot obscure one other. An example of two surfaces that overlap
in the z direction but not in the x direction is shown in Figure 13.

We can perform tests 2 and 3 using back-front polygon tests. That is, we
substitute the coordinates for all vertices of S into the plane equation for the
overlapping surface and check the sign of the result. If the plane equations are set
up so that the front of the surface is toward the viewing position, then S is behind
S′ if all vertices of S are in back of S′ (Figure 14). Similarly, S ′ is completely
ahead of S if all vertices of S are in front of S′ . Figure 15 shows an overlapping
surface S′ that is completely in front of S, but surface S is not completely behind
S′ (test 2 is not true).

If tests 1 through 3 have all failed, we perform test 4 to determine whether the
two surface projections overlap. As demonstrated in Figure 16, two surfaces
may or may not intersect even though their coordinate extents overlap.

xv
zv

S�
S

F I G U R E 1 7
Surface S extends to a greater depth,
but it obscures surface S ′.

xv

zv

S�
S	

S

F I G U R E 1 8
Three surfaces that have been entered
into the sorted surface list in the order
S , S ′, S ′′ should be reordered as
S ′, S ′′, S .

Should all four tests fail for an overlapping surface S′, we interchange surfaces
S and S′ in the sorted list. An example of two surfaces that would be reordered
with this procedure is given in Figure 17. At this point, we still do not know for
certain that we have found the farthest surface from the view plane. Figure 18
illustrates a situation in which we would first interchange S and S′′. However, S′′

obscures part of S′, so we need to interchange S′′ and S′ to get the three surfaces

Visible-Surface Detection Methods

475

into the correct depth order. Therefore, we need to repeat the testing process for
each surface that is reordered in the list.

It is possible for the algorithm just outlined to get into an infinite loop if two
or more surfaces alternately obscure each other, as in Figure 11. In such situa-
tions, the algorithm would continually rearrange the ordering of the overlapping
surfaces. To avoid such loops, we can flag any surface that has been reordered to
a farther depth position so that it cannot be moved again. If an attempt is made
to switch the surface a second time, we divide it into two parts to eliminate the
cyclic overlap. The original surface is then replaced by the two new surfaces, and
we continue processing as before.

7 BSP-Tree Method
A binary space-partitioning (BSP) tree is an efficient method for determining
object visibility by painting surfaces into the frame buffer from back to front,
as in the painter’s algorithm. The BSP tree is particularly useful when the view
reference point changes, but the objects in a scene are at fixed positions.

Applying a BSP tree to visibility testing involves identifying surfaces that are
behind or in front of the partitioning plane at each step of the space subdivision,
relative to the viewing direction. Figure 19 illustrates the basic concept in this
algorithm. With plane P1, we first partition the space into two sets of objects.
One set of objects is in back of plane P1 relative to the viewing direction, and
the other set is in front of P1. Because one object is intersected by plane P1, we
divide that object into two separate objects, labeled A and B. Objects A and C are
in front of P1, and objects B and D are behind P1. Because each object list contains
more than one object, we partition the space again with plane P2, recursively

F I G U R E 1 9
A region of space (a) is partitioned with two planes P1
and P2 to form the BSP tree representation shown
in (b).

(a)

(b)

P2
P1

C

D

A

Bfront

back

back

front

P2 P2

P1

front back

front

A C

back front

B D

back

Visible-Surface Detection Methods

476

processing the front and back object lists. This process continues until all object
lists contain no more than one object. This partitioning can be easily represented
using a binary tree such as the one shown in Figure 19(b). In this tree, the objects
are represented as terminal nodes, with front objects occupying the left branches
and back objects occupying the right branches. The location of an object in the
tree exactly represents its position relative to each of the partitioning planes.

For objects described with polygon facets, we often choose the partitioning
planes to coincide with polygon-surface planes. The polygon equations are then
used to identify back and front polygons, and the tree is constructed with one par-
titioning plane for each polygon face. Any polygon intersected by a partitioning
plane is split into two parts.

When the BSP tree is complete, we interpret the tree relative to the posi-
tion of our viewpoint, beginning at the root node. If the viewpoint is in front of
that partitioning plane, we recursively process the back subtree, then recursively
process the front subtree. If the viewpoint is behind the partitioning plane, we
reverse this, and process the front subtree followed by the back subtree. Thus, the
surfaces are generated for display in the order back to front, so that foreground
objects are painted over the background objects. Fast hardware implementations
for constructing and processing BSP trees are used in some systems.

8 Area-Subdivision Method
This technique for hidden-surface removal is essentially an image-space method,
but object-space operations can be used to accomplish depth ordering of surfaces.
The area-subdivision method takes advantage of area coherence in a scene by
locating those projection areas that represent part of a single surface. We apply
this method by successively dividing the total view-plane area into smaller and
smaller rectangles until each rectangular area contains the projection of part of a
single visible surface, contains no surface projections, or the area has been reduced
to the size of a pixel.

To implement this method, we need to establish tests that can quickly identify
the area as part of a single surface or tell us that the area is too complex to analyze
easily. Starting with the total view, we apply the tests to determine whether we
should subdivide the total area into smaller rectangles. If the tests indicate that
the view is sufficiently complex, we subdivide it. Next, we apply the tests to each
of the smaller areas, subdividing these if the tests indicate that visibility of a single
surface is still uncertain. We continue this process until the subdivisions are easily
analyzed as belonging to a single surface or until we have reached the resolution
limit. An easy way to do this is to successively divide the area into four equal
parts at each step, as shown in Figure 20. This approach is similar to that used
in constructing a quadtree. A viewing area with a pixel resolution of 1024 × 1024
could be subdivided ten times in this way before a subarea is reduced to the size
of a single pixel.

F I G U R E 2 0
Dividing a square area into equal-sized
quadrants at each step.

There are four possible relationships that a surface can have with an area of
the subdivided view plane. We can describe these relative surface positions using
the following classifications (Figure 21).

Surrounding Surface: A surface that completely encloses the area.
Overlapping Surface: A surface that is partly inside and partly outside the

area.
Inside Surface: A surface that is completely inside the area.
Outside Surface: A surface that is completely outside the area.

Visible-Surface Detection Methods

477

F I G U R E 2 1
Possible relationships between
polygon surfaces and a rectangular
section of the viewing plane.

Surrounding
Surface

Overlapping
Surface

Inside
Surface

Outside
Surface

The tests for determining surface visibility within a rectangular area can be
stated in terms of the four surface classifications illustrated in Figure 21. No fur-
ther subdivisions of a specified area are needed if one of the following conditions
is true.

Condition 1: An area has no inside, overlapping, or surrounding surfaces
(all surfaces are outside the area).

Condition 2: An area has only one inside, overlapping, or surrounding
surface.

Condition 3: An area has one surrounding surface that obscures all other
surfaces within the area boundaries.

Initially, we can compare the coordinate extents of each surface with the area
boundaries. This will identify the inside and surrounding surfaces, but overlap-
ping and outside surfaces usually require intersection tests. If a single bounding
rectangle intersects the area in some way, additional checks are used to determine
whether the surface is surrounding, overlapping, or outside. Once a single inside,
overlapping, or surrounding surface has been identified, the surface color values
are stored in the frame buffer.

One method for testing condition 3 is to sort the surfaces according to mini-
mum depth from the view plane. For each surrounding surface, we then compute
the maximum depth within the area under consideration. If the maximum depth
of one of these surrounding surfaces is closer to the view plane than the minimum
depth of all other surfaces within the area, condition 3 is satisfied. Figure 22
illustrates this situation.

(Surrounding
Surface)

Area
xv

zmax

zv

F I G U R E 2 2
Within a specified area, a surrounding
surface with a maximum depth of
zmax obscures all surfaces that have a
minimum depth beyond zmax.

Another method for testing condition 3 that does not require depth sorting
is to use plane equations to calculate depth values at the four vertices of the area
for all surrounding, overlapping, and inside surfaces. If all four depths for one of
the surrounding surfaces are less than the calculated depths for all other surfaces,
condition 3 is satisfied. Then the area can be displayed with the colors for that
surrounding surface.

For some situations, the previous two testing methods may fail to identify cor-
rectly a surrounding surface that obscures all the other surfaces. Further testing
could be carried out to identify the single surface that covers the area, but it is faster
to subdivide the area than to continue with more complex testing. Once a surface
has been identified as an outside or surrounding surface for an area, it will remain
in that category for all subdivisions of the area. Furthermore, we can expect to elim-
inate some inside and overlapping surfaces as the subdivision process continues,
so that the areas become easier to analyze. In the limiting case, when a subdivi-
sion the size of a pixel is produced, we simply calculate the depth of each relevant
surface at that point and assign the color of the nearest surface to that pixel.

As a variation on the basic subdivision process, we could subdivide areas
along surface boundaries instead of dividing them in half. If the surfaces have

Visible-Surface Detection Methods

478

Area A

S

xvA1

A2

zv

yv

F I G U R E 2 3
Area A is subdivided into A1 and A2
using the boundary of surface S on the
view plane.

been sorted according to minimum depth, we can use the surface of smallest
depth value to subdivide a given area. Figure 23 illustrates this method for
subdividing areas. The projection of the boundary of surface S is used to partition
the original area into the subdivisions A1 and A2. Surface S is then a surrounding
surface for A1, and visibility conditions 2 and 3 can be tested to determine whether
further subdividing is necessary. In general, fewer subdivisions are required using
this approach, but more processing is needed to subdivide areas and to analyze
the relation of surfaces to the subdivision boundaries.

9 Octree Methods
When an octree representation is used for the viewing volume, visible-surface
identification is accomplished by searching octree nodes in a front-to-back order.
In Figure 24, the foreground of a scene is contained in octants 0, 1, 2, and 3.
Surfaces in the front of these octants are visible to the viewer. Any surfaces toward
the rear of the front octants or in the back octants (4, 5, 6, and 7) may be hidden
by the front surfaces.

We can process the octree nodes of Figure 24 in the order 0, 1, 2, 3, 4, 5,
6, 7. This results in a depth-first traversal of the octree, where the nodes for the
four front suboctants of octant 0 are visited before the nodes for the four back

7
3

2

0
1

4
5

6

Numbered
Octants

of a Region

Viewing
Direction

F I G U R E 2 4
Objects in octants 0, 1, 2, and 3 obscure objects in the back
octants (4, 5, 6, 7) when the viewing direction is as shown.

Visible-Surface Detection Methods

479

suboctants. The traversal of the octree continues in this order for each octant
subdivision.

1

3 2

7

3

2

1

4

5

Octants in Space

Quadrants for
the View Plane

0

0

6

F I G U R E 2 5
Octant divisions for a region of space
and the corresponding quadrant plane.

When a color value is encountered in an octree node, that color is saved in the
quadtree only if no values have previously been saved for the same area. In this
way, only the front colors are saved. Nodes that have the value “void” are ignored.
Any node that is completely obscured is eliminated from further processing, so
that its subtrees are not accessed. Figure 25 depicts the octants in a region
of space and the corresponding quadrants on the view plane. Contributions to
quadrant 0 come from octants 0 and 4. Color values in quadrant 1 are obtained
from surfaces in octants 1 and 5, and values in each of the other two quadrants
are generated from the pairs of octants aligned with each of these quadrants.

Effective octree visibility testing is carried out with recursive processing of
octree nodes and the creation of a quadtree representation for the visible surfaces.
In most cases, both a front and a back octant must be considered in determining
the correct color values for a quadrant. But if the front octant is homogeneously
filled with some color, we do not process the back octant. For heterogeneous
regions, a recursive procedure is called, passing as new arguments the child of
the heterogeneous octant and a newly created quadtree node. If the front is empty,
it is necessary only to process the child of the rear octant. Otherwise, two recursive
calls are made: one for the rear octant and one for the front octant.

Different views of objects represented as octrees can be obtained by applying
transformations to the octree representation that reorient the object according to
the view selected. Octants can then be renumbered so that the octree representa-
tion is always organized with octants 0, 1, 2, and 3 as the front face.

10 Ray-Casting Method

F I G U R E 2 6
A ray along the line of sight from a pixel position
through a scene.

pixel

If we consider the line of sight from a pixel position on the view plane through
a scene, as in Figure 26, we can determine which objects in the scene (if any)
intersect this line. After calculating all ray-surface intersections, we identify the
visible surface as the one whose intersection point is closest to the pixel. This
visibility-detection scheme uses ray casting procedures. Ray casting, as a visibil-
ity-detection tool, is based on geometricoptics methods, which trace the paths
of light rays. Because there are an infinite number of light rays in a scene and we
are interested only in those rays that pass through pixel positions, we can trace

Visible-Surface Detection Methods

480

We can think of ray casting as a variation on the depth-buffer method (Sec-
tion 3). In the depth-buffer algorithm, we process surfaces one at a time and
calculate depth values for all projection points over the surface. The calculated
surface depths are then compared to previously stored depths to determine vis-
ible surfaces at each pixel. In ray casting, we process pixels one at a time and
calculate depths for all surfaces along the projection path to that pixel.

11 Comparison of Visibility-Detection
Methods

The effectiveness of a visible-surface detection method depends on the character-
istics of a particular application. If the surfaces in a scene are widely distributed
along the viewing direction so that there is very little depth overlap, a depth-
sorting or BSP-tree method is often most efficient. When there are few overlaps of
the surface projections on the view plane, a scan-line or area-subdivision approach
is a fast way to locate visible surfaces.

As a general rule, either the depth-sorting algorithm or the BSP-tree method
is a highly effective approach for scenes with only a few surfaces. This is because
these scenes usually have few surfaces that overlap in depth. The scan-line method
also performs well when a scene contains a small number of surfaces. We can
use the scan-line, depth-sorting, or BSP-tree method to identify visible surfaces
effectively for scenes with up to several thousand polygon surfaces. With scenes
that contain more than a few thousand surfaces, the depth-buffer method or
octree approach performs best. The depth-buffer method has a nearly constant
processing time, independent of the number of surfaces in a scene. This is because
the size of the surface areas decreases as the number of surfaces in the scene
increases. Therefore, the depth-buffer method exhibits relatively low performance
with simple scenes and relatively high performance with complex scenes. BSP
trees are useful when multiple views are to be generated using different view
reference points. If a scene contains curved-surface representations, we can use
octree or ray-casting methods to identify visible parts of the scene.

When octree representations are used in a system, the visibility-detection pro-
cess is fast and simple. Only integer additions and subtractions are used in the pro-
cess, and there is no need to perform sorting or intersection calculations. Another
advantage of octrees is that they store more than just the surface geometry. The
entire solid region of an object is available for display, which makes the octree rep-
resentation useful for obtaining cross-sectional slices of three-dimensional objects.

It is possible to combine and implement the different visible-surface detection
methods in various ways. In addition, visibility-detection algorithms are often
implemented in hardware, and special systems utilizing parallel processing are
employed to increase the efficiency of these methods. Special hardware systems
are used when processing speed is an especially important consideration, as in
the generation of animated views for flight simulators.

the light-ray paths backward from the pixels through the scene. The ray-casting
approach is an effective visibility-detection method for scenes with curved sur-
faces, particularly spheres.

Ray casting is a special case of ray-tracing algorithms that trace multiple ray
paths to pick up global reflection and refraction contributions from multiple
objects in a scene. With ray casting, we only follow a ray out from each pixel to
the nearest object. Efficient ray-surface intersection calculations have been devel-
oped for common objects, particularly spheres.

Visible-Surface Detection Methods

481

12 Curved Surfaces
Effective methods for determining the visibility of objects with curved surfaces
include ray casting and octree methods. With ray casting, we calculate ray-surface
intersections and locate the smallest intersection distance along the pixel ray.
With octrees, we simply search the nodes from front to back to locate the surface
color values. Once an octree representation has been established from the input
definition of the objects, all visible surfaces are identified with the same processing
procedures. No special considerations need be given to different kinds of surfaces,
curved or otherwise.

A curved surface can also be approximated as a polygon mesh, and we can
then use one of the visible-surface identification methods previously discussed.
But for some objects, such as spheres, it could be more efficient as well as more
accurate to use ray casting and the equations describing the curved surface.

Curved-Surface Representations
We can represent a surface with an implicit equation of the form f (x, y, z) = 0 or

z = f (x, y)

Many objects of interest, such as spheres, ellipsoids, cylinders, and cones, have
quadratic representations. These surfaces are commonly used to model molecular
structures, roller bearings, rings, and shafts.

Scan-line and ray-casting algorithms often involve numerical approximation
techniques to solve the surface equation at the intersection point with a scan line
or with a pixel ray. Various techniques, including parallel calculations and fast
hardware implementations, have been developed for solving the curved-surface
intersection equations for commonly used objects.

Surface Contour Plots
For many applications in mathematics, physical sciences, engineering, and other
fields, it is useful to display a surface function with a set of contour lines that
show the surface shape. The surface may be described with an equation or with
data tables, such as topographic data on elevations or population density. With
an explicit functional representation, we can plot the visible surface contour lines
and eliminate those contour sections that are hidden by the visible parts of the
surface.

To obtain an xy plot of a functional surface, we can write the surface repre-
sentation in the form

y = f (x, z) (8)

A curve in the xy plane can then be plotted for values of z within some selected
range, using a specified interval �z. Starting with the largest value of z, we plot
the curves from “front” to “back” and eliminate hidden sections. We draw the
curve sections on the screen by mapping an xy range for the function into an
xy pixel screen range. Then, unit steps are taken in x and the corresponding
y value for each x value is determined from Eq. 8 for a given value of z.

One way to identify the visible curve sections on the surface is to maintain a
list of ymin and ymax values previously calculated for the pixel x coordinates on the
screen. As we step from one pixel x position to the next, we check the calculated

with a parametric representation. Spline surfaces, for example, are normally
described with parametric equations. In some cases, it is useful to obtain an
explicit surface equation, such as with a height function over an xy ground plane:

Visible-Surface Detection Methods

482

y value against the stored range, ymin and ymax, for the next pixel. If ymin ≤ y ≤ ymax,
that point on the surface is not visible and we do not plot it. But if the calculated
y value is outside the stored y bounds for that pixel, the point is visible. We then
plot the point and reset the bounds for that pixel. Similar procedures can be used
to project the contour plot onto the xz or yz plane.

We can apply the same methods to a discrete set of data points by determining
isosurface lines. For example, if we have a discrete set of z values for an nx ×ny grid
of xy values, we can determine the path for a line of constant z over the surface

13 Wire-Frame Visibility Methods
Scenes usually do not contain isolated line sections, unless we are displaying a
graph, diagram, or network layout. But often we want to view a three-dimensional
scene in an outline form to obtain a quick display of the object features. The
fastest way to generate a wire-frame view of a scene is to display all object edges.
However, it may be difficult to determine the front and back features of the objects
in such a display. One solution to this problem is to apply depth cueing, so that
the displayed intensity of a line is a function of its distance from the viewer.
Alternatively, we can apply visibility tests, so that hidden line sections can be
either eliminated or displayed differently from the visible edges. Procedures for
determining visibility of object edges are referred to as wire-frame visibility
methods. They are also called visible-line detection methods or hidden-line
detection methods. In addition, some of the visible-surface methods discussed in
preceding sections can be used to test for edge visibility.

Wire-Frame Surface-Visibility Algorithms
A direct approach to identifying visible line sections is to compare edge posi-
tions with the positions of the surfaces in a scene. This process involves the same
methods used in line-clipping algorithms. That is, we test the position of line end-
points with respect to the boundaries of a specified area, but, for visibility testing,
we also need to compare edge and surface depth values. When the projected edge
endpoints of a line segment are both within the projected area of a surface, we
compare the depth of the endpoints to the surface depth at those (x, y) positions.
If both endpoints are behind the surface, we have a hidden edge. If both end-
points are in front of the surface, the edge is visible with respect to that surface.
Otherwise, we must calculate intersection positions and determine the depth val-
ues at those intersection points. If the edge has greater depth than the surface at
the perimeter intersections, part of the edge is hidden by the surface, as in Fig-
ure 27(a). Another possibility is that an edge has greater depth at one bound-
ary intersection and less depth than the surface at the other boundary intersection
(assuming surfaces are convex). In that case, we need to determine where the edge
penetrates the surface interior, as in Figure 27(b). Once we have identified a
hidden section of an edge, we could eliminate it, display it as a dashed line, or
display it in some other way to distinguish it from the visible sections.

Some of the visible-surface detection methods are readily adapted to wire-
frame visibility testing of object edges. Using a back-face method, we could

using contour plotting methods. Each selected contour line can then be project-
ed onto a view plane and displayed with straight-line segments. Again, lines can
be drawn on the display device in a front-to-back depth order, and we eliminate
contour sections that pass behind previously drawn (visible) contour lines.

Visible-Surface Detection Methods

483

F I G U R E 2 7
Hidden-line sections (dashed) for a line (a)
that has greater depth than a surface and a
line (b) that is partially behind a surface and
partially in front of the surface.

(a)

(b)

identify all the back surfaces of an object and display only the boundaries for
the visible surfaces. With depth sorting, surfaces can be painted into the refresh
buffer so that surface interiors are in the background color while boundaries are in
the foreground color. By processing the surfaces from back to front, hidden lines
are erased by the nearer surfaces. An area-subdivision method can be adapted to
hidden-line removal by displaying only the boundaries of visible surfaces. And
scan-line methods can be used to display the scan-line intersection positions at
the boundaries of visible surfaces.

Wire-Frame Depth-Cueing Algorithm
Another method for displaying visibility information is to vary the brightness
of objects in a scene as a function of distance from the viewing position. This
depth-cueing method is typically applied using the linear function

fdepth(d) = dmax − d
dmax − dmin

(9)

where d is the distance of a point from the viewing position. Values for minimum
and maximum depth, dmin and dmax, can be set to convenient values for a particular
application, or the minimum and maximum depths can be set to the normaliza-
tion depth range: dmin = 0.0 and dmax = 1.0. As each pixel position is processed,
its color is multiplied by fdepth(d). Thus, nearer points are displayed with higher
intensities, and the points at the maximum depth have an intensity equal to 0.

The depth-cueing function can be implemented with various options. In some
graphics libraries, a general atmosphere function is available, which can combine
depth cueing with atmospheric effects to simulate smoke or haze, for example.
Thus, an object s color could be modified by the depth-cueing function and then
combined with the atmosphere color.

Visible-Surface Detection Methods

484

14 OpenGL Visibility-Detection Functions
We can apply both back-face removal and the depth-buffer visibility-testing
method to our scenes using functions that are provided in the basic library of
OpenGL. In addition, we can use OpenGL functions to construct a wire-frame
display of a scene with the hidden lines removed, and we can display scenes with
depth cueing.

OpenGL Polygon-Culling Functions
Back-face removal is accomplished with the functions

glEnable (GL_CULL_FACE);
glCullFace (mode);

where parameter mode is assigned the value GL BACK. In fact, we could use this
function to remove the front faces instead, or we could even remove both front
and back faces. If our viewing position is inside a building, for example, then
we want to see only the back faces (the inside of the rooms). In this case, we could
either set parameter mode to GL FRONT, or we could change the definition of
front-facing polygons using theglFrontFace functio .
tion moves outside the building, we can cull the back faces
n some applications, we might want to view only other

such as point sets and individual straight-line segments.
surfaces in a scene, we set parameter mode to the
GL FRONT AND BACK.

By default, parameter mode in the glCullFace function has the value
GL BACK. Therefore, if we activate culling with the glEnable function with-
out explicitly invoking function glCullFace, the back faces in a scene will be
removed. The culling routine is turned off with

glDisable (GL_CULL_FACE);

OpenGL Depth-Buffer Functions
To use the OpenGL depth-buffer visibility-detection routines, we first need to
modify the GL Utility Toolkit (GLUT) initialization function for the display mode
to include a request for the depth buffer, as well as for the refresh buffer. We do
this, for example, with the statement

glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);

Depth buffer values can then be initialized with

glClear (GL_DEPTH_BUFFER_BIT);

Normally, the depth buffer is initialized with the same statement that initializes
the refresh buffer to the background color. But we do need to clear the depth
buffer each time we want to display a new frame. In OpenGL, depth values are
normalized in the range from 0.0 to 1.0, so that the preceding initialization sets
all depth-buffer values to the maximum value 1.0 by default.

The OpenGL depth-buffer visibility-detection routines are activated with the
following function:

glEnable (GL_DEPTH_TEST);

n Then, if the viewing posi-
from the display; and

i primitives in a scene,
So, to eliminate all

OpenGL symbolic constant

Visible-Surface Detection Methods

485

And we deactivate the depth-buffer routines with

glDisable (GL_DEPTH_TEST);

We can also apply depth-buffer visibility testing using some other initial value
for the maximum depth, and this initial value is chosen with the OpenGL function:

glClearDepth (maxDepth);

Parameter maxDepth can be set to any value between 0.0 and 1.0. To load this
initialization value into the depth buffer, we next must invoke the glClear
(GL DEPTH BUFFER BIT) function. Otherwise, the depth buffer is initialized
with the default value (1.0). Because surface-color calculations and other process-
ing are not performed for objects that are beyond the specified maximum depth,
this function can be used to speed up the depth-buffer routines when a scene
contains many distant objects that are behind the foreground objects.

Projection coordinates in OpenGL are normalized to the range from −1.0 to
1.0, and the depth values between the near and far clipping planes are further
normalized to the range from 0.0 to 1.0. The value 0.0 corresponds to the near
clipping plane (the projection plane), and the value 1.0 corresponds to the far
clipping plane. As an option, we can adjust these normalization values with

glDepthRange (nearNormDepth, farNormDepth);

By default, nearNormDepth = 0.0 and farNormDepth = 1.0. But with the
glDepthRange function, we can set these two parameters to any values within
the range from 0.0 to 1.0, including nearNormDepth > farNormDepth. Using the
glDepthRange function, we can restrict the depth-buffer testing to any region of
the view volume, and we can even reverse the positions of the near and far planes.

Another option available in OpenGL is the test condition that is to be used for
the depth-buffer routines. We specify a test condition with the following function:

glDepthFunc (testCondition);

Parameter testCondition can be assigned any one of the following
eight symbolic constants: GL LESS, GL GREATER, GL EQUAL, GL NOTEQUAL,
GL LEQUAL,GL GEQUAL,GL NEVER (no points are processed), andGL ALWAYS
(all points are processed). These different tests can be useful in various applica-
tions to reduce calculations in depth-buffer processing. The default value for
parameter testCondition is GL LESS, so that a depth value is processed if it
has a value that is less than the current value in the depth buffer for that pixel
position.

We can also set the status of the depth buffer so that it is in a read-only state
or in a read-write state. This is accomplished with

glDepthMask (writeStatus);

When writeStatus = GL TRUE (the default value), we can both read from
and write to the depth buffer. With writeStatus= GL FALSE, the write mode
for the depth buffer is disabled and we can retrieve values only for comparison
in depth testing. This feature is useful when we want to use the same compli-
cated background with displays of different foreground objects. After storing the
background in the depth buffer, we disable the write mode and process the fore-
ground. This allows us to generate a series of frames with different foreground
objects or with one object in different positions for an animation sequence. Thus,

Visible-Surface Detection Methods

486

only the depth values for the background are saved. Another application of the

OpenGL Wire-Frame Surface-Visibility Methods
A wire-frame display of a standard graphics object can be obtained in OpenGL
by requesting that only its edges are to be generated. We do this by setting the
polygon-mode function as, for example:

glPolygonMode (GL_FRONT_AND_BACK, GL_LINE);

But this displays both visible and hidden edges.
To eliminate the hidden lines in a wire-frame display, we can employ the

glEnable (GL_DEPTH_TEST);
glPolygonMode (GL_FRONT_AND_BACK, GL_LINE);
glColor3f (1.0, 1.0, 1.0);
/* Invoke the object-description routine. */

glPolygonMode (GL_FRONT_AND_BACK, GL_FILL);
glEnable (GL_POLYGON_OFFSET_FILL);
glPolygonOffset (1.0, 1.0);
glColor3f (0.0, 0.0, 0.0);
/* Invoke the object-description routine again. */

glDisable (GL_POLYGON_OFFSET_FILL);

OpenGL Depth-Cueing Function
We can vary the brightness of an object as a function of its distance from the
viewing position with

glEnable (GL_FOG);

glFogi (GL_FOG_MODE, GL_ LINEAR);

This applies the linear depth function in Eq. 9 to object colors using dmin = 0.0
and dmax = 1.0. But we can set different values for dmin and dmax with the following
function calls:

glFogf (GL_FOG_START, minDepth);
glFogf (GL_FOG_END, maxDepth);

glDepthMask function is in displaying transparency effects. In this case, we want
to save only the depths of opaque objects for visibility testing, not the depths of
the transparent-surface positions. So the write mode for the depth buffer is turned
off when a transparent surface is processed. Similar commands are available for
setting the write status for the other buffers (color, index, and stencil).

depth-offset method That is, we first specify the wireframe version of the object
using the foreground color, then we specify an interior fill version using a depth
offset and the background color for the interior fill. The depth offset ensures that
the background-color fill will not interfere with the display of the visible edges. As
an example, the following code segment generates a wire-frame display of an
object using a white foreground color and a black background color:

Visible-Surface Detection Methods

.

487

In these two functions, parameters minDepth and maxDepth are assigned
floating-point values, although integer values can be used if we change the func-
tion suffix to i.

In addition, we can use the glFog function to set an atmosphere color that
is to be combined with the color of an object after applying the linear depth-
cueing function.

15 Summary
The simplest visibility test is the back-face detection algorithm, which is fast and
effective as an initial screening to eliminate many polygons from further visibility
tests. For a single convex polyhedron, back-face detection eliminates all hidden
surfaces but, in general, back-face detection cannot completely identify all hidden
surfaces.

A commonly used method for identifying all visible surfaces in a scene is the
depth-buffer algorithm. When applied to standard graphics objects, this proce-
dure is highly efficient, but it does have extra storage requirements. Two buffers
are needed: one to store pixel colors and one to store the depth values for the pixel
positions. Fast, incremental, scan-line methods are used to process each poly-
gon in a scene to calculate surface depths. As each surface is processed, the two
buffers are updated. An extension of the depth-buffer approach is the A-buffer,
which provides additional information for displaying antialiased and transparent
surfaces.

Several other visibility-detection methods have been devised. The scan-
line method processes all surfaces at once for each scan line. With the depth-
sorting method (painter’s algorithm), objects are “painted” into the refresh buffer
according to their distances from the viewing position. Subdivision schemes for
identifying visible parts of a scene include the BSP-tree method, area subdivi-
sion, and octree representations. Visible surfaces can also be detected using ray-
casting methods, which project lines from the pixel plane into a scene to determine
object intersection positions along these projected lines. Ray-casting methods are
an integral part of ray-tracing algorithms, which allow scenes to be displayed
with global-illumination effects.

Visibility-detection methods are also used in displaying three-dimensional
line drawings. With curved surfaces, we can display contour plots. For wire-frame
displays of polyhedrons, we search for the various edge sections of the surfaces
in a scene that are visible from the viewing position.

We can implement any visibility-detection scheme in an application program
by creating our own routines, but graphics libraries commonly provide functions
only for back-face removal and the depth-buffer method. In high-end computer-
graphics systems, the depth-buffer routines are hardware-implemented.

Functions for polygon culling and for depth-buffer visibility determinations
are available in the OpenGL core library. With the polygon-culling routines, we
can remove the back faces of standard graphics objects, their front faces, or both.
With the depth-buffer routines, we can set the range for the depth tests and the
type of depth testing that is to be performed. Wire-frame displays are obtained
using the OpenGL polygon-mode and polygon-offset operations. And we can also
generate OpenGL scenes using depth-cueing effects. In Table 1, we summarize
the OpenGL functions for visibility testing.

Visible-Surface Detection Methods

488

T A B L E 1

Summary of OpenGL Visibility-Detection Functions

Function Description

glCullFace Specifies front or back planes of polygons for
culling operations when activated with
glEnable (GL CULL FACE).

glutInitDisplayMode Specifies depth-buffer operations using
argument GLUT DEPTH.

glClear (GL DEPTH BUFFER BIT) Initializes depth-buffer values to
the default (1.0) or a value specified
by the glClearDepth function.

glClearDepth Specifies an initial depth-buffer value.

glEnable (GL DEPTH TEST) Activates depth-testing operations.

glDepthRange Specifies a range for normalizing depth values.

glDepthFunc Specifies a depth-testing condition.

glDepthMask Sets write status for the depth buffer.

glPolygonOffset Specifies an offset to eliminate hidden lines in
a wire-frame display when a background fill
color is applied.

glFog Specifies linear depth-cueing operations and
values for minimum and maximum depth in the
depth-cueing calculations.

REFERENCES
Additional sources of information on visibility
algorithms include Elber and Cohen (1990), Franklin
and Kankanhalli (1990), Segal (1990), and Naylor,
Amanatides, and Thibault (1990). A-buffer methods
are presented in Cook, Carpenter, and Catmull (1987),
Haeberli and Akeley (1990), and Shilling and Strasser
(1993). A summary of contouring methods is given in
Earnshaw (1985).

Various programming techniques for visibility test-
ing can be found in Glassner (1990), Arvo (1991), Kirk
(1992), Heckbert (1994), and Paeth (1995). Woo, et al.
(1999) provide additional discussions of the OpenGL
visibility-detection functions. A complete listing of the
OpenGL functions in the core library and in GLU is pre-
sented in Shreiner (2000).

EXERCISES
1 Set up a back-face detection procedure that will

identify all the visible faces of any input convex
polyhedron that has different-colored surfaces.
The polyhedron is to be defined in a right-handed
viewing system, and the viewing direction is spec-
ified as user input.

2 Implement the procedure in the preceding exer-
cise using an orthographic parallel projection to
view visible faces of the input convex polyhedron.
Assume that all parts of the object are in front of
the view plane.

Visible-Surface Detection Methods

489

3 Implement the procedure in Exercise 1 using a
perspective projection to view visible faces of the
input convex polyhedron. Assume that all parts
of the object are in front of the view plane.

4 Write a program to produce an animation of a
convex polyhedron. The object is to be rotated
incrementally about an axis that passes through
the object and is parallel to the view plane.
Assume that the object lies completely in front
of the view plane. Use an orthographic parallel
projection to map the views successively onto the
view plane.

5 Modify the program in the preceding exercise to
allow the user to switch between an orthographic
parallel projection and a perspective projection
using keyboard input.

6 Write a routine to implement the depth-buffer
method for the display of the visible surfaces of
any input polyhedron. The array for the depth-
buffer can be set to any convenient size on your
system, such as 500 × 500. How can the storage
requirements for the depth buffer be determined
from the definition of the objects to be displayed?

7 Modify the procedure in the preceding exercise
to display the visible surfaces in a scene contain-
ing any number of polyhedrons. Set up efficient
methods for storing and processing the various
objects in the scene.

8 Write a program using the procedure in the pre-
vious exercise that takes as input a set of polyhe-
drons contained within a (conceptual) sphere of
a given radius centered at the origin. Each time a
certain key is pressed, the program should gener-
ate a new random camera position outside of the
sphere and a random look-at point somewhere
inside the sphere. The view up vector should al-
ways be the positive y unit vector. The program
should then display the visible surfaces of the
objects in the scene from that viewpoint.

9 Modify the procedure of the preceding exercise to
implement the A-buffer algorithm for the display
of a scene containing both opaque and transpar-
ent surfaces.

10 Extend the procedure developed in the preceding
exercise to include antialiasing.

11 Write a program using the procedure in the pre-
vious exercise that takes as input a set of polyhe-
drons contained within a (conceptual) sphere of a
given radius centered at the origin, each of which
have randomized transparency values. Each
time a key is pressed, the program should gener-
ate a new random camera position outside of the
sphere and a random look-at point somewhere
inside the sphere. The view up vector should
always be the positive y unit vector. The program

should then display the visible surfaces of the
objects in the scene from that viewpoint.

12 Develop a program to implement the scan-line
algorithm for displaying the visible surfaces of a
given polyhedron. Use polygon tables to store the
definition of the object, and use coherence tech-
niques to evaluate points along and between scan
lines.

13 Write a program to implement the scan-line algo-
rithm for a scene containing several polyhedrons.
Use polygon tables to store the definition of the
object, and use coherence techniques to evaluate
points along and between scan lines.

14 Set up a program to display the visible surfaces
of a convex polyhedron using the painter’s algo-
rithm. That is, surfaces are to be sorted on depth
and painted on the screen from back to front.

15 Write a program that uses the depth-sorting
method to display the visible surfaces of any
given object with plane faces.

16 Develop a depth-sorting program to display the
visible surfaces in a scene containing several poly-
hedrons.

17 Write a program to display the visible surfaces of
a convex polyhedron using the BSP-tree method.

18 Give examples of situations where the two
methods discussed for condition 3 in the area-
subdivision algorithm will fail to identify cor-
rectly a surrounding surface that obscures all
other surfaces.

19 Develop an algorithm that would test a given
plane surface against a rectangular area to decide
whether it is a surrounding, overlapping, inside,
or outside surface.

20 Develop an algorithm for generating a quadtree
representation for the visible surfaces of an object
by applying the area-subdivision tests to deter-
mine the values of the quadtree elements.

21 Set up an algorithm to store a quadtree represen-
tation of an object in a frame buffer.

22 Set up a procedure to display the visible surfaces
of an object that is described with an octree rep-
resentation.

23 Use the procedure developed in the previous
exercise to write a program that displays the vis-
ible surfaces of a set of objects represented as
octree structures. The viewing parameters should
be taken in as input.

24 Devise an algorithm for viewing a single sphere
using the ray-casting method.

25 Discuss how antialiasing methods can be incorpo-
rated into the various hidden-surface elimination
algorithms.

Visible-Surface Detection Methods

490

26 Write a routine to produce a surface contour plot
for a given surface function f (x, y).

27 Develop an algorithm for detecting visible line
sections in a scene by comparing each line in the
scene to each polygon surface facet.

28 Discuss how wire-frame displays might be gen-
erated with the various visible-surface detection
methods discussed in this chapter.

29 Set up a procedure for generating a wire-frame
display of a polyhedron with the hidden edges of
the object shown as dashed lines.

30 Write a program using the procedure devel-
oped in the previous exercise that takes a set
of polyhedrons contained within a (conceptual)
sphere of a given radius centered at the origin as
input and displays them as wireframe objects
with the hidden edges of each object shown as
dashed lines. Each time a key is pressed, the
program should generate a new random camera
position outside of the sphere and a random look-
at point somewhere inside the sphere. The view
up vector should always be the positive y unit
vector.

31 Write a program to display a polyhedron with
selected faces removed, using the OpenGL
polygon-culling functions. Each face of the poly-
gon is to be given a different color, and a face is
to be selected for removal with user input. Also,
a viewing position and other viewing parameters
are to be specified as input values.

32 Modify the program in the preceding exercise to
view the polyhedron from any position, using
the depth-buffer routines instead of the polygon-
culling routines.

33 Modify the program in the preceding exercise so
that the depth range and the depth test condition
can also be specified as user input.

34 Generate a wire-frame display of a poly-
hedron using the glPolygonMode and

glPolygonOffset functions as discussed in
Section 14.

35 Modify the program of the preceding exercise to
display the polyhedron using the depth-cueing
function glFogi.

36 Modify the program of the preceding exercise to
display several polyhedrons that are distributed
in depth. The depth-cueing range is to be set with
user input.

37 Modify the program in the previous exercise to
allow the change the camera position by mov-
ing it around the surface of a sphere whose
radius is defined as the distance from the camera
position to the look-at point, which is assumed
to be a point within the coordinate extents of
the set of objects in the scene. The distance from
the camera to the look-at point is assumed to be
large enough to make all objects lie in front of
the view plane for any camera position on the
sphere.

IN MORE DEPTH
1 Choose a visible surface algorithm in this chapter

based on the properties of your application and
the strengths and weaknesses of each of the algo-
rithms in terms of their computational complex-
ity. Implement the algorithm and use it to render
the visible surfaces of the objects in your scene.

2 Compare the rendering times for your scene with
and without visible surface detection using the
algorithm that you developed in the previous
exercise. Then, do the same using the built-in
back-face culling routines provided in OpenGL.
Is there any improvement over the built-in rou-
tines that you obtain by tailoring the detection
algorithm to your specific application? Discuss
any further improvements you could implement
in the algorithm or modifications that you could
make to the object representations to increase ren-
dering performance.

Visible-Surface Detection Methods

491

This page intentionally left blank

Illumination Models and
Surface-Rendering Methods

1 Light Sources

2 Surface Lighting Effects

3 Basic Illumination Models

4 Transparent Surfaces

5 Atmospheric Effects

6 Shadows

7 Camera Parameters

8 Displaying Light Intensities

9 Halftone Patterns and Dithering
Techniques

10 Polygon Rendering Methods

11 OpenGL Illumination and
Surface-Rendering Functions

12 Summary

R ealistic displays of a scene are obtained by generating per-

spective projections of objects and applying natural light-

ing effects to the visible surfaces. An illumination model,
also called a lighting model (and sometimes referred to as a shad-

ing model), is used to calculate the color of an illuminated position

on the surface of an object. A surface-rendering method uses

the color calculations from an illumination model to determine the

pixel colors for all projected positions in a scene. The illumination

model can be applied to every projection position, or the surface

rendering can be accomplished by interpolating colors on the sur-

faces using a small set of illumination-model calculations. Scan-line,

image-space algorithms typically use interpolation schemes. Some-

times, a surface-rendering procedure is called a shading method that

calculates surface colors using a shading model, but this can lead

to some confusion between the two terms. To avoid possible mis-

interpretations due to the use of similar terminology, we refer to

the model for calculating the light intensity at a single surface point

From Chapter 17 of Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson

493

as an illumination model or a lighting model, and we use the term surface rendering to

mean a procedure for applying a lighting model to obtain pixel colors for all projected

surface positions.

Among other things, photorealism in computer graphics involves two elements:

accurate representations of surface properties and good physical descriptions of the light-

ing effects in a scene. These surface lighting effects include light reflections, transparency,

surface texture, and shadows.

In general, modeling the lighting effects that we see on an object is a complex pro-

cess, involving principles of both physics and psychology. Fundamentally, lighting effects

are described with models that consider the interaction of electromagnetic energy with

the object surfaces in a scene. Once light reaches our eyes, it triggers perception pro-

cesses that determine what we actually “see.” Physical illumination models involve a

number of factors, such as material properties, object position relative to light sources and

other objects, and the features of the light sources. Objects can be composed of opaque

materials, or they can be more or less transparent. In addition, they can have shiny or

dull surfaces, and they can have a variety of surface-texture patterns. Light sources of

varying shapes, colors, and positions can be used to provide the illumination for a scene.

Given the parameters for the optical properties of surfaces, the relative positions of the

surfaces in a scene, the color and positions of the light sources, the characteristics of the

light sources, and the position and orientation of the viewing plane, illumination mod-

els calculate the light intensity projected from a particular surface position in a specified

viewing direction.

Illumination models in computer graphics are often approximations of the physical

laws that describe surface-lighting effects. To reduce computations, most packages use

empirical models based on simplified photometric calculations. In the following sections,

we take a look at the basic lighting models often used in computer-graphics systems, and

we explore the various surface-rendering algorithms for applying the lighting models to

obtain effective displays of natural scenes.

1 Light Sources
Any object that is emitting radiant energy is a light source that contributes to the
lighting effects for other objects in a scene. We can model light sources with a
variety of shapes and characteristics, and most emitters serve only as a source of
illumination for a scene. In some applications, however, we may want to create
an object that is both a light source and a light reflector. For example, a plastic
globe surrounding a light bulb both emits and reflects light from the surface of
the globe. We could also model the globe as a semitransparent surface around a
light source. However, for some objects, such as a large fluorescent light panel, it
might be more convenient to describe the surface simply as a combination emitter
and reflector.

A light source can be defined with a number of properties. We can specify
its position, the color of the emitted light, the emission direction, and its shape.
If the source is also to be a light-reflecting surface, we need to give its reflectivity
properties. In addition, we could set up a light source that emits different colors
in different directions. For example, we could define a light source that emits a
red light on one side and a green light on the other side.

Illumination Models and Surface-Rendering Methods

494

In most applications, and particularly for real-time graphics displays, a simple
light-source model is used to avoid excessive computations. We assign light-
emitting properties using a single value for each of the red, green, and blue (RGB)
color components, which we can describe as the amount, or the “intensity,” of
that color component.

F I G U R E 1
Diverging ray paths from a point light
source.

Point Light Sources
The simplest model for an object that is emitting radiant energy is a point light
source with a single color, specified with three RGB components. We define a
point source for a scene by giving its position and the color of the emitted light.
As shown in Figure 1, light rays are generated along radially diverging paths
from the single-color source position. This light-source model is a reasonable
approximation for sources whose dimensions are small compared to the size of
objects in the scene. We can also simulate larger sources as point emitters if they
are not too close to a scene. We use the position of a point source in an illumination
model to determine which objects in the scene are illuminated by that source and
to calculate the light direction to a selected object surface position.

Infinitely Distant Light Sources
A large light source, such as the sun, that is very far from a scene can also be
approximated as a point emitter, but there is little variation in its directional
effects. In contrast to a light source in the middle of a scene, which illuminates
objects on all sides of the source, a remote source illuminates the scene from only
one direction. The light path from a distant light source to any position in the
scene is nearly constant, as illustrated in Figure 2.

We can simulate an infinitely distant light source by assigning it a color value
and a fixed direction for the light rays emanating from the source. The vector for
the emission direction and the light-source color are needed in the illumination
calculations, but not the position of the source.

Radial Intensity Attenuation
As radiant energy from a light source travels outwards through space, its
amplitude at any distance dl from the source is attenuated by the factor 1/d2

l .
This means that a surface close to the light source receives a higher incident light

F I G U R E 2
Light rays from an infinitely distant
light source illuminate an object along
nearly parallel light paths.

Illumination Models and Surface-Rendering Methods

495

intensity from that source than a more distant surface. Therefore, to produce real-
istic lighting effects, we should take this intensity attenuation into account. Other-
wise, all surfaces are illuminated with the same intensity from a light source, and
undesirable display effects can result. For example, if two surfaces with the same
optical parameters project to overlapping positions, they would be indistinguish-
able from one another. Thus, regardless of their relative distances from the light
source, the two surfaces would appear to be one surface.

In practice, however, using an attenuation factor of 1/d2
l with a point source

does not always produce realistic pictures. The factor 1/d2
l tends to produce too

much intensity variation for objects that are close to the light source, and very little
variation when dl is large. This is because actual light sources are not infinitesimal
points, and illuminating a scene with point emitters is only a simple approxima-
tion of true lighting effects. To generate more realistic displays using point sources,
we can attenuate light intensities with an inverse quadratic function of dl that
includes a linear term:

fradatten(dl) = 1
a0 + a1 dl + a2 d2

l
(1)

The numerical values for the coefficients, a0, a1, and a2, can then be adjusted to
produce optimal attenuation effects. For instance, we can assign a large value to
a0 when dl is very small to prevent fradatten(dl) from becoming too large. As an
additional option, often available in graphics packages, a different set of values
for the attenuation coefficients could be assigned to each point light source in the
scene.

We cannot apply intensity-attenuation calculation 1 to a point source at
“infinity,” because the distance to the light source is indeterminate. Also, all points
in the scene are at a nearly equal distance from a far-off source. To accommodate
both remote and local light sources, we can express the intensity-attenuation
function as

fl,radatten =

⎧

⎪⎨

⎪⎩

1.0, if source is at infinity

1
a0 + a1 dl + a2 d2

l
, if source is local

(2)

Directional Light Sources and Spotlight Effects
A local light source can be modified easily to produce a directional, or spotlight,
beam of light. If an object is outside the directional limits of the light source, we
exclude it from illumination by that source. One way to set up a directional light
source is to assign it a vector direction and an angular limit θl measured from
that vector direction, in addition to its position and color. This defines a conical
region of space with the light-source vector direction along the axis of the cone
(Figure 3). A multicolor point light source could be modeled in this way using
multiple direction vectors and a different emission color for each direction.

We can denote Vlight as the unit vector in the light-source direction and Vobj as
the unit vector in the direction from the light position to an object position. Then

Vobj ·Vlight = cos α (3)

where angle α is the angular distance of the object from the light direction vec-
tor. If we restrict the angular extent of any light cone so that 0◦ < θl ≤ 90◦, then
the object is within the spotlight if cos α ≥ cos θl , as shown in Figure 4. If
Vobj ·Vlight < cos θl , however, the object is outside the light cone.

Illumination Models and Surface-Rendering Methods

496

Vlight

(Light Direction
Vector)

Light
Source

ul
F I G U R E 3
A directional point light source. The
unit light-direction vector defines the
axis of a light cone, and angle θl
defines the angular extent of the
circular cone.

Light
Source

ul

a

To Object
Vertex

Cone Axis
Vector

F I G U R E 4
An object illuminated by a directional
point light source.

Angular Intensity Attenuation
For a directional light source, we can attenuate the light intensity angularly about
the source as well as radially out from the point-source position. This allows us
to simulate a cone of light that is most intense along the axis of the cone, with the
intensity decreasing as we move farther from the cone axis. A commonly used
angular intensity-attenuation function for a directional light source is

fangatten(φ) = cosal φ, 0◦ ≤ φ ≤ θ (4)

where the attenuation exponent al is assigned some positive value and angle φ is
measured from the cone axis. Along the cone axis, φ = 0◦ and fangatten(φ) = 1.0.
The greater the value for the attenuation exponent al , the smaller the value of the
angular intensity-attenuation function for a given value of angle φ > 0◦.

Illumination Models and Surface-Rendering Methods

497

F I G U R E 5
An object illuminated by a large nearby light source.

There are several special cases to consider in the implementation of the
angular-attenuation function. There is no angular attenuation if the light source
is not directional (not a spotlight). Also, an object is not illuminated by the light
source if it is anywhere outside the cone of the spotlight. To determine the angular
attenuation factor along a line from the light position to a surface position in a
scene, we can compute the cosine of the direction angle from the cone axis using
the dot product calculation in Equation 3. We designate Vlight as the unit vector
in the light-source direction (along the cone axis) and Vobj as the unit vector in the
direction from the light source to an object position. Using these two unit vectors
and assuming that 0◦ < θl ≤ 90◦, we can express the general equation for angular
attenuation as

fl,angatten =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

1.0, if source is not a spotlight
0.0, if Vobj ·Vlight = cos α < cos θl

(object is outside the spotlight cone)
(Vobj ·Vlight)

al , otherwise

(5)

Extended Light Sources and the Warn Model
When we want to include a large light source at a position close to the objects in a
scene, such as the long neon lamp in Figure 5, we can approximate it as a light-
emitting surface. One way to do this is to model the light surface as a grid of direc-
tional point emitters. We can set the direction for the point sources so that objects
behind the light-emitting surface are not illuminated. We could also include other
controls to restrict the direction of the emitted light near the edges of the source.

The Warn model provides a method for producing studio lighting effects
using sets of point emitters with various parameters to simulate the barn doors,
flaps, and spotlighting controls employed by photographers. Spotlighting is
achieved with the cone of light discussed earlier, and the flaps and barn doors
provide additional directional control. For instance, two flaps can be set up for
each of the x, y, and z directions to further restrict the path of the emitted light
rays. This light-source simulation is implemented in some graphics packages.

2 Surface Lighting Effects
An illumination model computes the lighting effects for a surface using the var-
ious optical properties that have been assigned to that surface. These properties
include degree of transparency, color reflectance coefficients, and various surface-
texture parameters.

When light is incident on an opaque surface, part of it is reflected and part
is absorbed. The amount of incident light reflected by the surface depends on

Illumination Models and Surface-Rendering Methods

498

the type of material. Shiny materials reflect more of the incident light, and dull
surfaces absorb more of the incident light. For a transparent surface, some of the
incident light is also transmitted through the material.

F I G U R E 6
Diffuse reflections from a surface.

Surfaces that are rough or grainy tend to scatter the reflected light in all direc-
tions. This scattered light is called diffuse reflection. A very rough, matte surface
produces primarily diffuse reflections, so the surface appears equally bright from
any viewing angle. Figure 6 illustrates diffuse light scattering from a surface.
What we call the color of an object is the color of the diffuse reflection when the
object is illuminated with white light, which is composed of a combination of all
colors. A blue object, for example, reflects the blue component of the white light
and absorbs all the other color components. If the blue object is viewed under a
red light, it appears black because all the incident light is absorbed.

F I G U R E 7
Specular reflection superimposed on
diffuse reflection vectors.

In addition to diffuse light scattering, some of the reflected light is concen-
trated into a highlight, or bright spot, called specular reflection. This highlighting
effect is more pronounced on shiny surfaces than on dull surfaces, and we can
see the specular reflection when we look at an illuminated shiny surface, such as
polished metal, an apple, or a person’s forehead, only when we view the surface
from a particular direction. A representation of specular reflection is shown in
Figure 7.

Light
Source

F I G U R E 8
Surface lighting effects are produced
by a combination of illumination from
light sources and reflections from other
surfaces.

Another factor that must be considered in an illumination model is the back-
ground light or ambient light in a scene. A surface that is not directly exposed
to a light source may still be visible due to the reflected light from nearby objects
that are illuminated. Thus, the ambient light for a scene is the illumination effect
produced by the reflected light from the various surfaces in the scene. Figure 8
illustrates this background lighting effect. The total reflected light from a surface
is the sum of the contributions from light sources and from the light reflected by
other illuminated objects.

3 Basic Illumination Models
Accurate surface lighting models compute the results of interactions between
incident radiant energy and the material composition of an object. To simplify the
surface-illumination calculations, we can use approximate representations for
the physical processes that produce the lighting effects discussed in the previous
section. The empirical model described in this section produces reasonably good
results, and it is implemented in most graphics systems.

Light-emitting objects in a basic illumination model are generally limited to
point sources. However, many graphics packages provide additional functions
for dealing with directional lighting (spotlights) and extended light sources.

Ambient Light
In our basic illumination model, we can incorporate background lighting by set-
ting a general brightness level for a scene. This produces a uniform ambient
lighting that is the same for all objects, and it approximates the global diffuse
reflections from the various illuminated surfaces.

Assuming that we are describing only monochromatic lighting effects, such
as shades of gray, we designate the level for the ambient light in a scene with
an intensity parameter Ia . Each surface in the scene is then illuminated with this
background light. Reflections produced by ambient-light illumination are simply
a form of diffuse reflection, and they are independent of the viewing direction and
the spatial orientation of a surface. However, the amount of the incident ambient

Illumination Models and Surface-Rendering Methods

499

F I G U R E 9
Radiant energy from a surface area
element dA in direction φN relative to
the surface normal direction is
proportional to cos φN .

Radiant-Energy
Direction

N

fN
fN

dA

light that is reflected depends on surface optical properties, which determine how
much of the incident energy is reflected and how much is absorbed.

Diffuse Reflection
We can model diffuse reflections from a surface by assuming that the incident
light is scattered with equal intensity in all directions, independent of the viewing
position. Such surfaces are called ideal diffuse reflectors. They are also referred to
as Lambertian reflectors, because the reflected radiant light energy from any point
on the surface is calculated with Lambert’s cosine law. This law states that the
amount of radiant energy coming from any small surface area dA in a direction φN

relative to the surface normal is proportional to cos φ N (Figure 9). The intensity
of light in this direction can be computed as the ratio of the magnitude of the
radiant energy per unit time divided by the projection of the surface area in the
radiation direction:

Intensity = radiant energy per unit time
projected area

∝ cos φN

dA cos φN

= constant (6)

Thus, for Lambertion reflection, the intensity of light is the same over all viewing
directions.

Assuming that every surface is to be treated as an ideal diffuse reflector
(Lambertian), we can set a parameter kd for each surface that determines the frac-
tion of the incident light that is to be scattered as diffuse reflections. This parameter
is called the diffuse-reflection coefficient or the diffuse reflectivity. The diffuse
reflection in any direction is then a constant, which is equal to the incident light
intensity multiplied by the diffuse-reflection coefficient. For a monochromatic
light source, parameter kd is assigned a constant value in the interval 0.0 to 1.0,
according to the reflecting properties we want the surface to have. If we want a
highly reflective surface, we set the value of kd near 1.0. This produces a brighter
surface with the intensity of the reflected light near that of the incident light. If
we want to simulate a surface that absorbs most of the incident light, we set the
reflectivity to a value near 0.0.

For the background lighting effects, we can assume that every surface is fully
illuminated by the ambient light Ia that we assigned to the scene. Therefore, the
ambient contribution to the diffuse reflection at any point on a surface is simply

Iambdiff = kd Ia (7)

Ambient light alone, however, produces a flat uninteresting shading for a surface
(Color Plate 12), so scenes are rarely rendered using only ambient light. At least

Illumination Models and Surface-Rendering Methods

500

one light source is included in a scene, often as a point source at the viewing
position.

When a surface is illuminated by a light source with an intensity Il , the amount
of incident light from the source depends on the orientation of the surface relative
to the light source direction. A surface that is oriented nearly perpendicular to the
illumination direction receives more light from the source than a surface that is
tilted at an oblique angle to the direction of the incoming light. This illumination
effect can be observed on a white sheet of paper or smooth cardboard that is
placed parallel to a sunlit window. As the sheet is slowly rotated away from the
window direction, the surface appears less bright. Figure 10 illustrates this
effect, showing a beam of light rays incident on two equal-area plane surface
elements with different spatial orientations relative to the illumination direction
from a distant source (parallel incoming rays).

(a)

(b)

F I G U R E 1 0
A surface that is perpendicular to the
direction of the incident light (a) is
more illuminated than an equal-sized
surface at an oblique angle (b) to the
incoming light direction.

From Figure 10, we see that the number of light rays intersecting a surface
element is proportional to the area of the surface projection perpendicular to the
incident light direction. If we denote the angle of incidence between the incoming
light direction and the surface normal as θ (Figure 11), then the projected area
of a surface element perpendicular to the light direction is proportional to cos θ .
Therefore, we can model the amount of incident light on a surface from a source
with intensity Il as

Il,incident = Il cos θ (8)

Using Equation 8, we can model the diffuse reflections from a light source
with intensity Il using the calculation

Il,diff = kd Il,incident

= kd Il cos θ (9)

When the incoming light from the source is perpendicular to the surface at a
particular point, θ = 90◦ and Il,diff = kd Il . As the angle of incidence increases, the
illumination from the light source decreases. Furthermore, a surface is illuminated
by a point source only if the angle of incidence is in the range 0◦ to 90◦ (cos θ is
in the interval from 0.0 to 1.0). When cos θ < 0.0, the light source is behind the
surface.

At any surface position, we can denote the unit normal vector as N and the
unit direction vector to a point source as L, as in Figure 12. Then, cos θ = N ·L
and the diffuse reflection equation for single point-source illumination at a surface
position can be expressed in the form

Il,diff =
{

kd Il(N ·L), if N ·L > 0

0.0, if N ·L ≤ 0
(10)

N
L

To Light
Source

u

F I G U R E 1 2
Angle of incidence θ between the unit
light-source direction vector L and the
unit normal vector N at a surface
position.

The unit direction vector L to a nearby point light source is calculated using
the surface position and the light-source position:

L = Psource − Psurf

|Psource − Psurf| (11)

u A cosu

A

N

incident
light

u

F I G U R E 1 1
An illuminated area A projected perpendicular to the
path of incoming light rays. This perpendicular
projection has an area equal to A cos θ .

Illumination Models and Surface-Rendering Methods

501

A light source at “infinity,” however, has no position, only a propagation direction.
In that case, we use the negative of the assigned light-source emission direction
for the direction of vector L.

Color Plate 13 illustrates the application of Equation 10 to positions over
the surface of a sphere, using selected values for parameter kd between 0 and 1. At
kd = 0, no light is reflected and the object surface appears black. Increasing values
for kd increase the intensity of the diffuse reflections, producing lighter shades of
gray. Each projected pixel position for the surface is assigned an intensity value as
calculated by the diffuse reflection equation. The surface renderings in this figure
illustrate single point-source lighting with no other lighting effects. This is what
we might expect to see if we shined a very small flashlight, such as a penlight, on
the object in a completely darkened room. For general scenes, however, we expect
some surface reflections due to the ambient light in addition to the illumination
effects produced by a light source.

We can combine the ambient and point-source intensity calculations to obtain
an expression for the total diffuse reflection at a surface position. In addition,
many graphics packages introduce an ambient-reflection coefficient ka that can
be assigned to each surface to modify the ambient-light intensity Ia . This simply
provides us with an additional parameter for adjusting the lighting effects in our
empirical model. Using parameter ka , we can write the total diffuse-reflection
equation for a single point source as

Idiff =
{

ka Ia + kd Il (N ·L), if N ·L > 0

ka Ia , if N ·L ≤ 0
(12)

where both ka and kd depend on surface material properties and are assigned
values in the range from 0 to 1.0 for monochromatic lighting effects.

Specular Reflection and the Phong Model

N
L R

V
u u
f

F I G U R E 1 3
Specular reflection angle equals angle
of incidence θ .

The bright spot, or specular reflection, that we can see on a shiny surface is the
result of total, or near total, reflection of the incident light in a concentrated region
around the specular-reflection angle. Figure 13 shows the specular reflection
direction for a position on an illuminated surface. The specular reflection angle
equals the angle of the incident light, with the two angles measured on opposite
sides of the unit normal surface vector N. In this figure, R represents the unit vector
in the direction of ideal specular reflection, L is the unit vector directed toward the
point light source, and V is the unit vector pointing to the viewer from the selected
surface position. Angle φ is the viewing angle relative to the specular-reflection
direction R. For an ideal reflector (a perfect mirror), incident light is reflected only
in the specular-reflection direction, and we would see reflected light only when
vectors V and R coincide (φ = 0).

Objects other than ideal reflectors exhibit specular reflections over a finite
range of viewing positions around vector R. Shiny surfaces have a narrow
specular reflection range, and dull surfaces have a wider reflection range. An
empirical model for calculating the specular reflection range, developed by Phong
Bui Tuong and called the Phong specular-reflection model or simply the Phong
model, sets the intensity of specular reflection proportional to cosns φ. Angle φ

can be assigned values in the range 0◦ to 90◦, so that cos φ varies from 0 to 1.0.
The value assigned to the specular-reflection exponent ns is determined by the
type of surface that we want to display. A very shiny surface is modeled with
a large value for ns (say, 100 or more), and smaller values (down to 1) are used
for duller surfaces. For a perfect reflector, ns is infinite. For a rough surface, such
as chalk or cinderblock, ns is assigned a value near 1. Figures 14 and 15

Illumination Models and Surface-Rendering Methods

502

Shiny Surface
(Large ns)

R

Dull Surface
(Small ns)

NL R N
L

F I G U R E 1 4
Modeling specular reflections (shaded
area) with parameter ns .

cos f

90�10�0 20� 30�

0.2

40� 45�

0.4

0.6

0.8

1

f

cos8 f

90�10�0 20� 30�

0.2

40� 45�

0.4

0.6

0.8

1

f

cos64 f

90�10�0 20� 30�

0.2

40� 45�

0.4

0.6

0.8

1

f

cos256 f

90�10�0 20� 30�

0.2

40� 45�

0.4

0.6

0.8

1

f

cos128 f

90�10�0 20� 30�

0.2

40� 45�

0.4

0.6

0.8

1

f

F I G U R E 1 5
Plots of cosns φ using five different values for the specular exponent ns .

show the effect of ns on the angular range for which we can expect to see specular
reflections.

The intensity of specular reflection depends on the material properties of the
surface and the angle of incidence, as well as other factors such as the polariza-
tion and color of the incident light. We can approximately model monochromatic
specular intensity variations using a specular-reflection coefficient, W(θ), for each
surface. Figure 16 shows the general variation of W(θ) over the range θ = 0◦

to θ = 90◦ for a few materials. In general, W(θ) tends to increase as the angle of
incidence increases. At θ = 90◦, all the incident light is reflected (W(θ) = 1). The

Illumination Models and Surface-Rendering Methods

503

F I G U R E 1 6
Approximate variation of the specular-reflection
coefficient for different materials, as a function
of the angle of incidence.

0.5

1

W(u)

90�0

dielectric (glass)

silver

gold

u

variation of specular intensity with angle of incidence is described by Fresnel’s
Laws of Reflection. Using the spectral-reflection function W(θ), we can write the
Phong specular-reflection model as

Il,spec = W(θ)Il cosns φ (13)

where Il is the intensity of the light source, and φ is the viewing angle relative to
the specular-reflection direction R.

As seen in Figure 16, transparent materials, such as glass, exhibit appre-
ciable specular reflections only as θ approaches 90◦. At θ = 0◦, about 4 percent of
the incident light on a glass surface is reflected, and for most of the range of θ , the
reflected intensity is less than 10 percent of the incident intensity. However, for
many opaque materials, specular reflection is nearly constant for all incidence an-
gles. In this case, we can reasonably model the specular effects by replacing W(θ)

with a constant specular-reflection coefficient ks . We then simply set ks equal to
some value in the range from 0 to 1.0 for each surface.

Because V and R are unit vectors in the viewing and specular-reflection direc-
tions, we can calculate the value of cos φ with the dot product V ·R. In addition,
no specular effects are generated for the display of a surface if V and L are on the
same side of the normal vector N or if the light source is behind the surface. Thus,
assuming the specular-reflection coefficient is a constant for any material, we can
determine the intensity of the specular reflection due to a point light source at a
surface position with the calculation

Il,spec =
{

ks Il(V ·R)ns , if V ·R > 0 and N ·L > 0

0.0, if V ·R ≤ 0 or N ·L ≤ 0
(14)

N • L

L

N
L R

F I G U R E 1 7
The projection of either L or R onto
the direction of the normal vector N
has a magnitude equal to N · L.

The direction for R, the reflection vector, can be computed from the directions
for vectors L and N. As seen in Figure 17, the projection of L onto the direction
of the normal vector has a magnitude equal to the dot product N ·L, which is also
equal to the magnitude of the projection of unit vector R onto the direction of N.
Therefore, from this diagram, we see that

R + L = (2N ·L)N

and the specular-reflection vector is obtained as

R = (2N ·L)N − L (15)

We calculate V using the surface position and the viewing position, in same
way that we obtained the unit vector L (Eq. 11). But if a fixed viewing direction

Illumination Models and Surface-Rendering Methods

504

is to be used for all positions in a scene, we can set V = (0.0, 0.0, 1.0), which is
a unit vector in the positive z direction. Specular calculations take less time to
calculate using a constant V, but the displays are not as realistic.

A somewhat simplified Phong model is obtained using the halfway vector H
between L and V to calculate the range of specular reflections. If we replace V ·R
in the Phong model with the dot product N ·H, this simply replaces the empirical
cos φ calculation with the empirical cos α calculation (Figure 18). The halfway
vector is obtained as

H = L + V
|L + V| (16)

For nonplanar surfaces, N ·H requires less computation than V ·R because the
calculation of R at each surface point involves the variable vector N. Also, if both
the viewer and the light source are sufficiently far from the surface, vectors V
and L are each constants, and thus H is also constant for all surface points. If
the angle between H and N is greater than 90◦, N ·H is negative and we set the
specular-reflection contribution to 0.0.

HN
L R

V
a
f

F I G U R E 1 8
Halfway vector H along the bisector of
the angle between L and V.

Vector H is the orientation direction for the surface that would produce max-
imum specular reflection in the viewing direction, for a given position of a point
light source. For this reason, H is sometimes referred to as the surface orientation
direction for maximum highlights. Also, if vector V is coplanar with vectors L and
R (and thus N), angle α has the value φ/2. When V, L, and N are not coplanar,
α > φ/2, depending on the spatial relationship of the three vectors.

Combined Diffuse and Specular Reflections
For a single point light source, we can model the combined diffuse and specular
reflections from a position on an illuminated surface as

I = Idiff + Ispec

= ka Ia + kd Il(N ·L) + ks Il(N ·H)ns (17)

The surface is illuminated only with ambient light if the light source is behind
the surface, and there are no specular effects if V and L are on the same side of
the normal vector N. Color Plate 12 illustrates surface lighting effects produced
by the various terms in Equation 17.

Diffuse and Specular Reflections from Multiple Light Sources
We can place any number of light sources in a scene. For multiple point light
sources, we compute the diffuse and specular reflections as a sum of the contri-
butions from the various sources, as follows:

I = Iambdiff +
n∑

l=1

[Il,diff + Il,spec]

= ka Ia +
n∑

l=1

Il[kd(N ·L) + ks(N ·H)ns] (18)

Surface Light Emissions
Some surfaces in a scene could be emitting light, as well as reflecting light from
their surfaces. For example, a room scene can contain lamps or overhead lighting,
and outdoor night scenes could include streetlights, store signs, and automobile
headlights. We can empirically model surface light emissions by simply including
an emission term Isurfemission in the illumination model in the same way that we

Illumination Models and Surface-Rendering Methods

505

simulated background lighting using an ambient light level. This surface emission
is then added to the surface reflections resulting from the light-source and the
background-lighting illumination.

To illuminate other objects from a light-emitting surface, we could posi-
tion a directional light source behind the surface to produce a cone of light
through the surface. Alternatively, we could simulate the emission with a set
of point light sources distributed over the surface. In general, however, an emit-
ting surface is usually not used in the basic illumination model to illuminate
other surfaces because of the added calculation time. Rather, surface emissions
are used as a simple means for approximating the appearance of the surface of an
extended light-source. This produces a glowing effect for the surface.

Basic Illumination Model with Intensity
Attenuation and Spotlights
We can formulate a general, monochromatic illumination model for surface
reflections that includes multiple point light sources, attenuation factors, direc-
tional light effects (spotlight), infinite sources, and surface emissions as

I = Isurfemission + Iambdiff +
n∑

l=1

fl,radatten fl,angatten(Il,diff + Il,spec) (19)

The radial attenuation function fl , radatten is evaluated using Equation 2, and
the angular attenuation function is evaluated using Equation 5. For each light
source, we calculate the diffuse reflection from a surface point as

Il,diff =
{

0.0, if N ·Ll ≤ 0.0 (light source behind object)

kd Il(N ·Ll), otherwise
(20)

The specular reflection term, due to a point-source illumination, is calculated with
similar expressions:

Il,spec =
⎧

⎨

⎩

0.0, if N ·Ll ≤ 0.0
(light source behind object)

ks Il max{0.0, (N ·Hl)
ns }, otherwise

(21)

To ensure that any pixel intensity does not exceed the maximum allowable
value, we can apply some type of normalization procedure. A simple approach
is to set a maximum magnitude for each term in the intensity equation. If any
calculated term exceeds the maximum, we simply set it to the maximum value.
Another way to compensate for intensity overflow is to normalize the individual
terms by dividing each by the magnitude of the largest term. A more complicated
procedure is to calculate all pixel intensities for the scene, then scale this set of
intensities onto the intensity range from 0.0 to 1.0.

Also, the values for the coefficients in the radial attenuation function, and
the optical surface parameters for a scene, can be adjusted to prevent calculated
intensities from exceeding the maximum allowable value. This is an effective
method for limiting intensity values when a single light source illuminates a
scene. In general, however, calculated intensities are never allowed to exceed the
value 1.0, and negative intensity values are adjusted to the value 0.0.

Illumination Models and Surface-Rendering Methods

506

RGB Color Considerations
For an RGB color description, each intensity specification in the illumina-
tion model is a three-element vector that designates the red, green, and blue
components of that intensity. Thus, for each light source, Il = (Il R, IlG , Il B).
Similarly, the reflection coefficients are also specified with RGB components:
ka = (ka R, kaG , ka B), kd = (kd R, kdG , kd B), and ks = (ks R, ksG , ks B). Each component
of the surface color is then calculated with a separate expression. For example,
the blue component of the diffuse and specular reflections for a point source are
computed from modified expressions 20 and 21 as

Il B,diff = kd B Il B(N ·Ll) (22)

and

Il B,spec = ks B Il B max{0.0, (N ·Hl)
ns } (23)

Surfaces are most often illuminated with white light sources, but, for special effects
or indoor lighting, we might use other colors for the light sources. We then set
the reflectivity coefficients to model a particular surface color. For example, if we
want an object to have a blue surface, we select a nonzero value in the range
from 0.0 to 1.0 for the blue reflectivity component, kd B , while the red and green
reflectivity components are set to zero (kd R = kdG = 0.0). Any nonzero red or green
components in the incident light are absorbed, and only the blue component is
reflected.

In his original specular-reflection model, Phong set parameter ks to a constant
value independent of the surface color. This produces specular reflections that
are the same color as the incident light (usually white), which gives the surface a
plastic appearance. For a nonplastic material, the color of the specular reflection
is actually a function of the surface properties and may be different from both
the color of the incident light and the color of the diffuse reflections. We can
approximate specular effects on such surfaces by making the specular-reflection
coefficient color-dependent, as in Equation 23. Color Plate 14 illustrates color
reflections from a matte surface, and Color Plates 15 and 16 show color reflections
from metal surfaces.

Another method for setting surface color is to specify the components of
diffuse and specular color vectors for each surface, while retaining the reflectiv-
ity coefficients as single-valued constants. For an RGB color representation, for
instance, the components of these two surface-color vectors could be denoted as
(Sd R, SdG , Sd B) and (Ss R, SsG , Ss B). The blue component of the diffuse reflection
(Eq. 22) is then calculated as

Il B,diff = kd Sd B Il B(N ·Ll) (24)

This approach provides somewhat greater flexibility, because surface color
parameters and reflectivity values can be set independently.

In some graphics packages, additional lighting parameters are supplied by
allowing a light source to be assigned multiple colors, where each color con-
tributes to one of the surface lighting effects. For example, one of the colors can
be used as a contribution to the general background lighting in a scene. Similarly,
another light-source color can be used as the light intensity for the diffuse-
reflection calculations, and a third light-source color can be used in the specular-
reflection calculations.

Illumination Models and Surface-Rendering Methods

507

Other Color Representations
We can describe colors using a variety of models other than the RGB represen-
tation. For example, a color can be represented using cyan, magenta, and yellow
components, or a color could be described in terms of a particular hue along
with the perceived brightness and saturation of the color. We can incorporate
any of these representations, including color specifications with more than three
components, into an illumination model. As an example, Equation 24 can be
expressed in terms of any spectral color with wavelength λ as

Ilλ,diff = kd Sdλ Ilλ(N ·Ll) (25)

Luminance
Another characteristic of color is luminance, which is sometimes also called
luminous energy. Luminance provides information about the lightness or darkness
level of a color, and it is a psychological measure of our perception of brightness
that varies with the amount of illumination we are viewing.

Physically, color is described in terms of the frequency range for visible radiant
energy (light), and luminance is calculated as a weighted sum of the intensity
components in a particular illumination. Because any actual illumination contains
a continuous range of frequencies, a luminance value is computed as

luminance =
∫

visible f
p(f) I (f) d f (26)

Parameter I (f) in this calculation represents the intensity of the light component
with a frequency f that is radiating in a particular direction. Parameter p(f)

is an experimentally determined proportionality function that varies with both
frequency and illumination level. The integration is performed for all intensities
over the frequency range contained in the light.

For grayscale and monochromatic displays, we need only the luminance val-
ues to describe object lighting. And some graphics packages do allow the lighting
parameters to be expressed in terms of luminance. Green components of a light
source contribute most to the luminance, and blue components contribute least.
Therefore, the luminance of an RGB color source is typically computed as

luminance = 0.299R + 0.587G + 0.114B (27)

Sometimes, better lighting effects are achieved by increasing the contribution for
the green component of each RGB color. One recommendation for this calculation
is 0.2125R + 0.7154G + 0.0721B. The luminance parameter is most often repre-
sented with the symbol Y, which corresponds to the Y component in the XYZ
color model.

4 Transparent Surfaces
We describe an object, such as a glass windowpane, as transparent if we can
see things that are behind that object. Similarly, if we cannot see things that are
behind an object, it is opaque. In addition, some transparent objects, such as frosted
glass and certain plastic materials, are translucent so that the transmitted light
is diffused in all directions. Objects viewed through translucent materials appear
blurred and are often not clearly identifiable.

Illumination Models and Surface-Rendering Methods

508

A transparent surface, in general, produces both reflected and transmitted
light. The light transmitted through the surface is the result of emissions and
reflections from the objects and sources behind the transparent object. Figure 19
illustrates the intensity contributions to the surface lighting for a transparent object
that is in front of an opaque object.

Incident
light

Transparent
object

F I G U R E 1 9
Light emission from a transparent
surface is in general a combination of
reflected and transmitted light.

Translucent Materials
Both diffuse and specular transmission can take place at the surfaces of a trans-
parent object. Diffuse effects are important when translucent materials are to
be modeled. Light passing through a translucent material is scattered so that
background objects are seen as blurred images. We can simulate diffuse transmis-
sions by distributing intensity contributions from background objects over a finite
area, or we can use ray-tracing methods to simulate translucency. These manip-
ulations are time-consuming, and basic illumination models ordinarily compute
only specular-transparency effects.

Light Refraction
Realistic displays of a transparent material are obtained by modeling the
refraction path of a ray of light through the material. When a light beam is incident
upon a transparent surface, part of it is reflected and part is transmitted through
the material as refracted light, as shown in Figure 20. Because the speed of light
is different in different materials, the path of the refracted light is different from
that of the incident light. The direction of the refracted light, specified by the angle
of refraction with respect to the surface normal vector, is a function of the index of
refraction of the material and the incoming direction of the incident light. Index
of refraction is defined as the ratio of the speed of light in a vacuum to the speed
of light in the material. Angle of refraction θr is calculated from Snell’s law as

sin θr = ηi

ηr
sin θi (28)

where θi is the angle of incidence, ηi is the index of refraction for the incident
material, and ηr is the index of refraction for the refracting material.

N
L R

T

Refraction
direction

Reflection
direction

To Light
Source

ui ui

ur

hi

hr

F I G U R E 2 0
Reflection direction R and refraction
(transmission) direction T for a ray of
light incident upon a surface with
index of refraction ηr .

Actually, the index of refraction also depends on other factors, such as the
temperature of the material and the wavelength of the incident light. Thus, the
various color components of incident white light, for example, are refracted at
different angles, which vary with temperature. Furthermore, within anisotropic
materials such as crystalline quartz, the speed of light depends on direction, and
some transparent materials exhibit double refraction, in which two refracted light
rays are generated. For most applications, however, we can use a single average
index of refraction for each material, as listed in Table 1. Using the index of
refraction for air (approximately 1.0) surrounding a pane of heavy crown glass
(refractive index ≈ 1.61) in Equation 28, with an angle of incidence of 30 ◦, we
obtain a refraction angle of about 18◦ for the light passing through the crown glass.

Incident
light Air Glass Air

F I G U R E 2 1
Refraction of light through a pane of
glass. The emerging refracted ray
travels along a path that is parallel to
the incident light path (dashed line).

Refraction occurs whenever a ray moves through the boundary between ma-
terials, so in a situation where the ray passes completely through an object, the ray
will be refracted twice—one refraction for each boundary transition. Figure 21
illustrates the refraction changes for a ray of light passing through a thin sheet of
glass. The overall effect of the refraction is to shift the incident light to a parallel
path as it emerges from the material. Because the evaluations for the trigonometric
functions in Equation 28 are time-consuming, these refraction effects could be
approximated by simply shifting the path of the incident light by an appropriate
amount for a given material.

Illumination Models and Surface-Rendering Methods

509

T A B L E 1

Average Index of Refraction for Common Materials

Material Index of Refraction

Vacuum, air or other gas 1.00

Ordinary crown glass 1.52

Heavy crown glass 1.61

Ordinary flint glass 1.61

Heavy flint glass 1.92

Rock salt 1.55

Quartz 1.54

Water 1.33

Ice 1.31

From Snell’s law and the diagram in Figure 20, we can obtain the unit
transmission vector T in the refraction direction θr as follows:

T =
(

ηi

ηr
cos θi − cos θr

)

N − ηi

ηr
L (29)

where N is the unit surface normal and L is the unit vector in the direction from
the surface position to the light source. Transmission vector T can be used to locate
intersections of the refraction path with objects behind the transparent surface.
Including refraction effects in a scene can produce highly realistic displays, but
the determination of refraction paths and object intersections requires consider-
able computation. Most scan-line image-space methods model light transmission
with approximations that reduce processing time. Accurate refraction effects are
displayed using ray-tracing algorithms.

Basic Transparency Model
A simpler procedure for modeling transparent objects is to ignore the path shifts
due to refraction. In effect, this approach assumes there is no change in the index of
refraction from one material to another, so that the angle of refraction is always the
same as the angle of incidence. This method speeds up the calculation of intensities
and can produce reasonable transparency effects for thin, polygonal surfaces.

Projection Plane

P

Background
Object

Transparent
Object

F I G U R E 2 2
The intensity of a background object at
point P can be combined with the
reflected intensity off the surface of a
transparent object along a
perpendicular projection line (dashed).

We can combine the transmitted intensity Itrans through a transparent sur-
face from a background object with the reflected intensity Irefl from the surface
(Figure 22) using a transparency coefficient kt.We assign parameter kt avalue
between 0.0 and 1.0 to specify how much of the background light is to be trans-
mitted. Total surface intensity is then calculated as

I = (1 − kt)Irefl + kt Itrans (30)

The term (1 − kt) is the opacity factor. For example, if the transparency factor is
assigned the value 0.3, then 30 percent of the background light is combined with
70 percent of the reflected surface illumination.

Illumination Models and Surface-Rendering Methods

510

This procedure can be used to combine the lighting effects from any number of
transparent and opaque objects, so long as we process the surfaces in a depth-first
order (i.e., back to front). For example, looking through an empty drinking glass,
we can see opaque objects that are behind its two transparent surfaces. Similarly,
when we look through the windshield of an automobile, objects inside the car are
visible, as well as objects that may be behind the back window.

For highly transparent objects, we assign kt a value near 1.0. Nearly opaque
objects transmit very little light from background objects, and we can set kt to a
value near 0.0 for these materials. It is also possible to allow kt to be a function of
position over the surface such that different parts of an object can transmit more
or less of the light from the background surfaces.

A depth-sorting visibility algorithm can be modified to handle transparency
by first sorting surfaces in depth order, then determining whether any visible
surface is transparent. If it is, its reflected surface intensity is combined with the
surface intensity of objects behind it to obtain the pixel intensity at each projected
surface point.

Transparency effects could also be implemented using a modified depth-
buffer approach. We can divide the surfaces in a scene into two groups so that all
the opaque surfaces are processed first. At this point, the frame buffer contains the
intensities of the visible surfaces, and the depth buffer contains their depths. Then,
the depth positions of the transparent objects are compared to the values previ-
ously stored in the depth buffer. If any transparent surface is visible, its reflected
intensity is calculated and combined with the opaque surface intensity previously
stored in the frame buffer. This method can be modified to produce more accu-
rate displays by using additional storage for the depth and other parameters of
the transparent surfaces. This allows depth values for the transparent surfaces
to be compared to each other, as well as to the depth values of the opaque sur-
faces. Visible transparent surfaces are then rendered by combining their surface
intensities with those of the visible and opaque surfaces behind them.

Another approach is the A-buffer method. For each pixel position in the
A-buffer, surface patches for all overlapping surfaces are saved and sorted in
depth order. Then, intensities for the transparent and opaque surface patches that
overlap in depth are combined in the proper visibility order to produce the final
averaged intensity for the pixel.

5 Atmospheric Effects
Another factor that is sometimes included in an illumination model is the effect
of the atmosphere on an object’s color. A hazy atmosphere makes colors fade and
objects appear dimmer. Thus, we could specify a function to modify surface colors
according to the amount of dust, smoke, or smog that we want to simulate in the
atmosphere. The hazy-atmosphere effect is often simulated with an exponential
attenuation function such as

fatmo(d) = e−ρd (31)

or
fatmo(d) = e−(ρd)2

(32)

The value assigned to d is the distance of the object from the viewing position.
In addition, we use parameter ρ in either of these exponential functions to set a
positive density value for the atmosphere. Higher values for ρ produce a denser
atmosphere and cause surface colors to be more muted. After the surface color of
an object has been computed, we multiply that color by one of the atmosphere

Illumination Models and Surface-Rendering Methods

511

functions to decrease its intensity by an amount that depends on the value we set
for the density of the atmosphere.

Instead of an exponential function, we could simplify the atmospheric atten-
uation calculations by using the linear depth-cueing functio . This decreases
the intensity of surface colors for distant objects, but we then have no provision
for varying the density of the atmosphere.

Sometimes we might also want to simulate an atmosphere color. For example,
the air in a smoky room could be modeled with a slate-gray color, or perhaps a pale
blue. The following calculation could then be used to combine the atmosphere
color with an object’s color:

I = fatmo(d)Iobj + [1 − fatmo(d)]Iatmo (33)

where fatmo is an exponential or linear atmosphere-attenuation function.

6 Shadows
Visibility detection methods can be used to locate regions that are not illumi-
nated by light sources. With the viewing position at the location of a light source,
we can determine which surface sections in the scene are not visible. These
are the shadow areas. Once we have determined the shadow areas for all light
sources, the shadows could be treated as surface patterns and stored in pattern
arrays.

Shadow patterns generated by a visible-surface detection method are valid
for any selected viewing position, so long as the light-source positions are not
changed. Surfaces that are visible from the view position are shaded according to
the lighting model, which can be combined with texture patterns. We can display
shadow areas with ambient light intensity only, or we could combine the ambient
light with specified surface textures.

7 Camera Parameters
The viewing and illumination procedures we have considered so far produce
sharp images that are equivalent to photographing a scene with a pinhole cam-
era. When we photograph an actual scene, however, we can adjust the camera so
that only selected objects are in focus. Other objects are then more or less out of
focus, depending on the depth distribution of the objects in the scene. We can sim-
ulate the appearance of out-of-focus positions in a computer-graphics program,
by projecting each position to an area covering multiple pixel positions, with the
object colors merged into other objects to produce a blurred projection pattern.
This procedure is similar to the methods used in antialiasing, and we can incorpo-
rate the camera effects into either a scan-line or a ray-tracing algorithm. Computer-
generated scenes appear more realistic when focusing effects are included, but
the focusing calculations are time-consuming.

8 Displaying Light Intensities
A surface intensity calculated by an illumination model can have any value in the
range from 0.0 to 1.0, but a computer-graphics system can display only a limited set
of intensities. Therefore, a calculated intensity value must be converted to one of

Illumination Models and Surface-Rendering Methods

n

512

the allowable system values. In addition, the allowable number of system intensity
levels can be distributed so that they correspond to the way that our eyes per-
ceive intensity differences. When we display scenes on a bilevel system, we could
convert calculated intensities into halftone patterns, as discussed in Section 9.

Distributing System Intensity Levels
For any system, the allowable number of intensity levels can be distributed over
the range from 0.0 to 1.0 so that this distribution corresponds to our perception
of equal intensity intervals between levels. We perceive relative light intensities
the same way that we perceive relative sound intensities: on a logarithmic scale.
This means that if the ratio of two intensity values is the same as the ratio of two
other intensities, we perceive the difference between each pair of intensities to be
the same. For example, we perceive the difference between intensities 0.20 and
0.22 to be the same as the difference between 0.80 and 0.88. Therefore, to display
n + 1 successive intensity levels with equal perceived brightness, the intensity
levels on the monitor should be spaced so that the ratio of successive intensities
is constant, as follows:

I1

I0
= I2

I1
= · · · = In

In−1
= r (34)

where I represents the intensity of one of the color components of a light. The low-
est level that can be displayed is represented as I0 and the highest is represented
as In. Any intermediate intensity can then be expressed in terms of I0 as

Ik = rk I0 (35)

We can calculate the value of r , given the values of I0 and n for a particular system,
by substituting k = n in the previous expression. Because In = 1.0, we have

r =
(

1.0
I0

)1/n

(36)

Thus, the calculation for Ik in Equation 35 can be rewritten as

Ik = I (n−k)/n
0 (37)

For example, if I0 = 1
8 for a system with n = 3, we have r = 2 and the four intensity

values are 1
8 , 1

4 , 1
2 , and 1.0.

The lowest intensity value I0 depends on the characteristics of the monitor
and is typically in the range from 0.005 to around 0.025. This residual intensity
on a video monitor is due to reflected light from the screen phosphors. Therefore,
a “black” region on the screen will always have some intensity value above 0.0.
For a grayscale display with 8 bits per pixel (n = 255) and I0 = 0.01, the ratio of
successive intensities is approximately r = 1.0182. The approximate values for the
256 intensities on this system are 0.0100, 0.0102, 0.0104, 0.0106, 0.0107, 0.0109, . . . ,
0.9821, and 1.0000.

Similar methods are used with RGB color components. For example, we can
express the intensity of the blue component of a color at level k in terms of the
lowest attainable blue value as

IBk = rk
B IB0 (38)

where

rB =
(

1.0
IB0

)1/n

(39)

and n is the number of intensity levels.

Illumination Models and Surface-Rendering Methods

513

Gamma Correction and Video Lookup Tables
When we display color or monochromatic images on a video monitor, the per-
ceived brightness variations are nonlinear, but illumination models produce a
linear variation for intensity values. The RGB color (0.25, 0.25, 0.25) obtained
from a lighting model represents one-half the intensity of the color (0.5, 0.5, 0.5).
Usually, these calculated intensities are then stored in an image file as integer val-
ues ranging from 0 to 255, with one byte for each of the three RGB components.
This intensity file is also linear, so a pixel with the value (64, 64, 64) represents half
the intensity of a pixel with the value (128, 128, 128). The electron-gun voltages,
which control the number of electrons striking the phosphor screen, produce
brightness levels as determined by the monitor response curve shown in Fig-
ure 23. Therefore, the displayed intensity value (64, 64, 64) would not appear
to be half as bright as the value (128, 128, 128).

To compensate for monitor nonlinearities, graphics systems use a video
lookup table that adjusts the linear input intensity values. The monitor response
curve is described with the exponential function

I = a Vγ (40)

Parameter I is displayed intensity and parameter V is the corresponding electron-
gun voltage. Values for parameters a and γ depend on the characteristics of the
monitor used in the graphics system. Thus, if we want to display a particular
intensity value I , the voltage value to produce this intensity is

V =
(

I
a

)1/γ

(41)

This calculation is referred to as the gamma correction of intensity, and gamma
values are typically in the range from about 1.7 to 2.3. The National Television
System Committee (NTSC) signal standard is γ = 2.2. Figure 24 shows a
gamma-correction curve using the NTSC gamma value with both intensity and
voltage normalized on the interval from 0 to 1.0. Equation 41 is used to set up

0.5

1.0

in
te

ns
it

y

1.00.50

normalized electron-gun voltage

F I G U R E 2 3
A typical monitor response curve, showing the variation in
displayed intensity (or “brightness”) as a function of the
normalized electron-gun voltage.

0.5

1.0

no
rm

al
iz

ed
 e

le
ct

ro
n-

gu
n

vo
lt

ag
e

1.00.50
intensity

g � 2.2

F I G U R E 2 4
A video lookup correction curve for mapping a normalized
intensity value to a normalized electron-gun voltage, using
gamma correction with γ = 2.2.

Illumination Models and Surface-Rendering Methods

514

the video lookup table that converts integer intensity values in an image file to
values that control the electron-gun voltages.

We can combine gamma correction with logarithmic intensity mapping to
produce a lookup table. If I is an input intensity value from an illumination
model, we first locate the nearest intensity Ik from a table of values created with
Equation 34 or Equation 37. Alternatively, we could determine the level
number for this intensity value with the calculation

k = round
[

logr

(
I
I0

)]

(42)

then we compute the intensity value at this level using Equation 37. Once we
have the intensity value Ik , we can calculate the electron-gun voltage as

Vk =
(

Ik

a

)1/γ

(43)

Values Vk can then be placed in the lookup tables, with values for k stored in
the frame-buffer pixel positions. If a particular system has no lookup table, com-
puted values for Vk could be stored directly in the frame buffer. The combined
conversion to a logarithmic intensity scale followed by calculation of the Vk using
Equation 43 is also sometimes referred to as gamma correction.

If the video amplifiers of a monitor are designed to convert the linear intensity
values to electron-gun voltages, we cannot combine the two intensity conversion
processes. In this case, gamma correction is built into the hardware, and the log-
arithmic values Ik must be precomputed and stored in the frame buffer (or the
color table).

Displaying Continuous-Tone Images
High-quality computer graphics systems generally provide 256 intensity levels
for each color component, but acceptable displays can be obtained for many appli-
cations with fewer levels. A four-level system provides minimum shading capa-
bility for continuous-tone images, while photo-realistic images can be generated
on systems that are capable of from 32 to 256 intensity levels per pixel.

Figure 25 shows a continuous-tone photograph displayed with various
intensity levels. When a small number of intensity levels are used to reproduce a
continuous-tone image, the borders between the different intensity regions (called
contours) are clearly visible. In the 2-level reproduction, the facial features in the
photograph are just barely identifiable. Using 4 intensity levels, we begin to iden-
tify the original shading patterns, but the contouring effects are glaring. With
8 intensity levels, contouring effects are still obvious, but we begin to have a bet-
ter indication of the original shading. At 16 or more intensity levels, contouring
effects diminish and the reproductions are very close to the original. Reproduc-
tions of continuous-tone images using more than 32 intensity levels show only
very subtle differences from the original.

9 Halftone Patterns and
Dithering Techniques

With a system that has very few available intensity levels, we can create an
apparent increase in the number of available intensities by incorporating mul-
tiple pixel positions into the display of each intensity value for a scene. When we
view a small region consisting of several pixel positions, our eyes tend to integrate

Illumination Models and Surface-Rendering Methods

515

(a)

(b)

(c)

(d)

F I G U R E 2 5
A continuous-tone photograph (a) printed with two intensity levels (b), four intensity levels (c), and eight intensity
levels (d).

or average the fine detail into an overall intensity. Bilevel monitors and printers, in
particular, can take advantage of this visual effect to produce pictures that appear
to be displayed with multiple intensity values.

Continuous-tone photographs are reproduced for publication in newspapers,
magazines, and books with a printing process called halftoning, and the repro-
duced pictures are called halftones. For a black-and-white photograph, each
constant intensity area is reproduced as a set of small black circles on a white
background. The diameter of each circle is proportional to the darkness required
for that intensity region. Darker regions are printed with larger circles, and lighter
regions are printed with smaller circles (more white space). Figure 26 shows an
enlarged section of a grayscale halftone reproduction. Color halftones are printed
using small circular dots of various sizes and colors. Book and magazine halftones
are printed on high-quality paper using approximately 60 to 80 circles of varying
diameter per centimeter. Newspapers use lower-quality paper and lower resolu-
tion (about 25 to 30 dots per centimeter).

F I G U R E 2 6
An enlarged section of a photograph
reproduced with a halftoning method,
showing how tones are represented
with “dots” of varying sizes.

Illumination Models and Surface-Rendering Methods

516

2
0.4 � I � 0.6

3
0.6 � I � 0.8

4
0.8 � I � 1.0

1
0.2 � I � 0.4

0
0.0 � I � 0.2

F I G U R E 2 7
A set of 2 × 2 pixel grid patterns that can be used to display five intensity levels on a
bilevel system, showing the “on” pixels as green circles. The intensity values that are
mapped to each of the grid patterns are listed below the pixel arrays.

Halftone Approximations
In computer graphics, halftone reproductions are simulated using rectangu-
lar pixel regions that are called halftone approximation patterns, or just pixel
patterns. The number of intensity levels that we can display with this method
depends on how many pixels we include in the rectangular grids and how many
levels a system can display. With n×n pixels for each grid on a bilevel system, we
can represent n2 + 1 intensity levels. Figure 27 shows one way to set up pixel
patterns to represent five intensity levels that could be used with a bilevel system.
In pattern 0, all pixels are turned off; in pattern 1, one pixel is turned on; and in
pattern 4, all four pixels are turned on. An intensity value I in a scene is mapped
to a particular pattern according to the range listed below each grid shown in the
figure. Pattern 0 is used for 0.0 ≤ I < 0.2, pattern 1 for 0.2 ≤ I < 0.4, and pattern
4 is used for 0.8 ≤ I ≤ 1.0.

With 3 × 3 pixel grids on a bilevel system, we can display 10 intensity levels.
One way to set up the 10 pixel patterns for these levels is shown in Figure 28.
Pixel positions are chosen at each level so that the patterns approximate the
increasing circle sizes used in halftone reproductions. That is, the “on” pixel posi-
tions are near the center of the grid for lower intensity levels and expand outward
as the intensity level increases.

For any pixel-grid size, we can represent the pixel patterns for the various
possible intensities with a mask (matrix) of pixel position numbers. For example,
the following mask can be used to generate the nine 3×3 grid patterns for intensity
levels above 0 shown in Figure 28:

⎡

⎣

8 3 7
5 1 2
4 9 6

⎤

⎦ (44)

To display a particular intensity with level number k, we turn on each pixel whose
position number is less than or equal to k.

2
0.2 � I � 0.3

3
0.3 � I � 0.4

4
0.4 � I � 0.5

1
0.1 � I � 0.2

0
0.0 � I � 0.1

7
0.7 � I � 0.8

8
0.8 � I � 0.9

9
0.9 � I � 1.0

6
0.6 � I � 0.7

5
0.5 � I � 0.6

F I G U R E 2 8
A set of 3 × 3 pixel grid patterns that
can be used to display 10 intensities
on a bilevel system, showing the “on”
pixels as green circles. The intensity
values that are mapped to each of the
grid patterns are listed below the
pixel arrays.

Illumination Models and Surface-Rendering Methods

517

Although the use of n × n pixel patterns increases the number of intensities
that can be represented, the resolution of the display area is reduced by a factor
of 1/n in the x and y directions. Using 2 × 2 grid patterns on a 512 × 512 screen
area, for instance, reduces the resolution to 256×256 intensity positions; and with
3 × 3 patterns, we reduce the resolution of the 512 × 512 area to 128 × 128.

Another problem with pixel grids is that subgrid patterns become apparent
as the grid size increases. The grid size that can be used without distorting the
intensity variations depends on the size of a displayed pixel. Therefore, for sys-
tems with lower resolution (fewer pixels per centimeter), we must be satisfied
with fewer intensity levels. On the other hand, high-quality displays require at
least 64 intensity levels. This means that we need 8×8 pixel grids. And to achieve
a resolution equivalent to that of halftones in books and magazines, we must dis-
play 60 dots per centimeter. Thus, we need to be able to display 60 × 8 = 480 dots
per centimeter. Some devices, such as high-quality film recorders, can display this
resolution.

Pixel-grid patterns for halftone approximations must also be constructed to
minimize contouring and other visual effects not present in the original scene.
We can minimize contouring by evolving each successive grid pattern from the
previous pattern. That is, we form the pattern at level k by adding an “on” position
to the grid pattern used for level k − 1. Thus, if a pixel position is on for one grid
level, it is on for all higher levels (Figs. 27 and 28). We can minimize the
introduction of other visual effects by avoiding symmetrical patterns. With a
3 × 3 pixel grid, for instance, the third intensity level above zero would be better
represented by the pattern in Figure 29(a) than by any of the symmetrical
arrangements in Figure 29(b). The symmetrical patterns in this figure would
produce either vertical, horizontal, or diagonal streaks in any large area shaded
with intensity level 3. For hardcopy output on devices such as film recorders
and some printers, isolated pixels are not effectively reproduced. Therefore a grid
pattern with a single “on” pixel or with isolated “on” pixels, as in Figure 30,
should be avoided.

Halftone-approximation methods can be applied also to increase the number
of intensity options on systems that are capable of displaying more than two inten-
sities per pixel. For example, on a grayscale system that can display four intensity
values per pixel, we can use 2 × 2 pixel grids to represent 13 different intensity
levels. Figure 31 illustrates one way to set up the 13 pixel-grid patterns, where
each pixel can be set to intensity level 0, 1, 2, or 3.

Similarly, we can use pixel-grid patterns to increase the number of intensities
that can be represented on a color system. A three-bit-per-pixel RGB system, for
example, uses one bit per pixel for each color gun. Thus, a pixel is displayed with
three phosphor dots, so that the pixel can be assigned any one of eight different

F I G U R E 2 9
For a 3 × 3 pixel grid, the pattern in (a) is
better than any of the symmetrical
patterns in (b) for representing the third
intensity level above 0. (a) (b)

F I G U R E 3 0
Halftone grid patterns with isolated
pixels that cannot be reproduced
effectively on some hardcopy devices.

Illumination Models and Surface-Rendering Methods

518

0 0

0 0

0

0 1

0 0

1

0 1

1 0

2

1 1

1 0

3

1 1

1 1

4

1 2

1 1

5

1 2

2 1

6

2 2

2 1

7

2 2

2 2

8

2 3

2 2

9

2 3

3 2

10

3 3

3 2

11

3 3

3 3

12

F I G U R E 3 1
Intensity representations 0 through 12
obtained with halftone- approximation
patterns using 2 × 2 pixel grids on a
four-level system, with pixel-intensity
levels labeled 0 through 3.

colors (including black and white). But with 2 × 2 pixel-grid patterns, we have
12 phosphor dots that we can use to represent a color, as shown in Figure 32.
The red electron gun can activate any combination of the four red dots in the grid
pattern, and this provides five possible settings for the red color of the pattern.
The same is true for the green and blue guns, which gives us a total of 125 different
color combinations that can be represented with our 2 × 2 grid patterns.

F I G U R E 3 2
A 2 × 2 pixel-grid pattern for
displaying RGB colors.

Dithering Techniques
The term dithering is used in various contexts. Primarily, it refers to techniques
for approximating halftones without reducing resolution, as pixel-grid patterns
do. However, dithering is sometimes used also as a synonym for any halftone-
approximation scheme, and sometimes it is used as another term for color halftone
approximations.

Random values added to pixel intensities to break up contours are often
referred to as dither noise. Various algorithms have been used to generate the
random distributions. The effect is to add noise over an entire picture, which
tends to soften intensity boundaries.

A method called ordered dither generates intensity variations with a one-
to-one mapping of points in a scene to pixel positions using a dither matrix Dn

to select an intensity level. Matrix Dn contains n x n elements that are assigned
distinct positive integer values in the range from 0 to n2 − 1. For example, we can
generate four intensity levels with

D2 =
[

3 1
0 2

]

(45)

and we can generate nine intensity levels with

D3 =
⎡

⎣

7 2 6
4 0 1
3 8 5

⎤

⎦ (46)

The matrix elements for D2 and D3 are in the same order as the pixel mask for
setting up 2 × 2 and 3 × 3 pixel grids, respectively. With a bilevel system, we
determine the display intensity values by comparing input intensities to the
matrix elements. Each input intensity is first scaled to the range 0 ≤ I ≤ n2. If
the intensity I is to be applied to screen position (x, y), we calculate the reference
position (row and column) in the dither matrix as

j = (x mod n) + 1, k = (y mod n) + 1 (47)

If I > Dn(j, k), we turn on the pixel at position (x, y). Otherwise, the pixel is off.
For RGB color applications, this procedure is implemented for the intensity of
each of the individual color components (red, green, and blue).

Illumination Models and Surface-Rendering Methods

519

Elements of the dither matrix are assigned in accordance with the guidelines
discussed for pixel grids. That is, we want to minimize artificial visual effects,
such as contouring. Order dither produces constant intensity areas identical to
those generated with pixel-grid patterns when the values of the matrix elements
correspond to those in the halftone-approximation grid mask. Variations from the
pixel-grid displays occur at the boundary of two different intensity areas.

Typically, the number of intensity levels is taken to be a multiple of 2. Higher-
order dither matrices, n ≥ 4, are then obtained from lower-order matrices using
the recurrence relation

Dn =
[

4Dn/2 + D2(1, 1) Un/2 4Dn/2 + D2(1, 2) Un/2

4Dn/2 + D2(2, 1) Un/2 4Dn/2 + D2(2, 2) Un/2

]

(48)

Parameter Un/2 represents the “unity” matrix (all elements are 1). For example, if
D2 is specified as in Equation 45, then recurrence relation 48 yields

D4 =

⎡

⎢
⎢
⎣

15 7 13 5
3 11 1 9

12 4 10 6
0 8 2 10

⎤

⎥
⎥
⎦

(49)

Another method for mapping a picture with m × n points to a display area
with m × n pixels is error diffusion. Here, the error between an input intensity
value and the selected intensity level at a given pixel position is dispersed, or
diffused, to pixel positions to the right and below the current pixel position.
Starting with a matrix M of intensity values obtained by scanning a photograph,
we want to construct an array I of pixel intensity values for an area of the screen.
We do this by first scanning across the rows of M, from left to right, starting
with the top row, and determining the nearest available pixel-intensity level for
each element of M. Then the error between the value stored in matrix M and
the displayed intensity level at each pixel position is distributed to neighboring
elements using the following simplified algorithm:

for (j = 0; j < m; j++)
for (k = 0; k < n; k++) {

/* Determine the available system intensity value
* that is closest to the value of M [j][k] and
* assign this value to I [j][k].
*/
error = M [j][k] - I [j][k];
I [j][k+1] = M [j][k+1] + alpha * error;
I [j+1][k-1] = M [j+1][k-1] + beta * error;
I [j+1][k] = M [j+1][k] + gamma * error;
I [j+1][k+1] = M [j+1][k+1] + delta * error;

}

Once the elements of matrix I have been assigned intensity-level values, we then
map the matrix to an area of a display device such as a printer or video monitor. Of
course, we cannot disperse the error past the last matrix column (k = n) or below
the last matrix row (j = m), and for a bilevel system, the system intensity values
are just 0 and 1. Parameters for distributing the error can be chosen to satisfy the
following relationship:

α + β + γ + δ ≤ 1 (50)

Illumination Models and Surface-Rendering Methods

520

7
16

3
16

5
16

1
16

column k

row j

row j � 1

F I G U R E 3 3
Fraction of intensity error that can be
distributed to neighboring pixel
positions using an error-diffusion
scheme.

