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Preface

W
elcome to the second edition of Computer Graphics Through
OpenGL: From Theory to Experiments! The first edition
appeared in late 2010. In the nearly four years since, I have

been fortunate enough to have received much thoughtful and, mostly, positive
feedback. Happily, too, there was a fair bit of reassurance that my way of
doing things, somewhat different from my peers’, was on the right track.
And, of course, the field of computer graphics as always has been evolving
rapidly, of a particular impact being the maturing of the fourth generation of
OpenGL. The upshot was that about a year and a half ago I began working
on a new edition and am glad now that the finished text is in your hands.
Let’s get to the facts.

About the Book

This is an introductory textbook on computer graphics with equal emphasis
on theory and practice. The programming language used is C++, with
OpenGL as the graphics API, which means calls are made to the OpenGL
library from C++ programs. OpenGL is taught from scratch.

After Chapters 1-14 – the undergraduate core of the book – the reader
will have a good grasp of the concepts underpinning 3D computer graphics,
as well as an ability to code fairly sophisticated 3D scenes and animation,
including games and movies. With, additionally, Chapters 20-21, which
can, in fact, be read following Chapter 13, she will have command over
fourth-generation OpenGL, particularly version 4.3. Chapters 15-19, though
advanced, but still mainstream, could be selected topics for an undergraduate
course or part of a second course.

The book has been written to be used as a textbook for a first college
course, as well as for self-study.

xix
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Preface Specs

This book, comprising 21 chapters, comes with approximately 170 programs,
250 experiments based on these programs, 650 exercises, including theory
and programming exercises and programming projects, 100 worked examples,
and 600 four-color illustrations. The book was typeset using LATEX and
figures drawn in Adobe Illustrator.

New in the Second Edition

• 30 more programs, 50 more experiments, 50 more exercises

• Vertex buffer objects

• Vertex array objects

• Occlusion culling

• Occlusion queries and conditional rendering

• Texture matrices

• Multitexturing and texture combining

• Multisampling

• Point sprites

• Image and pixel manipulation

• Pixel buffer objects

• Shadow mapping

• OpenGL 4.3, shaders and the programmable pipeline:

◦ Complete coverage over two chapters
◦ OpenGL Shading Language (GLSL)
◦ Vertex, fragment, tessellation and geometry shaders
◦ From basic methods, such as animation, lighting and textures, to

advanced topics, including instanced rendering, shader subrou-
tines, transform feedback, texture buffer objects, several others

◦ 19 example programs

Pedagogical Approach

Code and theory have been intertwined as far as possible in what may
be called a discuss-experiment-repeat loop: often, following a theoretical
discussion, the reader is asked to perform validating experiments (run code,
that is); sometimes, too, the other way around, an experiment is followed by
an explanation of what is observed. It’s kind of like discovering physics.

Why use an API?

Needless to say, I am not a believer in an API-agnostic approach to teaching
CG, where focus is on principles only, with no programming practice.

Undergrads, typically, love to code and make things happen, so there
is little justification to denying the new student the joy of creating scenes,xx
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Prefacemovies and games, not to mention the pride of achievement. And, why not
leverage the way code and theory reinforce one another when teaching the
subject, or learning on one’s own, when one can? Would you want Physics
101 without a lab section?

Moreover, OpenGL is very well-designed and the learning curve short
enough to fully integrate into a first CG course. And, it is supported on
every OS platform with drivers for almost every graphics card on the market;
so, in fact, OpenGL is there to use for anyone who cares to.

Note to student : Our pedagogical style means that for most parts of the
book you want a computer handy to run experiments. So, if you are going
to snuggle up with it at night, make it a threesome with a notebook.

Note to instructor : Lectures on most topics – both of the theory and
programming practice – are best based around the book’s experiments, as
well as those you develop yourself. The Experimenter teaching resource
makes this convenient. Slides, otherwise, are rarely necessary.

How to teach modern shader-based OpenGL?

Our point of view needs careful explanation as it is different from some of
our peers’. Firstly, to push the physics analogy one more time, even though
relativistic mechanics seems to rule the universe, in the classroom one might
prefer doing classical physics before relativity theory.

Shaders, which are the programmable parts of the modern OpenGL
pipeline, add great flexibility and power. But, so too, do they add a fair bit of
complexity – even a cursory comparison of our very first program square.cpp

from Chapter 2 with its equivalent in OpenGL 4.3, squareShaderized.cpp
complemented with a vertex and a fragment shader in Chapter 20, should
convince the reader of this.

Consider more carefully, say, a vertex shader. It must compute the
position coordinates of a vertex, taking into account all transformations,
both modelview – such as translation, rotation, scaling and viewing – and
projection. In the classical fixed-function pipeline, the user can simply
issue commands such as glTranslatef(), glRotatef(), etc., leaving to
OpenGL actual computation of the transformed coordinates; not so for the
programmable pipeline, where the reader must write herself all the needed
matrix operations in the vertex shader.

We firmly believe that the new student is best served learning first how to
transform objects according to an understanding of simply how a scene comes
together physically (e.g., a ball falls to the ground, a robot arm bends at the
elbow, etc.) with the help of ready-to-use commands like glTranslatef(),
and, only later, the actual mathematics behind them.

Such consideration applies as well to other automatic services of the
fixed-function pipeline which allow the student to focus on phenomena,
disregarding initially implementation. For example, as an instructor, I
would much prefer to teach first how diffuse light lends three-dimensionality,
specular light highlights, and so on, gently motivating Phong’s lighting xxi
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Preface equation, leaving OpenGL to grapple with its actual implementation, which
is exactly what we do in Chapter 11.

In fact, we find an understanding of the fixed-function pipeline makes the
subsequent learning of the programmable one easier because it’s then clear
exactly what the shaders should try to accomplish. For example, following
the fixed-function groundwork in Chapter 11, writing shaders to implement
Phong lighting, as we do in Chapter 20, is near trivial.

We take a similarly laissez-faire attitude to classical OpenGL syntax. So
long as it eases the learning curve we’ll put up with it. Take for example
the following snippet from our very first program square.cpp:

glBegin(GL_POLYGON);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glVertex3f(80.0, 80.0, 0.0);

glVertex3f(20.0, 80.0, 0.0);

glEnd();

Does it not scream square – even though it’s immediate mode and
uses the discarded polygon primitive? So, we prefer this for our
first lesson, avoiding thus the distraction of a vertex array and the
call glDrawArrays(GL TRIANGLE STRIP, 0, 4), as in the 4.3-program
squareShaderized.cpp, our goal on Day 1 being a simple introduction
of the synthetic camera model.

Of course, as we move along, we introduce each modern construct in its
logical place, but with an eye always toward the overall learning process.
For example, we introduce vertex arrays and their drawing commands in
Chapter 3 on OpenGL gadgets, from then on making a point of using
them, except for objects with few vertices when the overhead seems more
distraction than convenience. Vertex buffer objects (VBOs) and vertex array
objects (VAOs) are introduced in Chapter 3, as well, following logically
vertex arrays; however, we counsel the reader against using them, until she
gets to OpenGL 4.3, where they are mandatory, because they add a layer of
coding complexity one can very well do without when learning fundamental
concepts.

Does this kind of staggered introduction to modern OpenGL, with the
old still around, not lead to bad practice? Not at all from our experience.
When push comes to shove, how hard is to replace polygons with triangle
strips? Or, for that matter, use VBOs and VAOs to store data? In fact,
as we remarked earlier, grasp of the old motivates the step up to the new
(there’s virtue it seems then in retracing the path of the graybeards!).

So, practically, our code is backward-compatible OpenGL 4.3, which
allows use of legacy syntax, for the first nineteen chapters. Then, Chapters 20-
21, which together give a comprehensive coverage of OpenGL 4.3, use
forward-compatible core OpenGL 4.3 (the strictest form).

The reader might note, as well, that OpenGL ES (Embedded Systems)
3.0, the latest OpenGL version for mobile devices, and WebGL, the emergingxxii
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Preface3D standard supported by almost all the newer browsers, are syntax-wise
very close to OpenGL 4.3, so assimilation of the latter means ability to code
3D graphics on multiple platforms.

On the other hand, there are millions of currently live applications written
in legacy OpenGL, which are not going to be discarded or rewritten any time
soon – the reason, in fact, for the Khronos Group to retain the compatibility
version of the API – so familiarity with older syntax might well be useful for
the intending professional.

Does our approach cost timewise? If the goal is OpenGL 4.3, then, yes,
it does take a bit more time, but not much. Chapters 20-21 can be read
after Chapter 13; in fact, they can be taught in parallel with Chapters 11-13.
So, a one-semester course can perfectly well cover OpenGL 4.3. We discuss
various possible learning sequences through the book later on in the preface.

Target Audience

• Students in a first university CG course, typically offered by a CS
department at a junior/senior level (though, often, graduate students
can take it for credit). This is the primary audience for which the
book was written.

• Students in a second or advanced CG course, who may use the book
as preparation or reference, depending on the goals. For example, the
book would be a useful reference for a study of 3D design – particularly,
Bézier, B-spline and NURBS theory – and of projective transformations
and their applications to CG.

• Students in a non-traditional setting, e.g., studying alone or in a short
course or an on-line program. The author has tried to be especially
considerate of the reader on her own.

• Professional programmers, to use the book as a reference.

Prerequisites

Zero knowledge of computer graphics is presumed. However, the student is
expected to know the following:

(1) Basic C++ programming. There is no need to be an expert
programmer. The C++ program serves mainly as an environment for
the OpenGL calls, so there’s rarely need for fancy footwork in the C++
part itself.

(2) Basic math. This includes coordinate geometry, trigonometry and
linear algebra, all at college first-course level (or, even strong high
school in some cases). For intended readers of the book who may be
unsure of their math preparation, we have a self-test in Appendix B,
with solutions in Appendix C. The test should tell exactly how ready
you are and where the weaknesses are. xxiii
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Preface Resources

The following are available through the book’s website www.sumantaguha.

com:

• Program source code – which runs on Windows, Mac OS and Linux
platforms. The programs are arranged chapter-wise in the top-level
folder ExperimenterSource.

• Guide to installing OpenGL and running the programs.

• Multiplatform Experimenter software to help run the experiments –
whose interface is a pdf file containing all the experiments from the
book, each being clickable to bring up the related program and, in a
Windows environment, the workspace as well. Experimenter is only an
aid and not mandatory – each program is stand-alone. However, it is
the most convenient way to run the book’s code, and instructors are
strongly encouraged to use it.

• Book figures in jpg format arranged in sequence as one PowerPoint
presentation per chapter.

• Instructor’s manual with solutions to 100 problems (only for instructors
who have adopted this textbook).

• Contributory resource bank with homework and examination questions,
experiments and other teaching and learning aids.

• Other resources as they are developed (suggestions welcome).

Capsule Chapter Descriptions

Part I: Hello World

Chapter 1: An Invitation to Computer Graphics

A non-technical introduction to the field of computer graphics.

Chapter 2: On to OpenGL and 3D Computer Graphics

Begins the technical part of the book. It introduces OpenGL and fundamental
principles of 3D CG.

Part II: Tricks of the Trade

Chapter 3: An OpenGL Toolbox

Describes a collection of OpenGL programming devices, including vertex
arrays, vertex buffer and array objects, mouse and key interaction, pop-up
menus, and several more.

Part III: Movers and Shapers

Chapter 4: Transformation, Animation and Viewingxxiv
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PrefaceIntroduces the theory and programming of animation and the virtual camera.
Explains user interactivity via object selection. Foundational chapter for
game and movie programming.

Chapter 5: Inside Animation: The Theory of Transformations

Presents the mathematical theory behind animation, particularly linear and
affine transformations in 3D.

Chapter 6: Advanced Animation Techniques

Describes frustum culling, occlusion culling as well as orienting animation
using both Euler angles and quaternions, techniques essential to programming
games and busy scenes.

Part IV: Geometry for the Home Office

Chapter 7: Convexity and Interpolation

Explains the theory of convexity and the role it plays in interpolation, which
is the procedure of spreading material properties from the vertices of a
primitive to its interior.

Chapter 8: Triangulation

Describes how and why complex objects should be split into triangles for
efficient rendering.

Chapter 9: Orientation

Describes how the orientation of a primitive is used to determine the side
of it that the camera sees, and the importance of consistently orienting a
collection of primitives making up a single object.

Part V: Making Things Up

Chapter 10: Modeling in 3D Space

Systematizes the principles of modeling both curves and surfaces, including
Bézier and fractal. Foundational chapter for object design.

Part VI: Lights, Camera, Equation

Chapter 11: Color and Light

Explains the theory of light and material color, the interaction between the
two, and describes how to program light and color in 3D scenes. Foundational
chapter for scene design.

Chapter 12: Textures

Explains the theory of texturing and how to apply textures to objects.

Chapter 13: Special Visual Techniques

Describes a set of special techniques to enhance the visual quality of a scene,
including, amongst others, blending, billboarding, aliasing and multisampling, xxv
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Preface stencil buffer methods, and image and pixel manipulation.

Part VII: Pixels, Pixels, Everywhere

Chapter 14: Raster Algorithms
Describes low-level rendering algorithms to determine the set of pixels on
the screen corresponding to a line or a polygon.

Part VIII: Anatomy of Curves and Surfaces

Chapter 15: Bézier
Describes the theory and programming of Bézier primitives, including curves
and surfaces.

Chapter 16: B-Spline
Describes the theory and programming of (polynomial) B-spline primitives,
including curves and surfaces.

Chapter 17: Hermite
Introduces the basics of Hermite curves and surfaces.

Part IX: Well Projected

Chapter 18: Applications of Projective Spaces
Applies the theory of projective spaces to deduce the projection transforma-
tion in the graphics pipeline, following up with shadow mapping as a case
study. Introduces rational Bézier and B-spline, particularly NURBS, theory
and practice.

Part X: The Time is Pipe

Chapter 19: Fixed-Functionality Pipelines
Gives a detailed view of the synthetic-camera and ray-tracing pipelines and
introduces radiosity.

Part XI: Rendering Pipe Dreams

Chapter 20: OpenGL 4.3, Shaders and the Programmable Pipeline: Liftoff
Introduces OpenGL 4.3, GLSL (OpenGL Shading Language) 4.3, and writing
vertex and fragments shaders to program the pipeline, particularly to animate,
light and apply textures.

Chapter 21: OpenGL 4.3, Shaders and the Programmable Pipeline: Escape
Velocity
Continuing the previous chapter onto advanced OpenGL 4.3 topics, including,
amongst others, instanced rendering, shader subroutines and transform
feedback, as well as tessellation and geometry shaders.

Appendix A: Projective Spaces and Transformationsxxvi
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PrefaceA CG-oriented introduction to the mathematics of projective spaces and
transformations. Provides a complete theoretical background for Chapter 18
on applications of projective spaces.

Appendix B: Math Self-Test
A self-test to assess math readiness for intended readers.

Appendix C: Math Self-Test Solutions
Solutions for the preceding self-test.

Suggested Course Outlines

See the chapter dependencies in Figure 1.

(1) Undergraduate first CG course:

This course should be based on Chapters 1-14 + Chapters 20-21,
though full coverage might be ambitious for one semester. Instructors
may pick topics to emphasize or skip, depending on their goals for the
course and the chapter dependence chart.

For example, for more practice and less theory, a possible sequence
would be 1 → 2 → 3 → 4 → 6 (only frustum culling) → 7 → 8 →
9→ 10 (skip curve/surface theory)→ 11→ 12→ 13 (→ 14, low-level
raster algorithms are independent of the higher-level topics of the
preceding chapters, and may be taught depending on time)→ 20→ 21
(20-21, on OpenGL 4.3, can be taught in parallel with 11-13, with
discussion of a topic using the fourth-generation pipeline following its
discussion using the classical one, e.g., Section 20.5 on shader-based
lighting following Section 11.7 deducing Phong’s lighting equation).

Time permitting, selected topics may come from Chapter 5 (theory
of transformations), Chapters 15-16 (Bézier and B-spline modeling,
respectively, which should be taught in sequence), Chapter 17 (Hermite
curves and surfaces), Chapter 18 (rational Bézier and NURBS
modeling), and Chapter 19 (graphical pipelines, including the synthetic-
camera and ray-tracing), which may be read independently of each
other.

Note to instructor : The most effective teaching method with this book
is to base discussion around experiments – both from the book and those
you develop yourself. Our Experimenter software makes this especially
convenient. Students should be involved in the experiments, running
code simultaneously on their own machines in class. Minimize use of
slides except, possibly, for the book figures; for your convenience these
are available to download, arranged as one PowerPoint presentation
per chapter. xxvii
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Figure 1: Chapter dependence chart: dashed arrows represent weak dependencies.

(2) Advanced CG courses:

This book could serve as a reference for a study of 3D design
– particularly, Bézier (Chapter 15), B-spline (Chapter 16) and
rational Bézier and NURBS theory (Chapter 18) – and of projective
transformations and their applications (Appendix A and Chapter 18).
From a practical point of view, Chapters 20-21 go fairly deep into the
fourth generation of OpenGL and the GLSL, useful for students who
may be familiar with only the classical pipeline.

(3) Self-study:

A recommended first pass would be 1 → 2 → 3 → 4 → 7 → 8 →xxviii
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Preface9 (go light on 7-9 if your math is rusty) → 10 (skip theory) → 11 →
12→ 13→ 20→ 21.

Following this the student should take up a fair-sized programming
project, returning to the book as needed. For the theoretically-inclined
student there’s a lot to keep her busy in Chapters 5 and 15-19.

Code

All the book’s programs, written in C++ with OpenGL, were developed in a
Microsoft Visual Studio 2010 IDE running on Windows 7. However, they can
run as well on Linux and Mac OS platforms with possibly some modification
depending on the exact environment. The programs can be downloaded
from www.sumantaguha.com, where they are arranged chapter-wise in the
top-level folder ExperimenterSource. The reader will find there, as well, a
guide to installing OpenGL and running the programs on various platforms.
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CHAPTER 1
An Invitation to Computer
Graphics

C
omputer graphics, or CG as it is often simply called, is the use of
computers to generate images. This is as opposed to the capture
of images of real-world or imagined objects which would be, for

example, photography or the work of an artist with pencil and paper.
To not see the end product of CG, that being computer-generated imagery

(CGI), throughout your day, you would have to be on a deserted island.
Images on the screen of the cell phone you probably check first thing on
waking are digitally synthesized by a processor. Almost every frame on the
TV showing the morning news has CGI in some part. If you commute, then
the vehicle which carries you to school or work likely communicates with
its operator through multiple computer-managed console panels, displaying
information ranging from fuel level to geographical location.

Figure 1.1: A cell phone, news opening graphics, car dashboard.

At work, if at all you use a computer, then, of course, there you are sitting
right at a fountainhead of computer graphics. And, CGI probably plays an 3
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even more important role in your recreational life. Even the most casual
video games amusing commuters heading home nowadays have sophisticated
interactive 3D graphics. The web on which we spend so many hours a day
is increasingly becoming a multimedia smorgasbord synthesizing animation,
movie clips, CGI and sound.

Figure 1.2: A computer at work, handheld game player, AIT home page (used with
permission of the Asian Institute of Technology).

When you watch a movie you are seeing a product from an industry,
which together with the gaming industry, has the biggest relationship with
CG of any other, not only as a consumer of the latest and greatest in
technique, but also as promoter, with hundreds of millions of dollars in
investment, of cutting-edge research. A little blue elephant which grows
into a mighty warrior, an eccentric mouse with a ribald sense of humor, and
a massive dinosaur looking so hungrily for food that you would think its
species had never really become extinct more than fifty million years ago –
to contemplate such achievements is to be in awe of the human imagination,
as well as the ingenuity of the engineers and programmers who materialize
these fantastical conceptions as palpable and believable digital presences.

Figure 1.3: Khan Kluay, the first 3D animated Thai movie (courtesy Kantana
Animation), an anthropomorphic mouse, a massive (fortunately herbivorous) dinosaur.

Then there’s the quiet CG impacting our lives some would say even
more profoundly than its more flamboyant manifestations. Doctors and
surgeons practice their craft in simulated environments detailed to the tiniest
capillaries. Commercial pilots put in hundreds of hours on a flight simulator4
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before entering a real cockpit. (Flight simulators are a sentimental favorite
because they were the first killer CG app, drawing attention and investment
dollars to the then nascent field in the sixties.)

Automobiles, airplanes and almost any fairly complex manufactured
object we see around us are designed, fabricated and even put through
regulatory tests as virtual entities – which exist entirely as a collection of
bits perceptible only as an image on a monitor – gestating often for years
before the first physical prototype is ever built. Supercomputers implement
extremely complex mathematical models of the weather, but their predictions
have to be visualized – again CGI – in order to be meaningful to humans.

Figure 1.4: Clockwise from top left: Image of the human brain, flight simulator cockpit
(from NASA), engine design, hurricane over Florida, water drop on a leaf.

Because its business is the creation of pictures, computer graphics has
an immediate allure. But, it is a science as well, with intellectual challenges
ranging from the routine to about as deep and hard as you please. Think of
modeling a drop of water rolling off a leaf. There would be a fair amount of
physics and, probably, a differential equation or two to solve on the way to
getting just the mechanics of the rolling drop right, not to mention texturing
the leaf, creating a translucent (and changing) shape for the drop, and
determining illumination.

The field of computer graphics brings particular pleasure to students and
practitioners alike because it’s always about making something – just like
sculpting or painting. Part by part you watch your creation come together,
and alive even, if it is animated. Aside from the aesthetic, there are more
tangible rewards to be had too. One would be hard pressed to name a
sphere of social or scientific or industrial activity where CGI does not have 5
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a role. Wherever it is that ultimately you want to be, medicine or fashion,
rocket science or banking, weapons development or teaching yoga, sales
and marketing or environmental modeling, CG skills not only can make a
difference, but also make you a career.

1.1 Brief History of Computer Graphics

Although the term “computer graphics” itself was coined in 1960 by William
Fetter, a designer at Boeing, to describe his own job, the field can be said to
have first arrived with the publication in 1963 of Ivan Sutherland’s Sketchpad
program, as part of his Ph.D. thesis at MIT.

Sketchpad, as its name suggests, was a drawing program. Beyond
the interactive drawing of primitives such as lines and circles and their
manipulation – in particular, copying, moving and constraining – with use of
the then recently invented light pen, Sketchpad had the first fully-functional
graphical user interface (GUI) and the first algorithms for geometric
operations such as clip and zoom. Interesting, as well, is that Sketchpad’s
innovation of an object-instance model to store data for geometric primitives
foretold object-oriented programming. Coincidentally, on the hardware
side, the year 1963 saw the invention by Douglas Engelbart at the Stanford
Research Institute of the mouse, the humble device even today carrying so
much of GUI on its thin shoulders.

Figure 1.5: Ivan Sutherland operating Sketchpad on a TX-2 (courtesy of Ivan
Sutherland), Douglas Engelbart’s original mouse (courtesy of John Chuang).

Although Sketchpad ran on a clunky Lincoln TX-2 computer with only
64KB in memory and a bulky monochrome CRT monitor as its front-end,
nevertheless, it thrust CG to the attention of the early researchers by showing
what was possible. Subsequent advances through the sixties came thick
and fast: raster algorithms, the implementation of parametric surfaces,
hidden-surface algorithms and the representation of points by homogeneous
coordinates, the latter crucially presaging the foundational role of projective
geometry in 3D graphics, to name a few. Flight simulators were the killer app
of the day and companies such as General Electric and Evans & Sutherland,
co-founded by Douglas Evans and Ivan Sutherland, wrote simulators with6
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real-time graphics.
Interestingly, the advent of flight simulators actually predated that of CG

– at least Sutherland and his Sketchpad – by nearly two decades, when the
US Navy began the funding of Project Whirlwind at MIT during the Second
World War for the purpose of creating simulators to train bomber crews.
Those early devices had actually little graphics and consisted essentially of
a simulated instrument panel reacting in real-time to control input from
the pilots, but Project Whirlwind helped fund the talent and research
environment at MIT which enabled Sutherland to create Sketchpad, launch
computer graphics and, finally, complete the circle by establishing a company
to make flight simulators.

The next decade, the seventies, brought the z-buffer for hidden surface
removal, texture mapping, Phong’s lighting model – all crucial components
of the OpenGL API (Application Programming Interface) we’ll be using soon
– as well as keyframe-based animation. Photorealistic rendering of animated
movie keyframes almost invariably deploys ray tracers, which were born in
the seventies too. Emblematic of the advances in 3D design was Martin
Newell’s 1975 Utah teapot, composed entirely of bicubic Bézier patches,
which became the testbed of choice for CG algorithms. The latter half of the
decade saw, too, the Apple I and II personal computers make their debut,
bringing CG for the first time to the mass market.

Figure 1.6: Utah teapot (from Wikimedia), Apple II Plus (courtesy of Steven Stengel),
SIGGRAPH 2006 expo floor in Boston (courtesy of Jason Della Rocca).

From the academic point of view, particularly important were the
establishment in 1969 of the SIGGRAPH (Special Interest Group in Graphics)
by the ACM (Association for Computing Machinery, the premier academic
society for computers and computing) and, subsequently, the first annual
SIGGRAPH conference in 1973. These two developments signaled the
emergence of computer graphics as a major subdiscipline of computer science.
The SIGGRAPH conference has since then become the foremost annual
event in the CG world. In addition to being the most prestigious forum
for research papers, it hosts a giant exhibition which attracts hundreds of
companies, from software developers to book publishers, who set up booths
to promote their wares and recruit talent.

Since the early eighties, CG, both software and hardware, began rapidly
to assume the form we see today. The IBM PC, the Mac and the x86 chipsets 7
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all arrived, sparking off the race to become faster (processor), smaller (size),
bigger (memory) and cheaper (particularly important if you are going to
school). As computers became consumer goods, the market for software
spilled over from academia to individuals and businesses.

Nintendo released Donkey Kong in 1981, the wildly successful arcade
video game which revolutionized the genre, and soon after Wavefront
Technologies released its Preview software, used then to create opening
graphics for television programs. Now, of course, Nintendo is a star of the
video games industry producing the Wii and it successors, while Wavefront
has morphed into Alias (owned by Autodesk) whose 3D graphics modeling
package Maya is ubiquitous in the design world.

Figure 1.7: Donkey Kong arcade game (from Wikimedia), Maya screenshot of Scary
Boris (courtesy of Sateesh Malla at www.sateeshmalla.com), 2D characters on the left
versus 3D on the right ( c© Mediafreaks Cartoon Pte. Ltd., 2006. All rights reserved.).

3D graphics began to displace its plainer 2D sister through the nineties
as hardware increasingly became capable of supporting the rendering needs
of 3D models, even in real-time, thus allowing interaction and its myriad
consequences (such as gaming). The difference between 2D and 3D graphics
is that models in the latter are created in a (virtual) 3D world, geometrically
the same as the real world, and then projected onto the viewing screen, while
all drawings in 2D graphics are on a flat plane.

Models drawn in 3D are more realistic because they have all the three
dimensions we humans can perceive, but they are more complex as well;
moreover, the projection step, non-existent for 2D graphics, is computation-
intensive too. Graphics cards, manufactured by companies such as ATI and
Nvidia, which not only manage the image output to the display unit, but
have, as well, additional hardware support for rendering of 3D primitives, are
now inexpensive enough that desktops and even notebooks can run high-end
3D applications. How well they run 3D games often, in fact, is used to
benchmark personal computers.

Through the nineties, as well, the use of 3D effects in movies became
pervasive. The Terminator and Star Wars series, and Jurassic Park, were
among the early movies to set the standard for CGI. Toy Story from Pixar,
released in 1995, has special importance in the history of 3D CGI as the8
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Figure 1.8: T. Rex: heartthrob of the Jurassic Park movies, Quake 1 game (courtesy of
Quake R© c© 1996 id Software LLC, a ZeniMax Media Company, All Rights Reserved).

first movie to be entirely computer-generated – no scene was ever pondered
through a glass lens, nor any recorded on a photographic reel! It was cinema
without film. Quake, released in 1996, the first of the hugely popular Quake
series of games, was the first fully 3D game.

Another landmark from the nineties of particular relevance to us was
the release in 1992 of OpenGL, the open-standard cross-platform and cross-
language 3D graphics API, by Silicon Graphics. OpenGL is actually a library
of calls to perform 3D tasks, which can be accessed from programs written
in various languages and running over various operating systems. That
OpenGL was high-level (in that it frees the applications programmer from
having to care about such low-level tasks as representing primitives like lines
and triangles in the raster, or rendering them to the window) and easy to
use (much more so than its predecessor 3D graphics API, PHIGS, standing
for Programmer’s Hierarchical Interactive Graphics System) first brought
3D graphics programming to the “masses”. What till then had been the
realm of a specialist was now open to a casual programmer following a fairly
amicable learning curve.

Since its release OpenGL has been rapidly adopted throughout academia
and industry. It’s only among game developers that Microsoft’s proprietary
3D API, Direct3D, which came soon after OpenGL bearing an odd similarity
to it but optimized for Windows, is more popular.

Figure 1.9: OpenGL and OpenGL ES logos (used with permission of Khronos).

The story of the past decade has been one of steady progress, rather
than spectacular innovations in CG. Hardware continues to get faster, 9
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better, smaller and cheaper, continually pushing erstwhile high-end software
downmarket, and raising the bar for new products. The almost complete
displacement of CRT monitors by LCD and the emergence of high-definition
television are familiar consequences of recent hardware evolution.

Of likely even greater economic impact is the migration of sophisticated
software applications – ranging from web browsers to 3D games – to handheld
devices like smartphones, on the back of small yet powerful processors. CG
has now been untethered from large immobile devices and placed into the
hands and pockets of consumers. In fact, a lightweight subset of OpenGL
called OpenGL ES – ES abbreviating Embedded Systems – released by the
Khronos Group in 2003, is now the most popular API for programming 3D
graphics on small devices.

1.2 Overview of a Graphics System

The operation of a typical graphics system can be split into a three-part
sequence:

Input −→ Processing −→ Output

The simplest example of this is when you click on a thumbnail image in,
say, YouTube, and a video clip pops up and begins to play. The click is
the input. Your computer then reacts to this input by processing, which
involves downloading the movie file and running it through the Adobe Flash
Player, which in turn outputs video frames to your monitor.

Figure 1.10: YouTube and Adobe Illustrator screenshots.

Graphics systems can be of two types, non-interactive and interactive.
The playing of a YouTube clip is an example of a non-interactive one: beyond
the first click to get the movie started you have little further say over the
output process, other than maybe to stop it or manipulate the window. On
the other hand, if, say, you are using a package like Adobe Illustrator, then
the output – what you have drawn – changes in real-time in response to
input you provide by pressing keys and moving and clicking the mouse; e.g.,
you can create shapes, color and move them, and so on. In an interactive
system output continuously reacts to input via the processor.10



i
i

i
i

i
i

i
i

Section 1.2

Overview of a

Graphics System

Input/output devices (or I/O devices, or peripheral devices, as they are
also called) are of particular importance in interactive systems because they
determine the scope of the interaction. For example, an input device that
functions like a steering wheel would be essential to a video game to race
cars; simulating flight through a virtual 3D environment, on the other hand,
needs something akin to a joystick used to maneuver an aircraft.

Because it is, in fact, interactive computer graphics – theory and
programming – which we’ll be studying the next nineteen chapters, let’s
quickly survey first the most common I/O devices found in graphics systems
nowadays. As for the processors that may come between the I and the
O, from the point of view of CG, essentially, these are just boxes to be
coded in order to obtain the desired input-to-output mapping. For the sake
of completeness, though, here’s a list of the important ones, all somewhat
different one from the other in the context of CG (Figure 1.11 pictures them):

Computer : As far as we are concerned, this category includes PC’s,
workstations, servers and the like.

Portable computer : This, of course, is simply a small and light computer
with a built-in display, keyboard and pointing device. Because of the size
constraint, limited power supply and also the lack of space for a large cooling
fan, CPU’s and graphics cards in portable computers tend to underperform
their desktop counterparts. Software writers need to take this into account,
especially for graphics-intensive applications.

Handheld
device

Portable
computer

Computer

Game
console

Figure 1.11: Processing devices clockwise from top: laptop, smartphone, game console
(used with permission from Microsoft), computer box.

Handheld device: The size-weight constraint on this class of devices – of
which the mobile phone is the most visible example – is even more severe 11
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than for portable computers. Handhelds are expected to travel in bags and
pockets. Low-end handhelds often have no peripheral other than a limited
keypad, while higher-end ones may come equipped with a full QWERTY
keypad and touchscreen. In addition to the possibly small RAM and anemic
CPU, another consideration to keep in mind for graphics developers for
handhelds is the limited real estate of the display: busy scenes tend to
become “chaotic” on a handheld.

Game consoles: All stops are off for programming these devices. Running
graphics-intensive applications at blinding speeds is what these machines
were born for.

1.2.1 Input Devices

The following is by no means a complete list of input devices, but it does
cover the ones we are most likely to encounter in everyday use. The devices
are all pictured in Figure 1.12, ringing the processing devices in the middle,
and our list goes clockwise starting from the top rightmost.

Keyboard : This device is a mandatory peripheral for any computer. Its
alphanumeric keys, evidently derived from the traditional typewriter, are
used to enter text strings, while additional keys, such as the arrow and
function keys, perform special actions.

Mouse : This is an example of a pointing device which inputs spatial data
to the computer. As the mouse is moved by the user’s hand on a flat
surface, a mechanical ball or optical sensor at its base signals the amount
of movement to the computer, which correspondingly moves a cursor on
the screen. Effectively, then, the user determines the location of the cursor.
Strictly speaking, a mouse is more than just a pointing device if it has
buttons, as most do, each of which can be clicked to give binary input.

Touchpad : Another 2D pointing device, particularly common on portable
computers, the touchpad is a small rectangular area embedded with electronic
sensors to determine the position of a touching finger or stylus. Movement
of the finger or stylus is echoed by movement of the cursor.

Pointing stick : Yet another 2D pointing device common on portable
computers, the pointing stick is, typically, a rubber peg located between the
‘G’, ‘H’ and ‘B’ keys, which moves the cursor in response to pressure applied
with a finger.

Trackball : This is essentially an upside-down mouse, with a socket containing
a ball which the user manipulates with her hand to make the cursor move.

12
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Wheel

Computer

Joystick

Keyboard

Mouse

Touchpad

Pointing
stick

Tablet

Gamepad

Haptic
device

Camera

Data gloves

Touchscreen

Handheld
device

Portable
computer

Trackball

Spaceball

Game
console

Figure 1.12: Input devices clockwise from top right (surrounding processing devices in
the middle): keyboard, mouse, touchpad, pointing stick (courtesy of Long Zheng), track-
ball, spaceball (courtesy of Logitech), tablet, haptic device ( c© SensAble Technologies,
Inc.), joystick, wheel, gamepad, webcam, touchscreen, data gloves (courtesy of
www.5dt.com).

Spaceball : This is a pointing device with six degrees of freedom versus
the two of an ordinary mouse. It is used in special applications such as
manipulating a camera in a 3D scene: not only is the camera moved, but
also rotated, affording it multiple degrees of freedom, each of which the user
controls. The spaceball itself consists of a pressure-sensitive ball which can
distinguish different kinds of forces, including forward/backward, lateral and
twist, responding by moving and orienting the selected object. 13
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Tablet : This is a digitizing device which has a surface embedded with
sensors to pick up the successive coordinates of a stylus head or fingertip as
it travels over the surface (in effect converting physical motion into digital
data). The user can write or draw on a tablet, just as on paper with pen,
the output being displayed on the monitor. The monitor is usually separate,
though, on devices like a tablet PC, the display and the sensing surface are
the same.

Haptic device: This is a pointing device which gives physical feedback to the
user based on the location of the cursor or, possibly, that of an object being
moved along with the cursor. The easiest way to understand the functioning
of a haptic device, if you have never used one, is to imagine a mouse with a
mechanical ball which is (somehow) programmed to lock and stop rolling
when the cursor reaches the side of the screen. The reaction the user then
has is of that of the cursor running into a physical obstacle at the edge of the
screen, though evidently it is moving in virtual space. The device depicted
in Figure 1.12 is not a haptic mouse, of course, but one commonly seen in
HCI (human-computer interaction) labs. The three-link arm swiveling on a
ball gives it six degrees of freedom.

Haptics has numerous applications, a couple of noteworthy ones being
the teleoperation of robots (where the operator gets haptic feedback as she
manipulates a robot in either a virtual or a remote real environment) and
simulated surgery training in medicine (which is similar to training pilots on
a flight simulator, except that surgery has the added component of tactile
feedback, mostly absent in flying).

Joystick : This is an input device popular in video games and applications
such as flight simulators. It originated from its namesake found in real aircraft
cockpits. A joystick pivots around a fixed base, gaining thus two degrees
of freedom, and usually has buttons which can be depressed to provide
additional input. In a game or simulator setting a joystick is typically used
to control an object traveling through space. Nowadays, high-end joysticks
have embedded motors to provide haptic feedback to user motion, e.g.,
resistance as a plane is banked.

Wheel : This again is a specialized input device for games and simulators,
obviously derived from the car steering wheel, and provides rotational input
in an exactly similar manner, most often to a virtual automobile. Again,
haptic feedback to give the user a sense of the vehicle’s response, and even
of the terrain over which it is traveling, is becoming increasingly popular.

Gamepad : This device is the standard controller for many modern game
consoles. Usual features include action buttons operated usually with the
right thumb and a cross-shaped directional controller with the left.14
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Camera: Although this input device needs no introduction, it’s worth
noting the increasingly sophisticated uses a peripheral camera is being put
to with the help, e.g., of software to recognize faces, gestures and expressions.

Touchscreen: Increasingly popular as the interface of handheld devices
such as smartphones, a touchscreen is a display which can accept input via
touch. It is similar to touchpads and tablets in that it senses the location
of a finger or stylus – one or the other is usually preferable based on the
particular technology used to make the screen – on the display area. A
common application of touchscreens is to eliminate the need for a physical
keyboard by displaying a virtual one responding to taps on the screen.

Touchscreens often respond not only to the location of the touch, but
also the motion of the touching object. For example, a flicking motion with a
finger may cause a window to scroll. Multi-touch capability, now increasingly
common, makes possible for the device to respond to gestures with more
than one finger, e.g., pinching and spreading with two fingers.

Data gloves : This device is used particularly in virtual reality environments
which are programmed to react to the position of the gloves, the direction
in which fingers are pointing, as well as to hand motion and gestures. The
gloves themselves are wired to transmit not only their location, but also
their configuration and orientation to the processor, so that the latter can
display the environment accordingly. For example, an index finger pointing
at a particular atom in a virtual-reality display of a molecule may cause this
atom to zoom up to the viewer.

1.2.2 Output Devices

Again, the following list is not meant to be comprehensive, but, rather,
representative of the most common output devices. We go clockwise around
the outer ring of devices pictured in Figure 1.13 beginning with the rightmost.

CRT (cathode-ray tube) monitor : A CRT monitor has phosphors of the
three primary colors – R(ed), G(reen) and B(lue) – located at each one of
a rectangular array of pixels, called the raster. Additionally, it has three
electron guns inside, causing its infamous bulk, that each fires a beam at
phosphors of one color. A mechanism to aim and control their intensities
causes the beams to travel together, striking one pixel after another, row
after row, exciting the RGB phosphors at each pixel to the values specified
for it in the color buffer. Figure 1.14(a) shows the electron beams striking
one pixel on a dog.

From the point of view of OpenGL and, indeed, most CG theory, what
matters is that the pixels in a monitor are, in fact, arranged in a rectangular
raster (as depicted in Figure 1.14(b)). For, this layout is the basis of the 15
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CRT monitor

3D display

Portable
computer
display

Handheld
device

Portable
computer

Computer

LCD monitor

Handheld display

Game
console

Figure 1.13: Output devices clockwise from the rightmost (surrounding processing
devices in middle): CRT monitor, LCD monitor, notebook, mobile phone, 3D LCD
monitor.

lowest-level CG algorithms, the so-called raster algorithms, which actually
select and color the pixels to represent user-specified shapes such as lines and
triangles on the monitor. Figure 1.14(b), for example, shows the rasterization
of a right-angled triangle (with terrible jaggies because of the low resolution).

The number of rows and columns of pixels in the raster determines the
monitor’s resolution. Typical for a CRT monitor is a resolution in the range
of 1024× 768 (which means 1024 columns and 768 rows). High-definition
monitors (as needed, say, for high-definition TV, or HDTV as it’s acronymed)
have higher resolution, e.g., 1920× 1080 is common.

Moreover, a memory location called the color buffer, either in the CPU
or graphics card, contains, typically, 32 bits of data per raster pixel – 8 bits
for each of RGB, and 8 for the alpha value (used in blending images). It
is the RGB values in the color buffer which determine the corresponding
raster pixel’s color intensities. The values in the color buffer are read by
the raster – in other words, the raster is refreshed – at a rate called the
monitor’s refresh rate. Beyond this, the technology underlying the particular
display device, no matter how primitive or how fancy, really matters little16
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pixel

electron
guns

electron beams

(a) (b)

phosphors

Figure 1.14: (a) Color CRT monitor with electron beams aimed at a pixel with
phosphors of the 3 primaries (b) A raster of pixels showing a rasterized triangle.

to the CG programmer.

For decades a bulky CRT monitor, or two, was a fixture atop work
tables. Now, of course, they have been nearly totally supplanted by a sleeker
successor which we discuss next.

LCD (liquid crystal display) monitor : Pixels in an LCD monitor each consist
of three subpixels made of liquid crystal molecules, which separately filter
lights of the primary colors. The amount of light emerging through a subpixel
is controlled by an electric charge whose intensity is determined by subpixel’s
corresponding value in the color buffer. The absence of electron guns allows
LCD monitors to be made flat and thin – unlike CRT monitors – so they
are one of the class of flat panel displays.

Technologies other than LCD, e.g., plasma and OLED (organic light
emitting diode), are used as well in flat panel displays, though LCD is by
far the most common one found with computers.

Again, for all practical purposes, the view to keep in mind of the LCD
monitor, as of other flat panel displays, is of a rectangular raster of pixels
whose RGB intensities are individually set by values in the computer’s color
buffer.

Portable computer display : This display is again a raster of pixels whose
RGB values are read from a color buffer. The technology employed, typically,
is TFT-LCD, a variant of LCD which uses thin film transistors to improve
image quality.

Handheld display : Handheld displays, such as those on devices like mobile
phones, commonly use the same TFT-LCD technology as portable computers.
The resolution, though, is necessarily smaller, e.g., 480× 640 would be in
the ballpark for low-end mobiles.

17
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3D display : Almost all 3D displays are based on the principle of stereoscopy,
in which an illusion of depth is created by showing either eye of the viewer
images of the scene captured by one of two cameras slightly offset from one
another (just like a pair of eyes as in Figure 1.15). Once the scene has been
recorded with two cameras, it is in ensuring that each eye of the viewer sees
frames only from one of them, called stereoscopic viewing, that there are
primarily two competing technologies.

Figure 1.15: Dual cameras filming a motorbike for subsequent 3D viewing with a pair
of polarized glasses.

In the first, frames alternately from either camera are displayed on the
monitor, a process called alternate frame sequencing. Simultaneously, the
viewer wears LCD shutter glasses embedded with a polarizing filter which
can be darkened with an electrical signal. The glasses are synchronized
with the monitor’s refresh rate via a link such as Bluetooth, either lens
being alternately darkened with successive frames. Consequently, each eye
sees images from only one of the two cameras, resulting in a stereoscopic
effect. Typically, the frame rate is increased to 48 per second as well, so
that both eyes experience a smooth-seeming 24 frames each second. The
great advantage of LCD shutter glasses is that they can be used with any
computer which has a monitor with a refresh rate fast enough to support
alternate frame sequencing, as well as a graphics card with enough buffer
space for two video streams. So with these glasses even a high-end home
system would qualify to play 3D movies and games.

In the second, polarized 3D glasses are used to view two images,
from either camera, projected simultaneously on the same screen through
orthogonal polarizing filters. The lenses too contain orthogonal polarizing
filters, each allowing through only light of like polarization. Consequently,
either lens sees images from only one or other camera, engendering a
stereoscopic view. Polarized 3D glasses are significantly less expensive
than LCD shutter glasses and, moreover, require no synchronization with
the monitor. However, the projection system is complicated and expensive
and primarily used to equip theaters for 3D viewing.

OpenGL, the API we’ll be using, is well-suited to making scenes and
movies for 3D viewing because it allows one or more (virtual) cameras to be18
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positioned arbitrarily.

1.3 Quick Preview of the Adventures Ahead

To round out this invitation to CG we want to show you three programs
written by students in their first college 3D CG course, taught using a draft
of this book. They were written in C++ with calls to OpenGL.

But, first, what exactly is OpenGL? You may have been wondering
this awhile. We said earlier in the section on CG history that OpenGL is a
cross-platform 3D graphics API. It consists of a library of over 500 commands
to perform 3D tasks, which can be accessed from programs written in various
languages. Well, here’s a glimpse of something concrete – an example snippet
from a C++ environment to draw 10 red points:

glColor3f(1.0, 0.0, 0.0);

glBegin(GL_POINTS);

for(int i = 0; i < 10; i++)

{
glVertex3i(i, 2*i, 0);

}
glEnd();

The first function call glColor3f(1.0, 0.0, 0.0) declares the red drawing
color, while the loop bracketed between the glBegin(GL POINTS) and
glEnd() calls draws a point at (i, 2i, 0) in each of ten iterations. There
are many more calls in the OpenGL library, for example, to draw straight
lines, triangles, create light sources, apply textures, move and rotate objects,
maneuver the camera, and so on – in fact, not surprisingly, pretty much all
one needs to create and animate realistic (or fantastic) 3D scenes.

Isn’t that old OpenGL, though, you show above? Yes, it is. Precisely,
it’s pre-shader OpenGL.

But, the fact you asked this question probably means you are not familiar
yet with our pedagogical approach, which is described in the book’s preface.
We explain there why we believe in setting the reader’s foundations in the
classical version of OpenGL before proceeding to the new (fourth generation,
version 4.3, to be precise) of which there is complete coverage later in the
book. We urge you to read at least that part of the preface in order to be
comfortable with how we plan on doing things.

Getting back to the student programs, the code itself is not of importance
and would actually be a distraction at this time. Instead, just running
the programs and viewing the output will give an idea of what can be
accomplished even in a fairly short time (ranging from 3 weeks to 3 months
for the different programs) by persons coming to CG with little more than a 19
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good grasp of C++ and some basic math. Of course, we’ll get a feel as well
for what goes into making 3D scenes.

Experiment 1.1. Open ExperimenterSource/Chapter1/Ellipsoid and,
hopefully, you’ll be able to run at least one of the two executables there
for the Ellipsoid program – one for Windows and one for the Mac. The
program draws an ellipsoid (an egg shape). The left of Figure 1.16 shows
the initial screen. There’s plenty of interactivity to try as well. Press any of
the four arrow keys, as well as the page up and down keys, to change the
shape of the ellipsoid, and ‘x’, ‘X’, ‘y’, ‘Y’, ‘z’ and ‘Z’ to turn it.

