COMPUTER GRAPHICS
)] THROUGH OPENGL®

2nd From Theory to Experiments

EDITIO

CDI\/IPREHENSIVE CDVERAGE DF OPENGL 4.3

,/'

e . : :L-iﬂ

— V@ Ty&zf \
| Sumanta Guha\ V B oo

I
@ COMPUTER GRAPHICS
L) THROUGH OPENGL®

na From Theory to Experiments

EDITION

I
@ COMPUTER GRAPHICS
L) THROUGH OPENGL®

o From Theory to Experiments

EDITION

Sumanta Guha

Asian Institute of Technology, Thailand

CRC Press
Taylor & Francis Group
Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

AN A K PETERS BOOK

Cover Designed by Somying Pongpimol.

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway N'W, Suite 300
Boca Raton, FL 33487-2742

© 2015 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20140505

International Standard Book Number-13: 978-1-4822-5840-0 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to pub-
lish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the
consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in
this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright
material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any
form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and
recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copy-
right.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400.
CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been
granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification
and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

To my late parents Santa and Utpal Chandra
and to Kamaladi

Contents

PREFACE XIX
ABOUT THE AUTHOR XXXI

I Hello World 1

1 AN INVITATION TO COMPUTER GRAPHICS 3

1.1 Brief History of Computer Graphics 6

1.2 Overview of a Graphics System 10

1.2.1 Input Devices 12

1.2.2 Output Devices 15

1.3 Quick Preview of the Adventures Ahead 19

2 ON TO OPENGL AND 3D COMPUTER GRAPHICS 23

2.1 First Program oL 24

2.2 Orthographic Projection, Viewing Box and World Coordinates 26

2.3 The OpenGL Window and Screen Coordinates 32

2.4 Clipping 33

2.5 Color, OpenGL State Machine and Interpolation 35

2.6 OpenGL Geometric Primitives 38

2.7 Approximating Curved Objects 46

2.8 Three Dimensions, the Depth Buffer and Perspective Projection 48

2.8.1 A Vital 3D Utility: The Depth Buffer 49

2.8.2 A Helix and Perspective Projection 51

2.9 Drawing Projects o oL 56

2.10 Approximating Curved Objects Once More 58

2.11 An OpenGL Program End to End 62 vii

viii

CONTENTS 2.12

Summary, Notes and More Reading

IT Tricks of the Trade

3 AN OPENGL TooOLBOX

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15

Vertex Arrays and Their Drawing Commands
Vertex Buffer Objects
Vertex Array Objects
Display Lists
Drawing Text oo
Programming the Mouse
Programming Non-ASCIT Keys
Menus
Line Stipples o
FreeGLUT Objects
Clipping Planes
gluPerspective()
Viewports
Multiple Windows oL
Summary, Notes and More Reading

IIT Movers and Shapers

4 TRANSFORMATION, ANIMATION AND VIEWING

4.1

4.2
4.3
4.4
4.5

4.6

Modeling Transformations
4.1.1 Translation Lo L oL
4.1.2 Scaling o
4.1.3 Rotation 0.
Composing Modeling Transformations
Placing Multiple Objects
Modelview Matrix Stack and Isolating Transformations

Animationo
4.5.1 Animation Technicals
4.5.2 Animation Code
4.5.3 Animation Projects
Viewing Transformation
4.6.1 Understanding the Viewing Transformation
4.6.2 Simulating a Viewing Transformation with Modeling

Transformations
4.6.3 Orientation and Euler Angles.

67

69
70
(0]
78
80
82
84
87
87
88
90
91
94
96
97
98

4.6.4 Viewing Transformation and Collision Detection in

Animation 164
4.7 More Animation Code 168
4.7.1 Animating an Articulated Figure 168
4.7.2 Simple Shadow Animation 172
4.8 Selection and Picking oL 173
4.8.1 Selection 174
4.8.2 Picking o oo 178
4.9 Summary, Notes and More Reading 181
INSIDE ANIMATION: THE THEORY OF TRANSFORMATIONS 183
5.1 Geometric Transformations in 2-Space 184
5.1.1 Translation 185
5.1.2 Scaling o o 186
5.1.3 Rotation, 186
5.1.4 Reflection. 190
5.2 Affine Transformations 192
5.2.1 Affine Transformations Defined 192
5.2.2 Affine Transformations and OpenGL 197
5.2.3 Affine Transformations and Homogeneous Coordinates200
5.3 Geometric Transformations in 2-Space Continued 203
5.3.1 Affine Geometric Transformations 203
5.3.2 Euclidean and Rigid Transformations 208
5.3.3 Shear 217
5.4 Geometric Transformations in 3-Space 220
5.4.1 Translation 220
54.2 Scaling 221
5.4.3 Rotation, 221
5.4.4 Reflection. 236
5.4.5 Affine Geometric Transformations 237
5.4.6 Accessing and Manipulating the Current Modelview
Matrix 240
5.4.7 Euclidean and Rigid Transformations 243
5.4.8 Shear 248
5.5 Summary, Notes and More Reading 251
ADVANCED ANIMATION TECHNIQUES 253
6.1 Frustum Culling by Space Partitioning 254
6.1.1 Space Partitioningo 255
6.1.2 Quadtrees 256
6.1.3 Implementation 258
6.1.4 More about Space Partitioning 259

6.2 Occlusion Culling 259

CONTENTS

ix

CONTENTS

6.3 Animating Orientation Using Euler Angles. 263
6.3.1 Euler Angles and the Orientation of a Rigid Body . 263
6.3.2 Animating Orientation 264

6.3.3 Problems with Fuler Angles: Gimbal Lock and
Ambiguity oo 265
6.4 Quaternions 268
6.4.1 Quaternion Math 101 268
6.4.2 Quaternions and Orientation 272
6.5 Summary, Notes and More Reading 283
IV Geometry for the Home Office 285
7 CONVEXITY AND INTERPOLATION 287
7.1 Motivationo 288
7.2 Convex Combinations 289
7.3 Imterpolation 295
7.4 Convexity and the Convex Hull 298
7.5 Summary, Notes and More Reading 305
8 TRIANGULATION 307
8.1 Definition and Justification 308
8.2 Steiner Vertices and the Quality of a Triangulation 311
8.3 Triangulation in OpenGL and the Trouble with Non-Convexity 312
8.4 Summary, Notes and More Reading 316
9 ORIENTATION 317
9.1 Motivation L 317
9.2 OpenGL Procedure to Determine Front and Back Faces . . 319
9.3 Consistently Oriented Triangulation 326
9.4 Culling Obscured Faces 331
9.5 Transformations and the Orientation of Geometric Primitives 334
9.6 Summary, Notes and More Reading 335
V Making Things Up 337
10 MODELING IN 3D SPACE 339
10.1 Curves . . . o o oL 340
10.1.1 Specifying Plane Curves 340
10.1.2 Specifying Space Curves 345
10.1.3 Drawing Curves 347

10.1.4 Polynomial and Rational Parametrizations 350

10.1.5 Conic Sections 351

10.1.6 Curves More Formally 354
10.2 Surfaceso 362
10.2.1 Polygons 362
10.2.2 Meshes 363
10.2.3 Planar Surfaces 365
10.2.4 General Surfaces oL 366
10.2.5 Drawing General Surfaces. 367
10.2.6 Swept Surfaces 372
10.2.7 Drawing Projects 379
10.2.8 Ruled Surfaces 380
10.2.9 Quadric Surfaces 383
10.2.10 GLU Quadric Objects 386
10.2.11 Regular Polyhedra 388
10.2.12 Surfaces More Formally 394
10.3 Bézier Phrase Book oo 401
10.3.1 Curves 401
10.3.2 Surfaces 404
10.4 Fractals 409
10.5 Summary, Notes and More Reading 413
VI Lights, Camera, Equation 415
11 COLOR AND LIGHT 417
11.1 Vision and Color Models 418
11.1.1 RGB Color Model 420
11.1.2 CMY and CMYK Color Models 422
11.1.3 HSV (or HSB) Color Model 423
11.1.4 Summary of the Models 425
11.2 Phong’s Lighting Model 425
11.2.1 Phong Basics 425
11.2.2 Specifying Light and Material Values 428
11.2.3 Calculating the Reflected Light 428
11.2.4 First Lighting Equation 435
11.3 OpenGL Light and Material Properties 437
11.3.1 Light Properties 438
11.3.2 Material Properties 439
11.3.3 Experimenting with Properties 440
11.3.4 Color Material Mode 443
11.4 OpenGL Lighting Model 444
11.5 Directional Lights, Positional Lights and Attenuation of

Intensity 447

CONTENTS

xi

xii

CONTENTS

11.6 Spotlights oo 449

11.7 OpenGL Lighting Equation 451
11.8 OpenGL Shading Models 453
11.9 Animating Light o0 453
11.10 Partial Derivatives, Tangent Planes and Normal Vectors 101 455
11.11 Computing Normals and Lighting Surfaces 463
11.11.1 Polygons and Planar Surfaces 464
11.11.2 Meshes 464
11.11.3 General Surfaces 468
11.11.4 Bézier and Quadric Surfaces 472
11.11.5 Transforming Normals 474
11.11.6 Normalizing Normals 476
11.12 Phong’s Shading Model 477
11.13 Lighting Exercises 477
11.14 Summary, Notes and More Reading 479
12 TEXTURE 481
12.1 Texture Basics and the Texture Map 481
12.2 Repeating and Clamping Textures 488
123 Filtering 490
12.4 Specifying Texture Coordinates 499
12.4.1 Parametrized Surfaces 499
12.4.2 Bézier and Quadric Surfaces 500
12.4.3 Texture Matrix and Animating Textures 502

12.5 Lighting Textures 503
12.6 Multitexturing and Texture Combining 505
12.7 Summary, Notes and More Reading 507
13 SPECIAL VISUAL TECHNIQUES 509
13.1 Blending 510
13.1.1 Theory 510
13.1.2 Experiments 514
13.1.3 Opaque and Translucent Objects Together 516
13.1.4 Blending Textures 519
13.1.5 Creating Reflections 520

13.2 Fog o 520
13.3 Billboardingo L 523
13.4 Antialiasing Points and Lines, Multisampling Polygons . . . 524
13.4.1 Antialiasing 525
13.4.2 Multisampling o oL 526

13.5 Point Sprites 528

13.6 Environment Mapping 529

13.6.1 Sphere Mapping
13.6.2 Cube Mapping

13.7 Stencil Buffer Techniques
13.7.1 OpenGL Buffers
13.7.2 Using the Stencil Buffer

13.8 Image and Pixel Data Manipulation
13.9 Bump Mapping
13.10 Summary, Notes and More Reading

VII Pixels, Pixels, Everywhere

14 RASTER ALGORITHMS
14.1 Cohen-Sutherland Line Clipper
14.2 Sutherland-Hodgeman Polygon Clipper
14.3 DDA and Bresenham’s Line Rasterizers

14.4 Scan-Based Polygon Rasterizer
14.4.1 Algorithms

071

14.4.2 Optimizing Using Edge Coherence — Active Edge List 575

14.5 Summary, Notes and More Reading

VIII Anatomy of Curves and Surfaces

15 BEZIER

15.1 Bézier Curves
15.1.1 Linear Bézier Curves
15.1.2 Quadratic Bézier Curves
15.1.3 Cubic Bézier Curves
15.1.4 General Bézier Curves.

15.2 Bézier Surfaces
15.3 Summary, Notes and More Reading

16 B-SPLINE
16.1 Problems with Bézier Primitives: Motivating B-Splines . . .
16.2 B-Spline Curves
16.2.1 First-Order B-Splines
16.2.2 Linear B-Splines
16.2.3 Quadratic B-Splines
16.2.4 Cubic B-Splines
16.2.5 General B-Splines and Non-uniform Knot Vectors .

16.3 B-Spline Surfaces
16.4 Drawing B-Spline Curves and Surfaces

580

581

583
584
584
586
589
591
600

604

605
606
611
612
614
618
623
625
641
643

CONTENTS

xiii

xiv

CONTENTS

16.4.1 B-Spline Curves 643

16.4.2 B-Spline Surfaces 645

16.4.3 Lighting and Texturing a B-Spline Surface 646

16.4.4 Trimmed B-Spline Surface 646

16.5 Summary, Notes and More Reading 649

17 HERMITE 651
17.1 Hermite Splines 652
17.2 Natural Cubic Splines 657
17.3 Cardinal Splines 659
17.4 Hermite Surface Patches 660
17.5 Summary, Notes and More Reading 662
IX Well Projected 663
18 APPLICATIONS OF PROJECTIVE SPACES 665
18.1 OpenGL Projection Transformations 666
18.1.1 Viewing Box to Canonical Viewing Box 669

18.1.2 Viewing Frustum to Canonical Viewing Box 670

18.1.3 Projection Matrix in the Pipeline 675

18.2 Shadow Mapping 676
18.3 Rational Bézier and NURBS Curves and Surfaces 681
18.3.1 Rational Bézier Curves Basics 681

18.3.2 Drawing Rational Bézier Curves 685

18.3.3 Rational Bézier Curves and Conic Sections 686

18.3.4 Properties of Rational Bézier Curves 688

18.3.5 Rational Bézier Curves and Projective Invariance . 689

18.3.6 Rational Bézier Curves in the Real World 694

18.3.7 Rational Bézier Surfaces 695

18.3.8 The ‘R"in NURBS 696

18.4 Summary, Notes and More Reading 697

X The Time is Pipe 699
19 FIXED-FUNCTIONALITY PIPELINES 701
19.1 Synthetic-Camera Pipeline 702
19.1.1 Pipeline: Preliminary Version 703

19.1.2 Perspective Division by Zero 704

19.1.3 Rasterization with Perspectively Correct Interpolation 708

19.1.4 Revised Pipeline 714

19.1.5 OpenGL Fixed-function Pipeline 715

19.1.6 1D Primitive Example 716

19.1.7 Exercising the Pipeline 719

19.2 Ray Tracing Pipeline 720
19.2.1 Going Global: Shadows 723
19.2.2 Going Even More Global: Recursive Reflection and

Transmission oL 724
19.2.3 Implementing Ray Tracing 728

19.3 Radiosity 731
19.3.1 Imtroduction 731
19.3.2 Basic Theory 732
19.3.3 Computing Form Factors 734
19.3.4 Solving the Radiosity Equation to Determine Patch

Brightnesses oL 737

19.3.5 Implementing Radiosity 739

19.4 Summary, Notes and More Reading 740

XI Rendering Pipe Dreams 743
20 OPENGL 4.3, SHADERS AND THE PROGRAMMABLE PIPELINE:

LIFTOFF 745

20.1 New Pipeline for OpenGL 746
20.1.1 Shaders in the Rendering Pipeline 746
20.1.2 New OpenGL 748

20.2 GLSL Basics 750

20.3 First Core GL 4.3 Program (Dissected) 754

20.4 Animation 764

20.5 Lighting 766
20.5.1 Per-Vertex Lighting 767
20.5.2 Per-Pixel Lighting, 771

20.6 Textureso 771

20.7 Summary, Notes and More Reading 775

21 OPENGL 4.3, SHADERS AND THE PROGRAMMABLE PIPELINE:

ESCAPE VELOCITY 7717

21.1 Toolbox 778
21.1.1 VAOs and Instanced Rendering Instead of Display

Lists o o 778
21.1.2 Do-It-Yourself Line Stipples 782
21.1.3 Clipping Planes 783

21.2 Shader Subroutineso 784

21.3 More Animation 787
21.3.1 Picking 787

21.3.2 Transform Feedback 790

CONTENTS

XV

CONTENTS 21.4 Special Visual Techniques 794

21.4.1 Points. 795
21.5 Tessellation Shaders 798
21.5.1 TCS (Tessellation Control Shader) 802
21.5.2 TES (Tessellation Evaluation Shader) 805
21.5.3 TPG (Tessellation Primitive Generator) 807
21.6 Geometry Shaders 812
21.7 Summary, Notes and More Reading 820
Appendices 821
A PROJECTIVE SPACES AND TRANSFORMATIONS 821
A.1 Motivation and Definition of the Projective Plane 823
A.2 Geometry on the Projective Plane and Point-Line Duality . 825
A.3 Homogeneous Coordinates 826
A.4 Structure of the Projective Plane 828
A.4.1 Embedding the Real Plane in the Projective Plane . 829
A.4.2 A Thought Experiment 829
A.4.3 Regular Points and Points at Infinity 831
A.5 Snapshot Transformations 833
A.6 Homogeneous Polynomial Equations 838
A.6.1 More About Point-Line Duality 840
A.6.2 Lifting an Algebraic Curve from the Real to the
Projective Planeo 0L 840
A.6.3 Snapshot Transformations Algebraically 845
A.7 The Dimension of the Projective Plane and Its Generalization
to Higher Dimensions 845
A.8 Projective Transformations Defined 847
A.9 Projective Transformations Geometrically 848

A.10 Relating Projective, Snapshot and Affine Transformations . 855
A.10.1 Snapshot Transformations via Projective Transfor-

mations 855

A.10.2 Affine Transformations via Projective Transformations 858

A.11 Designer Projective Transformations 860
B MATH SELF-TEST 867
C MATH SELF-TEST SOLUTIONS 875
BIBLIOGRAPHY 885

xvi

CONTENTS

xvii

Preface

elcome to the second edition of Computer Graphics Through
OpenGL: From Theory to Experiments! The first edition
appeared in late 2010. In the nearly four years since, I have

been fortunate enough to have received much thoughtful and, mostly, positive
feedback. Happily, too, there was a fair bit of reassurance that my way of

doing things, somewhat different from my peers’, was on the right track.

And, of course, the field of computer graphics as always has been evolving
rapidly, of a particular impact being the maturing of the fourth generation of
OpenGL. The upshot was that about a year and a half ago I began working

on a new edition and am glad now that the finished text is in your hands.

Let’s get to the facts.

About the Book

This is an introductory textbook on computer graphics with equal emphasis
on theory and practice. The programming language used is C++, with
OpenGL as the graphics API, which means calls are made to the OpenGL
library from C++4 programs. OpenGL is taught from scratch.

After Chapters 1-14 — the undergraduate core of the book — the reader
will have a good grasp of the concepts underpinning 3D computer graphics,
as well as an ability to code fairly sophisticated 3D scenes and animation,
including games and movies. With, additionally, Chapters 20-21, which
can, in fact, be read following Chapter 13, she will have command over
fourth-generation OpenGL, particularly version 4.3. Chapters 15-19, though
advanced, but still mainstream, could be selected topics for an undergraduate
course or part of a second course.

The book has been written to be used as a textbook for a first college
course, as well as for self-study.

xix

XX

PREFACE

Specs

This book, comprising 21 chapters, comes with approximately 170 programs,
250 experiments based on these programs, 650 exercises, including theory
and programming exercises and programming projects, 100 worked examples,
and 600 four-color illustrations. The book was typeset using I TEX and
figures drawn in Adobe Illustrator.

New in the Second Edition

e 30 more programs, 50 more experiments, 50 more exercises
e Vertex buffer objects

e Vertex array objects

e Occlusion culling

e Occlusion queries and conditional rendering

e Texture matrices

e Multitexturing and texture combining

e Multisampling

e Point sprites

e Image and pixel manipulation

e Pixel buffer objects

e Shadow mapping

e OpenGL 4.3, shaders and the programmable pipeline:

Complete coverage over two chapters

OpenGL Shading Language (GLSL)

Vertex, fragment, tessellation and geometry shaders

From basic methods, such as animation, lighting and textures, to
advanced topics, including instanced rendering, shader subrou-
tines, transform feedback, texture buffer objects, several others
o 19 example programs

O O O O

Pedagogical Approach

Code and theory have been intertwined as far as possible in what may
be called a discuss-experiment-repeat loop: often, following a theoretical
discussion, the reader is asked to perform validating experiments (run code,
that is); sometimes, too, the other way around, an experiment is followed by
an explanation of what is observed. It’s kind of like discovering physics.

Why use an API?

Needless to say, I am not a believer in an API-agnostic approach to teaching

CG, where focus is on principles only, with no programming practice.
Undergrads, typically, love to code and make things happen, so there

is little justification to denying the new student the joy of creating scenes,

movies and games, not to mention the pride of achievement. And, why not
leverage the way code and theory reinforce one another when teaching the
subject, or learning on one’s own, when one can? Would you want Physics
101 without a lab section?

Moreover, OpenGL is very well-designed and the learning curve short
enough to fully integrate into a first CG course. And, it is supported on
every OS platform with drivers for almost every graphics card on the market;
so, in fact, OpenGL is there to use for anyone who cares to.

Note to student: Our pedagogical style means that for most parts of the
book you want a computer handy to run experiments. So, if you are going
to snuggle up with it at night, make it a threesome with a notebook.

Note to instructor: Lectures on most topics — both of the theory and
programming practice — are best based around the book’s experiments, as
well as those you develop yourself. The Ezperimenter teaching resource
makes this convenient. Slides, otherwise, are rarely necessary.

How to teach modern shader-based OpenGL?

Our point of view needs careful explanation as it is different from some of
our peers’. Firstly, to push the physics analogy one more time, even though
relativistic mechanics seems to rule the universe, in the classroom one might
prefer doing classical physics before relativity theory.

Shaders, which are the programmable parts of the modern OpenGL
pipeline, add great flexibility and power. But, so too, do they add a fair bit of
complexity — even a cursory comparison of our very first program square. cpp
from Chapter 2 with its equivalent in OpenGL 4.3, squareShaderized. cpp
complemented with a vertex and a fragment shader in Chapter 20, should
convince the reader of this.

Consider more carefully, say, a vertex shader. It must compute the
position coordinates of a vertex, taking into account all transformations,
both modelview — such as translation, rotation, scaling and viewing — and
projection. In the classical fixed-function pipeline, the user can simply
issue commands such as glTranslatef (), glRotatef (), etc., leaving to
OpenGL actual computation of the transformed coordinates; not so for the
programmable pipeline, where the reader must write herself all the needed
matrix operations in the vertex shader.

We firmly believe that the new student is best served learning first how to
transform objects according to an understanding of simply how a scene comes
together physically (e.g., a ball falls to the ground, a robot arm bends at the
elbow, etc.) with the help of ready-to-use commands like glTranslatef (),
and, only later, the actual mathematics behind them.

Such consideration applies as well to other automatic services of the
fixed-function pipeline which allow the student to focus on phenomena,
disregarding initially implementation. For example, as an instructor, I
would much prefer to teach first how diffuse light lends three-dimensionality,
specular light highlights, and so on, gently motivating Phong’s lighting

PREFACE

xxi

xxii

PREFACE

equation, leaving OpenGL to grapple with its actual implementation, which
is exactly what we do in Chapter 11.

In fact, we find an understanding of the fixed-function pipeline makes the
subsequent learning of the programmable one easier because it’s then clear
exactly what the shaders should try to accomplish. For example, following
the fixed-function groundwork in Chapter 11, writing shaders to implement
Phong lighting, as we do in Chapter 20, is near trivial.

We take a similarly laissez-faire attitude to classical OpenGL syntax. So
long as it eases the learning curve we’ll put up with it. Take for example
the following snippet from our very first program square.cpp:

glBegin (GL_POLYGON) ;
glVertex3f(20.0, 20.0, 0.0);
glVertex3f(80.0, 20.0, 0.0);
glVertex3f(80.0, 80.0, 0.0);
glVertex3f(20.0, 80.0, 0.0);
glEnd () ;

Does it not scream square — even though it’s immediate mode and
uses the discarded polygon primitive? So, we prefer this for our
first lesson, avoiding thus the distraction of a vertex array and the
call glDrawArrays(GL_TRIANGLE_STRIP, 0, 4), as in the 4.3-program
squareShaderized.cpp, our goal on Day 1 being a simple introduction
of the synthetic camera model.

Of course, as we move along, we introduce each modern construct in its
logical place, but with an eye always toward the overall learning process.
For example, we introduce vertex arrays and their drawing commands in
Chapter 3 on OpenGL gadgets, from then on making a point of using
them, except for objects with few vertices when the overhead seems more
distraction than convenience. Vertex buffer objects (VBOs) and vertex array
objects (VAOs) are introduced in Chapter 3, as well, following logically
vertex arrays; however, we counsel the reader against using them, until she
gets to OpenGL 4.3, where they are mandatory, because they add a layer of
coding complexity one can very well do without when learning fundamental
concepts.

Does this kind of staggered introduction to modern OpenGL, with the
old still around, not lead to bad practice? Not at all from our experience.
When push comes to shove, how hard is to replace polygons with triangle
strips? Or, for that matter, use VBOs and VAOs to store data? In fact,
as we remarked earlier, grasp of the old motivates the step up to the new
(there’s virtue it seems then in retracing the path of the graybeards!).

So, practically, our code is backward-compatible OpenGL 4.3, which
allows use of legacy syntax, for the first nineteen chapters. Then, Chapters 20-
21, which together give a comprehensive coverage of OpenGL 4.3, use
forward-compatible core OpenGL 4.3 (the strictest form).

The reader might note, as well, that OpenGL ES (Embedded Systems)
3.0, the latest OpenGL version for mobile devices, and WebGL, the emerging

3D standard supported by almost all the newer browsers, are syntax-wise
very close to OpenGL 4.3, so assimilation of the latter means ability to code
3D graphics on multiple platforms.

On the other hand, there are millions of currently live applications written
in legacy OpenGL, which are not going to be discarded or rewritten any time
soon — the reason, in fact, for the Khronos Group to retain the compatibility
version of the API — so familiarity with older syntax might well be useful for
the intending professional.

Does our approach cost timewise? If the goal is OpenGL 4.3, then, yes,
it does take a bit more time, but not much. Chapters 20-21 can be read
after Chapter 13; in fact, they can be taught in parallel with Chapters 11-13.
So, a one-semester course can perfectly well cover OpenGL 4.3. We discuss
various possible learning sequences through the book later on in the preface.

Target Audience

e Students in a first university CG course, typically offered by a CS
department at a junior/senior level (though, often, graduate students
can take it for credit). This is the primary audience for which the
book was written.

e Students in a second or advanced CG course, who may use the book
as preparation or reference, depending on the goals. For example, the
book would be a useful reference for a study of 3D design — particularly,
Bézier, B-spline and NURBS theory — and of projective transformations
and their applications to CG.

e Students in a non-traditional setting, e.g., studying alone or in a short
course or an on-line program. The author has tried to be especially
considerate of the reader on her own.

e Professional programmers, to use the book as a reference.

Prerequisites

Zero knowledge of computer graphics is presumed. However, the student is
expected to know the following:

(1) Basic C++ programming. There is no need to be an expert
programmer. The C++ program serves mainly as an environment for
the OpenGL calls, so there’s rarely need for fancy footwork in the C++
part itself.

(2) Basic math. This includes coordinate geometry, trigonometry and
linear algebra, all at college first-course level (or, even strong high
school in some cases). For intended readers of the book who may be
unsure of their math preparation, we have a self-test in Appendix B,
with solutions in Appendix C. The test should tell exactly how ready
you are and where the weaknesses are.

PREFACE

xxiii

XXiv

Resources

The following are available through the book’s website www.sumantaguha.

Program source code — which runs on Windows, Mac OS and Linux
platforms. The programs are arranged chapter-wise in the top-level
folder ExperimenterSource.

Guide to installing OpenGL and running the programs.

Multiplatform Fzperimenter software to help run the experiments —
whose interface is a pdf file containing all the experiments from the
book, each being clickable to bring up the related program and, in a
Windows environment, the workspace as well. Experimenter is only an
aid and not mandatory — each program is stand-alone. However, it is
the most convenient way to run the book’s code, and instructors are
strongly encouraged to use it.

Book figures in jpg format arranged in sequence as one PowerPoint
presentation per chapter.

Instructor’s manual with solutions to 100 problems (only for instructors
who have adopted this textbook).

Contributory resource bank with homework and examination questions,
experiments and other teaching and learning aids.

Other resources as they are developed (suggestions welcome).

Capsule Chapter Descriptions
Part I: Hello World

Chapter 1: An Invitation to Computer Graphics
A non-technical introduction to the field of computer graphics.

Chapter 2: On to OpenGL and 3D Computer Graphics

Begins the technical part of the book. It introduces OpenGL and fundamental
principles of 3D CG.

Part II: Tricks of the Trade

Chapter 3: An OpenGL Toolbox

Describes a collection of OpenGL programming devices, including vertex
arrays, vertex buffer and array objects, mouse and key interaction, pop-up
menus, and several more.

Part III: Movers and Shapers

Chapter 4: Transformation, Animation and Viewing

Introduces the theory and programming of animation and the virtual camera.

Explains user interactivity via object selection. Foundational chapter for
game and movie programming.

Chapter 5: Inside Animation: The Theory of Transformations

Presents the mathematical theory behind animation, particularly linear and
affine transformations in 3D.

Chapter 6: Advanced Animation Techniques

Describes frustum culling, occlusion culling as well as orienting animation
using both Euler angles and quaternions, techniques essential to programming
games and busy scenes.

Part IV: Geometry for the Home Office

Chapter 7: Convexity and Interpolation

Explains the theory of convexity and the role it plays in interpolation, which
is the procedure of spreading material properties from the vertices of a
primitive to its interior.

Chapter 8: Triangulation

Describes how and why complex objects should be split into triangles for
efficient rendering.

Chapter 9: Orientation

Describes how the orientation of a primitive is used to determine the side
of it that the camera sees, and the importance of consistently orienting a
collection of primitives making up a single object.

Part V: Making Things Up
Chapter 10: Modeling in 3D Space

Systematizes the principles of modeling both curves and surfaces, including
Bézier and fractal. Foundational chapter for object design.

Part VI: Lights, Camera, Equation

Chapter 11: Color and Light

Explains the theory of light and material color, the interaction between the
two, and describes how to program light and color in 3D scenes. Foundational
chapter for scene design.

Chapter 12: Textures

Explains the theory of texturing and how to apply textures to objects.
Chapter 13: Special Visual Techniques

Describes a set of special techniques to enhance the visual quality of a scene,
including, amongst others, blending, billboarding, aliasing and multisampling,

PREFACE

XXV

XXVi

PREFACE

stencil buffer methods, and image and pixel manipulation.

Part VII: Pixels, Pixels, Everywhere
Chapter 14: Raster Algorithms

Describes low-level rendering algorithms to determine the set of pixels on
the screen corresponding to a line or a polygon.

Part VIII: Anatomy of Curves and Surfaces

Chapter 15: Bézier

Describes the theory and programming of Bézier primitives, including curves
and surfaces.

Chapter 16: B-Spline
Describes the theory and programming of (polynomial) B-spline primitives,
including curves and surfaces.

Chapter 17: Hermite
Introduces the basics of Hermite curves and surfaces.

Part IX: Well Projected

Chapter 18: Applications of Projective Spaces

Applies the theory of projective spaces to deduce the projection transforma-
tion in the graphics pipeline, following up with shadow mapping as a case
study. Introduces rational Bézier and B-spline, particularly NURBS, theory
and practice.

Part X: The Time is Pipe

Chapter 19: Fixed-Functionality Pipelines
Gives a detailed view of the synthetic-camera and ray-tracing pipelines and
introduces radiosity.

Part XI: Rendering Pipe Dreams

Chapter 20: OpenGL 4.3, Shaders and the Programmable Pipeline: Liftoff
Introduces OpenGL 4.3, GLSL (OpenGL Shading Language) 4.3, and writing
vertex and fragments shaders to program the pipeline, particularly to animate,
light and apply textures.

Chapter 21: OpenGL 4.3, Shaders and the Programmable Pipeline: Escape
Velocity

Continuing the previous chapter onto advanced OpenGL 4.3 topics, including,
amongst others, instanced rendering, shader subroutines and transform
feedback, as well as tessellation and geometry shaders.

Appendix A: Projective Spaces and Transformations

A CG-oriented introduction to the mathematics of projective spaces and Prrrace
transformations. Provides a complete theoretical background for Chapter 18
on applications of projective spaces.

Appendix B: Math Self-Test
A self-test to assess math readiness for intended readers.

Appendix C: Math Self-Test Solutions
Solutions for the preceding self-test.

Suggested Course Outlines

See the chapter dependencies in Figure 1.

(1) Undergraduate first CG course:

This course should be based on Chapters 1-14 + Chapters 20-21,
though full coverage might be ambitious for one semester. Instructors
may pick topics to emphasize or skip, depending on their goals for the
course and the chapter dependence chart.

For example, for more practice and less theory, a possible sequence
would be 1 — 2 — 3 — 4 — 6 (only frustum culling) — 7 — 8 —
9 — 10 (skip curve/surface theory) — 11 — 12 — 13 (— 14, low-level
raster algorithms are independent of the higher-level topics of the
preceding chapters, and may be taught depending on time) — 20 — 21
(20-21, on OpenGL 4.3, can be taught in parallel with 11-13, with
discussion of a topic using the fourth-generation pipeline following its
discussion using the classical one, e.g., Section 20.5 on shader-based
lighting following Section 11.7 deducing Phong’s lighting equation).

Time permitting, selected topics may come from Chapter 5 (theory
of transformations), Chapters 15-16 (Bézier and B-spline modeling,
respectively, which should be taught in sequence), Chapter 17 (Hermite
curves and surfaces), Chapter 18 (rational Bézier and NURBS
modeling), and Chapter 19 (graphical pipelines, including the synthetic-
camera and ray-tracing), which may be read independently of each
other.

Note to instructor: The most effective teaching method with this book
is to base discussion around experiments — both from the book and those
you develop yourself. Our Ezperimenter software makes this especially
convenient. Students should be involved in the experiments, running
code simultaneously on their own machines in class. Minimize use of
slides except, possibly, for the book figures; for your convenience these
are available to download, arranged as one PowerPoint presentation
per chapter. xxvii

PREFACE

Chapter 1

An Invitation
to Computer
Graphics

Chapter 3

Chapter 2
On to OpenGL

and 3D Computer
Graphics

Chapter 4

Chapter 7

Chapter 14

5

Orientation

F

An OpenGL Transformation,| Convexity and Raster
Toolbox Animation and Interpolation Algorithms
Viewing
Inside Animation] Advanced
The Theory of Animation Triangulation
Transformations Techniques

l~ Modeling in
3D Space
Chapter 11 Chapter 15 Appendix A
] e Projective
Color and Light Bézier Spaces and
Transformations
ﬁ mimu Chapte 19
. Fixed-Function-
Texture B-Spline ality Pipelines
@ Chupier 17
L OpenGL 4.3
Special Visual Hermite :
Techniques Shaders ... :

I

Figure 1: Chapter dependence chart: dashed arrows represent weak dependencies.

(2) Advanced CG courses:

This book could serve as a reference for a study of 3D design
— particularly, Bézier (Chapter 15), B-spline (Chapter 16) and
rational Bézier and NURBS theory (Chapter 18) — and of projective
transformations and their applications (Appendix A and Chapter 18).
From a practical point of view, Chapters 20-21 go fairly deep into the
fourth generation of OpenGL and the GLSL, useful for students who
may be familiar with only the classical pipeline.

(3) Self-study:

xxVviii A recommended first pass would be 1 -2 -3 -4 -7 — 8 —

9 (go light on 7-9 if your math is rusty) — 10 (skip theory) — 11 —
12 — 13 — 20 — 21.

Following this the student should take up a fair-sized programming
project, returning to the book as needed. For the theoretically-inclined
student there’s a lot to keep her busy in Chapters 5 and 15-19.

Code

All the book’s programs, written in C++ with OpenGL, were developed in a
Microsoft Visual Studio 2010 IDE running on Windows 7. However, they can
run as well on Linux and Mac OS platforms with possibly some modification
depending on the exact environment. The programs can be downloaded
from www.sumantaguha.com, where they are arranged chapter-wise in the
top-level folder ExperimenterSource. The reader will find there, as well, a

guide to installing OpenGL and running the programs on various platforms.

Acknowledgments

I owe a lot to many people, most of all students whom I have had the
privilege of teaching in my CG classes over the years at UW-Milwaukee and
the Asian Institute of Technology.

I thank Tarun Mukherjee at Jadavpur University for being a constant
source of inspiration, not to mention help with various technical questions.

I thank KV, Ichiro Suzuki, Glenn Wardius, Mahesh Kumar, Le Phu Binh,
Maria Sell and, especially, Paul McNally, for their support at UWM, where
I began to teach CG and learn OpenGL.

I am grateful to my colleagues and the staff and students at AIT for such
a pleasant environment, which allowed me to combine teaching and research
commitments with the writing of a book.

Particular thanks at AIT to Vu Dinh Van, Nguyen Duc Cong Song,
Ahmed Waliullah Kazi, Hameedullah Kazi, Long Hoang, Songphon
Klabwong, Robin Chanda, Sutipong Kiatpanichgij, Samitha Kumara,
Somchok Sakjiraphong, Pyae Phyo Myint Soe, Adbulrahman Otman,
Sushanta Paudyal (a summer’s worth of help revising code), Akila de Silva,
Nitchanun Saksinchai, Thee Thet Zun, Suwanna Xanthavanij, and our
ever-helpful secretaries K. Siriporn and K. Tong.

I am grateful to Kumpee Teeravech, Kanit Tangkathach, Thanapoom
Veeranitinun and Pongpon Nilaphruek, students in my CG course at AIT,
for allowing me to use programs they wrote.

I thank Somying Pongpimol for her Illustrator drawings. She drew most
of the figures for the first edition based on my original sketches done rather
amateurishly in Xfig, and then revised several and created new ones for the
current edition. Somying also designed the cover for both editions.

I would like to thank Olivier Nicole for revising the book’s website for
the new edition.

PREFACE

Xxix

XXX

PREFACE

My special thanks to reader Denis Dalpé for an extensive list of typos.

I am especially grateful to Brian Barsky for encouraging me to persevere
after seeing an early and awkward draft of the first edition, and subsequently
inviting the book to his series. I want to acknowledge the production team
at Taylor & Francis who went out of their way for this book. Particularly, I
want to thank my editor Randi Cohen who has been simply tremendous to
work with. I really appreciate her making so stress-free the “business” of
publishing. T am grateful to Mimi Williams for her careful and expeditious
proofreading.

I am grateful to the numerous reviewers and readers of the first edition
whose comments helped immeasurably improve the current one.

I acknowledge the many persons and businesses who were kind enough
to allow me to include images to which they own copyrights.

On a personal note, I express my deep gratitude to Dr. Anupam De
for keeping Kamaladi healthy enough that I could concentrate on the first
edition thorough the few years that I spent writing it.

By far my biggest debt of gratitude is to my student and friend
Chansophea Chuon. Helping me with the first edition, Chansophea developed
the LaTeX style sheet, supervised the drawings while doing several of the
Tllustrator figures himself, laid out the manuscript, developed the multi-
platform program template, designed the Ezperimenter software to help
run the book experiments and created the book’s initial website, all the
while putting out countless fires as they happened. Chansophea’s layout,
in particular, transformed a rather dowdy set of notes into a handsome
four-color textbook. There is no doubt that, without Chansophea working
shoulder to shoulder with me, I would not have finished even the first edition
and this book would never have happened.

Finally, I must say that had I not had the opportunity to study computer
science in the United States and teach there, I would never have reached a
position where I could even contemplate writing a textbook. It’s true, too,
that had I not moved to Thailand, this book would never have begun to
be written. This is an enchanting country with a strangely liberating and
lightening effect — to which thousands of expats can attest — that encourages
one to express oneself.

Website and Contact Information

The book’s website is at www.sumantaguha.com. Users of the book will find
there various resources, including downloads, and a few links specially for
instructors. The author welcomes feedback, corrections and suggestions for
improvement emailed to him at sg@sumantaguha.com.

About the Author

Sumanta Guha obtained a Ph.D. in mathematics from the Indian Statistical
Institute, Kolkata, in 1987. From 1984 to 1987 he taught mathematics at
Jadavpur University in Kolkata. He left in 1987 to study computer science
at the University of Michigan in Ann Arbor, where he obtained a Ph.D. in
1991. On graduating from Michigan he joined the computer science faculty
of the University of Wisconsin-Milwaukee where he taught from 1991 to
2002. In 2002 he moved to the information management and computer
science program of the Asian Institute of Technology in Thailand, where
he is currently a professor. His research interests include computational
geometry, computer graphics, computational topology, robotics and data
mining.

xxxi

Part 1

Hello World

CHAPTER

An Invitation to Computer
Graphics

computers to generate images. This is as opposed to the capture
of images of real-world or imagined objects which would be, for
example, photography or the work of an artist with pencil and paper.

To not see the end product of CG, that being computer-generated imagery
(CGI), throughout your day, you would have to be on a deserted island.
Images on the screen of the cell phone you probably check first thing on
waking are digitally synthesized by a processor. Almost every frame on the
TV showing the morning news has CGI in some part. If you commute, then
the vehicle which carries you to school or work likely communicates with
its operator through multiple computer-managed console panels, displaying
information ranging from fuel level to geographical location.

C omputer graphics, or CG as it is often simply called, is the use of

Figure 1.1: A cell phone, news opening graphics, car dashboard.

At work, if at all you use a computer, then, of course, there you are sitting
right at a fountainhead of computer graphics. And, CGI probably plays an

Chapter 1
AN INVITATION TO
COMPUTER GRAPHICS

even more important role in your recreational life. Even the most casual
video games amusing commuters heading home nowadays have sophisticated
interactive 3D graphics. The web on which we spend so many hours a day
is increasingly becoming a multimedia smorgasbord synthesizing animation,
movie clips, CGI and sound.

Figure 1.2: A computer at work, handheld game player, AIT home page (used with
permission of the Asian Institute of Technology).

When you watch a movie you are seeing a product from an industry,
which together with the gaming industry, has the biggest relationship with
CG of any other, not only as a consumer of the latest and greatest in
technique, but also as promoter, with hundreds of millions of dollars in
investment, of cutting-edge research. A little blue elephant which grows
into a mighty warrior, an eccentric mouse with a ribald sense of humor, and
a massive dinosaur looking so hungrily for food that you would think its
species had never really become extinct more than fifty million years ago —
to contemplate such achievements is to be in awe of the human imagination,
as well as the ingenuity of the engineers and programmers who materialize
these fantastical conceptions as palpable and believable digital presences.

Figure 1.3: Khan Kluay, the first 3D animated Thai movie (courtesy Kantana
Animation), an anthropomorphic mouse, a massive (fortunately herbivorous) dinosaur.

Then there’s the quiet CG impacting our lives some would say even
more profoundly than its more flamboyant manifestations. Doctors and
surgeons practice their craft in simulated environments detailed to the tiniest
capillaries. Commercial pilots put in hundreds of hours on a flight simulator

before entering a real cockpit. (Flight simulators are a sentimental favorite
because they were the first killer CG app, drawing attention and investment
dollars to the then nascent field in the sixties.)

Automobiles, airplanes and almost any fairly complex manufactured
object we see around us are designed, fabricated and even put through
regulatory tests as virtual entities — which exist entirely as a collection of
bits perceptible only as an image on a monitor — gestating often for years
before the first physical prototype is ever built. Supercomputers implement
extremely complex mathematical models of the weather, but their predictions
have to be visualized — again CGI — in order to be meaningful to humans.

Figure 1.4: Clockwise from top left: Image of the human brain, flight simulator cockpit
(from NASA), engine design, hurricane over Florida, water drop on a leaf.

Because its business is the creation of pictures, computer graphics has
an immediate allure. But, it is a science as well, with intellectual challenges
ranging from the routine to about as deep and hard as you please. Think of
modeling a drop of water rolling off a leaf. There would be a fair amount of
physics and, probably, a differential equation or two to solve on the way to
getting just the mechanics of the rolling drop right, not to mention texturing
the leaf, creating a translucent (and changing) shape for the drop, and
determining illumination.

The field of computer graphics brings particular pleasure to students and
practitioners alike because it’s always about making something — just like
sculpting or painting. Part by part you watch your creation come together,
and alive even, if it is animated. Aside from the aesthetic, there are more
tangible rewards to be had too. One would be hard pressed to name a
sphere of social or scientific or industrial activity where CGI does not have

Chapter 1
AN INVITATION TO
COMPUTER GRAPHICS

a role. Wherever it is that ultimately you want to be, medicine or fashion,
rocket science or banking, weapons development or teaching yoga, sales
and marketing or environmental modeling, CG skills not only can make a
difference, but also make you a career.

1.1 Brief History of Computer Graphics

Although the term “computer graphics” itself was coined in 1960 by William
Fetter, a designer at Boeing, to describe his own job, the field can be said to
have first arrived with the publication in 1963 of Ivan Sutherland’s Sketchpad
program, as part of his Ph.D. thesis at MIT.

Sketchpad, as its name suggests, was a drawing program. Beyond
the interactive drawing of primitives such as lines and circles and their
manipulation — in particular, copying, moving and constraining — with use of
the then recently invented light pen, Sketchpad had the first fully-functional
graphical user interface (GUI) and the first algorithms for geometric
operations such as clip and zoom. Interesting, as well, is that Sketchpad’s
innovation of an object-instance model to store data for geometric primitives
foretold object-oriented programming. Coincidentally, on the hardware
side, the year 1963 saw the invention by Douglas Engelbart at the Stanford
Research Institute of the mouse, the humble device even today carrying so
much of GUI on its thin shoulders.

Figure 1.5: Ivan Sutherland operating Sketchpad on a TX-2 (courtesy of Ivan
Sutherland), Douglas Engelbart’s original mouse (courtesy of John Chuang).

Although Sketchpad ran on a clunky Lincoln TX-2 computer with only
64KB in memory and a bulky monochrome CRT monitor as its front-end,
nevertheless, it thrust CG to the attention of the early researchers by showing
what was possible. Subsequent advances through the sixties came thick
and fast: raster algorithms, the implementation of parametric surfaces,
hidden-surface algorithms and the representation of points by homogeneous
coordinates, the latter crucially presaging the foundational role of projective
geometry in 3D graphics, to name a few. Flight simulators were the killer app
of the day and companies such as General Electric and Evans & Sutherland,
co-founded by Douglas Evans and Ivan Sutherland, wrote simulators with

real-time graphics.

Interestingly, the advent of flight simulators actually predated that of CG
— at least Sutherland and his Sketchpad — by nearly two decades, when the
US Navy began the funding of Project Whirlwind at MIT during the Second
World War for the purpose of creating simulators to train bomber crews.
Those early devices had actually little graphics and consisted essentially of
a simulated instrument panel reacting in real-time to control input from
the pilots, but Project Whirlwind helped fund the talent and research
environment at MIT which enabled Sutherland to create Sketchpad, launch
computer graphics and, finally, complete the circle by establishing a company
to make flight simulators.

The next decade, the seventies, brought the z-buffer for hidden surface
removal, texture mapping, Phong’s lighting model — all crucial components
of the OpenGL API (Application Programming Interface) we’ll be using soon
— as well as keyframe-based animation. Photorealistic rendering of animated
movie keyframes almost invariably deploys ray tracers, which were born in
the seventies too. Emblematic of the advances in 3D design was Martin
Newell’s 1975 Utah teapot, composed entirely of bicubic Bézier patches,
which became the testbed of choice for CG algorithms. The latter half of the
decade saw, too, the Apple I and II personal computers make their debut,
bringing CG for the first time to the mass market.

Figure 1.6: Utah teapot (from Wikimedia), Apple II Plus (courtesy of Steven Stengel),
SIGGRAPH 2006 expo floor in Boston (courtesy of Jason Della Rocca).

From the academic point of view, particularly important were the
establishment in 1969 of the SIGGRAPH (Special Interest Group in Graphics)
by the ACM (Association for Computing Machinery, the premier academic
society for computers and computing) and, subsequently, the first annual
SIGGRAPH conference in 1973. These two developments signaled the
emergence of computer graphics as a major subdiscipline of computer science.
The SIGGRAPH conference has since then become the foremost annual
event in the CG world. In addition to being the most prestigious forum
for research papers, it hosts a giant exhibition which attracts hundreds of
companies, from software developers to book publishers, who set up booths
to promote their wares and recruit talent.

Since the early eighties, CG, both software and hardware, began rapidly
to assume the form we see today. The IBM PC, the Mac and the x86 chipsets

Section 1.1
BRIEF HISTORY OF
COMPUTER GRAPHICS

Chapter 1
AN INVITATION TO
COMPUTER GRAPHICS

all arrived, sparking off the race to become faster (processor), smaller (size),
bigger (memory) and cheaper (particularly important if you are going to
school). As computers became consumer goods, the market for software
spilled over from academia to individuals and businesses.

Nintendo released Donkey Kong in 1981, the wildly successful arcade
video game which revolutionized the genre, and soon after Wavefront
Technologies released its Preview software, used then to create opening
graphics for television programs. Now, of course, Nintendo is a star of the
video games industry producing the Wii and it successors, while Wavefront
has morphed into Alias (owned by Autodesk) whose 3D graphics modeling
package Maya is ubiquitous in the design world.

Figure 1.7: Donkey Kong arcade game (from Wikimedia), Maya screenshot of Scary
Boris (courtesy of Sateesh Malla at www.sateeshmalla.com), 2D characters on the left
versus 3D on the right (© Mediafreaks Cartoon Pte. Ltd., 2006. All rights reserved.).

3D graphics began to displace its plainer 2D sister through the nineties
as hardware increasingly became capable of supporting the rendering needs
of 3D models, even in real-time, thus allowing interaction and its myriad
consequences (such as gaming). The difference between 2D and 3D graphics
is that models in the latter are created in a (virtual) 3D world, geometrically
the same as the real world, and then projected onto the viewing screen, while
all drawings in 2D graphics are on a flat plane.

Models drawn in 3D are more realistic because they have all the three
dimensions we humans can perceive, but they are more complex as well;
moreover, the projection step, non-existent for 2D graphics, is computation-
intensive too. Graphics cards, manufactured by companies such as ATI and
Nvidia, which not only manage the image output to the display unit, but
have, as well, additional hardware support for rendering of 3D primitives, are
now inexpensive enough that desktops and even notebooks can run high-end
3D applications. How well they run 3D games often, in fact, is used to
benchmark personal computers.

Through the nineties, as well, the use of 3D effects in movies became
pervasive. The Terminator and Star Wars series, and Jurassic Park, were
among the early movies to set the standard for CGI. Toy Story from Pixar,
released in 1995, has special importance in the history of 3D CGI as the

Figure 1.8: T. Rex: heartthrob of the Jurassic Park movies, Quake 1 game (courtesy of
Quake ® © 1996 id Software LLC, a ZeniMax Media Company, All Rights Reserved).

first movie to be entirely computer-generated — no scene was ever pondered
through a glass lens, nor any recorded on a photographic reel! It was cinema
without film. Quake, released in 1996, the first of the hugely popular Quake
series of games, was the first fully 3D game.

Another landmark from the nineties of particular relevance to us was
the release in 1992 of OpenGL, the open-standard cross-platform and cross-
language 3D graphics API, by Silicon Graphics. OpenGL is actually a library
of calls to perform 3D tasks, which can be accessed from programs written
in various languages and running over various operating systems. That
OpenGL was high-level (in that it frees the applications programmer from
having to care about such low-level tasks as representing primitives like lines
and triangles in the raster, or rendering them to the window) and easy to
use (much more so than its predecessor 3D graphics API, PHIGS, standing
for Programmer’s Hierarchical Interactive Graphics System) first brought
3D graphics programming to the “masses”. What till then had been the
realm of a specialist was now open to a casual programmer following a fairly
amicable learning curve.

Since its release OpenGL has been rapidly adopted throughout academia
and industry. It’s only among game developers that Microsoft’s proprietary
3D API, Direct3D, which came soon after OpenGL bearing an odd similarity
to it but optimized for Windows, is more popular.

pen GL. @GLlES.

Figure 1.9: OpenGL and OpenGL ES logos (used with permission of Khronos).

The story of the past decade has been one of steady progress, rather
than spectacular innovations in CG. Hardware continues to get faster,

Section 1.1
BRIEF HISTORY OF
COMPUTER GRAPHICS

Chapter 1
AN INVITATION TO
COMPUTER GRAPHICS

10

better, smaller and cheaper, continually pushing erstwhile high-end software
downmarket, and raising the bar for new products. The almost complete
displacement of CRT monitors by LCD and the emergence of high-definition
television are familiar consequences of recent hardware evolution.

Of likely even greater economic impact is the migration of sophisticated
software applications — ranging from web browsers to 3D games — to handheld
devices like smartphones, on the back of small yet powerful processors. CG
has now been untethered from large immobile devices and placed into the
hands and pockets of consumers. In fact, a lightweight subset of OpenGL
called OpenGL ES — ES abbreviating Embedded Systems — released by the
Khronos Group in 2003, is now the most popular API for programming 3D
graphics on small devices.

1.2 Overview of a Graphics System

The operation of a typical graphics system can be split into a three-part
sequence:
Input — Processing — Output

The simplest example of this is when you click on a thumbnail image in,
say, YouTube, and a video clip pops up and begins to play. The click is
the input. Your computer then reacts to this input by processing, which
involves downloading the movie file and running it through the Adobe Flash
Player, which in turn outputs video frames to your monitor.

PR TN JEEEs

Figure 1.10: YouTube and Adobe Illustrator screenshots.

Graphics systems can be of two types, non-interactive and interactive.
The playing of a YouTube clip is an example of a non-interactive one: beyond
the first click to get the movie started you have little further say over the
output process, other than maybe to stop it or manipulate the window. On
the other hand, if, say, you are using a package like Adobe Illustrator, then
the output — what you have drawn — changes in real-time in response to
input you provide by pressing keys and moving and clicking the mouse; e.g.,
you can create shapes, color and move them, and so on. In an interactive
system output continuously reacts to input via the processor.

Input/output devices (or I/O devices, or peripheral devices, as they are
also called) are of particular importance in interactive systems because they
determine the scope of the interaction. For example, an input device that
functions like a steering wheel would be essential to a video game to race
cars; simulating flight through a virtual 3D environment, on the other hand,
needs something akin to a joystick used to maneuver an aircraft.

Because it is, in fact, interactive computer graphics — theory and
programming — which we’ll be studying the next nineteen chapters, let’s
quickly survey first the most common I/O devices found in graphics systems
nowadays. As for the processors that may come between the I and the
O, from the point of view of CG, essentially, these are just boxes to be
coded in order to obtain the desired input-to-output mapping. For the sake
of completeness, though, here’s a list of the important ones, all somewhat
different one from the other in the context of CG (Figure 1.11 pictures them):

Computer: As far as we are concerned, this category includes PC’s,
workstations, servers and the like.

Portable computer: This, of course, is simply a small and light computer
with a built-in display, keyboard and pointing device. Because of the size
constraint, limited power supply and also the lack of space for a large cooling
fan, CPU’s and graphics cards in portable computers tend to underperform
their desktop counterparts. Software writers need to take this into account,
especially for graphics-intensive applications.

Portable
computer

Computer

Handheld
device
Game
console

Figure 1.11: Processing devices clockwise from top: laptop, smartphone, game console
(used with permission from Microsoft), computer box.

Handheld device: The size-weight constraint on this class of devices — of
which the mobile phone is the most visible example — is even more severe

Section 1.2
OVERVIEW OF A
GRAPHICS SYSTEM

11

Chapter 1
AN INVITATION TO
COMPUTER GRAPHICS

12

than for portable computers. Handhelds are expected to travel in bags and
pockets. Low-end handhelds often have no peripheral other than a limited
keypad, while higher-end ones may come equipped with a full QWERTY
keypad and touchscreen. In addition to the possibly small RAM and anemic
CPU, another consideration to keep in mind for graphics developers for
handhelds is the limited real estate of the display: busy scenes tend to
become “chaotic” on a handheld.

Game consoles: All stops are off for programming these devices. Running
graphics-intensive applications at blinding speeds is what these machines
were born for.

1.2.1 Input Devices

The following is by no means a complete list of input devices, but it does
cover the ones we are most likely to encounter in everyday use. The devices
are all pictured in Figure 1.12, ringing the processing devices in the middle,
and our list goes clockwise starting from the top rightmost.

Keyboard: This device is a mandatory peripheral for any computer. Its
alphanumeric keys, evidently derived from the traditional typewriter, are
used to enter text strings, while additional keys, such as the arrow and
function keys, perform special actions.

Mouse: This is an example of a pointing device which inputs spatial data
to the computer. As the mouse is moved by the user’s hand on a flat
surface, a mechanical ball or optical sensor at its base signals the amount
of movement to the computer, which correspondingly moves a cursor on
the screen. Effectively, then, the user determines the location of the cursor.
Strictly speaking, a mouse is more than just a pointing device if it has
buttons, as most do, each of which can be clicked to give binary input.

Touchpad: Another 2D pointing device, particularly common on portable
computers, the touchpad is a small rectangular area embedded with electronic
sensors to determine the position of a touching finger or stylus. Movement
of the finger or stylus is echoed by movement of the cursor.

Pointing stick: Yet another 2D pointing device common on portable
computers, the pointing stick is, typically, a rubber peg located between the
‘G’, ‘H’ and ‘B’ keys, which moves the cursor in response to pressure applied
with a finger.

Trackball: This is essentially an upside-down mouse, with a socket containing
a ball which the user manipulates with her hand to make the cursor move.

Touchscreen

Data gloves Keyboard
Camera
Mouse
Portable
computer Touch
pad
Gamepad Computer ' ———
Wheel 1 R
i
Pointing
F 4 stick |
~ Handheld
Game device
console
———
Joystick
Trackball
Haptic
device Spaceball

Figure 1.12: Input devices clockwise from top right (surrounding processing devices in
the middle): keyboard, mouse, touchpad, pointing stick (courtesy of Long Zheng), track-
ball, spaceball (courtesy of Logitech), tablet, haptic device ((© SensAble Technologies,
Inc.), joystick, wheel, gamepad, webcam, touchscreen, data gloves (courtesy of
www.5dt.com).

Spaceball: This is a pointing device with six degrees of freedom versus
the two of an ordinary mouse. It is used in special applications such as
manipulating a camera in a 3D scene: not only is the camera moved, but
also rotated, affording it multiple degrees of freedom, each of which the user
controls. The spaceball itself consists of a pressure-sensitive ball which can
distinguish different kinds of forces, including forward/backward, lateral and
twist, responding by moving and orienting the selected object.

Section 1.2
OVERVIEW OF A
GRAPHICS SYSTEM

13

Chapter 1
AN INVITATION TO
COMPUTER GRAPHICS

14

Tablet: This is a digitizing device which has a surface embedded with
sensors to pick up the successive coordinates of a stylus head or fingertip as
it travels over the surface (in effect converting physical motion into digital
data). The user can write or draw on a tablet, just as on paper with pen,
the output being displayed on the monitor. The monitor is usually separate,
though, on devices like a tablet PC, the display and the sensing surface are
the same.

Haptic device: This is a pointing device which gives physical feedback to the
user based on the location of the cursor or, possibly, that of an object being
moved along with the cursor. The easiest way to understand the functioning
of a haptic device, if you have never used one, is to imagine a mouse with a
mechanical ball which is (somehow) programmed to lock and stop rolling
when the cursor reaches the side of the screen. The reaction the user then
has is of that of the cursor running into a physical obstacle at the edge of the
screen, though evidently it is moving in virtual space. The device depicted
in Figure 1.12 is not a haptic mouse, of course, but one commonly seen in
HCT (human-computer interaction) labs. The three-link arm swiveling on a
ball gives it six degrees of freedom.

Haptics has numerous applications, a couple of noteworthy ones being
the teleoperation of robots (where the operator gets haptic feedback as she
manipulates a robot in either a virtual or a remote real environment) and
simulated surgery training in medicine (which is similar to training pilots on
a flight simulator, except that surgery has the added component of tactile
feedback, mostly absent in flying).

Joystick: This is an input device popular in video games and applications
such as flight simulators. It originated from its namesake found in real aircraft
cockpits. A joystick pivots around a fixed base, gaining thus two degrees
of freedom, and usually has buttons which can be depressed to provide
additional input. In a game or simulator setting a joystick is typically used
to control an object traveling through space. Nowadays, high-end joysticks
have embedded motors to provide haptic feedback to user motion, e.g.,
resistance as a plane is banked.

Wheel: This again is a specialized input device for games and simulators,
obviously derived from the car steering wheel, and provides rotational input
in an exactly similar manner, most often to a virtual automobile. Again,
haptic feedback to give the user a sense of the vehicle’s response, and even
of the terrain over which it is traveling, is becoming increasingly popular.

Gamepad: This device is the standard controller for many modern game
consoles. Usual features include action buttons operated usually with the
right thumb and a cross-shaped directional controller with the left.

Camera: Although this input device needs no introduction, it’s worth
noting the increasingly sophisticated uses a peripheral camera is being put
to with the help, e.g., of software to recognize faces, gestures and expressions.

Touchscreen: Increasingly popular as the interface of handheld devices
such as smartphones, a touchscreen is a display which can accept input via
touch. It is similar to touchpads and tablets in that it senses the location
of a finger or stylus — one or the other is usually preferable based on the
particular technology used to make the screen — on the display area. A
common application of touchscreens is to eliminate the need for a physical
keyboard by displaying a virtual one responding to taps on the screen.

Touchscreens often respond not only to the location of the touch, but
also the motion of the touching object. For example, a flicking motion with a
finger may cause a window to scroll. Multi-touch capability, now increasingly
common, makes possible for the device to respond to gestures with more
than one finger, e.g., pinching and spreading with two fingers.

Data gloves: This device is used particularly in virtual reality environments
which are programmed to react to the position of the gloves, the direction
in which fingers are pointing, as well as to hand motion and gestures. The
gloves themselves are wired to transmit not only their location, but also
their configuration and orientation to the processor, so that the latter can
display the environment accordingly. For example, an index finger pointing
at a particular atom in a virtual-reality display of a molecule may cause this
atom to zoom up to the viewer.

1.2.2 QOutput Devices

Again, the following list is not meant to be comprehensive, but, rather,
representative of the most common output devices. We go clockwise around
the outer ring of devices pictured in Figure 1.13 beginning with the rightmost.

CRT (cathode-ray tube) monitor: A CRT monitor has phosphors of the
three primary colors — R(ed), G(reen) and B(lue) — located at each one of
a rectangular array of pixels, called the raster. Additionally, it has three
electron guns inside, causing its infamous bulk, that each fires a beam at
phosphors of one color. A mechanism to aim and control their intensities
causes the beams to travel together, striking one pixel after another, row
after row, exciting the RGB phosphors at each pixel to the values specified
for it in the color buffer. Figure 1.14(a) shows the electron beams striking
one pixel on a dog.

From the point of view of OpenGL and, indeed, most CG theory, what
matters is that the pixels in a monitor are, in fact, arranged in a rectangular
raster (as depicted in Figure 1.14(b)). For, this layout is the basis of the

Section 1.2
OVERVIEW OF A
GRAPHICS SYSTEM

15

AN INVITATION TO
COMPUTER GRAPHICS

16

3D displa P
play >

Handhel(_i display
/‘ Portable CRT monitor

computer

“Handheld
device
console
Portable
computer LCD monitor

display

Figure 1.13: Output devices clockwise from the rightmost (surrounding processing
devices in middle): CRT monitor, LCD monitor, notebook, mobile phone, 3D LCD
monitor.

lowest-level CG algorithms, the so-called raster algorithms, which actually
select and color the pixels to represent user-specified shapes such as lines and
triangles on the monitor. Figure 1.14(b), for example, shows the rasterization
of a right-angled triangle (with terrible jaggies because of the low resolution).