34

42

50

38

28

20

12

24

48

58

62

46

14

4

0

16

40

56

61

54

22

6

3

8

32

53

45

37

30

11

19

27

29

21

13

25

35 49

43

51

39

15

5

1

17

59

63

47

41

23

7

2

9

57

60

55

33

31

10

18

26

52

44

36

F I G U R E 3 4
One possible distribution scheme for
dividing the intensity array into 64
dot-diffusion classes numbered from
0 through 63.

One choice for the error-diffusion parameters that produces fairly good
results is (α, β, γ , δ) = (7

16 , 3
16 , 5

16 , 1
16). Figure 33 illustrates the error distribu-

tion using these parameter values. Error diffusion sometimes produces “ghosts”
in a picture by repeating, or echoing, certain parts of the picture, particularly with
facial features such as hairlines and nose outlines. Ghosting can often be reduced
in these cases by choosing values for the error-diffusion parameters that sum to a
value less than 1 and by rescaling the matrix values after the dispersion of errors.
One way to rescale is to multiply all matrix elements by 0.8 and then add 0.1.
Another method for improving picture quality is to alternate the scanning of
matrix rows from right to left and left to right.

A variation on the error-diffusion method is dot diffusion. In this method,
the m × n array of intensity values is divided into 64 classes numbered from 0 to
63, as shown in Figure 34. The error between a matrix value and the displayed
intensity is then distributed only to those neighboring matrix elements that have
a larger class number. Distribution of the 64 class numbers is based on minimizing
the number of elements that are completely surrounded by elements with a lower
class number, because this would tend to direct all errors of the surrounding
elements to that one position.

10 Polygon Rendering Methods
Intensity calculations from an illumination model can be applied to surface ren-
dering in various ways. We could use an illumination model to determine the sur-
face intensity at every projected pixel position, or we could apply the illumination
model to a few selected points and approximate the intensity at the other surface
positions. Graphics packages typically perform surface rendering using scan-line
algorithms that reduce processing time by dealing only with polygon surfaces and
by calculating surface intensity only at the vertices. The vertex intensities are then

Illumination Models and Surface-Rendering Methods

521

interpolated to the other positions on the polygon surface. Other, more accurate
polygon scan-line rendering methods have been developed, and ray-tracing
algorithms calculate the intensity at each projected surface point for curved or pla-
nar surfaces. In this section, we consider the scan-line surface-rendering schemes
that are applied to polygons.

Constant-Intensity Surface Rendering
The simplest method for rendering a polygon surface is to assign the same color
to all projected surface positions. In this case, we use the illumination model to
determine the intensity for the three RGB color components at a single surface
position, such as a vertex or the polygon centroid. This approach, called constant-
intensity surface rendering or flat surface rendering, provides a fast and simple
method for displaying polygon facets on an object, which can be useful for quickly
generating the general appearance of a curved surface, as in Color Plate 17(b).
Flat rendering is also useful in design or other applications where we might
want quickly to identify the individual polygonal facets used to model a curved
surface.

In general, flat surface rendering of a polygon provides an accurate display
of the surface if all of the following assumptions are valid:

• The polygon is one face of a polyhedron and not a section of a curved-
surface approximation mesh.

• All light sources illuminating the polygon are sufficiently far from the
surface that N ·L and the attenuation function are constant over the area
of the polygon.

• The viewing position is sufficiently far from the polygon that V ·R is con-
stant over the area of the polygon.

Even if some of these conditions are not true, we can still reasonably approximate
surface lighting effects using constant-intensity surface rendering if the polygon
facets of an object are small.

Gouraud Surface Rendering
The Gouraud surface rendering scheme, devised by Henri Gouraud and also
referred to as intensity-interpolation surface rendering, linearly interpolates ver-
tex intensity values across the polygon faces of an illuminated object. Developed
for rendering a curved surface that is approximated with a polygon mesh, the
Gouraud method smoothly transitions the intensity values for each polygon facet
into the values for adjacent polygons along the common edges. This interpolation
of intensities across the polygon area eliminates the intensity discontinuities that
can occur in flat surface rendering.

Each polygon section of a tessellated curved surface is processed by the
Gouraud surface-rendering method using the following procedures:

1. Determine the average unit normal vector at each vertex of the polygon.
2. Apply an illumination model at each polygon vertex to obtain the light

intensity at that position.
3. Interpolate the vertex intensities linearly over the projected area of the

polygon.

Illumination Models and Surface-Rendering Methods

522

N1

N2

N3

N4
V

F I G U R E 3 5
The normal vector at vertex V is calculated as the
average of the surface normals for each polygon sharing
that vertex.

scan line1

4

2

5

3

p

x

y

F I G U R E 3 6
For Gouraud surface rendering, the intensity at point 4
is linearly interpolated from the intensities at vertices 1 and 2.
The intensity at point 5 is linearly interpolated from intensities
at vertices 2 and 3. An interior point p is then assigned an
intensity value that is linearly interpolated from intensities at
positions 4 and 5.

At each polygon vertex, we obtain a normal vector by averaging the normal
vectors of all polygons in the surface mesh that share that vertex, as illustrated in
Figure 35. Thus, for any vertex position V, we obtain the unit vertex normal
with the calculation

NV =
∑n

k=1 Nk
∣
∣
∑n

k=1 Nk
∣
∣

(51)

Once we have obtained the normal vector at a vertex, we invoke the illumination
model to obtain the surface intensity at that point.

After all vertex intensities have been computed for a polygonal facet, we can
interpolate the vertex values to obtain the intensities at positions along scan lines
that intersect the projected area of the polygon, as demonstrated in Figure 36.
For each scan line, the intensity at the intersection of the scan line with a polygon
edge is linearly interpolated from the intensities at the endpoints of that edge. For
the example in Figure 36, the polygon edge with endpoint vertices at positions
1 and 2 is intersected by the scan line at point 4. A fast method for obtaining the
intensity at point 4 is to interpolate between the values at vertices 1 and 2 using
only the vertical displacement of the scan line, as follows:

I4 = y4 − y2

y1 − y2
I1 + y1 − y4

y1 − y2
I2 (52)

In this expression, the symbol I represents the intensity for one of the RGB color
components. Similarly, the intensity at the right intersection of this scan line
(point 5) is interpolated from intensity values at vertices 2 and 3. From these
two boundary intensities, we linearly interpolate to obtain the pixel intensities
for positions across the scan line. The intensity for one of the RGB color compo-
nents at point p in Figure 36, for instance, is calculated from the intensities at
points 4 and 5 as

Ip = x5 − xp

x5 − x4
I4 + xp − x4

x5 − x4
I5 (53)

In the implementation of Gouraud rendering, we can perform the inten-
sity calculations represented by Equations 52 and 53 efficiently by using

Illumination Models and Surface-Rendering Methods

523

F I G U R E 3 7
Incremental interpolation of intensity
values along a polygon edge for
successive scan lines.

scan lines

I1

I�

I2

I
y

y � 1

x x � 1

incremental methods. Starting from a scan line that intersects one of the polygon
vertices, we can incrementally obtain intensity values for other scan lines that
intersect an edge that is connected to that vertex. Assuming that the polygon
facets are convex, each scan line crossing the polygon has two edge intersections,
such as points 4 and 5 in Figure 36. Once we have obtained the intensities at
the two edge intersections for a scan line, we apply the incremental procedures
to obtain pixel intensities across the scan line.

As an example of the incremental calculation of intensities, we consider scan
lines y and y − 1 in Figure 37, which intersect the left edge of a polygon. If scan
line y is the next scan line below the vertex at y1 with intensity I1, that is y = y1 −1,
then we can compute the intensity I on scan line y from Equation 52 as

I = I1 + I2 − I1

y1 − y2
(54)

Continuing down the polygon edge, the intensity along this edge for the next scan
line, y − 1, is

I ′ = I + I2 − I1

y1 − y2
(55)

Thus, each successive intensity value down the edge is computed simply by
adding the constant term (I2 − I1)/(y1 − y2) to the previous intensity value. Simi-
lar incremental calculations are used to obtain intensities at successive horizontal
pixel positions along each scan line.

Gouraud surface rendering can be combined with a hidden-surface algorithm
to fill in the visible polygons along each scan line. An example of a three-
dimensional object rendered with the Gouraud method appears in Color
Plate 17(c).

This intensity-interpolation method eliminates the discontinuities associated
with flat rendering, but it has some other deficiencies. Highlights on the sur-
face are sometimes displayed with anomalous shapes, and the linear intensity
interpolation can cause bright or dark intensity streaks, called Mach bands, to
appear on the surface. These effects can be reduced by dividing the surface into a
greater number of polygon faces or by using more precise intensity calculations.

Phong Surface Rendering
A more accurate interpolation method for rendering a polygon mesh was sub-
sequently developed by Phong Bui Tuong. This approach, called Phong surface
rendering or normal-vector interpolation rendering, interpolates normal vectors
instead of intensity values. The result is a more accurate calculation of intensity
values, a more realistic display of surface highlights, and a great reduction in the

Illumination Models and Surface-Rendering Methods

524

scan line y

N2

N3N1

N

F I G U R E 3 8
Interpolation of surface normals along a polygon edge.

Mach-band effect. However, the Phong method requires more computation than
the Gouraud method.

Each polygon section of a tessellated curved surface is processed by the Phong
surface-rendering method using the following procedures:

1. Determine the average unit normal vector at each vertex of the polygon.
2. Interpolate the vertex normals linearly over the projected area of the

polygon.
3. Apply an illumination model at positions along scan lines to calculate

pixel intensities using the interpolated normal vectors.

Interpolation procedures for normal vectors in the Phong method are the
same as those for the intensity values in the Gouraud method. The normal vector
N in Figure 38 is interpolated vertically from the normal vectors at vertices 1
and 2 as

N = y − y2

y1 − y2
N1 + y1 − y

y1 − y2
N2 (56)

This result must be re-normalized before we perform our shading calculations.
We apply the same incremental methods for obtaining normal vectors on succes-
sive scan lines and at successive pixel positions along scan lines. The difference
between the two surface-rendering approaches is that we must now apply the
illumination model at every projected pixel position along the scan lines to obtain
the surface intensity values.

Fast Phong Surface Rendering
We can reduce processing time in the Phong-rendering method by approximat-
ing some of the illumination-model calculations. Fast Phong surface rendering
performs the intensity calculations using a truncated Taylor-series expansion and
limiting the polygon facets to triangular surface patches.

Because the Phong method interpolates normal vectors from the vertex nor-
mals, we can write the expression for calculating the surface normal N at position
(x, y) in a triangular patch as

N = Ax + By + C (57)

where vectors A, B, and C are determined from the three vertex equations:

Nk = Axk + Byk + C, for k = 1, 2, 3 (58)

with (xk , yk) denoting a projected triangle vertex position on the pixel plane.

Illumination Models and Surface-Rendering Methods

525

Omitting the reflectivity and attentuation parameters, we can write the cal-
culation for light-source diffuse reflection from a surface point (x, y) as

Idiff(x, y) = L ·N
|L||N|

= L · (Ax + By + C)

|L||Ax + By + C|

= (L ·A)x + (L ·B)y + L ·C
|L||Ax + By + C| (59)

This expression can be written in the form

Idiff(x, y) = ax + by + c
[dx2 + exy + f y2 + gx + hy + i]1/2 (60)

where parameters such as a , b, c, and d are used to represent the various dot
products. For example,

a = L ·A
|L| (61)

Finally, we can express the denominator in Equation 60 as a Taylor series
expansion and retain terms up to the second degree in x and y. This yields

Idiff(x, y) = T5 x2 + T4 xy + T3 y2 + T2 x + T1 y + T0 (62)

where each Tk is a function of the various parameters in Equation 60, such as
a , b, and c.

Using forward differences, we then evaluate Equation 62 with only two
additions for each pixel position (x, y) once the initial forward-difference parame-
ters have been evaluated. Although the simplifications in the fast-Phong approach
reduce the Phong surface-rendering calculations, it still takes approximately twice
as long to render a surface with the fast-Phong method as it does with Gouraud
surface rendering. And the basic Phong method, using forward-difference calcu-
lations, takes about 6 to 7 times longer than Gouraud rendering.

Fast-Phong rendering for diffuse reflection can be extended to include spec-
ular reflections, using similar approximations for evaluating the specular terms
such as (N ·H)ns . In addition, we can generalize the algorithm to include a finite
viewing position and polygons other than triangles.

11 OpenGL Illumination and
Surface-Rendering Functions

A variety of routines are available in OpenGL for setting up point light sources,
selecting surface-reflection coefficients, and choosing values for other parameters
in the basic illumination model. In addition, we can simulate transparency, and
objects can be displayed using either flat surface rendering or Gouraud surface
rendering.

OpenGL Point Light-Source Function
Multiple point light sources can be included in an OpenGL scene description, and
various properties, such as position, type, color, attenuation, and spotlight effects,

Illumination Models and Surface-Rendering Methods

526

are associated with each light source. We set a property value for a light source
with the function

glLight* (lightName, lightProperty, propertyValue);

A suffix code of i or f is appended to the function name, depending on the
data type of the property value. For vector data, the suffix code v is also
appended and parameterpropertyValue is then a pointer to an array. Each light
source is referenced with an identifier, and parameter lightName is assigned one
of the OpenGL symbolic identifiers GL LIGHT0, GL LIGHT1, GL LIGHT2, . . . ,
GL LIGHT7, although some implementations of OpenGL may allow more than
8 light sources. Similarly, parameterlightPropertymust be assigned one of the
10 OpenGL symbolic property constants. After all properties have been assigned
to a light source, we turn on that light with the command

glEnable (lightName);

However, we also need to activate the OpenGL lighting routines, and we do that
with the command

glEnable (GL_LIGHTING);

Object surfaces are then rendered using lighting calculations that include contri-
butions from each light source that has been enabled.

Specifying an OpenGL Light-Source Position and Type
The OpenGL symbolic property constant for designating a light-source position
is GL POSITION. Actually, this symbolic constant is used to set two light-source
properties at the same time: the light-source position and the light-source type.
Two general classifications of light sources are available in OpenGL to illuminate
a scene. A point light source can be classified as near the objects to be illuminated
(a local source), or it can be treated as if it were infinitely far from the scene.
And this classification is independent of the position that we assign to a light
source. For a nearby light source, the emitted light radiates in all directions, and
the position of the light source is included in the lighting calculations. However,
the emitted light from a distant source is allowed to emanate in one direction
only, and this direction is applied to all surfaces in the scene, independently of
the assigned light-source position. The direction for the emitted rays from a light
that is classified as a distant source is calculated as the direction from the assigned
position of the light source to the coordinate origin.

A four-element floating-point vector is used to designate both the type of
light and the coordinate values for the light position. The first three elements of
this vector give the world-coordinate position, and the fourth element is used to
designate the light-source type. If we assign the value 0.0 to the fourth element
of the position vector, the light is considered to be a very distant source (referred
to in OpenGL as a “directional” light), and the light-source position is then used
only to determine the light direction. Otherwise, the light is taken to be a local
point source (referred to in OpenGL as a “positional” light), and the light position
is used by the lighting routines to determine the light direction to each object in
the scene. In the following code example, light 1 is designated as a local source

Illumination Models and Surface-Rendering Methods

527

at location (2.0, 0.0, 3.0), and light 2 is a distant source with light emission in the
negative y direction:

GLfloat light1PosType [] = {2.0, 0.0, 3.0, 1.0};
GLfloat light2PosType [] = {0.0, 1.0, 0.0, 0.0};

glLightfv (GL_LIGHT1, GL_POSITION, light1PosType);
glEnable (GL_LIGHT1);

glLightfv (GL_LIGHT2, GL_POSITION, light2PosType);
glEnable (GL_LIGHT2);

If we do not specify a position and type for a light source, the default values are
(0.0, 0.0, 1.0, 0.0), which indicates a distant source with light rays traveling in the
negative z direction.

The position of a light source is included in the scene description, and it
is transformed to viewing coordinates along with the object positions by the
OpenGL geometric-transformation and viewing-transformation matrices. There-
fore, if we want to keep the light source at a fixed position relative to the objects
in a scene, we set its position after the specification of the geometric and viewing
transformations in the program. However, if we want the light source to move
as the viewpoint moves, we set its position before the specification of the viewing
transformation. Also, we can apply a translation or rotation to a light source to
move it around in a stationary scene.

Specifying OpenGL Light-Source Colors
Unlike an actual light source, an OpenGL light has three different color proper-
ties. In this empirical scheme, the three light-source colors provide options for
varying the lighting effects in a scene. We set these colors using the symbolic
color-property constants GL AMBIENT, GL DIFFUSE, and GL SPECULAR. Each
of these colors is assigned by specifying a four-element floating-point set of val-
ues representing the red, green, blue, and alpha (RGBA) components of the color,
specified in that order. The alpha component controls color-blending, and is used
only if the OpenGL color-blending routines are activated. As we might guess
from the names of the symbolic color-property constants, one of the light-source
colors contributes to the background (ambient) light in a scene, another color
is used in diffuse-lighting calculations, and the third color is used to compute
specular-lighting effects for a surface. Realistically, a light source has just one
color, but we can use the three OpenGL light-source colors to create various light-
ing effects. In the following code example, we set the ambient color for a local light
source, labeledGL LIGHT3, to black, and we set the diffuse and specular colors to
white:

GLfloat blackColor [] = {0.0, 0.0, 0.0, 1.0};
GLfloat whiteColor [] = {1.0, 1.0, 1.0, 1.0};

glLightfv (GL_LIGHT3, GL_AMBIENT, blackColor);
glLightfv (GL_LIGHT3, GL_DIFFUSE, whiteColor);
glLightfv (GL_LIGHT3, GL_SPECULAR, whiteColor);

The default colors for light source 0 are black for the ambient color and white for
the diffuse and specular colors. All the other light sources have a default color of
black for each of the ambient, diffuse, and specular color properties.

Illumination Models and Surface-Rendering Methods

528

Specifying Radial-Intensity Attenuation Coefficients
for an OpenGL Light Source
We can apply radial-intensity attenuation to the light emitted from an OpenGL
local light source, and the OpenGL lighting routines calculate this attenuation
using Equation 2, with d l as the distance from a light-source position to
an object position. The three OpenGL property constants for radial intensity
attenuation are GL CONSTANT ATTENUATION, GL LINEAR ATTENUATION,
and GL QUADRATIC ATTENUATION, which correspond to the coefficients a0,
a1, and a2 in Equation 2. Either a positive integer value or a positive floating-
point value can be used to set each attenuation coefficient. For example, we could
assign the radial-attenuation coefficient values as

glLightf (GL_LIGHT6, GL_CONSTANT_ATTENUATION, 1.5);
glLightf (GL_LIGHT6, GL_LINEAR_ATTENUATION, 0.75);
glLightf (GL_LIGHT6, GL_QUADRATIC_ATTENUATION, 0.4);

Once the values for the attenuation coefficients have been set, the radial attenua-
tion function is applied to all three colors (ambient, diffuse, and specular) of the
light source. Default values for the attenuation coefficients are a0 = 1.0, a1 = 0.0,
and a2 = 0.0. Thus, the default is no radial attenuation: fl,radatten = 1.0. Although
radial attenuation can produce more realistic displays, the calculations are time-
consuming.

OpenGL Directional Light Sources (Spotlights)
For local light sources (those not considered to be at infinity), we can also spec-
ify a directional, or spotlight, effect. This limits the light that is emitted from
a source to a cone-shaped region of space. We define the conical region with a
direction vector along the axis of the cone and an angular spread θl from the cone
axis, as shown in Figure 39. In addition, we can specify an angular-attenuation
exponent al for the light source that determines how much the light intensity
decreases as we move from the center of the cone toward the cone surface.
Along any direction within the light cone, the angular attenuation factor is cosal α

(Eq. 5), where cos α is calculated as the dot product of the cone axis vector and
the vector from the light source to an object position. We compute the value for
each of the ambient, diffuse, and specular light colors at angle α by multiplying
the intensity components by this angular attenuation factor. If α > θl , the object is
outside the light-source cone, and the object is not illuminated by this light source.
For light rays within the cone, we can also attenuate the intensity values radially.

There are three OpenGL property constants for directional effects:GL SPOT
DIRECTION, GL SPOT CUTOFF, and GL SPOT EXPONENT. We specify the light
direction as either an integer or a floating-point world-coordinate vector. The cone
angle θl is given as an integer or floating-point value in degrees, and this angle
can be either 180◦ or any value in the range from 0◦ to 90◦. When the cone angle is
set to 180◦, the light source emits rays in all directions (360◦). We set the exponent
value for intensity attenuation either as an integer or floating-point number in the
range from 0 to 128. The following statements set the directional effects for light
source 3 so that the cone axis is in the positive x direction, the cone angle θl is 30◦,
and the attenuation exponent is 2.5:

GLfloat dirVector [] = {1.0, 0.0, 0.0};

glLightfv (GL_LIGHT3, GL_SPOT_DIRECTION, dirVector);
glLightf (GL_LIGHT3, GL_SPOT_CUTOFF, 30.0);
glLightf (GL_LIGHT3, GL_SPOT_EXPONENT, 2.5);

Illumination Models and Surface-Rendering Methods

529

F I G U R E 3 9
A circular cone of light emitted from
an OpenGL light source. The angular
extent of the light cone, measured
from the cone axis, is θl , and the angle
from the axis to an object direction
vector is labeled as α.

Light
Source

ul

a

To Object
Vertex

Cone Axis
Vector

If we do not specify a direction for a light source, the default direction is parallel
to the negative z axis; that is, (0.0, 0.0, −1.0). Also, the default cone angle is 180◦

and the default attenuation exponent is 0. Thus, the default is a point light source
that radiates in all directions, with no angular attenuation.

OpenGL Global Lighting Parameters
Several OpenGL lighting parameters can be specified at the global level. These
values are used to control the way that some lighting calculations are performed,
and a global parameter value is set with the following function:

glLightModel* (paramName, paramValue);

We append a suffix code of i or f, depending on the data type of the parame-
ter value. In addition, for vector data, we append the suffix code v. Parameter
paramName is assigned an OpenGL symbolic constant that identifies the global
property to be set, and parameter paramValue is assigned a single value or set
of values. Using the glLightModel function, we can set a global ambient-light
level, we can specify how specular highlights are to be calculated, and we can
choose to apply the illumination model to the back faces of polygon surfaces.

In addition to the ambient color for individual light sources, we can set an
independent value for the OpenGL background lighting as a global value. This
provides just one more option in the empirical lighting calculations. To set this
option, we use the symbolic constant GL LIGHT MODEL AMBIENT. The follow-
ing statement, for example, sets the general background lighting for a scene to a
low-intensity (dark) blue color, with an alpha value of 1.0:

globalAmbient [] = {0.0, 0.0, 0.3, 1.0);

glLightModelfv (GL_LIGHT_MODEL_AMBIENT, globalAmbient);

Illumination Models and Surface-Rendering Methods

530

If we do not set a global ambient-light level, the default is the low-intensity white
(dark gray) color (0.2, 0.2, 0.2, 1.0).

Specular-reflection calculations require the determination of several vectors,
including the vector V from a surface position to the viewing position. To speed up
specular calculations, the OpenGL lighting routines can use a constant direction
for vector V, regardless of the surface position relative to the view point. This
constant unit vector is in the positive z direction, (0.0, 0.0, 1.0), and this is the
default value for V. However, if we want to turn off this default and use the
actual viewing position (which is the viewing-coordinate origin) to calculate V,
we issue the following command:

glLightModeli (GL_LIGHT_MODEL_LOCAL_VIEWER, GL_TRUE);

Although the specular calculations take more time when we use the actual viewing
position to calculate V, we do obtain more realistic displays. We turn off the surface
calculations for vector V when we use the default value GL FALSE (or 0, or 0.0)
for the local-viewer parameter.

When surface textures are added to the OpenGL lighting calculations, surface
highlights can be dulled and the texture patterns may be distorted by the spec-
ular terms. Therefore, as an option, texture patterns can be applied only to the
nonspecular terms that contribute to a surface color. These nonspecular terms
include ambient effects, surface emissions, and diffuse reflections. Using this
option, the OpenGL lighting routines generate two colors for each surface light-
ing calculation: a specular color and the nonspecular color contributions. Texture
patterns are combined only with the nonspecular color, and then the two colors
are combined. We select this two-color option with

glLightModeli (GL_LIGHT_MODEL_COLOR_CONTROL,
GL_SEPARATE_SPECULAR_COLOR);

We need not separate the color terms if we are not using texture patterns, and
the lighting calculations are performed more efficiently if this option is not
invoked. The default value for this property is GL SINGLE COLOR, which does
not separate the specular color from the other surface-color components.

In some applications, we may want to display back-facing surfaces of an
object. An example is the inside, cutaway view of a solid, in which some back-
facing surfaces, in addition to the front-facing surfaces, are to be displayed. How-
ever, by default, the lighting calculations use the assigned material properties
only for the front faces. To apply the lighting calculations to both the front and
back faces, using the corresponding front-face and back-face material properties,
we issue the command

glLightModeli (GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE);

The surface normal vectors for the back faces are then reversed, and the lighting
calculations are applied using the material properties that have been assigned to
the back faces. To turn off the two-sided lighting calculations, we use the value
GL FALSE (or 0, or 0.0) in the glLightModel function, which is the default.

OpenGL Surface-Property Function
Reflection coefficients and other optical properties for surfaces are set using the
function

glMaterial* (surfFace, surfProperty, propertyValue);

Illumination Models and Surface-Rendering Methods

531

A suffix code of i or f is appended to the function, depending on the data type
for the property value, and we also append the code v when we supply vector-
valued properties. ParametersurfFace is assigned one of the symbolic constants
GL FRONT, GL BACK, or GL FRONT AND BACK; parameter surfProperty is
a symbolic constant identifying a surface parameter such as Isurf, ka , kd , ks , or ns ;
and parameter propertyValue is set to the corresponding value. All properties
except the specular-reflection exponent ns are specified as vector values. We use
a sequence of glMaterial functions to set all the illumination properties for an
object before we issue the commands that describe the object geometry.

An RGBA value for the surface emission color, Isurf, is selected using the
OpenGL symbolic surface-property constant GL EMISSION. For example, the
following statement sets the emission color for front surfaces to a light gray
(off-white):

surfEmissionColor [] = {0.8, 0.8, 0.8, 1.0};

glMaterialfv (GL_FRONT, GL_EMISSION, surfEmissionColor);

The default emission color for a surface is black (0.0, 0.0, 0.0, 1.0). Although an
emission color can be assigned to a surface, this emission does not illuminate
other objects in the scene. To do that, we must define the surface as a light source
using the methods discussed in Section 3.

We use the OpenGL symbolic property names GL AMBIENT, GL DIFFUSE,
andGL SPECULAR to set values for the surface reflection coefficients. Realistically,
the ambient and diffuse coefficients should be assigned the same vector values,
and we can do that using the symbolic constant GL AMBIENT AND DIFFUSE.
The default values for the ambient coefficient are (0.2, 0.2, 0.2, 1.0), the default
values for the diffuse coefficient are (0.8, 0.8, 0.8, 1.0), and the default values
for the specular coefficient are (1.0, 1.0, 1.0, 1.0). To set the specular-reflection
exponent, we use the constant GL SHININESS. We can assign any value in the
range from 0 to 128 to this property, and the default value is 0. For example,
the following statements set the values for the three reflection coefficients and
the specular exponent. The diffuse and ambient coefficients are set so that the
surface is displayed as a light-blue color when it is illuminated with white light;
specular reflection is the color of the incident light; and the specular exponent is
assigned a value of 25.0.

diffuseCoeff [] = {0.2, 0.4, 0.9, 1.0};
specularCoeff [] = {1.0, 1.0, 1.0, 1.0};

glMaterialfv (GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE,
diffuseCoeff);

glMaterialfv (GL_FRONT_AND_BACK, GL_SPECULAR, specularCoeff);
glMaterialf (GL_FRONT_AND_BACK, GL_SHININESS, 25.0);

Components for the reflection coefficients can also be set using color-table
values, and the OpenGL symbolic constant GL COLOR INDEXES is provided
for this purpose. We assign the color-table indices as a three-element integer or
floating-point array, and the default is (0, 1, 1).

OpenGL Illumination Model
Surface lighting effects are calculated by OpenGL using the basic illumina-
tion model 19, with some variations in the way that the parameters are

Illumination Models and Surface-Rendering Methods

532

specified. The ambient light level is the sum of the light-source ambient com-
ponents and the global ambient setting. Diffuse-reflection calculations use the
diffuse-intensity component of the light sources, and specular-reflection calcula-
tions use the specular-intensity component of each light source.

Also, the unit vector V, specifying the direction from a surface position to
a viewing position, can be set to the constant value (0.0, 0.0, 0.0) if the local-
viewer option is not used. For a light source positioned at “infinity,” the unit
light-direction vector L is in the opposite direction to the assigned direction for
the light rays from that source.

OpenGL Atmospheric Effects
After the OpenGL illumination model has been applied to obtain surface colors,
we can assign a color to the atmosphere in a scene and combine the surface colors
with the atmosphere color. Also, we can use an atmosphere intensity-attenuation
function to simulate viewing the scene through a hazy or smoky atmosphere. The
various atmosphere parameters are set using the glFog function:

glEnable (GL_FOG);

glFog* (atmoParameter, paramValue);

A suffix code of i or f is appended to indicate data-value type, and the suffix
code v is used with vector data.

To set an atmosphere color, we assign the OpenGL symbolic constant
GL FOG COLOR to parameter atmoParameter. For example, we can designate
the atmosphere as having a bluish-gray color with

GLfloat atmoColor [4] = {0.8, 0.8, 1.0, 1.0};

glFogfv (GL_FOG_COLOR, atmoColor);

The default value for the atmosphere color is black (0.0, 0.0, 0.0, 0.0).
We can next choose the atmosphere-attenuation function that is to be used to

combine the object color with the atmosphere color. This is accomplished using
the symbolic constant GL FOG MODE:

glFogi (GL_FOG_MODE, atmoAttenFunc);

If parameter atmoAttenFunc is assigned the value GL EXP, Equation 31
is used as the atmosphere-attenuation function. With the value GL EXP2, we
select Equation 32 as the atmosphere-attenuation function. For either of the
exponential functions, we select an atmosphere density value with

glFog (GL_FOG_DENSITY, atmoDensity);

A third option for atmospheric attenuation is the linear depth-cueing
function. In this case, parameter atmoAttenFunc is assigned the value
GL LINEAR. The default value for parameter atmoAttenFunc is GL EXP.

Once an atmosphere-attenuation function has been selected, this function is
used to calculate a blended atmosphere-surface color for the object. Equation 33
is used by the OpenGL atmosphere routines to calculate this blended color.

Illumination Models and Surface-Rendering Methods

533

OpenGL Transparency Functions
Some simulated transparency effects are possible in OpenGL using color-

We designate objects in a scene as transparent using the alpha parameter in
the OpenGL RGBA surface-color commands such as glMaterial and glColor.
A surface alpha parameter can be set to the value of the transparency coefficient
(Eq. 30) for that object. For example, if we specify the color for a transparent
surface with the function

glColor4f (R, G, B, A);

then we set the alpha parameter to the value A = kt. A completely transparent
surface is assigned the alpha value A = 1.0, and an opaque surface has the alpha
value A = 0.0.

Once we have assigned the transparency values, we activate the color-
blending features of OpenGL and process the surfaces, starting with the most
distant objects and proceeding in order to the objects closest to the viewing
position. With color blending activated, each surface color is combined with any
overlapping surfaces that are already in the frame buffer, using the assigned sur-
face alpha values.

We set the color-blending factors so that all color components of the current
surface (the “source” object) are multiplied by (1 − A) = (1 − kt), and all color
components of the corresponding frame-buffer positions (the “destination”) are
multiplied by the factor A = kt:

glEnable (GL_BLEND);

glBlendFunc (GL_ONE_MINUS_SRC_ALPHA, GL_SRC_ALPHA);

The two colors are then blended using Equation 30 with the alpha parameter
set to kt, where the frame-buffer colors are those for a surface that is behind
the transparent object being processed. For instance, if A = 0.3, then the new
frame-buffer color is the sum of 30 percent of the current frame-buffer color and
70 percent of the object reflection color, for each surface position. (Alternatively, we
could use the alpha color parameter as an opacity factor, instead of a transparency
factor. If we set A to an opacity value, though, we also must interchange the two
arguments in the function glBlendFunc.)

Illumination Models and Surface-Rendering Methods

blending routines. However, the implementation of transparency in an OpenGL
program, in general, is not straightforward. We can combine object colors for a
simple scene containing a few opaque and transparent surfaces by using the
alpha blending value to specify the degree of transparency and by processing
surfaces in a depth-first order. The OpenGL color-blending operations ignore
refraction effects, however, and dealing with transparent surfaces in complex
scenes with a variety of lighting conditions or animations can be formidable.
Also, OpenGL provides no direct provisions for simulating the surface appear-
ance of a translucent object (such as a grainy sheet of plastic or a pane of frosted
glass), which diffusely scatters the light transmissions through the semitranspar-
ent material. Thus, to display translucent surfaces or the lighting effects result-
ing from refraction, we would need to write our own routines. To simulate light-
ing effects through a translucent object, we could use a combination of values for
surface texture and material properties. For refraction effects, we could shift the
pixel positions for surfaces behind a transparent object using Equation 29 to cal-
culate the amount of offset needed.

Visibility testing can be accomplished using the OpenGL depth-buffer func-
tions. As each visible opaque surface is processed, both the surface colors and the

534

If we process all objects in depth order, the depth-buffer write mode is turned
off and then back on again as we process each transparent surface. Alternatively,
we could separate the two object classes, as in the following code outline:

glEnable (GL_DEPTH_TEST);
/* Process all opaque surfaces. */

glEnable (GL_BLEND);
glDepthMask (GL_FALSE);
glBlendFunc (GL_ONE_MINUS_SRC_ALPHA, GL_SRC_ALPHA);
/* Process all transparent surfaces. */

glDepthMask (GL_TRUE);
glDisable (GL_BLEND);

glutSwapBuffers ();

If the transparent objects are not processed in a strictly back-to-front order, this
approach will not accumulate surface colors accurately for all cases. But for simple
scenes, this is a fast and effective method for generating an approximate repre-
sentation for the transparency effects.

OpenGL Surface-Rendering Functions
Surfaces can be displayed with OpenGL routines using either constant-intensity
surface rendering or Gouraud surface rendering. No OpenGL routines are pro-
vided for applying Phong surface rendering, ray tracing, or radiosity methods. A
rendering method is selected with

glShadeModel (surfRenderingMethod);

We select constant-intensity surface rendering by assigning the symbolic value
GL FLAT to parameter surfRenderingMethod. For Gouraud shading (the
default), we use the symbolic constant GL SMOOTH.

When the glShadeModel function is applied to a tessellated curved surface,
such as a sphere that is approximated with a polygon mesh, the OpenGL rendering
routines use the surface-normal vectors at the polygon vertices to calculate the
polygon color. The Cartesian components of a surface-normal vector in OpenGL
are specified with the command

glNormal3* (Nx, Ny, Nz);

Suffix codes for this function are b (byte), s (short), i (integer), f (float), and
d (double). In addition, we append the suffix code vwhen the vector components
are designated with an array. Byte, short, and integer values are converted to
floating-point values in the range from −1.0 to 1.0. The glNormal function sets
the components for the surface-normal vector as state values that apply to all
subsequentglVertex commands, and the default normal vector is in the positive
z direction: (0.0, 0.0, 1.0).

Illumination Models and Surface-Rendering Methods

glDepthMask

surface depth values are stored. However, when we process a visible transparent
surface, we want to save only its colors because the surface does not obscure
background surfaces. Therefore, as we process each transparent surface, we put the
depth buffer into a read-only status using the function.

535

For flat surface rendering, we need only one surface normal for each polygon.
Thus, we can set each polygon normal as, for example,

glNormal3fv (normalVector);
glBegin (GL_TRIANGLES);

glVertex3fv (vertex1);
glVertex3fv (vertex2);
glVertex3fv (vertex3);

glEnd ();

If we want to apply the Gouraud surface-rendering procedure to the above trian-
gle, we need to designate a normal vector for each vertex as follows:

glBegin (GL_TRIANGLES);
glNormal3fv (normalVector1);
glVertex3fv (vertex1);
glNormal3fv (normalVector2);
glVertex3fv (vertex2);
glNormal3fv (normalVector3);
glVertex3fv (vertex3);

glEnd ();

Although normal vectors need not be specified as unit vectors, we can
reduce computations if do state all surface normals as unit vectors. Any non-unit
surface normal is converted to a unit normal automatically if we have issued the
command

glEnable (GL_NORMALIZE);

This command also renormalizes surface vectors if they have been modified by
geometric transformations such as scaling or shear.

Another available option is the designation of a list of normal vectors that
are to be combined or associated with a vertex array. The statements for creat-

glEnableClientState (GL_NORMAL_ARRAY);

glNormalPointer (dataType, offset, normalArray);

Parameter dataType is assigned the constant value GL BYTE, GL SHORT,
GL INT, GL FLOAT (the default value), or GL DOUBLE. The number of bytes
between successive normal vectors in the array normalArray is given by
parameter offset, which has a default value of 0.

OpenGL Halftoning Operations
A variety of colors and gray-scale effects are possible on some systems using
OpenGL halftone routines. The halftone-approximation patterns and operations
are hardware dependent, and they typically have no effect on systems with full-
color graphics capabilities. However, when a system has only a small number of
bits per pixel, RGBA color settings can be approximated with halftone patterns.
We activate the halftone routines with

glEnable (GL_DITHER);

which is the default, and the halftoning routines are deactivated with the function

glDisable (GL_DITHER);

Illumination Models and Surface-Rendering Methods

ing an array of normal vectors are

536

12 Summary
In general, an object is illuminated with radiant energy from light emitters and
from the reflective surfaces in a scene. Light sources can be modeled as point
objects or they can have an extended size. In addition, light sources can be
directional, and they can be treated as infinitely distant sources or as local light
sources. Radial attenuation is typically applied to transmitted light using an
inverse quadratic function of distance, and spotlights can be angularly attenu-
ated as well. Reflecting surfaces in a scene are opaque, completely transparent,
or partially transparent; and lighting effects are described in terms of diffuse and
specular components for both reflections and refractions.

Light intensity at a surface position is calculated using an illumination model,
and the basic illumination model in most graphics packages uses simplified
approximations of physical laws. These lighting calculations provide a light-
intensity value for each RGB component of the reflected light from a surface
position, and for the transmitted light through a transparent object. The basic
illumination model typically accommodates multiple light sources as point emit-
ters, but they can be distant sources, local sources, or spotlights. Ambient light
for a scene is described with a fixed intensity for each RGB color component and
for all surfaces. Diffuse-intensity reflections from a surface are taken to be pro-
portional to the cosine of the angular distance from the direction of the surface
normal. Specular-intensity reflections are computed using the Phong model. In
addition, transparency effects are usually approximated using a simple trans-
parency coefficient for a material, although accurate refraction effects can be
modeled using Snell’s law. Shadow effects from the individual light sources
can be added by identifying the regions in a scene that are not visible from the
light source. Also, the calculations necessary for obtaining light reflections and
transmission effects for translucent materials are not usually part of a basic illumi-
nation model, but we can model them using methods that disperse the diffuse light
components.

Intensity values calculated with an illumination model are mapped to the
intensity levels available on the display system in use. A logarithmic intensity
scale is used by systems to provide a set of intensity levels that increase with
equal perceived brightness differentials. Gamma correction is applied to intensity
values to correct for the nonlinearity of display devices. With bilevel monitors,
we can use halftone patterns and dithering techniques to simulate a range of
intensity values. Halftone approximations can also be used to increase the number
of intensity options on systems that are capable of displaying more than two
intensities per pixel. Ordered-dither, error-diffusion, and dot-diffusion methods
are used to simulate a range of intensities when the number of points to be plotted
in a scene is equal to the number of pixels on the display device.

Surface rendering in graphics packages is accomplished by applying the cal-
culations from the basic illumination model to scan-line procedures that extrapo-
late the intensity values from a few surface points to all projected pixel positions
of a surface. With constant-intensity surface rendering, also called flat rendering,
we use one calculated color to display all points of a surface. Flat surface ren-
dering is accurate for polyhedrons or curved-surface polygon meshes when the
viewing and light-source positions are far from the objects in a scene. Gouraud
surface rendering approximates light reflections from tessellated curved surfaces
by calculating intensity values at polygon vertices and linearly interpolating these
intensity values across the polygon facets. A more accurate, but slower, surface-
rendering procedure is Phong surface rendering, which interpolates the aver-
age normal vectors for polygon vertices over the polygon facets. Then, the basic

Illumination Models and Surface-Rendering Methods

537

illumination model is employed to compute surface intensities at each projected
surface position, using the interpolated values for the surface normal vectors. Fast
Phong surface rendering uses Taylor series approximations to reduce processing
time for the intensity calculations.

The core library of OpenGL contains an extensive set of functions for setting
up point light sources, specifying the various parameters in the basic illumination
model, selecting a surface-rendering method, activating halftone-approximation
routines, and for applying texture array patterns to objects. Table 2 provides a
summary of these OpenGL illumination and surface-rendering functions.

T A B L E 2

Summary of OpenGL Illumination and Surface-Rendering Functions

Function Description

glLight Specifies a light-source property value.

glEnable (lightName) Activates a light source.

glLightModel Specifies global-lighting parameter values.

glMaterial Specifies a value for an optical surface parameter.

glFog Specifies a value for an atmosphere parameter;
activates atmospheric effects with the
glEnable function.

glColor4f (R, G, B, A) Specifies an alpha value for a surface to simulate
transparency. In the function glBlendFunc, sets
the source blending factor to GL SRC ALPHA
and the destination blending factor to
GL ONE MINUS SRC ALPHA.

glShadeModel Specifies either Gouraud surface rendering
or single-color surface rendering.

glNormal3 Specifies a surface-normal vector.

glEnable (GL NORMALIZE) Specifies that surface normals are to be converted
to unit vectors.

glEnableClientState Activates processing routines for an array of
(GL NORMAL ARRAY) surface-normal vectors.

glNormalPointer Creates a list of surface-normal vectors that are
to be used with a vertex array.

glEnable (GL DITHER) Activates operations for applying surface
rendering as halftone approximation
patterns.

Illumination Models and Surface-Rendering Methods

538

REFERENCES
Basic illumination models and surface-rendering tech-
niques are discussed in Gouraud (1971) and Phong
(1975), Freeman (1980), Bishop and Wiemer (1986), Birn
(2000), Akenine-Möller and Haines (2002), and Olano,
et al. (2002). Implementation algorithms for illumination
models and rendering methods are presented in Glassner
(1990), Arvo (1991), Kirk (1992), Heckbert (1994), Paeth
(1995), and Sakaguchi, et al. (2001). Halftoning methods
are given in Velho and Gomes (1991). For further infor-
mation on ordered dither, error diffusion, and dot diffu-
sion see Knuth (1987).

Additional programming examples using OpenGL
illumination and rendering functions are given in
Woo, et al. (1999). Programming examples for the
OpenGL lighting and rendering functions are also avail-
able at Nate Robins’s tutorial website: http://www.
xmission.com/∼nate/opengl.html. Finally, a complete
listing of OpenGL illumination and rendering functions
is provided in Shreiner (2000).

EXERCISES
1 Write a routine to implement Equation 12 for

diffuse reflection using a single point light source
and constant surface rendering for the faces of a
tetrahedron. The object description is to be given
in polygon tables, including surface normal vec-
tors for each of the polygon faces. Additional
input parameters include the ambient intensity,
light-source intensity, and surface reflection coef-
ficients. All coordinate information can be speci-
fied directly in the viewing reference frame.

2 Modify the routine in Exercise 1 to render the
polygon facets of a tessellated spherical surface.

3 Modify the routine in Exercise 2 to display
the spherical surface using Gouraud surface
rendering.

4 Modify the routine in Exercise 3 to display the
spherical surface using Phong surface rendering.

5 Use the routines developed in the previous exer-
cises to write a program that displays an input
set of objects given as polygon meshes using the
same parameters as described in Exercise 1.
The program should allow the user to switch
between constant surface rendering, Gouraud
shading, and Phong shading via keyboard input.
Run the program with a sample set of objects and
the light source in various positions and examine
the visual differences between the three different
rendering schemes.

6 Write a routine to implement Equation 17 for
diffuse and specular reflections using a single
point light source and Gouraud surface render-
ing for the polygon facets of a tessellated spheri-
cal surface. The object description is to be given in

polygon tables, including surface normal vectors
for each of the polygon faces. Additional input
includes values for the ambient intensity, light-
source intensity, surface reflection coefficients,
and specular-reflection parameter. All coordinate
information can be specified directly in the view-
ing reference frame.

7 Modify the routine in preceding exercise to dis-
play the polygon facets using Phong surface ren-
dering.

8 Modify the routine in the preceding exercise to
include a linear intensity attenuation function.

9 Modify the routine in the preceding exercise to
include two light sources in the scene.

10 Modify the routine in the preceding exercise so
that the spherical surface is viewed through a
pane of glass.

11 Discuss the differences you might expect to see in
the appearance of specular reflections modeled
with (N ·H)ns compared to specular reflections
modeled with (V ·R)ns .

12 Verify that 2α = φ in Figure 18 when all vectors
are coplanar, but that, in general, 2α 	= φ.

13 Discuss how the different visible-surface detec-
tion methods can be combined with an intensity
model for displaying a set of polyhedrons with
opaque surfaces.

14 Discuss how the various visible-surface detection
methods can be modified to process transparent
objects. Are there any visible-surface detection
methods that cannot handle transparent surfaces?

15 Set up an algorithm, based on one of the visible-
surface detection methods, that will identify
shadow areas in a scene illuminated by a distant
point source.

16 How many intensity levels can be displayed with
halftone approximations using n × n pixel grids,
where each pixel can be displayed with m differ-
ent intensities?

17 How many different color combinations can be
generated using halftone approximations on a
four-level RGB system with a 3 x 3 pixel grid?

18 How many different color combinations can be
generated using halftone approximations on a
two-level RGB system with a 4 x 4 pixel grid?

19 Write a routine to display a given set of surface-
intensity variations using halftone approxima-
tions with 4 x 4 pixel grids and two intensity levels
(0 and 1) per pixel.

20 Write a routine to generate ordered-dither
matrices using the recurrence relation in
Equation 48.

Illumination Models and Surface-Rendering Methods

539

21 Write a procedure to display a given array of
intensity values using the ordered-dither method.

22 Write a procedure to implement the error-
diffusion algorithm for a given m × n array of
intensity values.

23 Write an OpenGL program to display a scene
containing a sphere, a cube, and a tetrahedron
illuminated by two light sources: one is to be a
local green source and the other a distant white-
light source. Set surface parameters for both
diffuse and specular reflections with Gouraud
surface rendering, and apply a linear intensity-
attenuation function.

24 Modify the program in the preceding exercise so
that the single local green source is replaced with
two spotlights: one green and one blue.

25 Modify the program in the preceding exercise so
that a smoky atmosphere is added to the scene.

26 Modify the program in the preceding exercise so
that the scene is viewed through a semitranspar-
ent pane of glass.

IN MORE DEPTH
1 Using the techniques presented in this chapter,

choose a lighting scheme appropriate to your
application and write out its specification in
detail. Decide what types of light sources are most

appropriate (point sources, directional sources,
ambient sources, etc.) and what their colors,
positions, and orientations should be, if appli-
cable. In addition, include appropriate lighting
effects, such as intensity attenuation, shadows,
or atmospheric effects where appropriate. Next,
choose appropriate surface properties for the
objects in your scene based on the material that
they represent and include these properties in
your specification. If transparency is an important
aspect in your scene, be sure to specify the trans-
parency properties of the objects in your scene as
well.

2 Implement the specification that you developed
in the previous exercise using the OpenGL illu-
mination and surface-rendering functions. Cre-
ate and position/orient light sources accordingly
within the scene and turn on any atmospheric
effects if necessary. If you are using attenua-
tion functions, then experiment with the dif-
ferent models and parameters that define their
visual appearance. Next, set the material proper-
ties of the surfaces in your scene, including diffuse
and specular reflection parameters, and turn on
appropriate color-blending routines for transpar-
ent surfaces if applicable. Finally, render the scene
using Gouraud shading and experiment with
modifying each of the parameters discussed here
to produce the most visually appealing result.

Illumination Models and Surface-Rendering Methods

540

(a) (b)

(c) (d)

C o l o r P l a t e 1 2
A wire-frame scene (a) is displayed in (b) using ambient lighting only, with a different color for each object. Diffuse
reflections resulting from illumination with ambient light and a single point source are illustrated in (c). For this
display, ks = 0 for all surfaces. In (d), both diffuse and specular reflections are shown for the illumination from a
point source and the background lighting.

C o l o r P l a t e 1 3
Diffuse reflections from a spherical
surface illuminated by a point source
emitting white light, with values of the
diffuse reflectivity coefficient in the
interval 0 ≤ kd ≤ 1.

Illumination Models and

From Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson

Surface-
Color PlatesRendering Methods

541

C o l o r P l a t e 1 4
Light reflections from the surface of a black nylon cushion,
modeled as woven cloth patterns and rendered using
Monte-Carlo ray-tracing methods. (Courtesy of Stephen H.
Westin, Program of Computer Graphics, Cornell University.)

C o l o r P l a t e 1 5
Light reflections from a teapot with reflectance parameters
set to simulate brushed aluminum surfaces and rendered
using Monte-Carlo ray-tracing methods. (Courtesy of Stephen
H. Westin, Program of Computer Graphics, Cornell University.)

C o l o r P l a t e 1 6
Light reflections from trumpets with
reflectance parameters set to simulate
shiny brass surfaces. (Courtesy of
SOFTIMAGE, Inc.)

(a) (b) (c)

C o l o r P l a t e 1 7
A polygon mesh approximation of an object (a) is displayed using flat surface rendering in (b) and using Gouraud
surface rendering in (c).

542

Texturing and Surface-Detail Methods

1 Modeling Surface Detail with
Polygons

2 Texture Mapping

3 Bump Mapping

4 Frame Mapping

5 OpenGL Texture Functions

6 Summary

S o far, we have discussed rendering techniques for displaying

smooth object surfaces. However, most objects do not have

smooth, even surfaces. We need surface texture to model

accurately such objects as brick walls, gravel roads, shag carpets,

wood, and human skin. In addition, some surfaces contain patterns

that must be taken into account in the rendering procedures. The

surface of a vase could contain a painted design; a water glass might

have the family crest engraved into the surface; a tennis court con-

tains markings for the alleys, service areas, and baseline; and a four-

lane highway has dividing lines and other markings, such as oil spills

and tire skids.

Color Plate 18 illustrates the basic stages in modeling and ren-

dering an object that is to contain surface detail. First, a wire-frame

display of the object can be used to adjust the overall design. Next,

surface layers are fitted over the object outline to produce a ren-

dered, smooth-surface view of the structure. Finally, surface detail

could be added to the frame in the image to simulate wood grain or a

From Chapter of Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson

18 .

543

machined metal surface, or a texture could be “painted” onto the material within the

frame to simulate the ball passing through and tearing a picture. Additional examples of

scenes rendered with surface detail are given in Color Plate 19.

We can add detail to surfaces using a variety of methods, including the following:

• Pasting small objects, such as buds, flowers, or spines, onto a larger surface

• Modeling surface patterns with small polygon areas

• Mapping texture arrays or intensity-modifying procedures onto a surface

• Modifying the surface normal vector to create localized bumps

• Modifying both the surface normal vector and the surface tangent vector to

display directional patterns on wood and other materials

1 Modeling Surface Detail with Polygons
A simple method for adding surface detail is to model patterns or other surface
characteristics using polygon facets. For large-scale detail, polygon modeling can
give good results. Some examples of such large-scale detail are squares on a
checkerboard, dividing lines on a highway, tile patterns on a linoleum floor, floral
designs in a smooth low-pile rug, panels in a door, and lettering on the side of
a panel truck. Also, we could model an irregular surface with small, randomly
oriented polygon facets, provided the facets are not too small.

Surface-pattern polygons are generally overlaid on a larger surface polygon
and processed along with the parent surface. The visible-surface detection algo-
rithms process only the parent polygon, but the illumination parameters for the
surface-detail polygons take precedence over the parent polygon. When intricate
or fine surface detail is to be modeled, polygon methods are not practical. For
example, it would be difficult to model the surface structure of a raisin accurately
with polygon facets.

2 Texture Mapping
A common method for adding detail to an object is to map patterns onto the
geometric description of the object. The texture pattern may be defined either in
an array of color values or as a procedure that modifies object colors. This method
for incorporating object detail into a scene is called texture mapping or pattern
mapping, and the textures can be defined as one-dimensional, two-dimensional,
or three-dimensional patterns. Any texture specification is referred to as a texture
space, which is referenced with texture coordinates in the range from 0 to 1.0.

Texture functions in a graphics package often allow the number of color com-
ponents for each position in a pattern to be specified as an option. For example,
each color specification in a texture pattern could consist of four red, green, blue,
and alpha (RGBA) components, three RGB components, a single intensity value
for a shade of blue, an index into a color table, or a single luminance value (a
weighted average of the RGB components of a color). A component of a texture
description is frequently alluded to as a “texel,” but there is some confusion in the
use of the term. Sometimes a position in texture space corresponding to a set of
color components, such as an RGB triple, is called a texel, and sometimes a single
texture-array element, such as the value for the red component of an RGB color,
is also called a texel.

Texturing and Surface-Detail Methods

544

Linear Texture Patterns
A one-dimensional texture pattern can be specified in a single-subscript array
of color values, which defines a sequence of colors in a linear texture space. For
example, we could set up a list of 32 RGB colors, referenced with subscript values
ranging from 0 to 95. The first three elements of the array store the RGB com-
ponents of the first color, the next three elements store the RGB components of
the second color, and so forth. This set of colors, or any contiguous subset of the
colors, could then be used to form a patterned stripe across a polygon, a band
around a cylinder, or a color pattern for displaying an isolated line segment.

For a linear pattern, the texture space is referenced with a single s-coordinate
value. For RGB color specifications, the value s = 0.0 designates the first
three-element RGB color in the array, the value s = 1.0 designates the last
three RGB color components, and the value s = 0.5 references the middle three
RGB color elements in the array. As an example, if the name of the texture
array is colorArray, then the value s = 0.0 references the three array values
colorArray [0], colorArray [1], and colorArray [2].

To map a linear texture pattern into a scene, we assign an s-coordinate value
to one spatial position and another s-coordinate value to a second spatial position.
The section of the color array corresponding to the specified s-coordinate range
is then used to generate a multicolored line between the two spatial positions. A
texture-mapping procedure typically uses a linear function to calculate the array
positions that are to be assigned to the pixels along a line segment. When the
number of texture colors specified for the line is small, each color may be assigned
to a large block of pixels, depending on the length of the line. For example, if the
specified s-coordinate range spans a single RGB color (three RGB color elements)
in the texture array, all pixels on the line are displayed in that color. But if many
colors are to be mapped to the positions along the line, then fewer pixels are
assigned to each color. Also, because some pixels may map to array positions
between RGB colors, various schemes can be used to determine the color that is to
be assigned to each pixel. A simple color-mapping method is to assign the nearest
array color to each pixel. Alternatively, if a pixel is mapped to a position between
the starting array elements for two colors, the pixel color could be computed as a
linear combination of the nearest two color elements in the array.

Some texture-mapping procedures allow values for texture coordinates that
are outside the range from 0 to 1.0. These situations might arise when we want
to map multiple copies of a texture onto an object or when calculated s values
could be outside the unit interval. If we want to allow texture-coordinate values
outside the range from 0 to 1.0, we could just ignore the integer part of any s value.
In this case, the value of −3.6, for instance, would reference the same position in
texture space as the value 0.6 or the value 12.6. However, if we do not want to
allow values outside the range from 0 to 1.0, then we could just clamp values
to this unit interval. Any computed value less than 0 is then reset to 0, and any
computed value greater than 1.0 is reset to 1.0.

Surface Texture Patterns
A texture for a surface area is commonly defined with a rectangular color pattern,
and positions in this texture space are referenced with two-dimensional (s, t)
coordinate values. Specifications for each color in the texture pattern can be stored
in a three-subscript array. If a texture pattern is defined with 16 × 16 RGB colors,
for instance, then the array for this pattern contains 16 × 16 × 3 = 768 elements.

Figure 1 illustrates a two-dimensional texture space. Values for both s and
t vary from 0 to 1.0. The first row of the array lists the color values across the

Texturing and Surface Detail Methods

545

F I G U R E 1
Two-dimensional texture- space
coordinates that reference positions in
an array of color values containing
m rows and n columns. Each position
in the array can reference multiple
color components.

(1, 1)(0, 1)

(0, 0) (1, 0)

row m � 1

row 1
row 0

s

t

n columns

bottom of the rectangular texture pattern, and the last row of the array lists the
color values across the top of the pattern. Coordinate position (0, 0) in tex-
ture space references the first set of color components in the first position of
the first row, and position (1.0, 1.0) references the last set of color components at
the last position in the last row of the array. Of course, we could list the colors
in the texture array in other ways. If we listed the colors in a top-to-bottom order,
the origin of the two-dimensional texture space would be at the top-left corner of
the rectangular pattern. But placing the texture-space origin at the lower-left cor-
ner usually simplifies the mapping procedures to the spatial-coordinate reference
for a scene.

We specify a surface-texture mapping for an object using the same procedures
we used for specifying a linear-texture mapping to a scene. The (s, t) texture-space
coordinates for the four corners of the texture pattern (Figure 1) can be assigned
to four spatial positions in the scene, and a linear transformation is used to assign
color values to the projected pixel positions over the designated spatial area.
Other mappings are possible. For instance, we could assign three texture-space
coordinates to the vertices of a triangle.

Surface positions on an object, such as a cubic-spline patch or a sphere sec-
tion, can be described with uv object-space coordinates, and projected pixel posi-
tions are referenced in xy Cartesian coordinates. Surface texture mapping can be
accomplished in one of two ways. Either we can map the texture pattern to an
object surface, then to the projection plane; or we can map each pixel area onto
the object surface, and then map this surface area to texture space. Mapping a
texture pattern to pixel coordinates is sometimes called texture scanning, while
the mapping from pixel coordinates to texture space is referred to as pixel-order
scanning, inverse scanning, or image-order scanning. Figure 2 diagrams the two
possible transformation sequences between the three spaces.

Parametric linear transformations provide a simple method for mapping
positions in texture space to object space:

u = u(s, t) = au s + bu t + cu

v = v(s, t) = av s + bv t + cv

(1)

F I G U R E 2
Coordinate reference systems for
two-dimensional texture space, object
space, and image space.

Texture
Space:
(s, t)

Coordinates

Object
Space:

(u, v) Surface
Parameters

Image
Space:

(x, y) Pixel
Coordinates

Texture-Surface
Transformation

Viewing and
Projection

Transformation

Texturing and Surface-Detail Methods

546

Projected
Pixel Area

Rectangular
Pattern Array

Surface
Pixel
Area

M�1
T M�1

VP

F I G U R E 3
Texture mapping by projecting pixel
areas to texture space.

Extended
Pixel Area

F I G U R E 4
Extended area for a pixel that includes the center
positions of adjacent pixels.

The object-to-image-space transformation is accomplished with the concatena-
tion of the viewing and projection transformations. A disadvantage of mapping
from texture space to pixel space is that a selected texture patch usually does not
match up with the pixel boundaries, which requires calculations to determine
the fractional area of pixel coverage. Therefore, mapping from pixel space to tex-
ture space (Figure 3) is the most commonly used texture-mapping method.
This avoids pixel subdivision calculations, and allows antialiasing (filtering) pro-
cedures to be easily applied. An effective antialiasing procedure is to project a
slightly larger pixel area that includes the centers of neighboring pixels, as shown
in Figure 4, and applying a pyramid function to weight the intensity values
in the texture pattern. But the mapping from image space to texture space does
require calculation of the inverse viewing-projection transformation M−1

VP and the
inverse texture-map transformation M−1

T . In the following example, we illustrate
this approach by mapping a defined pattern onto a cylindrical surface.

E X A M P L E 1 Surface Texture Mapping

To illustrate the steps in surface-texture mapping, we consider the transfer
of the pattern shown in Figure 5(a) to a cylindrical surface. The surface
parameters are the cylindrical coordinates

u = θ , v = z

with

0 ≤ θ ≤ π/2, 0 ≤ z ≤ 1

Texturing and Surface Detail Methods

547

F I G U R E 5
Mapping a texture pattern defined
within a unit square (a) onto a
cylindrical surface (b). (a)

0.250 0.5 0.75 1.0
s

0.25

0.5

0.75

1.0

t

(b)

z

x

y

r
(u, v)

u

In addition, the parametric representation for the surface in the Cartesian ref-
erence frame is

x = r cos u, y = r sin u, z = v

We can map the array pattern to the surface using the following linear trans-
formation, which transforms the texture-space coordinates (s, t) = (0, 0) to the
lower-left corner of the surface element (x, y, z) = (r, 0, 0).

u = sπ/2, v = t

Next, we select a viewing position and perform the inverse viewing transforma-
tion from pixel coordinates to the Cartesian reference for the cylindrical surface.
Then, Cartesian surface coordinates are transferred to uv surface parameters
with the calculations

u = tan−1(y/x), v = z

and projected pixel positions are mapped to texture space with the inverse
transformation

s = 2u/π , t = v

Color values in the pattern array covered by each projected pixel area are
then averaged to obtain the pixel color.

Volume Texture Patterns
In addition to linear and surface patterns, we can designate a set of colors for
positions throughout a three-dimensional region of space. These textures are often
referred to as volume texture patterns or solid textures. We reference a solid
texture using three-dimensional texture-space coordinates (s, t, r). Also, the three-
dimensional texture space is defined within the unit cube, with texture coordinates
ranging from 0 to 1.0.

A volume texture pattern can be stored in a four-subscript array, where the first
three subscripts denote a row position, a column position, and a depth position.
The fourth subscript is used to reference a component of a particular color in the
pattern. For example, an RGB solid texture pattern with 16 rows, 16 columns, and
16 depth planes could be stored in an array with 16×16×16×3 = 12,288 elements.

To map the entire texture space to a three-dimensional block, we assign the
coordinates for the eight corners of the texture space to eight spatial positions in
a scene. Alternatively, we could map a plane section of texture space, such as a
depth plane or one face of the texture cube, to a planar area in the scene. A variety
of other solid-texture mapping applications are also possible.

Solid texturing allows internal views, such as cut-away displays and cross-
sectional slices, for three-dimensional objects to be displayed with texture

Texturing and Surface-Detail Methods

548

patterns. Thus bricks, cinder blocks, or wood materials can have the same tex-
ture patterns applied throughout the spatial extent of the objects. Color Plate 20
shows a scene displayed using solid textures to obtain wood grain and other
material patterns.

Texture Reduction Patterns
In animations and other applications, the size of an object often changes. For
objects displayed with texture patterns, we then need to apply the texture-
mapping procedures to the altered dimensions of the object. When the size of
a textured object is reduced, the texture pattern is applied to a smaller region and
this can lead to texture distortions. To avoid this, we can create a series of texture
reduction patterns that are to be used when the displayed size of the object is
scaled down.

Typically, each reduction pattern is half the size of the previous pattern. For
example, if we have a two-dimensional 16×16 pattern, then we could set up four
additional patterns at the reduced sizes of 8 × 8, 4 × 4, 2 × 2, and 1 × 1. For any
view of an object, we can then apply an appropriate reduction pattern to minimize
distortions. These reduction patterns are often referred to as MIP maps or mip
maps, where the term mip is an acronym for the Latin phrase multum in parvo,
which can be translated as “much on a small object.”

Procedural Texturing Methods
Another method for adding a texture pattern to an object is to use a procedural
definition for the color variations that are to be applied. This approach avoids
the transformation calculations involved in mapping array patterns to object
descriptions. And procedural texturing eliminates the storage requirements that
are necessary when many large texture patterns, particularly solid textures, are
to be applied to a scene.

We generate a procedural texture by calculating variations for the proper-
ties or characteristics of an object. Wood-grain or marble patterns, for exam-
ple, can be created throughout an object using harmonic functions (sine curves)
defined in a region of three-dimensional space. Random perturbations are then
superimposed on the harmonic variations to break up the symmetric patterns.

3 Bump Mapping
Although texture arrays can be used to add fine surface detail, they usually are not
effective for modeling the rough surface appearance of objects such as oranges,
strawberries, and raisins. The light-intensity detail that is provided in a texture
array for these objects is set independently of illumination parameters such as
the light-source direction. A better method for modeling surface bumpiness is to
apply a perturbation function to the surface normal and then use the perturbed
normal vector in the illumination-model calculations. This technique is called
bump mapping.

If P(u, v) represents a position on a parametric surface, we can obtain the
surface normal at that point with the calculation

N = Pu × Pv (2)

Texturing and Surface Detail Methods

549

where Pu and Pv are the partial derivatives of P with respect to parameters u and v.
To provide variations in the surface normal, we can modify the surface position
vector by adding a small perturbation function, called a bump function:

P′(u, v) = P(u, v) + b(u, v) n (3)

This adds bumps to the surface in the direction of the unit surface normal n =
N/|N|. The perturbed surface normal is then obtained as

N′ = P′
u × P′

v (4)

The partial derivative of P′ with respect to u is

P′
u = ∂

∂u
(P + bn)

= Pu + bun + bnu (5)

Assuming that the magnitude of the bump function b is small, we can neglect the
last term in this expression, so that

P′
u ≈ Pu + bun (6)

Similarly,

P′
v ≈ Pv + bvn (7)

In addition, the perturbed surface normal is

N′ = Pu × Pv + bv(Pu × n) + bu(n × Pv) + bubv(n × n)

However, n × n = 0, so that

N′ = N + bv(Pu × n) + bu(n × Pv) (8)

The final step is to normalize N′ for use in the illumination-model calculations.
There are several ways in which we can specify the bump function b(u, v). We

could set up an analytic expression, but computations are reduced if we simply
obtain bump values using table lookups. With a bump table, values for b are
quickly determined using linear interpolation and incremental calculations. Then,
the partial derivatives bu and bv are approximated with finite differences. The
bump table can be set up with random patterns, regular grid patterns, or character
shapes. Random patterns are useful for modeling an irregular surface, such as a
raisin, while a repeating pattern could be used to model the surface of an orange,
for example. To antialias, we subdivide pixel areas and average the computed
subpixel intensities.

Color Plate 21 shows examples of surfaces rendered with bump mapping.

4 Frame Mapping
This method for adding surface detail is an extension of bump mapping. In frame
mapping, we perturb both the surface normal vector N and a local coordinate
system (Figure 6) attached to N. The local coordinates are defined with a surface
tangent vector T and a binormal vector B = T × N.

Frame mapping is used to model anisotropic surfaces. We orient T along
the “grain” of the surface and apply directional perturbations, in addition to
bump perturbations in the direction of N. In this way, we can model wood-grain
patterns, cross-thread patterns in cloth, and streaks in marble or similar materials.
Both bump and directional perturbations can be generated using table lookups.

Texturing and Surface-Detail Methods

550

N

TB

Surface
F I G U R E 6
A local coordinate system at a surface position.

5 OpenGL Texture Functions
An extensive set of texture functions is available in OpenGL. We can specify
a pattern for a line, a surface, an interior volume of a spatial region, or as a
subpattern that is to be inserted into another texture pattern. And we can apply
and manipulate texture patterns in various ways. In addition, texture patterns
can be used to simulate environment mapping. The OpenGL texture routines can
be used only in RGB or RGBA color mode, although some parameters can be set
using a color-table index.

OpenGL Line-Texture Functions
Parameters for a one-dimensional RGBA texture pattern specified in a single-
subscript color array are designated, for example, with

glTexImage1D (GL_TEXTURE_1D, 0, GL_RGBA, nTexColors, 0,
dataFormat, dataType, lineTexArray);

glEnable (GL_TEXTURE_1D);

We have set the first argument in the glTexImage1D function to the OpenGL
symbolic constant GL TEXTURE 1D to indicate that we are defining a texture
array for a one-dimensional object: a line. If we are not sure that the system will
support the texture pattern with the specified parameters, we use the symbolic
constant GL PROXY TEXTURE 1D for the first argument of glTexImage1D.
This allows us to first query the system before defining the elements of the texture
array, and we discuss the query procedures in a later section.

For the second and fifth arguments of this example function, we use the
value 0. The first 0 value (second argument) means that this array is not a reduc-
tion of some larger texture array. For the fifth argument, the 0 value means that
we do not want a border around the texture. If this fifth argument had been
assigned the value 1 (the only other possibility), the texture pattern would be dis-
played with a one-pixel border around it, which is used to merge the pattern with
adjacent texture patterns. For the third argument, the value GL RGBA means that
each color of the texture pattern is specified with four RGBA values. We could
have just used the three RGB color values, but RGBA values are sometimes pro-
cessed more efficiently because they align with processor memory boundaries.
Numerous other color specifications are possible, including a single intensity or
luminance value. Parameter nTexColors, the fourth argument, is to be assigned
a positive integer indicating the number of colors in the linear texture pattern.
Because a 0 value is listed for the fifth argument (the border parameter), the num-
ber of colors in the texture pattern must be a power of 2. If the fifth argument
had been assigned the value 1, then the number of colors in the texture pattern
would have to be 2 plus a power of 2. The two border colors are used to provide

Texturing and Surface Detail Methods

551

color blending with neighboring patterns. We can specify the one-subscript tex-
ture pattern with up to 64 + 2 colors, and some OpenGL implementations allow
larger texture patterns. Parameters describing the texture colors and the border
colors are stored in lineTexArray. In this example, we have no border and each
successive group of four elements in the array represents one color component
of the texture pattern. Therefore, the number of elements in lineTexArray is
4×nTexColors. As a specific example, if we want to define a texture pattern with
8 colors, the texture array must contain 4 × 8 = 32 elements.

Parameters dataFormat and dataType are similar to the arguments in the
glDrawPixels and glReadPixels function . We assign an
constant todataFormat to indicate how the color values are to
texture array. For instance, we could use the symbolic constant
dicate that the color components are to be given in the order blue,
alpha. To indicate the BGRA or RGBA data type, we can assign the
constant value GL UNSIGNED BYTE to parameter dataType. Other
possible

We can map multiple copies of a texture, or any contiguous subset of the tex-
ture colors, to an object in a scene. When a group of texture elements is mapped to
one or more pixel areas, the boundaries of the texture elements usually do not align
with the positions of the pixel boundaries. A pixel area could be contained within
the boundaries of a single RGB (or RGBA) texture element or it could overlap sev-
eral texture elements. To simplify the calculations in the texture mapping, we use
the following functions to give each pixel the color of the nearest texture element:

glTexParameteri (GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER,
GL_NEAREST);

glTexParameteri (GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER,
GL_NEAREST);

The first function is used by the texturing routines when a section of the texture
pattern must be enlarged to fit a specified coordinate range in a scene, and the sec-
ond function is used when a texture pattern has to be reduced. (These two texture
operations in OpenGL are referred to as magnifying, MAG, and minifying, MIN.)
Although assigning the nearest texture color to a pixel can be performed quickly,
it can lead to aliasing effects. To calculate the pixel color as a linear combination
of overlapping texture colors, we replace the symbolic constant GL NEAREST
with GL LINEAR. Several other parameter values can be set with the
glTexParameter function, and we take a look at these options later in this
chapter.

Specifying OpenGL texture patterns for a scene is somewhat similar to speci-
fying surface-normal vectors, RGB colors, or other attributes. We need to associate
the pattern with some object, but, unlike a single color setting, we now have a col-
lection of color values. For a one-dimensional texture space, the color values are
referenced with a single s coordinate that varies from 0.0 to 1.0 across the texture

glTexCoord1* (sCoord);

Allowable suffix codes for this function are b (byte), s (short), i (integer), f (float),
and d (double), depending on the data type for the texture coordinate parameter
sCoord. In addition, we can use the suffix v if an s-coordinate value is given in

s OpenGL symbolic
be specified in the
GL BGRA to in-

green, red,
OpenGL
possible

the data format we choose, include GL INT and GL FLOAT.

space. Thus, the texture pattern is applied to objects in a scene by assigning tex-
ture coordinate values to object positions. A particular s-coordinate value in
one-dimensional texture space is selected with the following command:

Texturing and Surface-Detail Methods

552

an array. As with color and other similar parameters, the s coordinate is a state
parameter, which applies to all subsequently defined world-coordinate positions.
The default value for the s coordinate is 0.0.

To map a linear texture pattern onto positions within a world-coordinate
scene, we assign s coordinates to the endpoints of a line segment. The texture
colors can be then be applied to the object in various ways, and the OpenGL default
method is to multiply each pixel color value for the object by the corresponding
color value in the texture pattern. If the line color is white (1.0, 1.0, 1.0, 1.0), which
is the default color for objects in a scene, the line will be displayed only with the
texture colors.

In the following example, we create a four-element linear texture pattern with
alternating green and red colors. The entire texture pattern, from 0.0 to 1.0, is then
assigned to a straight-line segment. Because the line is white, by default, it is
displayed in the texture colors.

GLint k;
GLubyte texLine [16]; // 16-element texture array.

/* Define two green elements for the texture pattern.
/* Each texture color is specified in four array positions.
*/
for (k = 0; k <= 2; k += 2)
{

texLine [4*k] = 0;
texLine [4*k+1] = 255;
texLine [4*k+2] = 0;
texLine [4*k+3] = 255;

}

/* Define two red elements for the texture pattern. */
for (k = 1; k <= 3; k += 2)
{

texLine [4*k] = 255;
texLine [4*k+1] = 0;
texLine [4*k+2] = 0;
texLine [4*k+3] = 255;

}

glTexParameteri (GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri (GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);

glTexImage1D (GL_TEXTURE_1D, 0, GL_RGBA, 4, 0, GL_RGBA, GL_UNSIGNED_BYTE, texLine);

glEnable (GL_TEXTURE_1D);

/* Assign the full range of texture colors to a line segment. */
glBegin (GL_LINES);

glTexCoord1f (0.0);
glVertex3fv (endPt1);
glTexCoord1f (1.0);
glVertex3fv (endPt2);

glEnd ();

glDisable (GL_TEXTURE_1D);

Texturing and Surface Detail Methods

553

The line segment is displayed with alternate green and red sections along
the line path. We can assign any values to the s coordinates. For example, the
middle red and green colors of the texture pattern are mapped onto the line
with the following statements:

glBegin (GL_LINES);
glTexCoord1f (0.25);
glVertex3fv (wcPt1);
glTexCoord1f (0.75);
glVertex3fv (wcPt2);

glEnd ();

Thus, the first half of the line is red and the second half green. We could also
use s values outside the range from 0.0 to 1.0. For instance, if we assigned the s
value −2.0 to one endpoint of a line and the s value 2.0 to the other endpoint, the
texture pattern would be mapped onto the line four times. The line would then
be displayed with 16 green sections and 16 red sections. For s-coordinate values
outside the unit interval, integer parts are ignored unless we specify that s values
are to be clamped to 0 or 1.0.

A vast number of parameters and options are available with OpenGL tex-
ture patterns. However, before we go into these features of the OpenGL texture
routines, we will discuss the basic functions needed to generate two-dimensional
and three-dimensional texture patterns.

OpenGL Surface-Texture Functions
We can set the parameters for a two-dimensional RGBA texture space using func-
tions similar to those for our one-dimensional texture pattern example:

glTexImage2D (GL_TEXTURE_2D, 0, GL_RGBA, texWidth,
texHeight, 0, dataFormat, dataType, surfTexArray);

glEnable (GL_TEXTURE_2D);

The only difference here is that we must specify both a width (number of columns)
and a height (number of rows) for the three-subscript texture array. Both the width
and height must be a power of 2, without a border, or 2 plus a power of 2, with
a border. We again use RGBA color components, and we state that the pattern
has no border and it is not a reduction of a larger texture pattern. Therefore
the size of the array stored in surfTexArray is 4 × texWidth× texHeight. For
two-dimensional texture patterns, we set the elements in the texture array to the
color values in a bottom-to-top order. Starting at the lower-left corner of the color
pattern, we set the elements in the first row of the array to the RGBA values
corresponding to the bottom row of texture space, and we set the elements in
the last row of the array to the RGBA values corresponding to the top of the
rectangular texture space (as previously shown in Figure 1).

As with a linear texture pattern, surface pixels in a scene can be assigned
the nearest texture color or an interpolated texture color. We select one of these
options with the same two glTexParameter functions that we used for one-
dimensional textures. One function specifies the option to use when a texture

Texturing and Surface-Detail Methods

554

pattern is enlarged to fit a coordinate range, and the other function specifies an
option that is to be used with pattern reductions. A two-dimensional texture
pattern could be stretched in one direction and compressed in the other direction.
For example, the following statements instruct the texturing routines to display
projected surface positions using the nearest texture color:

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
GL_NEAREST);

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_NEAREST);

To assign an interpolated texture color to surface pixels, we use the symbolic
constant GL LINEAR instead of GL NEAREST.

A coordinate position in two-dimensional texture space is selected with

glTexCoord2* (sCoord, tCoord);

Texture space is normalized so that the pattern is referenced with coordinate val-
ues in the range from 0.0 to 1.0. However, we can use any texture-coordinate
values to replicate a pattern across a surface. The texture coordinates can be spec-
ified in various formats, and we indicate a data format with a suffix code of b, s,
i, f, or d. We also append the suffix v if the texture coordinates are given in an
array.

To illustrate the OpenGL functions for a two-dimensional texture space, the
following code segment sets up a 32×32 pattern and maps it onto a quadrilateral
surface. Each texture color is specified with four RGBA components, and the
pattern has no border.

GLubyte texArray [32][32][4];

/* Next: assign the texture color components to texArray. */

/* Select nearest-color option. */
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexImage2D (GL_TEXTURE_2D, 0, GL_RGBA, 32, 32, 0, GL_RGBA,

GL_UNSIGNED_BYTE, texArray);

glEnable (GL_TEXTURE_2D);

/* Assign the full range of texture colors to a quadrilateral. */
glBegin (GL_QUADS);

glTexCoord2f (0.0, 0.0); glVertex3fv (vertex1);
glTexCoord2f (1.0, 0.0); glVertex3fv (vertex2);
glTexCoord2f (1.0, 1.0); glVertex3fv (vertex3);
glTexCoord2f (0.0, 1.0); glVertex3fv (vertex4);

glEnd ();

glDisable (GL_TEXTURE_2D);

Texturing and Surface Detail Methods

555

OpenGL Volume-Texture Functions
Functions for a three-dimensional texture space are simple extensions of those
for two-dimensional texture spaces. A four-subscript RGBA texture array with
no border, for instance, can be set up with the functions

glTexImage3D (GL_TEXTURE_3D, 0, GL_RGBA, texWidth, texHeight,
texDepth, 0, dataFormat, dataType, volTexArray);

glEnable (GL_TEXTURE_3D);

The RGBA texture colors are stored in volTexArray, which contains 4 ×
texWidth×texHeight×texDepth elements; and the width, height, and depth of
the array must be either a power of 2, or 2 plus a power of 2.

With the following statements, we display pixels using the nearest texture
color:

glTexParameteri (GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER,
GL_NEAREST);

glTexParameteri (GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER,
GL_NEAREST);

For linearly interpolated texture colors, we replace the value GL NEAREST with
GL LINEAR.

Three-dimensional texture coordinates are selected with

glTexCoord3* (sCoord, tCoord, rCoord);

Each selected position in the texture space is then associated with a spatial coor-
dinate position within a world-coordinate scene.

OpenGL Color Options for Texture Patterns
Elements for a texture space can be specified in many different ways.
The third argument in the functions glTexImage1D, glTexImage2D, and
glTexImage1D is used to specify the general format and number of color com-
ponents for each element of a pattern. Nearly 40 symbolic constants are available
for this specification. For example, each texture element could be a set of RGBA
values, a set of RGB values, a single alpha value, a single red intensity value,
a single luminance value, or a luminance value paired with an alpha value. In
addition, some constants specify bit size. The OpenGL constant GL R3 G3 B2,
for instance, specifies a 1-byte (8-bit) RGB color, with 3 bits allotted to the red
component, 3 bits for the green component, and 2 bits for blue.

Parameter dataFormat in the texture functions is then used to specify the
specific format for the texture elements. We can choose any of 11 symbolic con-
stants for this parameter. This allows us to specify each texture element as an index
into a color table, a single alpha value, a single luminance value, a luminance-
alpha pair of values, a single intensity value for one of the RGB components, the
three RGB components, or the four components of an RGBA specification in the
order BGRA. Also, thedataTypeparameter is assigned a value such asGL BYTE,
GL INT, GL FLOAT, or a symbolic constant that specifies both data type and bit
size. We can choose a value from a set of 20 symbolic constants for the data-type
parameter.

Texturing and Surface-Detail Methods

556

OpenGL Texture-Mapping Options
Texture elements can be applied to an object so that the texture values are com-
bined with the current object color components, or the texture values can be used
to replace the object color. We select a texture-mapping method with the function

glTexEnvi (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE,
applicationMethod);

If parameter applicationMethod is assigned the value GL REPLACE, then
the texture color, luminance, intensity, or alpha value replaces the corresponding
object value. For example, a texture pattern of alpha values replaces the object
alpha values. Similar replacement operations are used with a texture pattern spec-
ified with a single luminance or intensity value. A pattern of green intensity values
replaces the green components of the object color.

Assigning the value GL MODULATE to parameter applicationMethod
results in a “modulation” of the object color values. That is, current object values
are multiplied by the texture values. The specific results depend on the format for
the elements in the texture pattern so that, for example, alpha values modulate
alpha values and intensity values modulate intensity values. The default appli-
cation method for a texture pattern is GL MODULATE. If an object’s color is white
(the default object color), the modulate operation produces the same result as a
replace operation, depending on how the elements of the texture pattern have
been specified.

We can also use the symbolic constant GL DECAL for the texture-mapping
operations, which then employ the RGBA alpha values as transparency coeffi-
cients. In this case, the object is treated as if it were transparent with the texture
color in the background. If the texture pattern contains only RGB values, with no
alpha component, the texture color replaces the object color. Also, in some cases,
such as when the texture pattern contains only alpha values, the decal operation
is undefined.

When we use GL BLEND as the applicationMethod parameter value,
applicationMethod, the texture routines perform color blending using a color
specified with the function

glTexEnv* (GL_TEXTURE_ENV, GL_TEXTURE_ENV_COLOR,
blendingColor);

We append the suffix i or f according to the blending-color data type, and the
suffix v is also appended if the blending color is given in an array.

OpenGL Texture Wrapping
When coordinate values in texture space are outside the range from 0 to 1.0, we can
choose to replicate the patterns described in a texture array using the command

glTexParameter* (texSpace, texWrapCoord, GL_REPEAT);

Patterns are replicated using only the fractional part of a texture-space
coordinate value. Parameter texSpace is assigned one of the symbolic values
GL TEXTURE 1D, GL TEXTURE 2D, or GL TEXTURE 3D, and parameter
texWrapCoord designates a texture-space coordinate using either
GL TEXTURE WRAP S, GL TEXTURE WRAP T, or GL TEXTURE WRAP R.

To clamp a texture coordinate to the unit interval, we use the symbolic con-
stant GL CLAMP instead of GL REPEAT. If a clamped texture coordinate has a

Texturing and Surface Detail Methods

557

value greater than 1.0, it is assigned the value 1.0. Similarly, a clamped texture
coordinate that has a value less than 0.0 is assigned the value 0.0. We can specify
any combination of repeating and clamping for the coordinates in a particular
texture space. The default for all coordinates is GL REPEAT.

Copying OpenGL Texture Patterns from the Frame Buffer
Either an original pattern or a subpattern can be obtained from values stored in
the frame buffer. The following function sets up a two-dimensional pattern for
the current texture state using a block of RGBA pixel values:

glCopyTexImage2D (GL_TEXTURE_2D, 0, GL_RGBA, x0, y0, texWidth,
texHeight, 0);

The two 0 values in the argument list again indicate that this pattern is not a reduc-
tion and it does not have a border. The frame-buffer position (x0, y0), relative to
the lower-left corner of the buffer, references the lower-left corner of a texWidth
by texHeight block of pixel colors.

A similar function is available for obtaining a block of pixel colors as a texture
subpattern as follows:

glCopyTexSubImage2D (GL_TEXTURE_2D, 0, xTexElement,
yTexElement, x0, y0, texSubWidth, texSubHeight);

This block of pixel values is placed in the current pattern at texture-element
position (xTexElement, yTexElement). Parameters texSubWidth and
texSubHeight give the size of the pixel block, whose lower-left corner is at
frame-buffer position (x0, y0).

OpenGL Texture-Coordinate Arrays
As with color data, surface-normal vectors, and polygon edge flags, we can specify
texture coordinates in lists that can be combined or associated with vertex arrays

glEnableClientState (GL_TEXTURE_COORD_ARRAY);

glTexCoordPointer (nCoords, dataType, offset, texCoordArray);

Paramenter nCoords is assigned the value 1, 2, 3, or 4, which designates the
dimensionality of the texture pattern. The default value 4 is used to reference tex-
ture space in a homogeneous-coordinate form, so that a texture-space position is
calculated by dividing the first three coordinate values by the fourth. This form is
useful, for example, when the texture pattern is a perspective photograph. Param-
eter dataType is assigned the constant value GL SHORT, GL INT, GL FLOAT
(the default value), or GL DOUBLE. The byte offset between coordinate positions
in arraytexCoordArray is designated in parameteroffset, which has a default
value of 0.

Naming OpenGL Texture Patterns
Often it is useful to use several texture patterns in an application, so OpenGL
allows multiple, named texture patterns to be created. Then we simply specify
which named texture is to be applied at any time. This is a much more efficient
method than invoking the glTexImage function each time because each call to
glTexImage requires that the pattern be re-created, possibly from color values

.

Texturing and Surface-Detail Methods

558

in a data file. To name a texture pattern, we select a positive (unsigned) integer
before the pattern is defined. As an example, the following statements name
and then activate the green and red line pattern from our previous example as
texture 3:

glBindTexture (GL_TEXTURE_1D, 3);
glTexImage1D (GL_TEXTURE_1D, 0, GL_RGBA, 4, 0, GL_RGBA,

GL_UNSIGNED_BYTE, texLine);

glBindTexture (GL_TEXTURE_1D, 3);

The first glBindTexture statement names the pattern, and the second call
to glBindTexture designates that pattern as the current texture state. If we
have created multiple texture patterns, we could call glBindTexture again
with another pattern name to activate that texture for application to some
object in a scene. For a two-dimensional or three-dimensional pattern, we change
the first argument of the glBindTexture function to either GL TEXTURE 2D
or GL TEXTURE 3D. When a texture name is first invoked, a texture pattern is
created using the default values for the pattern parameters.

Although we can choose our own name for a pattern, it is generally a better
idea to let OpenGL generate a name for us, so that we don’t have to keep track of
the names that have already been used. For example, we could use the following
code to request one texture name and then use it to create a pattern:

static GLuint texName;

glGenTextures (1, &texName);
glBindTexture (GL_TEXTURE_2D, texName);

The first parameter is the number of texture names to be generated, and the
second parameter is an array of GLuint into which the names are to be placed.
Because we only wanted one texture name, we had to pass the address of our
single GLuint variable as the second parameter so that glGenTextures could
place the generated name into it. It is more common to request several texture
names at once, which is why the second parameter can be the address of an array.
For example, the following code obtains a list of 6 unused texture names and uses
one of them to create a pattern:

static GLuint texNamesArray [6];

glGenTextures (6, texNamesArray);
glBindTexture (GL_TEXTURE_2D, texNamesArray [3]);

When we are done using a texture pattern, we may want to delete it to release
the space it occupies in OpenGL’s texture memory (for example, to make room for
another texture). We delete one or more existing texture patterns with the function

glDeleteTextures (nTextures, texNamesArray);

The parameters are the same as those for glGenTextures: nTextures is the
number of pattern names to be deleted, and texNamesArray is an array con-
taining those names.

A query command is available in OpenGL to find out if a texture name is in
use for an existing pattern:

glIsTexture (texName);

Texturing and Surface Detail Methods

559

This function returns the value GL TRUE if texName is the name of an existing
pattern, otherwise the value GL FALSE is returned. A GL FALSE value is also
returned if texName = 0 or if an error occurs.

OpenGL Texture Subpatterns
Once a texture pattern has been defined, we can create another pattern, called a
subpattern, to modify any part, or all, of the original pattern. The texture values
in the subpattern replace specified values in the original pattern. This is usually a
more efficient process than re-creating a texture with new elements. For example,
the following function designates a set of RGBA color values that are to replace a
section of a two-dimensional texture that has no border and is not a reduction of
a larger pattern:

glTexSubImage2D (GL_TEXTURE_2D, 0, xTexElement,
yTexElement, GL_RGBA, texSubWidth, texSubHeight,
0, dataFormat, dataType, subSurfTexArray);

Parameters xTexElement and yTexElement are used to select an integer-
coordinate position of a texture element within the original pattern, where
position (0, 0) references the texture element at the lower-left corner of the pat-
tern. The subpattern is pasted into the original pattern with its lower-left cor-
ner at position (xTexElement, yTexElement). Parameters TexSubWidth and
TexSubHeight give the size of the subpattern. The number of color elements in
the array subSurfTexArray for a RGBA texture pattern is 4 × texSubWidth ×
texSubHeight. Other parameters are the same as in the glTexImage function,
and similar subpatterns can be set up for one-dimensional and three-dimensional
textures.

OpenGL Texture Reduction Patterns
For reduced object sizes, we can use OpenGL routines to create a series of texture
reduction patterns, referred to as mip maps (see Section 2). One way to create a
sequence of reduction patterns is to invoke the glTexImage function repeatedly
using higher integer values for the second argument (the “level number”) in
the function. The original pattern is referenced as reduction-level number 0. A
reduction pattern that is half the size of the original pattern is assigned the level
number 1, the second one-half size reduction pattern is designated as level number
2, and so on for the other reductions. The copyTexImage function also generates
a reduction pattern when we set the level number to 1 or higher.

Alternatively, we can have OpenGL generate reduction patterns automati-
cally. For example, RGBA reduction patterns are obtained for a 16 × 16 surface
texture using the following GLU function:

gluBuild2DMipmaps (GL_TEXTURE_2D, GL_RGBA, 16, 16, GL_RGBA,
GL_UNSIGNED_BYTE, surfTexArray);

A complete set of four patterns, at the reduced sizes of 8×8, 4×4, 2×2, and 1×1,
is generated by this function. We can also set up selected reductions using

gluBuild2DMipmapLevels (GL_TEXTURE_2D, GL_RGBA, 16, 16,
GL_RGBA, GL_UNSIGNED_BYTE, 0, minLevel, maxLevel,
surfTexArray);

Texturing and Surface-Detail Methods

560

This function produces reduction patterns for a range of level numbers speci-
fied by parameters minLevel and maxLevel. In each case, the mip maps are
constructed for the current texture pattern, specified at level number 0.

We choose a method for determining pixel colors from the reduction pat-
terns using the glTexParameter function and the GL TEXTURE MIN FILTER
symbolic constant. For example, the following function designates the mapping
procedure for a two-dimensional texture pattern:

glTexParameter (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_NEAREST_MIPMAP_NEAREST);

This function specifies that the texture routines should use the reduction pat-
tern that most closely matches the pixel size (MIPMAP NEAREST). A pixel is then
assigned the color of the nearest texture element (GL NEAREST) in that reduction
pattern. With the symbolic constant GL LINEAR MIPMAP NEAREST, we specify
a linear combination of texture colors from the nearest reduction pattern. With
GL NEAREST MIPMAP LINEAR (the default value), we specify an average color
calculated from the nearest texture elements in each of the reduction patterns
closest to the pixel size. In addition, GL LINEAR MIPMAP LINEAR computes a
pixel color using a linear combination of texture colors from a set of closest-size
reduction patterns.

OpenGL Texture Borders
When multiple textures, or multiple copies of a single texture, are applied to an
object, aliasing effects may be apparent at the edges of adjacent patterns when
pixel colors are computed by linearly interpolating the texture colors. This can
be avoided by including a border with each texture pattern, where border colors
match the texture edge colors in the adjacent pattern.

We can designate a texture border color in several ways. The color value
in an adjacent pattern can be copied to the border in another pattern using the
glTexSubImage function, or the border colors can be directly assigned in the
texture array specified with the glTexImage function. Another option is to set a
border color using the glTexParameter routine. For example, we can assign a
border color for a two-dimensional pattern with

glTexParameterfv (GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR,
borderColor);

where parameter borderColor is assigned a four-element set of RGBA color
components. The default border color is black (0.0, 0.0, 0.0, 0.0).

OpenGL Proxy Textures
In any of the glTexImage functions, we can set the first argument to a sym-
bolic constant, called a texture proxy. The purpose of this constant is to hold
the definition of the texture pattern until we find out if there are enough
resources to handle this pattern. For a two-dimensional pattern, the proxy con-
stant is GL PROXY TEXTURE 2D, and similar constants are available for linear
and volumetric texture patterns. Once we have set up the texture proxy, we use
glGetTexLevelFunction to determine whether specific parameter values can
be accommodated.

Texturing and Surface Detail Methods

561

As an example of using a texture proxy, the following statements query the
system to determine whether the height specified for a two-dimensional pattern
can be used:

GLint texHeight;

glTexImage2D (GL_PROXY_TEXTURE_2D, 0, GL_RGBA12, 16, 16, 0,
GL_RGBA, GL_UNSIGNED_BYTE, NULL);

glGetTexLevelParameteriv (GL_PROXY_TEXTURE_2D, 0, GL_RGBA12,
GL_TEXTURE_HEIGHT, &texHeight);

If the system cannot accommodate the requested pattern height (16, in this
case), a value of 0 is returned in parameter texHeight. Otherwise, the value
returned is the value requested. Other pattern parameters can be queried similarly
using symbolic constants such as GL TEXTURE WIDTH, GL TEXTURE DEPTH,
GL TEXTURE BORDER, andGL TEXTURE BLUE SIZE. In each case, a returned
value of 0 indicates that the requested parameter value in the glTexImage func-
tion cannot be accommodated. For floating-point data values, we replace the suffix
code i with the code f.

Although we might obtain an affirmative answer for a proposed texture, we
still might not be able to store the pattern in memory. This can occur when another
pattern is occupying the available memory.

Automatic Texturing of Quadric Surfaces
Routines are available in OpenGL for automatically generating texture coordi-
nates in certain applications. This feature is particularly useful when it may be
difficult to determine surface coordinates for an object directly, and a GLU func-
tion is available for applying these routines to quadric surfaces.

To map a texture pattern to a quadric surface, we first set up the parameters for
the texture space. Then we invoke the following function and define the quadric
object:

gluQuadricTexture (quadSurfObj, GL_TRUE)

Parameter quadSurfObj in this function is the name of the quadric object. If we
want to deactivate the texturing of the quadric surface, we change the symbolic
constant GL TRUE to GL FALSE.

Homogeneous Texture Coordinates
A four-dimensional texture-space position is specified with

glTexCoord4* (sCoord, tCoord, rCoord, htexCoord);

Texture coordinates are transformed using a 4 × 4 matrix in the same way that
scene coordinates are transformed: Each coordinate is divided by the homoge-
neous paramete . Thus, the values for the texture coordinates s, t,
function are divided by the homogeneous parameter h tex to produce
texture-space position.

Homogeneous coordinates in texture space are useful when multiple perspec-
tive effects are combined in one display. For example, a perspective view of an
object may include a texture pattern produced with a different perspective-
projection transformation. The texture pattern can then be modified using
homogeneous texture coordinates to adjust the texture perspective. Many other
effects are possible using homogeneous texture coordinates to manipulate a tex-
ture mapping.

and r in this
an actual

Texturing and Surface-Detail Methods

r

562

Additional OpenGL Texture Options
Functions are available in OpenGL for performing many other texture manip-
ulations and applications. If we obtain a texture pattern (from a photograph or
other source) that is not a power of 2, OpenGL provides a function to modify the
size of the pattern. In some implementations of OpenGL, multitexturing routines
are available for pasting multiple texture patterns onto an object. Environment-
mapping can be simulated in OpenGL by creating a texture map in the shape of
a spherical surface, and texture coordinates for spherical environment patterns,
as well as other texture applications, can be generated automatically.

6 Summary
Surface detail can be added to objects using polygon facets, texture mapping,
bump mapping, or frame mapping. Small polygon facets can be overlaid on
larger surfaces to provide various kinds of designs. Alternatively, texture pat-
terns can be defined in one-dimensional, two-dimensional, and three-dimensional
spaces, which can be used to add texture to a line, a surface, or a volume of
space. Procedural texture mapping uses functions to calculate variations in object
lighting effects. Bump mapping is a means for modeling surface irregularities by
applying a bump function to perturb surface normal vectors. Frame mapping
is an extension of bump mapping that can be used to model characteristics of
anisotropic materials by allowing for horizontal surface variations, as well as
vertical variations.

The core library of OpenGL contains a number of functions for applying
texture array patterns to objects. Texture patterns can be obtained from a number
of different sources. Table 1 provides a summary of these OpenGL texture-
mapping functions.

T A B L E 1

Summary of OpenGL Texture-Mapping Functions

Function Description

glTexImage1D Specifies parameters for setting up a one-dimensional
texture space. (Activates texturing with glEnable.)

glTexImage2D Specifies parameters for setting up a two-dimensional
texture space.

glTexImage3D Specifies parameters for setting up a three-dimensional
texture space.

glTexParameter Specifies parameters for the texture-mapping
routines.

glTexCoord Specifies a value for a texture coordinate in one-
dimensional, two-dimensional, three-dimensional,
or four-dimensional texture space.

glTexEnv Specifies texture-environment parameters, such as a
blending color for texture mapping.

(Continued)

Texturing and Surface Detail Methods

563

T A B L E 1

Summary of OpenGL Texture-Mapping Functions (Continued)

Function Description

glCopyTexImage Copies a block of frame-buffer pixel colors for use as a
texture pattern.

glCopyTexSubImage Copies a block of frame-buffer pixel colors for use as a
texture subimage.

glTexCoordPointer Specifies texture coordinates in a list that is associated
with a vertex list.

glBindTexture Assigns a name to a texture pattern; also used to
activate a named pattern.

glDeleteTextures Eliminates a list of named textures.

glGenTextures Generates texture names automatically.

glIsTexture Queries command to determine whether a named
texture exists.

glTexSubImage Creates a texture subpattern.

gluBuild*Mipmaps Generates texture reduction patterns automatically
for a one-dimensional, two-dimensional, or
three-dimensional texture space.

gluBuild*MipmapLevels Generates texture reduction patterns automatically
for a specified level for a one-dimensional, two-
dimensional, or three-dimensional texture space.

glGetTexLevelParameter Queries the system to determine whether a texture
parameter value can be accommodated.

gluQuadricTexture Activates or deactivates texturing for a quadric
surface.

REFERENCES
Texture-mapping methods and applications are dis-
cussed in Williams (1983), Segal, et al. (1992), and Demers
(2002).

Additional programming examples using OpenGL
texture functions are given in Woo, et al. (1999).
Programming examples for the OpenGL and texture
functions are also available at Nate Robins’s tutorial web-
site: http://www.xmission.com/∼nate/opengl.html.
Finally, a complete listing of OpenGL rendering func-
tions is provided in Shreiner (2000).

EXERCISES
1 Write a program to map a given texture pattern

onto each face of a specified cube.

2 Modify the program in the preceding exercise so
that the pattern is mapped to each face of a tetra-
hedron.

3 Modify the program in the preceding exercise so
that the pattern is mapped to a specified section of
a spherical surface.

4 Write a program to map a given one-dimensional
texture pattern onto a specified face of a cube as a
diagonal stripe.

5 Modify the program in the preceding example so
that the one-dimensional texture is mapped to the
surface of a sphere, given two points on the spher-
ical surface.

Texturing and Surface-Detail Methods

564

6 Given a spherical surface, write a bump-mapping
procedure to simulate the bumpy surface of an
orange.

7 Write a bump-mapping routine to produce surface-
normal variations for any specified bump function.

8 Write a complete OpenGL program to display a set
of diagonal lines using various one-dimensional
texture patterns.

9 Write a program using a two-dimensional OpenGL
texture pattern to display a red-and-black checker-
board on a gray background.

10 Modify the program in the preceding exercise so
that the checkerboard has blue and yellow squares
and the background is black.

11 Write a program using a two-dimensional OpenGL
texture pattern to display a red rectangle with a set
of evenly spaced horizontal blue stripes. Set the
background color to white.

12 Modify the program in the preceding exercise to
map the texture pattern onto the surface of a
sphere.

13 Modify the program in the preceding exercise to
map the texture pattern onto the surface of the
GLUT teapot.

IN MORE DEPTH
1 Examine the objects in your scene that you have

rendered thus far with simple shading models and
choose those that would more appropriately be
rendered with more complex surfaces. Obtain from
another source, or design yourself, texture patterns
for each of these objects that most appropriately fit
their desired textural properties. Discuss the differ-
ent possible ways that you could map each of these
textures onto their respective objects based on the
shapes of the objects.

2 Use the OpenGL surface-mapping functions to
map the texture patterns that you produced in
the previous exercise onto the appropriate objects
in your scene. Adjust the blending parameters
between the mapped textures and the object color
values as appropriate to obtain the desired look of
the objects in your scene.

Texturing and Surface Detail Methods

565

This page intentionally left blank

(a) (b)

C o l o r P l a t e 1 8
Modeling and rendering stages in the simulation of a square plate struck by a rigid projectile: (a) A
wire-frame model of the scene; (b) A final rendered version. (Image created by M. Wicke, D. Ritchie,
B. Klingner, S. Burke, J. Shewchuk, and J. O’Brien, University of California, Berkeley.)

(a)

(c)

(b)

(d)

C o l o r P l a t e 1 9
Scenes illustrating computer-graphics generation of surface detail for various objects: (a) cactus plants with added spines and flowers (Courtesy of
Deborah R. Fowler, Przemyslaw Prusinkiewicz, and Johannes Battjes, University of Calgary. © 1992), (b) seashells with various patterns and fluted
surfaces (Courtesy of Deborah R. Fowler, Hans Meinhardt, and Przemyslaw Prusinkiewicz, University of Calgary. © 1992), (c) a table of fruit (Courtesy of
SOFTIMAGE, Inc.), and (d) surface patterns on chess pieces and a chessboard produced with texture-mapping methods (Courtesy of SOFTIMAGE, Inc.).

Texturing and Surface-Detail Methods

From Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson

567

C o l o r P l a t e 2 0
A scene with object characteristics
modeled using solid-texture methods.
(Courtesy of Peter Shirley, Computer
Science Department, University of
Utah.)

(b)(a)

C o l o r P l a t e 2 1
Rendering the characteristics of rough surfaces using bump mapping. (Courtesy of (a) Peter Shirley, Computer
Science Department, University of Utah, and (b) SOFTIMAGE, Inc.)

568

Color Models and Color Applications

1 Properties of Light

2 Color Models

3 Standard Primaries and
the Chromaticity Diagram

4 The RGB Color Model

5 The YIQ and Related Color Models

6 The CMY and CMYK Color Models

7 The HSV Color Model

8 The HLS Color Model

9 Color Selection and Applications

10 Summary

O ur discussions of color up to this point have concentrated

on methods involving red, green, and blue (RGB) com-

ponents, which we use for generating displays on video

monitors. Several other color descriptions are useful as well in

computer-graphics applications. Some methods are used to describe

color output on printers and plotters, some are used for transmitting

and storing color information, and others are used to provide a more

intuitive color-parameter interface to a program.

From Chapter of Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson

19 .

569

1 Properties of Light

The Electromagnetic Spectrum
In physical terms, color is electromagnetic radiation within a narrow frequency
band. Some of the other frequency groups in the electromagnetic spectrum are
referred to as radio waves, microwaves, infrared waves, and X-rays. Figure 1
shows the approximate frequency ranges for these various aspects of electromag-
netic radiation.

Each frequency value within the visible region of the electromagnetic
spectrum corresponds to a distinct spectral color. At the low-frequency end
(approximately 3.8 × 1014 hertz) are the red colors, and at the high-frequency end
(approximately 7.9 × 1014 hertz) are the violet colors. Actually, the human eye
is sensitive to some frequencies into the infrared and ultraviolet bands. Spectral
colors range from shades of red through orange and yellow, at the low-frequency
end, to shades of green, blue, and violet at the high end.

In the wave model of electromagnetic radiation, light can be described as
oscillating transverse electric and magnetic fields propagating through space.
The electric and magnetic fields are oscillating in directions that are perpendicu-
lar to each other and to the direction of propagation. For each spectral color, the
rate of oscillation of the field magnitude is given by the frequency f . Figure 2

F I G U R E 1
Electromagnetic spectrum. 102 104 106 108 1010 1012 1014 1016 1018 1020

A
M

 R
ad

io

F
M

 R
ad

io
 a

nd
 T

V

M
ic

ro
w

av
es

In
fr

ar
ed

V
is

ib
le

U
lt

ra
vi

ol
et

X
-r

ay
s

Frequency
(hertz)

F I G U R E 2
Time variations for the amplitude of
the electric field for one frequency
component of a plane-polarized
electromagnetic wave. The time
between two consecutive amplitude
peaks or two consecutive amplitude
minimums is called the period of
the wave.

A
m

pl
it

ud
e

t

T

Color Models and Color Applications

Light exhibits many different characteristics, and we describe the properties of
light in different ways in different contexts. Physically, we can characterize light
as radiant energy, but we also need other concepts to describe our perception of
light.