It’s a simple object, but the three-dimensionality of it comes across
rather nicely does it not? As with almost all surfaces that we’ll be drawing
ourselves, the ellipsoid is made up of triangles. To see these press the space
bar to enter wireframe mode. Pressing space again restores the filled mode.
Wireframe reveals the ellipsoid to be a mesh of triangles decorated with
large points. A color gradient has apparently been applied toward the poles
as well.

Drawing an ellipsoid with many triangles may seem a hard way to do
things. Interestingly, and often surprisingly for the beginner, OpenGL offers
the programmer only a tiny set of low-level geometric primitives with which
to make objects – in fact, points, lines and triangles are, basically, it. So,
a curved 3D object like an ellipsoid has to be made, or, more accurately,
approximated , using triangles. But, as we shall see as we go along, the
process really is not all that difficult.

That’s it. There’s really not much more to this program: no lighting or
blending or other effects you may have heard of as possible using OpenGL
(understandably, as the program was written just a few weeks into the
semester). It’s just a bunch of colored triangles and points laid out in 3D
space. The magic is in those last two words: 3D space . 3D modeling is all
about making things in 3D – not a flat plane – to create an illusion of depth,
even when viewing on a flat plane (the screen). End

(a) (b) (c)

Figure 1.16: Screenshots of (a) Ellipsoid (b) AnimatedGarden (c) Dominos.

20
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Experiment 1.2. Our next program is animated. It creates a gar-
den which grows and grows and grows. You will find executables in
ExperimenterSource/Chapter1/AnimatedGarden. Press enter to start the
animation; enter again to stop it. The delete key restarts the animation,
while the period key toggles between the camera rotating and not. Again, the
space key toggles between wireframe and filled. The middle of Figure 1.16 is
a screenshot a few seconds into the animation.

As you can see from the wireframe, there’s again a lot of triangles (in fact,
the flowers might remind you of the ellipsoid from the previous program).
The plant stems are thick lines and, if you look carefully, you’ll spot points
as well. The one special effect this program has that Ellipsoid did not is
blending, as is not hard to see. End

Experiment 1.3. Our final program is a movie which shows a Rube
Goldberg domino effect with “real” dominos. The executables are in
ExperimenterSource/Chapter1/Dominos. Simply press enter to start and
stop the movie. The screenshot on the right of Figure 1.16 is from part way
through.

This program has a bit of everything – textures, lighting, camera
movement and, of course, a nicely choreographed animation sequence, among
others. Neat, is it not? End

Hopefully, these three programs have got you all fired up and ready to
rumble on into OpenGL. Great! Get yourself a coffee and flip the page.

Acknowledgments: Kumpee Teeravech wrote Ellipsoid and Animated-

Garden, while Kanit Tangkathach and Thanapoom Veeranitinunt wrote
Dominos.
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CHAPTER 2
On to OpenGL and 3D Computer
Graphics

T
he primary goal for this chapter is to get acquainted with OpenGL
and begin our journey into computer graphics using OpenGL as
our API (Application Programming Interface) of choice. We shall

apply an experiment-discuss-repeat approach where we run code and ask
questions of what is seen, acquiring thereby an understanding not only of
the way the API functions, but underlying CG concepts as well. Particularly,
we want to gain insight into:

(a) The synthetic-camera model to record 3D scenes, which OpenGL
implements.

(b) The approach of approximating curved objects, such as circles and
spheres, with the help of straight and flat geometric primitives, such
as line segments and triangles, which is fundamental to object design
in computer graphics.

We begin in Section 2.1 with our first OpenGL program to draw a
square, the computer graphics equivalent of “Hello World”. Simple though
it is, with a few careful experiments and their analysis, square.cpp yields a
surprising amount of information through Sections 2.1-2.3 about orthographic
projection, the fixed world coordinate system OpenGL sets up and how the
so-called viewing box in which the programmer draws is specified in this
system. We gain insight as well into the 3D-to-2D rendering process.

Adding code to square.cpp we see in Section 2.4 how parts of objects
outside the viewing box are clipped off. Section 2.5 discusses OpenGL as a
state machine. We have in this section as well our first glimpse of property 23
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values, such as color, initially specified at the vertices of a primitive, being
interpolated throughout its interior.

Next is the very important Section 2.6 where all the drawing primitives of
OpenGL are introduced. These are the parts at the application programmer’s
disposal with which to assemble objects from thumbtacks to spacecrafts.

The first use of straight primitives to approximate a curved object comes
in Section 2.7: a curve (a circle) is drawn using straight line segments. To
create more interesting and complex objects one must invoke OpenGL’s
famous three-dimensionality. This involves learning first in Section 2.8 about
perspective projection and also hidden surface removal using the depth
buffer.

After a bunch of drawing exercises in Section 2.9 for the reader to
practice her newly-acquired skills, the topic of approximating curved objects
is broached again in Section 2.10, this time to approximate a surface with
triangles, rather than a curve with straight segments as in Section 2.7.
Section 2.11 is a review of all the syntax that goes into making a complete
OpenGL program.

We conclude with a summary, brief notes and suggestions for further
reading in Section 2.12.

2.1 First Program

Figure 2.1: Screenshot of
square.cpp.

Figure 2.2: OpenGL
window of square.cpp
(bluish green pretending to
be white).

Experiment 2.1. Run square.cpp.

Note: Visit the book’s website www.sumantaguha.com for a guide on how
to install OpenGL and run our programs on various platforms.∗

In the OpenGL window appears a black square over a white background.
Figure 2.1 is an actual screenshot, but we’ll draw it as in Figure 2.2, bluish
green standing in for white in order to distinguish it from the paper. We are
going to understand next how the square is drawn, and gain some insight as
well into the workings behind the scene. End

The following six statements in square.cpp create the square:

glBegin(GL POLYGON);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glVertex3f(80.0, 80.0, 0.0);

glVertex3f(20.0, 80.0, 0.0);

glEnd();

Important ! If, from what you might have seen elsewhere, you have the
notion that glBegin()-glEnd(), and even GL POLYGON, specifications are

∗If your program compiles but doesn’t run, this might be because your graphics card
doesn’t support OpenGL 4.3. See the note following item 2 in Section 2.11 for what to do
in this case.24
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classical and don’t belong in the newest version of OpenGL, then you are
right insofar as they are not in the core profile of the latter. They are,
though, accessible via the compatibility profile which allows for backward
compatibility. Moreover, we explain carefully in the book’s preface why we
don’t subscribe to the “shaders from the opening bell and toss everything
classical” school of thought as far as teaching OpenGL is concerned. Of
course, we shall cover thoroughly the most modern – in fact, fourth generation
– OpenGL later in the book. If you have not done so yet, we urge you to
read about our pedagogical approach in the preface.

The corners of the square are specified by the four vertex declaration
statements between glBegin(GL POLYGON) and glEnd(). Let’s determine
how the glVertex3f() statements correspond to corners of the square.

(0,0)

(80,20,0)
(20,20,0)

x

y

Figure 2.3: The
coordinate axes on the
OpenGL window of
square.cpp? No.

If, suppose, the vertices are specified in some coordinate system that is
embedded in the OpenGL window – which certainly is plausible – and if we
knew the axes of this system, the matter would be simple. For example, if the
x-axis increased horizontally rightwards and the y-axis vertically downwards,
as in Figure 2.3, then glVertex3f(20.0, 20.0, 0.0) would correspond to
the upper-left corner of the square, glVertex3f(80.0, 20.0, 0.0) to the
upper-right corner and so on.

However, even assuming that there do exist these invisible axes attached
to the OpenGL window, how do we find out where they are or how they are
oriented? One way is to “wiggle” the corners of the square! For example,
change the first vertex declaration from glVertex3f(20.0, 20.0, 0.0) to
glVertex3f(30.0, 20.0, 0.0) and observe which corner moves. Having
determined in this way the correspondence of the corners with the vertex
statements, we ask the reader to deduce the orientation of the hypothetical
coordinate axes. Decide where the origin is located too.

(0,0)

(20,20,0)
(80,20,0)

x

y

Figure 2.4: The
coordinate axes on the
OpenGL window of
square.cpp? Almost
there . . ..

Well, it seems then that square.cpp sets up coordinates in the OpenGL
window so that the increasing direction of the x-axis is horizontally
rightwards, that of the y-axis vertically upwards and, moreover, the origin
seems to correspond to the lower-left corner of the window, as in Figure 2.4.
We’re making progress but there’s more to the story, so read on!

The last of the three parameters of a glVertex3f(*, *, *) declaration
is evidently the z coordinate. Vertices are specified in 3-dimensional space
(simply called 3-space or, mathematically, R3). Indeed, OpenGL allows us
to draw in 3-space and create truly 3D scenes, which is its major claim to
fame. However, we perceive the 3-dimensional scene as a picture rendered
to a 2-dimensional part of the computer’s screen, the rectangular OpenGL
window. Shortly we’ll see how OpenGL converts a 3D scene to its 2D
rendering.

25
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2.2 Orthographic Projection, Viewing Box
and World Coordinates

What exactly do the vertex coordinate values mean? For example, is the
vertex at (20.0, 20.0, 0.0) of square.cpp 20 mm., 20 cm. or 20 pixels away
from the origin along both the x-axis and y-axis, or is there some other
absolute unit of distance native to OpenGL?

Experiment 2.2. Change the glutInitWindowSize() parameter values
of square.cpp∗ – first to glutInitWindowSize(300, 300) and then
glutInitWindowSize(500, 250). The square changes in size, and even
shape, with the OpenGL window. Therefore, coordinate values appear not
to be in any kind of absolute units on the screen. End

Remark 2.1. Of course, you could have reshaped the OpenGL window
directly by dragging one of its corners with the mouse, rather than resetting
glutInitWindowSize() in the program.

Understanding what the coordinates actually represent involves under-
standing first OpenGL’s rendering mechanism, which itself begins with the
program’s projection statement . In the case of square.cpp the projection
statement is

glOrtho(0.0, 100.0, 0.0, 100.0, -1.0, 1.0)

in the resize() routine, which determines an imaginary viewing box inside
which the programmer draws. Generally,

glOrtho(left, right, bottom, top, near, far)

sets up a viewing box, as in Figure 2.5, with corners at the 8 points:

(left, bottom, −near), (right, bottom, −near), (left, top, −near),
(right, top, −near), (left, bottom, −far), (right, bottom, −far),
(left, top, −far), (right, top, −far)

It’s a box with sides aligned along the axes, whose span along the x-axis
is from left to right , along the y-axis from bottom to top, and along the
z-axis from −far to −near . Note the little quirk of OpenGL that the near
and far values are flipped in sign.

The viewing box corresponding to the projection statement glOrtho(0.0,
100.0, 0.0, 100.0, -1.0, 1.0) of square.cpp is shown in Figure 2.6(a).
The reader may wonder at this time how the initial coordinate axes are
themselves calibrated – e.g., is a unit along an axis one inch, one centimeter
or something else – as the size of the viewing box and that of the objects
drawn inside it depend on this. The answer will be evident once the rendering
process is explained momentarily.

∗When we refer to square.cpp, or any program.cpp, it’s always to the original version
in a folder in the ExperimenterSource directory, so if you’ve modified the code for an
earlier experiment you’ll need to copy back the original.26
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(left, top, −near)

(left, bottom, −near)

(left, bottom, −far)

(right, top, −near)

(right, bottom, −near)

(left, top, −far) (right, top, −far)

(right, bottom, −far)

x

y

z

Figure 2.5: Viewing box of glOrtho(left, right, bottom, top, near, far).

(a) (b)

(20, 80, 0)

(20, 20, 0)

(0, 100, −1)

(100, 0, −1)

(100, 100, −1)

x

y

z

x

y

z

(80, 80, 0)

(80, 20, 0)(0, 0, −1)

(0, 0, 1)

(0, 100, 1) (100, 100, 1)

(100, 0, 1)

Figure 2.6: (a) Viewing box of square.cpp (b) With the square drawn inside.

As for drawing now, the vertex declaration glVertex3f(x, y, z)

corresponds to the point (x, y, z). For example, the corner of the square
declared by glVertex3f(20.0, 20.0, 0.0) is at (20.0, 20.0, 0.0). The
square of square.cpp, then, is as depicted in Figure 2.6(b).

Once the programmer has drawn the entire scene, if the projection
statement is glOrtho() as in square.cpp, then the rendering process is
two-step:

1. Shoot : First, objects are projected perpendicularly onto the front face
of the viewing box, i.e., the face on the z = −near plane. For example,
the square in Figure 2.7(a) (same as Figure 2.6(b)) is projected as in
Figure 2.7(b). The front face of the viewing box is called the viewing
face and the plane on which it lies the viewing plane.

This step is like shooting the scene on film. In fact, one can think of
the viewing box as a giant version of those archaic box cameras where
the photographer ducks behind the film – the viewing face – and covers
her head with a black cloth; so big, in fact, that the whole scene is
actually inside the box! Moreover, mind that with this analogy there’s 27
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OpenGL Window
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print

(c) (d)

(a) (b)

(20, 80, 0) (80, 80, 0)

(80, 20, 0)(20, 20, 0)

x

y

z

(20, 80, 1) (80, 80, 1)

(80, 20, 1) x

y

z

shoot

(20, 20, 1)

Figure 2.7: Rendering with glOrtho().

no lens, only the film.

2. Print : Next, the viewing face is proportionately scaled to fit the
rectangular OpenGL window. This step is like printing the film
on paper. In the case of square.cpp, printing takes us from
Figure 2.7(b) to (c).

If, say, the window size of square.cpp were changed to one of aspect
ratio (= width/height) of 2, by replacing glutInitWindowSize(500,

500) with glutInitWindowSize(500, 250), printing would take us
from Figure 2.7(b) to (d) (which actually distorts the square into a
rectangle).

The answer to the earlier question of how to calibrate the coordinate axes
of the space in which the viewing box is created should be clear now: the 2D
rendering finally displayed is the same no matter how they are calibrated,
because of the proportionate scaling of the viewing face of the box to fit the
OpenGL window. So it does not matter what unit we use, be it an inch,
millimeter, mile, . . .! Here’s a partly-solved exercise to drive home the point.

28
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Exercise 2.1.

(a) Suppose the viewing box of square.cpp is set up in a coordinate
system where one unit along each axis is 1 cm. Assuming pixels to
be 0.2 mm. × 0.2 mm. squares, compute the size and location of the
square rendered by shoot-and-print to a 500 pixel × 500 pixel OpenGL
window.

(b) Suppose next that the coordinate system is re-calibrated so that a unit
along each axis is 1 meter instead of 1 cm., everything else remaining
same. What then are the size and location of the rendered square in
the OpenGL window?

(c) What is rendered if, additionally, the size of the OpenGL window is
changed to 500 pixel × 250 pixel?

Part answer :

Viewing Face OpenGL Window

20 cm.

60
 c

m
.

10
0 

cm
.

10
0 

m
m

.

60 cm.

100 cm.
100 mm. (= 500 pixels)20

 c
m

.

square

print

20mm

20
m

m
60

 m
m

.

Figure 2.8: The viewing face for square.cpp, given that one unit along each coordinate
axis is 1 cm., scaled to a 500 pixel × 500 pixel OpenGL window.

(a) Figure 2.8 on the left shows the square projected to the viewing face,
which is 100 cm. square. The viewing face is then scaled to the OpenGL
window on the right, which is a square of sides 500 pixels = 500 × 0.2
mm. = 100 mm. The scaling from face to the window, therefore, is a
factor of 1/10 in both dimensions. It follows that the rendered square
is 60 mm. × 60 mm., with its lower-left corner located both 20 mm.
above and to the right of the lower-left corner of the window.

(b) Exactly the same as in part (a) because, while the viewing box and
viewing face are now 10 times larger, the scaling from face to window
is now a factor of 1/100, rather than 1/10.

29
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We conclude that the size and location of the rendering in each coordinate
direction are independent of how the axes are calibrated, but determined
rather by the ratio of the original object’s size to that of the viewing box in
that direction.

Although the calibration of the axes doesn’t matter, nevertheless, we’ll
make the sensible assumption that all three are calibrated identically , i.e.,
one unit along each axis is of equal length (yes, oddly enough, we could
make them different and still the rendering would not change, which you
can verify yourself by re-doing Exercise 2.1(a), after assuming that one unit
along the x-axis is 1 cm. and along the other two 1 meter). The only
other assumptions about the initial coordinate system that we make are
conventional ones:

(a) It is rectangular , i.e., the three axes are mutually perpendicular.

(a)

(b)

xO

O

y

z

x

y

z

Figure 2.9: The x-, y-
and z-axes are rectangular
and form a (a) right-
handed system (b)
left-handed system.

(b) The x-, y- and z-axes in that order form a right-handed system in
the following sense: the rotation of the x-axis 90◦ about the origin
so that its positive direction matches with that of the y-axis appears
counter-clockwise to a viewer located on the positive side of the z-axis
(Figure 2.9).

Fixed World System

To summarize, set up an initial rectangular right-handed coordinate system
located wherever you like in space, but with axes all calibrated identically.
Call a unit along each axis just “a unit” as we know it doesn’t matter what
the unit is. Then leave it fixed forever – imagine it screwed to the top of
your desk!

1

y

zx
1

1

My World

Figure 2.10: A dedicated 3D graphics programmer in a world all her own.

See Figure 2.10. This system coordinatizes world space and, in fact, we
shall refer to it as the world coordinate system. All subsequent objects,30
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including the viewing box and those that we create ourselves, inhabit world
space and are specified in world coordinates. These are all virtual objects,
of course!

Remark 2.2. Because it’s occupied by user-defined objects, world space is
sometimes called object space.

Experiment 2.3. Change only the viewing box of square.cpp by replac-
ing glOrtho(0.0, 100.0, 0.0, 100.0, -1.0, 1.0) with glOrtho(-100,

100.0, -100.0, 100.0, -1.0, 1.0). The location of the square in the
new viewing box is different and, so as well, the result of shoot-and-print.
Figure 2.11 explains how. End

(−100, 100, −1)

(−100, 100, 1)

(−100, −100, 1) (100, −100, 1)

(100, 100, −1)

x

y

z

(100, −100, −1)

(80, 80, 0)

(80, 20, 0)

(20, 80, 0)

(−100, −100, −1)

print

OpenGL Window

Computer Screen

(100, 100, 1)
shoot

Figure 2.11: The viewing box of square.cpp defined by glOrtho(-100, 100.0,

-100.0, 100.0, -1.0, 1.0).

Exercise 2.2. (Programming) Change the viewing box of square.cpp
by replacing glOrtho(0.0, 100.0, 0.0, 100.0, -1.0, 1.0) successively
with the following, in each case trying to predict the output before running:

(a) glOrtho(0.0, 200.0, 0.0, 200.0, -1.0, 1.0)

(b) glOrtho(20.0, 80.0, 20.0, 80.0, -1.0, 1.0)

(c) glOrtho(0.0, 100.0, 0.0, 100.0, -2.0, 5.0)

Exercise 2.3. If the viewing box of square.cpp is changed by replacing
glOrtho(0.0, 100.0, 0.0, 100.0, -1.0, 1.0) with glOrtho(-100.0,

100.0, -100.0, 100.0, -1.0, 1.0), and the OpenGL window size changed
replacing glutInitWindowSize(500, 500) with glutInitWindowSize(500,

250), then calculate the area (in number of pixels) of the image of the square.

Exercise 2.4. (Programming) We saw earlier that, as a result of
the print step, replacing glutInitWindowSize(500, 500) with glutInit-

WindowSize(500, 250) in square.cpp causes the square to be distorted 31
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into a rectangle. By changing only one numerical parameter elsewhere in
the program, eliminate the distortion to make it appear square again.

Incidentally, it’s clear now that our working hypothesis after the first
experiment in Section 2.1, that the OpenGL window comes with axes fixed to
it, though not unreasonable, was not accurate either. The OpenGL window
it turns out is simply an empty target rectangle on which the front face of
the viewing box is printed. This rectangle is called screen space.

So there are two spaces we’ll be interacting with: world and screen. The
former is a virtual 3D space in which we create our scenes, while the latter is
a real 2D space where images concocted from our scenes by shoot-and-print
are rendered for viewing.

Exercise 2.5. (Programming) Alter the z coordinates of each vertex
of the “square” – we should really call it a polygon if we do this – of
square.cpp as follows (Block 1∗):

glBegin(GL POLYGON);

glVertex3f(20.0, 20.0, 0.5);

glVertex3f(80.0, 20.0, -0.5);

glVertex3f(80.0, 80.0, 0.1);

glVertex3f(20.0, 80.0, 0.2);

glEnd();

The rendering does not change. Why?

Remark 2.3. Always set the parameters of glOrtho(left, right, bottom,

top, near, far) so that left < right, bottom < top, and near < far .

Remark 2.4. The aspect ratio (= width/height) of the viewing box should
be set same as that of the OpenGL window or the scene will be distorted by
the print step.

Remark 2.5. The perpendicular projection onto the viewing plane cor-
responding to a glOrtho() call is also called orthographic projection or
orthogonal projection (hence the name of the call). Yet another term is
parallel projection as the lines of projection from points in the viewing box
to the viewing plane are all parallel.

2.3 The OpenGL Window and Screen
Coordinates

We’ve already had occasion to use the glutInitWindowSize(w, h) com-
mand which sets the size of the OpenGL window to width w and height h
measured in pixels. A companion command is glutInitWindowPosition(x,
y) to specify the location (x, y) of the upper-left corner of the OpenGL
window on the computer screen.

∗To cut-and-paste you can find the block in text format in the file
chap2codeModifications.txt in the directory ExperimenterSource/CodeModifications.32
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Experiment 2.4. Change the parameters of glutInitWindowPosition(x,
y) in square.cpp from the current (100, 100) to a few different values to
determine the location of the origin (0, 0) of the computer screen, as well as
the orientation of the screen’s own x-axis and y-axis. End

The origin (0, 0) of the screen it turns out is at its upper-left corner,
while the increasing direction of its x-axis is horizontally rightwards and
that of its y-axis vertically downwards; moreover, one unit along either axis
is absolute and represents a pixel. See Figure 2.12, which shows as well the
coordinates of the corners of the OpenGL window initialized by square.cpp.

y

x
pixels

(600, 100)(100, 100)

(100, 600) (600, 600)

O
pe

nG
L

W
in

do
w

Computer Screen

pi
xe

ls

...

...

0

2
1

1 2

Figure 2.12: The screen’s coordinate system: a unit along either axis is the pitch of a
pixel.

Note the inconsistency between the orientation of the screen’s y-axis and
the y-axis of the world coordinate system, the latter being directed up the
OpenGL window (after being projected there). One needs to be careful
about this, especially when coding programs where data is read from one
system and used in the other.

2.4 Clipping

A question may have come to the reader’s mind about objects which happen
to be drawn outside the viewing box. Here are a few experiments to clarify
how they are processed.

Experiment 2.5. Add another square by inserting the following right
after the code for the original square in square.cpp (Block 2):

glBegin(GL POLYGON);

glVertex3f(120.0, 120.0, 0.0);

glVertex3f(180.0, 120.0, 0.0);

glVertex3f(180.0, 180.0, 0.0);

glVertex3f(120.0, 180.0, 0.0);

glEnd(); 33
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From the value of its vertex coordinates the second square evidently lies
entirely outside the viewing box.

If you run now there’s no sign of the second square in the OpenGL
window! This is because OpenGL clips the scene to within the viewing box
before rendering, so that objects or parts of objects drawn outside are not
rendered. Clipping is a stage in the graphics pipeline. We’ll not worry about
its implementation at this time, only the effect it has. End

Exercise 2.6. (Programming) In the preceding experiment can you
redefine the viewing box by changing the parameters of glOrtho() so that
both squares are visible?

Figure 2.13: Screenshot
of a triangle.

Figure 2.14: Screenshot
of the triangle clipped to a
quadrilateral.

Experiment 2.6. For a more dramatic illustration of clipping, first replace
the square in the original square.cpp with a triangle; in particular, replace
the polygon code with the following (Block 3):

glBegin(GL POLYGON);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glVertex3f(80.0, 80.0, 0.0);

glEnd();

See Figure 2.13. Next, lift the first vertex up the z-axis by changing it
to glVertex3f(20.0, 20.0, 0.5); lift it further by changing its z-value to
1.5 (Figure 2.14 is a screenshot), then 2.5 and, finally, 10.0. Make sure you
believe that what you see in the last three cases is indeed a triangle clipped
to within the viewing box – Figure 2.15 may be helpful. End

Exercise 2.7. (Programming) A triangle was clipped to a quadrilateral
in the viewing box in the preceding experiment. What is the maximum
number of sides of a figure to which you can clip a triangle in the box
(quadrilateral, pentagon, hexagon, . . .)? Code and show.

Exercise 2.8. Use pencil and paper to guess the output if the polygon
declaration part of square.cpp is replaced with the following (Block 4):

glBegin(GL POLYGON);

glVertex3f(-20.0, -20.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glVertex3f(120.0, 120.0, 0.0);

glVertex3f(20.0, 80.0, 0.0);

glEnd();

The viewing box has six faces that lie on different six planes and,
effectively, OpenGL clips off the scene on one side of each of these six
planes, accordingly called clipping planes . Imagine a knife slicing down each
plane as in Figure 2.15. Specifically, in the case of the viewing box set up
by glOrtho(left, right, bottom, top, near, far), clipped off is to the left
of the plane x = left , to the right of the plane x = right and so on.34
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y = top z = −far

x = right

x = left

y = bottomz = −near

Figure 2.15: Six clipping planes of the glOrtho(left, right, bottom, top, near, far)
viewing box. The lightly shaded part of the triangle sticking out of the box is clipped by
a “clipping knife”.

Remark 2.6. As we shall see in Chapter 3, the programmer can define
clipping planes in addition to the six that bound the viewing box.

We’ll leave this section with a rather curious phenomenon for the reader
to explain.

v0 v1

v2

v3
v4

t0

t1

t2

Figure 2.16: A triangle
fan.

Exercise 2.9. (Programming) Raising the first vertex of (the original)
square.cpp from glVertex3f(20.0, 20.0, 0.0) to glVertex3f(20.0,

20.0, 1.5) causes the square – actually, the new figure which is not a
square any more – to be clipped. If, instead, the second vertex is raised from
glVertex3f(80.0, 20.0, 0.0) to glVertex3f(80.0, 20.0, 1.5), then
the figure is clipped too, but very differently from when the first vertex is
raised. Why? Should not the results be similar by symmetry?
Hint : OpenGL draws polygons after triangulating them as so-called triangle
fans with the first vertex of the polygon the center of the fan. For example,
the fan in Figure 2.16 consists of three triangles around vertex v0.

2.5 Color, OpenGL State Machine and
Interpolation

Experiment 2.7. The color of the square in square.cpp is specified by
the three parameters of the glColor3f(0.0, 0.0, 0.0) statement in the
drawScene() routine, each of which gives the value of one of the three
primary components, blue, green and red .

Determine which of the three parameters of glColor3f() specifies the
blue, green and red components by setting in turn each to 1.0 and the others
to 0.0. In fact, verify the following table: 35
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Call Color
glColor3f(0.0, 0.0, 0.0) Black
glColor3f(1.0, 0.0, 0.0) Red
glColor3f(0.0, 1.0, 0.0) Green
glColor3f(0.0, 0.0, 1.0) Blue
glColor3f(1.0, 1.0, 0.0) Yellow
glColor3f(1.0, 0.0, 1.0) Magenta
glColor3f(0.0, 1.0, 1.0) Cyan
glColor3f(1.0, 1.0, 1.0) White

End

Generally, the glColor3f(red, green, blue) call specifies the foreground
color , or drawing color , which is the color applied to objects being drawn.
The value of each color component, which ought to be a number between
0.0 and 1.0, determines its intensity. For example, glColor3f(1.0, 1.0,

0.0) is the brightest yellow while glColor3f(0.5, 0.5, 0.0) is a weaker
yellow

Remark 2.7. The color values are each clamped to the range [0, 1]. This
means that, if a value happens to be set greater than 1, then it’s taken to
be 1; if less than 0, it’s taken to be 0.

Exercise 2.10. (Programming) Both glColor3f(0.2, 0.2, 0.2)

and glColor3f(0.8, 0.8, 0.8) should be grays, having equal red, green
and blue intensities. Guess which is the darker of the two. Verify by changing
the foreground color of square.cpp.

The call glClearColor(1.0, 1.0, 1.0, 0.0) in the setup() routine
specifies the background color , or clearing color . Ignore for now the fourth
parameter, which is the alpha value. The statement glClear(GL COLOR -

BUFFER BIT) in drawScene() actually clears the window to the specified
background color, which means that every pixel in the color buffer is set to
that color.

Experiment 2.8. Add the additional color declaration statement gl-

Color3f(1.0, 0.0, 0.0) just after the existing one glColor3f(0.0, 0.0,

0.0) in the drawing routine of square.cpp so that the foreground color
block becomes

// Set foreground (or drawing) color.

glColor3f(0.0, 0.0, 0.0);

glColor3f(1.0, 0.0, 0.0);

The square is drawn red because the current value of the foreground color is
red when each of its vertices is specified. End

Foreground color is one of a collection of variables, called state variables ,
which determine the state of OpenGL. Among other state variables are point36
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size, line width, line stipple, material properties, etc. We’ll meet several as
we go along or you can refer to the red book∗ for a full list. OpenGL remains
and functions in its current state until a declaration is made changing a
state variable. For this reason, OpenGL is often called a state machine. The
following simple experiment illustrates a couple of important points about
how state variables control rendering.

Experiment 2.9. Replace the polygon declaration part of square.cpp
with the following to draw two squares (Block 5):

glColor3f(1.0, 0.0, 0.0);

glBegin(GL POLYGON);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glVertex3f(80.0, 80.0, 0.0);

glVertex3f(20.0, 80.0, 0.0);

glEnd();

glColor3f(0.0, 1.0, 0.0);

glBegin(GL POLYGON);

glVertex3f(40.0, 40.0, 0.0);

glVertex3f(60.0, 40.0, 0.0);

glVertex3f(60.0, 60.0, 0.0);

glVertex3f(40.0, 60.0, 0.0);

glEnd();

A small green square appears inside a larger red one (Figure 2.17).
Obviously, this is because the foreground color is red for the first square,
but green for the second. One says that the color red binds to the first
square – or, more precisely, to each of its four specified vertices – and green
to the second square. These bound values specify the color attribute of either
square. Generally, the values of those state variables which determine how
it is rendered collectively form a primitive’s attribute set.

Flip the order in which the two squares appear in the code by cutting
the seven statements that specify the red square and pasting them after
those to do with the green one. The green square is overwritten by the red
one and no longer visible because OpenGL draws in code order .

End

Figure 2.17: Screenshot
of a green square drawn in
the code after a red square.

Experiment 2.10. Replace the polygon declaration part of square.cpp
with (Block 6):

glBegin(GL POLYGON);

glColor3f(1.0, 0.0, 0.0);

∗The OpenGL Programming Guide [104] and its companion volume, the OpenGL
Reference Manual [105], are the canonical references for the OpenGL API and affectionately
referred to as the red book and blue book, respectively. Note that the on-line reference
docs at www.opengl.org pretty much cover all that is in the blue book. 37
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glVertex3f(20.0, 20.0, 0.0);

glColor3f(0.0, 1.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glColor3f(0.0, 0.0, 1.0);

glVertex3f(80.0, 80.0, 0.0);

glColor3f(1.0, 1.0, 0.0);

glVertex3f(20.0, 80.0, 0.0);

glEnd();

The different color values bound to the four vertices of the square are evidently
interpolated over the rest of the square as you can see in Figure 2.18. In fact,
this is most often the case with OpenGL: numerical attribute values specified
at the vertices of a primitive are interpolated throughout its interior. In a
later chapter we’ll see exactly what it means to interpolate and how OpenGL
goes about the task. End

Figure 2.18: Screenshot
of a square with differently
colored vertices. 2.6 OpenGL Geometric Primitives

The geometric primitives – also called drawing primitives or, simply,
primitives – of OpenGL are the parts that programmers use in Lego-like
manner to create mundane objects like balls and boxes, as well as elaborate
spacecrafts, the worlds to which they travel, and pretty much everything
in between. The only one we’ve seen so far is the polygon. It’s time to get
acquainted with the whole family.

Experiment 2.11. Replace glBegin(GL POLYGON) with glBegin(GL -

POINTS) in square.cpp and make the point size bigger with a call to
glPointSize(5.0), so that the part drawing the polygon is now

glPointSize(5.0); // Set point size.

glBegin(GL POINTS);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glVertex3f(80.0, 80.0, 0.0);

glVertex3f(20.0, 80.0, 0.0);

glEnd();

End

Experiment 2.12. Continue, replacing GL POINTS with GL LINES, GL -

LINE STRIP and, finally, GL LINE LOOP. End

In the explanation that follows of how OpenGL draws each primitive,
assume that the n vertices declared in the code between glBegin(primitive)
and glEnd() are v0, v1, . . . , vn−1 in that order, i.e., the declaration of the
primitive is of the form:38
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glBegin(primitive);
glVertex3f(*, *, *); // v0
glVertex3f(*, *, *); // v1
. . .
glVertex3f(*, *, *); // vn−1

glEnd();

Refer to Figure 2.19 as you read.

GL POINTS draws a point at each vertex

v0, v1, . . . , vn−1

GL LINES draws a disconnected sequence of straight line segments
(henceforth, we’ll simply use the term “segment”) between the vertices,
taken two at a time. In particular, it draws the segments

v0v1, v2v3, . . . , vn−2vn−1

if n is even. If n is not even then the last vertex vn−1 is simply ignored.

GL LINE STRIP draws the connected sequence of segments

v0v1, v1v2, . . . , vn−2vn−1

Such a sequence is called a polygonal line or polyline.

GL LINE LOOP is the same as GL LINE STRIP, except that an additional
segment vn−1v0 is drawn to complete a loop:

v0v1, v1v2, . . . , vn−2vn−1, vn−1v0

Such a segment sequence is called a polygonal line loop.

The thickness of lines can be set by a glLineWidth(width) call.

Remark 2.8. In world space points have zero dimension and lines zero width;
values specified by glPointSize() and glLineWidth() are used only for
rendering. Otherwise, it would be rather hard to see a point actually of zero
dimension or a line of zero width!

Why does OpenGL provide separate primitives to draw polygonal lines
and line loops when both can be viewed as a collection of segments and
drawn using GL LINES? For example,

glBegin(GL LINE STRIP);

v0;

v1;

v2;

. . .
glEnd(); 39
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GL_LINES GL_LINE_STRIP

GL_LINE_LOOP GL_TRIANGLES GL_TRIANGLE_STRIP

GL_POLYGON glRectf(x1, y1, x2, y2)
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GL_TRIANGLE_FAN
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glRectf(x1, y1, x2, y2)

Figure 2.19: OpenGL’s geometric primitives. Vertex order is indicated by a curved
arrow. Primitives inside the red rectangle have been discarded from the core profile of
later versions of OpenGL, e.g., 4.3; however, they are accessible via the compatibility
profile.

is equivalent to

glBegin(GL LINES);

v0;

v140
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v1;

v2

v2;

. . .
glEnd();

The answer is first to avoid redundancy in vertex data. Secondly, possible
rendering error is avoided as well because OpenGL does not know that the
two v1s in the GL LINES specification above are supposed to represent the
same vertex, and may render them at slightly different locations because of
differences in floating point round-offs.

Exercise 2.11. (Programming) This relates to the brief discussion on
interpolation at the end of Section 2.5. Replace the polygon declaration part
of square.cpp with (Block 7):

glLineWidth(5.0);

glBegin(GL LINES);

glColor3f(1.0, 0.0, 0.0);

glVertex3f(20.0, 20.0, 0.0);

glColor3f(0.0, 1.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glEnd();

Can you say what the color values should be at the midpoint (50.0, 20.0, 0.0)
of the segment drawn? Check your answer by drawing a point with those
color values just above the midpoint, say at (50.0, 22.0, 0.0), and comparing.

Experiment 2.13. Replace the polygon declaration part of square.cpp
with (Block 8):

glBegin(GL TRIANGLES);

glVertex3f(10.0, 90.0, 0.0);

glVertex3f(10.0, 10.0, 0.0);

glVertex3f(35.0, 75.0, 0.0);

glVertex3f(30.0, 20.0, 0.0);

glVertex3f(90.0, 90.0, 0.0);

glVertex3f(80.0, 40.0, 0.0);

glEnd();

End

GL TRIANGLES draws a sequence of triangles using the vertices three
at a time. In particular, the triangles are

v0v1v2, v3v4v5, . . . , vn−3vn−2vn−1

if n is a multiple of 3; if it isn’t, the last one, or two, vertices are ignored.
The given order of the vertices for each triangle, in particular, v0, v1, v2

for the first, v3, v4, v5 for the second and so on, determines its orientation as
perceived by a viewer. Figure 2.19 indicates orientation with curved arrows. 41
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Orientation is important because it enables OpenGL to decide which
side of a primitive, front or back, the viewer sees. We’ll deal with this
topic separately in Chapter 9. Till then disregard orientation when drawing,
listing the vertices of a primitive in any order you like.

GL TRIANGLES is a 2-dimensional primitive and, by default, triangles
are drawn filled. However, one can choose a different drawing mode by
applying the glPolygonMode(face, mode) command where face may be
one of GL FRONT, GL BACK or GL FRONT AND BACK, and mode one of GL FILL,
GL LINE or GL POINT. Whether a primitive is front-facing or back-facing
depends, as said above, on its orientation. To keep matters simple for now,
though, we’ll use only GL FRONT AND BACK in a glPolygonMode() call, which
applies the given drawing mode to a primitive regardless of which face is
visible. The GL FILL option is, of course, the default filled option for 2D
primitives, while GL LINE draws the primitive in outline (or wireframe as it’s
also called), and GL POINT only the vertices.

Experiment 2.14. In fact, it’s often easier to decipher a 2D primitive
by viewing it in outline. Accordingly, continue the preceding experiment
by inserting the call glPolygonMode(GL FRONT AND BACK, GL LINE) in the
drawing routine and, further, replacing GL TRIANGLES with GL TRIANGLE -

STRIP. The relevant part of the display routine then is as below:

// Set polygon mode.

glPolygonMode(GL FRONT AND BACK, GL LINE);

// Draw a triangle strip.

glBegin(GL TRIANGLE STRIP);

glVertex3f(10.0, 90.0, 0.0);

glVertex3f(10.0, 10.0, 0.0);

glVertex3f(35.0, 75.0, 0.0);

glVertex3f(30.0, 20.0, 0.0);

glVertex3f(90.0, 90.0, 0.0);

glVertex3f(80.0, 40.0, 0.0);

glEnd();

End

GL TRIANGLE STRIP draws a sequence of triangles – called a triangle
strip – as follows: the first triangle is v0v1v2, the second v1v3v2 (v0 is dropped
and v3 brought in), the third v2v3v4 (v1 dropped and v4 brought in), and so
on. Formally, the triangles in the strip are

v0v1v2, v1v3v2, v2v3v4, . . . , vn−3vn−2vn−1 (if n is odd)

or
v0v1v2, v1v3v2, v2v3v4, . . . , vn−3vn−1vn−2 (if n is even)

Exercise 2.12. (Programming) Create a square annulus as in Fig-
ure 2.20(a) using a single triangle strip. You may first want to sketch the42
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annulus on graph paper to determine the coordinates of its eight corners.
The figure depicts one possible triangulation – division into triangles – of
the annulus.
Hint : A solution is available in squareAnnulus1.cpp of Chapter 3.

(a)

(b)

Figure 2.20: (a) Square
annulus – the region
between two bounding
squares – and a possible
triangulation (b) A
partially triangulated
shape.

Exercise 2.13. (Programming) Create the shape of Figure 2.20(b)
using a single triangle strip. A partial triangulation is indicated.

Experiment 2.15. Replace the polygon declaration part of square.cpp
with (Block 9):

glBegin(GL TRIANGLE FAN);

glVertex3f(10.0, 10.0, 0.0);

glVertex3f(15.0, 90.0, 0.0);

glVertex3f(55.0, 75.0, 0.0);

glVertex3f(80.0, 30.0, 0.0);

glVertex3f(90.0, 10.0, 0.0);

glEnd();

Apply both the filled and outlined drawing modes. End

GL TRIANGLE FAN draws a sequence of triangles – called a triangle
fan – around the first vertex as follows: the first triangle is v0v1v2, the
second v0v2v3 and so on. The full sequence is

v0v1v2, v0v2v3, . . . , v0vn−2vn−1

Exercise 2.14. (Programming) Create a square annulus using two tri-
angle fans. First sketch a triangulation different from that in Figure 2.20(a).

GL POLYGON draws a polygon with the vertex sequence

v0 v1 . . . vn−1

(n must be at least 3 for anything to be drawn).

Finally:

glRectf(x1 , y1 , x2 , y2 ) draws a rectangle lying on the z = 0 plane with
sides parallel to the x- and y-axes. In particular, the rectangle has diagonally
opposite corners at (x1 , y1 , 0) and (x2 , y2 , 0). The full list of four vertices
is (x1 , y1 , 0), (x2 , y1 , 0), (x2 , y2 , 0) and (x1 , y2 , 0). The rectangle created
is 2-dimensional and its vertex order depends on the situation of the two
vertices (x1 , y1 , 0) and (x2 , y2 , 0) with respect to each other, as indicated
by the two drawings at the lower right of Figure 2.19.

Note that glRectf() is a stand-alone call; it is not a parameter to
glBegin() like the other primitives.

43
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Important : The preceding two, GL POLYGON and glRectf(), have both been
discarded from the core profile of later versions of OpenGL, e.g., the one we
are going to study ourselves later in the book, namely, fourth generation 4.3;
however, they are accessible via the compatibility profile.

The reason that polygons and rectangles have been discarded is not hard
to understand: both can be made from triangles, so are really redundant.
The reason we do use them in the first part of this book is because they
afford an easily understood way to make objects – e.g., a polygon is certainly
more intuitive for a beginner than a triangle strip.

However, when drawing a polygon one must be careful in ensuring that it
is a plane convex figure, i.e., it lies on one plane and has no “bays” or “inlets”
(see Figure 2.21); otherwise, rendering is unpredictable. So, even though we
draw them occasionally for convenience, we recommend that the reader, in
order to avoid rendering issues and to prepare for the fourth generation of
OpenGL, avoid polygons and rectangles altogether in her own projects, and,
instead, use exclusively triangles.

Not planar, not convex Planar, not convex Planar and convex

Figure 2.21: OpenGL polygons should be planar and convex.

In fact, following are a couple of experiments, the second one showing
how polygon rendering can behave oddly indeed if one is not careful.

Experiment 2.16. Replace the polygon declaration of square.cpp with
(Block 10):

glBegin(GL POLYGON);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(50.0, 20.0, 0.0);

glVertex3f(80.0, 50.0, 0.0);

glVertex3f(80.0, 80.0, 0.0);

glVertex3f(20.0, 80.0, 0.0);

glEnd();

You see a convex 5-sided polygon (Figure 2.22(a)). End

Experiment 2.17. Replace the polygon declaration of square.cpp with
(Block 11):

glBegin(GL POLYGON);44
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(a) (b) (c)

Figure 2.22: Outputs: (a) Experiment 2.16 (b) Experiment 2.17 (c) Experiment 2.17,
vertices cycled.

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glVertex3f(40.0, 40.0, 0.0);

glVertex3f(20.0, 80.0, 0.0);

glEnd();

Display it both filled and outlined using appropriate glPolygonMode()

calls. A non-convex quadrilateral is drawn in either case (Figure 2.22(b)).
Next, keeping the same cycle of vertices as above, list them starting with
glVertex3f(80.0, 20.0, 0.0) instead (Block 12):

glBegin(GL POLYGON);

glVertex3f(80.0, 20.0, 0.0);

glVertex3f(40.0, 40.0, 0.0);

glVertex3f(20.0, 80.0, 0.0);

glVertex3f(20.0, 20.0, 0.0);

glEnd();

Make sure to display it both filled and outlined. When filled it’s a triangle,
while outlined it’s a non-convex quadrilateral (Figure 2.22(c)) identical to
the one output earlier! Because the cyclic order of the vertices is unchanged,
shouldn’t it be as in Figure 2.22(b) both filled and outlined? End

We’ll leave the apparent anomaly∗ of this experiment as a mystery to be
resolved in Chapter 8 on triangulation. But, if you are impatient then refer
to the hint provided with Exercise 2.9.

Exercise 2.15. (Programming) Verify, by cycling the vertices, that no
such anomaly arises in the case of the convex polygon of Experiment 2.16.

Figure 2.23: Double
annulus.

Exercise 2.16. (Programming) Draw the double annulus (a figure ‘8’)
shown in Figure 2.23 using as few triangle strips as possible. Introduce
additional vertices on the three boundary components if you need to (in
addition to the original twelve).

Note: Such additional vertices are called Steiner vertices.
∗The rendering depends on the particular OpenGL implementation. However, all

implementations that we are aware of show identical behavior. 45
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Remark 2.9. Here’s an interesting semi-philosophical question. OpenGL
claims to be a 3D drawing API. Yet, why does it not have a single 3D drawing
primitive, e.g., cube, tetrahedron or such? All its primitives are 0-dimensional
(GL POINTS), 1-dimensional (GL LINE*) or 2-dimensional (GL TRIANGLE*,
GL QUAD*, GL POLYGON, glRectf()).

The answer lies in how we humans (the regular ones that is and not
supers with X-ray vision) perceive 3D objects such as cubes, tetrahedrons,
chairs and spacecraft: we see only the surface, which is two-dimensional . It
makes sense for a 3D API, therefore, to draw only as much as can be seen.

2.7 Approximating Curved Objects

Looking back at Figure 2.19 we see that the OpenGL geometric primitives
are composed of points, straight line segments and flat pieces, the latter
being triangles, rectangles and polygons. How, then, to draw curved objects
such as discs, ellipses, spirals, beer cans and flying saucers? The answer is
to approximate them with straight and flat OpenGL primitives well enough
that the viewer cannot tell the difference. As a wag once put it, “Sincerity
is a very important human quality. If you don’t have it, you gotta fake it!”
In the next experiment we fake a circle.

Figure 2.24: Screenshot
of circle.cpp.

Experiment 2.18. Run circle.cpp. Increase the number of vertices in
the line loop

glBegin(GL LINE_LOOP);

for(i = 0; i < numVertices; ++i)

{
glColor3f((float)rand()/(float)RAND MAX,

(float)rand()/(float)RAND MAX,

(float)rand()/(float)RAND MAX);

glVertex3f(X + R * cos(t), Y + R * sin(t), 0.0);

t += 2 * PI / numVertices;

}
glEnd();

by pressing ‘+’ till it “becomes” a circle, as in the screenshot of Figure 2.24.
Press ‘-’ to decrease the number of vertices. The randomized colors are just
a bit of eye candy. End

The vertices of the loop of circle.cpp, which lie evenly spaced on the
circle, are collectively called a sample of points or, simply, sample from the
circle. See Figure 2.25(a). The denser the sample evidently the better the
approximation.