The number of rows and columns of pixels in the raster determines the
monitor’s resolution. Typical for a CRT monitor is a resolution in the range
of 1024 x 768 (which means 1024 columns and 768 rows). High-definition
monitors (as needed, say, for high-definition TV, or HDTV as it’s acronymed)
have higher resolution, e.g., 1920 x 1080 is common.

Moreover, a memory location called the color buffer, either in the CPU
or graphics card, contains, typically, 32 bits of data per raster pixel — 8 bits
for each of RGB, and 8 for the alpha value (used in blending images). It
is the RGB values in the color buffer which determine the corresponding
raster pixel’s color intensities. The values in the color buffer are read by
the raster — in other words, the raster is refreshed — at a rate called the
monitor’s refresh rate. Beyond this, the technology underlying the particular
display device, no matter how primitive or how fancy, really matters little

electron
guns

pea®>
A

(a) (b)

Figure 1.14: (a) Color CRT monitor with electron beams aimed at a pixel with
phosphors of the 3 primaries (b) A raster of pixels showing a rasterized triangle.

to the CG programmer.

For decades a bulky CRT monitor, or two, was a fixture atop work
tables. Now, of course, they have been nearly totally supplanted by a sleeker
successor which we discuss next.

LCD (liquid crystal display) monitor: Pixels in an LCD monitor each consist
of three subpixels made of liquid crystal molecules, which separately filter
lights of the primary colors. The amount of light emerging through a subpixel
is controlled by an electric charge whose intensity is determined by subpixel’s
corresponding value in the color buffer. The absence of electron guns allows
LCD monitors to be made flat and thin — unlike CRT monitors — so they
are one of the class of flat panel displays.

Technologies other than LCD, e.g., plasma and OLED (organic light
emitting diode), are used as well in flat panel displays, though LCD is by
far the most common one found with computers.

Again, for all practical purposes, the view to keep in mind of the LCD
monitor, as of other flat panel displays, is of a rectangular raster of pixels

whose RGB intensities are individually set by values in the computer’s color
buffer.

Portable computer display: This display is again a raster of pixels whose
RGB values are read from a color buffer. The technology employed, typically,
is TFT-LCD, a variant of LCD which uses thin film transistors to improve
image quality.

Handheld display: Handheld displays, such as those on devices like mobile

phones, commonly use the same TFT-LCD technology as portable computers.

The resolution, though, is necessarily smaller, e.g., 480 x 640 would be in
the ballpark for low-end mobiles.

Section 1.2
OVERVIEW OF A
GRAPHICS SYSTEM

17

Chapter 1
AN INVITATION TO
COMPUTER GRAPHICS

18

38D display: Almost all 3D displays are based on the principle of stereoscopy,
in which an illusion of depth is created by showing either eye of the viewer
images of the scene captured by one of two cameras slightly offset from one
another (just like a pair of eyes as in Figure 1.15). Once the scene has been
recorded with two cameras, it is in ensuring that each eye of the viewer sees
frames only from one of them, called stereoscopic viewing, that there are
primarily two competing technologies.

Figure 1.15: Dual cameras filming a motorbike for subsequent 3D viewing with a pair
of polarized glasses.

In the first, frames alternately from either camera are displayed on the
monitor, a process called alternate frame sequencing. Simultaneously, the
viewer wears LCD shutter glasses embedded with a polarizing filter which
can be darkened with an electrical signal. The glasses are synchronized
with the monitor’s refresh rate via a link such as Bluetooth, either lens
being alternately darkened with successive frames. Consequently, each eye
sees images from only one of the two cameras, resulting in a stereoscopic
effect. Typically, the frame rate is increased to 48 per second as well, so
that both eyes experience a smooth-seeming 24 frames each second. The
great advantage of LCD shutter glasses is that they can be used with any
computer which has a monitor with a refresh rate fast enough to support
alternate frame sequencing, as well as a graphics card with enough buffer
space for two video streams. So with these glasses even a high-end home
system would qualify to play 3D movies and games.

In the second, polarized 3D glasses are used to view two images,
from either camera, projected simultaneously on the same screen through
orthogonal polarizing filters. The lenses too contain orthogonal polarizing
filters, each allowing through only light of like polarization. Consequently,
either lens sees images from only one or other camera, engendering a
stereoscopic view. Polarized 3D glasses are significantly less expensive
than LCD shutter glasses and, moreover, require no synchronization with
the monitor. However, the projection system is complicated and expensive
and primarily used to equip theaters for 3D viewing.

OpenGL, the API we’ll be using, is well-suited to making scenes and
movies for 3D viewing because it allows one or more (virtual) cameras to be

positioned arbitrarily. Section 1.3
QUICK PREVIEW OF

. . THE ADVENTURES
1.3 Quick Preview of the Adventures Ahead , =

To round out this invitation to CG we want to show you three programs
written by students in their first college 3D CG course, taught using a draft
of this book. They were written in C++ with calls to OpenGL.

But, first, what exactly is OpenGL? You may have been wondering
this awhile. We said earlier in the section on CG history that OpenGL is a
cross-platform 3D graphics API. It consists of a library of over 500 commands
to perform 3D tasks, which can be accessed from programs written in various
languages. Well, here’s a glimpse of something concrete — an example snippet
from a C++ environment to draw 10 red points:

glColor3£f(1.0, 0.0, 0.0);
glBegin (GL_POINTS);
for(int i = 0; i < 10; i++)

{
glVertex3i(i, 2*i, 0);
}
glEnd () ;

The first function call glColor3f (1.0, 0.0, 0.0) declares the red drawing
color, while the loop bracketed between the glBegin(GL_POINTS) and
glEnd () calls draws a point at (4,2i,0) in each of ten iterations. There
are many more calls in the OpenGL library, for example, to draw straight
lines, triangles, create light sources, apply textures, move and rotate objects,
maneuver the camera, and so on — in fact, not surprisingly, pretty much all
one needs to create and animate realistic (or fantastic) 3D scenes.

Isn’t that old OpenGL, though, you show above? Yes, it is. Precisely,
it’s pre-shader OpenGL.

But, the fact you asked this question probably means you are not familiar
yet with our pedagogical approach, which is described in the book’s preface.
We explain there why we believe in setting the reader’s foundations in the
classical version of OpenGL before proceeding to the new (fourth generation,
version 4.3, to be precise) of which there is complete coverage later in the
book. We urge you to read at least that part of the preface in order to be
comfortable with how we plan on doing things.

Getting back to the student programs, the code itself is not of importance
and would actually be a distraction at this time. Instead, just running
the programs and viewing the output will give an idea of what can be
accomplished even in a fairly short time (ranging from 3 weeks to 3 months
for the different programs) by persons coming to CG with little more than a 19

Chapter 1
AN INVITATION TO
COMPUTER GRAPHICS

20

good grasp of C++ and some basic math. Of course, we’ll get a feel as well
for what goes into making 3D scenes.

Experiment 1.1. Open ExperimenterSource/Chapter1/Ellipsoid and,
hopefully, you’ll be able to run at least one of the two executables there
for the E1lipsoid program — one for Windows and one for the Mac. The
program draws an ellipsoid (an egg shape). The left of Figure 1.16 shows
the initial screen. There’s plenty of interactivity to try as well. Press any of
the four arrow keys, as well as the page up and down keys, to change the
shape of the ellipsoid, and ‘x’, ‘X’, ‘y’, ‘Y’, ‘7z’ and ‘Z’ to turn it.

It’s a simple object, but the three-dimensionality of it comes across
rather nicely does it not? As with almost all surfaces that we’ll be drawing
ourselves, the ellipsoid is made up of triangles. To see these press the space
bar to enter wireframe mode. Pressing space again restores the filled mode.
Wireframe reveals the ellipsoid to be a mesh of triangles decorated with
large points. A color gradient has apparently been applied toward the poles
as well.

Drawing an ellipsoid with many triangles may seem a hard way to do
things. Interestingly, and often surprisingly for the beginner, OpenGL offers
the programmer only a tiny set of low-level geometric primitives with which
to make objects — in fact, points, lines and triangles are, basically, it. So,
a curved 3D object like an ellipsoid has to be made, or, more accurately,
approximated, using triangles. But, as we shall see as we go along, the
process really is not all that difficult.

That’s it. There’s really not much more to this program: no lighting or
blending or other effects you may have heard of as possible using OpenGL
(understandably, as the program was written just a few weeks into the
semester). It’s just a bunch of colored triangles and points laid out in 3D
space. The magic is in those last two words: 3D space. 3D modeling is all
about making things in 3D — not a flat plane — to create an illusion of depth,
even when viewing on a flat plane (the screen). End

<= Doemines by Kot Tasguathoch 380 Thanapoom vesr. | = [E1 22

g

(a)

Figure 1.16: Screenshots of (a) E1lipsoid (b) AnimatedGarden (c) Dominos.

Experiment 1.2. Our next program is animated. It creates a gar-
den which grows and grows and grows. You will find executables in
ExperimenterSource/Chapterl/AnimatedGarden. Press enter to start the
animation; enter again to stop it. The delete key restarts the animation,
while the period key toggles between the camera rotating and not. Again, the
space key toggles between wireframe and filled. The middle of Figure 1.16 is
a screenshot a few seconds into the animation.

As you can see from the wireframe, there’s again a lot of triangles (in fact,
the flowers might remind you of the ellipsoid from the previous program).
The plant stems are thick lines and, if you look carefully, you’ll spot points
as well. The one special effect this program has that E11lipsoid did not is
blending, as is not hard to see. Ena

Experiment 1.3. Our final program is a movie which shows a Rube
Goldberg domino effect with “real” dominos. The executables are in
ExperimenterSource/Chapterl/Dominos. Simply press enter to start and
stop the movie. The screenshot on the right of Figure 1.16 is from part way
through.

This program has a bit of everything — textures, lighting, camera
movement and, of course, a nicely choreographed animation sequence, among
others. Neat, is it not? End

Hopefully, these three programs have got you all fired up and ready to
rumble on into OpenGL. Great! Get yourself a coffee and flip the page.

Acknowledgments: Kumpee Teeravech wrote Ellipsoid and Animated-
Garden, while Kanit Tangkathach and Thanapoom Veeranitinunt wrote
Dominos.

Section 1.3

QUICK PREVIEW OF
THE ADVENTURES

AHEAD

21

CHAPTER

On to OpenGL and 3D Computer
Graphics

and begin our journey into computer graphics using OpenGL as

our API (Application Programming Interface) of choice. We shall
apply an experiment-discuss-repeat approach where we run code and ask
questions of what is seen, acquiring thereby an understanding not only of
the way the API functions, but underlying CG concepts as well. Particularly,
we want to gain insight into:

T he primary goal for this chapter is to get acquainted with OpenGL

(a) The synthetic-camera model to record 3D scenes, which OpenGL
implements.

(b) The approach of approximating curved objects, such as circles and
spheres, with the help of straight and flat geometric primitives, such
as line segments and triangles, which is fundamental to object design
in computer graphics.

We begin in Section 2.1 with our first OpenGL program to draw a
square, the computer graphics equivalent of “Hello World”. Simple though
it is, with a few careful experiments and their analysis, square.cpp yields a
surprising amount of information through Sections 2.1-2.3 about orthographic
projection, the fixed world coordinate system OpenGL sets up and how the
so-called viewing box in which the programmer draws is specified in this
system. We gain insight as well into the 3D-to-2D rendering process.

Adding code to square.cpp we see in Section 2.4 how parts of objects
outside the viewing box are clipped off. Section 2.5 discusses OpenGL as a
state machine. We have in this section as well our first glimpse of property

23

Chapter 2

ON TO OPENGL AND
3D COMPUTER
GRAPHICS

— —
[+ s con il] |

Figure 2.1: Screenshot of
square.cpp.

Figure 2.2: OpenGL
window of square.cpp
(bluish green pretending to
be white).

24

values, such as color, initially specified at the vertices of a primitive, being
interpolated throughout its interior.

Next is the very important Section 2.6 where all the drawing primitives of
OpenGL are introduced. These are the parts at the application programmer’s
disposal with which to assemble objects from thumbtacks to spacecrafts.

The first use of straight primitives to approximate a curved object comes
in Section 2.7: a curve (a circle) is drawn using straight line segments. To
create more interesting and complex objects one must invoke OpenGL’s
famous three-dimensionality. This involves learning first in Section 2.8 about
perspective projection and also hidden surface removal using the depth
buffer.

After a bunch of drawing exercises in Section 2.9 for the reader to
practice her newly-acquired skills, the topic of approximating curved objects
is broached again in Section 2.10, this time to approximate a surface with
triangles, rather than a curve with straight segments as in Section 2.7.
Section 2.11 is a review of all the syntax that goes into making a complete
OpenGL program.

We conclude with a summary, brief notes and suggestions for further
reading in Section 2.12.

2.1 First Program

Experiment 2.1. Run square.cpp.

Note: Visit the book’s website www.sumantaguha.com for a guide on how
to install OpenGL and run our programs on various platforms.*

In the OpenGL window appears a black square over a white background.
Figure 2.1 is an actual screenshot, but we’ll draw it as in Figure 2.2, bluish
green standing in for white in order to distinguish it from the paper. We are
going to understand next how the square is drawn, and gain some insight as
well into the workings behind the scene. Enda

The following six statements in square.cpp create the square:

glBegin (GL_POLYGON) ;
glVertex3f(20.0, 20.0, 0.0);
glVertex3£(80.0, 20.0, 0.0);
glVertex3f(80.0, 80.0, 0.0);
glVertex3f(20.0, 80.0, 0.0);
glEnd () ;

Important! If, from what you might have seen elsewhere, you have the
notion that glBegin()-glEnd (), and even GL_POLYGON, specifications are

*If your program compiles but doesn’t run, this might be because your graphics card
doesn’t support OpenGL 4.3. See the note following item 2 in Section 2.11 for what to do
in this case.

classical and don’t belong in the newest version of OpenGL, then you are
right insofar as they are not in the core profile of the latter. They are,
though, accessible via the compatibility profile which allows for backward
compatibility. Moreover, we explain carefully in the book’s preface why we
don’t subscribe to the “shaders from the opening bell and toss everything
classical” school of thought as far as teaching OpenGL is concerned. Of
course, we shall cover thoroughly the most modern — in fact, fourth generation
— OpenGL later in the book. If you have not done so yet, we urge you to
read about our pedagogical approach in the preface.

The corners of the square are specified by the four vertex declaration
statements between glBegin(GL_POLYGON) and glEnd(). Let’s determine
how the glVertex3f () statements correspond to corners of the square.

If, suppose, the vertices are specified in some coordinate system that is
embedded in the OpenGL window — which certainly is plausible — and if we
knew the axes of this system, the matter would be simple. For example, if the
z-axis increased horizontally rightwards and the y-axis vertically downwards,
as in Figure 2.3, then glVertex3f (20.0, 20.0, 0.0) would correspond to
the upper-left corner of the square, glVertex3f(80.0, 20.0, 0.0) to the
upper-right corner and so on.

However, even assuming that there do exist these invisible axes attached
to the OpenGL window, how do we find out where they are or how they are
oriented? One way is to “wiggle” the corners of the square! For example,
change the first vertex declaration from glVertex3f (20.0, 20.0, 0.0) to
glVertex3£f(30.0, 20.0, 0.0) and observe which corner moves. Having
determined in this way the correspondence of the corners with the vertex
statements, we ask the reader to deduce the orientation of the hypothetical
coordinate axes. Decide where the origin is located too.

Well, it seems then that square.cpp sets up coordinates in the OpenGL
window so that the increasing direction of the z-axis is horizontally
rightwards, that of the y-axis vertically upwards and, moreover, the origin
seems to correspond to the lower-left corner of the window, as in Figure 2.4.
We're making progress but there’s more to the story, so read on!

The last of the three parameters of a glVertex3f (¥, *, *) declaration
is evidently the z coordinate. Vertices are specified in 3-dimensional space
(simply called 3-space or, mathematically, R?). Indeed, OpenGL allows us
to draw in 3-space and create truly 3D scenes, which is its major claim to
fame. However, we perceive the 3-dimensional scene as a picture rendered
to a 2-dimensional part of the computer’s screen, the rectangular OpenGL
window. Shortly we’ll see how OpenGL converts a 3D scene to its 2D
rendering.

Section 2.1
FIRST PROGRAM

(0,0)

V=

N
(20,20,0

(80,20,0)

yv

Figure 2.3: The
coordinate axes on the
OpenGL window of
square.cpp? No.

YA

(0,0)

Figure 2.4: The
coordinate axes on the
OpenGL window of
square.cpp? Almost
there

£ 4

25

Chapter 2

ON TO OPENGL AND

26

3D COMPUTER
(GRAPHICS

2.2 Orthographic Projection, Viewing Box
and World Coordinates

What exactly do the vertex coordinate values mean? For example, is the
vertex at (20.0, 20.0, 0.0) of square.cpp 20 mm., 20 cm. or 20 pixels away
from the origin along both the x-axis and y-axis, or is there some other
absolute unit of distance native to OpenGL?

Experiment 2.2. Change the glutInitWindowSize () parameter values
of square.cpp® — first to glutInitWindowSize (300, 300) and then
glutInitWindowSize (500, 250). The square changes in size, and even
shape, with the OpenGL window. Therefore, coordinate values appear not
to be in any kind of absolute units on the screen. End

Of course, you could have reshaped the OpenGL window
directly by dragging one of its corners with the mouse, rather than resetting
glutInitWindowSize () in the program.

Understanding what the coordinates actually represent involves under-
standing first OpenGL’s rendering mechanism, which itself begins with the
program’s projection statement. In the case of square.cpp the projection
statement is

gl0rtho (0.0, 100.0, 0.0, 100.0, -1.0, 1.0)

in the resize () routine, which determines an imaginary viewing box inside
which the programmer draws. Generally,

glOrtho (left, right, bottom, top, near, far)
sets up a viewing box, as in Figure 2.5, with corners at the 8 points:

(left, bottom, —mnear), (right, bottom, —near), (left, top, —mnear),
(right, top, —near), (left, bottom, —far), (right, bottom, —far),
(left, top, —far), (right, top, —far)

It’s a box with sides aligned along the axes, whose span along the x-axis
is from left to right, along the y-axis from bottom to top, and along the
z-axis from —far to —near. Note the little quirk of OpenGL that the near
and far values are flipped in sign.

The viewing box corresponding to the projection statement glOrtho (0.0,
100.0, 0.0, 100.0, -1.0, 1.0) of square.cpp is shown in Figure 2.6(a).
The reader may wonder at this time how the initial coordinate axes are
themselves calibrated — e.g., is a unit along an axis one inch, one centimeter
or something else — as the size of the viewing box and that of the objects
drawn inside it depend on this. The answer will be evident once the rendering
process is explained momentarily.

*When we refer to square.cpp, or any program.cpp, it’s always to the original version
in a folder in the ExperimenterSource directory, so if you've modified the code for an
earlier experiment you’ll need to copy back the original.

VA Section 2.2

left, top, —far right, top, —far
(teft, top, = (right, top, ~far) ORTHOGRAPHIC
(lefi, top, —near), . top, —near) PROJECTION, VIEWING
Box AND WORLD
> COORDINATES
(left, bottom,|—far (right, bottom, —far)
(left, bottom, —near) right, bottom, —near)

Figure 2.5: Viewing box of glOrtho(left, right, bottom, top, near, far).

vA (0,100, —1) (100, 100, —1) y
(0, 100, 1)
100, 1) o:
0,0,—1 (100, 0, —1) (20,
X
(0,0, 1) 00,0, 1)
Z Z
(a) (b)

Figure 2.6: (a) Viewing box of square.cpp (b) With the square drawn inside.

As for drawing now, the vertex declaration glVertex3f(x, y, z)
corresponds to the point (z,y,z). For example, the corner of the square
declared by glVertex3f(20.0, 20.0, 0.0) is at (20.0, 20.0, 0.0). The
square of square.cpp, then, is as depicted in Figure 2.6(b).

Once the programmer has drawn the entire scene, if the projection
statement is glOrtho() as in square.cpp, then the rendering process is
two-step:

1. Shoot: First, objects are projected perpendicularly onto the front face
of the viewing box, i.e., the face on the z = —near plane. For example,
the square in Figure 2.7(a) (same as Figure 2.6(b)) is projected as in
Figure 2.7(b). The front face of the viewing box is called the viewing
face and the plane on which it lies the viewing plane.

This step is like shooting the scene on film. In fact, one can think of
the viewing box as a giant version of those archaic box cameras where
the photographer ducks behind the film — the viewing face — and covers
her head with a black cloth; so big, in fact, that the whole scene is
actually inside the box! Moreover, mind that with this analogy there’s 27

Chapter 2 VA VA

ON TO OPENGL AND viewing face
3D COMPUTER 20,50 80, 0)
GRAPHICS
(20, 8p, 1 0o)
20, 20, 0) =
(80420, 1) x
z O
print
500 pixels / . \ 500 pixels
P E
[3} a
o N .
g OpenGL Window
OpenGL Window
Computer Screen Computer Screen
(c) (d)

Figure 2.7: Rendering with glOrtho().

no lens, only the film.

2. Print: Next, the viewing face is proportionately scaled to fit the
rectangular OpenGL window. This step is like printing the film
on paper. In the case of square.cpp, printing takes us from
Figure 2.7(b) to (c).

If, say, the window size of square.cpp were changed to one of aspect
ratio (= width/height) of 2, by replacing glutInitWindowSize (500,
500) with glutInitWindowSize (500, 250), printing would take us
from Figure 2.7(b) to (d) (which actually distorts the square into a

rectangle).

The answer to the earlier question of how to calibrate the coordinate axes
of the space in which the viewing box is created should be clear now: the 2D
rendering finally displayed is the same no matter how they are calibrated,
because of the proportionate scaling of the viewing face of the box to fit the
OpenGL window. So it does not matter what unit we use, be it an inch,
millimeter, mile, ...! Here’s a partly-solved exercise to drive home the point.

28

Exercise 2.1. Section 2.2
ORTHOGRAPHIC
PROJECTION, VIEWING
Box AND WORLD
COORDINATES

(a) Suppose the viewing box of square.cpp is set up in a coordinate
system where one unit along each axis is 1 cm. Assuming pixels to
be 0.2 mm. x 0.2 mm. squares, compute the size and location of the
square rendered by shoot-and-print to a 500 pixel x 500 pixel OpenGL
window.

(b) Suppose next that the coordinate system is re-calibrated so that a unit
along each axis is 1 meter instead of 1 cm., everything else remaining
same. What then are the size and location of the rendered square in
the OpenGL window?

(¢) What is rendered if, additionally, the size of the OpenGL window is
changed to 500 pixel x 250 pixel?

Part answer:

5 g
o o
S o
— O
20
£ 60cm. S
& 100 mm. (= 500 pixels)
100 cm.
Viewing Face OpenGL Window

Figure 2.8: The viewing face for square.cpp, given that one unit along each coordinate
axis is 1 cm., scaled to a 500 pixel x 500 pixel OpenGL window.

(a) Figure 2.8 on the left shows the square projected to the viewing face,
which is 100 cm. square. The viewing face is then scaled to the OpenGL
window on the right, which is a square of sides 500 pixels = 500 x 0.2
mm. = 100 mm. The scaling from face to the window, therefore, is a
factor of 1/10 in both dimensions. It follows that the rendered square
is 60 mm. x 60 mm., with its lower-left corner located both 20 mm.
above and to the right of the lower-left corner of the window.

(b) Exactly the same as in part (a) because, while the viewing box and
viewing face are now 10 times larger, the scaling from face to window
is now a factor of 1/100, rather than 1/10.

29

Chapter 2

ON TO OPENGL AND
3D COMPUTER
GRAPHICS

S
%

) /|0
“(b)

Figure 2.9: The z-, y-
and z-axes are rectangular
and form a (a) right-
handed system (b)
left-handed system.

30

We conclude that the size and location of the rendering in each coordinate
direction are independent of how the axes are calibrated, but determined
rather by the ratio of the original object’s size to that of the viewing box in
that direction.

Although the calibration of the axes doesn’t matter, nevertheless, we’ll
make the sensible assumption that all three are calibrated identically, i.e.,
one unit along each axis is of equal length (yes, oddly enough, we could
make them different and still the rendering would not change, which you
can verify yourself by re-doing Exercise 2.1(a), after assuming that one unit
along the z-axis is 1 cm. and along the other two 1 meter). The only
other assumptions about the initial coordinate system that we make are
conventional ones:

(a) Tt is rectangular, i.e., the three axes are mutually perpendicular.

(b) The z-, y- and z-axes in that order form a right-handed system in
the following sense: the rotation of the z-axis 90° about the origin
so that its positive direction matches with that of the y-axis appears
counter-clockwise to a viewer located on the positive side of the z-axis
(Figure 2.9).

Fixed World System

To summarize, set up an initial rectangular right-handed coordinate system
located wherever you like in space, but with axes all calibrated identically.
Call a unit along each axis just “a unit” as we know it doesn’t matter what
the unit is. Then leave it fized forever — imagine it screwed to the top of
your desk!

Figure 2.10: A dedicated 3D graphics programmer in a world all her own.

See Figure 2.10. This system coordinatizes world space and, in fact, we
shall refer to it as the world coordinate system. All subsequent objects,

including the viewing box and those that we create ourselves, inhabit world Section 2.2
space and are specified in world coordinates. These are all virtual objects, OrrHOGRAPHIC
of course! PROJECTION, VIEWING

Because it’s occupied by user-defined objects, world space is ~ BOX AND WORLD
sometimes called object space. COORDINATES

Experiment 2.3. Change only the viewing box of square.cpp by replac-
ing glOrtho(0.0, 100.0, 0.0, 100.0, -1.0, 1.0) with glOrtho(-100,
100.0, -100.0, 100.0, -1.0, 1.0). The location of the square in the
new viewing box is different and, so as well, the result of shoot-and-print.

Figure 2.11 explains how. End
YA
(~100, 100, 1) (100, 100, 1)
d, 80,0) 0, 80,0)
(—100, 100, 1) 0,/100, 1) .
TSR0, 20, 0)
| print "
»
_ _ 1) (_ _
(=100, -10 ,l/ (100, —100, —1 OpenGL Window
(~100, —100, 1 (100, -100, 1)

Computer Screen

4

Figure 2.11: The viewing box of square.cpp defined by glOrtho(-100, 100.0,
-100.0, 100.0, -1.0, 1.0).

Exercise 2.2. (Programming) Change the viewing box of square.cpp
by replacing gl0rtho (0.0, 100.0, 0.0, 100.0, -1.0, 1.0) successively
with the following, in each case trying to predict the output before running:

(a) gl0rtho(0.0, 200.0, 0.0, 200.0, -1.0, 1.0)
(b) gl0rtho(20.0, 80.0, 20.0, 80.0, -1.0, 1.0)
(¢) gl0rtho(0.0, 100.0, 0.0, 100.0, -2.0, 5.0)

Exercise 2.3. If the viewing box of square.cpp is changed by replacing
glOrtho(0.0, 100.0, 0.0, 100.0, -1.0, 1.0) with glOrtho(-100.0,
100.0, -100.0, 100.0, -1.0, 1.0), and the OpenGL window size changed
replacing glutInitWindowSize (500, 500) with glutInitWindowSize (500,
250), then calculate the area (in number of pizels) of the image of the square.

Exercise 2.4. (Programming) We saw earlier that, as a result of
the print step, replacing glutInitWindowSize (500, 500) with glutInit-
WindowSize (500, 250) in square.cpp causes the square to be distorted 31

Chapter 2

ON TO OPENGL AND

32

3D COMPUTER
(GRAPHICS

into a rectangle. By changing only one numerical parameter elsewhere in
the program, eliminate the distortion to make it appear square again.

Incidentally, it’s clear now that our working hypothesis after the first
experiment in Section 2.1, that the OpenGL window comes with axes fixed to
it, though not unreasonable, was not accurate either. The OpenGL window
it turns out is simply an empty target rectangle on which the front face of
the viewing box is printed. This rectangle is called screen space.

So there are two spaces we’ll be interacting with: world and screen. The
former is a virtual 3D space in which we create our scenes, while the latter is
a real 2D space where images concocted from our scenes by shoot-and-print
are rendered for viewing.

Exercise 2.5. (Programming) Alter the z coordinates of each vertex
of the “square” — we should really call it a polygon if we do this — of
square.cpp as follows (Block 1*):

glBegin (GL_POLYGON) ;
glVertex3£(20.0, 20.0, 0.5);
glVertex3f(80.0, 20.0, -0.5);
glVertex3f(80.0, 80.0, 0.1);
glVertex3f(20.0, 80.0, 0.2);
glEnd () ;

The rendering does not change. Why?

Always set the parameters of glOrtho (left, right, bottom,
top, near, far) so that left < right, bottom < top, and near < far.

The aspect ratio (= width/height) of the viewing box should
be set same as that of the OpenGL window or the scene will be distorted by
the print step.

The perpendicular projection onto the viewing plane cor-
responding to a glOrtho() call is also called orthographic projection or
orthogonal projection (hence the name of the call). Yet another term is
parallel projection as the lines of projection from points in the viewing box
to the viewing plane are all parallel.

2.3 The OpenGL Window and Screen
Coordinates

We’ve already had occasion to use the glutInitWindowSize(w, h) com-
mand which sets the size of the OpenGL window to width w and height h
measured in pixels. A companion command is glutInitWindowPosition(z,
y) to specify the location (x,y) of the upper-left corner of the OpenGL
window on the computer screen.

*To cut-and-paste you can find the block in text format in the file
chap2codeModifications.txt in the directory ExperimenterSource/CodeModifications.

Experiment 2.4. Change the parameters of glutInitWindowPosition(x,
y) in square.cpp from the current (100, 100) to a few different values to
determine the location of the origin (0, 0) of the computer screen, as well as
the orientation of the screen’s own z-axis and y-axis. End

The origin (0,0) of the screen it turns out is at its upper-left corner,
while the increasing direction of its z-axis is horizontally rightwards and
that of its y-axis vertically downwards; moreover, one unit along either axis
is absolute and represents a pixel. See Figure 2.12, which shows as well the
coordinates of the corners of the OpenGL window initialized by square. cpp.

pixels

L o[- »
el (100, 100) (600, 100)
£)
3)J B
Qo
&=
(100, 600) (600, 600)
A 4% Computer Screen

Figure 2.12: The screen’s coordinate system: a unit along either axis is the pitch of a
pixel.

Note the inconsistency between the orientation of the screen’s y-axis and
the y-axis of the world coordinate system, the latter being directed up the
OpenGL window (after being projected there). One needs to be careful
about this, especially when coding programs where data is read from one
system and used in the other.

2.4 Clipping

A question may have come to the reader’s mind about objects which happen
to be drawn outside the viewing box. Here are a few experiments to clarify
how they are processed.

Experiment 2.5. Add another square by inserting the following right
after the code for the original square in square.cpp (Block 2):

glBegin (GL_POLYGON) ;
glVertex3£(120.0, 120.0, 0.0)
glVertex3f(180.0, 120.0, 0.0);
glVertex3f(180.0, 180.0, 0.0)
glVertex3£(120.0, 180.0, 0.0)
glEnd () ;

Section 2.4
CLIPPING

33

Chapter 2

ON TO OPENGL AND
3D COMPUTER
GRAPHICS

e e Y
Figure 2.13: Screenshot
of a triangle.

=

Figure 2.14: Screenshot
of the triangle clipped to a
quadrilateral.

34

From the value of its vertex coordinates the second square evidently lies
entirely outside the viewing box.

If you run now there’s no sign of the second square in the OpenGL
window! This is because OpenGL clips the scene to within the viewing box
before rendering, so that objects or parts of objects drawn outside are not
rendered. Clipping is a stage in the graphics pipeline. We’ll not worry about
its implementation at this time, only the effect it has. End

Exercise 2.6. (Programming) In the preceding experiment can you
redefine the viewing box by changing the parameters of glOrtho() so that
both squares are visible?

Experiment 2.6. For a more dramatic illustration of clipping, first replace
the square in the original square.cpp with a triangle; in particular, replace
the polygon code with the following (Block 3):

glBegin (GL_POLYGON) ;
glVertex3f(20.0, 20.0, 0.0);
glVertex3f(80.0, 20.0, 0.0);
glVertex3£f(80.0, 80.0, 0.0);
glEnd () ;

See Figure 2.13. Next, lift the first vertex up the z-axis by changing it
to glVertex3£f(20.0, 20.0, 0.5); lift it further by changing its z-value to
1.5 (Figure 2.14 is a screenshot), then 2.5 and, finally, 10.0. Make sure you
believe that what you see in the last three cases is indeed a triangle clipped
to within the viewing box — Figure 2.15 may be helpful. End

Exercise 2.7. (Programming) A triangle was clipped to a quadrilateral
in the viewing box in the preceding experiment. What is the maximum
number of sides of a figure to which you can clip a triangle in the box
(quadrilateral, pentagon, hexagon, ...)? Code and show.

Exercise 2.8. Use pencil and paper to guess the output if the polygon
declaration part of square.cpp is replaced with the following (Block 4):

glBegin (GL_POLYGON) ;
glVertex3f(-20.0, -20.0, 0.0);
glVertex3f(80.0, 20.0, 0.0);
glVertex3f(120.0, 120.0, 0.0);
glVertex3£(20.0, 80.0, 0.0);
glEnd () ;

The viewing box has six faces that lie on different six planes and,
effectively, OpenGL clips off the scene on one side of each of these six
planes, accordingly called clipping planes. Imagine a knife slicing down each
plane as in Figure 2.15. Specifically, in the case of the viewing box set up
by glOrtho (left, right, bottom, top, near, far), clipped off is to the left
of the plane x = left, to the right of the plane x = right and so on.

x = left
~]

x = right

z =—near y = bottom

Figure 2.15: Six clipping planes of the glOrtho(left, right, bottom, top, near, far)
viewing box. The lightly shaded part of the triangle sticking out of the box is clipped by
a “clipping knife”.

[emar: 2.6, As we shall see in Chapter 3, the programmer can define
clipping planes in addition to the six that bound the viewing box.

We'll leave this section with a rather curious phenomenon for the reader
to explain.

Exercise 2.9. (Programming) Raising the first vertex of (the original)
square.cpp from glVertex3f(20.0, 20.0, 0.0) to glVertex3f(20.0,
20.0, 1.5) causes the square — actually, the new figure which is not a
square any more — to be clipped. If, instead, the second vertex is raised from
glVertex3£f(80.0, 20.0, 0.0) to glVertex3f(80.0, 20.0, 1.5), then
the figure is clipped too, but very differently from when the first vertex is
raised. Why? Should not the results be similar by symmetry?

Hint: OpenGL draws polygons after triangulating them as so-called triangle
fans with the first vertex of the polygon the center of the fan. For example,
the fan in Figure 2.16 consists of three triangles around vertex vy.

2.5 Color, OpenGL State Machine and
Interpolation

Experiment 2.7. The color of the square in square.cpp is specified by
the three parameters of the glColor3f (0.0, 0.0, 0.0) statement in the
drawScene () routine, each of which gives the value of one of the three
primary components, blue, green and red.

Determine which of the three parameters of glColor3f () specifies the
blue, green and red components by setting in turn each to 1.0 and the others
to 0.0. In fact, verify the following table:

Section 2.5

COLOR, OPENGL STATE
MACHINE AND
INTERPOLATION

VO V1

Figure 2.16: A triangle
fan.

35

Chapter 2

ON TO OPENGL AND

36

3D COMPUTER
(GRAPHICS

Call Color
glColor3£f (0.0, 0.0, 0.0) Black
glColor3f(1.0, 0.0, 0.0) Red
glColor3£ (0.0, 1.0, 0.0) Green
glColor3£f (0.0, 0.0, 1.0) Blue
glColor3f(1.0, 1.0, 0.0) Yellow
glColor3f(1.0, 0.0, 1.0) | Magenta
glColor3£ (0.0, 1.0, 1.0) Cyan
glColor3f(1.0, 1.0, 1.0) White

End

Generally, the glColor3f (red, green, blue) call specifies the foreground
color, or drawing color, which is the color applied to objects being drawn.
The value of each color component, which ought to be a number between
0.0 and 1.0, determines its intensity. For example, glColor3f(1.0, 1.0,
0.0) is the brightest yellow while glColor3f(0.5, 0.5, 0.0) is a weaker
yellow

The color values are each clamped to the range [0,1]. This
means that, if a value happens to be set greater than 1, then it’s taken to
be 1; if less than 0, it’s taken to be 0.

Exercise 2.10. (Programming) Both glColor3f (0.2, 0.2, 0.2)
and glColor3f (0.8, 0.8, 0.8) should be grays, having equal red, green
and blue intensities. Guess which is the darker of the two. Verify by changing
the foreground color of square. cpp.

The call glClearColor(1.0, 1.0, 1.0, 0.0) in the setup() routine
specifies the background color, or clearing color. Ignore for now the fourth
parameter, which is the alpha value. The statement glClear (GL_COLOR_-
BUFFER_BIT) in drawScene() actually clears the window to the specified
background color, which means that every pixel in the color buffer is set to
that color.

Eixperiment 2.8. Add the additional color declaration statement gl-
Color3f (1.0, 0.0, 0.0) just after the existing one glColor3£(0.0, 0.0,
0.0) in the drawing routine of square.cpp so that the foreground color
block becomes

// Set foreground (or drawing) color.
glColor3£(0.0, 0.0, 0.0);
glColor3£f(1.0, 0.0, 0.0);

The square is drawn red because the current value of the foreground color is
red when each of its vertices is specified. End

Foreground color is one of a collection of variables, called state variables,
which determine the state of OpenGL. Among other state variables are point

size, line width, line stipple, material properties, etc. We’ll meet several as
we go along or you can refer to the red book* for a full list. OpenGL remains
and functions in its current state until a declaration is made changing a
state variable. For this reason, OpenGL is often called a state machine. The
following simple experiment illustrates a couple of important points about
how state variables control rendering.

Experiment 2.9. Replace the polygon declaration part of square.cpp
with the following to draw two squares (Block 5):

glColor3£f(1.0, 0.0, 0.0);
glBegin (GL_POLYGON) ;

glVertex3f(20.0, 20.0, 0.0);
glVertex3f(80.0, 20.0, 0.0);
glVertex3£(80.0, 80.0, 0.0);
glVertex3f(20.0, 80.0, 0.0);
glEnd Q) ;
glColor3£f (0.0, 1.0, 0.0);
glBegin (GL_POLYGON) ;
glVertex3f (40.0, 40.0, 0.0);
glVertex3f(60.0, 40.0, 0.0);
glVertex3f(60.0, 60.0, 0.0);
glVertex3f (40.0, 60.0, 0.0);

glEnd () ;

A small green square appears inside a larger red one (Figure 2.17).
Obviously, this is because the foreground color is red for the first square,
but green for the second. One says that the color red binds to the first
square — or, more precisely, to each of its four specified vertices — and green
to the second square. These bound values specify the color attribute of either
square. Generally, the values of those state variables which determine how
it is rendered collectively form a primitive’s attribute set.

Flip the order in which the two squares appear in the code by cutting
the seven statements that specify the red square and pasting them after
those to do with the green one. The green square is overwritten by the red
one and no longer visible because OpenGL draws in code order.

End
Experiment 2.10. Replace the polygon declaration part of square.cpp
with (Block 6):

glBegin (GL_POLYGON) ;
glColor3£f (1.0, 0.0, 0.0);

*The OpenGL Programming Guide [104] and its companion volume, the OpenGL
Reference Manual [105], are the canonical references for the OpenGL APT and affectionately
referred to as the red book and blue book, respectively. Note that the on-line reference
docs at www.opengl.org pretty much cover all that is in the blue book.

Section 2.5

COLOR, OPENGL STATE
MACHINE AND
INTERPOLATION

Figure 2.17: Screenshot
of a green square drawn in
the code after a red square.

37

Chapter 2

ON TO OPENGL AND
3D COMPUTER
GRAPHICS

Figure 2.18: Screenshot
of a square with differently
colored vertices.

38

glVertex3£(20.0, 20.0, 0.0);
glColor3£(0.0, 1.0, 0.0);
glVertex3£(80.0, 20.0, 0.0);
glColor3£(0.0, 0.0, 1.0);
glVertex3£(80.0, 80.0, 0.0);
glColor3f (1.0, 1.0, 0.0);
glVertex3£(20.0, 80.0, 0.0);
glEnd () ;

The different color values bound to the four vertices of the square are evidently
interpolated over the rest of the square as you can see in Figure 2.18. In fact,
this is most often the case with OpenGL: numerical attribute values specified
at the vertices of a primitive are interpolated throughout its interior. In a
later chapter we’ll see exactly what it means to interpolate and how OpenGL
goes about the task. End

2.6 OpenGL Geometric Primitives

The geometric primitives — also called drawing primitives or, simply,
primitives — of OpenGL are the parts that programmers use in Lego-like
manner to create mundane objects like balls and boxes, as well as elaborate
spacecrafts, the worlds to which they travel, and pretty much everything
in between. The only one we’ve seen so far is the polygon. It’s time to get
acquainted with the whole family.

Experiment 2.11. Replace glBegin(GL_POLYGON) with glBegin(GL_-
POINTS) in square.cpp and make the point size bigger with a call to
glPointSize(5.0), so that the part drawing the polygon is now

glPointSize(5.0); // Set point size.
glBegin (GL_POINTS) ;
glVertex3f(20.0, 20.0, 0.0);
glVertex3£(80.0, 20.0, 0.0);
glVertex3f(80.0, 80.0, 0.0);
glVertex3£(20.0, 80.0, 0.0);
glEnd () ;

End

Experiment 2.12. Continue, replacing GL_POINTS with GL_LINES, GL_-
LINE_STRIP and, finally, GL_LINE_LOOP. Ena

In the explanation that follows of how OpenGL draws each primitive,
assume that the n vertices declared in the code between glBegin (primitive)
and glEnd () are vg,v1,...,U,_1 in that order, i.e., the declaration of the
primitive is of the form:

glBegin (primitive) ; Section 2.6
glVertex3f(x, *, *x); // vo OPENGL GEOMETRIC
glVertex3f (x, *, *); // n PRIMITIVES

glVertex3f(*, *, *); // vn_1
glEnd () ;

Refer to Figure 2.19 as you read.

GL_POINTS draws a point at each vertex
Vo, V15, Un—1

GL_LINES draws a disconnected sequence of straight line segments
(henceforth, we’ll simply use the term “segment”) between the vertices,
taken two at a time. In particular, it draws the segments

VpV1, V2V3, ..., Un—2Un—1

if n is even. If n is not even then the last vertex v, is simply ignored.

GL_LINE_STRIP draws the connected sequence of segments
Vol1, V1V2, ..., Un—2Un—1

Such a sequence is called a polygonal line or polyline.

GL_LINE_LOOP is the same as GL_LINE_STRIP, except that an additional
segment v, _1vg is drawn to complete a loop:

VoV1, V1V2, ..., Un—2Un—1, Un—100

Such a segment sequence is called a polygonal line loop.

The thickness of lines can be set by a glLineWidth (width) call.

In world space points have zero dimension and lines zero width;
values specified by glPointSize() and glLineWidth() are used only for
rendering. Otherwise, it would be rather hard to see a point actually of zero
dimension or a line of zero width!

Why does OpenGL provide separate primitives to draw polygonal lines
and line loops when both can be viewed as a collection of segments and
drawn using GL_LINES? For example,

glBegin(GL_LINE_STRIP) ;
vO;
vl;
v2;

glE;:l.d.() ; 39

Chapter 2

o! o2 1 2
ON TO OPENGL AND
3D COMPUTER
GRAPHICS ° oV,
VO vO V3
'Y [2% *-—9
vy 4 V5 v,
GL_LINES
)%

y
1 Y, 3

v

GL_TRIANGLES GL_TRIANGLE STRIP

GL_TRIANGLE_FAN

\4

(X ¥, 0) (x,, ¥,,0)

V Vs

: (x> ¥, 0) (x, ¥,,0)
GL POLYGON glRectf(x,, y,, x,, »,) glRectf(x, y,, x,,v,)

Figure 2.19: OpenGL’s geometric primitives. Vertex order is indicated by a curved
arrow. Primitives inside the red rectangle have been discarded from the core profile of
later versions of OpenGlL, e.g., 4.3; however, they are accessible via the compatibility
profile.

is equivalent to
glBegin (GL_LINES) ;

v0;
40 vi

vl Section 2.6
v2 OPENGL GEOMETRIC
v2; PRIMITIVES

glEﬁ&();

The answer is first to avoid redundancy in vertex data. Secondly, possible
rendering error is avoided as well because OpenGL does not know that the
two vis in the GL_LINES specification above are supposed to represent the
same vertex, and may render them at slightly different locations because of
differences in floating point round-offs.

Exercise 2.11. (Programming) This relates to the brief discussion on
interpolation at the end of Section 2.5. Replace the polygon declaration part
of square.cpp with (Block 7):

gllLineWidth(5.0);
glBegin(GL_LINES) ;
glCOlOI‘3f(1.0, 0.0, 0.0);
glVertex3f(20.0, 20.0, 0.0);
glColor3£(0.0, 1.0, 0.0);
glVertex3£(80.0, 20.0, 0.0);
glEnd () ;

Can you say what the color values should be at the midpoint (50.0,20.0,0.0)
of the segment drawn? Check your answer by drawing a point with those
color values just above the midpoint, say at (50.0,22.0,0.0), and comparing.

Experiment 2.13. Replace the polygon declaration part of square.cpp
with (Block 8):

glBegin (GL_TRIANGLES) ;

glVertex3f(10.0, 90.0, 0.0);

glVertex3£(10.0, 10.0, 0.0);

glVertex3f(35.0, 75.0, 0.0);

glVertex3f(30.0, 20.0, 0.0);

glVertex3f(90.0, 90.0, 0.0);

glVertex3£(80.0, 40.0, 0.0);
glEnd () ;

End

GL_TRIANGLES draws a sequence of triangles using the vertices three
at a time. In particular, the triangles are

VpU1V2, U3V4Vs5, ..., Un—3Un—2Un—1

if n is a multiple of 3; if it isn’t, the last one, or two, vertices are ignored.
The given order of the vertices for each triangle, in particular, vg, v, vo
for the first, vs, vy, vs for the second and so on, determines its orientation as
perceived by a viewer. Figure 2.19 indicates orientation with curved arrows. 41

Chapter 2

ON TO OPENGL AND

42

3D COMPUTER
(GRAPHICS

Orientation is important because it enables OpenGL to decide which
side of a primitive, front or back, the viewer sees. We’ll deal with this
topic separately in Chapter 9. Till then disregard orientation when drawing,
listing the vertices of a primitive in any order you like.

GL_TRIANGLES is a 2-dimensional primitive and, by default, triangles
are drawn filled. However, one can choose a different drawing mode by
applying the glPolygonMode (face, mode) command where face may be
one of GL_FRONT, GL_BACK or GL_FRONT_AND_BACK, and mode one of GL_FILL,
GL_LINE or GL_POINT. Whether a primitive is front-facing or back-facing
depends, as said above, on its orientation. To keep matters simple for now,
though, we’ll use only GL_FRONT_AND_BACK in a glPolygonMode () call, which
applies the given drawing mode to a primitive regardless of which face is
visible. The GL_FILL option is, of course, the default filled option for 2D
primitives, while GL_LINE draws the primitive in outline (or wireframe as it’s
also called), and GL_POINT only the vertices.

Experiment 2.14. In fact, it’s often easier to decipher a 2D primitive
by viewing it in outline. Accordingly, continue the preceding experiment
by inserting the call glPolygonMode (GL_FRONT_AND_BACK, GL_LINE) in the
drawing routine and, further, replacing GL_TRIANGLES with GL_TRIANGLE_ -
STRIP. The relevant part of the display routine then is as below:

// Set polygon mode.
glPolygonMode (GL_FRONT_AND_BACK, GL_LINE);

// Draw a triangle strip.
glBegin (GL_TRIANGLE_STRIP) ;

glVertex3f(10.0, 90.0, 0.0);

glVertex3f(10.0, 10.0, 0.0);

glVertex3f(35.0, 75.0, 0.0);

glVertex3f(30.0, 20.0, 0.0);

glVertex3f(90.0, 90.0, 0.0);

glVertex3£(80.0, 40.0, 0.0);
glEnd () ;

End

GL_TRIANGLE_STRIP draws a sequence of triangles — called a triangle
strip — as follows: the first triangle is vov1v2, the second v1v3vs (vg is dropped
and vz brought in), the third vevzvs (v1 dropped and vy brought in), and so
on. Formally, the triangles in the strip are

VUIV2, V1V3V2, VaV3V4, ..., Up_3Un_2Un_1 (if n is odd)

or
VULV, V1V3V2, VaV3V4, ..., Up_3Un_1Un_2 (if n is even)

Exercise 2.12. (Programming) Create a square annulus as in Fig-
ure 2.20(a) using a single triangle strip. You may first want to sketch the

annulus on graph paper to determine the coordinates of its eight corners.
The figure depicts one possible triangulation — division into triangles — of
the annulus.

Hint: A solution is available in squareAnnulus1.cpp of Chapter 3.

Exercise 2.13. (Programming) Create the shape of Figure 2.20(b)
using a single triangle strip. A partial triangulation is indicated.

Experiment 2.15. Replace the polygon declaration part of square.cpp
with (Block 9):

ngegin(GL,TRIANGLE,FAN) 5
glVertex3f(10.0, 10.0, 0.0);
glVertex3f(15.0, 90.0, 0.0);
glVertex3f(55.0, 75.0, 0.0);
glVertex3f(80.0, 30.0, 0.0);
glVertex3£(90.0, 10.0, 0.0);

glEnd () ;

Apply both the filled and outlined drawing modes. End

GL_TRIANGLE _FAN draws a sequence of triangles — called a triangle
fan — around the first vertex as follows: the first triangle is vgv vy, the
second vgvov3 and so on. The full sequence is

VpU1V2, VoU2V3, ..., VoUp—2Un—1

Exercise 2.14. (Programming) Create a square annulus using two tri-
angle fans. First sketch a triangulation different from that in Figure 2.20(a).

GL_POLYGON draws a polygon with the vertex sequence
VUL ... Up_1

(n must be at least 3 for anything to be drawn).

Finally:

glRectf(z1, y1, 22, y2) draws a rectangle lying on the z = 0 plane with
sides parallel to the z- and y-axes. In particular, the rectangle has diagonally
opposite corners at (z1, y1, 0) and (22, y2, 0). The full list of four vertices
is (z1, y1, 0), (22, y1, 0), (22, y2, 0) and (21, y2, 0). The rectangle created
is 2-dimensional and its vertex order depends on the situation of the two
vertices (z1, y1, 0) and (22, y2, 0) with respect to each other, as indicated
by the two drawings at the lower right of Figure 2.19.

Note that glRectf() is a stand-alone call; it is not a parameter to
glBegin() like the other primitives.

Section 2.6
OPENGL GEOMETRIC
PRIMITIVES

(a)

(b)

Figure 2.20: (a) Square
annulus — the region
between two bounding
squares — and a possible
triangulation (b) A
partially triangulated
shape.

43

Chapter 2

ON TO OPENGL AND

44

3D COMPUTER
(GRAPHICS

Important: The preceding two, GL_POLYGON and glRectf (), have both been
discarded from the core profile of later versions of OpenGL, e.g., the one we
are going to study ourselves later in the book, namely, fourth generation 4.3;
however, they are accessible via the compatibility profile.

The reason that polygons and rectangles have been discarded is not hard
to understand: both can be made from triangles, so are really redundant.
The reason we do use them in the first part of this book is because they
afford an easily understood way to make objects — e.g., a polygon is certainly
more intuitive for a beginner than a triangle strip.

However, when drawing a polygon one must be careful in ensuring that it
is a plane convez figure, i.e., it lies on one plane and has no “bays” or “inlets’
(see Figure 2.21); otherwise, rendering is unpredictable. So, even though we
draw them occasionally for convenience, we recommend that the reader, in
order to avoid rendering issues and to prepare for the fourth generation of
OpenGL, avoid polygons and rectangles altogetherin her own projects, and,
instead, use exclusively triangles.

AT LY

Not planar, not convex Planar, not convex Planar and convex

i

Figure 2.21: OpenGL polygons should be planar and convex.

In fact, following are a couple of experiments, the second one showing
how polygon rendering can behave oddly indeed if one is not careful.

Eixperiment 2.16. Replace the polygon declaration of square.cpp with
(Block 10):

glBegin (GL_POLYGON) ;
glVertex3f(20.0, 20.0, 0.0);
glVertex3f(50.0, 20.0, 0.0);
glVertex3f(80.0, 50.0, 0.0);
glVertex3f(80.0, 80.0, 0.0);
glVertex3£(20.0, 80.0, 0.0);
glEnd () ;

You see a convex 5-sided polygon (Figure 2.22(a)). End
Experiment 2.17. Replace the polygon declaration of square.cpp with
(Block 11):

glBegin (GL_POLYGON) ;

Section 2.6
OPENGL GEOMETRIC
PRIMITIVES

(a) (b) (©)

Figure 2.22: Outputs: (a) Experiment 2.16 (b) Experiment 2.17 (c¢) Experiment 2.17,
vertices cycled.

glVertex3£(20.0, 20.0, 0.0);

glVertexBf(S0.0, 20.0, 0.0);

glVertex3f (40.0, 40.0, 0.0);

glVertex3f(20.0, 80.0, 0.0);
glEnd () ;

Display it both filled and outlined using appropriate glPolygonMode ()
calls. A non-convex quadrilateral is drawn in either case (Figure 2.22(b)).
Next, keeping the same cycle of vertices as above, list them starting with
glVertex3f(80.0, 20.0, 0.0) instead (Block 12):

glBegin (GL_POLYGON) ;
glVertex3£(80.0, 20.0, 0.0);
glVertex3f (40.0, 40.0, 0.0);
glVertex3f(20.0, 80.0, 0.0);
glVertex3f(20.0, 20.0, 0.0);
glEnd () ;

Make sure to display it both filled and outlined. When filled it’s a triangle,
while outlined it’s a non-convex quadrilateral (Figure 2.22(c)) identical to
the one output earlier! Because the cyclic order of the vertices is unchanged,
shouldn’t it be as in Figure 2.22(b) both filled and outlined? Enda

We'll leave the apparent anomaly™ of this experiment as a mystery to be
resolved in Chapter 8 on triangulation. But, if you are impatient then refer
to the hint provided with Exercise 2.9.

Exercise 2.15. (Programming) Verify, by cycling the vertices, that no
such anomaly arises in the case of the convex polygon of Experiment 2.16.

Exercise 2.16. (Programming) Draw the double annulus (a figure ‘8’)
shown in Figure 2.23 using as few triangle strips as possible. Introduce
additional vertices on the three boundary components if you need to (in
addition to the original twelve).

Note: Such additional vertices are called Steiner vertices. Figure 2.23: Double

*The rendering depends on the particular OpenGL implementation. However, all ~ annulus.
implementations that we are aware of show identical behavior. 45

Chapter 2

ON TO OPENGL AND
3D COMPUTER
GRAPHICS

Figure 2.24: Screenshot
of circle.cpp.

46

Here’s an interesting semi-philosophical question. OpenGL
claims to be a 3D drawing API. Yet, why does it not have a single 3D drawing
primitive, e.g., cube, tetrahedron or such? All its primitives are O-dimensional
(GL_POINTS), 1-dimensional (GL_LINE*) or 2-dimensional (GL_TRIANGLE*,
GL_QUAD*, GL_POLYGON, glRectf()).

The answer lies in how we humans (the regular ones that is and not
supers with X-ray vision) perceive 3D objects such as cubes, tetrahedrons,
chairs and spacecraft: we see only the surface, which is two-dimensional. It
makes sense for a 3D API, therefore, to draw only as much as can be seen.

2.7 Approximating Curved Objects

Looking back at Figure 2.19 we see that the OpenGL geometric primitives
are composed of points, straight line segments and flat pieces, the latter
being triangles, rectangles and polygons. How, then, to draw curved objects
such as discs, ellipses, spirals, beer cans and flying saucers? The answer is
to approzimate them with straight and flat OpenGL primitives well enough
that the viewer cannot tell the difference. As a wag once put it, “Sincerity
is a very important human quality. If you don’t have it, you gotta fake it!”
In the next experiment we fake a circle.

Eixperiment 2.18. Run circle.cpp. Increase the number of vertices in
the line loop

glBegin (GL_LINE_LOOP) ;
for(i = 0; i < numVertices; ++i)

{

glColor3f ((float)rand()/(float)RAND _MAX,
(float)rand()/(float)RAND_MAX,
(float)rand()/(float)RAND_MAX);
glVertex3f(X + R * cos(t), Y + R * sin(t), 0.0);
t += 2 * PI / numVertices;

}

glEnd () ;

by pressing ‘+’ till it “becomes” a circle, as in the screenshot of Figure 2.24.
Press ‘-’ to decrease the number of vertices. The randomized colors are just
a bit of eye candy. End

The vertices of the loop of circle.cpp, which lie evenly spaced on the
circle, are collectively called a sample of points or, simply, sample from the
circle. See Figure 2.25(a). The denser the sample evidently the better the
approximation.

The parametric equations of the circle implemented are

=X+ Rcost, y=Y + Rsint, z=0, 0<t<27w (2.1)

YA Section 2.7
APPROXIMATING
CURVED OBJECTS

cos t, Y+Rsin t, 0)

=<V

(a) (b)

Figure 2.25: (a) A line loop joining a sample of points from a circle (b) Parametric
equations for a circle.

where (X,Y,0) is the center and R the radius of the circle. See Figure 2.25(b).
A numVertices number of sample points equally spaced apart is generated
by starting with the angle t = 0 and then incrementing it successively by
27 /numVertices.

Observe that the vertex specifications occur within a loop construct,
which is pretty much mandatory if there is a large number of vertices.

Incidentally, the program circle.cpp also demonstrates output to the
command window, as well as non-trivial user interaction via the keyboard.
The routine keyInput() is registered as the key handling routine in
main() by the glutKeyboardFunc(keyInput) statement. Note the calls
to glutPostRedisplay () in keyInput () asking the display to be redrawn
after each update of numVertices.

Follow these conventions when writing OpenGL code:

1. Program the “Esc” key to exit the program.
2. Describe user interaction at two places:

(a) The command window using cout ().

(b) Comments at the top of the source code.

Here’s a parabola. \ : ;

Experiment 2.19. Run parabola.cpp. Press ‘4+/-’ to increase/decrease \ /
the number of vertices of the approximating line strip. Figure 2.26 is a \ f
screenshot with enough vertices to make a smooth-looking parabola. /

The vertices are equally spaced along the x-direction. The parametric e /
equations implemented are N\ / |

=50 +50t y=100t%, 2 =0, —1<t<l1 - e

. A . Figure 2.26: Screenshot
the constants being chosen so that the parabola is centered in the OpenGL of parabola. cpp.

window. End 47

Chapter 2

ON TO OPENGL AND
3D COMPUTER
GRAPHICS

o e

N\

(@)
\\ /),
\ S) 4

Figure 2.27: Flat spiral.

v

Figure 2.28: Flat leaf.

Figure 2.29: Screenshot
of circularAnnuluses.-

Cpp-

48

Exercise 2.17. (Programming) Modify circle.cpp to draw a flat
3-turn spiral as in the screenshot of Figure 2.27.

Hint: Extending the range of ¢ to 0 to 67 gives 3 full turns. At the same
time the “radius” R should decrease with each iteration of the for loop, e.g.,
R-=20.0/numVertices decreases it linearly from 40 to 20.

Exercise 2.18. (Programming) Modify circle.cpp to draw a disc (a
filled circle) by way of (a) a polygon and (b) a triangle fan.

Exercise 2.19. (Programming) Draw a flat leaf like the one in
Figure 2.28.

Exercise 2.20. (Programming) Modify circle.cpp to draw a circular
annulus, like one of those shown in Figure 2.29, using a triangle strip. Don’t
look at the program circularAnnuluses.cpp!

We’ll be returning shortly to the topic of approximating curved objects, but
it’s on to 3D next.

2.8 Three Dimensions, the Depth Buffer and
Perspective Projection

The reader by now may be getting impatient to move on from the plane
(pun intended) and simple to full 3D. Okay then, let’s get off to an easy start
in 3-space by making use of the third dimension to fake a circular annulus.
Don’t worry, we’ll be doing fancier stuff soon enough!

Experiment 2.20. Run circularAnnuluses.cpp. Three identical-
looking red circular annuluses (Figure 2.29) are drawn in three different
ways:

i) Upper-left: There is not a real hole. The white disc overwrites the red
disc as it appears later in the code.

glColor3£(1.0, 0.0, 0.0);
drawDisc(20.0, 25.0, 75.0, 0.0);
glColor3f(1.0, 1.0, 1.0);

drawDisc(10.0, 25.0, 75.0, 0.0);

Note: The first parameter of drawDisc() is the radius and the
remaining three the coordinates of the center.

ii) Upper-right: There is not a real hole either. A white disc is drawn
closer to the viewer than the red disc thus blocking it out.

glEnable (GL_DEPTH_TEST) ; Section 2.8
glColor3f (1.0, 0.0, 0.0); THREE DIMENSIONS,
drawDisc(20.0, 75.0, 75.0, 0.0); THE DEPTH BUFFER
glColor3f(1.0, 1.0, 1.0);
drawDisc(10.0, 75.0, 75.0, 0.5);
glDisable (GL_DEPTH_TEST) ;

AND PERSPECTIVE
PROJECTION

Observe that the z-value of the white disc’s center is greater than the
red disc’s. We'll discuss the mechanics of one primitive blocking out
another momentarily.

iii) Lower: A true circular annulus with a real hole.

if (isWire) glPolygonMode (GL_FRONT, GL_LINE);
else glPolygonMode (GL_FRONT, GL_FILL);
glColor3f(1.0, 0.0, 0.0);

glBegin (GL_TRIANGLE_STRIP) ;

glEnd () ;
Press the space bar to see the wireframe of a triangle strip. End

Exercise 2.21. (Programming) Interchange in circularAnnuluses.-
cpp the drawing orders of the red and white discs — i.e., the order in which
they appear in the code — in either of the top two annuluses. Which one is
affected? (Only the first!) Why?

Note the use of a text-drawing routine in circular-
Annuluses.cpp. OpenGL offers only rudimentary text-drawing capability
but it often comes in handy, especially for annotation. We’ll discuss text-
drawing in fair detail in Chapter 3.

By far the most important aspect of circularAnnuluses.cpp is its
use of the depth buffer to draw the upper-right annulus. Following is an
introduction to this critical utility which enables realistic rendering of 3D
scenes.