570

illustrates the time-varying oscillations for the magnitude of the electric field
within one plane. The time between any two consecutive positions on the wave
that have the same amplitude is called the period (T) of the wave, which is the
inverse of the frequency (i.e., T = 1/ f). And the distance that the wave has trav-
eled from the beginning of one oscillation to the beginning of the next oscillation
is called the wavelength (λ). For one spectral color (a monochromatic wave), the
wavelength and frequency are inversely proportional to each other, with the pro-
portionality constant as the speed of light (c):

c = λ f (1)

Frequency for each spectral color is a constant for all materials, but the speed of
light and the wavelength are material dependent. In a vacuum, the speed of light is
very nearly c = 3 × 1010 cm/sec. Light wavelengths are very small, so length units
for designating spectral colors are usually given in angstroms (1

◦
A = 10−8 cm)

or in nanometers (1 nm = 10−7 cm). An equivalent term for nanometer is milli-
micron. Light at the low-frequency end of the spectrum (red) has a wavelength
of approximately 780 nanometers (nm), and the wavelength at the other end of
the spectrum (violet) is about 380 nm. Because wavelength units are somewhat
more convenient to deal with than frequency units, spectral colors are typically
specified in terms of the wavelength values in a vacuum.

A light source such as the sun or a standard household light bulb emits all
frequencies within the visible range to produce white light. When white light
is incident upon an opaque object, some frequencies are reflected and some are
absorbed. The combination of frequencies present in the reflected light determines
what we perceive as the color of the object. If low frequencies are predominant
in the reflected light, the object is described as red. In this case, we say that the
perceived light has a dominant frequency (or dominant wavelength) at the red
end of the spectrum. The dominant frequency is also called the hue, or simply the
color, of the light.

Psychological Characteristics of Color
Other properties besides frequency are needed to characterize our perception of
light. When we view a source of light, our eyes respond to the color (or dominant
frequency) and two other basic sensations. One of these we call the brightness,
which corresponds to the total light energy and can be quantified as the luminance

Radiation emitted by a white light source has an energy distribution that can
be represented over the visible frequencies as in Figure 3. Each frequency com-
ponent within the range from red to violet contributes more or less equally to the
total energy, and the color of the source is described as white. When a dominant fre-
quency is present, the energy distribution for the source takes a form such as that in
Figure 4. We would describe this light as a red color (the dominant frequency),
with a relatively high value for the purity. The energy density of the dominant
light component is labeled as ED in this figure, and the contributions from the
other frequencies produce white light of energy density EW. We can calculate the
brightness of the source as the area under the curve, which gives the total energy
density emitted. Purity (saturation) depends on the difference between ED and

Color Models and Color Applications

of the light. The third perceived characteristic is called the purity, or the satura-
tion, of the light. Purity describes how close a light appears to be to a pure spec-
tral color, such as red. Pastels and pale colors have low purity (low saturation)
and they appear to be nearly white. Another term, chromaticity, is used to refer
collectively to the two properties describing color characteristics: purity and
dominant frequency (hue).

571

Energy

Frequency
Red Violet

F I G U R E 3
Energy distribution for a white light source.

Energy

Frequency
Red

Dominant
Frequency

Violet

ED

EW

F I G U R E 4
Energy distribution for a light source with a dominant
frequency near the red end of the frequency range.

EW. The larger the energy ED of the dominant frequency compared to the
white-light component EW, the higher the purity of the light. We have a purity of
100 percent when EW = 0 and a purity of 0 percent when EW = ED.

2 Color Models
Any method for explaining the properties or behavior of color within some par-
ticular context is called a color model. No single model can explain all aspects
of color, so we make use of different models to help describe different color
characteristics.

Primary Colors
When we combine the light from two or more sources with different dominant
frequencies, we can vary the amount (intensity) of light from each source to gen-
erate a range of additional colors. This represents one method for forming a color
model. The hues that we choose for the sources are called the primary colors, and
the color gamut for the model is the set of all colors that we can produce from the
primary colors. Two primaries that produce white are referred to as complemen-
tary colors. Examples of complementary color pairs are red and cyan, green and
magenta, and blue and yellow.

No finite set of real primary colors can be combined to produce all possible
visible colors. Nevertheless, three primaries are sufficient for most purposes, and
colors not in the color gamut for a specified set of primaries can still be described
using extended methods. Given a set of three primary colors, we can characterize
any fourth color using color-mixing processes. Thus, a mixture of one or two of
the primaries with the fourth color can be used to match some combination of the
remaining primaries. In this extended sense, a set of three primary colors can be
considered to describe all colors. Figure 5 shows a set of color-matching functions
for three primaries and the amount of each needed to produce any spectral color.
The curves plotted in Figure 5 were obtained by averaging the judgments of a
large number of observers. Colors in the vicinity of 500 nm can be matched only
by “subtracting” an amount of red light from a combination of blue and green
lights. This means that a color around 500 nm is described only by combining
that color with an amount of red light to produce the blue-green combination
specified in the diagram. Thus, an RGB color monitor cannot display colors in the
neighborhood of 500 nm.

Color Models and Color Applications

572

C
ol

or
-M

at
ch

in
g

R
G

B
 A

m
ou

nt
s

0.4

0.2

0
400 500 600 700

fB

fG

fR

l (nm)

F I G U R E 5
Three color-matching functions for
displaying spectral frequencies within
the approximate range from 400 nm to
700 nm.

Intuitive Color Concepts
An artist creates a color painting by mixing color pigments with white and black
pigments to form the various shades, tints, and tones in the scene. Starting with
the pigment for a “pure color” (“pure hue”), the artist adds a black pigment
to produce different shades of that color. The more black pigment, the darker
the shade. Similarly, different tints of the color are obtained by adding a white
pigment to the original color, making it lighter as more white is added. Tones of
the color are produced by adding both black and white pigments.

To many, these color concepts are more intuitive than describing a color as a
set of three numbers that give the relative proportions of the primary colors. It is
generally much easier to think of creating a pastel red color by adding white to
pure red and producing a dark blue color by adding black to pure blue. Therefore,
graphics packages providing color palettes to a user often employ two or more
color models. One model provides an intuitive color interface for the user, and
the others describe the color components for the output devices.

3 Standard Primaries and
the Chromaticity Diagram

Because no finite set of light sources can be combined to display all possible
colors, three standard primaries were defined in 1931 by the International
Commission on Illumination, referred to as the CIE (Commission Internationale
de l’Éclairage). The three standard primaries are imaginary colors. They are
defined mathematically with positive color-matching functions (Figure 6) that

C
ol

or
-M

at
ch

in
g

C
IE

 A
m

ou
nt

s

1.0

1.5

0.5

0
400 500 600 700 l (nm)

fZ

fY
fX

F I G U R E 6
The three color-matching functions for
the CIE primaries.

Color Models and Color Applications

573

specify the amount of each primary needed to describe any spectral color. This
provides an international standard definition for all colors, and the CIE primaries
eliminate negative-value color-matching and other problems associated with
selecting a set of real primaries.

The XYZ Color Model
The set of CIE primaries is generally referred to as the XYZ color model, where
parameters X, Y, and Z represent the amount of each CIE primary needed to
produce a selected color. Thus, a color is described with the XYZ model in the
same way that we described a color using the RGB model.

In the three-dimensional XYZ color space, we represent any color C(λ) as

C(λ) = (X, Y, Z) (2)

where X, Y, and Z are calculated from the color-matching functions (Figure 6):

X = k
∫

visible λ

fX(λ) I (λ) dλ

Y = k
∫

visible λ

fY(λ) I (λ) dλ (3)

Z = k
∫

visible λ

fZ(λ) I (λ) dλ

Parameter k in these calculations has the value 683 lumens/watt, where lumen
is a unit of measure for light radiation per unit solid angle from a “standard”
point light source (once called a candle). The function I (λ) represents the spec-
tral radiance, which is the selected light intensity in a particular direction, and
the color-matching function fY is chosen so that parameter Y is the luminance

Any color can be represented in the XYZ color space as an additive combina-
tion of the primaries using unit vectors X, Y, Z. Thus, we can write Equation 2 as

C(λ) = X X + Y X + Z X (4)

Normalized XYZ Values
In discussing color properties, it is convenient to normalize the amounts in Equa-
tion 3 against the sum X + Y + Z, which represents the total light energy.
Normalized amounts are thus calculated as

x = X
X + Y + Z

, y = Y
X + Y + Z

, z = Z
X + Y + Z

(5)

Because x + y+ z = 1, any color can be represented with just the x and y amounts.
Also, we have normalized against total energy, so parameters x and y depend only
on hue and purity and are called the chromaticity values. However, the x and
y values alone do not allow us to describe all properties of the color completely,
and we cannot obtain the amounts X, Y, and Z. Therefore, a complete description
of a color is typically given with three values: x, y, and the luminance Y. The
remaining CIE amounts are then calculated as

X = x
y

Y, Z = z
y

Y (6)

where z = 1 − x − y. Using chromaticity coordinates (x, y), we can represent all
colors on a two-dimensional diagram.

Color Models and Color Applications

for that color. Luminance values are normally adjusted to the range from 0 to
100.0, where 100.0 represents the luminance of white light.

574

y

0.8
520

540

560

500

480

C

580

600

700 (Red)

x

0.7

0.6

0.5

0.4

0.3 (Blue)

(Cyan)

(Green)

(Yellow)

0.2

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(Purple Line)

Spectral
Colors

400 (Violet)
F I G U R E 7
CIE chromaticity diagram for the spectral colors
from 400 nm to 700 nm.

The CIE Chromaticity Diagram
When we plot the normalized amounts x and y for colors in the visible spectrum,
we obtain the tongue-shaped curve shown in Figure 7. This curve is called the
CIE chromaticity diagram. Points along the curve are the spectral colors (pure
colors). The line joining the red and violet spectral points, referred to as the purple
line, is not part of the spectrum. Interior points represent all possible visible color
combinations. Point C in the diagram corresponds to the white-light position.
Actually, this point is plotted for a white light source known as illuminant C,
which is used as a standard approximation for average daylight.

y

x

C3

C4

C2
C1

C5

F I G U R E 8
Color gamuts defined on the
chromaticity diagram for a two-color
and a three-color system of primaries.

y

x

C1

C

C2

F I G U R E 9
Representing complementary colors on
the chromaticity diagram.

Luminance values are not available in the chromaticity diagram because of
normalization. Colors with different luminance but with the same chromaticity
map to the same point. The chromaticity diagram is useful for:

• Comparing color gamuts for different sets of primaries.
• Identifying complementary colors.
• Determining purity and dominant wavelength for a given color.

Color Gamuts
We identify color gamuts on the chromaticity diagram as straight-line segments
or polygon regions. All colors along the straight line joining points C1 and C2
in Figure 8 can be obtained by mixing appropriate amounts of the colors C1
and C2. If a greater proportion of C1 is used, the resultant color is closer to C1
than to C2 . The color gamut for three points, such C3, C4, and C5 in Figure 8,
is a triangle with vertices at the three color positions. These three primaries can
generate only the colors inside or on the bounding edges of the triangle. Thus, the
chromaticity diagram helps us to understand why no set of three primaries can be
additively combined to generate all colors, because no triangle within the diagram
can encompass all colors. Color gamuts for video monitors and hard-copy devices
are compared conveniently on the chromaticity diagram.

Complementary Colors
Because the color gamut for two points is a straight line, complementary colors
must be represented on the chromaticity diagram as two points on opposite sides
of C and collinear with C , as in Figure 9. The distances of the two colors C1
and C2 to C determine the amounts of each needed to produce white light.

Color Models and Color Applications

575

Dominant Wavelength
To determine the dominant wavelength of a color, we draw a straight line from
C through that color point to a spectral color on the chromaticity curve. The
spectral color Cs in Figure 10 is the dominant wavelength for color C 1 in this
diagram. Thus, color C1 can be represented as a combination of white light C and
the spectral color Cs . This method for determining dominant wavelength will
not work for color points that are between C and the purple line. Drawing a line
from C through point C2 in Figure 10 takes us to point C p on the purple line,
which is not in the visible spectrum. In this case, we take the compliment of C p

on the spectral curve, which is the point Csp, as the dominant wavelength. Colors
such as C2 in this diagram have spectral distributions with subtractive dominant
wavelengths. We can describe such colors by subtracting the spectral dominant
wavelength from white light.

y

x

Cs

Csp

C
C2

Cp

C1

F I G U R E 1 0
Determining dominant wavelength and
purity using the chromaticity diagram.

Purity
For a color point such as C1 in Figure 10, we determine the purity as the relative
distance of C1 from C along the straight line joining C to Cs . If dc1 denotes the
distance from C to C1 and dcs is the distance from C to Cs , we can represent purity
as the ratio dc1/dcs . Color C1 in this figure is about 25 percent pure, because it is
situated at about one-fourth the total distance from C to Cs . At position Cs , the
color point would be 100 percent pure.

4 The RGB Color Model
According to the tristimulus theory of vision, our eyes perceive color through the
stimulation of three visual pigments in the cones of the retina. One of the pigments
is most sensitive to light with a wavelength of about 630 nm (red), another has its
peak sensitivity at about 530 nm (green), and the third pigment is most receptive
to light with a wavelength of about 450 nm (blue). By comparing intensities in a
light source, we perceive the color of the light. This theory of vision is the basis for
displaying color output on a video monitor using the three primaries red, green,
and blue, which is referred to as the RGB color model.

We can represent this model using the unit cube defined on R, G, and B axes,
as shown in Figure 11. The origin represents black and the diagonally opposite

F I G U R E 1 1
The RGB color model. Any color within
the unit cube can be described as an
additive combination of the three
primary colors.

Gray Scale Green
(0, 1, 0)

G

R

B

Yellow
(1, 1, 0)

White
(1, 1, 1)

Red
(1, 0, 0)

Magenta
(1, 0, 1)

Blue
(0, 0, 1)

Black
(0, 0, 0)

Cyan
(0, 1, 1)

Color Models and Color Applications

576

T A B L E 1

RGB (x, y) Chromaticity Coordinates

NTSC Standard CIE Model Approx. Color Monitor Values

R (0.670, 0.330) (0.735, 0.265) (0.628, 0.346)
G (0.210, 0.710) (0.274, 0.717) (0.268, 0.588)
B (0.140, 0.080) (0.167, 0.009) (0.150, 0.070)

vertex, with coordinates (1, 1, 1), is white. Vertices of the cube on the axes represent
the primary colors, and the remaining vertices are the complementary color points
for each of the primary colors.

As with the XYZ color system, the RGB color scheme is an additive model.
Each color point within the unit cube can be represented as a weighted vector
sum of the primary colors, using unit vectors R, G, and B:

C(λ) = (R, G, B) = R R + G G + B B (7)

where parameters R, G, and B are assigned values in the range from 0 to 1.0.
For example, the magenta vertex is obtained by adding maximum red and blue
values to produce the triple (1, 0, 1), and white at (1, 1, 1) is the sum of the
maximum values for red, green, and blue. Shades of gray are represented along
the main diagonal of the cube from the origin (black) to the white vertex. Points
along this diagonal have equal contributions from each primary color, and a gray
shade halfway between black and white is represented as (0.5, 0.5, 0.5). The color
graduations along the front and top planes of the RGB cube are illustrated in Color
Plate 22.

Chromaticity coordinates for the National Television System Committee
(NTSC) standard RGB phosphors are listed in Table 1. Also listed are the RGB
chromaticity coordinates within the CIE color model and the approximate values
used for phosphors in color monitors. Figure 12 shows the approximate color
gamut for the NTSC standard RGB primaries.

y

0.8
520

540

560

500

580

600

700

x

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

400

480

C

F I G U R E 1 2
The RGB color gamut for NTSC chromaticity
coordinates. Illuminant C is at position (0.310,
0.316), with a luminance value of Y = 100.0.

Color Models and Color Applications

577

5 The YIQ and Related Color Models
Although an RGB graphics monitor requires separate signals for the red, green,
and blue components of an image, a television monitor uses a composite signal.
NTSC color encoding for forming the composite video signal is called the YIQ
color model.

The YIQ Parameters
In the YIQ color model, parameter Y is the same as the Y component in the
CIE XYZ color space. Luminance (brightness) information is conveyed by the Y
parameter, while chromaticity information (hue and purity) is incorporated into
the I and Q parameters. A combination of red, green, and blue is chosen for
the Y parameter to yield the standard luminosity curve. Because Y contains the
luminance information, black-and-white television monitors use only the Y signal.
Parameter I contains orange-cyan color information that provides the flesh-tone
shading, and parameter Q carries green-magenta color information.

The NTSC composite color signal is designed to provide information in a
form that can be received by black-and-white television monitors, which ob-
tain grayscale information for a picture within a 6-MHz bandwidth. Thus, the
YI Q information is also encoded within a 6-MHz bandwidth, but the luminance
and chromaticity values are encoded on separate analog signals. In this way, the
luminance signal is unchanged for black-and-white monitors, and the color
information is simply added within the same bandwidth. Luminance informa-
tion, the Y value, is conveyed as an amplitude modulation on a carrier signal with
a bandwidth of about 4.2 MHz. Chromaticity information, the I and Q values,
is combined on a second carrier signal that has a bandwidth of about 1.8 MHz.
The parameter names I and Q refer to the modulation methods used to encode
the color information on this carrier. An amplitude-modulation encoding (the
“in-phase” signal) transmits the I value, using about 1.3 MHz of the band-
width. And a phase-modulation encoding (the “quadrature” signal), using about
0.5 MHz, carries the Q value.

Luminance values are encoded at a higher precision in the NTSC sig-
nal (4.2 MHz bandwidth) than the chromaticity values (1.8 MHz bandwidth),
because we can detect small brightness changes more easily compared to small
color changes. However, the lower precision for the chromaticity encoding does
result in some degradation of the color quality for an NTSC picture.

Y = 0.299 R + 0.587 G + 0.114 B

I = R − Y (8)

Q = B − Y

Transformations Between RGB and YIQ Color Spaces
An RGB color is converted to a set of YIQ values using an NTSC encoder that
implements the calculations in Equation 9 and modulates the carrier signals.
The conversion from RGB space to YIQ space is accomplished using the following
transformation matrix:

⎡

⎣

Y
I
Q

⎤

⎦ =
⎡

⎣

0.299 0.587 0.114
0.701 −0.587 −0.114

−0.299 −0.587 0.886

⎤

⎦ ·
⎡

⎣

R
G
B

⎤

⎦ (9)

Color Models and Color Applications

We can calculate the luminance value for an RGB color. One method for pro-
ducing chromaticity values is to subtract the luminance from the red and blue
components of the color. Thus,

578

Conversely, an NTSC video signal is converted to RGB color values using an
NTSC decoder, which first separates the video signal into the YIQ components,
and then converts the YIQ values to RGB values. The conversion from YIQ space
to RGB space is accomplished with the inverse of transformation 9:

⎡

⎣

R
G
B

⎤

⎦ =
⎡

⎣

1.000 1.000 0.000
1.000 −0.509 −0.194
1.000 0.000 1.000

⎤

⎦ ·
⎡

⎣

Y
I
Q

⎤

⎦ (10)

The YUV and YCrCb Systems
Because of the lower bandwidth assigned to the chromaticity information in the
NTSC composite analog video signal, the color quality of an NTSC picture is
somewhat impaired. Therefore, variations of the YIQ encoding have been devel-
oped to improve the color quality of video transmissions. One such encoding is
the YUV set of color parameters, which provides the composite color information
for video transmissions by systems such as Phase Alternation Line (PAL) Broad-
casting, used in most of Europe, as well as Africa, Australia, and Eurasia. Another
variation of YIQ is the digital encoding called YCrCb. This color representation is
used for digital video transformations, and it is incorporated into various graphics
file formats, such as the JPEG syste .

6 The CMY and CMYK Color Models
A video monitor displays color patterns by combining light that is emitted from
the screen phosphors, which is an additive process. However, hard-copy devices,
such as printers and plotters, produce a color picture by coating a paper with
color pigments. We see the color patterns on the paper by reflected light, which
is a subtractive process.

The CMY Parameters
A subtractive color model can be formed with the three primary colors cyan,
magenta, and yellow. As we have noted, cyan can be described as a combi-
nation of green and blue. Therefore, when white light is reflected from cyan-
colored ink, the reflected light contains only the green and blue components,
and the red component is absorbed, or subtracted, by the ink. Similarly, magenta
ink subtracts the green component from incident light, and yellow subtracts the
blue component. A unit cube representation for the CMY model is illustrated in
Figure 13.

M

C

Y

Magenta
Blue

Cyan

Yellow

White

Black
Red

Green

Gray Scale

F I G U R E 1 3
The CMY color model. Positions within
the unit cube are described by
subtracting the specified amounts of
the primary colors from white.

In the CMY model, the spatial position (1, 1, 1) represents black, because
all components of the incident light are subtracted. The origin represents white
light. Equal amounts of each of the primary colors produce shades of gray along
the main diagonal of the cube. A combination of cyan and magenta ink pro-
duces blue light, because the red and green components of the incident light are
absorbed. Similarly, a combination of cyan and yellow ink produces green light,
and a combination of magenta and yellow ink yields red light.

The CMY printing process often uses a collection of four ink dots, which are
arranged in a close pattern somewhat as an RGB monitor uses three phosphor
dots. Thus, in practice, the CMY color model is referred to as the CMYK model,
where K is the black color parameter. One ink dot is used for each of the pri-
mary colors (cyan, magenta, and yellow), and one ink dot is black. A black dot is
included because reflected light from the cyan, magenta, and yellow inks typically
produce only shades of gray. Some plotters produce different color combinations

Color Models and Color Applications

m

579

by spraying the ink for the three primary colors over each other and allowing
them to mix before they dry. For black-and-white or grayscale printing, only the
black ink is used.

Transformations Between CMY and RGB Color Spaces
We can express the conversion from an RGB representation to a CMY represen-
tation using the following matrix transformation:

⎡

⎣

C
M
Y

⎤

⎦ =
⎡

⎣

1
1
1

⎤

⎦ −
⎡

⎣

R
G
B

⎤

⎦ (11)

where the white point in RGB space is represented as the unit column vector. And
we convert from a CMY color representation to an RGB representation using the
matrix transformation

⎡

⎣

R
G
B

⎤

⎦ =
⎡

⎣

1
1
1

⎤

⎦ −
⎡

⎣

C
M
Y

⎤

⎦ (12)

In this transformation, the unit column vector represents the black point in the
CMY color space.

For the conversion from RGB to the CMYK color space, we first set K =
max(R, G , B). Then K is subtracted from each of C , M, and Y in Equation 11.
Similarly, for the transformation from CMYK to RGB, we first set K = min(R, G, B).
Then K is subtracted from each of R, G , and B in Equation 12. In practice, these
transformation equations are often modified to improve the printing quality for
a particular system.

7 The HSV Color Model
Interfaces for selecting colors often use a color model based on intuitive concepts,
rather than a set of primary colors. We can give a color specification in an intuitive
model by selecting a spectral color and the amounts of white and black that are
to be added to that color to obtain different shades, tints, and tones (Section 2).

The HSV Parameters
Color parameters in this model are called hue (H), saturation (S), and value (V). We
derive this three-dimensional color space by relating the HSV parameters to the
directions in the RGB cube. If we imagine viewing the cube along the diagonal
from the white vertex to the origin (black), we see an outline of the cube that has the
hexagon shape shown in Figure 14. The boundary of the hexagon represents
the various hues, and it is used as the top of the HSV hexcone (Figure 15).
In HSV space, saturation S is measured along a horizontal axis, and the value
parameter V is measured along a vertical axis through the center of the hexcone.

Hue is represented as an angle about the vertical axis, ranging from 0◦ at red
through 360◦. Vertices of the hexagon are separated by 60◦ intervals. Yellow is at
60◦, green at 120◦, and cyan (opposite the red point) is at H = 180◦. Complemen-
tary colors are 180◦ apart.

Saturation parameter S is used to designate the purity of a color. A pure color
(spectral color) has the value S = 1.0, and decreasing S values tend toward the
grayscale line (S = 0) at the center of the hexcone.

Color Models and Color Applications

580

G

RB

White

RGB Color Cube

Green

Magenta

Color Hexagon

YellowCyan

RedBlue

(a) (b)

F I G U R E 1 4
When the RGB color cube (a) is viewed along the diagonal
from white to black, the color-cube outline is a hexagon (b).

Gray
Scale

V � 0
(Black)

V � 1
(White)

H (Hue Angle)

S (Saturation)

Magenta

Cyan

Yellow

Red
(0�)

Green
(120�)

V (Value)

Blue
(240�)

F I G U R E 1 5
The HSV hexcone.

Value V varies from 0 at the apex of the hexcone to 1.0 at the top plane. The
apex of the hexcone is the black point. At the top plane, colors have their maximum
intensity. When V = 1.0 and S = 1.0, we have the pure hues. Parameter values
for the white point are V = 1.0 and S = 0.

For most users, this is a more convenient model for selecting colors. Starting
with a selection for a pure hue, which specifies the hue angle H and sets V = S =
1.0, we describe the color we want in terms of adding either white or black to the
pure hue. Adding black decreases the setting for V while S is held constant. To
get a dark blue, for instance, V could be set to 0.4 with S = 1.0 and H = 240◦.
Similarly, when white is to be added to the selected hue, parameter S is decreased
while keeping V constant. A light blue could be designated with S = 0.3 while
V = 1.0 and H = 240◦. By adding some black and some white, we decrease both
V and S. An interface for this model typically presents the HSV parameter choices
in a color palette containing sliders and a color wheel.

Selecting Shades, Tints, and Tones
Color regions for selecting shades, tints, and tones are represented in the cross-
sectional plane of the HSV hexcone shown in Figure 16. Adding black to a
spectral color decreases V along the side of the hexcone toward the black point.
Thus, various shades are represented with the values S = 1.0 and 0.0 ≤ V ≤ 1.0.
Adding white to spectral colors produces the tints across the top plane of the
hexcone, where parameter values are V = 1.0 and 0 ≤ S ≤ 1.0. Various tones
are obtained by adding both black and white to spectral colors, which generates
color points within the triangular cross-sectional area of the hexcone.

The human eye can distinguish about 128 different hues and about 130 differ-
ent tints (saturation levels). For each of these, a number of shades (value settings)
can be detected, depending on the hue selected. About 23 shades are discernible
with yellow colors, and about 16 different shades can be seen at the blue end of
the spectrum. This means that we can distinguish about 128 × 130 × 23 = 382,720
different colors. For most graphics applications, 128 hues, 8 saturation levels, and

Color Models and Color Applications

581

F I G U R E 1 6
Cross section of the HSV hexcone, showing regions
for shades, tints, and tones.

Black

White

Tints

Tones

Shades

Pure Hue
(S � 1, V � 1)

S

V

16 value settings are sufficient. With this range of parameters in the HSV color
model, 16,384 colors are available to a user. These color values can be stored in
14 bits per pixel, or we could use color-lookup tables and fewer bits per pixel.

Transformations Between HSV and RGB Color Spaces
To determine the operations required for the transformations between the HSV
and RGB spaces, we first consider how the HSV hexcone can be constructed from
the RGB cube. The diagonal of the RGB cube from black (the origin) to white
corresponds to the V axis of the hexcone. Also, each subcube of the RGB cube cor-
responds to a hexagonal cross-sectional area of the hexcone. At any cross section,
all sides of the hexagon and all radial lines from the V axis to any vertex have
the value V. Thus, for any set of RGB values, V is equal to the value of the max-
imum RGB component. The HSV point corresponding to this set of RGB values
lies on the hexagonal cross section at value V. Parameter S is then determined as
the relative distance of this point from the V axis. Parameter H is determined by
calculating the relative position of the point within each sextant of the hexagon.
An algorithm for mapping any set of RGB values into the corresponding HSV
values is given in the following procedure:

class rgbSpace {public: float r, g, b;};
class hsvSpace {public: float h, s, v;};

const float noHue = -1.0;
inline float min(float a, float b) {return (a < b)? a : b;}
inline float max(float a, float b) {return (a > b)? a : b;}

void rgbTOhsv (rgbSpace& rgb, hsvSpace& hsv)
{

/* RGB and HSV values are in the range from 0 to 1.0 */
float minRGB = min (r, min (g, b)), maxRGB = max (r, max (g, b));
float deltaRGB = maxRGB - minRGB;

v = maxRGB;
if (maxRGB != 0.0)

s = deltaRGB / maxRGB;
else

s = 0.0;

Color Models and Color Applications

582

if (s <= 0.0)
h = noHue;

else {
if (r == maxRGB)

h = (g - b) / deltaRGB;
else

if (g == maxRGB)
h = 2.0 + (b - r) / deltaRGB;

else
if (b == maxRGB)

h = 4.0 + (r - g) / deltaRGB;
h *= 60.0;
if (h < 0.0)

h += 360.0;
h /= 360.0;

}
}

We obtain the transformation from HSV space to RGB space by determining
the inverse of the operations in the preceding procedure. These inverse operations
are carried out for each sextant of the hexcone, and the resulting transformation
equations are summarized in the following algorithm:

class rgbSpace {public: float r, g, b;};
class hsvSpace {public: float h, s, v;};

void hsvT0rgb (hsvSpace& hsv, rgbSpace& rgb)
{

/* HSV and RGB values are in the range from 0 to 1.0 */
int k
float aa, bb, cc, f;

if (s <= 0.0)
r = g = b = v; // Have gray scale if s = 0.

else {
if (h == 1.0)

h = 0.0;
h *= 6.0;
k = floor (h);
f = h - k;
aa = v * (1.0 - s);
bb = v * (1.0 - (s * f));
cc = v * (1.0 - (s * (1.0 - f)));
switch (k)
{

case 0: r = v; g = cc; b = aa; break;
case 1: r = bb; g = v; b = aa; break;
case 2: r = aa; g = v; b = cc; break;
case 3: r = aa; g = bb; b = v; break;
case 4: r = cc; g = aa; b = v; break;
case 5: r = v; g = aa; b = bb; break;

}
}

}

Color Models and Color Applications

583

8 The HLS Color Model
Another model based on intuitive color parameters is the HLS system used by
the Tektronix Corporation. This color space has the double-cone representation
shown in Figure 17. The three parameters in this color model are called hue
(H), lightness (L), and saturation (S).

Hue has the same meaning as in the HSV model. It specifies an angle about
the vertical axis that locates a hue (spectral color). In this model, H = 0◦ corre-
sponds to blue. The remaining colors are specified around the perimeter of the
cone in the same order as in the HSV model. Magenta is located at H = 60◦, red is
at H = 120◦, and cyan is at H = 300◦. Again, complementary colors are 180◦ apart
on the double cone.

The vertical axis in this model is called lightness, L . At L = 0, we have black,
and at L = 1.0, we have white. Grayscale values are along the L axis, and the
pure colors lie on the L = 0.5 plane.

Saturation parameter S again specifies the purity of a color. This parameter
varies from 0 to 1.0, and pure colors are those for which S = 1.0 and L = 0.5. As
S decreases, more white is added to a color. The grayscale line is at S = 0.

To specify a color, we begin by selecting hue angle H. Then a particular shade,
tint, or tone for that hue is obtained by adjusting parameters L and S. We obtain a
lighter color by increasing L , and we obtain a darker color by decreasing L . When
S is decreased, the spatial color point moves toward the grayscale line.

F I G U R E 1 7
The HLS double cone.

L (Lightness)

H (Hue Angle)

S (Saturation)
L � 0

(Black)

Gray
Scale

L � 1
(White)

L � 0.5

Red Magenta

CyanGreen

Yellow Blue

Color Models and Color Applications

584

9 Color Selection and Applications
A graphics package can provide color capabilities in a way that aids us in making
color selections. For example, an interface can contain sliders and color wheels
instead of requiring that all color specifications be provided as numerical values
for the RGB components. In addition, some aids can be provided for choosing
harmonious color combinations and for basic color selection guidelines.

One method for obtaining a set of coordinating colors is to generate the color
combinations from a small subspace of a color model. If colors are selected at reg-
ular intervals along any straight line within the RGB or CMY cube, for example,
we can expect to obtain a set of well-matched colors. Randomly selected hues can
be expected to produce harsh and clashing color combinations. Another consid-
eration in color displays is the fact that we perceive colors at different depths.
This occurs because our eyes focus on colors according to their frequency. Blues,
in particular, tend to recede. Displaying a blue pattern next to a red pattern can
cause eye fatigue, because we continually need to refocus when our attention is
switched from one area to the other. This problem can be reduced by separating
these colors or by using colors from one-half or less of the color hexagon in the
HSV model. With this technique, a display contains either blues and greens or
reds and yellows.

As a general rule, the use of a smaller number of colors produces a better-
looking display than one with a large number of colors. Also, tints and shades
tend to blend better than the pure hues. For a background, gray or the complement
of one of the foreground colors is usually best.

10 Summary
Light can be described as electromagnetic radiation with a certain energy distri-
bution propagating through space, and the color components of light correspond
to frequencies within a narrow band of the electromagnetic spectrum. However,
light exhibits other properties, and we characterize the different aspects of light
using a variety of parameters. With the light theories for wave-particle duality, we
can explain the physical features of visible radiation. And we quantify our percep-
tions of a light source using terms such as dominant frequency (hue), luminance
(brightness), and purity (saturation). Hue and purity are referred to collectively
as the chromaticity properties of a color.

We also use color models to explain the effects of combining light sources.
One method for defining a color model is to specify a set of two or more primary
colors that are combined to produce various other colors. However, no finite set
of primary colors is capable of producing all colors or describing all features of
color. The set of colors that can be generated by a set of primaries is called a color
gamut. Two colors that combine to produce white light are called complementary
colors.

In 1931, the International Commission on Illumination (CIE) adopted a set
of three hypothetical color-matching functions as a standard. This set of colors is
referred to as the XYZ model, where X, Y, and Z represent the amounts of each color
needed to match any color in the electromagnetic spectrum. The color-matching
functions are structured so that all functions are positive and the Y amount for
any color represents the luminance value. Normalized X and Y values, called x
and y, are used to plot positions for all spectral colors on the CIE chromaticity dia-
gram. We can use the chromaticity diagram to compare color gamuts for different

Color Models and Color Applications

585

color models, to identify complementary colors, and to determinant dominant
frequency and purity for a specified color.

Other color models based on a set of three primaries are the RGB, YIQ, and
CMY models. We use the RGB model to describe colors that are displayed on
a video monitor. The YIQ model is used to describe the composite video signal
for television broadcasting. And the CMY model is used to describe color on
hard-copy devices.

User interfaces often provide intuitive color models, such as the HSV and
HLS models, for selecting color values. With these models, we specify a color as a
mixture of a selected hue and certain amounts of white and black. Adding black
produces color shades, adding white produces tints, and adding both black and
white produces tones.

Color selection is an important factor in the design of effective displays. To
avoid clashing color combinations, we can choose adjacent colors in a display that
do not differ greatly in dominant frequency. Also, we can select color combinations
from a small subspace of a color model. As a general rule, a small number of color
combinations formed with tints and shades, rather than pure hues, results in a
more harmonious color display.

REFERENCES
A comprehensive discussion of the science of color is
given in Wyszecki and Stiles (1982). Color models and
color display techniques are treated in Smith (1978),
Heckbert (1982), Durrett (1987), Schwartz, Cowan, and
Beatty (1987), Hall (1989), and Travis (1991).

Algorithms for various color applications are pre-
sented in Glassner (1990), Arvo (1991), Kirk (1992),
Heckbert (1994), and Paeth (1995). For additional infor-
mation on the human visual system and our perception
of light and color, see Glassner (1995).

EXERCISES
1 Derive the expressions for converting RGB color

parameters to HSV values.
2 Derive the expressions for converting HSV color

values to RGB values.
3 Design an interactive procedure that allows

selection of HSV color parameters from a dis-
played menu; then, the HSV values are to be
converted to RGB values for storage in a frame
buffer.

4 Write a program to select colors using a set of
three sliders to select values for the HSV color
parameters.

5 Modify the program in the preceding exercise to
display the numeric values for the RGB compo-
nents of a selected color.

6 Modify the program in the preceding exercise to
display the RGB color components and the com-
bined color in small display windows.

7 Derive expressions for converting RGB color val-
ues to HLS color parameters.

8 Derive expressions for converting HLS color val-
ues to RGB values.

9 Design an interactive procedure that allows
selection of HLS color parameters from a dis-
played menu; then, the HLS values are to be
converted to RGB values for storage in a frame
buffer.

10 Write a program that will produce a set of col-
ors that are linearly interpolated between any two
specified positions in RGB space.

11 Write an interactive routine for selecting color
values from within a specified subspace of RGB
space.

12 Write a program that will produce a set of col-
ors that are linearly interpolated between any two
specified positions in HSV space.

13 Write an interactive routine for selecting color
values from within a specified subspace of HSV
space.

14 Write a program that will produce a set of col-
ors that are linearly interpolated between any two
specified positions in HLS space.

15 Write an interactive routine for selecting color
values from within a specified subspace of HLS
space.

16 Write a program to display two adjacent RGB
color rectangles. Fill one rectangle with a set
of randomly selected RGB color points, and fill

Color Models and Color Applications

586

the other rectangle with a set of color points
that are selected from a small RGB subspace.
Experiment with different random selections and
different subspaces to compare the two color
patterns.

17 Display the two color rectangles in the preced-
ing exercise using color selections from either the
HSV or the HLS color space.

18 Write a program that will produce a randomly
selected color from within a color gamut speci-
fied by three positions in RGB space.

19 Write a program that will produce a randomly
selected color from within a color gamut speci-
fied by three positions in HSV space.

20 Write a program that will produce a randomly
selected color from within a color gamut speci-
fied by three positions in HLS space.

IN MORE DEPTH
1 Write a routine that takes in a pixel position of a

scene in your application and a color space iden-
tifier and returns a vector representing the color
value of that pixel in the selected color space.
The routine should produce correct output for the
RGB, CMY, HSV, and HLS color spaces.

2 Use the routine developed in the previous exer-
cise to write another routine that outputs to a file
a bitmap of a scene in your application in a speci-
fied color space (either RGB, CMY, HSV, or HLS).
That is, the routine should take in a color space
identifier, call the routine in the previous exercise
on each pixel to obtain the color of that pixel in
the specified color space, and write the color value
vector of each pixel out to a file. Each color value
vector should appear on a separate line, and pix-
els should be processed in row-major order.

Color Models and Color Applications

587

This page intentionally left blank

C o l o r P l a t e 2 2
Two views of the RGB color cube. View
(a) is along the gray-scale diagonal
from white to black, and view (b) is
along the gray-scale diagonal from
black to white. (a) (b)

Color Models and Color Applications Color Plates

From Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson

589

This page intentionally left blank

Interactive Input Methods and
Graphical User Interfaces

1 Graphical Input Data

2 Logical Classification of Input Devices

3 Input Functions for Graphical Data

4 Interactive Picture-Construction
Techniques

5 Virtual-Reality Environments

6 OpenGL Interactive Input-Device
Functions

7 OpenGL Menu Functions

8 Designing a Graphical User Interface

9 Summary

A lthough we can construct programs and provide input data

using the methods and program commands discussed in the

previous chapters, it is often useful to be able to specify

graphical input interactively. During the execution of a program, for

example, we might want to change the position of the camera or the

location of an object in a scene by pointing to a screen position, or

we might want to change animation parameters using menu selec-

tions. In design applications, control-point coordinates for spline con-

structions are chosen interactively, and pictures are often constructed

using interactive painting or drawing methods. There are several

kinds of data that are used by a graphics program, and a variety

of interactive input methods have been devised for processing these

data values. In addition, interfaces for systems now involve extensive

interactive graphics, including display windows, icons, menus, and a

mouse or other cursor-control devices.

From Chapter of Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson

20 .

591

1 Graphical Input Data
Graphics programs use several kinds of input data, such as coordinate positions,
attribute values, character-string specifications, geometric-transformation val-
ues, viewing conditions, and illumination parameters. Many graphics packages,
including the International Standards Organization (ISO) and American
National Standards Institute (ANSI) standards, provide an extensive set of
input functions for processing such data. But input procedures require interaction
with display-window managers and specific hardware devices. Therefore, some
graphics systems, particularly those that provide mainly device-independent
functions, often include relatively few interactive procedures for dealing with
input data.

A standard organization for input procedures in a graphics package is to
classify the functions according to the type of data that is to be processed by each
function. This scheme allows any physical device, such as a keyboard or a mouse,
to input any data class, although most input devices can handle some data types
better than others.

2 Logical Classification of Input Devices
When input functions are classified according to data type, any device that is used
to provide the specified data is referred to as a logical input device for that data
type. The standard logical input-data classifications are

LOCATOR A device for specifying one coordinate position.
STROKE A device for specifying a set of coordinate positions.
STRING A device for specifying text input.
VALUATOR A device for specifying a scalar value.
CHOICE A device for selecting a menu option.
PICK A device for selecting a component of a picture.

Locator Devices
Interactive selection of a coordinate point is usually accomplished by positioning
the screen cursor at some location in a displayed scene, although other meth-
ods, such as menu options, could be used in certain applications. We can use
a mouse, touchpad, joystick, trackball, spaceball, thumbwheel, dial, hand cur-
sor, or digitizer stylus for screen-cursor positioning. In addition, various but-
tons, keys, or switches can be used to indicate processing options for the selected
location.

Keyboards are used for locator input in several ways. A general-purpose
keyboard usually has four cursor-control keys that move the screen cursor up,
down, left, and right. With an additional four keys, we can move the cursor
diagonally as well. Rapid cursor movement is accomplished by holding down
the selected cursor key. Sometimes a keyboard includes a touchpad, joystick,
trackball, or other device for positioning the screen cursor. For some applications,
it may also be convenient to use a keyboard to type in numerical values or other
codes to indicate coordinate positions.

Other devices, such as a light pen, have also been used for interactive
input of coordinate positions. But light pens record screen positions by detect-
ing light from the screen phosphors, and this requires special implementation
procedures.

Interactive Input Methods and Graphical User Interfaces

592

Stroke Devices
This class of logical devices is used to input a sequence of coordinate positions,
and the physical devices used for generating locator input are also used as stroke
devices. Continuous movement of a mouse, trackball, joystick, or hand cursor
is translated into a series of input coordinate values. The graphics tablet is one
of the more common stroke devices. Button activation can be used to place the
tablet into “continuous” mode. As the cursor is moved across the tablet surface,
a stream of coordinate values is generated. This procedure is used in paintbrush
systems to generate drawings using various brush strokes. Engineering systems
also use this process to trace and digitize layouts.

String Devices
The primary physical device used for string input is the keyboard. Character
strings in computer-graphics applications are typically used for picture or graph
labeling.

Other physical devices can be used for generating character patterns for spe-
cial applications. Individual characters can be sketched on the screen using a
stroke or locator-type device. A pattern recognition program then interprets the
characters using a stored dictionary of predefined patterns.

Valuator Devices
We can employ valuator input in a graphics program to set scalar values for
geometric transformations, viewing parameters, and illumination parameters. In
some applications, scalar input is also used for setting physical parameters such
as temperature, voltage, or stress-strain factors.

A typical physical device used to provide valuator input is a panel of control
dials. Dial settings are calibrated to produce numerical values within some pre-
defined range. Rotary potentiometers convert dial rotation into a corresponding
voltage, which is then translated into a number within a defined scalar range,
such as −10.5 to 25.5. Instead of dials, slide potentiometers are sometimes used
to convert linear movements into scalar values.

Any keyboard with a set of numeric keys can be used as a valuator device.
Although dials and slide potentiometers are more efficient for fast input.

Joysticks, trackballs, tablets, and other interactive devices can be adapted for
valuator input by interpreting pressure or movement of the device relative to a
scalar range. For one direction of movement, say left to right, increasing scalar
values can be input. Movement in the opposite direction decreases the scalar input
value. Selected values are usually echoed on the screen for verification.

Another technique for providing valuator input is to display graphical rep-
resentations of sliders, buttons, rotating scales, and menus on the video monitor.
Cursor positioning, using a mouse, joystick, spaceball, or other device, can be
used to select a value on one of these valuators. As a feedback mechanism for the
user, selected values are usually displayed in text or color fields elsewhere within
the graphical display belonging to the application.

Choice Devices
Menus are typically used in graphics programs to select processing options,
parameter values, and object shapes that are to be used in constructing a picture.
Commonly used choice devices for selecting a menu option are cursor-positioning
devices such as a mouse, trackball, keyboard, touch panel, or button box.

Keyboard function keys or separate button boxes are often used to enter
menu selections. Each button or function key is programmed to select a particular

Interactive Input Methods and Graphical User Interfaces

593

operation or value, although preset buttons or keys are sometimes included on
an input device.

For screen selection of listed menu options, we use a cursor-positioning
device. When a screen-cursor position (x, y) is selected, it is compared to the
coordinate extents of each listed menu item. A menu item with vertical and hori-
zontal boundaries at the coordinate values xmin, xmax, ymin, and ymax is selected if
the input coordinates satisfy the inequalities

xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax (1)

For larger menus with relatively few options displayed, a touch panel is com-
monly used. A selected screen position is compared to the coordinate extents of
the individual menu options to determine what process is to be performed.

Alternate methods for choice input include keyboard and voice entry. A stan-
dard keyboard can be used to type in commands or menu options. For this method
of choice input, some abbreviated format is useful. Menu listings can be numbered
or given short identifying names. A similar encoding scheme can be used with
voice input systems. Voice input is particularly useful when the number of options
is small (20 or fewer).

(x, y)

d1

d2

F I G U R E 1
Distances to line segments from a pick
position.

Pick Devices
We use a pick device to select a part of a scene that is to be transformed or edited
in some way. Several different methods can be used to select a component of a
displayed scene, and any input mechanism used for this purpose is classified as a
pick device. Most often, pick operations are performed by positioning the screen
cursor. Using a mouse, joystick, or keyboard, for example, we can perform picking
by positioning the screen cursor and pressing a button or key to record the pixel
coordinates. This screen position can then be used to select an entire object, a facet
of a tessellated surface, a polygon edge, or a vertex. Other pick methods include
highlighting schemes, selecting objects by name, or a combination of methods.

Using the cursor-positioning approach, a pick procedure could map a selected
screen position to a world-coordinate location using the inverse viewing and
geometric transformations that were specified for the scene. Then, the world-
coordinate position can be compared to the coordinate extents of objects. If the
pick position is within the coordinate extents of a single object, the pick object
has been identified. The object name, coordinates, or other information about the
object can then be used to apply the desired transformation or editing operations.
But if the pick position is within the coordinate extents of two or more objects,
further testing is necessary. Depending on the type of object to be selected and the
complexity of a scene, several levels of search may be required to identify the pick
object. For example, if we are attempting to pick a sphere whose coordinate extents
overlap the coordinate extents of some other three-dimensional object, the pick
position could be compared to the coordinate extents of the individual surface
facets of the two objects. If this test fails, the coordinate extents of individual line
segments can be tested.

When coordinate-extent tests do not uniquely identify a pick object, the
distances from the pick position to individual line segments could be computed.
Figure 1 illustrates a pick position that is within the coordinate extents of
two line segments. For a two-dimensional line segment with pixel endpoint
coordinates (x1, y1) and (x2, y2), the perpendicular distance squared from a pick
position (x, y) to the line is calculated as

d2 = [�x(y − y1) − �y(x − x1)]2

�x2 + �y2 (2)

Interactive Input Methods and Graphical User Interfaces

594

where �x = x2−x1 and �y = y2−y1. Other methods, such as comparing distances
to endpoint positions, have been proposed to simplify the line-picking operations.

Pick procedures can be simplified if coordinate-extent testing is not carried
out for the surface facets and line segments of an object. When the pick position
is within the coordinate extents of two or more objects, the pick procedures can
simply return a list of all candidate pick objects.

Another picking technique is to associate a pick window with a selected
cursor position. The pick window is centered on the cursor position, as shown in
Figure 2, and clipping procedures are used to determine which objects intersect
the pick window. For line picking, we can set the pick-window dimensions w and
h to very small values, so that only one line segment intersects the pick window.
Some graphics packages implement three-dimensional picking by reconstructing
a scene using the viewing and projection transformations with the pick window
as the clipping window. Nothing is displayed from this reconstruction, but clip-
ping procedures are applied to determine which objects are within the pick view
volume. A list of information for each object in the pick view volume can then
be returned for processing. This list can contain information such as object name
and depth range, where the depth range could be used to select the nearest object
in the pick view volume.

h

w

(xp, yp)

F I G U R E 2
A pick window with center coordinates
(x p , y p) , width w, and height h.

Highlighting can also be used to facilitate picking. One way to do this is to
successively highlight those objects whose coordinate extents overlap a pick posi-
tion (or pick window). As each object is highlighted, a user could issue a “reject”
or “accept” action using keyboard keys. The sequence stops when the user accepts
a highlighted object as the pick object. Picking could also be accomplished simply
by successively highlighting all objects in the scene without selecting a cursor
position. The highlighting sequence can be initiated with a button or function
key, and a second button can be used to stop the process when the desired object
is highlighted. If very many objects are to be searched in this way, additional
buttons can be used to speed up the highlighting process. One button initiates a
rapid successive highlighting of structures. A second button is activated to stop
the process, and a third button is used to back up slowly through the highlighting
process. Finally, a stop button could be pressed to complete the pick procedure.

If picture components can be selected by name, keyboard input can be used
to pick an object. This is a straightforward, but less interactive, pick-selection
method. Some graphics packages allow picture components to be named at var-
ious levels down to the individual primitives. Descriptive names can be used
to help a user in the pick process, but this approach has drawbacks. It is gener-
ally slower than interactive picking on the screen, and a user will probably need
prompts to remember the various structure names.

3 Input Functions for Graphical Data
Graphics packages that use the logical classification for input devices provide
several functions for selecting devices and data classes. These functions allow a
user to specify the following options:

• The input interaction mode for the graphics program and the input devices.
Either the program or the devices can initiate data entry, or both can operate
simultaneously.

• Selection of a physical device that is to provide input within a particular
logical classification (for example, a tablet used as a stroke device).

• Selection of the input time and device for a particular set of data values.

Interactive Input Methods and Graphical User Interfaces

595

Input Modes
Some input functions in an interactive graphics system are used to specify how
the program and input devices should interact. A program could request input
at a particular time in the processing (request mode), or an input device could
independently provide updated input (sample mode), or the device could inde-
pendently store all collected data (event mode).

In request mode, the application program initiates data entry. When
input values are requested, processing is suspended until the required values are
received. This input mode corresponds to the typical input operation in a general
programming language. The program and the input devices operate alternately.
Devices are put into a wait state until an input request is made; then the program
waits until the data are delivered.

In sample mode, the application program and input devices operate inde-
pendently. Input devices may be operating at the same time that the program is
processing other data. New values obtained from the input devices replace pre-
viously input data values. When the program requires new data, it samples the
current values that have been stored from the device input.

In event mode, the input devices initiate data input to the application pro-
gram. The program and the input devices again operate concurrently, but now
the input devices deliver data to an input queue, also called an event queue. All
input data is saved. When the program requires new data, it goes to the data
queue.

Typically, any number of devices can be operating at the same time in sample
and event modes. Some can be operating in sample mode, while others are operat-
ing in event mode. But only one device at a time can deliver input in request mode.

Other functions in the input library are used to specify physical devices
for the logical data classes. The input procedures in an interactive package can
involve complicated processing for some kinds of input. For instance, to obtain a
world-coordinate position, the input procedures must process an input screen
location back through the viewing and other transformations to the original
world-coordinate description of a scene. This processing also involves informa-
tion from the display-window routines.

Echo Feedback
Requests can usually be made in an interactive input program for an echo of input
data and associated parameters. When an echo of the input data is requested, it is
displayed within a specified screen area. Echo feedback can include, for example,
the size of the pick window, the minimum pick distance, the type and size of
a cursor, the type of highlighting to be employed during pick operations, the
range (mininum and maximum) for valuator input, and the resolution (scale) for
valuator input.

Callback Functions
For device-independent graphics packages, a limited set of input functions can be
provided in an auxiliary library. Input procedures can then be handled as callback

Interactive Input Methods and Graphical User Interfaces

functions that interact with the system software. These functions specify what
actions are to be taken by a program when an input event occurs. Typical input
events are moving a mouse, pressing a mouse button, or pressing a key on the
keyboard.

596

4 Interactive Picture-Construction
Techniques

A variety of interactive methods are often incorporated into a graphics package
as aids in the construction of pictures. Routines can be provided for positioning
objects, applying constraints, adjusting the sizes of objects, and designing shapes
and patterns.

Basic Positioning Methods
We can interactively choose a coordinate position with a pointing device that
records a screen location. How the position is used depends on the selected
processing option. The coordinate location could be an endpoint position for
a new line segment, or it could be used to position some object—for instance, the
selected screen location could reference a new position for the center of a sphere;
or the location could be used to specify the position for a text string, which could
begin at that location or it could be centered on that location. As an additional
positioning aid, numeric values for selected positions can be echoed on the screen.
With the echoed coordinate values as a guide, a user could make small interactive
adjustments in the coordinate values using dials, arrow keys, or other devices.

Dragging
Another interactive positioning technique is to select an object and drag it to a
new location. Using a mouse, for instance, we position the cursor at the object
position, press a mouse button, move the cursor to a new position, and release
the button. The object is then displayed at the new cursor location. Usually, the
object is displayed at intermediate positions as the screen cursor moves.

Constraints
Any procedure for altering input coordinate values to obtain a particular ori-
entation or alignment of an object is called a constraint. For example, an input
line segment can be constrained to be horizontal or vertical, as illustrated in Fig-
ures 3 and 4. To implement this type of constraint, we compare the input
coordinate values at the two endpoints. If the difference in the y values of the
two endpoints is smaller than the difference in the x values, a horizontal line is
displayed. Otherwise, a vertical line is drawn. The horizontal-vertical constraint
is useful, for instance, in forming network layouts, and it eliminates the need for
precise positioning of endpoint coordinates.

Select First
Endpoint Position

�

Select
Second Endpoint

Position Along
Approximate

Horizontal Path

�

F I G U R E 3
Horizontal line constraint.

Interactive Input Methods and Graphical User Interfaces

597

F I G U R E 4
Vertical line constraint.

Select First
Endpoint Position

�

Select
Second Endpoint

Position Along
Approximate
Vertical Path

�

Other kinds of constraints can be applied to input coordinates to produce a
variety of alignments. Lines could be constrained to have a particular slant, such
as 45◦, and input coordinates could be constrained to lie along predefined paths,
such as circular arcs.

Grids
Another kind of constraint is a rectangular grid displayed in some part of the
screen area. With an activated grid constraint, input coordinates are rounded to
the nearest grid intersection. Figure 5 illustrates line drawing using a grid. Each
of the cursor positions in this example is shifted to the nearest grid intersection
point, and a line is drawn between these two grid positions. Grids facilitate object
constructions, because a new line can be joined easily to a previously drawn line
by selecting any position near the endpoint grid intersection of one end of the
displayed line. Spacing between grid lines is often an option, and partial grids or
grids with different spacing could be used in different screen areas.

Select First Endpoint
Position Near a

Grid Intersection

�

Select a Position
Near a Second

Grid Intersection

�

F I G U R E 5
Construction of a line segment with
endpoints constrained to grid
intersection positions.

Rubber-Band Methods
Line segments and other basic shapes can be constructed and positioned using
rubber-band methods that allow the sizes of objects to be interactively stretched
or contracted. Figure 6 demonstrates a rubber-band method for interactively
specifying a line segment. First, a fixed screen position is selected for one endpoint
of the line. Then, as the cursor moves around, the line is displayed from the start
position to the current position of the cursor. The second endpoint of the line is
input when a button or key is pressed. Using a mouse, we construct a rubber-band
line while pressing a mouse key. When the mouse key is released, the line display
is completed.

F I G U R E 6
A rubber-band method for
constructing and positioning a
straight-line segment.

Select
First
Line

Endpoint

�

As the Cursor
Moves, a Line
Stretches out

from the Initial
Point

�

Line Follows
Cursor Position

until the Second
Endpoint Is

Selected

�

Interactive Input Methods and Graphical User Interfaces

598

Select
Position

for One Corner
of the Rectangle

�

Rectangle
Stretches Out

as Cursor Moves

�

Select Final
Position for

Opposite Corner
of the Rectangle

�

F I G U R E 7
A rubber-band method for
constructing a rectangle.

Select Position
for the Circle

Center

�

Circle Stretches
Out as the

Cursor Moves

�

Select the
Final Radius
of the Circle

�

F I G U R E 8
Constructing a circle using a
rubber-band method.

We can use similar rubber-band methods to construct rectangles, circles, and
other objects. Figure 7 demonstrates rubber-band construction of a rectan-
gle, and Figure 8 shows a rubber-band circle construction. We can implement
rubber-band constructions in various ways. For example, the shape and size of
a rectangle can be adjusted by independently moving only the top edge of the
rectangle, or the bottom edge, or one of the side edges.

Gravity Field
In the construction of figures, we sometimes need to connect lines at positions
between endpoints that are not at grid intersections. Because exact positioning of
the screen cursor at the connecting point can be difficult, a graphics package can
include a procedure that converts any input position near a line segment into a
position on the line using a gravity field area around the line. Any selected position
within the gravity field of a line is moved (“gravitated”) to the nearest position
on the line. A gravity field area around a line is illustrated with the shaded region
shown in Figure 9. F I G U R E 9

A gravity field around a line. Any
selected point in the shaded area is
shifted to a position on the line.

Gravity fields around the line endpoints are enlarged to make it easier for
a designer to connect lines at their endpoints. Selected positions in one of the
circular areas of the gravity field are attracted to the endpoint in that area. The
size of gravity fields is chosen large enough to aid positioning, but small enough
to reduce chances of overlap with other lines. If many lines are displayed, gravity
areas can overlap, and it may be difficult to specify points correctly. Normally, the
boundary for the gravity field is not displayed.

Interactive Painting and Drawing Methods
Options for sketching, drawing, and painting come in a variety of forms. Straight
lines, polygons, and circles can be generated with methods discussed in the

Interactive Input Methods and Graphical User Interfaces

599

previous sections. Curve-drawing options can be provided using standard curve
shapes, such as circular arcs and splines, or with freehand sketching procedures.
Splines are interactively constructed by specifying a set of control points or a
freehand sketch that gives the general shape of the curve. Then the system fits
the set of points with a polynomial curve. In freehand drawing, curves are gen-
erated by following the path of a stylus on a graphics tablet or the path of the
screen cursor on a video monitor. Once a curve is displayed, the designer can
alter the curve shape by adjusting the positions of selected points along the
curve path.

Line widths, line styles, and other attribute options are also commonly found
in painting and drawing packages.
combinations,
many
systems
artist’s
used
cified
for a scene.

5 Virtual-Reality Environments
A typical virtual-reality environment is illustrated in Color Plate 24. Interac-

Another method for generating virtual scenes is to display stereographic
projections on a raster monitor, with the two stereographic views displayed on
alternate refresh cycles. The scene is then viewed through stereographic glasses.
Interactive object manipulations can again be accomplished with a data glove
and a tracking device to monitor the glove position and orientation relative to the
position of objects in the scene.

6 OpenGL Interactive Input-Device
Functions

Interactive device input in an OpenGL program is handled with routines in the
OpenGL Utility Toolkit (GLUT), because these routines need to interface with
a window system. In GLUT, we have functions to accept input from standard
devices, such as a mouse or a keyboard, as well as from tablets, space balls,
button boxes, and dials. For each device, we specify a procedure (the call back
function) that is to be invoked when an input event from that device occurs. These
GLUT commands are placed in the main procedure along with the other GLUT
statements. In addition, a combination of functions from the basic library and the
GLU library can be used with the GLUT mouse function for pick input.

Interactive Input Methods and Graphical User Interfaces

Various brush styles, brush patterns, color
object shapes, and surface texture patterns are also available on

systems, particularly those designed as artists’ workstations. Some paint
vary the line width and brush strokes according to the pressure of the

hand on the stylus. Color Plate 23 shows a window and menu system
with a painting package that allows an artist to select variations of a spe-
object shape, different surface textures, and a variety of lighting conditions

tive input is accomplished in this environment with a data glove, which is capable
of grasping and moving objects displayed in a virtual scene. The computer-gener-
ated scene is displayed through a head-mounted viewing system as a stereographic
projection. Tracking devices compute the position and orientation of the headset
and data glove relative to the object positions in the scene. With this system, a user
can move through the scene and rearrange object positions with the data glove.

600

GLUT Mouse Functions
We use the following function to specify (“register”) a procedure that is to be
called when the mouse pointer is in a display window and a mouse button is
pressed or released:

glutMouseFunc (mouseFcn);

This mouse callback procedure, which we namedmouseFcn, has four arguments:

void mouseFcn (GLint button, GLint action, GLint xMouse,
GLint yMouse)

Parameter button is assigned a GLUT symbolic constant that denotes one
of the three mouse buttons, and parameter action is assigned a symbolic
constant that specifies which button action we want to use to trigger the
mouse activation event. Allowable values for button are GLUT LEFT BUTTON,
GLUT MIDDLE BUTTON, and GLUT RIGHT BUTTON. (If we have only a two-
button mouse, then we use just the left-button and right-button designations;
with a one-button mouse, we can assign parameter button only the value
GLUT LEFT BUTTON.) Parameter action can be assigned either GLUT DOWN or
GLUT UP, depending on whether we want to initiate an action when we press a
mouse button or when we release it. When procedure mouseFcn is invoked, the
display-window location of the mouse cursor is returned as the coordinate posi-
tion (xMouse,yMouse). This location is relative to the top-left corner of the display
window, so thatxMouse is the pixel distance from the left edge of the display win-
dow and yMouse is the pixel distance down from the top of the display window.

By activating a mouse button while the screen cursor is within the display
window, we can select a position for displaying a primitive such as a single point,
a line segment, or a fill area. We could also use the mouse as a pick device by
comparing the returned screen position with the coordinate extents of displayed
objects in a scene. However, OpenGL does provide routines for using the mouse
as a pick device, and we discuss these routines in a later section.

As a simple example of the use of the glutMouseFunc routine, the following
program plots a red point, with a point size equal to 3, at the position of the mouse
cursor in the display window, each time that we press the left mouse button.
Because the coordinate origin for the OpenGL primitive functions is the lower-
left corner of the display window, we need to flip the returned yMouse value in
the procedure mousePtPlot.

#include <GL/glut.h>

GLsizei winWidth = 400, winHeight = 300; // Initial display-window size.

void init (void)
{

glClearColor (0.0, 0.0, 1.0, 1.0) // Set display-window color to blue.

glMatrixMode (GL_PROJECTION);
gluOrtho2D (0.0, 200.0, 0.0, 150.0);

}

Interactive Input Methods and Graphical User Interfaces

601

void displayFcn (void)
{

glClear (GL_COLOR_BUFFER_BIT); // Clear display window.

glColor3f (1.0, 0.0, 0.0); // Set point color to red.
glPointSize (3.0); // Set point size to 3.0.

}

void winReshapeFcn (GLint newWidth, GLint newHeight)
{

/* Reset viewport and projection parameters */
glViewport (0, 0, newWidth, newHeight);
glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
gluOrtho2D (0.0, GLdouble (newWidth), 0.0, GLdouble (newHeight));

/* Reset display-window size parameters. */
winWidth = newWidth;
winHeight = newHeight;

}

void plotPoint (GLint x, GLint y)
{

glBegin (GL_POINTS);
glVertex2i (x, y);

glEnd ();
}

void mousePtPlot (GLint button, GLint action, GLint xMouse, GLint yMouse)
{

if (button == GLUT_LEFT_BUTTON && action == GLUT_DOWN)
plotPoint (xMouse, winHeight - yMouse);

glFlush ();
}

void main (int argc, char** argv)
{

glutInit (&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowPosition (100, 100);
glutInitWindowSize (winWidth, winHeight);
glutCreateWindow ("Mouse Plot Points");

init ();
glutDisplayFunc (displayFcn);
glutReshapeFunc (winReshapeFcn);
glutMouseFunc (mousePtPlot);

glutMainLoop ();
}

Interactive Input Methods and Graphical User Interfaces

602

The next program example uses mouse input to select an endpoint position
for a straight-line segment. Selected line segments are connected to demonstrate
interactive construction of a polyline. Initially, two display-window locations
must be selected with the left mouse button to generate the first line segment.
Each subsequent position that we select adds another segment to the polyline.

#include <GL/glut.h>

GLsizei winWidth = 400, winHeight = 300; // Initial display-window size.
GLint endPtCtr = 0; // Initialize line endpoint counter.

class scrPt {
public:

GLint x, y;
};

void init (void)
{

glClearColor (0.0, 0.0, 1.0, 1.0) // Set display-window color to blue.

glMatrixMode (GL_PROJECTION);
gluOrtho2D (0.0, 200.0, 0.0, 150.0);

}

void displayFcn (void)
{

glClear (GL_COLOR_BUFFER_BIT);
}

void winReshapeFcn (GLint newWidth, GLint newHeight)
{

/* Reset viewport and projection parameters */
glViewport (0, 0, newWidth, newHeight);
glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
gluOrtho2D (0.0, GLdouble (newWidth), 0.0, GLdouble (newHeight));

/* Reset display-window size parameters. */
winWidth = newWidth;
winHeight = newHeight;

}

void drawLineSegment (scrPt endPt1, scrPt endPt2)
{

glBegin (GL_LINES);
glVertex2i (endPt1.x, endPt1.y);
glVertex2i (endPt2.x, endPt2.y);

glEnd ();
}

Interactive Input Methods and Graphical User Interfaces

603

void polyline (GLint button, GLint action, GLint xMouse, GLint yMouse)
{

static scrPt endPt1, endPt2;

if (ptCtr == 0) {
if (button == GLUT_LEFT_BUTTON && action == GLUT_DOWN) {

endPt1.x = xMouse;
endPt1.y = winHeight - yMouse;
ptCtr = 1;

}
else

if (button == GLUT_RIGHT_BUTTON) // Quit the program.
exit (0);

}
else

if (button == GLUT_LEFT_BUTTON && action == GLUT_DOWN) {
endPt2.x = xMouse;
endPt2.y = winHeight - yMouse;
drawLineSegment (endPt1, endPt2);

endPt1 = endPt2;
}
else

if (button == GLUT_RIGHT_BUTTON) // Quit the program.
exit (0);

glFlush ();
}

void main (int argc, char** argv)
{

glutInit (&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowPosition (100, 100);
glutInitWindowSize (winWidth, winHeight);
glutCreateWindow ("Draw Interactive Polyline");

init ();
glutDisplayFunc (displayFcn);
glutReshapeFunc (winReshapeFcn);
glutMouseFunc (polyline);

glutMainLoop ();
}

Another GLUT mouse routine that we can use is

glutMotionFunc (fcnDoSomething);

This routine invokes fcnDoSomething when the mouse is moved within the
display window with one or more buttons activated. The function that is invoked
in this case has two arguments:

void fcnDoSomething (GLint xMouse, GLint yMouse)

Interactive Input Methods and Graphical User Interfaces

604

where (xMouse, yMouse) is the mouse location in the display window relative to
the top-left corner, when the mouse is moved with a button pressed.

Similarly, we can perform some action when we move the mouse within the
display window without pressing a button:

glutPassiveMotionFunc (fcnDoSomethingElse);

Again, the mouse location is returned to fcnDoSomethingElse as coordi-
nate position (xMouse, yMouse), relative to the top-left corner of the display
window.

GLUT Keyboard Functions
With keyboard input, we use the following function to specify a procedure that
is to be invoked when a key is pressed:

glutKeyboardFunc (keyFcn);

The specified procedure has three arguments:

void keyFcn (GLubyte key, GLint xMouse, GLint yMouse)

Parameter key is assigned a character value or the corresponding ASCII code.
The display-window mouse location is returned as position (xMouse, yMouse)
relative to the top-left corner of the display window. When a designated key is
pressed, we can use the mouse location to initiate some action, independently of
whether any mouse buttons are pressed.

In the following code, we present a simple curve-drawing procedure
using keyboard input. A freehand curve is generated by moving the mouse
within the display window while holding down the “c” key. This displays a
sequence of red dots at each recorded mouse position. By slowly moving the
mouse, we can obtain a solid curved line. Mouse buttons have no effect in this
example.

#include <GL/glut.h>

GLsizei winWidth = 400, winHeight = 300; // Initial display-window size.

void init (void)
{

glClearColor (0.0, 0.0, 1.0, 1.0); // Set display-window color to blue.

glMatrixMode (GL_PROJECTION);
gluOrtho2D (0.0, 200.0, 0.0, 150.0);

}

void displayFcn (void)
{

glClear (GL_COLOR_BUFFER_BIT); // Clear display window.

glColor3f (1.0, 0.0, 0.0); // Set point color to red.
glPointSize (3.0); // Set point size to 3.0.

}

Interactive Input Methods and Graphical User Interfaces

605

void winReshapeFcn (GLint newWidth, GLint newHeight)
{

/* Reset viewport and projection parameters */
glViewport (0, 0, newWidth, newHeight);
glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
gluOrtho2D (0.0, GLdouble (newWidth), 0.0, GLdouble (newHeight));

/* Reset display-window size parameters. */
winWidth = newWidth;
winHeight = newHeight;

}

void plotPoint (GLint x, GLint y)
{

glBegin (GL_POINTS);
glVertex2i (x, y);

glEnd ();
}

/* Move cursor while pressing c key enables freehand curve drawing. */
void curveDrawing (GLubyte curvePlotKey, GLint xMouse, GLint yMouse)
{

GLint x = xMouse;
GLint y = winHeight - yMouse;
switch (curvePlotKey)
{

case 'c':
plotPoint (x, y);
break;

default:
break;

}
glFlush ();

}

void main (int argc, char** argv)
{

glutInit (&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowPosition (100, 100);
glutInitWindowSize (winWidth, winHeight);
glutCreateWindow ("Keyboard Curve-Drawing Example");

init ();
glutDisplayFunc (displayFcn);
glutReshapeFunc (winReshapeFcn);
glutKeyboardFunc (curveDrawing);

glutMainLoop ();
}

Interactive Input Methods and Graphical User Interfaces

606

For function keys, arrow keys, and other special-purpose keys, we can use
the command

glutSpecialFunc (specialKeyFcn);

The specified procedure has the same three arguments:

void specialKeyFcn (GLint specialKey, GLint xMouse,
GLint yMouse)

but now parameter specialKey is assigned an integer-valued GLUT symbolic
constant. To select a function key, we use one of the constants GLUT KEY F1
through GLUT KEY F12. For the arrow keys, we use constants such as
GLUT KEY UP and GLUT KEY RIGHT. Other keys can be designated using
GLUT KEY PAGE DOWN, GLUT KEY HOME, and similar constants for the page
up, end, and insert keys. The backspace, delete, and escape keys can be designated
with the glutKeyboardFunc routine using their ASCII codes, which are 8, 127,
and 27, respectively.

An interactive program using the mouse, keyboard, and function keys is
demonstrated in the following code. Mouse input is used to select a location for
the lower-left corner of a red square. Keyboard input is used to scale the size of
the square, and a new square is obtained with each click of the left mouse button.

#include <GL/glut.h>
#inclue <stdlib.h>

GLsizei winWidth = 400, winHeight = 300; // Initial display-window size.
GLint edgeLength = 10; // Initial edge length for square.

void init (void)
{

glClearColor (0.0, 0.0, 1.0, 1.0) // Set display-window color to blue.

glMatrixMode (GL_PROJECTION);
gluOrtho2D (0.0, 200.0, 0.0, 150.0);

}

void displayFcn (void)
{

glClear (GL_COLOR_BUFFER_BIT); // Clear display window.

glColor3f (1.0, 0.0, 0.0); // Set fill color to red.
}

void winReshapeFcn (GLint newWidth, GLint newHeight)
{

/* Reset viewport and projection parameters */
glViewport (0, 0, newWidth, newHeight);
glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
gluOrtho2D (0.0, GLdouble (newWidth), 0.0, GLdouble (newHeight));

Interactive Input Methods and Graphical User Interfaces

607

/* Reset display-window size parameters. */
winWidth = newWidth;
winHeight = newHeight;

}

/* Display a red square with a selected edge-length size. */
void fillSquare (GLint button, GLint action, GLint xMouse, GLint yMouse)
{

GLint x1, y1, x2, y2;

/* Use left mouse button to select a position for the
* lower-left corner of the square.
*/
if (button == GLUT_LEFT_BUTTON && action == GLUT_DOWN)
{

x1 = xMouse;
y1 = winHeight - yMouse;
x2 = x1 + edgeLength;
y2 = y1 + edgeLength;
glRecti (x1, y1, x2, y2);

}
else

if (button == GLUT_RIGHT_BUTTON) // Use right mouse button to quit.
exit (0);

glFlush ();
}

/* Use keys 2, 3, and 4 to enlarge the square. */
void enlargeSquare (GLubyte sizeFactor, GLint xMouse, GLint yMouse)
{

switch (sizeFactor)
{

case '2':
edgeLength *= 2;
break;

case '3':
edgeLength *= 3;
break;

case '4':
edgeLength *= 4;
break;

default:
break;

}
}

/* Use function keys F2 and F4 for reduction factors 1/2 and 1/4. */
void reduceSquare (GLint reductionKey, GLint xMouse, GLint yMouse)
{

switch (reductionKey)
{

case GLUT_KEY_F2:
edgeLength /= 2;
break;

Interactive Input Methods and Graphical User Interfaces

608

case GLUT_KEY_F3:
edgeLength /= 4;
break;

default:
break;

}
}

void main (int argc, char** argv)
{

glutInit (&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowPosition (100, 100);
glutInitWindowSize (winWidth, winHeight);
glutCreateWindow ("Display Squares of Various Sizes");

init ();
glutDisplayFunc (displayFcn);
glutReshapeFunc (winReshapeFcn);
glutMouseFunc (fillSquare);
glutKeyboardFunc (enlargeSquare);
glutSpecialFunc (reduceSquare);

glutMainLoop ();
}

GLUT Tablet Functions
Usually, tablet activation occurs only when the mouse cursor is in the display
window. A button event for tablet input is then recorded with

glutTabletButtonFunc (tabletFcn);

and the arguments for the invoked function are similar to those for a mouse:

void tabletFcn (GLint tabletButton, GLint action,
GLint xTablet, GLint yTablet)

We designate a tablet button with an integer identifier such as 1, 2, 3, and so on,
and the button action is again specified with either GLUT UP or GLUT DOWN.
The returned values xTablet and yTablet are the tablet coordinates. We can
determine the number of available tablet buttons with the command

glutDeviceGet (GLUT_NUM_TABLET_BUTTONS);

Motion of a tablet stylus or cursor is processed with the following function:

glutTabletMotionFunc (tabletMotionFcn);

where the invoked function has the form

void tabletMotionFcn (GLint xTablet, GLint yTablet)

The returned values xTablet and yTablet give the coordinates on the tablet
surface.

Interactive Input Methods and Graphical User Interfaces

609

GLUT Spaceball Functions
We use the following function to specify an operation when a spaceball button is
activated for a selected display window:

glutSpaceballButtonFunc (spaceballFcn);

The callback function has two parameters:

void spaceballFcn (GLint spaceballButton, GLint action)

Spaceball buttons are identified with the same integer values as a tablet, and
parameter action is assigned either the value GLUT UP or the value
GLUT DOWN. We can determine the number of available spaceball buttons with a
call toglutDeviceGetusing the argumentGLUT NUM SPACEBALL BUTTONS.

Translational motion of a spaceball, when the mouse is in the display window,
is recorded with the function call

glutSpaceballMotionFunc (spaceballTranlFcn);

The three-dimensional translation distances are passed to the invoked function
as, for example:

void spaceballTranslFcn (GLint tx, GLint ty, GLint tz)

These translation distances are normalized within the range from −1000 to 1000.
Similarly, a spaceball rotation is recorded with

glutSpaceballRotateFunc (spaceballRotFcn);

The three-dimensional rotation angles are then available to the callback
function, as follows:

void spaceballRotFcn (GLint thetaX, GLint thetaY, GLint thetaZ)

GLUT Button-Box Function
Input from a button box is obtained with the following statement:

glutButtonBoxFunc (buttonBoxFcn);

Button activation is then passed to the invoked function:

void buttonBoxFcn (GLint button, GLint action);

The buttons are identified with integer values, and the button action is specified
as GLUT UP or GLUT DOWN.

GLUT Dials Function
A dial rotation can be recorded with the following routine:

glutDialsFunc (dialsFcn);

In this case, we use the callback function to identify the dial and obtain the angular
amount of rotation:

void dialsFcn (GLint dial, GLint degreeValue);

Dials are designated with integer values, and the dial rotation is returned as an
integer degree value.

Interactive Input Methods and Graphical User Interfaces

610

OpenGL Picking Operations
In an OpenGL program, we can interactively select objects by pointing to screen
positions. However, the picking operations in OpenGL are not straightforward.

Basically, we perform picking using a designated pick window to form a
revised view volume. We assign integer identifiers to objects in a scene, and the
identifiers for those objects that intersect the revised view volume are stored in a
pick-buffer array. Thus, to use the OpenGL pick features, we need to incorporate
the following procedures into a program:

• Create and display a scene.
• Pick a screen position and, within the mouse callback function, do the

following:
• Set up a pick buffer.
• Activate the picking operations (selection mode).
• Initialize an ID name stack for object identifiers.
• Save the current viewing and geometric-transformation matrix.
• Specify a pick window for the mouse input.
• Assign identifiers to objects and reprocess the scene using the revised

view volume. (Pick information is then stored in the pick buffer.)
• Restore the original viewing and geometric-transformation matrix.
• Determine the number of objects that have been picked, and return to

the normal rendering mode.
• Process the pick information.

We can also use a modification of these procedures to select objects without
interactive input from a mouse. This is accomplished by specifying the vertices
for the revised view volume, instead of designating a pick window.

A pick-buffer array is set up with the command

glSelectBuffer (pickBuffSize, pickBuffer);

Parameter pickBuffer designates an integer array with pickBuffSize
elements. The glSelectBuffer function must be invoked before the OpenGL
picking operations (selection mode) are activated. An integer information record
is stored in pick-buffer array for each object that is selected with a single pick
input. Several records of information can be stored in the pick buffer, depending
on the size and location of the pick window. Each record in the pick buffer contains
the following information:

1. The stack position of the object, which is the number of identifiers in the
name stack, up to and including the position of the picked object.

2. The minimum depth of the picked object.
3. The maximum depth of the picked object.
4. The list of the identifiers in the name stack from the first (bottom) identifier

to the identifier for the picked object.

The integer depth values stored in the pick buffer are the original values in the
range from 0 to 1.0, multiplied by 232 − 1.

The OpenGL picking operations are activated with

glRenderMode (GL_SELECT);

Interactive Input Methods and Graphical User Interfaces

611

This places us in selection mode, which means that a scene is processed through
the viewing pipeline but not stored in the frame buffer. A record of information
for each object that would have been displayed in the normal rendering mode is
placed in the pick buffer. In addition, this command returns the number of picked
objects, which is equal to the number of information records in the pick buffer. To
return to the normal rendering mode (the default), we invoke theglRenderMode
routine using the argument GL RENDER. A third option is the argument
GL FEEDBACK, which stores object coordinates and other information in a feed-
back buffer without displaying the objects. Feedback mode is used to obtain
information about primitive types, attributes, and other parameters associated
with the objects in a scene.

We use the following statement to activate the integer-ID name stack for the
picking operations:

glInitNames ();

The ID stack is initially empty, and this stack can be used only in selection mode.
To place an unsigned integer value on the stack, we can invoke the following
function:

glPushName (ID);

This places the value for parameter ID on the top of the stack and pushes the
previous top name down to the next position in the stack. We can also simply
replace the top of the stack using

glLoadName (ID);

but we cannot use this command to place a value on an empty stack. To eliminate
the top of the ID stack, we issue the command

glPopName ();

A pick window within a selected viewport is defined using the following
GLU function:

gluPickMatrix (xPick, yPick, widthPick, heightPick, vpArray);

Parameters xPick and yPick give the double-precision, screen-coordinate
location for the center of the pick window relative to the lower-left corner of
the viewport. When these coordinates are given with mouse input, the mouse
coordinates are relative to the upper-left corner, and thus we need to invert the
input yMouse value. The double-precision values for the width and height of
the pick window are specified with parameters widthPick and heightPick.
Parameter vpArray designates an integer array containing the coordinate posi-
tion and size parameters for the current viewport. We can obtain the viewport

We illustrate the OpenGL picking operations in the following program, which
displays three color rectangles with the colors red, blue, and green. For this picking
example, we use a 5 × 5 pick window, and the center of the pick window is given

Interactive Input Methods and Graphical User Interfaces

parameters using the glGetIntegerv function. This pick window is then used
as a clipping window to construct a revised view volume for the viewing trans-
formations. Information for objects that intersect this revised view volume is
placed in the pick buffer.

612

with mouse input. Therefore, we need to invert the input yMouse value using
the viewport height, which is the fourth element of the array vpArray. The red
rectangle is assigned ID = 30, the blue rectangle is assigned ID = 10, and the green
rectangle is assigned ID = 20. Depending on the input mouse position, we can
pick no rectangles, one rectangle, two of the rectangles, or all three rectangles at
one time. The rectangle identifiers are entered into the ID stack in the color order:
red, blue, green. Therefore, when we process a picked rectangle, we could use
either its identifier or its stack position number. For example, if the stack position
number, which is the first item in the pick record, is 2, then we have picked the blue
rectangle and there are two rectangle identifiers listed at the end of the record.
Alternatively, we could use the last entry in the record, which is the identifier
for the picked object. In this example program, we simply list the contents of the
pick buffer. The rectangles are defined in the xy plane, so all depth values are 0.
A sample output is given in Example 1 for a mouse input position that is near
the boundary between the red and green rectangles. No mechanism is provided
for terminating the program, so any number of mouse inputs can be processed.

#include <GL/glut.h>
#include <stdio.h>

const GLint pickBuffSize = 32;

/* Set initial display-window size. */
GLsizei winWidth = 400, winHeight = 400;

void init (void)
{

/* Set display-window color to white. */
glClearColor (1.0, 1.0, 1.0, 1.0);

}

/* Define 3 rectangles and associated IDs. */
void rects (GLenum mode)
{

if (mode == GL_SELECT)
glPushName (30); // Red rectangle.

glColor3f (1.0, 0.0, 0.0);
glRecti (40, 130, 150, 260);

if (mode == GL_SELECT)
glPushName (10); // Blue rectangle.

glColor3f (0.0, 0.0, 1.0);
glRecti (150, 130, 260, 260);

if (mode == GL_SELECT)
glPushName (20); // Green rectangle.

glColor3f (0.0, 1.0, 0.0);
glRecti (40, 40, 260, 130);

}

/* Print the contents of the pick buffer for each mouse selection. */
void processPicks (GLint nPicks, GLuint pickBuffer [])

Interactive Input Methods and Graphical User Interfaces

613

{
GLint j, k;
GLuint objID, *ptr;

printf (" Number of objects picked = %d\n", nPicks);
printf ("\n");
ptr = pickBuffer;

/* Output all items in each pick record. */
for (j = 0; j < nPicks; j++) {

objID = *ptr;

printf (" Stack position = %d\n", objID);
ptr++;

printf (" Min depth = %g,", float (*ptr/0x7fffffff));
ptr++;

printf (" Max depth = %g\n", float (*ptr/0x7fffffff));
ptr++;

printf (" Stack IDs are: \n");
for (k = 0; k < objID; k++) {

printf (" %d ",*ptr);
ptr++;

}
printf ("\n\n");

}
}

void pickRects (GLint button, GLint action, GLint xMouse, GLint yMouse)
{

GLuint pickBuffer [pickBuffSize];
GLint nPicks, vpArray [4];

if (button != GLUT_LEFT_BUTTON || action != GLUT_DOWN)
return;

glSelectBuffer (pickBuffSize, pickBuffer); // Designate pick buffer.
glRenderMode (GL_SELECT); // Activate picking operations.
glInitNames (); // Initialize the object-ID stack.

/* Save current viewing matrix. */
glMatrixMode (GL_PROJECTION);
glPushMatrix ();
glLoadIdentity ();

/* Obtain the parameters for the current viewport. Set up
* a 5 x 5 pick window, and invert the input yMouse value
* using the height of the viewport, which is the fourth
* element of vpArray.
*/
glGetIntegerv (GL_VIEWPORT, vpArray);
gluPickMatrix (GLdouble (xMouse), GLdouble (vpArray [3] - yMouse),

5.0, 5.0, vpArray);

Interactive Input Methods and Graphical User Interfaces

614

gluOrtho2D (0.0, 300.0, 0.0, 300.0);
rects (GL_SELECT); // Process the rectangles in selection mode.

/* Restore original viewing matrix. */
glMatrixMode (GL_PROJECTION);
glPopMatrix ();

glFlush ();

/* Determine the number of picked objects and return to the
* normal rendering mode.
*/
nPicks = glRenderMode (GL_RENDER);

processPicks (nPicks, pickBuffer); // Process picked objects.

glutPostRedisplay ();
}

void displayFcn (void)
{

glClear (GL_COLOR_BUFFER_BIT);
rects (GL_RENDER); // Display the rectangles.
glFlush ();

}

void winReshapeFcn (GLint newWidth, GLint newHeight)
{

/* Reset viewport and projection parameters. */
glViewport (0, 0, newWidth, newHeight);
glMatrixMode (GL_PROJECTION);
glLoadIdentity ();

gluOrtho2D (0.0, 300.0, 0.0, 300.0);
glMatrixMode (GL_MODELVIEW);

/* Reset display-window size parameters. */
winWidth = newWidth;
winHeight = newHeight;

}

void main (int argc, char** argv)
{

glutInit (&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowPosition (100, 100);
glutInitWindowSize (winWidth, winHeight);
glutCreateWindow ("Example Pick Program");

init ();
glutDisplayFunc (displayFcn);
glutReshapeFunc (winReshapeFcn);
glutMouseFunc (pickRects);

glutMainLoop ();
}

Interactive Input Methods and Graphical User Interfaces

615

E X A M P L E 1 Sample Output from Procedure pickrects.

Number of objects picked = 2

Stack position = 1
Min depth = 0, Max depth = 0
Stack IDs are:
30

Stack position = 3
Min depth = 0, Max depth = 0
Stack IDs are:
30 10 20

7 OpenGL Menu Functions
In addition to the input-device routines, GLUT contains various functions for
adding simple pop-up menus to programs. With these functions, we can set up and
access a variety of menus and associated submenus. The GLUT menu commands
are placed in procedure main along with the other GLUT functions.

Creating a GLUT Menu
A pop-up menu is created with the statement

glutCreateMenu (menuFcn);

where parameter menuFcn is the name of a procedure that is to be invoked when
a menu entry is selected. This procedure has one argument, which is the integer
value corresponding to the position of a selected option.

void menuFcn (GLint menuItemNumber)

The integer value passed to parameter menuItemNumber is then used by
menuFcn to perform an operation. When a menu is created, it is associated with
the current display window.

Once we have designated the menu function that is to be invoked when a
menu item is selected, we must specify the options that are to be listed in the
menu. We do this with a series of statements that list the name and position for
each option. These statements have the general form

glutAddMenuEntry (charString, menuItemNumber);

Parameter charString specifies text that is to be displayed in the menu, and
parameter menuItemNumber gives the location for that entry in the menu. For
example, the following statements create a menu with two options:

glutCreateMenu (menuFcn);
glutAddMenuEntry ("First Menu Item", 1);
glutAddMenuEntry ("Second Menu Item", 2);

Next, we must specify a mouse button that is to be used to select a menu
option. This is accomplished with

glutAttachMenu (button);

Interactive Input Methods and Graphical User Interfaces

616

where parameter button is assigned one of the three GLUT symbolic constants
referencing the left, middle, or right mouse button.

To illustrate the creation and use of a GLUT menu, the following program
provides two options for displaying the interior fill of a triangle. Initially, the
triangle is defined with two white vertices, one red vertex, and a fill color
determined by an interpolation of the vertex colors. We use the glShadeModel

option “Solid-Color Fill” is selected, the triangle is filled with the color specified for
the last vertex (which is red). At the end of the menu-display procedure,
fillOption, we include a glutPostRedisplay command to
the triangle should be redrawn when the menu is displayed.

#include <GL/glut.h>

GLsizei winWidth = 400, winHeight = 400; // Initial display-window size.

GLfloat red = 1.0, green = 1.0, blue = 1.0; // Initial triangle color: white.
GLenum fillMode = GL_SMOOTH; // Initial polygon fill: color interpolation.

void init (void)
{

glClearColor (0.6, 0.6, 0.6, 1.0); // Set display-window color to gray.

glMatrixMode (GL_PROJECTION);
gluOrtho2D (0.0, 300.0, 0.0, 300.0);

}

void fillOption (GLint selectedOption)
{

switch (selectedOption) {
case 1: fillMode = GL_FLAT; break; // Flat surface rendering.
case 2: fillMode = GL_SMOOTH; break; // Gouraud rendering.

}
glutPostRedisplay ();

}

void displayTriangle (void)
{

glClear (GL_COLOR_BUFFER_BIT);

glShadeModel (fillMode); // Set fill method for triangle.
glColor3f (red, green, blue); // Set color for first two vertices.

glBegin (GL_TRIANGLES);
glVertex2i (280, 20);
glVertex2i (160, 280);

Interactive Input Methods and Graphical User Interfaces

function to select a polygon fill that is either a solid color or an interpolation
(Gouraud rendering) of the vertex colors. A menu is created in this program that
allows us to choose between these two options using the right mouse button,
when the mouse cursor is inside the display window. This pop-up menu is dis-
played with the upper-left corner at the position of the mouse cursor. A menu
option is highlighted when we move the mouse cursor over that option. The
highlighted option is then selected by releasing the right button. If the

 indicate that

617

glColor3f (red, 0.0, 0.0); // Set color of last vertex to red.
glVertex2i (20, 100);

glEnd ();

glFlush ();
}

void reshapeFcn (GLint newWidth, GLint newHeight)
{

glViewport (0, 0, newWidth, newHeight);

glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
gluOrtho2D (0.0, GLfloat (newWidth), 0.0, GLfloat (newHeight));
displayTriangle ();
glFlush ();

}

void main (int argc, char **argv)
{

glutInit (&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowPosition (200, 200);
glutInitWindowSize (winWidth, winHeight);
glutCreateWindow ("Menu Example");

init ();
glutDisplayFunc (displayTriangle);

glutCreateMenu (fillOption); // Create pop-up menu.
glutAddMenuEntry ("Solid-Color Fill", 1);
glutAddMenuEntry ("Color-Interpolation Fill", 2);

/* Select a menu option using the right mouse button. */
glutAttachMenu (GLUT_RIGHT_BUTTON);

glutReshapeFunc (reshapeFcn);

glutMainLoop ();
}

Creating and Managing Multiple GLUT Menus

menuID = glutCreateMenu (menuFcn);

Interactive Input Methods and Graphical User Interfaces

When a menu is created, it is associated with the current display window.
We can create multiple menus for a single display window, and we can create
different menus for different windows. As each menu is created, it is assigned
an integer identifier, starting with the value 1 for the first menu created. The
integer identifier for a menu is returned by the glutCreateMenu routine, and
we can record this value with a statement such as

618

A newly created menu becomes the current menu for the current dis-
play window. To activate a menu for the current display window, we use the
statement

glutSetMenu (menuID);

This menu then becomes the current menu, which will pop up in the display
window when the mouse button that has been attached to that menu is pressed.

We eliminate a menu with the command

glutDestroyMenu (menuID);

If the designated menu is the current menu for a display window, then that
window has no menu assigned as the current menu, even though other menus
may exist.

The following function is used to obtain the identifier for the current menu
in the current display window:

currentMenuID = glutGetMenu ();

A value of 0 is returned if no menus exist for this display window or if the previous
current menu was eliminated with the glutDestroyMenu function.

Creating GLUT Submenus
A submenu can be associated with a menu by first creating the submenu using
glutCreateMenu, along with a list of suboptions, and then listing the submenu
as an additional option in the main menu. We can add the submenu to the option
list in a main menu (or other submenu) using a sequence of statements such as

submenuID = glutCreateMenu (submenuFcn);
glutAddMenuEntry ("First Submenu Item", 1);
.
.
.

glutCreateMenu (menuFcn);
glutAddMenuEntry ("First Menu Item", 1);
.
.
.
glutAddSubMenu ("Submenu Option", submenuID);

The glutAddSubMenu function can also be used to add the submenu to the
current menu.

In the following program, we illustrate the creation of a submenu. This
program, which is a modification of the previous menu program, displays
a submenu that provides three color choices (blue, green, and white) for
the first two vertices of the triangle. The main menu is now listed with three
options, and the third option is displayed with an arrow symbol to indicate
that a pop-up submenu will be displayed when that option is highlighted. A
glutPostRedisplay function is included at the end of both the main-menu
function and the submenu function.

Interactive Input Methods and Graphical User Interfaces

619

#include <GL/glut.h>

GLsizei winWidth = 400, winHeight = 400; // Initial display-window size.

GLfloat red = 1.0, green = 1.0, blue = 1.0; // Initial color values.
GLenum renderingMode = GL_SMOOTH; // Initial fill method.

void init (void)
{

glClearColor (0.6, 0.6, 0.6, 1.0); // Set display-window color to gray.

glMatrixMode (GL_PROJECTION);
gluOrtho2D (0.0, 300.0, 0.0, 300.0);

}

void mainMenu (GLint renderingOption)
{

switch (renderingOption) {
case 1: renderingMode = GL_FLAT; break;
case 2: renderingMode = GL_SMOOTH; break;

}
glutPostRedisplay ();

}

/* Set color values according to the submenu option selected. */
void colorSubMenu (GLint colorOption)
{

switch (colorOption) {
case 1:

red = 0.0; green = 0.0; blue = 1.0;
break;

case 2:
red = 0.0; green = 1.0; blue = 0.0;
break;

case 3:
red = 1.0; green = 1.0; blue = 1.0;

}
glutPostRedisplay ();

}

void displayTriangle (void)
{

glClear (GL_COLOR_BUFFER_BIT);

glShadeModel (renderingMode); // Set fill method for triangle.
glColor3f (red, green, blue); // Set color for first two vertices.
glBegin (GL_TRIANGLES);

glVertex2i (280, 20);
glVertex2i (160, 280);
glColor3f (1.0, 0.0, 0.0); // Set color of last vertex to red.
glVertex2i (20, 100);

glEnd ();

glFlush ();
}

Interactive Input Methods and Graphical User Interfaces

620

void reshapeFcn (GLint newWidth, GLint newHeight)
{

glViewport (0, 0, newWidth, newHeight);

glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
gluOrtho2D (0.0, GLfloat (newWidth), 0.0, GLfloat (newHeight));

displayTriangle ();
glFlush ();

}

void main (int argc, char **argv)
{

GLint subMenu; // Identifier for submenu.

glutInit (&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowPosition (200, 200);
glutInitWindowSize (winWidth, winHeight);
glutCreateWindow ("Submenu Example");

init ();
glutDisplayFunc (displayTriangle);

subMenu = glutCreateMenu (colorSubMenu);
glutAddMenuEntry ("Blue", 1);
glutAddMenuEntry ("Green", 2);
glutAddMenuEntry ("White", 3);

glutCreateMenu (mainMenu); // Create main pop-up menu.
glutAddMenuEntry ("Solid-Color Fill", 1);
glutAddMenuEntry ("Color-Interpolation Fill", 2);
glutAddSubMenu ("Color", subMenu);

/* Select menu option using right mouse button. */
glutAttachMenu (GLUT_RIGHT_BUTTON);

glutReshapeFunc (reshapeFcn);

glutMainLoop ();
}

Modifying GLUT Menus
If we want to change the mouse button that is used to select a menu option, we first
cancel the current button attachment and then attach the new button. A button
attachment is cancelled for the current menu with

glutDetachMenu (mouseButton);

where parameter mouseButton is assigned the GLUT constant identifying the
button (left, middle, or right) that was previously attached to the menu. Once we

Interactive Input Methods and Graphical User Interfaces

621

have detached the menu from the button, we can use glutAttachMenu to attach
it to a different button.

Options within an existing menu can also be changed. For example, we can
delete an option in the current menu with the function

glutRemoveMenuItem (itemNumber);

where parameter itemNumber is assigned the integer value of the menu option
that is to be deleted.

Other GLUT routines allow us to modify the names or status of items within
an existing menu. For example, we can use these routines to change the displayed
name of a menu option, to change the item number of the option, or to change an
option into a submenu.

8 Designing a Graphical User Interface
A common feature of modern applications software is a graphical user interface
(GUI) composed of display windows, icons, menus, and other features to aid a user
in applying the software to a particular problem. Specialized interactive dialogues
are designed so that programming options are selected using familiar terms within
a particular field, such as architectural and engineering design, drafting, business
graphics, geology, economics, chemistry, or physics. Other considerations for a
user interface (whether graphical or not) are the accommodation of various skill
levels, consistency, error handling, and feedback.

The User Dialogue
For any application, the user’s model serves as the basis for the design of the
dialogue by describing what the system is designed to accomplish and what
operations are available. It states the type of objects that can be displayed and
how the objects can be manipulated. For example, if the system is to be used as a
tool for architectural design, the model describes how the package can be used to
construct and display views of buildings by positioning walls, doors, windows,
and other building components. A facility-layout package might include a set of
furniture items along with the operations for positioning and removing different
objects in a specified floor plan. A circuit-design program provides electrical or
logic symbols and the positioning operations for adding or deleting elements
within a layout.

All information in the user dialogue is presented in the language of the appli-
cation. In an architectural design package, this means that all interactions are
described only in architectural terms, without reference to particular data struc-
tures, computer-graphics terms, or other concepts that may be unfamiliar to an
architect.

Windows and Icons
Typical GUIs provide visual representations both for the objects that are to be
manipulated in an application and for the actions to be performed on the appli-
cation objects.

In addition to the standard display-window operations, such as opening, clos-
ing, positioning, and resizing, other operations are needed for working with the
sliders, buttons, icons, and menus. Some systems are capable of supporting mul-
tiple window managers so that different window styles can be accommodated,

Interactive Input Methods and Graphical User Interfaces

622

each with its own window manager, which could be structured for a particular
application.

Icons representing objects such walls, doors, windows, and circuit elements
are often referred to as application icons. The icons representing actions, such as
rotate, magnify, scale, clip, or paste, are called control icons, or command icons.

Accommodating Multiple Skill Levels
Usually, interactive GUIs provide several methods for selecting actions. For
example, an option could be specified by pointing to an icon, accessing a pull-
down or pop-up menu, or by typing a keyboard command. This allows a package
to accommodate users that have different skill levels.

A less experienced user may find an interface with a large, comprehensive
set of operations to be difficult to use, so a smaller interface with fewer but more
easily understood operations and detailed prompting may be preferable. A sim-
plified set of menus and options is easy to learn and remember, and the user
can concentrate on the application instead of on the details of the interface. Sim-
ple point-and-click operations are often easiest for an inexperienced user of an
applications package. Therefore, interfaces typically provide a means for masking
the complexity of a package, so that beginners can use the system without being
overwhelmed with too much detail.

Experienced users, on the other hand, typically want speed. This means fewer
prompts and more input from the keyboard or with multiple mouse-button clicks.
Actions are selected with function keys or with simultaneous combinations of
keyboard keys, because experienced users will remember these shortcuts for com-
monly used actions.

An interface may be designed to provide different sets of options to users
with different experience levels. This may be selectable by the user through an
application preference setting, or suggested by the application itself as the user
gains experience with it. Similarly, help facilities can be designed on several levels
so that beginners can carry on a detailed dialogue, while more experienced users
can reduce or eliminate prompts and messages. Help facilities can also include
one or more tutorial applications, which provide users with an introduction to
the capabilities and use of the system.

Consistency
An important design consideration in an interface is consistency. An icon shape
should always have a single meaning, rather than serving to represent different
actions or objects depending on the context. Some other examples of consistency
are always placing menus in the same relative positions so that a user does not
have to hunt for a particular option, always using the same combination of key-
board keys for an action, and always using the same color encoding so that a color
does not have different meanings in different situations.

Minimizing Memorization
Operations in an interface should also be structured so that they are easy to
understand and to remember. Obscure, complicated, inconsistent, and abbrevi-
ated command formats lead to confusion and reduction in the effective application
of the software. One key or button used for all delete operations, for example, is
easier to remember than a number of different keys for different kinds of delete
procedures.

Interactive Input Methods and Graphical User Interfaces

623

Icons and window systems can also be organized to minimize memorization.
Different kinds of information can be separated into different windows so that
a user can identify and select items easily. Icons should be designed as easily
recognizable shapes that are related to application objects and actions. To select a
particular action, a user should be able to select an icon that resembles that action.

Backup and Error Handling
A mechanism for undoing a sequence of operations is another common feature of
an interface, which allows a user to explore the capabilities of a system, knowing
that the effects of a mistake can be corrected. Typically, systems can now undo
several operations, thus allowing a user to reset the system to some specified
action. For those actions that cannot be reversed, such as closing an applica-
tion without saving changes, the system asks for a verification of the requested
operation.

In addition, good diagnostics and error messages help a user to determine
the cause of an error. Interfaces can attempt to minimize errors by anticipating
certain actions that could lead to an error; and users can be warned if they are
requesting ambiguous or incorrect actions, such as attempting to apply a proce-
dure to multiple application objects.

Feedback
Responding to user actions is another important feature of an interface, particu-
larly for an inexperienced user. As each action is entered, some response should
be given. Otherwise, a user might begin to wonder what the system is doing and
whether the input should be reentered.

Feedback can be given in many forms, such as highlighting an object,
displaying an icon or message, and displaying a selected menu option in a differ-
ent color. When the processing of a requested action is lengthy, the display of a
flashing message, clock, hourglass, or other progress indicator is important. It may
also be possible for the system to display partial results as they are completed, so
that the final display is built up a piece at a time. The system might also allow a
user to input other commands or data while one instruction is being processed.

Standard symbol designs are used for typical kinds of feedback. A cross, a
frowning face, or a thumbs-down symbol is often used to indicate an error, and
some kind of time symbol or a blinking “at work” sign is used to indicate that
an action is being processed. This type of feedback can be very effective with a
more experienced user, but the beginner may need more detailed feedback that
not only clearly indicates what the system is doing but also what the user should
input next.

Clarity is another important feature of feedback. A response should be easily
understood, but not so overpowering that the user’s concentration is interrupted.
With function keys, feedback can be given as an audible click or by lighting up the
key that has been pressed. Audio feedback has the advantage that it does not use
up screen space, and it does not divert the user’s attention from the work area.
A fixed message area can be used so that a user always know where to look for
messages, but it may be advantageous in some cases to place feedback messages
in the work area near the cursor. Feedback can also be displayed in different colors
to distinguish it from other displayed objects.

Echo feedback is often useful, particularly for keyboard input, so that errors
can be detected quickly. Button and dial input can be echoed in the same way.
Scalar values that are selected with dials or from displayed scales are usually

Interactive Input Methods and Graphical User Interfaces

624

echoed on the screen so that a user can check the input values for accuracy.
Selection of coordinate points can be echoed with a cursor or other symbol that
appears at the selected position. For more precise echoing of selected positions,
the coordinate values could also be displayed on the screen.

9 Summary
Input to graphics programs can come from many different hardware devices, with
more than one device providing the same general class of input data. Graphics
input functions are often designed to be independent of hardware by adopting
a logical classification for input devices. A device is then specified according to
the type of graphics input. The six logical devices used in the ISO and ANSI
standards are locator, stroke, string, valuator, choice, and pick. Locator devices
input a single coordinate position. Stroke devices input a stream of coordinates.
String devices input text. Valuator devices enter a scalar value. Choice devices are
used for menu selections, and pick devices allow us to select scene components.
Device-independent graphics packages offer a limited set of input functions that
are defined in an auxiliary library.

Three modes are commonly used for input functions. Request mode places
input under the control of the application program. Sample mode allows the input
devices and program to operate concurrently. Event mode allows input devices
to initiate data entry and control processing of data. Once we have chosen a mode
for a logical device class and the particular physical device to be used to enter this
class of data, input functions are used to enter data values into the program. An
application program can make simultaneous use of several physical input devices
operating in different modes.

Interactive picture-construction methods are commonly used in a variety of
applications, including design and painting packages. These methods provide
users with the capability to specify object positions, constrain objects to predefined
orientations or alignments, and interactively draw or paint objects into a scene.
Grids, gravity fields, and rubber-band methods are used to aid in positioning and
other picture-construction operations.

Graphical user interfaces (GUIs) are now standard features of applications
software. A dialogue for the software is designed from the user’s model, which
describes the purpose and functions of the applications package. All elements of
the dialogue are presented in the language of the application.

Window systems provide a typical interface with procedures for manipulat-
ing display windows, menus, and icons. General window systems can be designed
to support multiple window managers.

Considerations in user-dialogue design are ease of use, clarity, and flexibility.
Specifically, GUIs are designed to maintain consistency in user interaction and to
provide for different user skill levels. In addition, interfaces are designed to mini-
mize user memorization, to provide sufficient feedback, and to provide adequate
backup and error handling capabilities.

In the Utility Toolkit, GLUT, input functions are available for interactive
devices, such as a mouse, tablet, spaceball, button box, and dial box. In addi-
tion, GLUT provides a function for accepting a combination of input values from
a mouse and a keyboard. Picking operations can be performed using functions
from the GLU library and the basic OpenGL library. We can also display pop-up
menus and submenus using a set of functions in the GLUT library. A summary
of the OpenGL input and menu functions is given in Tables 1 and 2.