The parametric equations of the circle implemented are

x = X +R cos t, y = Y +R sin t, z = 0, 0 ≤ t ≤ 2π (2.1)46
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x

y

(X, Y, 0)

R

(a) (b)

t

(X+Rcos t, Y+Rsin t, 0)

Figure 2.25: (a) A line loop joining a sample of points from a circle (b) Parametric
equations for a circle.

where (X,Y, 0) is the center and R the radius of the circle. See Figure 2.25(b).
A numVertices number of sample points equally spaced apart is generated
by starting with the angle t = 0 and then incrementing it successively by
2π/numVertices.

Observe that the vertex specifications occur within a loop construct,
which is pretty much mandatory if there is a large number of vertices.

Incidentally, the program circle.cpp also demonstrates output to the
command window, as well as non-trivial user interaction via the keyboard.
The routine keyInput() is registered as the key handling routine in
main() by the glutKeyboardFunc(keyInput) statement. Note the calls
to glutPostRedisplay() in keyInput() asking the display to be redrawn
after each update of numVertices.

Follow these conventions when writing OpenGL code:

1. Program the “Esc” key to exit the program.

2. Describe user interaction at two places:

(a) The command window using cout().

(b) Comments at the top of the source code.

Here’s a parabola.

Figure 2.26: Screenshot
of parabola.cpp.

Experiment 2.19. Run parabola.cpp. Press ‘+/-’ to increase/decrease
the number of vertices of the approximating line strip. Figure 2.26 is a
screenshot with enough vertices to make a smooth-looking parabola.

The vertices are equally spaced along the x-direction. The parametric
equations implemented are

x = 50 + 50t, y = 100t2, z = 0, −1 ≤ t ≤ 1

the constants being chosen so that the parabola is centered in the OpenGL
window. End 47
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Exercise 2.17. (Programming) Modify circle.cpp to draw a flat
3-turn spiral as in the screenshot of Figure 2.27.
Hint : Extending the range of t to 0 to 6π gives 3 full turns. At the same
time the “radius” R should decrease with each iteration of the for loop, e.g.,
R-=20.0/numVertices decreases it linearly from 40 to 20.

Figure 2.27: Flat spiral.

Exercise 2.18. (Programming) Modify circle.cpp to draw a disc (a
filled circle) by way of (a) a polygon and (b) a triangle fan.

Exercise 2.19. (Programming) Draw a flat leaf like the one in
Figure 2.28.

Exercise 2.20. (Programming) Modify circle.cpp to draw a circular
annulus, like one of those shown in Figure 2.29, using a triangle strip. Don’t
look at the program circularAnnuluses.cpp!

We’ll be returning shortly to the topic of approximating curved objects, but
it’s on to 3D next.

Figure 2.28: Flat leaf.

2.8 Three Dimensions, the Depth Buffer and
Perspective Projection

The reader by now may be getting impatient to move on from the plane
(pun intended) and simple to full 3D. Okay then, let’s get off to an easy start
in 3-space by making use of the third dimension to fake a circular annulus.
Don’t worry, we’ll be doing fancier stuff soon enough!

Figure 2.29: Screenshot
of circularAnnuluses.-
cpp.

Experiment 2.20. Run circularAnnuluses.cpp. Three identical-
looking red circular annuluses (Figure 2.29) are drawn in three different
ways:

i) Upper-left: There is not a real hole. The white disc overwrites the red
disc as it appears later in the code.

glColor3f(1.0, 0.0, 0.0);

drawDisc(20.0, 25.0, 75.0, 0.0);

glColor3f(1.0, 1.0, 1.0);

drawDisc(10.0, 25.0, 75.0, 0.0);

Note: The first parameter of drawDisc() is the radius and the
remaining three the coordinates of the center.

ii) Upper-right: There is not a real hole either. A white disc is drawn
closer to the viewer than the red disc thus blocking it out.48
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glEnable(GL DEPTH TEST);

glColor3f(1.0, 0.0, 0.0);

drawDisc(20.0, 75.0, 75.0, 0.0);

glColor3f(1.0, 1.0, 1.0);

drawDisc(10.0, 75.0, 75.0, 0.5);

glDisable(GL DEPTH TEST);

Observe that the z-value of the white disc’s center is greater than the
red disc’s. We’ll discuss the mechanics of one primitive blocking out
another momentarily.

iii) Lower: A true circular annulus with a real hole.

if (isWire) glPolygonMode(GL FRONT, GL LINE);

else glPolygonMode(GL FRONT, GL FILL);

glColor3f(1.0, 0.0, 0.0);

glBegin(GL TRIANGLE STRIP);

. . .
glEnd();

Press the space bar to see the wireframe of a triangle strip. End

Exercise 2.21. (Programming) Interchange in circularAnnuluses.-

cpp the drawing orders of the red and white discs – i.e., the order in which
they appear in the code – in either of the top two annuluses. Which one is
affected? (Only the first! ) Why?

Remark 2.10. Note the use of a text-drawing routine in circular-

Annuluses.cpp. OpenGL offers only rudimentary text-drawing capability
but it often comes in handy, especially for annotation. We’ll discuss text-
drawing in fair detail in Chapter 3.

By far the most important aspect of circularAnnuluses.cpp is its
use of the depth buffer to draw the upper-right annulus. Following is an
introduction to this critical utility which enables realistic rendering of 3D
scenes.

2.8.1 A Vital 3D Utility: The Depth Buffer

Enabling the depth buffer, also called the z-buffer , causes OpenGL to
eliminate, prior to rendering, parts of objects that are obscured (or, occluded)
by others.

Precisely, a point of an object is not drawn if its projection – think of
a ray from that point – toward the viewing face is obstructed by another
object. See Figure 2.30(a) for the making of the upper-right annulus of
circularAnnuluses.cpp: the white disc obscures the part of the red disc
behind it (because the projection is orthogonal, the obscured part is exactly 49
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x

y

z
x

y

z

red disc on z = 0.0

C (30, 20, −0.5)
B (30, 20, 0.1)

A (30, 20, 0.3)
P (30, 20, 1)

viewing face on
the plane z =1

white disc on z = 0.5

(a) (b)

projection in direction 
of increasing z

Figure 2.30: (a) The front white disc obscures part of the red one (b) The point A with
largest z-value is projected onto the viewing plane so P is red.

the same shape and size as the white disc). This process is called hidden
surface removal or depth testing or visibility determination.

Stated mathematically, the result of hidden surface removal in case of
orthographic projection is as follows. Suppose that the set of points belonging
to drawn objects in the viewing box, with their first two coordinate values
particularly equal to X and Y , respectively, is S = {(X,Y, z)}, where z
varies. In other words, S is the set of drawn points lying on the straight line
through (X,Y, 0) parallel to the z-axis.

Then only the point (X,Y, Z) of S, with the largest z-value, say, Z, lends
its color attributes to their shared projection (X,Y,−near) on the viewing
face. The implication is that only (X,Y, Z) is drawn of the points in S, the
rest obscured.

For example, in Figure 2.30(b), the three points A, B and C, colored
red, green and blue, respectively, share the same first two coordinate values,
namely, x = 30 and y = 20. So, all three project to the same point P on the
viewing face. As A has the largest z coordinate of the three, it obscures the
other two and P , therefore, is drawn red.

The z-buffer itself is a block of memory containing z-values, one per pixel.
If depth testing is enabled, then, as a primitive is processed for rendering,
the z-value of each of its points – or, more accurately, each of its pixels
– is compared with that of the one with the same (x, y)-values currently
resident in the z-buffer. If an incoming pixel’s z-value is greater, then its
RGB attributes and z-value replace those of the current one; if not, the
incoming pixel’s data is discarded. For example, if the order in which the
points of Figure 2.30(b) happen to appear in the code is C, A and B, here’s
how the color and z-buffer values at the pixel corresponding to P change:

draw C; // Pixel corresponding to P gets color blue50
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// and z-value -0.5.

draw A; // Pixel corresponding to P gets color red

// and z-value 0.3: A’s values overwrite C’s.
draw B; // Pixel corresponding to P retains color red

// and z-value 0.3: B is discarded.

Next, note in circularAnnuluses.cpp the enabling syntax of hidden surface
removal so that you can begin to use it:

1. The GL DEPTH BUFFER BIT parameter of glClear(GL COLOR BUFFER BIT

| GL DEPTH BUFFER BIT) in the drawScene() routine causes the depth
buffer to be cleared.

2. The command glEnable(GL DEPTH TEST) in the drawScene() routine
turns hidden surface removal on. The complementary command is
glDisable(GL DEPTH TEST).

3. The GLUT DEPTH parameter of glutInitDisplayMode(GLUT SINGLE

| GLUT RGB | GLUT DEPTH) in main() causes the depth buffer to be
initialized.

Figure 2.31: Bull’s eye
target.

Exercise 2.22. (Programming) Draw a bull’s eye target as in
Figure 2.31 by means of five discs of different colors, sizes and depths.

2.8.2 A Helix and Perspective Projection

We get more seriously 3D next by drawing a spiral or, more scientifically, a
helix. A helix, though itself 1-dimensional – drawn as a line strip actually –
can be made authentically only in 3-space.

Open helix.cpp but don’t run it as yet! The parametric equations
implemented are

x = R cos t, y = R sin t, z = t− 60.0, −10π ≤ t ≤ 10π (2.2)

z

(Rcos t, Rsin t, t − 60.0)

y

x

Figure 2.32: Parametric
equations for a helix.

See Figure 2.32. Compare these with Equation (2.1) for a circle centered
at (0, 0, 0), putting X = 0 and Y = 0 in that earlier equation. The difference
is that the helix climbs up the z-axis simultaneously as it rotates circularly
with increasing t (so, effectively, it coils around the z-axis). Typically, one
writes simply z = t for the last coordinate; however, we tack on “−60.0” to
push the helix far enough down the z-axis so that it’s contained entirely in
the viewing box.

Exercise 2.23. Even before viewing the helix, can you say from
Equation (2.2) how many times it is supposed to coil around the z-axis, i.e.,
how many full turns it is supposed to make?
Hint : One full turn corresponds to an interval of 2π along t. 51
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Experiment 2.21. Okay, run helix.cpp now. All we see is a circle as in
Figure 2.33(a)! There’s no sign of any coiling up or down. The reason, of
course, is that the orthographic projection onto the viewing face flattens the
helix. Let’s see if it makes a difference to turn the helix upright, in particular,
so that it coils around the y-axis. Accordingly, replace the statement

glVertex3f(R * cos(t), R * sin(t), t - 60.0);

in the drawing routine with

glVertex3f(R * cos(t), t, R * sin(t) - 60.0);

Hmm, not a lot better (Figure 2.33(b))! End

(a) (b)

Figure 2.33: Screenshots of helix.cpp using orthographic projection with the helix
coiling around the: (a) z-axis (b) y-axis.

Because it squashes a dimension, typically, orthographic projection is not
suitable for 3D scenes. OpenGL, in fact, provides another kind of projection,
called perspective projection, more appropriate for most 3D applications.
Perspective projection is implemented with a glFrustum() call.

Instead of a viewing box, a glFrustum(left, right, bottom, top, near,
far) call sets up a viewing frustum – a frustum is a truncated pyramid whose
top has been cut off by a plane parallel to its base – in the following manner
(see Figure 2.34):

The apex of the pyramid is at the origin. The front face, called the
viewing face, of the frustum is the rectangle, lying on the planez = −near,
whose corners are (left , bottom, −near), (right , bottom, −near), (left , top,
−near), and (right , top, −near). The plane z = −near is called the viewing
plane. The four edges of the pyramid emanating from the apex pass through
the four corners of the viewing face. The base of the frustum, which is also
the base of the pyramid, is the rectangle whose vertices are precisely where
the pyramid’s four edges intersect the z = −far plane. By proportionality
with the front vertices, the coordinates of the base vertices are:52
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((far/near) left, 
(far/near) top, −far) 

((far/near) right, 
(far/near) top, −far) 

((far/near) right, 
(far/near) bottom, −far) 

(right, top, −near) 
viewing face (film) on the
viewing plane z = −near  

shoot

(right, bottom, −near) (left, bottom, −near) 

(0, 0, 0) = apex 

(left, top, −near) 

OpenGL Window

Viewing frustum

print

Computer Screen

((far/near) left, 
(far/near) bottom, −far) 

base on the plane z = −far  

Figure 2.34: Rendering with glFrustum().

((far/near) left,(far/near) bottom, −far),
((far/near) right,(far/near) bottom, −far),
((far/near) left, (far/near) top, −far),
((far/near) right, (far/near) top, −far)

Values of the glFrustum() parameters are typically set so that the frustum
lies symmetrically about the z-axis; in particular, right and top are chosen to
be positive, and left and bottom their respective negatives. The parameters
near and far should both be positive and near < far .

Example 2.1. Determine the corners of the viewing frustum created by
the call glFrustum(-15.0, 15.0, -10.0, 10.0, 5.0, 50.0).

Answer : By definition, the corners of the front face are (−15.0,−10.0,−5.0),
(15.0,−10.0,−5.0), (−15.0, 10.0,−5.0) and (15.0, 10.0,−5.0). The x- and
y-values of the vertices of the base (or back face) are scaled from those
on the front by a factor of 10 (because far/near = 50/5 = 10). The
base vertices are, therefore, (−150.0,−100.0,−50.0), (150.0,−100.0,−50.0),
(−150.0, 100.0,−50.0) and (150.0, 100.0,−50.0). 53
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Exercise 2.24. Determine the corners of the viewing frustum created by
the call glFrustum(-5.0, 5.0, -5.0, 5.0, 5.0, 100.0).

The rendering sequence in the case of perspective projection is a two-step
shoot-and-print, similar to orthographic projection. The shooting step again
consists of projecting objects within the viewing frustum onto the viewing
face, except that the projection is no longer perpendicular . Instead, each point
is projected along the line joining it to the apex, as depicted by the black
dashed lines from the bottom and top of the man in Figure 2.34. Perspective
projection causes foreshortening because objects farther away from the apex
appear smaller (a phenomenon also called perspective transformation). For
example, see Figure 2.35 where A and B are of the same height, but the
projection pA is shorter than the projection pB.

section of the viewing face

ABpBpA

Figure 2.35: Section of the viewing frustum showing foreshortening.

Time now to see perspective projection turn on its magic!

Experiment 2.22. Fire up the original helix.cpp program. Replace
orthographic projection with perspective projection; in particular, replace
the projection statement

glOrtho(-50.0, 50.0, -50.0, 50.0, 0.0, 100.0);

with

glFrustum(-5.0, 5.0, -5.0, 5.0, 5.0, 100.0);

You can see a real spiral now (Figure 2.36(a)). View the upright version as
well (Figure 2.36(b)), replacing

glVertex3f(R * cos(t), R * sin(t), t - 60.0);

with

glVertex3f(R * cos(t), t, R * sin(t) - 60.0);

A lot better than the orthographic version is it not?! End54
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(a) (b)

Figure 2.36: Screenshots of helix.cpp using perspective projection with the helix
coiling up the (a) z-axis (b) y-axis.

Perspective projection is more realistic than orthographic projection as it
mimics how images are formed on the retina of the eye by light rays traveling
toward a fixed point. And, in fact, it’s precisely foreshortening that cues us
humans to the distance of an object.

Remark 2.11. One can think of the apex of the frustum as the location of
a point camera and the viewing face as its film.

The second rendering step where the viewing face is proportionately scaled
to fit onto the OpenGL window is exactly as for orthographic projection.
Similar to orthographic projection as well, the scene is clipped to within the
viewing frustum by the 6 planes that bound the latter.

Remark 2.12. One might think of orthographic and perspective projections
both as being along lines of projection convergent to a single point, the center
of projection (COP). In the case of perspective projection, this is a regular
point with finite coordinates; however, for orthographic projection the COP
is a “point at infinity” – i.e., infinitely far away – so that lines toward it are
parallel.

Remark 2.13. There do exist 3D applications, e.g., in architectural design,
where foreshortening amounts to distortion, so, in fact, orthographic
projection is preferred.

Remark 2.14. It’s because it captures the image of an object by intersecting
rays projected from the object – either orthographically or perspectively –
with a plane, which is similar to how a real camera works, that OpenGL is
said to implement the synthetic-camera model.

Exercise 2.25. (Programming) Continuing from where we were at the
end of the preceding experiment, successively replace the glFrustum() call
as follows, trying in each case to predict the change in the display before
running the code: 55
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(a) glFrustum(-5.0, 5.0, -5.0, 5.0, 5.0, 120.0)

(b) glFrustum(-5.0, 5.0, -5.0, 5.0, 10.0, 100.0)

(c) glFrustum(-5.0, 5.0, -5.0, 5.0, 2.5, 100.0)

(d) glFrustum(-10.0, 10.0, -10.0, 10.0, 5.0, 100.0)

Parts (b) and (c) show, particularly, how moving the film forward and back
causes the camera to “zoom” in and out, respectively.

Exercise 2.26. Formulate mathematically how hidden surface removal
should work in the case of perspective projection, as we did in Section 2.8.1
for orthographic projection.

Figure 2.37: Screenshot
of moveSphere.cpp.

Experiment 2.23. Run moveSphere.cpp, which simply draws a movable
sphere in the OpenGL window. Press the left, right, up and down arrow
keys to move the sphere, the space bar to rotate it and ‘r’ to reset.

The sphere appears distorted as it nears the periphery of the window,
as you can see from the screenshot in Figure 2.37. Can you guess why?
Ignore the code, especially unfamiliar commands such as glTranslatef()

and glRotatef(), except for the fact that the projection is perspective.
This kind of peripheral distortion of a 3D object is unavoidable in any

viewing system which implements the synthetic-camera model. It happens
with a real camera as well, but we don’t notice it as much because the field
of view when snapping pictures is usually quite large and objects of interest
tend to be centered. End

2.9 Drawing Projects

Here are a few exercises to stretch your drawing muscles. The objects may
look rather different from what we have drawn so far, but as programming
projects aren’t really. In fact, you can probably cannibalize a fair amount of
code from earlier programs.

Exercise 2.27. (Programming) Draw a sine curve between x = −π
and x = π (Figure 2.38(a)). Follow the strategy of circle.cpp to draw a
polyline through a sample from the sine curve.

Exercise 2.28. (Programming) Draw an ellipse. Recall the parametric
equations for an ellipse on the xy-plane, centered at (X,Y ), with semi-major
axis of length A and semi-minor axis of length B (Figure 2.38(b)):

x = X +A cos t, y = Y +B sin t, z = 0, 0 ≤ t ≤ 2π

Again, circle.cpp is the template to use.56
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(e) (f) (g) (h) (i) (j) (k)

y = sin x 

y

x

(X+Acos t, 
Y+Bsin t)

(X, Y) (X+A, Y)

(X, Y+B)
t

y

x

(a) (b) (c) (d)

Figure 2.38: Draw these!

Exercise 2.29. (Programming) Draw the letter ‘A’ as a two-dimensional
figure like the shaded region in Figure 2.38(c). It might be helpful to
triangulate it first on graph paper.

Allow the user to toggle between filled and wireframe a la the bottom
annulus of circularAnnuluses.cpp.

Exercise 2.30. (Programming) Draw the number ‘8’ as the 2D object
in Figure 2.38(d). Do this in two different ways: (i) drawing 4 discs and
using the z-buffer and (ii) as a true triangulation, allowing the user to toggle
between filled and wireframe. For (ii), a method of dividing the ‘8’ into two
triangle strips is suggested in Figure 2.38(d).

Exercise 2.31. (Programming) Draw a ring with cross-section a
regular (equal-sided) polygon as in Figure 2.38(e), where a scheme to
triangulate the ring in one triangle strip is indicated. Allow the user to
change the number of sides of the cross-section. Increasing the number of
sides sufficiently should make the ring appear cylindrical as in Figure 2.38(f).
Use perspective projection and draw in wireframe.

Exercise 2.32. (Programming) Draw a cone as in Figure 2.38(g) where
a possible triangulation is indicated. Draw in wireframe and use perspective
projection.

Exercise 2.33. (Programming) Draw a children’s slide as in Fig-
ure 2.38(h). Choose an appropriate equation for the cross-section of the
curved surface – part of a parabola, maybe – and then “extrude” it as a
triangle strip. (If you did Exercise 2.31 then you’ve already extruded a
polygon.) Draw in wireframe and use perspective projection. 57
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Remark 2.15. Your output from Exercises 2.31-2.33 may look a bit “funny”,
especially viewed from certain angles. For example, the ring viewed head-on
down its axis may appear as two concentric circles on a single plane. This
problem can be alleviated by drawing the object with a different alignment
or, equivalently, changing the viewpoint. In Experiment 2.24, coming up
shortly, we’ll learn code for the user to change her viewpoint.

Exercise 2.34. (Programming) Draw in a single scene a crescent moon,
a half-moon and a three-quarter moon (Figures 2.38(i)-(k)). Each should be
a true triangulation. Label each as well using text-drawing.

2.10 Approximating Curved Objects Once
More

Our next 3-space drawing project is a bit more challenging: a hemisphere,
which is a 2-dimensional object. We’ll get in place, as well, certain design
principles which will be expanded in Chapter 10 dedicated to drawing (no
harm starting early).

Remark 2.16. A hemisphere is a 2-dimensional object because it is a
surface. Recall that a helix is 1-dimensional because it’s line-like. Now, both
hemisphere and helix need 3-space to “sit in”; they cannot do with less. For
example, you could sketch either on a piece of paper (2-space) but it would
not be the real thing. On the other hand, a circle – another 1D object –
does sit happily in 2-space.

Consider a hemisphere of radius R, centered at the origin O, with its
circular base lying on the xz-plane. Suppose the spherical coordinates of a
point P on this hemisphere are a longitude of θ (measured clockwise from
the x-axis when looking from the plus side of the y-axis) and a latitude
of φ (measured from the xz-plane toward the plus side of the y-axis).
See Figure 2.39(a). The Cartesian coordinates of P are by elementary
trigonometry

(R cosφ cos θ, R sinφ, R cosφ sin θ)

The range of θ is 0 ≤ θ ≤ 2π and of φ is 0 ≤ φ ≤ π/2.

Exercise 2.35. Verify that the Cartesian coordinates of P are as claimed.
Suggested approach: From the right-angled triangle OPP ′ one has |PP ′| =
R sinφ and |OP ′| = R cosφ. |PP ′| is the y-value of P . Next, from right-
angled triangle OP ′P ′′ find |OP ′′| and |P ′P ′′|, the x- and z-values of P ,
respectively, in terms of |OP ′| and θ.

Sample the hemisphere at a mesh of (p+ 1)(q + 1) points Pij , 0 ≤ i ≤ p,
0 ≤ j ≤ q, where the longitude of Pij is (i/p)∗2π and its latitude (j/q)∗π/2.
In other words, p+ 1 longitudinally equally-spaced points are chosen along
each of q + 1 equally-spaced latitudes. See Figure 2.39(b), where p = 10 and58
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north pole

(b)(a)

P
R

(R cos φ cos θ, 
 R sin φ, R cos φ sin θ) 

y

x

z

Pi+1,j+1Φ
ΘO

P´

P´´ Pi,j+1

Pi,jPi+1,j

Figure 2.39: (a) Spherical and Cartesian coordinates on a hemisphere (b) Approxi-
mating a hemisphere with latitudinal triangle strips.

q = 4. The sample points Pij are not all distinct. In fact, P0j = Ppj , for
all j, as the same point has longitude both 0 and 2π; and, the point Piq,
for all i, is identical to the north pole, which has latitude π/2 and arbitrary
longitude.

The plan now is to draw one triangle strip with vertices at

P0,j+1, P0j , P1,j+1, P1j , . . . , Pp,j+1, Ppj

for each j, 0 ≤ j ≤ q− 1, for a total of q triangle strips. In other words, each
triangle strip takes its vertices alternately from a pair of adjacent latitudes
and, therefore, approximates the circular band between them. Figure 2.39(b)
shows one such strip. The stack of all q triangle strips approximates the
hemisphere itself.

Figure 2.40: Screenshot
of hemisphere.cpp.

Experiment 2.24. Run hemisphere.cpp, which implements exactly the
strategy just described. You can verify this from the snippet that draws the
hemisphere:

for(j = 0; j < q; j++)

{
// One latitudinal triangle strip.

glBegin(GL TRIANGLE STRIP);

for(i = 0; i <= p; i++)

{
glVertex3f(R * cos((float)(j+1)/q * PI/2.0) *

cos(2.0 * (float)i/p * PI),

R * sin((float)(j+1)/q * PI/2.0),

R * cos((float)(j+1)/q * PI/2.0) *

sin(2.0 * (float)i/p * PI));

glVertex3f(R * cos((float)j/q * PI/2.0) *

cos(2.0 * (float)i/p * PI),

R * sin((float)j/q * PI/2.0),

R * cos((float)j/q * PI/2.0) * 59
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sin(2.0 *(float)i/p * PI));

}
glEnd();

}

Increase/decrease the number of longitudinal slices by pressing ‘P/p’.
Increase/decrease the number of latitudinal slices by pressing ‘Q/q’. Turn
the hemisphere about the axes by pressing ‘x’, ‘X’, ‘y’, ‘Y’, ‘z’ and ‘Z’. See
Figure 2.40 for a screenshot. End

Experiment 2.25. Playing around a bit with the code will help clarify
the construction of the hemisphere:

(a) Change the range of the hemisphere’s outer loop from

for(j = 0; j < q; j++)

to

for(j = 0; j < 1; j++)

Only the bottom strip is drawn. The keys ‘P/p’ and ‘Q/q’ still work.

(b) Change it again to

for(j = 0; j < 2; j++)

Now, the bottom two strips are drawn.

(c) Reduce the range of both loops:

for(j = 0; j < 1; j++)

. . .
for(i = 0; i <= 1; i++)

. . .

The first two triangles of the bottom strip are drawn.

(d) Increase the range of the inner loop by 1:

for(j = 0; j < 1; j++)

. . .
for(i = 0; i <= 2; i++)

. . .

The first four triangles of the bottom strip are drawn. End60
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There’s syntax in hemisphere.cpp – none to do with the actual
making of the hemisphere – which you may be seeing for the first time.
The command glTranslatef(0.0, 0.0, -10.0) is used to move the
hemisphere, drawn initially centered at the origin, into the viewing frustum,
while the glRotatef() commands turn it. We’ll explain these so-called
modeling transformations in Chapter 4 but you are encouraged to experiment
with them even now as the syntax is fairly intuitive. The set of three
glRotatef()s, particularly, comes in handy to re-align a scene.

(a)

(b)

Figure 2.41: (a) Half a
hemisphere (b) Slice of a
hemisphere.

Exercise 2.36. (Programming) Modify hemisphere.cpp to draw:

(a) the bottom half of a hemisphere (Figure 2.41(a)).

(b) a 30◦ slice of a hemispherical cake (Figure 2.41(b)). Note that simply
reducing the range of the inner loop of hemisphere.cpp produces a
slice of cake without two sides and bottom, so these have to be added
in separately to close up the slice.

Make sure the ‘P/p/Q/q’ keys still work.

Exercise 2.37. (Programming) Just to get you thinking about
animation, which we’ll be studying in depth soon enough, guess the effect
of replacing glTranslatef(0.0, 0.0, -10.0) with glTranslatef(0.0,

0.0, -20.0) in hemisphere.cpp. Verify.

And, here are some more things to draw.

Exercise 2.38. (Programming) Draw the objects shown in Figure 2.42.
Give the user an option to toggle between filled and wireframe renderings.

Lampshade Another lampshade Spiral band Rugby football

Figure 2.42: More things to draw.

A suggestion for the football, or ellipsoid, is to modify hemisphere.cpp

to make half of an ellipsoid (a hemi-ellipsoid?). Two hemi-ellipsoids back to
back would then give a whole ellipsoid.

Remark 2.17. Filled renderings of 3D scenes, even with color, rarely look
pleasant in the absence of lighting. See for yourself by applying color to
3D objects you have drawn so far (remember to invoke a glPolygonMode(*,

GL FILL) call). For this reason, we’ll draw mostly wireframe till Chapter 11, 61
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which is all about lighting. You’ll have to bear with this. Wireframe, however,
fully exposes the geometry of an object, which is not a bad thing when one
is learning object design.

2.11 An OpenGL Program End to End

Of square.cpp, in particular, we have touched on almost every command
which is functional from a graphics points of view. However, let’s run over
the whole program to see all that goes into making OpenGL code tick.

We start with main():

1. glutInit(&argc, argv) initializes the FreeGLUT library. FreeGLUT,
successor to GLUT (OpenGL Utility Toolkit), is a library of calls to
manage a window holding OpenGL contexts (the reason such a separate
library is needed is that OpenGL itself is only a library of graphics
calls).

2. glutInitContextVersion(4, 3)

glutInitContextProfile(GLUT_COMPATIBILITY_PROFILE)

ask FreeGLUT to provide an OpenGL 4.3 context which is backward-
compatible in that legacy commands are implemented. This, for
example, allows us to draw with the glBegin()-glEnd() operations
from OpenGL 2.1, which do not belong in the core profile of OpenGL
4.3.

Important : If your graphics card doesn’t support OpenGL 4.3 then the
program may compile but not run as the system is unable to provide the
context asked. What you might do in this case is thin the context by
replacing the first line above with glutInitContextVersion(3, 3),
or even glutInitContextVersion(2, 1), instead. Of course, then,
programs using later-generation calls will not run, but you should be
fine early on in the book.

3. glutInitDisplayMode(GLUT SINGLE | GLUT RGBA) asks the OpenGL
context to support a single-buffered frame, each pixel having red, green,
blue and alpha values.

4. glutInitWindowSize(500, 500)

glutInitWindowPosition(100, 100)

as we have already seen, set the size of the OpenGL window and the
location of its top left corner on the computer screen.

5. glutCreateWindow("square.cpp") creates the window (precisely, the
rendering context) with the specified string parameter as title.

6. glutDisplayFunc(drawScene)

glutReshapeFunc(resize)62
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glutKeyboardFunc(keyInput)

register the routines to call – so-called callback routines – when the
OpenGL window is to be drawn, when it is resized (and first created),
and when keyboard input is received, respectively.

7. glewExperimental = GL_TRUE

glewInit()

initializes GLEW (the OpenGL Extension Wrangler Library) which
handles the loading of OpenGL extensions, with the switch set so that
extensions implemented in even pre-release drivers are exposed.

8. setup() invokes the initialization routine.

9. glutMainLoop begins the event-processing loop, calling registered
callback routines as needed.

We have already seen that the only command in the initialization
routine setup(), namely, glClearColor(1.0, 1.0, 1.0, 0.0), specifies
the clearing color of the OpenGL window.

The callback routine to draw the OpenGL window is:

void drawScene(void)

{
glClear(GL_COLOR_BUFFER_BIT);

glColor3f(0.0, 0.0, 0.0);

// Draw a polygon with specified vertices.

glBegin(GL_POLYGON);

...

glEnd();

glFlush();

}

The first command clears the OpenGL window to the specified clearing
color, in other words, paints in the background color. The next command
glColor3f() sets the foreground, or drawing, color, which is used to draw
the polygon specified within the glBegin()-glEnd() pair (we have already
examined this polygon carefully). Finally, glFlush() forces the prior draw
calls to actually execute, which, in this case, means the polygon is drawn.

The callback routine when the OpenGL window is resized, and first
created, is void resize(int w, int h). The window manager supplies
the width w and height h of the resized OpenGL window (or, initial window,
when it is first created) as parameters to the resize routine.

The first command

glViewport(0, 0, w, h); 63
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of square.cpp’s resize routine specifies the rectangular part of the OpenGL
window in which actual drawing is to take place; with the given parameters
it is the entire window. We’ll be looking more carefully into glViewPort()

and its applications in the next chapter.
The next three commands

glMatrixMode(GL PROJECTION);

glLoadIdentity();

glOrtho(0.0, 100.0, 0.0, 100.0, -1.0, 1.0);

activate the projection matrix stack, place the identity matrix at the top of
this stack, and then multiply the identity matrix by the matrix corresponding
to the final glOrtho() command, effectively setting up the viewing box of
square.cpp described in Section 2.2.

The final two commands

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

of the resize routine activate the modelview matrix stack and place the
identity matrix at the top in readiness for modelview transformation
commands in the drawing routine, of which there happen to be none in
square.cpp. We’ll be learning much more about OpenGL’s matrix stacks
and how they are at the heart of its operation in Chapters 4 and 5.

The callback routine to handle ASCII keys is keyInput(unsigned char

key, int x, int y). When an ASCII key is pressed it is passed in the
parameter char to this callback routine, as is the location of the mouse in
the parameters x and y. As is easy to see, all that keyInput of square.cpp
does is terminate the program when the escape key is pressed. In the next
chapter we’ll see callback routines to handle non-ASCII keys, as well as
interaction via the mouse.

As the reader might well guess, the guts of an OpenGL program are in
its drawing routine. Interestingly, the initialization routine often pulls a fair
load, too, because one would want to locate there tasks that need to be done
once at start-up, e.g., setting up data structures. In fact, it’s a common
beginner’s mistake to place initialization chores in the drawing routine, as
the latter is invoked repeatedly if there is animation, leading to inefficiency.

The other routines, such as main() and the interactivity and reshape
callbacks, are either standard and pretty much transferable from program
to program (e.g., main()), or easy to code.

2.12 Summary, Notes and More Reading

In this chapter we began the study of 3D CG, looking at it through the
“eyes” of OpenGL. OpenGL itself was presented to the extent that the reader
acquires functional literacy in this particular API. The drawing primitives
were probably the most important part of the API’s vernacular.64
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We discovered as well how OpenGL functions as a state machine,
attributes such as color defining the current state. Moreover, we learned that
quantifiable attribute values, e.g., RGB color, are typically interpolated from
the vertices of a primitive throughout its interior. We saw that OpenGL
clips whatever the programmer draws to within a viewing volume, either a
box or frustum.

Beyond acquaintance with the language, we were introduced as well to
the synthetic-camera model of 3D graphics, which OpenGL implements
via two kinds of projection: orthographic and perspective. This included
insights into the world coordinate system, the viewing volume – box or
frustum – which is the stage in which all drawings are made, the shoot-
and-print rendering process to map a 3D scene to a 2D window, as well as
hidden surface removal. We made a first acquaintance as well with another
cornerstone of 3D graphics: the technique of simulating curved objects using
straight and flat primitives like line segments and triangles.

Historically, OpenGL evolved from SGI’s IRIS GL API, which popularized
the approach to creating 3D scenes by drawing objects in actual 3-space
and then rendering them to a 2D window by means of a synthetic camera.
IRIS GL’s efficiently pipelined architecture enabled high-speed rendering of
animated 3D graphics and, consequently, made possible as well real-time
interactive 3D. The ensuing demand from application developers for an
open and portable (therefore, platform-independent) version of their API
spurred SGI to create the first OpenGL specification in 1992, as well as
a sample implementation. Soon after, the OpenGL ARB (Architecture
Review Board), a consortium composed of a few leading companies in the
graphics industry, was established to oversee the development of the API.
Stewardship of the OpenGL specification passed in 2006 to the Khronos
Group, a member-funded industry consortium dedicated to the creation of
open-standard royalty-free API’s. (That no one owns OpenGL is a good
thing.) The canonical, and very useful, source for information about OpenGL
is its own home page [103].

Microsoft has a non-open Windows-specific 3D API – Direct3D [90, 141]
– which is popular among game programmers as it allows optimization for
the pervasive Windows platform. However, outside of the games industry,
where it nonetheless competes with Direct3D, and leaving aside particular
application domains with such high-quality rendering requirements that ray
tracers are preferred, by far the dominant graphics API is OpenGL.

It’s safe to say that OpenGL is the de facto standard 3D graphics API.
A primary reason for this, other than the extremely well-thought-out design
which it had from inception – initial versions of Direct3D in contrast were
notoriously buggy and hard to use – is OpenGL’s portability. With their
recent versions, though, OpenGL and Direct3D seem to be converging, at
least in functionality (read an interesting comparison in Wikipedia [27]).
It’s worth knowing as well that, despite its intended portability, OpenGL
can take advantage of platform-specific and card-specific capabilities via 65
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so-called extensions, at the cost of clumsier code.
An unofficial clone of OpenGL, Mesa 3D [93], which uses the same syntax,

was originally developed by Brian Paul for the Unix/X11 platform, but there
are ports now to other platforms as well.

Perhaps the best reason for OpenGL to be the API of choice for students
of 3D computer graphics is – and this is a consequence of its almost universal
adoption by the academic, engineering and scientific communities – the sheer
volume of learning resources available. Not least among these is the number
of textbooks that teach computer graphics with the help of OpenGL. Search
amazon.com with the keywords “computer graphics opengl” and you’ll see
what we mean. Angel [2], Buss [22], Govil-Pai [60], Hearn & Baker [69],
Hill & Kelley [72] and McReynolds & Blythe [92] are some introductions to
computer graphics via OpenGL that the author has learned much from.

In case the reader prefers not to be distracted by code, here are a few
API-independent introductions: Akenine-Möller, Haines & Hoffman [1],
Foley et al. [47, 48] (the latter being an abridgment of the former), Shirley &
Marschner [130], Watt [147] and Xiang & Plastock [154]. Keeping different
books handy in the beginning is a good idea as, often, when you happen
to be confused by one author’s presentation of a topic, simply turning to
another for help on just that may clear the way.

With regard to the code which comes with this book, we don’t make
much use of OpenGL-defined data types, which are prefixed with GL, e.g.,
GLsizei, GLint, etc., though the red book advocates doing so in order to
avoid type mismatch issues when porting. Fortunately, we have not yet
encountered a problem in any implementation of OpenGL that we’ve tried.

In addition to the code that comes with this book, the reader should
try to acquire OpenGL programs from as many other sources as possible,
as an efficient way to learn the language – any language as a matter of
fact – is by modifying live code. Among the numerous sources on the
web – there are pointers to several coding tutorials at the OpenGL site
[103] – special mention must be made of Jeff Molofee’s excellent tutorials
at NeHe Productions [102], covering a broad spectrum of OpenGL topics,
each illustrated with a well-documented program. The book by Wright,
Lipchak & Haemel [129] is specifically about programming OpenGL and has
numerous example programs. The red book comes with example code as
well. Incidentally, in addition to the somewhat bulky red and blue books, a
handy reference manual for OpenGL is Angel’s succinct primer [3].

Hard-earned wisdom: Write experiments of your own to clarify ideas.
Even if you are sure in your mind that you understand something, do write
a few lines of code in verification. As the author has repeatedly been, you
too might be surprised!
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CHAPTER 3
An OpenGL Toolbox

B
efore getting to animation and other fun stuff in the next chapter,
here are a few practical skills worth acquiring first. Our goal
this chapter is to learn the following frequently-used OpenGL

programming devices:

1. Vertex arrays and their drawing commands: storing geometric data in
a single location for efficient access.

2. Vertex buffer objects: storage for vertex-related data on the graphics
server to save client-to-server transfer time.

3. Vertex array objects: encapsulating the set of calls defining an object’s
vertex arrays.

4. Display lists: “macros” to store frequently-invoked pieces of code.

5. Drawing of text.

6. Programming the mouse – for button clicks, turning the wheel and
mouse motion.

7. Programming non-ASCII keys.

8. Programming pop-up menus.

9. Line stipples: applying patterns to lines.

10. FreeGLUT objects: ready-made library objects.

11. Clipping planes: planes to clip a scene in addition to the automatic
six that bound the viewing box or frustum. 69
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12. gluPerspective(): a more intuitive version of the glFrustum()

projection statement with fewer parameters.

13. Viewports: specifiable parts of the OpenGL window to which a drawing
is rendered.

14. Multiple windows: multiple top-level OpenGL windows.

None is particularly challenging or deep and the reader may choose to
flip quickly through the pages to just see what each is about in order to be
able to return later for how to implement when the need arises.

However, the exceptions we would make to this approach are the first
three sections. The reader should master vertex arrays in Section 3.1 and
begin using them right away. As for vertex buffer objects and vertex array
objects in Sections 3.2-3.3, though we don’t expect the user to code much of
them at first, they are indispensable in the newer versions of OpenGL, e.g.,
4.3 of the fourth generation, which we shall cover in depth down the road,
so the reader should at least make their acquaintance at this time.

The next fourteen sections follow the order of the list.

3.1 Vertex Arrays and Their Drawing
Commands

(a) (b)

Figure 3.1: Screenshots of squareAnnulus1.cpp.

(10, 90)

(30, 70)

(30, 30)

(70, 70)

(70, 30)

(10, 10)

(90, 90)

(90, 10)

Figure 3.2: Square ann-
ulus (z coordinates all 0).

Experiment 3.1. Run squareAnnulus1.cpp. A screenshot is seen in
Figure 3.1(a). Press the space bar to see the wireframe in Figure 3.1(b).

It is a plain-vanilla program which draws the square annulus dia-
grammed in Figure 3.2 using a single triangle strip defined by a giant
glBegin(GL TRIANGLE STRIP)-glEnd() block containing 10 vertices and
their color attributes (the last two vertices being identical to the first two in70
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order to close the strip).
End

Experiment 3.2. Run squareAnnulus2.cpp.
It draws the same annulus as squareAnnulus1.cpp, except that the

vertex coordinates and color data are now separately stored in two-
dimensional global arrays, vertices and colors, respectively. Moreover, in
each iteration, the loop

glBegin(GL_TRIANGLE_STRIP);

for(int i = 0; i < 10; ++i)

{
glColor3fv(colors[i%8]);

glVertex3fv(vertices[i%8]);

}
glEnd();

retrieves a vector of coordinate values by the pointer form (also called vector
form) of vertex declaration, namely, glVertex3fv(*pointer), and as well a
vector of color values with the pointer form glColor3fv(*pointer). End

Compared with squareAnnulus1.cpp, an obvious efficiency gained in
squareAnnulus2.cpp is in placing vertex and color data at one place in the
code to be able simply to point to them from elsewhere. This allows the
triangle strip block, though still containing 10 vertices and their colors, to
be coded as a short loop.

It’s always good practice, as in the last program, to collect and place
data for a program at a single location separate from the procedures which
access the data. Redundancy and consequent errors tend to be eliminated,
memory usage is more efficient, and it’s easier to modularize and debug
those procedures which access data.

OpenGL offers specific devices – the vertex array data structures – which
make it easy and efficient for the user to centralize and share data. Let’s
learn them from live code.

Experiment 3.3. Run squareAnnulus3.cpp.
It again draws the same colorful annulus as before. The coordinates and

color data of the vertices are stored in one-dimensional global vertex arrays,
vertices and colors, respectively, as in squareAnnulus2.cpp, except, now,
the arrays are flat and not 2D (because of the way C++ stores array data,
we could, in fact, have specified vertices and colors as 2D arrays exactly
as in squareAnnulus2.cpp if we had so wanted). End

Now, to the magic: within the triangle strip loop

glBegin(GL_TRIANGLE_STRIP);

for(int i = 0; i < 10; ++i) glArrayElement(i%8);

glEnd(); 71
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the ith vector of values from both coordinates and color arrays are retrieved
simultaneously with a single glArrayElement(i) call.

Note the steps in setting up the vertex arrays in the initialization routine:

1. Two vertex arrays are enabled by calling glEnableClientState(array),
where array is, successively, GL VERTEX ARRAY and GL COLOR ARRAY,
for vertex coordinate and color values, respectively. There are other
possible values for the parameter array to store additional kinds of
vertex data, e.g., normal values and texture coordinates.

2. The data for the two vertex arrays is specified with a call to gl-

VertexPointer(size, type, stride, *pointer) and a call to glColor-

Pointer(size, type, stride, *pointer). The parameter pointer is the
address of the start of the data array, type declares the data type, size
is the number of values per vertex (both coordinate and color arrays
store 3 values for each vertex) and stride is the byte offset between the
start of the values for successive vertices (0 indicates that values for
successive vertices are not separated).

Experiment 3.4. Run squareAnnulus4.cpp.
The code is even more concise with the single call

glDrawElements(GL_TRIANGLE_STRIP, 10, GL_UNSIGNED_INT, stripIndices)

replacing the entire glBegin(GL TRIANGLE STRIP)-glEnd() block. End

The general form of this call is glDrawElements(primitive, count, type,
*indices) where parameter primitive is a geometric primitive, indices is the
address of the start of an array of indices, type is the data type of the indices
array and count is the number of indices to use. What this call does is pick
count number of vertices for primitive from the enabled vertex arrays in the
sequence specified by indices, equivalent, therefore, to the loop

glBegin(primitive);
for(i = 0; i < count; i++) glArrayElement(indices[i]);

glEnd();

Exercise 3.1. (Programming) Rewrite hemisphere.cpp to use vertex
arrays and a loop of glDrawElements() commands.

When there are multiple objects in a scene it’s convenient to keep their
data separately in different vertex arrays, as in the following program.

Figure 3.3: Screenshot of
squareAnnulusAnd-

Triangle.cpp.

Experiment 3.5. Run squareAnnulusAndTriangle.cpp, which adds a
triangle inside the annulus of the squareAnnulus*.cpp programs. See
Figure 3.3 for a screenshot. End

This program demonstrates the use of multiple vertex arrays. The
vertex arrays vertices1 and colors1 contain the coordinate and color data,
respectively, for the annulus, exactly as in squareAnnulus4.cpp.72
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The single vertex array vertices2AndColors2Intertwined for the
triangle, on the other hand, is intertwined in that it contains both coordinate
and color data together. When pointing to data for the triangle, the stride
parameter of both the glVertexPointer() and glColorPointer() calls is
set to 6 times the number of bytes in a float data item, as there are 6
such items between the start of successive coordinate or color vectors in the
intertwined array.

The statement

glDrawArrays(GL_TRIANGLES, 0, 3)

drawing the triangle introduces a new drawing command to use with
vertex arrays. Generally, glDrawArrays(primitive, first, count) draws
the geometric primitive primitive, using count elements from the vertex
array, starting with the element at position first . This is the command of
choice when the drawing needs simply to process elements in a vertex array
linearly, in particular, without needing to bounce around with something
like an indices array supplying an intermediate level of indirection.

Exercise 3.2. (Programming) Rewrite circle.cpp to use vertex
arrays and a single glDrawArrays() command.

0 1 2 3

Vertex  0
Vertex  1
Vertex  2
Vertex  3

Vertex
coords Color Normal 

Texture
coords

Vertex Arrays

x y z
x y z
x y z
x y z

r g b
r g b
r g b
r g b

Index

Figure 3.4: Logical representation of data in vertex arrays.

Vertex arrays make for efficient, logical and conceptually clean OpenGL
code. Figure 3.4 illustrates this (it shows additional vertex attributes which
are also stored in vertex arrays – we’ll be discussing these later). Moreover,
they are mandatory in the latest versions of OpenGL, e.g., 4.3, which we’ll
be covering later on. Make a habit of using vertex arrays! 73
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Caveat : Henceforth, we’ll be implementing vertex arrays consistently
ourselves except, possibly, for programs with few vertices where the overhead
might be a distraction.

Remark 3.1. Commands like glDrawElements() and glDrawArrays() are
for retained mode rendering vs. glBegin()-glEnd()-type commands for
immediate mode rendering. In immediate mode, the client (the machine
running the program) forces rendering by the server (the GPU), while, in
retained mode, the client provides the server only with instructions to perform
and the data to use, allowing the latter to optimize prior to rendering.