2.8.1 A Vital 3D Utility: The Depth Buffer

Enabling the depth buffer, also called the z-buffer, causes OpenGL to
eliminate, prior to rendering, parts of objects that are obscured (or, occluded)
by others.
Precisely, a point of an object is not drawn if its projection — think of
a ray from that point — toward the viewing face is obstructed by another
object. See Figure 2.30(a) for the making of the upper-right annulus of
circularAnnuluses.cpp: the white disc obscures the part of the red disc
behind it (because the projection is orthogonal, the obscured part is exactly 49

Chapter 2

ON TO OPENGL AND

50

3D COMPUTER
(GRAPHICS

red disc onz= 0.0

white disc onz= 0.5
VA \

direction
z

L}
z \ z
viewing face on

(a) the plane z =1 (b)

Figure 2.30: (a) The front white disc obscures part of the red one (b) The point A with
largest z-value is projected onto the viewing plane so P is red.

the same shape and size as the white disc). This process is called hidden
surface removal or depth testing or wvisibility determination.

Stated mathematically, the result of hidden surface removal in case of
orthographic projection is as follows. Suppose that the set of points belonging
to drawn objects in the viewing box, with their first two coordinate values
particularly equal to X and Y, respectively, is S = {(X,Y,z2)}, where z
varies. In other words, S is the set of drawn points lying on the straight line
through (X,Y,0) parallel to the z-axis.

Then only the point (X,Y, Z) of S, with the largest z-value, say, Z, lends
its color attributes to their shared projection (X, Y, —near) on the viewing
face. The implication is that only (X,Y, Z) is drawn of the points in .S, the
rest obscured.

For example, in Figure 2.30(b), the three points A, B and C, colored
red, green and blue, respectively, share the same first two coordinate values,
namely, x = 30 and y = 20. So, all three project to the same point P on the
viewing face. As A has the largest z coordinate of the three, it obscures the
other two and P, therefore, is drawn red.

The z-buffer itself is a block of memory containing z-values, one per pixel.
If depth testing is enabled, then, as a primitive is processed for rendering,
the z-value of each of its points — or, more accurately, each of its pixels
— is compared with that of the one with the same (z,y)-values currently
resident in the z-buffer. If an incoming pixel’s z-value is greater, then its
RGB attributes and z-value replace those of the current one; if not, the
incoming pixel’s data is discarded. For example, if the order in which the
points of Figure 2.30(b) happen to appear in the code is C', A and B, here’s
how the color and z-buffer values at the pixel corresponding to P change:

draw C'; // Pixel corresponding to P gets color blue

// and z-value -0.5.
draw A; // Pixel corresponding to P gets color red
// and z-value 0.3: A’s values overwrite (C’s.
draw B; // Pixel corresponding to P retains color red
// and z-value 0.3: B is discarded.

Next, note in circularAnnuluses. cpp the enabling syntax of hidden surface
removal so that you can begin to use it:

1. The GL_DEPTH_BUFFER_BIT parameter of glClear (GL_COLOR_BUFFER_BIT

| GL_DEPTH_BUFFER_BIT) in the drawScene () routine causes the depth
buffer to be cleared.

2. The command glEnable (GL_DEPTH_TEST) in the drawScene () routine
turns hidden surface removal on. The complementary command is
glDisable (GL_DEPTH_TEST).

3. The GLUT_DEPTH parameter of glutInitDisplayMode (GLUT_SINGLE
| GLUT_RGB | GLUT_DEPTH) in main() causes the depth buffer to be
initialized.

Exercise 2.22. (Programming) Draw a bull’s eye target as in
Figure 2.31 by means of five discs of different colors, sizes and depths.

2.8.2 A Helix and Perspective Projection

We get more seriously 3D next by drawing a spiral or, more scientifically, a
helix. A helix, though itself 1-dimensional — drawn as a line strip actually —
can be made authentically only in 3-space.

Open helix.cpp but don’t run it as yet! The parametric equations
implemented are

x = Rcost, y = Rsint, z =t —60.0, —107 <t <107 (2.2)

See Figure 2.32. Compare these with Equation (2.1) for a circle centered
at (0, 0, 0), putting X = 0 and Y = 0 in that earlier equation. The difference
is that the helix climbs up the z-axis simultaneously as it rotates circularly
with increasing ¢ (so, effectively, it coils around the z-axis). Typically, one
writes simply z = ¢ for the last coordinate; however, we tack on “—60.0” to
push the helix far enough down the z-axis so that it’s contained entirely in
the viewing box.

Exercise 2.23. Even before viewing the helix, can you say from
Equation (2.2) how many times it is supposed to coil around the z-axis, i.e.,
how many full turns it is supposed to make?

Hint: One full turn corresponds to an interval of 2w along t.

Section 2.8

THREE DIMENSIONS,
THE DEPTH BUFFER
AND PERSPECTIVE
PROJECTION

Figure 2.31: Bull’s eye
target.

(Rcos t, Rsin t, £,— 60.0)

b/

z

Figure 2.32: Parametric
equations for a helix.

51

Chapter 2

ON TO OPENGL AND

52

3D COMPUTER

(GRAPHICS

Experiment 2.21. Okay, run helix.cpp now. All we see is a circle as in
Figure 2.33(a)! There’s no sign of any coiling up or down. The reason, of
course, is that the orthographic projection onto the viewing face flattens the
helix. Let’s see if it makes a difference to turn the helix upright, in particular,
so that it coils around the y-axis. Accordingly, replace the statement

glVertex3f (R * cos(t), R * sin(t), t - 60.0);
in the drawing routine with
glVertex3f(R * cos(t), t, R * sin(t) - 60.0);

Hmm, not a lot better (Figure 2.33(b))! End

(a) (b)

Figure 2.33: Screenshots of helix.cpp using orthographic projection with the helix
coiling around the: (a) z-axis (b) y-axis.

Because it squashes a dimension, typically, orthographic projection is not
suitable for 3D scenes. OpenGL, in fact, provides another kind of projection,
called perspective projection, more appropriate for most 3D applications.
Perspective projection is implemented with a glFrustum() call.

Instead of a viewing box, a glFrustum(left, right, bottom, top, near,
far) call sets up a viewing frustum — a frustum is a truncated pyramid whose
top has been cut off by a plane parallel to its base — in the following manner
(see Figure 2.34):

The apex of the pyramid is at the origin. The front face, called the
viewing face, of the frustum is the rectangle, lying on the plane z = —near,
whose corners are (left, bottom, —near), (right, bottom, —near), (left, top,
—near), and (right, top, —near). The plane z = —near is called the viewing
plane. The four edges of the pyramid emanating from the apex pass through
the four corners of the viewing face. The base of the frustum, which is also
the base of the pyramid, is the rectangle whose vertices are precisely where
the pyramid’s four edges intersect the z = — far plane. By proportionality
with the front vertices, the coordinates of the base vertices are:

base on the plane z = —far Section 2.8

((far/near) left, / ((far/near) right, THREE DIMENSIONS,
(far/near) top, —far) / (far/near) top, —far) THE DEPTH BUFFER
AND PERSPECTIVE
PROJECTION
Viewing frustum
((far/near) left, ((far/near) right,
(far/near) bottom, —far) (far/near) bottom, —far)

(left, top, —near Y, —near)
viewing face (film) on the

viewing plane z = —near

(left, bottom, —neqr right, bottom, —near)

L

OpenGL Window

Computer Screen

Figure 2.34: Rendering with glFrustum().

((far/near) left, (far/near) bottom, —far),
((far/near) right, (far/near) bottom, —far),
((far/near) left, (far/near) top, —far),
((far/near) right, (far/mear) top, —far)

Values of the glFrustum() parameters are typically set so that the frustum
lies symmetrically about the z-axis; in particular, right and top are chosen to
be positive, and left and bottom their respective negatives. The parameters
near and far should both be positive and near < far.

Example 2.1. Determine the corners of the viewing frustum created by
the call glFrustum(-15.0, 15.0, -10.0, 10.0, 5.0, 50.0).

Answer: By definition, the corners of the front face are (—15.0,—10.0, —5.0),
(15.0, —10.0, —5.0), (—15.0,10.0, —5.0) and (15.0,10.0, —5.0). The 2- and
y-values of the vertices of the base (or back face) are scaled from those
on the front by a factor of 10 (because far/near = 50/5 = 10). The
base vertices are, therefore, (—150.0, —100.0, —50.0), (150.0, —100.0, —50.0),

(—150.0, 100.0, —50.0) and (150.0,100.0, —50.0). 53

Chapter 2

ON TO OPENGL AND

54

3D COMPUTER
(GRAPHICS

Eixercise 2.24. Determine the corners of the viewing frustum created by
the call glFrustum(-5.0, 5.0, -5.0, 5.0, 5.0, 100.0).

The rendering sequence in the case of perspective projection is a two-step
shoot-and-print, similar to orthographic projection. The shooting step again
consists of projecting objects within the viewing frustum onto the viewing
face, except that the projection is no longer perpendicular. Instead, each point
is projected along the line joining it to the apex, as depicted by the black
dashed lines from the bottom and top of the man in Figure 2.34. Perspective
projection causes foreshortening because objects farther away from the apex
appear smaller (a phenomenon also called perspective transformation). For
example, see Figure 2.35 where A and B are of the same height, but the
projection pA is shorter than the projection pB.

section of the viewing face

Figure 2.35: Section of the viewing frustum showing foreshortening.

Time now to see perspective projection turn on its magic!

Experiment 2.22. Fire up the original helix.cpp program. Replace
orthographic projection with perspective projection; in particular, replace
the projection statement

glOrtho(-50.0, 50.0, -50.0, 50.0, 0.0, 100.0);
with
glFrustum(-5.0, 5.0, -5.0, 5.0, 5.0, 100.0);

You can see a real spiral now (Figure 2.36(a)). View the upright version as
well (Figure 2.36(b)), replacing

glVertex3f (R * cos(t), R * sin(t), t - 60.0);
with
glVertex3f (R * cos(t), t, R * sin(t) - 60.0);

A lot better than the orthographic version is it not?! End

ceivecop = EE o

/2N
©

(a) (b)

Section 2.8

H THREE DIMENSIONS,
1 THE DEPTH BUFFER
AND PERSPECTIVE
PROJECTION

()

/
L

Figure 2.36: Screenshots of helix.cpp using perspective projection with the helix
coiling up the (a) z-axis (b) y-axis.

Perspective projection is more realistic than orthographic projection as it
mimics how images are formed on the retina of the eye by light rays traveling
toward a fixed point. And, in fact, it’s precisely foreshortening that cues us
humans to the distance of an object.

One can think of the apex of the frustum as the location of
a point camera and the viewing face as its film.

The second rendering step where the viewing face is proportionately scaled
to fit onto the OpenGL window is exactly as for orthographic projection.
Similar to orthographic projection as well, the scene is clipped to within the
viewing frustum by the 6 planes that bound the latter.

One might think of orthographic and perspective projections
both as being along lines of projection convergent to a single point, the center
of projection (COP). In the case of perspective projection, this is a regular
point with finite coordinates; however, for orthographic projection the COP
is a “point at infinity” — i.e., infinitely far away — so that lines toward it are
parallel.

There do exist 3D applications, e.g., in architectural design,
where foreshortening amounts to distortion, so, in fact, orthographic
projection is preferred.

It’s because it captures the image of an object by intersecting
rays projected from the object — either orthographically or perspectively —
with a plane, which is similar to how a real camera works, that OpenGL is
said to implement the synthetic-camera model.

Exercise 2.25. (Programming) Continuing from where we were at the
end of the preceding experiment, successively replace the glFrustum() call
as follows, trying in each case to predict the change in the display before
running the code: 55

Chapter 2
ON TO OPENGL AND

3D COMPUTER

(GRAPHICS

Figure 2.37: Screenshot
of moveSphere. cpp.

56

a) glFrustum(-5.0, 5.0, -5.0, 5.0, 5.0, 120.0)

(a)
(b) glFrustum(-5.0, 5.0, -5.0, 5.0, 10.0, 100.0)
(¢) glFrustum(-5.0, 5.0, -5.0, 5.0, 2.5, 100.0)

(d) glFrustum(-10.0, 10.0, -10.0, 10.0, 5.0, 100.0)

Parts (b) and (c) show, particularly, how moving the film forward and back
causes the camera to “zoom” in and out, respectively.

Exercise 2.26. Formulate mathematically how hidden surface removal
should work in the case of perspective projection, as we did in Section 2.8.1
for orthographic projection.

Experiment 2.23. Run moveSphere. cpp, which simply draws a movable
sphere in the OpenGL window. Press the left, right, up and down arrow
keys to move the sphere, the space bar to rotate it and ‘r’ to reset.

The sphere appears distorted as it nears the periphery of the window,
as you can see from the screenshot in Figure 2.37. Can you guess why?
Ignore the code, especially unfamiliar commands such as glTranslatef ()
and glRotatef (), except for the fact that the projection is perspective.

This kind of peripheral distortion of a 3D object is unavoidable in any
viewing system which implements the synthetic-camera model. It happens
with a real camera as well, but we don’t notice it as much because the field
of view when snapping pictures is usually quite large and objects of interest
tend to be centered. End

2.9 Drawing Projects

Here are a few exercises to stretch your drawing muscles. The objects may
look rather different from what we have drawn so far, but as programming
projects aren’t really. In fact, you can probably cannibalize a fair amount of
code from earlier programs.

Exercise 2.27. (Programming) Draw a sine curve between z = —7
and z = 7 (Figure 2.38(a)). Follow the strategy of circle.cpp to draw a
polyline through a sample from the sine curve.

Exercise 2.28. (Programming) Draw an ellipse. Recall the parametric
equations for an ellipse on the zy-plane, centered at (X,Y), with semi-major
axis of length A and semi-minor axis of length B (Figure 2.38(b)):

=X+ Acost, y=Y + Bsint, z=0, 0<t<2rx

Again, circle.cpp is the template to use.

M (X Y-i-?

(a) (c)

OQ)VN(“

Figure 2.38: Draw these!

Eixercise 2.29. (Programming) Draw the letter ‘A’ as a two-dimensional
figure like the shaded region in Figure 2.38(c). It might be helpful to
triangulate it first on graph paper.

Allow the user to toggle between filled and wireframe a la the bottom
annulus of circularAnnuluses.cpp.

Exercise 2.30. (Programming) Draw the number ‘8’ as the 2D object
in Figure 2.38(d). Do this in two different ways: (i) drawing 4 discs and
using the z-buffer and (ii) as a true triangulation, allowing the user to toggle
between filled and wireframe. For (ii), a method of dividing the ‘8 into two
triangle strips is suggested in Figure 2.38(d).

Exercise 2.31. (Programming) Draw a ring with cross-section a
regular (equal-sided) polygon as in Figure 2.38(e), where a scheme to
triangulate the ring in one triangle strip is indicated. Allow the user to
change the number of sides of the cross-section. Increasing the number of
sides sufficiently should make the ring appear cylindrical as in Figure 2.38(f).
Use perspective projection and draw in wireframe.

Exercise 2.32. (Programming) Draw a cone as in Figure 2.38(g) where
a possible triangulation is indicated. Draw in wireframe and use perspective
projection.

Exercise 2.33. (Programming) Draw a children’s slide as in Fig-
ure 2.38(h). Choose an appropriate equation for the cross-section of the
curved surface — part of a parabola, maybe — and then “extrude” it as a
triangle strip. (If you did Exercise 2.31 then you've already extruded a
polygon.) Draw in wireframe and use perspective projection.

Section 2.9

57

Chapter 2

ON TO OPENGL AND

58

3D COMPUTER
(GRAPHICS

Your output from Exercises 2.31-2.33 may look a bit “funny”,
especially viewed from certain angles. For example, the ring viewed head-on
down its axis may appear as two concentric circles on a single plane. This
problem can be alleviated by drawing the object with a different alignment
or, equivalently, changing the viewpoint. In Experiment 2.24, coming up
shortly, we’ll learn code for the user to change her viewpoint.

Exercise 2.34. (Programming) Draw in a single scene a crescent moon,
a half-moon and a three-quarter moon (Figures 2.38(i)-(k)). Each should be
a true triangulation. Label each as well using text-drawing.

2.10 Approximating Curved Objects Once
More

Our next 3-space drawing project is a bit more challenging: a hemisphere,
which is a 2-dimensional object. We'll get in place, as well, certain design
principles which will be expanded in Chapter 10 dedicated to drawing (no
harm starting early).

A hemisphere is a 2-dimensional object because it is a
surface. Recall that a helix is 1-dimensional because it’s line-like. Now, both
hemisphere and helix need 3-space to “sit in”; they cannot do with less. For
example, you could sketch either on a piece of paper (2-space) but it would
not be the real thing. On the other hand, a circle — another 1D object —
does sit happily in 2-space.

Consider a hemisphere of radius R, centered at the origin O, with its
circular base lying on the zz-plane. Suppose the spherical coordinates of a
point P on this hemisphere are a longitude of § (measured clockwise from
the z-axis when looking from the plus side of the y-axis) and a latitude
of ¢ (measured from the zz-plane toward the plus side of the y-axis).
See Figure 2.39(a). The Cartesian coordinates of P are by elementary
trigonometry

(Rcos¢cosf, Rsing, Rcos¢psinb)

The range of 0 is 0 < 6 < 27 and of ¢ is 0 < ¢ < 7/2.

Exercise 2.35. Verify that the Cartesian coordinates of P are as claimed.
Suggested approach: From the right-angled triangle OPP’ one has |PP'| =
Rsin¢g and |OP’| = Rcos¢. |PP’| is the y-value of P. Next, from right-
angled triangle OP'P” find |OP”| and |P'P"|, the x- and z-values of P,
respectively, in terms of |OP’| and 6.

Sample the hemisphere at a mesh of (p+1)(¢ + 1) points P;;, 0 < i < p,
0 < j < g, where the longitude of P;; is (i/p) * 2w and its latitude (j/q) * /2.
In other words, p + 1 longitudinally equally-spaced points are chosen along
each of ¢+ 1 equally-spaced latitudes. See Figure 2.39(b), where p = 10 and

(a) (b)

Figure 2.39: (a) Spherical and Cartesian coordinates on a hemisphere (b) Approxi-
mating a hemisphere with latitudinal triangle strips.

¢ = 4. The sample points F;; are not all distinct. In fact, FPy; = P,;, for
all j, as the same point has longitude both 0 and 27; and, the point P,
for all 4, is identical to the north pole, which has latitude 7/2 and arbitrary
longitude.

The plan now is to draw one triangle strip with vertices at

Pojv1; Poj, Prjvis Puj, ooy By, Ppj

for each 7, 0 < j < ¢g—1, for a total of ¢ triangle strips. In other words, each
triangle strip takes its vertices alternately from a pair of adjacent latitudes
and, therefore, approximates the circular band between them. Figure 2.39(b)
shows one such strip. The stack of all ¢ triangle strips approximates the
hemisphere itself.

Experiment 2.24. Run hemisphere.cpp, which implements exactly the
strategy just described. You can verify this from the snippet that draws the
hemisphere:

for(j = 0; j < q; j++)

{
// One latitudinal triangle strip.
glBegin (GL_TRIANGLE_STRIP) ;
for(i = 0; i <= p; i++)
{
glVertex3f (R * cos((float) (j+1)/q * PI/2.0) *
cos(2.0 * (float)i/p * PI),
R * sin((float) (j+1)/q * PI/2.0),
R * cos((float) (j+1)/q * PI/2.0) *
sin(2.0 * (float)i/p * PI));
glVertex3f (R * cos((float)j/q * PI/2.0) *
cos(2.0 * (float)i/p * PI),
R * sin((float)j/q * PI/2.0),
R * cos((float)j/q * PI/2.0) *

Section 2.10
APPROXIMATING
CURVED OBJECTS ONCE
MORE

Figure 2.40: Screenshot
of hemisphere.cpp.

59

Chapter 2

ON TO OPENGL AND
3D COMPUTER
GRAPHICS

60

sin(2.0 *(float)i/p * PI));

}

glEnd () ;

}

Increase/decrease the number of longitudinal slices by pressing ‘P/p’.
Increase/decrease the number of latitudinal slices by pressing ‘Q/q’. Turn
the hemisphere about the axes by pressing ‘x’, ‘X’, ‘y’, Y’, ‘2z’ and ‘Z’. See
Figure 2.40 for a screenshot. Ena

Experiment 2.25. Playing around a bit with the code will help clarify
the construction of the hemisphere:

(a) Change the range of the hemisphere’s outer loop from
for(j = 0; j < q; j++)
to
for(j = 0; j < 1; j++)
Only the bottom strip is drawn. The keys ‘P/p’ and ‘Q/q’ still work.
(b) Change it again to
for(j = 0; j < 2; j++)
Now, the bottom two strips are drawn.
(¢) Reduce the range of both loops:
for(j = 0; j < 1; j++)

for(i = 0; i <= 1; i++)

The first two triangles of the bottom strip are drawn.

(d) Increase the range of the inner loop by 1:
for(j = 0; j < 1; j++)

for(i = 0; i <= 2; i++)

The first four triangles of the bottom strip are drawn. End

There’s syntax in hemisphere.cpp — none to do with the actual Section 2.10
making of the hemisphere — which you may be seeing for the first time. ApproxiMATING
The command glTranslatef(0.0, 0.0, -10.0) is used to move the Curvep OBircTs ONCE
hemisphere, drawn initially centered at the origin, into the viewing frustum, Morg
while the glRotatef () commands turn it. We’ll explain these so-called
modeling transformations in Chapter 4 but you are encouraged to experiment
with them even now as the syntax is fairly intuitive. The set of three
glRotatef (s, particularly, comes in handy to re-align a scene.

Exercise 2.36. (Programming) Modify hemisphere.cpp to draw:
(a) the bottom half of a hemisphere (Figure 2.41(a)).

(b) a 30° slice of a hemispherical cake (Figure 2.41(b)). Note that simply
reducing the range of the inner loop of hemisphere.cpp produces a
slice of cake without two sides and bottom, so these have to be added @
in separately to close up the slice.

Make sure the ‘P/p/Q/q’ keys still work.

Exercise 2.37. (Programming) Just to get you thinking about
animation, which we’ll be studying in depth soon enough, guess the effect
of replacing glTranslatef (0.0, 0.0, -10.0) with glTranslatef (0.0, (b)

0.0, -20.0) in hemisphere.cpp. Verify. Figure 2.41: (a) Half a

hemisphere (b) Slice of a

And, here are some more things to draw. hemisphere.

Exercise 2.38. (Programming) Draw the objects shown in Figure 2.42.
Give the user an option to toggle between filled and wireframe renderings.

RA0e

Lampshade Another lampshade Spiral band Rugby football

Figure 2.42: More things to draw.

A suggestion for the football, or ellipsoid, is to modify hemisphere. cpp
to make half of an ellipsoid (a hemi-ellipsoid?). Two hemi-ellipsoids back to
back would then give a whole ellipsoid.

[emar: 2.17. Filled renderings of 3D scenes, even with color, rarely look
pleasant in the absence of lighting. See for yourself by applying color to
3D objects you have drawn so far (remember to invoke a glPolygonMode (*,
GL_FILL) call). For this reason, we’ll draw mostly wireframe till Chapter 11, 61

Chapter 2

ON TO OPENGL AND
3D COMPUTER
GRAPHICS

62

which is all about lighting. You’ll have to bear with this. Wireframe, however,
fully exposes the geometry of an object, which is not a bad thing when one
is learning object design.

2.11 An OpenGL Program End to End

Of square.cpp, in particular, we have touched on almost every command

which is functional from a graphics points of view. However, let’s run over

the whole program to see all that goes into making OpenGL code tick.
We start with main():

1. glutInit(&argc, argv) initializes the FreeGLUT library. FreeGLUT,
successor to GLUT (OpenGL Utility Toolkit), is a library of calls to
manage a window holding OpenGL contexts (the reason such a separate
library is needed is that OpenGL itself is only a library of graphics
calls).

2. glutInitContextVersion(4, 3)
glutInitContextProfile (GLUT_COMPATIBILITY_PROFILE)

ask FreeGLUT to provide an OpenGL 4.3 context which is backward
compatible in that legacy commands are implemented. This, for
example, allows us to draw with the glBegin()-glEnd() operations
from OpenGL 2.1, which do not belong in the core profile of OpenGL
4.3.

Important: If your graphics card doesn’t support OpenGL 4.3 then the
program may compile but not run as the system is unable to provide the
context asked. What you might do in this case is thin the context by
replacing the first line above with glutInitContextVersion(3, 3),
or even glutInitContextVersion(2, 1), instead. Of course, then,
programs using later-generation calls will not run, but you should be
fine early on in the book.

3. glutInitDisplayMode (GLUT_SINGLE | GLUT_RGBA) asks the OpenGL
context to support a single-buffered frame, each pixel having red, green,
blue and alpha values.

4. glutInitWindowSize (500, 500)
glutInitWindowPosition(100, 100)

as we have already seen, set the size of the OpenGL window and the

location of its top left corner on the computer screen.

5. glutCreateWindow("square.cpp") creates the window (precisely, the
rendering context) with the specified string parameter as title.

6. glutDisplayFunc(drawScene)
glutReshapeFunc(resize)

glutKeyboardFunc (keyInput) Section 2.11

register the routines to call — so-called callback routines — when the AN OPENGL PROGRAM
OpenGL window is to be drawn, when it is resized (and first created), —ND TO END
and when keyboard input is received, respectively.

7. glewExperimental = GL_TRUE
glewInit()

initializes GLEW (the OpenGL Extension Wrangler Library) which
handles the loading of OpenGL extensions, with the switch set so that
extensions implemented in even pre-release drivers are exposed.

8. setup() invokes the initialization routine.

9. glutMainLoop begins the event-processing loop, calling registered
callback routines as needed.

We have already seen that the only command in the initialization
routine setup(), namely, glClearColor(1.0, 1.0, 1.0, 0.0), specifies
the clearing color of the OpenGL window.

The callback routine to draw the OpenGL window is:

void drawScene(void)

{

glClear (GL_COLOR_BUFFER_BIT);
glColor3£(0.0, 0.0, 0.0);

// Draw a polygon with specified vertices.
glBegin (GL_POLYGON) ;

glEnd () ;
glFlush();

}

The first command clears the OpenGL window to the specified clearing
color, in other words, paints in the background color. The next command
glColor3f () sets the foreground, or drawing, color, which is used to draw
the polygon specified within the glBegin()-glEnd() pair (we have already
examined this polygon carefully). Finally, glFlush() forces the prior draw
calls to actually execute, which, in this case, means the polygon is drawn.

The callback routine when the OpenGL window is resized, and first
created, is void resize(int w, int h). The window manager supplies
the width w and height h of the resized OpenGL window (or, initial window,
when it is first created) as parameters to the resize routine.

The first command

glViewport(0, 0, w, h); 63

Chapter 2

ON TO OPENGL AND

64

3D COMPUTER
(GRAPHICS

of square.cpp’s resize routine specifies the rectangular part of the OpenGL
window in which actual drawing is to take place; with the given parameters
it is the entire window. We’ll be looking more carefully into glViewPort ()
and its applications in the next chapter.

The next three commands

glMatrixMode (GL_PROJECTION) ;
glloadIdentity();
gl0rtho(0.0, 100.0, 0.0, 100.0, -1.0, 1.0);

activate the projection matrix stack, place the identity matrix at the top of
this stack, and then multiply the identity matrix by the matrix corresponding
to the final gl0rtho() command, effectively setting up the viewing box of
square.cpp described in Section 2.2.

The final two commands

glMatrixMode (GL_MODELVIEW) ;
glLoadIdentity();

of the resize routine activate the modelview matrix stack and place the
identity matrix at the top in readiness for modelview transformation
commands in the drawing routine, of which there happen to be none in
square.cpp. We’'ll be learning much more about OpenGL’s matrix stacks
and how they are at the heart of its operation in Chapters 4 and 5.

The callback routine to handle ASCII keys is keyInput (unsigned char
key, int x, int y). When an ASCII key is pressed it is passed in the
parameter char to this callback routine, as is the location of the mouse in
the parameters x and y. As is easy to see, all that keyInput of square.cpp
does is terminate the program when the escape key is pressed. In the next
chapter we’ll see callback routines to handle non-ASCII keys, as well as
interaction via the mouse.

As the reader might well guess, the guts of an OpenGL program are in
its drawing routine. Interestingly, the initialization routine often pulls a fair
load, too, because one would want to locate there tasks that need to be done
once at start-up, e.g., setting up data structures. In fact, it’s a common
beginner’s mistake to place initialization chores in the drawing routine, as
the latter is invoked repeatedly if there is animation, leading to inefficiency.

The other routines, such as main() and the interactivity and reshape
callbacks, are either standard and pretty much transferable from program
to program (e.g., main()), or easy to code.

2.12 Summary, Notes and More Reading

In this chapter we began the study of 3D CG, looking at it through the
“eyes” of OpenGL. OpenGL itself was presented to the extent that the reader
acquires functional literacy in this particular API. The drawing primitives
were probably the most important part of the API’s vernacular.

We discovered as well how OpenGL functions as a state machine,
attributes such as color defining the current state. Moreover, we learned that
quantifiable attribute values, e.g., RGB color, are typically interpolated from
the vertices of a primitive throughout its interior. We saw that OpenGL
clips whatever the programmer draws to within a viewing volume, either a
box or frustum.

Beyond acquaintance with the language, we were introduced as well to
the synthetic-camera model of 3D graphics, which OpenGL implements
via two kinds of projection: orthographic and perspective. This included
insights into the world coordinate system, the viewing volume — box or
frustum — which is the stage in which all drawings are made, the shoot-
and-print rendering process to map a 3D scene to a 2D window, as well as
hidden surface removal. We made a first acquaintance as well with another
cornerstone of 3D graphics: the technique of simulating curved objects using
straight and flat primitives like line segments and triangles.

Historically, OpenGL evolved from SGI's IRIS GL API, which popularized
the approach to creating 3D scenes by drawing objects in actual 3-space
and then rendering them to a 2D window by means of a synthetic camera.
IRIS GL’s efficiently pipelined architecture enabled high-speed rendering of
animated 3D graphics and, consequently, made possible as well real-time
interactive 3D. The ensuing demand from application developers for an
open and portable (therefore, platform-independent) version of their API
spurred SGI to create the first OpenGL specification in 1992, as well as
a sample implementation. Soon after, the OpenGL ARB (Architecture
Review Board), a consortium composed of a few leading companies in the
graphics industry, was established to oversee the development of the API.
Stewardship of the OpenGL specification passed in 2006 to the Khronos
Group, a member-funded industry consortium dedicated to the creation of
open-standard royalty-free APT’s. (That no one owns OpenGL is a good
thing.) The canonical, and very useful, source for information about OpenGL
is its own home page [103].

Microsoft has a non-open Windows-specific 3D API — Direct3D [90, 141]
— which is popular among game programmers as it allows optimization for
the pervasive Windows platform. However, outside of the games industry,
where it nonetheless competes with Direct3D, and leaving aside particular
application domains with such high-quality rendering requirements that ray
tracers are preferred, by far the dominant graphics API is OpenGL.

It’s safe to say that OpenGL is the de facto standard 3D graphics API.
A primary reason for this, other than the extremely well-thought-out design
which it had from inception — initial versions of Direct3D in contrast were
notoriously buggy and hard to use — is OpenGL’s portability. With their
recent versions, though, OpenGL and Direct3D seem to be converging, at
least in functionality (read an interesting comparison in Wikipedia [27]).
It’s worth knowing as well that, despite its intended portability, OpenGL
can take advantage of platform-specific and card-specific capabilities via

Section 2.12
SUMMARY, NOTES AND
MORE READING

65

Chapter 2

ON TO OPENGL AND

66

3D COMPUTER
(GRAPHICS

so-called extensions, at the cost of clumsier code.

An unofficial clone of OpenGL, Mesa 3D [93], which uses the same syntax,
was originally developed by Brian Paul for the Unix/X11 platform, but there
are ports now to other platforms as well.

Perhaps the best reason for OpenGL to be the API of choice for students
of 3D computer graphics is — and this is a consequence of its almost universal
adoption by the academic, engineering and scientific communities — the sheer
volume of learning resources available. Not least among these is the number
of textbooks that teach computer graphics with the help of OpenGL. Search
amazon.com with the keywords “computer graphics opengl” and you’ll see
what we mean. Angel [2], Buss [22], Govil-Pai [60], Hearn & Baker [69],
Hill & Kelley [72] and McReynolds & Blythe [92] are some introductions to
computer graphics via OpenGL that the author has learned much from.

In case the reader prefers not to be distracted by code, here are a few
API-independent introductions: Akenine-Moller, Haines & Hoffman [1],
Foley et al. [47, 48] (the latter being an abridgment of the former), Shirley &
Marschner [130], Watt [147] and Xiang & Plastock [154]. Keeping different
books handy in the beginning is a good idea as, often, when you happen
to be confused by one author’s presentation of a topic, simply turning to
another for help on just that may clear the way.

With regard to the code which comes with this book, we don’t make
much use of OpenGL-defined data types, which are prefixed with GL, e.g.,
GLsizei, GLint, etc., though the red book advocates doing so in order to
avoid type mismatch issues when porting. Fortunately, we have not yet
encountered a problem in any implementation of OpenGL that we’ve tried.

In addition to the code that comes with this book, the reader should
try to acquire OpenGL programs from as many other sources as possible,
as an efficient way to learn the language — any language as a matter of
fact — is by modifying live code. Among the numerous sources on the
web — there are pointers to several coding tutorials at the OpenGL site
[103] — special mention must be made of Jeff Molofee’s excellent tutorials
at NeHe Productions [102], covering a broad spectrum of OpenGL topics,
each illustrated with a well-documented program. The book by Wright,
Lipchak & Haemel [129] is specifically about programming OpenGL and has
numerous example programs. The red book comes with example code as
well. Incidentally, in addition to the somewhat bulky red and blue books, a
handy reference manual for OpenGL is Angel’s succinct primer [3].

Hard-earned wisdom: Write experiments of your own to clarify ideas.
Even if you are sure in your mind that you understand something, do write
a few lines of code in verification. As the author has repeatedly been, you
too might be surprised!

Part 11

Tricks of the Trade

67

CHAPTER

An OpenGL Toolbox

efore getting to animation and other fun stuff in the next chapter,

B here are a few practical skills worth acquiring first. Our goal

this chapter is to learn the following frequently-used OpenGL

programming devices:

1.

10.

11.

Vertex arrays and their drawing commands: storing geometric data in
a single location for efficient access.

. Vertex buffer objects: storage for vertex-related data on the graphics

server to save client-to-server transfer time.

Vertex array objects: encapsulating the set of calls defining an object’s
vertex arrays.

Display lists: “macros” to store frequently-invoked pieces of code.

. Drawing of text.

Programming the mouse — for button clicks, turning the wheel and
mouse motion.

Programming non-ASCII keys.

. Programming pop-up menus.

Line stipples: applying patterns to lines.
FreeGLUT objects: ready-made library objects.

Clipping planes: planes to clip a scene in addition to the automatic
six that bound the viewing box or frustum.

69

Chapter 3
AN OPENGL TOOLBOX

(10, 90) (90, 90)
(30, 70) (70, 70)

(30,30) (70, 30)
(10, 10) (90, 10)

Figure 3.2: Square ann-
ulus (z coordinates all 0).

70

12. gluPerspective(): a more intuitive version of the glFrustum()
projection statement with fewer parameters.

13. Viewports: specifiable parts of the OpenGL window to which a drawing
is rendered.

14. Multiple windows: multiple top-level OpenGL windows.

None is particularly challenging or deep and the reader may choose to
flip quickly through the pages to just see what each is about in order to be
able to return later for how to implement when the need arises.

However, the exceptions we would make to this approach are the first
three sections. The reader should master vertex arrays in Section 3.1 and
begin using them right away. As for vertex buffer objects and vertex array
objects in Sections 3.2-3.3, though we don’t expect the user to code much of
them at first, they are indispensable in the newer versions of OpenGL, e.g.,
4.3 of the fourth generation, which we shall cover in depth down the road,
so the reader should at least make their acquaintance at this time.

The next fourteen sections follow the order of the list.

3.1 Vertex Arrays and Their Drawing
Commands

(a) (b)

Figure 3.1: Screenshots of squareAnnulusi.cpp.

Experiment 3.1. Run squareAnnulusl.cpp. A screenshot is seen in
Figure 3.1(a). Press the space bar to see the wireframe in Figure 3.1(b).

It is a plain-vanilla program which draws the square annulus dia-
grammed in Figure 3.2 using a single triangle strip defined by a giant
glBegin (GL_TRIANGLE_STRIP)-glEnd () block containing 10 vertices and
their color attributes (the last two vertices being identical to the first two in

order to close the strip). Section 3.1
Ena VERTEX ARRAYS AND
THEIR DRAWING

Experiment 3.2. Run squareAnnulus?2.cpp. COMMANDS

It draws the same annulus as squareAnnulusl.cpp, except that the
vertex coordinates and color data are now separately stored in two-
dimensional global arrays, vertices and colors, respectively. Moreover, in
each iteration, the loop

glBegin (GL_TRIANGLE_STRIP);
for(int i = 0; i < 10; ++i)

{

glColor3fv(colors[i%8]);
glVertex3fv(vertices[i%8]);

}

glEnd () ;

retrieves a vector of coordinate values by the pointer form (also called vector
form) of vertex declaration, namely, glVertex3fv(*pointer), and as well a
vector of color values with the pointer form glColor3fv(*pointer). Knd

Compared with squareAnnulusi.cpp, an obvious efficiency gained in
squareAnnulus2. cpp is in placing vertex and color data at one place in the
code to be able simply to point to them from elsewhere. This allows the
triangle strip block, though still containing 10 vertices and their colors, to
be coded as a short loop.

It’s always good practice, as in the last program, to collect and place
data for a program at a single location separate from the procedures which
access the data. Redundancy and consequent errors tend to be eliminated,
memory usage is more efficient, and it’s easier to modularize and debug
those procedures which access data.

OpenGL offers specific devices — the verter array data structures — which
make it easy and efficient for the user to centralize and share data. Let’s
learn them from live code.

Experiment 3.3. Run squareAnnulus3.cpp.

It again draws the same colorful annulus as before. The coordinates and
color data of the vertices are stored in one-dimensional global vertex arrays,
vertices and colors, respectively, as in squareAnnulus?2. cpp, except, now,
the arrays are flat and not 2D (because of the way C++ stores array data,
we could, in fact, have specified vertices and colors as 2D arrays exactly
as in squareAnnulus2. cpp if we had so wanted). End

Now, to the magic: within the triangle strip loop

ngegin(GL_TR.IANGLE_STRIP) 5
for(int i = 0; i < 10; ++i) glArrayElement (i%8);
glEnd () ; 71

Chapter 3
AN OPENGL TOOLBOX

Figure 3.3: Screenshot of
squareAnnulusAnd-
Triangle.cpp.

72

the ith vector of values from both coordinates and color arrays are retrieved
simultaneously with a single glArrayElement (¢) call.
Note the steps in setting up the vertex arrays in the initialization routine:

1. Two vertex arrays are enabled by calling glEnableClientState (array),
where array is, successively, GL_VERTEX_ARRAY and GL_COLOR_ARRAY,
for vertex coordinate and color values, respectively. There are other
possible values for the parameter array to store additional kinds of
vertex data, e.g., normal values and texture coordinates.

2. The data for the two vertex arrays is specified with a call to gl-
VertexPointer (size, type, stride, *pointer) and a call to glColor-
Pointer(size, type, stride, *pointer). The parameter pointer is the
address of the start of the data array, type declares the data type, size
is the number of values per vertex (both coordinate and color arrays
store 3 values for each vertex) and stride is the byte offset between the
start of the values for successive vertices (0 indicates that values for
successive vertices are not separated).

Experiment 3.4. Run squareAnnulusé4.cpp.
The code is even more concise with the single call

glDrawElements (GL_TRIANGLE_STRIP, 10, GL_UNSIGNED_INT, stripIndices)
replacing the entire glBegin (GL_TRIANGLE_STRIP)-glEnd() block. End

The general form of this call is glDrawElements (primitive, count, type,
*indices) where parameter primitive is a geometric primitive, indices is the
address of the start of an array of indices, type is the data type of the indices
array and count is the number of indices to use. What this call does is pick
count number of vertices for primitive from the enabled vertex arrays in the
sequence specified by indices, equivalent, therefore, to the loop

glBegin (primitive) ;
for(i = 0; i < count; i++) glArrayElement (indices[i]);
glEnd () ;

Exercise 3.1. (Programming) Rewrite hemisphere. cpp to use vertex
arrays and a loop of glDrawElements () commands.

When there are multiple objects in a scene it’s convenient to keep their
data separately in different vertex arrays, as in the following program.

Experiment 3.5. Run squareAnnulusAndTriangle.cpp, which adds a
triangle inside the annulus of the squareAnnulus*.cpp programs. See
Figure 3.3 for a screenshot. End

This program demonstrates the use of multiple vertex arrays. The
vertex arrays verticesl and colors1 contain the coordinate and color data,
respectively, for the annulus, exactly as in squareAnnulus4. cpp.

The single vertex array vertices2AndColors2Intertwined for the
triangle, on the other hand, is intertwined in that it contains both coordinate
and color data together. When pointing to data for the triangle, the stride
parameter of both the glVertexPointer () and glColorPointer () calls is
set to 6 times the number of bytes in a float data item, as there are 6
such items between the start of successive coordinate or color vectors in the
intertwined array.

The statement

glDrawArrays (GL_TRIANGLES, 0, 3)

drawing the triangle introduces a new drawing command to use with
vertex arrays. Generally, glDrawArrays (primitive, first, count) draws
the geometric primitive primitive, using count elements from the vertex
array, starting with the element at position first. This is the command of
choice when the drawing needs simply to process elements in a vertex array
linearly, in particular, without needing to bounce around with something
like an indices array supplying an intermediate level of indirection.

Exercise 3.2. (Programming) Rewrite circle.cpp to use vertex
arrays and a single glDrawArrays() command.

Vertex Arrays
Vertex Texture
coords | Color |Normal| coords
—Vertex 0 [[xy z ||lrgb ||| || |
—Vertex 1 | xyz||[rgbl]| || |
—~Vertex 2 [[xy z||lrgbl|f || | 7\
=~Vertex 3 [[xyz||[rgbl|| | \/’

Index (012 3...

Figure 3.4: Logical representation of data in vertex arrays.

Vertex arrays make for efficient, logical and conceptually clean OpenGL
code. Figure 3.4 illustrates this (it shows additional vertex attributes which
are also stored in vertex arrays — we’ll be discussing these later). Moreover,
they are mandatory in the latest versions of OpenGL, e.g., 4.3, which we’ll
be covering later on. Make a habit of using vertex arrays!

Section 3.1

VERTEX ARRAYS AND

THEIR DRAWING
COMMANDS

73

Chapter 3
AN OPENGL ToOOLBOX

74

Caveat: Henceforth, we’ll be implementing vertex arrays consistently
ourselves except, possibly, for programs with few vertices where the overhead
might be a distraction.

Commands like glDrawElements () and glDrawArrays() are
for retained mode rendering vs. glBegin()-glEnd()-type commands for
immediate mode rendering. In immediate mode, the client (the machine
running the program) forces rendering by the server (the GPU), while, in
retained mode, the client provides the server only with instructions to perform
and the data to use, allowing the latter to optimize prior to rendering.

Keep in mind that the display routine is called repeatedly if
there is animation. It’s particularly inefficient, therefore, and, unfortunately,
a common beginner’s mistake to store static data in this routine, or perform
computations there which actually can be done once initially and the results
saved. The rule is to store vertex attributes in vertex arrays, while the
initialization routine is the place for one-time computation.

Before closing this section we’ll introduce a couple more drawing
commands to use with vertex arrays. The first,

glMultiDrawElements (primitive, *count, type, **indices, primitivesCount)

is a powerlifter with the capacity of multiple glDrawElements(). In fact,
the parameters of glMultiDrawElements() are much as you would expect
in order to combine many

glDrawElements (primitive, count, type, *indices)

calls, each drawing the same geometric primitive primitive: instead of
one count value, now there is an array *count of values; instead of an
array *indices of indexes, now there is an array of arrays **indices;
finally, primitivesCount, of course, is the number of primitives being
drawn, i.e., the number of glDrawElements() calls being combined. The
glMultiDrawElements () call itself is equivalent to
for (int i = 0; i < primitivesCount; i++)
glDrawElements (primitive, count[i], type, indices[i]);

It’s more efficient to draw an object composed of multiple instances of
the same geometric primitive using one (or few) glMultiDrawElements ()
calls versus several glDrawElements(). Let’s redo hemisphere.cpp from
the last chapter using a single glMultiDrawElements () command.

Experiment 3.6. Run hemisphereMultidraw.cpp, whose sole purpose is
to draw the loop

for(j = 0; j < q; j++)

{

// One latitudinal triangle strip.
glBegin (GL_TRIANGLE_STRIP);

of triangle strips in hemisphere.cpp using the single

glMultiDrawElements (GL_TRIANGLE_STRIP, count, GL_UNSIGNED_BYTE,
(const void *x)indices, q)

command instead. End

We'll leave the reader to deconstruct the code of hemisphereMulti-
draw.cpp, which is fairly straightforward and mostly dedicated to setting up
arrays for the glMultiDrawElements () call. Particularly, the reader should
convince herself that fillIndices() does its job of filling the 2D indices
array correctly (this is the part where one usually needs to be most careful
in transitioning from glDrawElements() to glMultiDrawElements()).

Exercise 3.3. (Programming) If you drew any of the objects from
Exercise 2.38 of the last chapter, redo the code to use glDrawElements(),
or, if possible, glMultiDrawElements ().

Finally,
glMultiDrawArrays (primitive, *first, *count, primitivesCount)

is related to glDrawArrays () exactly as glMultiDrawElements () is related
to glDrawElements(): a single glMultiDrawArrays() command can
encapsulate multiple glDrawArrays () commands.

Exercise 3.4. (Programming) Draw the bull’e eye of of Exercise 2.22
of the last chapter using a single glMultiDrawArrays () call.

3.2 Vertex Buffer Objects

OpenGL’s client-server model means that each time the server requires vertex
data — e.g., coordinates, color or such to execute, say, aglDrawElements ()
call — it must be fetched from the client. On a PC, for example, this translates
to a transfer across the bus connecting the CPU (the client holding the
application and data) to the GPU (graphics processing unit, being the server
which does the drawing). Now, accessing data across a bus is, typically,
many times slower than accessing it locally. Moreover, the access might even
be redundant if the same data had been retrieved for an earlier command
and, subsequently, not changed. To save such inefficiency, buffer objects
allow the programmer to explicitly ask that some particular set of data,
possibly vertex or pixel, be stored server-side, e.g., in the GPU memory in
case of a PC.

We will focus now on buffer objects that store vertex data, such being
called vertex buffer objects, or VBOs. Let’s get straight to code showing
how to create, initialize and update a VBO.

Section 3.2

VERTEX BUFFER

OBJECTS

75

Chapter 3
AN OPENGL ToOOLBOX

Figure 3.5: Screenshot of
squareAnnulusVBO. cpp.

76

|

Experiment 3.7. Fire up squareAnnulusVBO. cpp, which modifies square-
Annulus4.cpp to store vertex-related data in VBOs. There is a simple
animation, too, through periodically changing color values in a VBO.
Figure 3.5 is a screenshot, colors having already changed. Enda

Let’s understand how squareAnnulusVBO.cpp works. The setup()
routine is the one to look at first. The call

glGenBuffers(2, buffer)

returns two available buffer IDs which we’ll use to identify two VBOs, in
the array buffer. Generally, a call of the form glGenBuffers(n, buffer)
returns n such IDs. Two vertex arrays, one for coordinate data and the
other for color data, are enabled next by

glEnableClientState (GL_VERTEX_ARRAY) ;
glEnableClientState (GL_COLOR_ARRAY) ;

The binding command
glBindBuffer (GL_ARRAY_BUFFER, buffer [VERTICES])

activates the first VBO buffer [VERTICES], the parameter GL_ARRAY BUFFER
declaring it to be for vertex data. Next,

glBufferData(GL_ARRAY_BUFFER, sizeof(vertices) + sizeof(colors),
NULL, GL_STATIC_DRAW)

reserves sizeof (vertices) + sizeof (colors) bytes of space for the VBO
currently bound to GL_ARRAY BUFFER, that being buffer [VERTICES], of
course. The parameter NULL indicates that the buffer is not at this time
initialized with data. The last parameter GL_.STATIC_DRAW is a usage hint to
the OpenGL system that the data will be specified once and used multiple
times as a source for drawing commands.

The general form of the command glBufferData(target, size, *data,
usage) allocates size bytes of storage to the buffer object currently bound to
target, filling it with application memory data pointed to by *data, provided
this pointer is not NULL, supplying, as well, the usage hint usage. The usage
hint allows the system to optimize the data for performance.

The next two commands

glBufferSubData(GL_ARRAY_BUFFER, O, sizeof(vertices), vertices);
glBufferSubData(GL_ARRAY_BUFFER, sizeof(vertices), sizeof(colors),
colors) ;

are update commands. In particular, we use them to update the VBO
buffer [VERTICES] with coordinate and color values. What the command
glBufferSubData(target, offset, size, *data) does is copy size bytes of
application data pointed to by *data into the buffer object currently bound
to target, starting at an offset of offset bytes from the start of the buffer. So,

the two commands above evidently fill the first half of buffer [VERTICES]
with vertex coordinate values and the latter half with color values.
Next,

glBindBuffer (GL_ELEMENT_ARRAY_BUFFER, buffer [INDICES]) ;
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof (stripIndices),
stripIndices, GL_STATIC_DRAW) ;

activate the second VBO buffer [INDICES], the parameter GL_ELEMENT -
ARRAY BUFFER declaring it to be for index data, and initialize it with data
from the stripIndices array.

Finally,

glVertexPointer(3, GL_FLOAT, 0, 0);
glColorPointer(3, GL_FLOAT, 0, (GLvoid#) (sizeof (vertices)));

specify vertex pointers as in the discussion following Experiment 3.3; however,
the final parameter, instead of being a pointer to application memory as in
squareAnnulus4.cpp, now is an offset relative to the start of the currently-
bound VBO.

To the much simpler drawing routine next. The interesting thing to
notice here is another update method, different from glBufferSubData().
Firstly,

Section 3.2

VERTEX BUFFER

OBJECTS

float* bufferData = (float*)glMapBuffer (GL_ARRAY_BUFFER, GL_WRITE_ONLY);

retrieves into the variable bufferData a pointer to the data store for the VBO
currently bound to GL_ARRAY BUFFER, that being buffer [VERTICES]. The
second parameter GL_WRITE_ONLY says access will only be to write into the
VBO. The general form of this command is glMapBuffer (target, access),
where target is the target buffer object and access is one of GL_READ_ONLY,
GL_WRITE_ONLY and GL_READ WRITE.

The loop

for (int i = 0; i < sizeof(colors)/sizeof (float); i++)
bufferDatal[sizeof (vertices)/sizeof (float) + il

= (float)rand()/(float)RAND_MAX;

randomly updates color values in buffer [VERTICES], keeping in mind that
the type of bufferData means that we’ll be offsetting into the buffer storage
in units of float size (not byte as earlier). Once updating is done,

glUnmapBuffer (GL_ARRAY_BUFFER)
releases the VBO, following which

glDrawElements (GL_TRIANGLE_STRIP, 10, GL_UNSIGNED_INT, 0);

7

Chapter 3
AN OPENGL ToOOLBOX

78

draws the square annulus. Note, again, that the final parameter, instead of
being a pointer to the start of the index array in application memory, is now
an offset relative to the start of the (index data) VBO.

The reader can at this time safely ignore the functioning of the little
gadget animate (), which we include to periodically update color values and
actually display the changed annulus.

Our next project is to buffer the vertex and index data of hemisphere-
Multidraw.cpp.

Experiment 3.8. Run hemisphereMultidrawVB0.cpp. The code, which
buffers the vertex and index data of hemisphereMultidraw.cpp along the
lines of vbo.cpp, should be intelligible to one who followed our analysis of
the latter program. End

The current program, however, dispenses with the interactivity of
hemisphereMultidraw.cpp, which allowed the user to alter the number
of the hemisphere’s latitudinal and longitudinal slices. The reason is that a
different number of slices requires vertex and index arrays of different sizes
and contents so, therefore, corresponding new VBOs which need to be filled
anew with data from the application, which goes against the “ship data once
and use many times” principle underlying the utility of VBOs.

The problem of multiple data shipments might be circumvented by
reserving space for one giant VBO, but this solution seems not particularly
elegant. We shall learn an efficient way to interactively refine the hemisphere
when we come to the tessellation shaders of fourth generation OpenGL.

The one command of hemisphereMultidrawVB0.cpp we would like
to draw particular attention to, though, is the program’s only drawing
command:

glMultiDrawElements(GL_TRIANGLE_STRIP, count, GL_UNSIGNED_INT,
(const void **)offsets, LAT_SLICES);

In particular, note that the fourth parameter is now a pointer to the array
offsets of offsets in the index VBO to the start of 1D index subarrays, one
subarray per triangle strip. The somewhat ugly (const void #**) casting
of offsets in the glMultiDrawElements() command is necessary owing to
the type specification of this command’s parameters.

Exercise 3.5. Modify circle.cpp of the last chapter to use VBOs to hold
vertex data.

Exercise 3.6. (Programming) Continue with Exercise 3.4 to redo the
bull’s eye yet again, this time using VBOs to hold vertex data.

3.3 Vertex Array Objects

A busy scene with many objects, each coded up with its own vertex arrays,
possibly buffered in VBOs as well, will likely require switching multiple times

between these sets of arrays and buffers, leading to a proliferation of calls
like, for example, glBindBuffer () and glVertexPointer().

Since version 3.0, OpenGL provides a mechanism to deal with this
problem: a wvertex array object, or VAQO, is a container to hold all the calls
specifying one or more vertex arrays. So, once all the calls specifying a
particular object’s vertex arrays have been associated with a VAO, one need
only activate that VAO prior to drawing the object; in other words, the
VAO can be thought of as encapsulating the storage states associated with
the object. Let’s get to code.

Experiment 3.9. Run squareAnnulusAndTriangleVAO.cpp. This pro-
gram builds on squareAnnulusVBO.cpp. We add to it the triangle from
squareAnnulusAndTriangle.cpp in order to have two VAOs. Note, however,
that we separate out the vertex coordinates and color arrays of the triangle,
as intertwined they are difficult to manage in a VBO. The outputs of the
current program and squareAnnulusAndTriangle.cpp are identical. End

VAOs are simple to code. The call
glGenVertexArrays(2, vao)

in the initialization routine of squareAnnulusAndTriangleVAQ.cpp returns
two available IDs for VAOs in the array vao. Generally, a call of the form
glGenVertexArrays(n, wvao) returns n such IDs.

Next, the first block of statements bracketed by a // BEGIN...-//
END. .. comment pair, namely,

glBindVertexArray(vao [ANNULUS]) ;
glGenBuffers(2, buffer); // Generate buffer ids.

glVertexPointer (3, GL_FLOAT, 0, 0);
glColorPointer (3, GL_FLOAT, 0, (GLvoidx) (sizeof(verticesl)));

begins with the binding command glBindVertexArray(vao[ANNULUS]),
which activates the first VAO vao [ANNULUS]. Then, associated to this VAO
are the rest of the calls in the above block, which are copied line for line from
squareAnnulusVBO. cpp, in particular, from the block dedicated to setting
up the vertex arrays for the square annulus in the latter program.

The next block of statements bracketed by a // BEGIN...-// END...
comment pair, in particular,

glBindVertexArray(vao [TRIANGLE]) ;
glGenBuffers(l, buffer); // Generate buffer ids.

glVertexPointer(3, GL_FLOAT, 0, 0);
glColorPointer(3, GL_FLOAT, 0, (GLvoidx) (sizeof (vertices2)));

likewise associates to the VAO vao [TRIANGLE] all the calls after the first,
setting up vertex arrays for the triangle.

Section 3.3
VERTEX ARRAY
OBJECTS

79

Chapter 3
AN OPENGL ToOOLBOX

80

Let’s see now the drawing routine, much simplified courtesy the VAOs.
The two blocks of statement pairs in

glBindVertexArray (vao [ANNULUS]) ;
glDrawElements (GL_TRIANGLE_STRIP, 10, GL_UNSIGNED_INT, 0);

glBindVertexArray (vao [TRIANGLE]) ;
glDrawArrays (GL_TRIANGLES, 0, 3);

successively activate the VAOs corresponding to the annulus and the triangle,
drawing these objects. See again the code between the two // BEGIN...-//
END... comment pairs in the initialization routine to appreciate the savings
made in the drawing routine (which would have been even greater had there
been multiple occurrences of the annulus or triangle).

Note that glBindVertexArray(vaolD) creates a new VAO if vaolD has
been freshly returned by a glGenVertexArrays() call, and associates with
it subsequent vertex array specifications. On the other hand, if vaolD is the
ID of an already-created VAO, then glBindVertexArray (vaolID) activates
that VAO.

Exercise 3.7. (Programming) Put the VBOs and related data of
the hemisphere of Experiment 3.8 into a VAO and draw a sphere as one
hemisphere on top of another.

Exercise 3.8. (Programming) Continue with Exercise 3.5 putting all
the data for the circle into a VAO.

Important! Having thus introduced VBOs and VAOs we are,
oddly enough, going to counsel the reader against using them (for now)!
The reason is that the simple (low poly count) programs she, presumably,
is going to be writing for a while will hardly benefit from their usage, not
really justifying, therefore, the added layer of complexity. It’s best to focus
on the fundamentals at this stage. Just keep the resource in mind for when
your data sets get big.

So that you know, though, VBOs and VAOs will truly come into their
own when we study shader-based OpenGL, where using them is mandatory!
But, not to worry as they are nothing conceptually difficult as we have seen.

3.4 Display Lists

A set of commands, e.g., to define an object such as a wheel or robot arm,
which is invoked repeatedly can be cached in a so-called display list. The
display list is stored on the machine which runs the display unit and, often,
pre-compiled and optimized. When the set of commands needs to be invoked,
the program simply calls the display list rather than reissue them.

Display lists are particularly efficient in a client-server environment where
the two communicate over a network and a goal is to minimize traffic. Once

a display list has been saved by the server (the machine running the display Section 3.4
unit), it can be invoked on a single command from the client (the machine Dispray Lists
running the program).

Another evident advantage of display lists is that they provide a logical
way to encapsulate objects (think classes of objects, say, in C++).

Experiment 3.10. Run helixList.cpp, which shows many copies of the
same helix, variously transformed and colored. Figure 3.6 is a screenshot.

End

Here’s the snippet from the initialization routine of helixList . cpp which
creates the display list to draw the helix:

aHelix = glGenLists(1);

glNewList (aHelix, GL_COMPILE); |

glBegin(GL_LINE_STRIP);

for(t = -10 * PI; t <= 10 * PI; t += PI/20.0) .
glVertex3f (20 * cos(t), 20 * sin(t), t); flf}lié 3.6: Screenshot of

glEnd(); elixList.cpp.

glEndList ();

The call glGenLists(range) returns an integer which starts a block of
size range of available display list indices. If a block of size range is not
available, 0 is returned.

The set of commands to be cached in a display list — a helix-
drawing routine in the case of helixList.cpp — is grouped between a
glNewList (listName, mode) and a glEndList () statement. The parameter
listName — aHelix in helixList.cpp — is the index which identifies the list.
The parameter mode may be GL_.COMPILE (only store, as in the program) or
GL_COMPILE_AND_EXECUTE (store and execute immediately).

Finally, the drawing routine of helixList.cpp invokes glCallList-
(aHelix) six times to execute the display list. The glPushMatrix()-
glPopMatrix () statement pairs, as also the modeling transformations (viz.
glTranslatef (), glRotatef (), glScalef()) within these pairs, are used
to position and scale copies of the helix. Ignore them if they don’t make
sense at present.

Display lists should be created (i.e., the glNewList () -glEnd-
List () piece of code should be located) in the initialization routine if one
wants the efficiency of optimization. If the code is in the drawing routine
instead, then, actually, a different display list will be created every frame
at run-time! There is little optimization possible in this case. However, the
benefit of encapsulation from a programming practice point of view stays.

Exercise 3.9. (Programming) Put the hemisphere-drawing routine of
hemisphere.cpp into a display list and call the list twice to make a sphere —
apply the scaling transformation glScalef (1.0, -1.0, 1.0) to one of the
hemispheres to flip it over. 81

Chapter 3
AN OPENGL TOOLBOX

nim

Figure 3.7: Screenshot of
multipleLists.cpp.

82

Exercise 3.10. (Programming) Make a ring of concentric circles of
multiple colors on the zy-plane by repeatedly calling a display list containing
a circle-drawing routine based on circle.cpp. Scale each invocation of the
circle by a factor of w with a call to glScalef (u, u, 1.0).

There is a special mechanism in OpenGL to execute several display lists
together.

Experiment 3.11. Run multipleLists.cpp. See Figure 3.7 for a
screenshot. Three display lists are defined in the program: to draw a
red triangle, a green rectangle and a blue pentagon, respectively. End

The call glCalllists(n, type, *lists) causes n display list executions
(n is 6 in the program). The indices of the lists to be executed are
obtained by adding the current display list base — this base is specified
by glListBase (base) — to the successive offset values of type type in the
array pointed by lists.

Exercise 3.11. (Programming) Modify multipleLists.cpp to draw
a vertical black line between each object and the next. The line itself should
be in a display list.

3.5 Drawing Text

Graphical text can be of two types: bitmapped (also called raster) and stroke
(also called wvector). Characters of bitmapped text are defined as a pattern
of on and off bits in a rectangular block, while characters of stroke text are
created using line primitives. For example, in Figure 3.8, the letter ‘E’ is
represented as a bitmap consisting of 10 on bits and 5 off in a 3 x 5 raster,
as well as in stroke form as a union of four straight segments.

Bitmapped Stroke

Figure 3.8: Bitmapped versus stroke text.

The FreeGLUT library offers both bitmapped and stroke characters. The
calls glutBitmapCharacter (*font, character) and glutStrokeCharacter-
(*font, character) render character in the specified font.

Fonts available for bitmapped characters include:

GLUT_BITMAP_8_BY_13
GLUT_BITMAP_9_BY_15
GLUT_BITMAP_TIMES_ROMAN_10
GLUT_BITMAP_TIMES_ROMAN_24
GLUT_BITMAP_HELVETICA_10
GLUT_BITMAP_HELVETICA_12
GLUT_BITMAP_HELVETICA_18

Fonts available for stroke characters include:

GLUT_STROKE_ROMAN

GLUT_STROKE_MONO_ROMAN
Stroke characters offer an advantage over bitmapped ones in that they can
be scaled in size and rotated, because line segments can be so transformed,
whereas bitmapped characters, being fixed patterns, are always aligned with
the axes.

Experiment 3.12. Run fonts.cpp. Displayed are the various fonts
available through the FreeGLUT library. See Figure 3.9. End

The canonical routine we use to draw bitmapped text is the following:

void writeBitmapString(void *font, char *string)

{

char *c;
for (c = string; *c != ’\0’; c++) glutBitmapCharacter(font, *c);

}
Accordingly, a subsequent call block

glRasterPos3f(p, ¢, 7);
writeBitmapString(font, string);

renders string in bitmapped font starting from position (p, ¢, r) in world
coordinates. Keep in mind that these coordinates are transformed by prior
modelview transformations, e.g., glTranslatef (), glRotatef () and such,
though, as we said earlier, the bitmapped text itself is always drawn axis-
aligned.