Interactive Input Methods and Graphical User Interfaces

625

T A B L E 1

Summary of OpenGL Input Functions

Function Description

glutMouseFunc Specifies a mouse callback function that is to
be invoked when a mouse button is pressed.

glutMotionFunc Specifies a mouse callback function that
is to be invoked when the mouse cursor
is moved while a button is pressed.

glutPassiveMotionFunc Specifies a mouse callback function that
is to be invoked when the mouse cursor is
moved without pressing a button.

glutKeyboardFunc Specifies a keyboard callback function that is
to be invoked when a standard key is
pressed.

glutSpecialFunc Specifies a keyboard callback function that is
to be invoked when a special-purpose key
(e.g., a function key) is pressed.

glutTabletButtonFunc Specifies a tablet callback function that
is to be invoked when a tablet button
is pressed while the mouse cursor is in
a display window.

glutTabletMotionFunc Specifies a tablet callback function that
is to be invoked when a tablet stylus or
cursor is moved while the mouse cursor is
in a display window.

glutSpaceballButtonFunc Specifies a spaceball callback function
that is to be invoked when a spaceball
button is pressed while the mouse cursor
is in a display window, or using another
display-window activation method.

glutSpaceballMotionFunc Specifies a spaceball callback function
that is to be invoked when a spaceball
translational motion occurs for an activated
display window.

glutSpaceballRotateFunc Specifies a spaceball callback function that
is to be invoked when a spaceball
rotational motion occurs for an activated
display window.

glutButtonBoxFunc Specifies a button-box callback function that
is to be invoked when a button is pressed.

glutDialsFunc Specifies a dial callback function that is
to be invoked when a dial is rotated.

Interactive Input Methods and Graphical User Interfaces

626

T A B L E 1

(Continued)

Function Description

glSelectBuffer Specifies size and name for the pick buffer.

glRenderMode Activates pick operations using the
argument GL SELECT. This function is
also used to activate the normal rendering
mode or the feedback mode.

glInitNames Activates the object-ID name stack.

glPushName Pushes an object identifier onto the ID stack.

glLoadName Replaces the top identifier on the ID stack
with a specified value.

glPopName Eliminates the top item on the ID stack.

gluPickMatrix Defines a pick window and forms a revised
view volume for the picking operations.

T A B L E 2

Summary of OpenGL Menu Functions

Function Description

glutCreateMenu Creates a pop-up menu and specifies a procedure that is
to be invoked when a menu item is selected; an
integer identifier is assigned to the created menu.

glutAddMenuEntry Specifies an option that is to be listed in a pop-up menu.

glutAttachMenu Specifies the mouse button that is to used for selecting
menu options.

glutSetMenu Specifies the current menu for the current display window.

glutDestroyMenu Specifies an identifier for a menu that is to be eliminated.

glutGetMenu Returns the identifier for the current menu attached to
the current window.

glutAddSubMenu Specifies a submenu that is to be included in a menu
listing, where the indicated submenu has been set up
using the glutCreateMenu routine.

glutDetachMenu Cancels a specified mouse-button attachment for the
current menu.

glutRemoveMenuItem Deletes a specified option in the current menu.

Interactive Input Methods and Graphical User Interfaces

627

REFERENCES
The evolution of the concept of logical (or virtual) input
devices is discussed in Wallace (1976) and in Rosenthal,
et al. (1982). Implementations for various input proce-
dures are given in Glassner (1990), Arvo (1991), Kirk
(1992), Heckbert (1994), and Paeth (1995). Additional
programming examples using mouse and keyboard
input can be found in Woo, et al. (1999). A complete
listing of the functions in the OpenGL basic library and
the GLU library is given in Shreiner (2000). The GLUT
input and menu functions are listed in detail in Kilgard
(1996).

Guidelines for user-interface design are presented in
Shneiderman (1986), Apple (1987), Bleser (1988), Brown
and Cunningham (1989), Digital (1989), OSF/MOTIF
(1989), and Laurel (1990).

EXERCISES
1 Design an algorithm that allows objects to be

positioned on the screen using a locator device.
An object menu of geometric shapes is to be pre-
sented to a user who is to select an object and
a placement position. The program should allow
any number of objects to be positioned until a
“terminate” signal is given.

2 Extend the algorithm of the previous exercise so
that selected objects can be scaled and rotated
before positioning. The transformation choices
and transformation parameters are to be pre-
sented to the user as menu options.

3 Set up a procedure for interactively sketching pic-
tures using a stroke device.

4 Discuss the methods that could be employed in
a pattern-recognition procedure to match input
characters against a stored library of shapes.

5 Write a routine that displays a linear scale and a
slider on the screen and allows numeric values to
be selected by positioning the slide along the scale
line. The selected numeric value is to be echoed
in a box displayed near the linear scale.

6 Write a program that makes use of the slider
developed in the previous exercise to allow the
user to scale an object displayed in a display
window between some minimum and maximum
value.

7 Write a routine that displays a circular scale and a
pointer or a slider that can be moved around the
circle to select angles (in degrees). The angular
value selected is to be echoed in a box displayed
near the circular scale.

8 Write a program that makes use of the circular
slider developed in the previous exercise to allow
the user to rotate an object around its center.

9 Write a drawing program that allows users to cre-
ate a picture as a set of straight-line segments
drawn between specified endpoints. The coordi-
nates of the individual line segments are to be
selected with a locator device.

10 Write a drawing package that allows pictures
to be created with straight-line segments drawn
between specified endpoints. Set up a gravity
field around each line in a picture, as an aid in
connecting new lines to existing lines.

11 Modify the drawing package in the previous exer-
cise so that lines can be constrained horizontally
or vertically.

12 Develop a drawing package that can display
an optional grid pattern so that selected screen
positions are rounded to grid intersections. The
package is to provide line-drawing capabilities,
with line endpoints selected using a locator
device.

13 Write a routine that allows a designer to create a
picture by sketching straight lines using a rubber-
band method.

14 Design a drawing package that allows straight
lines, rectangles, and circles to be constructed
using rubber-band methods.

15 Write a procedure that allows a user to pick com-
ponents of a two-dimensional scene. The coordi-
nate extents for each object are to be stored and
used to identify the picked object, given an input
cursor position.

16 Develop a procedure that allows a user to design a
picture from a menu of displayed basic shapes by
dragging each selected shape into position with a
pick device.

17 Design an implementation of the input functions
for request mode.

18 Design an implementation of the sample mode
input functions.

19 Design an implementation of the input functions
for event mode.

20 Design a procedure for implementing input func-
tions for request, sample, and event mode.

21 Expand the OpenGL point-plotting program in
Section 6 to include a menu that allows a user
to select point size and point color.

22 Expand the OpenGL polyline program in Section
6 to include a menu that allows a user to choose
the line attributes: size, color, and width.

23 Modify the program in the preceding exercise
to allow a texture pattern to be chosen for the
polyline.

Interactive Input Methods and Graphical User Interfaces

628

24 Write an interactive OpenGL program to display
a circle of radius 150 that can be at any input posi-
tion within a display window. The input position
is to be the center of the circle. Include a menu of
color options for displaying the circle in a solid
color.

25 Modify the program in the preceding exercise so
that the input position is rejected if the entire circle
cannot be displayed within the display window.

26 Modify the program in the preceding exercise to
include a menu of texture options for the circle.
Include a solid color texture, a gradient texture,
and a minimum of two other texture patterns.

27 Set up an interactive OpenGL program for dis-
playing an input character string at any position
within a display window. The input position is
the starting position for the text.

28 Write an interactive OpenGL program for posi-
tioning a single two-dimensional object at any
position within a display window. The object is to
be selected from a menu of basic shapes, including
(minimally) a square, circle, and triangle.

29 Modify the program in the preceding exercise to
allow any arrangement of the two-dimensional
objects to be displayed, with each object selected
from the menu until a quit option is chosen from
the menu.

30 Modify the program in the preceding exercise to
allow objects to be scaled or rotated. Geometric
transformation operations are to be listed in a
menu.

31 Write an interactive OpenGL program for posi-
tioning a single three-dimensional object within a
display window. The object is to be selected from
a menu list of GLUT wire-frame solids, such as a
sphere, solid, or cylinder, and it is to be centered
on an input position.

32 Modify the program in the preceding exercise to
allow the objects to be displayed in either a wire-
frame or solid form. For solid-object displays,
include a point light source at the viewing
position, and use default parameters for the
illumination and surface shading.

33 Write a program to implement the OpenGL pick-
ing operations for a three-dimensional scene con-
taining several objects. For each pick selection,
create a small pick window and remove the most
distant object within that pick window from the
scene, replacing it with a new object at a random
location in the scene.

34 Write an interactive OpenGL program to display
a two-dimensional cubic Bézier curve. The four
control-point positions are to be selected with
mouse input.

35 Modify the program in the preceding exercise to
display a Bézier curve with a selected degree of
three, four, or five.

36 Write an interactive OpenGL program to dis-
play a two-dimensional cubic B-spline. The spline
parameters are to be given as input, and the con-
trol points are to be selected with a mouse.

37 Write an interactive OpenGL program to display
a cubic Bézier surface patch. The x and y coordi-
nates for the control points can be selected with
a mouse, and the z coordinate can be given as a
height above a ground plane.

38 Select some graphics application with which you
are familiar and set up a user model that will serve
as the basis for the design of a user interface for
graphics applications in that area.

39 List possible help facilities that can be provided in
a user interface and discuss which types of help
would be appropriate for different levels of users.

40 Summarize the methods for handling backup and
errors. Which methods are suitable for a begin-
ner? Which methods are better for an experienced
user?

41 List the possible formats for presenting menus to a
user, and explain under what circumstances each
might be appropriate.

42 Discuss alternatives for feedback in terms of the
various levels of users.

43 List the functions that must be performed by a
window manager in handling screen layouts with
multiple, overlapping windows.

44 Set up a design for a window-manager package.
45 Design a user interface for a painting program.
46 Design a user interface for a two-level hierarchical

modeling package.

IN MORE DEPTH
1 In this chapter’s exercises, you will add the neces-

sary input devices that will make your program
interactive. Think about the types of tasks that the
user should be able to perform in your application
and decide how best to implement the interaction
necessary to achieve that behavior. What types of
responses will occur in the graphical view of the
application in response to each type of input?
There is usually more than one way to obtain a
certain type of input, and more than one way
to present input options to the user. Discuss
these alternatives and write an input specification
employing those that you think would be most
intuitive for the user. Add menus and other
graphical user interface (GUI) components to
make your application more user-friendly.

Interactive Input Methods and Graphical User Interfaces

629

2 Implement the input specification you designed
in the previous exercise using the OpenGL
interactive input-device functions defined in the
GLUT libraries. Use mouse and keyboard input
to allow the user to interact with the applica-
tion, adding GUI components where necessary or

appropriate. Write routines to update the current
scene of your application in response to each type
of input. Extensively test your application as a
user and experiment with modifications to the
input specification to make controlling the appli-
cation as intuitive as possible.

Interactive Input Methods and Graphical User Interfaces

630

C o l o r P l a t e 2 3
A screen layout showing one type of interface for an artist’s
painting package. (Courtesy of Thomson Digital Image.)

C o l o r P l a t e 2 4
Using a head-tracking stereo display, called the BOOM (Fake Space Labs, Inc.), and a
Dataglove (VPL, Inc.), a researcher interactively manipulates exploratory probes in
the unsteady flow around a Harrier jet airplane. Software developed by Steve Bryson;
data from Harrier. (Courtesy of Sam Uselton, NASA Ames Research Center.)

Interactive Input Methods and
Graphical User Interfaces
Color Plate

From Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson

s

631

This page intentionally left blank

Global Illumination

1 Ray-Tracing Methods

2 Radiosity Lighting Model

3 Environment Mapping

4 Photon Mapping

5 Summary

I llumination models in computer graphics are often approx-

imations of the physical laws that describe surface-lighting

effects. To reduce computations, most packages use empir-

To produce more realistic lighting effects, we must also consider

the contribution of light that is reflected from other objects onto the

surface of the object being shaded. This type of illumination, called

global illumination, can be more accurate, but that accuracy comes

at the expense of additional computation.

Some global illumination methods, such as ray-tracing, attempt

to determine surface shading by following light rays from the eye-

point back into the scene through the pixels of the image plane.

From Chapter 21 of Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson

ical models based on simplified photometric calculations. Surface ren-

dering is performed through calculating the interaction of an object's

surface with the light striking it. This type of illumination model is known

as local illumination, and considers only the properties of that object and

the light that directly strikes it.

633

More accurate models, such as the radiosity algorithm, compute light intensities by con-

sidering the propagation of radiant energy or by following the movement of photons

from between the light sources and the various surfaces in a scene. Also, it is possible

to combine these techniques with other shading methods such as texture mapping to

simulate the effect of a surrounding environment on the surface of an object.

1 Ray-Tracing Methods

Basic Ray-Tracing Algorithm
The coordinate system for a ray-tracing algorithm is typically set up as shown in
Figure 2, with the projection reference point on the z axis and the pixel positions
on the xy plane. We then describe the geometry of a scene in this coordinate system
and generate the pixel rays. For a perspective-projection view of the scene, each ray

F I G U R E 1
Multiple reflection and transmission
paths for a ray from the projection
reference point through a pixel
position and on into a scene
containing several objects.

Pixel positions
on the projection

planeProjection
reference

point

Global Illumination

Ray casting is used in constructive solid geometry for locating surface intersec-

visible surfaces in a scene. Ray tracing is the generalization of the basic ray-cast-
ing procedure. Instead of merely looking for the visible surface from each pixel
position, we continue to bounce the pixel ray around in the scene, as illustrated
in Figure 1, to collect the various intensity contributions. This provides a simple
and powerful rendering technique for obtaining global reflection and transmis-
sion effects. In addition, the basic ray-tracing algorithm detects visible surfaces,
identifies shadow areas, provides for the rendering of transparency effects, gen-
erates perspective-projection views, and accommodates illumination effects
from multiple light sources. Many extensions to the basic algorithm have been
developed to produce photo-realistic displays. Ray-traced pictures of scenes can
be highly realistic, particularly when the scene contains shiny objects, but ray-
tracing algorithms involve considerable computation time. An example of the
global reflection and transmission effects possible with raytracing is demonstrat-
ed in Color Plate 25.

tions along a ray from a pixel position. Ray asting is a means for identifyingc also

634

y

x

z

Pixel screen area
centered on viewing
coordinate origin

Projection
reference point

F I G U R E 2
Ray-tracing coordinate-reference
frame.

originates at the projection reference point (center of projection), passes through a
pixel center, and continues into the scene to form the various branches of the ray
along reflection and transmission paths. Contributions to the pixel intensity are
then accumulated at the intersected surfaces. This rendering approach is based on
the principles of geometric optics. Light rays from the surfaces in a scene emanate
in all directions, and some pass through the pixel positions on the projection
plane. Because there are an infinite number of ray emanations, we determine the
intensity contributions for a particular pixel by tracing a light path backward from
the pixel position into the scene. In the basic ray-tracing algorithm, one reverse
light ray is generated for each pixel, which is approximately equivalent to viewing
the scene through a pinhole camera.

As each pixel ray is generated, the list of surfaces in the scene is processed to
determine whether there are any ray–surface intersections. If the ray does intersect
a surface, we calculate the distance from the pixel to the surface intersection point.
After all surfaces have been tested for a ray intersection, the smallest calculated
intersection distance identifies the visible surface for that pixel. We then reflect
the ray off the visible surface along a specular-reflection path (where the angle of
reflection equals the angle of incidence). For a transparent surface, we also send
a ray through the surface in the refraction direction. The reflection and refraction
rays are referred to as secondary rays.

We then repeat the ray-processing procedures for the secondary rays. Surfaces
are tested for intersections, and the nearest intersected surface, if any, along a
secondary ray path is used to recursively produce the next generation of reflection
and refraction paths. As the rays from a pixel ricochet through the scene, each
successively intersected surface is added to a binary ray-tracing tree, as shown in
Figure 3. We use left branches in the tree to represent reflection paths and right
branches to represent transmission paths. The maximum depth of the ray-tracing
trees can be set as a user option, or can be determined by the amount of storage
available. We terminate a path in the binary tree for a pixel if any of the following
conditions is satisfied:

• The ray intersects no surfaces.
• The ray intersects a light source that is not a reflecting surface.
• The tree has been generated to its maximum allowable depth.

At each surface intersection, we invoke the basic illumination model to
determine the surface intensity contribution. This intensity value is stored at the
surface-node position in the pixel tree. A ray that intersects a nonreflecting light
source can be assigned the intensity of the source, although light sources in the

Global Illumination

635

F I G U R E 3
The reflection and refraction paths for a
pixel ray traveling through a scene are
shown in (a), and the corresponding
binary ray-tracing tree is given in (b). (a) (b)

T3R3 R2

R1

R4

S2S3

S1

T1

S4

T3

R3

R2

R1

R4

S4

S3

S1

T1

S2

projection
reference point

basic ray-tracing algorithm are usually point sources at positions beyond the coor-
dinate limits of the scene. Figure 4 shows a surface intersected by a ray and the
unit vectors used for the reflected light intensity calculations. Unit vector u is in
the direction of the ray path, N is the unit surface normal, R is the unit reflection
vector, L is the unit vector indicating the direction to a point light source, and
H is the unit vector halfway between L and V. For the ray-tracing calculations,
the viewing direction is V = −u. The path along the direction of L is referred to
as the shadow ray. If any object intersects the shadow ray between the surface
and the point light source, the surface position is in shadow with respect to that
source. Ambient light at the surface is calculated as ka Ia ; diffuse reflection due to
the source is proportional to kd(N ·L); and the specular reflection component is
proportional to ks(H ·N)ns . The specular-reflection direction for the secondary
ray path R depends upon the surface normal and the incoming ray direction
as follows:

R = u − (2u ·N)N (1)

For a transparent surface, we also need to obtain intensity contributions from
light transmitted (refracted) through the material. We can locate the source of
this contribution by tracing a secondary ray along the transmission direction T,
as shown in Figure 5. The unit transmission vector T can be obtained from
vectors u and N as

T = ηi

ηr
u −

(

cos θr − ηi

ηr
cos θi

)

N (2)

F I G U R E 4
Unit vectors at the surface of an object
intersected by an incoming ray along
direction u.

Light
source

Reflected
ray

Incoming
ray

R

L

N
H

u

Global Illumination

,

636

Refracted
ray path

Incoming
ray

T

N
u ui

ur

F I G U R E 5
Refracted ray-transmission path T
through a transparent material.

Parameters ηi and ηr are the indices of refraction in the incident material and
the refracting material, respectively. Angle of refraction θr can be calculated from
Snell’s law:

cos θr =
√

1 −
(

ηi

ηr

)2

(1 − cos2 θi) (3)

After the binary tree has been completed for a pixel, the intensity contributions
are accumulated, starting at the bottom (terminal nodes) of the tree. The surface
intensity from each node in the tree is attenuated by the distance from the parent
surface (the next node up the tree) and added to the intensity of the parent surface.
The intensity assigned to the pixel is the sum of the attenuated intensities at the
root node of the ray tree. If the primary ray for a pixel does not intersect an object
in the scene, the ray-tracing tree is empty and the pixel is assigned the background
intensity.

Ray-tracing is a highly view-dependent method—that is, because the rays that
are traced into the scene are emitted from the projection reference point, if the
viewing position changes, the rays must be retraced through the scene. Similarly,
if the positions of any objects in the scene change, all or some of the rays must be
retraced because of the resulting changes in the reflection pattern of rays. These
can be significant issues in applications where near-real-time results are desired
unless there is significant hardware support for the required computation.

Ray–Surface Intersection Calculations
A ray can be described with an initial position P0 and a unit direction vector u,
as illustrated in Figure 6. The coordinates for any point P along the ray at a
distance s from P0 are then computed from the following ray equation:

P = P0 + su (4)

y

x
z

u

P0

ray path

F I G U R E 6
Describing a ray with an initial-position
vector P0 and unit direction vector u.

Global Illumination

637

Initially, vector P0 can be set to the position Ppix of the pixel on the projection
plane, or it could be chosen to be the projection reference point. Unit vector u is
initially obtained from the position of the pixel through which the ray passes and
the projection reference point:

u = Ppix − Pprp

|Ppix − Pprp| (5)

Although it is not necessary for u to be a unit vector, this will simplify some
calculations.

To locate the ray-intersection position on a surface, we use the surface equation
to solve for position P, as represented by Equation 4. This gives us a value for
parameter s, which is the distance from P0 to the surface intersection point along
the ray path.

At each intersected surface, vectors P0 and u are updated for the secondary
rays at the ray-surface intersection point. For the secondary rays, the reflection
direction for u is R and the transmission direction is T. When a secondary ray-
surface intersection is detected, we simultaneously solve the ray equation and
the surface equation to obtain the intersection coordinates. We then update the
binary tree and generate the next set of reflection and refraction rays.

Efficient ray-surface intersection algorithms have been devised for most com-
monly occurring shapes, including various spline surfaces. The general procedure
is to combine the ray equation with the equations describing a surface and solve
for parameter s. In many cases, numerical root-finding methods and incremen-
tal calculations are used to locate intersection points over a surface. For complex
objects, it is often convenient to transform the ray equation into the local coor-
dinate system in which an object is defined. And intersection calculations for a
complex object can be simplified in many cases by transforming the object into a
more congenial shape. For example, we can ray-trace an ellipsoid by transforming
the ray and surface equations into a sphere-intersection problem.

Ray–Sphere Intersections
The simplest objects to ray-trace are spheres. If we have a sphere of radius r and
center position Pc (Figure 7), then any point P on the surface satisfies the sphere
equation:

|P − Pc |2 − r2 = 0 (6)

Substituting Equation 4 for P in the preceding equation, we have

|P0 + su − Pc |2 − r2 = 0 (7)

F I G U R E 7
A ray intersecting a sphere with radius
r and center position Pc .

y

x
z

uP0

Pc

P

r

Global Illumination

638

If we represent Pc −P0 as �P and expand the dot product, we obtain the quadratic
equation

s2 − 2(u ·�P) s + (|�P|2 − r2) = 0 (8)

whose solution is

s = u ·�P ±
√

(u ·�P)2 − |�P|2 + r2 (9)

If the discriminant is negative, either the ray does not intersect the sphere or
the sphere is behind P0. In either case, we can eliminate the sphere from fur-
ther consideration, because we assume that the scene is in front of the projection
plane. When the descriminant is not negative, the surface intersection coordi-
nates are obtained from Equation 4 using the smaller of the two values from
Equation 9. Color Plate 26 shows a ray-traced scene containing a snowflake
pattern formed with shiny spheres, which illustrates the global surface reflec-
tions possible with ray-tracing.

Some optimizations are possible in the ray–sphere intersection calculations
to reduce processing time. In addition, Equation 9 is susceptible to round-off
errors when a small sphere far from the initial ray position is processed. That is, if

r2 � |�P|2

we could lose the r2 term in the precision error of |�P|2. We can avoid this in most
cases by rearranging the calculation for distance s as

s = u ·�P ±
√

r2 − |�P − (u ·�P)u|2 (10)

Ray–Polyhedron Intersections
Intersection calculations for polyhedra are more complicated than the sphere-
intersection procedures. Therefore, it is often more efficient to process a poly-
hedron by performing an initial intersection test on a bounding volume. For
example, Figure 8 shows a polyhedron inside a sphere. If a ray does not in-
tersect the bounding sphere, we eliminate the polyhedron from further testing.
Otherwise, we next identify the front faces of the polyhedron as those polygons
that satisfy the inequality

u ·N < 0 (11)

where N is the surface normal for the polygon. For each face of the polyhedron
that satisfies condition 11, we solve the plane equation

N ·P = −D (12)

for surface position P that also satisfies Equation 4. Here, N = (A, B, C) and
D is the fourth plane parameter. Position P is both on the plane and on the ray
path if

N · (P0 + su) = −D (13)

u
N

F I G U R E 8
A polyhedron enclosed by a bounding
sphere.

Global Illumination

639

F I G U R E 9
Ray intersection with the plane
of a polygon.

u

polygon

plane-
intersection

point

and the distance from the initial ray position to the plane is

s = − D + N ·P0

N ·u
(14)

This gives us a position on the infinite plane that contains the polygon face, but
this position may not be inside the polygon boundaries (Figure 9). So we need

Reducing Object-Intersection Calculations
Ray–surface intersection calculations can account for as much as 95 percent of
the processing time in a ray tracer. For a scene with many objects, most of the
processing time for each ray is spent checking objects that are not visible along
the ray path. Therefore, several methods have been developed for reducing the
processing time spent on these intersection calculations.

One method for reducing the intersection calculations is to enclose groups
of adjacent objects within a bounding volume, such as a sphere or a box
(Figure 10). We can then test for ray intersections with the bounding volume.
If the ray does not intersect the surface of the bounding object, we eliminate the
enclosed surfaces from further intersection tests. This approach can be extended
to include a hierarchy of bounding volumes. That is, we enclose several bounding
volumes within a larger volume and carry out the intersection tests hierarchically.
First, we test the outer bounding volume; then, if necessary, we test the smaller
inner bounding volumes; and so on.

Bounding
sphere

F I G U R E 1 0
A group of objects inside a sphere.

Space-Subdivision Methods
Another way to reduce intersection calculations is to use space-subdivision
procedures. We can enclose an entire scene within a cube, then we successively
sub-divide the cube until each subregion (cell) contains no more than a preset
maximum number of surfaces. For example, we could require that each cell con-
tain no more than one surface. If parallel and vector processing capabilities are
available, the maximum number of surfaces per cell can be determined by the size
of the vector registers and the number of processors. Space subdivisions of the

Global Illumination

to perform an inside-outside test to determine whether the ray intersected this
face of the polyhedron.We perform this test for each face satisfying inequality 11.
The smallest distance s to an intersected polygon identifies the intersection posi-
tion on the polyhedron surface. If no intersection positions from Equation 14 are
inside points, the ray does not intersect the polyhedron.

640

cube can be stored in an octree or in a binary-partition tree. In addition, we can
perform a uniform subdivision by dividing the cube into eight equal size octants
at each step, or we can perform an adaptive subdivision by subdividing only those
regions of the cube that contain objects.

We then trace rays through the individual cells of the cube, performing
intersection tests only within those cells containing surfaces. The first surface inter-
sected is the visible surface for that ray. There is a trade-off, however, between the
cell size and the number of surfaces per cell. As we reduce the maximum number
of allowable surfaces per cell, we reduce the amount of processing needed for the
surface-intersection tests, but this also reduces cell size so that more calculations
are needed to determine the ray path through the cells.

Figure 11 illustrates the intersection of a pixel ray with the front face of a
cube surrounding a scene. The intersection position on the front face of the cube
identifies the initial cell that is to be traversed by this ray. We then process the ray
through the cells of the cube by determining the coordinates for the entry and exit
positions (Figure 12). At each nonempty cell, we test for surface intersections.
This processing continues until the ray intersects an object surface or exits the
bounding cube.

Given a unit ray direction vector u and a ray entry position Pin for a cell, we
identify the potential exit faces of a cell as those that satisfy the inequality

u ·Nk > 0 (15)

where Nk represents the unit surface normal vector for face k of the cell. If the unit
normal vectors for the cell faces in Figure 12 are aligned with the Cartesian-
coordinate axes, then

Nk =
⎧

⎨

⎩

(±1, 0, 0)

(0, ±1, 0)

(0, 0, ±1)

(16)

and we can determine the three candidate exit planes merely by checking the sign
of each component of u. The exit position on each candidate plane is obtained
from the ray equation as follows:

Pout,k = Pin + sku (17)

where sk is the distance along the ray from Pin to Pout,k . Substituting the ray
equation into the plane equation for each cell face, we have

Nk ·Pout,k = −Dk (18)

pixel
ray

F I G U R E 1 1
Ray intersection with a cube enclosing
all objects in a scene.

u

Pin

N2

N1Pout

N3

F I G U R E 1 2
Ray traversal through a subregion (cell)
of a cube enclosing a scene.

Global Illumination

641

and the ray distance to each candidate exit face is computed as

sk = −Dk − Nk ·Pin

Nk ·u
(19)

The smallest value computed for sk identifies the exit face for the cell. With the cell
faces aligned parallel to the Cartesian-coordinate planes, normal vectors Nk are
the unit axis vectors 16, and we can simplify the calculations in Equation 19.
For example, if a candidate exit plane has the normal vector (1, 0, 0), then for that
plane, we have

sk = xk − x0

ux
(20)

where u = (ux, uy, uz), xk = −Dk is the coordinate position of the candidate exit
plane, and x0 is the coordinate position of the cell entry face.

1
6

5

0
2

4

3
7

8

F I G U R E 1 3
An example trial exit plane and its
numbered sectors.

Various modifications can be made to the cell traversal procedures to speed up
the processing. One possibility is to take a trial exit plane k as the one perpendicular
to the direction of the largest component of u. This trial exit plane is then divided
into sectors, as shown in the example of Figure 13. The sector on the trial plane
containing Pout,k determines the true exit plane. For example, if the intersection
point Pout,k is in sector 0 for the example plane of Figure 13, the trial plane is
the true exit plane, and we are done. If the intersection point is in sector 1, the true
exit plane is the top plane, and we need simply to calculate the exit point on the
top boundary of the cell. Similarly, sector 3 identifies the bottom plane as the true
exit plane; and sectors 4 and 2 identify the true exit plane as either the left or right
cell plane, respectively. When the trial exit point falls in sector 5, 6, 7, or 8, we must
carry out two additional intersection calculations to identify the true exit plane.
Implementation of these methods on parallel vector machines provides further
improvements in performance.

A light-buffer technique, which is a form of spatial partitioning, was used to
render the scene in Color Plate 27. Here, a cube is centered on each point light
source, and each side of the cube is partitioned using a grid of squares. A sorted
list of objects that are visible to the light through each square is then maintained by
the ray tracer to speed up processing of shadow rays. As a means for determining
surface illumination effects, a square for each shadow ray is computed and the
shadow ray is then processed against the list of objects for that square.

Intersection tests in ray-tracing programs can also be reduced with directional
subdivision procedures, by considering sectors that contain a bundle of rays.
Within each sector, we can sort surfaces in depth order, as in Figure 14. Each
ray then needs to test only the objects within the sector that contains that ray.

Simulating Camera Focusing Effects
To model camera effects in a scene, we specify the focal length and other param-
eters for a convex lens (or camera aperture) that is to be positioned in front of
the projection plane. Lens parameters are then set so that some objects in a scene
can be in focus while other objects are out of focus. The lens focal length is the
distance from the center of the lens to the focal point F , which is the convergence
position for a set of parallel rays passing through the lens, as illustrated in
Figure 15. A typical value for the focal length of a 35 mm camera is f = 50 mm.
Camera apertures are usually described with a parameter n, called the f-number
or f-stop, which is the ratio of the focal length to the aperture diameter:

n = f
2r

(21)

Global Illumination

642

Sector for a
bundle of rays

F I G U R E 1 4
Directional subdivision of space. Pixel
rays in the indicated sector perform
intersection tests in depth order only
on the surfaces within the sector.

f

F Lens centerline

Lens
axis

Focal
plane

r � Lens radius

Incoming
parallel

light rays

F I G U R E 1 5
Side view of a thin convex lens. Parallel
rays are focused by the lens at a
position on the focal plane, which is at
a distance f from the center of the
lens.

Therefore, we could use either the radius r or the f-number n, along with the focal
length f , to specify the camera parameters. For a more accurate focusing model
we could use the film size (width and height) and focal length to simulate the
camera effects.

Ray-tracing algorithms typically determine focusing effects using the thin-
lens equation from geometric optics:

1
d

+ 1
di

= 1
f

(22)

Parameter d is the distance from the lens center to an object position, and di is the
distance from the lens center to the image plane where that object is in focus. The
object point and its image are on opposite sides of the lens along a line through
the lens center, and d > f (Figure 16). Therefore, to focus on a particular object
at a distance d from the lens, we position the pixel plane at a distance di behind
the lens.

For a scene position at some distance d ′ �= d , the projected point will be out of
focus on the image plane. If d ′ > d , the point is in focus at a position in front of the
image plane; and if d ′ < d , the point is in focus at a position in back of the image
plane. The projection of a point at position d ′ on the image plane is approximately

Global Illumination

643

F I G U R E 1 6
Thin-lens parameters. An object at a
distance d from the lens is in focus on
the image plane at a distance di from
the lens.

d di

F F

f f

Object
Plane

Image
(Film)
Plane

a small circle, called the circle of confusion, and the diameter of this circle can be
computed as

2 rc = |d ′ − d| f
nd

(23)

We can choose the camera parameters to minimize the size of the circle of confu-
sion for a range of distances, called the depth of field for the camera. In addition,
multiple rays are traced for each pixel to sample positions throughout the lens
area, and we discuss these distributed-ray tracing methods in a later section of this
chapter.

Antialiased Ray Tracing
Two basic antialiasing techniques employed in ray-tracing algorithms are super-

Figure 17 illustrates a simple supersampling procedure. Here, one ray is
generated through each corner of the pixel. If the intensities computed for the four
rays are not approximately equal, or if some small object lies between the four
rays, we divide the pixel area into subpixels and repeat the process. For example,
the pixel in Figure 18 is divided into nine subpixels using 16 rays, one at each
subpixel corner. Adaptive sampling is then used to subdivide further those sub-
pixels that subtend a small object or do not have nearly equal-intensity rays. This
subdivision process can be continued until the subpixel rays have approximately
equal intensities, or until an upper bound, say 256, has been reached for the max-
imum number of rays per pixel.

Global Illumination

sampling and adaptive sampling. In supersampling and adaptive sampling, the
pixel is treated as a finite square area instead of a single point. Supersampling
typically uses multiple, evenly spaced rays (samples) over each pixel area.
Adaptive sampling uses unevenly spaced rays in some regions of the pixel area.
For example, more rays can be used near object edges to obtain a better estimate
of the pixel intensities. (Another method for sampling is to distribute the rays
randomly over the pixel area.We discuss this approach in the next section.)
When multiple rays per pixel are used, the intensities of the pixel rays are aver-
aged to produce the overall pixel intensity.

644

Projection
Reference Point

Pixel Positions
on Projection Plane

F I G U R E 1 7
Supersampling with four rays per pixel, one at each pixel corner.

F I G U R E 1 9
Ray positions centered on subpixel
areas.

Projection
Reference Point

F I G U R E 2 0
A pixel ray cone.

F I G U R E 1 8
Subdividing a pixel into nine subpixels
with one ray at each subpixel corner.

Instead of passing rays through pixel corners, we can generate rays through
subpixel centers, as in Figure 19. With this approach, we can weight the rays
according to one of the sampling schemes you already know.

Another method for antialiasing displayed scenes is to treat a pixel ray as a
cone, as shown in Figure 20. Only one ray is generated per pixel, but the ray
now has a finite cross-section. To determine the percent of pixel-area coverage with
objects, we calculate the intersection of the pixel cone with the object surface. For
a sphere, this requires finding the intersection of two circles. For a polyhedron,
we must find the intersection of a circle with a polygon.

Distributed Ray Tracing
Distributed ray tracing (also referred to as distribution ray tracing) is a stochas-
tic sampling method that randomly distributes rays according to the various
parameters in an illumination model. Illumination parameters include pixel area,
reflection and refraction directions, camera lens area, and time. Aliasing effects
are thus replaced with low-level noise, which improves picture quality and allows
more accurate modeling of surface gloss and translucency, finite camera apertures,
finite light sources, and motion-blur displays of moving objects. Distributed ray

Global Illumination

645

tracing essentially provides a Monte Carlo evaluation of the multiple integrals
that occur in an accurate physical description of surface lighting.

Pixel sampling is accomplished by randomly distributing a number of rays
over the pixel area. Choosing ray positions completely at random, however, can
result in a clustering of rays in a small region of the pixel area, and leaving large
parts of the pixel unsampled. A better approximation of the light distribution over
a pixel area is obtained by using a technique called jittering on a regular subpixel
grid. This is usually done by initially dividing the pixel area (a unit square) into the
16 subareas shown in Figure 21 and generating a random jitter position in each
subarea. The random ray positions are obtained by jittering the center coordinates
of each subarea by small amounts, δx and δy, where −0.5 < δx, δy < 0.5. We then
choose the jitter position as (x + δx, y + δy), where (x, y) is the center position of
the pixel.

F I G U R E 2 1
Pixel sampling using 16 subpixel areas
and a jittered ray position from the
center coordinates for each subarea.

Integer codes 1 through 16 are assigned randomly to each of the 16 rays, and
a table lookup is used to obtain values for the other parameters, such as reflection
angle and time. Each subpixel ray is processed through the scene to determine
the intensity contribution for that ray. The 16 ray intensities are then averaged to
produce the overall pixel intensity. If the subpixel intensities vary too much, we
can subdivide the pixel further.

To model camera-lens effects, we process pixel rays through a lens that is
positioned in front of the pixel plane. As we noted earlier, a camera is simulated
using a focal length and other parameters so that selected objects will be in focus.
Then we distribute subpixel rays over the aperture area. Assuming that we have
16 rays per pixel, we can subdivide the aperture area into 16 zones. Each subpixel
is then assigned a center position in one of the zones, and the following procedure
can be used to determine the distribution sampling for the pixel. A jittered position
is calculated from each zone center, and a ray is projected into the scene from this
jittered zone position through the focal point of the lens. We locate the focal point
for a ray along the line from the center of the subpixel through the lens center,
shown as point F in Figure 22. With the pixel plane at a distance d i from the lens
(Figure 16), positions along the ray near the object plane (the focusing plane),
at a distance d in front of the lens, are in focus. Other positions along the ray are
blurred. To improve the display for out-of-focus objects, we increase the number
of subpixel rays.

Reflection and transmission paths are also distributed throughout a spa-
tial region. To simulate surface gloss, rays reflected from a surface position are

F I G U R E 2 2
Distributing subpixel rays over a
camera lens of focal length f .

Lens
Position

Subpixel
Position

Subpixel Ray
Direction

F

Image
Plane

Global Illumination

646

N

u

R

T

Incoming
ray

F I G U R E 2 3
Modeling gloss and translucency by
distributing subpixel rays about the
reflection direction R and the
transmission direction T.

N

Lmin

Lmax

Extended
Light

Source

F I G U R E 2 4
Distributing shadow rays over a finite
light source.

distributed about the specular-reflection direction R according to the assigned ray
codes (Figure 23). The maximum spread about R is divided into 16 angular
zones, and each ray is reflected in a jittered position from the zone center corre-
sponding to its integer code. We can use the Phong model, cosns φ, to determine
the maximum distribution for the reflection angles. If the material is transparent,
refracted rays can be distributed about the transmission direction T in a similar
manner to model translucency.

Extended light sources are handled by distributing a number of shadow rays
over the area of the light source, as demonstrated in Figure 24. The light source
is divided into zones, and shadow rays are assigned jitter directions to the various
zones. In addition, zones can be weighted according to the intensity of the light
source within that zone and the size of the projected area of the zone onto the
object surface. More shadow rays are then sent to zones with heavier weights.
If some shadow rays intersect opaque objects between the surface and the light
source, a penumbra (partly illuminated region) is generated at that surface point.
If all shadow rays are blocked, however, the surface point is within an umbra
region (completely dark) for that light source. Figure 25 illustrates the regions
for the umbra and penumbra on a surface partially shielded from a light source.

We create motion blur by distributing rays over time. A total frame time and
the frame-time subdivisions are determined according to the motion dynamics
required for the scene. Time intervals are labeled with integer codes, and each
ray is assigned to a jittered time within the interval corresponding to the ray
code. Objects are then moved to their positions at that time, and the ray is traced
through the scene. Additional rays are used for highly blurred objects. To reduce
calculations, we can use bounding boxes or spheres for initial ray-intersection
tests. That is, we move the bounding object according to the motion requirements
and test for intersection. If the ray does not intersect the bounding object, we need
not process the individual surfaces within the bounding volume.

Color Plate 28 illustrates focusing, refraction, and antialiasing effects with
distributed ray tracing.

Sun

Moon

Umbra

Penumbra

Earth

F I G U R E 2 5
Umbra and penumbra regions created
by a solar eclipse on the surface of the
earth.

Global Illumination

647

2 Radiosity Lighting Model
Although the basic illumination model produces reasonable results for many
applications, there are a variety of lighting effects that are not accurately described
by the simple approximations in this model. We can model lighting effects more
precisely by considering the physical laws governing the radiant-energy transfers
within an illuminated scene. This method for computing pixel color values is
generally referred to as the radiosity model.

Radiant-Energy Terms
In the quantum model of light, the energy of the radiation is carried by the indi-
vidual photons. For monochromatic light radiation, the energy of each photon is
calculated as

Ephoton, f = h f (24)

where the frequency f , measured in hertz (cycles per second), characterizes the
color of the light. A blue light has a high frequency within the visible band of
the electromagnetic spectrum, and a red light has a low frequency. The frequency
also gives the oscillation rate for the amplitude of the electric and magnetic com-
ponents of the radiation. Parameter h is Planck’s constant, which has the value
6.6262 × 10−34 joules · sec, independent of the light frequency.

The total energy for monochromatic light radiation is

E f =
∑

all photons

h f (25)

The radiant energy at a particular light frequency is also referred to as a spectral
radiance. However, any actual light radiations, even those from a “monochro-
matic” source, contain a range of frequencies. Therefore, the total radiant energy
is the sum over all photons of all frequencies:

E =
∑

f

∑

all photons

h f (26)

The amount of radiant energy transmitted per unit of time is called the radiant
flux �:

� = dE
dt

(27)

Radiant flux is also referred to as radiant power, and it is measured in watts
(joules per second).

To obtain the lighting effects for surfaces in a scene, we calculate the radiant
flux per unit area that is leaving a surface. This quantity is called the radiosity B,
or radiant exitance:

B = d�

dA
(28)

which is measured in units of watts per meter2. The intensity I is often taken to be
a measure of the radiant flux in a particular direction per unit solid angle per unit
projected area, with units of watts/(meter2 · steradians). Sometimes, however,
intensity is defined simply as the radiant flux in a particular direction.

Depending on the interpretation of the term intensity, the radiance can be
defined as the intensity per unit projected area. Alternatively, we can obtain radi-
ance from the radiant flux or the radiosity per unit solid angle.

Global Illumination

648

The Basic Radiosity Model
To describe diffuse reflections from a surface accurately, the radiosity model com-
putes radiant-energy interactions between all the surfaces in a scene. Because the
resulting set of equations can be extremely difficult to solve, the basic radiosity
model assumes that all surfaces are small, opaque, ideal diffuse reflectors
(Lambertian).

We apply the radiosity model by determining the differential amount of
radiant flux dB leaving each surface point in the scene, and then we sum the
energy contributions over all surfaces to obtain the amount of energy transfer be-
tween the surfaces. In Figure 26, which illustrates the radiant energy transfer
from a surface, dB is the visible radiant flux emanating from the surface point in
the direction given by angles θ and φ within a differential solid angle dω per unit
time, per unit surface area.

The intensity I for the diffuse radiation in direction (θ , φ) can be described as
the radiant energy per unit time per unit projected area per unit solid angle, or

I = dB
dω cos φ

(29)

Assuming the surface is an ideal diffuse reflecto , we can set the intensity
I to a constant for all viewing directions. Thus, dB/dω is proportional to the
to the projected surface area (Figure 27). To obtain the total rate of energy
radiation from the surface point, we need to sum the radiation for all directions.
That is, we want the total energy emanating from a hemisphere centered on that
surface point, as in Figure 28, which is

B =
∫

hemi
dB (30)

N

yx

dB

dv

u

f

F I G U R E 2 6
Visible radiant energy emitted from a
surface point in direction (θ , φ) within
solid angle dω.

dA

dA cosf

Direction of
Energy Transfer

f
f

F I G U R E 2 7
For a unit surface element, the
projected area perpendicular to the
direction of energy transfer is equal to cos φ.

N

y

z

x

dS

dB

dv

u

f

F I G U R E 2 8
Total radiant energy from a surface point is the
sum of the contributions in all directions over a
hemisphere centered on that surface point.

Global Illumination

r

649

F I G U R E 2 9
An enclosure of surfaces for the
radiosity model.

Hk

Bk

Surface k

For a perfect diffuse reflector, I is a constant, so we can express radiant flux B as

B = I
∫

hemi
cos φ dω (31)

Also, the differential element of solid angle dω can be expressed as

dω = dS
r2 = sin φ dφ dθ

so that

B = I
∫ 2π

0

∫ π/2

0
cos φ sin φ dφ dθ

= Iπ (32)

A model for the light reflections from the various surfaces is formed by setting
up an “enclosure” of surfaces (Figure 29). Each surface in the enclosure is
either a reflector, an emitter (light source), or a combination reflector-emitter. We
designate radiosity parameter Bk as the total rate of radiant energy leaving surface
k per unit area. Incident energy parameter Hk is the sum of the radiant energy
contributions from all surfaces in the enclosure arriving at surface k per unit time,
per unit area. That is,

Hk =
∑

j

B j F jk (33)

where parameter F jk is called the form factor for surfaces j and k. Form factor F jk

is the fractional amount of radiant energy from surface j that reaches surface k.
For a scene with n surfaces in the enclosure, the radiant energy from surface k

is described with the following radiosity equation:

Bk = Ek + ρk Hk

= Ek + ρk

n∑

j=1

B j F jk (34)

If surface k is not a light source, then Ek = 0. Otherwise, Ek is the rate of energy
emitted from surface k per unit area (watts/m2). Parameter ρk is the reflectivity
factor for surface k (percent of incident light that is reflected in all directions). This
reflectivity factor is related to the diffuse reflection coefficient used in empirical
illumination models. Plane and convex surfaces cannot “see” themselves, so no
self-incidence takes place and the form factor Fkk for these surfaces is 0.

Global Illumination

650

Nj

Nk Surface k

dAj

dAk

dBj

Surface j

dv

fj

fk

F I G U R E 3 0
The transfer of a differential amount of
radiant energy dB j from a surface
element with area dA j to surface
element dA k .

To obtain the illumination effects over the various surfaces in the enclosure,
we need to solve the simultaneous radiosity equations for n surfaces, given the
array values for Ek , ρk , and F jk . That is, we must solve

(1 − ρk Fkk)Bk − ρk

∑

j �= k

B j F jk = Ek k = 1, 2, 3, . . . , n (35)

or
⎡

⎢
⎢
⎢
⎣

1 − ρ1 F11 −ρ1 F12 · · · −ρ1 F1n

−ρ2 F21 1 − ρ2 F22 · · · −ρ2 F2n
...

...
...

−ρn Fn1 −ρ2 Fn2 · · · 1 − ρn Fnn

⎤

⎥
⎥
⎥
⎦

·

⎡

⎢
⎢
⎢
⎣

B1
B2
...

Bn

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

E1
E2
...

En

⎤

⎥
⎥
⎥
⎦

(36)

We then convert to intensity values Ik by dividing the radiosity values Bk by π .
For color applications, we can calculate the individual red, green, and blue (RGB)
components of the radiosity (BkR, BkG, BkB) using the color components for ρk

and Ek .
Before we can solve Equation 35, we must determine the values for form

factors F jk . We do this by considering the energy transfer from surface j to surface
k (Figure 30). The rate of radiant energy falling on a small surface element dAk

from area element dAj is

dB j dAj = (I j cos φ j dω) dAj (37)

However, solid angle dω can be written in terms of the projection of area element
dAk perpendicular to the direction dB j as

dω = dA
r2 = cos φk dAk

r2 (38)

Therefore, we can express Equation 37 in the form

dB j dAj = I j cos φ j cos φk dAj dAk

r2 (39)

The form factor between the two surfaces is the percent of energy emanating from
area dAj that is incident on dAk :

FdAj ,dAk = energy incident on dAk

total energy leaving dAj

= I j cos φ j cos φk dAj dAk

r2 · 1
B j dAj

(40)

Global Illumination

651

Also, B j = π I j , so

FdAj ,dAk = cos φ j cos φk dAk

πr2 (41)

and the fraction of emitted energy from area dAj incident on the entire surface k is

FdAj , Ak =
∫

surf j

cos φ j cos φk

πr2 dAk (42)

where Ak is the area of surface k. We can then define the form factor between the
two surfaces as the area average of the above expression, which is

F jk = 1
Aj

∫

surf j

∫

surfk

cos φ j cos φk

πr2 dAk dAj (43)

The two integrals in Equation 43 are evaluated using numerical integration
techniques and stipulating the following conditions:

• ∑n
k=1 F jk = 1, for all k (conservation of energy)

• Aj F jk = Ak Fkj (uniform light reflection)
• F j j = 0, for all j (only plane or convex surface patches)

To apply the radiosity model, we subdivide each surface in a scene into many
small polygons. The realistic appearance of the displayed scene is improved as
we decrease the size of the polygon subdivisions, but more time is then needed
to render the scene. We can speed up the calculation of the form factors by using
a hemicube to approximate the hemisphere. This replaces the spherical surface
with a set of linear (plane) surfaces. Once the form factors are evaluated, we can
solve the simultaneous linear equations 35 using a numerical technique such
as Gaussian elimination or LU decomposition. Alternatively, we could start
with approximate values for the Bj and solve the set of linear
equations iteratively using the Gauss-Seidel method. At each iteration, we calcu-
late an estimate of the radiosity for surface patch k using the previously obtained
radiosity values in the radiosity equation

Bk = Ek + ρk

n∑

j=1

B j F jk

We could then display the scene at each step to observe the improvement in surface
rendering. This process is repeated until there is little change in the calculated
radiosity values.

Progressive Refinement Radiosity Method
Although the radiosity method produces highly realistic surface renderings, con-
siderable processing time is needed to calculate the form factors and there are
tremendous storage requirements. Using progressive refinement, we can restruc-
ture the iterative radiosity algorithm to speed up the calculations and reduce
storage requirements at each iteration.

From the radiosity equation, the radiant energy transfer between two surface
patches is calculated as

Bk due to B j = ρk B j F jk (44)

Reciprocally,

B j due to Bk = ρ j Bk Fk j , for all j (45)

Global Illumination

 equations

652

which we can rewrite as

B j due to Bk = ρ j Bk F jk
Aj

Ak
, for all j (46)

This relationship is the basis for the progressive refinement approach to the radios-
ity calculations. Using a single surface patch k, we can calculate all form factors
F jk and consider the light transfer from that patch to all other surfaces in the
environment. With this procedure, we need only compute and store parameter
values for a single hemicube and the associated form factors. At the next iteration,
we replace these parameter values with values for another selected patch; and we
can display the progressive improvements in the surface rendering as we proceed
from one selected patch to another.

Initially, we set Bk = Ek for all surface patches. We then select the patch with
the highest radiosity value, which is the brightest light emitter, and calculate the
next approximation to the radiosity for all other patches. This process is repeated
at each step, so that light sources are chosen first in order of highest radiant energy,
and then other patches are selected based on the amount of light received from the
light sources. The steps in a simple progressive refinement approach are outlined
in the following algorithm:

for each patch k
/* Set up hemicube and calculate form factor F [j][k]. */

for each patch j {
dRad = rho [j] * B [k] * F [j][k] * A [j] / A [k];
dB [j] = dB [j] + dRad;
B [j] = B [j] + dRad;

}

dB [k] = 0;

At each step, the surface patch with the highest value for �Bk Ak is selected,
because radiosity is a measure of radiant energy per unit area. Also, we choose
the initial values as �Bk = Bk = Ek for all surface patches. This progressive refine-
ment algorithm approximates the actual propagation of light through a scene as
a function of time.

Displaying the rendered surfaces at each step produces a sequence of views
that proceeds from a dark scene to a fully illuminated one. After the first step, the
only surfaces illuminated are the light sources and those nonemitting patches that
are visible to the chosen emitter. To produce more useful initial views of the scene,
we could set an ambient light level so that all patches have some illumination.
At each stage of the iteration, we then reduce the ambient light according to the
amount of radiant energy transfer into the scene.

Once a radiosity solution (either complete, or progressive) has been calcu-
lated, it is possible to view the scene from any point without require additional
computation. Thus, radiosity is inherently view-independent (as opposed to ray-
tracing, which is highly view-dependent). However, a change in position of any
object in the scene will result in a change in form factors, which will require
re-solving the radiosity equations.

Color Plate 29 shows a scene rendered with the progressive-refinement
radiosity model. Various lighting conditions in radiosity renderings are illus-
trated in Color Plates 30 and 31. Ray-tracing methods are often combined with
the radiosity model to produce highly realistic diffuse and specular surface shad-
ings, as in Color Plate 28.

Global Illumination

653

3 Environment Mapping
An alternate procedure for modeling global reflections is to define an array of
intensity values that describes the environment around a single object or a group
of objects. Instead of using interobject ray tracing or the radiosity calculations
to pick up the global specular and diffuse illumination effects, we simply map
the environment array onto an object in relationship to the viewing direction. This
procedure is called environment mapping, and it is sometimes referred to as
reflection mapping (although transparency effects could also be modeled with
the environment map). Another name for environment mapping is “the poor
person’s ray-tracing method,” because it is a cheap and fast approximation of the
more accurate global-illumination rendering techniques that we discussed in Sec-
tions 1 and 2.

The environment map is defined over the surfaces of an enclosing universe.
Information in the environment map includes intensity values for light sources,
the sky, and other background objects. Figure 31 shows the enclosing universe
as a sphere, but a cube or a cylinder is often used to define the environment
surfaces surrounding the objects in a scene.

To render the surface of an object, we project pixel areas onto the object surface
and then reflect each projected pixel area onto the environment map to pick up the
surface intensity values for the pixel. If the object is transparent, we can also refract
the projected pixel area to the environment map. The environment-mapping pro-
cess for reflection of a projected pixel area is illustrated in Figure 32. Pixel
intensity is determined by averaging the intensity values within the intersected
region of the environment map.

F I G U R E 3 1
A spherical enclosing universe, with the
environment map on the surface of the sphere.

Objects
in a Scene

Spherical
Environment
Map

F I G U R E 3 2
Projecting a pixel area to a surface, then
reflecting the area to the environment map.

Pixel Projection
onto Environment
Map

Object
Surface

Pixel
Area

Projection
Reference Point

Global Illumination

654

4 Photon Mapping
Although the radiosity method can produce accurate displays of global illumi-
nation effects for simple scenes, the method becomes more difficult to apply as
the complexity of a scene increases. Both the rendering time and the storage
requirements become prohibitive for very complicated scenes, and many illumi-
nation effects are difficult to model correctly. Photon mapping provides a general
method for modeling global illumination in complex scenes that is both efficient
and accurate.

The basic concept in photon mapping is to separate the illumination informa-
tion from the geometry of a scene. Ray paths are traced through the scene from
all light sources, and the lighting information from the ray-object intersections is
stored in a photon map. Distributed ray-tracing methods are then applied using
incremental algorithms similar to those employed in radiosity rendering.

Light sources can be designated as points, directional spotlights, or any other
configuration. The assigned intensity for a light source is divided among its
rays (photons), and the ray directions are distributed randomly. A point light
source is modeled by generating ray paths uniformly in all directions unless the

Photon mapping is particularly adept at simulating two real-world effects that
are more difficult to obtain through ray-tracing and radiosity methods: caustics
and diffuse inter-reflections. Caustics are patterns that result from the reflection or
refraction of light. An example of this is the rippling light effect often seen on
the bottom of a swimming pool. As light passes through the water in the pool,
it is focused in different ways as the water moves. Another type of caustic effect
comes from the reflection of light off shiny, curved surfaces, such as the inside of a
polished brass ring. In this type of caustic, the reflected light produces a cardioid
pattern.

As the name suggests, diffuse inter-reflections are the result of the reflection of
light between diffuse surfaces. This type of reflection is responsible for the “color
bleeding” effect that is seen when light reflects from a brightly colored surface
onto another surface.

Typically, photon mapping is implemented using a two-pass method. The
first pass distributes photons throughout the scene. Photons are emitted from each
light source in varying numbers and directions based on characteristics of the light
source. The power of an individual photon is determined by the original power
(wattage) of the light source and the number of photons being generated from
that source. The emitted photons are traced through the scene until they strike an
object, at which point they may be reflected, transmitted, or absorbed by the object,
based upon a probability distribution for that object. At each intersection with an
object, information about the photon’s incident direction, incoming power, and
the intersection point are added to the photon map. Reflected and transmitted
photons are followed as they continue through the scene.

Once the photon map has been built, the second pass renders the image
from the collected photon information. This is commonly implemented using a

Global Illumination

source is directional. For other light sources, random positions on the source are
selected and rays are generated in random directions. More rays are generated
from brighter lights than from low-power light sources. In addition, projection
maps, which store binary information about whether there are objects in any
region of the space, can be constructed for the light sources. Bounding spheres
can also be used in the algorithm to provide object information within large spa-
tial regions. Any number of rays can be generated for a scene, and the accuracy
of the illumination effects improves as more ray paths are generated.

655

modified form of ray-tracing. As rays are traced into the scene, the information
collected in the photon map is used to produce an estimate of the radiance ex-
iting from the intersection point along the ray. That estimate is then used in the
calculation of the pixel color.

As with a radiosity solution, a photon map is view-independent. Once the
photon energy has been distributed, the scene can be viewed from any position
without requiring that photon tracing be performed again.

5 Summary
Ray tracing is a method for obtaining global, specular reflection and transmission
effects by tracing light paths through a scene to pixel positions. Pixel rays are
traced through a scene, bouncing from object to object while accumulating inten-
sity contributions. A ray-tracing tree is constructed for each pixel, and intensity
values are combined from the terminal nodes of the tree back to the root. Object-
intersection calculations in ray tracing can be reduced with space-subdivision
methods that test for ray-object intersections only within subregions of the total
space. Distributed ray tracing employs multiple rays per pixel, randomly assign-
ing various ray parameters, such as direction and time. This provides an accurate
method for modeling surface gloss and translucency, finite camera apertures, ex-
tended light sources, shadow effects, and motion blur.

Radiosity methods provide accurate modeling for diffuse-reflection effects
by calculating radiant energy transfer between the various surface patches
in a scene. Progressive refinement is used to speed up the radiosity calcula-
tions by considering energy transfer from one surface patch at a time. Highly
photo-realistic scenes are generated using a combination of ray tracing and
radiosity.

A fast method for approximating global illumination effects is environment
mapping. An environment array is used to store information on background
intensity for a scene. This array is then mapped to the objects in a scene based on
the specified viewing direction.

Photon mapping provides an accurate and efficient model for global illumina-
tion in complex scenes. Random rays are generated from the light sources, and the
illumination effects for each ray are stored in a photon map, which separates the
lighting information from the scene geometry. The accuracy of the illumination
effects improves as more rays are generated.

REFERENCES
Basic illumination models and surface-rendering tech-
niques are discussed in Gouraud (1971) and Phong
(1975), Freeman (1980), Bishop and Wiemer (1986), Birn
(2000), Akenine-Möller and Haines (2002), and Olano,
et al. (2002). Implementation algorithms for illumination
models and rendering methods are presented in Glassner
(1990), Arvo (1991), Kirk (1992), Heckbert (1994), Paeth
(1995), and Sakaguchi, Kent, and Cox (2001). Halftoning
methods are given in Velho and Gomes (1991). For further
information on ordered dither, error diffusion, and dot
diffusion, see Knuth (1987).

Ray-tracing procedures are treated in Whitted
(1980), Amanatides (1984), Cook, Porter, and Carpenter
(1984), Kay and Kajiya (1986), Arvo and Kirk (1987),

Quek and Hearn (1988), Glassner (1989), Shirley (1990
and 2000), and Koh and Hearn (1992). Algorithms
for radiosity methods can be found in Goral, et al.
(1984), Cohen and Greenberg (1985), Cohen, et al.
(1988), Wallace, Elmquist, and Haines (1989), Chen,
et al. (1991), Dorsey, Sillion, and Greenberg (1991)
, Sillion, et al. (1991), He, et al. (1992), Cohen and
Wallace (1993), Lischinski, Tampieri, and Greenberg
(1993). Schoeneman, et al. (1993), and Sillicon and
Puech (1994). Photon-mapping algorithms are detailed
in Jensen (2001). Finally, a general discussion of energy
propagation, transfer equations, rendering processes,
and our perception of light and color is given in Glassner
(1995).

Global Illumination

656

EXERCISES
1 Write a program to implement the basic ray-

tracing algorithm for a scene containing two
spheres hovering over a white ground square
that has evenly spaced vertical black stripes
down its length. The scene is to be illuminated
with a single point light source at the viewing
position.

2 Write a program to implement the basic ray-
tracing algorithm for a scene containing any speci-
fied arrangement of spheres and polygon surfaces
illuminated by a given set of point light sources.
The program should allow the user to increase
or decrease the intensity of each light source via
keyboard input.

3 Write a program to implement the basic ray-
tracing algorithm using space-subdivision meth-
ods for any specified arrangement of spheres and
polygon surfaces illuminated by a given set of
point light sources. The program should allow the
user to increase or decrease the intensity of each
light source via keyboard input.

4 Write a program to implement the follow-
ing features of distributed ray tracing: pixel
sampling with 16 jittered rays per pixel, dis-
tributed reflection directions (gloss), distributed
refraction directions (translucency), and extended
light sources.

5 Set up an algorithm for modeling the motion
blur of two spheres moving in opposite directions
using distributed ray tracing.

6 Implement the basic radiosity algorithm for ren-
dering the inside surfaces of a regular pentagon
when one inside face of the pentagon is a light
source.

7 Devise an algorithm for implementing the
progressive-refinement radiosity method.

8 Apply the algorithm in developed in the previous
exercise to the pentagon example in Exercise 6.

9 Write a routine to transform an environment map
to the surface of a sphere.

IN MORE DEPTH
1 Implement the basic ray tracing algorithm to

replace the existing illumination model used to
render your scene. Record the average rendering
time for the scene.

2 Choose one of the methods for improving the
performance of the basic ray-tracing algorithm
(e.g., using bounding volumes to reduce object-
intersection calculations, subdivision methods).
Render your scene using these improvements and
record the average rendering time. How much of
an improvement do you obtain by incorporating
these methods?

Global Illumination

657

This page intentionally left blank

C o l o r P l a t e 2 5
A ray-traced scene, showing global reflection and
transparency effects. (Courtesy of Evans & Sutherland.)

C o l o r P l a t e 2 6
A “sphereflake” rendered with ray tracing using 7,381 spheres and 3 light sources.
(Courtesy of Eric Haines. Reprinted with permission.)

From Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson

Color Plates
Global Illumination

659

(a) (b)

C o l o r P l a t e 2 7
A room scene illuminated with 5 light sources (a) was rendered using the ray-tracing light-buffer technique to
process shadow rays. A closeup (b) of part of the room shown in (a) illustrates the global illumination effects. The
room is modeled with 1,298 polygons, 4 spheres, 76 cylinders, and 35 quadrics. Rendering time was 246 minutes
on a VAX 11/780, compared to 602 minutes without using light buffers. (Courtesy of Eric Haines. Reprinted with
permission.)

C o l o r P l a t e 2 8
A scene showing the focusing, antialiasing, and illumination
effects possible with a combination of ray-tracing and
radiosity methods. Realistic physical models of light
illumination were used to generate the refraction effects,
including the caustic in the shadow of the glass. (Courtesy of
Peter Shirley, Computer Science Department, University of
Utah.)

C o l o r P l a t e 2 9
Nave of Chartres Cathedral rendered with a progressive-
refinement radiosity model by John Wallace and John Lin,
using the Hewlett-Packard Starbase Radiosity and Ray Tracing
software. Radiosity form factors were computed with
ray-tracing methods. (Courtesy of John Wallace, Autodesk,
Inc. Reprinted with permission.)

660

C o l o r P l a t e 3 0
Image of a constructivist museum rendered with a
progressive-refinement radiosity method. (Courtesy of
Shenchang Eric Chen, Stuart I. Feldman, and Julie Dorsey,
Program of Computer Graphics, Cornell University. © 1988
Cornell University Program of Computer Graphics. Reprinted
with permission.)

C o l o r P l a t e 3 1
Simulation of the stair tower in the Engineering Theory Center
Building at Cornell University rendered with a progressive-
refinement radiosity method. (Courtesy of Keith Howie and
Ben Trumbore, Program of Computer Graphics, Cornell
University. © 1990 Cornell University Program of Computer
Graphics. Reprinted with permission.)

661

This page intentionally left blank

Programmable Shaders

1 A History of Shading Languages

2 The OpenGL Pipeline

3 The OpenGL Shading Language

4 Shader Effects

5 Summary

I n the earliest days of computer-generated imagery, virtu-

ally the entire image generation process was under the con-

trol of the programmer. Hardware vendors provided libraries

of functions that facilitated low-level access to their products, but

libraries of routines for drawing primitives and altering their attributes

were nonexistent or very rudimentary in nature. As a result, the pro-

grammer was required to specify every aspect of the image gener-

ation process. While this provided tremendous control of the final

image, it also required significant investments of time and effort. Pro-

grammers typically developed their own algorithms for implementing

primitives and converting their ideas into displayable result images.

Furthermore, programs developed to use one vendor's graphics hard-

ware were typically unusable on other hardware without significant

modification.

As the field of computer graphics began to mature, standard

libraries of graphics routines became common. The development of

the Graphical Kernel System (GKS) in 1984

From Chapter of Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson

22

and the subsequent

663

As the capabilities of widely available graphics hardware continued to increase, pro-

grammers looked for ways to access the increasingly powerful hardware beyond the con-

straints of the fixed-function pipeline. To facilitate this, API developers provided “hooks”

into the rendering pipeline, which allow modification of the behavior of certain stages of

the pipeline programmatically through the use of programmable shaders. These shaders

replace the built-in fixed functionality of those stages with whatever behavior the pro-

grammer desires, making it possible to achieve effects that would be difficult or impos-

sible with the original fixed-function pipeline.

1 A History of Shading Languages
By the mid 1980s, computer-generated imagery had become a standard tool in the
movie and advertising industries. The generation of realistic-looking images was
a common area of research. To a large extent, realism was limited by the sophis-
tication of the methods used to shade the surfaces of objects. Given the algorith-
mic nature of shading calculations, the development of specialized languages for
expressing surface shading methods was an obvious step.

Cook’s Shade Trees
One of the first shader-specific languages was described by Rob Cook in 1984.
Cook discussed a system for integrating shading and texturing techniques which
he called shade trees. Shaders are represented as expression tree data structures.
For example, the classic Phong model describes the reflections from a surface
illuminated by a single point light source as

I = ka Ia + kd Il(N · L) + ks Il(N · V)ns (1)

This equation can be represented as a binary expression tree, shown in
Figure 1.

Cook’s approach was to use a generalized tree structure to represent the
way in which appearance parameters such as surface normals, material properties,
texture maps, and light properties should be combined to determine the color of
an object’s surface. Leaf nodes represent basic data; parent nodes represent ways
in which that data can be combined. Many types of operation nodes are built into
the language: arithmetic and trigonometric operations; mathematical operations
such as square root and vector normalization; shading functions for calculating
ambient, diffuse, and specular light values; and additional supporting operations
such as proportional blending (mixing) of color information. In addition to surface
shading, trees can be built to describe the characteristics of light sources and to
represent atmospheric effects.

Programmable Shaders

development of the Programmer's Hierarchical Interactive Graphics System (PHIGS)

and OpenGL made it possible to create images in a more device-independent way.

A program written to use the GKS application programming interface (API), for

instance, could be used on any system for which a GKS library was available with

relatively little modification. With the simplification of use, however, came a reduc-

tion in control over the image generation process. The graphics API provided a

standardized interface to the hardware; internally, the API processed all primitive

and attribute requests by the programmer in a fixed way. This internal organization

is commonly known as a fixed-function rendering pipeline

664

ka Ia

�

kd Id

�

N L

�

�

ks Is

�

R V

ns�

��

�

F I G U R E 1
An expression tree for Phong illumination Equation 1.

Cook developed a C-like specification language for shade trees, which could
be used in conjunction with a modeling language to build shade trees and attach
them to the surfaces of objects. Here is the source code for a shade tree describing
metallic surfaces, taken from Cook’s 1984 paper:

float a = .5, s = .5;
float roughness = .1;
float intensity;
color metal_color = (1, 1, 1);
intensity = a * ambient() +

s * specular(normal, viewer, roughness);
final_color = intensity * metal_color;

The ambient and specular functions are built into the language, and they
return the amount of and characteristics of each type of light striking the object
surface. This code would be translated into the shade tree shown in Figure 2.
The shade tree could then be applied to generate a bronze surface appearance
with the following statement:

surface "metal",
"metal_color", material bronze,
"roughness", .15

which overrides the default values for the roughness and metal color
parameters with ones appropriate to a bronze surface.

a sAmbient Specular

�

Metal Color

Final Color

Normal Viewer Roughness

�

�

�

F I G U R E 2
A shade tree for metallic surfaces.

Programmable Shaders

665

Perlin’s Pixel Stream Editor
Another notable example of an early shading language was developed by Ken
Perlin in 1985 as part of an image processing filter that he called the Pixel Stream
Editor (PSE). The PSE processed an input image that contained not only pixel
color information, but also data describing surfaces of objects within the image;
the image was manipulated by running a program written in Perlin’s shading
language on each pixel.

Like Cook’s shade tree language, Perlin’s language had built-in operators and
functions for specifying the way in which color information was to be computed.
Perlin’s language was a much higher-level language than Cook’s, however. It
included control flow statements in the form of selection and iteration constructs
as well as support for user-written functions, significantly increasing the power
and flexibility of shaders.

Although the concept of procedural texturing was not new, most work in this
area had been done with functions operating in a two-dimensional domain. Perlin
proposed extending this to three dimensions, creating what he referred to as space
functions. Conceptually, such a function can be thought of as representing a solid
volume in space. If the function is evaluated at the points on the visible surface of
an object, the resulting values effectively “sculpt” the object out of the material,
acting as a solid texture.

Perhaps the most important innovation in Perlin’s work, though, was the
concept of noise. Materials in the real world often have some sort of random or
stochastic component to them. Examples of this are the grain seen in cut wood, the
meandering pattern of rivers, and the branching patterns of ferns. None of these
patterns are truly random, however, so traditional approaches to randomness are
not appropriate for modeling them.

Perlin’s basic noise function takes a three-dimensional vector as its argument
and returns a pseudo-random floating-point value, which can be used in any
situation where randomness is wanted. Applying it to points on the visible surface
of an object, we can introduce random variations in surface color by multiplying
the base color by the noise value. It can also be used to generate pseudo-random
perturbations of surface normals for bump mapping, or to actually move points
in space.

What makes the noise function useful are the characteristics of the result
values. Operation of the function is statistically invariant under translation and
rotation, so using those transformations on the function domain does not affect the
characteristics of the result distribution. The function is frequency-controlled, so it
is possible to increase the detail in the result distribution by scaling the argument—
for example, Noise(2*x) will have twice the frequency of Noise(x). Results are band-
limited, so variation in results will occur within a limited range.

The concept of noise has become so valuable in the world of shaders that most
shader languages today provide at least one type of noise function. In addition,
some graphics hardware provide hardware acceleration for noise.

RenderMan
One of the most widely used shader languages is the RenderMan Shading
Language (RSL) designed by Pixar. It dates from 1988, when Pixar first
published the RenderMan Interface Specification (RISpec). Based originally on
the shade tree work by Cook, RenderMan became the industry-standard shading
language for batch-oriented rendering in the entertainment industry. As Render-
Man is a specification rather than a particular product, a number of implemen-
tations are available, including Pixar’s own Photorealistic RenderMan (prman)

Programmable Shaders

666

package as well as several open-source implementations such as Blender, Pixie,
and Aqsis.

The RISpec actually consists of two parts. The first is the RenderMan Interface,
which specifies a standard interface between modeling programs and rendering
programs. It lists the features that a rendering program must support, and it
defines the API to be used by programs wanting to communicate with the ren-
dering program.

The second part of the RISpec is the RSL specification. RSL is a C-like language
with data types and built-in operations and functions that are designed to facilitate
the development of shaders.

The RenderMan Interface gives shader developers a tremendous amount of
control over the rendering process through the different types of shaders that can
be developed. Each shader type manages one aspect of the rendering process.
Illumination can be managed through the use of light shaders; the geometry of
objects can be modified by displacement shaders, and surface shaders can be
used to compute surface color at each shading point. Volume shaders allow for
simulation of atmospheric effects such as fog and dust, as well as the effect of
light passing through the interior of transparent or translucent objects. Finally,
imager shaders can be used to modify the pixel values produced by the ren-
dering pipeline, allowing the implementation of post-processing effects such as
simulating the brush strokes in an oil painting.

An interesting feature of the RenderMan Interface is that it can be imple-
mented in multiple ways. The RISpec defines a C-language API, much like the
OpenGL API that we have used throughout this textbook. The RenderMan Inter-
face can be provided as a C-callable library, with a full set of functions for creating
standard types of objects and manipulating the rendering state. Programmers can
write programs that use these routines to perform any operation that the Render-
Man Interface allows. Here is an example of a C program fragment that draws a
red polygon using a plastic surface shader:

#include <ri.h>
RtPoint Poly[4] = {

{ 1, 1, -1 }, { -1, 1, -1 }, { -1, -1, -1 }, { 1, -1, -1 }
};

void main()
{

RiBegin (RI_NULL);
RiWorldBegin ();
RiColor (1.0, 0.0, 0.0);
RiSurface ("plastic", RI_NULL);
RiPolygon (4, RI_P, (RtPointer)Poly, R_NULL);
RiWorldEnd ();
RiEnd ();

}

Alternatively, the RenderMan Interface can be implemented as a standalone
application, such as Pixar’s prman implementation. This type of implementation
must take as its input the RenderMan Interface Bytestream (RIB), defined in the
RISpec. RIB statements provide a compact, easy-to-read way to specify scene
parameters; rather than calling functions to create light sources, define objects,
and so on, those functions are requested through RIB statements. Because they are
text files, RIB files can be created and manipulated by programs—for instance, a

Programmable Shaders

667

program could read in an existing RIB file that specifies one frame of an animation,
modify a statement that translates the position of an object, and write the modified
version to a new file that could then be used to generate the next frame of the
animation. In addition, because RIB statements are often more straightforward
and easy to read than C programs, they may be easier for non-programmers to
use. Here is a RIB file equivalent to the C program fragment shown previously:

WorldBegin
Color [1.0, 0.0, 0.0]
Surface "plastic"
Polygon "P" [1 1 -1 -1 1 -1 -1 -1 -1 1 -1 -1]
WorldEnd

2 The OpenGL Pipeline
OpenGL has been revised a number of times since its introduction in 1992. Each
revision has typically either added functionality to OpenGL, or helped adapt it
to improvements in graphics hardware. (We discuss the evolution of OpenGL in
more detail in Appendix C.) One of the most significant changes was the introduc-
tion of the OpenGL Shading Language, often referred to as GLSL. To understand
how GLSL fits into the internal structure of OpenGL, we begin by looking at the
way in which OpenGL processes geometry and pixel information.

The Fixed-Function Pipeline
The original internal structure of OpenGL was a sequence of processing steps
organized into a two-channel rendering pipeline. The pipeline stages were fixed
in nature—that is, they performed specific operations in response to data sent
through them—and therefore the overall structure became known as the fixed-
function OpenGL pipeline. Conceptually, the processing steps can be thought of
as having the structure shown in Figure 3.

Different types of information are processed by the upper and lower halves
of the pipeline. Geometric primitives are processed through the upper part of
the diagram (often referred to as the geometric pipeline), while pixel primitives are
processed by the lower part (the pixel pipeline). Both types of information can be

Primitive
Assembly

Clipping
Projection

Culling

Rasterization

Fragment
Processing

Per-Vertex
Operations

Per-Fragment
Operations

Frame
Buffer

Texture
Memory

Pixel
Operations

Pixel Data

Vertex Data

F I G U R E 3
The OpenGL fixed-function pipeline.

Programmable Shaders

668

saved in display lists; when a display list is executed, the information it contains
is sent to the appropriate parts of the pipeline.

In the geometric pipeline, primitives are described as collections of vertices
along with additional attributes such as material properties, associated texture
coordinates, normal vectors, and so on. The per-vertex operations and primitive
assembly stage performs a number of processing steps on this information. Ver-
tices are transformed by the modelview matrix. If automatic texture generation
is enabled, new texture coordinates are generated and replace the original tex-
ture coordinates for the vertex. Lighting calculations are performed, followed
by clipping and shading operations. Finally, the primitives are rasterized, which
determines which pixel positions are occupied by each primitive.

Pixel information is processed in a similar fashion. Pixel data are retrieved
from main memory, pixel buffers, texture memory, or the frame buffer. Additional
processing is performed on the data, which is then either written into texture
memory (if texture mapping is being performed) or rasterized.

The rasterized geometry and pixel data are combined into a set of fragments.
Fragments are per-pixel data structures that contain all the information needed to
update the data held in the frame buffer. Once created, fragments are processed
by the per-fragment operations stage, which performs the final conversion to
display form. Fragments which are being texture-mapped have texels generated
from information in texture memory; fog and antialising processing are performed
if they are needed. Finally, depth-buffer testing is performed, and the resulting
set of fragments are written to the frame buffer.

Changing the Pipeline Structure
One problem with the classic fixed-function pipeline is that it no longer matches
the way that modern graphics hardware operates. It is unable to take full advan-
tage of the power available in even low-cost graphics cards for computers, with
the result that rendering performance may suffer.

Consider the modified view of the OpenGL pipeline shown in Figure 4.
In this pipeline, the per-vertex and per-fragment fixed processing stages have
been replaced by user-programmable processing stages. This change allows the
application program to determine what processing should be done at each of
these points in the rendering pipeline. It also allows the OpenGL implementation
to take better advantage of improving hardware capabilities, with the result that
rendering can be accelerated significantly (depending on what hardware func-
tionality is present).

Pixel Data Texture
Memory

Primitive
Assembly

Per-Fragment
Operations

Vertex Data Vertex
Processor

Fragment
Processor

Frame
Buffer

Clipping
Projection

Culling

F I G U R E 4
The programmable-function OpenGL pipeline.

Programmable Shaders

669

The most recent OpenGL versions have three additional user-programmable
stages: a geometry processor, and two tessellation processors.

Application programs control the operation of these programmable stages
through the use of shaders. Shaders are small program fragments that are loaded
into OpenGL programs and attached to the appropriate processing element in the
OpenGL pipeline, replacing the fixed functionality of the pipeline.

Vertex Shaders
A vertex shader is a shading program designed to replace the fixed vertex process-
ing stage of the pipeline. It will be executed on every vertex sent into the pipeline,
and is responsible for producing all the information needed by later stages in the
pipeline; minimally, it must output the vertex itself, transformed into clip space by
the projection and modelview matrices. Clip space is the coordinate space used
throughout the rest of the OpenGL pipeline. All vertices must be transformed into
this space before they are used.

Beyond this basic functionality, a vertex shader can also associate a color
with the vertex, can generate or transform texture coordinates for later use in
the pipeline, and can even use lighting information and surface normals at the
vertex. Vertex shaders are able to access this information through the use of special
built-in global variables initialized by the OpenGL implementation and pass the
modified data to the rest of the pipeline through another set of global variables.

Fragment Shaders
Like the vertex shader, a fragment shader operates on information residing in the
pipeline and produces modified data for use by the rest of the pipeline’s stages.
As the name implies, fragment shaders operate on the rasterized vertex and pixel
information, called fragments. The fragment shader will be executed once for each
fragment coming through the pipeline; depending on how the primitive has been
rasterized, the fragment shader may be executed many more times than the vertex
shader.

At a minimum, a fragment shader is responsible for assigning the fragment
color based on the basic color of the object. However, fragment shaders are
also responsible for applying textures and performing operations such as bump
mapping.

Geometry Shaders
Geometry shaders perform further processing on the results from the primitive
assembly stage of the pipeline. A geometry shader will be executed once for each
primitive and will have access to all the vertex information associated with that
primitive. Unlike the vertex and fragment shaders, however, a geometry shader is
not limited to passing on a modified version of the incoming data; it may actually
create new primitives, which are then processed by the rest of the pipeline.

Tessellation Shaders
The tessellation processor is controlled by a pair of shaders: a tessellation control
shader and a tessellation evaluation shader. These shaders operate on a type of
primitive called a patch. Patches are collections of vertices, per-vertex attributes,
and additional per-patch attributes. The tessellation shaders take an incoming
patch, subdivide the patch into a collection of points, lines, or triangles, and output
the resulting patch information for processing by the rest of the pipeline.

Programmable Shaders

670

3 The OpenGL Shading Language
GLSL is a C-like language designed to directly support the development of
shaders. It has a wide variety of data types for representing typical shading data
items such as vectors, colors, and matrices, along with a collection of built-in
operators that simplify manipulation of those data items.

The designers of GLSL attempted to create a shading language that met a
number of fairly ambitious goals. They wanted a high-level, easy-to-use pro-
gramming language that would work well with OpenGL. It needed to be as
hardware-independent as possible, to allow the same shaders to be used with
graphics hardware from different manufacturers. In addition, because graphics
hardware continues to evolve, the language should not be tied to a particular type
or generation of hardware; rather, it should be powerful enough to take advantage
of the capabilities of the underlying hardware and flexible enough in its design
that it can accomodate the rapid evolution of that hardware.

Although the language looks very much like C or C++, it’s important to
remember that GLSL really isn’t either one of them. There are several differences
in the way that function parameters are handled, and the language is much stricter
with respect to type checking issues. In addition, many familiar C and C++ data
types and language constructs (such as pointer variables and widespread implicit
conversion between data types) were intentionally not included in GLSL.

Like OpenGL, GLSL has evolved since it was first introduced. New features
have been added, and existing features have been deprecated (that is, marked
for future removal from the language) in favor of new features. Depending on
which version of GLSL your implementation supports, some features may not be
available. The following code can be used to determine your versions of OpenGL
and GLSL:

printf ("OpenGL version: %s\n",
(char *) glGetString (GL_VERSION));

printf ("GLSL version: %s\n",
(char *) glGetString (GL_SHADING_LANGUAGE_VERSION));

The first statement prints out a string containing version information for your
OpenGL implementation, and the second prints out the corresponding GLSL
version information.

We also note that our discussion of GLSL will, necessarily, be incomplete. The
language has far too many features to allow us to explore them completely in
a single chapter. Instead, we will discuss enough details of shader creation and
use that you may begin to experiment with your own shaders. For more in-depth
study of GLSL, any of the GLSL references described at the end of this chapter
should suffice.

Shader Structure
Most GLSL programs will contain both a vertex shader and a fragment shader.
Each shader contains a main routine which, in fact, is a function named main.
Shaders may also contain supporting functions, as well as global variables to
facilitate communication between the vertex and fragment shaders.

A shader’s main routine will vary depending on what functionality is
required, but certain operations must be performed. As mentioned earlier, a ver-
tex shader will be executed on every vertex that passes through the pipeline;

Programmable Shaders

671

even if it does nothing else, it must transform the vertex into clip space. This is
accomplished by multiplying the vertex by the modelview matrix, and then mul-
tiplying that result by the projection matrix. Each of these values is available to
the vertex shader as a built-in global variable. These built-in global variables all
have names beginning with the character sequence gl ; to transform the vertex
into clip space, the vertex shader must use the vertex position (gl Vertex) and
the contents of the modelview and projection matrices (gl ModelViewMatrix,
gl ProjectionMatrix). The transformed vertex must be placed in the global
variable gl Position so that the next stage in the OpenGL pipeline can use it.
Here is an example of a minimal vertex shader:

void main ()
{

gl_Position = gl_ProjectionMatrix *
(gl_ModelViewMatrix * gl_Vertex);

}

There are other ways to perform this transformation. An additional global vari-
able named gl ModelViewProjectionMatrix contains the product of the
projection and modelview matrices and can be used to reduce the transformation
to one multiplication. Because this operation is standard, a built-in function is
also available to perform it:

gl_Postion = ftransform ();

Another common operation performed in vertex shaders is the assignment of
a color to the vertex. This is accomplished by assigning a color value to the global
variable gl FrontColor, as follows:

void main ()
{

gl_Position = gl_ProjectionMatrix *
(gl_ModelViewMatrix * gl_Vertex);

gl_FrontColor = gl_Color;
}

The gl Color variable contains whatever color the OpenGL application asso-
ciated with the vertex by calling glColor. As you might expect, there is also a
gl BackColor global variable, which can be used when two-sided lighting is
being used in the OpenGL program.

Fragment shaders are responsible for computing the color associated with a
fragment. At minimum a fragment shader must assign that color to the global vari-
able gl FragColor. The shader can compute the color, or can retrieve whatever
color was assigned by the vertex shader, as in this example:

void main ()
{

gl_FragColor = gl_Color;
}

It is important to note that although it appears that this fragment shader is access-
ing the same global variable used by the vertex shader, the contents of gl Color
are modified by the OpenGL pipeline between the execution of the two shaders.

Programmable Shaders

672

The fragment shader will see either the gl FrontColor or the gl BackColor,
depending upon which side of the primitive the fragment being processed
belongs to.

Using Shaders in OpenGL
Unlike OpenGL programs themselves, shader programs are not precompiled.
Instead, they are compiled during the execution of the OpenGL program itself.
The process involves a series of steps; for example, assuming that we are using
both a vertex and a fragment shader, we would do the following:

1. Create two shader objects.
2. Attach the source for each shader to its shader object.
3. Compile the shaders.
4. Create a program object.
5. Attach the shader objects to the program object.
6. Link the program.

The shader source code must be a null-terminated C-style string (a sequence
of characters, followed by a trailing byte containing the value 0). Commonly, the
shader source code is put into a text file, from which it is read into the OpenGL
program as a single string. Here is an example function that reads the contents of
a file into a dynamically allocated string buffer. The function opens the file and
determines how many characters are in it. It then allocates a string buffer, reads
the file into that as a single string, and returns the pointer to the string buffer.

#include <stdio.h>
#include <stdlib.h>

/*
** Create a null-terminated string from the contents of a file
** whose name is supplied as a parameter. Return a pointer to
** the string, unless something goes wrong, in which case return
** a null pointer.
*/

GLchar *readTextFile(const char *name) {
FILE *fp;
GLchar *content = NULL;
int count=0;

/* verify that we were actually given a name */
if (name == NULL) return NULL;

/* attempt to open the file */
fp = fopen(name, "rt"); /* open the file */
if (fp == NULL) return NULL;

/* determine the length of the file */
fseek (fp, 0, SEEK_END);
count = ftell (fp);
rewind(fp);

Programmable Shaders

673

/* allocate a buffer and read the file into it */
if(count > 0) {

content = (GLchar *) malloc (sizeof(char) * (count+1));
if(content != NULL) {

count = fread (content, sizeof(char), count, fp);
content[count] = '\0';

}
}

fclose (fp);

return content;
}

To create our shader program, we must first create two shader objects:

GLuint vertShader, fragShader;

vertShader = glCreateShader (GL_VERTEX_SHADER);
fragShader = glCreateShader (GL_FRAGMENT_SHADER);

Each call to glCreateShader returns a handle that is associated with a shader
object. We use this handle whenever we need to refer to the shader object, such
as when we want to attach source code to it.

Next, we read in the source for each shader. There is no restriction on
the names of shader source files; assuming that our vertex shader is in a
file named simpleShader.vert and our fragment shader is in a file named
simplShader.frag, we can read them into our program as follows:

GLchar *vertSource, *fragSource;

vertSource = readTextFile ("simpleShader.vert");
if (vertSource == NULL) {

fputs ("Failed to read vertex shader\n", stderr);
exit (EXIT_FAILURE);

}

fragSource = readTextFile ("simpleShader.frag");
if (fragSource == NULL) {

fputs ("Failed to read fragment shader\n", stderr);
exit (EXIT_FAILURE);

}

Now that we have the source strings, we must attach them to the shaders:

glShaderSource (vertShader, 1,
(const GLchar **) &vertSource, NULL);

glShaderSource (fragShader, 1,
(const GLchar **) &fragSource, NULL);

free (vertSource);
free (fragSource);

Programmable Shaders

674

This function allows us to attach several shader source strings to the same shader
object. The first parameter is the shader object to be used. The second parameter
is the number of source strings to be attached; the third parameter is an array of
pointers to the strings. Finally, the fourth parameter tells glShaderSource that
the strings are terminated by null characters. glShaderSource makes a copy
of the string contents, so once we have attached the source strings to the shader
objects, we can deallocate the strings to reduce our memory use.

The next step is to compile the shaders:

glCompileShader (vertShader);
glCompileShader (fragShader);

It is a good idea to verify that the compilation succeeded. We can retrieve the com-
pilation status with the glGetShaderiv function. If the compilation succeeded,
the status will be GL TRUE:

GLint status;

glGetShaderiv (vertShader, GL_COMPILE_STATUS, &status);
if (status != GL_TRUE) {

fputs ("Error in vertex shader compilation\n", stderr);
exit (EXIT_FAILURE);

}

glGetShaderiv (fragShader, GL_COMPILE_STATUS, &status);
if (status != GL_TRUE) {

fputs ("Error in fragment shader compilation\n", stderr);
exit (EXIT_FAILURE);

}

Once we have compiled them, we create our program object, attach the
shaders to it, and link the program:

GLuint program;

program = glCreateProgram ();

glAttachShader (program, vertShader);
glAttachShader (program, fragShader);

glLinkProgram (program);

The glCreateProgram function allocates a program object and returns its han-
dle to us. Again, it is a good idea to verify that the link operation succeeded:

glGetProgramiv (vertShader, GL_LINK_STATUS, &status);
if (status != GL_TRUE) {

fputs("Error when linking shader program\n", stderr);
exit (EXIT_FAILURE);

}

Our error checking here is very rudimentary—all it reveals is whether an
error occurred, not what the error was. We can get more information about what

Programmable Shaders

675

happened by retrieving the shader or program information log. To do this, we first
ask for the length of the log, and then retrieve the log into a string buffer, which
we can then print out. Here is an example, using dynamically allocated buffers:

GLint length;
GLsizei num;
char *log;

glGetShaderiv (vertShader, GL_INFO_LOG_LENGTH, &length);
if(length > 0) {

log = (char *) malloc (sizeof(char) * length);
glGetShaderInfoLog (vertShader, length, &num, log);
fprintf (stderr, "%s\n", log);

}

glGetProgramiv (program, GL_INFO_LOG_LENGTH, &length);
if(length > 0) {

log = (char *) malloc (sizeof(char) * length);
glGetProgramInfoLog (program, length, &num, log);
fprintf (stderr, "%s\n", log);

}

The information log functions have the same parameter list. The first parameter is
the object whose log we want to retrieve. The fourth parameter is the buffer into
which the log will be placed, expressed as a null-terminated string; the second
parameter is the size of that buffer (so that the function will not overrun the
buffer). The function will place the number of bytes written into the buffer (not
including the trailing null) into the third parameter.

We can have any number of shader program objects in our OpenGL program,
which allows us to apply different shaders to each object in our scene. To use a
shader program, we make it the active shader before drawing the object to which
it will be applied:

glUseProgram (program);

Once we activate a shader, it will be applied to every object that we draw until we
activate a different shader. If we have activated a shader for one or more objects
and then want to “deactivate” it, we call glUseProgram again but give it a value
of 0 as the program object:

glUseProgram (0);

Finally, during execution, we may want to delete shader objects or pro-
gram objects when we are done with them. The functions glDeleteShader
and glDeleteProgram are used to do this. Each takes an object handle for the
appropriate type of object (shader or program) as its only parameter. The memory
associated with the object will be deallocated, and the object handle is marked
as unused. Deleting a program object detaches the shaders associated with it but
does not delete them; they are still usable, and they can be attached to another pro-
gram object. We can explicitly detach a shader object from a program object with
the function glDetachShader, which takes the program object given as its first
parameter and detaches the shader object given as the second parameter from it.

If we delete a shader object before the program object it is attached to
is deleted, the actual deletion is deferred until the program object is deleted.

Programmable Shaders

676

Similarly, if we delete a program object while it is still the active shader program,
the deletion will be deferred until the shader program is no longer active.

Basic Data Types
The set of data types provided by GLSL is significantly larger than what is found in
C-family languages. At the same time, some familiar types from those languages
either don’t exist in GLSL, or exist in modified form. GLSL data types can be
categorized as scalar types, vectors, matrices, and samplers. Any of these can be
grouped using structure and array capabilities.

In general, variable declarations have the same form as those in C and C++,
and may occur anywhere wherever needed within shader source code. Variables
can be initialized at declaration time; however, the syntax for initialization varies
depending on the type of variable being initialized.

Scalar types are limited to integer (int), unsigned integer (uint), Boolean
(bool), and floating-point (float). Boolean variables have only two possible
values, true and false. Integer and floating-point variables have the usual
range of values possible in most programming languages, and most C operators
are available, with the exception of bitwise operators.

Vectors
Vectors of each of the four scalar types are available, and can have two, three, or
four components. Declarations of vec2, vec3, and vec4 contain floating-point
values; a one-character prefix is added for the other scalar types (for example,
ivec2, uvec2, and bvec2). The vector types can be used for any kind of data—
for example, a vec4 could contain a red, green, blue, and alpha (RGBA) color
value, or the x, y, z, and w components of a point, and so on. Vector initialization
is done using the constructor syntax of C++; for example, we could initialize the
four elements of a vec4 to the values 1.0, 2.0, 3.0, and 4.0 as follows:

vec4 a = vec4(1.0, 2.0, 3.0, 4.0);

GLSL provides several mechanisms for manipulating vectors. Vector vari-
ables can be subscripted like arrays, with the first element having subscript 0, the
second having subscript 1, and so on. In addition, structure-like referencing of
vector elements is possible. For example, the four elements of a vec4 variable
named position can be accessed with the expressions position.x, posi-
tion.y, position.z, and position.w, respectively, treating the variable as a
point in space. However, the same four elements can also be accessed with the
names r, g, b, and a, treating it as an RGBA color, or as s, t, p, and q, treating it as
a texture coordinate. The only compile-time type checking done here is verifying
that the vector is large enough to contain the requested element; position.y,
position.b, and position.p all access the third element of the vector.

It is also possible to access collections of vector elements using a technique
called swizzling. Swizzling is a generalization of the structure-access mechanism;
instead of a single element name, multiple names can be used. Here are several
examples:

vec4 v;

v.xyzw // a vec4 identical to v
v.xyz // a vec3 containing the first three elements of v
v.rgb // a vec3 containing the first three elements
v.y // a float containing the second element
v.sp // a vec2 containing the first and third elements

Programmable Shaders

677

Element names can also be listed in order or out of order, or they can be
duplicated—the only restriction is that they must be from the same name set
(xyzw, rgba , or stpq):

vec4 a = vec4(1.0, 2.0, 3.0, 4.0);
vec3 b = v.yzx; // (2.0, 3.0, 1.0)
vec4 c = v.rrbb; // (1.0, 1.0, 3.0, 3.0)

Arithmetic operators are overloaded to allow multiplication between vectors
and matrices.

Matrices
Matrices of floating-point values can be declared. Square matrices (that is, n ×
n elements) can be declared as mat2, mat3, and mat4 variables. Non-square
matrices can be declared as matmxn, where m is the number of columns and n
the number of rows. Elements of matrices can be accessed using array notation.
It is possible to access an entire column at once by using a single subscript, or
a single element by using two subscripts. As in OpenGL, matrices are stored in
column-major order, so the first subscript is the column number and the second is
the row number. For example, assuming the declaration mat4 m, m[2] is a vec4
containing the third column, and m[1][3] is a float containing the second
element of the fourth row. Initialization is done using constructor syntax, listing
the elements in column-major order:

mat2 m = mat2(1.0, 2.0, 3.0, 4.0);

creates the matrix

m =
[

1.0 3.0
2.0 4.0

]

(2)

Arithmetic operators are overloaded to allow matrix manipulation.

Structures and Arrays
Structures and arrays are similar to their C counterparts. Arrays can be created
from any type, including vectors, matrices, structures, and scalars. Structure mem-
bers can be of any type known to the shader compiler at the time of declara-
tion, including other structures and arrays. A structure declaration is considered
automatically to be a type declaration; variables of the structure type are declared
simply by using the structure name tag. For example:

struct lightsource {
vec3 color;
vec3 position;

};

light desklamp;
light spotlights[4];

As mentioned earlier, GLSL is a much stricter language with respect to data
types than either C or C++. Because there is a Boolean type, conditional expres-
sions must always be Boolean, unlike C and C++ (which allow the use of any

Programmable Shaders

678

expression whose value can be implicitly converted to integer as conditional
expressions). Implicit type conversions are limited to conversions from integer
or unsigned integer to float, either as scalars or as vectors. All other type con-
versions must be explicit; rather than using C-style type casting, conversion is
requested using C++ constructor syntax.

Control Structures
GLSL provides most of the usual C control structures. Looping constructs include
for, while, and do-while loops. Variable can be declared within loops, and the
break andcontinue statements perform the expected operations. In the original
version of GLSL, selection statements were limited to if-then and if-then-
else constructs. GLSL version 1.30 introduced switch statements, but goto
statements and labels are not available. Unlike C and C++, variables cannot be
declared inside if statements.

As mentioned earlier, conditional expressions must be Booleans; no implicit
conversion from numeric types to Boolean types is provided. The Boolean con-
nectives (&& and ||) are short-circuited, as in C and C++, and produce Boolean
results, as do the relational operators.

A special statement, discard, is available for use in fragment shaders. Its
purpose is to prevent the fragment shader from making any change to the frame
buffer. When a discard is executed, the fragment being processed is marked
to be discarded. The shader may or may not continue to execute, but whatever
operations it performs will have no effect on the frame buffer.

GLSL Functions
Function declarations and calls are much like C++ function calls, with a few
differences. Every function must be declared with an explicit return type; the
return type void is allowed, indicating that the function does not return a value.
Return types can be any type, including arrays and structures. Functions cannot
be recursive in any form, including indirect recursion (that is, it is illegal for a
function to call itself, or for it to call another function that then calls the first
function again).

Names of functions can be overloaded based on parameter type; that is, mul-
tiple declarations of a function are allowed within a shader, so long as each dec-
laration has the same return type and the parameter lists are all clearly distinct.

Parameter type checking is always performed. All actual parameters must
match exactly the type of the corresponding formal parameter. Array parameters
must have explicit sizes. A function declaration with an empty parameter list is
not generic, as in C, but rather indicates that the function must be called without
parameters.

Function parameters in GLSL are passed using call by value-return (some-
times known as call by value-result). Parameters are qualified as in, out, or inout
parameters; in parameters can be qualified further as const, indicating that the
formal parameter cannot be modified within the function. For in and inout
parameters, the actual parameter supplied in the call is copied into the formal
parameter; in the case of out parameters, the actual parameter supplied in the
call is ignored (although the formal parameter is readable in the shader, its ini-
tial contents are undefined). If no qualifier is used, in is assumed. For out and
inout parameters, the last value assigned to the formal parameter during the
execution of the function is copied back to the original actual parameter when the

Programmable Shaders

679

function returns. (These types of actual parameters must not be literals, but must,
for obvious reasons, be actual variables.)

Arrays and structures can be passed as parameters to the functions. However,
arrays are not passed by reference—instead, the contents of the array is copied
into the formal parameter, as with all other parameter types.

As might be expected, a large number of built-in functions are available in
GLSL. These range from angle conversions (degrees and radians), trigonomet-
ric operations, exponentiation and logarithm functions, and vector and matrix
geometric operations.

Communicating with OpenGL
Because the main routine of a shader takes no parameters, communication with
the rest of the OpenGL program is achieved by way of global variables. As with
function parameters, global variables are typically qualified based on how they are
used to convey information to the shader from the OpenGL program or between
the vertex and fragment shaders. In the latter case, the same global variable will
be declared in both shader sources but may have different qualifiers in the two
shaders. Global variable qualifiers are similar to those for function parameters,
with a few differences.

The OpenGL program uses uniform global variables to communicate data
into all types of shaders. Generally, they contain data that does not change fre-
quently. Shaders can read uniform variables, but cannot write to them.

The in qualifier is used in all types of shaders to indicate data that is being
given to the shader from previous stages in the pipeline. In a vertex shader, the
source is typically the OpenGL program, and the type of the variable is limited
to a numeric scalar or vector (Booleans are not allowed) or a matrix.

In a fragment shader, the source of data read from an in global variable can
be the OpenGL program or the vertex shader; in the latter case, the variable must
exactly match an out-qualified variable in the vertex shader. Commonly, this
data is interpolated—for example, there may be several fragments generated by
the pipeline from a set of vertices, and each fragment will be sent through the
fragment shader separately, so the contents of the in variable may vary between
executions of the shader.

Values being produced by any type of shader for use in later stages in the
pipeline are defined with theoutqualifier. Other than the built-in global variables
discussed earlier, out variables are the only way that results can be sent from the
vertex shader to the fragment shader. The same variable must be declared with
the same size and type as an in variable in the fragment shader.

In GLSL versions prior to 1.30, the in and out qualifiers did not exist. Global
variables holding per-vertex data coming from OpenGL into a vertex shader was
marked with the qualifier attribute, and output global variables had the qual-
ifier varying. In fragment shaders, global variables of any type (coming in from
the vertex shader, or going out to later stages in the pipeline) were tagged as
varying. While attribute and varying qualifiers are still recognized in ver-
sion 4.10.6 of GLSL (the current release as this book was written), their use should
be limited, as they may be removed from future versions.

Communicating information from an OpenGL program to vertex and frag-
ment shaders through global variables is not quite as simple as we might like.
Because these variables are defined in the shader source code, they aren’t known
when the OpenGL program is compiled, and thus the program cannot access
them directly. Instead, the OpenGL program must first request the location of the
variable in the current shader program object, and only then can it write data into
the global for use by the shader. We request the location of a uniform variable in

Programmable Shaders

680

this manner:

GLint location;

location = glGetUniformLocation (program, "variable");

where program is a program object handle, and variable is a null-terminated string
containing the name of the uniform global variable that we want to access. Once
we have the location, we can retrieve the contents of the variable with one of the
following functions:

GLint i;
GLfloat f;

glGetUniformiv (program, location, &i);
glGetUniformfv (program, location, &f);

If we have the location of a uniform variable in a program object, we can
modify its contents. To do this, we must know not only its location, but also its
type and the number of elements that it contains:

GLfloat v1, v2, v3, v4;

glUniform1f (location, v1);
glUniform2f (location, v1, v2);
glUniform3f (location, v1, v2, v3);
glUniform4f (location, v1, v2, v3, v4);

There are also array versions of these routines:

GLfloat va[4];

glUniform1fv (location, 1, va);
glUniform2fv (location, 2, va);
glUniform3fv (location, 3, va);
glUniform4fv (location, 4, va);

Similarly, we use glUniform*i and glUniform*iv to write to uniform inte-
ger variables. Modification of attribute variables is handled similarly, with
the functions glGetAttribLocation, glVertexAttrib1f, glVertexAt-
trib1fv, and so on.

The glUniform functions do not take a program object parameter. This
means that they can only write to shader variables found in the active program
object (that is, the one selected by the most recent call to glUseProgram).

4 Shader Effects
Now that we have some understanding of the structure and capabilities of GLSL
shaders, it is time to see some examples. Again, note that these examples are rela-
tively simple; showing the full power of shaders is beyond the scope of this text.

Programmable Shaders

681

A Phong Shader
Recall the Phong illumination model described in Equation 1. This can be im-
plemented quite easily in GLSL. For simplicity, we will assume that GL LIGHT0
has been enabled as a directional light source in the scene, and that each object
has been defined with appropriate material properties.

To implement Phong shading, we need to know where our light source is.
Information about active OpenGL lights is available in a built-in global vari-
able named gl LightSource, which is a uniform array with one element per
OpenGL light source. Each element of the array is a structure containing a number
of fields that describe the light. For our purposes, the most important of these are
ambient, diffuse, specular, and position. These are all vec4 fields; the
first three contain the ambient, diffuse, and specular characteristics of the light
source, and the fourth contains the light’s position. The expression

gl_LightSource[0].diffuse

gives us the diffuse light emitted by GL LIGHT0.
We also need to know what the material properties are for the ob-

ject being shaded. These are available through a global variable named
gl FrontMaterial. This variable is also a structure, with ambient, diffuse,
and specular fields containing these characteristics for the object. To compute
the interaction of the diffuse light and the surface, we multiply these two fields:

gl_FrontMaterial.diffuse * gl_LightSource[0].diffuse

There is also a gl BackMaterial global variable which we can use for two-
sided lighting.

Our Phong implementation will be a relatively simple pair of shaders. All
calculations will be done in the vertex shader, and the fragment shader will only
copy the computed color into thegl FragColorvariable. We start by computing
the ambient light contribution as the product of the object’s ambient reflective
characteristics and the ambient illumination from the light source:

vec4 color;

color = gl_FrontMaterial.ambient * gl_LightSource[0].ambient;

To compute the diffuse contribution, we will need to know the surface normal,
the direction to the light, and the view direction. To use the dot-product method,
all three of these vectors must normalized. The surface normal is available in the
global variablegl Normal; however, likegl Vertex, it is in object coordinates,
so we must transform it before we use it. We do this by multiplying it by the
global variable gl NormalMatrix, and we normalize the result with the built-
in normalize function:

vec3 normal;

normal = normalize(gl_NormalMatrix * gl_Normal);

We next need to normalize the direction to the light. Our light is directional,
which means that its position in OpenGL is actually the direction the light is

Programmable Shaders

682

shining. We can take the position, convert it to a three-element vector, and nor-
malize the result:

vec3 lightdir;

lightdir = normalize(vec3(gl_LightSource[0].position));

If the light was positional, we could compute its direction as the difference
between the vertex position and the light position.