Remark 3.2. Keep in mind that the display routine is called repeatedly if
there is animation. It’s particularly inefficient, therefore, and, unfortunately,
a common beginner’s mistake to store static data in this routine, or perform
computations there which actually can be done once initially and the results
saved. The rule is to store vertex attributes in vertex arrays, while the
initialization routine is the place for one-time computation.

Before closing this section we’ll introduce a couple more drawing
commands to use with vertex arrays. The first,

glMultiDrawElements(primitive, *count, type, **indices, primitivesCount)

is a powerlifter with the capacity of multiple glDrawElements(). In fact,
the parameters of glMultiDrawElements() are much as you would expect
in order to combine many

glDrawElements( primitive, count, type, *indices)

calls, each drawing the same geometric primitive primitive: instead of
one count value, now there is an array *count of values; instead of an
array *indices of indexes, now there is an array of arrays **indices;
finally, primitivesCount, of course, is the number of primitives being
drawn, i.e., the number of glDrawElements() calls being combined. The
glMultiDrawElements() call itself is equivalent to

for (int i = 0; i < primitivesCount; i++)

glDrawElements(primitive, count[i], type, indices[i]);

It’s more efficient to draw an object composed of multiple instances of
the same geometric primitive using one (or few) glMultiDrawElements()

calls versus several glDrawElements(). Let’s redo hemisphere.cpp from
the last chapter using a single glMultiDrawElements() command.

Experiment 3.6. Run hemisphereMultidraw.cpp, whose sole purpose is
to draw the loop

for(j = 0; j < q; j++)

{
// One latitudinal triangle strip.

glBegin(GL_TRIANGLE_STRIP);

...

}74



i
i

i
i

i
i

i
i

Section 3.2

Vertex Buffer

Objects

of triangle strips in hemisphere.cpp using the single

glMultiDrawElements(GL_TRIANGLE_STRIP, count, GL_UNSIGNED_BYTE,

(const void **)indices, q)

command instead. End

We’ll leave the reader to deconstruct the code of hemisphereMulti-

draw.cpp, which is fairly straightforward and mostly dedicated to setting up
arrays for the glMultiDrawElements() call. Particularly, the reader should
convince herself that fillIndices() does its job of filling the 2D indices
array correctly (this is the part where one usually needs to be most careful
in transitioning from glDrawElements() to glMultiDrawElements()).

Exercise 3.3. (Programming) If you drew any of the objects from
Exercise 2.38 of the last chapter, redo the code to use glDrawElements(),
or, if possible, glMultiDrawElements().

Finally,

glMultiDrawArrays( primitive, *first, *count, primitivesCount)

is related to glDrawArrays() exactly as glMultiDrawElements() is related
to glDrawElements(): a single glMultiDrawArrays() command can
encapsulate multiple glDrawArrays() commands.

Exercise 3.4. (Programming) Draw the bull’e eye of of Exercise 2.22
of the last chapter using a single glMultiDrawArrays() call.

3.2 Vertex Buffer Objects

OpenGL’s client-server model means that each time the server requires vertex
data – e.g., coordinates, color or such to execute, say, a glDrawElements()
call – it must be fetched from the client. On a PC, for example, this translates
to a transfer across the bus connecting the CPU (the client holding the
application and data) to the GPU (graphics processing unit, being the server
which does the drawing). Now, accessing data across a bus is, typically,
many times slower than accessing it locally. Moreover, the access might even
be redundant if the same data had been retrieved for an earlier command
and, subsequently, not changed. To save such inefficiency, buffer objects
allow the programmer to explicitly ask that some particular set of data,
possibly vertex or pixel, be stored server-side, e.g., in the GPU memory in
case of a PC.

We will focus now on buffer objects that store vertex data, such being
called vertex buffer objects, or VBOs. Let’s get straight to code showing
how to create, initialize and update a VBO. 75
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Experiment 3.7. Fire up squareAnnulusVBO.cpp, which modifies square-
Annulus4.cpp to store vertex-related data in VBOs. There is a simple
animation, too, through periodically changing color values in a VBO.
Figure 3.5 is a screenshot, colors having already changed. End

Figure 3.5: Screenshot of
squareAnnulusVBO.cpp.

Let’s understand how squareAnnulusVBO.cpp works. The setup()

routine is the one to look at first. The call

glGenBuffers(2, buffer)

returns two available buffer IDs which we’ll use to identify two VBOs, in
the array buffer. Generally, a call of the form glGenBuffers(n, buffer)
returns n such IDs. Two vertex arrays, one for coordinate data and the
other for color data, are enabled next by

glEnableClientState(GL_VERTEX_ARRAY);

glEnableClientState(GL_COLOR_ARRAY);

The binding command

glBindBuffer(GL_ARRAY_BUFFER, buffer[VERTICES])

activates the first VBO buffer[VERTICES], the parameter GL ARRAY BUFFER

declaring it to be for vertex data. Next,

glBufferData(GL_ARRAY_BUFFER, sizeof(vertices) + sizeof(colors),

NULL, GL_STATIC_DRAW)

reserves sizeof(vertices) + sizeof(colors) bytes of space for the VBO
currently bound to GL ARRAY BUFFER, that being buffer[VERTICES], of
course. The parameter NULL indicates that the buffer is not at this time
initialized with data. The last parameter GL STATIC DRAW is a usage hint to
the OpenGL system that the data will be specified once and used multiple
times as a source for drawing commands.

The general form of the command glBufferData(target, size, *data,
usage) allocates size bytes of storage to the buffer object currently bound to
target , filling it with application memory data pointed to by *data, provided
this pointer is not NULL, supplying, as well, the usage hint usage. The usage
hint allows the system to optimize the data for performance.

The next two commands

glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(vertices), vertices);

glBufferSubData(GL_ARRAY_BUFFER, sizeof(vertices), sizeof(colors),

colors);

are update commands. In particular, we use them to update the VBO
buffer[VERTICES] with coordinate and color values. What the command
glBufferSubData(target, offset, size, *data) does is copy size bytes of
application data pointed to by *data into the buffer object currently bound
to target, starting at an offset of offset bytes from the start of the buffer. So,76
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the two commands above evidently fill the first half of buffer[VERTICES]
with vertex coordinate values and the latter half with color values.

Next,

glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, buffer[INDICES]);

glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(stripIndices),

stripIndices, GL_STATIC_DRAW);

activate the second VBO buffer[INDICES], the parameter GL ELEMENT -

ARRAY BUFFER declaring it to be for index data, and initialize it with data
from the stripIndices array.

Finally,

glVertexPointer(3, GL_FLOAT, 0, 0);

glColorPointer(3, GL_FLOAT, 0, (GLvoid*)(sizeof(vertices)));

specify vertex pointers as in the discussion following Experiment 3.3; however ,
the final parameter, instead of being a pointer to application memory as in
squareAnnulus4.cpp, now is an offset relative to the start of the currently-
bound VBO.

To the much simpler drawing routine next. The interesting thing to
notice here is another update method, different from glBufferSubData().
Firstly,

float* bufferData = (float*)glMapBuffer(GL_ARRAY_BUFFER, GL_WRITE_ONLY);

retrieves into the variable bufferData a pointer to the data store for the VBO
currently bound to GL ARRAY BUFFER, that being buffer[VERTICES]. The
second parameter GL WRITE ONLY says access will only be to write into the
VBO. The general form of this command is glMapBuffer(target, access),
where target is the target buffer object and access is one of GL READ ONLY,
GL WRITE ONLY and GL READ WRITE.

The loop

for (int i = 0; i < sizeof(colors)/sizeof(float); i++)

bufferData[sizeof(vertices)/sizeof(float) + i]

= (float)rand()/(float)RAND_MAX;

randomly updates color values in buffer[VERTICES], keeping in mind that
the type of bufferData means that we’ll be offsetting into the buffer storage
in units of float size (not byte as earlier). Once updating is done,

glUnmapBuffer(GL_ARRAY_BUFFER)

releases the VBO, following which

glDrawElements(GL_TRIANGLE_STRIP, 10, GL_UNSIGNED_INT, 0); 77
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draws the square annulus. Note, again, that the final parameter, instead of
being a pointer to the start of the index array in application memory, is now
an offset relative to the start of the (index data) VBO.

The reader can at this time safely ignore the functioning of the little
gadget animate(), which we include to periodically update color values and
actually display the changed annulus.

Our next project is to buffer the vertex and index data of hemisphere-

Multidraw.cpp.

Experiment 3.8. Run hemisphereMultidrawVBO.cpp. The code, which
buffers the vertex and index data of hemisphereMultidraw.cpp along the
lines of vbo.cpp, should be intelligible to one who followed our analysis of
the latter program. End

The current program, however, dispenses with the interactivity of
hemisphereMultidraw.cpp, which allowed the user to alter the number
of the hemisphere’s latitudinal and longitudinal slices. The reason is that a
different number of slices requires vertex and index arrays of different sizes
and contents so, therefore, corresponding new VBOs which need to be filled
anew with data from the application, which goes against the “ship data once
and use many times” principle underlying the utility of VBOs.

The problem of multiple data shipments might be circumvented by
reserving space for one giant VBO, but this solution seems not particularly
elegant. We shall learn an efficient way to interactively refine the hemisphere
when we come to the tessellation shaders of fourth generation OpenGL.

The one command of hemisphereMultidrawVBO.cpp we would like
to draw particular attention to, though, is the program’s only drawing
command:

glMultiDrawElements(GL_TRIANGLE_STRIP, count, GL_UNSIGNED_INT,

(const void **)offsets, LAT_SLICES);

In particular, note that the fourth parameter is now a pointer to the array
offsets of offsets in the index VBO to the start of 1D index subarrays, one
subarray per triangle strip. The somewhat ugly (const void **) casting
of offsets in the glMultiDrawElements() command is necessary owing to
the type specification of this command’s parameters.

Exercise 3.5. Modify circle.cpp of the last chapter to use VBOs to hold
vertex data.

Exercise 3.6. (Programming) Continue with Exercise 3.4 to redo the
bull’s eye yet again, this time using VBOs to hold vertex data.

3.3 Vertex Array Objects

A busy scene with many objects, each coded up with its own vertex arrays,
possibly buffered in VBOs as well, will likely require switching multiple times78
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between these sets of arrays and buffers, leading to a proliferation of calls
like, for example, glBindBuffer() and glVertexPointer().

Since version 3.0, OpenGL provides a mechanism to deal with this
problem: a vertex array object , or VAO , is a container to hold all the calls
specifying one or more vertex arrays. So, once all the calls specifying a
particular object’s vertex arrays have been associated with a VAO, one need
only activate that VAO prior to drawing the object; in other words, the
VAO can be thought of as encapsulating the storage states associated with
the object. Let’s get to code.

Experiment 3.9. Run squareAnnulusAndTriangleVAO.cpp. This pro-
gram builds on squareAnnulusVBO.cpp. We add to it the triangle from
squareAnnulusAndTriangle.cpp in order to have two VAOs. Note, however,
that we separate out the vertex coordinates and color arrays of the triangle,
as intertwined they are difficult to manage in a VBO. The outputs of the
current program and squareAnnulusAndTriangle.cpp are identical. End

VAOs are simple to code. The call

glGenVertexArrays(2, vao)

in the initialization routine of squareAnnulusAndTriangleVAO.cpp returns
two available IDs for VAOs in the array vao. Generally, a call of the form
glGenVertexArrays(n, vao) returns n such IDs.

Next, the first block of statements bracketed by a // BEGIN...-//

END... comment pair, namely,

glBindVertexArray(vao[ANNULUS]);

glGenBuffers(2, buffer); // Generate buffer ids.

...

glVertexPointer(3, GL_FLOAT, 0, 0);

glColorPointer(3, GL_FLOAT, 0, (GLvoid*)(sizeof(vertices1)));

begins with the binding command glBindVertexArray(vao[ANNULUS]),
which activates the first VAO vao[ANNULUS]. Then, associated to this VAO
are the rest of the calls in the above block, which are copied line for line from
squareAnnulusVBO.cpp, in particular, from the block dedicated to setting
up the vertex arrays for the square annulus in the latter program.

The next block of statements bracketed by a // BEGIN...-// END...

comment pair, in particular,

glBindVertexArray(vao[TRIANGLE]);

glGenBuffers(1, buffer); // Generate buffer ids.

...

glVertexPointer(3, GL_FLOAT, 0, 0);

glColorPointer(3, GL_FLOAT, 0, (GLvoid*)(sizeof(vertices2)));

likewise associates to the VAO vao[TRIANGLE] all the calls after the first,
setting up vertex arrays for the triangle. 79
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Let’s see now the drawing routine, much simplified courtesy the VAOs.
The two blocks of statement pairs in

glBindVertexArray(vao[ANNULUS]);

glDrawElements(GL_TRIANGLE_STRIP, 10, GL_UNSIGNED_INT, 0);

glBindVertexArray(vao[TRIANGLE]);

glDrawArrays(GL_TRIANGLES, 0, 3);

successively activate the VAOs corresponding to the annulus and the triangle,
drawing these objects. See again the code between the two // BEGIN...-//

END... comment pairs in the initialization routine to appreciate the savings
made in the drawing routine (which would have been even greater had there
been multiple occurrences of the annulus or triangle).

Note that glBindVertexArray(vaoID) creates a new VAO if vaoID has
been freshly returned by a glGenVertexArrays() call, and associates with

it subsequent vertex array specifications. On the other hand, if vaoID is the
ID of an already-created VAO, then glBindVertexArray(vaoID) activates
that VAO.

Exercise 3.7. (Programming) Put the VBOs and related data of
the hemisphere of Experiment 3.8 into a VAO and draw a sphere as one
hemisphere on top of another.

Exercise 3.8. (Programming) Continue with Exercise 3.5 putting all
the data for the circle into a VAO.

Remark 3.3. Important ! Having thus introduced VBOs and VAOs we are,
oddly enough, going to counsel the reader against using them (for now)!
The reason is that the simple (low poly count) programs she, presumably,
is going to be writing for a while will hardly benefit from their usage, not
really justifying, therefore, the added layer of complexity. It’s best to focus
on the fundamentals at this stage. Just keep the resource in mind for when
your data sets get big.

So that you know, though, VBOs and VAOs will truly come into their
own when we study shader-based OpenGL, where using them is mandatory !
But, not to worry as they are nothing conceptually difficult as we have seen.

3.4 Display Lists

A set of commands, e.g., to define an object such as a wheel or robot arm,
which is invoked repeatedly can be cached in a so-called display list . The
display list is stored on the machine which runs the display unit and, often,
pre-compiled and optimized. When the set of commands needs to be invoked,
the program simply calls the display list rather than reissue them.

Display lists are particularly efficient in a client-server environment where
the two communicate over a network and a goal is to minimize traffic. Once80
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a display list has been saved by the server (the machine running the display
unit), it can be invoked on a single command from the client (the machine
running the program).

Another evident advantage of display lists is that they provide a logical
way to encapsulate objects (think classes of objects, say, in C++).

Figure 3.6: Screenshot of
helixList.cpp.

Experiment 3.10. Run helixList.cpp, which shows many copies of the
same helix, variously transformed and colored. Figure 3.6 is a screenshot.
End

Here’s the snippet from the initialization routine of helixList.cpp which
creates the display list to draw the helix:

aHelix = glGenLists(1);

glNewList(aHelix, GL COMPILE);

glBegin(GL LINE STRIP);

for(t = -10 * PI; t <= 10 * PI; t += PI/20.0)

glVertex3f(20 * cos(t), 20 * sin(t), t);

glEnd();

glEndList();

The call glGenLists(range) returns an integer which starts a block of
size range of available display list indices. If a block of size range is not
available, 0 is returned.

The set of commands to be cached in a display list – a helix-
drawing routine in the case of helixList.cpp – is grouped between a
glNewList(listName, mode) and a glEndList() statement. The parameter
listName – aHelix in helixList.cpp – is the index which identifies the list.
The parameter mode may be GL COMPILE (only store, as in the program) or
GL COMPILE AND EXECUTE (store and execute immediately).

Finally, the drawing routine of helixList.cpp invokes glCallList-

(aHelix) six times to execute the display list. The glPushMatrix()-
glPopMatrix() statement pairs, as also the modeling transformations (viz.
glTranslatef(), glRotatef(), glScalef()) within these pairs, are used
to position and scale copies of the helix. Ignore them if they don’t make
sense at present.

Remark 3.4. Display lists should be created (i.e., the glNewList()-glEnd-

List() piece of code should be located) in the initialization routine if one
wants the efficiency of optimization. If the code is in the drawing routine
instead, then, actually, a different display list will be created every frame
at run-time! There is little optimization possible in this case. However, the
benefit of encapsulation from a programming practice point of view stays.

Exercise 3.9. (Programming) Put the hemisphere-drawing routine of
hemisphere.cpp into a display list and call the list twice to make a sphere –
apply the scaling transformation glScalef(1.0, -1.0, 1.0) to one of the
hemispheres to flip it over. 81
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Exercise 3.10. (Programming) Make a ring of concentric circles of
multiple colors on the xy-plane by repeatedly calling a display list containing
a circle-drawing routine based on circle.cpp. Scale each invocation of the
circle by a factor of u with a call to glScalef(u, u, 1.0).

There is a special mechanism in OpenGL to execute several display lists
together.

Figure 3.7: Screenshot of
multipleLists.cpp.

Experiment 3.11. Run multipleLists.cpp. See Figure 3.7 for a
screenshot. Three display lists are defined in the program: to draw a
red triangle, a green rectangle and a blue pentagon, respectively. End

The call glCallLists(n, type, *lists) causes n display list executions
(n is 6 in the program). The indices of the lists to be executed are
obtained by adding the current display list base – this base is specified
by glListBase(base) – to the successive offset values of type type in the
array pointed by lists.

Exercise 3.11. (Programming) Modify multipleLists.cpp to draw
a vertical black line between each object and the next. The line itself should
be in a display list.

3.5 Drawing Text

Graphical text can be of two types: bitmapped (also called raster) and stroke
(also called vector). Characters of bitmapped text are defined as a pattern
of on and off bits in a rectangular block, while characters of stroke text are
created using line primitives. For example, in Figure 3.8, the letter ‘E’ is
represented as a bitmap consisting of 10 on bits and 5 off in a 3 × 5 raster,
as well as in stroke form as a union of four straight segments.

Bitmapped Stroke

Figure 3.8: Bitmapped versus stroke text.

The FreeGLUT library offers both bitmapped and stroke characters. The
calls glutBitmapCharacter(*font, character) and glutStrokeCharacter-

(*font, character) render character in the specified font .
Fonts available for bitmapped characters include:82
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GLUT BITMAP 8 BY 13

GLUT BITMAP 9 BY 15

GLUT BITMAP TIMES ROMAN 10

GLUT BITMAP TIMES ROMAN 24

GLUT BITMAP HELVETICA 10

GLUT BITMAP HELVETICA 12

GLUT BITMAP HELVETICA 18

Fonts available for stroke characters include:
GLUT STROKE ROMAN

GLUT STROKE MONO ROMAN

Stroke characters offer an advantage over bitmapped ones in that they can
be scaled in size and rotated, because line segments can be so transformed,
whereas bitmapped characters, being fixed patterns, are always aligned with
the axes.

Figure 3.9: Screenshot of
fonts.cpp.

Experiment 3.12. Run fonts.cpp. Displayed are the various fonts
available through the FreeGLUT library. See Figure 3.9. End

The canonical routine we use to draw bitmapped text is the following:

void writeBitmapString(void *font, char *string)

{
char *c;

for (c = string; *c != ’\0’; c++) glutBitmapCharacter(font, *c);

}

Accordingly, a subsequent call block

glRasterPos3f(p, q, r);
writeBitmapString(font, string);

renders string in bitmapped font starting from position (p, q , r) in world
coordinates. Keep in mind that these coordinates are transformed by prior
modelview transformations, e.g., glTranslatef(), glRotatef() and such,
though, as we said earlier, the bitmapped text itself is always drawn axis-
aligned.
Our canonical routine to draw stroke text is

void writeStrokeString(void *font, char *string)

{
char *c;

for (c = string; *c != ’\0’; c++) glutStrokeCharacter(font, *c);

}

which renders the text starting from (0, 0, 0) in world coordinates. Note that
in addition to scaling and rotation, one can apply a glLineWidth() call to
alter the thickness of stroke characters as well, as FreeGLUT uses GL LINE*

primitives to draw them. 83
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Exercise 3.12. (Programming) Locate the labels of circularAnnu-
luses.cpp in the white center of each annulus (you may have to split the
labels into more than one line to fit them).

Exercise 3.13. (Programming) Modify fonts.cpp to be able to cycle
through stroke fonts of different line widths by pressing the space bar.

3.6 Programming the Mouse

The mouse can be programmed to respond to button clicks, motion and the
wheel turning.

Clicks

Figure 3.10: Screenshot
of mouse.cpp.

Experiment 3.13. Run mouse.cpp. Click the left mouse button to draw
points on the canvas and the right one to exit. Figure 3.10 is a screenshot of
“OpenGL” scrawled in points. End

A mouse callback routine mouse callback func() is registered to handle
mouse events by the FreeGLUT statement glutMouseFunc(mouse callback func)
in the main routine. In the case of mouse.cpp, the callback routine is
mouseControl():

void mouseControl(int button, int state, int x, int y)

{
if (button == GLUT LEFT BUTTON && state == GLUT DOWN)

points.push back( Point(x, height - y) );

if (button == GLUT RIGHT BUTTON && state == GLUT DOWN) exit(0);

glutPostRedisplay();

}

The callback routine itself has the form mouse callback func(button, state,
x , y), where button is one of:

GLUT LEFT BUTTON, GLUT RIGHT BUTTON, GLUT MIDDLE BUTTON

and state is one of:

GLUT UP, GLUT DOWN

The coordinates (x, y) return the location in the OpenGL window where the
mouse event occurs. They are measured similarly as for screen coordinates –
recall from Section 2.3 that screen coordinates are measured in pixels starting
from the origin at the upper-left corner of the screen with the x-axis heading
right and the y-axis down. The only difference in the case of a mouse click is
that the origin is at the upper-left corner of the OpenGL window, rather than
screen. Units are still pixels and the x-axis still heads right and the y-axis
down. See Figure 3.11. This necessitates care when using the coordinates of84
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Figure 3.11: Mouse event coordinates (x, y).

a mouse event in the OpenGL program itself, because there is no a priori
connection between the former and the world coordinates used by the latter.

In particular, note the following two steps in mouse.cpp:

1. The call

glOrtho(0.0, w, 0.0, h, -1.0, 1.0);

in the reshape routine resize(w, h) ties screen coordinates to world
coordinates by making the dimensions of the viewing face equal the
actual physical dimensions of the OpenGL window, the latter being
passed to the reshape routine via the parameters w and h. Because
viewing face and OpenGL window are now the same size in their
respective coordinate systems (world and screen), effectively, one unit
along the viewing face along either the x- or y-axis is a pixel.

The only correction remaining to be made is owing to the y-axis being
“upside down” going from one coordinate system to the other. This is
done next.

2. The statement

points.push back( Point(x, height - y) );

in the mouse callback routine to store points in the points vector when
the mouse is clicked makes the final correction from the event’s screen
coordinates to world coordinates, as (x, y) on the screen corresponds
to (x, height− y, 0) in the world.

Remark 3.5. A point of note in mouse.cpp is the use of an STL vector to
store Point objects. STL stands for the Standard Template Library , a C++
library of container classes, e.g., vector, list, set and so forth, together with
routines to manipulate container objects. It is a part of the current ANSI
C++ standard. The STL is extremely useful and saves a lot of repetitive
programming. Readers not already familiar with the STL are well-advised
to pick it up. There’s no need to devote time separately for this purpose.
Keeping a book like Schildt [124] handy while you code should be enough. 85
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Exercise 3.14. (Programming) Write a program to draw a circle on a
canvas after two left clicks of the mouse. The first click picks the center and
the second a point on the circle.

Motion

Experiment 3.14. Run mouseMotion.cpp, which enhances mouse.cpp

by allowing the user to drag the just-created point using the mouse with the
left button still pressed. End

The additional capability of mouseMotion.cpp is obtained as follows.
First, when the left mouse button is clicked, the mouse callback routine
mouseControl() stores a point at the clicked position in the variable
currentPoint of type Point. Only when the button is released is the
new point added to the points vector by the same routine.

In the interim, between the press and release of the left mouse button, if
the mouse moves, then its motion is tracked by the mouse motion callback
routine mouseMotion():

void mouseMotion(int x, int y)

{
currentPoint.setCoords(x, height - y);

glutPostRedisplay();

}

This routine simply keeps updating the coordinates of currentPoint with
the current location of the mouse as the latter moves with the button pressed.
The result is that this point, which is drawn separately in the drawScene()

routine, travels with the mouse. Note that, just as the mouse callback
routine is registered in main(), so is the motion callback routine, the latter
by glutMotionFunc(mouseMotion).

One can also track so-called passive motion of the mouse – when it moves
with no button pressed – via a passive motion callback function, which is
registered in main with a glutPassiveMotionFunc() call.

Exercise 3.15. (Programming) Enhance the previous circle-drawing
exercise by allowing the user to view the changing circle as the mouse is
dragged with the second click.

Exercise 3.16. (Programming) Modify mouseMotion.cpp to make a
program which allows the user to sketch on a canvas.

Turning the Wheel

Experiment 3.15. Run mouseWheel.cpp, which further enhances mouse-
Motion.cpp with the capability to change the size of the points drawn by
turning the mouse wheel. End86
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The wheel callback routine

void mouseWheel(int wheel, int direction, int x, int y)

{
(direction > 0) ? pointSize++ : pointSize--;

glutPostRedisplay();

}

updates the wheel number, which is 0 if there is a single wheel; direction of
rotation, which is either +1 or −1; and the location (x, y) of the mouse in
screen coordinates.

To change the size of all drawn points with the wheel, the current
program sets the point size in the drawing routine to be the value of the
global pointSize, rather than the value of the Point member variable
size as in mouseMotion.cpp. And, of course, the wheel callback routine is
registered in main() by glutMouseWheelFunc(mouseWheel).

Exercise 3.17. (Programming) Further enhance the circle-drawing
program by allowing the user to change the circle’s size by scrolling the
mouse wheel.

3.7 Programming Non-ASCII Keys

In various programs to date, we’ve already interacted with the OpenGL
window through keyboard entry by registering a handling function key-
board handling func() in the main routine via a call to glutKeyboard-

Func(keyboard handling func). To interact with non-ASCII keys such
as the arrow, F, and page up and down keys, one needs likewise to
register a handling function special key handling func() with a call to
glutSpecialFunc(special key handling func).

Experiment 3.16. Run moveSphere.cpp, a program we saw earlier in
Experiment 2.23, where you can see a screenshot as well. Press the left,
right, up and down arrow keys to move the sphere, the space bar to rotate
it and ‘r’ to reset.

Note how the specialKeyInput() routine is written to enable the arrow
keys to change the location of the sphere. Subsequently, this routine is
registered in main() as the handling routine for non-ASCII entry. End

Exercise 3.18. (Programming) Write a program to cycle through the
FreeGLUT fonts applied to the string “I am having so much fun with OpenGL
it can’t be legal!” by pressing the left and right arrow keys.

3.8 Menus

The FreeGLUT library provides pop-up menus. 87
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Experiment 3.17. Run menus.cpp. Press the right mouse button for
menu options which allow you to change the color of the initially red square
or exit. Figure 3.12 is a screenshot. End

Figure 3.12: Screenshot
of menus.cpp.

A glutCreateMenu(menu function) declaration in the makeMenu()

routine creates a menu, registers menu function() as its callback function
and returns a unique integer identifying the menu – to be used by any
higher-level menu which may call the current one.

glutAddMenuEntry(tag, returned value) creates a menu entry titled
tag which, when clicked, returns returned value to the callback function
menu function(). The latter, therefore, must be of the form menu function-
(type of returned value).

glutAddSubMenu(tag, sub menu) is similar to glutAddMenuEntry(),
except that when tag is clicked a sub-menu pops up whose ID is sub menu.
Evidently, the statement creating a sub-menu must precede that for a higher-
level menu which calls it, as the former’s ID sub menu is needed in order to
create the latter. So, menus have to be created “bottom-up”.

glutAttachMenu(button) attaches the menu to a mouse button.

Exercise 3.19. (Programming) Enhance menus.cpp to add two more
items to the top-level pop-up menu:

(a) A “Mode” option allowing the rectangle to be shown either “Outlined”
or “Filled”.

(b) A “Size” option which leads to two sub-menu options “Width” and
“Height”, either of which has options “Small”, “Medium” and “Large”.

3.9 Line Stipples

One can create stippled , i.e., broken, lines in OpenGL by specifying and
applying a stipple pattern.

Experiment 3.18. Run lineStipple.cpp. Press the space bar to cycle
through stipples. A screenshot is shown in Figure 3.13. End

Figure 3.13: Screenshot
of lineStipple.cpp.

Stippling is enabled with a call to glEnable(GL LINE STIPPLE) and
disabled by calling glDisable(GL LINE STIPPLE). The stipple pattern itself
is specified by the call glLineStipple(factor, pattern).

Parameter pattern is a hex string of the form 0xX3X2X1X0 where each Xi

is a hexadecimal symbol (equivalent to 4 bits). Thus X3X2X1X0 represents
a 16 bit string, say, a15a14 . . . a0. Parameter factor is a positive integer.

The stipple pattern is applied as follows: if a0 is 1, then the first factor
pixels starting from the first vertex of the line primitive are set on; if a0 is 0,
the first factor pixels are off. If a1 is 1, the next factor pixels of the line are
on; if a1 is 0, they are off. And so on . . .. Note that the lower bits of the
stipple pattern come first and that factor simply scales the pattern.88
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For example, suppose the stipple is specified by glLineStipple(1,

0x5555). Since 0x5555 = 0101010101010101, alternate pixels of the line are
on and off with the first one being on. See Figure 3.14(a).

a0

a0

a0 a0 a0 a0

(a)

(b)

Figure 3.14: (a) Line stipple specified by glLineStipple(1, 0x5555) (b) Line stipple
specified by glLineStipple(5, 0x5555).

If the stipple is specified by glLineStipple(5, 0x5555) then alternate
groups of five pixels on the line are on and off. See Figure 3.14(b).

Exercise 3.20. (Programming) Apply the different line stipples of
lineStipple.cpp to the circle in circle.cpp.

FreeGLUT stroke characters can be stippled to interesting effect as well, as
GL LINE* primitives are used to draw them.

Exercise 3.21. (Programming) Display the text “I am having so much
fun with OpenGL it can’t be legal!” using variously stippled stroke fonts.

A 2D Drawing Program

Figure 3.15: Screenshot
of canvas.cpp.

Experiment 3.19. Run canvas.cpp, a simple program to draw on a flat
canvas with menu and mouse functionality.

Left click on an icon to select it. Then left click on the drawing area to
draw – click once to draw a point, twice to draw a line or rectangle. Right
click for a pop-up menu. Figure 3.15 is a screenshot. End

Exercise 3.22. (Programming) Enhance canvas.cpp:

(a) Add a polyline (multi-segment line) drawing capability. Create
a suitable icon. Left clicking this icon picks the polyline option.
Subsequent left clicks pick successive segment endpoints until a middle
click completes the polyline.

(b) Add a circle drawing capability. After left clicking the circle icon, the
next two left clicks pick the center and a point on the circle, respectively,
following which the circle is drawn.

(c) Add a regular (equal-sided) hexagon drawing capability. After left
clicking the hexagon icon, the next two left clicks pick the center and
a vertex, respectively, following which the hexagon is drawn. 89
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(d) For the existing line segment and rectangle options, as well as for the
new polyline, circle and hexagon options, use mouse motion tracking
to allow the user to see the newly-created primitive change in real-time
as the mouse moves, before it is saved with a final click.

(e) Add functionality to input text from the keyboard.

(f) Give options for the grid size in the pop-up menu.

(g) Add color options through the pop-up menu.

(h) Add an outlined/filled option through the pop-up menu.

(i) For the preceding three parts, make the pop-up menu depend on where
the mouse is right-clicked. In particular, the color option should be
available when any of the primitive icons on the left is clicked; the
filled option, on the other hand, should appear only upon clicking
icons of the 2D primitives, namely, the rectangle, circle and hexagon;
finally, if the click is on the drawing area, then the options are, simply,
grid-clear-quit (grid having a size sub-menu as well). For the color and
filled options, the icon should change as well to represent the choice
made.

A way to make the pop-up menu location-sensitive is by having the
mouse callback routine, rather than the main routine, call the menu-
making routine, so that the latter can access mouse event coordinates.

(j) Here’s something not to do with drawing per se but to get you to
revisit vertex arrays in the first section: the drawGrid() routine draws
lines over a for loop of vertices; use vertex array commands instead.

3.10 FreeGLUT Objects

The FreeGLUT library offers a collection of standard objects. Each object
is available in two flavors: solid and wireframe. The respective calls are
shown in the table below. The objects are all drawn centered at the origin.
The parameters, if any, determine the object’s size and the fineness of
its triangulation. All the FreeGLUT objects are depicted in wireframe in
Figure 3.16.90
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Solid Wireframe
glutSolidSphere(radius, slices, glutWireSphere(radius, slices,
stacks) stacks)
glutSolidCube(size) glutWireCube(size)
glutSolidCone(base, height, glutWireCone(base, height,
slices, stacks) slices, stacks)
glutSolidTorus(inRadius, glutWireTorus(inRadius,
outRadius, sides, rings) outRadius, sides, rings)
glutSolidDodecahedron(void) glutWireDodecahedron(void)
glutSolidOctahedron(void) glutWireOctahedron(void)
glutSolidTetrahedron(void) glutWireTetrahedron(void)
glutSolidIcosahedron(void) glutWireIcosahedron(void)
glutSolidTeapot(size) glutWireTeapot(size)

Figure 3.16: Wireframe FreeGLUT objects.

Experiment 3.20. Run glutObjects.cpp. Press the arrow keys to cycle
through the various FreeGLUT objects and ‘x/X’, ‘y/Y’ and ‘z/Z’ to turn
them. End

3.11 Clipping Planes

We saw in Section 2.4 that OpenGL clips a scene to within a viewing volume
(box or frustum), a process which can be thought of as clipping the scene
off on one side of each of the six planes which bound the volume. These six
planes, called clipping planes, are automatically implied by the projection
statement, such as glOrtho() or glFrustum(), which defines the box or
frustum. However, the programmer can specify additional clipping planes.

The call

glClipPlane(GL CLIP PLANEi, *equation); 91
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specifies an ith additional clipping plane, where equation points to an array
giving the four coefficients of the equation

Ax+By + Cz +D = 0

of the new clipping plane. If this plane is enabled with the call
glEnable(GL CLIP PLANEi), then the points (x, y, z) of objects which lie
in the open half-space

Ax+By + Cz +D < 0

are clipped off; equivalently, only those points (x, y, z) of objects lying in
the closed half-space

Ax+By + Cz +D ≥ 0

are rendered. The ith additional clipping plane is disabled with a call to
glDisable(GL CLIP PLANEi).

Viewer

plane
Ax + By + Cz + D = 0

half-space
Ax + By + Cz + D ≥ 0

half-space
Ax + By + Cz + D < 0

Figure 3.17: A clipping plane clipping a plane in half.

In Figure 3.17, for example, only the front part of the aircraft will be
visible. Although we depict it in the figure, the clipping plane itself is not
drawn by OpenGL.

Experiment 3.21. Run clippingPlanes.cpp, which augments circular-
Annuluses.cpp with two additional clipping planes which can be toggled
on and off by pressing ‘0’ and ‘1’, respectively.92



i
i

i
i

i
i

i
i

Section 3.11

Clipping Planes

The first plane clips off the half-space −z + 0.25 < 0, i.e., z > 0.25,
removing the floating white disc of the annulus on the upper-right. The
second one clips off the half-space x+ 0.5y < 60.0, which is the space below
an angled plane parallel to the z-axis. Figure 3.18 is a screenshot of both
clipping planes activated. End

Figure 3.18: Screenshot
of clippingPlanes.cpp.

Exercise 3.23. (Programming) Change the equations of the two
clipping planes of clippingPlanes.cpp so that enabling both leaves only
the red disc of the upper-right annulus visible.

Example 3.1. Replace the data

double eqn0[4] = 0.0, 0.0, -1.0, 0.25;

for the first clipping plane of clippingPlanes.cpp with

double eqn0[4] = 0.0, 0.0, 1.0, -0.25;

Apparently, we are replacing −z+0.25 = 0 with z−0.25 = 0, which are both
equations of the same plane. Why, then, is the result of clipping different
for the two?

Answer : The half-space clipped, given the equation −z + 0.25 = 0, is
−z + 0.25 < 0, i.e., z > 0.25. On the other hand, the half-space clipped,
given the equation z − 0.25 = 0, is z − 0.25 < 0, i.e., z < 0.25.

Figure 3.19: Screenshot
of sphereInBox1.cpp with
a corner clipped off.

Exercise 3.24. (Programming) Add a clipping plane to sphereIn-

Box1.cpp (see Chapter 11, ignore lighting) to clip off a corner of the box,
revealing the sphere inside. Your output should look like Figure 3.19.

Exercise 3.25. (Programming) Add a clipping plane to moveSphere.cpp
to turn the movable sphere into a movable hemisphere.

Figure 3.20: Clipping a
sphere to make a
hemisphere: the clipped
half is computed and
suppressed.

Clipping planes cause OpenGL not to display parts of an object which
are otherwise computed. For example, if one draws a hemisphere by clipping
off half a FreeGLUT sphere, then OpenGL first computes geometric data
(vertices, etc.) for the entire sphere and then suppresses the part on one
side of the clipping plane before rendering. See Figure 3.20. Clearly, this is
doubly inefficient for the suppressed part, as OpenGL computes the location
of each of its vertices, and then computes again to decide that they are
actually invisible!

Keep in mind as well that clipping planes don’t act just on any one
object, but across the whole scene. So, a careless programmer could very
well end up unintentionally slicing a remote object. Clipping planes though
are ideal for the purpose of displaying a cut-away view of an object, as in
Figure 3.19.

Bottom line: Use clipping planes as a viewing and not a drawing device. 93
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3.12 gluPerspective()

The statement

gluPerspective(fovy, aspect, near, far);

calls a utility library routine built on top of glFrustum(), the perspective
projection command introduced in Section 2.8. It creates a viewing frustum
as does glFrustum(). However, the frustum is specified differently:

(0, 0, 0)

fovy

width

he
ig

ht

viewing frustum

viewing face on the
plane z = −near

base on the
plane z = −far

x

y

z

Figure 3.21: Viewing frustum created by gluPerspective(fovy, aspect, near, far).

The parameter fovy , called the field of view angle, is the angle along the
yz-plane at the apex of the pyramid (of which the frustum is a truncation);
aspect is the aspect ratio = width/height of the front face of the frustum;
and near and far remain as for glFrustum(). See Figure 3.21. These four
parameters it turns out are, in fact, enough for OpenGL to determine the
eight vertices of a frustum which is symmetric about the z-axis, in other
words, a frustum corresponding to a

glFrustum(left, right, bottom, top, near, far);

call where left = −right and bottom = −top. Such frustums are, in fact,
most typical in applications and rarely does one have occasion to create one
not symmetric about the z-axis.94
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Example 3.2. The projection statement of hemisphere.cpp is the
symmetric

glFrustum(-5.0, 5.0, -5.0, 5.0, 5.0, 100.0);

Determine the equivalent gluPerspective() call.

z

y
frustum

(0, 5, −5)

(0
, 0

, 0
)

(0, 0, −5)45o

(0, −5, −5)

5
5

5

viewing

Figure 3.22: Section by
the yz-plane (i.e., x = 0
plane) of the viewing
frustum (bold) created by
glFrustum(-5.0, 5.0,

-5.0, 5.0, 5.0, 100.0).

Answer : The aspect ratio of the front face of the frustum created by
glFrustum(-5.0, 5.0, -5.0, 5.0, 5.0, 100.0) is 1 as both its width
(= right− left) and height (= top− bottom) are 10.0. To determine fovy,
see Figure 3.22, which shows the section of the viewing frustum by the
yz-plane. By elementary trigonometry the half-angle at the apex is 45◦, so
that fovy = 90.0. Therefore, the equivalent call is

gluPerspective(90.0, 1.0, 5.0, 100.0);

Check it out! Replace the current glFrustum() projection statement of
hemisphere.cpp with the gluPerspective() statement just computed.

Exercise 3.26. Change the near value of the projection statement of
hemisphere.cpp as follows:

glFrustum(-5.0, 5.0, -5.0, 5.0, 10.0, 100.0);

Determine the equivalent gluPerspective() call.

Exercise 3.27. Determine the equivalent glFrustum() call of the following
projection statement:

gluPerspective(60.0, 2.0, 10.0, 100.0);

Hint : Use trigonometry in the yz-section to determine first the top and
bottom values and then the aspect ratio to determine left and right.

Whether to define a perspective projection by a glFrustum() or a
gluPerspective() call is a matter of personal preference. As we’ve seen,
they are equivalent provided one is interested only in frustums symmetric
about the z-axis.

However, a convenience of gluPerspective() in certain applications
arises from the fact that the aspect ratio of the viewing face is an explicit
parameter, making it easy to bind it to the aspect ratio of the OpenGL
window itself. This comes in handy if you recall the final step of the rendering
process when the viewing face is scaled to fit onto the OpenGL window –
resulting in distortion if the aspect ratios of the two differ. Let’s see this in
code.

Experiment 3.22. Run hemisphere.cpp.
The initial OpenGL window is a square 500× 500 pixels. Drag a corner

to change its shape, making it tall and thin. The hemisphere is distorted
to become ellipsoidal (Figure 3.23(a)). Replace the perspective projection
statement 95
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glFrustum(-5.0, 5.0, -5.0, 5.0, 5.0, 100.0);

with

gluPerspective(90.0, 1.0, 5.0, 100.0);

As this is equivalent to the original glFrustum() call, there is still distortion
if the window’s shape is changed. Next, replace the projection statement
with

gluPerspective(90.0, (float)w/(float)h, 5.0, 100.0);

which sets the aspect ratio of the viewing frustum equal to that of the
OpenGL window. Resize the window – the hemisphere is no longer distorted
(Figure 3.23(b))! End

(a) (b)

Figure 3.23: Screenshots of hemisphere.cpp with the window squished and the
projection statement (a) glFrustum(-5.0, 5.0, -5.0, 5.0, 5.0, 100.0) and
(b) gluPerspective(90.0, (float)w/(float)h, 5.0, 100.0).

3.13 Viewports

The viewport of a scene is that region of the OpenGL window in which it is
drawn. By default, it is the entire window. However, a glViewPort() call
may be used to draw to a smaller rectangular subregion.

The call glViewport(x, y, w, h) specifies the viewport as the rectan-
gular subregion of the OpenGL window which has its lower-left corner at
the point (x, y), and is of width w and height h. Units are pixels and the
coordinates in the OpenGL window are such that the origin is located at the
lower-left corner, the increasing direction of the x-axis is rightwards, and
that of the y-axis upwards. See Figure 3.24.

Multiple viewports can be created in a single OpenGL window by invoking
more than one glViewport() call in the drawing routine. The contents of96



i
i

i
i

i
i

i
i

Section 3.14

Multiple Windows

Computer Screen

OpenGL Window

(width, height)

he
ig

ht

(0, 0)

width

View-
port h

w

x

y

(x, y)

Figure 3.24: Viewport specified by glViewport(x, y, w, h).

a particular viewport are defined by the statements following its defining
glViewport() call and before the next one (if any).

Figure 3.25: Screenshot
of viewports.cpp.

Experiment 3.23. Run viewports.cpp where the screen is split into two
viewports with contents a square and a circle, respectively. Figure 3.25 is a
screenshot.

A vertical black line is drawn (in the program) at the left end of the
second viewport to separate the two. As the aspect ratio of both viewports
differs from that of the viewing face, the square and circle are squashed
laterally. End

Viewports are particularly useful in games to show split-screen views of
different scenes, or perhaps the same scene from different cameras. We’ll see
a nice application of this in the program spaceTravel.cpp coming up in
the next chapter, where the user maneuvers a spacecraft through an asteroid
field with a split-screen view in the OpenGL window – one from a global
fixed camera and the other from the craft itself.

Exercise 3.28. (Programming) Change the orthographic projection
statement of viewports.cpp so that the square and circle are no longer
distorted.

Exercise 3.29. (Programming) Create a 2×2 grid of four equally-sized
viewports with one of the words “This”, “is”, “so” and “easy” in each. Add
lines to separate the viewports.

3.14 Multiple Windows

The glutCreateWindow() call of the FreeGLUT library may be invoked
more than once in the main routine to create multiple top-level OpenGL
windows. Each call to glutCreateWindow() returns an integer id which is
then passed to a glutSetWindow(id) call in the display routine to determine
the current drawing window. Properties such as the display routine, resize
routine, etc., of each top-level window may be specified independently. 97
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Figure 3.26: Screenshot of windows.cpp.

Experiment 3.24. Run windows.cpp, which creates two top-level win-
dows (Figure 3.26). End

Exercise 3.30. (Programming) Create three top-level windows with
red, green and blue backgrounds, and containing the words “Red”, “Green”
and “Blue”, respectively.

3.15 Summary, Notes and More Reading

In this chapter we learned a number of different coding utilities, none difficult,
but all useful. Vertex arrays and their access commands are particularly
important for efficient OpenGL code and the reader should make a practice
of using them. The coverage of syntax was by no means complete, nor was
it meant to be.

For OpenGL utilities the reader should refer to the red and blue books for
a full description. FreeGLUT’s home page [49] doesn’t seem to have much by
way of documentation but Lighthouse 3D [87] has a tutorial on FreeGLUT’s
predecessor GLUT which applies to FreeGLUT. NeHe Productions [102] has,
among many, tutorials on fonts and display lists.

Keep in mind that the purpose of GLUT originally, as of FreeGLUT
now, is to provide a few easy-to-use platform-independent utilities to build
a simple GUI, not provide a full-featured suite.

Programmers who do require sophisticated interfaces should employ
platform-specific utilities, e.g., the MFC Library for Windows. Readers may
also find helpful Paul Rademacher’s GLUI User Interface Library [57], which
provides a collection of GLUT-based utilities such as buttons and checkboxes.
Trolltech’s Qt [142] may be of interest to those planning commercial-grade
GUI’s.

98
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CHAPTER 4
Transformation, Animation and
Viewing

T
he goal for this chapter is to understand how to move and manipulate
objects, and maneuver the camera, skills essential to making movies
and games. OpenGL provides the laboratory for us to explore. The

modeling transformations of OpenGL – including translation, scaling and
rotation – control object motion, while the viewing transformation manages
the camera. We’ll examine the syntax of the transformation commands and
how they are composed and applied to achieve animation. To efficiently and
creatively animate it’s essential to have some grasp of its implementation, so
we’ll examine parts of OpenGL’s animation engine as well. An experiment-
discuss-repeat approach is used throughout, each new idea introduced and
illustrated with the help of live code.

When objects move, especially in an interactive and unscripted environ-
ment like that of a game, they can collide. We’ll discuss collision detection,
therefore, in the context of animation. Related to animation as well is the
notion of the orientation of an object, which we’ll see how to quantify.