Our canonical routine to draw stroke text is

void writeStrokeString(void *font, char *string)

{

char *c;
for (c = string; *c != ’\0’; c++) glutStrokeCharacter(font, *c);

}

which renders the text starting from (0, 0,0) in world coordinates. Note that
in addition to scaling and rotation, one can apply a glLineWidth() call to
alter the thickness of stroke characters as well, as FreeGLUT uses GL_LINE*
primitives to draw them.

Section 3.5
DRAWING TEXT

ELUT_BITHER__¥Y_13
BT RITHEP_S B

'
#

r)é"

15

St
GLUT_BITMAF_TIMES_ROMAN_24

i X
GLUT_BITHAP_HELGTICS 12

e

GLUT_BITMAP_HELVETICA 18
6y,

Y

oy

v?;hm

Figure 3.9: Screenshot of

fonts.cpp.

83

e e — T 2]

]

Chapter 3 Exercise 3.12. (Programming) Locate the labels of circularAnnu-
AN OPENGL TooLBox luses.cpp in the white center of each annulus (you may have to split the
labels into more than one line to fit them).

Exercise 3.13. (Programming) Modify fonts.cpp to be able to cycle
through stroke fonts of different line widths by pressing the space bar.

3.6 Programming the Mouse

The mouse can be programmed to respond to button clicks, motion and the
wheel turning.

Clicks

(R s Fiperiment 3.13. Run mouse. cpp. Click the left mouse button to draw
| points on the canvas and the right one to exit. Figure 3.10 is a screenshot of
“OpenGL” scrawled in points. End

A mouse callback routine mouse_callback_func() is registered to handle
mouse events by the FreeGLUT statement glutMouseFunc (mouse_callback_func)
in the main routine. In the case of mouse.cpp, the callback routine is

| mouseControl():

= 1 void mouseControl(int button, int state, int x, int y)

Figure 3.10: Screenshot {
of mouse.. cpp. if (button == GLUT_LEFT BUTTON && state == GLUT_DOWN)
points.push_back(Point(x, height - y));
if (button == GLUT_RIGHT BUTTON && state == GLUT_DOWN) exit(0);
glutPostRedisplay();
}

The callback routine itself has the form mouse_callback_func(button, state,
x, y), where button is one of:

GLUT_LEFT_BUTTON, GLUT_RIGHT_BUTTON, GLUT_MIDDLE_BUTTON
and state is one of:
GLUT_UP, GLUT_DOWN

The coordinates (x,y) return the location in the OpenGL window where the
mouse event occurs. They are measured similarly as for screen coordinates —
recall from Section 2.3 that screen coordinates are measured in pixels starting
from the origin at the upper-left corner of the screen with the z-axis heading
right and the y-axis down. The only difference in the case of a mouse click is
that the origin is at the upper-left corner of the OpenGL window, rather than
screen. Units are still pixels and the x-axis still heads right and the y-axis
84 down. See Figure 3.11. This necessitates care when using the coordinates of

(0,0) width Section 3.6

| -
y X PROGRAMMING THE
x,) = MoUSsE
X A L0
)
height — y =
vy OpenGL Window

Computer Screen
Figure 3.11: Mouse event coordinates (z,y).

a mouse event in the OpenGL program itself, because there is no a priori
connection between the former and the world coordinates used by the latter.
In particular, note the following two steps in mouse. cpp:

1. The call
glOrtho(0.0, w, 0.0, h, -1.0, 1.0);

in the reshape routine resize(w, h) ties screen coordinates to world
coordinates by making the dimensions of the viewing face equal the
actual physical dimensions of the OpenGL window, the latter being
passed to the reshape routine via the parameters w and h. Because
viewing face and OpenGL window are now the same size in their
respective coordinate systems (world and screen), effectively, one unit
along the viewing face along either the z- or y-axis is a pixel.

The only correction remaining to be made is owing to the y-axis being
“upside down” going from one coordinate system to the other. This is
done next.

2. The statement
points.push_back(Point(x, height - y));

in the mouse callback routine to store points in the points vector when
the mouse is clicked makes the final correction from the event’s screen
coordinates to world coordinates, as (x,y) on the screen corresponds
to (z, height — y,0) in the world.

A point of note in mouse. cpp is the use of an STL vector to
store Point objects. STL stands for the Standard Template Library, a C++
library of container classes, e.g., vector, list, set and so forth, together with
routines to manipulate container objects. It is a part of the current ANSI
C++ standard. The STL is extremely useful and saves a lot of repetitive
programming. Readers not already familiar with the STL are well-advised
to pick it up. There’s no need to devote time separately for this purpose.
Keeping a book like Schildt [124] handy while you code should be enough. 85

Chapter 3
AN OPENGL ToOOLBOX

86

Exercise 3.14. (Programming) Write a program to draw a circle on a
canvas after two left clicks of the mouse. The first click picks the center and
the second a point on the circle.

Motion

Experiment 3.14. Run mouseMotion.cpp, which enhances mouse.cpp
by allowing the user to drag the just-created point using the mouse with the
left button still pressed. End

The additional capability of mouseMotion.cpp is obtained as follows.
First, when the left mouse button is clicked, the mouse callback routine
mouseControl() stores a point at the clicked position in the variable
currentPoint of type Point. Only when the button is released is the
new point added to the points vector by the same routine.

In the interim, between the press and release of the left mouse button, if
the mouse moves, then its motion is tracked by the mouse motion callback
routine mouseMotion():

void mouseMotion(int x, int y)

{

currentPoint.setCoords(x, height - y);
glutPostRedisplay();

}

This routine simply keeps updating the coordinates of currentPoint with
the current location of the mouse as the latter moves with the button pressed.
The result is that this point, which is drawn separately in the drawScene ()
routine, travels with the mouse. Note that, just as the mouse callback
routine is registered in main(), so is the motion callback routine, the latter
by glutMotionFunc(mouseMotion).

One can also track so-called passive motion of the mouse — when it moves
with no button pressed — via a passive motion callback function, which is
registered in main with a glutPassiveMotionFunc() call.

Exercise 3.15. (Programming) Enhance the previous circle-drawing
exercise by allowing the user to view the changing circle as the mouse is
dragged with the second click.

Exercise 3.16. (Programming) Modify mouseMotion.cpp to make a
program which allows the user to sketch on a canvas.
Turning the Wheel

Experiment 3.15. Run mouseWheel.cpp, which further enhances mouse-
Motion.cpp with the capability to change the size of the points drawn by
turning the mouse wheel. End

The wheel callback routine

void mouseWheel(int wheel, int direction, int x, int y)

{
(direction > 0) 7 pointSize++ : pointSize--;
glutPostRedisplay();

}

updates the wheel number, which is 0 if there is a single wheel; direction of
rotation, which is either +1 or —1; and the location (z,y) of the mouse in
screen coordinates.

To change the size of all drawn points with the wheel, the current
program sets the point size in the drawing routine to be the value of the
global pointSize, rather than the value of the Point member variable
size as in mouseMotion.cpp. And, of course, the wheel callback routine is
registered in main() by glutMouseWheelFunc (mouseWheel).

Exercise 3.17. (Programming) Further enhance the circle-drawing
program by allowing the user to change the circle’s size by scrolling the
mouse wheel.

3.7 Programming Non-ASCII Keys

In various programs to date, we’ve already interacted with the OpenGL
window through keyboard entry by registering a handling function key-
board_handling_func() in the main routine via a call to glutKeyboard-
Func (keyboard_handling_func). To interact with non-ASCII keys such
as the arrow, F, and page up and down keys, one needs likewise to
register a handling function special_key_handling_func() with a call to
glutSpecialFunc (special_key_handling_func) .

Experiment 3.16. Run moveSphere.cpp, a program we saw earlier in
Experiment 2.23, where you can see a screenshot as well. Press the left,
right, up and down arrow keys to move the sphere, the space bar to rotate
it and ‘v’ to reset.

Note how the specialKeyInput () routine is written to enable the arrow
keys to change the location of the sphere. Subsequently, this routine is
registered in main() as the handling routine for non-ASCII entry. End

Exercise 3.18. (Programming) Write a program to cycle through the
FreeGLUT fonts applied to the string “I am having so much fun with OpenGL
it can’t be legal!” by pressing the left and right arrow keys.

3.8 Menus

The FreeGLUT library provides pop-up menus.

Section 3.7
PROGRAMMING
NoN-ASCII KEYS

87

Chapter 3
AN OPENGL TOOLBOX

o e e ————————— i (] ||

Figure 3.12: Screenshot
of menus. cpp.

Figure 3.13: Screenshot
of lineStipple.cpp.

88

Experiment 3.17. Run menus.cpp. Press the right mouse button for
menu options which allow you to change the color of the initially red square
or exit. Figure 3.12 is a screenshot. End

A glutCreateMenu(menu_function) declaration in the makeMenu()
routine creates a menu, registers menu_function() as its callback function
and returns a unique integer identifying the menu — to be used by any
higher-level menu which may call the current one.

glutAddMenuEntry(tag, returned_value) creates a menu entry titled
tag which, when clicked, returns returned_value to the callback function
menu_function(). The latter, therefore, must be of the form menu_function-
(type_of_returned_value).

glutAddSubMenu(tag, sub_menu) is similar to glutAddMenuEntry(),
except that when tag is clicked a sub-menu pops up whose ID is sub_menu.
Evidently, the statement creating a sub-menu must precede that for a higher-
level menu which calls it, as the former’s ID sub_menu is needed in order to
create the latter. So, menus have to be created “bottom-up”.

glutAttachMenu(button) attaches the menu to a mouse button.

Exercise 3.19. (Programming) Enhance menus. cpp to add two more
items to the top-level pop-up menu:

(a) A “Mode” option allowing the rectangle to be shown either “Outlined”
or “Filled”.

(b) A “Size” option which leads to two sub-menu options “Width” and
“Height”, either of which has options “Small”, “Medium” and “Large”.

3.9 Line Stipples

One can create stippled, i.e., broken, lines in OpenGL by specifying and
applying a stipple pattern.

ExpeI‘iment 3.18. Run lineStipple.cpp. Press the space bar to cycle
through stipples. A screenshot is shown in Figure 3.13. End

Stippling is enabled with a call to glEnable(GL_LINE_STIPPLE) and
disabled by calling glDisable (GL_LINE_STIPPLE). The stipple pattern itself
is specified by the call glLineStipple (factor, pattern).

Parameter pattern is a hex string of the form 0x X3 X5 X Xy where each X;
is a hexadecimal symbol (equivalent to 4 bits). Thus X5.X5X; X/ represents
a 16 bit string, say, a15a14 - .. ag. Parameter factor is a positive integer.

The stipple pattern is applied as follows: if ag is 1, then the first factor
pixels starting from the first vertex of the line primitive are set on; if ag is 0,
the first factor pixels are off. If a; is 1, the next factor pixels of the line are
on; if a1 is 0, they are off. And so on Note that the lower bits of the
stipple pattern come first and that factor simply scales the pattern.

For example, suppose the stipple is specified by glLineStipple(1,
0x5555). Since 0x5555 = 0101010101010101, alternate pixels of the line are
on and off with the first one being on. See Figure 3.14(a).

Lol [OO PO IO PO PO OPROPR fee-
(a)

laglaglaglaglag] | | | | | | | | | | | |:|"°
(b)

Figure 3.14: (a) Line stipple specified by glLineStipple(1, 0x5555) (b) Line stipple
specified by glLineStipple(5, 0x5555).

If the stipple is specified by glLineStipple(5, 0x5555) then alternate
groups of five pixels on the line are on and off. See Figure 3.14(b).

Exercise 3.20. (Programming) Apply the different line stipples of
lineStipple.cpp to the circle in circle.cpp.

FreeGLUT stroke characters can be stippled to interesting effect as well, as
GL_LINE* primitives are used to draw them.

Exercise 3.21. (Programming) Display the text “I am having so much
fun with OpenGL it can’t be legal!” using variously stippled stroke fonts.

A 2D Drawing Program

Experiment 3.19. Run canvas.cpp, a simple program to draw on a flat
canvas with menu and mouse functionality.

Left click on an icon to select it. Then left click on the drawing area to
draw — click once to draw a point, twice to draw a line or rectangle. Right
click for a pop-up menu. Figure 3.15 is a screenshot. End

Exercise 3.22. (Programming) Enhance canvas.cpp:

(a) Add a polyline (multi-segment line) drawing capability. Create
a suitable icon. Left clicking this icon picks the polyline option.
Subsequent left clicks pick successive segment endpoints until a middle
click completes the polyline.

(b) Add a circle drawing capability. After left clicking the circle icon, the
next two left clicks pick the center and a point on the circle, respectively,
following which the circle is drawn.

(¢) Add a regular (equal-sided) hexagon drawing capability. After left
clicking the hexagon icon, the next two left clicks pick the center and
a vertex, respectively, following which the hexagon is drawn.

Section 3.9
LINE STIPPLES

Figure 3.15: Screenshot
of canvas.cpp.

89

Chapter 3
AN OPENGL ToOOLBOX

90

(d) For the existing line segment and rectangle options, as well as for the
new polyline, circle and hexagon options, use mouse motion tracking
to allow the user to see the newly-created primitive change in real-time
as the mouse moves, before it is saved with a final click.

(e) Add functionality to input text from the keyboard.

(f) Give options for the grid size in the pop-up menu.

(g) Add color options through the pop-up menu.

(h) Add an outlined/filled option through the pop-up menu.

(i) For the preceding three parts, make the pop-up menu depend on where
the mouse is right-clicked. In particular, the color option should be
available when any of the primitive icons on the left is clicked; the
filled option, on the other hand, should appear only upon clicking
icons of the 2D primitives, namely, the rectangle, circle and hexagon;
finally, if the click is on the drawing area, then the options are, simply,
grid-clear-quit (grid having a size sub-menu as well). For the color and
filled options, the icon should change as well to represent the choice
made.

A way to make the pop-up menu location-sensitive is by having the
mouse callback routine, rather than the main routine, call the menu-
making routine, so that the latter can access mouse event coordinates.

(j) Here’s something not to do with drawing per se but to get you to
revisit vertex arrays in the first section: the drawGrid() routine draws
lines over a for loop of vertices; use vertex array commands instead.

3.10 FreeGLUT Objects

The FreeGLUT library offers a collection of standard objects. Each object
is available in two flavors: solid and wireframe. The respective calls are
shown in the table below. The objects are all drawn centered at the origin.
The parameters, if any, determine the object’s size and the fineness of
its triangulation. All the FreeGLUT objects are depicted in wireframe in
Figure 3.16.

Solid

Wireframe

glutSolidSphere (radius, slices,
stacks)

glutSolidCube (size)
glutSolidCone (base, height,
slices, stacks)

glutSolidTorus (inRadius,
outRadius, sides, rings)
glutSolidDodecahedron (void)
glutSolidOctahedron (void)
glutSolidTetrahedron (void)
glutSolidIcosahedron (void)

glutWireSphere (radius, slices,
stacks)

glutWireCube (size)
glutWireCone (base, height,
slices, stacks)

glutWireTorus (inRadius,
outRadius, sides, Tings)
glutWireDodecahedron (void)
glutWireOctahedron (void)
glutWireTetrahedron (void)
glutWireIcosahedron (void)

Section 3.11
CLIPPING PLANES

glutSolidTeapot (size)

% @
W £

Figure 3.16: Wireframe FreeGLUT objects.

glutWireTeapot (size)

(7
R

R

X
AR
SN

<

KX
¥

/),
2

N

Experiment 3.20. Run glutObjects.cpp. Press the arrow keys to cycle
through the various FreeGLUT objects and ‘x/X’, ‘y/Y’ and ‘z/Z’ to turn
them. End

3.11 Clipping Planes

We saw in Section 2.4 that OpenGL clips a scene to within a viewing volume
(box or frustum), a process which can be thought of as clipping the scene
off on one side of each of the six planes which bound the volume. These six
planes, called clipping planes, are automatically implied by the projection
statement, such as glOrtho() or glFrustum(), which defines the box or

frustum. However, the programmer can specify additional clipping planes.
The call

glClipPlane (GL_CLIP_PLANE:, *equation) ; 91

Chapter 3
AN OPENGL TOOLBOX

92

specifies an ith additional clipping plane, where equation points to an array
giving the four coefficients of the equation

Az + By+Cz+D =0

of the new clipping plane. If this plane is enabled with the call
glEnable (GL_CLIP_PLANE?), then the points (x,y,z) of objects which lie
in the open half-space

Az +By+Cz+D <0

are clipped off; equivalently, only those points (z,y, z) of objects lying in
the closed half-space
Ar+By+Cz+D >0

are rendered. The ith additional clipping plane is disabled with a call to
glDisable (GL_CLIP_PLANE?).

€
+Cz+D<0

half-space
Ax + By + Czl+ D >0

v+ Cz+D=0

Viewer

Figure 3.17: A clipping plane clipping a plane in half.

In Figure 3.17, for example, only the front part of the aircraft will be
visible. Although we depict it in the figure, the clipping plane itself is not
drawn by OpenGL.

Experiment 3.21. Run clippingPlanes. cpp, which augments circular-
Annuluses.cpp with two additional clipping planes which can be toggled
on and off by pressing ‘0’ and ‘1’, respectively.

The first plane clips off the half-space —z + 0.25 < 0, i.e., z > 0.25,
removing the floating white disc of the annulus on the upper-right. The
second one clips off the half-space « + 0.5y < 60.0, which is the space below
an angled plane parallel to the z-axis. Figure 3.18 is a screenshot of both
clipping planes activated. End

Exercise 3.23. (Programming) Change the equations of the two
clipping planes of clippingPlanes.cpp so that enabling both leaves only
the red disc of the upper-right annulus visible.

Exampie 3.1. Replace the data
double eqn0[4] = 0.0, 0.0, -1.0, 0.25;

for the first clipping plane of clippingPlanes.cpp with
double eqnO[4] = 0.0, 0.0, 1.0, -0.25;

Apparently, we are replacing —z 4 0.25 = 0 with z—0.25 = 0, which are both
equations of the same plane. Why, then, is the result of clipping different
for the two?

Answer: The half-space clipped, given the equation —z + 0.25 = 0, is
—2z 4 0.25 < 0, i.e., z > 0.25. On the other hand, the half-space clipped,
given the equation z — 0.25 =0, is z — 0.25 < 0, i.e., z < 0.25.

Exercise 3.24. (Programming) Add a clipping plane to sphereIn-
Box1.cpp (see Chapter 11, ignore lighting) to clip off a corner of the box,
revealing the sphere inside. Your output should look like Figure 3.19.

Exercise 3.25. (Programming) Add a clipping plane to moveSphere. cpp
to turn the movable sphere into a movable hemisphere.

Clipping planes cause OpenGL not to display parts of an object which
are otherwise computed. For example, if one draws a hemisphere by clipping
off half a FreeGLUT sphere, then OpenGL first computes geometric data
(vertices, etc.) for the entire sphere and then suppresses the part on one
side of the clipping plane before rendering. See Figure 3.20. Clearly, this is
doubly inefficient for the suppressed part, as OpenGL computes the location
of each of its vertices, and then computes again to decide that they are
actually invisible!

Keep in mind as well that clipping planes don’t act just on any one
object, but across the whole scene. So, a careless programmer could very
well end up unintentionally slicing a remote object. Clipping planes though
are ideal for the purpose of displaying a cut-away view of an object, as in
Figure 3.19.

Bottom line: Use clipping planes as a viewing and not a drawing device.

Section 3.11
CLIPPING PLANES

Figure 3.18: Screenshot
of clippingPlanes.cpp.

o —
!

Figure 3.19: Screenshot
of sphereInBox1l.cpp with
a corner clipped off.

(&

Figure 3.20: Clipping a
sphere to make a
hemisphere: the clipped
half is computed and
suppressed.

Chapter 3 3.12 gluPerspective()

AN OPENGL TOOLBOX
The statement

gluPerspective (fovy, aspect,

calls a utility library routine built on top of glFrustum(), the perspective
projection command introduced in Section 2.8. It creates a viewing frustum
as does glFrustum(). However, the frustum is specified differently:

base on the
plane z = —far

viewing frustum

(0,0, 0)

Figure 3.21: Viewing frustum created by gluPerspective(fovy, aspect, near, far).

The parameter fovy, called the field of view angle, is the angle along the
yz-plane at the apex of the pyramid (of which the frustum is a truncation)
aspect is the aspect ratio = width/height of the front face of the frustum;
and near and far remain as for glFrustum(). See Figure 3.21. These four
parameters it turns out are, in fact, enough for OpenGL to determine the
eight vertices of a frustum which is symmetric about the z-axis, in other

near, far);

™\
width
© viewing face on the
plane z = —near
X

words, a frustum corresponding to a

glFrustum(left, right, bottom, top, near, far);

call where left = —right and bottom = —top. Such frustums are, in fact,
most typical in applications and rarely does one have occasion to create one

94 not symmetric about the z-axis.

b

Example 3.2. The projection statement of hemisphere.cpp is the Section 3.12
symmetric gluPerspective()

glFrustum(-5.0, 5.0, -5.0, 5.0, 5.0, 100.0);
Determine the equivalent gluPerspective() call.

Answer: The aspect ratio of the front face of the frustum created by
glFrustum(-5.0, 5.0, -5.0, 5.0, 5.0, 100.0) is 1 as both its width
(= right — left) and height (= top — bottom) are 10.0. To determine fovy,
see Figure 3.22, which shows the section of the viewing frustum by the
yz-plane. By elementary trigonometry the half-angle at the apex is 45°, so
that fovy = 90.0. Therefore, the equivalent call is

gluPerspective(90.0, 1.0, 5.0, 100.0);

Check it out! Replace the current glFrustum() projection statement of

hemisphere.cpp with the gluPerspective() statement just computed. Figure 3.22: Section by
the yz-plane (i.e., z =0
Exercise 3.26. Change the near value of the projection statement of plane) of the viewing

hemisphere.cpp as follows: frustum (bold) created by
glFrustum(-5.0, 5.0,

glFrustum(-5.0, 5.0, -5.0, 5.0, 10.0, 100.0); -5.0, 5.0, 5.0, 100.0).
Determine the equivalent gluPerspective () call.

Exercise 3.27. Determine the equivalent glFrustum() call of the following
projection statement:

gluPerspective(60.0, 2.0, 10.0, 100.0);

Hint: Use trigonometry in the yz-section to determine first the top and
bottom values and then the aspect ratio to determine left and right.

Whether to define a perspective projection by a glFrustum() or a
gluPerspective() call is a matter of personal preference. As we’ve seen,
they are equivalent provided one is interested only in frustums symmetric
about the z-axis.

However, a convenience of gluPerspective() in certain applications
arises from the fact that the aspect ratio of the viewing face is an explicit
parameter, making it easy to bind it to the aspect ratio of the OpenGL
window itself. This comes in handy if you recall the final step of the rendering
process when the viewing face is scaled to fit onto the OpenGL window —
resulting in distortion if the aspect ratios of the two differ. Let’s see this in
code.

Experiment 3.22. Run hemisphere.cpp.
The initial OpenGL window is a square 500 x 500 pixels. Drag a corner
to change its shape, making it tall and thin. The hemisphere is distorted
to become ellipsoidal (Figure 3.23(a)). Replace the perspective projection
statement 95

Chapter 3
AN OPENGL ToOOLBOX

96

glFrustum(-5.0, 5.0, -5.0, 5.0, 5.0, 100.0);
with
gluPerspective(90.0, 1.0, 5.0, 100.0);

As this is equivalent to the original glFrustum() call, there is still distortion
if the window’s shape is changed. Next, replace the projection statement
with

gluPerspective(90.0, (float)w/(float)h, 5.0, 100.0);

which sets the aspect ratio of the viewing frustum equal to that of the
OpenGL window. Resize the window — the hemisphere is no longer distorted
(Figure 3.23(b))! End

=R (W - = 2

(a) (b)

Figure 3.23: Screenshots of hemisphere.cpp with the window squished and the
projection statement (a) glFrustum(-5.0, 5.0, -5.0, 5.0, 5.0, 100.0) and
(b) gluPerspective(90.0, (float)w/(float)h, 5.0, 100.0).

3.13 Viewports

The viewport of a scene is that region of the OpenGL window in which it is
drawn. By default, it is the entire window. However, a glViewPort() call
may be used to draw to a smaller rectangular subregion.

The call glViewport(z, y, w, h) specifies the viewport as the rectan-
gular subregion of the OpenGL window which has its lower-left corner at
the point (z,y), and is of width w and height h. Units are pixels and the
coordinates in the OpenGL window are such that the origin is located at the
lower-left corner, the increasing direction of the x-axis is rightwards, and
that of the y-axis upwards. See Figure 3.24.

Multiple viewports can be created in a single OpenGL window by invoking
more than one glViewport() call in the drawing routine. The contents of

VA .
width (width, heighi)
View- I E’J
port 3
(. =5

0.0) OpenGL Window §

Computer Screen
Figure 3.24: Viewport specified by glViewport(x, y, w, h).

a particular viewport are defined by the statements following its defining
glViewport () call and before the next one (if any).

Experiment 3.23. Run viewports.cpp where the screen is split into two
viewports with contents a square and a circle, respectively. Figure 3.25 is a
screenshot.

A vertical black line is drawn (in the program) at the left end of the
second viewport to separate the two. As the aspect ratio of both viewports
differs from that of the viewing face, the square and circle are squashed
laterally. End

Viewports are particularly useful in games to show split-screen views of
different scenes, or perhaps the same scene from different cameras. We'll see
a nice application of this in the program spaceTravel.cpp coming up in
the next chapter, where the user maneuvers a spacecraft through an asteroid
field with a split-screen view in the OpenGL window — one from a global
fixed camera and the other from the craft itself.

Exercise 3.28. (Programming) Change the orthographic projection
statement of viewports.cpp so that the square and circle are no longer
distorted.

Exercise 3.29. (Programming) Create a 2 x 2 grid of four equally-sized

viewports with one of the words “This”, “is”, “so” and “easy” in each. Add
lines to separate the viewports.

3.14 Multiple Windows

The glutCreateWindow() call of the FreeGLUT library may be invoked
more than once in the main routine to create multiple top-level OpenGL
windows. Each call to glutCreateWindow() returns an integer id which is
then passed to a glutSetWindow (id) call in the display routine to determine
the current drawing window. Properties such as the display routine, resize
routine, etc., of each top-level window may be specified independently.

Section 3.14
MuLTIPLE WINDOWS

e = G|

— ‘

I | |
|
Fi

Figure 3.25: Screenshot
of viewports.cpp.

97

Chapter 3
AN OPENGL TOOLBOX

98

Figure 3.26: Screenshot of windows. cpp.

Experiment 3.24. Run windows.cpp, which creates two top-level win-
dows (Figure 3.26). End

Exercise 3.30. (Programming) Create three top-level windows with
red, green and blue backgrounds, and containing the words “Red”, “Green’
and “Blue”, respectively.

i

3.15 Summary, Notes and More Reading

In this chapter we learned a number of different coding utilities, none difficult,
but all useful. Vertex arrays and their access commands are particularly
important for efficient OpenGL code and the reader should make a practice
of using them. The coverage of syntax was by no means complete, nor was
it meant to be.

For OpenGL utilities the reader should refer to the red and blue books for
a full description. FreeGLUT’s home page [49] doesn’t seem to have much by
way of documentation but Lighthouse 3D [87] has a tutorial on FreeGLUT’s
predecessor GLUT which applies to FreeGLUT. NeHe Productions [102] has,
among many, tutorials on fonts and display lists.

Keep in mind that the purpose of GLUT originally, as of FreeGLUT
now, is to provide a few easy-to-use platform-independent utilities to build
a simple GUI, not provide a full-featured suite.

Programmers who do require sophisticated interfaces should employ
platform-specific utilities, e.g., the MFC Library for Windows. Readers may
also find helpful Paul Rademacher’s GLUI User Interface Library [57], which
provides a collection of GLUT-based utilities such as buttons and checkboxes.
Trolltech’s Qt [142] may be of interest to those planning commercial-grade
GUT’s.

Part 111

Movers and Shapers

99

CHAPTER

Transformation, Animation and

Viewing

objects, and maneuver the camera, skills essential to making movies

and games. OpenGL provides the laboratory for us to explore. The
modeling transformations of OpenGL — including translation, scaling and
rotation — control object motion, while the viewing transformation manages
the camera. We'll examine the syntax of the transformation commands and
how they are composed and applied to achieve animation. To efficiently and
creatively animate it’s essential to have some grasp of its implementation, so
we’ll examine parts of OpenGL’s animation engine as well. An experiment-
discuss-repeat approach is used throughout, each new idea introduced and
illustrated with the help of live code.

When objects move, especially in an interactive and unscripted environ-
ment like that of a game, they can collide. We'll discuss collision detection,
therefore, in the context of animation. Related to animation as well is the
notion of the orientation of an object, which we’ll see how to quantify.

T he goal for this chapter is to understand how to move and manipulate

Section 4.1 introduces the three modeling transformations — translation,
rotation and scaling. Sections 4.2 and 4.3 discuss composing transformations
and how such composition places multiple objects relative to one another.
The modelview matrix stack facilitates the application of transformations
to multiple objects, as we see in Section 4.4. Section 4.5 analyzes a few
instructional animation programs and concludes with a bunch of exercises.

The viewing transformation is introduced in Section 4.6. After grasping
its functioning we find that a viewing transformation is actually a bit of a
“fake”, being simulated by OpenGL with the help of modeling transformations.
An understanding of the viewing transformation leads to a preliminary

101

Chapter 4
TRANSFORMATION,
ANIMATION AND
VIEWING

Figure 4.1: Screenshot of
box.cpp.

102

discussion in Section 4.6, as well, of orientation and how it is specified by
Euler angles. We present as well an application of the viewing transformation
to animate a camera, together with rudimentary collision detection, in a
space-travel program.

More animation code, including programs to develop key-frame animation
sequences for a man-like articulated figure, as well as simple shadow
animation, is presented in Section 4.7.

Section 4.8 describes methods to enable a user to choose an object on
the screen with a mouse-like device, a facility critical in interactive programs
like games. Section 4.9 concludes the chapter with a summary, notes and
suggestions for more reading.

This chapter is a longish slog but it gets you well on the way to designing
realistic 3D applications.

4.1 Modeling Transformations

Translation, scaling and rotation, the so-called modeling transformations of
OpenGL, are applied to objects to change their location and shape.

4.1.1 Translation

Experiment 4.1. Run box.cpp, which shows an axis-aligned — i.e., with
sides parallel to the coordinate axes — FreeGLUT wireframe box of dimensions
5 x 5 x 5. Figure 4.1 is a screenshot. Note the foreshortening — the back of
the box appears smaller than the front — because of perspective projection
in the viewing frustum specified by the glFrustum() statement.

Comment out the statement

glTranslatef (0.0, 0.0, -15.0);
What do you see now? Nothing! We’ll explain why momentarily. End

The translation command glTranslatef(p, ¢, r) translates an object
p units in the z-direction, ¢ units in the y-direction and r units in the
z-direction. Precisely, each point (z,y,z) of the object is mapped to the
point (z + p, y + ¢, z + 7). See Figure 4.2, which also shows a whole box
translated by glTranslatef(p, ¢, 7).

Returning to box.cpp, the command glutWireCube(5.0) itself creates
a box of side length 5 centered at the origin, with vertices, therefore, at
(£2.5,42.5,+2.5), each vertex corresponding to one of the eight possible
combinations of signs. The box clearly lies entirely outside the viewing
frustum specified by glFrustum(-5.0, 5.0, -5.0, 5.0, 5.0, 100.0) —
in fact, entirely on the clipped side of the viewing plane z = —5. However,
glTranslatef (0.0, 0.0, -15.0) pushes the box 15 units in the —z
direction, to place it inside the viewing frustum and make it visible (see

Section 4.1

O, v+q, z+r) MODELING
TRANSFORMATIONS

YA

Figure 4.2: Translation: glTranslatef(p, ¢, 7).

Figure 4.3). That is why commenting out this statement results in a blank
window.

Figure 4.3: Translating into the viewing frustum.

Experiment 4.2. Successively replace the translation command of
box.cpp with the following, making sure that what you see matches your
understanding of where the command places the box. Keep in mind
foreshortening, as well as clipping to within the viewing frustum. 103

Chapter 4
TRANSFORMATION,
ANIMATION AND
VIEWING

Figure 4.4: Screenshot of
Experiment 4.3.

YA

X

52)

e

z Ux, vy, wz)

Figure 4.5: Scaling:
glScalef(u, v, w).

104

1. glTranslatef (0.0, 0.0, -10.0)
2. glTranslatef (0.0, 0.0, -5.0)
3. glTranslatef (0.0, 0.0, -25.0)
4. glTranslatef(10.0, 10.0, -15.0)
Enda

Exercise 4.1. To what point is (—2.0,3.0,9.0) transformed by gl-
Translatef(3.0, 1.0, -8.0)7

Eixercise 4.2. What is the OpenGL translation that takes (30, —1.0,2.0)
to (3.0,5.0,9.0)?

4.1.2 Scaling

Experiment 4.3. Add a scaling command, in particular, replace the
modeling transformation block of box.cpp with (Block 1*):

// Modeling transformations.
glTranslatef (0.0, 0.0, -15.0);
glScalef (2.0, 3.0, 1.0);

Figure 4.4 is a screenshot — compare with the unscaled box of Figure 4.1.

End

The glTranslatef(0.0, 0.0, -15.0) call is retained to
“kick” the scaled box into the viewing frustum.

Precisely, the scaling command glScalef (u, v, w) maps each point
(z,y, z) of an object to the point (ux, vy, wz). This has the effect of stretching
objects by a factor of w in the z-direction, v in the y-direction, and w in the
z-direction. See Figure 4.5.

Let’s see how the box is transformed by scaling in the preceding
experiment. The vertices of the scaled box are obtained from the original ones
by the transformation (z,y, z) — (2z,3y, 12). For example, (2.5,2.5,2.5)
(5.0,7.5,2.5), (—2.5,2.5,2.5) — (—5.0,7.5,2.5), and so on. So, the new
vertices are (5.0, £7.5, £2.5), which gives a 10 x 15 x 5 box as one would
expect from applying glScalef (2.0, 3.0, 1.0) toa b x5 x 5 box.

Experiment 4.4. An object less symmetric than a box is more interesting
to work with. Care for a teapot? Accordingly, change the modeling
transformation and object definition part of box.cpp to (Block 2):

*To cut-and-paste you can find the block in text format in the file
chap4codeModifications.txt in the directory ExperimenterSource/CodeModifications.

// Modeling transformations.
glTranslatef (0.0, 0.0, -15.0);
glScalef (1.0, 1.0, 1.0);

glutWireTeapot(5.0); // Teapot.

Of course, glScalef (1.0, 1.0, 1.0) does nothing and we see the original
unscaled teapot (Figure 4.6).

Next, successively change the scaling parameters by replacing the scaling
command with the ones below. In each case, make sure your understanding
of the command matches the change that you see in the shape of the teapot.

1. glScalef (2.0, 1.0, 1.0)
2. glScalef(1.0, 2.0, 1.0)

3. glScalef(1.0, 1.0, 2.0) Enda

Exercise 4.3. (Programming) Continuing with the preceding experi-
ment, try to guess first, for the scalings below, each of which has at least one
negative parameter, the difference you will see from the initial configuration
shown in Figure 4.6.

Hint: The transformation (z,y, z) — (—x,y, 2), for instance, is a mirror-like
reflection about the yz-plane. See Figure 4.7.

4. glScalef(-1.0, 1.0, 1.0)
5. glScalef (1.0, -1.0, 1.0)
6. glScalef(1.0, 1.0, -1.0)

7. glScalef(-1.0, -1.0, 1.0)

Exercise 4.4. (Programming) Continue with the preceding exercise
and replace the scaling command with the following, each of which has a
zero parameter:

8. glScalef(1.0, 1.0, 0.0)
Hint: The transformation
(z,y,2) — (1z, 1y, 0z) = (z, y, 0)
“collapses” all z-values to 0.0.
9. glScalef(1.0, 0.0, 1.0)

10. glScalef(0.0, 1.0, 1.0)

Section 4.1
MODELING
TRANSFORMATIONS

[o —

Figure 4.6: Screenshot of
initial configuration of
Experiment 4.4.

Figure 4.7: Reflection in
the yz-plane.

105

Chapter 4 Not very interesting the last two! A scaling transformation where one or
TransrorRMATION, —more of the scaling factors is zero is said to be degenerate. Although not
ANIMATION AND common, there is the occasional application where a degenerate scaling
Viewine transformation comes in handy. We'll see one such in drawing a shadow

later in this chapter in Experiment 4.35.

Exercise 4.5. To what point is (—2.0,3.0,9.0) transformed by glScalef-
(3.0, 1.0, -8.0)7

Eixercise 4.6. What is the OpenGL scaling that transforms (3.0,-1.0,2.0)
to (3.0,5.0,9.0)7

We have so far scaled only FreeGLUT wire cubes and teapots, whose
own axes are aligned with the coordinate axes, so that, effectively, they are
only stretched and not skewed. Let’s try one that’s not so aligned.

)
] Voo

(a) (b)

Figure 4.8: Screenshots of Experiment 4.5: (a) before scaling (b) after.

Experiment 4.5. Replace the cube of box.cpp with a square whose sides
are not parallel to the coordinate axes. In particular, replace the modeling
transformation and object definition part of that program with (Block 3):

// Modeling transformations.
glTranslatef (0.0, 0.0, -15.0);
// glScalef(1.0, 3.0, 1.0);

glBegin (GL_LINE_LOOP) ;

glVertex3f (4.0, 0.0, 0.0);
glVertex3£(0.0, 4.0, 0.0);
glVertex3f(-4.0, 0.0, 0.0);
glVertex3f (0.0, -4.0, 0.0);

glEnd () ;

See Figure 4.8(a). Verify by elementary geometry that the line loop forms a

106 square with sides of length 4v/2 angled at 45° to the axes.

Uncomment the scaling. See Figure 4.8(b). The square now seems
skewed to a non-rectangular parallelogram. Mathematically verify that the
new vertices after the transformation (z,y, z) — (z,3y, 2) is applied to the
square’s vertices are indeed those of a parallelogram. End

4.1.3 Rotation

Experiment 4.6. Add a rotation command by replacing the modeling
transformation and object definition part — we prefer a teapot — of box. cpp
with (Block 4):

// Modeling transformations.
glTranslatef (0.0, 0.0, -15.0);
glRotatef(60.0, 0.0, 0.0, 1.0);

glutWireTeapot (5.0);

Figure 4.9 is a screenshot.

The rotation command glRotatef (A, p, ¢, r) rotates each point of
an object about an axis from the origin O = (0,0, 0) to the point (p,q,r).
The amount of rotation is A°, measured counter-clockwise looking from
(p,q,r) to the origin. In this experiment, then, the rotation is 60° CCW
(counter-clockwise) looking down the z-axis. Ena

If the intuitive idea you have of rotating a point P about an axis is of the
point turning along a cylinder on that axis as in Figure 4.10, then, well, you
are perfectly correct. What we’ll do next, though, is describe the rotation
glRotatef (A, p, ¢,) as a physical process for which we, hopefully, can
find a formula.

Refer to Figure 4.11 as you read on. Assume (p,q,7) # O so that the
axis [through (p,¢,r) and the origin O can indeed be drawn; in fact, if
(p,q,7) = O then glRotatef (A, p, ¢, 7) is not a valid operation. Now,
first, if a given point P lies on [itself then the situation is simple — the
rotation does not move it. Suppose, then, that P does not lie on [. Here’s
how it’s mapped by the rotation:

1. Drop the perpendicular from P to the point @) on [. Denote as L the
segment PQ. L lies on the plane h perpendicular to [through Q.

2. Locate a viewer at V far enough along [, on the side of (p, ¢,7), as to
be able to see h when looking toward the origin.

3. Rotate the segment L about @ (on the plane h) an angle A° counter-
clockwise, as measured by the viewer.

4. If L’ is the new position of L after rotation, then P is mapped to the
corresponding endpoint P’ of L.

Section 4.1
MODELING
TRANSFORMATIONS

Figure 4.9: Screenshot
for Experiment 4.6.

Figure 4.10: Turning
along a cylinder.

107

TRANSFORMATION,

Chapter 4

ANIMATION AND

108

VIEWING

A

v qr

Figure 4.11: Rotation: glRotatef (A, p, ¢, 7. The point P is rotated according to
the 4-step process in the text. The rotation of a box is also shown.

Note: In Experiment 4.6, the axis of rotation, the z-axis, happens to intersect
the object rotated, which is the teapot.

Experiment 4.7. Continuing with Experiment 4.6, successively replace
the rotation command with the ones below, in each case trying to match
what you see with your understanding of how the command should turn the
teapot. (It can occasionally be a bit confusing because of the perspective
projection.)

1. glRotatef(60.0, 0.0, 0.0, -1.0)

2. glRotatef (-60.0, 0.0, 0.0, 1.0)

3. glRotatef(60.0, 1.0, 0.0, 0.0)

4. glRotatef(60.0, 0.0, 1.0, 0.0)

5. glRotatef(60.0, 1.0, 0.0, 1.0) Ena

The alert reader probably noticed in the 4-step definition of rotation
earlier, that the purpose of the point (p,q,r), apart from specifying the axis
[joining it to the origin, is to specify the side of the origin on [that the
viewer is located. If (p, ¢,r) were replaced by another point (p’,¢’,7’) on I
on the same side of O as (p,q,r), then the rotation would be ezactly same.
This is illustrated in the next experiment.

Experiment 4.8. Appropriately modify box.cpp to compare the effects
of each of the following pairs of rotation commands:

1. glRotatef(60.0, 0.0, 0.0, 1.0) and glRotatef(60.0, 0.0, 0.0,
5.0)

2. glRotatef(60.0, 0.0, 2.0, 2.0) and glRotatef(60.0, 0.0, 3.5,
3.5)

3. glRotatef (60.0, 0.0, 0.0, -1.0) and glRotatef(60.0, 0.0, 0.0,

-7.5)

There is no difference in each case. One concludes that the rotation command
glRotatef (A, p,q,r) is equivalent to glRotatef (A, ap, aq, ar), where « is
any positive scalar. End

Eixercise 4.7. Relate the three commands glRotatef (A,p,q,7), gl-
Rotatef (—A,p,q,r) and glRotatef (A, Bp, Bq, fr), where [is a negative
scalar.

Now, the general formula for how a point P = (z,y, z) is mapped by
the rotation glRotatef (A, p, ¢, r) is complicated — in fact, significantly
more so than the corresponding formulae in case of translation and scaling.
Nevertheless, we’ll ask the reader to derive the formula in the three simple
cases where the rotation is about a coordinate axis. We’ll defer the general
formula to the next chapter.

Exercise 4.8. Deduce the formula for how P = (z,y,2) is mapped by
each of the rotations:

(a) glRotatef(4, 1.0, 0.0, 0.0)
(b) glRotatef(A, 0.0, 1.0, 0.0)
(¢) glRotatef(A, 0.0, 0.0, 1.0)

Part answer: See Figure 4.12 for (c). The axis of rotation is the z-axis. The
point P = (x,y,z) is mapped to P’ = (a/,y’, 2’). We’ll find expression for
2', 3y’ and 2’ in terms z, y, z and the angle parameter A.

Draw L = PQ), the perpendicular from P to the z-axis. Further, draw
the line k£ through @ parallel to the z-axis and the perpendicular PR from
P to k. If ZPQR = «, then

x = |RQ| = |L|cosa
~ |RP|

|L| sin «

Now, the rotated segment L’ = P’() makes an angle of o+ A with k, so that
/P'QR' = a + A, where R’ is the foot of the perpendicular from P’ to k.
Therefore,

¥ = |L'|cos(a+A) = |L|cos(a+ A)
y = |L|sin(a+ A) = |L|sin(a+ A)

Section 4.1
MODELING
TRANSFORMATIONS

109

Chapter 4
TRANSFORMATION,
ANIMATION AND
VIEWING

110

YA o P'(x",y',2)

L I P(x, y, z)
A
] k
0 —
0,0, 1)
z

>

Figure 4.12: glRotatef(A, 0.0, 0.0, 1.0).

as |L'| = |L| because rotation does not change length. Apply trigonometric
formulae to expand the rightmost sides of the two equations above:

2 = |L|cosacos A—|L|sinasinA = xcosA —ysin A

y' = |Llcosasin A+ |L|sinacos A = zsin A+ ycosA
using the expressions for and y derived earlier. And, of course,
Z =z
because rotation about the z-axis does not change the z-value.
Exercise 4.9. To what point is (2.0,3.0,9.0) transformed by
(a) glRotatef(90.0, 0.0, 0.0, 1.0)7
(b) glRotatef(90.0, 0.0, 0.0, 5.0)7
(c) glRotatef(90.0, 0.0, 0.0, -5.0)7
(

)
)
d) glRotatef(60.0, 0.0, 0.0, 1.0)7
(e) glRotatef(180.0, 0.0, 1.0, 0.0)?
)

(f) glRotatef(45.0, 1.0, 0.0, 0.0)7

4.2 Composing Modeling Transformations

In most of the previous experiments we successively applied more than
one modeling transformation to an object — a translation plus one other —
but never explained exactly how it is that OpenGL goes about composing
multiple transformations. There is magic to this as we’ll see, but first a
couple of motivating experiments.

Experiment 4.9. Apply three modeling transformations by replacing the
modeling transformations block of box.cpp with (Block 5):

// Modeling transformations.
glTranslatef (0.0, 0.0, -15.0);
glTranslatef(10.0, 0.0, 0.0);
glRotatef(45.0, 0.0, 0.0, 1.0);

It seems the box is first rotated 45° about the z-axis and then translated
right 10 units. See Figure 4.13(a). The first translation glTranslatef (0.0,
0.0, -15.0), of course, serves to “kick” the box down the z-axis into the
viewing frustum.

Next, interchange the last two transformations, namely, the rightward
translation and the rotation, by replacing the modeling transformations
block with (Block 6):

// Modeling transformations.
glTranslatef (0.0, 0.0, -15.0);
glRotatef(45.0, 0.0, 0.0, 1.0);
glTranslatef(10.0, 0.0, 0.0);

It seems that the box is now first translated right and then rotated about
the z-axis causing it to “rise”. See Figure 4.13(b). End

T EE

| \:: @3/

(a) (b)

Figure 4.13: Screenshots from Experiment 4.9.

Exercise 4.10. (Programming) Again, apply three modeling trans-
formations, this time by replacing the modeling transformations block of
box.cpp with (Block 7):

// Modeling transformations.
glTranslatef (0.0, 0.0, -15.0);
glRotatef(45.0, 0.0, 0.0, 1.0);
glScalef (1.0, 3.0, 1.0);

Section 4.2
COMPOSING MODELING
TRANSFORMATIONS

111

TRANSFORMATION,

Chapter 4

ANIMATION AND

112

VIEWING

Interchange the rotation and scaling by replacing the modeling transforma-
tion block with (Block 8):

// Modeling transformations.
glTranslatef (0.0, 0.0, -15.0);
glScalef (1.0, 3.0, 1.0);
glRotatef(45.0, 0.0, 0.0, 1.0);

Keeping the conclusions of the preceding experiment in mind, can you explain
what you see?

Apparently transformations are applied to an object in backward order
through the code from where the object is created! This is correct
and, hopefully, once it’s explained how the OpenGL engine composes
transformations, will not seem as idiosyncratic as it might at first.

We need, though, a quick acquaintance first with a concept which will
be discussed in depth in the next chapter — that transformations correspond
to matrices. We’ll present here just enough that the reader can follow
along. Our goal is a conceptual understanding of how transformations are
composed.

A vertex V = (z,y, z) is represented in OpenGL as a 4 X 1 column matrix

_= N e 8

Take that extra 1 in the 4th row for granted for now — it’s to do with so-called
homogeneous coordinates. We'll use V' to denote this column matrix as well.
A modeling transformation ¢ is represented by a 4 x 4 matrix of the form

a1 a2 a3 a4
a a a a
M — 21 22 23 24
az1 as2 a3z 0G24
aq1 A42 A43 A44

Applying this transformation to the vertex V' consists of multiplying V' from
the left by the transformation matrix. In particular, V is transformed by ¢
to the vertex ¢(V') where

a1l a2 a1z a4
t(V) - MV = a21 a2 G23 (24
aszr azz2 asz a4
a41 Q42 Q43 Q44

a11x + a2y + a3z —+ a4
21T + 22y + G232 + Q24
a31T + azey + azzz + a4
41T + Q42Y + Q432 + Q44

I
r 1
N e 8

Here’s an example.

xdmP1 1. e transtormation ¢; given by the translation comman
Exampie 4.1. The transf ion ¢, given by th lati d
glTranslatef (5.0, 0.0, 0.0) corresponds to the matrix

1.0 0.0
0.0 1.0
0.0 0.0
0.0 0.0

M =

This is verified by the multiplication

1.0 0.0
0.0 1.0
0.0 0.0
0.0 0.0

0.0 5.0
0.0 0.0
1.0 0.0
0.0 1.0

0.0 5.0

0.0 0.0

1.0 0.0

0.0 1.0

T x+5.0
y | _ Y
z z

1 1

Similarly, verify that the transformation t5 given by the translation command
glTranslatef (0.0, 10.0, 0.0) corresponds to the matrix

1.0 0.0
0.0 1.0
0.0 0.0
0.0 0.0

My

0.0 0.0
0.0 10.0
1.0 0.0
0.0 1.0

Now, if one applies o followed by ¢; to a vertex V', then V' is mapped as

follows:

Vi ta(t2(V)) = My(MaV) = (Mi Ma)V

(the associativity of matrix multiplication was applied in the second equality).

The skeptical reader may multiply matrices as below to verify that

1.0 0.0 0.0 5.0
0.0 1.0 0.0 0.0
MM)V = 0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0
1.0 0.0 0.0 5.0
B 0.0 1.0 0.0 10.0
- 0.0 0.0 1.0 0.0
| 0.0 0.0 0.0 10
[z+5.0
B y+10.0
B z
1

1.0 0.0 00 0.0 T
0.0 1.0 0.0 10.0 Y
0.0 0.0 1.0 0.0 z
0.0 0.0 0.0 1.0 1
x
Y
z
1

which indeed corresponds to how (z, y, z) is transformed by the code sequence

glTranslatef(5.0, 0.0, 0.0);
glTranslatef (0.0, 10.0, 0.0);

Section 4.2
COMPOSING MODELING
TRANSFORMATIONS

113

Chapter 4 Put simply, the matrix of the composition of two transformations is the

TransForRMATION, product of their matrices. This generalizes. If one applies successively the

ANIMATION anp transformations ¢,,,t,—1,...,%1 (in that order, t,, being first) to a vertex V/,
VIEWING then it is mapped to

t(ta(o o tn(V)..) = My(Ms(...(MpV)...)) = (MiMy. .. Mp)V (4.1)

again with the help of associativity of matrix multiplication, where matrix
M; corresponds to transformation ¢;, 1 <7 < n. One sees that the matriz of
the composition of transformations is precisely the product of the matrices
corresponding to the individual transformations.

We now have enough to explain exactly how OpenGL itself goes about
composing transformations. Consider the code sequence:

modelingTransformation 1; // ¢
modelingTransformation 2; // to

modelingTransformation n-1; // tp_1
modelingTransformation n; // tn
object;

where the transformation ¢; corresponds to the statement modelingTrans-—
formation i.

Now, OpenGL maintains a 4 x 4 modelview matriz, call it M, which is
initialized to the identity

1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0

I =

As the drawing routine is processed during run-time, the matrix of each
successive modeling transformation encountered is multiplied from the left
by the current modelview matrix, the product becoming the new modelview
matrix. For example, assuming the matrix of ¢; is M; and that there were
no earlier transformations, the successive values of the modelview matrix M
for the code sequence above are indicated in the comments below:

// M = 1, initially
modelingTransformation 1; // M = IM, = M
modelingTransformation 2; // M = MM,
modelingTransformation n-1; // M = MiM>... M,
modelingTransformation n; // M = M My... M,_1M,

object;

Moreover, an object drawing statement is processed by multiplying the
object’s vertices from the left by the current modelview matrix, e.g., for the
code sequence above, each vertex V of object is transformed as follows:

114 Vs MV = (MyMy ... My_1 M,V

However, by associativity

(MyMy ... My_1 M)V = M (Ms(... My_1(M,V)...))
= t(tale. tur(ta(V)..))

We see, from the last line of the preceding equation, that transformation t,,
is applied to V, then ¢,,_1 and so on, until, finally, ¢1, indeed backward in
code order!

The conclusion, then, is that the backward order in which OpenGL
applies transformations is simply a consequence of the particular way it
processes their matrices. It does take a little getting used to, but (trust us)
by the end of this chapter you will be quite comfortable applying multiple
transformations.

That the matrices corresponding to successive modeling
transformations are being multiplied into one matrix, the current modelview
matrix, means that OpenGL is effectively composing multiple modeling
transformations into one transformation, which is extremely important from
the point of view of run-time efficiency.

Here’s another more informal way to understand how
multiple transformations are applied. Transformation t,, given by the
statement modelingTransformation n which is closest in the code to
object, is applied first, then, ¢,,_1, given by the next closest statement
modelingTransformation n-1, etc. Indeed, transformations are applied to
the object as one works away from it, which is not unfamiliar if one recalls
evaluating mathematical expressions such as cos(exp(sinz)).

There is one other kind of transformation, in addition to
the three modeling transformations, which can modify the modelview
matrix — the viewing transformation gluLookAt (). We'll discuss viewing
transformations in Section 4.6. Modelview matrices, in fact, get their name
from these two kinds of transformations.

Exercise 4.11. For each of the following, give (z,vy, z) coordinates of the
point where the center of the sphere is transformed by the given piece of
code in the display routine.

(a) glTranslatef (0.0, 2.0, 2.0);
glTranslatef (4.0, 0.0, 2.0);
glutWireSphere (2.0, 10, 8);

(b) glRotatef (90.0, 0.0, 0.0, 1.0);
glTranslatef (4.0, 0.0, 0.0);
glutWireSphere(2.0, 10, 8);

(c) glRotatef(90.0, 1.0, 0.0, 0.0);
glTranslatef (4.0, 0.0, 0.0);
glRotatef(90.0, 0.0, 0.0, 1.0);
glutWireSphere(2.0, 10, 8);

Section 4.2
COMPOSING MODELING
TRANSFORMATIONS

115

TRANSFORMATION,

Chapter 4

ANIMATION AND

116

VIEWING

(d) glRotatef(90.0, 1.0, O.
glRotatef (90.0, 0.0, 1

glTranslatef (4.0, 0.0, 0.0);
glutWireSphere(2.0, 10, 8);

(e) glScalef(1.0, 2.0, 3.0);
glRotatef(45.0, 1.0, 0.0, 0.0);
glRotatef(90.0, 0.0, 0.0, 1.0);
glTranslatef (4.0, 0.0, 0.0);

glutWireSphere(2.0, 10, 8);

() glRotatef(90.0, 0.0, O.
glRotatef (45.0, 1.0, 0.
glRotatef (90.0, 0.0, 1
glTranslatef (4.0, 0.0,
glutWireSphere(2.0, 10, 8

Example 4.2. Replace the object definition statement
glutWireCube(5.0); // Box.

of box.cpp with
glRectf(5.0, 5.0, 10.0, 10.0); // Square

to draw, instead of a box centered at the origin, an axis-aligned square some
ways north-east of it, centered at (7.5,7.5,0.0).

Now, add transformation(s) to rotate the square 45° counter-clockwise
about its own center, as indicated in Figure 4.14(a).

Answer: Inserting the command glRotatef(45.0, 0.0, 0.0, 1.0) just
before glRectf () will not do as it rotates the square about the origin, and
not its own center, as shown in Figure 4.14(b). What one must do instead
(see Figure 4.14(c)) is first (i) translate the square so that its center is at the
origin, then (ii) rotate it about the origin and, finally, (iii) translate it back.
This is equivalent to the following modeling transformation block (Block 9):

// Modeling transformations.
glTranslatef (0.0, 0.0, -15.0);

glTranslatef(7.5, 7.5, 0.0); // Translate back.
glRotatef(45.0, 0.0, 0.0, 1.0); // Rotate about origin.
glTranslatef (-7.5, -7.5, 0.0); // Translate to origin.

Such a maneuver is unavoidable as OpenGL’s own rotations, as we know
from Section 4.1.3, are each about an axis through the origin, such being
called a radial axis. Therefore, a non-radial axis needs to be translated to the
origin and back again in order to be rotated about. This “tricky” maneuver
and its variants come up so often that we’ll give them a collective name: the
Trick.

YA . Y,
45 450

, 7.5, 0.0)

i 4
=V

(a) (b)
YA

(iii) Trapslate

otate about origin

/
4 X
\\ (1) Aranslate to orlgE

(c)
Figure 4.14: Rotating a square about its own center.

Exercise 4.12. (Programming) As in the preceding example, replace
the object definition statement

glutWireCube(5.0); // Box.
of box.cpp with
glRectf(5.0, 5.0, 10.0, 10.0); // Square

Now, scale the square so that its center is unchanged, but its shape changes
to a rectangle of aspect ratio 2. Use the Trick.

Exercise 4.13. Prove that a composition of multiple translations is a
single translation and that a composition of multiple scalings is a single
scaling.

A composition of multiple rotations is a single rotation as well,
but this is much harder to prove generally and we’ll leave it to Chapter 5.

Eixercis€ 4.14. What is the inverse of a translation? Specifically, what
modeling transformation composed with a translation glTranslatef (p, g,
r) “undoes” its effect, so that all points remain stationary?

How about scalings and rotations? What are their inverses?

Section 4.2
COMPOSING MODELING
TRANSFORMATIONS

117

Chapter 4 4.3 Placing Multiple Objects
TRANSFORMATION,
ANIMATION AND
VIEWING

We next consider the vital problem of applying modeling transformations to
place multiple objects in a desired manner relative to one another.

Experiment 4.10. Replace the entire display routine of the original
box.cpp with (Block 10):

void drawScene(void)

{

glClear (GL_COLOR_BUFFER.BIT) ;
glColor3£(0.0, 0.0, 0.0);
glloadIdentity();

// Modeling transformations.
glTranslatef (0.0, 0.0, -15.0);

// glRotatef(45.0, 0.0, 0.0, 1.0);
glTranslatef(5.0, 0.0, 0.0);

glutWireCube(5.0); // Box.

//More modeling transformations.
glTranslatef (0.0, 10.0, 0.0);

glutWireSphere(2.0, 10, 8); // Sphere.

glFlush();

}

See Figure 4.15(a) for a screenshot. The objects are a box and a sphere.

End

(a) (b)
Figure 4.15: Screenshots: (a) Experiments 4.10 and (b) 4.11.

Let’s understand the placement of the box and sphere in the preceding
118 experiment individually first and then with respect to each other.

It’s actually fairly straightforward to understand the placements
individually. For example, to place the sphere, work backwards from
where it’s created in the code, applying to it the successive modeling
transformations (all translations in this case) encountered, and ignoring
the one non-transformation statement glutWireCube() on the way. The
result is that the sphere is centered at (5.0,10.0, —15.0). Likewise, the box
is seen to be centered at (5.0,0.0,—15.0).

The relative placement in this case is not difficult either. Clearly, the
sphere is transformed by glTranslatef (0.0, 10.0, 0.0) — which is the
transformation “between them” — with respect to the box. The result is that
the sphere’s center is 10 units vertically above the box’s.

Experiment 4.11. Continuing with the previous experiment, uncomment
the glRotatef () statement. Figure 4.15(b) is a screenshot.

Again, the individual placements are fairly straightforward. Working
backwards from where it is created we see that, after being translated to (5.0,
10.0, 0.0), the sphere is rotated 45° counter-clockwise about the z-axis and,
of course, finally pushed 15 units in the —z direction. We’ll not compute
the exact final coordinates of its center. The individual placement of the
box is simple to parse as well and left to the reader.

It’s the relative placement which is particularly interesting in this case.
The sphere is no longer vertically above the box, though the transformation
between them is still glTranslatef (0.0, 10.0, 0.0)! Before trying to
explain what’s going on, let’s return to the basics for a moment. End

Consider the code sequence below which draws two objects:

modelingTransformation 1; // t
modelingTransformation 2; // to

modelingTransformation n-1; // t,—1
modelingTransformation n; // tn
object 1;

modelingTransformation n+1; // tn41

modelingTransformation m; // tm
object 2;

Assuming that the transformation ¢; specified by modelingTransformation i
corresponds to the matrix M;, for 1 < i < m, the successive values of the
modelview matrix M are indicated below:

// M = I, initially
modelingTransformation 1; // M IM, = M
modelingTransformation 2; // M M,y Mo

MiMs... My
MiMs ... My_1M,

modelingTransformation n-1; // M
modelingTransformation n; // M

Section 4.3

PLACING MULTIPLE

OBJECTS

119

TRANSFORMATION,

Chapter 4

ANIMATION AND

120

VIEWING

object 1; // M does not change
modelingTransformation n+1; // M = M My... Mu,_1M,M;+1

modelingTransformation m; // M = MiMs... My 1MpMpi1... My,
object 2;

Accordingly, each vertex V of the final object 2 call is transformed according
to:

exactly as we would expect by working backwards in the code from object
2. Now, how about the placement of object 2 with respect to object 17

Let’s repeat the transformation for a vertex V' of object 2 by stepping
backward through the right side of Equation (4.2): first transform V
by tm to t,,(V), then by t,,—1 to tym—1(tm(V)), ..., then by t,41 to
b1 (e tm1(tm(V))...). Stop!

At this time object 1 is drawn. Imagine that a part of object 1 is a set
of three directed line segments (drawn, say, using GL_LINES), aligned with
the three world coordinate axes and calibrated identically. These lines are
said to represent the local coordinate system of object 1. See Figure 4.16.
So, at the time of its creation the local coordinate system of object 1
coincides with the world coordinate system.

OObject 2

I world coordinates
).

local coordinates

X
object 1

P

Figure 4.16: Local system (bold) coincides with the global initially. The global system
is fixed.

Further, suppose at the time of object 1’s creation that the so-far
transformed V', i.e., tyq1(.. . tm—1(tm(V))...), is located at (a,b,c) in the
local coordinates of object 1 (same as world coordinates, of course, at that
moment).

Let’s get back now to applying transformations backwards from where
we had stopped. Next was t,,. Now, t, applies to both V' and object 1.
Three cases arise according to the type of ¢,.

1. t, is a translation specified by glTranslatef(p, ¢, 7:

This translation applies to V' and object 1 and, so, to the local
coordinate system of the latter as well. That is, they all “move
together”. Therefore, the location (a,b,c) of V' with respect to the
local coordinate system of object 1 does not change. The location of
V in world coordinates, of course, changes to (a + p,b+ q,c+ 7).

2. t, is a rotation specified by glRotatef (A, p, ¢, m):

Same argument as for translation. Again, the location (a,b,c) of V
with respect to the local coordinate system of object 1 does not
change.