Computing the cosine of the angle between these vectors is easy because they
are normalized vectors. To ensure that we don’t get a negative cosine, we will
clamp the result to 0.0:

float NdotL;

NdotL = max(dot(normal, lightdir), 0.0);

We now have enough information to compute the diffuse contribution and
add it to the final color:

color += NdotL *
(glFrontMaterial.diffuse * gl_LightSource[0].diffuse);

If the cosine value is positive, we also want to include the specular highlight.
This requires that we compute the view vector and the reflection of the light
vector. In eye coordinates, the view vector can be computed by subtracting the
eye position from the vertex position. However, the eye position is the origin,
so we can just use the vertex position and negate it to get the vector from the
vertex to the eye position. We can use the built-in reflect function to compute
the reflection of the light vector around the surface normal; our light vector is
pointing from the light to the vertex, though, so we must negate it. Once we
have those, we can compute their dot-product (clamping it to 0.0), calculate the
specular contribution, and add it to the computed color:

if(NdotL > 0.0)
{

vec3 view, reflection;
float RdotV;

view = vec3(-normalize(gl_ModelViewMatrix * gl_Vertex));
reflection = normalize(reflect(-lightdir, normal));
RdotV = max(dot(reflection, view), 0.0);

color += gl_FrontMaterial.specular *
gl_LightSource[0].specular *
pow(RdotV, gl_FrontMaterial.shininess);

}

Programmable Shaders

683

Finally, we must assign the computed color to the global gl FragColor
variable and transform the vertex. Here is the complete vertex shader:

// Phong vertex shader

void main() {
vec3 normal, lightdir;
vec4 color;
float NdotL;

color = gl_FrontMaterial.ambient * gl_LightSource[0].ambient;

normal = normalize(gl_NormalMatrix * gl_Normal);
lightdir = normalize(vec3(gl_LightSource[0].position));
NdotL = max(dot(normal, lightdir), 0.0);

color += NdotL *
(gl_FrontMaterial.diffuse * gl_LightSource[0].diffuse);

if(NdotL > 0.0)
{

vec3 view, reflection;
float RdotV;

view = vec3(-normalize(gl_ModelViewMatrix * gl_Vertex));
reflection = normalize(reflect(-lightdir, normal));
RdotV = max(dot(reflection, view), 0.0);

color += gl_FrontMaterial.specular *
gl_LightSource[0].specular *
pow(RdotV, gl_FrontMaterial.shininess);

}

gl_FrontColor = color;
gl_Position = ftransform();

}

Because we performed all the color calculations in the vertex shader, the
fragment shader is very simple:

// Phong fragment shader

void main()
{

gl_FragColor = gl_Color;
}

Color Plate 32 shows a scene containing three gluSpheres, illuminated by
a single directional light, drawn using this shader pair.

Programmable Shaders

684

All the computation in our example was done in the vertex shader, and the
fragment shader simply used that result. We could have done the color calcu-
lations in the fragment shader, but we would still need to do the normal, light
direction, and view vector calculations in the vertex shader because of the need
to access the per-vertex variables. The resulting vectors would be communicated
to the fragment shader through global variables.

Texture Mapping
Texture mapping is another operation that is relatively easy to implement using
shaders. It can be implemented by directly mapping each location on the surface
of an object to a point within the texture, or by modifying the Phong shader
shown earlier to take color information from the texture image rather than from
the object’s material properties.

could apply only a single texture at a time to the surface of an object. This
fact, a simplification of OpenGL’s texture-mapping capabilities. OpenGL
supports multitexturing—that is, the ability to apply more than one texture
surface of an object. It does this through the use of texture units. The number of
texture units is implementation-dependent; the following example code queries
the OpenGL state to determine the number of texture units in this implementation:

GLint units;

glGetIntegerv (GL_MAX_TEXTURE_UNITS, &units);

When we define a texture, it is defined within the active texture unit. All texture
parameter settings and image data are assigned to that unit. The active unit is
selected with a call to glActiveTexture, as follows:

glActiveTexture (GL_TEXTURE0);

This selects texture unit 0 as the active unit. (This is actually the default texture
unit, so this function call is unnecessary unless we have selected a different unit
and want to switch back to unit 0.)

After we bind our texture object to the texture unit, we must tell our shader
which texture unit we are using. We do this by writing into a global sampler
variable in the shader. Samplers are special types of data items in GLSL that have
access to all the texture information in a texture unit. The shader code uses a
sampler to identify the texture unit to be accessed, but the sampler itself is opaque
to the shader. It cannot be directly read or written by GLSL code—it can only be
passed as a parameter to a texture access function within our shader.

Samplers come in many forms. We create samplers for one-, two-, and three-
dimensional floating-point textures with the types sampler1D, sampler2D, and
sampler3D. Samplers can also be created for integer or unsigned integer tex-
tures, cube-map textures, shadow map textures, and other variations. To create a

Programmable Shaders

We first set up the texture within our OpenGL program by creating a
texture object with glGenTextures, binding it with glBindTexture, set-
ting our desired texture parameters with calls to glTexParameter, and then
defining the texture itself with glTexImage. To use the texture within a shader,
however, two additional steps are required. We must tell the shader where to
find the texture, and the shader itself must gain access to the texture data.

Our discussion of surface texture mapping in OpenGL assumed that we
was, in

actually
to the

685

sampler for a basic two-dimensional texture, for example, we would use a decla-
ration like this one in our fragment shader:

uniform sampler2D textureID;

In the OpenGL program, we assign the texture unit sequence number to the
sampler. If our active shader program is texShader and we want to use texture
unit 0, we find the location of the sampler variable and assign the sequence number
to it:

GLint texloc;

texloc = glGetUniformLocation (texShader, "textureID");
glUniform1i (texloc, 0);

Note that we assign the texture unit sequence number (0), not the OpenGL sym-
bolic constant (GL TEXTURE0), to the sampler variable.

A shader program that maps a two-dimensional texture directly to the sur-
face of an object is very straightforward. Generally, the vertex shader takes care
of setting up all necessary texture coordinates, and the fragment shader accesses
the texture and uses it to determine the color of the fragment. The texture coordi-
nates for texture unit 0 that correspond to the current vertex are available to the
vertex shader in a global variable named gl MultiTexCoord0. These coordi-
nates must be communicated to the rest of the pipeline for interpolation; this is
achieved by assigning them to the first slot in a global array of vectors named
gl TexCoord.

Here is a simple vertex shader that copies the existing texture coordinates for
interpolation:

void main()
{

gl_TexCoord[0] = gl_MultiTexCoord0;
gl_Position = ftransform();

}

The fragment shader must use the interpolated coordinates to access the tex-
ture image and determine the fragment color accordingly. Because the sampler
variable is opaque, the shader must use built-in functions to access the texture
data. The built-in function texture2D takes a sampler variable and a coordinate
position as its parameters, and returns the texture data as a vec4 value. Here is a
simple fragment shader that uses the texture data directly as the fragment color:

uniform sampler2D textureID;

void main ()
{

vec4 color = texture2D(textureID, gl_TexCoord[0].st);
gl_FragColor = color;

}

Programmable Shaders

686

The result of using this shader pair to map a texture image of the sur-
face of the Earth to a square polygon is shown in Color Plate 33. We can use
it to texture-map any object for which texture coordinates are defined. Color
Plate 34 shows an application of the same texture image to a GLU quadric
sphere.

This example texture-mapping shader is very simplistic because it uses
the texture color information directly as the fragment color. A more realistic
result could be obtained, for instance, by modifying a Phong shader to use
color information from a texture image instead of the material properties of the
object.

Bump Mapping

To bump-map an image, we must decide how far to perturb the surface nor-
mal at each point on the object. We can do this computationally as we process
each fragment, or we can precompute the changes to be applied at each point
and hold them in a special type of texture called a normal map. If we are also
applying a texture to the surface of the object as well as bump-mapping the sur-
face, an obvious source of bump-map information is the color variation within
the image.

One complication in bump mapping is the fact that we must work with several
different coordinate spaces. The incoming information that we use to compute
surface colors is typically in either object coordinates or eye coordinates; however,
we must do our displacement calculations in texture space. Typically, we resolve
this issue by converting everything into texture space. To do this, we compute
the partial derivative vector P′

u . We then normalize this

The normalized P′
u vector is called the tangent vector. The cross-product of

the tangent vector and the surface normal is called the binormal vector. From the
components of these vectors, we build the transformation matrix

M =
⎡

⎣

Tx Ty Tz

Bx By Bz

Nx Ny Nz

⎤

⎦ (3)

where (Tx,Ty,Tz) is the tangent vector, (Bx,By,Bz) is the binormal vector, and
(Nx,Ny,Nz) is the normal vector. Multiplying an object-space vector by this
matrix transforms it into tangent space. Tangent space is a local coordinate sys-
tem around the point being shaded, and the tangent and binormal vectors may
change from point to point across the surface.

Our bump-mapping shader will be a simplified form of a technique known as
relief mapping. We will use the texture image to determine the surface color at the

Programmable Shaders

vector and the surface
normal and take their cross-product, which produces third vector that is
orthogonal to the first two. These three vectors are used to perform the
transformation.

Another application of texture mapping is the simulation of surface roughness on
an object. The technique known as bump mapping uses a function to perturb the
normal vector at a point on the surface of an object, and then applies a standard
illumination model to calculate color at that point. Bump mapping is relatively easy
to implement in an interactive program using shaders, but is significantly more
difficult to implement using the original fixed-function pipeline.

687

shading point, as in our earlier texture-mapping example. However, we will also
use it to calculate the displacements to be applied to our surface normals—that is,
the apparent roughness of the surface will be determined by the color variations
in our texture image.

To implement bump mapping as a shader pair, we must divide the work
between the vertex and fragment shaders. In addition to the transformations
we have seen in earlier examples, the vertex shader will compute the light
and view vectors and will transform them into tangent space for use by the
fragment shader. The fragment shader, in turn, will use the color information
from the texture image to calculate the height variation for this fragment, and
it also will perform a simple diffuse shading calculation using the texture color
information.

To compute the transformation matrix in our vertex shader, we need the
tangent and binormal vectors in addition to the surface normal. We are given the
surface normal; we can either compute a tangent vector from it or use one supplied
by the OpenGL program. We can calculate the tangent vector fairly easily by
computing the cross-products between the surface normal and the y and z axes,
and then selecting the longer of the two cross-products and normalizing it.

If we choose to have the OpenGL program supply the tangent vector, it must
be written into a global attribute variable used by the vertex shader. We
obtain its location using glGetAttribLocation and write three values into
it as follows:

GLfloat tangVector[3];
GLint tangentLoc;

tangentLoc = glGetAttribLocation (bumpshader, "tangent");
glVertexAttrib3fv (tangentLoc, tangent);

In the vertex shader, tangent is declared globally as an attribute vari-
able. We must also declare the view and light vector variables as varying
variables:

attribute vec3 tangent;
varying vec3 light, view;

In the vertex shader, we transform the surface normal, and compute the
binormal vector: Once we have these three vectors, we can compute the view
and light vectors, and transform them into tangent space. A fast way to perform
the transformation is to take advantage of the fact that we can compute the three
result values from multiplying the transformation matrix by a vector using the
built-in dot product function. For example, given the transformed light vector
and the three tangent-space vectors, we can transform the light vector into tan-
gent space as follows:

vec3 tmp;
tmp.x = dot(light, tangent);
tmp.y = dot(light, binorm);
tmp.z = dot(light, normal);
light = tmp;

Programmable Shaders

688

We complete the vertex shader by performing the usual copying of the texture
location and transformation of the vertex position into clip space. Here is the
completed vertex shader:

varying vec3 light, view;
attribute vec3 tangent;

void main()
{

vec3 normal = vec3(normalize(gl_NormalMatrix * gl_Normal));

vec3 binorm = normalize(cross(normal, tangent));

view = -normalize(vec3(gl_ModelViewMatrix * gl_Vertex));
light = normalize(vec3(gl_LightSource[0].position));

vec3 tmp;
tmp.x = dot(light, tangent);
tmp.y = dot(light, binorm);
tmp.z = dot(light, normal);
light = tmp;

tmp.x = dot(view, tangent);
tmp.y = dot(view, binorm);
tmp.z = dot(view, normal);
view = tmp;

gl_TexCoord[0] = gl_MultiTexCoord0;
gl_Position = ftransform();

}

The bump-mapping fragment shader is more complicated than our previous
fragment shaders. Globally, we need to define the light and view vector variables,
along with our texture sampler variable.

To compute the height offset from a color value, we will compute the average
of the red and green components and then smooth out variations from point to
point by taking 1.5 percent of the color average and adding that to 98.5 percent
of a 50 percent gray value. We compute the blended value using the built-in mix
function:

float height(vec3 color)
{

float avg = (color.r + color.g) / 2.0;
return mix(avg, 0.5, 0.985);

}

Creating the perturbed surface normal at a point on the texture is achieved
by first creating a small triangle around the point on the surface. We calculate the
positions of the triangle’s vertices by adding three different offsets to the texture
coordinate to locate three points at 0◦, 120◦, and 240◦ around an imaginary circle
centered on the coordinate point. For each of these vertices, we create a vector
consisting of the s and t offsets and a height offset calculated from the color at the
vertex. We then create the normal vector from these three vectors by computing
the cross-product of vectors formed by taking the difference between pairs of the
vectors.

The rest of our fragment shader is straightforward. We compute the modified
normal vector for the texture coordinate, and then compute ambient and diffuse

Programmable Shaders

689

color contributions based on the texture color and the modified normal. Here is
the completed fragment shader:

varying vec3 light, view;
uniform sampler2D textureID;

// Calculate height offset
float height(vec3 color) {

float avg = (color.r + color.g)/2.0;
return mix(avg, .5, .985);

}

// Create modified surface normal
vec3 modNormal(vec2 point) {

// Create the small triangle - first, the s and t
// distances from the center point
vec2 d0 = vec2(0, 0.001);
vec2 d1 = vec2(-0.000866, -0.0005);
vec2 d2 = vec2(0.000866, -0.0005);

// Calculate the triangle vertex positions
vec2 p0 = point + d0;
vec2 p1 = point + d1;
vec2 p2 = point + d2;

// Compute the height offset for each vertex
float h0 = height(vec3(texture2D(textureID, p0)));
float h1 = height(vec3(texture2D(textureID, p1)));
float h2 = height(vec3(texture2D(textureID, p2)));

// Create the three vectors
vec3 v0 = vec3(d0, h0);
vec3 v1 = vec3(d1, h0);
vec3 v2 = vec3(d2, h0);

// Compute the modified normal vector
return normalize(vec3(cross(v1-v0, v2-v0)));

}

void main() {
vec4 base = texture2D(textureID, gl_TexCoord[0].st);
vec3 bump = modNormal(gl_TexCoord[0].st);
vec4 color = gl_LightSource[0].ambient * base;

float NdotL = max(dot(bump, light), 0.0);
color += NdotL * (gl_LightSource[0].diffuse * base);

gl_FragColor = color;

}

Color Plate 35 shows the results of using this shader pair to apply the Earth
surface texture image used in previous examples to a square polygon. Compare

Programmable Shaders

690

this to the direct application of the texture image to the polygon shown in Color
Plate 33 to see the effect of the bump mapping calculation.

5 Summary
Computer graphics libraries have evolved over time to match the capabilities of
graphics hardware. In the beginning, graphics programmers were required to
work directly with the hardware available to them. Libraries of commonly used
graphics routines were developed in an attempt to standardize the development
of graphics programs, culminating in APIs such as the OpenGL library and its
original fixed-function internal pipeline.

As graphics hardware continued to evolve, the fixed-function pipeline
became more limiting because it could not take advantage of improved hardware
capabilites. To solve this problem, a programmable pipeline model was devel-
oped, which allowed graphics programmers more control over the functionality
of different stages in the pipeline through the use of programmable shaders. Shad-
ing languages were created to simplify the task of performing common shading
operations.

The OpenGL Shading Language (GLSL) was developed as a way of integrat-
ing programmable shading operations into the OpenGL pipeline. GLSL provides
programmable “hooks” into the pipeline at critical stages, allowing the manipula-
tion of vertices, object geometries, surface tessellation, and fragment manipulation
through the use of shader programs. Given the flexibility of GLSL, it is possible to
perform easily shading tasks that would be difficult or impossible to accomplish
using a fixed-function graphics pipeline. Table 1 lists the OpenGL functions
used to create and communicate with GLSL shader programs.

T A B L E 1

Summary of OpenGL GLSL-Related Functions

Function Description

glCreateShader Creates a shader object.

glShaderSource Attaches shader source code to a shader object.

glCompileShader Compiles shader source code.

glGetShaderiv Queries shader object state.

glGetShaderInfoLog Retrieves shader object messages.

glCreateProgram Creates a shader program object.

glAttachShader Attaches a shader object to a shader program object.

glGetProgramiv Queries shader program object state.

glGetProgramInfoLog Retrieves shader program messages.

glUseProgram Activates a shader program.

glGetUniformLocation Obtains the location of a global shader uniform variable.

glGetUniform* Reads the contents of a global shader uniform variable.

glUniform* Writes the contents of a global shader uniform variable.

glGetAttribLocation Obtains the location of a vertex shader attribute variable.

glGetAttrib* Reads the contents of a vertex shader attribute variable.

glVertexAttrib* Writes the contents of a vertex shader attribute variable.

Programmable Shaders

691

REFERENCES
Shade trees are discussed in Cook (1984). Ken Perlin’s
PSE is described in Perlin (1985), and his original
noise implementation can be found on his web-
site, at http://cs.nyu.edu/∼perlin/. RenderMan is
presented in Upstill (1989) and Apodaca and Gritz
(2000). The official RISpec can be found online at
https://renderman.pixar.com/products/rispec/index
.htm, and a number of RenderMan implementations
(both commercial and open-source) can be found on the
Internet. Relief texture mapping is discussed in Oliveira,
Bishop and McAllister (2000) and in Policarpo, Oliveira,
and Comba (2005).

Official specifications for GLSL can be found at
http://www.opengl.org/, along with sample programs
and tutorial guides. GLSL is also discussed in Shreiner
(2010). Finally, more complete treatments of GLSL can be
found in Rost and Licea-Kane (2010) and in Bailey and
Cunningham (2009).

EXERCISES
1 Determine whether or not your OpenGL instal-

lation supports GLSL. If it does, determine the
version of GLSL it supports.

2 Write a function which takes two null-terminated
strings as its parameters and returns the GLuint
identifier for a shader program object. The param-
eters contain the names of vertex and fragment
shader source files.

3 Write a program using the functions in the previ-
ous exercise to draw a square in the center of the
display window and use the vertex shader pro-
gram to color the square red.

4 The example Phong shader performs its color cal-
culations at each vertex. Convert it into a shader
that does the color calculations in the fragment
shader. Remember that some critical values must
be computed in the vertex shader.

5 Write a program to display an origin-centered
tetrahedron on a black background using the
shader you wrote in the previous exercise to shade
the object. Add the ability to rotate the object
around the y-axis using keyboard input.

6 Modify the example Phong shader to use a light
source specified through a global shader variable
rather than just using light source 0.

7 Modify the example Phong shader to work with
multiple light sources. Use a global shader vari-
able to tell the shader how many light sources are
active.

8 Modify the program in Exercise 5 to add two
more light sources to the scene. Use the shader
you developed in the previous exercise to shade

the object in the scene. The positions and orienta-
tions of the light sources should be taken as input
parameters to the program.

9 Modify the simple texture mapping shader so
that it performs Phong calculations using color
information from the texture image instead of the
material properties of the object being shaded.

10 Write program to display an origin-centered cube
on a black background using the shader you wrote
in the previous exercise to shade the object with
a textured image on each of the faces of the cube.
Provide the ability to rotate the cube about the
y and z axes using keyboard input.

11 Modify the program and shader used in the pre-
vious exercise to add two more light sources to
the scene and have the shader texture the object
using lighting information from all three lights.
The positions and orientations of the light sources
should be taken as input parameters to the pro-
gram.

IN MORE DEPTH
1

2 Consider the pattern created by four ceramic tiles
arranged in a 2 × 2 pattern on a floor or wall.
Each tile has a width and height, and the grout
line between adjacent tiles also has a width. The
total width of this pattern is 2 × tileWidth +
2 × groutWidth, and similarly the total height is
2 × tileHeight + 2 × groutWidth. We can apply
this pattern to a surface as a procedural texture
map without using an actual texture image fairly
easily. The s texture coordinate specifies a posi-
tion between the left edge (s = 0) and the right
edge (s = 1); similarly, the t coordinate specifies a
position between the bottom edge (t = 0) and the
top edge (t = 1). Because we know the width and
height of each tile and the width of the grout line,
we can use the s and t coordinates to determine
whether this point on the “texture” is covered by
tile or grout. Create a shader that applies this type
of procedural texture to an object. Communicate
the width, height, and color of a tile and the width
and color of the grout line to your shader through
global uniform variables.

Programmable Shaders

By modifying the examples in the chapter, write a

in the chapter to produce a shader program for
that as well. Replace the existing texture and bump
maps with the shader programs and note the
visual differences between the two approaches to
texture mapping, if any.

shader program to apply texture patterns to the
objects in your scene. If you wrote a bump map
for any of those objects, modify the example

692

C o l o r P l a t e 3 2
An example of Phong shading implemented as a GLSL shader. Each
sphere has its own material properties; the scene is illuminated by a
directional white light source.

C o l o r P l a t e 3 3
An image of the surface of the Earth texture-mapped onto a square.
(Earth image courtesy of James Hastings-Trew.)

Programmable Shaders
Color Plates

From Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson

693

C o l o r P l a t e 3 4
The image of the Earth mapped onto a sphere. (Earth image
courtesy of James Hastings-Trew.)

C o l o r P l a t e 3 5
A bump-mapped version of the Earth image, using color information
from the image to control the displacement of the surface normals.
(Earth image courtesy of James Hastings-Trew.)

694

Algorithmic Modeling

1 Fractal-Geometry Methods

2 Particle Systems

3 Grammar-Based Modeling Methods

4 Summary

S olid object modeling is a broad topic. In earlier chapters, we

discussed the use of boundary representations and physi-

cally based methods to represent solid objects. These tech-

niques are fine for modeling objects that have regular shapes and

smooth sides. However, many real-world objects have rough surfaces

or irregular shapes, which are difficult to model using the techniques

we have already studied. Algorithmic modeling techniques provide a

conceptually straightforward way to represent these types of objects.

From Chapter 23 of Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson

695

1 Fractal-Geometry Methods
Virtually all the object representations that we have considered in previ-
ous chapters used Euclidean-geometry methods; that is, object shapes were
described with equations. These methods are adequate for describing manufac-
tured objects: those that have smooth surfaces and regular shapes. However,
natural objects, such as mountains and clouds, have irregular or fragmented
features, and Euclidean methods do not provide realistic representations for
such objects. Natural objects can be realistically described with fractal-geometry
methods, where procedures rather than equations are used to model objects. As
we might expect, procedurally defined objects have characteristics quite differ-
ent from objects described with equations. Fractal-geometry representations for
objects are commonly applied in many fields to describe and explain the features
of natural phenomena. In computer graphics, we use fractal methods to gener-
ate displays of natural objects and visualizations of various mathematical and
physical systems.

A fractal object has two basic characteristics: infinite detail at every point,
and a certain self-similarity between the object parts and the overall features of
the object. The self-similarity properties of an object can take different forms,
depending on the representation we choose for the fractal. We describe a fractal
object with a procedure that specifies a repeated operation for producing the
detail in the object subparts. Natural objects are represented with procedures
that theoretically repeat an infinite number of times. Graphics displays of natural
objects are, of course, generated with a finite number of steps.

If we zoom in on a continuous Euclidean shape, no matter how complicated,
we can eventually get the zoomed-in view to smooth out. However, if we zoom in
on a fractal object, we continue to see more and more details in the magnifications
without an eventual smoothing of the object appearance. A mountain outlined
against the sky continues to have the same jagged shape as we view it from a closer
and closer position (Figure 1). As we near the mountain, the smaller detail in
the individual ledges and boulders becomes apparent. Moving even closer, we
see the outlines of rocks, then stones, and then grains of sand. At each step, the
outline reveals more twists and turns. If we took the grains of sand and put them
under a microscope, we would again see the same detail repeated down through
the molecular level. Similar shapes describe coastlines and the edges of plants
and clouds.

To obtain a magnified view of a displayed fractal, we can select a section of
the fractal for display within a viewing area of the same size. We then carry out the
fractal-construction operations for that part of the object and display the increased
detail for that level of magnification. As we repeat this process, we continue to
display more and more of the object’s detail. Because of the infinite detail inherent
in the construction procedures, a fractal object has no definite size. When we

F I G U R E 1
The ragged appearance of a mountain
outline at different levels of
magnification.

Distant
Mountain

Closer
View

Closer
Yet

Algorithmic Modeling

696

include more of the detail in an object description, the dimensions increase without
limit, but the coordinate extents for the object remain bound within a finite region
of space.

We can characterize the amount of variation in object detail with a number
called the fractal dimension. Unlike Euclidean dimension, this number is not nec-
essarily an integer. The fractal dimension for an object is sometimes referred to as
the fractional dimension, which is the basis for the name “fractal.”

Fractal methods have proven useful for modeling a very wide variety of
natural phenomena. In graphics applications, fractal representations are used to
model terrain, clouds, water, trees and other plant life, feathers, fur, and various
surface textures, and sometimes just to make pretty patterns. In other disciplines,
fractal patterns have been found in the distribution of stars, river islands, and
moon craters; in rain-field configurations; in stock market variations; in music; in
traffic flow; in urban property utilization; and in the boundaries of convergence
regions for numerical-analysis techniques.

Fractal Generation Procedures
A fractal object is generated by repeatedly applying a specified transformation
function to points within a region of space. If P0 = (x0, y0, z0) is a selected initial
position, each iteration of a transformation function F generates successive levels
of detail with the calculations

P1 = F (P0), P2 = F (P1), P3 = F (P2), · · · (1)

In general, the transformation function can be applied to a specified point
set or to an initial set of primitives, such as straight lines, curves, color areas,
or surfaces. Also, we can use either deterministic or random procedures. The
transformation function could be defined in terms of geometric transformations
(scaling, translation, rotation), or it could involve nonlinear coordinate transfor-
mations and statistical decision parameters.

Although fractal objects, by definition, contain infinite detail, we apply the
transformation function a finite number of times, and, of course, the objects that
we display have finite dimensions. A procedural representation approaches a
“true” fractal as the number of transformations is increased to produce more and
more detail. The amount of detail included in the final graphical display of an
object depends on the number of iterations performed and the resolution of the
display system. We cannot display detail variations that are smaller than the size
of a pixel. However, we can repeatedly zoom in on selected portions of an object
to view more of its detail.

Classification of Fractals
Self-similar fractals have parts that are scaled-down versions of the entire object.
Starting with an initial shape, we construct the object subparts by apply a scaling
parameter s to the overall shape. We can use the same scaling factor s for all
subparts, or we can use different scaling factors for different scaled-down parts
of the object. If we also apply random variations to the scaled-down subparts, the
fractal is said to be statistically self-similar. The parts then have the same statistical
properties. Statistically self-similar fractals are commonly used to model trees,
shrubs, and other vegetation.

Self-affine fractals have parts that are formed with different scaling parame-
ters, sx, sy, and sz, in different coordinate directions. We can also include random
variations to obtain statistically self-affine fractals. Terrain, water, and clouds are
typically modeled with statistically self-affine fractal construction methods.

Algorithmic Modeling

697

Invariant fractal sets are formed with nonlinear transformations. This class
of fractals includes self-squaring fractals, such as the Mandelbrot set (formed with
squaring functions in complex space), and self-inverse fractals, constructed with
inversion procedures.

Fractal Dimension
The amount of variation in the structure of a fractal object can be described with
a number D, called the fractal dimension, which is a measure of the roughness,
or fragmentation, of the object. More jagged-looking objects have larger fractal
dimensions. One method for generating a fractal object is to set up an iterative
procedure that uses a selected value for D. Another approach is to determine the
fractal dimension from the desired properties of an object, although, in general,
the fractal dimension can be difficult to calculate. Methods for calculating D are
based on dimension concepts developed in branches of mathematics, particularly
topology.

An expression for the fractal dimension of a self-similar fractal constructed
with a single scalar factor s is obtained by analogy with the subdivision of a
Euclidean object. Figure 2 shows the relationships between the scaling factor
s and the number of subparts n for subdivision of a unit straight-line segment, a
unit square, and a unit cube. With s = 1

2 , the unit line segment [Figure 2(a)] is
divided into two equal-length subparts. For the same scaling factor, the square in
Figure 2(b) is divided into four equal-area subparts, and the cube
[Figure 2(c)] is divided into eight equal-volume subparts. For each of these

F I G U R E 2
Subdividing a unit line (a), a unit
square (b), and a unit cube (c). The
Euclidean dimension is represented as
D E , and the scaling factor for each
object is s = 1

2 .

1
1
n

DE � 1,

n s1 � 1

(a)

(b)

A

A� � A
n

L� �
L
n

V

V� � V
n

s � , n � 21
n

s � , n � 41
n1/2

s � , n � 81
n1/3

DE � 2,

n s2 � 1

L

(c)

DE � 3,

n s3 � 1

Algorithmic Modeling

698

objects, the relationship between the number of subparts and the scaling factor
is n · s DE = 1. In analogy with Euclidean objects, the fractal dimension D for
self-similar objects can be obtained from

ns D = 1 (2)

Solving this expression for D, the fractal similarity dimension, we have

D = ln n
ln(1/s)

(3)

For a self-similar fractal constructed with different scaling factors for the different
subparts of the object, the fractal similarity dimension is obtained from the implicit
relationship

n∑

k=1

s D
k = 1 (4)

where sk is the scaling factor for subpart k.
In Figure 2, we considered the subdivision of simple shapes (straight line,

rectangle, and cube). If we have more complicated shapes, including curved lines
and objects with nonplanar surfaces, determining the structure and properties of
the subparts is more difficult. For general object shapes, we can use topological cov-
ering methods that approximate object subparts with simple shapes. A subdivided
curve, for example, could be approximated with straight-line sections, and a sub-
divided spline surface could be approximated with small squares or rectangles.
Other covering shapes, such as circles, spheres, and cylinders, can also be used
to approximate the features of an object divided into a number of smaller parts.
Covering methods are commonly used in mathematics to determine geometric
properties, such as length, area, or volume, of a complex object by summing the
properties of a set of smaller covering objects. We can also use covering methods
to determine the fractal dimension D of some objects.

F I G U R E 3
Box covering of an irregularly shaped
object.

Topological covering concepts were originally used to extend the meaning
of geometric properties to nonstandard shapes. An extension of covering meth-
ods using circles or spheres led to the notion of a Hausdorff-Besicovitch dimension,
or fractional dimension. The Hausdorff-Besicovitch dimension can be used as the
fractal dimension of some objects, but in general, it is difficult to evaluate. More
commonly, an object’s fractal dimension is estimated with box-covering methods
using rectangles or parallelepipeds. Figure 3 illustrates the notion of a box
covering. Here, the area inside the large irregular boundary can be approximated
by the sum of the areas of the small covering rectangles.

Box-covering methods are applied by first determining the coordinate extents
of an object, then subdividing the object into a number of small boxes using the
given scaling factors. The number of boxes n that it takes to cover an object is called
the box dimension, and n is related to the fractal dimension D. For statistically self-
similar objects with a single scaling factor s, we can cover the object with squares
or cubes. We then count the number n of covering boxes and use Equation 3
to estimate the fractal dimension. For self-affine objects, we cover the object with
rectangular boxes because different directions are scaled differently. In this case,
we estimate the fractal dimension using both the number of boxes n and the affine
transformation parameters.

The fractal dimension of an object is always greater than the correspond-
ing Euclidean dimension (or topological dimension), which is simply the least
number of parameters needed to specify the object. A Euclidean curve is

Algorithmic Modeling

699

one-dimensional because we can determine coordinate positions with one
parameter, u. A Euclidean surface is two-dimensional, with surface parameters u
and v. Finally, a Euclidean solid, which requires three parameters for each coor-
dinate specification, is three-dimensional.

For a fractal curve that lies completely within a two-dimensional plane, the
fractal dimension D is greater than 1 (the Euclidean dimension of a curve). The
closer D is to 1, the smoother the fractal curve. If D = 2, we have a Peano curve;
that is, the “curve” completely fills a finite region of two-dimensional space. For
2 < D < 3, the curve self-intersects and the area could be covered an infinite
number of times. Fractal curves can be used to model natural object boundaries,
such as shorelines.

Spatial fractal curves (those that do not lie completely within a single plane)
also have fractal dimension D greater than 1, but D can be greater than 2 without
self-intersecting. A curve that fills a volume of space has dimension D = 3, and a
self-intersecting space curve has fractal dimension D > 3.

Fractal surfaces typically have a dimension within the range 2 < D ≤ 3. If
D = 3, the “surface” fills a volume of space. If D > 3, there is an overlapping
coverage of the volume. Terrain, clouds, and water are typically modeled with
fractal surfaces.

The dimension of a fractal solid is usually in the range 3 < D ≤ 4. Again, if
D > 4, we have a self-overlapping object. Fractal solids can be used, for example,
to model cloud properties such as water vapor density or temperature within a
region of space.

Geometric Construction of Deterministic Self-Similar Fractals
To construct a deterministic (nonrandom) self-similar fractal geometrically, we
start with a given geometric shape, called the initiator. Subparts of the initiator
are then replaced with a pattern, called the generator.

For example, if we use the initiator and generator shown in Figure 4,
we can construct the snowflake pattern, or Koch curve, shown in Figure 5.
Each straight-line segment in the initiator is replaced with the generator pattern,
consisting of four equal-length line segments. Then the generator is scaled and
applied to the line segments of the modified initiator, and this process is repeated
for some number of steps. The scaling factor at each step is 1

3 , so the fractal
dimension is D = ln 4/ln 3 ≈ 1.2619. Also, the length of each line segment in the
initiator increases by a factor of 4

3 at each step, so that the length of the fractal curve
tends to infinity as more detail is added to the curve (Figure 6). Figure 7
illustrates additional generator patterns that could be used for self-similar fractal
curve constructions. The generators in Figure 7(b) and (c) contain more detail
than the Koch curve generator, and they have higher fractal dimensions.

F I G U R E 4
Initiator and generator for the Koch
curve. Initiator Generator

Algorithmic Modeling

700

0 1

2 3

F I G U R E 5
First three iterations in the generation
of the Koch curve.

Length � 1

Segment Length � 1

Length �

Segment Length � 1
3

4
3

Length �

Segment Length � 1
9

16
9

F I G U R E 6
The length of each side of the Koch
curve increases by a factor of 4

3 at
each step, while the line segment
lengths are reduced by a factor of 1

3 .

D � 1.129
(a)

D � 1.500
(b)

Segment
Length � 1/4

D � 1.613
(c)

Segment
Length � 1/6

Segment
Length � 1/ 7

F I G U R E 7
Generators for self-similar fractal curve
constructions and their associated
fractal dimensions.

Algorithmic Modeling

701

F I G U R E 8
Fractal generators with multiple,
disjoint parts.

Segment
Length � 1/3

D � 0.631

Segment
Length � 1/8

D � 1.333

Segment
Length � 1/8

D � 1.333

We can also use generators with multiple disjoint components. Some exam-
ples of compound generators are shown in Figure 8. We could combine these
patterns with random variations to model various natural objects that have mul-
tiple unconnected parts, such as island distributions along a coastline.

F I G U R E 9
Applying this generator to the edges
of an equilateral triangle produces a
snowflake-filling Peano curve (also
called a Peano space).

The generator of Figure 9 contains line segments with varying lengths, and
multiple scaling factors are used in the construction of the fractal curve. Thus, the
fractal dimension of the generated curve is determined from Equation 4.

Displays of trees and other plants can be constructed with self-similar
geometric-construction methods. Each branch of the fern outline shown in
Figure 10(a) is a scaled version of the overall fern shape. In (b) of this figure, the
fern is fully rendered with a twist applied to each branch.

As an example of a self-similar fractal construction for the surfaces of a three-
dimensional object, we scale the regular tetrahedron shown in Figure 11 by a
factor of 1

2 , then place the scaled object on each of the original four surfaces of the
tetrahedron. Each face of the original tetrahedron is converted into six smaller

F I G U R E 1 0
Self-similar constructions for a fern.
(Courtesy of Peter Oppenheimer,
Computer Graphics Lab, New York
Institute of Technology.) (a) (b)

F I G U R E 1 1
Scaling the tetrahedron in (a) by a
factor of 1

2 and positioning the scaled
version on one face of the original
tetrahedron produces the fractal
surface (b). (a) (b)

Front Face

Scaled Copy
of Tetrahedron

Algorithmic Modeling

702

F I G U R E 1 2
Self-similar, three-dimensional fractals
formed with generators that subtract
subparts from an initiator. (Courtesy of
John C. Hart, Department of Computer
Science, University of Illinois at
Urbana-Champaign.)

F I G U R E 1 3
A modified “snowflake” pattern using random midpoint displacement.

faces and the original face area is increased by a factor of 3
2 . The fractal dimension

of this surface is

D = ln 6
ln 2

≈ 2.58496

which indicates a fairly fragmented surface.
Another way to create self-similar fractal objects is to punch holes in a given

initiator, instead of adding more surface area. Figure 12 shows some examples
of fractal objects created in this way.

Geometric Construction of Statistically Self-Similar Fractals
To introduce variability into the geometric construction of a self-similar fractal,
we could randomly select a generator at each step from a menu of patterns. Or
we could construct a self-similar fractal by computing coordinate displacements
with small random variations. For example, in Figure 13, we use a probability
distribution function to compute variable midpoint displacements at each step in
the creation of a random snowflake pattern.

F I G U R E 1 4
Self-similar construction of vein
branching in a fall leaf. (Courtesy of
Peter Oppenheimer, Computer
Graphics Lab, New York Institute of
Technology.)

Another example of this method is shown in Figure 14. Random scaling
parameters and branching directions are used in this display to model the vein
patterns in a leaf.

Once a fractal object has been created, we can model a scene using several
transformed instances of the object. Color Plate 36 illustrates instancing with
random rotations of a fractal tree. In Color Plate 37, a fractal forest is displayed
using various random transformations.

To model the gnarled and contorted shapes of some trees, we can apply twist-
ing functions as well as scaling to create the random, self-similar branches.

Algorithmic Modeling

703

Affine Fractal-Construction Methods
We can obtain highly realistic representations for terrain and other natural
objects using affine fractal methods that model object features as fractional Brown-
ian motion. This is an extension of standard Brownian motion, a form of “random
walk,” which describes the erratic, zigzag movement of particles in a gas or fluid.
Figure 15 illustrates a random-walk path in the xy plane. Starting from a given
position, we generate a straight-line segment in a random direction and with a
random length. Another random line is then constructed from the endpoint of this
first line, and the process is repeated for a designated number of line segments.
Fractional Brownian motion is obtained by adding an additional parameter to the
statistical distribution describing Brownian motion. This additional parameter
sets the fractal dimension for the “motion” path.

A single fractional Brownian path can be used to model a fractal curve. With a
two-dimensional array of random fractional Brownian elevations over a ground-
plane grid, we can model the surface of a mountain by connecting the elevations
to form a set of polygon patches. If random elevations are generated on the sur-
face of a sphere, we can model the mountains, valleys, and oceans of a planet. In
Figure 16, Brownian motion was used to create the elevation variations on the
planet surface. The elevations were then color-coded from lowest (the oceans) to
highest (snow on the mountains). Fractional Brownian motion was used to create
the terrain features in the foreground. Craters were created with random diame-
ters and random positions, using affine fractal procedures that closely describe the
distribution of observed craters, river islands, rain patterns, and other similar sys-
tems of objects.

y

x

F I G U R E 1 5
An example of Brownian motion
(random walk) in the x y plane.

By adjusting the fractal dimension in the fractional Brownian-motion cal-
culations, we can vary the ruggedness of terrain features. Values for the fractal
dimension in the neighborhood of D ≈ 2.15 produce realistic mountain features,
while higher values close to 3.0 can be used to create unusual-looking extraterres-
trial landscapes. We can also scale the calculated elevations to deepen the valleys
and increase the height of mountain peaks. Some examples of terrain features that
can be modeled with fractal procedures are given in Color Plate 38.

Random Midpoint-Displacement Methods
Fractional Brownian-motion calculations are time-consuming because the eleva-
tion coordinates of the terrain above a ground plane are calculated with Fourier
series, which are sums of sine and cosine terms. Fast Fourier transform (FFT)

F I G U R E 1 6
A Brownian-motion planet observed
from the surface of a fractional
Brownian-motion planet, with added
craters, in the foreground. (Courtesy of
R. V. Voss and B. B. Mandelbrot,
adapted from The Fractal Geometry of
Nature by Benoit B. Mandelbrot (W. H.
Freeman and Co., New York, 1983).)

Algorithmic Modeling

704

y(a)

y(b)

y

a b x

y(a)
ymid

y(b)

y

a a � b
2

b x
F I G U R E 1 7
Random midpoint displacement
of a straight-line segment.

methods are typically used, but it is still a slow process to generate fractal-
mountain scenes. Therefore, faster random midpoint-displacement methods,
similar to the random displacement methods used in geometric constructions,
have been developed to approximate fractional Brownian-motion representations
for terrain and other natural phenomena. These methods were originally used
to generate animation frames for science-fiction films involving unusual terrain
and planet features. Midpoint-displacement methods are now commonly used in
many other computer-graphics applications, including animations for television
advertising.

Although random midpoint-displacement methods are faster than fractional
Brownian-motion calculations, they produce less realistic looking terrain fea-
tures. Figure 17 illustrates the midpoint-displacement method for generating
a random-walk path in the xy plane. Starting with a straight-line segment, we
calculate a displaced y value for the midposition of the line as the average of the
endpoint y values plus a random offset:

ymid = 1
2

[y(a) + y(b)] + r (5)

To approximate fractional Brownian motion, we choose a value for r from a
Gaussian distribution with a mean of 0 and a variance proportional to |(b − a)|2H ,
where H = 2 − D and D > 1 is the fractal dimension. Another way to obtain
a random offset is to take r = srg|b − a |, with parameter s as a selected surface
“roughness” factor and rg as a Gaussian random value with mean 0 and vari-
ance 1. Table lookups can be used to obtain the Gaussian values. The process
is then repeated by calculating a displaced y value for the midposition of each
half of the subdivided line. We continue the subdivision to obtain a certain num-
ber of segments or until the lengths of the subdivided line sections are less than
some selected length. At each step, the value of the random variable r decreases
because it is proportional to the width |b − a | of the line section to be subdivided.
Figure 18 shows a fractal curve obtained with this method.

y

x

(a)

(b)

y

x

F I G U R E 1 8
A random-walk path generated from
a straight-line segment with four
iterations of the random midpoint-
displacement procedure.

Terrain features are generated by applying the random midpoint-
displacement procedures to a rectangular ground plane (Figure 19). We
begin by assigning an elevation z value to each of the four corners (a, b, c, d in
Figure 19) of the ground plane. Then we divide the ground plane at the
midpoint of each edge to obtain the five new grid positions: e, f, g, h, and m.

y

xcd

a b

Ground
plane

(a)

y

xcd g

e
a

h f

b

m

(b)

F I G U R E 1 9
A rectangular ground plane (a) is
subdivided into four equal grid sections
(b) for the first step in a random
midpoint-displacement procedure to
calculate terrain elevations.

Algorithmic Modeling

705

Elevations at the midpositions e, f, g, and h of the ground-plane edges can be cal-
culated as the average elevation of the nearest two vertices plus a random offset.
For example, elevation ze at midposition e is calculated using vertices a and b,
while elevation at midposition f is calculated using vertices b and c:

ze = (za + zb)/2 + re , z f = (zb + zc)/2 + r f

Random values re and r f can be obtained from a Gaussian distribution with mean
0 and variance proprotional to the grid separation raised to the 2H power, with
H = 3− D and D > 2. Higher values for D, the surface fractal dimension, produce
more jagged terrain, while lower values generate smoother terrain features. We
could also calculate random offsets as the product of a surface roughness factor
times the grid separation times a table lookup value for a Gaussian value with
mean 0 and variance 1. The elevation zm of the ground plane midposition m can
be calculated using positions e and g or positions f and h. Alternatively, we could
calculate zm using the assigned elevations of the four ground plane corners and a
random offset as

zm = (za + zb + zc + zd)/4 + rm

This process is repeated for each of the four new grid sections at each step until
the grid separation becomes smaller than a selected value.

Triangular surface patches for the terrain surface can be formed as the
elevations are generated. Figure 20 shows eight surface patches that could be
constructed at the first subdivision step. At each level of recursion, the triangles
are successively subdivided into smaller planar patches. When the subdivision
process is completed, the patches are rendered using the positions selected for the
light sources, the values of other illumination parameters, and the chosen colors
and surface textures for the terrain.

y

xcd

a b

F I G U R E 2 0
Eight surface patches formed over a
ground plane at the first step of a
random midpoint-displacement
procedure for generating terrain
features.

The random midpoint-displacement method can be applied to generate other
components of a scene besides the terrain. For instance, we could use the same
methods to obtain surface features for water waves or cloud patterns above a
ground plane.

Controlling Terrain Topography
One way to control the placement of peaks and valleys in a fractal-terrain scene
that is modeled with a midpoint-displacement method is to constrain the calcu-
lated elevations to certain intervals over the various sections of the ground plane.
We can accomplish this by designating a set of control surfaces over the ground
plane, as illustrated in Figure 21. Then we calculate a random elevation at
each midpoint grid position on the ground plane that depends on the difference
between the control elevation and the average elevation calculated for that posi-
tion. This procedure constrains elevations to be within a preset interval about the
control-surface elevations.

Control surfaces can be used to model existing terrain features in the Rocky
Mountains, or some other region, by constructing the plane facets using the

F I G U R E 2 1
Control surfaces over a ground plane.

Algorithmic Modeling

706

elevations in a contour plot for a particular region. Alternatively, we could set
the elevations for the vertices of the control polygons to design our own terrain
features. Also, control surfaces can have any shape. Planes are easiest to deal with,
but we could use spherical surfaces or other curve shapes.

We use the random midpoint-displacement method to calculate grid eleva-
tions, but now we select random values from a Gaussian distribution where the
mean μ and standard deviation σ are functions of the control elevations. A method
for obtaining the values for μ and σ is to make them both proportional to the
difference between the calculated average elevation and the predefined control
elevation at each grid position. For example, for grid position e in Figure 19,
we set the mean and standard deviation as

μe = zce − (za + zb)/2, σe = s|μe |
where zce is the control elevation for ground-plane position e, and 0 < s < 1 is the
scaling factor. Small values for s, such as s < 0.1, produce tighter conformity to
the terrain envelope, and larger values for s allow greater fluctuations in terrain
height.

To determine the values for the control elevations over a control-surface plane,
we first determine the values for the plane parameters A, B, C , and D. For any
ground-plane position (x, y), the elevation in the plane containing that control
polygon is then calculated as

zc = (−Ax − By − D)/C

Incremental methods can then be used to calculate control elevations over
positions in the ground-plane grid. To carry out these calculations efficiently,
we subdivide the ground plane into a smaller grid of xy positions and project
each polygon control surface onto the ground plane, as shown in Figure 22.
From this projection, we determine which grid positions are below each control
polygon. This can be accomplished using procedures similar to those in scan-line
area filling. That is, for each y “scan line” in the ground plane mesh that crosses
the polygon edges, we calculate scan-line intersections and determine which grid
positions are within the control-polygon projection. Calculations for the control
elevations at these grid positions are performed incrementally as

zci+1, j = zci, j − �x(A/C), zci, j+1 = zci, j − �y(B/C) (6)

where �x and �y are the grid separations in the x and y directions. This procedure
is particularly fast when parallel vector methods are applied to process the control-
plane grid positions.

Figure 23 shows a scene constructed using control planes to struc-
ture the surfaces for the terrain, water, and clouds above a ground plane.

y

x

F I G U R E 2 2
Projection of a triangular control surface onto a
ground-plane grid.

Algorithmic Modeling

707

F I G U R E 2 3
A composite scene modeled with a random midpoint-displacement
method and planar control surfaces over a ground plane.
Surface features for the terrain, water, and clouds were
modeled and rendered separately, then combined to form the
composite picture. (Courtesy of Eng-Kiat Koh, Encentuate,
Inc., Cupertino, California.)

(attractor)
z

z

z

Julia Set

F I G U R E 2 4
Possible results from repeated application of a self-squaring
transformation f (z) in the complex plane, depending on the
position of the selected initial position.

Surface-rendering algorithms were then applied to smooth out the polygon edges
and to provide the appropriate surface colors.

Self-Squaring Fractals
Another method for generating fractal objects is to apply a transformation func-
tion repeatedly to points in complex space. In two dimensions, a complex number
can be represented as z = x + iy, where x and y are real numbers and i2 = −1.
In three-dimensional and four-dimensional space, points are represented with
quaternions. A complex squaring function f (z) is one that involves the calcula-
tion of z2, and we can use some self-squaring functions to generate fractal shapes.

y

x

�z� � 1

�z� � 1

�z� � 1

F I G U R E 2 5
A unit circle in the complex plane. The
nonfractal, complex squaring function
f (z) = z2 moves points that are
inside the circle toward the origin,
while points outside the circle are
moved farther away from the circle.
Any initial point on the circle remains
on the circle.

Depending on the initial position selected for the iteration, repeated appli-
cation of a self-squaring function will produce one of three possible outcomes
(Figure 24):

• The transformed position can diverge to infinity.
• The transformed position can converge to a finite limit point, called an

attractor.
• The transformed position remains on the boundary of a region.

For example, the nonfractal squaring operation f (z) = z2 in the complex plane
transforms positions according to their relation to the unit circle (Figure 25).
Any point z whose magnitude |z| is greater than 1 is transformed through a
sequence of positions that tend to infinity. A point with |z| < 1 is transformed
toward the coordinate origin. Points that are originally on the circle, |z| = 1, remain
on the circle. Although the z2 transformation does not produce a fractal, some
complex squaring operations generate a fractal curve as the boundary between
those positions that move toward infinity and those that tend toward a finite limit.
A closed fractal boundary generated with a squaring operation is called a Julia set.

In general, we can locate the fractal boundary for a squaring function by
testing the behavior of selected positions. If a position is transformed so that it
either diverges to infinity or converges to an attractor point, we can try another

Algorithmic Modeling

708

nearby position. We repeat this process until we eventually locate a position on
the fractal boundary. Then, iteration of the squaring transformation generates the
fractal shape. For simple transformations in the complex plane, a quicker method
for locating positions on the fractal curve is to use the inverse of the transformation
function. An initial point chosen on the inside or outside of the curve will then
converge to a position on the fractal curve (Figure 26).

z�
z�

F I G U R E 2 6
Locating the fractal boundary
curve using the inverse, self-
squaring function z = f −1(z ′) .

A function that is rich in fractals is the squaring transformation

z′ = f (z) = λz(1 − z) (7)

with λ as a complex constant. For this function, we can use the inverse method to
locate the fractal curve. We first rearrange terms to obtain the quadratic equation

z2 − z + z′/λ = 0 (8)

The inverse transformation is then the quadratic formula

z = f −1(z′) = 1
2

(

1 ±
√

1 − (4z′)/λ
)

(9)

Using complex arithmetic operations, we solve this equation for the real and
imaginary parts of z as

x = Re(z) = 1
2

(

1 ±
√

|discr| + Re(discr)
2

)

(10)

y = Im(z) = ±1
2

√

|discr| − Re(discr)
2

where the discriminant of the quadratic formula is discr = 1−(4z′)/λ. A few initial
values for x and y (say, 10) can be calculated and ignored before we begin to plot
the fractal curve. Also, because this function yields two possible transformed
(x, y) positions, we can randomly choose either the plus or the minus sign at each
step of the iteration so long as Im(discr) ≥ 0. Whenever Im(discr) < 0, the two
possible positions are in the second and fourth quadrants. In this case, x and y
must have opposite signs. The following program gives an implementation for
this self-squaring function, and two example curves are plotted in Figure 27.

F I G U R E 2 7
Two fractal curves generated with the inverse of the function f (z) = λz(1 − z) by procedure
selfSqTransf, using (a) λ = 3 and (b) λ = 2 + i . Each curve is plotted with 10,000 points.

Algorithmic Modeling

709

#include <GL/glut.h>
#include <stdlib.h>
#include <math.h>

/* Set initial size of display window. */
GLsizei winWidth = 600, winHeight = 600;

/* Set coordinate limits in complex plane. */
GLfloat xComplexMin = -0.25, xComplexMax = 1.25;
GLfloat yComplexMin = -0.75, yComplexMax = 0.75;

struct complexNum
{

GLfloat x, y;
};

void init (void)
{

/* Set color of display window to white. */
glClearColor (1.0, 1.0, 1.0, 0.0);

}

void plotPoint (complexNum z)
{

glBegin (GL_POINTS);
glVertex2f (z.x, z.y);

glEnd ();
}

void solveQuadraticEq (complexNum lambda, complexNum * z)
{

GLfloat lambdaMagSq, discrMag;
complexNum discr;
static complexNum fourOverLambda = { 0.0, 0.0 };
static GLboolean firstPoint = true;

if (firstPoint) {
/* Compute the complex number: 4.0 divided by lambda. */
lambdaMagSq = lambda.x * lambda.x + lambda.y * lambda.y;
fourOverLambda.x = 4.0 * lambda.x / lambdaMagSq;
fourOverLambda.y = -4.0 * lambda.y / lambdaMagSq;
firstPoint = false;

}
discr.x = 1.0 - (z->x * fourOverLambda.x - z->y * fourOverLambda.y);
discr.y = z->x * fourOverLambda.y + z->y * fourOverLambda.x;
discrMag = sqrt (discr.x * discr.x + discr.y * discr.y);

/* Update z, checking to avoid the square root of a negative number. */
if (discrMag + discr.x < 0)

z->x = 0;
else

z->x = sqrt ((discrMag + discr.x) / 2.0);

Algorithmic Modeling

710

if (discrMag - discr.x < 0)
z->y = 0;

else
z->y = 0.5 * sqrt ((discrMag - discr.x) / 2.0);

/* For half the points, use negative root,
* placing point in quadrant 3.
*/
if (rand () < RAND_MAX / 2) {

z->x = -z->x;
z->y = -z->y;

}

/* When imaginary part of discriminant is negative, point
* should lie in quadrant 2 or 4, so reverse sign of x.
*/
if (discr.y < 0)

z->x = -z->x;

/* Complete the calculation for the real part of z. */
z->x = 0.5 * (1 - z->x);

}

void selfSqTransf (complexNum lambda, complexNum z, GLint numPoints)
{

GLint k;

/* Skip the first few points. */
for (k = 0; k < 10; k++)

solveQuadraticEq (lambda, &z);

/* Plot the specified number of transformation points. */
for (k = 0; k < numPoints; k++) {

solveQuadraticEq (lambda, &z);
plotPoint (z);

}
}

void displayFcn (void)
{

GLint numPoints = 10000; // Set number of points to be plotted.
complexNum lambda = { 3.0, 0.0 }; // Set complex value for lambda.
complexNum z0 = { 1.5, 0.4 }; // Set initial point in complex plane.

glClear (GL_COLOR_BUFFER_BIT); // Clear display window.

glColor3f (0.0, 0.0, 1.0); // Set point color to blue.

selfSqTransf (lambda, z0, numPoints);
glFlush ();

}

Algorithmic Modeling

711

void winReshapeFcn (GLint newWidth, GLint newHeight)
{

/* Maintain an aspect ratio of 1.0, assuming that
* width of complex window = height of complex window.
*/
glViewport (0, 0, newHeight, newHeight);

glMatrixMode (GL_PROJECTION);
glLoadIdentity ();

gluOrtho2D (xComplexMin, xComplexMax, yComplexMin, yComplexMax);

glClear (GL_COLOR_BUFFER_BIT);
}

void main (int argc, char** argv)
{

glutInit (&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowPosition (50, 50);
glutInitWindowSize (winWidth, winHeight);
glutCreateWindow ("Self-Squaring Fractal");

init ();
glutDisplayFunc (displayFcn);
glutReshapeFunc (winReshapeFcn);

glutMainLoop ();
}

A three-dimensional plot in variables x, y, and λ of the self-squaring function
f (z) = λz(1 − z), with |λ| = 1, is given in Figure 28. Each cross-sectional slice
of this plot is a fractal curve in the complex plane.

Another squaring operation that produces a variety of fractal shapes is a
slightly modified z2 transformation. In this case, the fractal is the boundary
region around the set of complex values z that do not diverge under the squaring
transformation

z0 = z

zk = z2
k−1 + z0 k = 1, 2, 3, . . .

(11)

Thus, we first select a point z in the complex plane, then we compute the trans-
formed position z2 + z. In the next step, we square this transformed position and
add the original z value. We repeat this procedure until we can determine whether
or not the transformation is diverging.

Mathematicians had been aware of the unusual features of such squaring
functions for some time, but these functions were difficult to analyze without
computing aids. After the development of the digital computer, the convergence
boundary for Equation 11 was plotted on a line printer. As the capabilities of
digital computing increased, further graphical investigation into the properties
of this function were possible. Subsequently, using more sophisticated computer-
graphics techniques, Benoit Mandelbrot extensively studied this function, and the
set of points that do not diverge under Equation 11 has become known as the
Mandelbrot set.

Algorithmic Modeling

712

F I G U R E 2 8
The function f (z) = λz(1 − z) plotted in three
dimensions, with normalized λ values varying along the
vertical axis. (Courtesy of Alan Norton, IBM Research.)

Imaginary

Real

z

Pixel

Display
Window

Complex Plane Video Screen

F I G U R E 2 9
Mapping positions from a rectangular area in the complex plane to color-coded
pixel positions within a screen display window.

To implement Equation 11, we first choose a rectangular area in the com-
plex plane. Positions within this area are then mapped to color-coded pixel posi-
tions within a display window on a video monitor (Figure 29). The pixel colors
are chosen according to the rate of divergence of the corresponding point in the
complex plane under Equation 11. If the magnitude of a complex number is
greater than 2, then it will diverge quickly as it is squared repeatedly. Therefore,
we can set up a loop to repeat the squaring operations until either the magnitude
of the complex number exceeds 2 or we have reached a preset number of itera-
tions. The maximum number of iterations depends on the amount of detail that
we want to display and the number of points to be plotted. This value is often
set to some value between 100 and 1,000, although lower values can be used to
speed up the calculations. With lower settings for the iteration limit, however,
we do tend to lose some detail along the boundary (Julia set) of the convergence
region. At the end of the loop, we select a color value according to the number
of iterations executed by the loop. For example, we can color the pixel black if
the iteration count is at the maximum value (a nondiverging point), and we can
color the pixel red if the iteration count is near 0. Other color values can then be
chosen according to the value of the iteration count within the interval from 0 to
the maximum value. By choosing different color mappings and different sections
of the complex plane, we can generate a variety of dramatic displays for positions
in the vicinity of the fractal boundary that encloses the nondivergent points. One
choice for color coding the pixel positions in the region around the Mandelbrot
set is shown in Color Plate 39.

An implementation of Equation 11 for displaying the set of convergence
points and its boundaries is given in the following program. The major part of the

Algorithmic Modeling

713

convergence set is contained within the following region of the complex plane:

−2.00 ≤ Re(z) ≤ 0.50
−1.20 ≤ Im(z) ≤ 1.20

We can explore the details along the boundary of the Mandelbrot set by choosing
successively smaller rectangular regions in the complex plane so that we can zoom
in on selected areas of the display. Color Plate 39 shows a color-coded display of
the region around the convergence set and a series of zooms that illustrate some
of the remarkable features of this squaring transformation.

#include <GL/glut.h>

/* Set initial size of the display window. */
GLsizei winWidth = 500, winHeight = 500;

/* Set limits for the rectangular area in complex plane. */
GLfloat xComplexMin = -2.00, xComplexMax = 0.50;
GLfloat yComplexMin = -1.25, yComplexMax = 1.25;

GLfloat complexWidth = xComplexMax - xComplexMin;
GLfloat complexHeight = yComplexMax - yComplexMin;

class complexNum {
public:

GLfloat x, y;
};

struct color { GLfloat r, g, b; };

void init (void)
{

/* Set display-window color to white. */
glClearColor (1.0, 1.0, 1.0, 0.0);

}

void plotPoint (complexNum z)
{

glBegin (GL_POINTS);
glVertex2f (z.x, z.y);

glEnd ();
}

/* Calculate the square of a complex number. */
complexNum complexSquare (complexNum z)
{

complexNum zSquare;

zSquare.x = z.x * z.x - z.y * z.y;
zSquare.y = 2 * z.x * z.y;
return zSquare;

}

Algorithmic Modeling

714

GLint mandelSqTransf (complexNum z0, GLint maxIter)
{

complexNum z = z0;
GLint count = 0;

/* Quit when z * z > 4 */
while ((z.x * z.x + z.y * z.y <= 4.0) && (count < maxIter)) {

z = complexSquare (z);
z.x += z0.x;
z.y += z0.y;
count++;

}
return count;

}

void mandelbrot (GLint nx, GLint ny, GLint maxIter)
{

complexNum z, zIncr;
color ptColor;

GLint iterCount;

zIncr.x = complexWidth / GLfloat (nx);
zIncr.y = complexHeight / GLfloat (ny);

for (z.x = xComplexMin; z.x < xComplexMax; z.x += zIncr.x)
for (z.y = yComplexMin; z.y < yComplexMax; z.y += zIncr.y) {

iterCount = mandelSqTransf (z, maxIter);
if (iterCount >= maxIter)

/* Set point color to black. */
ptColor.r = ptColor.g = ptColor.b = 0.0;
else if (iterCount > (maxIter / 8)) {

/* Set point color to orange. */
ptColor.r = 1.0;
ptColor.g = 0.5;
ptColor.b = 0.0;

}
else if (iterCount > (maxIter / 10)) {

/* Set point color to red. */
ptColor.r = 1.0;
ptColor.g = ptColor.b = 0.0;

}
else if (iterCount > (maxIter /20)) {

/* Set point color to dark blue. */
ptColor.b = 0.5;
ptColor.r = ptColor.g = 0.0;

}
else if (iterCount > (maxIter / 40)) {

/* Set point color to yellow. */
ptColor.r = ptColor.g = 1.0;
ptColor.b = 0.0;

}
else if (iterCount > (maxIter / 100)) {

/* Set point color to dark green. */
ptColor.r = ptColor.b = 0.0;
ptColor.g = 0.3;

}

Algorithmic Modeling

715

else {
/* Set point color to cyan. */
ptColor.r = 0.0;
ptColor.g = ptColor.b = 1.0;

}
/* Plot the color point. */
glColor3f (ptColor.r, ptColor.g, ptColor.b);
plotPoint (z);

}
}

void displayFcn (void)
{

/* Set number of x and y subdivisions and the max iterations. */
GLint nx = 1000, ny = 1000, maxIter = 1000;

glClear (GL_COLOR_BUFFER_BIT); // Clear display window.

mandelbrot (nx, ny, maxIter);
glFlush ();

}

void winReshapeFcn (GLint newWidth, GLint newHeight)
{

/* Maintain an aspect ratio of 1.0, assuming that
* complexWidth = complexHeight.
*/
glViewport (0, 0, newHeight, newHeight);

glMatrixMode (GL_PROJECTION);
glLoadIdentity ();

gluOrtho2D (xComplexMin, xComplexMax, yComplexMin, yComplexMax);

glClear (GL_COLOR_BUFFER_BIT);
}

void main (int argc, char** argv)
{

glutInit (&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowPosition (50, 50);
glutInitWindowSize (winWidth, winHeight);
glutCreateWindow ("Mandelbrot Set");

init ();
glutDisplayFunc (displayFcn);
glutReshapeFunc (winReshapeFcn);

glutMainLoop ();
}

Algorithmic Modeling

Complex-function transformations, such as Equation 7, can be extend-
ed to produce fractal surfaces and fractal solids. Methods for generating
these objects use quaternion representations for transforming points in

716

three-dimensional and four-dimensional space. A quaternion has four compo-
nents, with one real-number term and three imaginary-number terms. We can
represent a quaternion in the following form, as an extension of the concept of a
number in the complex plane:

q = s + ia + jb + kc (12)

where i2 = j2 = k2 = −1. The real-number term s is also referred to as the scalar
part of the quaternion, and the imaginary terms are called the quaternion vector
part v = (a , b, c).

Procedures for generating self-squaring fractals in four-dimensional space
require considerable computation time for evaluating the iteration function and
for testing positions for convergence or divergence. Each point on a surface can
be represented as a small cube, giving the inner and outer limits of the surface.
Output from such programs for the three-dimensional projections of the fractal
typically contain more than a million vertices for the surface cubes. We display the
fractal object by applying illumination models to determine the color for each sur-
face cube. Visible-surface detection methods are also applied so that only visible
surfaces of the object are displayed.

Self-Inverse Fractals
Various geometric inversion transformations can be used to create fractal shapes.
Again, we start with an initial set of points, and we repeatedly apply nonlinear
inversion operations to transform the initial points into a fractal.

For example, we consider a two-dimensional inversion transformation
with respect to a circle of radius r and center position Pc = (xc , yc). A point P
outside the circle is inverted to a position P′ inside the circle (Figure 30) with
the transformation

(PcP)(PcP′) = r2 (13)

y

x

r

P�
Pc

P

F I G U R E 3 0
Inverting point P to a position P′ inside a circle with radius r .

Algorithmic Modeling

Using the rules for quaternion multiplication and addition, we can apply
self-squaring functions and other iteration methods to generate surfaces of frac-
tal objects. A basic procedure is to test points in complex space untilwecan iden-
tify the boundary between the diverging and nondiverging positions. For exam-
ple, if we first locate a nondiverging (interior) position, then we test neighboring
points from that position until a diverging (exterior) point is identified. The pre-
ceding interior point is then retained as a boundary-surface position. Neighbors
of this surface point are then tested to determine whether they are inside (con-
verging) or outside (diverging). Any inside point that connects to an outside
point is a surface position. In this way, the procedure threads its way along the
fractal boundary without straying far from the surface. When four-dimensional
fractals are generated, three-dimensional slices are projected onto the two-
dimensional surface of the video monitor.

717

where both P and P′ lie on a straight line passing through the circle center Pc .
We can also use Equation 13 to transform positions that are inside the circle.
Some inside positions transform to outside positions, while other inside positions
transform to inside positions.

If the coordinates of the two points are represented as P = (x, y) and P′ =
(x′, y′), we can write Equation 13 as

[(x − xc)
2 + (y − yc)

2]1/2[(x′ − xc)
2 + (y′ − yc)

2]1/2 = r2

Also, because the two points are along a line passing through the circle center, we
have (y − yc)/(x − xc) = (y′ − yc)/(x′ − xc). Therefore, the transformed coordinate
values for position P′ are

x′ = xc + r2(x − xc)

(x − xc)2 + (y − yc)2 , y′ = yc + r2(y − yc)

(x − xc)2 + (y − yc)2 (14)

Thus, points outside the circle are mapped to positions within the circle circumfer-
ence, with distant points (±∞) transformed to the circle center. Conversely, points
near the circle center are mapped to distant points outside the circle. As we move
out from the circle center, points are mapped to outside positions closer to the
circle circumference. Also, inside points near the circumference are transformed
to inside positions closer to the circle center. For example, outside x values in the
range from r to +∞ map to x′ values in the range from r

2 to 0, for a circle centered
at the origin, (xc , yc) = (0, 0). Inside values for x in the range from r

2 to 0 map to
the x′ values from r to +∞, for a circle centered at the origin, and inside x values
from r

2 to r are transformed to values in the range from r to r
2 . Similar results are

obtained for negative values of x.
We can apply this transformation to various objects, such as straight lines,

circles, or ellipses. A straight line that passes through the circle center is invariant
under this inversion transformation; it maps into itself. However, a straight line
that does not pass through the circle center inverts into a circle whose circumfer-
ence contains the center point Pc ; and any circle that passes through the center
of the reference circle is inverted into a straight line that does not pass through
the circle center. If the circle does not intersect the center of the reference circle, it
inverts into another circle, as in Figure 31. Another invariant inversion is the
transformation of a circle that is orthogonal to the reference circle. That is, the
tangents of the two circles are perpendicular at the intersection points.

We can create various fractal shapes with this inversion transformation by
starting with a set of circles and repeatedly applying the transformation using
different reference circles. Similarly, we can apply circle inversion with respect to
a set of straight lines. Comparable inversion methods can be developed for other
two-dimensional shapes. In addition, we can generalize the procedure to spheres,
planes, or other three-dimensional objects.

F I G U R E 3 1
Inversion of a circle that does not pass
through the origin of the reference
circle.

r

Pc

Inverted
Circle

Reference
Circle

Original
Circle

Algorithmic Modeling

718

2 Particle Systems
For some applications, it is often useful to describe one or more objects using a
collection of disjoint pieces, called particle systems. This approach can be applied
to describe objects with fluid-like properties that change over time by flowing,
billowing, spattering, expanding, imploding, or exploding. Objects with these
characteristics include clouds, smoke, fire, fireworks, waterfalls, and water spray.
Particle systems have been employed, for instance, to model the planet explosion
and expanding wall of fire from the “genesis bomb” in the motion picture Star
Trek II: The Wrath of Khan. In addition, particle-system methods have been used to
model other kinds of objects, including clumps of grass.

In a typical application, a system of particles is defined within some spatial
region and then random processes are applied to vary system parameters over
time. Each particle has attributes associated with it that determine its behavior,
such as its appearance, size, initial color, motion path and velocity, and lifetime.
Values for these attributes are determined when the particle is generated, and are
used by processes within the system during the particle’s lifetime.

Particle systems are extremely flexible because particle attribute values are
determined algorithmically. This means that virtually any type of behavior can
be built into the system. Particle shapes could be described with small spheres,
ellipsoids, or boxes, which can be fixed or can vary randomly over time. Particle
transparency, color, and movement can all be randomly chosen, can be static, or
can evolve. Motion paths for the particles could be described kinematically or
defined with forces such as a gravity field. Lifetimes can be identical for all par-
ticles or can vary from one particle to another. The number and type of particles
can be fixed, or new particles can be generated whenever existing particles reach
the ends of their lives.

As each particle moves, its path is plotted and displayed in a particular color.
For example, a fireworks pattern can be displayed by randomly generating par-
ticles within a spherical region of space and allowing them to move radially
outward, as in Figure 32. The particle paths could be color-coded from red to
yellow, for instance, to simulate the temperature of the exploding particles.

Alternatively, rather than simply displaying the current position of each par-
ticle, “trajectory” particles can be used to model realistic displays of grass clumps
(Figure 33). Particles begin their lives at the ground, are shot up into the air,
and fall back to earth under gravity, with each point along their trajectory being

y

z

x

F I G U R E 3 2
Modeling fireworks as a particle system with particles
traveling radially outward from the center of a sphere.

y

z

x

F I G U R E 3 3
Modeling a clump of grass by firing particles upward within
a tapered cylinder. The particle paths are parabolas due to
the downward force of gravity.

Algorithmic Modeling

719

shown. The particle paths can originate within a tapered cylinder, and particles
may be color-coded from green to yellow.

Color Plate 40 illustrates a particle-system simulation of a waterfall. The water
particles fall from a fixed elevation, are deflected by an obstacle, then splash up
from the ground. Different colors are used to distinguish the particle paths at each
stage.

A composite scene formed with a variety of representations is given in Color
Plate 41. The scene is modeled using particle-system grass and fractal mountains,
in addition to texture mapping and other surface-rendering procedures.

3 Grammar-Based Modeling Methods
A number of other procedural methods can be used to design object shapes or
levels of surface detail. Shape grammars are sets of production rules that can be
applied to an initial object to add layers of detail that are harmonious with the
original shape. Transformations can be applied to alter the geometry (shape) of
the object, or the transformation rules can be applied to add details for surface
color or texture.

Given a set of production rules, a shape designer can experiment by apply-
ing different rules at each step of the transformation from a given initial object
to the final structure. Figure 34 shows four geometric substitution rules for
altering triangle shapes. The geometric transformations for these rules can be
expressed algorithmically by the system based on an input picture drawn with a
production-rule editor. That is, each rule can be described graphically by showing
the initial and final shapes. Implementations can then be set up in Mathematica
or some programming language with graphics capability.

An application of the geometric substitutions in Figure 34 is given in
Figure 35, where Figure 35(d) is obtained by applying the four rules in
succession, starting with the initial triangle in Figure 35(a).

Three-dimensional shape and surface features are transformed with similar
operations. Figure 36 shows the results of geometric substitutions applied to
polyhedra. The initial shape for the objects shown in Figure 37 is an icosahedron
(a polyhedron with 20 faces). Geometric substitutions were applied to the plane
faces of the icosahedron, and the resulting polygon vertices were projected to the
surface of an enclosing sphere.

Another set of production rules for describing the shape of objects is called
L-grammars, or graftals. These rules are typically used to generate plant displays.
For instance, the topology of a tree can be described as a trunk, with some attached
branches and leaves. A tree can then be modeled with rules to provide a partic-
ular connection of the branches and the leaves on the individual branches. The
geometrical description is then given by placing the object structures at particular
coordinate positions.

Color Plate 42 shows a scene containing various plants and trees, which was
constructed with a commercial plant-generator package. Procedures in the soft-
ware apply botanical laws to generate the shapes for the plants and trees.

F I G U R E 3 4
Four geometric substitution rules for
subdividing and altering the shape of
an equilateral triangle. Rule 1 Rule 2 Rule 3 Rule 4

Algorithmic Modeling

720

(c) (d)

(a) (b)

F I G U R E 3 5
An equilateral triangle (a) is converted
to shape (b) using substitution rules 1
and 2 in Figure 34. Rule 3 is then
used to convert (b) into shape (c),
which in turn is transformed to (d)
using rule 4. [Courtesy of Andrew
Glassner, Xerox PARC (Palo Alto
Research Center). c© 1992.]

F I G U R E 3 6
A design created with geometric substitution
rules for altering prism shapes. The initial
shape for this design is a representation of
Rubik’s Snake. [Courtesy of Andrew Glassner,
Xerox PARC (Palo Alto Research Center). c© 1992.]

F I G U R E 3 7
Designs created on the surface of a sphere using triangle
substitution rules applied to the plane faces of an icosahedron,
followed by projections to the sphere surface. [Courtesy of Andrew
Glassner, Xerox PARC (Palo Alto Research Center). c© 1992.]

Algorithmic Modeling

721

4 Summary
Fractal-geometry representations provide highly effective methods for describing
natural phenomena. We can use these methods to model terrain, trees, bushes,
water, and clouds, and to generate unusual graphics patterns. A fractal object
can be described with a construction procedure and a fractal dimension. Fractal
construction procedures include geometric constructions, midpoint-displacement
methods, self-squaring operations in complex space, and inversion transforma-
tions. Other procedural methods for constructing object representations using
transformation rules are shape grammars and graftals.

Objects that exhibit fluidity, such as clouds, smoke, fire, water, and things that
explode or implode, can be modeled with particle systems. Using this representa-
tion scheme, we describe an object with a set of particles and the rules that govern
the particle movements.

REFERENCES
For further information on fractal representations, see
Mandelbrot (1977 and 1982), Fournier, Fussel, and
Carpenter (1982), Norton (1982), Peitgen and Richter
(1986), Peitgen and Saupe (1988), Hart, Sandin,
and Kauffman (1989), Koh and Hearn (1992), and
Barnsley (1993). Modeling methods for various natural
phenomena are given in Fournier and Reeves (1986) and
in Fowler, Meinhardt, and Prusinkiewicz (1992). Shape
grammars are presented in Glassner (1992), and particle
systems are discussed in Reeves (1983). Physically based
modeling methods are presented in Barzel (1992).

EXERCISES
1 Using the random midpoint-displacement

method, write a routine to create a mountain
outline, starting with a horizontal line in the xy
plane.

2 Write a routine to calculate elevations above
a ground plane using the random midpoint-
displacement method, given a set of corner ele-
vations for the ground plane.

3 Write a program to display the terrain generated
by the routine in the previous exercise. Set up a
point light source and choose appropriate ren-
dering parameters to display the set of triangle
patches that result from the routine.

4 Write a program to display the fractal snowflake
(Koch curve) for a given number of iterations.

5 Modify the program in the previous exercise to
allow the user to set the number of iterations with
which to draw the Koch curve using a slider in
the display window. The Koch curve should be
redrawn each time the value of the slider is
changed.

6 Write a program to generate a fractal curve for
a specified number of iterations using one of the

generators in Figure 7 or Figure 8. What is the
fractal dimension of the curve?

7 Modify the program in the previous exercise to
allow the user to set the number of iterations with
which to draw the chosen fractal using a slider in
the display window. The chosen fractal should
be redrawn each time the value of the slider is
changed.

8 Write a program to generate fractal curves using
the self-squaring function f (z) = z2 + λ, where
the complex constant λ is specified as input.

9 Write a program to generate a fractal curve using
the self-squaring function f (z) = i(z2 +1), where
i = √−1.

10 Modify the programming example in Section 1
to use additional color levels in displaying the
boundary regions around the Mandelbrot set.

11 Modify the program in the previous exercise to
allow the colors and number of color levels to be
given as input values.

12 Modify the program in the previous exercise to
select and display any rectangular boundary
region (the zoom area) around the Mandelbrot set.

13 Write a routine to implement point inversion,
Equation 14, for a specified circle and a set of
point positions.

14 Devise a set of geometric-substitution rules for
altering the shape of an equilateral triangle.

15 Write a program for the previous exercise that dis-
plays the stages in the conversion of the triangle.
Allow the user to move forward and backward
through the stages using keyboard input.

16 Write a program to model and display an explod-
ing sphere in the xy plane, using a particle sys-
tem. Specify a beginning and end configuration

Algorithmic Modeling

722

for the explosion and divide the interval between
the two into several frames, each of which the user
can view by moving forward and backward using
keyboard input.

17 Modify the program of the previous exercise to
explode a firecracker (cylinder) in a similar way,
allowing the user to step back and forth through
each frame of the explosion.

IN MORE DEPTH
1 Use the concepts presented in this chapter to

incorporate a fractal design into your application
in an appropriate way. For example, if your appli-
cation contains natural terrain, you might use a

midpoint-displacement method to model the ter-
rain in a more realistic manner. Alternatively, you
might develop two-dimensional fractal patterns,
which can then be used as texture patterns to be
mapped onto the surface of some of the objects in
your application to produce more sophisticated
object textures.

2 Implement one of the two-dimensional fractals
described in this chapter as a programmable
shader that you then use to shade one or more
of the objects in your scene. Modify the exam-
ple shader programs in the previous chapter to
produce a shader that exhibits self-similarity as
discussed in this chapter.

Algorithmic Modeling

723

This page intentionally left blank

C o l o r P l a t e 3 6
Modeling a scene using multiple object instancing. Fractal leaves are attached to a tree in randomly transformed
positions, and several rotated and scaled instances of the tree are used to form a grove. The grass is modeled with
multiple instances of green cones. (Courtesy of John C. Hart. Reprinted with permission.)

From Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson

Color Plates
Algorithmic Modeling

725

C o l o r P l a t e 3 7
A fractal forest created with multiple
instances of leaves, pine needles,
grass, and tree bark. (Courtesy of John
C. Hart. Reprinted with permission.)

(a) (b)

(c)

C o l o r P l a t e 3 8
Variations in terrain features modeled with fractional Brownian motion. (Courtesy of (a) R. V. Voss and B. B.
Mandelbrot, adapted from The Fractal Geometry of Nature by Benoit B. Mandelbrot (W. H. Freeman and Co., New
York, 1983); and (b) and (c) Ken Musgrave and Benoit B. Mandelbrot, Mathematics and Computer Science, Yale
University.)

726

(a)

(d)

(b)

(e)

(c)

(f)

C o l o r P l a t e 3 9
Zooming in on the fractal boundaries for transformation 23-n. Starting with a display of the Mandelbrot set, the
black region in (a), and its surrounding areas, we zoom in on selected border regions (b) through (f). The white box
outline shows the rectangular area selected for each successive zoom. Different color combinations are chosen at
each step to enhance the displayed zoom patterns. (Copyright © Brian Evans. Reprinted with permission.)

C o l o r P l a t e 4 0
Simulation of the behavior of a waterfall hitting a
stone (circle). The water particles are deflected by
the stone and then splash up from the ground.
(Courtesy of Toby Howard. Reprinted with
permission.)

727

C o l o r P l a t e 4 1
A scene, entitled Road to Point Reyes, showing particle-system grass, fractal mountains, and texture-mapped
surfaces. (Courtesy of Pixar. © 1983 Pixar.)

C o l o r P l a t e 4 2
Realistic scenery generated with the TDI-AMAP software package, which can generate over 100 varieties of plants
and trees using procedures based on botanical laws. (Courtesy of Thomson Digital Image.)

728

Visualization of Data Sets

1 Visual Representations for Scalar
Fields

2 Visual Representations for Vector
Fields

3 Visual Representations for Tensor
Fields

4 Visual Representations for
Multivariate Data Fields

5 Summary

T he use of computer-graphics methods as an aid in sci-

entific and engineering analysis is commonly referred to

as scientific visualization. This involves the visualization

of data sets and processes that may be difficult or impossible to

analyze without graphical methods. For example, visualization tech-

niques are needed to deal with the output of high-volume data

sources such as computer monitors, satellite and spacecraft scan-

ners, radio-astronomy telescopes, and medical scanners. Millions of

data points are often generated from numerical solutions of com-

puter simulations and from observational equipment, and it is dif-

ficult to determine trends and relationships by simply scanning the

raw data. Similarly, visualization techniques are useful for analyz-

ing processes that occur over a long time period or that cannot be

observed directly, such as quantum-mechanical phenomena and

special-relativity effects produced by objects traveling near the speed

of light. Scientific visualization uses methods from computer graphics,

From Chapter of Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson

24 .

729

image processing, computer vision, and other areas to visually display, enhance, and

manipulate information to allow better understanding of the data. Similar methods

employed by commerce, industry, and other nonscientific areas are sometimes referred

to as business visualization.
Data sets are classified according to their spatial distribution and data type. Two-

dimensional data sets have values distributed over a surface, and three-dimensional data

sets have values distributed over the interior of a cube, a sphere, or some other region

of space. Data types include scalars, vectors, tensors, and multivariate data.

1 Visual Representations for Scalar Fields
A scalar quantity is one that has a single value. Scalar data sets contain values that
may be distributed in time, as well as over spatial positions, and the data values
may also be functions of other scalar parameters. Some examples of physical
scalar quantities are energy, density, mass, temperature, pressure, electric charge,
electrical resistance, reflectivity, frequency, and water content.

A common method for visualizing a scalar data set is to use graphs or charts
that show the distribution of data values as a function of other parameters, such
as position and time. If the data are distributed over a surface, we could plot
the data values as vertical bars rising from the surface, or we can interpolate
the data values in some other way at selected surface positions. Pseudo-color
methods are also used to distinguish different values in a scalar data set, and
color-coding techniques can be combined with graph and chart methods. To color-
code a scalar data set, we choose a range of colors and map the range of data
values to the color range. For example, blue could be assigned to the lowest scalar
value, and red could be assigned to the highest value. Color-coding a data set
sometimes requires careful consideration because certain color combinations can
lead to misinterpretations of the data.

Contour plots are used to display isolines (lines of constant value) for a scalar
data set distributed over a surface. The isolines are spaced at a convenient interval
to show the range and variation of the data values over the region of space. A
typical application is a contour plot of elevations over a ground plane. Usually,
contouring methods are applied to a set of data values that are distributed over a
regular grid, as in Figure 1. Regular grids have equally spaced grid lines, and
data values are known at the grid intersections. Numerical solutions of computer
simulations are usually set up to produce data distributions on a regular grid,
while observational data sets are often irregularly spaced. Contouring methods
have been devised for various kinds of nonregular grids, but nonregular data
distributions are often converted to regular grids. A two-dimensional contouring
algorithm traces the isolines from cell to cell within the grid by checking the four
corners of grid cells to determine which cell edges are crossed by a particular
isoline. The isolines are usually plotted as straight line sections across each cell,
as illustrated in Figure 2. Sometimes isolines are plotted with spline curves,
but spline-fitting can lead to inconsistencies and misinterpretation of a data set.
For example, two spline isolines could cross, or curved isoline paths might not
be a true indicator of the data trends because data values are known only at the
cell corners. Contouring packages can allow interactive adjustment of isolines by
a researcher to correct any inconsistencies.

�x
n1

1

m

0

�y

F I G U R E 1
A regular, two-dimensional grid with
data values at the intersections of the
grid lines. The x grid lines have a
constant �x spacing, and the y grid
lines have a constant �y spacing,
where as the spacing in the x and y
directions may not be the same.

F I G U R E 2
The path of an isoline across five
grid cells.

For three-dimensional scalar data fields, we can take cross-sectional slices and
display the two-dimensional data distributions over the slices. We could either

Visualization of Data Sets

730

F I G U R E 3
Isosurface intersections with grid cells,
modeled with triangle patches.

color code the data values over a slice, or we could display isolines. Visualization
packages typically provide a slicer routine that allows cross sections to be taken at
any angle. Color Plate 43 shows a display generated by a commercial slicer-dicer
package.

Instead of looking at two-dimensional cross-sections, we can plot one or more
isosurfaces, which are simply three-dimensional contour plots. When two over-
lapping isosurfaces are displayed, the outer surface is made transparent so that
we can view the shapes of both isosurfaces. Constructing an isosurface is simi-
lar to plotting isolines except that now we have three-dimensional grid cells and
we need to check the data values at the eight corners of a cell to locate sections
of an isosurface. Figure 3 shows some examples of isosurface intersections
with grid cells. Isosurfaces are usually modeled with triangle meshes, and then
surface-rendering algorithms are applied to display the final shape.

Data
Volume

Pixel
Ray

Pixel
Plane

F I G U R E 4
Volume visualization of a regular,
Cartesian data grid using ray casting
to examine interior data values.

Volume rendering, which is often somewhat like an X-ray picture, is another
method for visualizing a three-dimensional data set. The interior information

opaque, while tissue is somewhat transparent (that is, it has low opacity). Along each
ray, the opacity factors are accumulated until either the total is greater than or equal to
1, or until the ray exits at the back of the three-dimensional data grid. The
accumulated opacity value is then encoded and displayed as a pixel color or as a
grayscale value.

Visualization of Data Sets

about a data set is projected to a display screen using ray-casting methods. Along
the ray path from each screen pixel (see Figure 4), interior data values are exam-
ined and encoded for display. Often, data values at the grid positions are averaged so
that one value is stored for each voxel of the data space. How the data are encoded
for display depends on the application. Seismic data, for example, are often exam-
ined to find the maximum and minimum values along each ray. The values can
then be color-coded to give information about the width of the interval and the
minimum value. In medical applications, the data values are opacity factors in the
range from 0 to 1 for the tissue and bone layers. Bone layers are completely

731

F I G U R E 5
Field line representation for a vector data set. lower

higher

2 Visual Representations for Vector Fields
A vector quantity V in three-dimensional space has three scalar values (Vx, Vy, Vz),
one for each coordinate direction; and a two-dimensional vector has two compo-
nents (Vx, Vy). Another way to describe a vector quantity is by giving its magni-
tude |V| and its direction as a unit vector u. As with scalars, vector quantities may
be functions of position, time, and other parameters. Some examples of physi-
cal vector quantities are velocity, acceleration, force, electric current, and electric,
magnetic, and gravitational fields.

One way to visualize a vector field is to plot each data point as a small arrow
that shows the magnitude and direction of the vector. This method is most often
used with cross-sectional slices, as in Color Plate 44, because it can be difficult to
see the data trends in a three-dimensional region that is cluttered with overlapping
arrows. Magnitudes for vector values can be represented as variations in the
lengths of the arrows, or we could display color-coded arrows that are all the
same size.

We can also represent vector values by plotting field lines, also called stream-
lines. Field lines are commonly used for electric, magnetic, and gravitational
fields. The magnitude of the vector values is indicated by the spacing between
field lines, and the direction of the field is represented by the tangents (slopes)
of the field lines, as shown in Figure 5. Streamlines can be displayed as
wide arrows, particularly when a whirlpool, or vortex, effect is present. For
animations of fluid flow, the behavior of the vector field can be visualized by
tracking particles along the flow direction.

Sometimes, only the magnitudes of the vector quantities are displayed. This
is often done when multiple quantities are to be visualized at a single position,
when the directions do not vary much in some region of space, or when vector
directions are of less interest.

3 Visual Representations for Tensor Fields
A tensor quantity in three-dimensional space has nine components and can be
represented with a 3 × 3 matrix. Actually, this representation is used for a second-
order tensor, and higher-order tensors do occur in some applications, particularly
general-relativity studies. Some examples of physical second-order tensors are
stress and strain in a material subjected to external forces, conductivity (or resis-
tivity) of an electrical conductor, and the metric tensor, which gives the properties
of a particular coordinate space. The stress tensor in Cartesian coordinates, for
example, can be represented as

⎡

⎣

σx σxy σxz

σyx σy σyz

σzx σzy σz

⎤

⎦ (1)

Tensor quantities are encountered frequently in anisotropic materials, which
have different properties in different directions. The x, xy, and xz elements of the

Visualization of Data Sets

732

conductivity tensor, for example, describe the contributions of electric-field com-
ponents in the x, y, and z directions to the current in the x direction. Usually, phys-
ical tensor quantities are symmetric, so that the tensor has only six distinct values.
For instance, the xy and yx components of the stress tensor have the same value.

Visualization schemes for representing all six components of a symmetric,
second-order tensor quantity are based on devising shapes that have six param-
eters. One such graphical representation for a tensor is shown in Color Plate 45.
The three diagonal elements of the tensor are used to construct the magnitude
and direction of the arrow, and the three off-diagonal terms are used to set the
shape and color of the elliptical disk.

Instead of trying to visualize all six components of a symmetric tensor quan-
tity, we can reduce the tensor to a vector or a scalar. Using a vector representation,
we can simply display the values for the diagonal elements of the tensor. In
addition, by applying tensor-contraction operations, we can obtain a scalar repre-
sentation. For example, stress and strain tensors can be contracted to generate a
scalar strain-energy density that can be plotted at points in a material subject to
external forces.

4 Visual Representations for Multivariate
Data Fields

In some applications, we may want to represent multiple data values at each
grid position over a region of space. This data often contains a mixture of scalar,
vector, and tensor values. For example, fluid-flow data includes the fluid velocity,
temperature, and density values at each three-dimensional position. Thus, we
have five scalar values to display at each position, and the situation is similar to
displaying a tensor field.

A method for displaying multivariate data fields is to construct graphical
objects, sometimes referred to as glyphs, with multiple parts. Each part of a glyph
represents a particular physical quantity. The size and color of each part can be
used to display information about scalar magnitudes. To give directional infor-
mation for a vector field, we can use a wedge, a cone, or some other pointing
shape for the glyph part representing the vector. An example of the visualization
of a multivariate data field using a glyph structure at selected grid positions is
shown in Color Plate 46.

5 Summary
Visualization techniques use computer-graphics methods to analyze data sets,
which can include scalar, vector, and tensor values in various combinations. Data
representations can be accomplished with color-coding or with the display of
different object shapes.

REFERENCES
A general introduction to visualization algorithms is
given in Hearn and Baker (1991). Additional information
on specific visualization techniques can be found in Sabin
(1985), Lorensen and Cline (1987), Drebin, Carpenter,

and Hanrahan (1988), Sabella (1988), Upson and Keeler
(1988), Frenkel (1989), Nielson, Shriver, and Rosenblum
(1990), and Nielson (1993). Guidelines for visual displays
of information are given in Tufte (1990, 1997, and 2001).

Visualization of Data Sets

733

EXERCISES
1 Write a routine to visualize a two-dimensional

scalar data set using a pseudo-color representa-
tion.

2 Write a routine to visualize a two-dimensional
scalar data set using contour lines.

3 Write a routine to visualize a two-dimensional
vector data set using an arrow representation for
the vector values. Use a fixed-size arrow with dif-
ferent color codings.

4 Write a routine to visualize a three-dimensional
scalar data set using isosurfaces.

5 Write a routine to visualize a three-dimensional
scalar data set using volume rendering. Provide
the ability to choose between displaying the max-
imum, minimum, and average value of the voxels
intersected along a given ray.

6 Write a routine to visualize a three-dimensional
vector data set using an arrow representation
that allows the view of a two-dimensional cross-
section of data specified by the user. Use color
coded arrows to indicate vector magnitude.

7 Find a moderately sized data set of interest to
you on the internet that contains two-dimensional
scalar data. Using the routines developed in the
previous exercises, visualize the data using a
pseudo-color representation and again using a
contour line representation. Compare the two
visualizations and list the advantages and disad-
vantages of displaying the data in each format.

8 Find a moderately sized data set of interest to you
on the internet that contains three-dimensional
scalar data. Using the routines developed in
the previous exercises, visualize the data using
isosurfaces and again using volume rendering.
Compare the two visualizations and list the
advantages and disadvantages of displaying the
data in each format. Also explore the different
possible schemes for dealing with multiple voxel
intersections in volume rendering (e.g., value-
averaging, min-max values).

9 Find a moderately sized data set of interest to
you on the Internet that contains two-dimensional
vector data. Using the routine developed in a pre-
vious exercise, visualize the data using an arrow
representation for the vector values. Explore the
difference between using color-coded arrows to
indicate vector magnitude and using arrow size.

IN MORE DEPTH
1 Find a large data set of interest to you contain-

ing either two- or three-dimensional scalar data.
Experiment with at least two different ways of
presenting the data and write a program that
allows switching between each of these display
methods. You may include input routines to
allow the user to interact with the data to make it
more understandable.

2 Carry out the same procedure as the previous
exercise using a large data set containing either
two- or three-dimensional vector data.

Visualization of Data Sets

734

C o l o r P l a t e 4 3
Cross-sectional slices of a three-dimensional data set. (Courtesy of
Spyglass, Inc.)

C o l o r P l a t e 4 4
Arrow representation for a vector field over cross-sectional slices.
(Courtesy of the National Center for Supercomputing Applications
(NCSA) and the Board of Trustees of the University of Illinois.)

C o l o r P l a t e 4 5
Representing stress and strain tensors with an elliptical disk and an
arrow over the surface of a stressed material. (Courtesy of the
National Center for Supercomputing Applications (NCSA) and the
Board of Trustees of the University of Illinois.)

C o l o r P l a t e 4 6
One frame from an animated visualization of a time-varying
multivariate data field using glyphs. The wedge-shaped part of the
glyph indicates the direction of a vector quantity at each point.
(Courtesy of the National Center for Supercomputing Applications
(NCSA) and the Board of Trustees of the University of Illinois.)

From Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson

Visualization of Data Sets
Color Plates

735

This page intentionally left blank

A P P E N D I X Mathematics for
Computer Graphics

A variety of mathematical concepts and techniques are employed in
computer-graphics algorithms. Here, we provide a brief reference for the
methods from analytic geometry, linear algebra, vector analysis, tensor

analysis, complex numbers, quaternions, calculus, numerical analysis, and other
areas that are referred to in the discussions throughout this book.

1 Coordinate Reference Frames
Both Cartesian and non-Cartesian reference frames are often useful in computer-
graphics applications. We typically specify coordinates in a graphics program
using a Cartesian reference system, but the initial specification of a scene could
be given in a non-Cartesian frame of reference. Spherical, cylindrical, or other
symmetries often can be exploited to simplify expressions involving object
descriptions or manipulations.

Two-Dimensional Cartesian Screen Coordinates
For the device-independent commands within a graphics package, screen-
coordinate positions are referenced within the first quadrant of a two-dimensional
Cartesian frame in standard position, as shown in Figure 1(a). The coordinate
origin for this reference frame is at the lower-left screen corner. Scan lines, how-
ever, are numbered from 0 at the top of the screen, so that screen positions are rep-
resented internally with respect to the upper-left corner of the screen. Therefore,
device-dependent commands, such as those for interactive input and display-
window manipulations, often reference screen coordinates using the inverted
Cartesian frame shown in Figure 1(b). Horizontal coordinate values in the two
systems are the same, and an inverted y value is converted to a y value measured
from the bottom of the screen with the calculation

y = ymax − yinvert (1)

In some application packages, the screen-coordinate origin can be placed at an
arbitrary position, such as the center of the screen.

x

y

(a)

x

yinvert

ymax

(b)

ymax

F I G U R E 1
Cartesian screen-coordinate positions
are referenced with respect to the
lower-left screen corner (a) and the
upper-left screen corner (b).

From Appendix of Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson

A

737

r

u

F I G U R E 2
A polar-coordinate reference frame,
formed with concentric circles and
radial lines.

y

y axis

x x axis

r

P

u

F I G U R E 3
Relationship between polar and
Cartesian coordinates.

Standard Two-Dimensional Cartesian Reference Frames
We use Cartesian systems in standard position for world-coordinate specifica-
tions, viewing coordinates, and other references within the two-dimensional
viewing pipeline. Coordinates in these frames can be positive or negative, with
any range of values. To display a view of a two-dimensional picture, we desig-
nate a clipping window and a viewport to map a section of the picture to screen
coordinates.

Polar Coordinates in the xy Plane
A frequently used two-dimensional non-Cartesian system is a polar-coordinate
reference frame (Figure 2), where a coordinate position is specified with a radial
distance r from the coordinate origin and an angular displacement θ from the
horizontal. Positive angular displacements are counterclockwise, and negative
angular displacements are clockwise. The relation between Cartesian and polar
coordinates is shown in Figure 3. Considering the right triangle in Figure 4, and
using the definition of the trigonometric functions, we transform from polar co-
ordinates to Cartesian coordinates with the expressions

x = r cos θ , y = r sin θ (2)

The inverse transformation from Cartesian to polar coordinates is

r =
√

x2 + y2, θ = tan−1
(

y
x

)

(3)

P

r

x

y

u

F I G U R E 4
Right triangle with hypotenuse r , sides
x and y , and an interior angle θ .

s

r

P
u

F I G U R E 5
An angle θ subtended by a circular arc
of length s and radius r .

Angular values can be measured either in degrees or in dimensionless units
(radians). One radian is defined as a measure for an angle that is subtended by a
circular arc that has a length equal to the circle radius. This definition is illustrated
in Figure 5, which shows two intersecting lines in a plane and a circle centered
on the intersection point P. For any circle centered on P, the value of angle θ in
radians is given by the ratio

θ = s
r

(radians) (4)

where s is the length of the circular arc subtending θ , and r is the radius of the
circle. Total angular distance around point P is the length of the circle perimeter
(2πr) divided by r , or 2π radians. In terms of degrees, a circle circumference is

Appendix: Mathematics for Computer Graphics

738

divided into 360 arcs of equal length, so that each arc subtends an angle of 1 degree.
Therefore, 360◦ = 2π radians.

Other conics, besides circles, can be used to specify coordinate positions.
For example, using concentric ellipses instead of circles, we can give coordinate
positions in elliptical coordinates. Similarly, other types of symmetries can be
exploited with hyperbolic or parabolic plane coordinates.

Standard Three-Dimensional Cartesian Reference Frames
Figure 6(a) shows the conventional orientation for the coordinate axes in a
three-dimensional Cartesian reference system. This is called a right-handed sys-
tem because the right-hand thumb points in the positive z direction when we
imagine grasping the z axis with the fingers curling from the positive x axis to the
positive y axis (through 90◦), as illustrated in Figure 6(b). In most computer-
graphics programs, we specify object descriptions and other coordinate parame-
ters in right-handed Cartesian coordinates. For discussions throughout this book,
we assume that all Cartesian reference frames are right-handed unless specifically
stated otherwise.

Cartesian reference frames are orthogonal coordinate systems, which just
means that the coordinate axes are perpendicular to each other. Also, in Cartesian
frames, the axes are straight lines. But coordinate systems with curved axes are
useful in many applications. Most of these systems are also orthogonal in the sense
that the axial directions at any point in the space are mutually perpendicular.

Three-Dimensional Cartesian Screen Coordinates
When a view of a three-dimensional scene is displayed on a video monitor, depth
information is stored for each screen position. The three-dimensional position
corresponding to each screen point is often referenced with the left-handed sys-

y axis

y

z

x axisz axis

P

(a)

y axis

x axisz axis

(b)

x
F I G U R E 6
Coordinate representation for a point
P at position (x , y , z) in a standard
right-handed Cartesian reference
system.

y

z

x

(a)

y

z

x

(b)

F I G U R E 7
Left-handed Cartesian coordinate
system superimposed on the surface of
a video monitor.

tem shown in Figure 7. In this case, the left-hand thumb points in the positive

Appendix: Mathematics for Computer Graphics

739

z direction when we imagine grasping the z axis so that the fingers of the left
hand curl from the positive x axis to the positive y axis through 90◦. Positive z
values indicate positions behind the screen for each point in the xy plane, and
larger values along the positive z axis are interpreted as being farther from the
viewer.

Three-Dimensional Curvilinear-Coordinate Systems
Any non-Cartesian reference frame is referred to as a curvilinear-coordinate
system. The choice of coordinate system for a particular graphics application
depends on a number of factors, such as symmetry, ease of computation, and
visualization advantages. Figure 8 shows a general curvilinear-coordinate ref-
erence frame formed with three coordinate surfaces, where each surface has one
coordinate held constant. For instance, the x1x2 surface is defined with x3 = const3.
Coordinate axes in any reference frame are the intersection curves of the coordinate
surfaces. If the coordinate surfaces intersect everywhere at right angles, we have
an orthogonal curvilinear-coordinate system. Nonorthogonal, curvilinear refer-
ence frames are useful for some applications, such as visualizations of motions
governed by the laws of general relativity, but they are used less frequently in
computer graphics than orthogonal systems.

A cylindrical-coordinate specification of a spatial position is shown in
Figure 9 in relation to a Cartesian reference frame. The surface of constant
ρ is a vertical cylinder; the surface of constant θ is a vertical plane containing the
z axis; and the surface of constant z is a horizontal plane parallel to the Cartesian
xy plane. We transform from a cylindrical-coordinate specification to a Cartesian
reference frame with the calculations

x = ρ cos θ , y = ρ sin θ , z = z (5)

Another commonly used curvilinear-coordinate specification is the spherical-
coordinate system shown in Figure 10. Spherical coordinates are sometimes
referred to as polar coordinates in three-dimensional space. The surface of constant
r is a sphere; the surface of constant θ is again a vertical plane containing the z
axis; and the surface of constant φ is a cone with apex at the coordinate origin. If
φ < 90◦, the cone is above the xy plane. If φ > 90◦, the cone is below the xy plane.

x2 axis

x3 � const3

x2 � const2
x1 axis

x3 axis

x1 � const1

F I G U R E 8
A general curvilinear-coordinate
reference frame.

x axis

y axis

z axis

z

P (r, u, z)

u

r

F I G U R E 9
Cylindrical coordinates ρ, θ , and z.

Appendix: Mathematics for Computer Graphics

740

x

y

z

P (r, u, f)

r

f

u

F I G U R E 1 0
Spherical coordinates r , θ , and φ.

r A

P
v

F I G U R E 1 1
A solid angle ω subtended by a
spherical surface patch with area A and radius r .

We transform from a spherical-coordinate specification to a Cartesian reference
frame with the calculations

x = r cos θ sin φ , y = r sin θ sin φ , z = r cos φ (6)

Solid Angle
The definition for a solid angle ω is formulated by analogy with the definition for
a two-dimensional radian-angle θ between two intersecting lines (Eq. 4). For a
three-dimensional angle, however, we consider a cone with its apex at a point P
and a sphere centered at P, as shown in Figure 11. The solid angle ω within the
cone-shaped region with apex at P is defined as

ω = A
r2 (7)

where A is the area of the spherical surface intersected by the cone and r is the
radius of the sphere.

Also, in analogy with two-dimensional polar coordinates, the dimensionless
unit for solid angles is called the steradian. The total solid angle about point P is
the total area of the spherical surface (4πr2) divided by r2, or 4π steradians.

2 Points and Vectors
There is a fundamental difference between the concept of a geometric point and
that of a vector. A point is a position specified with coordinate values in some
reference frame, where the coordinates and other properties for the point depend
on our choice for the frame of reference. A vector, on the other hand, has properties
that are independent of any particular coordinate system.

Point Properties
Figure 12 illustrates the coordinate specification for a two-dimensional point
position P in two reference frames. In frame A, the point has coordinates that are
given by the ordered pair (x, y), and its distance from the origin is

√

x2 + y2. In
frame B, the same point has coordinates (0, 0), and the distance to the coordinate
origin of frame B is 0.

Appendix: Mathematics for Computer Graphics

741

y

OA

OB

x

P
frame B

frame A

F I G U R E 1 2
Coordinates for a point position P with
respect to two different Cartesian
reference frames.

y1

y2

x2x1

P2

V

P1

F I G U R E 1 3
A two-dimensional vector V defined in
a Cartesian reference frame as the
difference of two point positions.

Vector Properties
In a chosen coordinate system, we can define a vector as the difference be-
tween two point positions. Thus, for the two-dimensional points P1 and P2 in
Figure 13, we can specify a vector as

V = P2 − P1

= (x2 − x1, y2 − y1) (8)

= (Vx, Vy)

where the Cartesian components (or Cartesian elements) Vx and Vy are the projec-
tions of V onto the x and y axes. We could also obtain these same vector com-
ponents using two other point positions in this coordinate reference frame. In
fact, there are an infinite number of point pairs that will produce the same vector
components, and a vector is often defined with a single point position relative to
the current frame of reference. Therefore, a vector has no fixed position within
a coordinate system. Also, if we transform the representation for V to another
reference frame, the coordinates for the positions P1 and P2 change, but the basic
properties of the vector remain unchanged.