Section 4.1 introduces the three modeling transformations – translation,
rotation and scaling. Sections 4.2 and 4.3 discuss composing transformations
and how such composition places multiple objects relative to one another.
The modelview matrix stack facilitates the application of transformations
to multiple objects, as we see in Section 4.4. Section 4.5 analyzes a few
instructional animation programs and concludes with a bunch of exercises.

The viewing transformation is introduced in Section 4.6. After grasping
its functioning we find that a viewing transformation is actually a bit of a
“fake”, being simulated by OpenGL with the help of modeling transformations.
An understanding of the viewing transformation leads to a preliminary 101
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discussion in Section 4.6, as well, of orientation and how it is specified by
Euler angles. We present as well an application of the viewing transformation
to animate a camera, together with rudimentary collision detection, in a
space-travel program.

More animation code, including programs to develop key-frame animation
sequences for a man-like articulated figure, as well as simple shadow
animation, is presented in Section 4.7.

Section 4.8 describes methods to enable a user to choose an object on
the screen with a mouse-like device, a facility critical in interactive programs
like games. Section 4.9 concludes the chapter with a summary, notes and
suggestions for more reading.

This chapter is a longish slog but it gets you well on the way to designing
realistic 3D applications.

4.1 Modeling Transformations

Translation, scaling and rotation, the so-called modeling transformations of
OpenGL, are applied to objects to change their location and shape.

4.1.1 Translation

Figure 4.1: Screenshot of
box.cpp.

Experiment 4.1. Run box.cpp, which shows an axis-aligned – i.e., with
sides parallel to the coordinate axes – FreeGLUT wireframe box of dimensions
5× 5× 5. Figure 4.1 is a screenshot. Note the foreshortening – the back of
the box appears smaller than the front – because of perspective projection
in the viewing frustum specified by the glFrustum() statement.

Comment out the statement

glTranslatef(0.0, 0.0, -15.0);

What do you see now? Nothing ! We’ll explain why momentarily. End

The translation command glTranslatef(p, q, r) translates an object
p units in the x-direction, q units in the y-direction and r units in the
z-direction. Precisely, each point (x, y, z) of the object is mapped to the
point (x + p, y + q, z + r). See Figure 4.2, which also shows a whole box
translated by glTranslatef(p, q, r).

Returning to box.cpp, the command glutWireCube(5.0) itself creates
a box of side length 5 centered at the origin, with vertices, therefore, at
(±2.5,±2.5,±2.5), each vertex corresponding to one of the eight possible
combinations of signs. The box clearly lies entirely outside the viewing
frustum specified by glFrustum(-5.0, 5.0, -5.0, 5.0, 5.0, 100.0) –
in fact, entirely on the clipped side of the viewing plane z = −5. However,
glTranslatef(0.0, 0.0, -15.0) pushes the box 15 units in the −z
direction, to place it inside the viewing frustum and make it visible (see102
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x

y

z

(x+p, y+q, z+r)

(x, y, z)

Figure 4.2: Translation: glTranslatef(p, q, r).

Figure 4.3). That is why commenting out this statement results in a blank
window.

glutWireCube(5.0)

glTranslate(0.0, 0.0, −15.0)

x

y

z

Figure 4.3: Translating into the viewing frustum.

Experiment 4.2. Successively replace the translation command of
box.cpp with the following, making sure that what you see matches your
understanding of where the command places the box. Keep in mind
foreshortening, as well as clipping to within the viewing frustum. 103
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1. glTranslatef(0.0, 0.0, -10.0)

2. glTranslatef(0.0, 0.0, -5.0)

3. glTranslatef(0.0, 0.0, -25.0)

4. glTranslatef(10.0, 10.0, -15.0)

End

Exercise 4.1. To what point is (−2.0, 3.0, 9.0) transformed by gl-

Translatef(3.0, 1.0, -8.0)?

Exercise 4.2. What is the OpenGL translation that takes (3.0,−1.0, 2.0)
to (3.0, 5.0, 9.0)?

4.1.2 Scaling

Figure 4.4: Screenshot of
Experiment 4.3.

Experiment 4.3. Add a scaling command, in particular, replace the
modeling transformation block of box.cpp with (Block 1∗):

// Modeling transformations.

glTranslatef(0.0, 0.0, -15.0);

glScalef(2.0, 3.0, 1.0);

Figure 4.4 is a screenshot – compare with the unscaled box of Figure 4.1.
End

Remark 4.1. The glTranslatef(0.0, 0.0, -15.0) call is retained to
“kick” the scaled box into the viewing frustum.

Precisely, the scaling command glScalef(u, v, w) maps each point
(x, y, z) of an object to the point (ux, vy, wz). This has the effect of stretching
objects by a factor of u in the x-direction, v in the y-direction, and w in the
z-direction. See Figure 4.5.

(ux, vy, wz)

x

y

z

(x, y, z)

Figure 4.5: Scaling:
glScalef(u, v, w).

Let’s see how the box is transformed by scaling in the preceding
experiment. The vertices of the scaled box are obtained from the original ones
by the transformation (x, y, z) 7→ (2x, 3y, 1z). For example, (2.5, 2.5, 2.5) 7→
(5.0, 7.5, 2.5), (−2.5, 2.5, 2.5) 7→ (−5.0, 7.5, 2.5), and so on. So, the new
vertices are (±5.0,±7.5,±2.5), which gives a 10× 15× 5 box as one would
expect from applying glScalef(2.0, 3.0, 1.0) to a 5× 5× 5 box.

Experiment 4.4. An object less symmetric than a box is more interesting
to work with. Care for a teapot? Accordingly, change the modeling
transformation and object definition part of box.cpp to (Block 2):

∗To cut-and-paste you can find the block in text format in the file
chap4codeModifications.txt in the directory ExperimenterSource/CodeModifications.104
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// Modeling transformations.

glTranslatef(0.0, 0.0, -15.0);

glScalef(1.0, 1.0, 1.0);

glutWireTeapot(5.0); // Teapot.

Of course, glScalef(1.0, 1.0, 1.0) does nothing and we see the original
unscaled teapot (Figure 4.6).

Next, successively change the scaling parameters by replacing the scaling
command with the ones below. In each case, make sure your understanding
of the command matches the change that you see in the shape of the teapot.

1. glScalef(2.0, 1.0, 1.0)

2. glScalef(1.0, 2.0, 1.0)

3. glScalef(1.0, 1.0, 2.0) End Figure 4.6: Screenshot of
initial configuration of
Experiment 4.4.Exercise 4.3. (Programming) Continuing with the preceding experi-

ment, try to guess first, for the scalings below, each of which has at least one
negative parameter, the difference you will see from the initial configuration
shown in Figure 4.6.
Hint : The transformation (x, y, z) 7→ (−x, y, z), for instance, is a mirror-like
reflection about the yz-plane. See Figure 4.7.

O

y

z

x

(x
, y

, z
)

(−
x,

 y
, z

)

Figure 4.7: Reflection in
the yz-plane.

4. glScalef(-1.0, 1.0, 1.0)

5. glScalef(1.0, -1.0, 1.0)

6. glScalef(1.0, 1.0, -1.0)

7. glScalef(-1.0, -1.0, 1.0)

Exercise 4.4. (Programming) Continue with the preceding exercise
and replace the scaling command with the following, each of which has a
zero parameter:

8. glScalef(1.0, 1.0, 0.0)

Hint : The transformation

(x, y, z) 7→ (1x, 1y, 0z) = (x, y, 0)

“collapses” all z-values to 0.0.

9. glScalef(1.0, 0.0, 1.0)

10. glScalef(0.0, 1.0, 1.0) 105
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Not very interesting the last two! A scaling transformation where one or
more of the scaling factors is zero is said to be degenerate. Although not
common, there is the occasional application where a degenerate scaling
transformation comes in handy. We’ll see one such in drawing a shadow
later in this chapter in Experiment 4.35.

Exercise 4.5. To what point is (−2.0, 3.0, 9.0) transformed by glScalef-

(3.0, 1.0, -8.0)?

Exercise 4.6. What is the OpenGL scaling that transforms (3.0,−1.0, 2.0)
to (3.0, 5.0, 9.0)?

We have so far scaled only FreeGLUT wire cubes and teapots, whose
own axes are aligned with the coordinate axes, so that, effectively, they are
only stretched and not skewed. Let’s try one that’s not so aligned.

(a) (b)

Figure 4.8: Screenshots of Experiment 4.5: (a) before scaling (b) after.

Experiment 4.5. Replace the cube of box.cpp with a square whose sides
are not parallel to the coordinate axes. In particular, replace the modeling
transformation and object definition part of that program with (Block 3):

// Modeling transformations.

glTranslatef(0.0, 0.0, -15.0);

// glScalef(1.0, 3.0, 1.0);

glBegin(GL LINE LOOP);

glVertex3f(4.0, 0.0, 0.0);

glVertex3f(0.0, 4.0, 0.0);

glVertex3f(-4.0, 0.0, 0.0);

glVertex3f(0.0, -4.0, 0.0);

glEnd();

See Figure 4.8(a). Verify by elementary geometry that the line loop forms a
square with sides of length 4

√
2 angled at 45◦ to the axes.106



i
i

i
i

i
i

i
i

Section 4.1

Modeling

Transformations

Uncomment the scaling. See Figure 4.8(b). The square now seems
skewed to a non-rectangular parallelogram. Mathematically verify that the
new vertices after the transformation (x, y, z) 7→ (x, 3y, z) is applied to the
square’s vertices are indeed those of a parallelogram. End

4.1.3 Rotation

Figure 4.9: Screenshot
for Experiment 4.6.

Experiment 4.6. Add a rotation command by replacing the modeling
transformation and object definition part – we prefer a teapot – of box.cpp
with (Block 4):

// Modeling transformations.

glTranslatef(0.0, 0.0, -15.0);

glRotatef(60.0, 0.0, 0.0, 1.0);

glutWireTeapot(5.0);

Figure 4.9 is a screenshot.
The rotation command glRotatef(A, p, q, r) rotates each point of

an object about an axis from the origin O = (0, 0, 0) to the point (p, q, r).
The amount of rotation is A◦, measured counter-clockwise looking from
(p, q, r) to the origin. In this experiment, then, the rotation is 60◦ CCW
(counter-clockwise) looking down the z-axis. End

P

P´

Figure 4.10: Turning
along a cylinder.

If the intuitive idea you have of rotating a point P about an axis is of the
point turning along a cylinder on that axis as in Figure 4.10, then, well, you
are perfectly correct. What we’ll do next, though, is describe the rotation
glRotatef(A, p, q, r) as a physical process for which we, hopefully, can
find a formula.

Refer to Figure 4.11 as you read on. Assume (p, q, r) 6= O so that the
axis l through (p, q, r) and the origin O can indeed be drawn; in fact, if
(p, q, r) = O then glRotatef(A, p, q, r) is not a valid operation. Now,
first, if a given point P lies on l itself then the situation is simple – the
rotation does not move it. Suppose, then, that P does not lie on l. Here’s
how it’s mapped by the rotation:

1. Drop the perpendicular from P to the point Q on l. Denote as L the
segment PQ. L lies on the plane h perpendicular to l through Q.

2. Locate a viewer at V far enough along l, on the side of (p, q, r), as to
be able to see h when looking toward the origin.

3. Rotate the segment L about Q (on the plane h) an angle A◦ counter-
clockwise, as measured by the viewer.

4. If L′ is the new position of L after rotation, then P is mapped to the
corresponding endpoint P ′ of L′. 107
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Q

z

x

y

h

VL

(p, q, r)

Ao

1

O

P

P´ L´

Figure 4.11: Rotation: glRotatef(A, p, q, r). The point P is rotated according to
the 4-step process in the text. The rotation of a box is also shown.

Note: In Experiment 4.6, the axis of rotation, the z-axis, happens to intersect
the object rotated, which is the teapot.

Experiment 4.7. Continuing with Experiment 4.6, successively replace
the rotation command with the ones below, in each case trying to match
what you see with your understanding of how the command should turn the
teapot. (It can occasionally be a bit confusing because of the perspective
projection.)

1. glRotatef(60.0, 0.0, 0.0, -1.0)

2. glRotatef(-60.0, 0.0, 0.0, 1.0)

3. glRotatef(60.0, 1.0, 0.0, 0.0)

4. glRotatef(60.0, 0.0, 1.0, 0.0)

5. glRotatef(60.0, 1.0, 0.0, 1.0) End

The alert reader probably noticed in the 4-step definition of rotation
earlier, that the purpose of the point (p, q, r), apart from specifying the axis
l joining it to the origin, is to specify the side of the origin on l that the
viewer is located. If (p, q, r) were replaced by another point (p′, q′, r′) on l
on the same side of O as (p, q, r), then the rotation would be exactly same .
This is illustrated in the next experiment.

Experiment 4.8. Appropriately modify box.cpp to compare the effects
of each of the following pairs of rotation commands:

1. glRotatef(60.0, 0.0, 0.0, 1.0) and glRotatef(60.0, 0.0, 0.0,

5.0)108
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2. glRotatef(60.0, 0.0, 2.0, 2.0) and glRotatef(60.0, 0.0, 3.5,

3.5)

3. glRotatef(60.0, 0.0, 0.0, -1.0) and glRotatef(60.0, 0.0, 0.0,

-7.5)

There is no difference in each case. One concludes that the rotation command
glRotatef(A, p, q, r) is equivalent to glRotatef(A,αp, αq, αr), where α is
any positive scalar. End

Exercise 4.7. Relate the three commands glRotatef(A, p, q, r), gl-

Rotatef(−A, p, q, r) and glRotatef(A, βp, βq, βr), where β is a negative
scalar.

Now, the general formula for how a point P = (x, y, z) is mapped by
the rotation glRotatef(A, p, q, r) is complicated – in fact, significantly
more so than the corresponding formulae in case of translation and scaling.
Nevertheless, we’ll ask the reader to derive the formula in the three simple
cases where the rotation is about a coordinate axis. We’ll defer the general
formula to the next chapter.

Exercise 4.8. Deduce the formula for how P = (x, y, z) is mapped by
each of the rotations:

(a) glRotatef(A, 1.0, 0.0, 0.0)

(b) glRotatef(A, 0.0, 1.0, 0.0)

(c) glRotatef(A, 0.0, 0.0, 1.0)

Part answer : See Figure 4.12 for (c). The axis of rotation is the z-axis. The
point P = (x, y, z) is mapped to P ′ = (x′, y′, z′). We’ll find expression for
x′, y′ and z′ in terms x, y, z and the angle parameter A.

Draw L = PQ, the perpendicular from P to the z-axis. Further, draw
the line k through Q parallel to the x-axis and the perpendicular PR from
P to k. If ∠PQR = α, then

x = |RQ| = |L| cosα

y = |RP | = |L| sinα

Now, the rotated segment L′ = P ′Q makes an angle of α+A with k, so that
∠P ′QR′ = α + A, where R′ is the foot of the perpendicular from P ′ to k.
Therefore,

x′ = |L′| cos(α+A) = |L| cos(α+A)

y′ = |L′| sin(α+A) = |L| sin(α+A) 109
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k
R

Q

L P(x, y, z)

P´(x´, y´, z´)

R´

(0, 0, 1)

α

A

L´

Figure 4.12: glRotatef(A, 0.0, 0.0, 1.0).

as |L′| = |L| because rotation does not change length. Apply trigonometric
formulae to expand the rightmost sides of the two equations above:

x′ = |L| cosα cosA− |L| sinα sinA = x cosA− y sinA

y′ = |L| cosα sinA+ |L| sinα cosA = x sinA+ y cosA

using the expressions for x and y derived earlier. And, of course,

z′ = z

because rotation about the z-axis does not change the z-value.

Exercise 4.9. To what point is (2.0, 3.0, 9.0) transformed by

(a) glRotatef(90.0, 0.0, 0.0, 1.0)?

(b) glRotatef(90.0, 0.0, 0.0, 5.0)?

(c) glRotatef(90.0, 0.0, 0.0, -5.0)?

(d) glRotatef(60.0, 0.0, 0.0, 1.0)?

(e) glRotatef(180.0, 0.0, 1.0, 0.0)?

(f) glRotatef(45.0, 1.0, 0.0, 0.0)?

4.2 Composing Modeling Transformations

In most of the previous experiments we successively applied more than
one modeling transformation to an object – a translation plus one other –
but never explained exactly how it is that OpenGL goes about composing
multiple transformations. There is magic to this as we’ll see, but first a
couple of motivating experiments.110
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Experiment 4.9. Apply three modeling transformations by replacing the
modeling transformations block of box.cpp with (Block 5):

// Modeling transformations.

glTranslatef(0.0, 0.0, -15.0);

glTranslatef(10.0, 0.0, 0.0);

glRotatef(45.0, 0.0, 0.0, 1.0);

It seems the box is first rotated 45◦ about the z-axis and then translated
right 10 units. See Figure 4.13(a). The first translation glTranslatef(0.0,

0.0, -15.0), of course, serves to “kick” the box down the z-axis into the
viewing frustum.

Next, interchange the last two transformations, namely, the rightward
translation and the rotation, by replacing the modeling transformations
block with (Block 6):

// Modeling transformations.

glTranslatef(0.0, 0.0, -15.0);

glRotatef(45.0, 0.0, 0.0, 1.0);

glTranslatef(10.0, 0.0, 0.0);

It seems that the box is now first translated right and then rotated about
the z-axis causing it to “rise”. See Figure 4.13(b). End

(a) (b)

Figure 4.13: Screenshots from Experiment 4.9.

Exercise 4.10. (Programming) Again, apply three modeling trans-
formations, this time by replacing the modeling transformations block of
box.cpp with (Block 7):

// Modeling transformations.

glTranslatef(0.0, 0.0, -15.0);

glRotatef(45.0, 0.0, 0.0, 1.0);

glScalef(1.0, 3.0, 1.0); 111
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Interchange the rotation and scaling by replacing the modeling transforma-
tion block with (Block 8):

// Modeling transformations.

glTranslatef(0.0, 0.0, -15.0);

glScalef(1.0, 3.0, 1.0);

glRotatef(45.0, 0.0, 0.0, 1.0);

Keeping the conclusions of the preceding experiment in mind, can you explain
what you see?

Apparently transformations are applied to an object in backward order
through the code from where the object is created! This is correct
and, hopefully, once it’s explained how the OpenGL engine composes
transformations, will not seem as idiosyncratic as it might at first.

We need, though, a quick acquaintance first with a concept which will
be discussed in depth in the next chapter – that transformations correspond
to matrices. We’ll present here just enough that the reader can follow
along. Our goal is a conceptual understanding of how transformations are
composed.

A vertex V = (x, y, z) is represented in OpenGL as a 4×1 column matrix
x
y
z
1


Take that extra 1 in the 4th row for granted for now – it’s to do with so-called
homogeneous coordinates. We’ll use V to denote this column matrix as well.

A modeling transformation t is represented by a 4× 4 matrix of the form

M =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a24
a41 a42 a43 a44


Applying this transformation to the vertex V consists of multiplying V from
the left by the transformation matrix. In particular, V is transformed by t
to the vertex t(V ) where

t(V ) = MV =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a24
a41 a42 a43 a44



x
y
z
1



=


a11x+ a12y + a13z + a14
a21x+ a22y + a23z + a24
a31x+ a32y + a33z + a24
a41x+ a42y + a43z + a44


Here’s an example.112
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Example 4.1. The transformation t1 given by the translation command
glTranslatef(5.0, 0.0, 0.0) corresponds to the matrix

M1 =


1.0 0.0 0.0 5.0
0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0


This is verified by the multiplication

1.0 0.0 0.0 5.0
0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0



x
y
z
1

 =


x+ 5.0
y
z
1


Similarly, verify that the transformation t2 given by the translation command
glTranslatef(0.0, 10.0, 0.0) corresponds to the matrix

M2 =


1.0 0.0 0.0 0.0
0.0 1.0 0.0 10.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0


Now, if one applies t2 followed by t1 to a vertex V , then V is mapped as
follows:

V 7→ t1(t2(V )) = M1(M2V ) = (M1M2)V

(the associativity of matrix multiplication was applied in the second equality).
The skeptical reader may multiply matrices as below to verify that

(M1M2)V =




1.0 0.0 0.0 5.0
0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0




1.0 0.0 0.0 0.0
0.0 1.0 0.0 10.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0




x
y
z
1



=


1.0 0.0 0.0 5.0
0.0 1.0 0.0 10.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0



x
y
z
1



=


x+ 5.0
y + 10.0

z
1


which indeed corresponds to how (x, y, z) is transformed by the code sequence

glTranslatef(5.0, 0.0, 0.0);

glTranslatef(0.0, 10.0, 0.0); 113
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Put simply, the matrix of the composition of two transformations is the
product of their matrices. This generalizes. If one applies successively the
transformations tn, tn−1, . . . , t1 (in that order, tn being first) to a vertex V ,
then it is mapped to

t1(t2(. . . tn(V ) . . .)) = M1(M2(. . . (MnV ) . . .)) = (M1M2 . . .Mn)V (4.1)

again with the help of associativity of matrix multiplication, where matrix
Mi corresponds to transformation ti, 1 ≤ i ≤ n. One sees that the matrix of
the composition of transformations is precisely the product of the matrices
corresponding to the individual transformations.

We now have enough to explain exactly how OpenGL itself goes about
composing transformations. Consider the code sequence:

modelingTransformation 1; // t1
modelingTransformation 2; // t2
. . .
modelingTransformation n-1; // tn−1

modelingTransformation n; // tn
object;

where the transformation ti corresponds to the statement modelingTrans-

formation i.
Now, OpenGL maintains a 4× 4 modelview matrix, call it M , which is

initialized to the identity

I =


1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0


As the drawing routine is processed during run-time, the matrix of each
successive modeling transformation encountered is multiplied from the left
by the current modelview matrix, the product becoming the new modelview
matrix. For example, assuming the matrix of ti is Mi and that there were
no earlier transformations, the successive values of the modelview matrix M
for the code sequence above are indicated in the comments below:

// M = I, initially

modelingTransformation 1; // M = IM1 = M1

modelingTransformation 2; // M = M1M2

. . .
modelingTransformation n-1; // M = M1M2 . . . Mn−1

modelingTransformation n; // M = M1M2 . . . Mn−1Mn

object;

Moreover, an object drawing statement is processed by multiplying the
object’s vertices from the left by the current modelview matrix, e.g., for the
code sequence above, each vertex V of object is transformed as follows:

V 7→MV = (M1M2 . . .Mn−1Mn)V114
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However, by associativity

(M1M2 . . .Mn−1Mn)V = M1(M2(. . .Mn−1(MnV ) . . .))

= t1(t2(. . . tn−1(tn(V ) . . .))

We see, from the last line of the preceding equation, that transformation tn
is applied to V , then tn−1 and so on, until, finally, t1, indeed backward in
code order !

The conclusion, then, is that the backward order in which OpenGL
applies transformations is simply a consequence of the particular way it
processes their matrices. It does take a little getting used to, but (trust us)
by the end of this chapter you will be quite comfortable applying multiple
transformations.

Remark 4.2. That the matrices corresponding to successive modeling
transformations are being multiplied into one matrix, the current modelview
matrix, means that OpenGL is effectively composing multiple modeling
transformations into one transformation, which is extremely important from
the point of view of run-time efficiency.

Remark 4.3. Here’s another more informal way to understand how
multiple transformations are applied. Transformation tn, given by the
statement modelingTransformation n which is closest in the code to
object, is applied first, then, tn−1, given by the next closest statement
modelingTransformation n-1, etc. Indeed, transformations are applied to
the object as one works away from it, which is not unfamiliar if one recalls
evaluating mathematical expressions such as cos(exp(sinx)).

Remark 4.4. There is one other kind of transformation, in addition to
the three modeling transformations, which can modify the modelview
matrix – the viewing transformation gluLookAt(). We’ll discuss viewing
transformations in Section 4.6. Modelview matrices, in fact, get their name
from these two kinds of transformations.

Exercise 4.11. For each of the following, give (x, y, z) coordinates of the
point where the center of the sphere is transformed by the given piece of
code in the display routine.

(a) glTranslatef(0.0, 2.0, 2.0);

glTranslatef(4.0, 0.0, 2.0);

glutWireSphere(2.0, 10, 8);

(b) glRotatef(90.0, 0.0, 0.0, 1.0);

glTranslatef(4.0, 0.0, 0.0);

glutWireSphere(2.0, 10, 8);

(c) glRotatef(90.0, 1.0, 0.0, 0.0);

glTranslatef(4.0, 0.0, 0.0);

glRotatef(90.0, 0.0, 0.0, 1.0);

glutWireSphere(2.0, 10, 8); 115
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(d) glRotatef(90.0, 1.0, 0.0, 0.0);

glRotatef(90.0, 0.0, 1.0, 0.0);

glTranslatef(4.0, 0.0, 0.0);

glutWireSphere(2.0, 10, 8);

(e) glScalef(1.0, 2.0, 3.0);

glRotatef(45.0, 1.0, 0.0, 0.0);

glRotatef(90.0, 0.0, 0.0, 1.0);

glTranslatef(4.0, 0.0, 0.0);

glutWireSphere(2.0, 10, 8);

(f) glRotatef(90.0, 0.0, 0.0, 1.0);

glRotatef(45.0, 1.0, 0.0, 0.0);

glRotatef(90.0, 0.0, 1.0, 0.0);

glTranslatef(4.0, 0.0, 0.0);

glutWireSphere(2.0, 10, 8);

Example 4.2. Replace the object definition statement

glutWireCube(5.0); // Box.

of box.cpp with

glRectf(5.0, 5.0, 10.0, 10.0); // Square

to draw, instead of a box centered at the origin, an axis-aligned square some
ways north-east of it, centered at (7.5, 7.5, 0.0).

Now, add transformation(s) to rotate the square 45◦ counter-clockwise
about its own center , as indicated in Figure 4.14(a).

Answer : Inserting the command glRotatef(45.0, 0.0, 0.0, 1.0) just
before glRectf() will not do as it rotates the square about the origin, and
not its own center, as shown in Figure 4.14(b). What one must do instead
(see Figure 4.14(c)) is first (i) translate the square so that its center is at the
origin, then (ii) rotate it about the origin and, finally, (iii) translate it back.
This is equivalent to the following modeling transformation block (Block 9):

// Modeling transformations.

glTranslatef(0.0, 0.0, -15.0);

glTranslatef(7.5, 7.5, 0.0); // Translate back.

glRotatef(45.0, 0.0, 0.0, 1.0); // Rotate about origin.

glTranslatef(-7.5, -7.5, 0.0); // Translate to origin.

Such a maneuver is unavoidable as OpenGL’s own rotations, as we know
from Section 4.1.3, are each about an axis through the origin, such being
called a radial axis. Therefore, a non-radial axis needs to be translated to the
origin and back again in order to be rotated about. This “tricky” maneuver
and its variants come up so often that we’ll give them a collective name: the
Trick.116
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x

y

(i) Translate to origin

(7.5, 7.5, 0.0)

(ii) Rotate about origin

(a)

x

y

(c)

x

y

(b)

(iii) Translate back

45o
45o

Figure 4.14: Rotating a square about its own center.

Exercise 4.12. (Programming) As in the preceding example, replace
the object definition statement

glutWireCube(5.0); // Box.

of box.cpp with

glRectf(5.0, 5.0, 10.0, 10.0); // Square

Now, scale the square so that its center is unchanged, but its shape changes
to a rectangle of aspect ratio 2. Use the Trick.

Exercise 4.13. Prove that a composition of multiple translations is a
single translation and that a composition of multiple scalings is a single
scaling.

Remark 4.5. A composition of multiple rotations is a single rotation as well,
but this is much harder to prove generally and we’ll leave it to Chapter 5.

Exercise 4.14. What is the inverse of a translation? Specifically, what
modeling transformation composed with a translation glTranslatef(p, q,
r) “undoes” its effect, so that all points remain stationary?

How about scalings and rotations? What are their inverses?
117
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4.3 Placing Multiple Objects

We next consider the vital problem of applying modeling transformations to
place multiple objects in a desired manner relative to one another.

Experiment 4.10. Replace the entire display routine of the original
box.cpp with (Block 10):

void drawScene(void)

{
glClear(GL COLOR BUFFER BIT);

glColor3f(0.0, 0.0, 0.0);

glLoadIdentity();

// Modeling transformations.

glTranslatef(0.0, 0.0, -15.0);

// glRotatef(45.0, 0.0, 0.0, 1.0);

glTranslatef(5.0, 0.0, 0.0);

glutWireCube(5.0); // Box.

//More modeling transformations.

glTranslatef(0.0, 10.0, 0.0);

glutWireSphere(2.0, 10, 8); // Sphere.

glFlush();

}

See Figure 4.15(a) for a screenshot. The objects are a box and a sphere.
End

(a) (b)

Figure 4.15: Screenshots: (a) Experiments 4.10 and (b) 4.11.

Let’s understand the placement of the box and sphere in the preceding
experiment individually first and then with respect to each other.118
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It’s actually fairly straightforward to understand the placements
individually. For example, to place the sphere, work backwards from
where it’s created in the code, applying to it the successive modeling
transformations (all translations in this case) encountered, and ignoring
the one non-transformation statement glutWireCube() on the way. The
result is that the sphere is centered at (5 .0, 10.0,−15.0). Likewise, the box
is seen to be centered at (5.0, 0.0,−15.0).

The relative placement in this case is not difficult either. Clearly, the
sphere is transformed by glTranslatef(0.0, 10.0, 0.0) – which is the
transformation “between them” – with respect to the box. The result is that
the sphere’s center is 10 units vertically above the box’s.

Experiment 4.11. Continuing with the previous experiment, uncomment
the glRotatef() statement. Figure 4.15(b) is a screenshot.

Again, the individual placements are fairly straightforward. Working
backwards from where it is created we see that, after being translated to (5.0,
10.0, 0.0), the sphere is rotated 45◦ counter-clockwise about the z-axis and,
of course, finally pushed 15 units in the −z direction. We’ll not compute
the exact final coordinates of its center. The individual placement of the
box is simple to parse as well and left to the reader.

It’s the relative placement which is particularly interesting in this case.
The sphere is no longer vertically above the box, though the transformation
between them is still glTranslatef(0.0, 10.0, 0.0)! Before trying to
explain what’s going on, let’s return to the basics for a moment. End

Consider the code sequence below which draws two objects:

modelingTransformation 1; // t1
modelingTransformation 2; // t2
. . .
modelingTransformation n-1; // tn−1

modelingTransformation n; // tn
object 1;

modelingTransformation n+1; // tn+1

. . .
modelingTransformation m; // tm
object 2;

Assuming that the transformation ti specified by modelingTransformation i

corresponds to the matrix Mi, for 1 ≤ i ≤ m, the successive values of the
modelview matrix M are indicated below:

// M = I, initially

modelingTransformation 1; // M = IM1 = M1

modelingTransformation 2; // M = M1M2

. . .
modelingTransformation n-1; // M = M1M2 . . . Mn−1

modelingTransformation n; // M = M1M2 . . . Mn−1Mn 119
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object 1; // M does not change

modelingTransformation n+1; // M = M1M2 . . . Mn−1MnMn+1

. . .
modelingTransformation m; // M = M1M2 . . . Mn−1MnMn+1 . . . Mm

object 2;

Accordingly, each vertex V of the final object 2 call is transformed according
to:

V 7→ (M1 . . .Mm−1Mm)V = t1(. . . tm−1(tm(V )) . . .) (4.2)

exactly as we would expect by working backwards in the code from object

2. Now, how about the placement of object 2 with respect to object 1?
Let’s repeat the transformation for a vertex V of object 2 by stepping

backward through the right side of Equation (4.2): first transform V
by tm to tm(V ), then by tm−1 to tm−1(tm(V )), . . ., then by tn+1 to
tn+1(. . . tm−1(tm(V )) . . .). Stop!

At this time object 1 is drawn. Imagine that a part of object 1 is a set
of three directed line segments (drawn, say, using GL LINES), aligned with
the three world coordinate axes and calibrated identically. These lines are
said to represent the local coordinate system of object 1. See Figure 4.16.
So, at the time of its creation the local coordinate system of object 1

coincides with the world coordinate system.

object 1

object 2

world coordinates

local coordinates

x

y

O

z

Figure 4.16: Local system (bold) coincides with the global initially. The global system
is fixed.

Further, suppose at the time of object 1’s creation that the so-far
transformed V , i.e., tn+1(. . . tm−1(tm(V )) . . .), is located at (a, b, c) in the
local coordinates of object 1 (same as world coordinates, of course, at that
moment).

Let’s get back now to applying transformations backwards from where
we had stopped. Next was tn. Now, tn applies to both V and object 1.
Three cases arise according to the type of tn.120
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1. tn is a translation specified by glTranslatef(p, q, r):

This translation applies to V and object 1 and, so, to the local
coordinate system of the latter as well. That is, they all “move
together”. Therefore, the location (a, b, c) of V with respect to the
local coordinate system of object 1 does not change. The location of
V in world coordinates, of course, changes to (a+ p, b+ q, c+ r).

2. tn is a rotation specified by glRotatef(A, p, q, r):

Same argument as for translation. Again, the location (a, b, c) of V
with respect to the local coordinate system of object 1 does not
change.

3. tn is a scaling specified by glScalef(u, v, w):

The location of V in world coordinates is changed by the scaling to
(ua, vb, wc). However, as the same scaling applies to the axes of the
local coordinate system of object 1 – particularly the units calibrating
them – the location (a, b, c) of V with respect to this system again
does not change.

Sci-fi analogy : Prior to an experiment in a lab you measure yourself
with a tape to be 6 feet tall. The experiment goes horribly wrong
and radiation causes you to shrink by a factor of 12, leaving you at a
Lilliputian 6 inches. However, if everything around you including the
tape shrank by exactly the same factor, you would still believe yourself
to be 6 feet.

Continue, applying transformations tn−1, tn−2, . . . t1, successively, and
reason as above for each. The conclusion is that the location of V at the
point (a, b, c) of the local coordinate system of object 1 at the time of
the latter’s creation is not altered by any subsequent transformation, i.e.,
those in the code prior to object 1. Neither, obviously, is it changed by
transformations in the code after object 2, because their corresponding
matrices multiply into the modelview matrix only after both object 1 and
object 2 have already been drawn. We have, therefore, the following:

Proposition 4.1. If object 1 precedes object 2 in code, then the location
of object 2 in the local coordinate system of object 1 is determined by the
transformation statements between the two and nothing else. 2

What the proposition says is that, if object 1 precedes object 2 in
code, then the latter is frozen in the former’s coordinate system at a
position determined solely by the transformation statements between the two.
Accordingly, moving object 2 with respect to object 1 requires changing
transformations between them. The practical importance of this, as we’ll
see, cannot be over-emphasized.

Let’s try and understand now the relative position of the sphere
with respect to the box in Experiment 4.11 in light of the preceding 121
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proposition. We’ll do this by the oft-useful technique of deconstructing
code by incrementally adding back transformations after stripping them all
off.

Experiment 4.12. Repeat Experiment 4.11. The modeling transformation
and object definition part are as below (Block 11):

// Modeling transformations.

glTranslatef(0.0, 0.0, -15.0);

glRotatef(45.0, 0.0, 0.0, 1.0);

glTranslatef(5.0, 0.0, 0.0);

glutWireCube(5.0); // Box.

//More modeling transformations.

glTranslatef (0.0, 10.0, 0.0);

glutWireSphere (2.0, 10, 8); // Sphere.

First, comment out the last two statements of the first modeling
transformations block as below (the first translation is always needed to
place the entire scene in the viewing frustum):

// Modeling transformations.

glTranslatef(0.0, 0.0, -15.0);

// glRotatef(45.0, 0.0, 0.0, 1.0);

// glTranslatef(5.0, 0.0, 0.0);

glutWireCube(5.0); // Box.

//More modeling transformations.

glTranslatef (0.0, 10.0, 0.0);

glutWireSphere (2.0, 10, 8); // Sphere.

The output is as depicted in Figure 4.17(a).

Next, uncomment glTranslatef(5.0, 0.0, 0.0) as below:

// Modeling transformations.

glTranslatef(0.0, 0.0, -15.0);

// glRotatef(45.0, 0.0, 0.0, 1.0);

glTranslatef(5.0, 0.0, 0.0);

glutWireCube(5.0); // Box.

//More modeling transformations.

glTranslatef (0.0, 10.0, 0.0);

glutWireSphere (2.0, 10, 8); // Sphere.122
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x

z z

z

y

(a)

glRotatef(45.0, 0.0, 0.0, 1.0)

glTranslatef(5.0, 0.0, 0.0)

x

y

(b)

(c)

xy

O O

O

Figure 4.17: Transitions of the box, the box’s local coordinates system (bold) and the
sphere. The world coordinate system, which never changes, coincides with the box’s
initial local.

The output is as in Figure 4.17(b). Finally, uncomment glRotatef(45.0,

0.0, 0.0, 1.0) as follows:

// Modeling transformations.

glTranslatef(0.0, 0.0, -15.0);

glRotatef(45.0, 0.0, 0.0, 1.0);

glTranslatef(5.0, 0.0, 0.0);

glutWireCube(5.0); // Box.

//More modeling transformations.

glTranslatef (0.0, 10.0, 0.0);

glutWireSphere (2.0, 10, 8); // Sphere.

glFlush();

The result is seen in Figure 4.17(c). Figure 4.17 shows the box’s local
coordinate system as well after each transition. Observe that the sphere is
always 10 units vertically above the box in the latter’s coordinate system, as
one would expect from the glTranslatef (0.0, 10.0, 0.0) call between
the two. End

The following program should solidify the reader’s understanding of how 123
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Proposition 4.1 governs relative placement.

Figure 4.18: Screenshot
of relativePlacement.cpp
after all transformations
from the scaling down have
been executed.

Experiment 4.13. Run relativePlacement.cpp. Pressing the up arrow
key once causes the last statement, viz. drawBlueMan, of the following piece
of code to be executed:

glScalef(1.5, 0.75, 1.0);

glRotatef(30.0, 0.0, 0.0, 1.0);

glTranslatef(10.0, 0.0, 0.0);

drawRedMan; // Also draw grid in his local coordinate system.

glRotatef(45.0, 0.0, 0.0, 1.0);

glTranslatef(20.0, 0.0, 0.0);

drawBlueMan;

With each press of the up arrow we go back a statement and successively
execute that statement and the ones that follow it. The statements executed
are written in black text, the rest white. Pressing the down arrow key goes
forward a statement. Figure 4.18 is a screenshot after all transformations
from the scaling on have been executed. End

The torso and arms of both men are aligned along their respective local
coordinate axes (only the x and y we care about, z being 0 always). The
world coordinate axes which never change are drawn in cyan. At the time
of the red man’s creation also drawn is a 10× 10 grid of boxes in his local
coordinate system, the sides of each box being 5 units long.

With each transformation going back from the red man’s creation, observe
– focus on a point like the blue man’s origin and trust your eyes – how the
blue man stays static in the red man’s local coordinate system. A simple
calculation shows that the blue man’s origin is actually at (20/

√
2, 20/

√
2) '

(14.14, 14.14) in the red man’s system. Even when scaling skews the red
man’s system so that it’s not rectangular any more, the blue man skews the
same way as well, staying put in the red system. Proposition 4.1 is not to
be denied!

Exercise 4.15. For the following two pieces of code in the drawing routine
give (x, y, z) coordinates of the point to which the center of the sphere is
transformed. Explain as well the relative positions of the sphere and box.

(a) glRotatef(90.0, 1.0, 0.0, 0.0);

glutWireCube(1.0);

glRotatef(90.0, 0.0, 0.0, 1.0);

glTranslatef(4.0, 0.0, 0.0);

glutWireSphere(2.0, 10, 8);

(b) glTranslatef(2.0, 0.0, 0.0);

glScalef(2.0, 2.0, 2.0);

glutWireCube(1.0);

glRotatef(90.0, 0.0, 1.0, 0.0);

glTranslatef(0.0, 0.0, 4.0);

glutWireSphere(2.0, 10, 8);124



i
i

i
i

i
i

i
i

Section 4.4

Modelview Matrix

Stack and Isolating

Transformations

If you’re impatient to get to animation hang on – there’s one final piece
to get in place!

4.4 Modelview Matrix Stack and Isolating
Transformations

The modelview matrix, which we have described as being modified by
modeling transformations by multiplication on the right, is actually the
topmost one of a modelview matrix stack . This particular matrix is called
the current modelview matrix . In fact, OpenGL maintains three different
matrix stacks: modelview, projection and texture. A glMatrixMode(mode)
command, where mode is GL MODELVIEW, GL PROJECTION or GL TEXTURE,
determines which stack is currently active.

Here’s an experiment to motivate use of the modelview matrix stack:

x

y

z

5
2

(a) (b) (c)

Figure 4.19: Planning a head on a torso: (a) The plan (b) Drawn without isolating the
scaling (c) After isolating the scaling.

Experiment 4.14. We want to create a human-like character. Our plan
is to start by drawing the torso as an elongated cube and placing a round
sphere as its head directly on top of the cube (no neck for now). To this end
replace the drawing routine of box.cpp with (Block 12):

void drawScene(void)

{
glClear(GL_COLOR_BUFFER_BIT);

glColor3f(0.0, 0.0, 0.0);

glLoadIdentity();

glTranslatef(0.0, 0.0, -15.0);

glScalef(1.0, 2.0, 1.0);

glutWireCube(5.0); // Box torso.
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glTranslatef(0.0, 7.0, 0.0);

glutWireSphere(2.0, 10, 8); // Spherical head.

glFlush();

}

Our calculations are as follows: (a) the scaled box is 5 × 10× 5 and, being
centered at the origin, is 5 units long in the +y direction; (b) the sphere
is of radius 2; (c) therefore, if the sphere is translated 5 + 2 = 7 in the +y
direction, then it should sit exactly on top of the box (see Figure 4.19(a)).

It doesn’t work: the sphere is no longer round and is, moreover, some
ways above the box (Figure 4.19(b)). Of course, because the sphere is
transformed by glScalef(1.0, 2.0, 1.0) as well! So, what to do? A
solution is to isolate the scaling by placing it within a push-pop pair as below
(Block 13):

void drawScene(void)

{
glClear(GL_COLOR_BUFFER_BIT);

glColor3f(0.0, 0.0, 0.0);

glLoadIdentity();

glTranslatef(0.0, 0.0, -15.0);

glPushMatrix();

glScalef(1.0, 2.0, 1.0);

glutWireCube(5.0); // Box torso.

glPopMatrix();

glTranslatef(0.0, 7.0, 0.0);

glutWireSphere(2.0, 10, 8); // Spherical head.

glFlush();

}

The resulting screenshot is Figure 4.19(c), which shows a round head on a
neckless torso as desired. End

What the glPushMatrix() command does is make a copy of the current
(i.e., current topmost) matrix in the modelview matrix stack and place it
on top of the stack; consequently, upon execution of a glPushMatrix(), the
two top matrices of the stack are identical. The glPopMatrix() statement,
on the other hand, deletes the topmost matrix of the modelview matrix
stack so the one underneath becomes the current one.

Let’s follow the modelview matrix stack through the code above.
Assume that the matrix corresponding to the translation glTranslatef(0.0,

0.0, -15.0) is M1, to glScalef(1.0, 2.0, 1.0) is M2, and to gl-

Translatef(0.0, 7.0, 0.0) is M3. The transitions of the stack are shown
in Figure 4.20, starting from the top.126
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glPushMatrix();
//Copy of M1 placed on top.

glScalef(1.0, 2.0, 1.0);

glutWireCube(5.0);
//No change.

glPopMatrix();
//Back to before the push statement!

glTranslatef(0.0, 7.0, 0.0);

glutWireSphere(2.0, 10, 8);
//No change.

Modelview Matrix

glTranslatef(0.0, 0.0, −15.0);

Stack

M1*M3

M1*M3

M1
M1

M1*M2
M1

M1*M2
M1

M1

I

I * M1=M1

Figure 4.20: Transitions of the modelview matrix stack.

As you see, the push-pop pair stores the current modelview matrix prior
to the scaling transformation and then restores it once the cube has been
drawn, effectively localizing the effect of the scaling to only the cube.

Exercise 4.16. Give (x, y, z) coordinates of the points where the centers
of the four spheres in it are located by the drawing routine below, assuming
no prior transformations.

glPushMatrix();

glTranslatef(2.0, 0.0, 0.0);

glutWireSphere(2.0, 10, 8); // Sphere A

glPushMatrix();

glScalef(2.0, 2.0, 2.0);

glutWireSphere(2.0, 10, 8); // Sphere B

glPopMatrix();

glPushMatrix();

glRotatef(90.0, 1.0, 0.0, 0.0);

glTranslatef(0.0, 0.0, 4.0);

glutWireSphere(2.0, 10, 8); // Sphere C 127
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glPopMatrix();

glTranslatef(0.0, 4.0, 0.0);

glutWireSphere(2.0, 10, 8); // Sphere D

glPopMatrix();

Remark 4.6. It’s recommended programming practice to enclose all the
transformations in the drawing routine in one giant push-pop pair, as in the
preceding exercise, so that at the end of the routine the modelview matrix
stack is guaranteed to revert to its initial state of containing a single identity
matrix (though, admittedly, we don’t follow this ourselves).

4.5 Animation

We’re there! Animation in computer graphics is really just a sequence of still
frames, just like those in a movie reel, smoothness being achieved by drawing
frames rapidly one after another, each a little different from the previous.
Successive frames in an animation are created by a “transform-draw” loop:
the scene is redrawn after transformations in the drawing routine change
the location or shape, or both, of objects in the scene.

4.5.1 Animation Technicals

Before analyzing animated programs we need first to explain a couple of
animation-related technicalities.

Controlling Animation

OpenGL provides essentially three different methods to control animation:

1. Interactively, via keyboard or mouse input, with the help of their
callback routines to invoke transformations.

Figure 4.21: Screenshot
of rotatingHelix1.cpp.

Experiment 4.15. Run rotatingHelix1.cpp where each press of
space calls the increaseAngle() routine to turn the helix. Note the
glutPostRedisplay() command in increaseAngle() which asks the
screen to be redrawn. Keeping the space bar pressed turns the helix
continuously. Figure 4.21 is a screenshot. End

2. Automatically, by specifying a function idle function, called the idle
function, with the statement glutIdleFunc(idle function). The
idle function is called whenever no OpenGL event is otherwise pending.

Experiment 4.16. Run rotatingHelix2.cpp, a slight modification
of rotatingHelix1.cpp, where pressing space causes the routines128
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increaseAngle() and NULL (do nothing) to be alternately specified
as idle functions.

The speed of animation is determined by the processor speed – in
particular, the speed at which frames can be redrawn – and the user
cannot influence it. End

3. Automatically, by specifying a routine timer function, called the
timer function, with a call to glutTimerFunc(period, timer function,
value). The timer function is called period milliseconds after the
glutTimerFunc() statement is executed and with the parameter value
being passed to it.

Experiment 4.17. Run rotatingHelix3.cpp, another modifica-
tion of rotatingHelix1.cpp, where the particular timer function
animate() calls itself recursively after animationPeriod number
of msecs., by means of its own glutTimerFunc(animationPeriod,

animate, 1) statement. The parameter value 1 passed to animate()

is not used in this program. The routine increaseAngle() called by
animate() turns the helix as before. Figure 4.22 shows the animation
scheme.