3. t, is a scaling specified by glScalef (u, v, w):

The location of V' in world coordinates is changed by the scaling to
(ua, vb, wc). However, as the same scaling applies to the axes of the
local coordinate system of object 1 — particularly the units calibrating
them — the location (a,b,c) of V with respect to this system again
does not change.

Sci-fi analogy: Prior to an experiment in a lab you measure yourself
with a tape to be 6 feet tall. The experiment goes horribly wrong
and radiation causes you to shrink by a factor of 12, leaving you at a
Lilliputian 6 inches. However, if everything around you including the
tape shrank by exactly the same factor, you would still believe yourself
to be 6 feet.

Continue, applying transformations ¢, _1,t,_2,...t1, successively, and
reason as above for each. The conclusion is that the location of V' at the
point (a,b,c) of the local coordinate system of object 1 at the time of
the latter’s creation is not altered by any subsequent transformation, i.e.,
those in the code prior to object 1. Neither, obviously, is it changed by
transformations in the code after object 2, because their corresponding
matrices multiply into the modelview matrix only after both object 1 and
object 2 have already been drawn. We have, therefore, the following:

Proposition 4.1. Ifobject 1 precedes object 2 in code, then the location
of object 2 in the local coordinate system of object 1 is determined by the
transformation statements between the two and nothing else. O

What the proposition says is that, if object 1 precedes object 2 in
code, then the latter is frozen in the former’s coordinate system at a

position determined solely by the transformation statements between the two.

Accordingly, moving object 2 with respect to object 1 requires changing
transformations between them. The practical importance of this, as we’ll
see, cannot be over-emphasized.

Let’s try and understand now the relative position of the sphere
with respect to the box in Experiment 4.11 in light of the preceding

Section 4.3

PLACING MULTIPLE

OBJECTS

121

TRANSFORMATION,

Chapter 4

ANIMATION AND

122

VIEWING

proposition. We’ll do this by the oft-useful technique of deconstructing
code by incrementally adding back transformations after stripping them all
off.

Experiment 4.12. Repeat Experiment 4.11. The modeling transformation
and object definition part are as below (Block 11):

// Modeling transformations.
glTranslatef (0.0, 0.0, -15.0);
glRotatef(45.0, 0.0, 0.0, 1.0);
glTranslatef(5.0, 0.0, 0.0);

glutWireCube(5.0); // Box.

//More modeling transformations.
glTranslatef (0.0, 10.0, 0.0);

glutWireSphere (2.0, 10, 8); // Sphere.

First, comment out the last two statements of the first modeling
transformations block as below (the first translation is always needed to
place the entire scene in the viewing frustum):

// Modeling transformations.
glTranslatef (0.0, 0.0, -15.0);

// glRotatef(45.0, 0.0, 0.0, 1.0);
// glTranslatef (5.0, 0.0, 0.0);
glutWireCube(5.0); // Box.

//More modeling transformations.
glTranslatef (0.0, 10.0, 0.0);

glutWireSphere (2.0, 10, 8); // Sphere.

The output is as depicted in Figure 4.17(a).
Next, uncomment glTranslatef (5.0, 0.0, 0.0) as below:

// Modeling transformations.
glTranslatef (0.0, 0.0, -15.0);

// glRotatef(45.0, 0.0, 0.0, 1.0);
glTranslatef (5.0, 0.0, 0.0);
glutWireCube(5.0); // Box.

//More modeling transformations.
glTranslatef (0.0, 10.0, 0.0);

glutWireSphere (2.0, 10, 8); // Sphere.

Section 4.3
PLACING MULTIPLE
OBJECTS

I glRotatef(¢5.0, 0.0, 0.0, 1.0)
Y YA

, glTranslatef(5.0, 0.0, 0.0)

>

X

(a) (b)

P
=V

D

Figure 4.17: Transitions of the box, the box’s local coordinates system (bold) and the
sphere. The world coordinate system, which never changes, coincides with the box’s
initial local.

The output is as in Figure 4.17(b). Finally, uncomment glRotatef (45.0,
0.0, 0.0, 1.0) as follows:

// Modeling transformations.
glTranslatef (0.0, 0.0, -15.0);
glRotatef (45.0, 0.0, 0.0, 1.0);
glTranslatef(5.0, 0.0, 0.0);

glutWireCube(5.0); // Box.

//More modeling transformations.
glTranslatef (0.0, 10.0, 0.0);

glutWireSphere (2.0, 10, 8); // Sphere.

glFlush();

The result is seen in Figure 4.17(c). Figure 4.17 shows the box’s local
coordinate system as well after each transition. Observe that the sphere is
always 10 units vertically above the box in the latter’s coordinate system, as
one would expect from the glTranslatef (0.0, 10.0, 0.0) call between
the two. End

The following program should solidify the reader’s understanding of how 123

Chapter 4
TRANSFORMATION,
ANIMATION AND
VIEWING

e
lRacatafiin,a. 0,0, 0,0, 1,05
iTranelacer 350, B0, D01
T it an:

Figure 4.18: Screenshot
of relativePlacement.cpp
after all transformations
from the scaling down have
been executed.

124

Proposition 4.1 governs relative placement.

Experimont 4.13. Run relativePlacement.cpp. Pressing the up arrow
key once causes the last statement, viz. drawBlueMan, of the following piece
of code to be executed:

glScalef (1.5, 0.75, 1.0);

glRotatef(30.0, 0.0, 0.0, 1.0);

glTranslatef(10.0, 0.0, 0.0);

drawRedMan; // Also draw grid in his local coordinate system.
glRotatef(45.0, 0.0, 0.0, 1.0);

glTranslatef(20.0, 0.0, 0.0);

drawBlueMan;

With each press of the up arrow we go back a statement and successively
execute that statement and the ones that follow it. The statements executed
are written in black text, the rest white. Pressing the down arrow key goes
forward a statement. Figure 4.18 is a screenshot after all transformations
from the scaling on have been executed. End

The torso and arms of both men are aligned along their respective local
coordinate axes (only the z and y we care about, z being 0 always). The
world coordinate axes which never change are drawn in cyan. At the time
of the red man’s creation also drawn is a 10 x 10 grid of boxes in his local
coordinate system, the sides of each box being 5 units long.

With each transformation going back from the red man’s creation, observe
— focus on a point like the blue man’s origin and trust your eyes — how the
blue man stays static in the red man’s local coordinate system. A simple
calculation shows that the blue man’s origin is actually at (20/v/2, 20/v/2) ~
(14.14,14.14) in the red man’s system. Even when scaling skews the red
man’s system so that it’s not rectangular any more, the blue man skews the
same way as well, staying put in the red system. Proposition 4.1 is not to
be denied!

Exercise 4.15. For the following two pieces of code in the drawing routine
give (z,y,z) coordinates of the point to which the center of the sphere is
transformed. Explain as well the relative positions of the sphere and box.

(a) glRotatef(90.0, 1.0, 0.0, 0.0);
glutWireCube(1.0);
glRotatef(90.0, 0.0, 0.0, 1.0);
glTranslatef (4.0, 0.0, 0.0);
glutWireSphere(2.0, 10, 8);

(b) glTranslatef(2.0, 0.0, 0.0);
glScalef (2.0, 2.0, 2.0);
glutWireCube(1.0);
glRotatef(90.0, 0.0, 1.0, 0.0);
glTranslatef (0.0, 0.0, 4.0);
glutWireSphere(2.0, 10, 8);

If you’re impatient to get to animation hang on — there’s one final piece
to get in place!

4.4 Modelview Matrix Stack and Isolating
Transformations

The modelview matrix, which we have described as being modified by
modeling transformations by multiplication on the right, is actually the
topmost one of a modelview matrixz stack. This particular matrix is called
the current modelview matriz. In fact, OpenGL maintains three different
matrix stacks: modelview, projection and texture. A glMatrixMode (mode)
command, where mode is GL_.MODELVIEW, GL_PROJECTION or GL_TEXTURE,
determines which stack is currently active.
Here’s an experiment to motivate use of the modelview matrix stack:

4

(a) (b) (c)

Figure 4.19: Planning a head on a torso: (a) The plan (b) Drawn without isolating the
scaling (c) After isolating the scaling.

Experiment 4.14. We want to create a human-like character. Our plan
is to start by drawing the torso as an elongated cube and placing a round
sphere as its head directly on top of the cube (no neck for now). To this end
replace the drawing routine of box.cpp with (Block 12):

void drawScene(void)

{

glClear (GL_COLOR_BUFFER_BIT) ;
glColor3£(0.0, 0.0, 0.0);
glLoadIdentity();

glTranslatef (0.0, 0.0, -15.0);

glScalef (1.0, 2.0, 1.0);
glutWireCube(5.0); // Box torso.

Section 4.4
MODELVIEW MATRIX
STACK AND ISOLATING
TRANSFORMATIONS

125

TRANSFORMATION,

Chapter 4

ANIMATION AND
VIEWING

126

glTranslatef (0.0, 7.0, 0.0);
glutWireSphere(2.0, 10, 8); // Spherical head.

glFlush();

Our calculations are as follows: (a) the scaled box is 5 x 10 x 5 and, being
centered at the origin, is 5 units long in the +y direction; (b) the sphere
is of radius 2; (c) therefore, if the sphere is translated 5 + 2 = 7 in the +y
direction, then it should sit exactly on top of the box (see Figure 4.19(a)).

It doesn’t work: the sphere is no longer round and is, moreover, some
ways above the box (Figure 4.19(b)). Of course, because the sphere is
transformed by glScalef(1.0, 2.0, 1.0) as welll So, what to do? A
solution is to isolate the scaling by placing it within a push-pop pair as below
(Block 13):

void drawScene(void)

{
glClear (GL_COLOR_BUFFER_BIT) ;
glColor3£(0.0, 0.0, 0.0);
glLoadIdentity();
glTranslatef (0.0, 0.0, -15.0);
glPushMatrix () ;
glScalef (1.0, 2.0, 1.0);
glutWireCube(5.0); // Box torso.
glPopMatrix () ;
glTranslatef (0.0, 7.0, 0.0);
glutWireSphere(2.0, 10, 8); // Spherical head.
glFlush();
}
The resulting screenshot is Figure 4.19(¢), which shows a round head on a
neckless torso as desired. End

What the glPushMatrix () command does is make a copy of the current
(i.e., current topmost) matrix in the modelview matrix stack and place it
on top of the stack; consequently, upon execution of a glPushMatrix (), the
two top matrices of the stack are identical. The glPopMatrix() statement,
on the other hand, deletes the topmost matrix of the modelview matrix
stack so the one underneath becomes the current one.

Let’s follow the modelview matrix stack through the code above.
Assume that the matrix corresponding to the translation glTranslatef (0.0,
0.0, -15.0) is M;, to glScalef(1.0, 2.0, 1.0) is M,, and to gl-
Translatef (0.0, 7.0, 0.0) is M3. The transitions of the stack are shown
in Figure 4.20, starting from the top.

Code Modelview Matrix
Stack

glLoadldentity(); 1

glTranslatef(0.0, 0.0, —15.0); |/ * M =M,

=
glPushMatrix(); M, 'qé
//Copy of M, placed on top. M, 3
M *M, §
glScalef(1.0, 2.0, 1.0); M, £
on
glutWireCube(5.0); M *M, g
//No change.] b
3
glPopMatrix(); -
//Back to before the push statement! M,

glTranslatef(0.0, 7.0, 0.0); M *M.

glutWireSphere(2.0, 10, 8); .
//No change. M*™, |y

Figure 4.20: Transitions of the modelview matrix stack.

As you see, the push-pop pair stores the current modelview matrix prior
to the scaling transformation and then restores it once the cube has been
drawn, effectively localizing the effect of the scaling to only the cube.

Exercise 4.16. Give (z,y, z) coordinates of the points where the centers
of the four spheres in it are located by the drawing routine below, assuming
no prior transformations.

glPushMatrix();

glTranslatef (2.0, 0.0, 0.0);
glutWireSphere(2.0, 10, 8); // Sphere A

glPushMatrix () ;

glScalef (2.0, 2.0, 2.0);
glutWireSphere(2.0, 10, 8); // Sphere B
glPopMatrix () ;

glPushMatrix();

glRotatef (90.0, 1.0, 0.0, 0.0);
glTranslatef (0.0, 0.0, 4.0);
glutWireSphere(2.0, 10, 8); // Sphere C

Section 4.4
MODELVIEW MATRIX
STACK AND ISOLATING
TRANSFORMATIONS

127

Chapter 4
TRANSFORMATION,
ANIMATION AND

VIEWING

o | rotsingHeinl.cpp

Figure 4.21: Screenshot

)
|/

{l

m

e
=

P

of rotatingHelix1.cpp.

128

glPopMatrix () ;

glTranslatef (0.0, 4.0, 0.0);
glutWireSphere(2.0, 10, 8); // Sphere D

glPopMatrix();

It’s recommended programming practice to enclose all the
transformations in the drawing routine in one giant push-pop pair, as in the
preceding exercise, so that at the end of the routine the modelview matrix
stack is guaranteed to revert to its initial state of containing a single identity
matrix (though, admittedly, we don’t follow this ourselves).

4.5 Animation

We're there! Animation in computer graphics is really just a sequence of still
frames, just like those in a movie reel, smoothness being achieved by drawing
frames rapidly one after another, each a little different from the previous.
Successive frames in an animation are created by a “transform-draw” loop:
the scene is redrawn after transformations in the drawing routine change
the location or shape, or both, of objects in the scene.

4.5.1 Animation Technicals

Before analyzing animated programs we need first to explain a couple of
animation-related technicalities.

Controlling Animation

OpenGL provides essentially three different methods to control animation:

1. Interactively, via keyboard or mouse input, with the help of their
callback routines to invoke transformations.

Experiment 4.15. Run rotatingHelix1l.cpp where each press of
space calls the increaseAngle() routine to turn the helix. Note the
glutPostRedisplay () command in increaseAngle () which asks the
screen to be redrawn. Keeping the space bar pressed turns the helix
continuously. Figure 4.21 is a screenshot. End

2. Automatically, by specifying a function idle_function, called the idle
function, with the statement glutIdleFunc(idle_function). The
idle function is called whenever no OpenGL event is otherwise pending.

Experiment 4.16. Run rotatingHelix2.cpp, a slight modification
of rotatingHelix1.cpp, where pressing space causes the routines

increaseAngle () and NULL (do nothing) to be alternately specified
as idle functions.

The speed of animation is determined by the processor speed — in
particular, the speed at which frames can be redrawn — and the user
cannot influence it. Ena

3. Automatically, by specifying a routine timer_function, called the
timer function, with a call to glutTimerFunc (period, timer_function,
value). The timer function is called period milliseconds after the
glutTimerFunc () statement is executed and with the parameter value
being passed to it.

Experiment 4.17. Run rotatingHelix3.cpp, another modifica-
tion of rotatingHelixl.cpp, where the particular timer function
animate() calls itself recursively after animationPeriod number
of msecs., by means of its own glutTimerFunc(animationPeriod,
animate, 1) statement. The parameter value 1 passed to animate ()
is not used in this program. The routine increaseAngle () called by
animate () turns the helix as before. Figure 4.22 shows the animation
scheme.

The user can vary the speed of animation by changing the value of
animationPeriod by pressing the up and down arrow keys. End

The speed of animation or, equivalently, frame rate — the rate at which
the screen is redrawn — cannot be increased arbitrarily by lowering the value
of animationPeriod because redrawing the scene takes some minimum
amount of time, depending on its complexity and the speed of the processor
(or graphics card).

Moreover, the frame rate can never exceed the monitor’s installed refresh
rate, particularly, if the latter is n Hz then the maximum achievable fps
(frames per second) is n. The next program shows how to count the fps with
help of OpenGL.

Experiment 4.18. Run rotatingHelixFPS.cpp, which enhances rotat-
ingHelix2. cpp adding the routine frameCounter () to count the number of
times the drawScene () routine is called, equivalently, the number of frames
drawn, per second. The fps is output every second to the debug window.
The way this works is by drawScene() incrementing the global
frameCount every time it is called, and frameCounter () outputting the
value of frameCount each second — because of its final glutTimerFunc (1000,
frameCounter, 1) statement, frameCounter () calls itself after a second
— as well as resetting the value of frameCount to 0. The if conditional
in frameCounter () is so that no fps is output when it is first called from
main() with the value passed being 0. End

Section 4.5
ANIMATION

animate()
/ ‘\

N a
{mlg}atlon animationPeriod
stu msecs.

\— glutTimerFunc() /

Figure 4.22: Animation
control in
rotatingHelix3.cpp.

129

Chapter 4
TRANSFORMATION,
ANIMATION AND

VIEWING
Cycle n
2 2
o
A BE
s < z
Display
Cycle n+1
2 <
) (‘ o
<
B
HR. B 5
a o

Display

Figure 4.23: Successive
cycles in double buffering.

130

Double Buffering

The second technicality critical to smooth animation is double buffering.
Space for two color buffers is provided in a double-buffered system in
such a manner that one buffer, the viewable buffer, displays the current frame
while the next frame is being drawn in the second buffer, the drawable buffer.
When the drawing of the frame in the drawable buffer is complete, the
buffers are swapped, so that the next frame now becomes viewable and, at
the same time, the one following it begins to be drawn. This draw-and-swap
loop repeats through the animation. Figure 4.23 illustrates the process.

Terminology: The viewable buffer is often called the front buffer or main
buffer, while the drawable buffer is called the back buffer or swap buffer.
FEither buffer is also called a refresh buffer.

There is a subtle difference between the “draw” in the
transform-draw animation loop described earlier as how animation is
implemented and the “draw” in the draw-and-swap loop just described
as how double buffering operates. The first is a programmer-instigated
operation — typically, with a glutPostRedisplay() call — in which the
world space is projected and scaled (recall shoot-and-print from Chapter 2)
and rasterized into the color buffer. The second actually draws the screen,
in particular, the OpenGL window, with the contents of the color buffer.

There are two ways double buffering can be implemented. In
a software implementation, the back buffer is in non-video RAM, while the
front buffer is in video RAM (VRAM), and the swap is done by copying the
contents of the back buffer into the front one. In a hardware implementation,
often called ping-pong buffering, both buffers are in VRAM, the swap
switching the buffer being displayed by simply modifying a pointer. Not
surprisingly, ping-pong buffering runs much faster.

Double buffering greatly improves the quality of animation by hiding
transition between successive frames from the viewer. With single buffering,
on the other hand, the viewer “sees” the next frame being drawn in the same
buffer that contains the current one. The result can be unpleasant ghosting,
so called because a prior image persists while the next is being created.

The double buffering display mode is enabled by calling glutInit-
DisplayMode () in main with GLUT_DOUBLE as one of the arguments (instead
of GLUT_SINGLE and inserting a call to glutSwapBuffers() at the end of
the drawing routine (instead of glFlush()). The rotatingHelix*.cpp
programs are all double buffered.

Experiment 4.19. Disable double buffering in rotatingHelix2.cpp by
replacing GLUT_DOUBLE with GLUT_SINGLE in the glutInitDisplayMode ()
call in main, and replacing glutSwapBuffers() in the drawing routine with
glFlush(). Ghostly is it not?! End

4.5.2 Animation Code Section 4.5
Ball Flying About a Torus ANIMATION

Experiment 4.20. Run ballAndTorus.cpp. Press space to start the [
ball both flying around (longitudinal rotation) and in and out (latitudinal
rotation) of the torus. Press the up and down arrow keys to change the
speed of the animation. Press ‘x/X’, ‘y/Y’ and ‘z/Z’ to change the viewpoint.
Figure 4.24 is a screenshot.

The animation of the ball is interesting and we’ll deconstruct it. Comment
out all the modeling transformations in the ball’s block, except the last
translation, as follows:

// Begin revolving ball.

// glRotatef (longAngle, 0.0, 0.0, 1.0); Figure 4.24: Screenshot
of ballAndTorus. cpp.

// glTranslatef(12.0, 0.0, 0.0);
// glRotatef (latAngle, 0.0, 1.0, 0.0);
// glTranslatef(-12.0, 0.0, 0.0);

glTranslatef(20.0, 0.0, 0.0);
glColor3£(0.0, 0.0, 1.0);
glutWireSphere(2.0, 10, 10);

// End revolving ball.

The ball is centered at (20,0,0), its start position, by glTranslatef (20.0,
0.0, 0.0). See Figure 4.25. There is no animation.

y

o 12, 0

z

Figure 4.25: The ball’s axis of latitudinal rotation from its start position is L.

The ball’s intended latitudinal rotation is in and out of the circle C}
through the middle of the torus. C;’s radius, called the outer radius of the
torus, is 12.0, as specified by the second parameter of glutWireTorus (2.0, 131

TRANSFORMATION,

Chapter 4

ANIMATION AND

132

VIEWING

12.0, 20, 20). Moreover, C is centered at the origin and lies on the
xy-plane. Therefore, ignoring longitudinal motion for now, the latitudinal
rotation of the ball from its start position is about the line L through (12,0, 0)
parallel to the y-axis (L is tangent to C7). This rotation will cause the
ball’s center to travel along the circle Cy centered at (12,0,0), lying on the
xz-plane, of radius 8.

As glRotatef () always rotates about a radial axis, how does one obtain
the desired rotation about L, a non-radial line? Employ the Trick (see
Example 4.2 if you don’t remember). First, translate left so that L is aligned
along the y-axis, then rotate about the y-axis and, finally, reverse the first
translation to bring L back to where it was. This means uncommenting the
corresponding three modeling transformations as below:

// Begin revolving ball.
// glRotatef (longAngle, 0.0, 0.0, 1.0);

glTranslatef (12.0, 0.0, 0.0);
glRotatef (latAngle, 0.0, 1.0, 0.0);
glTranslatef(-12.0, 0.0, 0.0);

glTranslatef (20.0, 0.0, 0.0);

glColor3£(0.0, 0.0, 1.0);
glutWireSphere (2.0, 10, 10);
// End revolving ball.

Press space to view only latitudinal rotation.

Note: The two consecutive translation statements could be combined into
one, but then the code would be less easy to parse.

Finally, uncomment glRotatef(longAngle, 0.0, 0.0, 1.0) to im-
plement longitudinal rotation about the z-axis. The angular speed of
longitudinal rotation is set to be five times slower than that of latitudinal
rotation — the increments to longAngle and latAngle in the animate()
routine being 1° and 5°, respectively. This means the ball winds in and out
of the torus five times before it completes one trip around it. End

Exercise 4.17. (Programming) It’s instructive as well to uncomment
the three modeling transformations used to apply the Trick in the
preceding experiment one by one, rather than all together. So uncomment
glTranslatef(-12.0, 0.0, 0.0) first, then glRotatef (latAngle, 0.0,
1.0, 0.0) and, last, glTranslatef (12.0, 0.0, 0.0). Check if animation
can be activated and explain the output at each step.

Exercise 4.18. (Programming) Now here’s something rather funny.
Actually, what we’ll show is not an uncommon accidental error. Cut the
glloadIdentity() call from the drawing routine of ballAndTorus.cpp

and paste it as the last line of the window reshape routine (as, say, in
square.cpp).

Oops! The ball and torus speed away together and are out of sight pretty
quickly. Explain.
Hint: The current modelview matrix is not automatically cleared to identity
between successive calls to the drawing routine.

Exercise 4.19. (Programming) Add a red and a green ball to the
existing blue ball so that the three are always 120° from each other and
follow a similar rotate-revolve path one after the other.

Hint: Copy and paste the revolving ball code a couple of times, making
sure to isolate each instance with a glPushMatrix()-glPopMatrix() pair,
and add in appropriate glRotatef (*, 0.0, 0.0, 1.0) calls.

Eixperiment 4.21. We want to add a satellite that tags along with the
ball of ballAndTorus.cpp. The following piece of code added to the end
of the drawing routine — just before glutSwapBuffers() — does the job
(Block 14):

glTranslatef (4.0, 0.0, 0.0);

// Satellite
glColorSf(l.O, 0.0, 0.0);
glutWireSphere(0.5, 5, 5);

See Figure 4.26 for a screenshot. For a revolving satellite add the following
instead (Block 15):

glRotatef (10*¥latAngle, 0.0, 1.0, 0.0);
glTranslatef (4.0, 0.0, 0.0);

// Satellite
glColorSf(l.O, 0.0, 0.0);
glutWireSphere(0.5, 5, 5);

Observe how Proposition 4.1 is being applied in both cases to determine
the motion of the satellite relative to the ball by means of transformation
statements between the two. Enda

Exercise 4.20. (Programming) Thinking that the Trick should be
invoked to revolve the satellite about the ball, exactly as was done to obtain
the latitudinal rotation of the ball itself, suppose we code the satellite as
below (Block 16):

// Trick code block.

glTranslatef (4.0, 0.0, 0.0);

glRotatef (10*¥latAngle, 0.0, 1.0, 0.0);
glTranslatef(-4.0, 0.0, 0.0);

Section 4.5
ANIMATION

Figure 4.26: Screenshot
from Experiment 4.21.

133

Chapter 4
TRANSFORMATION,
ANIMATION AND
VIEWING

Figure 4.27: Screenshot
of throwBall. cpp.

134

glTranslatef(4.0, 0.0, 0.0);

// Satellite.
glColor3f (1.0, 0.0, 0.0);
glutWireSphere (0.5, 5, 5);

The satellite still follows the ball, but does not revolve about it. Why?
Hint: A good way to verify your answer is to stop the ball from moving by
commenting out both glRotatef ()’s in its definition block and observing
only the satellite.

Exercise 4.21. (Programming) Continuing with Experiment 4.21, add
a second satellite. Both should revolve around the ball, but in different
orbits.

Throwing a Ball

Experiment 4.22. Run throwBall.cpp, which simulates the motion of a
ball thrown with a specified initial velocity subject to the force of gravity.
Figure 4.27 is a screenshot.

Press space to toggle between animation on and off. Press the right /left
arrow keys to increase/decrease the horizontal component of the initial
velocity, up/down arrow keys to increase/decrease the vertical component
of the initial velocity and the page up/down keys to increase/decrease
gravitational acceleration. Press ‘r” to reset. The values of the initial velocity
components and of gravitational acceleration are displayed on the screen.

End

The equation determining the horizontal motion of the ball in throw-
Ball.cpp, in terms of time ¢, is

x(t) = ht

where h is the horizontal component of the initial velocity; that determining
vertical motion is g
y(t) = vt — 5152

where v is the vertical component of the initial velocity and ¢ is gravitational
acceleration (a basic physics or calculus book should have a derivation of
these standard equations).

Motion is simulated by repeatedly redrawing the ball at the new location
it’s mapped to by glTranslatef(z(t), y(t), 0), incrementing ¢ by 1 each
time.

The techniques to animate the spheres in ballAndTorus.cpp
and throwBall.cpp are interesting to compare. One could say that the first
is “physical” while the latter “equational”.

Exercise 4.22. (Programming) Animate a ball thrown toward and
bouncing off a wall. See Figure 4.28. The initial force on the ball is
horizontal — allow the user to change the amount of this force. Also allow
the user to adjust gravitational acceleration and the “springiness” of the
ball. Animation can end when the ball hits the floor.

Ball Facing Friction

Experiment 4.23. Run ballAndTorusWithFriction.cpp, which modi-
fies ballAndTorus.cpp to simulate an invisible viscous medium through
which the ball travels.

Press space to apply force to the ball. It has to be kept pressed in order
to continue applying force. The ball comes to a gradual halt after the key is
released. Increase or decrease the level of applied force by using the up and
down arrow keys. Increase or decrease the viscosity of the medium using the

page up and down keys. Press ‘x/X’, ‘y/Y’ and ‘z/Z’ to rotate the scene.
End

The equation of motion implemented takes the frictional drag (or,
equivalently, deceleration) on the ball of ballAndTorusWithFriction.cpp
to be proportional to its velocity, a valid assumption from physics [52]. So,
the equation is

drag_deceleration = drag * velocity

where the drag (in real life) is a constant depending on the medium through
which the object moves, as well as its shape. When space is pressed, the
external acceleration applied is applied_acceleration, resulting in the net
acceleration calculated in the line of code

acceleration = applied_acceleration - drag*velocity;

When space is not pressed, there is no applied acceleration but only frictional
drag, so the equation is instead

acceleration = -drag*velocity;
At every time step we find the change in velocity from the equation

A(velocity)

——— >~ = acceleration
A(time)

which is certainly true in the limit as A(¢time) — 0. However, we approximate
change through a unit time step by setting A(time) = 1 to get

A(velocity) = acceleration

which is implemented by the program statement

velocity += acceleration;

Section 4.5
ANIMATION

Figure 4.28: Ball

bouncing off wall.

135

TRANSFORMATION,

Chapter 4

ANIMATION AND

136

VIEWING

Finally, change per time step in the latAngle and longAngle variables is
taken proportional to the current value velocity.

Exercise 4.23. (Programming) Simulate a ball falling through air,
landing upon and continuing on through a viscous medium such as water.
You need not simulate splashing. To differentiate air and water simply use
color, e.g., the upper half of your window may be white, and the lower blue.

The last two programs, throwBall.cpp and ballAndTorus-
WithFriction.cpp, demonstrated simple applications of physics in graphics.
This is a fascinating field — also known as physically-based modeling and game
physics — of great importance in realistic animation. Plausible simulation
of such phenomena as a wall of bricks crashing down, clothes and hair
blowing in the wind, a drop of water rolling off a leaf, and smoke, fire and
explosions, to mention a few, all require the programmer to take into account
the real-world physics of the setting.

Special effects in a Hollywood production are almost always physics in
graphics in action. There are two overarching and competing considerations
in this discipline — realism versus computational efficiency.

A couple of books for the interested reader include Bourg & Bywalec
[20] and Eberly [40]. A comprehensive list of pointers to ongoing research in
the field is maintained by Simon Clavet [110].

Clown Head

Our next project is a program, which we’ll develop incrementally, to draw a
clown’s head.

(a) (b) (c)

Figure 4.29: Screenshot of (a) clownl.cpp (b) clown2.cpp (c) clown3.cpp.

Experiment 4.24. We start with simply a blue sphere for the head. See
clownl.cpp which has the following drawing routine (note that clownl.cpp
and clown2.cpp are not separate programs but incremental stages of
clown3.cpp which is in ExperimenterSource/Chapter4):

(@ (b)

Figure 4.30: (a) Cone drawn by glutWireCone(base, height, slices, stacks) (b)
Torus drawn by glutWireTorus (inRadius, outRadius, sides, rings). Note that the axes
are depicted differently in each diagram.

void drawScene(void)

{

glClear (GL_COLOR_BUFFER.BIT) ;
glLoadIdentity();

// Place scene in frustum.
glTranslatef (0.0, 0.0, -9.0);

// Head.
glColor3£ (0.0, 0.0, 1.0);
glutWireSphere (2.0, 20, 20);

glutSwapBuffers();

}

Figure 4.29(a) is a screenshot.
Next, we want a green conical hat. The command glutWireCone (base,

height, slices, stacks) draws a wireframe cone of base radius base and
height height. The base of the cone lies on the xy-plane with its axis along
the z-axis and its apex pointing in the positive direction of the z-axis. See
Figure 4.30(a). The parameters slices and stacks determine the fineness of
the mesh (not shown in the figure).

Accordingly, insert the lines

// Hat.
glColor3£(0.0, 1.0, 0.0);
glutWireCone(2.0, 4.0, 20, 20);

in clownl.cpp after the call that draws the sphere, so that the drawing
routine becomes (Block 17):

void drawScene(void)

Section 4.5
ANIMATION

137

Chapter 4 {
TRANSFORMATION. glClear (GL_COLOR_BUFFER BIT) ;

ANIMATION AND glloadIdentity();

VIEWING .
// Place scene in frustum.

glTranslatef (0.0, 0.0, -9.0);

// Head.
glColor3£ (0.0, 0.0, 1.0);
glutWireSphere (2.0, 20, 20);

// Hat.
glColor3£(0.0, 1.0, 0.0);
glutWireCone(2.0, 5.0, 20, 20);

glutSwapBuffers();

Not good! Because of the way glutWireCone() aligns, the hat covers
the clown’s face. This is easily fixed. Translate the hat 2 units up the z-axis
and rotate it —90° about the z-axis to arrange it on top of the head. Finally,
rotate it a rakish 30° about the z-axis! Here’s the modified drawing routine
of clownl.cpp at this point (Block 18):

void drawScene(void)

{
glClear (GL_COLOR_BUFFER BIT) ;
glLoadIdentity();
// Place scene in frustum.
glTranslatef (0.0, 0.0, -9.0);
// Head.
glColor3£(0.0, 0.0, 1.0);
glutWireSphere (2.0, 20, 20);
// Transformations of the hat.
glRotatef(30.0, 0.0, 0.0, 1.0);
glRotatef(-90.0, 1.0, 0.0, 0.0);
glTranslatef (0.0, 0.0, 2.0);
// Hat.
glColor3£ (0.0, 1.0, 0.0);
glutWireCone(2.0, 5.0, 20, 20);
glutSwapBuffers() ;

}

Let’s add a brim to the hat by attaching a torus to its base. The command
138 glutWireTorus (inRadius, outRadius, sides, rings) draws a wireframe

torus of inner radius inRadius (the radius of a circular section of the torus),
and outer radius outRadius (the radius of the circle through the middle of
the torus). The axis of the torus is along the z-axis and centered at the
origin. See Figure 4.30(b). Insert the call glutWireTorus(0.2, 2.2, 10,
25) right after the call that draws the cone, so the drawing routine becomes
(Block 19):

void drawScene(void)

{

glClear (GL_COLOR_BUFFER.BIT) ;
glloadIdentity();

// Place scene in frustum.
glTranslatef (0.0, 0.0, -9.0);

// Head.
glColor3£(0.0, 0.0, 1.0);
glutWireSphere(2.0, 20, 20);

// Transformations of the hat and brim.
glRotatef(30.0, 0.0, 0.0, 1.0);
glRota‘tef(—Q0.0, 1.0, 0.0, 0.0);
glTranslatef (0.0, 0.0, 2.0);

// Hat.
glColor3£(0.0, 1.0, 0.0);
glutWireCone (2.0, 5.0, 20, 20);

// Brim.
glutWireTorus (0.2, 2.2, 10, 25);

glutSwapBuffers();

Observe that the brim is drawn suitably at the bottom of the hat and
stays there despite modeling transformations between head and hat — a
consequence of Proposition 4.1.

To animate, let’s spin the hat about the clown’s head by rotating it
around the y-axis. We rig the space bar to toggle between animation on
and off and the up/down arrow keys to change speed. All updates so far are
included in clown2.cpp. Figure 4.29(b) is a screenshot.

What’s a clown without little red ears that pop in and out?! Spheres
will do for ears. An easy way to bring about oscillatory motion is to make
use of the function sin(angle) which varies between —1 and 1. Begin by
translating either ear a unit distance from the head, and then repeatedly
translate each a distance of sin(angle), incrementing angle each time.

Note: A technicality one needs to be aware of in such applications is that
angle is measured in degrees in OpenGL syntax, e.g., in glRotatef (angle,

Section 4.5

139

Chapter 4
TRANSFORMATION,
ANIMATION AND
VIEWING

Figure 4.31: Screenshot
of floweringPlant.cpp in
mid-bloom.

140

p, q, 1), while the C4++ math library assumes angles to be given in radians.
Multiplying by 7/180 converts degrees to radians.

The ears and head are physically separate, though. Let’s connect them
with springs! Helixes are springs. We borrow code from helix.cpp, but
modify it to make the length of the helix 1, its axis along the z-axis and its
radius 0.25. As the ears move, either helix is scaled along the z-axis so that
it spans the gap between the head and an ear. The completed program is
clown3. cpp, of which a screenshot is seen in Figure 4.29(c). Enda

Exercise 4.24. (Programming) Comment out the push-pop pair
isolating the hat and brim in clown3.cpp. Explain the new situation of the
ears.

Exercise 4.25. Proposition 4.1 came before our discussion of push-pop
pairs, so the assumption there is that there are none. Do we have to revise
the proposition to take into account possible push-pop pairs?

Blooming Flower

Experiment 4.25. Run floweringPlant.cpp, an animation of a flower
blooming. Press space to start and stop animation, delete to reset, and
‘x/X’, ‘y/Y’ and ‘z/Z’ to change the viewpoint. Figure 4.31 is a screenshot.

Enda

The stem of the plant of floweringPlant.cpp consists of four straight
segments, the sepal (base of the flower) is modeled as a hemisphere, while the
six petals are circles. Both the hemisphere and circle are reshaped by scaling
during animation. The code to draw the two is modified from circle.cpp
and hemisphere. cpp.

As calls to display lists cannot be parametrized at run-time, those defining
a sepal and a petal have to be placed, unfortunately, in the drawing routine
to allow them access to the changing global variable t via the variables
— angleFirstSegment, ..., petalOpenAngle — at the top of drawScene().
(See Remark 3.4 of Section 3.4 for the evils of this practice.) Another option
for modular code would have been to write these parts of the plant as C++
objects.

The parameters involved in configuring the stem, sepal and petal all
change from a start value to an end one via linear interpolation using the
animation parameter ¢. For example,

hemisphereScaleFactor = (1 —¢)%0.1 + ¢*0.75
linearly changes hemisphereScaleFactor from 0.1 to 0.75 as ¢ goes from 0
to 1.

4.5.3 Animation Projects

Exercise 4.26. (Programming) Starting from clown3.cpp, add to the
clown’s head a conical nose which changes in length and color, as well as
eyes that rotate and change in size and color.

Exercise 4.27. (Programming) Animate a ball rolling down a fixed
flat inclined plane. See Figure 4.32(a). The ball should not slip or slide.
Make the plane a wireframe mesh of triangles and the ball a wireframe
sphere, as well, so that relative motion is apparent.

Y LT

motion viewed

rm

—

(d)

/\6/

® (®

Figure 4.32: (a) Ball rolling down one plane (b) Ball rolling down two planes (c) Ball
bouncing on a box (d) Ball traveling along a helix (e) Four segments opening from a
square into a straight line (f) Solar system with a sun, one planet and two moons (g)
Pool table with one ball.

Exercise 4.28. (Programming) Add physics to the preceding exercise
by allowing the incline of the plane to be changed even as the ball rolls down,
the latter’s speed depending obviously on the angle of inclination.

Exercise 4.29. (Programming) Yet another extension of Exercise 4.27:
add another plane at the bottom so that the ball rolls from the first onto
the second. See Figure 4.32(b).

Section 4.5
ANIMATION

141

TRANSFORMATION,

Chapter 4

ANIMATION AND

142

VIEWING

Exercise 4.30. (Programming) Roll a ball down the curved children’s
slide of Exercise 2.33 of Chapter 2, if you did that particular exercise.

Exercise 4.31. (Programming) Animate a ball bouncing up and down
a box which itself moves in a straight line. See Figure 4.32(c).

First, code the straight-line motion of the box and, then, that of the ball
relative to the box, which is straight, too. The resultant motion of the ball
as viewed in the OpenGL window, which is, of course, as that seen by a
stationary external observer, is parabolic.

Exercise 4.32. (Programming) Animate a ball traveling a helical path.
See Figure 4.32(d). Make sure to do this physically a la ballAndTorus. cpp,
and not equationally.

Exercise 4.33. (Programming) Animate four straight segments, which
initially bound a square, smoothly opening into a straight line. See
Figure 4.32(e), where the initial, final and two intermediate positions are
depicted.

Hint: Draw first the fixed left segment, then the top segment as a copy.
Determine the latter’s motion relative to the former; the motion of the right
segment relative to the top one is identical, as is the motion of the bottom
one relative to the right one.

Exercise 4.34. (Programming) Animating a solar system is a canonical
exercise for beginning 3D programmers. First, animate a solitary planet,
with two moons, in elliptic orbit around a stationary sun. See Figure 4.32(f).
The planet rotates about its own axis as well, while its moons revolve about
it at different speeds and on different orbital planes. Then, add more planets.

Exercise 4.35. (Programming) Create an animated garden with the
help of floweringPlant.cpp. (The animated garden of Section 1.3, in fact,
was a student submission.)

Eixercise 4.36. (Programming) Animate a lone cue ball moving on a
pool table. The table should simply be a rectangle enclosed by four low
walls — no need to make pockets. See Figure 4.32(g).

The ball should initially be stationary at a fixed position on the table.
Then allow the user, with the help of a simple visual interface, to choose a
direction and speed to get the ball moving — you don’t need to draw a cue
stick.

Animate the subsequent motion of the ball as it rolls along the surface
of the table and bounces off its sides. You can either choose not to program
in any deceleration, so that the ball keeps moving at uniform speed, or to
incorporate frictional resistance to ultimately bring the ball to rest.

4.6 Viewing Transformation

We begin our discussion of the viewing transformation gluLookAt (), whose
function is to arrange OpenGL’s camera, by systematically deciphering its
somewhat non-trivial syntax.

4.6.1 Understanding the Viewing Transformation

Think of the OpenGL camera as located at the origin with its lens pointing
down the —z direction (the line of sight) and with its top aligned along
the +y direction (the up direction). This, in fact, is the default pose of the
OpenGL camera. See Figure 4.33(a).

opjdct

film

y line of sight y, ine 4T sight
= =
S 2
5 S
P =
=59 =lo]

19 oin
camera
z
z
(a) (b)

Figure 4.33: (a) The (conceptual) OpenGL camera’s default pose (b) A (conceptual)
point camera at the origin with film on the viewing plane of the frustum.

Keep in mind, though, that the OpenGL camera is merely a conceptual
device! The rendering we see of objects drawn is determined solely, as
described in Chapter 2, by the shape of the viewing box or frustum, which
in turn is decided by the programmer-specified projection statement (e.g.,
glOrtho (), glFrustum()). Figure 4.33(b) reminds us of the process. There
is no camera as such!

Section 4.6
VIEWING
TRANSFORMATION

143

TRANSFORMATION,

Chapter 4

ANIMATION AND

144

VIEWING

Nevertheless, it appeals to the intuition to imagine that what we’re
viewing is through a camera. In the case of a viewing frustum, particularly,
one can imagine a point camera at the origin with the film lying in front of
it on the viewing face, as indicated in Figure 4.33(b). It’s intuitive as well
to think of changing the view by moving and turning the camera. This is
exactly where the viewing transformation gluLookAt () comes in.

Note: For now, we ask the reader to assume that we have a viewing
frustum defined by a glFrustum() statement, rather than a viewing box by
glOrtho (), as the point camera is logically placed at the origin in the case of
the former, but it’s not evident where to place it for the latter. However, this
apparent problem will be sorted out as soon as the working of gluLookAt ()
becomes clear.

The command gluLookAt(eyex, eyey, eyez, centerr, centery, cen-
terz, upzr, upy, upz) simulates — mark the word simulates — OpenGL’s
camera first being moved to the location eye = (eyex, eyey, eyez) and
pointed at center = (centerz, centery, centerz); next, it is rotated about its
line of sight (los) — the line joining eye to center — so that its up direction
is one determined from up = (upz, upy, upz). See Figure 4.34. We’ll see
shortly how the up direction is, in fact, determined from up.

(centerx, centery, centerz)

N
S

0
s

yex, eyey, eyez)
@

Figure 4.34: Camera pose determined by gluLookAt (eyez, eyey, eyez, centerz,
centery, centerz, upxr, upy, upz).

The viewing transformation gluLookAt () logically then is a
function of three parameters, each a 3D point vector.

Experiment 4.26. Replace the translation command glTranslatef (0.0,
0.0, -15.0) of box.cpp with the viewing command gluLookAt (0.0, 0.0,
15.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0) so that the drawing routine is as
below (Block 20):

void drawScene(void)

{
glClear (GL_COLOR_BUFFER_BIT) ;
glColor3£(0.0, 0.0, 0.0);
glloadIdentity();

ra

LookAT(0, 0, 15,
0,0,0,0,1,0)
eye = (0,0, 15)
z (a) :

Section 4.6
VIEWING
TRANSFORMATION

(0.0, 0.0, —15.0)

(b)

Figure 4.35: (a) gluLookAt(): the broken frustum is the original viewing frustum, the
unbroken one is where it’s translated by the gluLookAt () call, the box doesn’t move. (b)
glTranslatef (): the viewing frustum doesn’t move, rather the box is translated by the

glTranslatef () call.

// Viewing transformation.

gluLookAt (0.0, 0.0, 15.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

glutWireCube(5.0); // Box.

glFlush();

}

There is no change in what is viewed. The commands glTranslatef (0.0,
0.0, -15.0) and gluLookAt(0.0, 0.0, 15.0, 0.0, 0.0, 0.0, 0.0,

1.0, 0.0) are exactly equivalent.

Note: A convenient way to compare side-by-side the output of two pieces
of code is to put them into the two drawing routines of windows.cpp of

Chapter 3.

End

To understand why the two statements are equivalent, note that gluLook-
At (0.0, 0.0, 15.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0) takes the eye to
(0,0,15) looking down the z-axis toward the center at (0,0,0), the frustum
traveling with it. Now, compare Figures 4.35(a) and (b): should the box
appear different in the first (the frustum translated back) than the second

(the box translated forward)? No, because its position relative to the frustum

is the same in both.

145

Chapter 4
TRANSFORMATION,
ANIMATION AND
VIEWING

146

The convenience of the command gluLookAt () over glTranslatef () in
this program is that we have been able to arrange the camera according to
how we want to shoot the box, rather than moving the box itself.

As box.cpp with gluLookAt() instead of glTranslatef(), as in the
preceding experiment, is used often, the modified program is stored as
boxWithLookAt.cpp.

enter (0, 0, 10)

eye (0, 0, 15) eye (0, 0, 15) eye (0, 0, 15)

(@) (b)

line of sight = ?
frustum|= ?

——

X

,0,0)
X

feye = center = (0, 0, 15) eye (0, 0, 15)

A4 z
(d) (e)

Figure 4.36: Sectional diagrams of the (simulated) configuration of the eye and frustum
for various gluLookAt () calls in boxWithLookAt.cpp.

Experiment 4.27. Continue the previous experiment, or run boxWith-
LookAt.cpp, successively changing only the parameters centerz, centery,
centerz — the middle three — of the gluLookAt () call to the following:

1. 0.0,0.0,10.0

2. 0.0,0.0,—10.0

3. 0.0,0.0,20.0

4. 0.0,0.0,15.0 End

The view does not change with the first two parameter sets of the
experiment as the viewer’s line of sight from eye to center does not change.
Figures 4.36(a) and (b) show the respective configurations. The third set
(Figure 4.36(c)) produces a blank screen because the eye is looking the
“wrong way”. The last set (Figure 4.36(d)) confuses OpenGL because eye
and center coincide, making it impossible to decide a line of sight. Again a
blank screen appears. Note in all cases that the shape of the frustum is not
changed by gluLookAt (), only its placement and alignment.

Here are a few more center sets for you to try.

Exercise 4.37. (Programming) Restore the original boxWithLook-
At.cpp program with its gluLookAt(0.0, 0.0, 15.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0). Next, successively change only the parameters centerz,
centery, centerz — the middle three of gluLookAt() — to the following,
drawing diagrams as in Figure 4.36 to explain what is seen in each case:

1. 5.0,0.0,0.0 (Answer: See Figure 4.36(e))
2. ~5.0,0.0,0.0

3. 0.0,5.0,0.0
4. 0.0,-5.0,0.0
5. 5.0,5.0,0.0

Let’s change the eye next. It’s still pretty much the same game as
changing center, though keep in mind that the frustum’s apex moves with
the eye.

Eixercise 4.38. (Programming) Restore the original boxWithLook-
At .cpp program with its gluLookAt(0.0, 0.0, 15.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0) call. First, replace the box with a glutWireTeapot(5.0),
a non-symmetric object. Next, successively change only the parameters eyez,
eyey, eyez — the first three parameters of gluLookAt () — to the following,
drawing diagrams as in Figure 4.36 to explain what is seen in each case:

1. 0.0,0.0,10.0
2. 0.0,0.0,25.0
3. 0.0,0.0,—15.0
4. 15.0,0.0,15.0
5. 15.0,0.0,0.0

6. 15.0,15.0,15.0

Let’s get a feel now for how the up vector up = (upz, upy, upz) works.

Section 4.6
VIEWING
TRANSFORMATION

147

Chapter 4
TRANSFORMATION,
ANIMATION AND
VIEWING

Figure 4.38: Taking the
dot product:
w-v = |ul|v|cosb.

148

Experiment 4.28. Restore the original boxWithLookAt.cpp program
with its gluLookAt (0.0, 0.0, 15.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0)
call and, again, first replace the box with a glutWireTeapot(5.0). Run:
a screenshot is shown in Figure 4.37(a). Next, successively change the
parameters upz, upy, upz — the last three parameters of gluLookAt () — to
the following:

1. 1.0,0.0,0.0 (Figure 4.37(b))
2. 0.0,—-1.0,0.0 (Figure 4.37(c))
3. 1.0,1.0,0.0 (Figure 4.37(d))

Screenshots of the successive cases are shown in Figures 4.37(b)-(d). The
camera indeed appears to rotate about its line of sight, the z-axis, so that
its up direction points along the up vector (upz, upy, upz) each time. End

Figure 4.37: Screenshots from Experiment 4.28.

Before we can state the rule for how the up vector determines the camera’s
up direction generally, here are some facts about the dot product of vectors
which we’ll need. Skip this part if you already have dot product basics.

Sidebar on Dot Products

The dot product (also called scalar product) of two vectors u and v in R3 is
a scalar, denoted u - v, defined as follows:

(a) if either of w or v is zero, then u - v is zero;

(b) if not, then the value of w-v is |u||v| cos 8, where 6 is the angle between
u and v.

See Figure 4.38.
It turns out that w - v is given by the following simple formula, where
U= (Ug, Uy, uy) and v = (Vy, Uy, V,):
UV = UgUy + UyUy + ULV, (4.3)

This makes the dot product useful in calculating angles between pairs of
vectors.

Example 4.3. Determine the angle 6 between the two vectors u = (1,0,2) Section 4.6
and v = (—2,3,4). VIEWING

TRANSFORMATION
Answer:

lullv| cosO = u - v = Ugvy + Uyvy +uv, =1% =2 + 0%3 + 24 =06

Therefore,

6 6
Iu”Ul B \/12—|—02—|—22\/(_2)2+32+42

6
— ~ (.49827
V5v/29

cosf =

which gives 6 ~ 60.11439°.

Exercise 4.39. Determine the angle between each pair from the three
vectors (1,0,0), (%, \%,O) and (\/ig, \/ig, \/Lg)

Exercise 4.40. Prove the following about dot products where u, v and w
are any three vectors and ¢ any scalar:

(a) Assuming that they are both non-zero, u and v are perpendicular if
and only if u - v = 0 (perpendicularity test)

£) Ju-of <lullv]

A particularly useful application of the dot product is when one wants to
split a given vector v as v = v; + vg, where the components v; and vy are,
respectively, parallel and perpendicular to a given non-zero vector u. See
Figure 4.39(a). An intuitive way to think of v is as the shadow of v cast on
a plane p perpendicular to u by a light shining from the direction of u, as
depicted in Figure 4.39(Db).

The component vy is the perpendicular projection of v onto the line of u, (b)
so its signed length is

Figure 4.39: (a)
|u| ‘U| cos 6 _u-v Splitting v into
|u| B |u| components v1 and va,
parallel and perpendicular

where 6 is the angle between v and v. Multiplying the value of the signed :E U TESSeCt,i’VBIfy (b) vz as
length by the unit vector in the direction of u, which is u/|u|, one obtains le shacow ?i‘ v 1011 ?
the formula for v,: plane p perpendicular to wu.

|v|cosf =

u-v

TRANSFORMATION,

Chapter 4

ANIMATION AND

150

VIEWING

The formula for the component v, of v that is perpendicular to u follows, as
the sum of v; and vy is v:

u-v

vgzv_vlzﬂ—WU

(4.5)

The preceding formulae have particularly simple forms if « is a unit
vector, as we ask the reader to show next.

Exercise 4.41. If u is a unit vector and v arbitrary, prove the following:

(a) The component of v parallel to u is v1 = (u - v) w.

(b) The component of v perpendicular to u is v = v — (u - v) u.

Example 4.4. Split v = (-2,3,4) into components parallel and
perpendicular to u = (1,0, 2).

Answer: The component parallel to u is

6 12
1,0,2)= (=, 0, =
(703) <5’ 07 5>

U1 u =

(1l N

" Tul?

and that perpendicular to u is
6 12 16 8
= — = (=2 4) — — _— = _—— —
V2 v U1 (737) (53 07 5 > (5 ’ 3; 5)

The following worked example shows a neat matrix expression for the
component of one vector parallel to another. The vectors themselves are
written as column matrices.

Exampie 4.5. Show that if u = [u, u, u.]T and v = [v, v, v.]7 are two
vectors in R3, such that u is not zero, then the component v; of v parallel
to u is given by

u? Uylhy Ugly
Uy Uy “32; Uy, |V

Ugly Uyl ug

T P

Answer: We have that the component of v parallel to u is

uw
v = W u
L 7 T . .
= DB (u*v)u (u'v denotes its lone scalar entry, viz. u - v,
as a 1 x 1 matrix product)
1
= DB uw(uTv) (as (uTv)u = u(uTv), where u”v denotes a scalar
u
on the LHS and a 1 x 1 matrix on the RHS)
1
= e (uu)v (by associativity)
u
1 ul o upuy, UpUs
= | Uy uz uyu; |v (multiplying as matrices u and u)
[ul Uglly Uy, U’

For a more thorough discussion of dot products refer to any book on
linear algebra, e.g., Banchoff and Wermer [8].

Back to OpenGL

It’s simple now to explain how OpenGL uses the up = (upx, upy, upz) vector
to align the top of its camera — in other words, determine its up direction
— upon the call gluLookAt (eyezx, eyey, eyez, centerz, centery, centerz,
upzT, upy, upz).

Denote the camera’s line of sight vector (centerz,centery, centerz) —
(eyex, eyey, eyez) by los. What OpenGL does is split up into components
upy and upo parallel and perpendicular, respectively, to los. The up direction
is then taken to be ups. In particular, think of the camera, which is located
at eye = (eyex, eyey, eyez) and pointing down los, as being rotated about
los till its top points in the direction parallel to ups.

For an example, see Figure 4.40. Imagine the camera lying with its back
on this page (call it the plane p) facing up, so that the line of sight los
emerges perpendicularly from p (toward the reader). The specified up vector
is drawn in the figure starting from the camera, as also its components up;
and ups, the latter lying on the page. The camera, then, is rotated about
los with its back always on the page till its top points along ups.

The magnitude of up or of up, is of no consequence as long as it’s not
zero, because it’s only the direction that matters in aligning the top; if either
is zero, then OpenGL is unable to determine the alignment and renders a
blank screen.

Exercise 4.42. Of course, if up is zero then its component upy is zero.
Can it happen that up is non-zero and yet ups is zero?

Section 4.6
VIEWING

TRANSFORMATION

151

Chapter 4

TRANSFORMATION, o (centerx, centery, centerz)
ANIMATION AND los
VIEWING

Figure 4.40: The camera is seen face-forward so that its back-plane p lies on the page.
The line of sight los comes perpendicularly up from the page toward the reader. The
components of the vector up, parallel and perpendicular to los, respectively, are up; and
up2 (the latter lying on the page).

Experiment 4.29. Replace the wire cube of boxWithLookAt.cpp with a
glutWireTeapot (5.0) and replace the gluLookAt () call with:

gluLookAt (0.0, 0.0, 15.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0)
The vector los = (0.0,0.0,0.0) — (15.0,0.0,0.0) = (—15.0,0.0,0.0), which is
down the z-axis. The component of up = (1.0, 1.0, 1.0), perpendicular to the
z-axis, is (1.0, 1.0, 0.0), which then is the up direction. Is what you see the
same as Figure 4.37(d), which, in fact, is a screenshot for gluLookAt (0.0,
0.0, 15.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0)7 End

Exercise 4.43. (Programming) Change (upz, upy, upz) of gluLookAt ()
in boxWithLookAt.cpp to (0.0, 0.0, 1.0). What do you see? Nothing! Why?

Exercise 4.44. Compute the direction of the top of the camera for each
of the following viewing transformations:

(a) gluLookAt(0.0, 0.0, 5.0, 5.0, 0.0, 0.0, 0.0, 1.0, 1.0)
(b) gluLookAt(0.0, 5.0, 5.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0)
(¢) gluLookAt(10.0, 5.0, 5.0, 0.0, 5.0, 0.0, 5.0, 1.0, 1.0)
(d) gluLookAt(10.0, 10.0, 5.0, 0.0, 5.0, 0.0, 1.0, 2.0, 3.0)
Part answer:

(a) The line of sight vector

los = (centerx,centery,centerz) — (eyex, eyey, eyez)

152 = (5,0,0)— (0,0,5) = (5,0,-5)

The component of up = (0,1, 1) perpendicular to los is
U, = u —los.uPlos
p2 - p |lOS|2
(5,0,—=5)-(0,1,1)
= (0,1,1) — 5,0,—5
(b > 50 < D)
1
= (0,1,1) + 0 (5,0,—5)
= (0.5,1,0.5)

which, therefore, is the direction of the top of the camera. It is
perpendicular, of course, to the line of sight and, as easily verified,
tilted about 35.3° from the direction of the y-axis. See Figure 4.41.

The answer can be verified by alternately plugging in gluLookAt (0.0,
0.0, 5.0, 5.0, 0.0, 0.0, 0.0, 1.0, 1.0) and gluLookAt(0.0,
0.0, 5.0, 5.0, 0.0, 0.0, 0.5, 1.0, 0.5) into boxWithLookAt.-
cpp to see the same (clipped) box (screenshot in Figure 4.42).

Remark 4.12. Collectively, the modeling transformations glTranslatef (),
glScalef () and glRotatef() and the viewing transformations gluLook-
At) are called modelview transformations.

Exercise 4.45. (Programming) Program a camera flying at a height
of 3 units over a sequence of balls arranged along the z-axis, looking ahead
and down at the balls. See Figure 4.43.

Hint: Coordinates for the eye and center are suggested in the figure.

camera motion

VA eye(x,3,0)e
center (x+1, 2, 0)

0000
/| x

Figure 4.43: Camera flying over balls.

Exercise 4.46. (Programming) Place a wire teapot centered at the
origin. Program a camera which can be moved by the user anywhere on an
imaginary sphere enclosing the teapot, the direction of the camera being
always toward the origin. Appropriately program keys to move the camera.
See Figure 4.44, where a couple of positions of the camera are indicated.

Section 4.6
VIEWING
TRANSFORMATION

Figure 4.41: Solution to
Exercise 4.44(a).

P

Figure 4.42: Checking
the solution to
Exercise 4.44(a).

Figure 4.44: Camera
rotated on an imaginary
sphere enclosing a teapot.

153

Chapter 4 4.6.2 Simulating a Viewing Transformation with

TRANSFORMATION, Modeling Transformations
ANIMATION AND
You can skip this section on a first reading.
VIEWING

When we introduced gluLookAt () we said that it simulates OpenGL camera
movement. This is exactly right. The OpenGL camera never leaves its default
pose at the origin with its lens pointing down the —z direction and with its top
aligned along the +y direction. In fact, the viewing transformation is simu-
lated by replacing it with an equivalent sequence of modeling transformations.
We actually saw a simple example of this earlier in Section 4.6.1 where the
commands glTranslatef (0.0, 0.0, -15.0) and gluLookAt(0.0, 0.0,
15.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0) were found to be equivalent.
Here’s a motivating thought experiment for the general case:

3

(
) 2 :
Q)
A 3
apply (1) @
: apply (1)
S
then undo (1) translating both camera

and scene — net effect same as (2) then undo (1) rotating

both camera and scene —
S net effect same as (2)

Figure 4.45: Relative movement of the camera and scene.

@

You are out on an open field with a friend and a camera. She stands 10
meters in front of you, but looking through the viewfinder you think she
154 should be, say, 3 meters closer. There are two options: (1) you, i.e., the

camera, translate (walk) 3 meters toward her, or (2) she, i.e., the scene,
translates 3 meters toward you. See the top left of Figure 4.45. The picture
is same in either case. Ignore the backdrop, as it’s a homogeneous open field!

Here’s another way to arrive at the equivalence of the two options. Say
you had already applied (1) when the guy you had borrowed the camera
from starts yelling that it’s really expensive and would you mind not moving
it around but just keep it where it was first set up. In other words, you have
to manage by rearranging the scene instead. So, to undo the effect of (1)
and bring the camera back to its original position, you apply the reverse of
(1) to both camera and scene (so as not to alter the picture). The result,
of course, is the same as applying just (2) in the first place. See the two
diagrams in the big box on the lower left of Figure 4.45.

Looking through the viewfinder again, you feel it’ll be a nicer composition
if your friend stands not at the center of the frame but to a side. Again,
(1) you can rotate the camera, say, 45° clockwise, or (2) your friend can
sidle 45° counter-clockwise along a circle centered where you are, as in the
top right of Figure 4.45. The picture is exactly the same in either case.
And, again, one can imagine arriving at (2) by first applying (1), and then
undoing it by applying the reverse of (1) to both camera and scene, as the
two diagrams in the big box on the lower right of Figure 4.45 indicate.

It should now be fairly straightforward understanding the equivalence of
a viewing transformation to a sequence of modeling transformations. The
transformation

gluLookAt (eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)

asks that the camera be (i) first translated to the position (eyez, eyey,
eyez), then, (ii) rotated at that position till it’s pointing at (centerz, centery,
centerz) and, finally, (iii) rotated about its line of sight till its up direction is
parallel to the vector ups, the component of (upz, upy, upz) perpendicular
to the line of sight.

Let’s move the camera as asked. Figure 4.46(a) shows the resulting
configuration. Next — it’s the owner yelling again — we’ll restore the camera
to its default pose by incrementally undoing its movements, moving instead
the scene as in the preceding thought experiment. The sum total, then,
of these reverse movements to bring the camera back to default will be
equivalent to the viewing transform.

The first translation is undone by applying glTranslatef (—eyez,
—eyey, —eyez). The camera is then at the origin, but still pointing parallel
to the line of sight vector

los = (centerx, centery, centerz) — (eyex, eyey, eyez)

and with its top still parallel to ups. See Figure 4.46(Db).
Suppose that p is a plane that contains both los and the z-axis — shaded
in the figure. If los does not lie along the z-axis then p is unique; if it

Section 4.6
VIEWING
TRANSFORMATION

155

Chapter 4
TRANSFORMATION,
ANIMATION AND
VIEWING

Apply glTranslatef(—eyex, —eyey, —eyez)

=)
Looking at the camera\ <
om the —z direction | &
3
() g
X =2
glTranslatef(—eyex, —eyey, —eyez) 2
z (centerx, centery, centerz) , <&
los
ex, eyey, eyez) up
Conﬁ%llration as specified
by gluLookAt()
(a) x

Original default pose, looking at
the camera from the —z direcfion

(d)

Figure 4.46: Restoring the camera to its default pose: broken arrows indicate
movements which applied take the camera to the next configuration in the sequence

(a)-(d)-

does then p can be any plane that contains the common line. Choose a
non-zero vector w = (wx, wy, wz) perpendicular to p, i.e., w is perpendicular
to both los and the z-axis. Let A be the angle from los to —z on the plane
p measured counter-clockwise when looking down from w.