We can describe a vector as a directed line segment that has two funda-
mental properties: magnitude and direction. For the two-dimensional vector in
Figure 13, we calculate the vector magnitude using the Pythagorean theorem,
which gives us the distance along the vector direction between its two endpoint
positions.

|V| =
√

V2
x + V2

y (9)

We can specify the vector direction in various ways. For example, we can give the
direction in terms of the angular displacement from the horizontal as

α = tan−1
(

Vy

Vx

)

(10)

A vector has the same magnitude and direction no matter where we position
the vector within a single coordinate system. And the vector magnitude is inde-
pendent of the coordinate representation. However, if we transform the vector to
another reference frame, the values for its components and direction within that
reference frame may change. For example, we could transform the vector to a
rotated Cartesian frame so that the vector direction is along the new y direction.

Appendix: Mathematics for Computer Graphics

742

For a three-dimensional Cartesian vector representation V = (Vx, Vy, Vz), the
vector magnitude is

|V| =
√

V2
x + V2

y + V2
z (11)

And we can give the vector direction in terms of the direction angles, α, β, and γ ,
that the vector makes with each of the coordinate axes (Figure 14). Direction
angles are the positive angles that the vector makes with each of the positive
coordinate axes. We calculate these angles as

cos α = Vx

|V| , cos β = Vy

|V| , cos γ = Vz

|V| (12)

The values cos α, cos β, and cos γ are called the direction cosines of the vector.
Actually, we need specify only two of the direction cosines to give the direction
of V, because

cos2 α + cos2 β + cos2 γ = 1 (13)

z

x

y

Vg

b

a

F I G U R E 1 4
Direction angles α, β, and γ .

F sun

earth

v

F I G U R E 1 5
A gravitational force vector F and a
velocity vector v.

Vectors are used to represent any quantities that have the properties of mag-
nitude and direction. Two common examples are force and velocity (Figure 15).
A force can be thought of as an amount of push or pull along a particular direc-
tion. A velocity vector specifies how fast (speed) an object is moving in a certain
direction.

Vector Addition and Scalar Multiplication
By definition, the sum of two vectors is obtained by adding corresponding
components:

V1 + V2 = (V1x + V2x, V1y + V2y, V1z + V2z) (14)

Two-dimensional vector addition is illustrated geometrically in Figure 16. We
obtain the vector sum by placing the start position of one vector at the tip of the
other vector and drawing the representation for the vector sum from the start
of the first vector to the tip of the second. Addition of a vector with a scalar is
undefined, because a scalar has only one numerical value while a vector has n
numerical components in an n-dimensional space.

Multiplication of a vector by a scalar value s is defined as

sV = (sVx, sVy, sVz) (15)

For example, if the scalar parameter s has the value 2, each component of V is
doubled and its magnitude is doubled.

We can also combine vectors using multiplicative processes in various ways.
One highly useful method is to multiply the magnitudes of two vectors so that
this product is used to form either another vector or a scalar quantity.

y

x

V2

V1

(a)

y

x

V1 � V2 V2

(b)

V1

F I G U R E 1 6
Two vectors (a) can be added
geometrically by positioning the two
vectors end to end (b) and drawing the
resultant vector from the start of the
first vector to the tip of the second
vector.

Appendix: Mathematics for Computer Graphics

743

Scalar Product of Two Vectors
We obtain a scalar value from two vectors with the calculation

V1 · V2 = |V1| |V2| cos θ , 0 ≤ θ ≤ π (16)

where θ is the smaller of the two angles between the vector directions
(Figure 17). This multiplication scheme is called the scalar product, or dot
product, of two vectors. It is also referred to as the inner product, particularly in dis-
cussing scalar products in tensor analysis. Equation 16 is valid in any coordinate
representation and can be interpreted as the product of the parallel components of
the two vectors, where |V2| cos θ is the projection of vector V2 in the direction of V1.

V2

V1

|V2| c
os u

u

F I G U R E 1 7
The dot product of two vectors is
obtained by multiplying parallel
components.

In addition to the coordinate-independent form of the scalar product, we can
express this calculation in specific coordinate representations. For a Cartesian
reference frame, the scalar product is calculated as

V1 · V2 = V1xV2x + V1yV2y + V1zV2z (17)

The scalar product is a generalization of the Pythagorean theorem, and the
scalar product of a vector with itself produces the square of the vector magnitude.
Also, the scalar product of two vectors is zero if and only if the two vectors are
perpendicular (orthogonal).

Dot products are commutative:

V1 · V2 = V2 · V1 (18)

because this operation produces a scalar. And dot products are distributive with
respect to vector addition:

V1 · (V2 + V3) = V1 · V2 + V1 · V3 (19)

Vector Product of Two Vectors
We use the following calculation to combine two vectors to produce another
vector:

V1 × V2 = u|V1| |V2| sin θ , 0 ≤ θ ≤ π (20)

Parameter u in this expression is a unit vector (magnitude 1) that is perpendicular
to both V1 and V2 (Figure 18). The direction for u is determined by the right-
hand rule: We grasp an axis that is perpendicular to the plane containing V1 and
V2 so that the fingers of the right hand curl from V1 to V2. Vector u is then in
the direction of the right thumb. This calculation is called the vector product,
or cross product, of two vectors, and Equation 20 is valid in any coordinate
representation. The cross product of two vectors is a vector that is perpendicular
to the plane of the two vectors, and the magnitude of the cross-product vector is
equal to the area of the parallelogram formed by the two vectors.

V1

V2

V1 � V2

u
u

F I G U R E 1 8
The cross product of two vectors is a
vector in a direction perpendicular to
the two original vectors and with a
magnitude equal to the area of the
shaded parallelogram.

We can also express the cross product in terms of vector components in a
specific reference frame. In a Cartesian-coordinate system, we calculate the com-
ponents of the cross product as

V1 × V2 = (V1yV2z − V1zV2y, V1zV2x − V1xV2z, V1xV2y − V1yV2x) (21)

If we denote the unit vectors (magnitude 1) along the x, y, and z axes as ux, uy,
and uz, we can write the cross product in terms of Cartesian components using a
determinant notation (Section 5):

V1 × V2 =

∣
∣
∣
∣
∣
∣
∣

ux uy uz

V1x V1y V1z

V2x V2y V2z

∣
∣
∣
∣
∣
∣
∣

(22)

Appendix: Mathematics for Computer Graphics

744

The cross product of any two parallel vectors is zero. Therefore, the cross
product of a vector with itself is zero. Also, the cross product is not commutative;
it is anticommutative:

V1 × V2 = −(V2 × V1) (23)

And the cross product is not associative; that is,

V1 × (V2 × V3) �= (V1 × V2) × V3 (24)

But the cross product is distributive with respect to vector addition or subtraction:

V1 × (V2 + V3) = (V1 × V2) + (V1 × V3) (25)

3 Tensors
A generalization of the concept of a vector is the class of objects called tensors.
Formally, a tensor is defined as a quantity with a specified rank and with cer-
tain transformation properties when the tensor is converted from one coordinate
representation to another. For orthogonal-coordinate systems, the transformation
properties are straightforward and the same as those for vectors. Various physical
properties of objects, such as stress, strain, and conductivity, are tensors.

u2

u1

u3

F I G U R E 1 9
Three-dimensional, curvilinear-
coordinate axis vectors.

The rank of a tensor, along with the dimension of the space in which the tensor
is defined, determines the number of components (also called elements or coeffi-
cients) in that tensor. Scalar quantities and vectors are special cases of the more
general class of tensors. A scalar is a tensor of rank zero, and a vector is a tensor of
rank one. Basically, the rank of a tensor specifies the number of subscripts used to
designate the tensor elements, and the spatial dimension determines the number
of values that can be assigned to each subscript. Thus, a scalar quantity (tensor of
rank zero) has zero subscripts, and a vector (tensor of rank one) has one subscript.
Sometimes any parameter with one subscript is mislabeled as “one-dimensional,”
and any parameter with two subscripts is mislabeled as “two-dimensional.” How-
ever, the dimension of a quantity depends on the spatial representation, not on
the number of subscripts. In two-dimensional space, the single vector subscript
can be assigned two values and the two-dimensional vector has two components.
In three-dimensional space, the single vector subscript can be assigned three val-
ues and the three-dimensional vector has three components. Similarly, a tensor of
rank two has two subscripts, and in three-dimensional space, this tensor has nine
components (three values for each subscript).

4 Basis Vectors and the Metric Tensor
We can specify the coordinate directions for an n-dimensional reference frame
using a set of axis vectors, labeled�uk , where k = 1, 2, . . . , n, as in Figure 19,
which illustrates the axis vectors at the origin of a three-dimensional curvilinear
space. Each coordinate-axis vector gives the direction for one of the spatial axes at
any point along that axis. These axis tangent vectors form a linearly independent
vector set. That is, the axis vectors cannot be written as linear combinations of each
other. Also, any other vector in that space can be written as a linear combination
of the axis vectors, and the set of axis vectors is called a basis, or a set of base
vectors, for the space. In general, the space is referred to as a vector space and the
basis contains the minimum number of vectors needed to represent any other
vector in the space as a linear combination of the base vectors.

Appendix: Mathematics for Computer Graphics

745

Determining Basis Vectors for a Coordinate Space
The basis vectors in any space are determined from the position vector �r, which
is the vector representation for any spatial position. For example, in three-
dimensional Cartesian space, the position vector for any point (x, y, z) is

�r = xux + yuy + zuz (26)

where ux, uy, and uz are the unit base vectors for the x, y, and z axes. Unlike
other coordinate representations, Cartesian basis vectors are constants that are
independent of the spatial coordinates, so that we have

ux = ∂�r
∂x

, uy = ∂�r
∂y

, uz = ∂�r
∂z

(27)

Similarly, for any other three-dimensional space, we formulate the expression
for the position vector �r(x1, x2, x3) in terms of the coordinates for that space, and
then we determine the basis vectors as

�uk = ∂�r
∂xk

, k = 1, 2, 3 (28)

In general, the base vectors �uk are neither constants nor unit vectors. They are
functions of the spatial coordinates.

As an example, the position vector in two-dimensional polar-coordinate
space is

�r = r cos θ ux + r sin θ uy (29)

and the polar-coordinate basis vectors are

�ur = ∂�r
∂r

= cos θ ux + sin θ uy

�uθ = ∂�r
∂θ

= −r sin θ ux + r cos θ uy

(30)

In this space, �ur , which is a function of θ , is a unit vector. But �uθ , which is a function
of both r and θ , is not a unit vector.

Orthonormal Basis
Often, vectors in a basis are normalized so that each vector has a magnitude of 1.
We obtain unit basis vectors in any three-dimensional space with the calculations

uk = �uk

|�uk | , k = 1, 2, 3 (31)

and this set of unit vectors is called a normal basis. Also, for Cartesian, cylindri-
cal, spherical, and other commonly used reference frames, including polar coor-
dinates, the coordinate axes are mutually perpendicular at each point in space,
and the set of base vectors is then referred to as an orthogonal basis. A set of unit,
orthogonal base vectors is called an orthonormal basis, and these base vectors
satisfy the following conditions:

uk · uk = 1, for all k

u j · uk = 0, for all j �= k
(32)

Although we primarily deal with orthogonal systems, nonorthogonal coordinate
reference frames are useful in some applications, including relativity theory and
visualization schemes for certain data sets.

Appendix: Mathematics for Computer Graphics

746

A two-dimensional Cartesian system has the orthonormal basis

ux = (1, 0), uy = (0, 1) (33)

And the orthonormal basis for a three-dimensional Cartesian reference frame is

ux = (1, 0, 0), uy = (0, 1, 0), uz = (0, 0, 1) (34)

Metric Tensor
For “ordinary” coordinate spaces (that is, those in which we can define distances,
which are formally referred to as Riemannian spaces), the scalar products of the
basis vectors form the elements of the metric tensor for that space:

g jk = �u j · �uk (35)

Thus, the metric tensor is of rank two and it is symmetric: g jk = gkj . Metric tensors
have several useful properties. The elements of a metric tensor can be used to
determine (1) the distance between two points in that space, (2) the transformation
equations for conversion to another space, and (3) the components of various
differential vector operators (such as gradient, divergence, and curl) within that
space.

In an orthogonal space,

g jk = 0, for j �= k (36)

For example, in a Cartesian coordinate system, where the basis vectors are constant
unit vectors, the metric tensor has the components

g jk =
{

1, if j = k

0, otherwise
(Cartesian space) (37)

And for the polar-coordinate basis vectors (Eqs. 30), we can write the metric tensor
in the matrix form

g =
[

1 0
0 r2

]

(polar coordinates) (38)

For a cylindrical-coordinate reference frame, the base vectors are

�uρ = cos θ ux + sin θ uy, �uθ = −ρ sin θ ux + ρ cos θ uy, �uz = uz (39)

And the matrix representation for the metric tensor in cylindrical coordinates
is

g =

⎡

⎢
⎣

1 0 0
0 ρ 0
0 0 1

⎤

⎥
⎦ (cylindrical coordinates) (40)

In spherical coordinates, the basis vectors are

�ur = cos θ sin φ ux + sin θ sin φ uy + cos φ uz

�uθ = −r sin θ sin φ ux + r cos θ sin φ uy (41)

�uφ = r cos θ cos φ ux + r sin θ cos φ uy − r sin φ uz

Using these base vectors in Equation 35, we obtain the following matrix represen-
tation for the metric tensor:

g =

⎡

⎢
⎣

1 0 0
0 r2 sin2 φ 0
0 0 r2

⎤

⎥
⎦ (spherical coordinates) (42)

Appendix: Mathematics for Computer Graphics

747

5 Matrices
A matrix is a rectangular array of quantities (numerical values, expressions, or
functions), which are called the elements of the matrix. Some examples of matrices
are

[

3.60 −0.01 2.00
−5.46 0.00 1.63

]

,

[

ex x

e2x x2

]

,
[

a1 a2 a3
]

,

⎡

⎢
⎣

x

y

z

⎤

⎥
⎦ (43)

We identify matrices according to the number of rows and number of columns.
For the preceding examples, the matrices in left-to-right order are 2 × 3, 2 × 2,
1 × 3, and 3 × 1. When the number of rows is the same as the number of columns,
as in the second example, the matrix is called a square matrix.

In general, we can write an r × c matrix as

M =

⎡

⎢
⎢
⎢
⎣

m11 m12 · · · m1c

m21 m22 · · · m2c
...

...
...

mr1 mr2 · · · mrc

⎤

⎥
⎥
⎥
⎦

(44)

where m jk represent the elements of matrix M. The first subscript of any element
gives the row number, and the second subscript gives the column number.

A matrix with a single row or a single column represents a vector. Thus, the
last two matrix examples in 43 are, respectively, a row vector and a column vector.
In general, a matrix can be viewed as a collection of row vectors or as a collection
of column vectors.

When various operations are expressed in matrix form, the standard mathe-
matical convention is to represent a vector with a column matrix. Following this
convention, we write the matrix representation for a three-dimensional vector in
Cartesian coordinates as

V =

⎡

⎢
⎣

vx

vy

vz

⎤

⎥
⎦ (45)

Although we use this standard matrix representation for both points and vec-
tors, there is an important distinction between the two. The vector representa-
tion for a point always assumes that the vector is from the origin to that point.
And the distance of the point from the origin is not invariant when we switch
from one coordinate system to another. Also, we cannot “add” points, and we
cannot apply vector operations, such as the dot product and cross product, to
points.

Scalar Multiplication and Matrix Addition
To multiply a matrix M by a scalar value s, we multiply each element m jk by the
scalar. As an example, if

M =
[

1 2 3
4 5 6

]

then

3 M =
[

3 6 9
12 15 18

]

Appendix: Mathematics for Computer Graphics

748

Matrix addition is defined only for matrices that have the same number of
rows r and the same number of columns c. For any two r × c matrices, the sum is
obtained by adding corresponding elements. For example,

[
1 2 3
4 5 6

]

+
[

0.0 1.5 0.2
−6.0 1.1 −10.0

]

=
[

1.0 3.5 3.2
−2.0 6.1 −4.0

]

Matrix Multiplication
The product of two matrices is defined as a generalization of the vector dot prod-
uct. We can multiply an m × n matrix A by a p × q matrix B to form the matrix
product A B, providing that the number of columns in A is equal to the number
of rows in B. In other words, we must have n = p. We then obtain the product
matrix by forming sums of the products of the elements in the row vectors of
A with the corresponding elements in the column vectors of B. Thus, for the
following product:

C = A B (46)

we obtain an m × q matrix C, whose elements are calculated as

ci j =
n∑

k=1

aikbk j (47)

In the following example, a 3 x 2 matrix is postmultiplied by a 2 x 2 matrix to
produce a 3 x 2 product matrix:

⎡

⎣

0 −1
5 7

−2 8

⎤

⎦

[
1 2
3 4

]

=
⎡

⎣

0 · 1 + (−1) · 3 0 · 2 + (−1) · 4
5 · 1 + 7 · 3 5 · 2 + 7 · 4

−2 · 1 + 8 · 3 −2 · 2 + 8 · 4

⎤

⎦ =
⎡

⎣

−3 −4
26 38
22 28

⎤

⎦

Vector multiplication in matrix notation produces the same result as the dot prod-
uct, provided that the first vector is expressed as a row vector and the second
vector is expressed as a column vector. For example,

[1 2 3]

⎡

⎣

4
5
6

⎤

⎦ = [32]

This vector product results in a matrix with a single element (a 1 x 1 matrix).
However, if we multiply the vectors in reverse order, we obtain the following
3 x 3 matrix:

⎡

⎣

4
5
6

⎤

⎦ [1 2 3] =
⎡

⎣

4 8 12
5 10 15
6 12 18

⎤

⎦

As the previous two vector products illustrate, matrix multiplication, in gen-
eral, is not commutative. That is,

A B �= B A (48)

But matrix multiplication is distributive with respect to matrix addition:

A(B + C) = A B + A C (49)

Appendix: Mathematics for Computer Graphics

749

Matrix Transpose
The transpose MT of a matrix is obtained by interchanging rows and columns.
For example,

[
1 2 3
4 5 6

]T

=
⎡

⎣

1 4
2 5
3 6

⎤

⎦ , [a b c]T =
⎡

⎣

a
b
c

⎤

⎦ (50)

For a matrix product, the transpose is

(M1M2)
T = MT

2 MT
1 (51)

Determinant of a Matrix
If we have a square matrix, we can combine the matrix elements to produce a
single number called the determinant of the matrix. Determinant evaluations are
useful in analyzing and solving a wide range of problems. For a 2 × 2 matrix A,
the second-order determinant is defined to be

det A =
∣
∣
∣
∣

a11 a12
a21 a22

∣
∣
∣
∣
= a11a22 − a12a21 (52)

Higher-order determinants are obtained recursively from lower-order determi-
nant values. To calculate a determinant of order 2 or greater, we can select any
column k of an n × n matrix and compute the determinant as

det A =
n∑

j=1

(−1) j+kajk det A jk (53)

where det A jk is the (n − 1) × (n − 1) determinant of the submatrix obtained from
A by deleting the j th row and the kth column. Alternatively, we can select any
row j and calculate the determinant as

det A =
n∑

k=1

(−1) j+kajk det A jk (54)

Evaluating determinants for large matrices (n > 4, say) can be accomplished
more efficiently using numerical methods. One way to compute a determinant is
to decompose the matrix into two factors: A = L U, where all elements of matrix
L above the diagonal are zero, and all elements of matrix U below the diagonal
are zero. We then compute the product of the diagonals for both L and U, and we
obtain detA by multiplying the two diagonal products. This method is based on
the following property of determinants:

det(A B) = (det A)(det B) (55)

Another numerical method for calculating determinants is based on the Gaussian-
elimination procedures discussed in Section 14.

Matrix Inverse
With square matrices, we can obtain an inverse matrix if and only if the determinant
of the matrix is nonzero. If an inverse exists, the matrix is said to be a nonsingu-
lar matrix. Otherwise, the matrix is called a singular matrix. For most practical
applications, where a matrix represents a physical operation, we can expect the
inverse to exist.

The inverse of an n × n (square) matrix M is denoted as M−1 and

M M−1 = M−1M = I (56)

Appendix: Mathematics for Computer Graphics

750

where I is the identity matrix. All diagonal elements of I have the value 1, and all
other (off-diagonal) elements are zero.

Elements for the inverse matrix M−1 can be calculated from the elements of
M as

m−1
jk = (−1) j+k det Mk j

det M
(57)

where m−1
jk is the element in the j th row and kth column of M−1, and Mk j is the

(n − 1) × (n − 1) submatrix obtained by deleting the kth row and j th column of
matrix M. For large values of n, we can compute values for the determinants and
the elements of the inverse matrix more efficiently using numerical methods.

6 Complex Numbers
By definition, a complex number z is an ordered pair of real numbers, represented
as

z = (x, y) (58)

where x is called the real part of z and y is called the imaginary part of z. Real
and imaginary parts of a complex number are designated as

x = Re(z), y = Im(z) (59)

Geometrically, a complex number can be described as a point in the complex plane,
as illustrated in Figure 20.

When Re(z) = 0, the complex number z is said to be a pure imaginary number.
Similarly, any real number can be represented as a complex number with Im(z) = 0.
Thus, we can write any real number in the form

x = (x, 0)

Complex numbers arise from solutions of equations such as

x2 + 1 = 0, x2 − 2x + 5 = 0

which have no real-number solutions. Thus, the concept of a complex number and
the rules for complex arithmetic have been devised as extensions of real number
manipulations that provide solutions to such problems.

Basic Complex Arithmetic
Addition, subtraction, and scalar multiplication of complex numbers are carried
out using the same rules as for two-dimensional vectors. For example, the sum of
two complex numbers is

z1 + z2 = (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)

y

imaginary axis

x real axis

z

F I G U R E 2 0
Real and imaginary components for a point z in the
complex plane.

Appendix: Mathematics for Computer Graphics

751

and we can express any complex number as the summation:

z = (x, y) = (x, 0) + (0, y)

The product of two complex numbers, z1 and z2, is defined as

(x1, y1)(x2, y2) = (x1x2 − y1 y2, x1 y2 + x2 y1) (60)

This definition for complex multiplication gives the same result as for real-number
multiplication when the imaginary parts are zero:

(x1, 0)(x2, 0) = (x1x2, 0)

Imaginary Unit
The pure imaginary number with y = 1 is called the imaginary unit, and it is
denoted as

i = (0, 1) (61)

(Electrical engineers often use the symbol j for the imaginary unit, because the
symbol i is used to represent electrical current.)

From the rule for complex multiplication, we have

i2 = (0, 1)(0, 1) = (−1, 0)

Therefore, i2 is the real number −1, and

i = √−1 (62)

We can represent a pure imaginary number using either of the following two
forms:

z = iy = (0, y)

And a general complex number can be expressed in the form

z = x + iy (63)

Using the definition for i , we can verify that this representation satisfies the rules
for complex addition, subtraction, and multiplication.

Complex Conjugate and Modulus of a Complex Number
Another concept associated with a complex number is the complex conjugate, which
is defined to be

z = x − iy (64)

Thus, the complex conjugate z is the reflection of z about the x (real) axis.
The modulus, or absolute value, of a complex number is defined as

|z| =
√

zz =
√

x2 + y2 (65)

This number gives the distance in the complex plane of point z from the origin,
which is sometimes referred to as the “vector length” of the complex number.
Therefore, the absolute value of a complex number is simply a representation for
the Pythagorean theorem in the complex plane.

Complex Division
To evaluate the ratio of two complex numbers, we can simplify the expression
by multiplying the numerator and denominator by the complex conjugate of the
denominator. Then we use the multiplication rules to determine the values for

Appendix: Mathematics for Computer Graphics

752

imaginary
y axis

real x axis

z � (x, y)

r

u F I G U R E 2 1
Polar-coordinate parameters in the complex plane.

the components of the resulting complex number. Thus, the real and imaginary
parts for the ratio of two complex numbers are obtained as

z1

z2
= z1z2

z2z2

= (x1, y1)(x2, −y2)

x2
2 + y2

2
, (66)

=
(

x1x2 + y1 y2

x2
2 + y2

2
,

x2 y1 − x1 y2

x2
2 + y2

2

)

Polar-Coordinate Representation for a Complex Number
Multiplication and division operations for complex numbers are greatly simpli-
fied if we express the real and imaginary parts in terms of polar coordinates
(Figure 21):

z = r(cos θ + i sin θ) (67)

We can also write the polar form of z as

z = reiθ (68)

where e is the base of the natural logarithms (e ≈ 2.718281828), and

eiθ = cos θ + i sin θ (69)

which is Euler’s formula.
Using the polar-coordinate form, we compute the product of two complex

numbers by multiplying their absolute values and adding their polar angles. Thus,

z1z2 = r1r2ei(θ1+θ2) (70)

To divide one complex number by another, we divide their absolute values and
subtract the polar angles:

z1

z2
= r1

r2
ei(θ1−θ2) (71)

We can also use the polar representation to obtain roots of complex numbers.
The nth roots of a complex number are calculated as

n
√

z = n
√

r
[

cos
(

θ + 2kπ

n

)

+ i sin
(

θ + 2kπ

n

)]

, k = 0, 1, 2, . . . , n − 1 (72)

These roots lie on a circle of radius n
√

r with center at the origin of the complex
plane, and they form the vertices for a regular polygon with n sides.

7 Quaternions
Complex number concepts are extended to higher dimensions using quaternions,
which are quantities with one real part and three imaginary parts, written as

q = s + ia + jb + kc (73)

Appendix: Mathematics for Computer Graphics

753

where the coefficients a , b, and c in the imaginary terms are real numbers, and
parameter s is a real number called the scalar part. Parameters i , j , k are defined
with the properties

i2 = j2 = k2 = −1, i j = − j i = k (74)

From these properties, it follows that

jk = −k j = i, ki = −ik = j (75)

Scalar multiplication is defined in analogy with the corresponding operations
for vectors and complex numbers. That is, each of the four components of the
quaternion is multiplied by the scalar value. Similarly, quaternion addition is
defined as the addition of corresponding elements:

q1 + q2 = (s1 + s2) + i(a1 + a2) + j (b1 + b2) + k(c1 + c2) (76)

Multiplication of two quaternions is carried out using the operations in Equa-
tions 74 and 75.

We can also use the following ordered-pair notation for a quaternion, which
is similar to the ordered-pair representation for a complex number:

q = (s, v) (77)

Parameter v in this representation is the vector (a , b, c). Using the ordered-pair
notation, we can express quaternion addition in the form

q1 + q2 = (s1 + s2, v1 + v2) (78)

We can write the expression for quaternion multiplication relatively compactly in
terms of the vector dot product and cross product operations as

q1q2 = (s1s2 − v1 · v2, s1v2 + s2v1 + v1 × v2) (79)

The magnitude squared of a quaternion is defined by analogy with complex-
number operations, using the following sum of the squares of the quaternion
components.

|q |2 = s2 + v · v (80)

And the inverse of a quaternion is evaluated using the expression

q−1 = 1
|q |2 (s, −v) (81)

so that

qq−1 = q−1q = (1, 0)

8 Nonparametric Representations
When we write object descriptions directly in terms of the coordinates for the
reference frame in use, the representation is called nonparametric. For example,
we can describe a surface with either of the following Cartesian functions.

f1(x, y, z) = 0, or z = f2(x, y) (82)

The first form in 82 is called an implicit expression for the surface, and the second
form is called an explicit representation. In the explicit representation, x and y are
referred to as the independent variables, and z is called the dependent variable.

Appendix: Mathematics for Computer Graphics

754

Similarly, we can represent a three-dimensional curved line in nonparametric
form as the intersection of two surface functions, or we could represent the curve
with the pair of functions

y = f (x) and z = g(x) (83)

with coordinate x as the independent variable. Values for the dependent variables
y and z are then determined from Equations 83 as we step through values for
x for some prescribed number of intervals.

Nonparametric representations are useful in describing objects within a given
reference frame, but they have some disadvantages when used in graphics algo-
rithms. If we want a smooth plot, we must change the independent variable
whenever the first derivative (slope) of either f (x) or g(x) becomes greater than
1. This requires continual checks on the derivative values to determine when
we need to change the roles of the independent and dependent variables. Also,
Equations 83 provide an awkward format for representing multiple-valued
functions. For instance, the implicit equation for a circle centered on the origin in
the xy plane is

x2 + y2 − r2 = 0

and the explicit expression for y is the multivalued function

y = ±
√

r2 − x2

In general, a more convenient representation for object descriptions in graphics
algorithms is in terms of parametric equations.

9 Parametric Representations
We can classify objects according to the number of parameters needed to describe
the coordinate positions on the objects. A curve, for example, in a Cartesian ref-
erence frame is classified as a one-dimensional Euclidean object, and a surface is
a two-dimensional Euclidean object. When an object description is given in
terms of its dimensionality parameter, the description is called a parametric
representation.

The Cartesian description for positions along the path of a curve can be given
in a parametric form using the following vector point function:

P(u) = (x(u), y(u), z(u)) (84)

where each of the Cartesian coordinates is a function of parameter u. In most
cases, we can normalize the three coordinate functions so that parameter u varies
over the range from 0 to 1.0. For example, a circle in the xy plane with radius r
and center position at the coordinate origin can be defined in parametric form
with the following three functions:

x(u) = r cos(2πu), y(u) = r sin(2πu), z(u) = 0, 0 ≤ u ≤ 1 (85)

Because this curve is defined in the xy plane, we could eliminate the z(u) function,
which has the constant value 0.

In a similar way, we can represent coordinate positions on a surface using the
following Cartesian vector point function:

P(u, v) = (x(u, v), y(u, v), z(u, v)) (86)

Appendix: Mathematics for Computer Graphics

755

Each of the Cartesian coordinates is now a function of the two surface parameters
u and v. A spherical surface with radius r and center at the coordinate origin, for
example, can be described with the equations

x(u, v) = r cos(2πu) sin(πv)

y(u, v) = r sin(2πu) sin(πv) 0 ≤ u, v ≤ 1 (87)

z(u, v) = r cos(πv)

Parameter u describes lines of constant longitude over the surface, while param-
eter v describes lines of constant latitude. The parametric equations are again
normalized so that u and v are assigned values in the range from 0 to 1.0. By
keeping one of these parameters fixed while varying the other over a subrange
of the unit interval, we could plot latitude and longitude lines for any spherical
section (Figure 22).

F I G U R E 2 2
Section of a spherical surface
described by lines of constant u and
lines of constant v in Equations 87.

10 Rate-of-Change Operators
For a continuous function of a single independent variable, such as f (x), we
determine the rate at which the function is changing at any particular x value
using a function called the derivative of f (x) with respect to x. This derivative
function is defined as

d f
dx

≡ lim
�x→0

f (x + �x) − f (x)

�x
(88)

and this definition is the basis for obtaining numerical solutions for problems
involving rate-of-change operations. The functional forms for the derivatives of
commonly occurring functions, such as polynomials and trigonometric functions,
are available in derivative tables. And for rate-of-change problems involving sim-
ple functions, we can typically obtain closed-form solutions. But, in many cases,
we need to solve rate-of-change problems using numerical methods.

When we have a function of several variables, rate-of-change operations with
respect to the individual variables are called partial derivatives. For example, with
a function such as f (x, y, z, t), we can determine the rate of change of the function
with respect to any one of the coordinate directions, x, y, or z, or the time param-
eter t. A partial derivative for a particular independent variable is defined with
Equation 88, where all other independent variables are held constant. Thus, for
example, the partial derivative of f with respect to time is defined as

∂ f
∂t

≡ lim
�t→0

f (x, y, z, t + �t) − f (x, y, z, t)
�t

which is evaluated at some particular spatial position and time.
A number of partial-derivative operators occur frequently enough that they

are given special names, such as gradient, Laplacian, divergence, and curl. These
operators are useful in various applications, such as determining the geometry
and orientation of objects, describing the behavior of objects in certain situations,
calculating electromagnetic-radiation effects, and analyzing data sets in scientific
visualization studies.

Gradient Operator
The vector operator with the following Cartesian components is called the gradient
operator:

grad = ∇ ≡
(

∂

∂x
,

∂

∂y
,

∂

∂z

)

(89)

Appendix: Mathematics for Computer Graphics

756

Symbol ∇ is referred to as nabla, del, or simply the grad operator. One important
use for the gradient operator is in calculating a surface normal vector. When a
surface is described with the nonparametric representation f (x, y, z) = constant,
the surface normal at any position is calculated as

N = ∇ f (Normal Vector for a Nonparametric Surface Representation) (90)

As an example, a spherical surface with radius r can be represented in local
coordinates with the nonparametric Cartesian representation f (x, y, z) = x2 +
y2 + z2 = r2, and the gradient of f produces the surface normal vector
(2x, 2y, 2z). But if a surface is represented with a parametric point function
P(u, v), then we can determine the surface normal using the vector cross-product
calculation

N = ∂P
∂u

×∂P
∂v

(Normal Vector for a Parametric Surface Representation) (91)

Directional Derivative
We can also use the gradient operator and the vector dot product to form a scalar
product called the directional derivative of a function f :

∂ f
∂u

= u · ∇ f (92)

This gives us the rate-of-change of f in a direction specified by the unit vector u.
To illustrate, we can determine the directional derivative for the spherical surface
function f = x2 + y2 + z2 in the z direction as

∂ f
∂z

= uz · ∇ f = 2z

where uz is the unit vector along the positive z direction. And for the following
unit vector in the xy plane

u = 1√
2

ux + 1√
2

uy

the directional derivative of f from Equation 92 is

∂ f
∂u

= 1√
2

∂ f
∂x

+ 1√
2

∂ f
∂y

=
√

2x +
√

2y

General Form of the Gradient Operator
Within any three-dimensional, orthogonal-coordinate system, we obtain the com-
ponents for the gradient operator using the calculations

∇ =
3∑

k=1

uk√
gkk

∂

∂xk
(93)

In this expression, each uk represents the unit basis vector in the xk-coordinate
direction, and gkk are the diagonal components of the metric tensor for the space.

Laplace Operator
We can use the gradient operator and the vector dot product to form a scalar
differential operator called the Laplacian or the Laplace operator, which has the
Cartesian-coordinate form

∇2 = ∇ · ∇ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 (94)

Appendix: Mathematics for Computer Graphics

757

The symbol ∇2 is often referred to as grad squared, del squared, or nabla squared.
And in any three-dimensional, orthogonal-coordinate system, the Laplacian of a
function f (x, y, z) is computed as

∇2 f = 1√
g11g22g33

[
∂

∂x1

(√
g22g33√

g11

∂ f
∂x1

)

+ ∂

∂x2

(√
g33g11√

g22

∂ f
∂x2

)

+ ∂

∂x3

(√
g11g22√

g33

∂ f
∂x3

)]

(95)
Equations involving the Laplacian arise in many applications, including the de-
scription of electromagnetic-radiation effects.

Divergence Operator
The vector dot product can also be used to combine the gradient operator with a
vector function to produce a scalar quantity called the divergence of a vector, which
has the following Cartesian form:

div V = ∇ · V = ∂Vx

∂x
+ ∂Vy

∂y
+ ∂Vz

∂z
(96)

In this expression, Vx, Vy, and Vz are the Cartesian components of the vector V.
Divergence is a measure of the rate of increase or decrease of a vector function,
such as an electric field, at a point in space. In any three-dimensional, orthogonal-
coordinate system, the divergence of a vector V is calculated as

div V = ∇ · V = 1√
g11g22g33

[
∂

∂x1
(
√

g22g33V1)+ ∂

∂x2
(
√

g33g11V2)+ ∂

∂x3
(
√

g11g22V3)

]

(97)

with parameters V1, V2, and V3 as the components of vector V with respect to the
coordinate directions x1, x2, and x3, and gkk are the diagonal elements of the metric
tensor.

Curl Operator
Another very useful differential operator is the curl of a vector, which is applied us-
ing the gradient operator and the vector cross product. The Cartesian components
for the curl of a vector are

curl V = ∇ × V =
(

∂Vz

∂y
− ∂Vy

∂z
,
∂Vx

∂z
− ∂Vz

∂x
,
∂Vy

∂x
− ∂Vx

∂y

)

(98)

This operation gives us a measure of rotational effects associated with a vector
quantity, such as in the scattering of electromagnetic radiation. For any three-
dimensional, orthogonal-coordinate system, we can express the components of
the curl in terms of the metric tensor components using the following determinant
representation:

curl V = ∇ × V = 1√
g11g22g33

∣
∣
∣
∣
∣
∣
∣
∣
∣

√
g11 u1

√
g22 u2

√
g33 u3

∂

∂x1

∂

∂x2

∂

∂x3√
g11V1

√
g22V2

√
g33V3

∣
∣
∣
∣
∣
∣
∣
∣
∣

(99)

Vectors uk are the unit basis vectors for the space, and variables gkk are the diagonal
elements of the metric tensor.

11 Rate-of-Change Integral
Transformation Theorems

In many applications, we encounter problems that involve rate-of-change oper-
ations that are to be integrated (summed) over some region of space, which can
be along a line path, across a surface, or throughout a volume of space. Often the

Appendix: Mathematics for Computer Graphics

758

problem can be simplified by applying a transformation theorem that converts a
surface integral to a line integral, a line integral to a surface integral, a volume
integral to a surface integral, or a surface integral to a volume integral. These
transformation theorems are of tremendous importance in solving a wide range
of practical problems.

Stokes’s Theorem
For a continuous vector function F(x, y, z) defined over some surface region,
Stokes’s theorem states that the integral of the perpendicular component of the
curl of F is equal to the line integral of F around the perimeter curve C for the
surface. That is,

∫ ∫

surf
(curl F) · n dA =

∮

C
F · r ds (100)

where the boundary C must be “piecewise smooth,” which means that C must
be a continuous curve or a curve composed of a finite number of continuous
sections, such as circular arcs or straight-line segments. In this expression, n is the
unit surface normal at any point, dA is a differential element of surface area, r is a
unit tangent vector to the boundary curve C at any point, and ds is a differential
line segment along C . The integration direction around C is counterclockwise
when we view the front of the surface, as shown in Figure 23.

Green’s Theorem for a Plane Surface
If we consider a region of the xy plane bounded by a piecewise smooth curve C
(as in Stokes’s theorem), we can express Green’s plane theorem in the Cartesian
form

∫ ∫

area

(
∂ f2

∂x
− ∂ f1

∂y

)

dx dy =
∮

C
(f1 dx + f2 dy) (101)

Here, f1(x, y) and f2(x, y) are two continuous functions defined throughout the
planar area bounded by curve C , and the direction of integration around C is
counterclockwise. We can also apply Green’s theorem to a region with internal
holes, as in Figure 24, but we then must integrate in a clockwise direction
around the interior boundary curves.

Surface

C

r

n

F I G U R E 2 3
Integration around the boundary curve
C is counterclockwise in Stokes’s
theorem when we view the surface
from the “outside” region of space.

y

x

C2

C1

F I G U R E 2 4
Line integrals in Green’s plane theorem
are evaluated by traversing the
boundary curves C 1 and C 2 so that
the interior region (shaded) is always on the left.

Appendix: Mathematics for Computer Graphics

759

Although developed independently, Green’s plane theorem is a special case
of Stokes’s theorem. To demonstrate this, we define a vector function F with
Cartesian components (f1, f2, 0). Then, Green’s theorem can be written in the
vector form

∫ ∫

area
(curl F) · uz dA =

∮

C
F · r ds (102)

where uz is the unit vector perpendicular to the xy plane (in the z direction),
dA = dx dy, and the other parameters are the same as in Equation 100.

We can use Green’s plane theorem to compute the area of a planar region by
setting f1 = 0 and f2 = x. Then, from Green’s theorem, the area A of a plane
figure is

A =
∫ ∫

area
dx dy =

∮

C
x dy (103)

Similarly, if we set f1 = −y and f2 = 0, we have

A =
∫ ∫

area
dx dy = −

∮

C
y dx (104)

Adding the two previous area equations, we obtain

A = 1
2

∮

C
(x dy − y dx) (105)

We can also convert this Cartesian expression for the area into the following polar-
coordinate form:

A = 1
2

∮

C
r2 dθ (106)

Green’s plane theorem can be expressed in many other useful forms. For
example, if we define f1 = ∂ f/∂y and f2 = ∂ f/∂x, for some continuous function
f , then we have

∫ ∫

area
∇2 f dx dy =

∮

C

∂ f
∂n

ds (107)

where ∂ f/∂n is the directional derivative of f in the direction of the outward
normal to the boundary curve C .

Divergence Theorem
The previous two theorems give us methods for converting between surface
integrals and line integrals. The divergence theorem provides an equation for
converting a volume integral into a surface integral, or vice versa. This theorem
is also known by various other names, including Green’s theorem in space and
Gauss’s theorem. For a continuous, three-dimensional, vector function F, defined
over a volume of space, we can express the divergence theorem in the vector form

∫ ∫ ∫

vol
div F dV =

∫ ∫

surf
F · n dA (108)

where dV is a differential volume element, n is the normal vector for the bounding
surface, and dA is a differential element of surface area.

We can use the divergence theorem to obtain several other useful integral
transformations. For instance, if F = ∇ f for some continuous three-dimensional

Appendix: Mathematics for Computer Graphics

760

function f , we have the volume version of Equation 107, which is
∫ ∫ ∫

vol
∇2f dV =

∫ ∫

surf

∂ f
∂n

dA (109)

In this equation, ∂ f/∂n is the directional derivative of f in the direction of the
surface normal.

k � 1

k

n

1 2

3

F I G U R E 2 5
A polygon defined with n vertices in
the x y plane.

From the divergence theorem, we can derive expressions for calculating the
volume of a spatial region using a surface integral. Depending upon how we
represent the vector function F, we can obtain any one of the following Cartesian
forms for the surface integral:

V =
∫ ∫ ∫

vol
dx dy dz

=
∫ ∫

surf
x dy dz =

∫ ∫

surf
y dz dx =

∫ ∫

surf
z dx dy (110)

= 1
3

∫ ∫

surf
(x dy dz + y dz dx + z dx dy)

Green’s Transformation Equations
A number of other integral transformations can be derived from the diver-
gence theorem. The following two integral equations are generally referenced as
Green’s transformation equations, Green’s first and second formulas, or Green’s
identities:

∫ ∫ ∫

vol
(f1∇2 f2 + ∇ f1 · ∇ f2) dV =

∫ ∫

surf
f1

∂ f2

∂n
dA (111)

∫ ∫ ∫

vol
(f1∇2 f2 − f2∇2 f1) dV =

∫ ∫

surf

(

f1
∂ f2

∂n
− f2

∂ f1

∂n

)

dA (112)

In these equations, f1 and f2 are continuous, three-dimensional scalar functions,
and ∂ f1/∂n and ∂ f2/∂n are their directional derivatives in the direction of the
surface normal.

12 Area and Centroid of a Polygon
We can use the integral transformations from Section 11 to calculate various
properties of objects for computer-graphics applications. For polygons, we often
use the area and the centroid coordinates in programs involving geometric
transformations, simulations, system design, and animations.

Area of a Polygon
From Equation 103, we can compute the area of a polygon by expressing the
Cartesian coordinates in parametric form and evaluating the line integral around
the perimeter of the polygon. The parametric equations for the n edges of a poly-
gon with n vertices in the xy plane (Figure 25) can be expressed in the form

x = xk + (xk+1 − xk)u
0 ≤ u ≤ 1, k = 1, 2, . . . , n

y = yk + (yk+1 − yk)u
(113)

where xn+1 = x1 and yn+1 = y1.

Appendix: Mathematics for Computer Graphics

761

Substituting the differential expression dy = (yk+1 − yk)du and the parametric
expression for x into Equation 103, we have

A =
∮

C
x dy

=
n∑

k=1

∫ 1

0
[xk + (xk+1 − xk)u](yk+1 − yk) du

=
n∑

k=1

(yk+1 − yk)[xk + (xk+1 − xk)/2]

= 1
2

n∑

k=1

(xk yk+1 − xk yk + xk+1 yk+1 − xk+1 yk) (114)

For each line segment, the second and third terms in this sum are canceled by
similar terms with opposite signs in the expressions for successive values of k.
Therefore, the area of the polygon is computed with:

A = 1
2

n∑

k=1

(xk yk+1 − xk+1 yk) (115)

Centroid of a Polygon
By definition, the centroid is the position of the center of mass for a constant-
density object (all points in the object have the same mass). Thus, the coordinates
for the centroid are simply the mean values for the coordinates over all positions
within the object boundaries.

For some simple polygon shapes, we can obtain the centroid by averaging
the vertex positions. But, in general, vertex averaging does not locate the centroid
correctly, because it neglects the positions for all other points in the polygon. As
illustrated in Figure 26, the average vertex position is near the greatest con-
centration of vertices, while the centroid is at the center position for the entire
polygon area.

We calculate the centroid position (x, y) for a polygon in the xy plane by
averaging the coordinates for all positions within the polygon boundaries:

x = 1
A

∫ ∫

area
x dx dy = μx

A

y = 1
A

∫ ∫

area
y dx dy = μy

A

(116)

In these expressions, μx and μy are called the moments of the area with respect
to the x and y axes, respectively, where the area is assumed to have unit mass per
unit area.

F I G U R E 2 6
Coordinate positions for the centroid
of a polygon and the average of the
vertex coordinates.

x

y Centroid

Average
Vertex Position

Appendix: Mathematics for Computer Graphics

762

We can evaluate each of the moments of the polygon using the same pro-
cedures we employed to compute the area of the polygon. From Green’s plane
theorem, we obtain a line integral equivalent to the area integral, and we evaluate
the line integral using parametric representations for the Cartesian coordinates
along the polygon edges. Green’s theorem for a plane surface (Eq. 101) states
that

∫ ∫

area

(
∂ f2

∂x
− ∂ f1

∂y

)

dx dy =
∮

C
(f1 dx + f2 dy) (117)

For the evaluation of μx, we can take f2 = 1
2 x2 and f1 = 0 in the preceding

transformation, so that

μx =
∫ ∫

area
x dx dy = 1

2

∮

C
x2 dy (118)

From the parametric representations 113 for the polygon edges, we have

x2 = x2
k + 2xk(xk+1 − xk)u + (xk+1 − xk)

2u2

and

dy = (yk+1 − yk) du

for each of the n edges, labeled k = 1, 2, . . . , n. Therefore,

μx =
n∑

k=1

yk+1 − yk

2

∫ 1

0

[

x2
k + 2xk(xk+1 − xk)u + (xk+1 − xk)

2u2] du

= 1
6

n∑

k=1

(xk+1 + xk)(xk yk+1 − xk+1 yk) (119)

For the evaluation of μy, we make the substitutions f1 = − 1
2 y2 and f2 = 0 in

Green’s theorem, and we obtain

μy =
∫ ∫

area
y dx dy = 1

2

∮

C
y2 dx (120)

Using the parametric representations in 113 to evaluate the line integral, we
have

μy = 1
6

n∑

k=1

(yk+1 + yk)(xk yk+1 − xk+1 yk) (121)

Given any set of polygon vertices, we then use the expressions for A, μx, and
μy in Equations 116 to compute the polygon centroid coordinates. Because the
expression (xk yk+1 − xk+1 yk) appears in the calculations for all three quantities, A,
μx, and μy, we compute this once for each line segment.

13 Calculating Properties of Polyhedra
Methods similar to those for polygons are used to obtain polyhedra properties.
But now we compute the spatial volume, instead of an area, and the centroid
is obtained by averaging the coordinate positions throughout the volume of a
polyhedron.

The volume of any spatial region is defined in Cartesian coordinates as

V =
∫ ∫ ∫

vol
dx dy dz (122)

Appendix: Mathematics for Computer Graphics

763

This integral can be converted to a surface integral using one of the transformation
equations 110. For a polyhedron, the surface integral can then be evaluated
using a parametric representation for positions across each face of the solid.

We calculate the centroid positions for polyhedra using methods similar to
those for polygons. By definition, the Cartesian-coordinate centroid position for
a region of space (with unit mass per unit volume) is the average of all positions
within the region:

x = 1
V

∫ ∫ ∫

vol
x dx dy dz = μx

V

y = 1
V

∫ ∫ ∫

vol
y dx dy dz = μy

V
(123)

z = 1
V

∫ ∫ ∫

vol
z dx dy dz = μz

V

Again, we can convert the volume integrals to surface integrals, substitute para-
metric representations for the Cartesian coordinates, and evaluate the surface
integrals over the faces of a polyhedron.

14 Numerical Methods
In computer-graphics algorithms, it is often necessary to solve sets of linear equa-
tions, nonlinear equations, integral equations, and other functional forms. Also,
to visualize a discrete set of data points, it may be useful to display a contin-
uous curve or surface function that approximates the points of the data set. In
this section, we briefly summarize some common algorithms for solving various
numerical problems.

Solving Sets of Linear Equations
For variables xk , with k = 1, 2, . . . , n, we can write a system of n linear equations as

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

an1x1 + an2x2 + · · · + annxn = bn

(124)

where the values for parameters a jk and b j are known. This set of equations can
be expressed in the matrix form

A X = B (125)

with A as an n × n square matrix whose elements are the coefficients a jk , X as the
column matrix of xj values, and B as the column matrix of b j values. Solving this
matrix equation for X, we obtain

X = A−1B (126)

This system of equations can be solved if and only if A is a nonsingular matrix; that
is, its determinant is nonzero. Otherwise, the inverse of matrix A does not exist.

One method for solving the set of equations is Cramer’s rule:

xk = det Ak

det A
(127)

where Ak is the matrix A with the kth column replaced with the elements of B.
This method is adequate for problems with a few variables. For more than three
or four variables, however, the method is extremely inefficient due to the large

Appendix: Mathematics for Computer Graphics

764

number of multiplications needed to evaluate each determinant. Evaluation of a
single n × n determinant requires more than n! multiplications.

We can solve the system of equations more efficiently using variations of
Gaussian elimination. The basic ideas in Gaussian elimination can be illustrated
with the following set of two simultaneous equations:

x1 + 2x2 = −4
3x1 + 4x2 = 1

(128)

To solve this set of equations, we can multiply the first equation by −3, then add
the two equations to eliminate the x1 term, yielding the equation

−2x2 = 13

which has the solution x2 = −13/2. This value is then substituted into either of the
original equations to obtain the solution for x1, which is 9. We can use this basic
approach to solve any set of linear equations, but algorithms have been devised
to perform the elimination and back substitution steps more efficiently.

A modification of Gaussian elimination is the LU decomposition (or LU fac-
torization) method for solving sets of linear equations. In this algorithm, we first
factor matrix A into two matrices, called a lower-diagonal matrix L and an upper-
diagonal matrix U, such that

A = L U (129)

All elements of matrix L above its diagonal have the value 0, and all diagonal
elements have the value 1. All elements of matrix U below the diagonal have the
value 0. We can then write Equation 125 as

L U X = B (130)

This allows us to solve the following two very much simpler sets of equations:

L Y = B, U X = Y (131)

Once we have the values for the elements of matrix Y in Equation 131, we
use these in the second set of equations to solve for the elements of matrix X.
As an example, the following equation demonstrates the factorization for a 2 x 2
coefficient matrix:

A =
[

2 3
8 5

]

=
[

1 0
4 1

] [
2 3
0 −7

]

One method for computing the elements of the factorization matrices is given
in the following set of equations, where ui j are the elements for the upper-
triangular matrix U and li j are the elements for the lower-triangular matrix L.

u1 j = a1 j , j = 1, 2, . . . , n

li1 = ai1

u11
, i = 2, 3, . . . , n

ui j = ai j −
i−1∑

k=1

likuk j j = i, i + 1, . . . , n; i ≥ 2

li j = 1
u j j

(

ai j −
j−1
∑

k=1

likuk j

)

i = j + 1, j + 2, . . . , n; j ≥ 2

(132)

Gaussian elimination is sometimes susceptible to high round-off errors, and
other methods might not produce an accurate solution. In such cases, we may be
able to obtain a solution using the Gauss-Seidel method. This method is also an effi-
cient way to solve the set of linear equations when we know the approximate

Appendix: Mathematics for Computer Graphics

765

values for the solution. In the Gauss-Seidel approach, we start with an ini-
tial “guess” for the values of variables xk , then repeatedly calculate successive
approximations until the difference between two successive values for each xk is
small. At each step, we calculate the approximate values for the variables as

x1 = b1 − a12x2 − a13x3 − · · · − a1nxn

a11

x2 = b2 − a21x1 − a23x3 − · · · − a2nxn

a22
...

(133)

If we can rearrange matrix A so that each diagonal element has a magnitude
greater than the sum of the magnitudes of the other elements across that row,
than the Gauss-Seidel method is guaranteed to converge to a solution.

Finding Roots of Nonlinear Equations
A root of a function f (x) is a value for x that satisfies the equation f (x) = 0. In
general, the function f (x) can be an algebraic expression, such as a polynomial, or
it can involve transcendental functions. An algebraic expression is one that con-
tains only the arithmetic operators, exponents, roots, and powers. Transcenden-
tal functions, such as the trigonometric functions, log functions, and exponential
functions, are represented with infinite power series.

Roots of a nonlinear equation can be real numbers, complex numbers, or
a combination of real and complex numbers. Sometimes we can obtain exact
solutions for all roots, depending on the complexity of the equation. For example,
we know how to find an exact solution for any polynomial up to degree 4, and
the roots of a simple transcendental equation such as sin x = 0 are known to be
x = kπ for any integer value of k. But in most cases of practical interest, we need
to apply numerical procedures to obtain the roots of a nonlinear equation.

One of the most popular methods for finding roots of nonlinear equations is
the Newton-Raphson Algorithm. This is an iterative procedure that approximates
f (x) as a linear function at each step of the iteration, as shown in Figure 27. We
start with an initial “guess” of x0 for the value of the root, and then calculate the
next approximation to the root, x1, by determining where the tangent line from
x0 crosses the x axis. At x0, the slope (first derivative) of the curve is

d f
dx

= f (x0)

x0 − x1
(134)

Thus, the next approximation to the root is

x1 = x0 − f (x0)

f ′(x0)
(135)

where f ′(x0) denotes the derivative of f (x) evaluated at x = x0. We repeat this
procedure at each calculated approximation until the difference between succes-
sive approximations is “small enough.”

F I G U R E 2 7
Approximating a curve at an initial value x0 with a straight line
that is tangent to the curve at that point.

f(x0)

x0x1

tangent line

Appendix: Mathematics for Computer Graphics

766

In addition to solving problems involving real variables, the Newton-Raphson
algorithm can be applied to a function of a complex variable f (z), to a function of
several variables, and to sets of simultaneous nonlinear functions, real or complex.
And, if the Newton-Raphson algorithm converges to a root, it will converge faster
than any other root-finding method. But it may not always converge. For example,
the method fails if the derivative f ′(x) evaluates to 0 at some point in the iteration.
In addition, depending on the oscillations of the curve, successive approximations
may diverge from the position of a root.

Another method, slower but guaranteed to converge, is the bisection method.
In this algorithm, we must identify an x interval that contains a root. Then we
apply a binary-search procedure within that interval to close in on the root.
We first look at the midpoint of the interval to determine whether the root is
in the lower or upper half of the interval. This procedure is repeated for each
successive subinterval until the difference between successive midpoint posi-
tions is smaller than some preset value. A speedup can be attained by interpo-
lating successive x positions instead of halving each subinterval (false-position
method).

Evaluating Integrals
Integration is a summation process. For a function of a single variable x, the
integral of f (x) is equal to the area “under” the curve, as illustrated in Figure 28.
For simple integrands, we can often determine a functional form for an integral,
but, in general, we evaluate integrals using numerical methods.

From the definition of an integral, we can form the following numerical
approximation:

∫ b

a
f (x) dx ≈

n∑

k=1

fk(x)�xk (136)

The function fk(x) is an approximation to f (x) over the interval �xk . For example,
we can approximate the curve with a constant value in each subinterval and add
the areas of the resulting rectangles (Figure 29). This approximation improves,
up to a point, as we decrease the size of the subdivisions across the interval from
a to b. If the subdivisions are too small, the values of successive rectangular areas
can be lost in the round-off error.

Polynomial approximations for the function in each subinterval generally
give better results than the rectangle approach. Using a linear approximation, the

f(x)

a b x

Area � � f(x) dx
b

a

F I G U R E 2 8
The integral of f (x) is equal to the
amount of area between the function
and the x axis over the interval from a to b.

f(x)

xn � bx0 � a x1
…

F I G U R E 2 9
Approximating an integral as the sum of the areas of small rectangles.

Appendix: Mathematics for Computer Graphics

767

resulting subareas are trapezoids, and the approximation method is then referred
to as the trapezoid rule. If we use a quadratic polynomial (parabola) to approx-
imate the function in each subinterval, the method is called Simpson’s rule and
the integral approximation is

∫ b

a
f (x) dx ≈ �x

3

⎡

⎣ f (a) + f (b) + 4
n−1∑

(odd)k=1

f (xk) + 2
n−2∑

(even)k=2

f (xk)

⎤

⎦ (137)

In this expression, the interval from a to b is divided into the n equal-width
intervals

�x = b − a
n

(138)

where n is a multiple of 2, and with

x0 = a , xk = xk−1 + �x, k = 1, 2, . . . , n

f(x)

a b x

F I G U R E 3 0
A function with high-frequency
oscillations.

For a function with a rapidly varying amplitude, such as the example in
Figure 30, it may be difficult to approximate the function accurately over the
subintervals. Also, multiple integrals (involving several integration variables) are
not easy to evaluate with Simpson’s rule or the other approximation methods. In
these cases, we can apply Monte Carlo integration techniques. The term Monte
Carlo is used to describe any method that employs random-number procedures
to solve a deterministic problem.

We apply a Monte Carlo method to evaluate an integral by generating n
random positions within a rectangular area that contains f (x) over the interval
from a to b (Figure 31). An approximation for the integral is then calculated as

∫ b

a
f (x) dx ≈ h(b − a)

ncount

n
(139)

where parameter h is the rectangle height and parameter ncount is the number of
random points that are between f (x) and the x axis. A random position (x, y) in
the rectangular region is computed by first generating two random numbers, r1
and r2, then carrying out the calculations

h = ymax − ymin, x = a + r1(b − a), y = ymin + r2h (140)

Similar methods can be applied to multiple integrals.
In the calculations for x and y in 140, we assume that the random numbers

r1 and r2 are uniformly distributed over the interval (0, 1). We can obtain r1 and
r2 from a random-number function in a mathematics or statistical library, or we

F I G U R E 3 1
A random position (x , y) generated within a rectangular
area enclosing the function f (x) over the interval from
a to b.

f(x)

ymax

ymin

a b x(x, y)

Appendix: Mathematics for Computer Graphics

768

can use the following algorithm, called the linear congruential generator:

ik = a ik−1 + c(mod m), k = 1, 2, 3, . . .

rk = ik

m

(141)

where parameters a , c, m, and i0 are integers, and i0 is a starting value called the
seed. Parameter m is chosen to be as large as possible on a particular machine,
with values for a and c chosen to make the string of random numbers as long as
possible before a value is repeated. For example, on a machine with 32-bit integer
representations, we can set m = 232 − 1, a = 1664525, and c = 1013904223.

Solving Ordinary Differential Equations
Any equation containing differential rate-of-change operators is referred to as a
differential equation. Quantities can change values in some continuous way from
one coordinate position to another. They can also change over time at a fixed
position, and they can change with respect to many other parameters, such as
temperature or rotational acceleration. An equation that involves derivatives of
a function of a single variable is called an ordinary differential equation. We solve
a differential equation either by determining a functional form that satisfies the
equation or by using numerical approximation methods to determine the values
for the quantity at selected intervals.

To solve a differential equation, we also need to know one or more start-
ing values. An equation involving only the first derivative of a quantity, called a
first-order differential equation, requires one starting value. An equation that con-
tains both first and second derivatives, called a second-order differential equation,
requires two starting values. And similarly for equations involving higher-order
derivatives. There are two basic classifications for specifying starting values. An
initial-value problem is one in which the known conditions are specified for a
single value of the independent variable. A boundary-value problem is one in
which the known conditions are specified at the boundaries for the dependent
variable.

A simple example of an initial-value problem is the first-order differential
equation

dx
dt

= f (x, t), x(t0) = x0 (142)

where x represents some dependent variable that varies with time t (the indepen-
dent variable), f (x, t) is the known time-variation function for the first derivative
of x, and x0 is the given value for x at the initial time t0. We can also write this
equation in the form

dx = f (x, t) dt

From the definition of a derivative, we can use finite intervals to approximate the
differentials as

�xk ≈ f (xk , tk)�tk , k = 0, 1, . . . , n (143)

where �xk = xk+1 − xk and �tk = tk+1 − tk , for n time steps. Typically, we take
equal time intervals and use the following incremental calculations to determine
the x values at each time step, given the value of x0 at t0:

xk+1 = xk + f (xk , tk)�t (144)

This numerical procedure is called the Euler method, and it approximates x with
straight-line segments over each time interval �t.

Appendix: Mathematics for Computer Graphics

769

Although the Euler method is a simple procedure to implement, it is
not very accurate. Improvements to this basic numerical algorithm have been
developed from the following Taylor series expansion by incorporating higher-
order terms into the approximation for the differential equation:

x(t + �t) = x(t) + x′(t)�t + 1
2

x′′(t)�t2 + · · · (145)

Because x′(t) = f (x, t), we have x′′(t) = f ′(x, t), and so forth, for the higher
derivatives.

A more accurate, and more widely used, method for evaluating a first-order
differential equation is the Runge-Kutta algorithm, also called the fourth-order
Runge-Kutta algorithm. This procedure is based on a Taylor series expansion up
to fourth order. The algorithm for the Runge-Kutta method is

a = f (xk , tk)�t

b = f (xk + a/2, tk + �t/2)�t

c = f (xk + b/2, tk + �t/2)�t

d = f (xk + c, tk + �t)�t

tk+1 = tk + �t

xk+1 = xk + (a + 2b + 2c + d)/6, k = 0, 1, . . . n − 1

(146)

We can apply similar methods to obtain solutions for ordinary differential
equations of higher order. The general approach is to use the Taylor series ex-
pansion for x to include terms in x′′, x′′′, and so forth, depending on the order of
the differential equation. For example, from the Taylor series, we can obtain the
following approximation for the second derivative:

x′′(tk) ≈ xk+1 − 2xk + xk−1

�t2 (147)

Solving Partial Differential Equations
As we might expect, partial differential equations are generally more difficult to
solve than ordinary differential equations. But we can apply similar methods and
replace the partial derivatives with finite differences.

We first consider a function f (x, t) that depends only on the x coordinate
and time t. We can reduce a partial differential equation involving ∂ f/∂x and
∂ f/∂t to an ordinary differential equation by replacing the spatial derivative with
finite differences. This allows us to replace the function of two variables with a
one-subscript function of a single variable, t:

f (x, t) → f (xk , t) → fk(t) (148)

The partial derivatives are then replaced with the following expressions:

∂ f
∂x

= fk+1 − fk

�x
∂ f
∂t

= d fk

dt

(149)

Then we solve the equations at a finite number of x positions using the given
initial or boundary conditions.

For higher-order derivatives, we can use Taylor series expansions to obtain
the finite-difference approximations. As an example, we can use the following

Appendix: Mathematics for Computer Graphics

770

approximation for the second partial derivative of f with respect to x:

∂2 f (x, t)
∂x2 → fk+1(t) − 2 fk(t) + fk−1(t)

�x2 (150)

When we have functions defined over surfaces or volumes of space, we can divide
the space into a regular grid and use finite differences for each spatial coordinate.

Another approach that is applied to partial differential equations is the finite-
element method. A grid of coordinate positions is set up over the domain of interest,
which could be a surface or a volume of space, and then the coupled equations
are solved at the node positions using variational techniques. In this method, an
approximating functional solution is used instead of finite-difference equations.
Depending on the problem, an integral is set up for some quantity such as potential
energy or residual error. Then some procedure, such as a least-square analysis,
is applied to minimize the potential energy or residual error. This minimization
yields values for the unknown parameters in the approximating function for the
solution.

Least-Squares Curve-Fitting Methods for Data Sets
When a computer simulation or scientific-visualization study produces a set of
data values, we almost always want to determine a functional form that will
describe the data set. The standard method for producing a function that fits the
given data is the least-squares algorithm. To apply this method, we first choose a
general type for the function, such as a linear function, a polynomial function, or an
exponential function. We then must determine the values for the parameters in the
functional form that we have chosen. A two-dimensional straight-line function,
for example, can be described with two parameters: the slope and the y intercept.
We obtain the function parameters by minimizing the sum of the squares of the
differences between the theoretical function values and the actual data values.

To illustrate this method, we first consider a two-dimensional set of n data
points, labeled (xk , yk) with k = 1, 2, . . . , n. After we have selected the functional
form f (x) that we want to use to describe the data distribution, we set up an
expression for an error function E , which is the sum of the squares of the differ-
ences between f (xk) and the data values yk :

E =
n∑

k=1

[yk − f (xk)]2 (151)

Parameters in the function f (x) are then determined by minimizing the error
expression E .

As an example, if the data set is to be described with the linear function

f (x) = a0 + a1x

then

E =
n∑

k=1

[

y2
k − 2yk(a0 + a1xk) + a2

0 + 2a0a1xk + a2
1 x2

k

]

(152)

Because the error E is a function of two variables (a0 and a1), we minimize E with
the following two coupled equations:

∂ E
∂a0

=
n∑

k=1

[−2yk + 2a0 + 2a1xk] = 0

∂ E
∂a1

=
n∑

k=1

[−2yk xk + 2a0xk + 2a1x2
k

] = 0

(153)

Appendix: Mathematics for Computer Graphics

771

We can then solve this set of two linear equations using Cramer’s rule, which
yields

a0 =
(∑

k x2
k

)(∑

k yk
) − (∑

k xk
)(∑

k xk yk
)

D

a1 = n
∑

k xk yk − (∑

k xk
)(∑

k yk
)

D

(154)

where the denominator in these two expressions is

D =
∣
∣
∣
∣
∣
∣

n
∑

k xk

∑

k xk
∑

k x2
k

∣
∣
∣
∣
∣
∣

=
n∑

k=1

x2
k −

(
n∑

k=1

xk

)2

(155)

Similar calculations are carried out for other functions. For the polynomial

f (x) = a0 + a1x + a2x2 + · · · + anxn

for instance, we need to solve a set of n linear equations to determine values for
parameters ak . And we can also apply least-squares curve-fitting to functions of
several variables f (x1, x2, . . . , xm) which could be linear or nonlinear in each of
the variables.

Appendix: Mathematics for Computer Graphics

772

A P P E N D I X Graphics File
Formats

A ny stored pictorial representation is called a graphics file or an image
file. For raster-graphics systems, a color screen display is represented in
the frame buffer as a set of red, green, and blue (RGB) pixel values. The

1 Image-File Configurations
Pixel color values in a raster image file are typically stored as nonnegative integers,
and the range of color values depends on the number of available bits per pixel
position. For a full-color (24 bits per pixel) RGB image, the value for each color
component is stored in 1 byte, with R, G, and B values ranging from 0 to 255. An
uncompressed raster-graphics file composed of RGB color values is sometimes
referred to as raw data or a raw raster file. Other color models, including HSV,
HSB, and YCrCb, are used in compressed file formats. And the number of available
bits per pixel depends on the format.

File formats typically include a header that provides information about the
structure of the file. For compressed files, the header may also contain tables and
other details needed to decode and display the compressed image. The header
can include a variety of information, such as the file size (number of scan lines and
number of pixels per scan line), the number of bits or bytes allocated per pixel,
the compression method used to reduce the size of the file, the color range for the
pixel values, and the image background color.

Another characteristic of raster image files is the ordering for the bytes within
the file. Most computer processors store multibyte integers with the most sig-
nificant byte first, but some processors store multibyte integers with the least
significant byte first. The term big endian is used to refer to the ordering with the
most significant byte first, and the term little endian refers to the ordering with
the least significant byte first.

Some file formats store a picture in a geometric representation, which is a list
of the coordinate positions and other information for straight-line segments, fill
areas, circular arcs, spline curves, and other primitives. Geometric representations

contents of the frame buffer, or any rectangular section of it, is called a pixmap.
Although monochromatic images can be stored in a bitmap form (using a single
bit for each pixel), most raster pictures are now stored as pixmaps. In general,
any raster representation for a picture is referred to as a raster file. Many formats
have been developed for organizing the information in an image file in various
ways, and full-color raster files can be quite large, so most file formats apply
some type of compression to reduce the file size, both for archiving and for trans-
mission. In addition, the number of color values in a full-color image file must
be reduced when the picture is to be displayed on a system with limited color
capabilities, or when the file is to be stored in a format that does not support 24
bits per pixel. Here, we provide a brief introduction to graphics file formats and
the commonly used methods for reducing the size of both an image file and the
number of colors to be used in the display of an image.

From Appendix B of Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson

773

can also contain attribute information and viewing parameters. This type of image
representation is commonly referred to as a vector format, even though not all
geometric structures are defined with straight-line segments. Originally, the term
“vector” file was used to describe a list of line segments for display on a vector
(random-scan) system. Although vector systems have been replaced by raster
systems, and nonlinear object descriptions have been added to the “vector” files,
the name continues to be applied to any file using a geometric representation for a
picture. File formats that support both geometric and raster image representations
are referred to as hybrid formats or metafiles.

Scientific-visualization applications often use an image file that is a set of data
values generated from measuring instruments or from numerical computer simu-
lations. Various programs are then used to provide particular data visualizations,
such as pseudo-color displays, isosurface representations, or volume renderings.

2 Color-Reduction Methods
Several methods have been devised for reducing the number of colors used in the
display of an image. The most popular methods are those that attempt to generate
a color sampling that closely approximates the original set of colors.

Sometimes color-reduction methods are referred to as “quantization,” which
is a term used in areas of physics and mathematics (such as quantum mechanics
and sampling theory) for a process that produces a discrete set of values from a
continuous distribution. However, a raster image file is not a continuous distribu-
tion; it contains a finite, discrete set of color values. Therefore, any color-reduction
method simply replaces one discrete set of colors with a smaller discrete set of
colors. Furthermore, the color-reduction processes in common use do not gener-
ate a set of colors such that each color in the set is a multiple of some selected
value. In other words, color reduction does not produce a set of quantized colors.

Uniform Color Reduction
A simple method for reducing colors in a raster file is to divide each of the R, G,
and B color levels by an integer and truncate the result. For example, if we divide
by 2, we reduce each of the R, G, and B components in a full-color representation
to 128 levels. Thus, uniform color reduction replaces groups of contiguous color
levels with a reduced color level, as illustrated in Figure 1.

255

254

Original RGB
Values

Reduced RGB
Values

2

1

1

0

0

k � 1

.

.

.

.

.

.

F I G U R E 1
A uniform color reduction of the RGB
values in a full-color image to k levels. Another approach is to replace a group of pixel values with the value of the

middle pixel in the group. Alternatively, we could replace the group of pixels with
the average color for the group.

In general, we can expect that not all 256 values will be present in the image
file for each of the RGB components. Therefore, we can apply a uniform color-
reduction method to the color levels between the minimum and maximum levels
that actually occur in the image file.

We can also apply different reduction criteria to the different RGB compo-
nents. For instance, we could reduce a full-color image so that the red and green
color components are represented with 3 bits each (8 levels) and the blue compo-
nent is represented with 2 bits (4 levels).

Popularity Color Reduction
Another approach to color reduction is to retain only the color values that occur
most frequently in an image representation. We can first process the input image
file to reduce the bit representation for the individual RGB components. Then we
scan this modified set of colors to produce a count, or histogram, of the frequency

Appendix: Graphics File Formats

774

R

Rmedian RmaxRmin

Bmin

Bmax

B

G

F I G U R E 2
A block of image colors and the
division of this block at the position of
the median red component.

of occurrence for each RGB color component. To produce a reduced color file with
k colors, we select the k most frequently occurring colors in the image file.

Median-Cut Color Reduction
In this algorithm, we subdivide the color space for the image file into k subregions
and calculate the average color for each of the subregions. To form the subregions,
we first determine the minimum and maximum values for each of the RGB com-
ponents: Rmin, Rmax, Gmin, Gmax, Bmin, and Bmax. These values give us the bounds
on the block of colors within the RGB color cube that are present in the image.
For the largest of these three intervals, we determine the median value and use
this value to form two smaller blocks of colors. As an example, if the red com-
ponent has the largest range, we compute the value Rmedian such that half of the
pixel colors are above this value and half are below. We then slice the image color
block into two subblocks at the Rmedian position, as shown in Figure 2. Each of
the two color subblocks is then processed using the same subdivision procedure.
This process continues until we have subdivided the original image color block
into k subblocks. At each step, we can apply the subdivision procedure to the
largest subblock. An average color at the desired precision is calculated for each
subblock, and all image colors within a subblock are replaced with the average
subblock color.

3 File-Compression Techniques
Several compression techniques are available for reducing the number of bytes in
an image file, but the effectiveness of a particular compression method depends
on the type of image. Simple methods that look for patterns in the image file
are most effective with geometric designs that contain large single-color areas,
while the more complex compression schemes produce better results with photo-
realistic computer-graphics images and digitized photographs. The general tech-
nique employed to reduce the size of a graphics file is to replace the color values
with an encoding that occupies fewer bytes than the original file. In addition,
codes are incorporated into compressed files to indicate such things as the end of
a scan line and the end of the image file.

Some compression algorithms involve floating-point operations, which can
introduce round-off errors. In addition, some methods use approximations that
also modify the image colors. As a result, a file that has been decoded from a
compressed file often contains color values that are not exactly the same as in the
original image. For instance, an integer RGB color that is specified as (247, 108,
175) in an input image file could become the color (242, 111, 177) after decoding

Appendix: Graphics File Formats

775

the compressed file. But such color changes are often tolerable because our eyes
are not sensitive to small color differences.

File-reduction methods that do not change the values in an image file are
described as lossless compression techniques, and those that create color changes
are referred to as lossy compression techniques. In most cases, lossy compression
methods produce a much greater compression ratio for a file, where the compres-
sion ratio is the number of bytes in the original file divided by the number of bytes
in the compressed file.

Run-Length Encoding
This compression scheme simply searches the image file for contiguous, repeated
values. A reduced file is formed by storing each sequence of repeated values as a
repetition count (the run length) followed by a single copy of the repeated value.
For example, if the value 125 occurs eight times in succession along a scan line, we
store the two values, 8 and 125, in the compressed file. This reduces the original
eight bytes of storage to two bytes. For images with large single-color areas, this
encoding scheme works well. But images such as digitized photographs have
frequent color changes and few consecutive repeating values, so that many color
values would be stored with a repetition factor of 1.

Variations have been developed to improve the efficiency of the basic run-
length encoding algorithm. For instance, we could use a negative repetition factor
to indicate a sequence of nonrepeating values rather than just storing a repetition
factor of 1 with each of the values in the nonrepeating sequence. As an example
of this, the following list of values

{20, 20, 20, 20, 99, 68, 31, 40, 40, 40, 40, 40, 40, 40, 40, ...}
could be encoded as

{4, 20, −3, 99, 68, 31, 8, 40, ...}
which indicates that the value 20 occurs four times, followed by the three non-
repeating values 99, 68, and 31, which in turn are followed by eight occurrences
of the value 40. In this encoding example, the first 15 bytes of the input file are
compressed into 8 bytes.

LZW Encoding
Developed by Lempel, Ziv, and Welch, the LZW method is a modification of the
earlier LZ, LZ77, and LZ78 pattern-recognition algorithms. In the LZW scheme,
repeated patterns in an image file are replaced with a code. For instance, the
following list of 12 values contains two occurrences for each of the patterns
{128, 96} and {200, 30, 10}:

{128, 96, 200, 30, 10, 128, 96, 50, 240, 200, 30, 10, . . . }

We can replace these two patterns with the codes c1 and c2, and the remaining
pattern {50, 240} can be assign the code c3. This reduces the first 12 values in the
input list to the following 5 bytes:

{c1, c2, c1, c3, c2, . . . }

Alternatively, any nonrepeating sequence of values, such as {50, 240} could be
stored in the compressed file without assigning a code to the sequence.

Appendix: Graphics File Formats

776

Basically, the LZW algorithm searches for repeated sequences and constructs
a table of such sequences along with their assigned codes. Thus, this encod-
ing scheme is called a substitutional algorithm or a dictionary-based algorithm. The
compressed file is then decoded from the code table.

Other Pattern-Recognition Compression Methods
We can use pattern-recognition schemes to locate repetitions for particular black-
and-white or RGB color combinations throughout an image file. Duplicated scan
lines and other patterns can be detected and encoded to reduce further the size
of image files. In addition, fractal methods have been applied to obtain small
encoded self-similar sets of color values.

Huffman Encoding
File compression is accomplished with the Huffman approach by using a variable-
length code for the values in an image file. The Huffman-encoding method assigns
the shortest code to the most frequently occurring value in the file, and the longest
code is assigned to the least frequently occurring value.

The basic idea in the Huffman algorithm is the same as in the Morse code,
which assigns variable-length character codes to letters of the alphabet. High-
frequency letters in the Morse scheme are assigned one-character codes, and the
lowest-frequency letters are assigned four-character codes. For example, the let-
ter E is coded as a “dot” (·), the letter T is coded as a “dash” (–), and the letter Q is
coded as a four-character sequence with one dot and three dashes (– – · –). Instead
of using character codes, however, the Huffman code assigns variable-length bit
codes to the values in an image file, which provides greater compression ratios.

The first step in the Huffman algorithm is to count the number of occurrences
of each value in the input image file. Then, bit codes are assigned to the values
according to the frequency count. One method for assigning the variable-length
bit codes is to construct a binary tree with the high-frequency values near the
top of the tree and the lowest-frequency values as the leaf nodes. Starting with
the low-frequency values, we create the subtrees from the bottom up. Each root
node of a subtree is assigned a numerical label that is the sum of the frequency
counts or node labels of its two children. When the tree is complete, all left sub-
trees are labeled with the binary value 0, and all right trees are labeled with the
binary value 1. The bit code for each file value is then formed by concatenating
the branch bit labels from the top of the tree down to the node position of that file
value in the tree.

To illustrate the general tree-construction steps, we use the set of six values
in Table 1. This set represents a short example image file containing 21 items,
with the value 96 occurring eight times, the value 177 occurring four times, and
so forth for the other four values in the file.

T A B L E 1

Frequency Count for
Values in a Small Example
File

Frequency
File Value Count

96 8
177 4
141 3

85 3
210 2

43 1

Total Values
in File: 21

The values 210 and 43 in this table have the lowest frequency count, so we
use these two values to form the first subtree (Figure 3). The root of this subtree
is assigned a node label that is equal to the sum of the number of occurrences of
its two offspring: 3 = 2 + 1. We delete these two file values (210 and 43) from the
active list so that the next lowest frequency count is 3. But we just created a subtree
that also has the node label 3. Therefore, we can form the next subtree using any
two of the three items that have the label 3. We choose the two file values to form
the subtree shown in Figure 4, and we delete the values 141 and 85 from the
active list. The next subtree is constructed with the file value 177, which has a
count of 4, and the subtree whose root has the label 3 (Figure 5). We delete the
file value 177 and the tree node with the label 3 from the active list, and now the

Appendix: Graphics File Formats

777

3

2 1
(210) (43)

96
177
141
85

node

8
4
3
3
3

List of Remaining
Frequency Labels

F I G U R E 3
Forming a Huffman subtree using the file values 210 and 43.

6

3 3
(141) (85)

96
node

node
177

8
6
4
3

List of Remaining
Frequency Labels

F I G U R E 4
Forming a Huffman subtree using the file values 141 and 85.

3

2 1
(210)

7

4
(177)

(43)

96
node
node

8
7
6

List of Remaining
Frequency Labels

F I G U R E 5
Forming a Huffman subtree using the file value 177 and a
previously created subtree.

6

33

13

2

3
(141)

(210)
1

(43)

7

4
(177) (85)

node
96

13
8

List of Remaining
Frequency Labels

F I G U R E 6
Forming a Huffman subtree by joining two previously created subtrees.

F I G U R E 7
A complete Huffman binary tree for
the file values in Table 1.

6

33

13

2

3
(141)

(210)
1

(43)

7

4
(177) (85)

8
(96)

21

List of Remaining
Frequency Labels

two lowest “counts” in the list represent subtrees. These two subtrees are then
merged to produce the new subtree shown in Figure 6. Finally, we complete the
construction of the binary tree (Figure 7) by joining the file value 96 to the last
subtree we created. The value assigned to the root of the tree is the total count
(21) for all values in the image file.

T A B L E 2

Indexed Huffman Codes
for the Example File

File Binary
Index Value Code

1 96 1
2 177 000
3 141 010
4 85 011
5 210 0010
6 43 0011

Now that we have all file values in a binary tree, we can label left branches in
the tree with the binary value 0 and right branches with the binary value 1, as in
Figure 8. Starting at the root of the tree, we concatenate the branch labels down
to each of the leaf nodes. This forms the set of variable-length binary codes for
each of the file values, and we then set up Table 2, which will be stored with the
compressed file. For this example, there is one file value with a one-digit binary
code, three file values with a three-digit binary code, and two file values with
a four-digit binary code. The low-frequency values have longer codes, and the
higher-frequency values have shorter codes.

Appendix: Graphics File Formats

778

6

33

13

2

3
(141)

(210)
1

10

10 10

10

10

(43)

7

4
(177) (85)

8
(96)

21

List of Remaining
Frequency Labels

F I G U R E 8
The complete Huffman binary tree with
branch labeling.

T A B L E 3

Bit-Code Reference Table

Bit-Code Length Minimum Code Value Maximum Code Value First Index

1 1 1 1
3 000 011 2
4 0010 0011 5

An important characteristic of the Huffman codes is that no bit code is a prefix
for any other bit code. This allows us to decode a list of encoded file values by
providing Table 3 along with Table 2. To demonstrate the decoding algorithm,
we suppose that the compressed file contains the bit stream {100100100 . . .}. The
first bit value in this file is 1, so it must represent the file value 96 because there is
a bit code of 1, and this cannot be a prefix for any other code. Next, we have a bit
value of 0. There is no one-bit code other than 1 and there are no two-bit codes,
so the next code must be either 001 or 0010. Checking the indexed code table, we
find a file value 210 with the code 0010, which means that there cannot be a file
value with the code 001. At this point, we have decoded the first two file values,
96 and 210. The next code in the bit stream must be either 010 or 0100. There is
a file value with the code 010, so there cannot be a four-bit code with that prefix.
Thus the third decoded file value is 141. We continue analyzing the bit stream in
this manner until the compressed file has been fully decoded.

We can also use other schemes for generating and assigning Huffman bit
codes. Once we have the frequency count, we could assign a code length to each
file value. Using the code length and the frequency count, we can then use a list-
merging algorithm to devise the specific bit codes. A predefined code set can also
be used to assign codes to the file values, which eliminates the need to store the
codes with the compressed file.

Arithmetic Encoding
In this compression scheme, the frequency count in a file is used to obtain
numerical codes for sequences of the file values. The arithmetic-encoding algo-
rithm first computes the fraction of the file that is occupied by each value. This
creates a set of subintervals within the unit interval from 0.0 to 1.0. Then each
file fraction is repeatedly mapped onto these subintervals to establish numerical

Appendix: Graphics File Formats

779

T A B L E 4

Frequency Count and Fraction of Occurrences for Values in a Small Example File

File Value Frequency Count File Fraction Unit-Interval Range

V1 16 0.20 0.00–0.20
V2 24 0.30 0.20–0.50
V3 40 0.50 0.50–1.00

Total: 80 1.00

intervals for various combinations of the file values. The numerical bounds for
the subintervals are used to encode these combinations.

To illustrate the method, we consider a file with 80 entries and just three
distinct values. The frequency count and corresponding file fractions for the three
values are listed in Table 4. Thus, value V1is associated with the subinterval from
0.00 to 0.20 within the unit interval, value V2 is associated with the subinterval
from 0.20 to 0.50, and value V3 is associated with the subinterval from 0.50 to 1.00.
In other words, 20 percent of the unit interval is associated with V1, 30 percent
with V2, and 50 percent with V3. If we now map V1 onto the V3 subinterval,
it will occupy 20 percent of the top half of the unit interval. This new subinterval,
with a range from 0.50 to 0.60, represents the sequence V3V1. Similar results are
obtained for the mappings of V2 and V3 onto the V3 subinterval. Table 5 lists
ranges for these three two-value sequences. Continuing in this manner, we can
map the intervals for the two-value sequences onto other subintervals to obtain
the sequences for longer combinations of the file values. The boundary values for
the subintervals are then used to encode and decode the sequences within the file.

Various algorithms can be used to terminate the unit-interval subdivisions
and to assign numerical codes to the file-value combinations. And the arithmetic-
encoding algorithm is typically implemented using binary numbers instead of
the floating-point values within the unit interval. The compressed file is then a
sequence of binary values.

T A B L E 5

Unit-Interval Range for
Each Two-Value Sequence
Starting with the Value V3

Unit-Interval
Sequence Range

V3V1 0.50–0.60
V3V2 0.60–0.75
V3V3 0.75–1.00

Discrete Cosine Transform
A number of numerical transform methods, including the Fourier and Hadamard
transforms, have been applied to file compression, but the discrete cosine trans-
form is the most commonly used method. Efficient implementation algorithms
for the discrete cosine transform provide faster execution and better color fidelity
in a reconstructed picture at higher compression ratios.

For a list of n numerical values Vk , with k = 0, 1, . . . , n− 1, the discrete cosine
method generates the following set of transformed values:

V′
j = c j

n−1∑

k=0

Vk cos
[
(2k + 1) jπ

2n

]

, for j = 0, 1, . . . , n − 1 (1)

where

c j =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

1√
n

, for j = 0

√

2
n

, for j �= 0

Appendix: Graphics File Formats

780

Thus, this transform method computes a discrete sum of cosine terms with
increasing frequency and with amplitudes that are proportional to the input val-
ues. Except for possible round-off errors, the original values are recovered with
the inverse transformation

Vk =
n−1∑

j=0

c j V′
j cos

[
(2k + 1) jπ

2n

]

, for k = 0, 1, . . . , n − 1 (2)

Very often, the transform values V′
j are alluded to as the “coefficients” of the cosine

functions in the inverse transform equation. But this is incorrect terminology
because the coefficients of the cosine terms in the summation are the products c j V′

j .
To illustrate this transform method, we consider the following list of 8 input

values:

{215, 209, 211, 207, 192, 148, 88, 63}
The transformed values, computed to two decimal places, for this input are

{471.29, 143.81, −67.76, 16.33, 7.42, −4.73, 5.49, 0.05}
In this example, we note that the amplitudes of the transformed values markedly
decrease, so the higher frequency cosine terms contribute less to the recovery of
the input values. This is a basic characteristic of the discrete cosine transform,
which allows us to approximate closely the original values using only the first
several transformed values. Therefore, to obtain a compressed image file, we could
calculate and store just the first half or so of the transformation values. Table 6
shows the results from Equation 2 when we use four, five, or all eight of the
transformed values to regain the input values. All calculated values in the table
are rounded to two decimal places.

We can improve the efficiency of this compression technique by transforming
rectangular blocks of input values, rather than transforming linear sets of values
across a single scan line. For a square block of n× n input values, the transformed
values are calculated as

V′
lm = clm

n−1∑

j=0

n−1∑

k=0

Vjk cos
[
(2k + 1)lπ

2n

]

cos
[
(2 j + 1)mπ

2n

]

(3)

with

l, m = 0, 1, . . . , n − 1

T A B L E 6

Inverse Discrete Cosine Transformation Calculations

Input Values: 215 209 211 207 192 148 88 63

Terms in Sum Inverse Discrete Cosine Transform Values

4 212.63 211.85 211.53 207.42 188.43 147.65 95.47 58.02

5 215.26 209.23 208.91 210.04 191.06 145.02 92.84 60.64

8 215.00 209.00 211.00 207.00 192.00 148.00 88.00 63.00

Appendix: Graphics File Formats

781

and

clm =

⎧

⎪⎪⎨

⎪⎪⎩

1
n

, if l = 0 or m = 0

2
n

, if l �= 0 and m �= 0

Also, the n×n set of input values are recovered using the inverse transformation:

Vjk =
n−1∑

l=0

n−1∑

m=0

c j V′
j cos

[
(2 j + 1)lπ

2n

]

cos
[
(2k + 1)mπ

2n

]

(4)

where

j, k = 0, 1, . . . , n − 1

This transform and its inverse are typically implemented using 8 × 8 groups of
input values, so that groups of color values along eight scan lines are processed
simultaneously.

4 Composition of the Major File Formats
Hundreds of file formats have been developed for representing graphical data
within different contexts for different systems. Operating systems, for exam-
ple, typically use a number of specially designed formats within the various
system-processing routines. And individual formats exist for specific applica-
tions, such as three-dimensional modeling, animations, graphical user interfaces,
ray-tracing software, video recording, scientific-visualization software, paint pro-
grams, word-processing systems, spreadsheet packages, Internet communica-
tions, television broadcasting, and fax transmissions. In addition, the International
Standards Organization (ISO) and American National Standards Institute (ANSI)
standards committees have proposed several formats and file-compression sys-
tems for general use.

Most raster file formats are designed to accommodate color images, but some
apply only to bitmaps. However, the format name is often misleading, because the
term bitmap is frequently used to reference color images (pixmaps). This situation
is simply a result of the continued use of the older label, “bitmap,” for a raster file.
Before the development of color displays, all raster images were stored as bitmaps
(1 bit per pixel), representing the black-and-white pixel patterns in a picture. As
color techniques developed, pixmap files (multiple bits per pixel) replaced the
bitmaps. But very often these files were still referred to as bitmaps. As a result,
many color-encoding schemes in use today for image files are labeled as “bitmap
formats,” even though they are actually pixmap formats (multiple bits per pixel).
However, the documentation for such formats can be consulted to determine the
number of bits actually allotted to each pixel position in the file.

For the most part, the file formats described in this section are not static.
They undergo constant revisions and updates, and many variants often exist for
a particular format.

JPEG: Joint Photographic Experts Group
In its basic form, the JPEG standard, a widely-used and complex system developed
by the JPEG committee of the ISO, consists of a large collection of file-compression
options. More than two dozen variations are given in the JPEG definition, so
that it can be implemented in a number of different ways, from simple lossless
algorithms to very high-compression lossy methods. But the basic JPEG definition
does not completely specify how the compressed image file should be structured

Appendix: Graphics File Formats

782

so that it can be used on different computer systems or by different applications.
For instance, there is no specified organization for the header information and
there is no specification for the color model that should be used in the compressed
file.

The JPEG standard defines four general file-compression modes, which are
called the lossless, sequential, progressive, and hierarchical modes. In the JPEG
lossless mode, a pattern-recognition scheme is combined with either Huffman
encoding or arithmetic encoding. However, the original JPEG lossless mode is
not as efficient as other available lossless formats, so it is rarely implemented. The
JPEG baseline sequential mode is the most commonly used version of JPEG.
Numerical values for the color components in a picture are stored in 8 bits, and
the compression algorithm combines the discrete cosine transform with either
Huffman or arithmetic encoding. An extended sequential mode is also defined with
more options than the baseline sequential mode and in which color components
can be specified using 16 bits. In the JPEG progressive mode, an image file is
processed using several passes so that “layers” of the image can be generated
at varying resolutions. This mode, generally referred to as progressive JPEG, is
popular for Internet applications, because a rough approximation of a picture
can be viewed quickly before downloading the complete image file. Another
collection of procedures for obtaining incrementally improved versions of an
image is contained in the JPEG hierarchical mode, which divides an image into
a set of subimages. This allows selected sections of a picture to be progressively
constructed. Because of its complexity, hierarchical JPEG is not widely used.

Options could be provided in a large-scale JPEG implementation for the
selection of both a compression mode and the compression parameters, such
as the number of terms to be used in the summation calculations for the inverse,
discrete cosine transform. Also, the JPEG compression definitions specify that ei-
ther Huffman encoding or arithmetic encoding can be combined with the discrete
cosine transform. But implementations of JPEG never use the arithmetic-encoding
algorithms because these algorithms are patented and require a licensing fee.

Although the JPEG specification does not define a specific structure for the
compressed image file, implementations now use the JPEG File Interchange
Format (JFIF), proposed by Eric Hamilton at C-Cube Microsystems and based
on suggestions from many JPEG users. In this format, the file header contains a
unique JFIF identifier (referred to as the file “signature”), the version of JFIF used
to set up the file, the image size (either in pixels per centimeter or pixels per inch),
the height and width of an optional RGB preview image of the file (referred to
as a “thumbnail” image), and the RGB values for the optional preview image.
Pixel values in the compressed file are stored using the YCr Cb color model, and
the color components are stored in the following order: Y first, Cb second, and Cr

third. For a gray-scale image, only the Y component is used. Other information
in the file includes the tables needed by the compression algorithms. Integers are
stored in JPEG files using the big-endian format.

The JPEG/JFIF baseline-sequential encoding of an image file typically consists
of the following operations:

(1) Color Conversion: Pixel RGB color values in an image file are converted
to YCr Cb color components.

(2) Color Sampling: The number of color values in the file can be reduced by
using only the values from selected pixels or by averaging the color
components for adjacent pixel groups. A simple implementation for this
sampling operation might take the color values from every other pixel,
every third pixel, or every fourth pixel. Usually, the color components

Appendix: Graphics File Formats

783

are sampled at different frequencies, so that more luminance values, Y
components, are selected. This allows greater compression ratios to be
achieved because fewer distinct chrominance values, Cr and Cb compo-
nents, are saved.

(3) Discrete Cosine Transform: Next, 8 × 8 groups of pixel color values are
converted to discrete cosine-transform values using Equation 3.

(4) Reduction of Transformed Values: To further compress the encoded
image file, a reduced set of transform values is stored (Section 3). The
number of values in the reduced set can be fixed, or it can be computed
using an algorithm to determine the influence of the various transform
terms.

(5) Huffman Encoding: A final compression operation is performed by con-
verting the discrete cosine-transform values to Huffman codes, as dis-
cussed in Section 3.

The Still-Picture Interchange File Format (SPIFF), developed by Eric
Hamilton and the ISO JPEG committee, is an extension of JFIF. This format has
many more features and options than JFIF, and it is expected that SPIFF will even-
tually replace JFIF in JPEG implementations. However, like JPEG, this extended
JFIF format contains many more options than may be practical in one implemen-
tation. For example, JFIF uses just one color model (YCr Cb), but SPIFF provides
options for 13 different color models.

For photo-realistic computer-graphics images and digitized photographs,
current JPEG implementations provide a greater compression ratio than any other
system. But other formats can provide comparable compression ratios without
loss of color information for simple pictures that contain large single-color areas.

CGM: Computer-Graphics Metafile Format
The CGM format is another standard developed by ISO and ANSI. It is designed
for use on any computer system and in any area of computer graphics, includ-
ing scientific visualization, computer-aided design (CAD), graphic arts, business
graphics, electronic publishing, and any application using the GKS or PHIGS
graphics library. Thus, CGM supports a variety of features and options.

As the designation “metafile” indicates, CGM allows an image description
to be given as a pixmap or as a set of geometric definitions, including attributes
such as line size, line type, fill style, and character-string specifications. Various
other parameters can be included in an image file, such as the maximum value
for color components, the size of a color table, list of fonts used in the file, and the
bounds for a clipping window.

A character-encoding scheme is used in CGM to minimize file size, and a
numerical, binary code is optimized for fast encoding and decoding of the image
file. Pixel values can be given using various color schemes, such as RGB, CMYK,
YCr Cb , CIE models, and color tables. In addition, pixmap files can be compressed
using variations of run-length encoding and Huffman encoding.

TIFF: Tag Image-File Format
A consortium of computer companies chaired by the Aldus Corporation devel-
oped TIFF as an efficient format for transferring raster images between different
applications and computer systems. Although it is highly complex, TIFF is one of
the most versatile formats and it can be customized for individual applications.
It is widely used in such diverse applications as medical imaging, desktop pub-
lishing, graphical user interfaces, satellite image storage, and fax transmissions.

Appendix: Graphics File Formats

784

The TIFF format can be used with bi-level, gray-scale, and full-color images,
and TIFF files are designed to store multiple raster images. Pixel color informa-
tion can be provided as RGB components or as color tables. More compression
alternatives are provided in TIFF than in any other system. These compression
schemes include combinations of run-length encoding, LZW encoding, Huffman
encoding, and the suite of JPEG methods.

PNG: Portable Network-Graphics Format
Designed by an independent group of developers, PNG provides a highly efficient
lossless compression scheme for storing images. Compression algorithms in PNG
include Huffman encoding and variations of LZ encoding. This format is very
popular on the Internet for image storage and transmission. It is also useful for
temporarily storing images for repeated editing. For simple computer-graphics
pictures, PNG generates files with very high compression ratios, comparable to
those of compressed JPEG files.

Integer values are stored in big-endian order, and color components can be
specified in a precision of up to 16 bits per pixel. A number of options are sup-
ported in PNG, including RGB color components, XYZ color components, gray
scale, color tables, and an alpha value for transparency information.

XBM: X Window System Bitmap Format and XPM: X Window
System Pixmap Format
Unlike other formats, XBM and XPM store picture information as C or C++ code
that is to be processed on workstations using the X Window system. Thus, pixel
values are represented in arrays, stored in scan-line order, left to right. As the
names imply, XBM is a format for bitmaps (1 bit per pixel) and XPM is a format
for pixmaps (multiple bits per pixel). These formats are supported by most Web
browsers.

The XBM and XPM formats contain no compression algorithms, but the
size of the files can be reduced using specially designed compression programs.
Instead of header files, these formats use #define preprocessor directives to spec-
ify information such as the number of pixels per scan line and the number
of scan lines. In the XBM format, bit values equal to 1 represent the current
foreground color and bit values equal to 0 represent the current background color.
In the XPM format, pixel values can be stored in color tables using RGB or hue,
saturation, and value (HSV) components.

Adobe Photoshop Format
Widely used in image-processing applications, the Adobe Photoshop format is
optimized for the fast accessing of large, full-color raster images. In contrast,
very little compression is achieved with the run-length encoding scheme used in
Photoshop, and earlier versions of Photoshop contained no compression methods.

Pixel values are stored in big-endian order, and Photoshop provides a number
of options. Photoshop supports pixmaps, bitmaps (monochrome images), and
gray-scale images. Colors can be stored using RGB color components, CMYK
color components, or color tables. In addition, various schemes are provided for
representing multiple colors per pixel and halftone images, as well as transparency
parameters.

Appendix: Graphics File Formats

785

MacPaint: Macintosh Paint Format
A product of the Apple Corporation, MacPaint is a standard format for all Macin-
tosh applications. Image files for this format are bitmaps, with a 0 value indicating
white and a 1 value indicating black. The MacPaint format is typically used for
text, line drawings, and clip art.

Pixel values are stored in big-endian order, and MacPaint files always contain
576 pixels per scan line and 720 scan lines. A run-length encoding scheme is used
to compress image files.

PICT: Picture Data Format
PICT, a hybrid format, is another product for Macintosh applications from the
Apple Corporation. It supports images that are specified as bitmaps, pixmaps,
or geometric representations. A PICT file in the geometric-representation format
contains a list of Macintosh QuickDraw functions that define a picture as a set
of line segments, polygons, arcs, bitmaps, other objects, clipping parameters, at-
tributes, and other state parameters.

Images can be specified using a monochrome form (bitmap), RGB color
components, or a color table. Raster files can be compressed using a run-length
encoding algorithm.

BMP: Bitmap Format
Although it is called a bitmap format, BMP actually supports image files that
contain multiple bits per pixel. This format was developed by the Microsoft Cor-
poration for Windows operating-system applications. Another similar pixmap
format (also called BMP) is used by the IBM OS/2 operating system.

Pixel values in a BMP file are stored in little-endian order using 1, 2, 4, 8, 16,
24, or 32 bits per pixel. The pixel color values can be specified with RGB color
components or with color tables. And the pixel scan lines are stored from bottom
to top, with the coordinate origin at the lower-left position of the pixmap. A BMP
file is usually not compressed, but a run-length encoding algorithm can be applied
to pixmaps with 4 or 8 bits per pixel.

PCX: PC Paintbrush File Format
Developed by the ZSoft Corporation, PCX is another pixmap format used by
Windows operating systems. Image files in the PCX format can contain from 1 to
24 bits per pixel, and pixel values can be specified using RGB components or color
tables. Values are stored in little-endian order, with the scan-line ordering from
the top of the image to the bottom. In addition, the raster files can be compressed
using run-length encoding.

TGA: Truevision Graphics-Adapter Format
Developed by the Truevision Corporation for use with the Targa and Vista graph-
ics adapters, the TGA pixmap format is also known as the Targa format. This
format is popularly used for video editing.

In the TGA format, pixel values are stored in little-endian order, and image
files can contain 8, 16, 24, or 32 bits per pixel. Pixel colors can be specified as RGB
components or in tables, with two possible table formats. A single RGB color
table can be used or the R, G, and B components can be given in separate tables.
Typically, TGA files are not compressed, but run-length encoding algorithms can
be applied to larger image files.

Appendix: Graphics File Formats

786

GIF: Graphics Interchange Format
GIF, designed for efficient telephone-line transmission of raster image files, is a
product of the CompuServe Corporation. Using an LZW algorithm, GIF provides
reasonably good compression ratios for simple computer-graphics pictures. But
the compression ratios generated by GIF for photo-realistic images are not as
good as those produced by JPEG or PNG. Although GIF has been used in many
applications, its popularity has drastically declined because of the patent issues
associated with the LZW compression algorithms.

Either monochrome or multicolor pictures can be processed by GIF, but pixel
values can be specified only in the range from 1 to 8 bits, allowing a maximum of
256 colors. Pixel values are stored in little-endian order using RGB color tables.

5 Summary
For a raster-graphics system, an image file is typically an RGB pixmap, which is
often referred to as a raw raster file. The RGB pixel values are stored as integers in
the range from 0 up to a maximum value that is determined by the number of bits
available to each pixel. A picture can also be stored using a representation that
contains geometric descriptions of the picture components, such as line segments,
fill areas, and splines.

When raster image files are to be transferred between systems or stored in a
particular form, it may be necessary to reduce the number of color values repre-
sented in the image. We can uniformly reduce the number of colors by combining
color levels in various ways, such as averaging the levels. The popularity method
for reducing colors selects the most frequently occurring color values. And the
median-cut method subdivides the color space into a set of blocks, with all colors
within each block replaced by the average block color.

Various formats have been developed for storing image files in a convenient
form for particular applications or particular systems. These formats differ in the
structure of the header file, the byte ordering (big endian or little endian) for
integer values, and the methods used (if any) to reduce the file size for storage.
The effectiveness of a file-reduction method is measured by the compression ratio,
which is the ratio of the original file size to the compressed file size. File-reduction
algorithms that alter the color values in an image file are described as lossy, and
those that can exactly restore the color values are described as lossless. Some file
formats also employ color-reduction schemes.

A common compression method for image files is run-length encoding, which
replaces a sequence of repeated pixel values with the value and the run length. The
LZW file-compression scheme is a variation of run-length encoding that replaces
repeated patterns of pixels with a code. Other pattern-recognition compression
methods include scan-line comparisons and fractal procedures for identifying
self-similar sets of pixel values. In Huffman encoding, a variable-length code
is assigned to color values so that the most frequently occurring values have the
shortest codes. Arithmetic encoding uses the frequency count for color values in an
image file to create subdivisions of the unit interval from 0.0 to 1.0. The bounds on
each subinterval are then used to encode the sequences of color values represented
by that subinterval. The discrete cosine transform multiplies pixel color values
by cosine terms with increasing frequency, and then sums these products. This
summation process converts a set of pixel color values to a transformed set of
values. File compression is then achieved by eliminating some of the transformed
values, which produces a lossy compression of the image.

Appendix: Graphics File Formats

787

Many file formats are available for various graphics applications and for
different computer systems. Some formats were developed by the standards
organizations ISO and ANSI, some came from computer software or hardware
companies, and some are the products of independent groups. A few of the widely
used formats are JPEG, TIFF, PNG, and those for the X Window system, Apple
Macintosh computers, and the Windows operating systems.

REFERENCES
Color reduction methods are presented in Heckbert (1982
and 1994), Glassner (1990), Arvo (1991), and Kirk (1992).
Gonzalez and Wintz (1987) discuss transform methods
and image-processing techniques in general. And vari-
ous file-compression algorithms are detailed in Huffman
(1952), Ziv and Lempel (1977 and 1978), Welch (1984),
Rao and Yip (1990), Arvo (1991), and Barnsley and Hurd
(1993).

General information on graphics file formats
can be found in Brown and Shepherd (1995) and
Miano (1999). For additional information on JPEG,
see Taubman and Marcellin (2001). The CGM file-
format standard is detailed in Henderson and Mumford
(1993).

Appendix: Graphics File Formats

788

Bibliography

AKELEY, K. and T. JERMOLUK (1988). “High-Performance
Polygon Rendering”, in proceedings of SIGGRAPH ’88,
Computer Graphics, 22(4), pp. 239–246.

AKELEY, K. (1993). “RealityEngine Graphics”, in proceedings
of SIGGRAPH ’93, Computer Graphics, pp. 109–116.

AKENINE-MÖLLER, T. and E. HAINES (2002). Real-Time
Rendering, Second Edition, A. K. Peters, Natick, MA.

AMANATIDES, J. (1984). “Ray Tracing with Cones”, in
proceedings of SIGGRAPH ’84, Computer Graphics, 18(3),
pp. 129–135.

ANJYO, K., Y. USAMI, and T. KURIHARA (1992). “A
Simple Method for Extracting the Natural Beauty of Hair”,
in proceedings of SIGGRAPH ’92, Computer Graphics, 26(2),
pp. 111–120.

APODACA, A.A. and L. GRITZ (2000). Advanced RenderMan:
Creating CGI for Motion Pictures, Morgan Kaufmann, San
Francisco, CA.

APPLE COMPUTER, INC. (1987). Human Interface Guide-
lines: The Apple Desktop Interface, Addison-Wesley, Reading,
MA.