The user can vary the speed of animation by changing the value of
animationPeriod by pressing the up and down arrow keys. End

animate()

wait
animationPeriod
msecs.

animation
stuff

glutTimerFunc()

Figure 4.22: Animation
control in
rotatingHelix3.cpp.

The speed of animation or, equivalently, frame rate – the rate at which
the screen is redrawn – cannot be increased arbitrarily by lowering the value
of animationPeriod because redrawing the scene takes some minimum
amount of time, depending on its complexity and the speed of the processor
(or graphics card).

Moreover, the frame rate can never exceed the monitor’s installed refresh
rate, particularly, if the latter is n Hz then the maximum achievable fps
(frames per second) is n. The next program shows how to count the fps with
help of OpenGL.

Experiment 4.18. Run rotatingHelixFPS.cpp, which enhances rotat-
ingHelix2.cpp adding the routine frameCounter() to count the number of
times the drawScene() routine is called, equivalently, the number of frames
drawn, per second. The fps is output every second to the debug window.

The way this works is by drawScene() incrementing the global
frameCount every time it is called, and frameCounter() outputting the
value of frameCount each second – because of its final glutTimerFunc(1000,
frameCounter, 1) statement, frameCounter() calls itself after a second
– as well as resetting the value of frameCount to 0. The if conditional
in frameCounter() is so that no fps is output when it is first called from
main() with the value passed being 0. End 129
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Double Buffering

The second technicality critical to smooth animation is double buffering .

Space for two color buffers is provided in a double-buffered system in
such a manner that one buffer, the viewable buffer, displays the current frame
while the next frame is being drawn in the second buffer, the drawable buffer .
When the drawing of the frame in the drawable buffer is complete, the
buffers are swapped, so that the next frame now becomes viewable and, at
the same time, the one following it begins to be drawn. This draw-and-swap
loop repeats through the animation. Figure 4.23 illustrates the process.
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V
iew

able
D

raw
able

D
ra

w
ab

le

Display

Cycle n

Cycle n+1

Display

Figure 4.23: Successive
cycles in double buffering.

Terminology : The viewable buffer is often called the front buffer or main
buffer , while the drawable buffer is called the back buffer or swap buffer .
Either buffer is also called a refresh buffer .

Remark 4.7. There is a subtle difference between the “draw” in the
transform-draw animation loop described earlier as how animation is
implemented and the “draw” in the draw-and-swap loop just described
as how double buffering operates. The first is a programmer-instigated
operation – typically, with a glutPostRedisplay() call – in which the
world space is projected and scaled (recall shoot-and-print from Chapter 2)
and rasterized into the color buffer. The second actually draws the screen,
in particular, the OpenGL window, with the contents of the color buffer.

Remark 4.8. There are two ways double buffering can be implemented. In
a software implementation, the back buffer is in non-video RAM, while the
front buffer is in video RAM (VRAM), and the swap is done by copying the
contents of the back buffer into the front one. In a hardware implementation,
often called ping-pong buffering, both buffers are in VRAM, the swap
switching the buffer being displayed by simply modifying a pointer. Not
surprisingly, ping-pong buffering runs much faster.

Double buffering greatly improves the quality of animation by hiding
transition between successive frames from the viewer. With single buffering,
on the other hand, the viewer “sees” the next frame being drawn in the same
buffer that contains the current one. The result can be unpleasant ghosting ,
so called because a prior image persists while the next is being created.

The double buffering display mode is enabled by calling glutInit-

DisplayMode() in main with GLUT DOUBLE as one of the arguments (instead
of GLUT SINGLE and inserting a call to glutSwapBuffers() at the end of
the drawing routine (instead of glFlush()). The rotatingHelix*.cpp

programs are all double buffered.

Experiment 4.19. Disable double buffering in rotatingHelix2.cpp by
replacing GLUT DOUBLE with GLUT SINGLE in the glutInitDisplayMode()

call in main, and replacing glutSwapBuffers() in the drawing routine with
glFlush(). Ghostly is it not?! End

130
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4.5.2 Animation Code

Ball Flying About a Torus

Figure 4.24: Screenshot
of ballAndTorus.cpp.

Experiment 4.20. Run ballAndTorus.cpp. Press space to start the
ball both flying around (longitudinal rotation) and in and out (latitudinal
rotation) of the torus. Press the up and down arrow keys to change the
speed of the animation. Press ‘x/X’, ‘y/Y’ and ‘z/Z’ to change the viewpoint.
Figure 4.24 is a screenshot.

The animation of the ball is interesting and we’ll deconstruct it. Comment
out all the modeling transformations in the ball’s block, except the last
translation, as follows:

// Begin revolving ball.

// glRotatef(longAngle, 0.0, 0.0, 1.0);

// glTranslatef(12.0, 0.0, 0.0);

// glRotatef(latAngle, 0.0, 1.0, 0.0);

// glTranslatef(-12.0, 0.0, 0.0);

glTranslatef(20.0, 0.0, 0.0);

glColor3f(0.0, 0.0, 1.0);

glutWireSphere(2.0, 10, 10);

// End revolving ball.

The ball is centered at (20, 0, 0), its start position, by glTranslatef(20.0,

0.0, 0.0). See Figure 4.25. There is no animation.

z

x

y

O

C1

L

(20,0,0)(12,0,0)

C2

Figure 4.25: The ball’s axis of latitudinal rotation from its start position is L.

The ball’s intended latitudinal rotation is in and out of the circle C1

through the middle of the torus. C1’s radius, called the outer radius of the
torus, is 12.0, as specified by the second parameter of glutWireTorus(2.0, 131
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12.0, 20, 20). Moreover, C1 is centered at the origin and lies on the
xy-plane. Therefore, ignoring longitudinal motion for now, the latitudinal
rotation of the ball from its start position is about the line L through (12, 0, 0)
parallel to the y-axis (L is tangent to C1). This rotation will cause the
ball’s center to travel along the circle C2 centered at (12, 0, 0), lying on the
xz-plane, of radius 8.

As glRotatef() always rotates about a radial axis, how does one obtain
the desired rotation about L, a non-radial line? Employ the Trick (see
Example 4.2 if you don’t remember). First, translate left so that L is aligned
along the y-axis, then rotate about the y-axis and, finally, reverse the first
translation to bring L back to where it was. This means uncommenting the
corresponding three modeling transformations as below:

// Begin revolving ball.

// glRotatef(longAngle, 0.0, 0.0, 1.0);

glTranslatef(12.0, 0.0, 0.0);

glRotatef(latAngle, 0.0, 1.0, 0.0);

glTranslatef(-12.0, 0.0, 0.0);

glTranslatef(20.0, 0.0, 0.0);

glColor3f(0.0, 0.0, 1.0);

glutWireSphere(2.0, 10, 10);

// End revolving ball.

Press space to view only latitudinal rotation.

Note : The two consecutive translation statements could be combined into
one, but then the code would be less easy to parse.

Finally, uncomment glRotatef(longAngle, 0.0, 0.0, 1.0) to im-
plement longitudinal rotation about the z-axis. The angular speed of
longitudinal rotation is set to be five times slower than that of latitudinal
rotation – the increments to longAngle and latAngle in the animate()

routine being 1◦ and 5◦, respectively. This means the ball winds in and out
of the torus five times before it completes one trip around it. End

Exercise 4.17. (Programming) It’s instructive as well to uncomment
the three modeling transformations used to apply the Trick in the
preceding experiment one by one, rather than all together. So uncomment
glTranslatef(-12.0, 0.0, 0.0) first, then glRotatef(latAngle, 0.0,

1.0, 0.0) and, last, glTranslatef(12.0, 0.0, 0.0). Check if animation
can be activated and explain the output at each step.

Exercise 4.18. (Programming) Now here’s something rather funny.
Actually, what we’ll show is not an uncommon accidental error. Cut the
glLoadIdentity() call from the drawing routine of ballAndTorus.cpp132
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and paste it as the last line of the window reshape routine (as, say, in
square.cpp).

Oops! The ball and torus speed away together and are out of sight pretty
quickly. Explain.
Hint : The current modelview matrix is not automatically cleared to identity
between successive calls to the drawing routine.

Exercise 4.19. (Programming) Add a red and a green ball to the
existing blue ball so that the three are always 120◦ from each other and
follow a similar rotate-revolve path one after the other.
Hint : Copy and paste the revolving ball code a couple of times, making
sure to isolate each instance with a glPushMatrix()-glPopMatrix() pair,
and add in appropriate glRotatef(*, 0.0, 0.0, 1.0) calls.

Figure 4.26: Screenshot
from Experiment 4.21.

Experiment 4.21. We want to add a satellite that tags along with the
ball of ballAndTorus.cpp. The following piece of code added to the end
of the drawing routine – just before glutSwapBuffers() – does the job
(Block 14):

glTranslatef(4.0, 0.0, 0.0);

// Satellite

glColor3f(1.0, 0.0, 0.0);

glutWireSphere(0.5, 5, 5);

See Figure 4.26 for a screenshot. For a revolving satellite add the following
instead (Block 15):

glRotatef(10*latAngle, 0.0, 1.0, 0.0);

glTranslatef(4.0, 0.0, 0.0);

// Satellite

glColor3f(1.0, 0.0, 0.0);

glutWireSphere(0.5, 5, 5);

Observe how Proposition 4.1 is being applied in both cases to determine
the motion of the satellite relative to the ball by means of transformation
statements between the two. End

Exercise 4.20. (Programming) Thinking that the Trick should be
invoked to revolve the satellite about the ball, exactly as was done to obtain
the latitudinal rotation of the ball itself, suppose we code the satellite as
below (Block 16):

// Trick code block.

glTranslatef(4.0, 0.0, 0.0);

glRotatef(10*latAngle, 0.0, 1.0, 0.0);

glTranslatef(-4.0, 0.0, 0.0); 133
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glTranslatef(4.0, 0.0, 0.0);

// Satellite.

glColor3f(1.0, 0.0, 0.0);

glutWireSphere(0.5, 5, 5);

The satellite still follows the ball, but does not revolve about it. Why?
Hint : A good way to verify your answer is to stop the ball from moving by
commenting out both glRotatef()’s in its definition block and observing
only the satellite.

Exercise 4.21. (Programming) Continuing with Experiment 4.21, add
a second satellite. Both should revolve around the ball, but in different
orbits.

Throwing a Ball

Figure 4.27: Screenshot
of throwBall.cpp.

Experiment 4.22. Run throwBall.cpp, which simulates the motion of a
ball thrown with a specified initial velocity subject to the force of gravity.
Figure 4.27 is a screenshot.

Press space to toggle between animation on and off. Press the right/left
arrow keys to increase/decrease the horizontal component of the initial
velocity, up/down arrow keys to increase/decrease the vertical component
of the initial velocity and the page up/down keys to increase/decrease
gravitational acceleration. Press ‘r’ to reset. The values of the initial velocity
components and of gravitational acceleration are displayed on the screen.

End

The equation determining the horizontal motion of the ball in throw-

Ball.cpp, in terms of time t, is

x(t) = ht

where h is the horizontal component of the initial velocity; that determining
vertical motion is

y(t) = vt− g

2
t2

where v is the vertical component of the initial velocity and g is gravitational
acceleration (a basic physics or calculus book should have a derivation of
these standard equations).

Motion is simulated by repeatedly redrawing the ball at the new location
it’s mapped to by glTranslatef(x(t), y(t), 0), incrementing t by 1 each
time.

Remark 4.9. The techniques to animate the spheres in ballAndTorus.cpp

and throwBall.cpp are interesting to compare. One could say that the first
is “physical” while the latter “equational”.134
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Exercise 4.22. (Programming) Animate a ball thrown toward and
bouncing off a wall. See Figure 4.28. The initial force on the ball is
horizontal – allow the user to change the amount of this force. Also allow
the user to adjust gravitational acceleration and the “springiness” of the
ball. Animation can end when the ball hits the floor.

Figure 4.28: Ball
bouncing off wall.

Ball Facing Friction

Experiment 4.23. Run ballAndTorusWithFriction.cpp, which modi-
fies ballAndTorus.cpp to simulate an invisible viscous medium through
which the ball travels.

Press space to apply force to the ball. It has to be kept pressed in order
to continue applying force. The ball comes to a gradual halt after the key is
released. Increase or decrease the level of applied force by using the up and
down arrow keys. Increase or decrease the viscosity of the medium using the
page up and down keys. Press ‘x/X’, ‘y/Y’ and ‘z/Z’ to rotate the scene.

End

The equation of motion implemented takes the frictional drag (or,
equivalently, deceleration) on the ball of ballAndTorusWithFriction.cpp

to be proportional to its velocity, a valid assumption from physics [52]. So,
the equation is

drag deceleration = drag ∗ velocity

where the drag (in real life) is a constant depending on the medium through
which the object moves, as well as its shape. When space is pressed, the
external acceleration applied is applied acceleration, resulting in the net
acceleration calculated in the line of code

acceleration = applied acceleration - drag*velocity;

When space is not pressed, there is no applied acceleration but only frictional
drag, so the equation is instead

acceleration = -drag*velocity;

At every time step we find the change in velocity from the equation

∆(velocity)

∆(time)
= acceleration

which is certainly true in the limit as ∆(time)→ 0. However, we approximate
change through a unit time step by setting ∆(time) = 1 to get

∆(velocity) = acceleration

which is implemented by the program statement

velocity += acceleration; 135
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Finally, change per time step in the latAngle and longAngle variables is
taken proportional to the current value velocity.

Exercise 4.23. (Programming) Simulate a ball falling through air,
landing upon and continuing on through a viscous medium such as water.
You need not simulate splashing. To differentiate air and water simply use
color, e.g., the upper half of your window may be white, and the lower blue.

Remark 4.10. The last two programs, throwBall.cpp and ballAndTorus-

WithFriction.cpp, demonstrated simple applications of physics in graphics.
This is a fascinating field – also known as physically-based modeling and game
physics – of great importance in realistic animation. Plausible simulation
of such phenomena as a wall of bricks crashing down, clothes and hair
blowing in the wind, a drop of water rolling off a leaf, and smoke, fire and
explosions, to mention a few, all require the programmer to take into account
the real-world physics of the setting.

Special effects in a Hollywood production are almost always physics in
graphics in action. There are two overarching and competing considerations
in this discipline – realism versus computational efficiency.

A couple of books for the interested reader include Bourg & Bywalec
[20] and Eberly [40]. A comprehensive list of pointers to ongoing research in
the field is maintained by Simon Clavet [110].

Clown Head

Our next project is a program, which we’ll develop incrementally, to draw a
clown’s head.

(a) (b) (c)

Figure 4.29: Screenshot of (a) clown1.cpp (b) clown2.cpp (c) clown3.cpp.

Experiment 4.24. We start with simply a blue sphere for the head. See
clown1.cpp which has the following drawing routine (note that clown1.cpp
and clown2.cpp are not separate programs but incremental stages of
clown3.cpp which is in ExperimenterSource/Chapter4):136
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Figure 4.30: (a) Cone drawn by glutWireCone(base, height, slices, stacks) (b)
Torus drawn by glutWireTorus(inRadius, outRadius, sides, rings). Note that the axes
are depicted differently in each diagram.

void drawScene(void)

{
glClear(GL COLOR BUFFER BIT);

glLoadIdentity();

// Place scene in frustum.

glTranslatef(0.0, 0.0, -9.0);

// Head.

glColor3f(0.0, 0.0, 1.0);

glutWireSphere(2.0, 20, 20);

glutSwapBuffers();

}

Figure 4.29(a) is a screenshot.
Next, we want a green conical hat. The command glutWireCone(base,

height, slices, stacks) draws a wireframe cone of base radius base and
height height. The base of the cone lies on the xy-plane with its axis along
the z-axis and its apex pointing in the positive direction of the z-axis. See
Figure 4.30(a). The parameters slices and stacks determine the fineness of
the mesh (not shown in the figure).

Accordingly, insert the lines

// Hat.

glColor3f(0.0, 1.0, 0.0);

glutWireCone(2.0, 4.0, 20, 20);

in clown1.cpp after the call that draws the sphere, so that the drawing
routine becomes (Block 17):

void drawScene(void) 137
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{
glClear(GL COLOR BUFFER BIT);

glLoadIdentity();

// Place scene in frustum.

glTranslatef(0.0, 0.0, -9.0);

// Head.

glColor3f(0.0, 0.0, 1.0);

glutWireSphere(2.0, 20, 20);

// Hat.

glColor3f(0.0, 1.0, 0.0);

glutWireCone(2.0, 5.0, 20, 20);

glutSwapBuffers();

}

Not good! Because of the way glutWireCone() aligns, the hat covers
the clown’s face. This is easily fixed. Translate the hat 2 units up the z-axis
and rotate it −90◦ about the x-axis to arrange it on top of the head. Finally,
rotate it a rakish 30◦ about the z-axis! Here’s the modified drawing routine
of clown1.cpp at this point (Block 18):

void drawScene(void)

{
glClear(GL COLOR BUFFER BIT);

glLoadIdentity();

// Place scene in frustum.

glTranslatef(0.0, 0.0, -9.0);

// Head.

glColor3f(0.0, 0.0, 1.0);

glutWireSphere(2.0, 20, 20);

// Transformations of the hat.

glRotatef(30.0, 0.0, 0.0, 1.0);

glRotatef(-90.0, 1.0, 0.0, 0.0);

glTranslatef(0.0, 0.0, 2.0);

// Hat.

glColor3f(0.0, 1.0, 0.0);

glutWireCone(2.0, 5.0, 20, 20);

glutSwapBuffers();

}

Let’s add a brim to the hat by attaching a torus to its base. The command
glutWireTorus(inRadius, outRadius, sides, rings) draws a wireframe138
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torus of inner radius inRadius (the radius of a circular section of the torus),
and outer radius outRadius (the radius of the circle through the middle of
the torus). The axis of the torus is along the z-axis and centered at the
origin. See Figure 4.30(b). Insert the call glutWireTorus(0.2, 2.2, 10,

25) right after the call that draws the cone, so the drawing routine becomes
(Block 19):

void drawScene(void)

{
glClear(GL COLOR BUFFER BIT);

glLoadIdentity();

// Place scene in frustum.

glTranslatef(0.0, 0.0, -9.0);

// Head.

glColor3f(0.0, 0.0, 1.0);

glutWireSphere(2.0, 20, 20);

// Transformations of the hat and brim.

glRotatef(30.0, 0.0, 0.0, 1.0);

glRotatef(-90.0, 1.0, 0.0, 0.0);

glTranslatef(0.0, 0.0, 2.0);

// Hat.

glColor3f(0.0, 1.0, 0.0);

glutWireCone(2.0, 5.0, 20, 20);

// Brim.

glutWireTorus(0.2, 2.2, 10, 25);

glutSwapBuffers();

}

Observe that the brim is drawn suitably at the bottom of the hat and
stays there despite modeling transformations between head and hat – a
consequence of Proposition 4.1.

To animate, let’s spin the hat about the clown’s head by rotating it
around the y-axis. We rig the space bar to toggle between animation on
and off and the up/down arrow keys to change speed. All updates so far are
included in clown2.cpp. Figure 4.29(b) is a screenshot.

What’s a clown without little red ears that pop in and out?! Spheres
will do for ears. An easy way to bring about oscillatory motion is to make
use of the function sin(angle) which varies between −1 and 1. Begin by
translating either ear a unit distance from the head, and then repeatedly
translate each a distance of sin(angle), incrementing angle each time.

Note: A technicality one needs to be aware of in such applications is that
angle is measured in degrees in OpenGL syntax, e.g., in glRotatef(angle, 139
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p, q, r), while the C++ math library assumes angles to be given in radians .
Multiplying by π/180 converts degrees to radians.

The ears and head are physically separate, though. Let’s connect them
with springs! Helixes are springs. We borrow code from helix.cpp, but
modify it to make the length of the helix 1, its axis along the x-axis and its
radius 0.25. As the ears move, either helix is scaled along the x-axis so that
it spans the gap between the head and an ear. The completed program is
clown3.cpp, of which a screenshot is seen in Figure 4.29(c). End

Exercise 4.24. (Programming) Comment out the push-pop pair
isolating the hat and brim in clown3.cpp. Explain the new situation of the
ears.

Exercise 4.25. Proposition 4.1 came before our discussion of push-pop
pairs, so the assumption there is that there are none. Do we have to revise
the proposition to take into account possible push-pop pairs?

Blooming Flower

Figure 4.31: Screenshot
of floweringPlant.cpp in
mid-bloom.

Experiment 4.25. Run floweringPlant.cpp, an animation of a flower
blooming. Press space to start and stop animation, delete to reset, and
‘x/X’, ‘y/Y’ and ‘z/Z’ to change the viewpoint. Figure 4.31 is a screenshot.

End

The stem of the plant of floweringPlant.cpp consists of four straight
segments, the sepal (base of the flower) is modeled as a hemisphere, while the
six petals are circles. Both the hemisphere and circle are reshaped by scaling
during animation. The code to draw the two is modified from circle.cpp

and hemisphere.cpp.

As calls to display lists cannot be parametrized at run-time, those defining
a sepal and a petal have to be placed, unfortunately, in the drawing routine
to allow them access to the changing global variable t via the variables
– angleFirstSegment, . . ., petalOpenAngle – at the top of drawScene().
(See Remark 3.4 of Section 3.4 for the evils of this practice.) Another option
for modular code would have been to write these parts of the plant as C++
objects.

The parameters involved in configuring the stem, sepal and petal all
change from a start value to an end one via linear interpolation using the
animation parameter t. For example,

hemisphereScaleFactor = (1− t) ∗ 0.1 + t ∗ 0.75

linearly changes hemisphereScaleFactor from 0.1 to 0.75 as t goes from 0
to 1.140
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4.5.3 Animation Projects

Exercise 4.26. (Programming) Starting from clown3.cpp, add to the
clown’s head a conical nose which changes in length and color, as well as
eyes that rotate and change in size and color.

Exercise 4.27. (Programming) Animate a ball rolling down a fixed
flat inclined plane. See Figure 4.32(a). The ball should not slip or slide.
Make the plane a wireframe mesh of triangles and the ball a wireframe
sphere, as well, so that relative motion is apparent.

relative motion
w.r.t. box

motion viewed

(a) (c)

(b) (d) (e)

(f) (g)

Figure 4.32: (a) Ball rolling down one plane (b) Ball rolling down two planes (c) Ball
bouncing on a box (d) Ball traveling along a helix (e) Four segments opening from a
square into a straight line (f) Solar system with a sun, one planet and two moons (g)
Pool table with one ball.

Exercise 4.28. (Programming) Add physics to the preceding exercise
by allowing the incline of the plane to be changed even as the ball rolls down,
the latter’s speed depending obviously on the angle of inclination.

Exercise 4.29. (Programming) Yet another extension of Exercise 4.27:
add another plane at the bottom so that the ball rolls from the first onto
the second. See Figure 4.32(b). 141
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Exercise 4.30. (Programming) Roll a ball down the curved children’s
slide of Exercise 2.33 of Chapter 2, if you did that particular exercise.

Exercise 4.31. (Programming) Animate a ball bouncing up and down
a box which itself moves in a straight line. See Figure 4.32(c).

First, code the straight-line motion of the box and, then, that of the ball
relative to the box, which is straight, too. The resultant motion of the ball
as viewed in the OpenGL window, which is, of course, as that seen by a
stationary external observer, is parabolic.

Exercise 4.32. (Programming) Animate a ball traveling a helical path.
See Figure 4.32(d). Make sure to do this physically a la ballAndTorus.cpp,
and not equationally.

Exercise 4.33. (Programming) Animate four straight segments, which
initially bound a square, smoothly opening into a straight line. See
Figure 4.32(e), where the initial, final and two intermediate positions are
depicted.

Hint : Draw first the fixed left segment, then the top segment as a copy.
Determine the latter’s motion relative to the former; the motion of the right
segment relative to the top one is identical, as is the motion of the bottom
one relative to the right one.

Exercise 4.34. (Programming) Animating a solar system is a canonical
exercise for beginning 3D programmers. First, animate a solitary planet,
with two moons, in elliptic orbit around a stationary sun. See Figure 4.32(f).
The planet rotates about its own axis as well, while its moons revolve about
it at different speeds and on different orbital planes. Then, add more planets.

Exercise 4.35. (Programming) Create an animated garden with the
help of floweringPlant.cpp. (The animated garden of Section 1.3, in fact,
was a student submission.)

Exercise 4.36. (Programming) Animate a lone cue ball moving on a
pool table. The table should simply be a rectangle enclosed by four low
walls – no need to make pockets. See Figure 4.32(g).

The ball should initially be stationary at a fixed position on the table.
Then allow the user, with the help of a simple visual interface, to choose a
direction and speed to get the ball moving – you don’t need to draw a cue
stick.

Animate the subsequent motion of the ball as it rolls along the surface
of the table and bounces off its sides. You can either choose not to program
in any deceleration, so that the ball keeps moving at uniform speed, or to
incorporate frictional resistance to ultimately bring the ball to rest.

142
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4.6 Viewing Transformation

We begin our discussion of the viewing transformation gluLookAt(), whose
function is to arrange OpenGL’s camera, by systematically deciphering its
somewhat non-trivial syntax.

4.6.1 Understanding the Viewing Transformation

Think of the OpenGL camera as located at the origin with its lens pointing
down the −z direction (the line of sight) and with its top aligned along
the +y direction (the up direction). This, in fact, is the default pose of the
OpenGL camera. See Figure 4.33(a).

−z

up di
re

ct
io

n

up di
re

ct
io

n

line of sight

(a) (b)

line of sight

x

y

z

x

y

z

film

image

object

point
camera

−z

Figure 4.33: (a) The (conceptual) OpenGL camera’s default pose (b) A (conceptual)
point camera at the origin with film on the viewing plane of the frustum.

Keep in mind, though, that the OpenGL camera is merely a conceptual
device! The rendering we see of objects drawn is determined solely, as
described in Chapter 2, by the shape of the viewing box or frustum, which
in turn is decided by the programmer-specified projection statement (e.g.,
glOrtho(), glFrustum()). Figure 4.33(b) reminds us of the process. There
is no camera as such! 143
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Nevertheless, it appeals to the intuition to imagine that what we’re
viewing is through a camera. In the case of a viewing frustum, particularly,
one can imagine a point camera at the origin with the film lying in front of
it on the viewing face, as indicated in Figure 4.33(b). It’s intuitive as well
to think of changing the view by moving and turning the camera. This is
exactly where the viewing transformation gluLookAt() comes in.

Note: For now, we ask the reader to assume that we have a viewing
frustum defined by a glFrustum() statement, rather than a viewing box by
glOrtho(), as the point camera is logically placed at the origin in the case of
the former, but it’s not evident where to place it for the latter. However, this
apparent problem will be sorted out as soon as the working of gluLookAt()
becomes clear.

The command gluLookAt(eyex, eyey, eyez, centerx, centery, cen-
terz, upx, upy, upz) simulates – mark the word simulates – OpenGL’s
camera first being moved to the location eye = (eyex , eyey , eyez ) and
pointed at center = (centerx , centery , centerz ); next, it is rotated about its
line of sight (los) – the line joining eye to center – so that its up direction
is one determined from up = (upx , upy , upz ). See Figure 4.34. We’ll see
shortly how the up direction is, in fact, determined from up.

(eyex, eyey, eyez)

(centerx, centery, centerz)

los

updirection

Figure 4.34: Camera pose determined by gluLookAt(eyex, eyey, eyez, centerx,
centery, centerz, upx, upy, upz).

Remark 4.11. The viewing transformation gluLookAt() logically then is a
function of three parameters, each a 3D point vector.

Experiment 4.26. Replace the translation command glTranslatef(0.0,

0.0, -15.0) of box.cpp with the viewing command gluLookAt(0.0, 0.0,

15.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0) so that the drawing routine is as
below (Block 20):

void drawScene(void)

{
glClear(GL COLOR BUFFER BIT);

glColor3f(0.0, 0.0, 0.0);

glLoadIdentity();

144
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x
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z

x

y

z

(0, 0, −15)

glTranslate(0.0, 0.0, −15.0)

eye

(a) (b)

gluLookAt(0, 0, 15, 
                   0, 0, 0, 0, 1, 0)

eye = (0, 0, 15)

Figure 4.35: (a) gluLookAt(): the broken frustum is the original viewing frustum, the
unbroken one is where it’s translated by the gluLookAt() call, the box doesn’t move. (b)
glTranslatef(): the viewing frustum doesn’t move, rather the box is translated by the
glTranslatef() call.

// Viewing transformation.

gluLookAt(0.0, 0.0, 15.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

glutWireCube(5.0); // Box.

glFlush();

}

There is no change in what is viewed. The commands glTranslatef(0.0,

0.0, -15.0) and gluLookAt(0.0, 0.0, 15.0, 0.0, 0.0, 0.0, 0.0,

1.0, 0.0) are exactly equivalent .

Note: A convenient way to compare side-by-side the output of two pieces
of code is to put them into the two drawing routines of windows.cpp of
Chapter 3. End

To understand why the two statements are equivalent, note that gluLook-
At(0.0, 0.0, 15.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0) takes the eye to
(0, 0, 15) looking down the z-axis toward the center at (0, 0, 0), the frustum
traveling with it. Now, compare Figures 4.35(a) and (b): should the box
appear different in the first (the frustum translated back) than the second
(the box translated forward)? No, because its position relative to the frustum
is the same in both. 145
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The convenience of the command gluLookAt() over glTranslatef() in
this program is that we have been able to arrange the camera according to
how we want to shoot the box, rather than moving the box itself.

As box.cpp with gluLookAt() instead of glTranslatef(), as in the
preceding experiment, is used often, the modified program is stored as
boxWithLookAt.cpp.

x x

eye (0, 0, 15) eye (0, 0, 15) eye (0, 0, 15)

x

z

x

eye (0, 0, 15)

line of sight = ?
frustum = ?

z

x

eye = center = (0, 0, 15)

z

z z
(a) (b)

(d) (e)

(c)

center (0, 0, −10)

center (5, 0, 0)

center (0, 0, 10)

center (0, 0, 20)

Figure 4.36: Sectional diagrams of the (simulated) configuration of the eye and frustum
for various gluLookAt() calls in boxWithLookAt.cpp.

Experiment 4.27. Continue the previous experiment, or run boxWith-

LookAt.cpp, successively changing only the parameters centerx , centery ,
centerz – the middle three – of the gluLookAt() call to the following:

1. 0.0, 0.0, 10.0

2. 0.0, 0.0,−10.0

3. 0.0, 0.0, 20.0

4. 0.0, 0.0, 15.0 End146
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The view does not change with the first two parameter sets of the
experiment as the viewer’s line of sight from eye to center does not change.
Figures 4.36(a) and (b) show the respective configurations. The third set
(Figure 4.36(c)) produces a blank screen because the eye is looking the
“wrong way”. The last set (Figure 4.36(d)) confuses OpenGL because eye
and center coincide, making it impossible to decide a line of sight. Again a
blank screen appears. Note in all cases that the shape of the frustum is not
changed by gluLookAt(), only its placement and alignment.

Here are a few more center sets for you to try.

Exercise 4.37. (Programming) Restore the original boxWithLook-

At.cpp program with its gluLookAt(0.0, 0.0, 15.0, 0.0, 0.0, 0.0,

0.0, 1.0, 0.0). Next, successively change only the parameters centerx ,
centery , centerz – the middle three of gluLookAt() – to the following,
drawing diagrams as in Figure 4.36 to explain what is seen in each case:

1. 5.0, 0.0, 0.0 (Answer : See Figure 4.36(e))

2. −5.0, 0.0, 0.0

3. 0.0, 5.0, 0.0

4. 0.0,−5.0, 0.0

5. 5.0, 5.0, 0.0

Let’s change the eye next. It’s still pretty much the same game as
changing center , though keep in mind that the frustum’s apex moves with
the eye.

Exercise 4.38. (Programming) Restore the original boxWithLook-

At.cpp program with its gluLookAt(0.0, 0.0, 15.0, 0.0, 0.0, 0.0,

0.0, 1.0, 0.0) call. First, replace the box with a glutWireTeapot(5.0),
a non-symmetric object. Next, successively change only the parameters eyex ,
eyey , eyez – the first three parameters of gluLookAt() – to the following,
drawing diagrams as in Figure 4.36 to explain what is seen in each case:

1. 0.0, 0.0, 10.0

2. 0.0, 0.0, 25.0

3. 0.0, 0.0,−15.0

4. 15.0, 0.0, 15.0

5. 15.0, 0.0, 0.0

6. 15.0, 15.0, 15.0

Let’s get a feel now for how the up vector up = (upx , upy , upz ) works. 147
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Experiment 4.28. Restore the original boxWithLookAt.cpp program
with its gluLookAt(0.0, 0.0, 15.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0)

call and, again, first replace the box with a glutWireTeapot(5.0). Run:
a screenshot is shown in Figure 4.37(a). Next, successively change the
parameters upx , upy , upz – the last three parameters of gluLookAt() – to
the following:

1. 1.0, 0.0, 0.0 (Figure 4.37(b))

2. 0.0,−1.0, 0.0 (Figure 4.37(c))

3. 1.0, 1.0, 0.0 (Figure 4.37(d))

Screenshots of the successive cases are shown in Figures 4.37(b)-(d). The
camera indeed appears to rotate about its line of sight, the z-axis, so that
its up direction points along the up vector (upx , upy , upz ) each time. End

(a) (b) (c) (d)

Figure 4.37: Screenshots from Experiment 4.28.

Before we can state the rule for how the up vector determines the camera’s
up direction generally, here are some facts about the dot product of vectors
which we’ll need. Skip this part if you already have dot product basics.

Sidebar on Dot Products

|u||v|

v
u

θ

Figure 4.38: Taking the
dot product:
u · v = |u||v| cos θ.

The dot product (also called scalar product) of two vectors u and v in R3 is
a scalar, denoted u · v, defined as follows:

(a) if either of u or v is zero, then u · v is zero;

(b) if not, then the value of u ·v is |u||v| cos θ, where θ is the angle between
u and v.

See Figure 4.38.
It turns out that u · v is given by the following simple formula, where

u = (ux, uy, uz) and v = (vx, vy, vz):

u · v = uxvx + uyvy + uzvz (4.3)

This makes the dot product useful in calculating angles between pairs of
vectors.148
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Example 4.3. Determine the angle θ between the two vectors u = (1, 0, 2)
and v = (−2, 3, 4).

Answer :

|u||v| cos θ = u · v = uxvx + uyvy + uzvz = 1 ∗ −2 + 0 ∗ 3 + 2 ∗ 4 = 6

Therefore,

cos θ =
6

|u||v|
=

6√
12 + 02 + 22

√
(−2)2 + 32 + 42

=
6√

5
√

29
' 0.49827

which gives θ ' 60.11439◦.

Exercise 4.39. Determine the angle between each pair from the three
vectors (1, 0, 0), ( 1√

2
, 1√

2
, 0) and ( 1√

3
, 1√

3
, 1√

3
).

Exercise 4.40. Prove the following about dot products where u, v and w
are any three vectors and c any scalar:

(a) Assuming that they are both non-zero, u and v are perpendicular if
and only if u · v = 0 (perpendicularity test)

(b) u · u = |u|2

(c) u · v = v · u (dot product is commutative)

(d) (cu) · v = u · (cv) = c (u · v)

(e) u · (v + w) = u · v + u · w (dot product distributes over a sum)

(f) |u · v| ≤ |u||v|

A particularly useful application of the dot product is when one wants to
split a given vector v as v = v1 + v2, where the components v1 and v2 are,
respectively, parallel and perpendicular to a given non-zero vector u. See
Figure 4.39(a). An intuitive way to think of v2 is as the shadow of v cast on
a plane p perpendicular to u by a light shining from the direction of u, as
depicted in Figure 4.39(b).

p

v2

v

v

u

uθ

(a)

(b)

light

v2 v1

v1

Figure 4.39: (a)
Splitting v into
components v1 and v2,
parallel and perpendicular
to u, respectively (b) v2 as
the “shadow” of v on a
plane p perpendicular to u.

The component v1 is the perpendicular projection of v onto the line of u,
so its signed length is

|v| cos θ =
|u||v| cos θ

|u|
=
u · v
|u|

where θ is the angle between u and v. Multiplying the value of the signed
length by the unit vector in the direction of u, which is u/|u|, one obtains
the formula for v1:

v1 =
u · v
|u|2

u (4.4) 149
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The formula for the component v2 of v that is perpendicular to u follows, as
the sum of v1 and v2 is v:

v2 = v − v1 = v − u · v
|u|2

u (4.5)

The preceding formulae have particularly simple forms if u is a unit
vector, as we ask the reader to show next.

Exercise 4.41. If u is a unit vector and v arbitrary, prove the following:

(a) The component of v parallel to u is v1 = (u · v) u.

(b) The component of v perpendicular to u is v2 = v − (u · v) u.

Example 4.4. Split v = (−2, 3, 4) into components parallel and
perpendicular to u = (1, 0, 2).

Answer : The component parallel to u is

v1 =
u · v
|u|2

u =
6

5
(1, 0, 2) =

(
6

5
, 0,

12

5

)

and that perpendicular to u is

v2 = v − v1 = (−2, 3, 4)−
(

6

5
, 0,

12

5

)
=

(
−16

5
, 3,

8

5

)

The following worked example shows a neat matrix expression for the
component of one vector parallel to another. The vectors themselves are
written as column matrices.

Example 4.5. Show that if u = [ux uy uz]
T and v = [vx vy vz]

T are two
vectors in R3, such that u is not zero, then the component v1 of v parallel
to u is given by

v1 =
1

|u|2

 u2x uxuy uxuz
uxuy u2y uyuz
uxuz uyuz u2z

 v
150
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Answer : We have that the component of v parallel to u is

v1 =
u · v
|u|2

u

=
1

|u|2
(uT v)u (uT v denotes its lone scalar entry, viz. u · v,

as a 1× 1 matrix product)

=
1

|u|2
u(uT v) (as (uT v)u = u(uT v), where uT v denotes a scalar

on the LHS and a 1× 1 matrix on the RHS)

=
1

|u|2
(uuT )v (by associativity)

=
1

|u|2

 u2x uxuy uxuz
uxuy u2y uyuz
uxuz uyuz u2z

v (multiplying as matrices u and uT )

For a more thorough discussion of dot products refer to any book on
linear algebra, e.g., Banchoff and Wermer [8].

Back to OpenGL

It’s simple now to explain how OpenGL uses the up = (upx, upy, upz) vector
to align the top of its camera – in other words, determine its up direction
– upon the call gluLookAt(eyex, eyey, eyez, centerx, centery, centerz,
upx, upy, upz).

Denote the camera’s line of sight vector (centerx, centery, centerz) −
(eyex, eyey, eyez) by los. What OpenGL does is split up into components
up1 and up2 parallel and perpendicular, respectively, to los. The up direction
is then taken to be up2. In particular, think of the camera, which is located
at eye = (eyex, eyey, eyez) and pointing down los, as being rotated about
los till its top points in the direction parallel to up2.

For an example, see Figure 4.40. Imagine the camera lying with its back
on this page (call it the plane p) facing up, so that the line of sight los
emerges perpendicularly from p (toward the reader). The specified up vector
is drawn in the figure starting from the camera, as also its components up1
and up2, the latter lying on the page. The camera, then, is rotated about
los with its back always on the page till its top points along up2.

The magnitude of up or of up2 is of no consequence as long as it’s not
zero, because it’s only the direction that matters in aligning the top; if either
is zero, then OpenGL is unable to determine the alignment and renders a
blank screen.

Exercise 4.42. Of course, if up is zero then its component up2 is zero.
Can it happen that up is non-zero and yet up2 is zero? 151
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(centerx, centery, centerz)
los

(eyex, eyey, eyez)

up

p

up2
up1

Figure 4.40: The camera is seen face-forward so that its back-plane p lies on the page.
The line of sight los comes perpendicularly up from the page toward the reader. The
components of the vector up, parallel and perpendicular to los, respectively, are up1 and
up2 (the latter lying on the page).

Experiment 4.29. Replace the wire cube of boxWithLookAt.cpp with a
glutWireTeapot(5.0) and replace the gluLookAt() call with:

gluLookAt(0.0, 0.0, 15.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0)

The vector los = (0.0, 0.0, 0.0)− (15.0, 0.0, 0.0) = (−15.0, 0.0, 0.0), which is
down the z-axis. The component of up = (1.0, 1.0, 1.0), perpendicular to the
z-axis, is (1.0, 1.0, 0.0), which then is the up direction. Is what you see the
same as Figure 4.37(d), which, in fact, is a screenshot for gluLookAt(0.0,

0.0, 15.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0)? End

Exercise 4.43. (Programming) Change (upx , upy , upz ) of gluLookAt()
in boxWithLookAt.cpp to (0.0, 0.0, 1.0). What do you see? Nothing ! Why?

Exercise 4.44. Compute the direction of the top of the camera for each
of the following viewing transformations:

(a) gluLookAt(0.0, 0.0, 5.0, 5.0, 0.0, 0.0, 0.0, 1.0, 1.0)

(b) gluLookAt(0.0, 5.0, 5.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0)

(c) gluLookAt(10.0, 5.0, 5.0, 0.0, 5.0, 0.0, 5.0, 1.0, 1.0)

(d) gluLookAt(10.0, 10.0, 5.0, 0.0, 5.0, 0.0, 1.0, 2.0, 3.0)

Part answer :

(a) The line of sight vector

los = (centerx, centery, centerz)− (eyex, eyey, eyez)

= (5, 0, 0)− (0, 0, 5) = (5, 0,−5)152
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The component of up = (0, 1, 1) perpendicular to los is

up2 = up− los · up
|los|2

los

= (0, 1, 1)− (5, 0,−5) · (0, 1, 1)

50
(5, 0,−5)

= (0, 1, 1) +
1

10
(5, 0,−5)

= (0.5, 1, 0.5)

which, therefore, is the direction of the top of the camera. It is
perpendicular, of course, to the line of sight and, as easily verified,
tilted about 35.3◦ from the direction of the y-axis. See Figure 4.41.

x

y

z

35.3o

center = 
(5, 0, 0)

los

top

eye = (0, 0, 5)

Figure 4.41: Solution to
Exercise 4.44(a).The answer can be verified by alternately plugging in gluLookAt(0.0,

0.0, 5.0, 5.0, 0.0, 0.0, 0.0, 1.0, 1.0) and gluLookAt(0.0,

0.0, 5.0, 5.0, 0.0, 0.0, 0.5, 1.0, 0.5) into boxWithLookAt.-

cpp to see the same (clipped) box (screenshot in Figure 4.42).

Figure 4.42: Checking
the solution to
Exercise 4.44(a).

Remark 4.12. Collectively, the modeling transformations glTranslatef(),
glScalef() and glRotatef() and the viewing transformations gluLook-

At() are called modelview transformations.

Exercise 4.45. (Programming) Program a camera flying at a height
of 3 units over a sequence of balls arranged along thex-axis, looking ahead
and down at the balls. See Figure 4.43.
Hint : Coordinates for the eye and center are suggested in the figure.

x

y

z

eye (x, 3, 0)

center (x+1, 2, 0)

camera motion

Figure 4.43: Camera flying over balls.

O

camera

camera

Figure 4.44: Camera
rotated on an imaginary
sphere enclosing a teapot.

Exercise 4.46. (Programming) Place a wire teapot centered at the
origin. Program a camera which can be moved by the user anywhere on an
imaginary sphere enclosing the teapot, the direction of the camera being
always toward the origin. Appropriately program keys to move the camera.
See Figure 4.44, where a couple of positions of the camera are indicated. 153
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4.6.2 Simulating a Viewing Transformation with
Modeling Transformations

You can skip this section on a first reading.
When we introduced gluLookAt() we said that it simulates OpenGL camera
movement. This is exactly right. The OpenGL camera never leaves its default
pose at the origin with its lens pointing down the−z direction and with its top
aligned along the +y direction. In fact, the viewing transformation is simu-
lated by replacing it with an equivalent sequence of modeling transformations.
We actually saw a simple example of this earlier in Section 4.6.1 where the
commands glTranslatef(0.0, 0.0, -15.0) and gluLookAt(0.0, 0.0,

15.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0) were found to be equivalent.
Here’s a motivating thought experiment for the general case:

apply (1)

then undo (1) rotating
both camera and scene −
net effect same as (2)

then undo (1) translating both camera 
and scene − net effect same as (2)

(2)

(1)
(2)(1)

apply (1)

Figure 4.45: Relative movement of the camera and scene.

You are out on an open field with a friend and a camera. She stands 10
meters in front of you, but looking through the viewfinder you think she
should be, say, 3 meters closer. There are two options: (1) you, i.e., the154
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camera, translate (walk) 3 meters toward her, or (2) she, i.e., the scene,
translates 3 meters toward you. See the top left of Figure 4.45. The picture
is same in either case. Ignore the backdrop, as it’s a homogeneous open field!

Here’s another way to arrive at the equivalence of the two options. Say
you had already applied (1) when the guy you had borrowed the camera
from starts yelling that it’s really expensive and would you mind not moving
it around but just keep it where it was first set up. In other words, you have
to manage by rearranging the scene instead. So, to undo the effect of (1)
and bring the camera back to its original position, you apply the reverse of
(1) to both camera and scene (so as not to alter the picture). The result,
of course, is the same as applying just (2) in the first place. See the two
diagrams in the big box on the lower left of Figure 4.45.

Looking through the viewfinder again, you feel it’ll be a nicer composition
if your friend stands not at the center of the frame but to a side. Again,
(1) you can rotate the camera, say, 45◦ clockwise, or (2) your friend can
sidle 45◦ counter-clockwise along a circle centered where you are, as in the
top right of Figure 4.45. The picture is exactly the same in either case.
And, again, one can imagine arriving at (2) by first applying (1), and then
undoing it by applying the reverse of (1) to both camera and scene, as the
two diagrams in the big box on the lower right of Figure 4.45 indicate.

It should now be fairly straightforward understanding the equivalence of
a viewing transformation to a sequence of modeling transformations. The
transformation

gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)

asks that the camera be (i) first translated to the position (eyex , eyey ,
eyez ), then, (ii) rotated at that position till it’s pointing at (centerx , centery ,
centerz ) and, finally, (iii) rotated about its line of sight till its up direction is
parallel to the vector up2, the component of (upx , upy , upz ) perpendicular
to the line of sight.

Let’s move the camera as asked. Figure 4.46(a) shows the resulting
configuration. Next – it’s the owner yelling again – we’ll restore the camera
to its default pose by incrementally undoing its movements, moving instead
the scene as in the preceding thought experiment. The sum total, then,
of these reverse movements to bring the camera back to default will be
equivalent to the viewing transform.