Applying glRotatef (A, wz, wy,wz) then rotates the camera till its line
of sight matches the —z direction. Moreover, its top then is parallel to
the vector, call it uph, which is the result of glRotatef (A, wz, wy, wz)
applied to ups. Now, up), the new top direction, is perpendicular to the
new line of sight down —z, because both were obtained by the same rotation
glRotatef (A, wz, wy,wz) applied to perpendicular vectors ups and los.
Therefore, up, lies on the zy-plane. See Figure 4.46(c) where the camera is
seen from the negative side of the z-axis.

Finally, all that remains to restore the camera to its default position is a

156 rotation glRotatef (B,0.0,0.0,1.0), of angle B about the z-axis, to align

its top along +y. See Figure 4.46(d). Section 4.6
We conclude that the viewing transformation VIEWING

TRANSFORMATION
gluLookAt (eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)

is, indeed, equivalent to a sequence of modeling transformations, in particular,
a translation followed by two rotations:

glRotatef (B, 0.0, 0.0, 1.0);
glRotatef (A, wzx, wy, wz);
glTranslatef (—eyex, —eyey, —eyez);

We do not attempt to express the parameters A, B, wz, wy and wz in
terms of the parameters eyez, eyey, ..., upz of the gluLookAt () command.
Generally, this would be a tedious computation, but for simple settings of
the camera it is not, as the experiment next shows.

Eixperiment 4.30. Replace the display routine of box . cpp with (Block 21):

void drawScene(void)

{

glClear (GL_COLOR_BUFFER_BIT) ;
glColor3£(0.0, 0.0, 0.0);

glloadIdentity();

// Viewing transformation.
gluLookAt (0.0, 0.0, 15.0, 15.0, 0.0, 0.0, 0.0, 1.0, 0.0);

// Modeling transformation block equivalent
// to the preceding viewing transformation.
// glRotatef(45.0, 0.0, 1.0, 0.0);
// glTranslatef(0.0, 0.0, -15.0);

glutWireCube(5.0);

glFlush();

Run. Next, both comment out the viewing transformation and =
uncomment the modeling transformation block following it. Run again.
The displayed output, shown in Figure 4.47, is the same in both cases. The
reason, as Figures 4.48(a)-(c) explain, is that the viewing transformation is <
equivalent to the modeling transformation block. In particular, the former pigure 4.47: Screenshot
is undone by the latter. End from Experiment 4.30.

Exercise 4.47. (Programming) Replace the display routine of box. cpp
with (Block 22): 157

TRANSFORMATION,

Chapter 4

ANIMATION AND

158

VIEWING

9 4
—
=

z z v
%luLookAt(O .0, 0. 0 5 0, glRotatef(45.0, 0.0, 1
5.0, 0.0, 0.0, 0.0, 1.0, 0.0); glTranslatef(0.0, 0.0, —15.0); ngranslatef(O 0 0.0
(a) (b) (c)

Figure 4.48: Viewing transformation equivalent to a sequence of modeling
transformations.

void drawScene(void)

{

glClear (GL_COLOR_BUFFER.BIT) ;
glColor3£ (0.0, 0.0, 0.0);

glLoadIdentity();

// Viewing transformation.
gluLookAt(-30.0, 0.0, 30.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

// Modeling transformation block equivalent
// to the preceding viewing transformation.
// glRotatef(45.0, 0.0, 1.0, 0.0);
// glTranslatef(30.0, 0.0, -30.0);

glutWireCone(3.0, 10.0, 20, 20);

glFlush();

}

Draw diagrams as in Figure 4.48 to show the equivalence of the viewing

transformation and the modeling transformation block following it.
Eixercise 4.48. Show that the viewing transformation

gluLookAt (30.0, 0.0, 30.0, 0.0, 0.0, 0.0, 1.0, 0.0, -1.0);
is equivalent to the sequence

glRotatef (90, 0.0, 0.0, 1.0);
glRotatef (45, 0.0, -1.0, 0.0);
glTranslatef (-30.0, 0.0, -30.0);

of modeling transformations. Pay particular attention to the alignment of

the top of the camera.

Exercise 4.49. The sequence of modeling transformations equivalent to
a given viewing transformation is not unique. In fact, for the preceding
exercise find a sequence of modeling transformations, different from the one
given, yet equivalent to the viewing transformation there.

Exercise 4.50. What sequence of modeling transformations is equivalent
to each of the following viewing transformations:

(a) gluLookAt(0.0, 0.0, 0.0, -15.0, 0.0, 15.0, 0.0, 1.0, 0.0)
(b) gluLookAt(0.0, 0.0, 15.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0)

)
)
(¢) gluLookAt(0.0, 0.0, 15.0, -15.0, 0.0, 0.0, 1.0, 0.0, -1.0)
(d) gluLookAt(0.0, 0.0, 15.0, 0.0, 1.0, 14.0, 0.0, 1.0, 0.0)

(e) gluLookAt (0.0, 0.0, 15.0, 0.0, 1.0, 14.0, 1.0, 0.0, 0.0)
Part answer:

(¢) One solution:

glRotatef (90, 0.0, 0.0, 1.0);
glRotatef (-45, 0.0, 1.0, 0.0);
glTranslatef (0.0, 0.0, -15.0);

Eixercise 4.51. What is the viewing transformation equivalent to the
following sequence of modeling transformations:

glRotatef(45.0, 0.0, 1.0, 0.0);
glTranslatef (0.0, 0.0, -5.0);

It’s invariably good programming practice for there to be
at most a single viewing transformation in a program, which comes in
the code before all modeling transformations; in other words, the viewing
transformation is applied last. Logically this means that objects are drawn
first and placed as desired with respect to each other using modeling
transformations and, then, a gluLookAt () is applied finally to transport the
entire scene together.

Exercise 4.52. A programmer writes the following near the top of his
drawing routine:

gluLookAt (0.0, 10.0, 10.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
gluLookAt (0.0, 0.0, 15.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

As it is bad practice to have two gluLookAt () statements like this, replace
them with one gluLookAt () having the same effect.

Section 4.6
VIEWING
TRANSFORMATION

159

TRANSFORMATION,

Chapter 4

ANIMATION AND

160

VIEWING

Toward the beginning of this section on the viewing
transformation we asked the reader to assume that we had a viewing frustum
defined by a glFrustum() statement, rather than a glOrtho()-defined
viewing box, because a point camera is logically placed at the origin in case
of the former, but it’s not clear where to place it for the latter.

So what happens when one applies gluLookAt () in the drawing routine
when the projection statement, in fact, is a glOrtho()? The answer, as
the reader has probably already guessed, is that OpenGL simply replaces
the viewing transformation with its corresponding sequence of modeling
transformations whatever may be the projection statement. The imaginary
camera we thought of as being manipulated by a viewing transformation
is simply an intuitive gadget for us programmers; it has no place inside
OpenGL!

We have been insistent that the viewing transformation
gluLookAt ()’s purported manipulation of the camera is simulated entirely
by modeling transformations. Indeed, we showed in this section how this
can be done. But, is this really what OpenGL does? For, it’s plausible that
OpenGL actually does move the viewing frustum, with the camera at its
apex, as directed by a gluLookAt () call, rather than apply any modeling
transformations. For example, is Figure 4.35(a) or (b) in Section 4.6.1 the
“truth”?

Here’s how to decide. Modeling transformations change the current

modelview matrix at the top of the modelview matrix stack. The viewing
frustum, on the other hand, is determined by the current projection matrix
at the top of the projection matrix stack, which is altered, among others, by
projection statements such as glFrustum(). So, a way to find out what really
happens inside the OpenGL engine is to read both the current modelview
and projection matrices, both before and after issuing a gluLookAt (), and
see which changes.
So what does happen? Only the current modelview matrix changes!
The current projection matrix remains at the value it had prior to the
gluLookAt () call. Take this in good faith now — you’ll be able to verify the
claim when we learn to access the modelview and projection matrix stacks in
Chapter 5. In fact, we’ll see then that the modelview matrix changes exactly
as if multiplied on the right by the matrices corresponding to a sequence of
modeling transformations equivalent to the given viewing transformation.

An interesting upshot of all this is that viewing transfor-
mations are not really needed, as any such transformation can always be
manufactured from modeling transformations! Later versions of OpenGL,
as we shall see, take this to heart.

4.6.3 Orientation and Euler Angles

This section may be skipped on a first reading. You will need it, though,
before Section 6.3 about animating orientation with the help of Euler angles.

The viewing transformation leads nicely to a method of specifying the
orientation of a camera. Recall the conclusion in Section 4.6.2 that the
viewing transformation

gluLookAt (eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)
is equivalent to a translation followed by two rotations:

glRotatef (B, 0.0, 0.0, 1.0);
glRotatef (A, wzx, wy, wz);
glTranslatef (—eyex, —eyey, —eyez);

The axis of the particular rotation glRotatef (A, wzx,wy,wz) is variable
and depends on the line of sight. It was chosen, in fact, perpendicular to
both line of sight and the z-axis. It’s possible, however, to find a translation
followed by a sequence of rotations, each about a fized axis, equivalent to
the given viewing transformation. In particular, one can show that

gluLookAt (eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)
is equivalent to:

glRotatef(—v, 0.0, 0.0, 1.0);
glRotatef (—3, 0.0, 1.0, 0.0);
glRotatef (—a, 1.0, 0.0, 0.0);
glTranslatef (—eyex, —eyey, —eyez);

where rotations are each about a coordinate axis, for suitable angles «, 8
and v (the minus signs are for simpler notation later on). Here’s how.

(4) glRotatef(=y. 0.0, 0,0 1.0) wyup

(3) glRotatef(~4, 0.0, 1.0, 0.0)
eye
(1) gl Translatef(—eyex, —eyep;

)

los (2)IRotatef(—a, 1.0, 0.0, 0.0)

Figure 4.49: Applying a translation (1) and rotations (2)-(4) about the three
coordinate axes to bring the camera back to its default pose. The original line of sight is
bold. The up direction is shown only at the end.

Figure 4.49 — an all-in-one version of Figure 4.46 — shows that the
sequence of four transformations below restores the camera to its default
pose from the one specified by

Section 4.6
VIEWING
TRANSFORMATION

161

TRANSFORMATION,

Chapter 4

ANIMATION AND

162

VIEWING

gluLookAt (eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)

so, indeed, they are equivalent.

(Note: Figure 4.49 looks busy but it’s not hard to read. The best way is to
start with the bold vector indicating the camera’s initial configuration and
follow the sequence (1)-(4) of transformations one by one.)

(1) glTranslatef (—eyexr, —eyey, —eyez), to bring the eye to the origin.

(2) glRotatef (—a,1.0,0.0,0.0), —a chosen to rotate the los about the
z-axis till it lies on the xz-plane.

(3) glRotatef(—/,0.0,1.0,0.0), —8 chosen to rotate the los about the
y-axis till it points down the —z direction.

(4) glRotatef (—+,0.0,0.0,1.0), —v chosen to rotate the camera about its
los (pointing down the z-axis) till its top is aligned in the +y direction.

Evidently, from the above, we can reduce the number
of parameters required to specify camera movement from the nine of
gluLookAt () to only six: «, (8, 7, eyer, eyey and eyez. This indicates
redundancy in the construction of gluLookAt(), but it has the virtue of
being intuitive to use.

Example 4.6. Express the viewing transformation
gluLookAt (0.0, 0.0, 0.0, 1.0, 1.0, 0.0, -1.0, 1.0, 0.0);

as a sequence of rotations about the coordinate axes (no translation is needed
as the eye is already at the origin).

Answer:

glRotatef(90.0, 0.0, 0.0, 1.0);
glRotatef(135.0, 0.0, 1.0, 0.0);
glRotatef(90.0, 1.0, 0.0, 0.0);

See Figure 4.50 for how the camera is restored to its default pose by these
three rotations.

Exercise 4.53. What sequence of rotations would have been found by the
method of Section 4.6.2 as equivalent to the viewing transformation of the
preceding example? Would they all have been about the coordinate axes?

If its first three parameters (eyex, eyey, eyez) = (0, 0, 0), then a
gluLookAt ()’s translational component is zero, so that it alters only a
camera’s orientation, or pose. From the preceding discussion, such a
gluLookAt () call is equivalent to a sequence

glRotatef (—v, 0.0, 0.0, 1.0);
glRotatef (—3, 0.0, 1.0, 0.0);
glRotatef (—«, 1.0, 0.0, 0.0);

glRotatef(90, 1, 0, 0) glRotatef(135, 0, 1, 0) glRotatef(90, 0, 0, 1) Section 4.6
VIEWING
TRANSFORMATION

los

(1,0,1)

Figure 4.50: Solution to Example 4.6: the configuration of the camera given by
gluLookAt (0.0, 0.0, 0.0, 1.0, 1.0, 0.0, -1.0, 1.0, 0.0) is at left; the line of
sight and up vectors are indicated by blue arrows; rotations are both annotated at the
top and indicated in the figures themselves by broken arrows, the result of each rotation
being the next configuration.

because this sequence restores the camera to its default pose. In the
opposite direction, therefore, the orientation of the camera resulting from
this particular gluLookAt () call is obtained from its default pose by applying
the inverse of the above sequence, viz.

glRotatef (o, 1.0, 0.0, 0.0);
glRotatef (8, 0.0, 1.0, 0.0);
glRotatef (v, 0.0, 0.0, 1.0);

The angles «, $ and «y are called the camera’s Euler angles.

So, we see that Euler angles determine the camera’s orientation:
specifically, if they are «, 8 and ~, then the camera’s orientation is obtained
by applying first glRotatef (7, 0.0,0.0,1.0), then glRotatef (3,0.0,1.0,0.0)
and, finally, glRotatef («, 1.0,0.0,0.0) to its default pose.

Euler angles are not unique. For example, it’s clear in Figure 4.49 that
glRotatef (—a + 180°,1.0,0.0,0.0) could have been applied in Step (2),
instead of glRotatef (—«, 1.0,0.0,0.0), to still place the camera’s los on the
xz-plane. So the orientation given by Euler angles «, § and -y is the same
as the ones given by o+ 180°, 8’ and ~+/, for some, possibly, new 8’ and +'.

Exercise 4.54. What are the Euler angles of a camera
(a) at the origin pointing at (1,0,0)?
(b) at the origin pointing at (1,1,1)?
(c) at (1,0,0) pointing at (1,1,1)?
Note: In each case assume the up vector to be (0,1,0). To determine the

Euler angles of a camera not at the origin simply translate it first to the
origin.

Part answer: 163

TRANSFORMATION,

Chapter 4

ANIMATION AND

164

VIEWING

(a) 0°, —90°, 0° (one possible answer)

We’ll see more of Euler angles when we discuss animating the orientation
of rigid objects in Chapter 6.

4.6.4 Viewing Transformation and Collision Detection
in Animation

Our next program makes use of viewing transformations to simulate a moving
camera in an animated environment. It also has another aspect of interest,
particularly to those programming interactive applications such as games,
namely, collision detection.

o' spaceTravelopp

Figure 4.51: Screenshot of spaceTravel.cpp.

Experiment 4.31. Run spaceTravel.cpp. The left viewport shows a
global view from a fixed camera of a conical spacecraft and 40 stationary
spherical asteroids arranged in a 5 x 8 grid. The right viewport shows
the view from a front-facing camera attached to the tip of the craft. See
Figure 4.51 for a screenshot of the program.

Press the up and down arrow keys to move the craft forward and backward
and the left and right arrow keys to turn it. Approximate collision detection
is implemented to prevent the craft from crashing into an asteroid.

The asteroid grid can be changed in size by redefining ROWS and COLUMNS.
The probability that a particular row-column slot is filled is specified as a
percentage by FILL_ PROBABILITY — a value less than 100 leads to a non-
uniform distribution of asteroids. Enda

We'll discuss next the two most interesting aspects of spaceTravel. cpp:
(a) the viewing transformation that defines the scene in the right viewport
and (b) collision detection.

Viewing Transformation

The shape of the craft is defined by the glutWireCone(5.0, 10.0, 10,
10) statement; precisely, it is a cone of base radius 5 and height 10. The
configuration of the spacecraft is specified by the values of zVal, zVal and
angle, all three global variables of spaceTravel.cpp. Figure 4.52(a) is a
generic configuration in section along the xzz-plane. The coordinates of the
center of the craft’s base are (zVal,0, 2V al), while the angle its axis makes
with the negative z-direction is angle. The middle A of the craft’s axis will
be of use in collision detection.

center .

eye

5
(xVal, 0, zVal)

=<V

(b)

Figure 4.52: Spacecraft diagrams.

The camera for the right viewport is situated at the tip of the craft
pointing straight ahead. It’s straightforward trigonometry, now, to calculate
the coordinates of eye, i.e., the tip of the craft, and of an imaginary point
center to which it points, located 1 unit ahead of the tip:

eye = (xVal —10sin(angle), 0, zVal — 10 cos(angle))
center = (aVal —11sin(angle), 0, zVal — 11 cos(angle))

These equations for eye and center explain the parameters of the gluLook-
At () command for the right viewport.

Collision Detection

Collision detection as implemented in spaceTravel.cpp is simple though
approximate. The spacecraft is enclosed in an imaginary bounding sphere S
centered at the middle A of the cone’s axis, with radius equal to the distance
|AC| from A to a point C' on the boundary of its base. See Figure 4.52(b).

If B is the center of the base, then it follows from the dimensions of the
cone that |AB| = |BC| = 5; therefore,

|AC| = V/]ABJ? +|BC|? = /50 = 7.071....

Section 4.6
VIEWING
TRANSFORMATION

165

Chapter 4 Accordingly, we specify the radius of S to be 7.072 (slightly larger, in
TransForMATION, —fact, than [AC|). The coordinates of the center A of S are obtained by
ANIMATION AND trigonometry from Figure 4.52(a):

VIEWING
A = (zVal — 5sin(angle), 0, z2Val — 5 cos(angle))

To detect collision between the spacecraft and an asteroid 7', we detect
instead collision between the craft’s bounding sphere S and T'. It’s easy to
determine if there is a collision between the two spheres S and T": compare
the distance d between their centers with the sum r; + r9 of their radii;
there is collision if d < ry + 75 (e.g., as in Figure 4.52(c)), and not otherwise.
This check is implemented in the routine checkSphereCollision(). This
collision-detection test is approximate, in fact, conservative, as the craft’s
bounding sphere may intersect an asteroid even if the craft itself doesn’t (as
shown in Figure 4.52(c)).

The up and down arrow keys are programmed to move the craft a distance
of 1 in either direction along its axis, and the left and right arrows to turn
the craft an angle of 5°, only if there’ll not be a collision with an asteroid in
the new position (according to the conservative test above).

Exercise 4.55. (Programming) Modify spaceTravel.cpp as follows:

(a) Make the left viewport the view from the front of the spacecraft
(currently, it is the right viewport).

(b) Make one of the asteroids the “big golden asteroid” by drawing it
larger than the others and painting it suitably. Make it glow as well
by oscillating the intensity of its color.

(c¢) Place a camera on the golden asteroid whose location is fixed but
which rotates to track the spacecraft, i.e., its direction is pointed
always toward the craft. Attach a tall antenna to the craft so that,
even if it’s obscured by other asteroids, at least the antenna will be
visible from the big golden asteroid. Show the view from the golden
asteroid’s camera in the right viewport.

(d) When the spacecraft reaches the big golden asteroid, flash the text
“You have found gold!”.

Exercise 4.56. (Programming) Modify spaceTravel.cpp as follows:

(a) All the asteroids are currently colored spheres. Make them more
interesting by using a few different FreeGLUT objects, e.g., cube,
tetrahedron, octahedron, etc. You can also combine more than one
object, e.g., one sphere on top of another, or design your own.

(b) Currently, the spacecraft moves interactively. Change this to program

166 an automated tour which takes a fixed but zig-zag path through the

asteroids and returns to the start position. Plan a path so that the Section 4.6
craft comes close to a few interesting asteroids, visible in the right vigwing
viewport. Pressing space should start/stop the movement. TRANSFORMATION

(¢) Currently, the camera on the craft always points straight ahead.

Program occasional rotation of the camera, e.g., when the craft passes
a strange asteroid, pan the camera to keep it in view.

Exercise 4.57. (Programming) Place a camera on top of the rolling

ball of Exercise 4.27, pointing always down the plane. This camera does not moving p
rotate with the ball, but stays always at the top, so its motion is entirely camerg
linear. (How would you even install such a camera in real life? Well, that is fixed

a great thing about CG: you are entirely free from real-life constraints!) camerg

Place a box just beyond the bottom of the plane so that the ball’s camera
sees an approaching object. Place an additional fixed camera on the box
pointing at the plane to observe the ball. See Figure 4.53. Give a split-screen
view as in spaceTravel.cpp.

The following experiment is to whet your appetite for the topic of Figure 4.53: Ball rolling
frustum culling, critical to the efficient rendering of complex scenes with toward a box.
large numbers of objects.

Experiment 4.32. Run spaceTravel.cpp with ROWS and COLUMNS both
increased to 100. The spacecraft now begins to respond so slowly to key input
that its movement seems clunky, unless, of course, you have a super-fast
computer (in which case, increase the values of ROWS and COLUMNS even
more). End

The reason for the degradation in the preceding experiment is that, every
time an arrow key is pressed, OpenGL processes 10,000 asteroids, which is
an enormous amount of computing. However, of these 10,000 only a few
(about 100, or 1%) are ultimately rendered, as you can roughly count on the
screen! The rest, of course, are outside the viewing frustum and clipped.

Unfortunately, by the time the decision to clip is made in the graphics
pipeline, a large amount of computation has already been invested. Frustum
culling is a technique to reduce this burden on OpenGL, whereby the
programmer leverages her knowledge of the scene to pre-filter objects lying
beyond the viewing frustum, not letting them into the pipeline at all.

We'll discuss frustum culling in detail in Section 6.1. There’s really not
much more by way of prerequisites needed to read that particular section
though, so if you’re anxious to learn this technique, which is so important
in coding busy games and movies, feel free to jump right there.

We are not done yet with animation, though, and have a bunch more
fun code for you. 167

Chapter 4
TRANSFORMATION,
ANIMATION AND
VIEWING

Figure 4.54: Screenshot
of animateManl.cpp.

Figure 4.55: Screenshot
of animateMani.cpp in
develop mode.

168

4.7 More Animation Code

4.7.1 Animating an Articulated Figure

Our next project is a “studio” to develop animation sequences for an
articulated figure.

Experiment 4.33. Run animateManl.cpp. This is a fairly complex
program to develop a sequence of key frames for a man-like figure, which
can subsequently be animated. In addition to its spherical head, the figure
consists of nine box-like body parts which can rotate about their joints. See
Figure 4.54. All parts are wireframe. We’'ll explain the program next. Fnd

It’s advisable to learn to use the program before studying the code. There
are two modes, develop and animate, and the program starts in the develop
mode with the man facing you with his currently highlighted part, the torso,
colored red. The rest of the body is black. Press the space bar to cycle
through the man’s movable parts, successively highlighting each. There are
nine movable parts, all OpenGL wire cubes: the torso, the upper and lower
arms on either side, and the upper and lower legs on either side.

Rotate the currently highlighted part by pressing the page-up and page-
down keys. To move the man as a whole press the left/right and up/down
arrow keys. The angles at which the 9 movable parts are currently rotated,
as well as the vertical and horizontal translational components of the man
as a whole, are shown as text data in the window in develop mode.

While arranging the man into a desired configuration, you can rotate
your own viewpoint by pressing ‘r/R’, or zoom in and out pressing ‘z/7Z’.

Once the first configuration is completed to your satisfaction, press ‘n’.
This creates a new configuration which cannot be seen immediately as it’s
a copy of the previous one. Press, say, the right arrow key to separate the
new configuration from the previous one. The (current) new configuration
is bright, while the other(s) are ghosted. Again, use the space key to select
a part, the page-up and page-down keys to rotate that part, and the arrow
keys to move the entire configuration until it is arranged suitably.

Press ‘n’ to create new configurations until the key frames sequence is
complete. Figure 4.55 shows a screenshot part way through the develop
mode. You can edit the sequence at any time as follows.

Press the tab key to cycle through the sequence of configurations — the
currently selected configuration is bright, while the rest ghosted. Press
backspace to reset the currently selected configuration, delete to remove it
altogether, or you can rearrange it using keys as already described.

When the key frames sequence is complete, pressing ‘a’ begins an
animation which cycles through the programmer-created configurations.
Pressing the up or down arrow keys speeds up or slows down the animation.
Pressing ‘a’ again returns the program to develop mode.

Switching to animation mode also causes the program to write out to
the file animateManDataOut.txt successive configurations of the animation

sequence, stored currently in the vector manVector. Configuration are stored Section 4.7

in successive lines of animateManDataOut .txt, each consisting of 11 floating Morr ANIMATION
point values — partAngles[0]-[8], upMove and forwardMove — the same (Copg

as are displayed on the screen in develop mode.

Experiment 4.34. Run animateMan2.cpp. This is simply a pared-down
version of animateManl.cpp, whose purpose is to animate the sequence of
configurations listed in the file animateManDataIn.txt, likely generated
from the develop mode of animateMani.cpp. Press ‘a’ to toggle between
animation on/off. As in animateMani.cpp, pressing the up or down arrow
key speeds up or slows down the animation. The camera functionalities via
the keys ‘r/R’ and ‘z/Z’ remain as well. Think of animateMan1.cpp as the
studio and animateMan2.cpp as the movie.

The current contents of animateManDatalIn.txt cause the man to do a
handspring over the ball. Figure 4.56 is a screenshot. End

Figure 4.56: Screenshot

Now let’s look at the code of animateManl.cpp. From an OpenGL point of animateMan2. cpp.

of view, most interesting possibly is the drawing of a configuration by the
function Man::draw(). The best way to understand it is to analyze the
successive placement of parts. We’ll do this our usual way of deconstructing
a program by first commenting out most of it and then restoring code piece
by piece.

Accordingly, first comment out all parts except the torso as below:

// Function to draw man.

void Man: :draw()

{
if (highlight||animateMode) glColor3fv(highlightColor);
else glColor3fv(lowlightColor);

glPushMatrix () ;

// Up and forward translations.
glTranslatef (0.0, upMove, forwardMove);

// Torso begin.
if (highlight && 'animateMode) if (selectedPart == 0)
glColor3fv(partSelectColor) ;

glRotatef (partAngles[0], 1.0, 0.0, 0.0);

glPushMatrix();

glScalef (4.0, 16.0, 4.0);

glutWireCube(1.0);

glPopMatrix();

if (highlight && !'animateMode) glColor3fv(highlightColor);

// Torso end. -
169

Chapter 4 /*
TRANSFORMATION, // Head begin.
ANIMATION AND
VIEWING

// Right upper and lower leg with foot end.
*/

glPopMatrix();

}
Next, uncomment the head:

// Function to draw man.

void Man::draw()

{
if (highlight||animateMode) glColor3fv(highlightColor);
else glColor3fv(lowlightColor);

glPushMatrix () ;

// Up and forward translations.
glTranslatef (0.0, upMove, forwardMove);

// Torso begin.
if (highlight && !animateMode) if (selectedPart == 0)
glColor3fv(partSelectColor) ;

glRotatef (partAngles[0], 1.0, 0.0, 0.0);

glPushMatrix () ;

glScalef (4.0, 16.0, 4.0);

glutWireCube(1.0);

glPopMatrix();

if (highlight && '!'animateMode) glColor3fv(highlightColor);
// Torso end.

// Head begin.
glPushMatrix () ;

glTranslatef (0.0, 11.5, 0.0);
glPushMatrix () ;

glScalef (2.0, 3.0, 2.0);
glutWireSphere(1.0, 10, 8);
glPopMatrix () ;

glPopMatrix();
// Head end.

170 /%

// Left upper and lower arm begin.

// Right upper and lower leg with foot end.
*/

glPopMatrix();

}

Continue — as you successively uncomment each body part, it’ll be clear how
it’s being placed with respect to existing ones.

The creation of the camera as an object of the Camera class may be of
interest as well and we’ll leave the reader to relate the parameter values of
the gluLookAt () command to the member variables viewDirection and
zoomDistance of the Camera class.

Much of the rest of the code consists simply of managing and using
manVector, which stores the sequence of configurations.

Even though he himself is 3D, the man moves and rotates
his parts always parallel to the yz-plane, so he’s not really capable of 3D
motion!

Exercise 4.58. (Programming) Use animateMan*.cpp to animate a
character kicking a football.

Exercise 4.59. (Programming) Enhance animateManx. cpp:

(a) The character’s body parts, except for the head, are currently all cubes.
Make them more realistically rounded using cylinders.

(b) Add movement to the character’s feet, which are currently fixed with
respect to his lower legs. Give him movable hands as well.

(¢) Asremarked earlier, all the character’s movements are currently parallel
to a single plane. Enhance to true 3D.

Exercise 4.60. (Programming) Stick a camera to the front of the
man’s head and give a split-screen view of what he sees as he advances
through an animation sequence and what is seen from a separate fixed
camera focused on him.

Exercise 4.61. (Programming) By scaling individual body parts,
create a second character who looks different from the first, though with
identical functionality. Make a simple movie with the two.

It would be particularly effective in such a sequence to occasionally switch
to a camera located in front of either one of their heads, to record how one
sees the other.

Section 4.7

MORE ANIMATION

CODE

171

Chapter 4
TRANSFORMATION,
ANIMATION AND
VIEWING

Figure 4.57: Screenshot
of ballAndTorus-
Shadowed. cpp.

172

Exercise 4.62. (Programming) Smoothly animating even a short
movie requires several key frames (approximately 20 per second). However,
the “important” ones are likely far fewer in number. For example, if a man
kicks a ball, these are probably his wound-up pose ready to kick, the pose
when his foot makes contact with the ball, a follow-through pose having
kicked and, possibly, a few more in between to guide the sequence; certainly,
far fewer than the 40 or so key frames needed for even a 2-second kicking
sequence.

A movie-maker, therefore, saves a lot of tedious labor by simply drawing
the important key frames, leaving an interpolating routine to fill in enough
frames to make the animation smooth, a process called tweening.

Write a simple tweening routine based on animateMan*.cpp. In
particular, use linear interpolation to fill configurations — each being an
11-vector of floats — in between successive programmer-created ones.

4.7.2 Simple Shadow Animation

When the scaling transformation was introduced at the beginning of this
chapter we said that degenerate scalings have the occasional application.
Here’s one to create and animate a simple shadow.

Experiment 4.35. Run ballAndTorusShadowed.cpp, based on ballAnd-
Torus. cpp, but with additional shadows drawn on a checkered floor. Press
space to start the ball traveling around the torus and the up and down arrow
keys to change its speed. Figure 4.57 is a screenshot. End

There are parts of the program to make the picture look nice, e.g., lighting
and material properties, which may not make sense currently, but neither
are they relevant to drawing shadows, so ignore them for now.

Note, first, that the routine drawFlyingBallAndTorus () repositions the
ball and torus from ballAndTorus.cpp horizontally so that their shadow,
thrown supposedly by a distant overhead light source, falls on the floor.
That the (imaginary) light source is vertically far above is important, as it
justifies drawing the shadows as if cast by rays parallel to the y-axis. The
actual drawing itself is quite simple — the following few lines in the drawing
routine do the trick:

glPushMatrix();

glScalef (1.0, 0.0, 1.0);
drawFlyingBallAndTorus(1);
glPopMatrix();

The argument value 1 to drawFlyingBallAndTorus () causes both ball
and torus to be drawn black, while the degenerate scaling command
glScalef (1.0, 0.0, 1.0) collapses the y-values of all their vertices to
0, creating a flat black object which is precisely their shadow on the xz-plane
from light rays parallel to the y-axis.

Since ballAndTorusShadowed.cpp evidently contains code
to light the scene, you might think that OpenGL can compute shadows
automatically. This is not the case: OpenGL does not automatically compute
secondary consequences of lighting such as shadows and reflection. These
have to be implemented separately by the programmer.

Note that the shadow of the ball on the torus is missing, even
when it flies directly above. Our simple blacken-and-flatten method cannot
draw shadows on curved surfaces. We’ll learn a way to do this, however,
later on in Section 18.2 on shadow mapping.

4.8 Selection and Picking

Strictly speaking, this section does not fit in a chapter about animation
and viewing. However, countless animated applications ask the user to
pick and move an object on the screen with a mouse or mouse-like device
(shoot-em-up games come to mind). We thought it important, therefore, to
explain how to implement such interactivity.

World space

Pipeline

Screen space

Figure 4.58: OpenGL’s synthetic-camera pipeline (highly simplified!).

Unfortunately, picking an object on the screen — which, effectively, means
deciding to which object a picked pixel belongs — is not a simple operation
given how the synthetic-camera pipeline functions. Particularly, objects
enter the pipeline, are processed and emerge each as a set of fragments

Section 4.8
SELECTION AND
PICKING

173

Chapter 4
TRANSFORMATION,
ANIMATION AND
VIEWING

Figure 4.59: Screenshot
from selection.cpp.

174

(fragment = pixel + color values), which are then rendered to the screen.
Figure 4.58 is a conceptual diagram.

The pipeline is not designed to be reversible, so there’s no easy way to
“climb back up” from screen space to world space. How then does one go
about picking? Fortunately, OpenGL provides support for picking as well as
a process it calls selection, which, in fact, enables picking. Let’s begin with
selection.

4.8.1 Selection

The idea underlying selection is simple. In a nutshell, it is to allow the user
to specify a viewing volume and to then find the objects that intersect, or
hit, this volume. To this end the user must first enter a rendering mode,
called selection mode, by invoking glRenderMode (GL_SELECT). In selection
mode nothing is drawn to the frame buffer; rather, primitives are processed
simply to determine their intersections with the specified viewing volume
and generate so-called hit records.

To help determine from a hit record the primitive, or primitives, which
produced it, OpenGL provides a so-called name stack which the user
manipulates. The user can load names onto the name stack in a manner
that establishes correspondence between primitives and names.

A hit record contains the contents of the name stack at the time of its
creation so, based upon the correspondence between primitives and names,
the user can determine those involved in the hit. Let’s get to specifics with
the help of live code.

Experiment 4.36. Run selection.cpp, which is inspired by a similar
program in the red book. It uses selection mode to determine the identity
of rectangles, drawn with calls to drawRectangle(), which intersect the
viewing volume created by the projection statement glOrtho (-5.0, 5.0,
-5.0, 5.0, -5.0, 5.0), this being a 10 x 10 x 10 axis-aligned box centered
at the origin. Figure 4.59 is a screenshot. Hit records are output to the
command window. In the discussion following, we parse the program carefully.

End

We'll call the viewing volume glOrtho (-5.0, 5.0, -5.0, 5.0, -5.0,
5.0), used to “select” the rectangles intersecting it, the selection volume.
Note that it is different from the program’s own viewing volume defined by the
glFrustum(-5.0, 5.0, -5.0, 5.0, 5.0, 100.0) call in the resize()
routine.

Displayed by the drawConfiguration routine is the outline of the
selection volume and two rectangles, one red and one green, both inside it. If
you don’t trust the perspective view of the scene in Figure 4.59, as probably
you shouldn’t, verify from the parameters of the drawRectangle () call that
the two rectangles indeed lie inside the selection volume.

The selectHits () routine, which comes next in the code, is where all
the action is. Let’s step through it carefully. The first statement

glSelectBuffer (1024, buffer);

specifies the array, called the hit buffer, to store hit records, as well as its
size. The next statement

glRenderMode (GL_SELECT) ;
makes OpenGL enter selection mode. The next block of statements

glMatrixMode (GL_PROJECTION) ;
glPushMatrix () ;

glLoadIdentity();

glOrtho(-5.0, 5.0, -5.0, 5.0, -5.0, 5.0);
glMatrixMode (GL_MODELVIEW) ;
glloadIdentity();

causes the matrix mode to change to projection, the current projection
matrix (i.e., the one defined in the resize() routine) to be saved, that
corresponding to the selection volume for hit testing to be placed on top
of the projection matrix stack and, finally, modelview matrix mode to be
re-entered and the current modelview matrix set to identity.

The statement pair next, viz.

glInitNames();
glPushName (0) ;

initializes an empty name stack and pushes the name 0 on it (names are
always non-negative integers). We’ll not be using 0 to name any primitive,
but push it on so that we have something to replace with “real” names when

using glLoadName (). The initial configuration is depicted in Figure 4.60(a).

(a) (b) (©

Figure 4.60: Name stack configurations: (a) Initial (b) When the red rectangle is
drawn (c) When the green rectangle is drawn.

The following set of commands both manipulates the name stack and
correspondingly “draws” primitives. Keep in mind that in selection mode
nothing is actually drawn to the frame buffer, in other words, nothing is
seen to happen.

glLoadName (1) ;
drawRectangle(0.0, 0.0, 3.0, 1.0, 0.0, 0.0); // Rect 1 (red).

Section 4.8
SELECTION AND
PICKING

175

Chapter 4

TRANSFORMATION, glLoadName (2) ;
ANIMATION AND drawRectangle(0.0, 0.0, -3.0, 0.0, 1.0, 0.0); // Rect 2 (green).
VIEWING

Figures 4.60(b) and (c) depict the name stack as it is at the time of drawing
of the first and second rectangles, respectively. The next statement

hits = glRenderMode (GL_RENDER) ;

takes OpenGL back to the default rendering mode where objects are indeed
drawn to the frame buffer, at the same time returning the number of
hit records currently in the hit buffer. Note that the return value of
glRenderMode () has meaning only when transiting out of selection mode
or another mode called feedback, which we’ll not use, and not when leaving
rendering mode. Finally,

glMatrixMode (GL_PROJECTION) ;
glPopMatrix();
glMatrixMode (GL_MODELVIEW) ;

restore the projection matrix from the resize () routine and return OpenGL
to modelview matrix mode.

As selectHits () was being executed, hit records were written into the
hit buffer following rules we’ll describe next. A hit record is written into the
hit buffer when both of the following conditions hold:

(a) A name stack manipulation or glRenderMode () command is encoun-
tered, and

(b) a hit has occurred (i.e., a primitive drawn that intersects the selection
volume) since the previous instance of such a command.

Each hit record contains four fields in the following order:

1. The number of names in the name stack at the time of writing the
record.

2. The minimum z-value of vertices belonging to primitives which have
hit the selection volume since the last hit record was written. This
value is normalized by dividing by the depth of the selection volume
to a number in the range [0, 1], which is then multiplied by 23 — 1,
rounded, and stored in the hit record as a 32-bit unsigned integer.

3. The maximum z-value of vertices belonging to primitives which have
hit the selection volume since the last hit record was written, stored
likewise.

4. The sequence of the names in the name stack at the time of writing

176 the record with the bottom one first. (This sequence may be empty.)

It is the processHitBuffer () routine, called by drawScene(), which
steps through the hit buffer, outputting its contents to the command window.
Items 2 and 3 above, the minimum and maximum z-values of vertices, are
normalized back to between 0 and 1 by dividing by 232 — 1.

There are two hit records, as you can see in the command window. The
first one (1,0.2,0.2, 1) was generated on processing the glLoadName (2) call
because a hit (the red rectangle) occurred after the previous name stack
manipulation command (glLoadName(1)). The contents of this record are
easy to understand if one observes that the configuration of the name stack
at the time of the record’s creation was as in Figure 4.60(b); moreover, the
depth of all vertices of the red rectangle from the front face of the viewing
box is 2, which becomes 2/10 = 0.2 when normalized by division by the
box’s depth.

The second hit record (1,0.8,0.8,2) is generated on processing the

hits = glRenderMode (GL_RENDER) ;

statement, and we leave the reader to parse its contents.
The following exercises should, hopefully, completely clarify how hit
records are generated.

Exercise 4.63. (Programming) Add one more rectangle, but in two
different ways. First, insert the statement

drawRectangle(0.0, 0.0, 0.0, 0.0, 0.0, 1.0);

in the selectHits () routine (a) just before the glPushName (0) call (and
after glInitNames()), and (b) just after glPushName (0). What are the hit
records generated in each case? When is each of these hit records generated?

Note: To see the new rectangle, make sure to add an identical drawing
statement in the drawConfiguration() routine!

Part answer: In either case a new hit record comes before the two from the
original program. When the statement is before glPushName (0), the new
record is (0,0.5,0.5,) with an empty name list.

Exercise 4.64. (Programming) Restore the original selection.cpp
program and insert the rectangle-drawing statement

drawRectangle(0.0, 0.0, 0.0, 0.0, 0.0, 1.0);

of the preceding exercise in the selectHits() routine, just after the
statement that draws the first (red) rectangle. Explain the hit records,
particularly, the z-values of the first one.

Exercise 4.65. (Programming) Restore the original selection.cpp
program, but then change the command to draw the red rectangle to

drawRectangle(5.5, 0.0, 3.0, 1.0, 0.0, 0.0);

Section 4.8
SELECTION AND
PICKING

177

TRANSFORMATION,

Chapter 4

ANIMATION AND

178

VIEWING

so that it intersects the selection volume without being entirely inside it.
Observe that the hit records are still the same.

Exercise 4.66. (Programming) Restore the original selection.cpp
program and insert the pair of name stack manipulation commands

glLoadName (3) ;
glLoadName (4) ;

right after the statement that draws the second (green) rectangle. The
output is the same as for the unmodified selection.cpp. Why?

Exercise 4.67. Programmin Restore the original selection.c
pp
program and add a new name stack manipulation command

glPushName (3) ;

between the glLoadName (2) call and the statement that draws the green
rectangle. Predict the output before running.

The previous exercise shows a way of tagging an object with
multiple names (in this case the green rectangle with 2 and 3) which is
particularly useful in a scene where there is a hierarchy of objects. For
example, we may want to tag the tail fin of the fourth aircraft with the
names 4 and 7, if 7 is the part number of a tail fin.

Exercise 4.68. (Programming) The one remaining name stack ma-
nipulation command, which we have not used yet, is glPopName (), whose
action the user can easily guess.

Insert a glPopName() statement in the selectHits() routine of
selection.cpp in such a manner that the second hit record generated
is (0,0.8,0.8,).

4.8.2 Picking

Now that we have an understanding of the selection process, let’s move on
to picking, which is really selection plus a little help from OpenGL in setting
up a selection volume to track a user-specified point on the screen.

Figure 4.61 illustrates the idea. V is the viewing frustum defined by the
projection statement of a program. Objects are, therefore, drawn to the
OpenGL window following perspective projection to the viewing face of V'
(we'll identify V’s viewing face with the OpenGL window without harm,
because going from one to the other is a simple scaling).

Accordingly, one can find objects picked from choosing a point P in the
OpenGL window by determining those that intersect a long thin frustum like
V" whose base is centered at P, because it’s precisely these objects whose
projections intersect P. Of course, there’s some error depending on the size
of V', the thinner being V’ the more accurate the picking. And, as you
might guess, it’s in detecting intersection with V'’ that selection comes in.

Viewing face

Figure 4.61: Clicking P “hits” the aircraft because the latter intersects V'.

In addition to the selection mechanism, there’s even more help to be
had from OpenGL: the GLU routine gluPickMatrix () defines a selection
volume for use in picking, which is a frustum of user-specified size centered
at a user-specified point. Here’s how it works. The sequence of commands

glloadIdentity();

gluPickMatrix(pickX, pickY, width, height, viewport[]]);

glFrustum(); or gluPerspective(); or glOrtho(); // Copied from the
// reshape routine.

causes the top matrix of the projection matrix stack to be replaced by
one corresponding to a selection volume whose front face is a width x
height rectangle centered at the point of the OpenGL window with = and
y world coordinate values equal to pickX and pickY, respectively. The
viewport[] array supplies the current viewport boundaries and may be
set by calling glGetIntegerv(GL_VIEWPORT, wviewport). Functionally, the
gluPickMatrix() command actually generates a matrix, called the pick
matriz.

Let’s get to work using the pick mechanism in a simple game-like
application.

Experiment 4.37. Run ballAndTorusPicking.cpp, which preserves all
the functionality of ballAndTorus.cpp upon which it is based and adds the
capability of picking the ball or torus with a left click of the mouse. The
picked object blushes. See Figure 4.62 for a screenshot. End

The drawBallAndTorus() routine of ballAndTorusPicking.cpp is
pretty much the whole drawScene () routine of ballAndTorus.cpp, except
with two main differences:

(a) In selection mode, glLoadName () is invoked to tag the torus with the
name 1 and the ball with name 2.

Section 4.8
SELECTION AND
PICKING

Figure 4.62: Screenshot
of ballAndTorus-
Picking.cpp moments
after the ball has been
clicked. [
179

TRANSFORMATION,

Chapter 4

ANIMATION AND

180

VIEWING

(b) If one of the torus or ball is picked — the name being contained in
the global closestName — it is painted red for as long as the global
highlightFrames is greater than 0.

The mouse callback pickFunction() is written along the lines of
selectHits() of selection.cpp. The important difference is that the
selection volume for hits is specified with help of a gluPickMatrix()
call. And, of course, instead of drawing rectangles as in selection.cpp,
drawBallAndTorus () is executed in selection mode.

The routine findClosestHit () called by pickFunction() is an inter-
esting modification of the processHitBuffer () routine of selection.cpp.
In case there is more than one hit record, implying that both ball and torus
fell under the mouse click, findClosestHit () compares their min-z fields
to determine the one closer to the viewer.

Note: Sometimes an object doesn’t light up on what seems like a definite
click or the farther object lights up when both fall under the same mouse
click. That’s because the click fell between mesh wires! Possible solutions
include making the meshes finer or the picking less sensitive by increasing the
width and height parameters of gluPickMatrix () from the current values
of 3 for both.

Picking plus dragging with mouse motion (see Section 3.6 for the latter)
make a potent duo. Give it a go in the next exercise.

Exercise 4.69. (Programming) Enhance canvas.cpp, from the previ-
ous chapter, so that figures in the drawing area can be picked and moved.

Exercise 4.70. (Programming) Referring again to Exercise 4.19, where
you added two more balls to ballAndTorus.cpp, now add the functionality
of being able to pick any of the four objects a la ballAndTorusPicking. cpp.

Exercise 4.71. (Programming) Create a game, be it a shoot-em-up
or drag-em-down or Use your imagination.

Picking by Color Coding

Yet another method to pick objects in OpenGL is by means of so-called
color coding. We’ll describe the idea briefly, but not go into detail, nor use
it in a program. Picking by color coding requires use of the back buffer, so
the program must run in double-buffered mode.

Here’s how it works. When the user picks a pixel the entire scene is
redrawn to the back buffer, but with objects of interest drawn in different
colors. In other words, objects are color coded there. Next, data from the
picked pixel is read from the back buffer with help of a glReadPixels () call
and its color decoded to determine the picked object.

Figure 4.63 illustrates the idea — the disc and the rectangle are
distinguishable in the back buffer by means of their color. So, e.g., if

O —.-

Front buffer Back buffer

Figure 4.63: Color coding.

the picked pixel is red in the back buffer then the primitive picked is the
disc.

4.9 Summary, Notes and More Reading

If animation is like a car, then we’ve just gotten our driver’s license. In this
chapter we learned the basics of the modeling and viewing transformations
and how to use them to move objects and change their shape, as well as to
manipulate the camera. We also peeked under the hood at OpenGL’s engine,
particularly in order to understand how transformations are composed and
how they are used to place objects relative to one another. Collision detection,
which is often crucial in interactive game programming, was discussed in the
context of animation. We also began a discussion of orientation and Euler
angles which will be continued in a more advanced chapter on animation. We
learned as well the techniques of selection and picking, essential in interactive
environments. And we saw plenty of live code along the way.

The topics covered in this chapter are at the very heart of computer
graphics. Every introduction to the subject will have some coverage — see,
for example, any of the introductory references, both OpenGL-based and
API-independent, listed in Section 2.12 — differing perhaps in style and
extent. It can only reinforce understanding to get more than one point of
view, so the reader is encouraged to pick up other CG books which may be
handy and turn to the relevant chapters. She will also find useful several of
the on-line tutorials listed at the OpenGL site [103]. Particularly noteworthy
is Nate Robins’ finely-designed suite [100].

Collision detection is also to a greater or lesser extent covered in most
introductory CG books, often in the context of ray tracing, which is a
technique of rendering where light rays are followed from source to collision
with an object (and possibly reflection again). For further reading about
collision detection, however, the reader is well-advised to consult books on
game programming, where it is especially important. See, e.g., Lengyel
[85] and van Verth & Bishop [145]. Specialized books on collision detection
include Ericson [43] and van den Bergen [144]. An extensive repository of
resources on collision detection, including research papers and code, is at
the UNC Gamma Research Group website [143].

Section 4.9
SUMMARY, NOTES AND
MORE READING

181

TRANSFORMATION,

Chapter 4

ANIMATION AND

182

VIEWING

This chapter is also a lead-in to the extremely important discipline of
physics in graphics (popularly called game physics), which includes the
study of multi-body kinematics and dynamics of rigid and deformable
bodies, among other topics from real-world physics. Real-time game physics
is particularly important in the creation of realistic interactive games.
Introductory books for the interested reader include Bourg & Bywalec
[20] and Eberly [40].

Undoubtedly, the best way for the reader to build on this chapter is to
write lots and lots of animation code. In fact, this is a good time for her
to begin coding, if she hasn’t already done so, a significant project, e.g., a
game or movie. She can get the essentials in place now and then embellish
her project as we go along — with more complex objects, color, light and
texture.

CHAPTER

Inside Animation: The Theory of

Transformations

e studied transformations and their application to animation

s;‘/ in Chapter 4. The goal for this chapter is to understand

the underlying theory. We want to look under the hood

of the graphics engine and understand exactly how transformations are

implemented. What we’ll encounter is the mathematics of geometric
transformations.

We begin our discussion of geometric transformations in Section 5.1 in the
simple surroundings of Flatland (2-dimensional space), the objective being
to get concepts in place and prove results that will extend fairly easily to the
real world. This program starts in Sections 5.1.1-5.1.4 with the expression
of familiar geometric transformations, in particular, translations, scalings,
rotations and reflections, by means of matrices.

Next, we briefly interrupt our pursuit of 2D geometric transforms to
digress in Section 5.2 into linear algebra, particularly for an understanding
of affine transformations. Affine transformations will provide a unifying
perspective of all the geometric transformations that we encounter. In
Sections 5.2.1-5.2.3 we define affine transformations as a generalization of
linear transformations, prove that they are particularly pleasant in their
geometric behavior, understand the central role they play in the design of a
graphics API such as OpenGL and, finally, learn the use of homogeneous
coordinates to facilitate the application of affine transformations.

We resume our study of 2D geometric transforms in Section 5.3 with
our newfound knowledge of affine transformations. We begin in 5.3.1 by
placing the transformations of Section 5.1 in context as affine geometric
transformations. In 5.3.2 comes the notion of Euclidean transformations,

183

Chapter 5

INSIDE ANIMATION:

THE THEORY OF
TRANSFORMATIONS

184

and their subclass of rigid transformations, neither of which distorts the
shape of an object. Consequently, these are the transformations to use to
animate rigid objects. The exploration of 2D transformations concludes with
a discussion of shears, a commonly occurring shape-distorting transformation,
in 5.3.3.

Geometric transformations of the real world or 3-space — transformations
that OpenGL actually implements — is the topic of Section 5.4. The
development parallels that of the previous section on 2D transformations.
Matrix expressions for translations, scalings and reflections generalize easily
from their 2D counterparts in Sections 5.4.1-5.4.2 and 5.4.4. 3D rotations,
however, require considerably more work in the longish 5.4.3.

Observing in 5.4.5 that translations, scalings and rotations about radial
axes are fundamental affine transformations, in the sense that they can
be used to generate all other affine transformations, lends insight into the
design of a CG animation engine. We realize that, however exciting the
game or movie is that we happen to be enjoying, most of what is going on
inside the machine is the distinctly unglamorous activity of multiplying 4 x 4
matrices — lots and lots of them and very, very fast! We learn to access and
manipulate the OpenGL modelview matrix stack in 5.4.6. Euclidean and
rigid 3D transformations are discussed next in Section 5.4.7. The ability to
access the modelview matrix stack comes in handy in 5.4.8 when we learn
about 3D shears and how to manually code and insert their matrices into
the stack.

We conclude in Section 5.5 with a summary, notes and suggestions for
further reading.

Important: We assume for this chapter familiarity with basic linear
algebra, as, say, would be found in a first college course or in a multitude of
introductory texts, e.g., [8, 50, 73, 80, 84, 138] and others. Section 5.2 needs
familiarity as well with the basics of convex sets, again from an introductory
geometry text.*

In fact, you can safely defer this somewhat theoretical chapter to a second
pass through the book.

Note to the reader about projection transformations: This chapter is
devoted to the theory of modelview transformations. You will find a thorough
coverage of projection transformations and their matrices in Chapter 18.

5.1 Geometric Transformations in 2-Space
We begin discussion of geometric transformations in 2D space, rather than

real-life 3D, in order to develop our intuition in a simpler setting. Much of
what we say and prove, though, will generalize fairly easily to 3D.

*The needed material on convexity can also be found in our own Chapter 7, which
logically belongs to the group Chapters 7-9. Nevertheless, it’s easily readable at this time
and, in fact, you are strongly recommended to flip through at least Sections 7.1-7.2.

5.1.1 Translation Section 5.1

A translation is specified by a displacement vector D = [d, dy]T7 which is ;’EORIFTRI(j o
added to the location vector of each point. Precisely, the image of the point) F;ANSFORMATIONS I
2-SPACE

P = [z y]T by this translation is P’ = [2" y]T, where

o I N dy | | x+dy | |10 x| dy
VA R Y dy | | y+dy, | |01 Yy dy
See Figure 5.1. Concisely:

1 0

/
P=lh

] P+D (5.1)

The matrix multiplication may seem redundant, but it serves to put the
RHS in a general form which will soon prove useful.

VA 2P| =erd)

displacement
vector (d,, dy)

K

=V

Figure 5.1: Translation.

Terminology: We’ll use the coordinate notation (z,y) and the matrix
notation [z y]T for a point interchangeably, particularly preferring the
latter when we want to treat the point’s location as a vector.

Exercise 5.1. Prove that the composition of translations is a translation
and that the inverse of a translation is another translation.

Part answer: We’ll prove that the composition of translations is again a
translation the long way, using the matrix form of the translation equation,
but it’s good practice. So suppose the translations ¢; and ¢, are specified by
the displacement vectors Dy and Ds, respectively. Then

to)P) = ner) =]y §| P

(30 e

1
}P+D2)+D1={O ?}P—&-(Dg-l-Dl)

Il Il
Ve N
O =
O =
= O
=)

proving that ¢; o t5 is indeed a translation, specified by the displacement

Dy + D;. 185

Chapter 5

INSIDE ANIMATION:

THE THEORY OF
TRANSFORMATIONS

186

5.1.2 Scaling

A scaling is specified by a scaling factor s, along the z-axis and a scaling
factor s, along the y-axis. The image of a point P by this scaling is the
one whose z coordinate value is s, times that of P and y coordinate value
s, times that of P (see Figure 5.2). Precisely, the image of P = [z y|T is
P’ = [2" y']T, where

Concisely:

P'(x’,y)=(sx,5))
>

X

P(x,y

Figure 5.2: Scaling.

If either, or both, of the scaling factors s, and s, is zero, then the
scaling is said to be degenerate; if neither is zero, it is non-degenerate. By a
scaling we shall always mean a non-degenerate one, unless specifically stated
otherwise.

Eixercis€ 5.2. Show that the scaling given by Equation (5.2) is non-
degenerate if and only if its matrix is non-singular (i.e., has non-zero
determinant).

Eixercise 5.3. Use Equation (5.2) to prove that the composition of scalings
is a scaling and that the inverse of a non-degenerate scaling is another non-
degenerate scaling. Are degenerate scalings invertible?

5.1.3 Rotation

A rotation about the origin is specified by an angle # measured counter-
clockwise as seen by a viewer V' located on the positive side of the z-axis (in
a hypothetical right-handed 3D coordinate system made by adding a z-axis
to the z- and y-axes of the given 2D plane). See Figure 5.3(a).

(b)

Figure 5.3: Rotation.

Note: We had to add the z-axis and place a viewer on a particular side of
it because it’s not enough to simply say that a rotation on the zy-plane is
counter-clockwise: the same rotation appears counter-clockwise from one
side and clockwise from the other.

In the future, to avoid tedious language, we’ll always assume that a
viewer is located at a point such as V, on the positive side of the z-axis.

We want to calculate the image P’ = [z’ y']7 of the point P = [z y]T
by this rotation. The method is exactly the same as the solution given for
Exercise 4.8(c), in the case of a 3D rotation about the z-axis. The reader
can refer again to that exercise or deduce herself the following equations
from Figure 5.3(b):

r = 0OA = rcosa
y = PA = rsina
which are used in
¥ = OA = rcos(a+6) =rcosacos —rsinasind
= xcosf —ysinf
y = P'A" = rsin(a+6) =rcosasinf + rsinacosf

= xsinf + ycosf

Therefore, the image of P = [z y]T7 by a rotation of angle 6 counter-
clockwise about the origin is P’ = [/ 3], where

[x:]:[xcosﬂysinﬂ}:{cosﬁ sma} {x} 53

y xsinf + ycosf sinf cosf y

or, concisely,

;| cosf —sinf
P _[sinﬂ cos 6]P (5.4)

The matrix in the preceding equation is often called a rotation matriz.

Section 5.1
GEOMETRIC
TRANSFORMATIONS IN
2-SPACE

187

Chapter 5

INSIDE ANIMATION:

THE THEORY OF
TRANSFORMATIONS

188

Example 5.1. Write the matrix form as in (5.4) of a counter-clockwise
rotation by an angle of 60° about the origin. To which point is [1 — 2]T
transformed by this particular rotation?

Answer: The given rotation will take P = [z y]T to P’ = [2" y/]7, where

;| cos60° —sin60° [12 —v3)2
P= { sin60° cos60°]P_ [V32 1)2 P

Therefore, [1 — 2]7 is transformed to

FR IR EARES

Eixercise 5.4. Is the matrix of a rotation about the origin always non-
singular?

Exercise 5.5. Determine the matrix expression for a counter-clockwise
rotation by an angle about an arbitrary point O’ = [a b]T, not necessarily
the origin.

Suggested approach: Use the Trick of Example 4.2 to express this rotation
as a composition of three successive transformations:

1. A translation by the displacement vector [—a — b]7 taking O’ to the
origin.
2. A counter-clockwise rotation by 6 about the origin.

3. A translation by the displacement vector [a b]T restoring O’ to its
original position.

Next, compose the expressions corresponding to these three transformations
(make sure to do this in the right order). The result will be a transformation
of the form P+— MP + D.

Eixercise 5.6. Determine the matrix expression for a rotation of 45°
counter-clockwise about the point [2 3]7.

Eixercise 5.7. Use Equation (5.4) to prove that the composition of rotations
about the origin is another such and that so is the inverse of a rotation
about the origin.

Exercise 5.8. How about the composition of rotations about some fixed
p
point other than the origin? Is this again a rotation about that point?

Example 5.2. Is the composition of rotations about different points
necessarily equivalent to a single rotation about some one point?

Answer: Consider rotations ry and 79, both of 180°, about the two points Section 5.1

01 = [0 07 and O, = [1 0]T, respectively. We'll show that 7o o7y is not a GromeTrIC

rotation about any point, answering the question asked in the negative. TRANSFORMATIONS IN
It’s easy to check that (ry 0 7r1)(01) = ro(r1(01)) = r2(01) = [2 0]T, 2.8pace

while (13 071)(02) = ro(r1(02)) = r2([—1 0]7) = [3 0]T. See Figure 5.4(a).

/N
r(P)
‘Q.\ ,
0,00 (1,0) (2,0) (3,0 _
01 rz (1”27’1 (01) (}’21"1)(02) 'X
(a) (b)

Figure 5.4: Illustrations for Example 5.2.

Next, observe that for any (non-identity) rotation r, and any point P
which is not itself the center O of the rotation, O lies on the perpendicular
bisector of the segment joining P and r(P). Figure 5.4(b) indicates why.

Now, if ro o ry were indeed a rotation, its center, first, is not either Oy or
O>, as both points are moved by r5 ory. Therefore, its center must lie on the
perpendicular bisector of the segment joining O; and (r9 o 71)(01), as also
on the perpendicular bisector of the segment joining O and (rg o r1)(O2).
But this is not possible as the two bisectors are straight lines through
[10]T and [2 0]T, respectively, both parallel to the y-axis and, therefore,
non-intersecting. One concludes that r5 o 71 is not a rotation about any
point.

Exercise 5.9. The composition 75 o 71 of the preceding example, though
not a rotation, is, nevertheless, a familiar kind of transformation. Can you
identify it?

Hint: It’s a translation!

Exercise 5.10. Can you give an example where the composition of two
(non-trivial) rotations about different points is equivalent to a single rotation
about some point?

Hint: Consider rotating 90° counter-clockwise around [—1 1]7 and then
around [1 1]7 the same amount. Show that this composition is equivalent to
a rotation of 180° around the origin.

From the preceding two exercises we see one case where the
composition of two rotations is a translation and one where it is again a
rotation. It turns out that these are the only two possibilities in general.
We’ll prove this fact in Section 5.3.2, in particular, when we classify rigid 189

Chapter 5

INSIDE ANIMATION:

THE THEORY OF
TRANSFORMATIONS

190

transformations, and see an easy rule as well to decide the nature of a
composition of rotations.

5.1.4 Reflection

The image of the point P = [z y|T by a reflection about a straight line 1,
called the mirror, is P’ = [2" y']7 such that:

(a) if P lies on [, then P’ = P;

(b) if P does not lie on I, then P’ is the point on the other side of [such
that PP’ is perpendicular to I, and P’ is the same distance from [as
P. See Figure 5.5.

YA

%

P'(x/

()
5%

Figure 5.5: Reflection (| XP| = |XP’|).

A reflection is, therefore, specified by the mirror about which it occurs.
Let’s analyze first the reflection about a radial mirror [at an angle 6 counter-
clockwise from the positive direction of the z-axis (as depicted in Figure 5.5).
We claim that reflection about [maps the point P to P’ where

cos20 sin260

r_
P= sin20 — cos 20

(5.5)

and leave the proof to the reader in the next exercise.
Note: A radial line or plane is one which passes through the origin.

Exercise 5.11. Verify Equation (5.5).

Suggested approach: Use the Trick to express this reflection as the
composition of three successive transformations:

1. A rotation of —6 about the origin to align [along the x-axis.

2. A reflection about the z-axis. This is given by [z y]T — [z — y]T,
which is simply scaling by a factor of 1 along the z-axis and —1 along
the y-axis.

3. A rotation of f about the origin to restore [to its original alignment. Section 5.1

. GEOMETRIC
Eixercise 5.12. Write the matrix form, as in (5.5), of a reflection about :

. . 5 TRANSFORMATIONS IN
the radial mirror at an angle of 30° to the positive z-axis. To which point is 9 SPACE

[1 1]7 transformed by this reflection?

Eixercise 5.13. What is the determinant of the matrix of a reflection about
a radial mirror? Is the matrix always non-singular?

Exercise 5.14. Use the Trick to prove that a reflection about an arbitrary
mirror, not necessarily radial, is a composition of two translations, two
rotations about the origin and one scaling.