ARVO, J. and D. KIRK (1987). “Fast Ray Tracing by Ray
Classification”, in proceedings of SIGGRAPH ’87, Computer
Graphics, 21(4), pp. 55–64.

ARVO, J., ed. (1991). Graphics Gems II, Academic Press, San
Diego, CA.

ATHERTON, P. R. (1983). “A Scan-Line Hidden Surface
Removal Procedure for Constructive Solid Geometry”, in
proceedings of SIGGRAPH ’83, Computer Graphics, 17(3),
pp. 73–82.

BAILEY, M. and S. CUNNINGHAM (2009). Graphics Shaders:
Theory and Practice, A.K. Peters, Wellesley, MA.

BARAFF, D. (1989). “Analytical Methods for Dynamic
Simulation of Non-Penetrating Rigid Bodies”, in pro-
ceedings of SIGGRAPH ’89, Computer Graphics, 23(3),
pp. 223–232.

BARAFF, D. and A. WITKIN (1992). “Dynamic Simulation
of Non-Penetrating Flexible Bodies”, in proceedings of
SIGGRAPH ’92, Computer Graphics, 26(2), pp. 303–308.

BARNSLEY, M. F., A. JACQUIN, F. MALASSENET,
L. REUTER, and D. SLOAN (1988). “Harnessing Chaos
for Image Synthesis”, in proceedings of SIGGRAPH ’88,
Computer Graphics, 22(4), pp. 131–140.

BARNSLEY, M. F. (1993). Fractals Everywhere, Second Edition,
Academic Press, San Diego, CA.

BARNSLEY, M. F. and L. P. HURD, (1993). Fractal Image Com-
pression, AK Peters, Wellesly, MA.

BARR, A. H. (1981). “Superquadrics and Angle-Preserving
Transformations”, IEEE Computer Graphics and Applications,
1(1), pp. 11–23.

BARSKY, B. A. and J. C. BEATTY (1983). “Local Control of Bias
and Tension in Beta-Splines”, ACM Transactions on Graphics,
2(2), pp. 109–134.

BARSKY, B. A. (1984). “A Description and Evaluation of Var-
ious 3-D Models”, IEEE Computer Graphics and Applications,
4(1), pp. 38–52.

BARZEL, R. and A. H. BARR (1988). “A Modeling Sys-
tem Based on Dynamic Constraints”, in proceedings of
SIGGRAPH ’88, Computer Graphics, 22(4), pp. 179–188.

BARZEL, R. (1992). Physically-Based Modeling for Computer
Graphics, Academic Press, San Diego, CA.

BAUM, D. R., S. MANN, K. P. SMITH, and J. M. WINGET
(1991). “Making Radiosity Usable: Automatic Preprocess-
ing and Meshing Techniques for the Generation of Accu-
rate Radiosity Solutions”, in proceedings of SIGGRAPH ’91,
Computer Graphics, 25(4), pp. 51–61.

BERGMAN, L. D., J. S. RICHARDSON, D. C. RICHARDSON,
and F. P. BROOKS, JR. (1993). “VIEW—an Exploratory Mole-
cular Visualization System with User-Definable Interaction
Sequences”, in proceedings of SIGGRAPH ’93, Computer
Graphics, pp. 117–126.

BÉZIER, P. (1972). Numerical Control: Mathematics and Applica-
tions, translated by A. R. Forrest and A. F. Pankhurst, John
Wiley & Sons, London.

BIRN, J. (2000). [digital] Lighting & Rendering, New Riders
Publishing, Indianapolis, IN.

BISHOP, G. and D. M. WIEMER (1986). “Fast Phong Shading”,
in proceedings of SIGGRAPH ’86, Computer Graphics, 20(4),
pp. 103–106.

BLAKE, J. W. (1993). PHIGS and PHIGS Plus, Academic Press,
London.

BLESER, T. (1988). “TAE Plus Styleguide User Interface
Description”, NASA Goddard Space Flight Center, Green-
belt, MD.

BLINN, J. F. and M. E. NEWELL (1976). “Texture and Reflec-
tion in Computer-Generated Images”, Communications of the
ACM, 19(10), pp. 542–547.

BLINN, J. F. (1977). “Models of Light Reflection for Computer-
Synthesized Pictures”, in proceedings of SIGGRAPH ’77,
Computer Graphics, 11(2), pp. 192–198.

BLINN, J. F. and M. E. NEWELL (1978). “Clipping Using
Homogeneous Coordinates”, in proceedings of SIGGRAPH
’78, Computer Graphics, 12(3), pp. 245–251.

From Bibliography of Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M. Pauline Baker, Warren R. Carithers.
Copyright © 2011 by Pearson Education, Inc. Published by Prentice Hall. All rights reserved.Pearson

789

BLINN, J. F. (1978). “Simulation of Wrinkled Surfaces”, in
proceedings of SIGGRAPH ’78, Computer Graphics, 12(3),
pp. 286–292.

BLINN, J. F. (1982). “A Generalization of Algebraic Surface
Drawing”, ACM Transactions on Graphics, 1(3), pp. 235–256.

BLINN, J. F. (1982). “Light Reflection Functions for Simu-
lation of Clouds and Dusty Surfaces”, in proceedings of
SIGGRAPH ’82, Computer Graphics, 16(3), pp. 21–29.

BLINN, J. F. (1993). “A Trip Down the Graphics Pipeline:
The Homogeneous Perspective Transform”, IEEE Computer
Graphics and Applications, 13(3), pp. 75–80.

BLINN, J. (1996). Jim Blinn’s Corner: A Trip Down the Graphics
Pipeline, Morgan Kaufmann, San Francisco, CA.

BLINN, J. (1998). Jim Blinn’s Corner: Dirty Pixels, Morgan
Kaufmann, San Francisco, CA.

BLOOMENTHAL, J. (1985). “Modeling the Mighty Maple”,
in proceedings of SIGGRAPH ’85, Computer Graphics, 19(3),
pp. 305–312.

BONO, P. R., J. L. ENCARNACAO, F. R. A. HOPGOOD, et al.
(1982). “GKS: The First Graphics Standard”, IEEE Computer
Graphics and Applications, 2(5), pp. 9–23.

BOUQUET, D. L. (1978). “An Interactive Graphics Application
to Advanced Aircraft Design”, in proceedings of SIGGRAPH
’78, Computer Graphics, 12(3), pp. 330–335.

BOURG, D. M. (2002). Physics for Game Developers, O’Reilly &
Associates, Sebastopol, CA.

BRESENHAM, J. E. (1965). “Algorithm for Computer Control
of a Digital Plotter”, IBM Systems Journal, 4(1), pp. 25–30.

BRESENHAM, J. E. (1977). “A Linear Algorithm for Incremen-
tal Digital Display of Circular Arcs”, Communications of the
ACM, 20(2), pp. 100–106.

BROOKS JR., F. P. (1986). “Walkthrough: A Dynamic Graphics
System for Simulating Virtual Buildings”, Interactive 3D.

BROOKS JR., F. P. (1988). “Grasping Reality Through Illusion:
Interactive Graphics Serving Science”, CHI ’88, pp. 1–11.

BROOKS JR., F. P., M. OUH-YOUNG, J. J. BATTER, and P. J.
KILPATRICK (1990). “Project GROPE—Haptic Display for
Scientific Visualization”, in proceedings of SIGGRAPH ’90,
Computer Graphics, 24(4), pp. 177–185.

BROWN, J. R. and S. CUNNINGHAM (1989). Programming the
User Interface, John Wiley & Sons, New York.

BROWN, C. W. and B. J. SHEPHERD (1995). Graphics File
Formats, Manning Publications, Greenwich, CT.

BRUDERLIN, A. and T. W. CALVERT (1989). “Goal-Directed,
Dynamic Animation of Human Walking”, in proceedings of
SIGGRAPH ’89, Computer Graphics, 23(3), pp. 233–242.

BRUNET, P. and I. NAVAZO (1990). “Solid Representation and
Operation Using Extended Octrees”, ACM Transactions on
Graphics, 9(2), pp. 170–197.

BRYSON, S. and C. LEVIT (1992). “The Virtual Wind Tunnel”,
IEEE Computer Graphics and Applications, 12(4), pp. 25–34.

CALVERT, T., A. BRUDERLIN, J. DILL, T. SCHIPHORST,
and C. WEILMAN (1993). “Desktop Animation of Multiple
Human Figures”, IEEE Computer Graphics and Applications,
13(3), pp. 18–26.

CAMBELL, G., T. A. DEFANTI, J. FREDERIKSEN, S. A. JOYCE,
and L. A. LESKE (1986). “Two Bit/Pixel Full-Color Encod-
ing”, in proceedings of SIGGRAPH ’86, Computer Graphics,
20(4), pp. 215–224.

CARPENTER, L. (1984). “The A-Buffer: An Antialiased
Hidden-Surface Method”, in proceedings of SIGGRAPH ’84,
Computer Graphics, 18(3), pp. 103–108.

CHEN, J. X. and C. CHEN (2008). Foundations of 3D Graph-
ics Programming: Using JOGL and Java3D, Second Edition,
Springer-Verlag, London.

CHEN, S. E., H. E. RUSHMEIER, G. MILLER, and D. TURNER
(1991). “A Progressive Multi-Pass Method for Global Illumi-
nation”, in proceedings of SIGGRAPH ’91, Computer Graph-
ics, 25(4), pp. 165–174.

CHIN, N. and S. FEINER (1989). “Near Real-Time Shadow
Generation Using BSP Trees”, in proceedings of SIGGRAPH
’89, Computer Graphics, 23(3), pp. 99–106.

CHUNG, J. C., et al. (1989). “Exploring Virtual Worlds with
Head-Mounted Visual Displays”, Proceedings of the SPIE
(Society of Photo-Optical Instrumentation Engineers, now called
the International Society for Optical Engineering) Conference on
Three-Dimensional Visualization and Display Technologies, 1083,
January 1989, pp. 15–20.

COHEN, M. F. and D. P. GREENBERG (1985). “The Hemi-
Cube: A Radiosity Solution for Complex Environments”,
in proceedings of SIGGRAPH ’85, Computer Graphics, 19(3),
pp. 31–40.

COHEN, M. F., S. E. CHEN, J. R. WALLACE, and D. P.
GREENBERG (1988). “A Progressive Refinement Approach
to Fast Radiosity Image Generation”, in proceedings of
SIGGRAPH ’88, Computer Graphics, 22(4), pp. 75–84.

COHEN, M. F. and J. R. WALLACE (1993). Radiosity and
Realistic Image Synthesis, Academic Press, Boston,
MA.

COOK, R. L. and K. E. TORRANCE (1982). “A Reflectance
Model for Computer Graphics”, ACM Transactions on Graph-
ics, 1(1), pp. 7–24.

COOK, R. L., T. PORTER, and L. CARPENTER (1984). “Dis-
tributed Ray Tracing”, in proceedings of SIGGRAPH ’84,
Computer Graphics, 18(3), pp. 137–145.

COOK, R. L. (1984). “Shade Trees”, in proceedings of
SIGGRAPH ’84, Computer Graphics, 18(3), pp. 223–231.

COOK, R. L. (1986). “Stochastic Sampling in Computer Graph-
ics”, ACM Transactions on Graphics, 6(1), pp. 51–72.

COOK, R. L., L. CARPENTER, and E. CATMULL (1987).
“The Reyes Image Rendering Architecture”, in pro-
ceedings of SIGGRAPH ’87, Computer Graphics, 21(4),
pp. 95–102.

COQUILLART, S. and P. JANCENE (1991). “Animated Free-
Form Deformation: An Interactive Animation Technique”,
in proceedings of SIGGRAPH ’91, Computer Graphics, 25(4),
pp. 23–26.

CROW, F. C. (1977a). “The Aliasing Problem in Computer-
Synthesized Shaded Images”, Communications of the ACM,
20(11), pp. 799–805.

Bibliography

790

CROW, F. C. (1977b). “Shadow Algorithms for Computer
Graphics”, in proceedings of SIGGRAPH ’77, Computer
Graphics, 11(2), pp. 242–248.

CROW, F. C. (1978). “The Use of Grayscale for Improved
Raster Display of Vectors and Characters”, in proceedings of
SIGGRAPH ’78, Computer Graphics, 12(3), pp. 1–5.

CROW, F. C. (1981). “A Comparison of Antialiasing Tech-
niques”, IEEE Computer Graphics and Applications, 1(1),
pp. 40–49.

CROW, F. C. (1982). “A More Flexible Image Generation
Environment”, in proceedings of SIGGRAPH ’82, Computer
Graphics, 16(3), pp. 9–18.

CRUZ-NEIRA, C., D. J. SANDIN, and T. A. DEFANTI (1993).
“Surround-Screen Projection-Based Virtual Reality: The
Design and Implementation of the CAVE”, in proceedings
of SIGGRAPH ’93, Computer Graphics, pp. 135–142.

CUNNINGHAM, S., N. K. CRAIGHILL, M. W. FONG, J.
BROWN, and J. R. BROWN, eds. (1992). Computer Graph-
ics Using Object-Oriented Programming, John Wiley & Sons,
New York.

CUTLER, E., D. GILLY, and T. O’REILLY, eds. (1992). The X Win-
dow System in a Nutshell, Second Edition, O’Reilly & Assoc.,
Inc., Sebastopol, CA.

CYRUS, M. and J. BECK (1978). “Generalized Two- and
Three-Dimensional Clipping”, Computers and Graphics, 3(1),
pp. 23–28.

DAVIS, G. (2004). Learning Java Bindings For OpenGL (JOGL),
Author House, Bloomington, IN.

DAY, A. M. (1990). “The Implementation of an Algorithm to
Find the Convex Hull of a Set of Three-Dimensional Points”,
ACM Transactions on Graphics, 9(1), pp. 105–132.

DEERING, M. (1992). “High Resolution Virtual Reality”, in
proceedings of SIGGRAPH ’92, Computer Graphics, 26(2),
pp. 195–202.

DEERING, M. F. and S. R. NELSON (1993). “Leo: A System
for Cost-Effective 3D Shaded Graphics”, in proceedings of
SIGGRAPH ’93, Computer Graphics, pp. 101–108.

DEMERS, O. (2002). [digital] Texturing & Painting, New Riders
Publishing, Indianapolis, IN.

DEPP, S. W. and W. E. HOWARD (1993). “Flat-Panel Displays”,
Scientific American, 266(3), pp. 90–97.

DE REFFYE, P., C. EDELIN, J. FRANÇON, M. JAEGER, and
C. PUECH (1988). “Plant Models Faithful to Botanical Struc-
ture and Development”, in proceedings of SIGGRAPH ’88,
Computer Graphics, 22(4), pp. 151–158.

DEROSE, T. D. (1988). “Geometric Continuity, Shape
Parameters, and Geometric Constructions for Catmull-Rom
Splines”, ACM Transactions on Graphics, 7(1), pp. 1–41.

DIGITAL EQUIPMENT CORP. (1989). “Digital Equipment
Corporation XUI Style Guide”, Maynard, MA.

DOCTOR, L. J. and J. G. TORBERG (1981). “Display Techniques
for Octree-Encoded Objects”, IEEE Computer Graphics and
Applications, 1(3), pp. 29–38.

DORSEY, J. O., F. X. SILLION, and D. P. GREENBERG (1991).
“Design and Simulation of Opera Lighting and Projection

Effects”, in proceedings of SIGGRAPH ’91, Computer Graph-
ics, 25(4), pp. 41–50.

DREBIN, R. A., L. CARPENTER, and P. HANRAHAN (1988).
“Volume Rendering”, in proceedings of SIGGRAPH ’88,
Computer Graphics, 22(4), pp. 65–74.

DURRETT, H. J., ed. (1987). Color and the Computer, Academic
Press, Boston.

DUVANENKO, V. (1990). “Improved Line-Segment Clipping”,
Dr. Dobb’s Journal, July 1990.

DYER, S. (1990). “A Dataflow Toolkit for Visualization”, IEEE
Computer Graphics and Applications, 10(4), pp. 60–69.

EARNSHAW, R. A., ed. (1985). Fundamental Algorithms for Com-
puter Graphics, Springer-Verlag, Berlin.

EDELSBRUNNER, H. (1987). Algorithms in Computational
Geometry, Springer-Verlag, Berlin.

EDELSBRUNNER, H. and E. P. MUCKE (1990). “Simulation of
Simplicity: A Technique to Cope with Degenerate Cases in
Geometric Algorithms”, ACM Transactions on Graphics, 9(1),
pp. 66–104.

ELBER, G. and E. COHEN (1990). “Hidden-Curve Removal
for Free-Form Surfaces”, in proceedings of SIGGRAPH ’90,
Computer Graphics, 24(4), pp. 95–104.

ENDERLE, G., K. KANSY, and G. PFAFF (1984). Com-
puter Graphics Programming: GKS—The Graphics Standard,
Springer-Verlag, Berlin.

FARIN, G. (1988). Curves and Surfaces for Computer-Aided
Geometric Design, Academic Press, Boston, MA.

FARIN, G. and D. HANSFORD (1998). The Geometry Toolbox for
Graphics and Modeling, A. K. Peters, Natick, MA.

FEDER, J. (1988). Fractals, Plenum Press, New York.
FEYNMAN, R. P., R. B. LEIGHTON, and M. L. SANDS (1989).

The Feynman Lectures on Physics, Addison-Wesley, Reading,
MA.

FISHKIN, K. P. and B. A. BARSKY (1984). “A Family of New
Algorithms for Soft Filling”, in proceedings of SIGGRAPH
’84, Computer Graphics, 18(3), pp. 235–244.

FIUME, E. L. (1989). The Mathematical Structure of Raster Graph-
ics, Academic Press, Boston.

FOLEY, J. D., A. VAN DAM, S. K. FEINER, and J. F. HUGHES
(1990). Computer Graphics: Principles and Practice, Second
Edition, Addison-Wesley, Reading, MA.

FOURNIER, A., D. FUSSEL, and L. CARPENTER (1982).
“Computer Rendering of Stochastic Models”, Communica-
tions of the ACM, 25(6), pp. 371–384.

FOURNIER, A. and W. T. REEVES (1986). “A Simple Model of
Ocean Waves”, in proceedings of SIGGRAPH ’86, Computer
Graphics, 20(4), pp. 75–84.

FOWLER, D. R., H. MEINHARDT, and P. PRUSINKIEWICZ
(1992). “Modeling Seashells”, in proceedings of
SIGGRAPH ’92, Computer Graphics, 26(2), pp. 379–387.

FRANKLIN, W. R. and M. S. KANKANHALLI (1990).
“Parallel Object-Space Hidden Surface Removal”, in pro-
ceedings of SIGGRAPH ’90, Computer Graphics, 24(4),
pp. 87–94.

Bibliography

791

FREEMAN, H. ed. (1980). Tutorial and Selected Readings in
Interactive Computer Graphics, IEEE Computer Society Press,
Silver Springs, MD.

FRENKEL, K. A. (1989). “Volume Rendering”, Communications
of the ACM, 32(4), pp. 426–435.

FRIEDER, G., D. GORDON, and R. A. REYNOLD (1985).
“Back-to-Front Display of Voxel-Based Objects”, IEEE Com-
puter Graphics and Applications, 5(1), pp. 52–60.

FRIEDHOFF, R. M. and W. BENZON (1989). The Second Com-
puter Revolution: Visualization, Harry N. Abrams, New York.

FU, K. S., and A. ROSENFELD (1984). “Pattern Recognition
and Computer Vision”, Computer, 17(10), pp. 274– 282.

FUJIMOTO, A., and K. IWATA (1983). “Jag-Free Images on
Raster Displays”, IEEE Computer Graphics and Applications,
3(9), pp. 26–34.

FUNKHOUSER, T. A. and C. H. SEQUIN (1993). “Adaptive
Display Algorithms for Interactive Frame Rates during Visu-
alization of Complex Virtual Environments”, in proceedings
of SIGGRAPH ’93, Computer Graphics, pp. 247–254.

GARDNER, T. N., and H. R. NELSON (1983). “Interactive
Graphics Developments in Energy Exploration”, IEEE Com-
puter Graphics and Applications, 3(2), pp. 33–34.

GARDNER, G. Y. (1985). “Visual Simulation of Clouds”, in
proceedings of SIGGRAPH ’85, Computer Graphics, 19(3),
pp. 297–304.

GASCUEL, M.-P. (1993). “An Implicit Formulation for Precise
Contact Modeling between Flexible Solids”, in proceedings
of SIGGRAPH ’93, Computer Graphics, pp. 313–320.

GASKINS, T. (1992). PHIGS Programming Manual, O’Reilly &
Associates, Sebastopol, CA.

GHARACHORLOO, N., S. GUPTA, R. F. SPROULL, and I. E.
SUTHERLAND (1989). “A Characterization of Ten Rasteri-
zation Techniques”, in proceedings of SIGGRAPH ’89, Com-
puter Graphics, 23(3), pp. 355–368.

GIRARD, M. (1987). “Interactive Design of 3D Computer-
Animated Legged Animal Motion”, IEEE Computer Graphics
and Applications, 7(6), pp. 39–51.

GLASSNER, A. S. (1984). “Space Subdivision for Fast Ray
Tracing”, IEEE Computer Graphics and Applications, 4(10),
pp. 15–22.

GLASSNER, A. S. (1986). “Adaptive Precision in Texture Map-
ping”, in proceedings of SIGGRAPH ’86, Computer Graphics,
20(4), pp. 297–306.

GLASSNER, A. S. (1988). “Spacetime Ray Tracing for An-
imation”, IEEE Computer Graphics and Applications, 8(2),
pp. 60–70.

GLASSNER, A. S., ed. (1989a). An Introduction to Ray Tracing,
Academic Press, San Diego, CA.

GLASSNER, A. S. (1989b). 3D Computer Graphics: A User’s Guide
for Artists and Designers, Second Edition, Design Books, Lyons
& Bufford Publishers, New York.

GLASSNER, A. S., ed. (1990). Graphics Gems, Academic Press,
San Diego, CA.

GLASSNER, A. S. (1992). “Geometric Substitution: A Tutorial”,
IEEE Computer Graphics and Applications, 12(1), pp. 22–36.

GLASSNER, A. S. (1995). Principles of Digital Image Synthesis,
Vols. 1–2, Morgan Kaufmann, San Francisco, CA.

GLASSNER, A. S. (1999). Andrew Glassner’s Notebook: Recre-
ational Computer Graphics, Morgan Kaufmann, San Francisco,
CA.

GLASSNER, A. S. (2002). Andrew Glassner’s Other Notebook:
Further Recreations in Computer Graphics, A. K. Peters, Nat-
ick, MA.

GLEICHER, M. and A. WITKIN (1992). “Through-the-Lens
Camera Control”, in proceedings of SIGGRAPH ’92, Com-
puter Graphics, 26(2), pp. 331–340.

GOLDSMITH, J. and J. SALMON (1987). “Automatic Creation
of Object Hierarchies for Ray Tracing”, IEEE Computer Graph-
ics and Applications, 7(5), pp. 14–20.

GOMES, J., L. DARSA, B. COSTA, and L. VELHO (1999). Warp-
ing and Morphing of Graphical Objects, Morgan Kaufmann, San
Francisco, CA.

GONZALEZ, R. C. and P. WINTZ (1987). Digital Image Process-
ing, Addison-Wesley, Reading, MA.

GOOCH, B. and A. GOOCH (2001). Non-Photorealistic Render-
ing, A. K. Peters, Natick, MA.

GORAL, C. M., K. E. TORRANCE, D. P. GREENBERG, and
B. BATTAILE (1984). “Modeling the Interaction of Light
Between Diffuse Surfaces”, in proceedings of SIGGRAPH
’84, Computer Graphics, 18(3), pp. 213– 222.

GORDON, D. and S. CHEN (1991). “Front-to-Back Display of
BSP Trees”, IEEE Computer Graphics and Applications, 11(5),
pp. 79–85.

GORTLER, S. J., P. SCHRÖDER, M. F. COHEN, and
P. HANRAHAN (1993). “Wavelet Radiosity”, in proceedings
of SIGGRAPH ’93, Computer Graphics, pp. 221–230.

GOURAUD, H. (1971). “Continuous Shading of Curved
Surfaces”, IEEE Transactions on Computers, C-20(6),
pp. 623–628.

GREENE, N., M. KASS, and G. MILLER (1993). “Hierarchical
Z-Buffer Visibility”, in proceedings of SIGGRAPH ’93, Com-
puter Graphics, pp. 231–238.

GROTCH, S. L. (1983). “Three-Dimensional and Stereoscopic
Graphics for Scientific Data Display and Analysis”, IEEE
Computer Graphics and Applications, 3(8), pp. 31–43.

HAEBERLI, P. and K. AKELEY (1990). “The Accumulation
Buffer: Hardware Support for High-Quality Rendering”, in
proceedings of SIGGRAPH ’90, Computer Graphics, 24(4),
pp. 309–318.

HALL, R. A. and D. P. GREENBERG (1983). “A Testbed
for Realistic Image Synthesis”, IEEE Computer Graphics and
Applications, 3(8), pp. 10–20.

HALL, R. (1989). Illumination and Color in Computer Generated
Imagery, Springer-Verlag, New York.

HALLIDAY, D., R. RESNICK, and J. WALKER (2000). Funda-
mentals of Physics, Sixth Edition, John Wiley & Sons, New
York.

HANRAHAN, P. and J. LAWSON (1990). “A Language for
Shading and Lighting Calculations”, in proceedings of
SIGGRAPH ’90, Computer Graphics, 24(4), pp. 289–298.

Bibliography

792

HARDY, V. J. (2000). Java 2D API Graphics, Sun Microsystems
Press, Palo Alto, CA.

HART, J. C., D. J. SANDIN, and L. H. KAUFFMAN (1989).
“Ray Tracing Deterministic 3D Fractals”, in proceedings of
SIGGRAPH ’89, Computer Graphics, 23(3), pp. 289–296.

HART, J. C. and T. A. DEFANTI (1991). “Efficient
Antialiased Rendering of 3-D Linear Fractals”, in
proceedings of SIGGRAPH ’91, Computer Graphics, 25(4),
pp. 91–100.

HAWRYLYSHYN, P. A., R. R. TASKER, and L. W. ORGAN
(1977). “CASS: Computer-Assisted Stereotaxic Surgery”, in
proceedings of SIGGRAPH ’77, Computer Graphics, 11(2),
pp. 13–17.

HE, X. D., P. O. HEYNEN, R. L. PHILLIPS, K. E. TORRANCE,
D. H. SALESIN, and D. P. GREENBERG (1992). “A Fast
and Accurate Light Reflection Model”, in proceedings of
SIGGRAPH ’92, Computer Graphics, 26(2), pp. 253–254.

HEARN, D. and P. BAKER (1991). “Scientific Visualization: An
Introduction”, Eurographics ’91 Technical Report Series, Tuto-
rial Lecture 6, Vienna, Austria.

HECKBERT, P. S. (1982). “Color Image Quantization for Frame
Buffer Display”, in proceedings of SIGGRAPH ’82, Computer
Graphics, 16(3), pp. 297–307.

HECKBERT, P. S. and P. HANRAHAN (1984). “Beam Tracing
Polygonal Objects”, in proceedings of SIGGRAPH ’84, Com-
puter Graphics, 18(3), pp. 119–127.

HECKBERT, P. S., ed. (1994). Graphics Gems IV, Academic Press
Professional, Cambridge, MA.

HENDERSON, L. R. and A. M. MUMFORD (1993). The CGM
Handbook, Academic Press, San Diego, CA.

HOPGOOD, F. R. A., D. A. DUCE, J. R. GALLOP, and D. C.
SUTCLIFFE (1983). Introduction to the Graphical Kernel Sys-
tem (GKS), Academic Press, London.

HOPGOOD, F. R. A. and D. A. DUCE (1991). A Primer for
PHIGS, John Wiley & Sons, Chichester, England.

HORSTMANN, C. S. and G. CORNELL (2001). Core Java 2, Vols.
I–II, Sun Microsystems Press, Palo Alto, CA.

HOWARD, T. L. J., W. T. HEWITT, R. J. HUBBOLD, and
K. M. WYRWAS (1991). A Practical Introduction to PHIGS and
PHIGS Plus, Addison-Wesley, Wokingham, England.

HUFFMAN, D. A. (1952). “A Method for the Construction of
Minimum-Redundancy Codes”, Communications of the ACM,
40(9), pp. 1098–1101.

HUGHES, J. F. (1992). “Scheduled Fourier Volume Morphing”,
in proceedings of SIGGRAPH ’92, Computer Graphics, 26(2),
pp. 43–46.

HUITRIC, H. and M. NAHAS (1985). “B-Spline Surfaces: A
Tool for Computer Painting”, IEEE Computer Graphics and
Applications, 5(3), pp. 39–47.

IMMEL, D. S., M. F. COHEN, and D. P. GREENBERG (1986).
“A Radiosity Method for Non-Diffuse Environments”, in
proceedings of SIGGRAPH ’86, Computer Graphics, 20(4),
pp. 133–142.

ISAACS, P. M. and M. F. COHEN (1987). “Controlling Dynamic
Simulation with Kinematic Constraints, Behavior Functions,

and Inverse Dynamics”, in proceedings of SIGGRAPH ’87,
Computer Graphics, 21(4), pp. 215–224.

JARVIS, J. F., C. N. JUDICE, and W. H. NINKE (1976). “A Sur-
vey of Techniques for the Image Display of Continuous Tone
Pictures on Bilevel Displays”, Computer Graphics and Image
Processing, 5(1), pp. 13–40.

JENSEN, H. W. (2001). Realistic Image Synthesis Using Photon
Mapping, A. K. Peters, Natick, MA.

JOHNSON, S. A. (1982). “Clinical Varifocal Mirror Display
System at the University of Utah”, Proceedings of SPIE, 367,
August 1982, pp. 145–148.

KAJIYA, J. T. (1983). “New Techniques for Ray Tracing Proce-
durally Defined Objects”, ACM Transactions on Graphics, 2(3),
pp. 161–181.

KAJIYA, J. T. (1986). “The Rendering Equation”, in proceedings
of SIGGRAPH ’86, Computer Graphics, 20(4), pp. 143–150.

KAJIYA, J. T. and T. L. KAY (1989). “Rendering Fur with Three-
Dimensional Textures”, in proceedings of SIGGRAPH ’89,
Computer Graphics, 23(3), pp. 271–280.

KAPPEL, M. R. (1985). “An Ellipse-Drawing Algorithm for
Faster Displays”, in Fundamental Algorithms for Computer
Graphics, Springer-Verlag, Berlin, pp. 257–280.

KAY, T. L. and J. T. KAJIYA (1986). “Ray Tracing Complex
Scenes”, in proceedings of SIGGRAPH ’86, Computer Graph-
ics, 20(4), pp. 269–278.

KAY, D. C. and J. R. LEVINE (1992). Graphics File Formats,
Windcrest/McGraw-Hill, New York.

KELLEY, A. D., M. C. MALIN, and G. M. NIELSON (1988).
“Terrain Simulation Using a Model of Stream Erosion”, in
proceedings of SIGGRAPH ’88, Computer Graphics, 22(4),
pp. 263–268.

KENT, J. R., W. E. CARLSON, and R. E. PARENT (1992). “Shape
Transformation for Polyhedral Objects”, in proceedings of
SIGGRAPH ’92, Computer Graphics, 26(2), pp. 47–54.

KERLOW, I. V. (2000). The Art of 3-D Computer Animation and
Imaging, John Wiley & Sons, New York.

KILGARD, M. J. (1996). OpenGL Programming for the X Window
System, Addison-Wesley, Reading, MA.

KIRK, D. and J. ARVO (1991). “Unbiased Sampling Techniques
for Image Synthesis”, in proceedings of SIGGRAPH ’91,
Computer Graphics, 25(4), pp. 153–156.

KIRK, D., ed. (1992). Graphics Gems III, Academic Press, San
Diego, CA.

KNUDSEN, J. (1999). Java 2D Programming, O’Reilly & Asso-
ciates, Sebastopol, CA.

KNUTH, D. E. (1987). “Digital Halftones by Dot Diffusion”,
ACM Transactions on Graphics, 6(4), pp. 245–273.

KOCHANEK, D. H. U. and R. H. BARTELS (1984). “Interpo-
lating Splines with Local Tension, Continuity, and Bias Con-
trol”, in proceedings of SIGGRAPH ’84, Computer Graphics,
18(3), pp. 33–41.

KOH, E.-K. and D. HEARN (1992). “Fast Generation and Sur-
face Structuring Methods for Terrain and Other Natural
Phenomena”, in proceedings of Eurographics ’92, Computer
Graphics Forum, 11(3), pp. C169–180.

Bibliography

793

KORIEN, J. U. and N. I. BADLER (1982). “Techniques for
Generating the Goal-Directed Motion of Articulated Struc-
tures”, IEEE Computer Graphics and Applications, 2(9),
pp. 71–81.

KORIEN, J. U. and N. I. BADLER (1983). “Temporal antialias-
ing in Computer-Generated Animation”, in proceedings of
SIGGRAPH ’83, Computer Graphics, 17(3), pp. 377–388.

KREYSZIG, E. (1998). Advanced Engineering Mathematics, Eighth
Edition, John Wiley & Sons, New York.

LASSETER, J. (1987). “Principles of Traditional Animation
Applied to 3D Computer Animation”, in proceedings of
SIGGRAPH ’87, Computer Graphics, 21(4), pp. 35– 44.

LATHROP, O. (1997). The Way Computer Graphics Works, John
Wiley & Sons, New York.

LAUREL, B. (1990). The Art of Human-Computer Interface Design,
Addision-Wesley, Reading, MA.

LENGYEL, E. (2002). Mathematics for 3D Game Programming &
Computer Graphics, Charles River Media, Hingham, MA.

LEVOY, M. (1990). “A Hybrid Ray Tracer for Rendering
Polygon and Volume Data”, IEEE Computer Graphics and
Applications, 10(2), pp. 33–40.

LEWIS, J.-P. (1989). “Algorithms for Solid Noise Synthesis”,
in proceedings of SIGGRAPH ’89, Computer Graphics, 23(3),
pp. 263–270.

LIANG, Y.-D. and B. A. BARSKY (1983). “An Analysis and
Algorithm for Polygon Clipping.” Communications of the
ACM, 26(11), pp. 868–877.

LIANG, Y.-D. and B. A. BARSKY (1984). “A New Concept and
Method for Line Clipping”, ACM Transactions on Graphics,
3(1), pp. 1–22.

LINDLEY, C. A. (1992). Practical Ray Tracing in C, John Wiley
& Sons, New York.

LISCHINSKI, D., F. TAMPIERI, and D. P. GREENBERG
(1993). “Combining Hierarchical Radiosity and Discontinu-
ity Meshing”, in proceedings of SIGGRAPH ’93, Computer
Graphics, pp. 199–208.

LITWINOWICZ, P. C. (1991). “Inkwell: A 21/2-D Animation
System”, in proceedings of SIGGRAPH ’91, Computer Graph-
ics, 25(4), pp. 113–122.

LODDING, K. N. (1983). “Iconic Interfacing”, IEEE Computer
Graphics and Applications, 3(2), pp. 11–20.

LOKE, T.-S., D. TAN, H.-S. SEAH, and M.-H. ER (1992).
“Rendering Fireworks Displays”, IEEE Computer Graphics
and Applications, 12(3), pp. 33–43.

LOOMIS, J., H. POIZNER, U. BELLUGI, A. BLAKEMORE, and
J. HOLLERBACH (1983). “Computer-Graphics Modeling of
American Sign Language”, in proceedings of SIGGRAPH
’83, Computer Graphics, 17(3), pp. 105– 114.

LOPES, A. and K. BRODLIE (2003). “Improving the Robustness
and Accuracy of the Marching-Cubes Algorithm for Isosur-
faces”, IEEE Transactions on Visualization and Computer
Graphics, 9(1), pp. 16–29.

LORENSON, W. E. and H. CLINE (1987). “Marching Cubes:
A High-Resolution 3D Surface Construction Algorithm”,
in proceedings of SIGGRAPH ’87, Computer Graphics, 21(4),
pp. 163–169.

MACKINLAY, J. D., S. K. CARD, and G. G. ROBERTSON
(1990). “Rapid Controlled Movement Through a Virtual 3D
Workspace”, in proceedings of SIGGRAPH ’90, Computer
Graphics, pp. 171–176.

MACKINLAY, J. D., G. G. ROBERTSON, and S. K. CARD
(1991). “The Perspective Wall: Detail and Context Smoothly
Integrated”, CHI ’91, pp. 173–179.

MAESTRI, G. (1999). [digital] Character Animation 2, Volume 1—
Essential Techniques, New Riders Publishing, Indianapolis,
IN.

MAESTRI, G. (2002). [digital] Character Animation 2, Volume 2—
Advanced Techniques, New Riders Publishing, Indianapolis,
IN.

MAGNENAT-THALMANN, N. and D. THALMANN (1985).
Computer Animation: Theory and Practice, Springer-Verlag,
Tokyo.

MAGNENAT-THALMANN, N. and D. THALMANN (1987).
Image Synthesis, Springer-Verlag, Tokyo.

MAGNENAT-THALMANN, N. and D. THALMANN (1991).
“Complex Models for Animating Synthetic Actors”, IEEE
Computer Graphics and Applications, 11(5), pp. 32–45.

MANDELBROT, B. B. (1977). Fractals: Form, Chance, and Dimen-
sion, Freeman Press, San Francisco.

MANDELBROT, B. B. (1982). The Fractal Geometry of Nature,
Freeman Press, New York.

MANTYLA, M. (1988). An Introduction to Solid Modeling, Com-
puter Science Press, Rockville, MD.

MAX, N. L. and D. M. LERNER (1985). “A Two-and-a-Half-D
Motion Blur Algorithm”, in proceedings of SIGGRAPH ’85,
Computer Graphics, 19(3), pp. 85–94.

MAX, N. L. (1986). “Atmospheric Illumination and Shadows”,
in proceedings of SIGGRAPH ’86, Computer Graphics, 20(4),
pp. 117–124.

MAX, N. L. (1990). “Cone-Spheres”, in proceedings of
SIGGRAPH ’90, Computer Graphics, 24(4), pp. 59–62.

MCCARTHY, M. and A. DESCARTES (1998). Reality Architec-
ture: Building 3D Worlds with Java and VRML, Prentice-Hall
Europe, United Kingdom.

MENACHE, A. (2000). Understanding Motion Capture for Com-
puter Animation, Morgan Kaufmann, San Francisco, CA.

MEYER, G. W. and D. P. GREENBERG (1988). “Color-Defective
Vision and Computer Graphics Displays”, IEEE Computer
Graphics and Applications, 8(5), pp. 28–40.

MEYERS, D., S. SKINNER, and K. SLOAN (1992). “Sur-
faces from Contours”, ACM Transactions on Graphics, 11(3),
pp. 228–258.

MIANO, J. (1999). Compressed Image File Formats, Addison-
Wesley/ACM Press, New York.

MILLER, G. S. P. (1988). “The Motion Dynamics of Snakes and
Worms”, in proceedings of SIGGRAPH ’88, Computer Graph-
ics, 22(4), pp. 169–178.

MILLER, J. V., D. E. BREEN, W. E. LORENSON, R. M. O’BARA,
and M. J. WOZNY (1991). “Geometrically Deformed Mod-
els: A Method for Extracting Closed Geometric Models from
Volume Data”, in proceedings of SIGGRAPH ’91, Computer
Graphics, 25(4), pp. 217–226.

Bibliography

794

MITCHELL, D. P. (1991). “Spectrally Optimal Sampling for
Distribution Ray Tracing”, in proceedings of SIGGRAPH ’91,
Computer Graphics, 25(4), pp. 157–165.

MITCHELL, D. P. and P. HANRAHAN (1992). “Illumination
from Curved Reflectors”, in proceedings of SIGGRAPH ’92,
Computer Graphics, 26(2), pp. 283–291.

MITROO, J. B., N. HERMAN, and N. I. BADLER (1979).
“Movies from Music: Visualizing Music Compositions”, in
proceedings of SIGGRAPH ’79, Computer Graphics, 13(2),
pp. 218–225.

MIYATA, K. (1990). “A Method of Generating Stone Wall
Patterns”, in proceedings of SIGGRAPH ’90, Computer
Graphics, 24(4), pp. 387–394.

MOLNAR, S., J. EYLES, and J. POULTON (1992).
“PixelFlow: High-Speed Rendering Using Image Com-
position”, in proceedings of SIGGRAPH ’92, Computer
Graphics, 26(2), pp. 231–240.

MOON, F. C. (1992). Chaotic and Fractal Dynamics, John Wiley
& Sons, New York.

MOORE, M. and J. WILHELMS (1988). “Collision Detec-
tion and Response for Computer Animation”, in pro-
ceedings of SIGGRAPH ’88, Computer Graphics, 22(4),
pp. 289–298.

MORTENSON, M. E. (1985). Geometric Modeling, John Wiley &
Sons, New York.

MURAKI, S. (1991). “Volumetric Shape Description of
Range Data Using the ‘Blobby Model’ ”, in pro-
ceedings of SIGGRAPH ’91, Computer Graphics, 25(4),
pp. 227–235.

MUSGRAVE, F. K., C. E. KOLB, and R. S. MACE (1989). “The
Synthesis and Rendering of Eroded Fractal Terrains”, in
proceedings of SIGGRAPH ’89, Computer Graphics, 23(3),
pp. 41–50.

MYERS, B. A. and W. BUXTON (1986). “Creating High-
Interactive and Graphical User Interfaces by Demonstra-
tion”, in proceedings of SIGGRAPH ’86, Computer Graphics,
20(4), pp. 249–258.

NAYLOR, B., J. AMANATIDES, and W. THIBAULT (1990).
“Merging BSP Trees Yields Polyhedral Set Operations”, in
proceedings of SIGGRAPH ’90, Computer Graphics, 24(4),
pp. 115–124.

NICHOLL, T. M., D. T. LEE, and R. A. NICHOLL (1987). “An
Efficient New Algorithm for 2D Line Clipping: Its Devel-
opment and Analysis”, in proceedings of SIGGRAPH ’87,
Computer Graphics, 21(4), pp. 253–262.

NIELSON, G. M., B. SHRIVER, and L. ROSENBLUM, ed.
(1990). Visualization in Scientific Computing, IEEE Computer
Society Press, Los Alamitos, CA.

NIELSON, G. M. (1993). “Scattered Data Modeling”, IEEE Com-
puter Graphics and Applications, 13(1), pp. 60–70.

NISHIMURA, H. (1985). “Object Modeling by Distribution
Function and a Method of Image Generation”, Journal
Electronics Comm. Conf. ’85, J68(4), pp. 718–725.

NISHITA, T. and E. NAKAMAE (1986). “Continuous-Tone
Representation of Three-Dimensional Objects Illuminated

by Sky Light”, in proceedings of SIGGRAPH ’86, Computer
Graphics, 20(4), pp. 125–132.

NISHITA, T., T. SIRAI, K. TADAMURA, and E. NAKA-
MAE (1993). “Display of the Earth Taking into Account
Atmospheric Scattering”, in proceedings of SIGGRAPH ’93,
Computer Graphics, pp. 175–182.

NORTON, A. (1982). “Generation and Display of Geometric
Fractals in 3-D”, in proceedings of SIGGRAPH ’82, Computer
Graphics, 16(3), pp. 61–67.

NSF INVITATIONAL WORKSHOP (1992). “Research
Directions in Virtual Environments”, in proceedings of
SIGGRAPH ’92, Computer Graphics, 26(3), pp. 153–177.

OKABE, H., H. IMAOKA, T. TOMIHA, and H. NIWAYA
(1992). “Three-Dimensional Apparel CAD System”, in
proceedings of SIGGRAPH ’92, Computer Graphics, 26(2),
pp. 105–110.

OLANO, M., J. C. HART, W. HEIDRICH, and M. MCCOOL
(2002). Real-Time Shading, A. K. Peters, Natick, MA.

OLIVEIRA, M. M., G. BISHOP, and D. MCALLISTER (2000).
“Relief Texture Mapping”, in proceedings of SIGGRAPH ’00,
Computer Graphics, pp. 359–368.

OPPENHEIMER, P. E. (1986). “Real-Time Design and
Animation of Fractal Plants and Trees”, in proceedings of
SIGGRAPH ’86, Computer Graphics, 20(4), pp. 55–64.

O’ROURKE, M. (1998). Principles of Three-Dimensional Computer
Animation, Revised Edition, W. W. Norton, New York.

OSF/MOTIF (1989). OSF/Motif Style Guide, Open Software
Foundation, Prentice-Hall, Englewood Cliffs, NJ.

PAETH, A. W., ed. (1995). Graphics Gems V, Morgan Kaufmann,
San Diego, CA.

PAINTER, J. and K. SLOAN (1989). “Antialiased Ray Tracing
by Adaptive Progressive Refinement”, in proceedings of
SIGGRAPH ’89, Computer Graphics, 23(3), pp. 281–288.

PALMER, I. (2001). Essential Java 3D Fast, Springer-Verlag,
London.

PANG, A. T. (1990). “Line-Drawing Algorithms for Parallel
Machines”, IEEE Computer Graphics and Applications, 10(5),
pp. 54–59.

PAO, Y. C. (1984). Elements of Computer-Aided Design. John
Wiley & Sons, New York.

PARENT, R. (2002). Computer Animation: Algorithms and Tech-
niques, Morgan Kaufmann, San Francisco, CA.

PARKE, F, and K. WATERS (2008). Computer Facial Animation,
Second Edition, A. K. Peters, Wellesley, MA.

PAVLIDIS, T. (1982). Algorithms For Graphics and Image Process-
ing, Computer Science Press, Rockville, MD.

PAVLIDIS, T. (1983). “Curve Fitting with Conic Splines”, ACM
Transactions on Graphics, 2(1), pp. 1–31.

PEACHEY, D. R. (1986). “Modeling Waves and Surf”, in
proceedings of SIGGRAPH ’86, Computer Graphics, 20(4),
pp. 65–74.

PEITGEN, H.-O. and P. H. RICHTER (1986). The Beauty of
Fractals, Springer-Verlag, Berlin.

PEITGEN, H.-O. and D. SAUPE, eds. (1988). The Science of
Fractal Images, Springer-Verlag, Berlin.

Bibliography

795

PENTLAND, A. and J. WILLIAMS (1989). “Good Vibra-
tions: Modal Dynamics for Graphics and Animation”, in
proceedings of SIGGRAPH ’89, Computer Graphics, 23(3),
pp. 215–222.

PERLIN, K. (1985). “An Image Synthesizer”, in proceedings of
SIGGRAPH ’85, Computer Graphics, 19(3), pp. 287–296.

PERLIN, K. and E. M. HOFFERT (1989). “Hypertexture”, in
proceedings of SIGGRAPH ’89, Computer Graphics, 23(3),
pp. 253–262.

PHONG, B. T. (1975). “Illumination for Computer-Generated
Images”, Communications of the ACM, 18(6), pp. 311–317.

PIEGL, L. and W. TILLER (1997). The NURBS Book, Springer-
Verlag, New York.

PINEDA, J. (1988). “A Parallel Algorithm for Polygon Rasteri-
zation”, in proceedings of SIGGRAPH ’88, Computer Graph-
ics, 22(4), pp. 17–20.

PITTEWAY, M. L. V. and D. J. WATKINSON (1980). “Bresen-
ham’s Algorithm with Gray Scale”, Communications of the
ACM, 23(11), pp. 625–626.

PLATT, J. C. and A. H. BARR (1988). “Constraint Methods for
Flexible Models”, in proceedings of SIGGRAPH ’88, Com-
puter Graphics, 22(4), pp. 279–288.

POCOCK, L. and J. ROSEBUSH (2002). The Computer Anima-
tor’s Technical Handbook, Morgan Kaufmann, San Francisco,
CA.

POLICARPO, F., M. M. OLIVEIRA, and J. L. D. COMBA
(2005). “Real-Time Relief Mapping on Arbitrary Polygonal
Surfaces”, in I3D ’05: Proceedings of the 2005 symposium on
Interactive 3D graphics and games, pp. 155–162.

POTMESIL, M. and I. CHAKRAVARTY (1982). “Synthetic Im-
age Generation with a Lens and Aperture Camera Model”,
ACM Transactions on Graphics, 1(2), pp. 85–108.

POTMESIL, M. and I. CHAKRAVARTY (1983). “Modeling
Motion Blur in Computer-Generated Images”, in pro-
ceedings of SIGGRAPH ’83, Computer Graphics, 17(3),
pp. 389–399.

POTMESIL, M. and E. M. HOFFERT (1987). “FRAMES: Soft-
ware Tools for Modeling, Rendering and Animation of 3D
Scenes”, in proceedings of SIGGRAPH ’87, Computer Graph-
ics, 21(4), pp. 85–93.

POTMESIL, M. and E. M. HOFFERT (1989). “The Pixel Ma-
chine: A Parallel Image Computer”, in proceedings of
SIGGRAPH ’89, Computer Graphics, 23(3), pp. 69–78.

PRATT, W. K. (1978). Digital Image Processing, John Wiley &
Sons, New York.

PREPARATA, F. P. and M. I. SHAMOS (1985). Computational
Geometry, Springer-Verlag, New York.

PRESS, W. H., S. A. TEUKOLSKY, W. T. VETTERLING, and
B. P. FLANNERY (1993). Numerical Recipes in C: The Art of
Scientific Computing, Second Edition, Cambridge University
Press, Cambridge, England.

PRESS, W. H., S. A. TEUKOLSKY, W. T. VETTERLING, and B.
P. FLANNERY (2002). Numerical Recipes in C++: The Art of
Scientific Computing, Second Edition, Cambridge University
Press, Cambridge, England.

PRESTON, K., FAGAN, HUANG, and PRYOR (1984). “Com-
puting in Medicine”, Computer, 17(10), pp. 294–313.

PRUSINKIEWICZ, P., M. S. HAMMEL, and E. MJOLSNESS
(1993). “Animation of Plant Development”, in proceedings
of SIGGRAPH ’93, Computer Graphics, pp. 351–360.

PRUYN, P. W. and D. P. GREENBERG (1993). “Exploring 3D
Computer Graphics in Cockpit Avionics”, IEEE Computer
Graphics and Applications, 13(3), pp. 28–35.

QUEK, L.-H. and D. HEARN (1988). “Efficient Space-
Subdivision Methods in Ray-Tracing Algorithms”, Univer-
sity of Illinois, Department of Computer Science Report
UIUCDCS-R-88-1468.

RAIBERT, M. H. and J. K. HODGINS (1991). “Animation of
Dynamic Legged Locomotion”, in proceedings of
SIGGRAPH ’91, Computer Graphics, 25(4), pp. 349–358.

RAO, K. R. and P. YIP (1990). Discrete Cosine Transform,
Academic Press, New York.

REEVES, W. T. (1983a). “Particle Systems: A Technique for
Modeling a Class of Fuzzy Objects”, ACM Transactions on
Graphics, 2(2), pp. 91–108.

REEVES, W. T. (1983b). “Particle Systems—A Technique for
Modeling a Class of Fuzzy Objects”, in proceedings of
SIGGRAPH ’83, Computer Graphics, 17(3), pp. 359–376.

REEVES, W. T. and R. BLAU (1985). “Approximate and Prob-
abilistic Algorithms for Shading and Rendering Structured
Particle Systems”, in proceedings of SIGGRAPH ’85, Com-
puter Graphics, 19(3), pp. 313–321.

REEVES, W. T., D. H. SALESIN, and R. L. COOK (1987).
“Rendering Antialiased Shadows with Depth Maps”, in
proceedings of SIGGRAPH ’87, Computer Graphics, 21(4),
pp. 283–291.

REQUICHA, A. A. G. and J. R. ROSSIGNAC (1992). “Solid
Modeling and Beyond”, IEEE Computer Graphics and Appli-
cations, 12(5), pp. 31–44.

REYNOLDS, C. W. (1982). “Computer Animation with Scripts
and Actors”, in proceedings of SIGGRAPH ’82, Computer
Graphics, 16(3), pp. 289–296.

REYNOLDS, C. W. (1987). “Flocks, Herds, and Schools: A Dis-
tributed Behavioral Model”, in proceedings of SIGGRAPH
’87, Computer Graphics, 21(4), pp. 25–34.

RHODES, M. L., et al. (1983). “Computer Graphics and An In-
teractive Stereotactic System for CT-Aided Neurosurgery”,
IEEE Computer Graphics and Applications, 3(5), pp. 31–37.

RIESENFELD, R. F. (1981). “Homogeneous Coordinates and
Projective Planes in Computer Graphics”, IEEE Computer
Graphics and Applications, 1(1), pp. 50–55.

ROBERTSON, P. K. (1988). “Visualizing Color Gamuts: A User
Interface for the Effective Use of Perceptual Color Spaces
in Data Displays”, IEEE Computer Graphics and Applications,
8(5), pp. 50–64.

ROBERTSON, G. G., J. D. MACKINLAY and S. K. CARD (1991).
“Cone Trees: Animated 3D Visualizations of Hierarchical
Information”, CHI ’91, pp. 189–194.

ROGERS, D. F. and R. A. EARNSHAW, eds. (1987). Techniques
for Computer Graphics, Springer-Verlag, New York.

Bibliography

796

ROGERS, D. F. and J. A. ADAMS (1990). Mathematical Elements
for Computer Graphics, McGraw-Hill, New York.

ROGERS, D. F. (1998). Procedural Elements for Computer Graph-
ics, McGraw-Hill, New York.

ROSENTHAL, D. S. H., J. C. MICHENER, G. PFAFF,
R. KESSEMER, and M. SABIN (1982). “The Detailed
Semantics of Graphics Input Devices”, in proceedings of
SIGGRAPH ’82, Computer Graphics, 16(3), pp. 33–38.

ROST, R. J. and B. LICEA-KANE (2010). OpenGL Shading
Language, Third Edition, Addison-Wesley, Reading, MA.

RUBINE, D. (1991). “Specifying Gestures by Example”, in
proceedings of SIGGRAPH ’91, Computer Graphics, 25(4),
pp. 329–337.

RUSHMEIER, H. and K. TORRANCE (1987). “The Zonal
Method for Calculating Light Intensities in the Presence of
a Participating Medium”, in proceedings of SIGGRAPH ’87,
Computer Graphics, 21(4), pp. 293–302.

RUSHMEIER, H. E. and K. E. TORRANCE (1990). “Extending
the Radiosity Method to Include Specularly Reflecting and
Translucent Materials”, ACM Transactions on Graphics, 9(1),
pp. 1–27.

SABELLA, P. (1988). “A Rendering Algorithm for Visualizing
3D Scalar Fields”, in proceedings of SIGGRAPH ’88, Com-
puter Graphics, 22(4), pp. 51–58.

SABIN, M. A. (1985). “Contouring: The State of the Art”, in
Fundamental Algorithms for Computer Graphics, R. A. Earn-
shaw, ed., Springer-Verlag, Berlin, pp. 411–482.

SAKAGUCHI, H., S. L. KENT, and T. COX (2001). The Making of
Final Fantasy, The Spirits Within, Brady Games, Indianapolis,
IN.

SALESIN, D. and R. BARZEL (1993). “Adjustable Tools: An
Object-Oriented Interaction Metaphor”, ACM Transactions
on Graphics, 12(1), pp. 103–107.

SAMET, H. and M. TAMMINEN (1985). “Bintrees, CSG Trees,
and Time”, in proceedings of SIGGRAPH ’85, Computer
Graphics, 19(3), pp. 121–130.

SAMET, H. and R. E. WEBBER (1985). “Sorting a Collection of
Polygons using Quadtrees”, ACM Transactions on Graphics,
4(3), pp. 182–222.

SAMET, H. and R. E. WEBBER (1988a). “Hierarchical Data
Structures and Algorithms for Computer Graphics: Part 1”,
IEEE Computer Graphics and Applications, 8(4), pp. 59–75.

SAMET, H. and R. E. WEBBER (1988b). “Hierarchical Data
Structures and Algorithms for Computer Graphics: Part 2”,
IEEE Computer Graphics and Applications, 8(3), pp. 48–68.

SCHACHTER, B. J., ed. (1983). Computer Image Generation, John
Wiley & Sons, New York.

SCHEIFLER, R. W. and J. GETTYS (1986). “The X Window Sys-
tem”, ACM Transactions on Graphics, 5(2), pp. 79–109.

SCHOENEMAN, C., J. DORSEY, B. SMITS, J. ARVO, and
D. GREENBERG (1993). “Painting with Light”, in proceed-
ings of SIGGRAPH ’93, Computer Graphics, pp. 143–146.

SCHRODER, P. and P. HANRAHAN (1993). “On the Form Fac-
tor Between Two Polygons”, in proceedings of SIGGRAPH
’93, Computer Graphics, pp. 163–164.

SCHWARTZ, M. W., W. B. COWAN, and J. C. BEATTY (1987).
“An Experimental Comparison of RGB, YIQ, LAB, HSV,
and Opponent Color Models”, ACM Transactions on Graphics,
6(2), pp. 123–158.

SEDERBERG, T. W. and E. GREENWOOD (1992). “A Physi-
cally Based Approached to 2-D Shape Bending”, in proceed-
ings of SIGGRAPH ’92, Computer Graphics, 26(2), pp. 25–34.

SEDERBERG, T. W., P. GAO, G. WANG, and H. MU (1993).
“2D Shape Blending: An Intrinsic Solution to the Vertex
Path Problem”, in proceedings of SIGGRAPH ’93, Computer
Graphics, pp. 15–18.

SEGAL, M. (1990). “Using Tolerances to Guarantee Valid Poly-
hedral Modeling Results”, in proceedings of SIGGRAPH ’90,
Computer Graphics, 24(4), pp. 105–114.

SEGAL, M., C. KOROBKIN, R. VAN WIDENFELT, J. FORAN,
and P. HAEBERLI (1992). “Fast Shadows and Lighting
Effects Using Texture Mapping”, in proceedings of
SIGGRAPH ’92, Computer Graphics, 26(2), pp. 249–252.

SELMAN, D. (2002). Java 3D Programming, Manning Publica-
tions, Greenwich, CT.

SEQUIN, C. H. and E. K. SMYRL (1989). “Parameterized Ray-
Tracing”, in proceedings of SIGGRAPH ’89, Computer Graph-
ics, 23(3), pp. 307–314.

SHERR, S. (1993). Electronic Displays, John Wiley & Sons, New
York.

SHILLING, A. and W. STRASSER (1993). “EXACT: Algorithm
and Hardware Architecture for an Improved A-Buffer”,
in proceedings of SIGGRAPH ’93, Computer Graphics,
pp. 85–92.

SHIRLEY, P. (1990). “A Ray Tracing Method for Illumination
Calculation in Diffuse-Specular Scenes”, Graphics Interface
’90, pp. 205–212.

SHIRLEY, P. (2000). Realistic Ray Tracing, A. K. Peters, Natick,
MA.

SHNEIDERMAN, B. (1986). Designing the User Interface,
Addison-Wesley, Reading, MA.

SHOEMAKE, K. (1985). “Animating Rotation with Quaternion
Curves”, in proceedings of SIGGRAPH ’85, Computer Graph-
ics, 19(3), pp. 245–254.

SHREINER, D., ed. (2000). OpenGL Reference Manual, Third
Edition, Addison-Wesley, Reading, MA.

SHREINER, D., ed. (2010). OpenGL Programming Guide, Seventh
Edition, Addison-Wesley, Reading, MA.

SIBERT, J. L., W. D. HURLEY, and T. W. BLESER (1986). “An
Object-Oriented User Interface Management System”, in
proceedings of SIGGRAPH ’86, Computer Graphics, 20(4),
pp. 259–268.

SILLION, F. X. and C. PUECH (1989). “A General Two-Pass
Method Integrating Specular and Diffuse Reflection”, in
proceedings of SIGGRAPH ’89, Computer Graphics, 23(3),
pp. 335–344.

SILLION, F. X., J. R. ARVO, S. H. WESTIN, and D. P.
GREENBERG (1991). “A Global Illumination Solution
for General Reflectance Distributions”, in proceedings of
SIGGRAPH ’91, Computer Graphics, 25(4), pp. 187–196.

Bibliography

797

SILLION, F. X. and C. PUECH (1994). Radiosity and Global
Illumination, Morgan Kaufmann, San Francisco, CA.

SIMS, K. (1990). “Particle Animation and Rendering Using
Data Parallel Computation”, in proceedings of SIGGRAPH
’90, Computer Graphics, 24(4), pp. 405–413.

SIMS, K. (1991). “Artificial Evolution for Computer Graphics”,
in proceedings of SIGGRAPH ’91, Computer Graphics, 25(4),
pp. 319–328.

SMITH, A. R. (1978). “Color Gamut Transform Pairs”, in
proceedings of SIGGRAPH ’78, Computer Graphics, 12(3),
pp. 12–19.

SMITH, A. R. (1979). “Tint Fill”, in proceedings of SIGGRAPH
’79, Computer Graphics, 13(2), pp. 276–283.

SMITH, A. R. (1984). “Plants, Fractals, and Formal Languages”,
in proceedings of SIGGRAPH ’84, Computer Graphics, 18(3),
pp. 1–10.

SMITH, A. R. (1987). “Planar 2-Pass Texture Mapping and
Warping”, in proceedings of SIGGRAPH ’87, Computer
Graphics, 21(4), pp. 263–272.

SMITS, B. E., J. R. ARVO, and D. H. SALESIN (1992).
“An Importance-Driven Radiosity Algorithm”, in pro-
ceedings of SIGGRAPH ’92, Computer Graphics, 26(2),
pp. 273–282.

SNYDER, J. M. and J. T. KAJIYA (1992). “Generative Mod-
eling: A Symbolic System for Geometric Modeling”, in
proceedings of SIGGRAPH ’92, Computer Graphics, 26(2),
pp. 369–378.

SNYDER, J. M., A. R. WOODBURY, K. FLEISCHER,
B. CURRIN, and A. H. BARR (1993). “Interval Methods
for Multi-Point Collisions between Time-Dependent Curved
Surfaces”, in proceedings of SIGGRAPH ’93, Computer
Graphics, pp. 321–334.

SOWIZRAL, H., K. RUSHFORTH, and M. DEERING (2000).
The Java 3D API Specification, Second Edition, Addison-Wesley,
Reading, MA.

SPROULL, R. F. and I. E. SUTHERLAND (1968). “A Clipping
Divider”, AFIPS Fall Joint Computer Conference.

STAM, J. and E. FIUME (1993). “Turbulent Wind Fields for
Gaseous Phenomena”, in proceedings of SIGGRAPH ’93,
Computer Graphics, pp. 369–376.

STETTNER, A. and D. P. GREENBERG (1989). “Computer
Graphics Visualization for Acoustic Simulation”, in pro-
ceedings of SIGGRAPH ’89, Computer Graphics, 23(3),
pp. 195–206.

STRASSMANN, S. (1986). “Hairy Brushes”, in proceedings of
SIGGRAPH ’86, Computer Graphics, 20(4), pp. 225–232.

STRAUSS, P. S. and R. CAREY (1992). “An Object-Oriented 3D
Graphics Toolkit”, in proceedings of SIGGRAPH ’92, Com-
puter Graphics, 26(2), pp. 341–349.

STROTHOTTE, T. and S. SCHLECHTWEG (2002). Non-
Photorealistic Computer Graphics: Modeling, Rendering, and
Animation, Morgan Kaufmann, San Francisco, CA.

SUNG, H. C. K., G. ROGERS, and W. J. KUBITZ (1990). “A
Critical Evaluation of PEX”, IEEE Computer Graphics and
Applications, 10(6), pp. 65–75.

SUTHERLAND, I. E. (1963). “Sketchpad: A Man-Machine
Graphical Communication System”, AFIPS Spring Joint
Computer Conference, 23, pp. 329–346.

SUTHERLAND, I. E. and G. W. Hodgman (1974). “Reen-
trant Polygon Clipping”, Communications of the ACM, 17(1),
pp. 32–42.

SUTHERLAND, I. E., R. F. SPROULL, and R. SCHUMACKER
(1974). “A Characterization of Ten Hidden Surface Algo-
rithms”, ACM Computing Surveys, 6(1), pp. 1–55.

SWEZEY, R. W. and E. G. DAVIS (1983). “A Case Study of
Human Factors Guidelines in Computer Graphics”, IEEE
Computer Graphics and Applications, 3(8), pp. 21–30.

TAKALA, T. and J. HAHN (1992). “Sound Rendering”, in
proceedings of SIGGRAPH ’92, Computer Graphics, 26(2),
pp. 211–220.

TANNAS, JR., L. E., ed. (1985). Flat-Panel Displays and CRTs,
Van Nostrand Reinhold, New York.

TAUBMAN, D. and M. MARCELLIN (2001). JPEG 2000: Image-
Compression Fundamentals, Standards, and Practice, Kluwer
Academic Publishers, Norwell, MA.

TELLER, S. and P. HANRAHAN (1993). “Global Visibility
Algorithms for Illumination Computations”, in proceedings
of SIGGRAPH ’93, Computer Graphics, pp. 239–246.

TERZOPOULOS, D., J. PLATT, A. H. BARR, et al. (1987). “Elas-
tically Deformable Models”, in proceedings of SIGGRAPH
’87, Computer Graphics, 21(4), pp. 205–214.

THALMANN, N. M. and D. THALMANN (1985). Computer
Animation: Theory and Practice, Springer-Verlag, Tokyo.

THALMANN, D., ed. (1990). Scientific Visualization and Graph-
ics Simulation, John Wiley & Sons, Chichester, England.

THIBAULT, W. C. and B. F. NAYLOR (1987). “Set Opera-
tions on Polyhedra using Binary Space Partitioning Trees”,
in proceedings of SIGGRAPH ’87, Computer Graphics, 21(4),
pp. 153–162.

THOMAS, B. and W. LEFKON (1997). Disney’s Art of Animation
from Mickey Mouse to Hercules, Hyperion Press, New York.

THOMAS, F., O. JOHNSON, and C. JOHNSTON (1995). The
Illusion of Life: Disney Animation, Hyperion Press, New York.

TORBERG, J. G. (1987). “A Parallel Processor Architecture
for Graphics Arithmetic Operations”, in proceedings of
SIGGRAPH ’87, Computer Graphics, 21(4), pp. 197–204.

TORRANCE, K. E. and E. M. SPARROW (1967). “Theory for
Off-Specular Reflection from Roughened Surfaces”, Journal
of the Optical Society of America, 57(9), pp. 1105–1114.

TRAVIS, D. (1991). Effective Color Displays, Academic Press,
London.

TUFTE, E. R. (1990). Envisioning Information, Graphics Press,
Cheshire, CN.

TUFTE, E. R. (1997). Visual Explanations: Images and Quantities,
Evidence and Narrative, Graphics Press, Cheshire, CN.

TUFTE, E. R. (2001). The Visual Display of Quantitative Informa-
tion, Second Edition, Graphics Press, Cheshire, CN.

TURKOWSKI, K. (1982). “Antialiasing Through the Use of
Coordinate Transformations”, ACM Transactions on Graph-
ics, 1(3), pp. 215–234.

Bibliography

798

UPSON, C. and M. KEELER (1988). “VBUFFER: Visible Vol-
ume Rendering”, in proceedings of SIGGRAPH ’88, Com-
puter Graphics, 22(4), pp. 59–64.

UPSON, C., et al. (1989). “The Application Visualization
System: A Computational Environment for Scientific
Visualization”, IEEE Computer Graphics and Applications, 9(4),
pp. 30–42.

UPSTILL, S. (1989). The RenderMan Companion, Addison-
Wesley, Reading, MA.

VAN WIJK, J. J. (1991). “Spot Noise-Texture Synthesis for Data
Visualization”, in proceedings of SIGGRAPH ’91, Computer
Graphics, 25(4), pp. 309–318.

VEENSTRA, J. and N. AHUJA (1988). “Line Drawings of
Octree-Represented Objects”, ACM Transactions on Graphics,
7(1), pp. 61–75.

VELHO, L. and J. D. M. GOMES (1991). “Digital Halftoning
with Space-Filling Curves”, in proceedings of SIGGRAPH
’91, Computer Graphics, 25(4), pp. 81–90.

VON HERZEN, B., A. H. BARR, and H. R. ZATZ (1990). “Geo-
metric Collisions for Time-Dependent Parametric Surfaces”,
in proceedings of SIGGRAPH ’90, Computer Graphics, 24(4),
pp. 39–48.

WALLACE, V. L. (1976). “The Semantics of Graphic Input
Devices”, in proceedings of SIGGRAPH ’76, Computer Graph-
ics, 10(1), pp. 61–65.

WALLACE, J. R., K. A. ELMQUIST, and E. A. HAINES (1989).
“A Ray-Tracing Algorithm for Progressive Radiosity”, in
proceedings of SIGGRAPH ’89, Computer Graphics, 23(3),
pp. 315–324.

WALSH, A. E. and D. GEHRINGER (2002). Java 3D, Prentice-
Hall, Upper Saddle River, NJ.

WANGER, L. R., J. A. FERWERDA, and D. P. GREENBERG
(1992). “Perceiving Spatial Relationships in Computer-
Generated Images”, IEEE Computer Graphics and Applications,
12(3), pp. 44–58.

WARN, D. R. (1983). “Lighting Controls for Synthetic Images”,
in proceedings of SIGGRAPH ’83, Computer Graphics, 17(3),
pp. 13–21.

WATT, A. (1989). Fundamentals of Three-Dimensional Computer
Graphics, Addison-Wesley, Wokingham, England.

WATT, M. (1990). “Light-Water Interaction Using Backward
Beam Tracing”, in proceedings of SIGGRAPH ’90, Computer
Graphics, 24(4), pp. 377–386.

WATT, A. and M. WATT (1992). Advanced Animation
and Rendering Techniques, Addison-Wesley, Wokingham,
England.

WEGHORST, H., G. HOOPER, and D. P. GREENBERG (1984).
“Improved Computational Methods for Ray Tracing”, ACM
Transactions on Graphics, 3(1), pp. 52–69.

WEIL, J. (1986). “The Synthesis of Cloth Objects”, in pro-
ceedings of SIGGRAPH ’86, Computer Graphics, 20(4),
pp. 49–54.

WEILER, K. and P. ATHERTON (1977). “Hidden-Surface
Removal Using Polygon Area Sorting”, in proceedings of
SIGGRAPH ’77, Computer Graphics, 11(2), pp. 214– 222.

WEILER, K. (1980). “Polygon Comparison Using a Graph Rep-
resentation”, in proceedings of SIGGRAPH ’80, Computer
Graphics, 14(3), pp. 10–18.

WEINBERG, R. (1978) “Computer Graphics in Support of
Space-Shuttle Simulation”, in proceedings of SIGGRAPH
’78, Computer Graphics, 12(3), pp. 82–86.

WELCH, T. (1984). “A Technique for High-Performance Data
Compression”, IEEE Computer, 17(6), pp. 8–19.

WERNECKE, J. (1994). The Inventor Mentor, Addison-Wesley,
Reading, MA.

WESTIN, S. H., J. R. ARVO, and K. E. TORRANCE (1992).
“Predicting Reflectance Functions from Complex Surfaces”,
in proceedings of SIGGRAPH ’92, Computer Graphics, 26(2),
pp. 255–264.

WESTOVER, L. (1990). “Footprint Evaluation for Volume Ren-
dering”, in proceedings of SIGGRAPH ’90, Computer Graph-
ics, 24(4), pp. 367–376.

WHITTED, T. (1980). “An Improved Illumination Model
for Shaded Display”, Communications of the ACM, 23(6),
pp. 343–349.

WHITTED, T. and D. M. WEIMER (1982). “A Software Testbed
for the Development of 3D Raster Graphics Systems”, ACM
Transactions on Graphics, 1(1), pp. 43–58.

WHITTED, T. (1983). “Antialiased Line Drawing Using Brush
Extrusion”, in proceedings of SIGGRAPH ’83, Computer
Graphics, 17(3), pp. 151–156.

WICKE, M., D. RITCHIE, B. M. KLINGNER, S. BURKE,
J. R. SEWCHUK, and F. F. O’BRIEN (2010). “Dynamic Local
Remeshing for Elastoplastic Simulation”, in ACM Transac-
tions on Graphics 49(4), Article 49, 11 pages.

WILHELMS, J. (1987). “Toward Automatic Motion
Control”, IEEE Computer Graphics and Applications, 7(4),
pp. 11–22.

WILHELMS, J. and A. VAN GELDER (1991). “A Coherent
Projection Approach for Direct Volume Rendering”, in
proceedings of SIGGRAPH ’91, Computer Graphics, 25(4),
pp. 275–284.

WILHELMS, J. and A. VAN GELDER (1992). “Octrees for Faster
Isosurface Generation”, ACM Transactions on Graphics, 11(3),
pp. 201–227.

WILLIAMS, L. (1983). “Pyramidal Parametrics”, in pro-
ceedings of SIGGRAPH ’83, Computer Graphics, 17(3),
pp. 1–11.

WILLIAMS, L. (1990). “Performance-Driven Facial Anima-
tion”, in proceedings of SIGGRAPH ’90, Computer Graphics,
24(4), pp. 235–242.

WITKIN, A. and W. WELCH (1990). “Fast Animation and Con-
trol of Nonrigid Structures”, in proceedings of SIGGRAPH
’90, Computer Graphics, 24(4), pp. 243–252.

WITKIN, A. and M. KASS (1991). “Reaction-Diffusion Tex-
tures”, in proceedings of SIGGRAPH ’91, Computer Graphics,
25(4), pp. 299–308.

WOLFRAM, S. (1984) “Computer Software in Science and
Mathematics”, Scientific American, 251(3), 188–203.

Bibliography

799

WOLFRAM, S. (1991). Mathematica, Addison-Wesley, Reading,
MA.

WOO, A., P. POULIN, and A. FOURNIER (1990). “A Survey
of Shadow Algorithms”, IEEE Computer Graphics and Appli-
cations, 10(6), pp. 13–32.

WOO M., J. NEIDER, T. DAVIS, and D. SHREINER (1999).
OpenGL Programming Guide, Third Edition, Addison-Wesley,
Reading, MA.

WRIGHT, W. E. (1990). “Parallelization of Bresenham’s Line
and Circle Algorithms”, IEEE Computer Graphics and Appli-
cations, 10(5), pp. 60–67.

WU, X. (1991). “An Efficient Antialiasing Technique”, in
proceedings of SIGGRAPH ’91, Computer Graphics, 25(4),
pp. 143–152.

WYSZECKI, G. and W. S. STILES (1982). Color Science, John
Wiley & Sons, New York.

WYVILL, G., B. WYVILL, and C. MCPHEETERS (1987). “Solid
Texturing of Soft Objects”, IEEE Computer Graphics and
Applications, 7(12), pp. 20–26.

YAEGER, L., C. UPSON, and R. MYERS (1986). “Combin-
ing Physical and Visual Simulation: Creation of the Planet
Jupiter for the Film ’2010’ ”, in proceedings of SIGGRAPH
’86, Computer Graphics, 20(4), pp. 85–94.

YAGEL, R., D. COHEN, and A. KAUFMAN (1992). “Discrete
Ray Tracing”, IEEE Computer Graphics and Applications, 12(5),
pp. 19–28.

YAMAGUCHI, K., T. L. KUNII, and F. FUJIMURA (1984).
“Octree-Related Data Structures and Algorithms”, IEEE
Computer Graphics and Applications, 4(1), pp. 53–59.

YESSIOS, C. I. (1979). “Computer Drafting of Stones, Wood,
Plant, and Ground Materials”, in proceedings of SIGGRAPH
’79, Computer Graphics, 13(2), pp. 190–198.

YOUNG, D. A. (1990). The X Window System—Programming and
Applications with Xt, OSF/Motif Edition, Prentice-Hall, Engle-
wood Cliffs, NJ.

ZELEZNICK, R. C., et al. (1991). “An Object-Oriented Frame-
work for the Integration of Interactive Animation Tech-
niques”, in proceedings of SIGGRAPH ’91, Computer Graph-
ics, 25(4), pp. 105–112.

ZELTZER, D. (1982). “Motor Control Techniques for Figure
Animation”, IEEE Computer Graphics and Applications, 2(9),
pp. 53–60.

ZHANG, Y. and R. E. WEBBER (1993). “Space Diffusion:
An Improved Parallel Halftoning Technique Using Space-
Filling Curves”, in proceedings of SIGGRAPH ’93, Computer
Graphics, pp. 305–312.

ZIV, J. and A. LEMPEL (1977). “A Universal Algorithm for
Sequential Data Compression”, IEEE Transactions on Infor-
mation Theory, 23(3), pp. 337–343.

ZIV, J. and A. LEMPEL (1978). “Compression of Individual
Sequences via Variable-Rate Coding”, IEEE Transactions on
Information Theory, 24(5), pp. 530–536.

Bibliography

800

Index

Index
Page references followed by "f" indicate illustrated
figures or photographs; followed by "t" indicates a
table.

/, 24, 35, 40, 44, 74, 82, 84-85, 90-96, 112, 117-118,
134, 153-154, 172, 174, 206-209, 221-222,
224, 243, 248-253, 261-263, 275, 285-286,
288-292, 296-297, 299, 375, 382-383,
392-393, 423-426, 452-453, 459, 487, 520,
524, 535, 539, 555, 564, 582-583, 601-609,
613-615, 617-618, 620-621, 653, 673-674,
677-678, 714-716

//, 24, 40, 74, 82, 85, 90-96, 112, 146, 172, 174, 209,
221-222, 243, 292, 296-297, 340-341,
382-383, 392, 425-426, 553, 583, 601-605,
613-615, 617-618, 620-621, 677-678, 684,
690

}, 40, 42, 50, 70-71, 82, 85-86, 90-97, 107, 115, 134,
137-138, 146-147, 153-154, 172, 174, 191,
193, 195, 199, 206-209, 249-253, 259-265,
285-286, 288-292, 296-297, 340-341,
382-384, 392-393, 402-403, 424-426,
452-454, 458, 520, 601-609, 613-615,
617-618, 620-621, 653, 672, 674-676, 678,
683-684, 686, 714-716

*=, 425, 583, 608

!=, 42, 172, 250-251, 261, 614, 674-675

<=, 262, 424-425, 450, 452-453, 553, 583, 715

!, 42, 172, 249-251, 261, 424, 614, 674-675

&, 86, 249-251, 410, 602, 604, 608, 679, 715, 789-798

--, 120

<, 63, 80, 82, 85, 91-93, 96, 112, 132, 134-140,
143-144, 147-151, 154-155, 161, 179, 183,
185, 191, 193, 195, 206-208, 220, 243, 246,
249, 251-253, 255-256, 261-263, 285, 290,
337, 343, 347-348, 374-375, 424-425, 434,
442, 450, 452-453, 466-467, 496, 498, 501,
517, 520, 553, 582-583, 614, 707-711, 715

||, 96, 614, 679

==, 96, 206, 261, 275, 285, 383, 583, 602, 604, 613,
673-674

>, 63, 96, 98, 133-135, 137, 143, 148-150, 152-155,
161, 179, 183, 249, 251-253, 261, 343, 422,
425, 437, 440, 442, 486, 497, 501-502,
504-505, 519, 529, 641, 643, 674, 683-684,
700, 705-706, 715, 740

+, 29-30, 33, 35-36, 42, 44, 45, 50-51, 62-63, 67-69,
80-82, 85, 91-93, 95-96, 106, 118, 132-136,
138-144, 146-160, 167-168, 172, 174-176,
179, 182-183, 186, 190-196, 199-201,
203-204, 206-208, 220, 225, 232, 237, 243,
245, 248-253, 256, 261-263, 274-277, 281,
284-286, 294, 315-318, 326, 328, 332-335,
343, 345, 347-348, 372-376, 394-397, 400,
415-417, 421-422, 424-427, 429, 431-443,
445-447, 452-453, 469-470, 496, 502, 510,
512-513, 517, 519-520, 523-526, 552-553,
577-578, 583, 614, 637-641, 664-665,
677-679, 683-684, 705-712, 717-718,
741-747, 749, 751-759, 761-765, 768-772,
780-782

++, 262, 453

/=, 425, 583, 608-609

>=, 425, 715

1
1984, 32, 43, 128, 185, 270, 351, 461, 656, 663-665,

788, 789-796, 798-800

3
3D graphics, 790, 796, 798

A
abstract, 356

BASIC, 356
double, 366
instance, 356

A-buffer algorithm, 490
access, 14, 16, 26, 140, 187, 237, 663-664, 670,

677-678, 680-681, 685-686
methods, 26, 140, 187, 664

Access time, 26
accuracy, 20-21, 462, 625, 633, 655-656, 794
ACM, 789-799
Action, 368-370, 377, 383-385, 595, 601-602,

604-605, 608-610, 614, 623-624
Active edge list, 169, 472-473
Actors, 796
Actual parameter, 679
actual parameters, 679-680
adapters, 786
Adaptive sampling, 644
adding, 83, 101, 143-144, 150, 161, 167, 183, 190,

256, 304, 319, 325, 343, 371, 379, 387, 448,
518, 524, 549-550, 573, 577, 581, 586, 689,
703-704, 760

Addition, 4, 12, 14, 16-19, 22, 24-25, 31-32, 34, 36,
38, 53-54, 61, 67, 71-73, 76-77, 79-81, 84,
103, 105, 109, 113, 123-124, 126, 128-129,
139, 150, 179, 184, 189, 204, 218, 224,
239-240, 244, 265-266, 268, 270, 274, 299,
319, 351, 385, 401, 431-432, 445, 456, 458,
461, 469-472, 488, 526, 529-531, 535, 537,
550-552, 591-592, 616, 622, 624-625,
717-720, 743-745, 748-749, 751-752, 767,
784-786

Addition:, 744, 749
address, 15, 46, 140-141, 158, 180, 185, 559
Addresses, 184-185

memory, 184-185
number of, 184
partitioning, 184

Addressing, 24, 131, 157-158, 184
level, 131

Adjacent edges, 55
adjusting, 3, 132, 134, 167, 181-182, 184, 186-187,

307, 319, 380, 396, 414, 421, 502
volume, 181, 319

Adobe, 785
Adobe Photoshop, 785
Adobe Photoshop format, 785
Advertising, 365-366, 664, 705
Algebra, 737
algebraic, 766, 790
algorithm, 47, 55, 98, 110, 115, 118, 128, 131,

133-139, 141-145, 148-153, 156-160,
165-166, 168-172, 174-175, 178, 181-187,
244-245, 249, 251-256, 258-261, 263-268,
270-272, 347, 352, 404, 446, 466-471, 474,
488, 490-491, 511, 520, 524, 526, 539-540,
582-583, 634-636, 652-653, 657, 730, 765,
767, 769-771, 775-777, 783-784, 790-791,
793-800

representation of, 462, 490, 795
algorithms, 31, 33, 46-47, 53, 55-57, 61, 63, 97, 113,

123, 131-187, 189, 233-235, 244, 246, 254,

266, 268, 270-272, 313, 335, 341-342, 351,
356, 370, 386, 465-467, 472, 481-483,
488-491, 493-494, 519, 521-522, 539,
643-644, 655-656, 708, 764-765, 775-776,
782-783, 785-788, 791-798, 800

analysis of, 251
graphs, 141
mathematical, 135, 157-159, 178-179, 737, 791,

797
properties of, 132, 141, 147, 158, 167, 491
recursive, 135-136, 143, 171-172, 470
set, 33, 46-47, 53, 55-57, 97, 115, 123, 135-136,

138-144, 146, 151, 155-157, 159-160,
163-164, 166-168, 171-172, 174-180,
185-187, 229, 246, 254, 268, 271-272,
335, 341, 351, 356, 370, 386, 472,
482-483, 488-491, 493-494, 539, 586,
708, 764-765, 782-783, 786-787, 795,
798

statements, 171
alignment, 9, 74, 122-123, 125-126, 187, 205, 280,

597
Alignments, 122-123, 598, 625
ALL, 3-5, 7, 9, 15, 23, 29-30, 33-40, 44, 47-48, 53-59,

63-64, 72, 74-78, 87-88, 97, 102-103,
105-109, 111, 117, 119-120, 125-127, 134,
141-142, 144-145, 147-148, 155, 168-169,
171-172, 174, 176-177, 184-187, 196,
202-205, 214, 218, 220, 225-226, 231,
235-236, 238, 240, 244-245, 262, 265-272,
299-300, 310-311, 320, 329, 331, 333,
336-337, 339, 350, 352, 357, 364, 415-416,
432-434, 459, 477-478, 480-486, 488-491,
493-496, 503-506, 517-518, 520-523,
527-530, 532, 534-537, 539, 553, 560,
571-575, 585, 595-596, 613-614, 622-623,
625, 647-650, 652-653, 684-686, 695-697,
762-766

alpha values, 38, 113, 123, 534
Aluminum, 542
Ambient light, 499-500, 502, 505-506, 512, 533, 537,

541, 636, 653
American National Standards Institute (ANSI), 33, 592,

782
amplitude, 186, 376, 379, 495, 570-571, 578, 648, 768
analog, 132, 578-579

signal, 578-579
AND, 1-26, 27, 29-44, 45-84, 86-90, 92, 94-95, 97-98,

99-126, 128-129, 131-187, 189-205,
210-226, 227-249, 251-260, 262-272,
273-284, 286-287, 289, 291-300, 301-352,
355-360, 362-364, 365-382, 384-387,
409-418, 420-423, 425-463, 465-491,
493-540, 541-542, 569-587, 633-657,
659-661, 663-692, 695-709, 712-714,
716-723, 725-728, 737-772

AND function, 18, 154, 607
AND operation, 247, 344, 790
animating, 299, 378, 794, 797

lighting, 797
motion, 378, 794
scale, 299
shadows, 794, 797

Animation, 4, 19, 26, 33, 37, 75, 154-156, 184,
189-190, 195, 204, 216, 225-226, 241-242,
271-272, 308, 364, 365-387, 410, 421, 486,
591, 668, 705, 792-796, 798-800

accelerations, 370, 373-374, 377, 385-386
anticipation, 369
controls, 19, 421, 799
double buffering, 37, 75, 366-367, 381, 385
dynamics, 377, 386-387, 793-796
frame rates, 367, 792
frame-by-frame, 366
goal-directed, 376, 385, 790, 794
in-betweens, 368, 370-376, 386
inverse dynamics, 377, 793

801

inverse kinematics, 377, 379
key frame, 368, 371-373, 384, 387
key-frame system, 371
kinematics, 377, 379
languages, 33, 365, 370, 798
morphing, 371, 386-387, 793
periodic motions, 365, 380, 385
physically based, 371, 377
raster methods, 189, 365-366
real-time, 33, 366-368, 790, 795-796
rotational, 371, 379, 381
scene description, 189, 367, 370
squash and stretch, 369, 384, 386
staging, 370, 385
storyboard, 368, 384, 386-387
timing, 369, 385

animations, 16, 283, 365-368, 379, 384-385, 421, 534,
549, 732, 761

Anisotropic surfaces, 550
ANSI, 33, 36, 42, 592, 625, 782, 784, 788
antennas, 20
antialiasing, 99, 102, 105, 109, 111, 123-128, 177-178,

180-182, 184-185, 187, 214, 367, 470-471,
512, 547, 644-645, 647, 660, 794, 798, 800

area boundaries, 126, 182
line segments, 123, 131, 177-178, 180, 184
Nyquist sampling frequency, 177
Nyquist sampling interval, 177
pixel phasing, 178, 180-181
stochastic sampling, 645
supersampling, 178, 180, 182, 644-645
weighting masks, 180
weighting surface, 180

ANY, 6-8, 10, 15, 19-22, 26, 30-31, 33, 36, 41-44,
46-49, 53-59, 62-64, 69, 74-76, 79, 81,
83-84, 86, 96-98, 100-102, 104, 112, 114,
128, 141-143, 147, 158, 162-163, 169, 175,
178, 181, 184-187, 193-194, 196-198, 200,
202-203, 211, 215-216, 218-221, 224-226,
227, 229-230, 232-233, 237-240, 244-247,
254-255, 262-265, 267-268, 270-272,
273-275, 282-284, 293-295, 298-300, 307,
311-315, 318, 324, 327, 331, 344-347,
349-352, 363-364, 386-387, 426-427, 429,
431-432, 437-438, 440, 448, 450-451,
455-456, 458, 462-463, 476-477, 479-480,
486, 488-491, 499-501, 504-508, 511-513,
517-519, 536, 554-556, 585-586, 596-599,
628-629, 635-638, 655-657, 664, 666-667,
671, 676-680, 707-708, 743-746, 756-759,
765-769, 773-774

Aperture, 304, 642, 646, 796
API, 30, 41, 44, 45, 218, 667, 798
Apple GL (AGL), 35
application, 6, 10, 14-16, 18, 21, 24, 26, 29-30, 33, 45,

47, 61, 69, 76, 91, 98, 101-103, 106,
114-115, 129, 187, 216, 218, 226, 235-238,
241, 267, 352, 357-361, 387, 397, 451, 456,
484, 487-488, 491, 557-559, 587, 622-625,
629-630, 669-670, 691, 708, 719-720,
730-731, 784, 799

application programming interface, 30, 45, 218
Applications, 1, 6-7, 10, 12, 16-20, 22, 24-26, 29-30,

32-33, 35, 37, 42-44, 47, 59, 61-62, 65, 74,
77, 121, 126, 185, 203-204, 223, 228-229,
237, 266, 270, 292-293, 299, 308, 316,
335-337, 347, 359-360, 377, 394, 412, 433,
459, 482, 485-486, 509, 531, 562-564,
569-587, 622-623, 637, 651, 731-733,
739-740, 750, 756, 782-788, 789-800

applications of, 33, 377, 571
Approximation spline, 410-411, 446
architectural design, 26, 316, 622
architecture, 14, 16, 25, 33, 790, 794, 797-798

IEEE, 790, 794, 797-798
Area clipping, 227, 244, 257
Area sampling, 178, 180, 185
Arguments, 34, 36-38, 48-49, 124-125, 237, 269, 480,

534, 551-552, 604-605, 607, 609
array, 34, 49, 124-125, 237, 551-552
example of, 34, 601
multiple, 237, 552
names, 34
passing, 480

Arithmetic, 134, 136, 139, 168, 214, 225, 271, 664,
678, 709, 766, 779, 783, 798

expression, 664, 766
operators, 678, 766

Arithmetic encoding, 779, 783

Arithmetic operations, 214, 225, 271, 709, 798
arithmetic operators, 678, 766
Array, 17, 21, 23, 34, 45, 49, 51, 65-66, 70-76, 83,

86-89, 106-109, 114, 120, 124-125, 127,
140, 163, 175, 180, 192, 196, 214-216,
220-221, 225, 237, 347, 349-350, 367, 384,
448-449, 451, 454, 456, 490, 520-521, 527,
532, 535-536, 544-549, 551-561, 611-613,
651, 656, 675, 677-682, 748

accessing, 125
elements of, 107-108, 214-215, 220-221, 225, 520,

527, 545, 551, 557, 677-678, 748
homogeneous, 49, 196, 449, 451, 458, 558
initial values, 108
of objects, 45, 350, 490, 549, 611, 654, 704
ordered, 540, 656
passing an, 21
size, 17, 34, 49, 73-74, 83, 88, 108-109, 120,

124-125, 127, 163, 180, 216, 237, 449,
451, 490, 549, 554, 556, 558, 560-561,
563, 611-613, 680

size of, 17, 34, 49, 73, 83, 109, 120, 163, 180, 216,
451, 549, 554, 558, 560, 563

variable, 125, 456, 559, 677, 679-682, 686
Array lists, 545-546
array of, 23, 66, 72, 75-76, 83, 87-89, 108, 124, 163,

180, 214-215, 220, 367, 521, 536, 538, 540,
544-546, 559, 675, 686, 748

code, 66, 220, 559
state, 75, 124, 536, 559

Arrays, 6, 32, 45, 65, 68, 70, 72-73, 77, 87, 89,
106-108, 114, 125-126, 128, 456, 512, 517,
544, 549, 677-680, 785

element of, 70, 73, 107, 677-678
elements, 65, 72, 107-108, 214, 221, 456, 677-678
objects in, 72, 108, 214, 512
parallel, 65
parameters, 32, 73, 77, 106, 108, 125, 128, 360,

456, 512, 544, 549, 558, 679-680, 785
string, 87, 126
variables, 125-126, 677-680

arrays and, 87, 221, 679-680
conditional, 679
do-while, 679
for, 87, 221, 679-680
while, 679-680

arrays as, 558
Arrow keys, 597, 607
ASCII, 80, 83, 605, 607
aspect ratio, 6, 25-26, 39, 83, 233, 235, 239, 268,

328-329, 335, 338-339, 426, 716
aspects, 33, 570, 572, 585
assignment, 129, 381, 437, 460-461, 672

declaration, 460
this, 129, 381, 437, 672

Association, 24
associative, 199, 202, 745

sequence, 199, 202
asterisk (*), 49
attenuation, 495-498, 506, 511-512, 522, 526,

529-530, 533, 537, 539-540
Attribute parameters, 99

color, 99
attribute values, 49, 100, 124-126, 719
Attributes, 32, 34, 43, 64, 72, 99-118, 120-129,

132-187, 189, 363, 367, 454-455, 552, 612,
628, 669-670, 719, 784, 786

Audio, 18, 24, 624
Australia, 579
Automobiles, 45
Auxiliary buffer, 76
Average, 21, 62, 179-180, 185, 472, 509-510, 516,

522-523, 525, 537, 544, 561, 575, 652, 657,
689, 705-707, 734, 762, 764, 774-775, 787

Average value, 62, 734
Axis:, 219, 280-281
Axonometric projection, 311, 350

B
Back substitution, 765
background, 22, 37-38, 98, 105, 108, 115, 124, 128,

163, 175-176, 179, 216, 226, 230, 238, 242,
269, 302-303, 367-368, 384, 461, 477,
484-487, 489, 499-500, 506-507, 509-511,
516, 528, 541, 557, 565, 637

noise, 692
sounds, 22

Background (ambient) light, 528
background color, 37-38, 98, 108, 124, 163, 175-176,

191, 230, 238, 269, 367-368, 384, 473,
484-485, 487, 773, 785

foreground color, 175-176, 367-368, 384, 487, 785
Background objects, 477, 509, 511, 654
Bandwidth, 578-579
Bar chart, 91-92, 98
base, 2, 4, 19-20, 41, 97, 121-123, 303, 371, 379, 398,

400, 690, 745-747, 753
identifying, 303

Basic illumination model, 499, 506, 526, 532, 537-538,
635, 648

Basis, 55, 132, 355, 413-414, 432, 576, 622, 629, 653,
697, 745-747, 756-758

Basis functions, 413-414, 419, 432
Bernstein polynomials, 422
Beta-spline, 440-441

continuity conditions, 440
cubic periodic, 441

Big endian, 773, 787
Billboards, 45
Binary data, 74
Binary numbers, 780
Bit, 6, 26, 38, 40, 47, 73-77, 85-87, 90-92, 94, 96-97,

101-102, 111, 114-116, 119, 125, 129, 243,
246-247, 249, 267, 340, 343-345, 383,
392-393, 402, 425-426, 485-486, 489,
602-603, 605, 620, 716, 769, 773-774, 777,
779, 790

Bitmap, 6, 73-75, 78-80, 87, 89, 91-92, 123, 235, 242,
587, 773, 782, 785-786

Bits, 6, 10, 25-26, 74, 77-78, 101-102, 105, 111, 115,
124-125, 141, 163, 185, 513, 536, 556,
773-774, 782-783, 785-787

bitwise operators, 677
Block, 11, 13, 16, 75-77, 89, 214-216, 224-226, 320,

367, 386, 450, 548, 787
Block transfer, 76, 214, 225-226
Blocks, 16, 32, 74, 77-78, 367, 549, 781, 787
BMP, 786
body, 120-121, 191, 193, 204, 298, 364, 370-371,

377-379
books, 516, 518, 792
bool, 677
Boolean, 59, 86, 225-226, 356, 677-679

false, 677
true, 677

Boolean operations, 59, 86, 225, 356
Boolean variables, 677
border, 54, 59-60, 159, 172, 230, 245-248, 251, 257,

259-260, 264-266, 551-552, 554-556, 558,
560-562, 727

borders, 64, 115, 170, 246-247, 257-258, 264,
266-267, 515, 561

line, 64, 170, 246-247, 257-258, 266-267
tables, 515

borders around, 64
Boundary representation, 390, 409
Boundary-value problem, 769
Bounding box, 46, 140, 175
Branches, 156, 355, 477, 635, 698, 703, 778
break, 10, 21, 96, 261, 383, 519, 549, 583, 606,

608-609, 620, 679
do, 519, 679
if, 96, 261, 383, 519, 549, 583, 608, 679
loops, 679
switch, 96, 261, 383, 583, 606, 608, 617, 620, 679

brightness, 3, 103, 105, 179, 484, 487, 508, 513-514,
537, 578, 585

Brownian motion, 704-705, 726
Browser, 24
Browsers, 24, 785
Buffer, 5-6, 10-11, 14-17, 25-26, 31, 37-38, 40-41,

46-47, 73-80, 85-86, 89-92, 94, 96-97,
100-106, 108, 115, 118, 120-121, 124, 126,
128-129, 131-132, 136, 138, 145, 157, 163,
175, 177, 184-185, 209, 214-216, 225-226,
237-238, 335, 339-340, 383-384, 387,
392-393, 402, 425-426, 465, 467-474, 476,
484-491, 511, 534-535, 558, 564, 586,
611-615, 620, 627, 660, 668-669, 797

Buffer:, 790, 792
back, 792
front, 792

Buffering, 37, 75, 124, 238, 269, 366-367, 381,
384-385

single, 37, 75, 124, 238
Bump function, 550, 563, 565
Bump mapping, 543, 549-550, 563, 568, 666, 670,

687-688, 691

802

Bus, 14, 16
Business visualization, 730
button, 18, 25, 382-383, 593-598, 600-605, 607-610,

614, 616-619, 621-627
component, 594
menus, 593-594, 616, 618-619, 621-623, 625
panel, 18, 25, 593-594

Button box, 593, 610, 625
buttons, 18-20, 592-595, 601, 604-605, 609-610, 622

icons, 622
labels, 18
panels, 18
radio, 19
sliders, 593, 622

byte, 71-72, 75, 83, 104, 125, 185, 514, 535-536,
552-553, 555-556, 558-560, 562, 673, 773,
787

bytes, 25, 83, 107, 115, 120, 128, 536, 676, 773,
775-776

C
C, 5, 8, 35-36, 41-42, 44, 50-54, 58, 62-63, 66-67, 81,

90, 94, 97, 108, 121-122, 128, 135-136,
147-149, 155, 159, 162, 169, 172-173, 181,
200-201, 212, 214, 254, 256-257, 276,
279-281, 284, 303, 323-325, 344, 347-350,
412-413, 415-419, 421-425, 428, 439, 448,
466-467, 472-473, 524-526, 574-577,
579-580, 605-606, 639, 659-661, 671, 673,
677-679, 700-701, 705-707, 717, 721,
725-728, 748-750, 754, 762-763, 769-770,
780-783, 785, 789-800

C++, 29-30, 33, 35-36, 42, 44, 45, 50-51, 81, 370,
671, 677-679, 785, 796

Callback functions, 40, 596
Cancel, 239, 621
Cardinal spline, 417-418, 421, 461
Cards, 669
Cartesian coordinates, 14, 30, 141, 394, 451, 546,

738-739, 748, 755-756, 761, 763-764
case, 21, 24, 31, 33, 35, 38, 49-51, 56, 67-68, 72-73,

78, 86, 96, 113, 115, 118, 126, 155, 157,
192, 197, 199, 202, 210, 218, 220, 255-256,
261, 265, 267, 278-279, 306, 323, 331,
338-339, 346, 348, 351-352, 366, 383, 445,
459, 462, 561-562, 576, 606, 608-610,
679-680, 712

error, 639
Case study, 798
Cathode, 2-3, 304
Cathode-ray tube, 2

accelerating anode, 2
cathode, 2
components, 2
control grid, 2
electron gun, 2
focusing, 2
phosphor, 2
refresh rate, 2

Cavalier projection, 350
Cell, 17, 640-642, 730-731
Cells, 12, 641, 730-731
Center of projection, 321, 325, 635
central processing unit, 14
central processing unit (CPU), 14
change, 17, 19, 32, 44, 66, 81, 83-84, 100, 102-105,

107, 117-118, 125, 172, 189, 195, 198,
203-204, 218-220, 223, 226, 238-240, 278,
303, 308, 366-367, 377, 444, 449, 451, 485,
488, 510, 562, 621-622, 637, 652-653,
679-680, 687, 755-758, 769

chapters, 36, 40-41, 53, 77, 99-100, 220, 335, 364,
591

Character functions, 45, 77, 79
character strings, 32, 46, 74, 87, 120-122, 187, 235,

267, 593
character strings and, 32
Characters, 17, 23, 59, 74, 77-80, 99, 120-123, 126,

187, 225, 235, 242, 267, 270-271, 378,
384-385, 593, 628, 673, 675

special, 79, 99, 120, 122, 126, 593
storing, 78, 126, 384

Charts, 25, 29, 77, 92, 730
Pie charts, 92

Check, 42, 61, 82, 124, 167, 175, 247-248, 266, 343,
347, 475, 482, 625, 731

Child, 480
Choice, 37, 120, 186, 196, 267, 279, 521, 592-594,

625, 713, 740-741

Chromaticity diagram, 569, 573, 575-576, 585
color gamuts, 575, 585
dominant wavelength, 575-576
illuminant C, 575
purity, 575-576, 585
purple line, 575-576

Chromaticity values, 574, 578
Chrominance, 784
cin, 96
Circle-generating algorithms, 131, 141
circles, 46, 52-53, 58-59, 72, 79, 87, 97-98, 114, 134,

141-142, 145, 155, 157, 164, 170-171, 174,
184-185, 244-245, 256, 266, 398, 441,
516-517, 599, 628, 645, 699, 718

drawing, 114, 134, 145, 164, 244, 599, 628
Circuit elements, 623
circular, 53-54, 141-145, 155, 157, 160-162, 164-165,

192, 223, 226, 266, 395, 400-401, 404, 497,
516, 598-600, 738, 759, 773

keyboard, 600, 628
class, 10, 50-51, 53, 84, 93, 146, 191, 193, 195, 206,

249, 252, 285, 288-289, 296, 394, 396, 435,
437-438, 521, 582-583, 592-593, 625, 698,
714

classes, 521, 535, 595-596
choosing, 521
interactive, 595-596
language, 596
packages, 521, 595-596
separate, 535

click, 19, 607, 623-624
Client, 24, 72, 125
Client computer, 24
Clipping algorithms, 227, 233-234, 244, 251, 268,

270-272, 313, 341-342, 351, 483
concave polygons, 272
homogeneous coordinates, 342, 351
Liang-Barsky line clipping, 251
region codes, 268
straight-line segments, 244, 268, 483
three-dimensional, 244, 268, 270, 301, 313,

341-342, 351, 483
Weiler-Atherton polygon clipping, 271

Clipping planes, 301, 305, 313, 325, 329, 337-347,
349-351, 486

arbitrary orientations, 351
near and far, 313, 325, 329, 337-340, 342-344,

350-351, 486
Clipping window, 227-236, 242-249, 254-255,

257-260, 263-268, 270-272, 301, 304-305,
312-315, 318-320, 323, 325-331, 333, 335,
350-351, 423, 595, 612, 738, 784

in viewing coordinates, 230, 318
in world coordinates, 229-231, 270, 305, 318, 350
nonlinear, 229, 244, 266, 270
nonrectangular, 265
viewport mapping, 232
zooming effects, 228

Clock, 26, 226, 624
clock speed, 26
Clusters, 358
cmath, 36
CMY color model, 579
CMYK color, 569, 579-580, 785
CMYK color space, 580
code, 35-36, 39, 41-42, 44, 49, 65-66, 69-71, 74, 80,

82, 101, 104-105, 107, 113, 117-119, 153,
218-222, 246-247, 252, 285, 296, 343-346,
362, 381, 448-454, 458, 527-528, 532-533,
535, 562, 673-674, 680, 691, 776-779,
784-785

described, 52, 128, 246, 345-346, 671, 776, 787
editing, 785
options for, 528, 784
rate, 381

Code Red, 101
Coding, 713, 730, 733, 800
Coherence properties, 167
collision, 156, 795
Color:, 108, 113, 117, 487, 512, 555-556, 617, 683,

686
color, 4-5, 8-12, 16-18, 21, 23, 25-26, 37-38, 40, 43,

46-47, 49, 58, 60, 64, 71-78, 80-81, 84-87,
89-92, 94-98, 99-109, 111, 113-115, 117-118,
120, 123-129, 132, 136, 138, 140, 160, 163,
165-166, 170-172, 174-177, 179, 184-185,
187, 191, 206, 214-216, 220, 222, 224, 230,
238-239, 257, 269, 295-296, 298, 335,
339-341, 367-368, 381, 383-385, 401-402,

449-451, 453, 455, 460, 467-474, 484-489,
491, 493-496, 498-500, 502-503, 511-516,
518-519, 522-524, 530-540, 548-558,
560-561, 569-587, 600-603, 612-613, 615,
617-621, 623-624, 628-629, 647-648, 651,
664-668, 682-692, 693-694, 710-717, 722,
773-777, 782-787, 796-798

black and white, 519, 573, 577, 581, 586
Color:

blending, 108, 113
color

changes in, 84, 104, 132, 166, 296, 365, 374
fills, 117, 126, 129, 174
headings, 78

Color:
illumination models, 512

color
LAB, 703
links, 385

Color:
luminance, 556

color
palette, 102, 129, 581
paper, 23, 516, 579, 665
process, 16-17, 32, 40, 46, 54, 71, 114, 123, 126,