The first translation is undone by applying glTranslatef(−eyex,
−eyey, −eyez). The camera is then at the origin, but still pointing parallel
to the line of sight vector

los = (centerx, centery, centerz)− (eyex, eyey, eyez)

and with its top still parallel to up2. See Figure 4.46(b).
Suppose that p is a plane that contains both los and the z-axis – shaded

in the figure. If los does not lie along the z-axis then p is unique; if it 155
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glRotatef(A, wx, wy, wz)
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Looking at the camera
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by gluLookAt()
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Original default pose, looking at
the camera from the −z  direction

glRotatef(B, 0, 0, 1)
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(c)
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up2

up
2́

Figure 4.46: Restoring the camera to its default pose: broken arrows indicate
movements which applied take the camera to the next configuration in the sequence
(a)-(d).

does then p can be any plane that contains the common line. Choose a
non-zero vector w = (wx,wy,wz) perpendicular to p, i.e., w is perpendicular
to both los and the z-axis. Let A be the angle from los to −z on the plane
p measured counter-clockwise when looking down from w.

Applying glRotatef(A,wx,wy,wz) then rotates the camera till its line
of sight matches the −z direction. Moreover, its top then is parallel to
the vector, call it up′2, which is the result of glRotatef(A,wx,wy,wz)
applied to up2. Now, up′2, the new top direction, is perpendicular to the
new line of sight down −z, because both were obtained by the same rotation
glRotatef(A,wx,wy,wz) applied to perpendicular vectors up2 and los.
Therefore, up′2 lies on the xy-plane. See Figure 4.46(c) where the camera is
seen from the negative side of the z-axis.

Finally, all that remains to restore the camera to its default position is a
rotation glRotatef(B, 0.0, 0.0, 1.0), of angle B about the z-axis, to align156
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its top along +y. See Figure 4.46(d).
We conclude that the viewing transformation

gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)

is, indeed, equivalent to a sequence of modeling transformations, in particular,
a translation followed by two rotations:

glRotatef(B, 0.0, 0.0, 1.0);
glRotatef(A, wx, wy, wz);
glTranslatef(−eyex, −eyey, −eyez);

We do not attempt to express the parameters A, B, wx, wy and wz in
terms of the parameters eyex, eyey, . . ., upz of the gluLookAt() command.
Generally, this would be a tedious computation, but for simple settings of
the camera it is not, as the experiment next shows.

Experiment 4.30. Replace the display routine of box.cpp with (Block 21):

void drawScene(void)

{
glClear(GL COLOR BUFFER BIT);

glColor3f(0.0, 0.0, 0.0);

glLoadIdentity();

// Viewing transformation.

gluLookAt(0.0, 0.0, 15.0, 15.0, 0.0, 0.0, 0.0, 1.0, 0.0);

// Modeling transformation block equivalent

// to the preceding viewing transformation.

// glRotatef(45.0, 0.0, 1.0, 0.0);

// glTranslatef(0.0, 0.0, -15.0);

glutWireCube(5.0);

glFlush();

}

Run. Next, both comment out the viewing transformation and
uncomment the modeling transformation block following it. Run again.
The displayed output, shown in Figure 4.47, is the same in both cases. The
reason, as Figures 4.48(a)-(c) explain, is that the viewing transformation is
equivalent to the modeling transformation block. In particular, the former
is undone by the latter. End

Figure 4.47: Screenshot
from Experiment 4.30.

Exercise 4.47. (Programming) Replace the display routine of box.cpp
with (Block 22): 157
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y

z

x

y

x

y

x

z z

gluLookAt(0.0, 0.0, 15.0,
15.0, 0.0, 0.0, 0.0, 1.0, 0.0); glTranslatef(0.0, 0.0, −15.0);

glRotatef(45.0, 0.0, 1.0, 0.0);
glTranslatef(0.0, 0.0, −15.0);

(a) (b) (c)

Figure 4.48: Viewing transformation equivalent to a sequence of modeling
transformations.

void drawScene(void)

{
glClear(GL COLOR BUFFER BIT);

glColor3f(0.0, 0.0, 0.0);

glLoadIdentity();

// Viewing transformation.

gluLookAt(-30.0, 0.0, 30.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

// Modeling transformation block equivalent

// to the preceding viewing transformation.

// glRotatef(45.0, 0.0, 1.0, 0.0);

// glTranslatef(30.0, 0.0, -30.0);

glutWireCone(3.0, 10.0, 20, 20);

glFlush();

}

Draw diagrams as in Figure 4.48 to show the equivalence of the viewing
transformation and the modeling transformation block following it.

Exercise 4.48. Show that the viewing transformation

gluLookAt(30.0, 0.0, 30.0, 0.0, 0.0, 0.0, 1.0, 0.0, -1.0);

is equivalent to the sequence

glRotatef(90, 0.0, 0.0, 1.0);

glRotatef(45, 0.0, -1.0, 0.0);

glTranslatef(-30.0, 0.0, -30.0);

of modeling transformations. Pay particular attention to the alignment of
the top of the camera.158
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Exercise 4.49. The sequence of modeling transformations equivalent to
a given viewing transformation is not unique. In fact, for the preceding
exercise find a sequence of modeling transformations, different from the one
given, yet equivalent to the viewing transformation there.

Exercise 4.50. What sequence of modeling transformations is equivalent
to each of the following viewing transformations:

(a) gluLookAt(0.0, 0.0, 0.0, -15.0, 0.0, 15.0, 0.0, 1.0, 0.0)

(b) gluLookAt(0.0, 0.0, 15.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0)

(c) gluLookAt(0.0, 0.0, 15.0, -15.0, 0.0, 0.0, 1.0, 0.0, -1.0)

(d) gluLookAt(0.0, 0.0, 15.0, 0.0, 1.0, 14.0, 0.0, 1.0, 0.0)

(e) gluLookAt(0.0, 0.0, 15.0, 0.0, 1.0, 14.0, 1.0, 0.0, 0.0)

Part answer :

(c) One solution:

glRotatef(90, 0.0, 0.0, 1.0);

glRotatef(-45, 0.0, 1.0, 0.0);

glTranslatef(0.0, 0.0, -15.0);

Exercise 4.51. What is the viewing transformation equivalent to the
following sequence of modeling transformations:

glRotatef(45.0, 0.0, 1.0, 0.0);

glTranslatef(0.0, 0.0, -5.0);

Remark 4.13. It’s invariably good programming practice for there to be
at most a single viewing transformation in a program, which comes in
the code before all modeling transformations; in other words, the viewing
transformation is applied last. Logically this means that objects are drawn
first and placed as desired with respect to each other using modeling
transformations and, then, a gluLookAt() is applied finally to transport the
entire scene together.

Exercise 4.52. A programmer writes the following near the top of his
drawing routine:

gluLookAt(0.0, 10.0, 10.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

gluLookAt(0.0, 0.0, 15.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

As it is bad practice to have two gluLookAt() statements like this, replace
them with one gluLookAt() having the same effect. 159
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Remark 4.14. Toward the beginning of this section on the viewing
transformation we asked the reader to assume that we had a viewing frustum
defined by a glFrustum() statement, rather than a glOrtho()-defined
viewing box, because a point camera is logically placed at the origin in case
of the former, but it’s not clear where to place it for the latter.

So what happens when one applies gluLookAt() in the drawing routine
when the projection statement, in fact, is a glOrtho()? The answer, as
the reader has probably already guessed, is that OpenGL simply replaces
the viewing transformation with its corresponding sequence of modeling
transformations whatever may be the projection statement. The imaginary
camera we thought of as being manipulated by a viewing transformation
is simply an intuitive gadget for us programmers; it has no place inside
OpenGL!

Remark 4.15. We have been insistent that the viewing transformation
gluLookAt()’s purported manipulation of the camera is simulated entirely
by modeling transformations. Indeed, we showed in this section how this
can be done. But, is this really what OpenGL does? For, it’s plausible that
OpenGL actually does move the viewing frustum, with the camera at its
apex, as directed by a gluLookAt() call, rather than apply any modeling
transformations. For example, is Figure 4.35(a) or (b) in Section 4.6.1 the
“truth”?

Here’s how to decide. Modeling transformations change the current
modelview matrix at the top of the modelview matrix stack. The viewing
frustum, on the other hand, is determined by the current projection matrix
at the top of the projection matrix stack, which is altered, among others, by
projection statements such as glFrustum(). So, a way to find out what really
happens inside the OpenGL engine is to read both the current modelview
and projection matrices, both before and after issuing a gluLookAt(), and
see which changes.
So what does happen? Only the current modelview matrix changes!
The current projection matrix remains at the value it had prior to the
gluLookAt() call. Take this in good faith now – you’ll be able to verify the
claim when we learn to access the modelview and projection matrix stacks in
Chapter 5. In fact, we’ll see then that the modelview matrix changes exactly
as if multiplied on the right by the matrices corresponding to a sequence of
modeling transformations equivalent to the given viewing transformation.

Remark 4.16. An interesting upshot of all this is that viewing transfor-
mations are not really needed, as any such transformation can always be
manufactured from modeling transformations! Later versions of OpenGL,
as we shall see, take this to heart.

4.6.3 Orientation and Euler Angles

This section may be skipped on a first reading. You will need it, though,
before Section 6.3 about animating orientation with the help of Euler angles.160
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The viewing transformation leads nicely to a method of specifying the
orientation of a camera. Recall the conclusion in Section 4.6.2 that the
viewing transformation

gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)

is equivalent to a translation followed by two rotations:

glRotatef(B, 0.0, 0.0, 1.0);
glRotatef(A, wx, wy, wz);
glTranslatef(−eyex, −eyey, −eyez);

The axis of the particular rotation glRotatef(A,wx,wy,wz) is variable
and depends on the line of sight. It was chosen, in fact, perpendicular to
both line of sight and the z-axis. It’s possible, however, to find a translation
followed by a sequence of rotations, each about a fixed axis, equivalent to
the given viewing transformation. In particular, one can show that

gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)

is equivalent to:

glRotatef(−γ, 0.0, 0.0, 1.0);
glRotatef(−β, 0.0, 1.0, 0.0);
glRotatef(−α, 1.0, 0.0, 0.0);
glTranslatef(−eyex, −eyey, −eyez);

where rotations are each about a coordinate axis, for suitable angles α, β
and γ (the minus signs are for simpler notation later on). Here’s how.

x

y

z

eye

up
up

los

los

los

O

(1)  

(2) glRotatef(− , 1.0, 0.0, 0.0)

(3) glRotatef(− , 0.0, 1.0, 0.0)

(4) glRotatef(− , 0.0, 0.0, 1.0)

glTranslatef(−eyex, −eyey, −eyez)

Figure 4.49: Applying a translation (1) and rotations (2)-(4) about the three
coordinate axes to bring the camera back to its default pose. The original line of sight is
bold. The up direction is shown only at the end.

Figure 4.49 – an all-in-one version of Figure 4.46 – shows that the
sequence of four transformations below restores the camera to its default
pose from the one specified by 161
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gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)

so, indeed, they are equivalent.
(Note: Figure 4.49 looks busy but it’s not hard to read. The best way is to
start with the bold vector indicating the camera’s initial configuration and
follow the sequence (1)-(4) of transformations one by one.)

(1) glTranslatef(−eyex, −eyey, −eyez), to bring the eye to the origin.

(2) glRotatef(−α, 1.0, 0.0, 0.0), −α chosen to rotate the los about the
x-axis till it lies on the xz-plane.

(3) glRotatef(−β, 0.0, 1.0, 0.0), −β chosen to rotate the los about the
y-axis till it points down the −z direction.

(4) glRotatef(−γ, 0.0, 0.0, 1.0), −γ chosen to rotate the camera about its
los (pointing down the z-axis) till its top is aligned in the +y direction.

Remark 4.17. Evidently, from the above, we can reduce the number
of parameters required to specify camera movement from the nine of
gluLookAt() to only six: α, β, γ, eyex , eyey and eyez. This indicates
redundancy in the construction of gluLookAt(), but it has the virtue of
being intuitive to use.

Example 4.6. Express the viewing transformation

gluLookAt(0.0, 0.0, 0.0, 1.0, 1.0, 0.0, -1.0, 1.0, 0.0);

as a sequence of rotations about the coordinate axes (no translation is needed
as the eye is already at the origin).

Answer :

glRotatef(90.0, 0.0, 0.0, 1.0);

glRotatef(135.0, 0.0, 1.0, 0.0);

glRotatef(90.0, 1.0, 0.0, 0.0);

See Figure 4.50 for how the camera is restored to its default pose by these
three rotations.

Exercise 4.53. What sequence of rotations would have been found by the
method of Section 4.6.2 as equivalent to the viewing transformation of the
preceding example? Would they all have been about the coordinate axes?

If its first three parameters (eyex , eyey , eyez ) = (0, 0, 0), then a
gluLookAt()’s translational component is zero, so that it alters only a
camera’s orientation, or pose. From the preceding discussion, such a
gluLookAt() call is equivalent to a sequence

glRotatef(−γ, 0.0, 0.0, 1.0);
glRotatef(−β, 0.0, 1.0, 0.0);
glRotatef(−α, 1.0, 0.0, 0.0);162



i
i

i
i

i
i

i
i

Section 4.6

Viewing

Transformation

x

y

z

losup

(1,1,0)

(1,0,1)

(−1,1,0)

(−1,0,1) losup (1,0,0)

(0,0,1)

up
los

(0,1,0) (0,0,1)
up los

glRotatef(90, 1, 0, 0) glRotatef(135, 0, 1, 0) glRotatef(90, 0, 0, 1)

Figure 4.50: Solution to Example 4.6: the configuration of the camera given by
gluLookAt(0.0, 0.0, 0.0, 1.0, 1.0, 0.0, -1.0, 1.0, 0.0) is at left; the line of
sight and up vectors are indicated by blue arrows; rotations are both annotated at the
top and indicated in the figures themselves by broken arrows, the result of each rotation
being the next configuration.

because this sequence restores the camera to its default pose. In the
opposite direction, therefore, the orientation of the camera resulting from
this particular gluLookAt() call is obtained from its default pose by applying
the inverse of the above sequence, viz.

glRotatef(α, 1.0, 0.0, 0.0);
glRotatef(β, 0.0, 1.0, 0.0);
glRotatef(γ, 0.0, 0.0, 1.0);

The angles α, β and γ are called the camera’s Euler angles.
So, we see that Euler angles determine the camera’s orientation:

specifically, if they are α, β and γ, then the camera’s orientation is obtained
by applying first glRotatef(γ, 0.0, 0.0, 1.0), then glRotatef(β, 0.0, 1.0, 0.0)
and, finally, glRotatef(α, 1.0, 0.0, 0.0) to its default pose.

Euler angles are not unique. For example, it’s clear in Figure 4.49 that
glRotatef(−α ± 180◦, 1.0, 0.0, 0.0) could have been applied in Step (2),
instead of glRotatef(−α, 1.0, 0.0, 0.0), to still place the camera’s los on the
xz-plane. So the orientation given by Euler angles α, β and γ is the same
as the ones given by α± 180◦, β′ and γ′, for some, possibly, new β′ and γ′.

Exercise 4.54. What are the Euler angles of a camera

(a) at the origin pointing at (1, 0, 0)?

(b) at the origin pointing at (1, 1, 1)?

(c) at (1, 0, 0) pointing at (1, 1, 1)?

Note: In each case assume the up vector to be (0, 1, 0). To determine the
Euler angles of a camera not at the origin simply translate it first to the
origin.

Part answer : 163
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(a) 0◦, −90◦, 0◦ (one possible answer)

We’ll see more of Euler angles when we discuss animating the orientation
of rigid objects in Chapter 6.

4.6.4 Viewing Transformation and Collision Detection
in Animation

Our next program makes use of viewing transformations to simulate a moving
camera in an animated environment. It also has another aspect of interest,
particularly to those programming interactive applications such as games,
namely, collision detection.

Figure 4.51: Screenshot of spaceTravel.cpp.

Experiment 4.31. Run spaceTravel.cpp. The left viewport shows a
global view from a fixed camera of a conical spacecraft and 40 stationary
spherical asteroids arranged in a 5 × 8 grid. The right viewport shows
the view from a front-facing camera attached to the tip of the craft. See
Figure 4.51 for a screenshot of the program.

Press the up and down arrow keys to move the craft forward and backward
and the left and right arrow keys to turn it. Approximate collision detection
is implemented to prevent the craft from crashing into an asteroid.

The asteroid grid can be changed in size by redefining ROWS and COLUMNS.
The probability that a particular row-column slot is filled is specified as a
percentage by FILL PROBABILITY – a value less than 100 leads to a non-
uniform distribution of asteroids. End

We’ll discuss next the two most interesting aspects of spaceTravel.cpp:
(a) the viewing transformation that defines the scene in the right viewport
and (b) collision detection.

164
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The shape of the craft is defined by the glutWireCone(5.0, 10.0, 10,

10) statement; precisely, it is a cone of base radius 5 and height 10. The
configuration of the spacecraft is specified by the values of xV al, zV al and
angle, all three global variables of spaceTravel.cpp. Figure 4.52(a) is a
generic configuration in section along the xz-plane. The coordinates of the
center of the craft’s base are (xV al, 0, zV al), while the angle its axis makes
with the negative z-direction is angle. The middle A of the craft’s axis will
be of use in collision detection.

center

an
gl

e

(xVal, 0, zVal)

eye
1

A

T
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S5
5
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r2
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Figure 4.52: Spacecraft diagrams.

The camera for the right viewport is situated at the tip of the craft
pointing straight ahead. It’s straightforward trigonometry, now, to calculate
the coordinates of eye, i.e., the tip of the craft, and of an imaginary point
center to which it points, located 1 unit ahead of the tip:

eye = (xV al − 10 sin(angle), 0, zV al − 10 cos(angle) )

center = (xV al − 11 sin(angle), 0, zV al − 11 cos(angle) )

These equations for eye and center explain the parameters of the gluLook-
At() command for the right viewport.

Collision Detection

Collision detection as implemented in spaceTravel.cpp is simple though
approximate. The spacecraft is enclosed in an imaginary bounding sphere S
centered at the middle A of the cone’s axis, with radius equal to the distance
|AC| from A to a point C on the boundary of its base. See Figure 4.52(b).

If B is the center of the base, then it follows from the dimensions of the
cone that |AB| = |BC| = 5; therefore,

|AC| =
√
|AB|2 + |BC|2 =

√
50 = 7.071 . . . 165
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Accordingly, we specify the radius of S to be 7.072 (slightly larger, in
fact, than |AC|). The coordinates of the center A of S are obtained by
trigonometry from Figure 4.52(a):

A = (xV al − 5 sin(angle), 0, zV al − 5 cos(angle) )

To detect collision between the spacecraft and an asteroid T , we detect
instead collision between the craft’s bounding sphere S and T . It’s easy to
determine if there is a collision between the two spheres S and T : compare
the distance d between their centers with the sum r1 + r2 of their radii;
there is collision if d ≤ r1 + r2 (e.g., as in Figure 4.52(c)), and not otherwise.
This check is implemented in the routine checkSphereCollision(). This
collision-detection test is approximate, in fact, conservative, as the craft’s
bounding sphere may intersect an asteroid even if the craft itself doesn’t (as
shown in Figure 4.52(c)).

The up and down arrow keys are programmed to move the craft a distance
of 1 in either direction along its axis, and the left and right arrows to turn
the craft an angle of 5◦, only if there’ll not be a collision with an asteroid in
the new position (according to the conservative test above).

Exercise 4.55. (Programming) Modify spaceTravel.cpp as follows:

(a) Make the left viewport the view from the front of the spacecraft
(currently, it is the right viewport).

(b) Make one of the asteroids the “big golden asteroid” by drawing it
larger than the others and painting it suitably. Make it glow as well
by oscillating the intensity of its color.

(c) Place a camera on the golden asteroid whose location is fixed but
which rotates to track the spacecraft, i.e., its direction is pointed
always toward the craft. Attach a tall antenna to the craft so that,
even if it’s obscured by other asteroids, at least the antenna will be
visible from the big golden asteroid. Show the view from the golden
asteroid’s camera in the right viewport.

(d) When the spacecraft reaches the big golden asteroid, flash the text
“You have found gold!”.

Exercise 4.56. (Programming) Modify spaceTravel.cpp as follows:

(a) All the asteroids are currently colored spheres. Make them more
interesting by using a few different FreeGLUT objects, e.g., cube,
tetrahedron, octahedron, etc. You can also combine more than one
object, e.g., one sphere on top of another, or design your own.

(b) Currently, the spacecraft moves interactively. Change this to program
an automated tour which takes a fixed but zig-zag path through the166
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asteroids and returns to the start position. Plan a path so that the
craft comes close to a few interesting asteroids, visible in the right
viewport. Pressing space should start/stop the movement.

(c) Currently, the camera on the craft always points straight ahead.
Program occasional rotation of the camera, e.g., when the craft passes
a strange asteroid, pan the camera to keep it in view.

moving
camera

fixedcamera

Figure 4.53: Ball rolling
toward a box.

Exercise 4.57. (Programming) Place a camera on top of the rolling
ball of Exercise 4.27, pointing always down the plane. This camera does not
rotate with the ball, but stays always at the top, so its motion is entirely
linear. (How would you even install such a camera in real life? Well, that is
a great thing about CG: you are entirely free from real-life constraints!)

Place a box just beyond the bottom of the plane so that the ball’s camera
sees an approaching object. Place an additional fixed camera on the box
pointing at the plane to observe the ball. See Figure 4.53. Give a split-screen
view as in spaceTravel.cpp.

The following experiment is to whet your appetite for the topic of
frustum culling , critical to the efficient rendering of complex scenes with
large numbers of objects.

Experiment 4.32. Run spaceTravel.cpp with ROWS and COLUMNS both
increased to 100. The spacecraft now begins to respond so slowly to key input
that its movement seems clunky, unless, of course, you have a super-fast
computer (in which case, increase the values of ROWS and COLUMNS even
more). End

The reason for the degradation in the preceding experiment is that, every
time an arrow key is pressed, OpenGL processes 10,000 asteroids, which is
an enormous amount of computing. However, of these 10,000 only a few
(about 100, or 1%) are ultimately rendered, as you can roughly count on the
screen! The rest, of course, are outside the viewing frustum and clipped.

Unfortunately, by the time the decision to clip is made in the graphics
pipeline, a large amount of computation has already been invested. Frustum
culling is a technique to reduce this burden on OpenGL, whereby the
programmer leverages her knowledge of the scene to pre-filter objects lying
beyond the viewing frustum, not letting them into the pipeline at all.

We’ll discuss frustum culling in detail in Section 6.1. There’s really not
much more by way of prerequisites needed to read that particular section
though, so if you’re anxious to learn this technique, which is so important
in coding busy games and movies, feel free to jump right there.

We are not done yet with animation, though, and have a bunch more
fun code for you. 167



i
i

i
i

i
i

i
i

Chapter 4

Transformation,

Animation and

Viewing

4.7 More Animation Code

4.7.1 Animating an Articulated Figure

Our next project is a “studio” to develop animation sequences for an
articulated figure.

Experiment 4.33. Run animateMan1.cpp. This is a fairly complex
program to develop a sequence of key frames for a man-like figure, which
can subsequently be animated. In addition to its spherical head, the figure
consists of nine box-like body parts which can rotate about their joints. See
Figure 4.54. All parts are wireframe. We’ll explain the program next. End

Figure 4.54: Screenshot
of animateMan1.cpp.

It’s advisable to learn to use the program before studying the code. There
are two modes, develop and animate, and the program starts in the develop
mode with the man facing you with his currently highlighted part, the torso,
colored red. The rest of the body is black. Press the space bar to cycle
through the man’s movable parts, successively highlighting each. There are
nine movable parts, all OpenGL wire cubes: the torso, the upper and lower
arms on either side, and the upper and lower legs on either side.

Rotate the currently highlighted part by pressing the page-up and page-
down keys. To move the man as a whole press the left/right and up/down
arrow keys. The angles at which the 9 movable parts are currently rotated,
as well as the vertical and horizontal translational components of the man
as a whole, are shown as text data in the window in develop mode.

While arranging the man into a desired configuration, you can rotate
your own viewpoint by pressing ‘r/R’, or zoom in and out pressing ‘z/Z’.

Once the first configuration is completed to your satisfaction, press ‘n’.
This creates a new configuration which cannot be seen immediately as it’s
a copy of the previous one. Press, say, the right arrow key to separate the
new configuration from the previous one. The (current) new configuration
is bright, while the other(s) are ghosted. Again, use the space key to select
a part, the page-up and page-down keys to rotate that part, and the arrow
keys to move the entire configuration until it is arranged suitably.

Figure 4.55: Screenshot
of animateMan1.cpp in
develop mode.

Press ‘n’ to create new configurations until the key frames sequence is
complete. Figure 4.55 shows a screenshot part way through the develop
mode. You can edit the sequence at any time as follows.

Press the tab key to cycle through the sequence of configurations – the
currently selected configuration is bright, while the rest ghosted. Press
backspace to reset the currently selected configuration, delete to remove it
altogether, or you can rearrange it using keys as already described.

When the key frames sequence is complete, pressing ‘a’ begins an
animation which cycles through the programmer-created configurations.
Pressing the up or down arrow keys speeds up or slows down the animation.
Pressing ‘a’ again returns the program to develop mode.

Switching to animation mode also causes the program to write out to
the file animateManDataOut.txt successive configurations of the animation168
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sequence, stored currently in the vector manVector. Configuration are stored
in successive lines of animateManDataOut.txt, each consisting of 11 floating
point values – partAngles[0]-[8], upMove and forwardMove – the same
as are displayed on the screen in develop mode.

Figure 4.56: Screenshot
of animateMan2.cpp.

Experiment 4.34. Run animateMan2.cpp. This is simply a pared-down
version of animateMan1.cpp, whose purpose is to animate the sequence of
configurations listed in the file animateManDataIn.txt, likely generated
from the develop mode of animateMan1.cpp. Press ‘a’ to toggle between
animation on/off. As in animateMan1.cpp, pressing the up or down arrow
key speeds up or slows down the animation. The camera functionalities via
the keys ‘r/R’ and ‘z/Z’ remain as well. Think of animateMan1.cpp as the
studio and animateMan2.cpp as the movie.

The current contents of animateManDataIn.txt cause the man to do a
handspring over the ball. Figure 4.56 is a screenshot. End

Now let’s look at the code of animateMan1.cpp. From an OpenGL point
of view, most interesting possibly is the drawing of a configuration by the
function Man::draw(). The best way to understand it is to analyze the
successive placement of parts. We’ll do this our usual way of deconstructing
a program by first commenting out most of it and then restoring code piece
by piece.

Accordingly, first comment out all parts except the torso as below:

// Function to draw man.

void Man::draw()

{
if (highlight||animateMode) glColor3fv(highlightColor);

else glColor3fv(lowlightColor);

glPushMatrix();

// Up and forward translations.

glTranslatef(0.0, upMove, forwardMove);

// Torso begin.

if (highlight && !animateMode) if (selectedPart == 0)

glColor3fv(partSelectColor);

glRotatef(partAngles[0], 1.0, 0.0, 0.0);

glPushMatrix();

glScalef(4.0, 16.0, 4.0);

glutWireCube(1.0);

glPopMatrix();

if (highlight && !animateMode) glColor3fv(highlightColor);

// Torso end.

169



i
i

i
i

i
i

i
i

Chapter 4

Transformation,

Animation and

Viewing

/*

// Head begin.

.

.

.

// Right upper and lower leg with foot end.

*/

glPopMatrix();

}

Next, uncomment the head:

// Function to draw man.

void Man::draw()

{
if (highlight||animateMode) glColor3fv(highlightColor);

else glColor3fv(lowlightColor);

glPushMatrix();

// Up and forward translations.

glTranslatef(0.0, upMove, forwardMove);

// Torso begin.

if (highlight && !animateMode) if (selectedPart == 0)

glColor3fv(partSelectColor);

glRotatef(partAngles[0], 1.0, 0.0, 0.0);

glPushMatrix();

glScalef(4.0, 16.0, 4.0);

glutWireCube(1.0);

glPopMatrix();

if (highlight && !animateMode) glColor3fv(highlightColor);

// Torso end.

// Head begin.

glPushMatrix();

glTranslatef(0.0, 11.5, 0.0);

glPushMatrix();

glScalef(2.0, 3.0, 2.0);

glutWireSphere(1.0, 10, 8);

glPopMatrix();

glPopMatrix();

// Head end.

/*170
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// Left upper and lower arm begin.

.

.

.

// Right upper and lower leg with foot end.

*/

glPopMatrix();

}

Continue – as you successively uncomment each body part, it’ll be clear how
it’s being placed with respect to existing ones.

The creation of the camera as an object of the Camera class may be of
interest as well and we’ll leave the reader to relate the parameter values of
the gluLookAt() command to the member variables viewDirection and
zoomDistance of the Camera class.

Much of the rest of the code consists simply of managing and using
manVector, which stores the sequence of configurations.

Remark 4.18. Even though he himself is 3D, the man moves and rotates
his parts always parallel to the yz-plane, so he’s not really capable of 3D
motion!

Exercise 4.58. (Programming) Use animateMan*.cpp to animate a
character kicking a football.

Exercise 4.59. (Programming) Enhance animateMan*.cpp:

(a) The character’s body parts, except for the head, are currently all cubes.
Make them more realistically rounded using cylinders.

(b) Add movement to the character’s feet, which are currently fixed with
respect to his lower legs. Give him movable hands as well.

(c) As remarked earlier, all the character’s movements are currently parallel
to a single plane. Enhance to true 3D.

Exercise 4.60. (Programming) Stick a camera to the front of the
man’s head and give a split-screen view of what he sees as he advances
through an animation sequence and what is seen from a separate fixed
camera focused on him.

Exercise 4.61. (Programming) By scaling individual body parts,
create a second character who looks different from the first, though with
identical functionality. Make a simple movie with the two.

It would be particularly effective in such a sequence to occasionally switch
to a camera located in front of either one of their heads, to record how one
sees the other. 171
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Exercise 4.62. (Programming) Smoothly animating even a short
movie requires several key frames (approximately 20 per second). However,
the “important” ones are likely far fewer in number. For example, if a man
kicks a ball, these are probably his wound-up pose ready to kick, the pose
when his foot makes contact with the ball, a follow-through pose having
kicked and, possibly, a few more in between to guide the sequence; certainly,
far fewer than the 40 or so key frames needed for even a 2-second kicking
sequence.

A movie-maker, therefore, saves a lot of tedious labor by simply drawing
the important key frames, leaving an interpolating routine to fill in enough
frames to make the animation smooth, a process called tweening .

Write a simple tweening routine based on animateMan*.cpp. In
particular, use linear interpolation to fill configurations – each being an
11-vector of floats – in between successive programmer-created ones.

4.7.2 Simple Shadow Animation

When the scaling transformation was introduced at the beginning of this
chapter we said that degenerate scalings have the occasional application.
Here’s one to create and animate a simple shadow.

Figure 4.57: Screenshot
of ballAndTorus-
Shadowed.cpp.

Experiment 4.35. Run ballAndTorusShadowed.cpp, based on ballAnd-

Torus.cpp, but with additional shadows drawn on a checkered floor. Press
space to start the ball traveling around the torus and the up and down arrow
keys to change its speed. Figure 4.57 is a screenshot. End

There are parts of the program to make the picture look nice, e.g., lighting
and material properties, which may not make sense currently, but neither
are they relevant to drawing shadows, so ignore them for now.

Note, first, that the routine drawFlyingBallAndTorus() repositions the
ball and torus from ballAndTorus.cpp horizontally so that their shadow,
thrown supposedly by a distant overhead light source, falls on the floor.
That the (imaginary) light source is vertically far above is important, as it
justifies drawing the shadows as if cast by rays parallel to the y-axis. The
actual drawing itself is quite simple – the following few lines in the drawing
routine do the trick:

glPushMatrix();

glScalef(1.0, 0.0, 1.0);

drawFlyingBallAndTorus(1);

glPopMatrix();

The argument value 1 to drawFlyingBallAndTorus() causes both ball
and torus to be drawn black, while the degenerate scaling command
glScalef(1.0, 0.0, 1.0) collapses the y-values of all their vertices to
0, creating a flat black object which is precisely their shadow on the xz-plane
from light rays parallel to the y-axis.172
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Remark 4.19. Since ballAndTorusShadowed.cpp evidently contains code
to light the scene, you might think that OpenGL can compute shadows
automatically. This is not the case: OpenGL does not automatically compute
secondary consequences of lighting such as shadows and reflection. These
have to be implemented separately by the programmer.

Remark 4.20. Note that the shadow of the ball on the torus is missing, even
when it flies directly above. Our simple blacken-and-flatten method cannot
draw shadows on curved surfaces. We’ll learn a way to do this, however,
later on in Section 18.2 on shadow mapping.

4.8 Selection and Picking

Strictly speaking, this section does not fit in a chapter about animation
and viewing. However, countless animated applications ask the user to
pick and move an object on the screen with a mouse or mouse-like device
(shoot-em-up games come to mind). We thought it important, therefore, to
explain how to implement such interactivity.

World space

Screen space

Pi
pe

lin
e

Figure 4.58: OpenGL’s synthetic-camera pipeline (highly simplified!).

Unfortunately, picking an object on the screen – which, effectively, means
deciding to which object a picked pixel belongs – is not a simple operation
given how the synthetic-camera pipeline functions. Particularly, objects
enter the pipeline, are processed and emerge each as a set of fragments 173
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(fragment = pixel + color values), which are then rendered to the screen.
Figure 4.58 is a conceptual diagram.

The pipeline is not designed to be reversible, so there’s no easy way to
“climb back up” from screen space to world space. How then does one go
about picking? Fortunately, OpenGL provides support for picking as well as
a process it calls selection, which, in fact, enables picking. Let’s begin with
selection.

4.8.1 Selection

The idea underlying selection is simple. In a nutshell, it is to allow the user
to specify a viewing volume and to then find the objects that intersect, or
hit , this volume. To this end the user must first enter a rendering mode,
called selection mode, by invoking glRenderMode(GL SELECT). In selection
mode nothing is drawn to the frame buffer; rather, primitives are processed
simply to determine their intersections with the specified viewing volume
and generate so-called hit records.

To help determine from a hit record the primitive, or primitives, which
produced it, OpenGL provides a so-called name stack which the user
manipulates. The user can load names onto the name stack in a manner
that establishes correspondence between primitives and names.

A hit record contains the contents of the name stack at the time of its
creation so, based upon the correspondence between primitives and names,
the user can determine those involved in the hit. Let’s get to specifics with
the help of live code.

Figure 4.59: Screenshot
from selection.cpp.

Experiment 4.36. Run selection.cpp, which is inspired by a similar
program in the red book. It uses selection mode to determine the identity
of rectangles, drawn with calls to drawRectangle(), which intersect the
viewing volume created by the projection statement glOrtho (-5.0, 5.0,

-5.0, 5.0, -5.0, 5.0), this being a 10×10×10 axis-aligned box centered
at the origin. Figure 4.59 is a screenshot. Hit records are output to the
command window. In the discussion following, we parse the program carefully.

End

We’ll call the viewing volume glOrtho (-5.0, 5.0, -5.0, 5.0, -5.0,

5.0), used to “select” the rectangles intersecting it, the selection volume.
Note that it is different from the program’s own viewing volume defined by the
glFrustum(-5.0, 5.0, -5.0, 5.0, 5.0, 100.0) call in the resize()

routine.

Displayed by the drawConfiguration routine is the outline of the
selection volume and two rectangles, one red and one green, both inside it. If
you don’t trust the perspective view of the scene in Figure 4.59, as probably
you shouldn’t, verify from the parameters of the drawRectangle() call that
the two rectangles indeed lie inside the selection volume.174
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The selectHits() routine, which comes next in the code, is where all
the action is. Let’s step through it carefully. The first statement

glSelectBuffer(1024, buffer);

specifies the array, called the hit buffer , to store hit records, as well as its
size. The next statement

glRenderMode(GL SELECT);

makes OpenGL enter selection mode. The next block of statements

glMatrixMode(GL PROJECTION);

glPushMatrix();

glLoadIdentity();

glOrtho(-5.0, 5.0, -5.0, 5.0, -5.0, 5.0);

glMatrixMode(GL MODELVIEW);

glLoadIdentity();

causes the matrix mode to change to projection, the current projection
matrix (i.e., the one defined in the resize() routine) to be saved, that
corresponding to the selection volume for hit testing to be placed on top
of the projection matrix stack and, finally, modelview matrix mode to be
re-entered and the current modelview matrix set to identity.

The statement pair next, viz.

glInitNames();

glPushName(0);

initializes an empty name stack and pushes the name 0 on it (names are
always non-negative integers). We’ll not be using 0 to name any primitive,
but push it on so that we have something to replace with “real” names when
using glLoadName(). The initial configuration is depicted in Figure 4.60(a).

(a) (b) (c)

0 1 2

Figure 4.60: Name stack configurations: (a) Initial (b) When the red rectangle is
drawn (c) When the green rectangle is drawn.

The following set of commands both manipulates the name stack and
correspondingly “draws” primitives. Keep in mind that in selection mode
nothing is actually drawn to the frame buffer, in other words, nothing is
seen to happen.

glLoadName(1);

drawRectangle(0.0, 0.0, 3.0, 1.0, 0.0, 0.0); // Rect 1 (red). 175
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glLoadName(2);

drawRectangle(0.0, 0.0, -3.0, 0.0, 1.0, 0.0); // Rect 2 (green).

Figures 4.60(b) and (c) depict the name stack as it is at the time of drawing
of the first and second rectangles, respectively. The next statement

hits = glRenderMode(GL RENDER);

takes OpenGL back to the default rendering mode where objects are indeed
drawn to the frame buffer, at the same time returning the number of
hit records currently in the hit buffer. Note that the return value of
glRenderMode() has meaning only when transiting out of selection mode
or another mode called feedback, which we’ll not use, and not when leaving
rendering mode. Finally,

glMatrixMode(GL PROJECTION);

glPopMatrix();

glMatrixMode(GL MODELVIEW);

restore the projection matrix from the resize() routine and return OpenGL
to modelview matrix mode.

As selectHits() was being executed, hit records were written into the
hit buffer following rules we’ll describe next. A hit record is written into the
hit buffer when both of the following conditions hold:

(a) A name stack manipulation or glRenderMode() command is encoun-
tered, and

(b) a hit has occurred (i.e., a primitive drawn that intersects the selection
volume) since the previous instance of such a command.

Each hit record contains four fields in the following order:

1. The number of names in the name stack at the time of writing the
record.

2. The minimum z-value of vertices belonging to primitives which have
hit the selection volume since the last hit record was written. This
value is normalized by dividing by the depth of the selection volume
to a number in the range [0, 1], which is then multiplied by 232 − 1,
rounded, and stored in the hit record as a 32-bit unsigned integer.

3. The maximum z-value of vertices belonging to primitives which have
hit the selection volume since the last hit record was written, stored
likewise.

4. The sequence of the names in the name stack at the time of writing
the record with the bottom one first. (This sequence may be empty.)176



i
i

i
i

i
i

i
i

Section 4.8

Selection and

Picking

It is the processHitBuffer() routine, called by drawScene(), which
steps through the hit buffer, outputting its contents to the command window.
Items 2 and 3 above, the minimum and maximum z-values of vertices, are
normalized back to between 0 and 1 by dividing by 232 − 1.

There are two hit records, as you can see in the command window. The
first one (1, 0.2, 0.2, 1) was generated on processing the glLoadName(2) call
because a hit (the red rectangle) occurred after the previous name stack
manipulation command (glLoadName(1)). The contents of this record are
easy to understand if one observes that the configuration of the name stack
at the time of the record’s creation was as in Figure 4.60(b); moreover, the
depth of all vertices of the red rectangle from the front face of the viewing
box is 2, which becomes 2/10 = 0.2 when normalized by division by the
box’s depth.

The second hit record (1, 0.8, 0.8, 2) is generated on processing the

hits = glRenderMode(GL RENDER);

statement, and we leave the reader to parse its contents.
The following exercises should, hopefully, completely clarify how hit

records are generated.

Exercise 4.63. (Programming) Add one more rectangle, but in two
different ways. First, insert the statement

drawRectangle(0.0, 0.0, 0.0, 0.0, 0.0, 1.0);

in the selectHits() routine (a) just before the glPushName(0) call (and
after glInitNames()), and (b) just after glPushName(0). What are the hit
records generated in each case? When is each of these hit records generated?

Note: To see the new rectangle, make sure to add an identical drawing
statement in the drawConfiguration() routine!

Part answer : In either case a new hit record comes before the two from the
original program. When the statement is before glPushName(0), the new
record is (0, 0.5, 0.5, ) with an empty name list.

Exercise 4.64. (Programming) Restore the original selection.cpp
program and insert the rectangle-drawing statement

drawRectangle(0.0, 0.0, 0.0, 0.0, 0.0, 1.0);

of the preceding exercise in the selectHits() routine, just after the
statement that draws the first (red) rectangle. Explain the hit records,
particularly, the z-values of the first one.

Exercise 4.65. (Programming) Restore the original selection.cpp
program, but then change the command to draw the red rectangle to

drawRectangle(5.5, 0.0, 3.0, 1.0, 0.0, 0.0); 177
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so that it intersects the selection volume without being entirely inside it.
Observe that the hit records are still the same.

Exercise 4.66. (Programming) Restore the original selection.cpp
program and insert the pair of name stack manipulation commands

glLoadName(3);

glLoadName(4);

right after the statement that draws the second (green) rectangle. The
output is the same as for the unmodified selection.cpp. Why?

Exercise 4.67. (Programming) Restore the original selection.cpp
program and add a new name stack manipulation command

glPushName(3);

between the glLoadName(2) call and the statement that draws the green
rectangle. Predict the output before running.

Remark 4.21. The previous exercise shows a way of tagging an object with
multiple names (in this case the green rectangle with 2 and 3) which is
particularly useful in a scene where there is a hierarchy of objects. For
example, we may want to tag the tail fin of the fourth aircraft with the
names 4 and 7, if 7 is the part number of a tail fin.

Exercise 4.68. (Programming) The one remaining name stack ma-
nipulation command, which we have not used yet, is glPopName(), whose
action the user can easily guess.

Insert a glPopName() statement in the selectHits() routine of
selection.cpp in such a manner that the second hit record generated
is (0, 0.8, 0.8, ).

4.8.2 Picking

Now that we have an understanding of the selection process, let’s move on
to picking, which is really selection plus a little help from OpenGL in setting
up a selection volume to track a user-specified point on the screen.

Figure 4.61 illustrates the idea. V is the viewing frustum defined by the
projection statement of a program. Objects are, therefore, drawn to the
OpenGL window following perspective projection to the viewing face of V
(we’ll identify V ’s viewing face with the OpenGL window without harm,
because going from one to the other is a simple scaling).

Accordingly, one can find objects picked from choosing a pointP in the
OpenGL window by determining those that intersect a long thin frustum like
V ′ whose base is centered at P , because it’s precisely these objects whose
projections intersect P . Of course, there’s some error depending on the size
of V ′, the thinner being V ′ the more accurate the picking. And, as you
might guess, it’s in detecting intersection with V ′ that selection comes in.178
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V

Viewing face

V´

P

Figure 4.61: Clicking P “hits” the aircraft because the latter intersects V ′.

In addition to the selection mechanism, there’s even more help to be
had from OpenGL: the GLU routine gluPickMatrix() defines a selection
volume for use in picking, which is a frustum of user-specified size centered
at a user-specified point. Here’s how it works. The sequence of commands

glLoadIdentity();

gluPickMatrix(pickX, pickY, width, height, viewport[4]);
glFrustum(); or gluPerspective(); or glOrtho(); // Copied from the

// reshape routine.

causes the top matrix of the projection matrix stack to be replaced by
one corresponding to a selection volume whose front face is a width ×
height rectangle centered at the point of the OpenGL window with x and
y world coordinate values equal to pickX and pickY , respectively. The
viewport[] array supplies the current viewport boundaries and may be
set by calling glGetIntegerv(GL VIEWPORT, viewport). Functionally, the
gluPickMatrix() command actually generates a matrix, called the pick
matrix .

Let’s get to work using the pick mechanism in a simple game-like
application.

Figure 4.62: Screenshot
of ballAndTorus-
Picking.cpp moments
after the ball has been
clicked.

Experiment 4.37. Run ballAndTorusPicking.cpp, which preserves all
the functionality of ballAndTorus.cpp upon which it is based and adds the
capability of picking the ball or torus with a left click of the mouse. The
picked object blushes. See Figure 4.62 for a screenshot. End

The drawBallAndTorus() routine of ballAndTorusPicking.cpp is
pretty much the whole drawScene() routine of ballAndTorus.cpp, except
with two main differences:

(a) In selection mode, glLoadName() is invoked to tag the torus with the
name 1 and the ball with name 2. 179
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(b) If one of the torus or ball is picked – the name being contained in
the global closestName – it is painted red for as long as the global
highlightFrames is greater than 0.

The mouse callback pickFunction() is written along the lines of
selectHits() of selection.cpp. The important difference is that the
selection volume for hits is specified with help of a gluPickMatrix()

call. And, of course, instead of drawing rectangles as in selection.cpp,
drawBallAndTorus() is executed in selection mode.

The routine findClosestHit() called by pickFunction() is an inter-
esting modification of the processHitBuffer() routine of selection.cpp.
In case there is more than one hit record, implying that both ball and torus
fell under the mouse click, findClosestHit() compares their min-z fields
to determine the one closer to the viewer.

Note: Sometimes an object doesn’t light up on what seems like a definite
click or the farther object lights up when both fall under the same mouse
click. That’s because the click fell between mesh wires! Possible solutions
include making the meshes finer or the picking less sensitive by increasing the
width and height parameters of gluPickMatrix() from the current values
of 3 for both.

Picking plus dragging with mouse motion (see Section 3.6 for the latter)
make a potent duo. Give it a go in the next exercise.

Exercise 4.69. (Programming) Enhance canvas.cpp, from the previ-
ous chapter, so that figures in the drawing area can be picked and moved.

Exercise 4.70. (Programming) Referring again to Exercise 4.19, where
you added two more balls to ballAndTorus.cpp, now add the functionality
of being able to pick any of the four objects a la ballAndTorusPicking.cpp.

Exercise 4.71. (Programming) Create a game, be it a shoot-em-up
or drag-em-down or . . .. Use your imagination.

Picking by Color Coding

Yet another method to pick objects in OpenGL is by means of so-called
color coding . We’ll describe the idea briefly, but not go into detail, nor use
it in a program. Picking by color coding requires use of the back buffer, so
the program must run in double-buffered mode.

Here’s how it works. When the user picks a pixel the entire scene is
redrawn to the back buffer, but with objects of interest drawn in different
colors. In other words, objects are color coded there. Next, data from the
picked pixel is read from the back buffer with help of a glReadPixels() call
and its color decoded to determine the picked object.

Figure 4.63 illustrates the idea – the disc and the rectangle are
distinguishable in the back buffer by means of their color. So, e.g., if180
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Front buffer Back buffer

Figure 4.63: Color coding.

the picked pixel is red in the back buffer then the primitive picked is the
disc.

4.9 Summary, Notes and More Reading

If animation is like a car, then we’ve just gotten our driver’s license. In this
chapter we learned the basics of the modeling and viewing transformations
and how to use them to move objects and change their shape, as well as to
manipulate the camera. We also peeked under the hood at OpenGL’s engine,
particularly in order to understand how transformations are composed and
how they are used to place objects relative to one another. Collision detection,
which is often crucial in interactive game programming, was discussed in the
context of animation. We also began a discussion of orientation and Euler
angles which will be continued in a more advanced chapter on animation. We
learned as well the techniques of selection and picking, essential in interactive
environments. And we saw plenty of live code along the way.