A consequence of the preceding exercise is that one of those highly-paid
Flatland programmers developing a graphics API has only to implement
translations, rotations about the origin and scalings to get reflections for
free.

Exercise 5.15. What is the inverse of a reflection?

Exercise 5.16. Show that any non-identity translation can be obtained by
composing reflections about two parallel mirrors. Show that any non-identity
rotation can be obtained by composing reflections about two intersecting
mirrors. (The identity transformation itself can be obtained obviously by
composing reflections about the same mirror twice.)

Eixercise 5.17. A reflection about a mirror [, followed by translation by a
displacement vector (d,, d,) which is either zero or parallel to [, is called a
glide reflection. See Figure 5.6.

)

P o)

reflection about / isplacement by vector (d, d)

Figure 5.6: Glide reflection.

Determine the matrix expression for the glide reflection which uses the
mirror { and displacement vector (d,d,). Assume [goes through the point
(a,b) and makes an angle § measured counter-clockwise from the positive
direction of the z-axis. 191

Chapter 5

INSIDE ANIMATION:

THE THEORY OF
TRANSFORMATIONS

192

Exercise 5.18. Two transformations f1 and fy are said to commute (or
be commutative) if f1 o fo = fo 0 f1, in other words, if applying f; followed
by fo is the same as applying fo followed by fi.

(a) Do translations commute with each other?

(b) Do scalings commute with each other?

(¢) Do rotations about the same point commute with each other?
)

(d) Does a rotation about one point commute with another about a different
point?
Hint: A counter-example to show that, generally, rotations about
different points don’t commute can be obtained, in fact, from the
configuration given in the answer to Example 5.2: consider if (ry o
r1)(01) and (11 073)(O1) are the same. If they are not, then, of course,
ro o1y and 1 o o are not the same either.

(e) Do translations and rotations commute?

(f) Do reflections about two different mirrors ever commute?

Hint: Keep in mind the special case of perpendicular mirrors.

5.2 Affine Transformations

Before resuming our pursuit of geometric transformations in 2-space, we
change pace a bit to learn about affine transformations because they will
provide a unifying framework in which to locate the seemingly disparate
geometric transformations that we have encountered (and will encounter).

5.2.1 Affine Transformations Defined

Affine transformations are a natural generalization of linear transformations,
obtained by tacking on an additional translation to a non-singular linear
transformation. We’ll give the next couple of definitions in arbitrary
dimensions — this generality costing nothing in difficulty. Down the road, of
course, we can specialize to R? or R depending on the setting.

For the record, here’s the definition of a linear transformation, which is
our starting point.

The linear transformation fM of R™, with the m x m
defining matriz
a1 aiz2 ... Qaim
a a .oa
M= 21 22 2m

Am1 Am2 oo Qmm

is the transformation f™ : R™ — R™ specified by the equation

fM(P)=MP, PecR™ (5.6
In other words, f™ maps P =[xy x5 ... 2,,)7 to fM(P) = [z} o ... 2/]T,
where
Ty = anri+aTs + ...+ amT,
LL'/Q = a91x1 + a22x2 + ...+ A2mTm
T = @maT1 + GmaTe + .+ QT (5.7)

Note: It’s called a linear transformation because the power on each z; on
the right of (5.7) is 1, i.e., each «} is a linear combination of the z;s.

As promised, an additional translation next gives affine transformations.

An affine transformation of R™ is a transformation g :
R™ — R™ specified by an equation of the form
g(P)=fMP)+D=MP+D (5.8)
for P € R™, where fM is a non-singular linear transformation of R™ and D
is an m-vector. The matrix M, which is non-singular as f™ is non-singular,
is called the defining matriz of g. The vector D is called the translational
component of g.

Accordingly, if

ai; ape a1m dy
a a a . . d .

M = 2 2 2m is non-singular and D = 2 arbitrary,
am1 Am2 Amm, dm

then the affine transformation g defined by g(P) = MP + D maps P =

(21 22 ... 2]t to g(P) = [z} 2% ... 2),]T, where
/
r, = a1+ a2+ ...+ amTm +di
/
Ty = QA2171 + a90x2 + ...+ Qo Ty + d2

/
Ty = Gp1Z1 F QpmaZo + o F G T+ din (5.9)
If its translational component is zero, then an affine transformation
evidently reduces to a non-singular linear transformation. Conversely, a
non-singular linear transformation is an affine transformation with zero
translational component.

Section 5.2
AFFINE
TRANSFORMATIONS

193

Chapter 5 Example 5.3. g : R? — R? given by
INSIDE ANIMATION:
THE THEORY OF g([x y]") = [
TRANSFORMATIONS

2 1

T T
o 1w
is affine. Writing out the formula for g we have

ol = | vt

So, e.g.,
g([-12]" =414 and g([0 3]" = [7 18"

Eixercise 5.19. What are the images of the points [0 0 0]7 and [1 —1 1]7
by the affine transformation g : R? — R? given by

1 -2 3
gley =)= 4 0 2 [y +[-163"7
0 -3 1

The next example says that an affine transformation is respectful of
convex combinations.

Examp1e 5.4. Show that an affine transformation g of R" preserves
convex combinations and barycentric coordinates in that

g(c1Py+ coPo+ ...+ cpPy) = c19(Pr1) + co9(Pa) + ... + cig(Pr)

for any m-vectors P; and scalars ¢;, 1 < ¢ < k, such that 0 < ¢; < 1 and
ci1+co+...4+c=1.

Answer: Suppose that g(P) = MP + D, where M is the defining matrix
and D the translational component of g. Then

gletPr+coPy+ ...+ cxP) = M(aPr+cP+...+cPy)+ D

M(erPy+ coPo+ ...+ e Py) +
(ci1+ea+...4¢c)D
(because ¢ +¢co + ...+ ¢ =1)

= ¢ MP,+cMPy+ ...+ ¢ . MP. +
ci1D+coD+ ...+ ¢ D

= c(MP,+D)+co(MP,+D)+...+
cx(MP, + D)

= ag(P) +cg(P2) + ...+ crg(Pr)

Eixercise 5.20. Prove that an affine transformation which fixes the origin
194 (i.e., maps the origin to itself) is a non-singular linear transformation.

Exercise 5.21. Prove that the composition of affine transformations is
again an affine transformation.

Exercise 5.22. Determine the affine transformation g1 © g2, where

gl(P)z[g i]P+[46]T and gg(P):[ll _32]P+[—1O]T

Examp1e 5.5. An affine transformation g is always invertible. In fact, if
g is defined by g(P) = M P + D, then show that its inverse, also affine, is
given by

g7 Q) =MTQ-M'D
Answer: For any P € R™, we have

(97 0g)(P) =g~ (9(P)) = M~g(P)~ M~ D= M~ (MP+D)~M~'D=P
Lo g is the identity on R™. Likewise, it can be seen that
L as defined above, indeed is the

proving that g~
g o g~ ! is the identity, proving that g~
inverse of g.

Eixercise 5.23. Determine the inverse of the affine transformation g of R?
given by

sl =] § 3| vaor

The following important proposition says that affine transformations are
particularly well-behaved from a geometric point of view, in particular, that
they preserve straightness, planarity, parallelism and convexity.

Proposition 5.1.

(a) An affine transformation g of R? maps straight lines to straight lines.
Moreover, it maps parallel straight lines to parallel straight lines and
intersecting straight lines to intersecting straight lines.

(b) An affine transformation g of R? maps convex sets to convex sets.
Moreover, it maps the convex hull of {Py, Ps,..., Py} to the convex

hull of {fM (Py), fM(Py), ..., fM(Py)}.

(c) An affine transformation g of R® maps straight lines to straight lines
and planes to planes. Moreover, it maps parallel straight lines to parallel
straight lines, intersecting straight lines to intersecting straight lines,
parallel planes to parallel planes and intersecting planes to intersecting
planes.

(d) An affine transformation g of R® maps a convex set lying on one plane
of R3 to a convex set on another plane. Moreover, it transforms the
convezr hull of a set of points {Py, Pa,..., P} on one plane to the
convez hull of {g(P1),g(Ps),...,q(Px)} lying on another plane.

Section 5.2
AFFINE
TRANSFORMATIONS

195

Chapter 5

INSIDE ANIMATION:

THE THEORY OF
TRANSFORMATIONS

196

Figure 5.7 illustrates the actions of an affine transformation in R3.

\

=~

Figure 5.7: Affine transformation in R3.

Proof. (a) Say g(P) = MP + D, for P € R? where M is a non-singular
2 x 2 matrix and D a column 2-vector.

Suppose, first, that the equation of a given straight line [in R? is
ar + by = ¢, which can be written as [a b][z y]T = c. If the point [z y]T is
on [, let’s see where its image g([z y]7) = M [z y]T + D lies. Now

(Jab) M=) M [z y)T + D) =[a bz y]T +[ab]M D =c+[abM'D

Writing [@’ b'] = [a b)M ~* and the scalar ¢/ = ¢+ [a)M~ D, the preceding
equation gives
(@ V] (M[zy]" +D)=¢
which shows that if [z y]T lies on [, then g([z y]T) lies on the straight line
[a' V'][z y]T = ¢, proving that the image g(I) of [is indeed a straight line.
Say next that [and I’ are two parallel straight lines in R?, whose equations
can then be written as [a b][x y]T = c and [a b][x y]T = d, respectively, where

c#d.
From the first part of the proof it’s seen that g(I) is the straight line
whose equation is

[a/ V][zy]" =, where [/ b]=[ab]M~' and ¢ =c+ [a b)M D
Likewise, g(I') is the straight line whose equation is
[@ V][xz y]T =d, where [a’ V'] is as before and d' =d + [a b)M D

Moreover, it follows from ¢ # d, that ¢’ # d’. We conclude that g(I) and
g(l") are indeed parallel straight lines.

Finally, it’s easy to see that two straight lines [and I’ which intersect at Section 5.2
P are mapped by g to straight lines which intersect at g(P). AFFINE

TRANSFORMATIONS
(b) Again, say, g(P) = MP + D, for P € R3, where M is a non-singular
2 x 2 matrix and D a column 2-vector.
Suppose, first, that S is a convex subset of R2. To prove that g(S) is
convex as well, it is sufficient to show that ¢P + (1 — ¢)@ € g(5), given two
points P and @ in g(S) and ¢cin 0 < ¢ < 1.
Since P,Q € g(9), there exist P/, Q" € S such that g(P’) = P and
9(Q") = Q. As S is convex cP' + (1 — ¢)Q’ € S. Applying g to both sides of
the preceding inclusion we have that g(cP’ + (1 — ¢)Q’) € g(S), but

glcP'+(1-0)Q") = M(cP' +(1-¢)Q)+ D
M(cP' +(1-¢)Q')+c¢D+(1—¢)D
= cMP +cD+(1—c)MQ +(1—¢)D
= ¢(MP' +D)+(1-¢)(MQ'+ D)
= ¢cg(P")+(1-0c)g(Q)

cP+(1-0)Q

proving that indeed c¢P + (1 — ¢)@ € g(S), so that the latter is a convex set.
We leave the proof of the second part of (b) as well as those of (¢) and
(d) to the reader. a

Exercise 5.24. Does an affine transformation of R2 or R3 necessarily map
radial lines to radial lines or radial planes to radial planes? How about a
linear transformation?

5.2.2 Affine Transformations and OpenGL

Proposition 5.1 says that affine transformations preserve straightness and
flatness, among other properties, because they keep straight lines straight
and planes plane. It’s not hard to see, if one works through the proof, that
this is a consequence of the fact that their defining Equations (5.9) (shown
again below)

’
T3 = anr1 tapre+... .+ amTy, + dq
/
Ty = A2177 “+ a99xo + ...+ A2 Ty + d2
/
Ty = Ami%1+ GmaZe + ...+ GpmTm + dp,

are of degree one, in particular, that the maximum degree of a variable z;
on the right side of each of these equations is one.
Here’s an example of what happens if this were not the case, and if even

we go to degree two. 197

Chapter 5

INSIDE ANIMATION:

THE THEORY OF

TRANSFORMATIONS
YA
(1,1
y= h 5 =52
0,0) X

Figure 5.8: Quadratic
transform h of R? takes a
straight segment to a
parabolic arc.

198

Exampie 5.6. The quadratic transformation h of R2 defined by h([z y]T) =
[z y?]T doesn’t necessarily keep straight lines straight. In fact, we’ll show
that it maps at least one straight segment into an arc of a parabola.

Write the transformation as

Now consider how the straight line
y=x
is mapped. We have, using the preceding 3 equations

2 2

y/:y2:>y/:x :}y/:x/
which is the equation of a parabola. It follows that A maps the straight
segment between (0,0) and (1, 1) to the arc of the parabola y = 22 joining

the same two points, as shown in Figure 5.8.

One notices, further, that affine transformations are the most general
class of transformations of degree one, because the right side of each one of
the Equations (5.9) has its full complement of terms possible up to degree
one — specifically, every x; is present with degree one and there is, as well,
the constant term d; of degree zero.

One concludes that not only do affine transformations of R? or R? (or
R™ in general) preserve straightness and flatness, they are the most general
class of transformations to do so. Put another way, one cannot hope to
go beyond affine transformations if straightness and flatness are not to be
broken.

What has all this to do with OpenGL? Because they preserve straightness
and flatness, affine transformations preserve as well the primitives of OpenGL,
in particular, they map primitives of one type to another of the same type.
The following exercise asks the reader to prove the specifics of this claim.

Eixercise 5.25. Given an affine transformation g of R? or R3, prove that

(a) g maps the straight segment joining two points P and @ to the straight
segment joining g(P) and ¢(Q).

(b) g maps the triangle with vertices at P, @ and R to the triangle with
vertices at g(P), g(Q) and g(R).

(¢) g maps the n-sided polygon with vertices at Py, Ps, ..., P, to the n-
sided polygon with vertices at g(Py), g(Ps),...,g(P,). If the original
polygon is planar, then so is the transformed one. If the original
polygon is convex, then so is the transformed one.

Hint: Use Proposition 5.1.

Non-affine transformations may not treat OpenGL primitives with quite
as much respect, as the following exercise shows.

Exercise 5.26. We already saw in Example 5.6 the non-affine quadratic
transformation h of R?, given by h([x y]T) = [z y?]T, take a straight segment
to a parabolic arc. How does h transform the triangle with corners at (0,0),
(1,0) and (1,1)? Figure 5.9 is a gentle hint.

Now, it’s desirable for a graphics API such as OpenGL to implement only
modeling transformations which preserve its drawing primitives — specifically,
mapping each one to another of the same type. Why? Consider OpenGL
in particular. At the rendering end of its pipeline are evidently modules to
render points, segments and triangles (mind that even a general polygon is
triangulated prior to rendering). Suppose, then, that a particular scene is
specified by the programmer as a list of n primitives:

primitivel, primitive2, ..., primitiveN

where each primitivel, 1 < I < N, is a point, segment or triangle. The
scene is rendered essentially in a simple loop:

for U=1; I < N; [++4) render primitivel

where each iteration invokes the appropriate primitive rendering module.
Suppose, next, that a modeling transformation g is applied to the scene.
The transformed scene is given by the list:

g(primitivel), g(primitive2), ..., g(primitiveN)

If ¢ preserves primitives, then g¢(primitivel) is of the same class as
primitivel, for 1 < I < N, and the transformed scene is rendered in
the loop

for (/=1; I < N; I++4) render g(primitivel)

invoking the same modules as before.

On the other hand, if ¢ doesn’t map primitives of one class to another of
the same, e.g., if a triangle can change to something that is no longer one,
as in Figure 5.9, then the situation becomes significantly more complicated.
In this case, either there have to be modules to render all possible target
objects of all the drawing primitives, or modules to approximate them using
existing primitives, or, maybe, a combination of both. See Figure 5.10 for
an illustration of both situations.

If the APT designer is understandably reluctant to open this particular
can of worms, then she should restrict herself to modeling transformations
which do keep primitives within their class. In the case of OpenGL, this calls
for transformations preserving straightness and flatness. However, even given

Section 5.2
AFFINE

TRANSFORMATIONS

Figure 5.9: Hint for

Exercise 5.26.

199

Chapter 5
INSIDE ANIMATION:

THE THEORY OF

TRANSFORMATIONS y
[]
/ Not!
L]

RN

Figure 5.10: Transformations that are good from the API programmer’s point of view,
and not so good.

this constraint, the designer would reasonably want as many as possible
at her disposal. Transformations of degree one preserve straightness and
flatness, so the designer would want them all if possible; in other words, all
affine transformations.

And, in fact, we shall see that the designers of OpenGL have implemented,
barring a few degenerate calls, exactly the class of affine transformations as
their modeling transformations.

5.2.3 Affine Transformations and Homogeneous
Coordinates

Despite their virtues listed in the previous two sections, there is potentially
a serious computational problem with applying affine transformations rather
than linear ones. The source lies in the difference in how the two are defined.
A linear transformation is given by an equation of the form

fM(P)=MP
while an affine transformation by one of the form
g(P)=MP+D
The former is expressed as a single matrix-vector multiplication, while
the latter by a matrix-vector multiplication followed by a vector-vector
sum. It is the additional sum step which cascades when composing affine

transformations.
200 For example, if fM1, fM2 #Ms are linear transformations of R™, then

for an m-vector P,

Py = MP
(fM2o f¥)(P) = (M:My)P
(fM3 (¢] fM2 e} fjwl)(P) = (M3M2M1)P (510)
and so on. On the other hand, if g1, g2, g3, - . . are affine transformations of R™

given by g1(P) = M1 P + D1, g2(P) = MaP + D3, g3(P) = M3P + D3, ...,
respectively, then for an m-vector P,

gl(P)
(g2091)(P)
(93092091)(P)

M,P + D,
(MaM7)P + MsDq + Do
(MgMng)P + MsMsDq + M3Dsy + Dg (511)

It’s not hard to see that the number of matrix operations grows quadratically
with the number n of affine transformations g, o...0 g 0 g being composed,

versus linearly in the case fM» o...o0 fM2 o M1 of linear transformations.

Composing affine transformations, at least by means of equations as above,
therefore, is highly inefficient. There is an elegant way, however, to rectify
the problem. It is with the help of so-called homogeneous coordinates.

A point

P=z 2y ... a:m}T
belonging to R™ is represented in homogeneous coordinates by any m~+1-tuple
of the form

[cxy cxa ... T c]T

where c is a non-zero scalar. Homogeneous coordinates, therefore, are not
unique. And, note they live one dimension higher.

Exampie 5.7. Possible homogeneous coordinates of the point P = [37]7 €
R? include [3 7 1]7, [16.5 38.5 55T, [-6 — 14 — 2|7, etc.

For our current purposes, though, it’s good enough to fix the scalar ¢ in
Definition 5.3 to be 1. We’ll have use for the general ¢ later when studying
projective spaces. So, for the present, assume that the point

P:[l‘l To ... mm]T

is represented in homogeneous coordinates by

[1‘1 T2 ... Ty 1}T

For example, [3 7|7 would be homogenized to [3 7 1]7. To save space we’ll
often write [z1 29 ... x,, 1]T as [P 1]7.

Section 5.2
AFFINE
TRANSFORMATIONS

201

Chapter 5

INSIDE ANIMATION:

THE THEORY OF
TRANSFORMATIONS

202

Observe now that Equations (5.9)

/
Tq = a;17r1 +apexre + ...+ A1mLm + d1
/
Ty = A21T1 + A22T2 + ...+ Q2T + do
/
Ty, = AmiT1+ GmaT2 + ... F G Tm + diy

defining an affine transformation g are equivalent to the single matrix
equation

/
€Ty a1 ai2 A1m dq Z1
/
Lo a21 Aa22 a2y da T2
! d
xm aAm1 Am2 ceo Omm m Im
1 0 0 0 0 1 1

(as is easily verified by multiplying the two matrices on the right). Concisely:

RUNIEE RIS

Presto! Computation of the affine transformation g, which earlier required
a matrix-vector multiplication followed by a vector-vector addition, has now
become a single matrix-vector multiplication with the use of homogeneous
coordinates and, albeit, a bigger matrix. The translational component has,
evidently, been subsumed into the extra dimension of the larger matrix.

Example 5.8. The affine transformation g : R> — R? given by

(D=0 =16 1116

can be written using homogeneous coordinates as

(5.12)

x (2 1 4 T
y | =10 4 6 Y
1 | 0 0 1 1

Let’s give it a check for, say, the point [1 1]7. Now,

()= Le =[]

and with homogeneous coordinates

2 1 471 7
04 6/|]1]=]10
00 1]][1 1

the RHS of the preceding equation indeed being the homogenization of the
RHS of the one before it.

Exercise 5.27. Express the affine transformation g of R? given by

HEERIHEH

as a single matrix vector multiplication using homogeneous coordinates.

The composition of affine transformations is drastically simplified with
use of homogeneous coordinates. For example, the last equation of (5.11)
becomes

s] (3 210 2008 DI

the number of matrix operations now growing linearly with the number of
affine transformations being composed, instead of quadratically.

Exercise 5.28. If you did Exercise 5.22; then you have determined the
affine transformation f o g, where

f(P):{g HP+[46}T and g(P):{_ll 32}P+[—10}T

Now, verify your answer by multiplying the 3 x 3 matrices corresponding to f
and g, and checking if the result corresponds to the composed transformation
already computed.

5.3 Geometric Transformations in 2-Space
Continued

We resume our study of 2D geometric transformations, equipped now with
a newfound grasp of affine transformations. Keep in mind that, as in the
first section, by default we are in 2D space.

5.3.1 Affine Geometric Transformations

Are translations, scalings, rotations about the origin and reflections
about radial mirrors, which we studied in the opening section, affine
transformations? Of course, they all are! This follows easily from the
non-singularity of the matrix on the RHS of each of the Equations (5.1),
(5.2), (5.4) and (5.5).

Exercise 5.29. Prove that rotations about arbitrary points (not necessarily
the origin) and reflections about arbitrary mirrors (not necessarily radial)
are affine as well.

Section 5.3
GEOMETRIC
TRANSFORMATIONS IN
2-SPACE CONTINUED

203

Chapter 5 That translations, scalings, rotations and reflections are affine means
INSIDE ANIMATION: they are geometrically well-behaved, preserving straightness, parallelism and
Tue THEORY OF convexity, as well. We record this fact as a proposition.

TRANSFORMATIONS Proposition 5.2. Let g be either a translation, a scaling, a rotation (about

an arbitrary point) or a reflection (about an arbitrary mirror). Then:

(a) g maps straight lines to straight lines. Moreover, it maps parallel
straight lines to parallel straight lines and intersecting straight lines to
intersecting straight lines.

(b) g maps convez sets to convex sets. Moreover, it maps the convex hull of

{P, Py,..., Py} to the convex hull of {fM(Py), fM(Py),..., fM(P)}.

Proof. Follows from Proposition 5.1 for 2D affine transformations in general.
O

Geometric Transformation Equations Using Homogeneous
Coordinates

In Section 5.2.3 we learned how to express an affine transformation as a
single matrix-vector multiplication, after writing points in homogeneous
coordinates. In the case of R? this means writing P = [z y]7 as [z y 1]T or
[P 1]T for short. Let’s now rewrite Equations (5.1), (5.2), (5.4) and (5.5) of
the basic 2D transformations using homogeneous coordinates:

Translation by displacement vector [d, d,]”:

) 1 0 dy
HEEEI 619
0 0 1

Scaling by a factor of s, along the z-axis and s, along the y-axis:

, s, 0 0
[Ji}: 0 s, 0 [f] (5.14)
0 0 1

Rotation by an angle 6 counter-clockwise about the origin:

{P,]) cosf —sinf 0 {P} -

sinf cosf O
1 0 o 1 |L!

Reflection about a radial mirror [at an angle of 6 counter-clockwise from
the positive z-axis:

1 = | sin20 —cos260 0

, cos20 sin20 0
{ r } { i } (5.16)

Eixercise 5.30. Write the 3 x 3 matrix corresponding to each of the
following affine transformations:

(a) Translation by the displacement vector [—2 3]7.
(b) Scaling by a factor of 2 in the a-direction and 4 in the y.

¢) Counter-clockwise rotation by an angle of —45° about the origin.
Yy g g

)
)
)
(d) Reflection about the radial mirror making an angle of 30° measured
counter-clockwise from the positive direction of the z-axis.

Factoring Affine Transformations

We know then that affine transformations include translations, scalings
and rotations. But are they more than just these three special kinds of
transformations? It’s extremely important that the answer is no! In fact, any

affine transformation can be “made from” translations, scalings and rotations.

Precisely, any affine transformation can be expressed as a composition of
transformations of just these three kinds. Here is the formal statement:

Proposition 5.3. Any affine transformation of R? is the composition in
some order of translations, scalings and rotations about the origin.

In particular, any affine transformation g : R — R? can be factored into
a composition g = g4 © g3 © gs © g1, where g1 is a rotation about the origin,
g2 a scaling, gs another rotation about the origin and g4 a translation.

Proof. Let
g(P)=MP+ D

where M = { @ } is g’s non-singular 2 x 2 defining matrix and the

az1 G22
d . .
2-vector D = dm is its translational component.
Yy

We claim first that it is possible to find 2 x 2 matrices My, My and M3,
corresponding, respectively, to a rotation about the origin, a scaling and
another rotation about the origin, such that

M = MyM,yM,

Say M; corresponds to a rotation by angle 6, Ms to scaling by a factor of

s, along the z-axis and s, along the y-axis and M3 to a rotation by angle ¢.

The preceding equation gives, therefore, that

{au au}[cosqs —sin¢][sm OHcose —sine] (5.17)

as1 G99 sing cos¢ 0 sy sinf cos6

which we’ll show next can be solved to find ¢, 0, s, and s,.

Section 5.3
GEOMETRIC
TRANSFORMATIONS IN
2-SPACE CONTINUED

205

Chapter 5

INSIDE ANIMATION:

THE THEORY OF
TRANSFORMATIONS

206

Multiply the three matrices on the RHS of the preceding equation and
then equate terms of the resulting matrix with the corresponding ones on
the LHS to see that:

a11 = 8z Cospcost — s, sin¢psind
a1 = —Sgzcos¢sinf — s, sin¢cosd
a1 = Sysin¢gcost + s, cosPsind
gy = —Sysin¢gsing + s, cos¢cosd (5.18)
Four equations in four unknowns seems right. Check that:
as1 — G12 (53 + sy)sin(¢ + 6)
a1 + asn (82 + sy) cos(¢ + 0)
asi +aiz = (sy — sy)sin(¢ —0)
ai; — a2 = (85— sy)cos(¢—0) (5.19)

Assuming for the moment that neither a;; + ass nor a1 — ags is zero, divide
the first equation above by the second and the third by the fourth to get:

a1 — a2
tan(¢p +0) = ——=
(¢) a11 + a2
az1 + a2
t -0 = ———= 5.20
ang—6) — Ao (520)
which implies:
64+60 = tan ! (a21 — a12>
a1 + a2
_ 1 [@21+ a12
¢—0 = tan _ (5.21)
a1l — a22

These two equations can be solved to determine ¢ and #. Furthermore, the
values of ¢+ 6 and ¢ — 6 can then be substituted back into equation set (5.19)
to determine equations for s, + s, and s, — s, which can then be solved to
find s, and s,,.

The earlier claim that (5.17) can be solved to find ¢, 0, s, and s, is
proved and, therefore, M = MzMs5M;, in the manner claimed at the start
of the proof as well — except when either or both of a1 + ass and a1 — ags
is 0, in which case Exercise 5.32 below verifies the claim.

As g(P) = MP + D = (M3MM;)P + D one concludes, finally, that
indeed g = g4 0 g3 0 g2 © g1, where g1 is the counter-clockwise rotation about
the origin by an angle of 0, go the scaling by a factor of s, along the x-axis
and s, along the y-axis, g3 the counter-clockwise rotation about the origin
by an angle of ¢ and g4 translation by the displacement vector D. O

Example 5.9. Factor the affine transformation Section 5.3

GEOMETRIC
g(P) = 1 @ j 2 TRANSFORMATIONS IN
? 0 1 2-SPACE CONTINUED

according to the proposition.

Answer: From Equations (5.21) we have
d+0=tan"'0=0° and ¢—0=tan '3 =060°

which solve to
¢=30° and 0= -30°

Plugging the values of ¢ + 6 and ¢ — 6 into the second and fourth equations
of (5.19) we have

1
1= (sy+sy)cos0°=s,+s, and 1= (s, —s,)cos60°= i(sw — Sy)

which solve to
d s !
Sy = — an = ——
2 Y 2

(If the reader is wondering about the other two equations in (5.19) — the
first and third — she may check that these are satisfied as well by the values
found above for ¢, 6, s, and s,.)

Therefore, g = g4 0 g3 0 g2 © g1, where g; is the clockwise rotation about
the origin by an angle of 30°, g5 the scaling by a factor of % along the z-axis
and —2 along the y-axis, g3 the counter-clockwise rotation about the origin

2
by an angle of 30° and g4 translation by the displacement vector [2 1]7.

Exercise 5.31. Factor the affine transformation
1 -1
2

: } Pe [X

Exercise 5.32. Fill in the gap in the proof of the preceding proposition,
where it was assumed (just after Equations (5.19)) that neither ai; + aga
nor aj; — ass is zero. In particular, even if one or both of these quantities is
zero, show how to proceed again from (5.19) to solve for ¢, 6, s, and s,.

oP)= |

N|= =

according to the proposition.

Exercise 5.33. Factor the affine transformation
V3 } P
2

according to the proposition. 207

Chapter 5

INSIDE ANIMATION:

THE THEORY OF
TRANSFORMATIONS

208

Exercise 5.34. Give an example of an affine transformation which itself
is neither a translation, nor scaling nor rotation about the origin, so one
must compose in order to obtain it.

The reader may have noticed that we never used the non-
singularity of M in the proof of Proposition 5.3. As a matter of fact, even
if M is singular, it can be written as M = M3MsM; as in the proposition,
except that the scaling Ms turns out to be degenerate.

Proposition 5.3 suggests that translations, scalings and rotations about
the origin are fundamental in the sense that they can be used to generate all
affine transformations, a particularly useful insight for anyone in Flatland
trying to implement a graphics API. For, all such a programmer has to
code is an implementation of each of those three special kinds of affine
transformations, to get the rest automatically.

Since a non-singular linear transformation of R? is simply an affine
transformation with null translational component, we have also proved the
following on the way to proving Proposition 5.3:

Proposition 5.4. Any non-singular linear transformation of R? is the
composition successively of a rotation about the origin, a scaling and another
rotation about the origin. O

5.3.2 Euclidean and Rigid Transformations

Proposition 5.2 tells us that transformations such as translations, scalings,
rotations and reflections are respectful of a bunch of geometric attributes,
from straightness to convexity. How about that most important geometric
attribute of all, though, namely, distance? We would say a transformation g
preserves distance if it were true that, for any pair of points P and @, the
distance between f(P) and f(Q) is the same as that between P and Q.

It’s clear, if one thinks of scalings, that distance is not preserved by
transformations in general. However, there certainly are transformations
that seem to preserve distance. Translations come to mind, as points
are “carried together” by a translation, so neither pulled apart nor drawn
closer together. Similar thoughts apply to rotations. We’ll see soon that
translations and rotations do indeed preserve distance.

Distance-preserving transformations are important in animation because
they preserve shape as well. In fact, an object’s shape is not changed precisely
when the distance between every pair of points belonging to it is not changed.
See Figure 5.11. Comparing the pre-hit and post-hit heads, one observes
that the distance between at least two pairs of points is different from those
between the transformed pairs: the eyeballs, and P and). On the other
hand, the distance between any pair of points of the book remains unchanged.

Transformations preserving distances are the ones, therefore, to use when
animating rigid objects such as balls, bats (not the flying kind) and houses.

P’ Section 5.3
GEOMETRIC
TRANSFORMATIONS IN
2-SPACE CONTINUED

0 o

Figure 5.11: Square-headed student struck by a CG book: the shape of the head is
distorted, but not that of the book.

They are important enough, in fact, to have been honored with the name of
the great ancient geometer Euclid. Here’s a formal definition.

A Euclidean transformation (also called isometry) of R?
is one that preserves distance. Precisely, f : R?> — R? is Euclidean if
|f(P)f(Q)| = |PQ| for any two points P, Q € R2.

@ " 0/ © *D

Figure 5.12: Transformations (a)-(c) are Euclidean, (d) is not.

See Figure 5.12 for three simple examples of Euclidean and one of non-
Euclidean transformation. It may seem, as it cannot alter shape, that all
a Euclidean transformation can do is “slide” an object around the plane,
which, if true, would imply that it is merely a composition of translations
and rotations. However, compare the Euclidean transformations in cases (a),
(b) and (c) of Figure 5.12. The first two can certainly be obtained by sliding
the top L around the page. However, it’s not hard to convince oneself that
(c) cannot and, therefore, is not a combination of translations and rotations.

Let’s examine (¢). As indicated in Figure 5.13, it can, in fact, be obtained
by applying a reflection about a vertical mirror [, followed by translation
and rotation. A reflection is required because (c) is a so-called orientation-

reversing transformation. Here’s the relevant definition: _—
209

Chapter 5

INSIDE ANIMATION:

THE THEORY OF
TRANSFORMATIONS

210

orientatio
reflection

@' rsing

orientation-preserving
translation

orientation-preserving
rotation

Figure 5.13: Executing (c¢) of Figure 5.12 by a reflection about the mirror [followed by
translation and rotation.

A Euclidean transformation f of R? is said to be orientation-
reversing if there exist three non-collinear points P, @ and R in R? such
that, looking at R? from a fixed side, one of the two sequences PQR and
Ff(P)f(Q)f(R) appears clockwise (CW) and the other counter-clockwise
(CCW).

A Euclidean transformation that is not orientation-reversing is said to
be orientation-preserving.

Orientation-preserving Fuclidean transformations are also called rigid
transformations.

The property of the transformation f described in the first
paragraph of the preceding definition does not depend on the choice of the
non-collinear points P, Q and R. In fact, as we’ll see, if for some three
non-collinear points P, @ and R it is true that PQR and f(P)f(Q)f(R)
appear oriented differently, then this is true for any three non-collinear
points.

Rigid transformations are so called because they model the physical
motion of a rigid object restricted always to a plane — such motion can never
reverse orientation. Conceptually, reversing orientation requires the object
to be “lifted off” the plane, “flipped” and “placed back” again.

The sequence PQR in Figure 5.13 appears CCW to the reader, while
that of their images P'Q’R’ by reflection about I appears CW, proving that
the reflection is indeed orientation-reversing and, therefore, not rigid.

Eixercise 5.35. Show that a Euclidean transformation f preserves angles,
ie, ZABC = Zf(A)f(B)f(C), where A, B, C are any three points on the
plane.

We’ll see next how to determine algorithmically if PQR appears CW or
CCW to a given viewer, which will in turn help decide if a transformation is
orientation-preserving or not.

Lemma 5.1. Let P = [z1 y1]7, Q = [22 y2]T and R = [z3 y3]T be three
points on the plane. Define the scalar D by

Ty T2 T3

D = 21y — 2y1 + X2ys — T3Y2 +T3y1 —T1Ys = | Y1 Y2 Y3
1 1 1

the rightmost term being called the discriminant determinant.
Let 'V be a viewer on the positive side of the z-axis of a hypothetical
right-handed system. We have then the following:

1. If D =0, then P, Q and R are collinear.
2. If D <0, then V perceives the order PQR as CW.
3. If D > 0, then V perceives the order PQR as CCW.

Note: The column wvectors of the discriminant determinant are the
coordinates of P, @ and R, respectively, homogenized; so, it can be written

D:’P Q R‘

1 1 1

Proof. We'll first prove the lemma assuming that R = O, the origin, in
which case

r1 xo O
D=]wy1 y2 0 |=2x1y2— 221
1 1 1

If P =0 as well, then P, Q and R are trivially collinear, and it’s easily

seen that the determinant D = 0, too, which falls into case 1 of the lemma.

Accordingly, suppose that P # O as in Figure 5.14. The straight line [
through P and R has the equation

1y —y1x =0

If @ does not lie on [, then whether PQR appears CW or CCW to V'
depends on which half-plane of [contains Q). In particular, if @ lies in the
half-plane 21y — y1& > 0 — the case depicted in the figure — then PQR
appears CCW to V; if in the half-plane x1y — y1x < 0, then CW. Plugging
in @’s coordinates means that PQR appears CCW to V if z1ys — y122 > 0
and CW if z1ys — y122 < 0. Of course, z1y2 — y122 = 0 if @Q lies on [, in
which case P, @ and R are collinear. Therefore, we’ve proved the lemma
assuming R = O.

Section 5.3
GEOMETRIC
TRANSFORMATIONS IN
2-SPACE CONTINUED

211

Chapter 5

INSIDE ANIMATION:

THE THEORY OF
TRANSFORMATIONS

212

Y,
A
Lxy—yx=0

*0(x,,¥,)

O=R >

half-plane x y — y x> 0 (CCW) half-plane x,y — y,x < 0 (CW)

z

Figure 5.14: The orientation of PQR perceived by V depends on the half-plane of [
containing @ (Q is depicted here in the half-plane z1y — y12 > 0).

The case of arbitrary R can be reduced to that of R = O by applying the
translation —R to all three points, because the relative dispositions of P, Q)
and R as they appear to V are the same as those of P— R, Q— R and R— R
(=0). Now, P—R=1[z1 —23 y1 —y3]T and Q — R = [x2 — 23 2 — y3]7,
and we leave it to the reader to use the case R = O to finish up the proof. O

Exercise 5.36. Verify the lemma for the following triples by plotting the
points on graph paper:

() P=10]T,Q=[01]", R=1[00]T
(b) P=[-1 1", Q=[-21]", R=[34]"

The following proposition is intuitively fairly clear but, nevertheless, has
to be proved formally.

Proposition 5.5. A translation or a rotation about an arbitrary point is a
rigid transformation of 2-space. A reflection about an arbitrary mirror is an
orientation-reversing Euclidean transformation of 2-space.

Proof. We'll prove first that a translation ¢ by the displacement vector
D = [d, d,]" preserves both distance and orientation.

Let P = [z1 y1]7 and Q = [z2 y2]” be two points in R?. The images
of P and Q by t are, respectively, P’ = P+ D = [v1 +d, w1 +d,]T and
Q' =Q+D=[r2+d, y>+dy|T. Now,

1PQ| = /(1 — 22)> + (1 — 12)?

and

|P'Q| = \/((xl +dy) — (22 + d2))? + (Y1 + dy) — (y2 + dy))?
\/(331 —x2)% + (y1 — y2)?

proving t indeed preserves distance.

Let P = [z1 y1]7, Q = [12 32]" and R = [x3 y3]T be three points in R
and V' a viewer on the positive side of the z-axis. Lemma 5.1 says that PQR
are collinear, appear CW to V', or CCW to V, according as the determinant

Tr1 X9 I3

D=y y2 ys
1 1 1

is equal to, less than, or greater than 0.

The images of P, Q and R by t are P’ = P+ D = [v1 +d, 1 +d,]7,
Q=Q+D=[rz+dy y2+dy)" and R'=R+D = [v35+dy y3+dy]",
respectively. By another application of Lemma 5.1, P'Q’R’ are collinear,
appear CW to V', or CCW to V, according as the determinant

T +da: x2+dm $3+dx
D'=|yi+d, y2+d, ys+dy
1 1 1

is equal to, less than, or greater than 0.

However, subtracting d, times the third row of D’ from its first and d,
times the third row from its second, we see that, in fact, D = D’. It follows
that the relative dispositions of PQR and of P'Q’'R’ (either CCW or CW)
with respect to V' are identical, giving the conclusion that ¢ indeed preserves
orientation.

The proofs for rotations and reflections are left to the reader. m

Exercise 5.37. Scalings in general are not Euclidean transformations, but
for certain choices of scaling factors they are. List these choices and for each
say if it preserves or reverses orientation.

Exercise 5.38. Show that the composition of two Euclidean transforma-
tions is Euclidean and that of two rigid transformations is rigid.

Exercise 5.39. Show that the composition of two orientation-reversing
Fuclidean transformations is an orientation-preserving Fuclidean trans-
formation (in other words, rigid). Show that the composition of an
orientation-preserving and an orientation-reversing Euclidean transformation
is orientation-reversing.

We saw in Proposition 5.3 that an affine transformation can be factored
as a composition of translations, scalings and rotations about the origin. The
following proposition shows how Euclidean and rigid transformations can
be factored. The first part verifies our intuition that a rigid transformation
slides an object around the plane by translation and rotation, while the
second says that a Euclidean transformation is at most one reflection away
from being rigid.

Section 5.3
GEOMETRIC
TRANSFORMATIONS IN
2-SPACE CONTINUED

213

Chapter 5

INSIDE ANIMATION:

THE THEORY OF
TRANSFORMATIONS

214

Proposition 5.6. A rigid transformation of R? keeping the origin fized
is a rotation about the origin, while an arbitrary rigid transformation is a
composition of a rotation about the origin followed by a translation.

A Euclidean transformation of R? is a composition of a rotation about
the origin, followed by a translation, possibly followed again by a reflection.

Proof. Consider, first, a rigid transformation f : R? — R? keeping the
origin fixed, i.e., f(O) = O. Let P € R? be different from the origin. By the
distance-preserving property

|OP| = [f(O)f(P)] = |Of(P)]

so both P and f(P) lie on a circle ¢ centered at O. See Figure 5.15(a) or (b).
Say the angle from OP to Of(P) is § measured counter-clockwise. We’ll
show for any point @ € R? that its image f(Q) is obtained by rotating Q
counter-clockwise by an angle of § about the origin as well, proving the claim
that f is a rotation about the origin.

(a) (b)

Figure 5.15: Illustrations for the proof of Proposition 5.6.

Let @ be an arbitrary point on the plane. Without loss of generality
assume) # O. Reasoning as before, then, both @ and f(Q) lie on some
circle ¢’ centered at O. By the distance-preserving property

[PQI = |f(P)f(Q)

Consider first the case that @ lies on the straight line through O and
P (Figure 5.15(a)). Because |PQ| = |f(P)f(Q)], it’s seen that f(Q) lies at
the intersection with ¢’ of the straight line through O and f(P), as all other
points on ¢’ are at a distance more than |PQ| from f(P). In this case, f(Q)
is indeed obtained by rotating) counter-clockwise by an angle of 8 about
the origin.

Next, consider the case that () does not lie on the straight line through
O and P. First, suppose that the vertex order POQ of triangle POQ
appears CCW to the viewer (Figure 5.15(b)). Let the angle POQ be «.

The congruence of the triangles POQ and f(P)Of(Q), a consequence of
the distance-preserving property, implies that angle f(P)Of(Q) is « as well.
Furthermore, f being rigid preserves orientation, so f(P)Of(Q) appears
CCW to the viewer as well. It follows from simple angular arithmetic that
£(Q) is 0 counter-clockwise about the origin from Q.

If the vertex order POQ appears CW instead, a similar conclusion can
still be reached. This completes the proof that, if f is a rigid transformation
keeping the origin fixed, then it is a rotation about the origin.

Suppose, next, that f is an arbitrary rigid transformation, not necessarily
fixing the origin. Let f(O) = O’ and t be translation by the displacement
vector O’O. Then the transformation f’ =to f is a rigid transformation
such that f'(O) = O, i.e., fixing the origin. Therefore, as proved earlier, f’
is a rotation about the origin. Consequently, f =¢~!o f’ is a rotation about
the origin followed by a translation, proving the statement of the proposition
about arbitrary rigid transformations and completing the proof of the first
paragraph.

Note: If f is itself a translation then, of course, the rotation f’ about the
origin is the identity, i.e., zero rotation.

For the second paragraph of the proposition, suppose that f is an
orientation-reversing Euclidean transformation, because if f is orientation-
preserving, then it is rigid, and there is nothing to prove after the first
paragraph.

Let w be a reflection about any mirror, an orientation-reversing Euclidean
transformation by Proposition 5.5. Then f’ = w o f, being a composition of
two orientation-reversing Euclidean transformations, is rigid by Exercise 5.39.
By the first part of the proposition, f’ is a rotation about the origin followed
by a translation, implying that f = w™' o f’ is the composition of a rotation
about the origin, followed by a translation and, then, a reflection. This
completes the proof of the second paragraph. O

Exercise 5.40. Apply the proposition to show that a rigid transformation
which keeps

(a) no point fixed is a translation.
(b) exactly one point fixed is a rotation (about the fixed point as center).

¢) more than one point fixed is the identity (which, therefore, keeps every
th int fixed is the identit hich, therefore, ki
point fixed, so also is a zero translation and a zero rotation).

Eixercise 5.41. Use Exercises 5.16 and 5.40 to prove that any Euclidean
transformation can be obtained by composing reflections about at most three
mirrors.

Eixercise 5.42. At the end of Section 5.1.3 we saw one case that the
composition of two rotations is a translation and one where it is again

Section 5.3
GEOMETRIC
TRANSFORMATIONS IN
2-SPACE CONTINUED

215

Chapter 5

INSIDE ANIMATION:
THE THEORY OF

TRANSFORMATIONS

216

a rotation. Use Exercise 5.40 to prove now that these are the only two
possibilities in general for the composition of two rotations.
Moreover, show how to decide which case arises by proving:

1. The composition of two rotations, either both counter-clockwise or
both clockwise, one of angle #; and one of angle 65, about arbitrary
centers, is a translation if either ; = 03 = 0 or 01 + 5 = 27 (assume
0 < 64,02 < 2m); otherwise, it is a rotation.

2. The composition of two rotations, one counter-clockwise of angle #; and
the other clockwise of angle 05, about arbitrary centers, is a translation
if 61 = 05 (assume 0 < 01,65 < 27); otherwise, it is a rotation.

Proposition 5.7. Affine, Euclidean and rigid transformations of 2-space
are related by the following inclusions, which are each proper:

rigid transforms C FEuclidean transforms C affine transforms

Proof. The first inclusion follows from the definitions. It is proper because
a reflection about any mirror is Euclidean but not rigid.

From Proposition 5.6 it follows that a Euclidean transformation is a
composition of affine transformations (because translations, rotations and
reflections are all affine) and, therefore, itself affine, proving the second
inclusion. The inclusion is proper because a scaling by factors not all of unit
magnitude is affine but not Euclidean. O

An interesting perspective on the proposition is to think of
affine transformations as being made from translations, rotations, reflections
and scalings; FEuclidean transformations from translations, rotations and
reflections; and rigid transformations from translations and rotations.

The worked example next says that Definition 5.5 about whether
a Euclidean transformation reverses or preserves orientation is, in fact,
independent of the choice of the three non-collinear points P, () and R.

Examp1e 5.10. Suppose that an affine transformation g of R? maps some
three non-collinear points P,) and R in a manner that, looking at R? from
a fixed side, one of the sequences PQR and ¢g(P)g(Q)g(R) appears CW and
the other CCW.

Show, then, that for any three non-collinear points X, Y and Z, one of
the sequences XY Z and g(X)g(Y)g(Z) appears CW and the other CCW,
looking at R? from the same side.

Answer: Use homogeneous coordinates to write [g(W) 1]T = M[W 1]7,
where M is a fixed non-singular 3 x 3 matrix, and W = [z y|T is an arbitrary
point of the plane.
Suppose that P = [z1 y1]T, Q = [22 y2]T and R = [z3 y3]T. Consider
the equation
r1 X2 X3 Ty Ty T3
M|y vy y3s |=| v ¥ ¥
1 1 1 1 1 1

in matrices, which gives the following

Tr1 X9 T3 Ty Ty T3
det(M)=| y1 y2 ys |=| ¥ ¥ U
1 1 1 1 1 1
relating determinants. Now, [2] vy} 1]T = Mz, y; 1]T = M[P 1]T

lg(P) 1]". Likewise, [z5 y5 1] = [9(Q) 1]" and [2} 5 1]T = [g(R) 1]
Therefore, the preceding equation can be written
P Q R ‘:‘ 9(P) 9(Q) g(R)

1 1

det(M) = 1 1 1 1

Counsidering the signs of the three determinants above, and applying
Lemma 5.1, one sees that PQR and ¢(P)g(Q)g(R) appear differently

oriented, from a fixed side of the plane, if and only if det(M) is negative.

But, then, by similar calculations, exactly the same would be true of XY Z
and ¢(X)g(Y)g(Z), for any points X, Y and Z.

5.3.3 Shear

With translations, rotations and scalings, and their compositions, we know
that we “cover” all affine transformations. Shears, though, are a particularly
distinctive kind of affine transformation that arise naturally from physical
processes. For this reason they merit separate discussion. Roughly, a shear
is the kind of distortion caused by placing a lump of putty between a pair of
palms and then moving one palm parallel to the other.

A 2D shear s is uniquely determined by two parameters:

1. A directed line [called the line of shear.
2. An angle « called the angle of shear.

Here’s how a point P € R? is mapped to the point P’ by s (see
Figure 5.16(a)):

(a) If P lies on [, then it is unchanged.

(b) If P lies a distance of h left of [, then it moves parallel to [in the
positive direction of [a distance of h tan c.

(c) If P lies a distance of h right of I, then it moves parallel to [in the
negative direction of [a distance of htan «.

Note: Left or right is according to a viewer standing upright on the plane
at a point of [, head pointing toward the positive z-axis (of a hypothetical
right-handed coordinate system) and facing toward the direction of I.

=l

Section 5.3
GEOMETRIC
TRANSFORMATIONS IN
2-SPACE CONTINUED

217

Chapter 5

INSIDE ANIMATION:

THE THEORY OF
TRANSFORMATIONS

-
=

Figure 5.17: Sheared
sheep.

218

VAP(x. y) P'(x +y tan a, y)

ytan a
y
o
”
k,
(a) 5 (b (©)

Figure 5.16: 2D shears: [is a directed line, o the angle of shear.

Another way to think of the shear is as a force parallel to [which
“bends” each perpendicular to it a fixed angle «. The rectangle PQRS in
Figure 5.16(b) is sheared into the parallelogram P’'Q'R’S’. The farther
points are from [, the proportionately more they travel under the shear;
e.g., compare V +— V' and P — P’ in Figure 5.16(b). Figure 5.17 shows a
sheared sheep (pictorial pun).

If the directed line [of the shear is the z-axis, then it is particularly
simple to determine its transformation equation. See Figure 5.16(c). The
shear maps the point P = [z y]T to the point

1
P =[z+ytana y|' = [0 ta;la]P (5.22)
A shear along the z-axis, then, is a non-singular linear transformation
given by Equation (5.22). Therefore, by Proposition 5.4, it is equivalent to a
rotation about the origin, followed by a scaling, followed by another rotation
about the origin. In fact, write

1 tano | | cos¢p —sing sz 0 cosf —sinf (5.23)
0 1 | sing cos¢ 0 sy sinf cosf ’
It turns out that solving this equation is simpler than solving the more
general (5.17). Indeed, it may be verified that the following four equations
derive from (5.23):

tan?0 +tanatanfd —1 = 0 (5.24)
o = 6-90° (5.25)
sy = tané (5.26)
1
sy = (5.27)

tan 6

The value of 6 can then be calculated from (5.24) and those of ¢, s, and s,
subsequently from (5.25)-(5.27). In fact, it’s interesting to visualize a shear
along the z-axis as a rotation-scaling-rotation as in Figure 5.18.

4

rotation by 0 scaling by s, s, rotation by ¢

Figure 5.18: A shear as a rotation-scaling-rotation.

Eixercise 5.43. Verify that the Equations (5.24)-(5.27) indeed follow from
(5.23).

Example 5.11. Let s be the shear of angle a = 45° along the z-axis.
Then tan o = 1 and Equation (5.24) in this case becomes

tan?0 + tanf — 1 =0

solving to (ignoring the negative root)

-1
tanf = +\/5 ~ 0.618034
so that
0~ 31.72°
Equations (5.25)-(5.27) give next:
¢ ~ —58.28°
Sy ~ 0.62
sy o~ 1.62

Therefore, s is equivalent to a rotation of 31.72° counter-clockwise about
the origin, followed by scaling by factors 0.62, 1.62 along thez- and y-axes,
respectively, followed by a rotation of 58.28° clockwise about the origin.

Exercise 5.44. Express the shear of angle 30° along the y-axis as a
rotation-scaling-rotation.

[emar 5.5 We'll code shears in Section 5.4.8 following a discussion of
their 3D version.

Section 5.3
GEOMETRIC
TRANSFORMATIONS IN
2-SPACE CONTINUED

219

Chapter 5

INSIDE ANIMATION:

THE THEORY OF
TRANSFORMATIONS

220

5.4 Geometric Transformations in 3-Space

Finally, the real world. Our discussions will mirror those of the previous
section. In fact, extending translations, scalings and reflections from 2D to
3D is almost automatic. We’ll pay our dues, though, for entering 3-space
with a fair bit of work on rotations.

5.4.1 Translation

A translation is specified by a displacement vector D = [d, d, d.]T. The
image of the point P = [z y z]7 by this translation is P’ = [z +d, y+dy, 2+
d.]" (see Figure 5.19).

YA

AP, V', 2') =(x+d,, ytd , z+d)

displacement
vector (d, dy, d)

, Z)

Z,
Figure 5.19: Translation.
Equivalently,
1 0 0]
P=P+D=|0 1 0 |P+D
0 0 1

which in homogeneous form, analogous to the 2D version (5.13), is

100 d
Pl (o104 |[P
[1} 00 1 d, [1} (5:28)
000 1

For the record, the 4 x 4 matrix corresponding to translation by the
displacement vector [d, d, d,]T is denoted T'(d,,d,,d.) and given by

1 0 0 dy
01 0 d

T(dedyd) = | o o 1 & (5.29)
00 0 1

Exercise 5.45. Write the 4 x 4 matrix corresponding to translation by
the displacement vector [3 0 — 1]7.

Exercise 5.46. Use Equation (5.28) to prove that the composition of
translations is a translation and that the inverse of a translation is a
translation as well.

Note: By default we're in 3-space from now on and all exercises and examples
are in 3D.

5.4.2 Scaling

A scaling is specified by scaling factors s;, s, and s, along the z-, y- and
z-axis, respectively. The image of the point P = [z y 2]T by this scaling is
P’ =[s,x s,y s.2]T (see Figure 5.20).

Without further ado we write the 4 x 4 matrix corresponding to this
scaling as (compare the 2D Equation (5.14))

s. 0 0 0
0 s, 0 0

S(sarsy,s2) =1 o s, 0 (5.30)
0 0 0 1

If any one or more of the scaling factors s,, s, and s, is zero, the scaling
is said to be degenerate; otherwise, it is non-degenerate. Clearly, a scaling
is non-degenerate if and only if its matrix is non-singular. By a scaling we
shall always mean a non-degenerate one, unless stated otherwise.

Eixercise 5.47. Write the 4 x 4 matrix corresponding to scaling by the
factors —1, 3 and 4 along the z-, y- and z-axis, respectively.

Exercise 5.48. Use (5.30) to prove that the composition of scalings is a
scaling and that the inverse of a non-degenerate scaling is a non-degenerate
scaling.

5.4.3 Rotation

Warning upfront: This section is much longer than the corresponding
Section 5.1.3 on 2D rotations as there’s much more magic going around in
3D!

A rotation about a radial axis is specified by (a) a directed line I through
the origin, which is the axis of rotation, and (b) the anglef of the rotation.

We’ll describe as a physical process how such a rotation maps a point P.

First, if P lies on the axis [itself, then it does not move. Suppose, then, that
P does not lie on I. Here’s how it’s mapped by the rotation (see Figure 5.21):

Section 5.4
GEOMETRIC
TRANSFORMATIONS IN
3-SPACE

YA

X
¥, 2)

W

z P(sx,s s 52)

Figure 5.20: Scaling.

221

Chapter 5 1. Drop the perpendicular from P to the point () on [. Denote as L the

INSIDE ANIMATION: segment PQ. L lies on the plane h perpendicular to [through Q.
THE THEORY OF Note that Figure 5.21 has @ and h on the positive side of [, but they
TRANSFORMATIONS could very well be on the other side, or even touching the origin,

depending on where P is.

TA

(a, b, c)

Figure 5.21: Rotation.

2. Locate a viewer at V far enough in the positive direction of [as to be
able to see h when looking toward the origin.

3. Rotate the segment L about @) (on the plane h) an angle 6 counter-
clockwise, as measured by the viewer.

4. If L’ is the new position of L after rotation, then P is mapped to the
corresponding endpoint P’ of L.

Giving a single point (a, b, ¢), not equal to the origin, is enough
to specify the directed radial line I through it, as indicated in Figure 5.21.
Therefore, all that remains to specify a rotation about [is the angle 6. This,
of course, is exactly how the OpenGL command glRotatef (0, a, b, ¢)
works, as described earlier in Section 4.1.3.

Rotation about the Coordinate Axes

The matrices corresponding to rotations in 3D about the coordinate axes
are straightforwardly deduced from the 2D equation (5.3), reproduced below

- z’ cosf —sinf x
222 [y } - [sinf cosf] [Yy } (5.31)

where [2/ 4|7 is the image of [z y]T by a rotation on the xy-plane by an Section 5.4

angle of # about the origin, measured counter-clockwise by a viewer V on GroumeTRIC
the positive side of the z-axis (Figure 5.22(a)). TRANSFORMATIONS IN

3-SPACE
Ty
0
LN P

P/p
¥ |

Px, y)

z

(@) (b) (© (d)

Figure 5.22: (a) 2D rotation on the zy-plane (b)-(d) 3D rotations about the coordinate
axes.

In 3D, rotation about the z-axis by an angle 6 (Figure 5.22(b)) maps a
point P = [z y 2|7 to the point P’ = [z’ 3/ 2], where

(a) 2’ =z, because P travels parallel to the yz-plane, so its x value never
changes.

(b) [y 2] = [y 2']* is precisely as for a 2D rotation by an angle § CCW
about the origin on the yz-plane, looking from the positive side of the
T-axis.

Therefore, replacing « with y and y with z in (5.31), we have
y | | cosf —sind y]
2| | sinf cos6 z |

Therefore, the 4 x 4 matrix of 3D rotation about the z-axis is

1 0 0 0
0 cosf) —sinf O

Ra(0) = 0 sinf cos@ 0 (5.32)
0 0 0 1

(the first row serving to keep x unchanged).
Rotation about the y-axis by an angle 6 (Figure 5.22(c)) maps a point
P = [z y 2]T to the point P’ = [¢/ ¢/ 2/]T, where:
(a) ¥' =y

(b) [z 2]T +— [z 2/]T is as for a 2D rotation by an angle § CCW about the
origin on the zz-plane, looking from the positive side of the y-axis. 223

Chapter 5

INSIDE ANIMATION:

THE THEORY OF
TRANSFORMATIONS

224

We have to be careful, though, in applying (5.31). For, compare Figure 5.22(a)
with Figure 5.22(c) to observe that the role of z in the 2D figure is played
by z in the 3D one, that of the 2D y by the 3D x, and, of course, that of
the 2D z (the viewer’s axis) by the 3D y. (You can verify this by scratching
out the current labels on the axes in Figure 5.22(a), relabeling them as just
suggested, and then “mentally” turning the system to match Figure 5.22(c).)
So, (5.31) gives

z' | | cos§ —sinf z
x’ sinf cosf T
or, equivalently,
"1 | cosf sin@ x
2| 7| —sinf cosf z

Finally, since y is fixed, we have

cos# 0 sinf O
0 1 0 0

RyO)=| _ sin@ 0 cosf 0 (5.33)
0 0 0 1

We ask the reader to verify that the matrix of rotation about the z-axis
by an angle 6 (Figure 5.22(d)) is

cosf) —sinf 0 O
sinf cosf 0 O

R.(0) = 0 0 10 (5.34)
0 0 0 1

Eixercise 5.49. Write the 4 x 4 matrix corresponding to rotation by an
angle of 30° about the y-axis.

Rotation about an Arbitrary Radial Axis

It is a bit of work to find the matrix corresponding to rotation about an
arbitrary axis through the origin. But it’s important enough that we’ll do it
in two different ways. The first is mainly geometric and fairly intuitive. The
second involves a bit of algebraic legerdemain, so it is a little less intuitive,
but the final form it yields is more compact than that of the first.

Let the axis of rotation be specified as the directed line [through the
origin O toward a point P = (a,b,c) (# O), and the angle of rotation as
0. See Figure 5.23. To simplify computation we’ll assume that P is a unit
vector, i.e., |P| = va2? + b2 + ¢2 = 1. There is no loss in generality because,
if P is not of unit length, we can always divide it by |P| to obtain a unit
vector specifying the same rotation. Our goal is to compute the matrix,
denote it Ry, p, (0), corresponding to this rotation.

Section 5.4
GEOMETRIC
TRANSFORMATIONS IN
3-SPACE

z

Figure 5.23: Rotating about an arbitrary radial axis.

To be honest, at this point we don’t even know if a rotation
about an arbitrary radial axis has a matrix representation at all, in other
words, if it is a linear transformation!

Before we proceed, here’s a possible temptation, and, then, an exercise
to nip it in the bud.

Can’t we simply “add rotational axes” like vectors? For example,
isn’t it true, say, that glRotatef(90.0, 0.0, 1.0, 1.0) is the same
as glRotatef (90.0, 0.0, 1.0, 0.0) followed by glRotatef (90.0, 0.0,
0.0, 1.0) or, maybe, the other way around? Certainly, translations do work
this way: glTranslatef(0.0, 1.0, 1.0) is, indeed, glTranslatef (0.0,
1.0, 0.0) followed by glTranslatef (0.0, 0.0, 1.0), or vice versa.

If rotational axes could be so added, then writing the matrix corre-
sponding to glRotatef (90.0, 0.0, 1.0, 1.0) would be simple: it would
be the product of the matrices corresponding to glRotatef (90.0, 0.0,
1.0, 0.0) and glRotatef(90.0, 0.0, 0.0, 1.0) in some order, both
matrices easily written from what we know already about rotating about
the coordinate axes themselves.

Exercise 5.50. Prove that we cannot, in general, add rotational
axes. In fact, show that glRotatef(90.0, 0.0, 1.0, 1.0) is neither
glRotatef (90.0, 0.0, 1.0, 0.0) followed by glRotatef(90.0, 0.0,
0.0, 1.0), nor the other way around.

Hint: If, say, glRotatef (90.0, 0.0, 1.0, 1.0) were equal to the transfor-
mation glRotatef(90.0, 0.0, 1.0, 0.0) followed by glRotatef(90.0,
0.0, 0.0, 1.0), then the two would move all points identically. Consider
the point (0,1, 1). How is it moved by glRotatef(90.0, 0.0, 1.0, 1.0)7
By glRotatef (90.0, 0.0, 1.0, 0.0) followed by glRotatef (90.0, 0.0,
0.0, 1.0)7

225

Chapter 5

INSIDE ANIMATION:

THE THEORY OF
TRANSFORMATIONS

226

A Method to Compute the Rotation Matrix Which Is Mainly
Geometric

Even though we can’t quite add axes, the plan is still to express the rotation
of # about the radial axis [as a composition of rotations about the coordinate
axes. We'll use the Trick. First we’ll apply rotations to aligni along one of
the coordinate axes, then rotate by € about that coordinate axis and, last,
undo the initial rotations to bring [back where it was. For our plan to work,
of course, the rotations to align [along a coordinate axis must themselves
be about coordinate axes!
Here’s a simple motivating experiment.