138, 166, 170, 172, 177, 222, 241-242,
257, 367, 457, 469-470, 478, 486, 488,
511, 534-535, 560, 579, 613, 647, 653,
667, 774-775

property, 5, 187, 364, 426, 455, 457, 460, 528,
530-532, 538, 697

rows, 11, 23, 73-75, 77, 175, 214-215, 230, 548,
554, 678

Color:
shades, 108

color
spot, 4-5, 9, 11, 499, 502
tints, 573, 580-582, 585-586

Color bleeding, 655
Color CRT, 8-9
Color gamut, 572, 575, 577, 585, 587, 798
color space, 574, 578, 580, 584, 587, 775, 787
columns, 6, 11, 73-75, 77, 99, 135, 160-161, 175, 198,

214-215, 282-283, 546, 554, 678, 748-750
Command, 7, 22, 37-38, 41, 43, 48, 72, 74, 76-77, 84,

108, 125, 237-241, 337, 339, 381, 390, 399,
454, 527, 535-536, 609, 611-612, 619, 623

Commands, 3, 7, 14-16, 18, 22, 24, 46, 65, 72, 81, 89,
125, 236, 272, 400, 450, 487, 532, 534-535,
591, 594, 616, 624

ATTRIB, 125
key, 594, 624
TYPE, 24, 65, 72, 89, 125, 532, 594, 624

Community, 33
Comparison, 128, 142, 371, 412, 465, 481, 486, 797,

799
comparison of, 128, 412, 465, 481, 791, 797
Compiler, 678
compile-time, 677
Complementary colors, 572, 575, 580, 584-586
Complex number:, 710, 754

ordered-pair representation, 754
Complex plane, 708-714, 717, 751-753
components, 1-2, 8, 16, 25-26, 32, 37-38, 45, 52-53,

59, 61, 63, 75, 80-81, 87, 100, 102-104,
106-109, 124-125, 156, 175-176, 195, 210,
218-219, 244, 267, 279-281, 284-285, 297,
346, 355-358, 495, 507-509, 513-514, 519,
531-535, 537, 544-546, 552, 554-557, 573,
578-579, 585-586, 622, 625, 628-630, 706,
717, 732-733, 742-745, 747, 756-758, 760,
783-787

components:, 507, 743, 775
graphical, 25-26, 32, 355-357, 363, 595, 622, 625,

628-630, 784
Composite objects, 357
Composite transformations, 189, 198, 203-204, 298
Composition, 198, 225-226, 294, 499
composition of, 225-226, 282, 294, 499
compositions, 360, 795

rendering, 795
Compression, 773, 775-777, 779-785, 787-788,

799-800
lossless, 776, 782-783, 785, 787
lossy, 776, 782, 787
video, 782

CompuServe, 787
Computer, 1-26, 29-44, 54, 77-78, 101-103, 126, 167,

224, 229, 268-269, 283-284, 293, 299, 304,

803

312, 342, 355-356, 359, 363, 365-387, 403,
470, 512, 515, 517, 622, 659-661, 691,
702-703, 705, 712, 737-772, 783-785,
787-788, 789-800

software interface, 30
Computer animation, 189, 365-387, 793-796, 798
Computer graphics, 1-26, 29-44, 224, 229, 268, 284,

299, 328, 417, 493-494, 515, 517, 691,
702-703, 737-772, 789-800

Computer networks, 24
Computer software, 788, 799
computer systems, 5-6, 9, 17, 40, 101, 783-784, 788

processors, 17
Computer-aided design (CAD), 189, 784
Computers, 1, 11, 24-25, 669, 788, 791-792

function, 24, 669
parts, 24, 228, 669
performance, 669

concatenate, 201, 203, 207-208, 211, 221, 286,
290-291, 321, 778

Concatenation, 198, 200, 202-203, 205, 288-289, 342,
547

Concave polygon, 55-57, 64, 98, 119, 229, 256-257,
259, 263-265, 270, 472

splitting, 55-57, 98
Condition, 99, 150, 157, 350, 415, 431, 440, 478, 486,

489-491
conditional, 678-679

relational, 679
Conditional expressions, 678-679
Conditions, 32, 41, 44, 99, 116, 142, 157, 174, 251,

334, 379, 411-413, 415-419, 421-422,
435-437, 440-441, 447, 453, 459, 472,
478-479, 522, 534, 592, 600, 652-653,
769-770

Configuration, 9, 19, 655, 722
Conic sections, 46, 155, 184, 442-443
Connection, 156, 162, 411
connections, 24, 356-357
connectors, 411
const, 42, 82, 84-85, 93, 95, 118, 134, 146, 153, 206,

252, 261, 673-674, 679
Constant, 20, 34, 38, 41, 49, 51-52, 65-69, 72, 75, 77,

80-81, 87, 89, 106-108, 117-121, 123-125,
141, 147-148, 165, 167, 195, 215, 235,
241-242, 317, 373-374, 376-377, 429-430,
432, 445-446, 449, 451-452, 455, 457-458,
483, 485, 495, 500, 507, 522, 524, 529-533,
535-537, 555-558, 561-562, 648-650,
755-757

Constant-intensity surface rendering, 522, 535, 537
Constants, 34, 37, 41, 51, 62, 64, 72, 76-77, 95, 106,

124-125, 140, 156, 294-295, 390, 451, 453,
455, 457, 486, 507, 527-529, 532, 556,
561-562, 607, 617

named, 390
Constructor, 85, 146, 252, 677-679
content, 36, 673-674, 730
Continuation, 6
Continuity parameter, 421
Continuous-tone images, 515
Contour plots, 482, 488, 730-731
contrast, 8, 29, 78, 253, 495, 785
control, 2-3, 5-6, 12-14, 16-19, 24-25, 27, 32, 43, 80,

99-101, 103, 111, 120, 125-126, 175, 194,
204, 228, 324, 379-380, 399, 413-418,
420-423, 425-443, 446-452, 454-456, 459,
461-462, 514-515, 530-531, 600, 623, 625,
629, 663-664, 670, 679, 691, 799-800

Control:, 789
control

Button, 18, 25, 593, 600, 623, 625
execution, 19, 80, 591, 679
Label, 120
move a, 80

Control:
polygon, 789

control
transfer of, 3

Control points, 410-411, 413-418, 420-423, 425-433,
435-437, 439-442, 446-452, 454-456, 459,
461-462, 600, 629

control structures, 679
Control system, 13
controllers, 16
conversion, 16, 46, 104, 124, 126, 133, 135, 140,

158-159, 186, 213, 292, 294, 308, 409,
443-444, 515, 578-580, 669, 671, 679, 747

converting, 16-17, 69, 105, 216, 299, 315, 332, 404,

444, 586, 663, 760, 784
Coordinate extents, 46, 48, 58, 61, 140, 169, 175, 256,

258, 266-267, 272, 338, 346-347, 411,
474-475, 491, 594-595, 699

Coordinates:, 167, 333, 422
left-handed, 333
normalized, 333
surface, 422
transformation, 333

Copyright, 727
Core, 34-35, 43, 52, 69, 105, 218, 235-236, 381, 404,

448, 459, 461, 488-489, 538, 563, 793
costs, 17, 101
CPU, 14, 16
Creating, 13, 24, 31, 45, 81, 120, 237, 242, 254, 305,

356, 360, 363, 378, 403, 462, 474, 560, 563,
616, 618-619, 666-667, 685, 689, 795

forms, 81, 685
views, 13, 242

Crystal, 10-13, 25
cstdlib, 36
Cubic spline, 415

interpolation, 415
Cubic time, 374
Curl operator, 758
current, 2-3, 6, 10, 16, 41-42, 47, 64, 73-75, 77, 80,

89, 100, 103-106, 108-109, 115-116, 120,
123-126, 167-168, 171-175, 177, 183, 187,
215-216, 220-222, 236-242, 269, 272, 289,
295-296, 298-299, 336-337, 339, 361, 379,
446, 457, 460, 472, 520, 534, 557-559, 561,
611-612, 614, 616, 618-619, 621-622, 627,
630, 680, 719, 732-733, 784-785

Current position, 47, 89, 100, 172, 598, 719
Curve:, 454

splines, 454
cycle, 6-7, 15-16, 155, 177, 186, 226, 241, 366-367,

379-381, 384-385, 461
cylinders, 32, 52, 356, 482, 699
Cylindrical coordinates, 547, 740, 747

D
Damping constant, 376
Data, 12, 14, 18, 20-22, 24-25, 32-34, 49, 60-62, 65,

70-72, 74-77, 79, 83, 87-88, 90-91, 97-98,
102, 104-105, 107, 112-113, 115, 120,
123-124, 126-128, 154-156, 186, 220,
356-357, 398-399, 448-449, 451, 453-457,
461, 482-483, 530, 552, 555-559, 562,
595-596, 624-625, 631, 664, 668-671,
677-678, 685-686, 729-734, 764, 794-800

Double, 49, 65, 70, 72, 75, 104, 112-113, 120,
398-399, 448, 451, 552, 558

Integer, 34, 49, 65, 74, 76-77, 83, 87, 104-105,
123-124, 156, 398-399, 448, 453-454,
456, 552, 559, 622, 677, 685, 774

Single, 18, 24, 49, 65, 70, 72, 75-76, 79, 91, 97-98,
102, 104, 107, 113, 155, 220, 356-357,
471, 530, 552, 556-557, 559, 664,
677-678, 685, 756, 773, 786

Data compression, 799-800
Data fields, 729-730, 733
Data files, 24
Data glove, 20-21, 600
data sets, 113, 123, 128, 186, 399, 729-734, 735, 746,

756, 771
Data structures, 357, 622, 664, 669, 797, 800
data structures and, 357, 797, 800
Data table, 357
data type, 34, 49, 65, 70, 72, 75, 83, 104-105, 107,

112, 115, 127, 220, 451, 455, 527, 530, 532,
552, 556-557, 592

Character, 83, 592
Float, 49, 65, 72, 75, 83, 104, 107, 112, 220, 552

Data types, 33-34, 104, 454, 592, 671, 677-678
Data visualization, 799
Database, 370
Dates, 666
decimal, 102, 781
Declarations, 677, 679
Decomposition, 652, 765
default, 36-37, 49, 51, 64, 74-77, 83, 85, 96, 98, 100,

103-104, 106, 108-109, 111-113, 115, 117,
119-120, 146, 216, 220, 236-238, 252,
336-339, 350, 391, 401, 456, 489, 528-533,
535-536, 553, 557-559, 608-609, 612, 685

Default constructor, 85, 146, 252
Default value, 74, 77, 83, 106, 108-109, 120, 216, 401,

456, 531-533, 536, 553, 558, 561

Default values, 100, 106, 336, 528-529, 532, 559, 665
defining, 30, 48, 57, 60, 62, 70, 86-87, 97, 135, 195,

235-237, 261, 264, 266, 297, 336, 370-371,
376, 385, 398, 405, 414, 431, 455, 551

Degenerate polygon, 55-56, 98
Degrees of freedom, 19, 370-371
Del, 757-758
Del squared, 758
delay, 367
Delays, 19, 40
deleting, 83, 191, 228, 238, 622, 676, 750-751
Deletion, 676-677
Depth buffer, 75-76, 108, 124, 335, 339, 468-470,

485-487, 489-490, 511, 535
Depth cueing, 303, 483-485
Depth-sorting algorithm, 481
Descriptive names, 595
design, 2, 11-13, 18-19, 26, 33, 44, 77, 102, 120, 123,

141, 170, 189-190, 216, 229, 235, 310,
359-360, 362-363, 365, 370, 386-387,
421-422, 427-431, 442-443, 446, 462, 522,
565, 586, 622-623, 625, 628-629, 707,
720-721, 723, 784, 791-792

Design process, 362
desktop, 17, 20, 25, 784, 789-790
Determinant, 62, 744, 750, 758, 764-765
development, 24, 26, 32, 268, 371, 398, 663-664, 667,

671, 691, 712, 791, 795-796, 799
Device coordinates, 31, 43, 216, 227-229, 233, 268,

301, 305, 350
Device drivers, 31, 43
devices, 1-2, 9-14, 16-20, 22-25, 31-32, 36, 43, 235,

242, 518, 537, 573, 575, 579, 586, 591-597,
600, 625, 628-629

Dictionary, 22, 593, 777
Dictionary-based algorithm, 777
Difference operation, 266
Differential equations, 769-771
Digital, 17, 19, 133, 579, 628, 631, 712, 728, 789-794,

796
technology, 19

Digital image, 631, 728, 796
Digitizer, 20, 592

acoustic, 20
electromagnetic, 20
hand cursor, 20, 592
sonic, 20
stylus, 20, 592

Digitizing, 16, 72, 412, 417
Dimension, 47, 49, 148, 218, 299, 363, 405, 463,

697-700, 702-706, 722, 794
Euclidean, 697-700
fractional, 697, 699, 704-705

Diodes, 10-11, 21
Direct access, 14, 187
Direction, 3-4, 18-20, 25, 57-60, 63-64, 87, 98, 103,

121-122, 126, 134, 136, 138-139, 143,
147-151, 164-165, 169, 198, 202, 205,
212-213, 217-219, 225, 241, 264, 272, 275,
278-280, 299-300, 302-308, 311, 313-314,
316, 318-319, 336-338, 350-351, 386,
400-402, 440, 452, 456, 458, 466-467,
474-476, 494-502, 504-505, 508-510,
527-531, 533, 537, 549-550, 570, 635-638,
641-642, 646-649, 651, 654-656, 682-683,
685, 732-733, 735, 742-745, 757, 759-761

orientation, 20, 60, 63, 121-122, 126, 148, 151,
205, 217-219, 229-230, 279-280, 302,
304-307, 324, 336, 400, 499, 501, 505,
739

Direction angles, 279, 306
Direction cosines, 279-280, 299, 743
directory, 24
Discrete cosine transform, 780-781, 783-784, 787, 796
Disk, 397, 400-401, 404, 733, 735
Display:, 78
Distributed ray tracing, 645, 647, 656-657, 790
Distribution ray tracing, 645, 795
Dithering, 493, 515, 519, 537

random, 519
division, 139, 148, 253-254, 327, 342, 447, 455,

752-753, 775
division by, 342, 447
document, 24
documentation, 782
documents, 21, 24
domain, 456, 666, 771
Dominant frequency, 571-572, 585-586
Dot-matrix printer, 23

804

double, 37, 49, 65, 70, 72, 75, 78, 82, 84, 104, 109,
112-113, 120, 160-161, 201, 218, 336-339,
349, 366-367, 381-382, 384-385, 387, 391,
397-400, 451, 509, 535-536, 552, 558

Double buffering, 37, 75, 124, 366-367, 381, 385
Double precision, 448, 451
Double refraction, 509
downloading, 783
drawing, 7-8, 20, 25, 47, 57, 100, 110, 113-114, 129,

131-132, 134, 136-137, 145, 152, 158, 160,
162, 164, 175, 181, 186-187, 244, 362, 415,
422, 591, 598-600, 628, 793, 799

Drawing methods, 591, 599
Drift, 134
Drivers, 31, 43
DROP, 21
duration, 379
Dynamics, 377, 386-387, 647, 793-796

E
Eccentric angle, 148
echo, 596, 624
Echo feedback, 596, 624
Eclipse, 647
edges, 3-4, 21, 54-58, 60-61, 64-65, 78, 86, 98, 99,

109, 111, 117-119, 126-128, 166-170, 178,
213, 228-230, 244-249, 251-252, 256-257,
259, 261, 264-265, 270, 305, 312-313, 319,
347, 350, 352, 371-373, 386, 390, 397, 411,
470, 472-473, 487, 491, 522, 575, 644, 702,
706-708

editing, 21, 364, 368, 785-786
basic, 368
in Photoshop, 785
voice, 594

Effective, 7, 123, 132, 342, 480-482, 488, 506, 535,
547, 586, 624, 722, 775, 796

effects, 3, 10, 21, 69, 75, 77, 100, 102-103, 105-106,
108-109, 113, 157, 177, 180, 216, 230, 235,
302-303, 308, 313, 323-324, 329, 351, 353,
365-366, 369, 384-386, 471, 484, 493-496,
498-500, 504-512, 515, 518, 522, 524, 526,
528-529, 531-538, 540, 561-563, 585,
645-648, 651, 654-656, 758

Levels, 177, 515, 518, 520, 537
standard, 54, 109, 230, 384, 487-488, 585, 624,

663-664, 667, 791
Electromagnetic spectrum, 570, 585, 648
Electron gun, 2-4, 10, 101, 519
electronics, 795
Electrothermal printer, 23
Element, 5, 34, 70, 73, 83, 107-108, 175, 196, 199,

216, 218, 220-221, 223, 273-274, 289, 349,
451, 454, 500-501, 507, 527-528, 532,
544-545, 552-553, 556, 558, 560-561,
613-614, 649-651, 677-678, 682-683,
748-749

Element of an array, 216
elements, 24, 63, 65, 72, 81, 83, 100, 107-108, 193,

195, 203-205, 214-217, 219-221, 224-225,
271, 280-281, 283-285, 295, 298-299, 329,
331-332, 334, 349, 357, 394, 448, 454, 456,
490, 501, 519-521, 527, 551-554, 556-557,
560-561, 622-623, 677-678, 732-733,
747-751, 754, 758, 764-766

form, 107, 204, 224-225, 283-284, 299, 326, 357,
394, 611, 677, 747-749, 754, 758, 764

of array, 108, 214
Elevation view, 311
Ellipsoid, 394, 397, 404
else, 96, 134, 138, 147, 154, 250-251, 253, 261-262,

582-583, 604, 608, 672, 710-711, 715-716
encoding, 17, 578-579, 594, 623, 775-777, 779,

782-787, 790
carrier signal, 578
modulation, 578

Encoding scheme, 594, 776-777, 784-786
Engineering, 7, 20, 29, 302-303, 311, 316, 325, 350,

482, 593, 622, 790, 794
Entities, 32, 356
Entity, 178, 257
enum, 41, 95, 261
Environment, 13, 18, 26, 44, 389, 551, 563, 600,

633-634, 653-654, 656-657, 799
Environment array, 654, 656
Environment mapping, 551, 633, 654, 656
environments, 14, 24-25, 600, 792-793, 795
Error, 41-42, 54, 61, 82, 124, 134, 142, 176, 203-204,

219, 295, 401, 404, 450, 453, 457, 520-521,

539, 560, 622, 624-625, 639, 656, 771
Error checking, 61, 675
Error messages, 624
Error state, 41
errors, 33, 41-42, 54, 61, 221, 225, 521, 624, 629,

639, 775, 781
establishing, 97, 306, 430
Event, 239, 457, 461, 596, 600-601, 609, 625, 628
events, 19, 241-242, 368, 381, 457, 596
Exception, 64, 321, 677
exceptions, 30, 303
Execution, 19, 36, 40, 71, 80-82, 239, 241, 591,

672-673, 676, 679
EXISTS, 129, 262, 564, 750
Exponent, 397, 497, 502-503, 529-530, 532
Exponent value, 529
exponents, 766
Expressions, 81, 156, 192, 232, 234, 284, 287, 329,

332, 417, 426-427, 429, 435, 438, 462,
506-507, 586, 677-679, 737-738, 761-763,
770, 772

Extended light source, 647
extracting, 789, 794

F
Factoring, 445
Fast Phong surface rendering, 525, 538
FAT, 99, 164
Features, 1, 17-19, 25, 41-42, 88, 105-106, 109, 113,

127, 242, 302, 370-371, 381, 438, 483, 515,
534, 554, 611, 625, 667, 671, 704-708, 712,
714, 720

Feedback, 593, 596, 612, 622, 624-625, 627, 629
Field lines, 732
Field-of-view angle, 328-330, 332, 338, 351
Fields, 3, 103, 379, 471, 482, 570, 599, 625, 682,

729-730, 732-733, 797-798
File, 7, 24, 128, 358, 366, 514-515, 559, 579, 587,

668, 673-674, 773-788, 793-794
sequential, 783

file size, 773, 784, 787
File Transfer Protocol (FTP), 24

commands, 24
files, 22, 24, 35-36, 667, 674, 692, 773-775, 782-787

HTML, 24
Fill area, 53-54, 59-60, 64-67, 69, 78, 86, 114-116,

166, 170, 175, 183, 257-261, 263-266, 270,
341, 601

curved boundary, 54
interior, 59, 64, 78, 86, 114-116, 166, 170, 175,

183, 257, 264
nonzero winding-number rule, 59, 86
odd-even rule, 59, 86

Fill Color, 54, 64, 85, 115, 126, 165-166, 171-172,
174-176, 184, 209, 242-243, 487, 489, 586,
617-618, 621

Filtering, 105, 180, 184, 547
Firefox, 24
Fireworks, 719, 794
flag, 41, 119-120, 125, 127, 472-473, 476
Flags, 120, 124, 473, 558
Flat-panel displays, 2, 10-11, 25, 791, 798

emissive, 10-11
gas-discharge, 10
light-emitting diode (LED), 11
nonemissive, 10-11
passive-matrix, 11
plasma, 10-11, 25

Floating-point, 30, 38, 50, 74, 87, 104-105, 107-109,
111, 118, 124, 134, 139, 216, 219-220, 336,
338-339, 448, 454-456, 458, 488, 527-529,
677-678, 685, 775, 780

Font, 78-80, 83, 87, 89, 120-121, 123, 126, 225
bitmap, 78-80, 87, 89, 123
outline, 78-80, 89, 120, 123
proportional, 78
raster, 78, 80, 87, 123, 126

fonts, 78-80, 99, 120, 123, 126, 235, 267, 270, 784
groups of, 784
PostScript, 78
printers and, 120

Foreground objects, 477, 486
Form, 8, 11, 21, 23, 47, 49, 51, 54, 56-57, 62, 64, 107,

132, 142, 147, 156-157, 183, 186, 194,
196-198, 204, 224-225, 239, 248, 251, 257,
264, 281-284, 299, 307-309, 311-313,
325-326, 336, 342-343, 345, 347, 355,
357-359, 361-362, 393-394, 416-417,
419-420, 436, 440, 459, 482-483, 518, 526,

609, 629, 650-653, 656, 677, 708, 751-761,
769, 771, 786-787

design a, 387, 629
Designer, 362, 411

Formal languages, 798
Formal parameter, 679-680
formats, 22, 83, 555, 579, 773-788, 793-794
Forms, 3, 5, 26, 78, 81, 154, 218, 325, 364, 410-411,

599, 685, 696, 752, 756, 760-761, 764, 778
FORTRAN, 29, 370
Forward differences, 445-446, 462, 526
Fractals:, 794
Fractional Brownian motion, 704-705, 726
Fractional dimension, 697, 699
Frame buffer, 5-6, 10, 14-17, 25-26, 41, 46-47, 73-74,

78-79, 89, 100-103, 105-106, 120-121, 124,
126, 128-129, 132, 138, 140-141, 145, 157,
163, 177, 184-185, 225-226, 384, 468-469,
472-474, 476, 478, 511, 515, 534, 558, 586,
612, 668-669, 679, 773, 793

address calculations, 141
lookup table, 16, 101-102, 105, 128, 515
raster operations, 214

Frame mapping, 543, 550, 563
frames, 6-7, 11, 15, 26, 30, 42, 45-46, 177, 216-217,

292-293, 359, 363, 366-375, 380-381,
384-387, 486, 723, 737-742, 746, 796

background, 216, 367-368, 371, 384, 486
edges, 371-373, 386

Frequency, 2, 4, 9, 21-22, 103, 123, 177, 186, 376,
508, 570-572, 585-586, 768, 777-781, 787

center, 4, 123
infrared, 21, 570

frequency range, 103, 508, 572
Front buffer, 381
f-stop, 642
Full-color system, 10, 102
Function, 18-19, 24, 34-43, 45, 47-49, 51, 64-65,

70-76, 79-80, 82-84, 86-89, 98, 100,
103-109, 111-113, 115-120, 123-128, 141,
143-144, 149-151, 154-156, 164, 180,
185-187, 197-198, 200-201, 215, 218-225,
235-242, 252, 269-270, 278, 294-296,
298-299, 335-339, 342, 350-351, 361-363,
367, 374-377, 382, 385, 397-401, 403-405,
416, 418, 422, 431-435, 438, 440-442,
444-447, 449-458, 460-463, 482-489,
496-498, 504, 506-509, 511-512, 514,
526-527, 529-540, 547, 549-552, 557-565,
600-601, 604-605, 619, 622-627, 666,
668-669, 671-673, 679-680, 691-692,
716-717, 722, 755-761, 766-771

computation of, 155
description, 36, 39, 71-72, 80, 82, 87-89, 127-128,

223-224, 269, 298, 351, 367, 370,
376-377, 382, 385, 403-404, 460-461,
487, 489, 507, 526, 538-539, 563-564,
626-627, 691, 755, 758, 795

Function calls, 42, 71, 487, 679
Function declarations, 679
Functions:, 34, 38, 118, 391, 397, 399, 429, 681

components and, 190, 533, 732
in, 17-18, 22, 29-40, 42-43, 45-47, 49-52, 60, 64,

68-69, 71, 73, 76-77, 79-81, 87-88, 97,
99-100, 102-103, 108-109, 111-112,
114-115, 123-129, 131, 145, 160, 181,
197, 218-220, 224-225, 230, 237,
268-270, 280, 294-296, 298-299, 326,
335-336, 338-339, 356, 370, 374, 381,
385, 389-392, 397-399, 401, 403-405,
412-414, 417-418, 420, 427-429,
431-438, 440-442, 444, 448, 455,
457-459, 461-462, 511-512, 526,
532-535, 538-540, 554-556, 561,
563-565, 595-596, 625-630, 663-667,
676, 679-681, 686, 691-692, 712, 717,
754-756, 761, 766-767

G
games, 9, 796-797
gamma, 514-515, 520, 537
Gamma correction, 514-515, 537
Gap, 6, 162
Gas-discharge displays, 10
Gate, 356-358
Gates, 356-358, 363
Gems, 789, 792-793, 795
Generator, 15, 370, 702-703, 720, 769
Geometric objects, 16

805

GIF, 787
GL (Graphics Library), 30, 33
Global variable, 672, 680-682, 686
global variables, 670-672, 680, 685
Glyph, 733, 735
Goal-directed motion, 794
Gouraud shading, 535, 539-540
Gouraud surface rendering, 522-524, 526, 535,

537-540, 542
Grad squared, 758
Grammar, 695, 720
Graph, 79, 87, 98, 102, 120, 128, 155, 186, 411, 423,

440, 446, 459, 483, 730, 799
Graphical input data, 591-592
Graphical Kernel System (GKS), 32, 663, 793
graphical user interface, 591, 622, 629
Graphical user interface (GUI), 629
Graphics, 1-26, 29-44, 45-98, 99-129, 131-187,

189-190, 192, 195-197, 200, 202, 210, 214,
218, 223-224, 227-231, 235, 241-242, 244,
257, 267-269, 283-284, 287, 293, 299,
301-304, 306-307, 310, 312-314, 321-322,
325, 328-329, 342, 346-347, 351, 359,
367-368, 370, 393-394, 428, 431, 441-442,
487-488, 514-515, 521, 536-537, 578-579,
581, 585, 591-593, 595-597, 599-600, 622,
625, 629, 661, 702-703, 705, 722, 737-772,
789-800

in tables, 390, 625, 786
revised, 668, 795
sources of, 494

Graphics controller, 16, 26
Graphics monitors, 4, 10, 12, 17
Graphics networks, 1, 24
Graphics output primitives, 32, 43, 45-98

marker, 79, 91
pixel arrays, 77, 89
pixmap, 72-73, 75-76, 87, 89
point, 45, 49-52, 54, 57-59, 62-64, 74, 78-80,

87-88, 97
polyline, 51-54, 58, 64, 79, 87-88, 90-91, 98

Graphics software:, 29
basic functions, 29
coordinate representations, 29

Graphics tablet, 20, 114, 171, 241-242, 593, 600
Gray, 6, 38, 43, 102, 128, 185, 499, 512, 531-533,

536, 565, 576-577, 579, 581, 583-585, 589,
617, 796

guidelines, 44, 520, 585, 628, 733, 789, 798
guides, 692

H
Halfway vector, 505
Handle, 26, 33, 35-36, 177, 242, 272, 273, 442, 511,

592, 674-676
handling, 9, 34, 41, 86, 102, 622, 624-625, 629
Hard-copy devices, 1, 22, 575, 579, 586
Hardware, 1-26, 27, 30, 32-34, 76, 101, 105, 177, 185,

187, 284, 295, 342, 381, 397, 448, 470, 477,
481-482, 488, 536, 625, 637, 663-664, 666,
668-669, 691, 788

power consumption, 2
Head, 14, 23, 25, 364, 378-379, 631, 790
Height, 6, 37, 40, 43, 73, 75-78, 84, 120-121, 175,

181, 187, 215, 236-237, 239-240, 269, 318,
328-330, 338-339, 398, 405, 556, 562, 595,
612-614, 629, 643, 688-690, 692, 707, 768

Help, 221, 366, 387, 572, 623-624, 629
Hertz, 6, 570, 648
Hertz (Hz), 6
hiding, 370
Hierarchical model, 359, 362-363
Hierarchical modeling, 80-81, 355-364, 405, 629
hierarchical organization, 364
Hierarchy, 190, 357-359, 363-364, 640
hierarchy of, 190, 357-358, 364, 640
Histogram, 774
Hits, 369
HLS color model, 569, 584
Home page, 24
Homogeneous coordinates, 189, 195-196, 224, 226,

273-274, 299, 326-327, 332-333, 342, 345,
351-352, 449, 451, 455, 562, 796

Horizontal retrace, 7, 26
HSV color model, 569, 580, 582
HTML, 24, 224, 270, 299, 351, 539, 564
HTTPS, 692
Hue, 107, 508, 571, 573-574, 578, 580-582, 584-586,

785

Hyperbola, 155-156, 442-443
Hyperlinks, 24
hypertext, 24
Hypertext Markup Language, 24
Hypertext Transfer Protocol (HTTP), 24
Hz, 6, 26

I
IBM, 35, 713, 786, 790
Icon, 239-240, 269, 623-624
Icons, 21, 591, 622-624
Icosahedron, 242, 390-391, 393, 403, 720-721
Identification, 55, 61, 64, 120, 303, 370, 465, 479, 482
Identifiers, 61, 81-83, 89, 527, 611, 613
Identity matrix, 48, 196, 198, 205-206, 220, 222, 275,

278, 285-286, 289, 291, 295, 320, 751
IEEE, 789-800
IEEE Computer Society, 792, 795
if statements, 679
Illumination models, 493-540, 541, 650, 656, 717

angle of incidence, 501-504, 509
angle of refraction, 509-510
angular intensity attenuation, 497
atmospheric effects, 493, 511, 533, 538, 540
background light, 499, 510
camera parameters, 493, 512
color considerations, 507
halfway vector, 505
index of refraction, 509-510
light sources, 493-496, 498-499, 505-507, 512,

522, 526-530, 533, 537-540, 656
light-source vector, 496
multiple light sources, 505, 537
opacity factor, 510, 534
Phong model, 502, 505, 537
radial intensity attenuation, 495, 529
radiosity, 535, 650, 656
refraction effects, 509-510, 534, 537
spotlights, 499, 506, 529, 537, 540
surface emissions, 506, 531
surface lighting effects, 493-494, 498-499, 505,

507, 522, 532
translucent material, 509
transmission vector, 510

Image processing, 379, 666, 730, 792-793
Image scanners, 18, 21, 25
images, 3, 6, 9, 12-13, 18, 22-23, 302, 369, 509, 512,

663-664, 775-776, 782, 784-787, 792,
795-796, 798-799

dimensions of, 302
foreground, 302, 785
quality, 6, 9, 22-23, 515, 792
resolution of, 6

images and, 775, 784, 798
Imaginary number, 751-752
Imaginary unit, 752
Implementation, 35, 44, 47, 75, 109, 118, 131-187,

203, 205, 244, 249, 261, 271, 350, 352, 468,
498, 534, 539, 592, 628, 642, 656, 667,
669-671, 692, 713, 780, 783-784

implements, 134, 225, 578
IMPLIED, 468
IN, 1-26, 29-44, 45-84, 86-89, 91-92, 94, 97-98,

99-129, 131-172, 174-187, 189-207,
210-226, 227-249, 251-261, 263-272,
273-285, 287-300, 310-329, 331-333,
335-339, 341-352, 355-364, 365-382,
384-387, 403-405, 420-423, 427-438,
440-446, 448-452, 454-459, 461-463,
465-491, 493-496, 498-540, 541-542,
604-605, 607, 609-617, 619, 622-630,
633-657, 660-661, 663-692, 695-714,
716-723, 725-727, 729-734, 737-772,
789-800

Increments, 133-134, 137, 144, 150-152, 155,
214-215, 226, 382, 384, 444, 470

Independent variable, 155, 755-756, 769
Index of refraction, 509-510
Indices, 72, 101, 108, 215, 532, 637
indirect recursion, 679
infinite, 36, 55, 62-63, 251, 254, 313, 470, 476, 480,

502, 506, 635, 696-697, 766
Infinite loop, 36, 476
Information:, 26, 611
Information extraction, 61
Information retrieval, 61
infrared, 13, 21, 570

frequencies, 21, 570
Initialization, 36, 40, 236-237, 473, 485-486, 677-678

in-phase, 578
INPUT, 1, 9, 13, 16-22, 24-26, 30, 32, 34, 36, 43-44,

60-61, 64, 97-98, 111-112, 128, 133, 144,
148, 151-153, 157-159, 170, 174, 185-187,
193, 195, 225-226, 249, 259-261, 271-272,
291, 297, 299-300, 334, 349, 352, 356-357,
386, 417-418, 431-432, 489-491, 514-515,
539, 591-630, 666-667, 720, 722-723,
774-777, 799

Input errors, 61
Input functions, 32, 43, 591-592, 595-596, 625-626,

628
callback, 43, 596, 626
echo feedback, 596

Input modes, 596
Insert, 362, 364, 410, 607
Inside surface, 477-478
installation, 692
Instance, 7, 34-35, 37, 46, 61, 75-76, 82, 104,

124-125, 159, 163, 175, 179, 193, 203, 216,
255-256, 308, 344, 355-356, 358, 363-364,
376-378, 387, 443, 449, 518, 523, 534,
545-546, 552, 554, 556, 581, 687, 719-720,
755, 760, 772, 774-776, 783

Instances, 356, 360, 363, 725-726
integer division, 139
Integers, 31, 70, 72, 82, 104, 132, 144, 769, 773, 783,

787
unsigned, 72, 104

Integration, 508, 652, 759, 767-768, 800
intensity, 3-7, 9-10, 15-16, 22, 26, 99-104, 126, 141,

177-183, 185-186, 303, 471, 483-484,
493-497, 499-504, 506-525, 529-531, 533,
535, 537-540, 544, 547, 551, 556-557, 572,
574, 581, 634-637, 644, 646-649, 651,
654-657

angular attenuation, 506, 529-530
gamma correction, 514-515, 537
radial attenuation, 506, 529, 537

Interaction, 494, 595, 625, 629, 633, 682, 792, 799
Interactive input methods, 591-630, 631

constraints, 597-598
dragging, 597, 628
grids, 598, 625
painting and drawing, 599-600
rubber-band methods, 598-599, 625, 628

interface design, 628, 794
interface specification, 666
Interfaces, 103, 237, 580, 586, 591-630, 782, 795

Comparable, 784
List, 103, 611, 613, 616, 619, 629, 784

Interior region, 58, 759
Interlacing scan lines, 7
International Commission on Illumination (CIE), 585
Internet, 24, 33, 692, 734, 782-783, 785
Internet Applications, 783
Intersection, 10-11, 49, 57, 59, 140, 157-158, 165-170,

192, 245-248, 250-252, 254-256, 258-260,
262-266, 268, 270-271, 316, 322, 345-346,
348, 469-470, 478, 480-484, 488, 523, 635,
637-643, 655-656, 755

Introduction, 29, 34, 518, 623, 733, 792-794
Isolines, 730-731
isometric projection, 311-312
Isosurfaces, 731, 734
Item, 594, 613, 616, 619, 622, 627
Iteration, 652-653, 666, 697, 708-709, 713, 717,

766-767

J
Jaggies, 132, 177
Java, 29-30, 33, 42-43, 192, 791, 793-795, 797-799
Jitter, 646-647
Join, 155, 162, 186

K
Kerned characters, 121
Kernel, 32, 663, 793
Key frames, 368, 370-375, 384, 386-387
keyboard, 18-20, 24, 36, 242, 272, 351-352, 461-462,

490, 539, 592-596, 600, 605-607, 623-626,
628, 630, 657, 692, 722-723

keyboard input, 272, 352, 461-462, 490, 539, 595,
605, 607, 624, 628, 630, 657, 692, 722-723

Key-frame system, 371
Keys, 18, 25, 592-595, 597, 607-608, 623-624

candidate, 595
Kinematics, 377, 379

806

Knot vector, 431-433, 435, 437-438, 440-442, 448,
454, 456, 459

L
Languages, 24, 33, 44, 365, 370, 663-664, 666, 677,

691
layers, 8, 212, 543, 720, 731, 783

shape, 212, 720, 731
Layout, 79, 189, 358, 360, 363, 386, 483, 622

gate, 358
layouts, 7, 23, 123, 216, 355, 593, 629
Leaf, 94-95, 664, 703, 777-778
left alignment, 123
Level settings, 100
Libraries, 33-35, 41-42, 44, 53, 80, 100, 210, 313, 318,

329, 331, 342, 367, 484, 488, 630, 663
licensing, 783
Light source, 11, 494-502, 504-510, 512, 527-530,

532-533, 537-539, 571-572, 574-576, 585,
629, 642, 647, 650, 655, 657, 664, 692, 693,
722

candle, 574
direction vector, 496-497, 501, 529-530, 533
dominant frequency, 571-572, 585
energy distribution, 571-572, 585
extended, 498-499, 506, 537, 572, 647
radiant energy, 494-495, 499-500, 537, 650
spectral radiance, 574
spotlight, 496, 498, 506, 529

Light-emitting diode (LED), 11, 380
Lighting model, 493-494, 512, 514, 633, 648
LIKE, 11, 41, 98, 226, 229-230, 431, 665-667,

670-671, 677, 679-680, 682, 686, 719, 731,
784

Line:, 225, 322
Line clipping:, 795
Linear algebra, 737
Linear interpolation, 113, 117, 372, 386
Line-drawing algorithms, 131-132, 795

setting frame-buffer values, 131
Linking, 675
links, 378, 385
LISP, 370
List, 7, 17, 25-26, 34, 43, 51-52, 55, 57, 62, 64-69, 72,

79, 81-89, 98, 100, 103, 114, 120, 151, 166,
169, 185, 220, 235, 257, 259-265, 270,
347-348, 357, 362-364, 368, 385-386, 448,
451, 454-457, 471-476, 538, 545-546,
558-559, 613, 616, 619, 642, 676, 773-774,
776-781, 784

Lists, 34, 45, 60, 81-83, 89, 98, 126, 221, 246, 263,
265, 270, 343, 346-348, 351, 357, 362-364,
455, 477, 545-546, 667, 669, 679, 691

array lists, 545-546
numbered, 246, 343

Little endian, 773, 787
Loading, 105, 242
locations, 5, 12, 14, 30, 45-47, 101, 153, 227, 237,

329, 337, 339, 358-359, 363, 384, 401
Logical operators, 247
Look-at point, 306, 336, 339-340, 490-491
Lookup, 16, 101-102, 105, 128, 514-515, 582, 706
Lookup table, 16, 101-102, 105, 128, 514-515
Loop, 36, 88, 236, 241, 420, 450, 453, 713
loops, 226, 453, 476, 679
Lossy compression, 776, 787
low-level, 47, 79, 645, 663

M
machine, 44, 72, 81, 100, 237, 769, 796, 798
MacPaint format, 786
main function, 39
Main memory, 669
Map, 38, 46, 78, 101, 158, 175, 294, 305, 320, 329,

333, 490, 544-548, 552-553, 562-565, 575,
594, 654-657, 685, 687, 692, 718, 780

mapping, 73, 79, 215, 220, 228-229, 231-233,
235-236, 271, 316, 321-322, 324, 330, 482,
514-515, 519-520, 543-552, 557, 561-565,
567-568, 582, 654-656, 666, 669-670, 685,
687-689, 691-692, 713, 720, 792-793,
795-798

value, 73, 316, 322, 335, 482, 514-515, 520,
544-545, 551-552, 557, 561-564, 582,
666, 689, 713

Mapping functions, 563-565
Maps, 267, 301, 321, 329, 452, 549, 555, 560-561,

655, 664, 686, 692, 796

Marker attributes, 187
markers, 79, 379-380
Markup language, 24
Mask, 8-10, 73, 114-116, 163-165, 170, 175, 180, 249,

517, 519-520
masks, 164-165, 180

segments, 165, 180
Master coordinates, 30, 360
math, 36, 84, 93, 95, 134, 137, 206, 423, 710
Matrices, 34, 196, 198-199, 201-205, 211, 213,

218-219, 221-226, 229, 244, 274, 286, 289,
292-293, 295-296, 298-300, 309, 326, 336,
342, 376, 439, 456-457, 461, 520, 539,
670-672, 677-678, 748-750, 765

determinant, 750, 765
transpose, 198, 204, 750

Matrix, 11-12, 23, 25, 48-49, 73, 100, 105, 189-190,
192-213, 217-226, 233-237, 243, 268, 271,
273-275, 277-300, 309-310, 315, 318-321,
326-327, 331-338, 351, 361-362, 364,
413-414, 416-417, 419, 422, 429, 435-436,
438, 441, 443-444, 456-457, 519-521, 562,
580, 614-615, 678, 680, 687-688, 732,
747-751, 764-766

dither, 519-520
identity, 48, 196, 198, 205-209, 220-222, 224, 275,

278, 285-286, 288-291, 295-296,
298-299, 320, 751

inverse, 189, 198, 201, 204, 212, 219, 275,
277-279, 284, 286, 288-289, 291, 417,
750-751, 764

nonsingular, 750, 764
scalar multiplication, 748, 751
singular, 750
square, 194, 201-202, 212-213, 226, 231, 233-237,

268, 271, 300, 315, 337, 678, 687, 748,
750

translation, 190, 196-201, 203-204, 207, 210, 212,
217-219, 222-224, 230-231, 233, 271,
273-275, 279-280, 285-286, 290-294,
296-298, 309-310, 318, 327, 332-333,
336, 362

Maximum, 4, 26, 46, 61, 104, 118, 166, 169, 178, 180,
183, 186, 203, 258, 295, 299, 303, 305, 313,
349, 372-373, 399, 448, 451, 462, 478,
484-486, 489, 505-506, 577, 611, 628, 644,
713, 774-775

Maximum value, 104, 147, 183, 485, 506, 628, 713,
784, 787

Mean, 155, 356, 431, 705-707, 762
Mean and standard deviation, 707
measurement, 22
Media, 368, 794
Median, 775, 787
Median-cut color reduction, 775
Member, 24
Memorization, 623-625
Memory, 5, 14-17, 26, 41, 98, 128-129, 184-185, 400,

454, 456, 465, 551, 559, 562, 668-669,
675-676

features, 17, 41
operations of, 15
snapshot, 98, 129

Memory address, 15
Menus, 29, 100, 235, 242, 359, 593-594, 616,

618-619, 621-623, 625, 629
context, 623
pop-up, 616, 618-619, 621, 623, 625

Messages, 623-624, 691
response, 624

Metafile, 784
Metal, 2-3, 54, 78, 499, 507, 544, 665
Method, 2, 8-9, 12-13, 16, 18, 20-21, 24, 41, 47, 53,

55-57, 70, 73, 78, 98, 116-118, 123, 129,
134, 141-144, 154-155, 157-158, 163-164,
166, 170-172, 174, 178-180, 183-187, 196,
205, 246, 254, 259, 263-264, 266-267,
282-283, 302-303, 310, 332, 342, 389, 430,
445, 456, 459, 465-468, 470-474, 476-481,
483-485, 487-488, 506-507, 511-512,
519-526, 535, 538, 544-547, 549-550,
557-558, 561, 594-595, 598-600, 617, 620,
628, 637, 654-657, 705-709, 722-723, 743,
750, 764-771, 773-777, 787, 789-790,
793-795

Add, 129, 187, 367, 416, 519, 521, 544, 549
Clear, 41, 485
Close, 329, 367, 470, 767
Exists, 129, 750

Trim, 230, 459
methods, 5-6, 8, 10, 17, 21, 23, 25-26, 35, 54-55, 58,

71, 78, 86, 97, 100, 102-103, 117, 123, 126,
128-129, 131, 140-142, 154, 156-157, 160,
162, 167, 170-172, 174, 177, 182, 184-185,
187, 191-192, 214, 244, 265-266, 270-271,
283, 302-304, 315, 347-348, 350, 357, 359,
365-366, 376-377, 384-387, 439, 444-446,
448, 459, 462, 465-491, 493-540, 544-565,
572, 591-630, 638, 644, 655-657, 695-699,
704-707, 716-720, 729-731, 750-751, 756,
763-771, 785, 787-788

definitions, 350, 384, 466
equals, 502
fill, 26, 54-55, 58, 78, 86, 115, 117, 126, 128-129,

131, 167, 170-172, 174, 184-185, 187,
244, 265-266, 390, 470, 487, 489, 524,
601, 617-618, 787, 798

get, 23, 140, 303-304, 445, 475-476, 696
initialize, 468, 603, 611, 614
invoking, 138, 266, 485, 558
point at, 142, 192, 466
resize, 189
roll, 23
turn, 129, 270, 347, 359, 474, 517, 519, 527, 531,

540, 776
valued, 507, 607

Metric tensor, 732, 745, 747, 757-758
Microsoft Windows, 35
Minimum, 46, 61, 101, 104, 166, 186, 252, 258, 295,

313, 363, 372-373, 448, 451, 462-463,
478-479, 484, 489, 611, 628-629, 670, 672,
774-775, 779, 793

Mod, 175, 372-373, 519, 769
Mode, 34, 37-38, 40, 74-75, 100, 103-106, 108, 117,

119, 123-124, 126-127, 215, 220, 240, 243,
269, 294-295, 298, 336, 399, 404-405, 450,
452-453, 456, 460, 485-488, 533, 551, 557,
593, 595-596, 611-613, 615, 625, 627-628

Modeling:, 798
theory, 789, 794, 798

Models, 20-21, 33-34, 105, 108, 356-357, 363, 387,
493-540, 541, 569-587, 633-634, 650, 656,
784, 791, 794, 796-798

behavioral, 796
interaction, 494, 633

Modes, 37, 103, 125, 220, 222, 295, 399, 596, 625
Modulation, 557, 578
Module, 360-364
Modules, 357, 360-364
Monitor, 2, 5-6, 8, 10, 14-17, 20-21, 24-26, 31-32, 87,

100-102, 109, 126, 185, 304, 384, 513-515,
576-579, 586, 593, 713, 717

Monitor response curve, 514
Monitors, 2, 4-5, 7-8, 10, 12, 17-18, 21, 25-26, 516,

537, 569, 575, 577-578
LCD, 12

Monospace, 78
Monospace font, 78
Morphing, 371, 386-387, 793
Mosaic, 24
motion, 18-19, 156, 186, 195, 204, 226, 283, 365-371,

373-374, 376-381, 384-387, 412, 421,
609-610, 626, 647, 656-657, 704-705, 719,
726, 796

Motion blur, 369, 647, 656-657, 794, 796
motion paths, 156, 367, 370-371, 376-378, 384, 719
Mouse, 17-19, 24-25, 32, 36, 83, 241-242, 363, 382,

591-594, 596-598, 600-605, 607-613,
616-619, 621, 623, 625-630, 798

move, 19-20, 56, 58, 80, 152-153, 165-166, 168,
190-191, 193-194, 231, 254, 272, 278, 280,
297, 331, 339, 378-379, 384-385, 387, 461,
528-529, 592, 597, 600, 605-606, 617, 647,
718-719

Movements, 6, 14, 368-370, 376-380, 593, 722
movies, 795
Mozilla, 24
Multiple, 6, 16, 19, 24, 59, 67, 69, 71, 81, 86, 89, 95,

102, 107, 109, 138-140, 161, 174, 176, 178,
216, 227-228, 237-241, 259, 263-264, 298,
308, 359, 367-369, 381, 384, 437-438, 451,
505-507, 515-516, 526, 545-546, 552,
558-559, 561-563, 622-625, 629, 644, 646,
692, 732-734, 768, 785-786

declarations, 677, 679
Multiplication, 134, 195, 197-198, 202, 254, 284, 445,

672, 678, 717, 743-744, 748-749, 751-754
Multiplicity, 438

807

multiuser, 24
single user, 24

N
Nabla, 757-758
Nabla squared, 758
named, 32, 80-81, 390, 416, 460-461, 558, 564, 595,

601, 671-672, 674, 677, 682, 686
names, 34-35, 41, 80, 83, 96, 98, 105, 532, 559, 564,

578, 594-595, 622, 674, 677-679, 692, 756,
760

NASA, 18, 27
National Television System Committee (NTSC), 514,

577
Neighborhood, 363, 432, 572, 704
Neighbors, 171, 717
Nested, 59, 362-363
nesting, 359, 363
Netscape, 24
Network, 24, 40, 79, 81, 123, 364, 483, 597, 785
networks, 1, 24
Nicholl-Lee-Nicholl line clipping, 254
Nodes, 355, 377, 479-480, 482, 637, 656, 664,

777-778
children, 777

Noise, 519, 645, 666, 692, 794, 799
reducing, 519

Nonimpact printers, 23
Nonsingular matrix, 750, 764
Nonzero winding number rule, 58
NOR, 75, 453, 746
Normal, 63-64, 86-87, 155, 264, 306-308, 310-311,

316, 318, 347-350, 390, 400-401, 451, 453,
455, 462, 466-467, 500-502, 509-510,
522-525, 531, 535-539, 549-550, 552, 563,
611-612, 627, 636, 639, 641-642, 665,
682-685, 687-690, 759-761

Normal vectors, 400-401, 404, 451, 455, 467,
523-525, 531, 535-539, 552, 563, 641-642,
669

Normalization, 227, 229, 231-234, 305, 307, 314-315,
320-321, 326-327, 329, 331-334, 351, 484,
486, 506, 664

normalizing, 327, 489, 688
NOT gate, 357-358
Notation, 192, 284, 678, 744, 749, 754
NULL pointer, 673
Numeric data, 18
Numeric keypad, 18

O
Object:, 70, 204, 310, 551, 562, 676

oriented programming, 791
use an, 124, 299, 462, 533, 774

object classes, 535
Object geometry, 131, 157, 178, 532
object-oriented, 33, 791, 797-798, 800
objects, 12-13, 15-17, 20-21, 25-26, 29-32, 38, 43-44,

45-46, 49, 53-54, 57-58, 60-61, 69-72, 81,
83, 86, 98, 99, 105, 123, 128-129, 138,
158-159, 177-178, 180, 187, 189-195, 201,
205, 216, 224, 226, 228, 233-236, 244, 266,
272, 283, 292, 296-297, 299-300, 302-306,
323-326, 346-347, 350-352, 357-360,
366-371, 376-378, 384-387, 389-391,
393-394, 396-398, 403, 456-457, 459,
462-463, 479-484, 486-488, 490-491,
498-499, 506, 508-512, 526-528, 534-535,
537-540, 552-553, 563, 565, 594-595,
597-601, 611-612, 614-616, 622-625,
628-629, 645-647, 664-667, 673-676, 692,
695-699, 716-720, 745, 755-756, 791-793,
795-796, 799-800

Objects:, 567, 674, 696
objects

animation of, 26, 226, 364, 378, 386-387, 795-796
center of, 98, 180, 216, 321, 325, 339, 391, 398,

597, 612, 646, 692, 718-719
degrees of freedom, 370-371
direction of, 20, 58, 218, 306, 308, 401, 466, 502,

509, 537, 733, 761
distance of, 12, 192, 398, 484, 511
manager, 623, 629
orientation of, 20, 30, 32, 60-61, 86, 201, 205, 226,

305-306, 324, 499, 600
script, 371
state of, 103, 376
three dimensional, 300

visible, 21, 31-32, 46, 54, 61, 302-305, 367, 370,
465-467, 476-477, 479-484, 486-488,
490-491, 493, 499, 508, 511-512,
534-535, 537, 539, 640-642, 666, 717,
799

Octree, 479-482, 488, 490, 641, 791, 799-800
generation, 465, 481, 791, 799

Odd-parity rule, 57
Offsets, 47, 74, 190, 451, 689, 706
Opacity factor, 510, 534
Opaque object, 38, 509, 571
OPEN, 33, 35, 42-43, 145, 240, 432, 437-439, 442,

454, 673, 692
opening, 622
Operating system, 786
operating systems, 782, 786, 788
Operations, 14-19, 21-22, 32, 34-36, 38, 43, 49,

76-77, 80-81, 84, 86, 123, 142, 168,
174-176, 189-191, 196-197, 199-204,
213-216, 220, 224-226, 228, 235, 240, 247,
256, 270-271, 274-275, 280, 289, 296, 298,
300, 301, 304-305, 347, 350, 352, 367, 370,
447, 473-474, 477, 488-489, 536, 538,
582-583, 622-625, 627, 668-671, 679-680,
691, 713, 717, 756, 758, 783

optical mouse, 19
OR function, 593, 595
Orange, 8, 99, 303, 565, 570, 578, 715
Ordered dither, 519, 539, 656
Orders, 412
Ordinary differential equations, 769-770
Outline font, 78
OUTPUT, 2, 22-26, 30-32, 34, 43, 45-98, 100-103,

109, 126, 128, 186, 189, 195, 227-229, 231,
235, 244, 257, 259-263, 268, 301-302, 304,
340, 356-357, 453, 518, 576, 587, 613-614,
717

Output primitives, 32, 43, 45-98, 100-101, 126, 189,
356, 363

Outside surface, 477-478, 490
Overflow, 41, 506
Overlap, 4, 22, 118, 138, 166, 169, 174, 178, 180,

183-184, 214, 240, 367, 473-476, 481, 511,
552, 594-595, 599

Overlapping surface, 474-475, 477-478

P
Packet, 24
packets, 24
page, 21, 24, 26, 607
pages, 799
panels, 10-11, 18, 21, 25, 544
paper, 22-23, 389, 501, 516, 579, 665
Parabola, 155-156, 186, 422, 442-443, 768
Parallel computation, 798
Parallel processing, 138, 481
Parallel projection, 302, 304, 310, 316-320, 324-327,

333, 337, 351-352, 489-490
cabinet, 317-318
cavalier, 317-318
oblique, 310, 316-320, 327, 337, 351-352
principal axes, 324

Parallelepiped view volume, 315, 330, 333
parallelism, 157
Parameter, 33-34, 38-39, 41, 43, 47, 49, 62-63, 72,

75-77, 80-81, 83, 98, 99-100, 103-109, 117,
119-120, 122-125, 127-128, 135-137,
139-140, 143-146, 148-153, 156-157, 171,
176, 183, 196-197, 212-213, 225, 236, 238,
240-242, 252, 269, 276, 289, 306, 326-328,
332, 337-338, 342-343, 345-350, 396-401,
412-413, 418-421, 428-429, 431-433,
435-436, 440-442, 448-458, 460-461, 471,
499-500, 507-508, 514, 520-521, 527,
530-536, 538-539, 551-553, 556-559,
561-562, 569, 578-582, 584, 601, 610-612,
621-622, 638-639, 650, 653, 675-676,
679-681, 685, 743-745, 754-756, 768-769

Info, 471, 676
passed by reference, 680

parameter, as, 680
Parameter list, 100, 676, 679
Parameters, 19, 32, 36-38, 40, 60, 62-64, 71, 73-77,

81, 84, 94, 97-98, 99-100, 103, 105-106,
108, 124-125, 127-128, 133, 136-137,
142-145, 148, 150-153, 155-156, 158,
175-177, 185-187, 192-198, 200-201,
203-204, 209, 215-216, 218-219, 222,
224-225, 229-230, 236-240, 242-243,

251-253, 269-271, 286-287, 293-294,
296-300, 301-303, 305-306, 308, 322,
326-328, 332-339, 341, 344, 347, 349-352,
356-357, 365, 394-403, 405, 421-422, 431,
437, 440-441, 450-452, 454-456, 460, 462,
471, 488, 506-508, 511-512, 520-521, 530,
532-533, 546-554, 558-563, 577-580, 582,
584-586, 610, 614-615, 628-629, 671,
679-680, 685-686, 692, 719, 732-733,
753-756, 769, 771-772, 783-786

Parametric representations, 155, 755, 763-764
curve, 155, 755, 764

Parent, 386, 544, 637, 795
Parity, 57
Partial derivative, 550, 687, 756, 771
Partial differential equations, 770-771
Particle systems, 244, 695, 719, 722, 796
Partitioning, 45, 80, 138-140, 157, 182, 184, 240,

476-477, 642
fixed, 80, 476

Pascal, 95
Passed by reference, 680
Passing, 3, 11, 21, 33, 46, 166, 179, 183-184, 211,

259, 480, 509, 642, 645, 670, 718
Passive-matrix LCD, 11
Patent, 787
Path, 4, 8, 16, 50, 53, 58, 110-111, 113, 121-122, 126,

132-135, 137-140, 142-145, 148-156,
158-165, 178-180, 183-185, 187, 190, 210,
223, 226, 321, 367-370, 374, 412-413,
422-423, 438, 448-449, 462, 481, 483,
509-510, 554, 597-598, 635-641, 704-705,
719, 730-731

paths, 59, 94, 110, 154-156, 160, 164, 180-181,
189-190, 302, 321, 367, 370-371, 373,
376-378, 384, 412, 415, 421, 480-481, 510,
598, 634-636, 646, 655-656, 719-720

simulating, 373, 384, 655
Pattern, 5-6, 9, 17, 22-23, 64, 72-75, 78, 86-87, 89,

99, 110-117, 125-129, 162-163, 166, 170,
175-176, 187, 214, 229-230, 257, 356, 379,
517-519, 544-565, 579, 593, 628, 637, 639,
655, 692, 700, 719, 776-777

Pattern mapping, 544
Pattern recognition, 593, 792
patterns, 5-6, 9-11, 22-23, 74-75, 86, 89, 113-116,

162-165, 187, 214, 220, 226, 228, 235, 267,
303, 380, 493-494, 512-513, 515, 517-520,
531, 536-538, 543-545, 548-552, 554,
556-561, 563-565, 567, 579, 587, 597, 600,
692, 700, 702-704, 722-723, 775-777, 787

Pel, 5
Pen plotter, 7, 23, 25, 109
Perfect, 502, 650
performance, 134, 187, 272, 349, 380, 405, 456, 463,

466, 491, 642, 657, 669, 789
Permutation, 277, 420
Persistence, 4
Personal computer, 17, 101
Perspective projection, 302, 304, 310, 321-322,

324-325, 327-329, 336, 338, 342, 350-352,
353, 386, 490

cone of vision, 325, 328
oblique frustum, 329, 338
one-point, 324, 350-351
pyramid of vision, 325
reference point, 321-322, 324-325, 327-329, 338,

342, 350
special cases, 322
symmetric frustum, 327-329, 338
three-point, 324-325, 350, 352
two-point, 324-325, 350, 352
vanishing points, 324-325

Perturbation, 549-550
Phase, 20, 186, 310, 376, 578-579
Phong shading, 539, 682, 693
Phong surface rendering, 524-525, 535, 537-539
Phosphor, 2-4, 6-11, 22, 518-519, 579
Photon, 633, 648, 655-656, 793
Photon mapping, 633, 655-656, 793
Picking operations in OpenGL, 611
Picture elements, 81
Pie chart, 92, 94, 98
Pixel coordinates, 132, 157, 174, 184, 546, 548
Pixel mask, 163, 165, 180, 519
Pixel phasing, 178, 180-181
Pixel ray, 482, 634-636, 641, 645, 731
Pixel-array primitives, 45, 72
Pixels, 10, 12, 15-17, 25-26, 37, 43, 46-47, 74-75, 78,

808

89, 102, 109-111, 113-114, 132-135,
137-140, 142-143, 148-150, 157-163,
165-166, 169, 171-172, 178-185, 214-216,
224, 267, 303, 382, 481, 520, 547, 554-556,
587, 633, 773-774, 785-787, 790

Pixmap, 6, 72-73, 75-76, 87, 89, 113, 773, 782,
784-787

Plan view, 311
Planar patches, 706
Plane:, 281, 317, 482, 714, 717

front face, 317
planning, 32, 363
Plasma-panel display, 11
Plotters, 23-25, 47, 100, 569, 579
Point, 3, 5-6, 8, 12, 20, 22, 26, 30, 38, 45, 49-52,

57-59, 62-64, 74, 78-80, 87-88, 97, 104-105,
107-109, 111, 117-118, 123-128, 133-134,
139, 141-148, 151-154, 165-167, 170-175,
178, 182-185, 187, 190-201, 203-204,
210-212, 215-217, 219-220, 225, 251,
254-255, 259, 262-265, 268, 270-271, 276,
278-280, 299, 306-310, 312-314, 316-319,
321-336, 338-340, 342-345, 350-352,
372-374, 410-418, 420-423, 426-429,
431-432, 434-435, 437-444, 446-451,
453-456, 458, 461-462, 466-467, 474-476,
478, 480, 488, 495-502, 510-511, 522-523,
526-532, 535, 549, 574-577, 591-592,
598-599, 601-602, 605, 628-629, 634-638,
642-647, 649, 653-657, 666-667, 685,
687-690, 708-709, 711-713, 722, 745-746,
755, 757-759, 779-780

Point light source, 495-497, 501-502, 504-505, 527,
530, 539, 574, 629, 636, 642, 655, 657, 664,
722

pointer, 34, 61, 73, 83, 87, 124, 263, 527, 601, 628,
671

pointers, 60-61, 81, 107, 472, 675
Polar coordinates, 141-142, 148, 192, 216, 738,

740-741, 746-747, 753
polygon, 34, 45-46, 49, 54-57, 60-70, 82, 85-88,

97-98, 114-120, 123-127, 131, 165-170, 175,
178-180, 182-184, 186-187, 191-195, 225,
227-229, 244, 256-261, 263-268, 270-272,
274, 300, 339, 346-348, 352, 364, 371-372,
386-387, 397, 399, 401, 403-405, 411, 427,
456, 462, 466-470, 472-475, 477-478,
481-482, 485, 487-488, 490-491, 521-525,
535-537, 539, 544-545, 558, 575, 594, 617,
652, 657, 667-668, 690-691, 720, 753,
761-763

active edge list, 169, 472-473
area, 45-46, 54, 60, 62, 64-67, 69, 86, 98, 114-116,

126, 165-167, 170, 175, 178-180,
182-184, 187, 225, 256-261, 263-266,
270, 386, 390, 397, 470, 477-478, 481,
488, 490, 522-523, 525, 545, 645, 652,
761-763, 799

centroid, 194, 300, 522, 761-763
characteristic, 411
concave, 55-57, 64, 69, 86, 98, 119, 229, 256-257,

259, 263-265, 270-272, 347, 472
convex, 55-57, 62-64, 66, 69, 86-87, 98, 114-116,

119, 126, 131, 169-170, 256-259,
263-265, 268, 270-271, 352, 411, 427,
472, 488, 490, 524, 652

convex angle, 264
degenerate, 55-56, 98
edge, 54-57, 60-61, 64, 67, 70, 87, 98, 118-120,

127, 165-169, 180, 183-184, 186, 257,
259-260, 264-266, 270, 347-348, 352,
372, 390, 469-470, 472-474, 488,
523-525, 558, 594

edge table, 60-61, 168-169, 472
edge vector, 56
inside-outside tests, 57, 265-266
mesh, 54-55, 60, 88, 97, 186, 390, 394, 397, 399,

403-405, 411, 482, 522-524, 707
plane equations, 55, 61-63, 69, 478
plane parameters, 62-64, 97, 347, 466-467, 707
side, 54-56, 62, 180, 271, 339, 347, 386, 544
sorted edge table, 168-169
splitting concave polygons, 56
surface-facet table, 60-61, 97, 472
vertex table, 60-61, 97
vertices, 46, 49, 54-57, 60-69, 82, 85-86, 88, 97-98,

115-117, 119-120, 127, 166, 184,
186-187, 191, 195, 225, 256, 259-261,
263-265, 300, 372, 382, 399, 478,

523-525, 535, 537, 617, 707, 720, 753,
761-763

Polyline, 51-54, 58, 64, 79, 87-88, 90-91, 98, 111-112,
115, 138, 158, 162, 174, 185, 257, 411,
449-450, 455, 458, 628

bevel join, 162
miter join, 162
round join, 162

Polymarker, 79, 90, 98
Polynomial curve, 157, 410, 415, 432, 434-435, 437,

600
Popularity color reduction, 774
pop-up menus, 625
Port, 335
Position, 2-4, 6, 8-9, 11-23, 25, 40, 43-44, 47, 49,

51-52, 56-59, 62-65, 67-68, 70, 73-80,
84-85, 87-90, 93, 95, 97, 100, 102, 108-111,
114-116, 118, 121-124, 126-127, 132-146,
148-153, 155-160, 162-164, 166, 169-175,
178-179, 181-183, 185, 187, 189-194,
196-202, 210-218, 222-223, 226, 228-239,
241-249, 254-256, 260, 264-268, 271-272,
273-275, 278-280, 282, 293, 295, 297-300,
302-309, 311-316, 325-329, 331, 334-339,
342-347, 350, 357-360, 362-364, 365,
377-379, 382, 386, 400-402, 409-410,
427-429, 434-438, 440-441, 445-449, 452,
460, 462, 465-477, 480, 482-488, 490-491,
510-512, 517-523, 525-529, 531, 533-534,
540, 548-551, 555-556, 575-577, 579, 582,
587, 594-601, 603, 605, 611-614, 625,
628-629, 634-643, 646-647, 656-657,
682-684, 686, 689, 692, 696-697, 717-719,
737-743, 764, 767-769

Position vector, 422, 441, 527, 550, 637, 746
power, 1-2, 10-11, 105, 203, 551, 554, 556, 563, 648,

655, 666, 681, 766
Power consumption, 2
Precedence, 544
Precision, 3, 122, 163, 336-339, 349, 397-400, 412,

448, 451, 578, 612, 639, 785
preprocessor, 785
Preprocessor directives, 785
Primary color, 577
Primitive, 32, 47-49, 51-52, 64-70, 72, 79, 87-88, 97,

99-100, 115-116, 390, 403, 405, 457, 601,
612, 668-670

Primitive types, 612
Primitives, 32, 34, 43, 45-98, 99-129, 131-187, 189,

235, 237, 268, 356, 367, 400, 456, 485, 595,
668-670

Principal axes, 311, 324, 350
Printers, 22-25, 120, 516, 518, 569, 579

laser, 23, 25
Printing, 41, 47, 78, 516, 579-580
private, 84, 146, 252
Procedural texture mapping, 563
Procedure, 7, 15, 36, 40, 47, 57-58, 83-84, 92, 94,

97-98, 112, 121, 128, 133-134, 137-138,
141, 151, 161-162, 165, 168-169, 171-172,
174, 176, 178-179, 185-187, 193, 206, 214,
225, 242, 244-245, 257, 267, 271, 296-297,
299, 333, 342, 351-352, 364, 381-382, 392,
401, 414, 446, 448, 470-471, 473, 488-491,
493-494, 510-512, 536-537, 544-545, 561,
582-583, 593-595, 599-601, 607, 616-617,
624, 627-628, 634, 653-654, 705-707,
717-718, 722, 766-767, 769-771, 789

Procedure called, 36
step, 36

Procedures, 29, 54, 61, 64, 84, 120, 122, 126, 138,
140-141, 145, 153, 174, 176, 182, 184-185,
187, 204, 225, 227-229, 244, 256, 261, 264,
270-271, 275, 283, 285, 293, 302-305, 312,
319-322, 341, 343, 347-348, 350, 373, 442,
482-483, 524-525, 537, 543-547, 592,
595-596, 623, 639-640, 696-698, 720, 750,
763, 768

Process, 15-17, 30, 32, 36, 40, 54, 57, 71, 79, 114,
123, 126, 135, 148, 166-170, 172, 177, 182,
222, 228-229, 237, 241-242, 246-247, 257,
259, 263-265, 346, 348, 351, 360, 362-363,
379, 446, 457, 469-470, 476-481, 483, 486,
488, 534-535, 593-596, 611, 613, 641,
646-647, 652-654, 663-664, 704-706

Processes, 15, 38, 46, 57, 61, 76, 242, 245, 259, 304,
326, 449, 488, 499, 515, 668, 719, 729

set of data, 774
processing, 10, 14-15, 21-22, 31, 33, 35-36, 40, 55-56,

60-61, 67, 69, 71-72, 97, 102, 105, 122, 126,
138-139, 141, 149, 162, 167, 170-172,
184-185, 214, 219, 241-242, 244, 246-247,
255-256, 258-260, 264-267, 270, 295-296,
299, 313-314, 335, 346, 379, 385, 390,
468-470, 476-477, 479-482, 484, 486, 521,
525, 534, 591-593, 595-597, 624-625,
639-642, 666-670, 785, 788, 792-793

processing speed, 481
processors, 14, 17, 19, 24, 139-140, 157, 184, 640,

773
Production, 368, 720
program, 7, 14, 16, 24, 30, 35-42, 47, 71-72, 83-84,

87, 91-92, 94, 98, 99, 101-102, 128, 138,
157, 170, 186-187, 205, 216, 221, 225-226,
236-237, 241-242, 271, 304, 349, 351-352,
386-387, 397, 401, 449, 461-462, 490-491,
512, 528, 534, 586-587, 603-604, 611-613,
615, 619, 622, 625, 628-629, 666-670,
673-677, 685-688, 691-692, 709, 713,
722-723, 734

region, 114, 128, 170, 187, 713, 722
Programmer, 26, 32-33, 55, 663-664
Programming, 25, 29-30, 33, 38, 42-44, 45, 97, 128,

205, 222, 224, 230, 288, 296, 299, 318, 351,
370, 431, 450, 461-462, 539, 564, 628, 664,
671, 677, 720, 722, 790-794, 800

algorithms in, 791
design and implementation, 44, 791
object-oriented, 33, 791, 797, 800

Programming language, 29-30, 33, 42, 45, 370, 671,
720

Programs, 24, 29, 32-36, 38, 40-42, 44, 71, 87, 184,
237, 244, 366-367, 385, 591-593, 625,
670-671, 691-692, 717, 723, 739, 761, 774,
785

Projection, 13, 18, 20, 30-32, 34, 38-40, 48, 84, 86,
90-91, 93-95, 97, 156, 209, 220, 224,
235-236, 243, 269-270, 281, 295, 300,
301-302, 304-306, 310-345, 347, 350-352,
353, 364, 367, 380, 383, 386, 393, 402, 442,
456-457, 462, 466-467, 472, 479, 489-490,
500-501, 504, 546-547, 600-603, 605-607,
614-615, 617-618, 620-621, 634-639,
642-643, 654-655, 668-670, 799

Projection plane, 302, 304-306, 311, 316-317,
324-325, 367, 466-467, 470, 486, 510, 546,
638-639, 642, 645

Projectors, 14, 18
Properties, 32, 43-44, 60, 62, 65, 99-100, 132, 141,

147, 149, 158-159, 167, 186, 202, 294, 303,
328, 353, 370, 421, 432, 440, 455-456, 463,
472, 491, 494-495, 502-503, 507, 526-528,
531-532, 534, 540, 549, 565, 569-572, 682,
687, 692, 696-700

Property, 5, 187, 204-205, 364, 426-427, 455-457,
460, 527-532, 538, 697, 750

Get, 364
Set, 5, 187, 204-205, 364, 426-427, 455-457,

527-532, 538, 697
Proportional font, 78
Protocol, 24
Pseudocode, 361
Pseudo-color methods, 730
publications, 797
Publishing, 47, 784, 789, 794
Pure color, 573, 580
Pure imaginary number, 751-752
Python, 33

Q
Q value, 578
Quadric curves, 35, 441
Quadric surfaces, 46, 389, 394, 399, 401, 403-404,

562
Quadrilateral mesh, 88, 397-398, 405, 411
Quadtree, 477, 480, 490
Quaternion, 283-285, 290, 299, 716-717, 797

imaginary terms, 717, 754
magnitude, 754
rotations, 283-284
scalar part, 283, 717, 754
vector part, 283-284, 717

Queries, 41, 89, 127, 269, 385, 564, 685
Query, 82, 99-100, 124, 126, 237, 239, 242, 295, 299,

381, 457, 551, 562
Query:, 381
Queue, 596

809

R
Radio, 9, 19, 570, 729

range, 19, 570
Random midpoint-displacement methods, 704-705
Random numbers, 768-769

seed, 769
Random variations, 666, 697, 702-703
Random walk, 704
Range, 1, 4, 6, 8, 15, 17-19, 23, 25, 30-31, 38-39, 41,

46, 81-82, 103-106, 108, 124, 126, 128, 137,
141, 183, 185-186, 206, 229, 231, 244-246,
268, 270, 314, 327, 335, 376, 428-429,
431-437, 440, 444-446, 449-450, 453, 460,
484-486, 488-489, 501-508, 513-514, 529,
532, 535, 552-555, 561, 570-574, 577,
582-583, 595-596, 648, 718, 755-756

Rasterization, 668, 792, 796
Raster-scan system, 5, 366
Rational spline, 342, 394, 441-442
Raw data, 729
Ray tracing, 535, 634, 644-645, 647, 654, 656-657,

659-660, 792-795, 797, 799-800
adaptive sampling, 644
basic algorithm, 634
codes, 535, 647, 793
extended light source, 647
motion blur, 647, 656-657, 794
space subdivision, 792

READ, 11, 78, 225, 486, 535, 667-668, 673-674, 680,
685

reading, 99, 132, 791-794, 797-800
Realism, 303-304, 325, 365-366, 664
Receiver, 21
Record, 14, 17-18, 20-21, 26, 187, 238, 379, 405, 463,

592, 594, 611-614, 618, 657
recording, 19, 41, 379, 782
Recovery, 781
Rectangular parallelepiped view volume, 333
recursion, 431, 679, 706
Reference, 15, 17, 20, 30-31, 39, 42-43, 45-46, 48-50,

52, 63, 79, 81, 84, 86-89, 97, 101, 107, 111,
122, 157, 175, 184, 213-214, 216-218, 221,
227, 229-231, 233, 242, 264, 268, 292-294,
298-299, 302, 305-310, 313-315, 318-319,
321-334, 336-339, 344, 350, 359-360, 476,
539, 545-546, 548, 622, 634-638, 654, 680,
737-742, 744-747, 782

Reference table, 779
References, 24-25, 43, 47, 49, 54, 72, 83, 97, 102,

104, 128, 184-185, 221, 224, 246, 270, 299,
307, 351, 386, 404, 489, 539, 545-546, 560,
628, 656, 671, 738

Reflection, 22, 60, 190, 210-212, 216, 222, 225, 292,
296, 379, 481, 499-507, 531-533, 539-540,
634-638, 645-647, 650, 654-657, 659,
683-684, 789-790, 793, 797-798

Refraction, 481, 509-510, 534, 537, 635-638, 645,
647, 655, 660

index of, 509-510
Register, 15-16, 40, 601
Registers, 15, 640

scan, 15
regression, 155
Relation, 126, 178-179, 479, 539, 708, 738, 740
Relational operators, 679
Relations, 432, 434-435, 438-439, 442
Relationship, 61, 141, 151, 184, 245, 303, 329, 422,

505, 520, 653-654, 699, 738
Relationships, 192-194, 303, 477-478, 729, 799
Relative coordinates, 47
release, 11, 559, 597, 680
removing, 299, 303, 622
rendering, 26, 33, 35, 43, 61, 102, 108, 129, 302-303,

321, 334-335, 347, 365, 390, 454-456, 460,
462-463, 470-472, 491, 493-540, 564,
567-568, 611-612, 615, 627, 633-635,
652-657, 666-669, 708, 722, 789-799

with OpenGL, 365, 535
Rendering pipeline, 664, 667-669
Replication, 175
reporting, 42
REQUIRED, 19, 25, 36, 49, 54, 98, 101, 141-142, 168,

201, 203, 273, 279, 282-283, 331, 368-369,
444-445, 468, 516, 582, 671, 685, 691

resetting, 125, 204
resistance, 730
RESTRICT, 170, 325, 367, 439, 486, 496, 498
retrieving, 25, 676

Return a value, 679
Return type, 679
REYES, 471, 728, 790
RGB color, 8-10, 37-38, 75, 100-102, 104, 126-127,

176, 215, 269, 507-508, 513-514, 522-523,
537, 544-545, 551, 556, 569, 572, 576-582,
586, 775, 777, 783, 785-787

RGB graphics, 578
ribbons, 10, 23
Right-handed Cartesian system, 63, 218
Roles, 16, 133, 138, 381, 384, 755
Root, 142, 358, 360, 477, 637-638, 656, 710-711,

766-767
Root node, 358, 477, 637
Rotation:, 277, 610
Rotation:

x axis, 277
z axis, 277

Round, 114, 134, 139, 144, 153-154, 161-162, 168,
176, 186, 225, 249, 251-253, 381, 450, 453,
639, 765, 767, 775

rows, 11, 23, 73-75, 77, 161, 175, 198, 214-215, 230,
278, 520-521, 554, 678, 748-750

colors, 23, 175, 214, 546, 548, 554
Rubber-band methods, 598-599, 625, 628
Rule, 57-59, 62-63, 86, 98, 165, 187, 445, 481,

585-586, 720-721, 744, 752, 764, 768, 772
Rules, 355-356, 358, 372, 717, 720-722, 751-752
Run-length encoding, 17, 776, 784-787

S
Samples, 381, 596, 644
sampling, 123, 133, 135, 142-143, 149-151, 160,

177-178, 180, 185, 380, 385, 456-457, 461,
644-646, 774, 783

Sampling:, 783
Scaling, 49, 120, 190, 194-204, 208, 212-213,

215-216, 218-219, 223-226, 232-233, 271,
273, 287-289, 291-294, 297-299, 311, 327,
332-333, 360, 536, 697-700, 702-703, 707

Scaling:, 287
Scan conversion, 16, 126, 186, 474
Scan line, 5-7, 9, 15, 17, 25-26, 46, 86, 133-135, 140,

143, 149, 157, 160-161, 163, 165-170,
172-173, 182, 184, 468-470, 472-473, 482,
488, 523-525, 773, 775-776, 785-786

Scanner, 21
scattering, 303, 499, 758
Scene, 12-14, 17-18, 20, 29-33, 38, 42-43, 45-47, 49,

60-62, 70-72, 75, 80-81, 87, 97-98, 100,
105-108, 114, 120, 128-129, 158, 167, 184,
187, 189-190, 195, 205, 214, 220, 226,
235-236, 239, 244-247, 268, 271-272,
293-295, 301-306, 308, 312-313, 315, 318,
321, 323-329, 331-332, 336-339, 342-344,
346-347, 349-352, 366-368, 370-371, 391,
462-463, 479-481, 483-486, 488, 490-491,
493-496, 498-501, 505-507, 510-512, 515,
517-519, 526-528, 532-534, 537, 539-540,
541, 552-554, 556, 587, 594-596, 600-601,
611-612, 625, 628-630, 639-643, 646-650,
652-657, 692, 703, 723

Science, 568, 586, 703, 705, 794-796, 799-800
Scientific American, 791, 799
Screens, 10, 17-18, 21
Script, 371
scripting, 371, 385
scripts, 796
searching, 174, 264, 479
Secondary ray, 635-636
sectors, 642
Segments, 20, 25, 45, 47, 51-54, 58, 78-80, 87-88, 98,

111-114, 128, 134-135, 138-142, 147,
157-158, 162-163, 165, 170, 175, 177-178,
180, 184-185, 225, 235, 244-248, 254,
256-258, 266-268, 270, 321, 344-346,
356-358, 364, 372, 386, 415, 446-451, 457,
483, 603, 628, 700, 704-705, 759, 769,
773-774, 786-787

SELECT, 18-20, 22, 32, 37, 51-52, 55, 75-77, 80, 101,
103-106, 110, 114, 123, 126, 135, 143,
149-151, 156, 171, 215, 222, 227, 235-236,
241-242, 268, 294-295, 305-306, 319, 321,
337, 339, 414, 431, 439-440, 451, 454, 507,
554-555, 559-560, 586, 593-595, 597-601,
613-618, 621, 624-625, 627-629, 696,
712-713, 750

Selected control, 461-462
Selection, 18-19, 21, 76, 99, 104, 111, 117, 175, 304,

585-586, 592, 594-595, 611-613, 615, 625,
629, 679, 783

Selections, 18, 100, 110, 113, 122, 126, 164, 422, 585,
587, 591, 593, 625

Selenium, 23
Self-inverse fractals, 698, 717
Self-similar fractals, 697, 700, 703
Self-squaring fractals, 698, 708, 717
Semantics, 797, 799
Sensors, 20, 379
Sequence, 20, 31, 51, 54, 57, 79, 81-83, 89, 189-190,

196-203, 205, 209, 211-212, 221, 223-225,
227, 230, 232-233, 240, 274, 278-282, 284,
287-289, 293-294, 297-298, 300, 308,
365-368, 379, 386, 399-400, 411-412, 444,
446, 453-455, 459, 532, 560, 595, 619, 624,
672-673, 686, 776-777

Sequence:, 31, 211, 232, 287
serif fonts, 78
server, 24, 72, 81, 125, 456
Setup, 238, 241
Shading, 5, 26, 54, 61, 117, 129, 302, 401, 493, 500,

515, 525, 535, 539-540, 629, 633-634,
666-671, 682, 691, 792, 795-797

shadow mask, 9
Shadow ray, 636, 642
shapes, 17, 30-32, 35, 43-44, 53-54, 57-59, 69, 72,

78-79, 83, 87, 110, 114, 120-121, 129, 156,
163, 165, 174, 186-187, 194, 225, 228, 235,
239, 241, 293, 356-362, 364, 368, 370-371,
396-397, 438, 441-442, 459, 462, 524, 550,
565, 593, 597-598, 624, 628, 699, 707-708,
712, 717-721

converting, 17, 69
twisting, 703

Sign bit, 247, 343
Signaling, 19
Signals, 241, 460-461, 578

carrier, 578
Signature, 783
Silicon, 27, 33
Simple polygon, 54, 762
Simplicity, 682, 791
simulation, 17, 77, 103, 355, 386, 498, 661, 687, 720,

771, 789-793, 798-800
Simulations, 12, 355, 729-730, 761, 774
Simulators, 366, 481
Simultaneous linear equations, 165, 652
Single buffering, 37, 238
Singular matrix, 750
Sketching, 599-600, 628
Smoothing, 123, 132
Snapshot, 98, 129, 187, 272, 352
software, 1, 3, 15, 24-25, 29-44, 45-46, 141, 347, 370,

622-623, 625, 720, 728, 782, 788, 795-796
reliability of, 366

Software standards, 29, 32
Solid angle, 574, 648-651, 741
Solution, 62, 177, 364, 379, 386, 483, 639, 653, 656,

765-766, 771, 790, 797
Sorted edge table, 168-169
Sorting, 465-466, 470, 473-474, 478, 481, 484, 490,

511, 797, 799
sound, 6, 18, 20-21, 513, 798
Source, 10-11, 35, 44, 77, 105-106, 214-216, 370,

494-502, 504-510, 512, 526-530, 532-534,
537-540, 541, 563, 565, 571-572, 574-576,
585, 629, 642, 647-648, 650, 657, 664-665,
667, 673-675, 677, 691-692, 722

source code, 35, 44, 665, 673-674, 677, 680, 691
Source cone, 529
Source file, 35
Source files, 674, 692
Spaceball, 18-19, 242, 592-593, 610, 625-626
Spaces, 165, 546, 556, 563, 578, 580, 587, 687, 747,

796
Spacing, 80, 110-111, 121, 123, 126, 128, 141-142,

163, 165, 175, 369, 373-375, 385-386, 432,
437-438, 450-451, 454, 598, 730, 732

SPARK, 21
Special effects, 351
Specifications, 26, 31-33, 42-43, 46-47, 49, 53, 65, 68,

71, 75, 98, 104-105, 108, 114, 120-121, 123,
126, 159, 279, 292, 357, 365, 368, 376,
384-386, 460-461, 585, 592, 692

Spectral radiance, 574, 648
Speed, 8, 15, 26, 225, 270, 299, 368-369, 373-375,

377, 385-386, 415, 481, 486, 531, 571, 595,
623, 642, 652, 656, 713, 729

810

Speed of light, 509, 571, 729
Spherical coordinates, 216, 394, 740-741, 747
Spiral, 94-96
Spline curve, 157, 192, 409-411, 413, 420, 423,

431-432, 434-437, 439-441, 443-445,
448-450, 452-456, 459-462

approximation, 409-411, 448, 459
basis functions, 413, 432
basis matrix, 413
beta-spline, 440-441
bias parameter, 440
boundary conditions, 157, 409, 413, 435-436, 441,

459
control graph, 411, 423, 440, 459
control points, 410-411, 413, 420, 423, 431-432,

435-437, 439-441, 448-450, 452,
454-456, 459, 461-462

control polygon, 411
convex hull, 410-411, 423, 432, 459
geometric continuity, 409, 413, 440
Kochanek-Bartels, 459, 461
NURB, 459
parametric continuity, 409, 411, 413

Square matrix, 748, 750, 764
square root, 664, 710
Stack, 41, 125, 172-174, 221-222, 295-296, 298-299,

364, 611-614, 616, 627
Stack overflow, 41
Stacks, 294-295, 299
Standard deviation, 707
Standard graphics object, 403, 487
Standard polygon, 54
standards, 29, 32-33, 42-43, 307, 592, 625, 782, 788
Star Trek, 719
startAngle, 400
State, 4, 11-12, 36, 41, 49, 75, 99-100, 109, 123-128,

177, 185, 242, 269, 376-377, 454, 486,
535-536, 558-559, 596, 685, 691, 786, 797

Statement, 35-37, 43, 48, 65, 75, 81-83, 88-89,
103-105, 116, 125, 219-221, 236, 238-239,
336-337, 399, 454-455, 530, 532, 559, 610,
612, 616, 618-619, 665, 668, 671

States, 103, 500, 622, 759, 763
Steps, 30, 44, 57, 71, 115, 133-134, 136, 138, 141,

143-144, 148-149, 151-152, 155-156, 168,
174, 178, 203-204, 216, 225, 230-231, 247,
259, 278-280, 298, 305, 373, 412, 448, 474,
482, 668-669, 685, 765

Stereoscopic viewing, 13, 75-76, 304
Stochastic sampling, 645, 790
Stop button, 595
storing, 76, 78, 89, 101-102, 126, 169, 370, 384, 486,

490, 569, 776, 785, 787
Streamlines, 732
String, 36, 41-42, 79-80, 87, 98, 120-123, 126, 172,

267, 270-271, 592-593, 597, 625, 629, 671,
673, 681, 769, 784

default value, 120
strings, 18, 32, 46, 74, 79-80, 87, 120-123, 126, 187,

235, 267-268, 593, 674-675
indices, 126

Stripe, 545, 564
Stroke font, 78
strokes, 78, 109, 113-114, 165, 593, 600, 667

dashed, 165
struct, 50, 95, 112, 678, 714
Structure, 2-3, 30, 32, 45, 50, 54, 62, 80-81, 84, 88,

327, 355-357, 363, 377, 385, 543-544, 595,
668-669, 677-678, 681-682, 698-699, 720,
783, 787, 791

style attribute, 110
styles, 17, 23, 32, 77, 110, 112-114, 120, 126, 131,

174-175, 186, 600, 622
submenus, 616, 619, 625
Subscript, 70, 72, 133, 221, 237, 548, 552, 554, 556,

677-678, 745, 770
Subscripts, 548, 678, 745
Substitutional algorithm, 777
Subtrees, 480, 777-778
Subwindows, 240-241
Sum, 106, 147, 176, 427, 432, 434, 441, 499, 505,

508, 521, 533-534, 574, 577, 648-650, 751,
754, 766-767, 771

Sun Microsystems, 793
Superellipse, 396
Superellipsoid, 397, 404
Superquadrics, 389, 394, 396, 403-404
Support, 35, 53, 77, 79, 111, 123, 257, 310, 318, 637,

666-667, 773-774, 792, 799

Surface:, 401, 455-456
tessellation, 456

Surface detail, 543-545, 547, 549-551, 553, 555, 557,
559, 561, 563, 565, 567, 720

bump mapping, 543, 549-550, 563
environment mapping, 551
frame mapping, 543, 550, 563
polygon facets, 544, 563
procedural texturing, 549
texture mapping, 543-544, 547, 563, 720

Surface lighting effects, 493-494, 498-499, 505, 507,
522, 532

Surface normal vector, 63, 390, 467, 509, 550, 641,
757

Surface rendering, 33, 61, 315, 334, 390, 493-494,
521-526, 535-540, 617, 633, 653

constant-intensity, 522, 535, 537
photon mapping, 633
ray-tracing, 522, 542, 633, 653

Surface tessellation, 54, 456
Switches, 18, 20, 592
Swizzling, 677
Symbolic constants, 34, 41, 51, 64, 76-77, 125, 295,

451, 453, 455, 486, 532, 556
Symbols, 59, 79, 98, 123, 126, 356-358, 360-361,

363-364, 622
Synchronization, 304, 367-368
syntax, 33-34, 677-679
System bus, 14, 16
System intensity levels, 513
system software, 596

T
Table:, 145, 152
tables, 60-61, 67-69, 87, 97-98, 101-102, 105, 124,

126, 347, 390, 459, 468, 472, 482, 514-515,
582, 625, 756, 773, 783-787

attributes of, 101-102, 105, 124, 126
fixed-width, 87

Tablet, 20-21, 32, 114, 171, 241-242, 593, 600,
609-610, 625-626

Tag, 678, 784
Task, 16, 63, 368, 370, 377, 379, 691
TCP/IP, 24
Teapot, 397-399, 404, 542, 565
Technology, 5-6, 12, 19-20, 23, 25, 177, 702-703
Television, 5, 16, 25, 514, 577-578, 586, 705
Temperature, 357, 509, 700, 719, 730, 733, 769
Tensor, 429, 440, 459, 729, 732-733, 744-745, 747,

757-758
metric, 732, 745, 747, 757-758
rank, 745, 747
transformation properties, 745

Tessellated surface, 594
Testing, 18, 135, 183, 246-247, 251, 254, 268, 315,

335, 470, 476, 478, 480, 483, 485-489,
594-595, 639, 717

unit, 18, 135, 335, 708
Tests, 57, 61, 63, 118, 171, 245-247, 254, 256,

259-260, 265-266, 271, 343-345, 347,
466-467, 470, 474-475, 477-478, 486, 488,
490, 594, 640-643, 647

text, 18, 21, 24-26, 32, 44, 78-80, 86-87, 91-92, 98,
99, 120-123, 126, 187, 225, 227-228,
267-268, 270-271, 356, 592-593, 597, 616,
625, 629, 667, 673, 681, 786

alignment of, 126, 597
alternative, 26, 267
bold, 78
italic, 78-79, 120, 225
smoothing, 123

Text file, 673
Text files, 667
Text string, 79-80, 87, 98, 121-122, 126, 267, 270-271,

597
Texture scanning, 546
this object, 70, 400

method for, 70
Threads, 717
Three-point perspective projection, 325, 352
Threshold, 102
Time, 4-5, 7, 15-16, 22-24, 26, 33, 39, 41, 43, 58, 74,

79, 81, 100-103, 134, 142, 168, 170, 196,
222, 236, 238-239, 246, 268, 295, 365-368,
373-375, 381, 384-386, 451, 461-463, 465,
467-470, 485, 490-491, 505-506, 509-510,
521, 525, 538, 558, 595-596, 639-640,
645-650, 652-653, 655-657, 681, 712, 719,
722, 729-730, 769-770, 795-799

Time:, 527
Timing, 13, 21, 369
title, 36, 237-238, 269
Title bar, 36
toner, 23
tools, 32, 86, 410, 796-797

Line, 32, 86, 410
Torus, 242, 395-398, 404-405
Touch panels, 18, 21, 25
Tracing, 7, 62, 166, 226, 481, 488, 509-510, 522, 535,

542, 633-637, 642-647, 653-657, 659-660,
782, 792-797, 799-800

Track, 13, 163, 559
Trackball, 18-19, 24, 592-593
trackballs, 19, 25, 593
Traffic, 17-18, 697
transferring, 24, 268, 271, 293, 315, 784
Transformations:, 282, 288, 333

parallel projection, 333
three-dimensional viewing, 333

Transistors, 12
Transmission, 17, 21-22, 24, 379, 509-510, 537,

634-638, 646-647, 773, 785
receivers, 379

Transmission Control Protocol/Internet Protocol (TCP/
IP), 24

transparency, 60, 103, 105-106, 115, 175, 365, 371,
487, 490, 494, 498, 509-511, 526, 534-535,
537-538, 540, 557, 654, 719, 785

Transparent material, 509, 637
Trapezoid rule, 768
Traversal, 264-265, 270, 479-480, 641-642

depth-first, 479
tree structure, 80, 355, 664
Trees, 30, 45, 477, 481, 635, 664-665, 692, 702-703,

720, 722, 728, 777, 795-798
game, 790

Triangle meshes, 69, 731
Triangular matrix, 765
Trigger, 601
Trigonometric functions, 203, 374, 385, 509, 738, 756,

766
trimming, 409, 414, 448, 456-459, 461-462
Trimming curve, 458, 461
Two-dimensional array, 51, 704
Two-point perspective projection, 324-325, 352
Type casting, 679
Typeface, 77-78, 120

U
UNDER, 32, 44, 99, 116, 357, 478, 499, 625, 629,

696, 712-713, 718-719, 767
Underflow, 41
Uniform B-splines, 433, 437-438
Uniform color reduction, 774
Uniform scaling, 194, 202, 225, 287
UNIQUE, 254-255, 379, 783
University of California, 567
UNKNOWN, 771
unsigned short, 72
Update, 74, 100, 242, 250, 252-253, 346, 630, 638,

669
updating, 252
Upper bound, 644
User, 19-21, 24, 26, 44, 75, 100-102, 225-226, 300,

351-352, 370-371, 386, 405, 461-462, 470,
489-491, 539, 573, 582, 586, 591-630, 635,
657, 669-670, 722-723, 784, 789-790,
795-797

User interface, 591, 622, 629, 789-790, 796-797
User-defined, 75, 307
users, 13, 18, 24, 26, 29, 31, 623-624, 628-629, 783

V
Value, 5-6, 15, 17-18, 25, 30, 34, 38, 41-42, 46-47, 49,

55, 58-60, 62-63, 72-77, 80-83, 89, 96,
102-109, 111, 115, 117-120, 125-127, 133,
139-141, 144-147, 156-157, 160, 167-169,
174-176, 178, 182-183, 186, 212-213, 216,
218-219, 223, 225, 238-239, 242, 245-249,
251-252, 266, 295, 298, 306-307, 312,
316-317, 322, 329, 338-339, 342-346, 350,
399-401, 429, 431-433, 436-438, 441, 449,
452-457, 468-469, 471, 479-480, 485-486,
495-497, 504-508, 510-515, 520-521,
523-524, 529-538, 551-554, 560-564,
577-578, 580-582, 587, 592-594, 610,
612-614, 622, 627-628, 672-673, 676-677,

811

686, 689, 705-706, 711-713, 737-738,
743-744, 754-756, 765-767, 773-780,
784-787

initial, 38, 136, 139, 144-146, 150-152, 156, 168,
196, 246, 266, 486, 489, 601, 605, 613,
653, 679, 737, 766, 769

Value count, 777
Values, 4-7, 15-16, 18, 20-21, 25, 29-30, 33-34, 37-38,

46-50, 54, 60-63, 65-66, 70, 72-79, 81, 84,
87-88, 92, 97, 100-109, 112-113, 115, 118,
120-128, 131-134, 136, 138-141, 150-153,
157-158, 160, 163, 166-170, 174-177, 180,
182, 184-187, 196, 201, 203, 210, 212-216,
218-220, 231, 242, 252-253, 258-259, 281,
284-285, 299, 303, 307, 317-318, 335-338,
346-349, 366-368, 396-400, 407, 412-418,
421-423, 428-433, 437-440, 442-443,
445-457, 460-462, 467-474, 478, 480-491,
502-503, 506-508, 511, 513-530, 534-535,
537-540, 550-552, 554-562, 565, 577-586,
591-597, 609-613, 628, 651-654, 656,
664-667, 704-707, 712-713, 718-719, 722,
748, 750-753, 755-756, 764-767, 771-772,
773-787

undefined, 432, 557, 743
Variable, 6, 81-82, 125, 155, 238, 456, 468, 505, 559,

672, 677, 679-682, 684-686, 688-689,
691-692, 703, 705, 754-756, 767, 769-770,
777-778

subscripted, 677
variable declarations, 677
variables, 99-100, 125-126, 453, 670-672, 677-681,

685, 688-689, 692, 712, 754-756, 758, 764,
766-768, 770-772

Boolean type, 678
values of, 100, 453, 766-767

Variance, 705-706
Varifocal mirror, 12, 26, 793
Vector, 7-8, 25, 49, 55-59, 63-65, 86-87, 98, 104,

121-122, 126, 132, 187, 190-193, 195,
204-205, 217-219, 223, 225, 230-231, 264,
271, 273-275, 279-285, 297-298, 306-308,
310-311, 316, 318-319, 336, 340, 347-351,
377, 386, 416, 421-422, 429, 431-433, 435,
437-438, 440-442, 452, 454, 456, 459,
466-467, 490-491, 495-498, 501-502,
504-505, 507, 509-510, 522-525, 529-533,
535-536, 577, 580, 587, 636-638, 640-642,
666, 680, 685, 687-690, 729, 741-749,
754-761

Vector:, 190, 437, 688, 744
cross product, 744
dot product, 688, 744
inner product, 744
knot, 437
position, 190, 437
scalar product, 744
surface normal, 688

Vertical retrace, 7, 26, 367
video, 1-2, 9-10, 14-16, 18, 20-21, 25-26, 31-32, 35,

37, 46, 48, 87, 100-101, 109, 128, 185, 189,
234, 314, 335, 364, 384, 513-515, 520,
575-576, 578-579, 713, 717

projectors, 14, 18
Video controller, 14-16, 132
Video lookup table, 101, 514-515
Video monitor, 2, 6, 14-15, 20-21, 25-26, 31-32, 87,

109, 185, 384, 513-514, 520, 576, 586, 600,
713, 717

full-color, 26
large-screen, 26
raster-scan, 6, 14-15, 366
refresh CRT, 2
stereoscopic, 6, 14, 25-26
workstations, 25, 600

View, 6, 12-13, 18, 24, 30-32, 63-64, 100, 227-228,
230-231, 235, 271, 302-308, 310-352, 386,
395, 400-402, 442, 472, 474-481, 483,
485-486, 489-491, 512, 515, 531, 571, 595,
627, 643, 653, 682-685, 688-690, 696-697,
723

View point, 306, 308, 313, 318, 321, 338, 531
View reference point, 350, 476
View volume, 305, 312-315, 319-321, 325-335,

337-339, 341-352, 486, 611-612, 627
parallelepiped, 313-315, 319-320, 329-330, 333,

337, 351-352
unit cube, 314, 335, 341

viewing, 1, 10, 12-14, 17-18, 25, 30-32, 34, 37-38, 43,

46-47, 49, 61, 63-64, 67, 70-71, 74-76, 79,
87, 122-123, 195-196, 216, 220, 224,
227-272, 280, 291, 293, 295-298, 301-352,
386, 390, 392, 402, 411, 442, 456, 459,
461-462, 465-467, 471, 474-479, 484-485,
487-488, 499-502, 504-505, 508, 522, 531,
533-534, 537, 539, 580, 592-596, 611-612,
635-637

options, 18, 25, 37, 47, 64, 122, 230, 313, 332,
386, 456, 528, 537, 592-595, 600, 629

Viewport, 227-229, 231-237, 239, 242-243, 268-269,
271, 301, 304-305, 314-315, 321, 329,
334-336, 339, 423, 456-457, 602-603,
612-615, 738

in screen coordinates, 229, 231, 233
Virtual reality:, 791
visibility and, 31
Visible-surface detection, 465-491, 512, 539, 544, 717

A-buffer method, 465, 470-471
area-subdivision method, 465, 477, 484
BSP-tree method, 465, 476, 481, 488, 490
curved surfaces, 465, 470, 481-482, 488
depth cueing, 483-485
depth-buffer method, 465, 467, 470-471, 481, 488,

490
depth-sorting method, 465, 473, 490
image-space methods, 466
object-space methods, 466
ray-casting method, 465, 480, 490
surface contour plots, 482

Voice input systems, 594
Voltage, 3, 8, 10-12, 21, 132-133, 514-515
volume, 10, 181, 305, 312-315, 319-321, 325-335,

337-339, 341-352, 456, 479, 486, 548, 551,
556, 563, 611-612, 627, 639-640, 666-667,
698-700, 729, 731, 758-761, 763-764, 771,
791-794, 799

Volume element, 760
Volume rendering, 731, 734, 791-792, 799
Volume texture patterns, 548
Voxel, 731, 734, 792
VRML (Virtual-reality modeling language), 30

W
watts, 648, 650
Web, 24, 33, 35, 785
web browsers, 785
Weighted sum, 427, 508
what is, 26, 43, 128, 185, 228, 465, 722
White light, 499, 509, 532, 541, 571-572, 574-576, 579
Wiki, 44
Winding number, 58-60, 98
window events, 381
Window manager, 623, 629
Window size, 83-84, 90, 93-95, 98, 206, 237, 340,

392, 402, 601-603, 605-608, 613, 615, 617,
620

Windows, 35-36, 43, 228-230, 235, 237-241, 256, 265,
268-270, 305, 336, 586, 591, 618, 622-624,
786, 788

Window-to-viewport mapping, 232
WITH, 1-26, 27, 29-39, 43-44, 45-60, 62-83, 86-89,

92, 95, 97-98, 99-129, 131-133, 135-143,
145, 148-149, 151-166, 168-187, 189-205,
207-208, 210-226, 244-249, 251, 254,
256-260, 263-268, 270-271, 277-284,
286-287, 289-295, 297-300, 301-314,
316-319, 321-329, 331-334, 336-339,
341-343, 345-351, 355-364, 382, 384-387,
402-405, 409-413, 415-423, 427-433,
435-438, 440-457, 459-463, 480-491,
493-540, 543-565, 571-579, 581-582,
585-587, 603-605, 616-619, 621-625,
627-630, 636-643, 645-648, 650-657,
669-672, 674-682, 685, 689, 691-692,
695-700, 702-709, 717-722, 725-728,
748-750, 752-762, 764-771, 773-781, 783,
793-797, 799-800

Words, 22, 34, 78, 185, 233, 310, 344-345, 376, 380,
450, 458, 749, 774, 780

spacing, 450
Workstation, 17, 24, 72, 235
Workstation transformation, 235
World Wide Web, 24
Worlds, 33, 790, 794
worms, 794
wrapping, 557
WRITE, 10, 26, 30, 62, 97-98, 128, 186-187, 192, 197,

225-226, 271, 277, 283, 299-300, 317-318,

321, 343, 351-352, 363-364, 386, 394-397,
405, 416, 431, 446, 486-487, 489-491, 504,
525-526, 534-535, 539-540, 574, 586-587,
628-630, 657, 667-668, 718, 722, 747-748,
751, 764-765, 769

writing, 7, 345, 685

X
X Window System, 35, 785, 788, 791, 793, 797, 800
x-axis rotation, 277, 280
x-direction shear, 212-213
XYZ color model, 508, 574

Y
y-axis, 277, 280, 293, 692
y-axis rotation, 277, 280
YCr Cb color model, 783
y-direction shear, 213
Yield, 44, 55, 58, 256, 578
YIQ color model, 578

Z
z-axis, 276, 279, 285, 293, 317, 320, 324-325, 331
z-axis rotation, 276, 279, 285
z-buffer, 470, 792
Zero, 56, 106, 178-179, 219, 337, 343, 373, 377, 412,

427, 430, 440, 471, 507, 518, 744-745,
750-752

Zone, 646-647
Zoom, 228, 329, 696-697, 714, 727
Zooming effects, 228

812

	Table of Contents
	Computer Graphics Hardware
	Computer Graphics Hardware Color P lates
	Computer Graphics Software
	Graphics Output Primitives
	Attributes of Graphics Primitives
	Implementation Algorithms for Graphics Primitives and Attributes
	Two-Dimensional Geometric Transformations
	Two-Dimensional Viewing
	Three-Dimensional Geometric Transformations
	Three-Dimensional Viewing
	Three-Dimensional Viewing Color P lates
	Hierarchical Modeling
	Computer Animation
	Three-Dimensional Object Representations
	Three-Dimensional Object Representations Color Plate
	Spline Representations
	Visible-Surface Detection Methods
	Illumination Models and Surface-Rendering Methods
	Illumination Models and
	SurfaceRendering Methods Color Plates
	Texturing and Surface-Detail Methods
	Color Models and Color Applications
	Color Models and Color Applications Color Plates
	Interactive Input Methods and Graphical User Interfaces
	Interactive Input Methods and Graphical User Interfaces Color Plate
	Global Illumination
	Color Plates Global Illumination
	Programmable Shaders
	Programmable Shaders Color Plates
	Algorithmic Modeling
	Color Plates Algorithmic Modeling
	Visualization of Data Sets
	Visualization of Data Sets Color Plates
	APPENDIX Mathematics for Computer Graphics
	APPENDIX Graphics File Formats
	Index