(a) (b)

Figure 5.24: Experiment 5.1: (a) Screenshot of output (b) Trick-based rotation scheme.

Experiment 5.1. Fire up box.cpp and insert a rotation command — in
fact, the same one as in the previous exercise — just before the box definition
so that the transformation and object definition part of the drawing routine
becomes:

// Modeling transformations.
glTranslatef (0.0, 0.0, -15.0);

glRotatef(90.0, 0.0, 1.0, 1.0);
glutWireCube(5.0); // Box.

The rotation command asks to rotate 90° about the line [from the origin
through (0,1, 1). See Figure 5.24(a) for the displayed output.

Let’s try now, instead, to use the strategy suggested above to express the
given rotation in terms of rotations about the coordinate axes. Figure 5.24(b)
illustrates the following simple scheme. Align [along the z-axis by rotating
it 45° about the z-axis. Therefore, the given rotation should be equivalent
to (1) a rotation of 45° about the z-axis, followed by (2) a rotation of 90°
about the z-axis followed, finally, by a (3) rotation of —45° about the z-axis.

Give it a whirl. Replace the single rotation command glRotatef (90.0,
0.0, 1.0, 1.0) with a block of three as follows:

// Modeling transformations.
glTranslatef (0.0, 0.0, -15.0);

glRotatef(-45.0, 1.0, 0.0, 0.0);

glRotatef (90.0, 0.0, 0.0, 1.0);
glRotatef(45.0, 1.0, 0.0, 0.0);
glutWireCube(5.0); // Box.

Seeing is believing, is it not?! End

Returning to the general problem, let’s plan to rotate to align [along the
z-axis in a manner that P = (a, b, c) maps to the point P” = (0,0,1) on the
positive side of the z-axis. We accomplish this by applying two successive
rotations (see Figure 5.25):

(1) Rotate [an angle « about the z-axis onto a line I’ on the xzz-plane,
taking P to P’.

(2) Rotate I’ an angle — 3 about the y-axis till it’s aligned along the z-axis,
taking P’ to P (the minus sign in front of /3 is because the rotation
is CW).

Figure 5.25: Aligning [along the z-axis.

Note: The choice of the z-axis as [’s final alignment was arbitrary — it could
have been any of the three coordinate axes.

Section 5.4
GEOMETRIC
TRANSFORMATIONS IN
3-SPACE

227

Chapter 5

INSIDE ANIMATION:

THE THEORY OF
TRANSFORMATIONS

228

We must determine o and 5. In fact, we’ll simply determine the sine and
cosine of both, which is sufficient to write the matrices R,(«) and Ry, (—/f)
corresponding to the rotations (1) and (2), respectively.

Observe that the angle o that OP turns by rotation (1) about the z-axis
is the same as the angle between its projection OQ on the yz-plane and the
positive direction of the z-axis. In fact, imagine OQ as the “shadow” of OP
cast on the yz-plane by a light shining down the z-axis — as OP turns so
does its shadow, and by the same amount.

The coordinates of Q are [0 b ¢]T as @ is the projection of [a b ¢]T on
the yz-plane. Drop the perpendicular from @ to the point R on the z-axis.
The angle QOR then is equal to a. We see from the coordinates of) that
|OR| = ¢ and |RQ| = b. Denoting |OQ)| by d, it follows from the right-angled
triangle ORQ that d = v/b? + ¢2. Therefore, assuming that d # 0, we have

b c

sina = 3 and cosa = g

Note: We don’t lose any generality in assuming d # 0, because d = 0 means
@ = O, which in turn means P is on the z-axis, implying that [lies along
the z-axis as well, in which case we already know the matrix for rotation
about [.

We can now use Equation (5.32) to write the matrix of rotation (1) as

1 0 0 0 1 0 0 0

Ru(a) = 0 cosa —sina 0| | 0 ¢/d —b/d O
v 0 sina cosa 0 0 b/d c¢/d 0O
0 0 0 1 0 O 0 1

After rotation (1), I coincides with I’ on the zz-plane, and P with P’. The
x coordinate of P’ is a, the same as that of P, because rotation about the
z-axis leaves this value unchanged; the z coordinate is d because rotation
by « about the z-axis causes OQ), the shadow of OP whose length is d, to
coincide with OS, the projection of OP’ on the z-axis; the y coordinate, of
course, is 0 as P’ lies on the xz-plane.

Therefore, P’ = [a 0 d]T, which means that in the right-angled triangle
OSP', |OS| = d, |SP'| = a, and, therefore, |OP'| = Va?+d?> =
Va2 4+ b2+ ¢ = 1 (the latter evident as well from the fact that OP’ is
the unit vector OP rotated). Moreover, angle P'OS = (3, where —f is the
angle turned by !’ to align along the z-axis in rotation (2) above. Therefore,
from the triangle OSP’ we have sin 8 = a and cos 8 = d.

We can now use Equation (5.33) to write the matrix of rotation (2) as

cos(—=B) 0 sin(—5) 0 d 0 —a 0

0 1 0 0 01 0 0

By(=B) =1 _gin(=8) 0 cos(—B) 0| =|a 0 d 0
0 0 0 1 00 0 1

Returning to our original Trick-based plan, the first step of aligning [
along the z-axis is accomplished, then, by the composition R, (—f3) Ry ().

The next, of rotating by 6 about the z-axis, is simply a matter of applying Section 5.4
R.(#). Finally, the initial rotations aligning [along the z-axis are undone CGroumETRIC
by the inverse transformation (R, (—3) Ry(a)) ' = Ry(a) ™' Ry(=8)"' = TRANSFORMATIONS IN
Ry (—a) Ry (B). 3-SPACE
Putting everything together we have, finally,

Ra, b,c(e) = Rx(_a) Ry(ﬂ) Rz(e) Ry(_ﬂ) Rw(a)
1 0 0 0 d 0 a O
- 0 ¢/d b/d 0 0 1 0 O
B 0 —=b/d ¢/d 0 —a 0 d 0
| 0 0 0 1 0 0 0 1
[cosf® —sinf® 0 0O d 0 —a O
sinf cosf 0 O 01 0 O
0 0 1 0 a 0 d O
| 0 0 0 1 00 0 1
(1 0 0 0
0 ¢/d —b/d 0
0 b/d c/d 0 (5.35)
|0 0 0 1

The five matrices on the right side of the formula can be multiplied to
give a single matrix, which would then be the value of R, p, .(6). However,
we’ll not do so as the next method to calculate R, p, (6) gives a more concise
form directly.

Exercise 5.51. Is rotation about an arbitrary radial axis a linear
transformation? If so, is it always non-singular, or can it be singular?

Eixercise 5.52. Use the Trick to write a rotation about an arbitrary axis
[, not necessarily radial, as a seven-matrix product.

Examp1e 5.12. (a) Determine the 4 x 4 matrix corresponding to a 90°
rotation about the radial axis [directed toward the point [1 1 1]7,
which corresponds to the OpenGL command glRotatef(90.0, 1.0,
1.0, 1.0).

(b) Express glRotatef(90.0, 1.0, 1.0, 1.0) as a composition of five
successive rotations about the coordinate axes and experimentally

verify.
Answer:
(a) The unit vector along ! in the direction of [1 11]" is P = [= % %]T

Accordingly, keeping the notation used above,

L
\/gv

a=b=c

2
d=+Vb*+c% = g and, of course, 0 = m/2. 229

Chapter 5

INSIDE ANIMATION:

THE THEORY OF
TRANSFORMATIONS

230

Plugging these values into (5.35) we get the required matrix as

r V2 1
R NI
Rp(6) — NV 0 1 0 0
vV2ooV2 e V3
L0 0 0 1 0 0 0 1
[0 -1 0 0
1 0 00
0 0 1 0
[0 0 01
[V2 1
N 0 7 0 1 (1) 01 0
0 1 & 0 0 T 0
1 2 = 4
#0012y !
L 0 0 0 1 0 0 0 1
B 1 1 1 1 1
3 i~y 3t/ 0
1,1 1 11
_ 3 T3 3 3 V3
11 1,1 1 0
37 /3 373 3
0 0 0 1

after some tedious computation.
(b) Now, (5.35) says that
Rp(0) = Re(—a) Ry () R-(0) Ry(=f) Ro(e)
where o = sin™ 1i2—45O and S = sin~ 1% 35.26°. So,
R5(0) = Ry (—45°) R,(35.26°) R.(90°) R, (—35.26°) R, (45°)

which means glRotatef(90.0, 1.0, 1.0, 1.0) is equivalent to the

sequence
glRotatef(-45.0, 1.0, 0.0, 0.0);
glRotatef(35.26, 0.0, 1. 0 0.0);

glRotatef (90.0, 0.0, 0.0, 1.0);
glRotatef(-35.26, 0.0, 1.0, 0.0);
glRotatef(45.0, 1.0, 0.0, 0.0);

We’ll leave verification along the lines of Experiment 5.1 to the reader.

Eixercise 5.53. Determine the 4 x 4 matrix corresponding to a 90° rotation
about the radial axis [directed toward the point [0 1 1]7, which corresponds
to the OpenGL command glRotatef (90.0, 0.0, 1.0, 1.0). (Recall that
in Experiment 5.1 we had already written glRotatef(90.0, 0.0, 1.0,
1.0) as a composition of rotations about the coordinate axes.)

Exercise 5.54. (a) Determine the 4 x 4 matrix corresponding to a 45°
rotation about the radial axis [directed toward the point [1 — 1 1]7,
which corresponds to the OpenGL command glRotatef(45.0, 1.0,
-1.0, 1.0).

(b) Express glRotatef (45.0, 1.0, -1.0, 1.0) as a composition of five
successive rotations about the coordinate axes and experimentally
verify.

Before discussing the second method to compute the matrix corresponding
to rotation about an arbitrary axis, here are some facts about cross-products
that we’ll need. Skip this part if you are already familiar with cross-products
of vectors.

Sidebar on Cross-Products

The cross-product (also called vector product) of two vectors v and v in R3
is another vector, denoted u x v, defined as follows:

(a) If uw and v are collinear, then u x v is the zero vector.

Note: Two vectors are collinear if and only if any one is a scalar
(positive, zero or negative) multiple of the other. Therefore, if at least
one of the vectors is zero, the two are trivially collinear. (Figure 5.26(a)
shows an example of three non-zero vectors, each pair being collinear.)

(b) If uwand v are not collinear, then uxv is the vector whose (a) magnitude
is |ul|v|| sin 0|, where 6 is the angle between u and v, and (b) direction
is perpendicular to the plane spanned by u and v, such that u, v and
u x v form a right-handed system. See Figure 5.26(b).

Here’s another way to think of the cross-product. The magnitude
|u||v|| sin @] of the cross-product is nothing but the area of the parallelogram
P with u and v as adjacent sides. The area of this parallelogram is, in fact,
zero if and only if u and v are collinear. Consequently, the following is an
alternate definition:

u X v is the vector whose magnitude is the area of the parallelogram with
u and v as adjacent sides; if the magnitude is non-zero, then the direction of
u X v is perpendicular to the plane spanned by v and v, such that u, v and
u X v form a right-handed system.

If u = [ug; uy u,]7 and v = [v, v, v.]7, a formula for the cross-product
is the following;:

WX 0= [Uyls — Vylls Vplly — Ugls Ugy — VUglly]” (5.36)

A convenient way to remember this formula is with the help of a
determinant, as you are asked to show in the following exercise.

Section 5.4
GEOMETRIC
TRANSFORMATIONS IN
3-SPACE

Figure 5.26: (a)

Non-zero collinear vectors
drawn from the origin (b)
Taking the cross-product.

231

Chapter 5

INSIDE ANIMATION:

THE THEORY OF
TRANSFORMATIONS

232

Exercise 5.55. If
U= Uzi+uyj+uk and v=w,i+v,j+v.k

where i, j and k are the unit vectors in the directions of the positive x-, y-
and z-axes, show that

i ou, v,

uxv=|7J u, vy (5.37)
k wu, wv,

Exampie 5.13. Determine the cross-product [2 1 0]7 x [I —2 4]T.

Answer:

2107 x[1 —24)" = =4i—-8j—5k=[4 -8 —5"

[T
O = N
I R

Eixercise 5.56. Determine the cross-product [3 —1 27 x [—1 0 3],

Exercise 5.57. Write the result of the cross-product of every ordered pair
from the three vectors i, j and k (there are 9 such products if you include
products of vectors with themselves).

An easy way to remember the answer to the preceding exercise
is the following;:

The cross-product of any of i, j and k with itself is the zero vector. For
the product of two different ones from i, j and k, keep in mind the cyclic
order i — j — k — i. Then, if two successive elements in this order are
multiplied, the result is the next; if two successive elements are multiplied
in reverse order, then the result is the negative of the next element. For
example, j x k =iand k x j = —i.

Exercise 5.58. Prove the following about cross-products, where u, v and
w are any three vectors, and ¢ an arbitrary scalar:

(a) u and v are collinear if and only if u x v = 0 (collinearity test)

Note: The “only if” direction follows from the definition of cross-
product; “if” needs to be proved.

(b) uxu=0

(¢) uxv=—(vxu) (cross-product is anti-commutative)

(d) It may not be true that (u x v) X w = u X (v X w) (cross-product is
not associative). Give an example of u, v and w where it isn’t true.

(e) (cu) xv=ux (cv) =c(uxv) Section 5.4

GEOMETRIC
B ux(@tw)=uxvtuxw and (v4+w)xXu="vXU+WXU]gANSFORMATIONS IN
(cross-product distributes over a sum) 3_SPACE

Eixercise 5.59. Prove that if u is a unit vector and v arbitrary, then the
vector (u X v) x u is the component of v perpendicular to u.

Interestingly, it turns out, as the next example shows, that a cross-product
with one fixed vector is a linear transformation.

Example 5.14. Show for a fixed vector u = ugi + u,j + u.k that the
transformation of R3 defined by v+ u x v is linear.

Answer: Check from the formula (5.36) for u x v that

uxXv=DMuv

where
0 —Uy Uy
M = Uy 0 —Uy
—Uy Uy 0

which proves that v — u x v is indeed linear, with defining matrix M.

A Method to Compute the Rotation Matrix Which Is Part
Geometry and Part Algebra

The problem statement again:

The axis of rotation is the directed line [through the origin toward a
point P = [a b ¢JT and the angle of rotation is . The goal is to compute
the matrix R, p,.(0) corresponding to this rotation. As before, we assume
without loss that |P| = 1.

z

Figure 5.27: The vector f(X) is obtained by rotating X an angle of 6 about the radial
line [. 233

Chapter 5 Let the image of a vector X by the given rotation be f(X). See
INSIDE ANTvaTION: Figure 5.27. First, split X as
| THvE THEORY OF X = X, + Xy
TRANSFORMATIONS
into components X; and X5 parallel and perpendicular, respectively, to [.
See Figure 5.28.

PxX

Figure 5.28: X7 and X2 are components of X parallel and perpendicular, respectively,
to l; Xao, f(X2) and P x X all lie on the plane p through O perpendicular to [. X5 and
P x X are mutually perpendicular as well.

Since a rotation is a linear transformation, we have

F(X) = f(X1) + f(X2) (5.38)
As X lies on [, rotation about [leaves it unchanged. So
f(X1) =X (5.39)

Now, X5 lies on the plane p through O perpendicular to [and rotates
by an angle 6 about [, to f(X2). Therefore, f(X3) lies on p as well. We’ll
assume for now that X5 is non-zero, meaning that X is not parallel to [, for,
otherwise, f(X) = f(X1) = X; and there’s nothing more to do.

Observe that the vector P x X, being perpendicular to [, lies on p;
moreover, P X X is perpendicular to X5 as it is perpendicular to the plane
containing P and X, which contains X, as well. It follows, then, that
the plane p is spanned by the two perpendicular vectors Xo and P x X.
Consequently, these two specify coordinate axes on p. Let’s determine the
coordinates of f(X52) with respect to these axes, equivalently, the components
of f(X3) parallel to X5 and to P x X.

The component of f(Xsz) parallel to X5 has signed length |f(X3)| cosé.
Moreover, the unit vector in the direction of Xs is X5 /| X2|. Therefore, the
component of f(X5) parallel to X5 is

234 |f(X2)|cosl x X5 /| X5 = X5 cos6 (5.40)

using the fact that |f(X2)| = | X2|, because f(X2) is X5 rotated. Section 5.4
The component of f(X5) parallel to P x X has signed length GEOMETRIC

TRANSFORMATIONS IN

F(X2)|sing = [Xa|sing (using again | f(Xa2)| = | Xa]) -

= |Xsinalsinf (where « is the angle between P and X)
|P||X||sina|sind (as |[P]=1)
|P x X|sinf (by definition of the cross-product)

The unit vector in the direction of P x X is (P x X)/|P x X]|. Tt follows
that the component of f(Xs) parallel to P x X is

P x X|sing (P x X)/|P x X| = (P x X)sin (5.41)

Adding its components parallel to Xy and P x X with help of (5.40) and
(5.41), we conclude that

f(X2) = Xoco86 + (P x X)sinf (5.42)
Plugging the values from (5.39) and (5.42) into (5.38) we see that
f(X) = X;+Xscos0+ (P x X)sinf

= X1+ (X —Xy1)cosf+ (P x X)sinf
= Xcosf+ X1(1—cosf)+ (P x X)sinf (5.43)

Note: The preceding equation is valid even if X5 is the zero vector, for,
then, X = X; and P x X = 0, so that the equation says f(X) = X, which
is correct. So we're completely general from here on.

Use the results of Example 4.5 and Example 5.14 to replace X; and
P x X, respectively, with their equivalent matrix products:

1 0 0 a® ab ac
f(X) = cosf| 0 1 0 |X + (1—cosf)| ab b> bc | X +
0 0 1 ac be 2
0 —c b
sin 6 c 0 —a | X
-b a 0
a’> ab ac 1—a®> —ab —ac
= (ab b2 be + cosf —ab 1 —0b? —be +
ac be A —ac —be 1—¢2
0 —c b
sin 0 c 0 -—a) X (5.44)
b a 0

Finally, adding the matrices in the parentheses and writing the result in
homogeneous coordinates, we get a second form for the rotation matrix, 235

Chapter 5 different from the earlier geometrically-derived (5.35):

INSIDE ANIMATION:
THE THEORY OF Ra,b,c(e) =
TRANSFORMATIONS

a?(1 —cosf) + cosf ab(l —cosf) — csinf ac(l —cosf) + bsind 0
ab(l —cosf) +csinf b2(1 —cos) +cosf be(l —cosf) —asind 0
ac(l —cosf) —bsinf be(l —cosf) +asing (1 —cosf) +cosf 0

0 0 0 1

(5.45)

One can replace X; in (5.43) by (X - P)P, as X; is the
component of X parallel to the vector P of unit length (see Exercise 4.41(a)).
The resulting equation

f(X)=Xcos+ (X -P)P(1—cosf)+ (P x X)sinb (5.46)
is called Rodrigues’ rotation formula.

Exercise 5.60. Verify the result of Example 5.12 by computing the rotation
matrix using Equation (5.45) instead of (5.35).

Exercise 5.61. Verify your answer to Exercise 5.53 by computing the
rotation matrix using Equation (5.45) instead of (5.35).

An exercise which may have been conspicuous by its absence
so far is to show that the composition of two rotations about radial axes is
also a rotation about a radial axis. Unfortunately, though true, this is not
easy to prove.

In fact, unlike its 2D counterpart, it’s not even obvious that it is true. For
example, is it evident that, say, a rotation of 45° about the z-axis followed
by another, say, of 30° about the y-axis is a rotation about some axis in
the first place? We’ll prove that rotations do, in fact, compose to rotations
using properties of rigid transformations in Section 5.4.5.

Whew, we told you this section was going to be long! It turned out to
be fairly technical, too. We’ll be coasting downhill the rest of the way and,
believe it or not, get to see some code before long.

5.4.4 Reflection

The image of the point P = [z y 2]T by reflection about a plane p, called
the mirror, is P’ = [z’ y' 2']* such that:

(a) if P lies on p, then P’ = P;
Figure 5.29: Reflection

al;?}‘;t Ela;ePlj (b) if P does not lie on p, then P’ is the point on the other side of p such
u D- that PP’ is perpendicular to p, and P’ is the same distance from p as
236 P. See Figure 5.29.

Reflection about the zy-plane is simply scaling by the factors s, = 1, Section 5.4

sy = 1 and s, = —1. Its matrix, therefore, is GEOMETRIC
TRANSFORMATIONS IN
(1) (1) 8 8 3-SPACE
M=5(1,1,-1) = 00 -1 0 (5.47)
00 0 1

Exercise 5.62. Let p be an arbitrary plane mirror. Use the Trick to show
that the matrix corresponding to reflection about p is of the form

M MyS(1,1, —1) Moy M,y

where M; corresponds to a translation and Ms to a rotation about a radial
axis. You don’t need to find exact values for M; and Ms.

Exercise 5.63. Write the 4 x 4 matrix corresponding to reflection about
the plane x — z = 0.

Exercise 5.64. What is the result of composing reflections about the same
mirror? What transformation is the result of composing reflections about
two parallel mirrors? About two perpendicular mirrors? What is the inverse
of a reflection?

Eixercise 5.65. (Commutativity of transformations of 3-space)

Do translations commute with each other?

(a
(
(¢) Do rotations about the same radial axis commute with each other?

)
b) Do scalings commute with each other?
)
(d)

Does a rotation about one radial axis commute with another about a
different radial axis?

(e) Do translations and rotations commute?

(f) Do reflections about two different mirrors ever commute?

5.4.5 Affine Geometric Transformations

From Equations (5.29), (5.30), (5.45) and (5.47) and judicious applications of
the Trick one sees that translations, rotations about arbitrary axes, scalings
and reflections about arbitrary mirrors are all affine transformations of
3-space. Consequently, one has the following 3D analogue of Proposition 5.2
about their geometric niceness.

Proposition 5.8. Let g be either a translation, a scaling, a rotation (about
an arbitrary radial azis) or a reflection (about an arbitrary mirror). Then: 237

INSIDE ANIMATION:
THE THEORY OF
TRANSFORMATIONS

238

(a) g maps straight lines to straight lines and planes to planes. Moreover,
it maps parallel straight lines to parallel straight lines, intersecting
straight lines to intersecting straight lines, parallel planes to parallel
planes and intersecting planes to intersecting planes.

(b) g maps a convex set on one plane to a conver set on another
plane. Moreover, it transforms the convexr hull of a set of points
{P1, Ps,..., P} on one plane to the convex hull of {g(P1),g(P2),...,
g(Px)} lying on another plane.

Proof. Follows from Proposition 5.1 about affine transformations in general.
O

Translations, rotations, scalings and reflections are all affine. In the
opposite direction, the following analogues of the 2D Propositions 5.3 and 5.4
are true as well, though there seem to be no “low-level” proofs similar to the
2D ones. Fairly sophisticated linear algebra appears unavoidable. So at this
time we’ll only state Propositions 5.9 and 5.10, deferring the proof of the latter
to later in this chapter as optional reading for the mathematically inclined.
Mind that Proposition 5.9 follows straightforwardly from Proposition 5.10.

Proposition 5.9. Any affine transformation of R? is the composition in
some order of translations, scalings and rotations about radial axes.

In particular, an affine transformation g : R® — R? can be factored into
a composition g = g4 0 g3 © g2 © g1, where g1 is a rotation about a radial axis,
g2 a scaling, g3 another rotation about a radial axis and g4 a translation. O

Proposition 5.10. Any non-singular linear transformation of R3 is the
composition successively of a rotation about a radial axis, a scaling and
another rotation about a radial azis. O

OpenGL and Affine Transformations

The importance of Proposition 5.9, particularly to the design of an APT like
OpenGL, cannot be overstated. The modeling transformations one creates
using OpenGL are compositions of translations (glTranslatef ()), scalings
(glScalef (), excluding for the moment degenerate calls) and rotations
about a radial axis (glRotatef ()). The whole collection, therefore, is affine
as a composition of affine transformations is affine. Proposition 5.9 tells
us that, conversely, any affine transformation of 3-space is a composition
of translations, scalings and rotations about a radial axis and, so, may be
implemented in OpenGL.

Conclusion: barring degenerate scalings, the modeling transformations
one can create in OpenGL are precisely the affine transformations of 3-space
and nothing else. And, as we argued in Section 5.2.2, this is a welcome
situation both from the API designer’s point of view of being able to
implement a simple rendering engine, and the application programmer’s
point of view of having a comprehensive set of transformations at her disposal.

Example 5.15. Express the affine transformation Section 5.4
T T GEOMETRIC
fz y 2]")=[-y = z+2 TRANSFORMATIONS IN
.- . 3-SPACE
as a composition of OpenGL transformations.

Answer: The mapping by f is the composition

T T

[ty "=y o 2 = [y z 242"
Now, the first map is easily seen to be a rotation of /2 about the z-axis,
while the second is a translation of 2 in the z-direction. We have, therefore,

the required block of OpenGL transformations:

glTranslatef (0.0, 0.0, 2.0);
glRotatef(90.0, 0.0, 0.0, 1.0);

Exercise 5.66. Express each of the following affine transformations as a
composition of OpenGL transformations:

(a) f([zy2")=[yz 2"
(b) f(zy ") =1y 2"
€ f(leyz]")=le—y v+y —z]"

Verifying the Matrices Generated by OpenGL

Appendix E of the red book lists the matrices which OpenGL generates for
the modeling transformations.

The translation and scaling matrices are simple and seen to agree
with Equations (5.29) and (5.30), respectively. We leave it to the reader
to verify that the rotation matrix R which OpenGL generates for the
rotation transformation glRotate{fd}(a, =, y, 2) is equivalent to that of
Equation (5.45); in fact, the red book expresses it in the form of the prior
more expansive Equation (5.44).

Incidentally, it’s clear now and worth emphasizing that the composition
of modelview transformations is implemented in the OpenGL engine as 4 x 4
matrix multiplication. Almost all of the “action” in animation is, therefore,
matrix multiplication. In fact, it’s not an oversimplification to say that a
graphics card animates as fast as it multiplies.

Projection Transformations

There is another set of transformations which OpenGL implements as 4 x 4
matrix multiplication as well: these are the projection transformations used
to transform the viewing box (respectively, frustum) created by a gl0Ortho () 239

Chapter 5

INSIDE ANIMATION:
THE THEORY OF
TRANSFORMATIONS

Figure 5.30: Screenshot
from Experiment 5.2.

240

(respectively, glFrustum()) call into a cubical so-called canonical viewing
box.

However, we defer consideration of projection transformations to
Chapter 18 because transformation at least of a frustum into a box cannot
be done affinely, but requires an understanding of projective spaces (if the
transformation matrix is not to be pulled out of a hat). Nevertheless, a reader
with some math preparation who is eager to see all of OpenGL’s matrices
can proceed to Chapter 18 right away as it may be read independently.
Moreover, it is written in a manner to be at least accessible to the reader
even without much projective math under her belt.

5.4.6 Accessing and Manipulating the Current
Modelview Matrix

Finally, we surface from deep theory to see — code!

There are four commonly-used methods to access the current modelview
matrix, i.e., the matrix at the top of the OpenGL modelview matrix stack,
three to change its value and one to read it. After setting the matrix mode
to GL_MODELVIEW with the command glMatrixMode (GL_MODELVIEW) if need
be, the call

1. glLoadIdentity() sets the current modelview matrix to the identity
matrix Iy.

2. glLoadMatrix(*matrizData) sets the current modelview matrix to
the 4 x 4 matrix whose elements are listed in the one-dimensional array
pointed by *matrizData in column-major order (which means elements
of the first column are listed first in order of increasing row, then those
of the second column and so on).

3. glMultMatrix (*matrizData) multiplies the current modelview matrix
on the right by the 4 x 4 matrix whose elements are listed in column-
major order in the one-dimensional array pointed by *matrizData.

4. glGetFloatv(GL_MODELVIEW MATRIX, *modelviewMatrizData) stores
the 16 elements of the current modelview matrix in column-major
order in the one-dimensional array pointed by *modelviewMatrizData.

Experiment 5.2. Run manipulateModelviewMatrix.cpp. Figure 5.30
is a screenshot, although in this case we are really more interested in the
transformations in the program rather than its visual output.

The gluLookAt (0.0, 0.0, 10.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0)
statement we understand to multiply the current modelview matrix on the
right by the matrix of its equivalent modeling transformation. The current
modelview matrix is changed again by the glMultMatrixf (matrixData)
call, which multiplies it on the right by the matrix corresponding to a rotation

of 45° about the z-axis, equivalent to a glRotatef(45.0, 0.0, 0.0, 1.0) Section 5.4
call. Tt’s changed one last time by glScalef(1.0, 2.0, 1.0). GEOMETRIC
The current modelview matrix is output to the command window initially ~ TRANSFORMATIONS IN
and then after each of the three modelview transformations. We’ll see next 3-Spack
if the four output values match our understanding of the theory. End

As expected, the first matrix output by the program is the identity

1 000
010 0
L=1901 0
00 0 1

The gluLookAt(0.0, 0.0, 10.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0)
command is equivalent to glTranslatef (0.0, 0.0, -10.0), whose matrix,
from Equation (5.29), is

100 O

01 0 O
7(0,0,—10) = 00 1 -10

00 0 1

Therefore, after the gluLookAt() call the current modelview matrix
should equal

1 0 0 0 10 0 O 1 0 0 O
01 00 010 0 |0 10 O
0 010 001 -10| |00 1 -10
00 01 0 0 0 1 00 0 1

which indeed is the second one output.
Next, the current modelview matrix is multiplied on the right by the

matrix
X —-X 00
X X 00
M= 0 0 1 0
0 0 0 1

where X = 0.70710678 ~ 1/\/5, so M corresponds to a rotation of 45° about
the z-axis. The third matrix output then is, as expected,

100 O X -X 00 X =X 0 0

010 O X X 00 | X X 0 O

0 0 1 -10 0 0 10| | O 0 1 -10

00 0 1 0 0 01 0 0 0 241

Chapter 5

INSIDE ANIMATION:

THE THEORY OF
TRANSFORMATIONS

242

The final matrix output is after the call glScalef (1.0, 2.0, 1.0), a
scaling by a factor of 2 along the y-axis. From Equation (5.30)

1000
020 0
SL2N=19 09 1 0
00 0 1

which multiplies the third matrix on the right to indeed give the final output
matrix as

X =X 0 0 10 0 0 X -2X 0 0
X X 0 0 02 00| | X 2X 0 0
0 0 1 -10 001 0] |O 0 1 -10
0 0 o0 1 0 0 01 0 0 0 1

Exercise 5.67. (Programming) Replace the gluLookAt () statement
in manipulateModelviewMatrix.cpp with the following

gluLookAt (0.0, 10.0, 10.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

Theoretically verify the correctness of the modelview matrix output by the
program after the new gluLookAt () statement.

Hint: The new gluLookAt () statement is simulated as a translation by
displacement vector [0 — 10 — 10]7, followed by a rotation of 45° about the
x-axis.

Exercise 5.68. (Programming) Verify your answer to Exercise 5.53 by
comparing it with the output from an appropriately modified manipulate-
ModelviewMatrix.cpp.

Exercise 5.69. (Programming) What is the current modelview matrix
after the following piece of code in the drawing routine:

glMatrixMode (GL_MODELVIEW) ;
glLoadIdentity();

glScalef (1.0, 2.0, 2.0);
glTranslatef (2.0, 1.0, 0.0);
glRotatef(90.0, 1.0, 0.0, 0.0);

Find the answer theoretically by multiplying appropriate 4 x 4 matrices and
then verify with the help of manipulateModelviewMatrix.cpp.

Exxercise 5.70. (Programming) Verify your answers to Exercise 4.50(a)-
(e) by using manipulateModelviewMatrix.cpp to find the matrix corre-
sponding to the given gluLookAt () call, as well as that corresponding to
the composed sequence of modeling transformations which you gave as being
equivalent.

Exercise 5.71. (Programming) In Remark 4.15 about the viewing Section 5.4
transformation being simulated by modeling transformations, we claimed GroveTRIC
that, following a gluLookAt () call, the current modelview matrix changes, TRANSFORMATIONS IN
but not the current projection matrix. 3_SPACE
The part about the current modelview matrix is clearly true from what
we have just seen in Experiment 5.2.
We ask the reader to verify the claim about the current projection
matrix, particularly for the program manipulateModelviewMatrix.cpp, by
reading the current projection matrix, both before and after the gluLookAt ()
statement, with the help of glGetFloatv (GL_PROJECTION MATRIX, *projec-
tionMatrizData) calls.

5.4.7 FEuclidean and Rigid Transformations

We have definitions analogous to the 2D case for Euclidean and rigid
transformations of 3-space. Euclidean transformations are important because
they preserve distance and, therefore, shape as well.

A Euclidean transformation (also called isometry) f of R3
is such that | f(P)f(Q)| = |PQ| for any two points P,Q € R>.

For the discussion of orientation coming up next, we need first to know
when triples of vectors in 3-space are right-handed or left-handed.

An ordered triple of non-coplanar vectors {u, v, w}, each
assumed originating from the same point O, is said to form a right-handed
system (or, simply, be right-handed) if the rotation of u about O toward
v, along the plane containing u and v, and along the smaller of the angles
between the two, appears counter-clockwise to a viewer watching from the
endpoint of w; otherwise, it is said to be left-handed. See Figures 5.31(a)
and (b) for examples.

We actually first discussed handedness in the context of
coordinate systems way back in Section 2.2.

Another term for handedness — more scientific-sounding, but
less used — is chirality.

A Euclidean transformation f of R? is said to be orientation-
reversing if there exist four non-coplanar points P, @, R and S in R3
such that one of the two ordered triples of vectors {PQ, PR, PS} and
{f(P)f(Q), f(P)f(R), f(P)f(S)} is right-handed, while the other is left-
handed.

A Euclidean transformation that is not orientation-reversing is said to
be orientation-preserving.

Orientation-preserving Euclidean transformations are called rigid trans-
formations. 243

Chapter 5

INSIDE ANIMATION:

THE THEORY OF
TRANSFORMATIONS

244

p

v A9
v\/oé (ﬂp)‘7 P|[)¢
4

(©)

Figure 5.31: (a) {u,v,w} is left-handed (b) {u, v, w} is right-handed (c) The reflection
f about the plane p is orientation-reversing, because the triple {PQ, PR, PS} is
right-handed, while the triple of images {f(P)f(Q), f(P)(R), f(P)(S)} is left-handed.

The property of the transformation f described in the
first paragraph of the definition does not depend on the choice of the
non-coplanar points: we’ll see that if it is true for some four non-
coplanar points P, @, R and S in R? that one of {PQ, PR, PS} and
{f(P)f(Q), f(P)f(R), f(P)f(S)} is right-handed, while the other left-
handed, then it is true for any four non-coplanar points.

Examp1e 5.16. The reflection f of Figure 5.31(c) about the plane p is
an orientation-reversing Euclidean transformation.

Exercise 5.72. Scalings in general are not Euclidean transformations, but
with certain choices of scaling factors they are. List these choices and for
each say if the scaling preserves or reverses orientation.

Exercise 5.73. Show that the composition of two FEuclidean transforma-
tions is Euclidean and that of two rigid transformations is rigid.

Eixercise€ 5.74. Show that the composition of two orientation-reversing
Euclidean transformations is an orientation-preserving Fuclidean trans-
formation (in other words, rigid). Show that the composition of an
orientation-preserving and an orientation-reversing Euclidean transformation
is orientation-reversing.

The following result gives a way to decide if an ordered triple of vectors
is right-handed or left-handed.

Lemma 5.2. Assuming that the coordinate axes themselves form a right-
handed system, then an ordered triple {u, v, w} of non-coplanar vectors, where
= [ugy uy u), v=_[v; vy v.]" and w = [wy wy w,;)7, is right-handed or
left-handed according as the determinant

Ugp Vg Wy
Uy Uy Wy
Uy Vz Wy

is greater or less than zero (it cannot be zero as {u,v,w} is non-coplanar). Section 5.4

Proof. The proof is not difficult, but uses more linear algebra than we ,(FJ;(:;\:‘FTOF:SMTIONS .
would like to assume at this time, so we ask the reader to refer to a text 3 g‘l)A‘(‘E o '

such as [8]. O

The next exercise, analogue of the 2D Example 5.10, says that
Definition 5.8 about a Euclidean transformation reversing or preserving
orientation is independent of the choice of the four non-coplanar points P,

Q, R and S.

Exercise 5.75. Suppose that an affine transformation f of R? maps some
four non-coplanar points P, @, R and S in R? such that one of the two ordered
triples of vectors {PQ, PR, PS} and {f(P)f(Q), f(P)f(R), f(P)f(S)} is
right-handed, while the other is left-handed.

Show, then, that for any four non-coplanar points, P/, @', R’ and
S’, one of the two ordered triples of vectors {P'Q’, P'R',P'S’} and
{f(PHYF(@Q"), f(P)f(R), f(P")f(S")} is right-handed, while the other is
left-handed.

Hint: Use the same approach as for Example 5.10. You will need as well to
apply the preceding lemma.

Next is the 3D analogue of the 2D Proposition 5.5.

Proposition 5.11. A translation or a rotation about an arbitrary axis is a
rigid transformation of 3-space. A reflection about an arbitrary mirror is an
orientation-reversing Euclidean transformation of 3-space.

Proof. The proof that a 3D translation ¢ is distance-preserving is exactly
similar to the 2D version in the proof of Proposition 5.5. That ¢ is
orientation-preserving is even simpler, because the two ordered triples of
vectors {PQ, PR, PS} and {t(P)t(Q),t(P)t(R),t(P)t(S)} are identical for
any four points P, @, R and S in R>.

We'll leave the reader to prove the claims for rotations and reflections. O

The following is the 3D version of the 2D Proposition 5.6.

Proposition 5.12. A rigid transformation of R keeping the origin fived is
a rotation about a radial axis, while an arbitrary rigid transformation of R3
is a composition of a rotation about a radial axis followed by a translation.

A Euclidean transformation of R is a composition of a rotation about a
radial axis followed by a translation, possibly followed again by a reflection.

Proof. The first statement of the proposition can be proved using linear
algebra, but more interesting is to apply elementary arguments along the lines
of Proposition 5.6. In fact, we ask the reader who doesn’t mind wallowing
in a bit of geometry to follow the approach suggested below to make a proof
herself. If you are not so inclined it won’t hurt to skip the proof altogether.
245

Chapter 5 Suggested approach: Show first that a rigid transformation f of 3-space
INSIDE ANIMATION: fixing the origin O is a rotation about a radial axis as follows:
THE THEORY OF If f is the identity, then it is trivially a rotation.
TRANSFORMATIONS If f is not the identity, then suppose that P is a point such that f(P) # P.
There are three possibilities:

(a) f(f(P))# P.

Argue that the three points P, f(P) and f(f(P)) cannot be collinear.
Therefore, they belong to a unique plane p. Show that the line [
through O perpendicular to p is the axis of f; further, the angle of
rotation @ is the angle between the perpendiculars from P and f(P)
to l. See Figure 5.32(a).

P=fAP)
SAP)
7 ,» fIAP))
2N
P
0
@

Figure 5.32: Finding the axis of a rigid transformation that fixes the origin.

(b) f(f(P)) = P and the line I’ joining P and f(P) does not contain O.

Show in this case that the line [through O perpendicular to I’ is the
axis of f; furthermore, the angle of rotation is 7. See Figure 5.32(b).

(¢) f(f(P)) = P and the line !’ joining P and f(P) does contain O.
In this case, let) be a point not lying on ’.

If £(Q) = @, then show that the line [through O and @ is the axis of
f and the angle of rotation is w. See Figure 5.32(c).

If £(Q) # Q, then assume that f(f(Q)) = @ and that the line I’ joining
Q@ and f(Q) contains O, for, if not, this case is equivalent to one of (a)
or (b). Then show that the line I through O perpendicular to both [
and !’ is the axis and the angle of rotation is m. See Figure 5.32(d).

The rest of the proposition follows easily from the first part. O

The first part of Proposition 5.12, that a rigid transformation
of R3 which keeps the origin fixed is a rotation about a radial axis, is often
246 called Euler’s Theorem. It is actually one of several theorems, proved by

the great eighteenth century Swiss mathematician Leonhard Euler, bearing Section 5.4

his name. GEOMETRIC
Finally, here’s the 3D analogue of the 2D Proposition 5.7. TRANSFORMATIONS IN
3-SPACE

Proposition 5.13. Affine, Fuclidean and rigid transformations of 3-space
are related by the following inclusions, which are each proper:

rigid transforms C FEuclidean transforms C affine transforms

Proof. We leave this to the reader. O

A proposition whose proof we kept putting off, because of its apparent
difficulty, is now all of a sudden simple to prove:

Proposition 5.14. The composition of two rotations about radial azxes in
3-space is another such.

Proof. Let f; and f; be rotations about radial axes in 3-space. By
Proposition 5.11 they are rigid transformations and, moreover, both fix
the origin. By Exercise 5.73 the composition f; o f5 is rigid, and it obviously
fixes the origin because both f1 and fa do so. Proposition 5.12 then completes
the proof. O

Eixercise 5.76. Consider reflections through points. For example, the
reflection through the origin corresponds to the transformation [z y 2]7
[~x —y —z]T. This transformation is clearly affine, in fact, linear. Is it
Euclidean? Rigid? How about reflections through arbitrary points?

Sketch how the boy of Figure 4.7 of the last chapter would be transformed
by reflection through the origin.

Proof of Proposition 5.10

This section is only for those with a good knowledge of linear algebra and
may be safely skipped by others with no consequences to their learning of

CaG.

Lemma 5.3. A special orthogonal transformation of R3, i.e., one whose
matriz is orthogonal with determinant 1, is a rotation about a radial axis.

Proof. It’s easy to verify that a linear transformation f of R? defined by an
orthogonal matrix of determinant 1 preserves both distance and orientation.
Therefore, it is rigid and the lemma follows from Proposition 5.12. O

The author learned the proof of the following lemma from T. K. Mukherjee
[97].

Lemma 5.4. For any non-singular real n x n matriz M, there exist special
orthogonal matrices P and Q) and a real diagonal matriz D with all non-zero
entries such that

M =PDQ 247

Chapter 5

INSIDE ANIMATION:

THE THEORY OF
TRANSFORMATIONS

248

Proof. Consider the product MM7. As it is symmetric, by a standard
result of linear algebra there exists a real orthogonal matrix P such that

P Y MMT)P=D'

where D’ is a diagonal matrix.

Moreover, M M7 is positive definite, which implies that D’ is as well.
Therefore, each element of the diagonal of D’ is positive. Let D = v/ D’. In
particular, if D' = [d}], then D = [d;], where d; is the positive square root of
d.

Accordingly,

P*MMTP = D?

It follows that

I = DY P 'MMTP)D™' = (D7'P'M)(MTPD™)
= (D 'P M)y (D'PM)T

as (DY) =D~ ! and (P~ 1)T = P.

Writing
Q=D'P M
we have from the above that QQT = I, so Q is orthogonal
Now
M = PDQ

and we can assume that both P and @ are, in fact, special orthogonal, for, if
either is not, then it can be multiplied by a diagonal matrix with determinant
—1, viz.

-1 0 0 ... 0

0 1 ... 0

R= 0 0 1 ... 0

o o0 o0 ... 1
and, correspondingly, D multiplied by R~! (=R). O
The two lemmas combine to establish Proposition 5.10. O

Proposition 5.10 and its 2D sibling Proposition 5.4 are both
deducible as cases of the Singular Value Decomposition Theorem. For an
account of this fundamental theorem of linear algebra see, for example,
Roman [119].

5.4.8 Shear

Thinking back to the analogy made in Section 5.3.3, imagine again placing
a lump of putty between your palms and then moving one palm parallel to
the other. In proper 3D there are three choices to make: (1) how to initially

align your palms in space with putty between them, (2) which direction to Section 5.4

move, say, the upper palm, but keeping it parallel to the fixed lower one GroveTRIC

and, finally, (3) how far to move the upper palm. Accordingly, a 3D shear s TRANSFORMATIONS IN
is uniquely determined by three parameters: 3-SPACE

1. A plane p called the plane of shear.
2. A directed line [called the line of shear, which is parallel to p.
3. An angle « called the angle of shear.

The action of s is equivalent to that of “infinitely many” 2D shears applied
to parallel planes. Here’s how (see Figure 5.33)(a)):

Given a point P € R?, let ¢ be the unique plane containing P which is
both perpendicular to the plane p of shear s and parallel to the line [of
shear s. Therefore, ¢ intersects p in a directed line, denote it I’, parallel to
l. P, then, is transformed by s to the point P’ ezactly as it would by the
particular 2D shear s’, on the plane ¢, specified by the directed line I’ and
the angle a.

p

(@) (b)

Figure 5.33: (a) A 2D slice of a 3D shear on the plane ¢ and two more “copies” of g (b)
A shear along the zz-plane whose line is the z-axis.

In other words, imagine 3D space “sliced” into infinitely many parallel
planes, each perpendicular to p and parallel to [, and s as the “union of
identical 2D shears” on each of these slices (Figure 5.33)(a) depicts two more
slices parallel to q).

Example 5.17. Figure 5.33(b) depicts a 3D shear along the xz-plane
whose line is the z-axis and angle «, shearing a cube into a parallelepiped. As 249

Chapter 5

INSIDE ANIMATION:
THE THEORY OF
TRANSFORMATIONS

Figure 5.34: Screenshot
of shear.cpp.

250

the “slices” are all parallel to the xy-plane and the line of the shear in each
parallel to the x-axis, one can straightforwardly apply the 2D Equation (5.22)
to write the equation of this shear as follows:

1 tana 0 O
;|0 1 0 0
= 0 0 1 0 P

0 0 0 1

Exercise 5.77. Verify that the 4 x 4 matrix of a 3D shear along the
xz-plane, whose line is the z-axis and angle «, is:

1 0 0 0
0 1 0 0
0 tana 1 O
0 0 0 1

Eixercise 5.78. What is the 4 x 4 transformation matrix of a 3D shear
along the zy-plane, whose line is the z-axis and angle o7

Exercise 5.79. Prove that a shear along a radial plane is a non-singular
linear transformation of 3-space, while an arbitrary 3D shear is an affine
transformation. Conclude that any 3D shear is a composition of translations,
scalings and rotations about radial axes.

When implementing a shear s in OpenGL, it’s typically more efficient to
compute the matrix M of s and then use a glMultMatrix() call to directly
multiply the current modelview matrix by M, rather than expressing s as a
composition of modeling transformations.

Exercise 5.80. (Programming) From Example 5.11 it follows that the
3D shear s along the xz-plane, whose line is the z-axis and angle a = 45°,
is the composition of a rotation of 31.72° about the z-axis, followed by
scaling by factors 0.62, 1.62 and 1.0 along the z-, y- and z-axes, respectively,
followed by a rotation of —58.28° about the z-axis (up to floating point
error).

Verify this by modifying manipulateModelviewMatrix.cpp to output
the current modelview matrix after applying the preceding modeling
transformations and separately computing the value of the shear matrix.

Experiment 5.3. Run shear.cpp. Press the left and right arrow keys
to move the ball. The box begins to shear when struck by the ball. See
Figure 5.34.

The shear matrix is explicitly computed in the code and multiplied from
the right into the current modelview matrix via a glMultMatrix() call.

End

Exercise 5.81. (Programming) Recall the program ballAndTorus- Section 5.5
Shadowed. cpp from Experiment 4.35. Modify the shadow-drawing part of Summary, NoTES AND
the program to cast shadows by the sun at 45° in the sky. Figure 5.35 Morre READING

indicates that the transformation to be implemented in the zy-plane is sun ray

(z,y) = (¥ +y,0)

5.5 Summary, Notes and More Reading

In this chapter we opened up the graphics animation engine to find out
what makes it tick. The short answer is 4 x 4 matrix multiplication and we Figure 5.35: Shadow of a
point cast by the sun at
learned why. 45° in the sky.
Each modeling transformation corresponds to an affine transformation of
3-space, which is represented using homogeneous coordinates by a 4 x4 matrix.
The composition of modeling transformations corresponds to multiplication
of their matrices. Viewing transformations, being compositions of modeling
transformations, each corresponds to a 4 x 4 matrix as well. We learned the
particular matrix representations of basic geometric transformations such as
translation, scaling, rotation and reflection.
We learned as well that the modeling transformations of OpenGL —
translation, scaling and rotation — were chosen for good reasons by the
designers of the API. Not only are these transformations affine, but they
combine to generate all affine transformations.
We studied certain particularly useful subclasses of affine transformations.
One was that of shape-preserving transformations, the Fuclidean transfor-
mations, which in turn include rigid transformations that model the motion
of rigid objects in space. Another special class of affine transformations
which we studied was that of the shears.
We learned to access and manipulate OpenGL’s modelview matrix stack
as well, allowing us to program transformations directly into the stack if need
be, rather than through calls to OpenGL’s own modeling transformations.
Till Chapter 4 we were primarily interested in using OpenGL. Now
we have an understanding of the working of this API as well. True,
familiarity, say, with the functioning of an internal combustion engine does
not necessarily make one a better driver; however, it certainly does help one
better understand technical issues, more confidently deal with them and,
generally, be a more informed consumer, which has its value.
One topic the knowledgeable reader might think missing from this chapter
on transformations is discussion of the so-called projection transformation
in the graphics pipeline — which is critical to the shoot part of the shoot-
and-print rendering paradigm from Chapter 2 — and how it is implemented
by means of mathematical projective transformations. However, we thought
it best to introduce the projection transformation as an application of
projective spaces and their transformations later in the book in Chapter 18. 251

Chapter 5

INSIDE ANIMATION:

THE THEORY OF
TRANSFORMATIONS

252

The reason is that the choice of the particular transformations applied in the
graphics pipeline is hard to motivate without an understanding of projective
spaces, and we were reluctant to pull it out of a hat.

For further reading about geometric transformations the reader is
recommended to see Mortenson [95] and Yaglom’s series [155, 156, 157].
Articles about transformations and their role in computer graphics, written
in recreational style and yet very informative, can be found in the books by
Blinn [17, 18] and Glassner [54, 55].

CHAPTER

Advanced Animation Techniques

issues that arise often in animation projects. The first is managing

large worlds where the polygon count may painfully slow down
the rendering pipeline. The programmer can help ease the logjam by pre-
filtering objects lying outside the camera’s field of view. This process is
called frustum culling and we describe how to do it by means of space
partitioning in Section 6.1. The related process of occlusion culling, where
objects blocked from the camera’s view by other objects are filtered, is the
topic of Section 6.2. This section discusses, as well, occlusion queries and
conditional rendering.

The second issue is that of animating the orientation of an object. In
Chapter 4 we learned all about animating motion, coding balls and boxes
that flew, fell, spun and revolved around one another. But how about
animating orientation or pose? For example, an aircraft maneuvering in
a dogfight or a camera tracking a scene. Changing orientation involves
modeling transformations as well, particularly rotation, but first one must
develop a method to quantify orientation, just as (z,y, z) quantify position.
Only then comes the question of moving between two orientations.

In Section 6.3 we learn how to use Euler angles — which we first
encountered in Section 4.6.3 — to quantify orientation in 3D. Animating
between a pair of orientations given by their Euler angle tuples is possible
but, as we shall see, potentially problematic. A more sophisticated approach
is with the use of quaternions. This is the topic of Section 6.4, which begins
with an introduction to the mathematics of quaternions, and then goes on
to describe their application to representing and animating orientation.

There is a fair amount of theory in this chapter but it has important
practical applications and we back it all the way with code.

T he goal for this chapter is to learn techniques to cope with two

253

Chapter 6

ADVANCED ANIMATION

254

TECHNIQUES

6.1 Frustum Culling by Space Partitioning

Frustum culling is de rigueur for game programmers or, for that matter,
anyone creating scenes with large polygon counts. We’ll motivate the
proceedings by rerunning Experiment 4.32.

Experiment 6.1. First, run the program spaceTravel.cpp with its
current values of ROWS and COLUMNS, being the size of the asteroid grid,
as 8 and 5, respectively. Move the spacecraft with the arrow keys. Next,
increase both ROWS and COLUMNS to 100. Figure 6.1 is a screenshot. The
spacecraft now begins to respond sluggishly to the arrow keys, at least on a
typical desktop. You may have to pump up even more the values of ROWS
and COLUMNS if yours is exceptionally fast. End

Figure 6.1: Screenshot of spaceTravel.cpp with a 100 x 100 array of asteroids.

Let’s first do a back-of-the-envelope calculation to understand what’s
happening. Assuming the viewable space of spaceTravel.cpp to be a box
of sides 250, significantly larger, in fact, than the viewing frustum defined
by the glFrustum(-5.0, 5.0, -5.0, 5.0, 5.0, 250.0) statement of the
program, and noting that asteroids are 30 units apart in both the x and z
directions, one deduces that at most 9*9=81 asteroids are viewable in either
viewport at any given time. That’s not a lot for OpenGL to draw. In fact,
set ROWS to 9 and COLUMNS to 9 to find no perceptible slow-down! So
what’s going on? Why the slow-down in simply creating a larger asteroid
field?

A moment’s consideration of the rendering pipeline reveals the answer.
At every redisplay, in other words, every arrow press, the ROWS x COLUMNS
number of asteroids in arrayAsteroids[ROWS] [COLUMNS] are all — in fact,
their collective polygons are all — zapped first with the modelview matrix,
then with the projection matrix, and then those that fall outside the viewing
volume are clipped, and the rest projected to the viewing face and rendered.
Specifically, if ROWS and COLUMNS are both 100, then the polygons of all
10,000 asteroids, several hundred thousand in total, enter the rendering

pipeline before only those belonging to approximately 80 are drawn. That’s
more than 99% of the polygons, each incurring computational cost in the
pipeline, ultimately not being drawn. Talk about waste!

It’s not OpenGL’s fault though. OpenGL finds out which polygons
belong on-screen and off only after transforming and clipping, operations
well into the pipeline. However, the programmer can help by pre-identifying
as many objects as possible that do not intersect the viewing frustum, which
means that they will end up being clipped, and not letting them into the
pipeline in the first place. This is a process called frustum culling, which
consists, then, of adding to the program routines to check if a polygon (or
object) intersects the frustum and filtering through to the drawing routine
only those which do or, equivalently, culling those which do not.

6.1.1 Space Partitioning

The most straightforward way to frustum cull is to test each object
individually if it intersects the frustum. This may, in fact, give decent
speed-up if the objects are simple enough that the combined cost of testing
them all is still cheap.

However, frustum culling is typically more efficient if space is first
partitioned in a hierarchical manner into cells which each contain only
a few objects. Cost-effective partitioning must be driven by the distribution
of the objects — subdividing into smaller ones only cells containing many
objects. Once space is partitioned, frustum culling can be accomplished by
hierarchically checking cells to determine if they intersect the frustum and
passing to the drawing routine objects belonging only to those which do.
This approach is based on a few premises:

(a) That partitioning space and determining the distribution of the objects
in individual cells is primarily a one-time pre-processing cost, which is
true if most objects in the scene are static. The few moving objects,
in this case, can be passed mandatorily to the drawing routine.

(b) That the cells are of a shape easy to check for intersection with the
frustum.

(¢) That the hierarchical nature of the partition leads to efficiency because,
if a cell is found not to intersect the frustum, then its sub-cells and
the objects which they contain can all be eliminated from further
consideration, a process called pruning.

(d) That the partitioning process is efficient in that, if a cell contains only
a few objects, then it is not subdivided, so that the final partition
reflects the distribution of the objects in space.

There’s more than one way to hierarchically partition space, but
intuitively simplest is the octree for 3-space and its analogue, the quadtree, for

Section 6.1
FrRusTuM CULLING BY
SPACE PARTITIONING

255

Chapter 6

ADVANCED ANIMATION

256

TECHNIQUES

2-space. We'll explain quadtree-based space partitioning using the scenario
of spaceTravel.cpp as a running example because we have, in fact, an
implementation in the program spaceTravelFrustumCulled.cpp.

6.1.2 Quadtrees

Note, first, that spaceTravel.cpp is essentially a 2D problem as the
spacecraft, asteroids and frustum can all be projected onto the xz-plane
and intersection testing done on that plane — note that the spacecraft has
no motion in the y-direction. Therefore, a quadtree is appropriate for
spaceTravel.cpp even though, nominally, the scene is 3D.

A quadtree partitions 2-space into axis-aligned squares, the collection
having the hierarchy of a tree. In frustum culling applications the root
node corresponds to a square large enough to contain all objects that might
potentially be culled.

Terminology: We’ll use the terms “node” and “square” interchangeably in
the context of quadtrees.

Figure 6.2(a) illustrates a hypothetical projected scenario of space-
Travel.cpp (an irregular distribution of asteroids is obtained by setting
FILL_PROBABILITY to a value less than 100). The craft itself is ignored
because it moves; therefore, it’s always passed into the pipeline.

To begin with, the root square of the quadtree is chosen big enough
to bound the entire asteroid field — see the setting of the initialSize
variable of the setup() routine of spaceTravelFrustumCulled.cpp. (Note
that we’ll be running spaceTravelFrustumCulled.cpp soon enough, but,
for now, let’s see how the code is developed through incorporating frustum
culling into spaceTravel.cpp.)

Subsequently, at each level, each square may be subdivided into four equal
sub-squares (quadrants). The criterion to subdivide is generally determined
by the programmer. In the particular case of spaceTravelFrustumCulled.-
cpp we subdivide a square if it intersects more than one asteroid. If a
square is subdivided, then its four quadrants become its children in the tree
hierarchy and are denoted SW, NW, NE and SE according to their location
in the parent square. Given our condition for when to subdivide, evidently
leaf squares — which are not further subdivided — intersect either one asteroid
or none.

The squares of the quadtree corresponding to the arrangement of asteroids
in Figure 6.2(a) are shown in Figure 6.2(b) and the underlying tree structure
in Figure 6.2(c).

Once the quadtree is built, culling is straightforward: check, starting at
the root, for squares that intersect the frustum; if a non-leaf square intersects
the frustum, then recursively process its children; if a leaf square intersects
the frustum, then pass its asteroid (if any) to the drawing routine.

Root square Section 6.1

O O O o o J|o FRrUSTUM CULLING BY
'®) O SPACE PARTITIONING
OO0/ O [O0]/ |0
(ONOY(ONG®) o) (e][e][e)
(ON®) @) ONO) 0|0 O 0][0)
0O O o) o|o o/ o
(ON®) @) \ [e][e) D @)
@) O0\0O O O 0|0
T (b)
zV
(a) Root node
SW, NwW NE

(©)

Figure 6.2: (a) Projection of the asteroids and the frustum of spaceTravel.cpp onto
the zz-plane. (b) Corresponding quadtree squares (the root square is bold) (c) The tree
structure with children at each node drawn SW, NW, NE, SE from left to right; the
nodes in the red circle are some of those pruned.

Let’s verify the premises (a)-(d) for space partitioning, mentioned earlier,
in the case of the spaceTravelFrustumCulled.cpp quadtree:

(a) The asteroids are all static while the spacecraft is the only object which
is not, so a one-time quadtree is built for the asteroids, while the craft
itself is always passed to the drawing routine.

In the second viewport the camera moves, which, as we know, is
implemented by actually transforming the scene. However, in order not
to have to update the quadtree structure, it’s preferable to imagine the
viewing frustum itself moving, attached to the front of the spacecraft,
as in Figure 6.3.

Craft

Figure 6.3: Spacecraft
carrying a viewing frustum
(b) The cells are each a square, a shape easy to test for intersection with “attached” to its front.

the trapezoidal projection of a frustum.

(c) Several of the nodes, even in the simple example of Figure 6.2, are
pruned, e.g., the ones inside the red circle (and others). 257

Chapter 6

ADVANCED ANIMATION

258

TECHNIQUES

(d) It can be seen from Figure 6.2 that the spatial distribution of the
quadtree squares indeed tracks that of the asteroids.

Exercise 6.1. Indicate all the nodes of the tree of Figure 6.2 which are
pruned by the quadtree-based frustum culling.

6.1.3 Implementation

Experiment 6.2. Run spaceTravelFrustumCulled. cpp, which enhances
spaceTravel.cpp with optional quadtree-based frustum culling. Pressing
space toggles between frustum culling enabled and disabled. As before, the
arrow keys maneuver the craft.

The current size of the asteroid field is 100 x 100. Dramatic isn’t it, the
speed-up from frustum culling?!

Note: Make sure the file intersectionDetectionRoutines.cpp is in the
same directory as spaceTravelFrustumCulled.cpp.

Note: When the number of asteroids is large, the display may take a while
to come up because of pre-processing to build the quadtree structure.

End

We have already described the development of spaceTravelFrustum-—
Culled.cpp, which follows pretty much word for word the quadtree-based
strategy described at the start of the section. Here are specifics.

The quadtree asteroidsQuadtree is an object of the Quadtree class
containing nodes belonging to the QuadtreeNode class. The member function
numberAsteroidsIntersected() of the class QuadtreeNode helps decide
for each quadtree square if it is to be subdivided, while the member list
asteroidList stores for each leaf square the asteroid (if any) intersecting
it.

In addition to checkSpheresIntersection() from the original space-
Travel.cpp, used in asteroidCraftCollisiond() to detect (approxi-
mately) intersection between the spacecraft and an asteroid, routines from
the program intersectionDetectionRoutines.cpp are invoked for other
intersection tests. In particular, checkQuadrilateralsIntersection()
determines if the frustum in either viewport intersects a quadtree square,
while checkDiscRectangleIntersection() if an asteroid intersects a
quadtree square.

In Figure 6.2, asteroids lie either entirely inside or outside a square. This
need not be the case in general, of course, and in our code an asteroid
straddling the boundary of a quadtree square is associated with it.

With large numbers of asteroids, the speed-up through frustum-culling
is clearly enormous. Even so, our implementation spaceTravelFrustum-
Culled.cpp is minimal and there are further optimizations to be made. We
ask the reader to explore a couple next.

Exercise 6.2. (Programming) A large quadtree costs both in RAM Section 6.2
space and pre-processing time. Try the following two options in space- (OccrLusion CULLING
TravelFrustumCulled.cpp to control its size:

(a) The size of the quadtree tends to grow exponentially with its height.
Accordingly, set a cut-off depth beyond which nodes cannot be
partitioned.

(b) The criterion for subdividing a square, currently if it intersects more
than one asteroid, can be made stricter by setting a larger threshold for
the number to be intersected, again reducing the size of the quadtree.

6.1.4 More about Space Partitioning

Octrees are a straightforward generalization of quadtrees to 3-space — space
is partitioned into a tree-like hierarchy of axis-aligned cubes. Each cube in
an octree can be partitioned into 8 child octants (see Figure 6.4).

Quadtrees and octrees are not the only ways to partition space. There
are more sophisticated data structures such as kd-trees, range trees and BSP
(Binary Space Partitioning) trees, which can be applied in two and higher
dimensions.

Moreover, applications of space partitioning are not limited to frustum
culling either. Another important one is collision detection. The principle is
that two objects can intersect only if they belong to the same or adjacent pigure 6.4: A