The topics covered in this chapter are at the very heart of computer
graphics. Every introduction to the subject will have some coverage – see,
for example, any of the introductory references, both OpenGL-based and
API-independent, listed in Section 2.12 – differing perhaps in style and
extent. It can only reinforce understanding to get more than one point of
view, so the reader is encouraged to pick up other CG books which may be
handy and turn to the relevant chapters. She will also find useful several of
the on-line tutorials listed at the OpenGL site [103]. Particularly noteworthy
is Nate Robins’ finely-designed suite [100].

Collision detection is also to a greater or lesser extent covered in most
introductory CG books, often in the context of ray tracing, which is a
technique of rendering where light rays are followed from source to collision
with an object (and possibly reflection again). For further reading about
collision detection, however, the reader is well-advised to consult books on
game programming, where it is especially important. See, e.g., Lengyel
[85] and van Verth & Bishop [145]. Specialized books on collision detection
include Ericson [43] and van den Bergen [144]. An extensive repository of
resources on collision detection, including research papers and code, is at
the UNC Gamma Research Group website [143]. 181
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This chapter is also a lead-in to the extremely important discipline of
physics in graphics (popularly called game physics), which includes the
study of multi-body kinematics and dynamics of rigid and deformable
bodies, among other topics from real-world physics. Real-time game physics
is particularly important in the creation of realistic interactive games.
Introductory books for the interested reader include Bourg & Bywalec
[20] and Eberly [40].

Undoubtedly, the best way for the reader to build on this chapter is to
write lots and lots of animation code. In fact, this is a good time for her
to begin coding, if she hasn’t already done so, a significant project, e.g., a
game or movie. She can get the essentials in place now and then embellish
her project as we go along – with more complex objects, color, light and
texture.

182



i
i

i
i

i
i

i
i

CHAPTER 5
Inside Animation: The Theory of
Transformations

W
e studied transformations and their application to animation
in Chapter 4. The goal for this chapter is to understand
the underlying theory. We want to look under the hood

of the graphics engine and understand exactly how transformations are
implemented. What we’ll encounter is the mathematics of geometric
transformations.

We begin our discussion of geometric transformations in Section 5.1 in the
simple surroundings of Flatland (2-dimensional space), the objective being
to get concepts in place and prove results that will extend fairly easily to the
real world. This program starts in Sections 5.1.1-5.1.4 with the expression
of familiar geometric transformations, in particular, translations, scalings,
rotations and reflections, by means of matrices.

Next, we briefly interrupt our pursuit of 2D geometric transforms to
digress in Section 5.2 into linear algebra, particularly for an understanding
of affine transformations. Affine transformations will provide a unifying
perspective of all the geometric transformations that we encounter. In
Sections 5.2.1-5.2.3 we define affine transformations as a generalization of
linear transformations, prove that they are particularly pleasant in their
geometric behavior, understand the central role they play in the design of a
graphics API such as OpenGL and, finally, learn the use of homogeneous
coordinates to facilitate the application of affine transformations.

We resume our study of 2D geometric transforms in Section 5.3 with
our newfound knowledge of affine transformations. We begin in 5.3.1 by
placing the transformations of Section 5.1 in context as affine geometric
transformations. In 5.3.2 comes the notion of Euclidean transformations, 183
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and their subclass of rigid transformations, neither of which distorts the
shape of an object. Consequently, these are the transformations to use to
animate rigid objects. The exploration of 2D transformations concludes with
a discussion of shears, a commonly occurring shape-distorting transformation,
in 5.3.3.

Geometric transformations of the real world or 3-space – transformations
that OpenGL actually implements – is the topic of Section 5.4. The
development parallels that of the previous section on 2D transformations.
Matrix expressions for translations, scalings and reflections generalize easily
from their 2D counterparts in Sections 5.4.1-5.4.2 and 5.4.4. 3D rotations,
however, require considerably more work in the longish 5.4.3.

Observing in 5.4.5 that translations, scalings and rotations about radial
axes are fundamental affine transformations, in the sense that they can
be used to generate all other affine transformations, lends insight into the
design of a CG animation engine. We realize that, however exciting the
game or movie is that we happen to be enjoying, most of what is going on
inside the machine is the distinctly unglamorous activity of multiplying 4× 4
matrices – lots and lots of them and very, very fast! We learn to access and
manipulate the OpenGL modelview matrix stack in 5.4.6. Euclidean and
rigid 3D transformations are discussed next in Section 5.4.7. The ability to
access the modelview matrix stack comes in handy in 5.4.8 when we learn
about 3D shears and how to manually code and insert their matrices into
the stack.

We conclude in Section 5.5 with a summary, notes and suggestions for
further reading.

Important : We assume for this chapter familiarity with basic linear
algebra, as, say, would be found in a first college course or in a multitude of
introductory texts, e.g., [8, 50, 73, 80, 84, 138] and others. Section 5.2 needs
familiarity as well with the basics of convex sets, again from an introductory
geometry text.∗

In fact, you can safely defer this somewhat theoretical chapter to a second
pass through the book .

Note to the reader about projection transformations: This chapter is
devoted to the theory of modelview transformations. You will find a thorough
coverage of projection transformations and their matrices in Chapter 18.

5.1 Geometric Transformations in 2-Space

We begin discussion of geometric transformations in 2D space, rather than
real-life 3D, in order to develop our intuition in a simpler setting. Much of
what we say and prove, though, will generalize fairly easily to 3D.

∗The needed material on convexity can also be found in our own Chapter 7, which
logically belongs to the group Chapters 7-9. Nevertheless, it’s easily readable at this time
and, in fact, you are strongly recommended to flip through at least Sections 7.1-7.2.184
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5.1.1 Translation

A translation is specified by a displacement vector D = [dx dy]
T , which is

added to the location vector of each point. Precisely, the image of the point
P = [x y]T by this translation is P ′ = [x′ y′]T , where[

x′

y′

]
=

[
x
y

]
+

[
dx
dy

]
=

[
x+ dx
y + dy

]
=

[
1 0
0 1

] [
x
y

]
+

[
dx
dy

]
See Figure 5.1. Concisely:

P ′ =

[
1 0
0 1

]
P +D (5.1)

The matrix multiplication may seem redundant, but it serves to put the
RHS in a general form which will soon prove useful.

P(x, y)
x

y

displacement
vector (dx, dy)

P´(x´, y´) = (x + dx , y + dy) 

Figure 5.1: Translation.

Terminology : We’ll use the coordinate notation (x, y) and the matrix
notation [x y]T for a point interchangeably, particularly preferring the
latter when we want to treat the point’s location as a vector.

Exercise 5.1. Prove that the composition of translations is a translation
and that the inverse of a translation is another translation.

Part answer : We’ll prove that the composition of translations is again a
translation the long way, using the matrix form of the translation equation,
but it’s good practice. So suppose the translations t1 and t2 are specified by
the displacement vectors D1 and D2, respectively. Then

(t1 ◦ t2)(P ) = t1(t2(P )) = t1

([
1 0
0 1

]
P +D2

)
=

[
1 0
0 1

]([
1 0
0 1

]
P +D2

)
+D1

=

([
1 0
0 1

]
P +D2

)
+D1 =

[
1 0
0 1

]
P + (D2 +D1)

proving that t1 ◦ t2 is indeed a translation, specified by the displacement
D2 +D1.

185
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5.1.2 Scaling

A scaling is specified by a scaling factor sx along the x-axis and a scaling
factor sy along the y-axis. The image of a point P by this scaling is the
one whose x coordinate value is sx times that of P and y coordinate value
sy times that of P (see Figure 5.2). Precisely, the image of P = [x y]T is
P ′ = [x′ y′]T , where[

x′

y′

]
=

[
sxx
syy

]
=

[
sx 0
0 sy

] [
x
y

]
Concisely:

P ′ =

[
sx 0
0 sy

]
P (5.2)

x

y

P (x, y)
P´(x´, y´) = (sxx , syy) 

Figure 5.2: Scaling.

If either, or both, of the scaling factors sx and sy is zero, then the
scaling is said to be degenerate; if neither is zero, it is non-degenerate. By a
scaling we shall always mean a non-degenerate one, unless specifically stated
otherwise.

Exercise 5.2. Show that the scaling given by Equation (5.2) is non-
degenerate if and only if its matrix is non-singular (i.e., has non-zero
determinant).

Exercise 5.3. Use Equation (5.2) to prove that the composition of scalings
is a scaling and that the inverse of a non-degenerate scaling is another non-
degenerate scaling. Are degenerate scalings invertible?

5.1.3 Rotation

A rotation about the origin is specified by an angle θ measured counter-
clockwise as seen by a viewer V located on the positive side of the z-axis (in
a hypothetical right-handed 3D coordinate system made by adding a z-axis
to the x- and y-axes of the given 2D plane). See Figure 5.3(a).186
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(a) (b)

α
AA´

r

x

y

θ

O x

y

V

z

θ

O

r

P´(x´, y´) P´(x´, y´)

P(x, y) P(x, y)

Figure 5.3: Rotation.

Note : We had to add the z-axis and place a viewer on a particular side of
it because it’s not enough to simply say that a rotation on the xy-plane is
counter-clockwise: the same rotation appears counter-clockwise from one
side and clockwise from the other.

In the future, to avoid tedious language, we’ll always assume that a
viewer is located at a point such as V , on the positive side of the z-axis.

We want to calculate the image P ′ = [x′ y′]T of the point P = [x y]T

by this rotation. The method is exactly the same as the solution given for
Exercise 4.8(c), in the case of a 3D rotation about the z-axis. The reader
can refer again to that exercise or deduce herself the following equations
from Figure 5.3(b):

x = OA = r cosα

y = PA = r sinα

which are used in

x′ = OA′ = r cos(α+ θ) = r cosα cos θ − r sinα sin θ

= x cos θ − y sin θ

y′ = P ′A′ = r sin(α+ θ) = r cosα sin θ + r sinα cos θ

= x sin θ + y cos θ

Therefore, the image of P = [x y]T by a rotation of angle θ counter-
clockwise about the origin is P ′ = [x′ y′]T , where[

x′

y′

]
=

[
x cos θ − y sin θ
x sin θ + y cos θ

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
(5.3)

or, concisely,

P ′ =

[
cos θ − sin θ
sin θ cos θ

]
P (5.4)

The matrix in the preceding equation is often called a rotation matrix . 187
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Example 5.1. Write the matrix form as in (5.4) of a counter-clockwise
rotation by an angle of 60◦ about the origin. To which point is [1 − 2]T

transformed by this particular rotation?

Answer : The given rotation will take P = [x y]T to P ′ = [x′ y′]T , where

P ′ =

[
cos 60◦ − sin 60◦

sin 60◦ cos 60◦

]
P =

[
1/2 −

√
3/2√

3/2 1/2

]
P

Therefore, [1 − 2]T is transformed to[
1/2 −

√
3/2√

3/2 1/2

] [
1
−2

]
=

[
1/2 +

√
3

−1 +
√

3/2

]
'
[

2.23
−0.13

]

Exercise 5.4. Is the matrix of a rotation about the origin always non-
singular?

Exercise 5.5. Determine the matrix expression for a counter-clockwise
rotation by an angle θ about an arbitrary point O′ = [a b]T , not necessarily
the origin.

Suggested approach : Use the Trick of Example 4.2 to express this rotation
as a composition of three successive transformations:

1. A translation by the displacement vector [−a − b]T taking O′ to the
origin.

2. A counter-clockwise rotation by θ about the origin.

3. A translation by the displacement vector [a b]T restoring O′ to its
original position.

Next, compose the expressions corresponding to these three transformations
(make sure to do this in the right order). The result will be a transformation
of the form P 7→MP +D.

Exercise 5.6. Determine the matrix expression for a rotation of 45◦

counter-clockwise about the point [2 3]T .

Exercise 5.7. Use Equation (5.4) to prove that the composition of rotations
about the origin is another such and that so is the inverse of a rotation
about the origin.

Exercise 5.8. How about the composition of rotations about some fixed
point other than the origin? Is this again a rotation about that point?

Example 5.2. Is the composition of rotations about different points
necessarily equivalent to a single rotation about some one point?188
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Answer : Consider rotations r1 and r2, both of 180◦, about the two points
O1 = [0 0]T and O2 = [1 0]T , respectively. We’ll show that r2 ◦ r1 is not a
rotation about any point, answering the question asked in the negative.

It’s easy to check that (r2 ◦ r1)(O1) = r2(r1(O1)) = r2(O1) = [2 0]T ,
while (r2 ◦ r1)(O2) = r2(r1(O2)) = r2([−1 0]T ) = [3 0]T . See Figure 5.4(a).

(a) (b)

y

x
O

P

r(P)

(0, 0) (1, 0) (2, 0) (3, 0)
(r2r1)(O1) (r2r1)(O2)O2O1

Figure 5.4: Illustrations for Example 5.2.

Next, observe that for any (non-identity) rotation r, and any point P
which is not itself the center O of the rotation, O lies on the perpendicular
bisector of the segment joining P and r(P ). Figure 5.4(b) indicates why.

Now, if r2 ◦ r1 were indeed a rotation, its center, first, is not either O1 or
O2, as both points are moved by r2 ◦ r1. Therefore, its center must lie on the
perpendicular bisector of the segment joining O1 and (r2 ◦ r1)(O1), as also
on the perpendicular bisector of the segment joining O2 and (r2 ◦ r1)(O2).
But this is not possible as the two bisectors are straight lines through
[1 0]T and [2 0]T , respectively, both parallel to the y-axis and, therefore,
non-intersecting. One concludes that r2 ◦ r1 is not a rotation about any
point.

Exercise 5.9. The composition r2 ◦ r1 of the preceding example, though
not a rotation, is, nevertheless, a familiar kind of transformation. Can you
identify it?
Hint : It’s a translation!

Exercise 5.10. Can you give an example where the composition of two
(non-trivial) rotations about different points is equivalent to a single rotation
about some point?
Hint : Consider rotating 90◦ counter-clockwise around [−1 1]T and then
around [1 1]T the same amount. Show that this composition is equivalent to
a rotation of 180◦ around the origin.

Remark 5.1. From the preceding two exercises we see one case where the
composition of two rotations is a translation and one where it is again a
rotation. It turns out that these are the only two possibilities in general.
We’ll prove this fact in Section 5.3.2, in particular, when we classify rigid 189
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transformations, and see an easy rule as well to decide the nature of a
composition of rotations.

5.1.4 Reflection

The image of the point P = [x y]T by a reflection about a straight line l,
called the mirror, is P ′ = [x′ y′]T such that:

(a) if P lies on l, then P ′ = P ;

(b) if P does not lie on l, then P ′ is the point on the other side of l such
that PP ′ is perpendicular to l, and P ′ is the same distance from l as
P . See Figure 5.5.

l

X

θ

x

y

P´(x´, y´)

P(x, y)

Figure 5.5: Reflection (|XP | = |XP ′|).

A reflection is, therefore, specified by the mirror about which it occurs.
Let’s analyze first the reflection about a radial mirror l at an angle θ counter-
clockwise from the positive direction of the x-axis (as depicted in Figure 5.5).
We claim that reflection about l maps the point P to P ′ where

P ′ =

[
cos 2θ sin 2θ
sin 2θ − cos 2θ

]
P (5.5)

and leave the proof to the reader in the next exercise.

Note: A radial line or plane is one which passes through the origin.

Exercise 5.11. Verify Equation (5.5).

Suggested approach: Use the Trick to express this reflection as the
composition of three successive transformations:

1. A rotation of −θ about the origin to align l along the x-axis.

2. A reflection about the x-axis. This is given by [x y]T 7→ [x − y]T ,
which is simply scaling by a factor of 1 along the x-axis and −1 along
the y-axis.190
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3. A rotation of θ about the origin to restore l to its original alignment.

Exercise 5.12. Write the matrix form, as in (5.5), of a reflection about
the radial mirror at an angle of 30◦ to the positive x-axis. To which point is
[1 1]T transformed by this reflection?

Exercise 5.13. What is the determinant of the matrix of a reflection about
a radial mirror? Is the matrix always non-singular?

Exercise 5.14. Use the Trick to prove that a reflection about an arbitrary
mirror, not necessarily radial, is a composition of two translations, two
rotations about the origin and one scaling.

A consequence of the preceding exercise is that one of those highly-paid
Flatland programmers developing a graphics API has only to implement
translations, rotations about the origin and scalings to get reflections for
free.

Exercise 5.15. What is the inverse of a reflection?

Exercise 5.16. Show that any non-identity translation can be obtained by
composing reflections about two parallel mirrors. Show that any non-identity
rotation can be obtained by composing reflections about two intersecting
mirrors. (The identity transformation itself can be obtained obviously by
composing reflections about the same mirror twice.)

Exercise 5.17. A reflection about a mirror l, followed by translation by a
displacement vector (dx, dy) which is either zero or parallel to l, is called a
glide reflection. See Figure 5.6.

l

reflection about l 

P´(x´, y´)P(x, y)

displacement by vector (dx, dy)

Figure 5.6: Glide reflection.

Determine the matrix expression for the glide reflection which uses the
mirror l and displacement vector (dx, dy). Assume l goes through the point
(a, b) and makes an angle θ measured counter-clockwise from the positive
direction of the x-axis. 191
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Exercise 5.18. Two transformations f1 and f2 are said to commute (or
be commutative) if f1 ◦ f2 = f2 ◦ f1, in other words, if applying f1 followed
by f2 is the same as applying f2 followed by f1.

(a) Do translations commute with each other?

(b) Do scalings commute with each other?

(c) Do rotations about the same point commute with each other?

(d) Does a rotation about one point commute with another about a different
point?

Hint : A counter-example to show that, generally, rotations about
different points don’t commute can be obtained, in fact, from the
configuration given in the answer to Example 5.2: consider if (r2 ◦
r1)(O1) and (r1 ◦ r2)(O1) are the same. If they are not, then, of course,
r2 ◦ r1 and r1 ◦ r2 are not the same either.

(e) Do translations and rotations commute?

(f) Do reflections about two different mirrors ever commute?

Hint : Keep in mind the special case of perpendicular mirrors.

5.2 Affine Transformations

Before resuming our pursuit of geometric transformations in 2-space, we
change pace a bit to learn about affine transformations because they will
provide a unifying framework in which to locate the seemingly disparate
geometric transformations that we have encountered (and will encounter).

5.2.1 Affine Transformations Defined

Affine transformations are a natural generalization of linear transformations,
obtained by tacking on an additional translation to a non-singular linear
transformation. We’ll give the next couple of definitions in arbitrary
dimensions – this generality costing nothing in difficulty. Down the road, of
course, we can specialize to R2 or R3 depending on the setting.

For the record, here’s the definition of a linear transformation, which is
our starting point.

Definition 5.1. The linear transformation fM of Rm, with the m × m
defining matrix

M =


a11 a12 . . . a1m
a21 a22 . . . a2m

. . . . . .
am1 am2 . . . amm


192
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is the transformation fM : Rm → Rm specified by the equation

fM (P ) = MP, P ∈ Rm (5.6)

In other words, fM maps P = [x1 x2 . . . xm]T to fM (P ) = [x′1 x
′
2 . . . x

′
m]T ,

where

x′1 = a11x1 + a12x2 + . . .+ a1mxm

x′2 = a21x1 + a22x2 + . . .+ a2mxm

. . . . . .

x′m = am1x1 + am2x2 + . . .+ ammxm (5.7)

Note: It’s called a linear transformation because the power on each xi on
the right of (5.7) is 1, i.e., each x′i is a linear combination of the xis.

As promised, an additional translation next gives affine transformations.

Definition 5.2. An affine transformation of Rm is a transformation g :
Rm → Rm specified by an equation of the form

g(P ) = fM (P ) +D = MP +D (5.8)

for P ∈ Rm, where fM is a non-singular linear transformation of Rm and D
is an m-vector. The matrix M , which is non-singular as fM is non-singular,
is called the defining matrix of g. The vector D is called the translational
component of g.

Accordingly, if

M =


a11 a12 . . . a1m
a21 a22 . . . a2m

. . . . . .
am1 am2 . . . amm

 is non-singular and D =


d1
d2
. . .
dm

 arbitrary,

then the affine transformation g defined by g(P ) = MP + D maps P =
[x1 x2 . . . xm]T to g(P ) = [x′1 x

′
2 . . . x′m]T , where

x′1 = a11x1 + a12x2 + . . .+ a1mxm + d1

x′2 = a21x1 + a22x2 + . . .+ a2mxm + d2

. . . . . .

x′m = am1x1 + am2x2 + . . .+ ammxm + dm (5.9)

If its translational component is zero, then an affine transformation
evidently reduces to a non-singular linear transformation. Conversely, a
non-singular linear transformation is an affine transformation with zero
translational component. 193
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Example 5.3. g : R2 → R2 given by

g([x y]T ) =

[
2 1
0 4

]
[x y]T + [4 6]T

is affine. Writing out the formula for g we have

g([x y]T ) =

[
2x+ y + 4

4y + 6

]
So, e.g.,

g([−1 2]T = [4 14]T and g([0 3]T = [7 18]T

Exercise 5.19. What are the images of the points [0 0 0]T and [1 − 1 1]T

by the affine transformation g : R3 → R3 given by

g([x y z]T ) =

 −1 −2 3
4 0 2
0 −3 1

 [x y z]T + [−1 6 3]T ?

The next example says that an affine transformation is respectful of
convex combinations.

Example 5.4. Show that an affine transformation g of Rm preserves
convex combinations and barycentric coordinates in that

g(c1P1 + c2P2 + . . .+ ckPk) = c1g(P1) + c2g(P2) + . . .+ ckg(Pk)

for any m-vectors Pi and scalars ci, 1 ≤ i ≤ k, such that 0 ≤ ci ≤ 1 and
c1 + c2 + . . .+ ck = 1.

Answer : Suppose that g(P ) = MP + D, where M is the defining matrix
and D the translational component of g. Then

g(c1P1 + c2P2 + . . .+ ckPk) = M(c1P1 + c2P2 + . . .+ ckPk) +D

= M(c1P1 + c2P2 + . . .+ ckPk) +

(c1 + c2 + . . .+ ck)D

(because c1 + c2 + . . .+ ck = 1)

= c1MP1 + c2MP2 + . . .+ ckMPk +

c1D + c2D + . . .+ ckD

= c1(MP1 +D) + c2(MP2 +D) + . . .+

ck(MPk +D)

= c1g(P1) + c2g(P2) + . . .+ ckg(Pk)

Exercise 5.20. Prove that an affine transformation which fixes the origin
(i.e., maps the origin to itself) is a non-singular linear transformation.194
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Exercise 5.21. Prove that the composition of affine transformations is
again an affine transformation.

Exercise 5.22. Determine the affine transformation g1 ◦ g2, where

g1(P ) =

[
2 1
0 4

]
P + [4 6]T and g2(P ) =

[
−1 3
1 −2

]
P + [−1 0]T

Example 5.5. An affine transformation g is always invertible. In fact, if
g is defined by g(P ) = MP +D, then show that its inverse, also affine, is
given by

g−1(Q) = M−1Q−M−1D

Answer : For any P ∈ Rm, we have

(g−1◦g)(P )=g−1(g(P ))=M−1g(P )−M−1D=M−1(MP+D)−M−1D=P

proving that g−1 ◦ g is the identity on Rm. Likewise, it can be seen that
g ◦ g−1 is the identity, proving that g−1, as defined above, indeed is the
inverse of g.

Exercise 5.23. Determine the inverse of the affine transformation g of R2

given by

g([x y]T ) =

[
2 1
0 4

]
[x y]T + [4 6]T

The following important proposition says that affine transformations are
particularly well-behaved from a geometric point of view, in particular, that
they preserve straightness, planarity, parallelism and convexity.

Proposition 5.1.

(a) An affine transformation g of R2 maps straight lines to straight lines.
Moreover, it maps parallel straight lines to parallel straight lines and
intersecting straight lines to intersecting straight lines.

(b) An affine transformation g of R2 maps convex sets to convex sets.
Moreover, it maps the convex hull of {P1, P2, . . . , Pk} to the convex
hull of {fM (P1), fM (P2), . . . , fM (Pk)}.

(c) An affine transformation g of R3 maps straight lines to straight lines
and planes to planes. Moreover, it maps parallel straight lines to parallel
straight lines, intersecting straight lines to intersecting straight lines,
parallel planes to parallel planes and intersecting planes to intersecting
planes.

(d) An affine transformation g of R3 maps a convex set lying on one plane
of R3 to a convex set on another plane. Moreover, it transforms the
convex hull of a set of points {P1, P2, . . . , Pk} on one plane to the
convex hull of {g(P1), g(P2), . . . , g(Pk)} lying on another plane. 195
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Figure 5.7 illustrates the actions of an affine transformation in R3.

z

y

x

Figure 5.7: Affine transformation in R3.

Proof. (a) Say g(P ) = MP + D, for P ∈ R3, where M is a non-singular
2× 2 matrix and D a column 2-vector.

Suppose, first, that the equation of a given straight line l in R2 is
ax+ by = c, which can be written as [a b][x y]T = c. If the point [x y]T is
on l, let’s see where its image g([x y]T ) = M [x y]T +D lies. Now

([a b]M−1) (M [x y]T +D) = [a b][x y]T + [a b]M−1D = c+ [a b]M−1D

Writing [a′ b′] = [a b]M−1 and the scalar c′ = c+ [a b]M−1D, the preceding
equation gives

[a′ b′] (M [x y]T +D) = c′

which shows that if [x y]T lies on l, then g([x y]T ) lies on the straight line
[a′ b′][x y]T = c′, proving that the image g(l) of l is indeed a straight line.

Say next that l and l′ are two parallel straight lines in R2, whose equations
can then be written as [a b][x y]T = c and [a b][x y]T = d, respectively, where
c 6= d.

From the first part of the proof it’s seen that g(l) is the straight line
whose equation is

[a′ b′][x y]T = c′, where [a′ b′] = [a b]M−1 and c′ = c+ [a b]M−1D

Likewise, g(l′) is the straight line whose equation is

[a′ b′][x y]T = d′, where [a′ b′] is as before and d′ = d+ [a b]M−1D

Moreover, it follows from c 6= d, that c′ 6= d′. We conclude that g(l) and
g(l′) are indeed parallel straight lines.196
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Finally, it’s easy to see that two straight lines l and l′ which intersect at
P are mapped by g to straight lines which intersect at g(P ).

(b) Again, say, g(P ) = MP +D, for P ∈ R3, where M is a non-singular
2× 2 matrix and D a column 2-vector.

Suppose, first, that S is a convex subset of R2. To prove that g(S) is
convex as well, it is sufficient to show that cP + (1− c)Q ∈ g(S), given two
points P and Q in g(S) and c in 0 ≤ c ≤ 1.

Since P,Q ∈ g(S), there exist P ′, Q′ ∈ S such that g(P ′) = P and
g(Q′) = Q. As S is convex cP ′ + (1− c)Q′ ∈ S. Applying g to both sides of
the preceding inclusion we have that g(cP ′ + (1− c)Q′) ∈ g(S), but

g(cP ′ + (1− c)Q′) = M(cP ′ + (1− c)Q′) +D

= M(cP ′ + (1− c)Q′) + cD + (1− c)D
= cMP ′ + cD + (1− c)MQ′ + (1− c)D
= c(MP ′ +D) + (1− c)(MQ′ +D)

= cg(P ′) + (1− c)g(Q′)

= cP + (1− c)Q

proving that indeed cP + (1− c)Q ∈ g(S), so that the latter is a convex set.
We leave the proof of the second part of (b) as well as those of (c) and

(d) to the reader. 2

Exercise 5.24. Does an affine transformation of R2 or R3 necessarily map
radial lines to radial lines or radial planes to radial planes? How about a
linear transformation?

5.2.2 Affine Transformations and OpenGL

Proposition 5.1 says that affine transformations preserve straightness and
flatness, among other properties, because they keep straight lines straight
and planes plane. It’s not hard to see, if one works through the proof, that
this is a consequence of the fact that their defining Equations (5.9) (shown
again below)

x′1 = a11x1 + a12x2 + . . .+ a1mxm + d1

x′2 = a21x1 + a22x2 + . . .+ a2mxm + d2

. . . . . .

x′m = am1x1 + am2x2 + . . .+ ammxm + dm

are of degree one, in particular, that the maximum degree of a variable xi
on the right side of each of these equations is one.

Here’s an example of what happens if this were not the case, and if even
we go to degree two. 197
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Example 5.6. The quadratic transformation h of R2 defined by h([x y]T ) =
[x y2]T doesn’t necessarily keep straight lines straight. In fact, we’ll show
that it maps at least one straight segment into an arc of a parabola.

Write the transformation as

x′ = x

y′ = y2

Now consider how the straight line

y = x

is mapped. We have, using the preceding 3 equations

y′ = y2 =⇒ y′ = x2 =⇒ y′ = x′2

which is the equation of a parabola. It follows that h maps the straight
segment between (0, 0) and (1, 1) to the arc of the parabola y = x2 joining
the same two points, as shown in Figure 5.8.x

y

h

(1, 1)

(0, 0)

y = x2y = x

Figure 5.8: Quadratic
transform h of R2 takes a
straight segment to a
parabolic arc.

One notices, further, that affine transformations are the most general
class of transformations of degree one, because the right side of each one of
the Equations (5.9) has its full complement of terms possible up to degree
one – specifically, every xi is present with degree one and there is, as well,
the constant term di of degree zero.

One concludes that not only do affine transformations of R2 or R3 (or
Rm in general) preserve straightness and flatness, they are the most general
class of transformations to do so. Put another way, one cannot hope to
go beyond affine transformations if straightness and flatness are not to be
broken.

What has all this to do with OpenGL? Because they preserve straightness
and flatness, affine transformations preserve as well the primitives of OpenGL,
in particular, they map primitives of one type to another of the same type.
The following exercise asks the reader to prove the specifics of this claim.

Exercise 5.25. Given an affine transformation g of R2 or R3, prove that

(a) g maps the straight segment joining two points P and Q to the straight
segment joining g(P ) and g(Q).

(b) g maps the triangle with vertices at P , Q and R to the triangle with
vertices at g(P ), g(Q) and g(R).

(c) g maps the n-sided polygon with vertices at P1, P2, . . . , Pn to the n-
sided polygon with vertices at g(P1), g(P2), . . . , g(Pn). If the original
polygon is planar, then so is the transformed one. If the original
polygon is convex, then so is the transformed one.198
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Hint : Use Proposition 5.1.

Non-affine transformations may not treat OpenGL primitives with quite
as much respect, as the following exercise shows.

Figure 5.9: Hint for
Exercise 5.26.

Exercise 5.26. We already saw in Example 5.6 the non-affine quadratic
transformation h of R2, given by h([x y]T ) = [x y2]T , take a straight segment
to a parabolic arc. How does h transform the triangle with corners at (0, 0),
(1, 0) and (1, 1)? Figure 5.9 is a gentle hint.

Now, it’s desirable for a graphics API such as OpenGL to implement only
modeling transformations which preserve its drawing primitives – specifically,
mapping each one to another of the same type. Why? Consider OpenGL
in particular. At the rendering end of its pipeline are evidently modules to
render points, segments and triangles (mind that even a general polygon is
triangulated prior to rendering). Suppose, then, that a particular scene is
specified by the programmer as a list of n primitives:

primitive1, primitive2, . . . , primitiveN

where each primitiveI, 1 ≤ I ≤ N , is a point, segment or triangle. The
scene is rendered essentially in a simple loop:

for (I = 1; I ≤ N ; I ++) render primitiveI

where each iteration invokes the appropriate primitive rendering module.
Suppose, next, that a modeling transformation g is applied to the scene.

The transformed scene is given by the list:

g(primitive1), g(primitive2), . . . , g(primitiveN)

If g preserves primitives, then g(primitiveI) is of the same class as
primitiveI, for 1 ≤ I ≤ N , and the transformed scene is rendered in
the loop

for (I = 1; I ≤ N ; I ++) render g(primitiveI)

invoking the same modules as before.
On the other hand, if g doesn’t map primitives of one class to another of

the same, e.g., if a triangle can change to something that is no longer one,
as in Figure 5.9, then the situation becomes significantly more complicated.
In this case, either there have to be modules to render all possible target
objects of all the drawing primitives, or modules to approximate them using
existing primitives, or, maybe, a combination of both. See Figure 5.10 for
an illustration of both situations.

If the API designer is understandably reluctant to open this particular
can of worms, then she should restrict herself to modeling transformations
which do keep primitives within their class. In the case of OpenGL, this calls
for transformations preserving straightness and flatness. However, even given 199
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Figure 5.10: Transformations that are good from the API programmer’s point of view,
and not so good.

this constraint, the designer would reasonably want as many as possible
at her disposal. Transformations of degree one preserve straightness and
flatness, so the designer would want them all if possible; in other words,all
affine transformations.

And, in fact, we shall see that the designers of OpenGL have implemented,
barring a few degenerate calls, exactly the class of affine transformations as
their modeling transformations.

5.2.3 Affine Transformations and Homogeneous
Coordinates

Despite their virtues listed in the previous two sections, there is potentially
a serious computational problem with applying affine transformations rather
than linear ones. The source lies in the difference in how the two are defined.
A linear transformation is given by an equation of the form

fM (P ) = MP

while an affine transformation by one of the form

g(P ) = MP +D

The former is expressed as a single matrix-vector multiplication, while
the latter by a matrix-vector multiplication followed by a vector-vector
sum. It is the additional sum step which cascades when composing affine
transformations.

For example, if fM1 , fM2 , fM3 , . . . are linear transformations of Rm, then200
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for an m-vector P ,

fM1(P ) = M1P

(fM2 ◦ fM1)(P ) = (M2M1)P

(fM3 ◦ fM2 ◦ fM1)(P ) = (M3M2M1)P (5.10)

and so on. On the other hand, if g1, g2, g3, . . . are affine transformations of Rm
given by g1(P ) = M1P +D1, g2(P ) = M2P +D2, g3(P ) = M3P +D3, . . .,
respectively, then for an m-vector P ,

g1(P ) = M1P +D1

(g2 ◦ g1)(P ) = (M2M1)P +M2D1 +D2

(g3 ◦ g2 ◦ g1)(P ) = (M3M2M1)P +M3M2D1 +M3D2 +D3 (5.11)

It’s not hard to see that the number of matrix operations grows quadratically
with the number n of affine transformations gn ◦ . . . ◦ g2 ◦ g1 being composed,
versus linearly in the case fMn ◦ . . . ◦ fM2 ◦ fM1 of linear transformations.
Composing affine transformations, at least by means of equations as above,
therefore, is highly inefficient. There is an elegant way, however, to rectify
the problem. It is with the help of so-called homogeneous coordinates.

Definition 5.3. A point

P = [x1 x2 . . . xm]T

belonging to Rm is represented in homogeneous coordinates by any m+1-tuple
of the form

[cx1 cx2 . . . cxm c]T

where c is a non-zero scalar. Homogeneous coordinates, therefore, are not
unique. And, note they live one dimension higher.

Example 5.7. Possible homogeneous coordinates of the point P = [3 7]T ∈
R2 include [3 7 1]T , [16.5 38.5 5.5]T , [−6 − 14 − 2]T , etc.

For our current purposes, though, it’s good enough to fix the scalar c in
Definition 5.3 to be 1. We’ll have use for the general c later when studying
projective spaces. So, for the present, assume that the point

P = [x1 x2 . . . xm]T

is represented in homogeneous coordinates by

[x1 x2 . . . xm 1]T

For example, [3 7]T would be homogenized to [3 7 1]T . To save space we’ll
often write [x1 x2 . . . xm 1]T as [P 1]T . 201
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Observe now that Equations (5.9)

x′1 = a11x1 + a12x2 + . . .+ a1mxm + d1

x′2 = a21x1 + a22x2 + . . .+ a2mxm + d2

. . . . . .

x′m = am1x1 + am2x2 + . . .+ ammxm + dm

defining an affine transformation g are equivalent to the single matrix
equation 

x′1
x′2
. . .
x′m
1

 =


a11 a12 . . . a1m d1
a21 a22 . . . a2m d2

. . . . . .
am1 am2 . . . amm dm

0 0 0 0 1




x1
x2
. . .
xm
1


(as is easily verified by multiplying the two matrices on the right). Concisely:[

g(P )
1

]
=

[
P ′

1

]
=

[
M D
0 1

] [
P
1

]
(5.12)

Presto! Computation of the affine transformation g, which earlier required
a matrix-vector multiplication followed by a vector-vector addition, has now
become a single matrix-vector multiplication with the use of homogeneous
coordinates and, albeit, a bigger matrix. The translational component has,
evidently, been subsumed into the extra dimension of the larger matrix.

Example 5.8. The affine transformation g : R2 → R2 given by

g

([
x
y

])
=

[
x′

y′

]
=

[
2 1
0 4

] [
x
y

]
+

[
4
6

]
can be written using homogeneous coordinates as x′

y′

1

 =

 2 1 4
0 4 6
0 0 1

 x
y
1


Let’s give it a check for, say, the point [1 1]T . Now,

g

([
1
1

])
=

[
2 1
0 4

] [
1
1

]
+

[
4
6

]
=

[
7
10

]
and with homogeneous coordinates 2 1 4

0 4 6
0 0 1

 1
1
1

 =

 7
10
1


the RHS of the preceding equation indeed being the homogenization of the
RHS of the one before it.202
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Exercise 5.27. Express the affine transformation g of R2 given by

g

([
x
y

])
=

[
−1 2
−3 0

] [
x
y

]
+

[
2
1

]
as a single matrix vector multiplication using homogeneous coordinates.

The composition of affine transformations is drastically simplified with
use of homogeneous coordinates. For example, the last equation of (5.11)
becomes[

(g3 ◦ g2 ◦ g1)(P )
1

]
=

([
M3 D3

0 1

] [
M2 D2

0 1

] [
M1 D1

0 1

])[
P
1

]
the number of matrix operations now growing linearly with the number of
affine transformations being composed, instead of quadratically.

Exercise 5.28. If you did Exercise 5.22, then you have determined the
affine transformation f ◦ g, where

f(P ) =

[
2 1
0 4

]
P + [4 6]T and g(P ) =

[
−1 3
1 −2

]
P + [−1 0]T

Now, verify your answer by multiplying the 3×3 matrices corresponding to f
and g, and checking if the result corresponds to the composed transformation
already computed.

5.3 Geometric Transformations in 2-Space
Continued

We resume our study of 2D geometric transformations, equipped now with
a newfound grasp of affine transformations. Keep in mind that, as in the
first section, by default we are in 2D space.

5.3.1 Affine Geometric Transformations

Are translations, scalings, rotations about the origin and reflections
about radial mirrors, which we studied in the opening section, affine
transformations? Of course, they all are! This follows easily from the
non-singularity of the matrix on the RHS of each of the Equations (5.1),
(5.2), (5.4) and (5.5).

Exercise 5.29. Prove that rotations about arbitrary points (not necessarily
the origin) and reflections about arbitrary mirrors (not necessarily radial)
are affine as well. 203
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That translations, scalings, rotations and reflections are affine means
they are geometrically well-behaved, preserving straightness, parallelism and
convexity, as well. We record this fact as a proposition.

Proposition 5.2. Let g be either a translation, a scaling, a rotation (about
an arbitrary point) or a reflection (about an arbitrary mirror). Then:

(a) g maps straight lines to straight lines. Moreover, it maps parallel
straight lines to parallel straight lines and intersecting straight lines to
intersecting straight lines.

(b) g maps convex sets to convex sets. Moreover, it maps the convex hull of
{P1, P2, . . . , Pk} to the convex hull of {fM (P1), fM (P2), . . . , fM (Pk)}.

Proof. Follows from Proposition 5.1 for 2D affine transformations in general.
2

Geometric Transformation Equations Using Homogeneous
Coordinates

In Section 5.2.3 we learned how to express an affine transformation as a
single matrix-vector multiplication, after writing points in homogeneous
coordinates. In the case of R2 this means writing P = [x y]T as [x y 1]T or
[P 1]T for short. Let’s now rewrite Equations (5.1), (5.2), (5.4) and (5.5) of
the basic 2D transformations using homogeneous coordinates:

Translation by displacement vector [dx dy]T :

[
P ′

1

]
=

 1 0 dx
0 1 dy
0 0 1

[ P
1

]
(5.13)

Scaling by a factor of sx along the x-axis and sy along the y-axis:

[
P ′

1

]
=

 sx 0 0
0 sy 0
0 0 1

[ P
1

]
(5.14)

Rotation by an angle θ counter-clockwise about the origin:[
P ′

1

]
=

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

[ P
1

]
(5.15)

Reflection about a radial mirror l at an angle of θ counter-clockwise from
the positive x-axis:[

P ′

1

]
=

 cos 2θ sin 2θ 0
sin 2θ − cos 2θ 0

0 0 1

[ P
1

]
(5.16)

204
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Exercise 5.30. Write the 3 × 3 matrix corresponding to each of the
following affine transformations:

(a) Translation by the displacement vector [−2 3]T .

(b) Scaling by a factor of 2 in the x-direction and 4 in the y.

(c) Counter-clockwise rotation by an angle of −45◦ about the origin.

(d) Reflection about the radial mirror making an angle of 30◦ measured
counter-clockwise from the positive direction of the x-axis.

Factoring Affine Transformations

We know then that affine transformations include translations, scalings
and rotations. But are they more than just these three special kinds of
transformations? It’s extremely important that the answer is no! In fact, any
affine transformation can be “made from” translations, scalings and rotations.
Precisely, any affine transformation can be expressed as a composition of
transformations of just these three kinds. Here is the formal statement:

Proposition 5.3. Any affine transformation of R2 is the composition in
some order of translations, scalings and rotations about the origin.

In particular, any affine transformation g : R2 → R2 can be factored into
a composition g = g4 ◦ g3 ◦ g2 ◦ g1, where g1 is a rotation about the origin,
g2 a scaling, g3 another rotation about the origin and g4 a translation.

Proof. Let

g(P ) = MP +D

where M =

[
a11 a12
a21 a22

]
is g’s non-singular 2 × 2 defining matrix and the

2-vector D =

[
dx
dy

]
is its translational component.

We claim first that it is possible to find 2× 2 matrices M1, M2 and M3,
corresponding, respectively, to a rotation about the origin, a scaling and
another rotation about the origin, such that

M = M3M2M1

Say M1 corresponds to a rotation by angle θ, M2 to scaling by a factor of
sx along the x-axis and sy along the y-axis and M3 to a rotation by angle φ.
The preceding equation gives, therefore, that[

a11 a12
a21 a22

]
=

[
cosφ − sinφ
sinφ cosφ

] [
sx 0
0 sy

] [
cos θ − sin θ
sin θ cos θ

]
(5.17)

which we’ll show next can be solved to find φ, θ, sx and sy. 205
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Multiply the three matrices on the RHS of the preceding equation and
then equate terms of the resulting matrix with the corresponding ones on
the LHS to see that:

a11 = sx cosφ cos θ − sy sinφ sin θ

a12 = −sx cosφ sin θ − sy sinφ cos θ

a21 = sx sinφ cos θ + sy cosφ sin θ

a22 = −sx sinφ sin θ + sy cosφ cos θ (5.18)

Four equations in four unknowns seems right. Check that:

a21 − a12 = (sx + sy) sin(φ+ θ)

a11 + a22 = (sx + sy) cos(φ+ θ)

a21 + a12 = (sx − sy) sin(φ− θ)
a11 − a22 = (sx − sy) cos(φ− θ) (5.19)

Assuming for the moment that neither a11 + a22 nor a11− a22 is zero, divide
the first equation above by the second and the third by the fourth to get:

tan(φ+ θ) =
a21 − a12
a11 + a22

tan(φ− θ) =
a21 + a12
a11 − a22

(5.20)

which implies:

φ+ θ = tan−1
(
a21 − a12
a11 + a22

)
φ− θ = tan−1

(
a21 + a12
a11 − a22

)
(5.21)

These two equations can be solved to determine φ and θ. Furthermore, the
values of φ+θ and φ−θ can then be substituted back into equation set (5.19)
to determine equations for sx + sy and sx − sy, which can then be solved to
find sx and sy.

The earlier claim that (5.17) can be solved to find φ, θ, sx and sy is
proved and, therefore, M = M3M2M1, in the manner claimed at the start
of the proof as well – except when either or both of a11 + a22 and a11 − a22
is 0, in which case Exercise 5.32 below verifies the claim.

As g(P ) = MP + D = (M3M2M1)P + D one concludes, finally, that
indeed g = g4 ◦ g3 ◦ g2 ◦ g1, where g1 is the counter-clockwise rotation about
the origin by an angle of θ, g2 the scaling by a factor of sx along the x-axis
and sy along the y-axis, g3 the counter-clockwise rotation about the origin
by an angle of φ and g4 translation by the displacement vector D. 2206
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Example 5.9. Factor the affine transformation

g(P ) =

[
1

√
3
2√

3
2 0

]
P +

[
2
1

]
according to the proposition.

Answer : From Equations (5.21) we have

φ+ θ = tan−1 0 = 0◦ and φ− θ = tan−1
√

3 = 60◦

which solve to
φ = 30◦ and θ = −30◦

Plugging the values of φ+ θ and φ− θ into the second and fourth equations
of (5.19) we have

1 = (sx + sy) cos 0◦ = sx + sy and 1 = (sx − sy) cos 60◦ =
1

2
(sx − sy)

which solve to

sx =
3

2
and sy = −1

2

(If the reader is wondering about the other two equations in (5.19) – the
first and third – she may check that these are satisfied as well by the values
found above for φ, θ, sx and sy.)

Therefore, g = g4 ◦ g3 ◦ g2 ◦ g1, where g1 is the clockwise rotation about
the origin by an angle of 30◦, g2 the scaling by a factor of 3

2 along the x-axis
and − 1

2 along the y-axis, g3 the counter-clockwise rotation about the origin
by an angle of 30◦ and g4 translation by the displacement vector [2 1]T .

Exercise 5.31. Factor the affine transformation

g(P ) =

[
1 1

2
1
2 0

]
P +

[
−1
1

]
according to the proposition.

Exercise 5.32. Fill in the gap in the proof of the preceding proposition,
where it was assumed (just after Equations (5.19)) that neither a11 + a22
nor a11 − a22 is zero. In particular, even if one or both of these quantities is
zero, show how to proceed again from (5.19) to solve for φ, θ, sx and sy.

Exercise 5.33. Factor the affine transformation

g(P ) =

[
1
2

√
3

0 1
2

]
P

according to the proposition. 207
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Exercise 5.34. Give an example of an affine transformation which itself
is neither a translation, nor scaling nor rotation about the origin, so one
must compose in order to obtain it.

Remark 5.2. The reader may have noticed that we never used the non-
singularity of M in the proof of Proposition 5.3. As a matter of fact, even
if M is singular, it can be written as M = M3M2M1 as in the proposition,
except that the scaling M2 turns out to be degenerate.

Proposition 5.3 suggests that translations, scalings and rotations about
the origin are fundamental in the sense that they can be used to generate all
affine transformations, a particularly useful insight for anyone in Flatland
trying to implement a graphics API. For, all such a programmer has to
code is an implementation of each of those three special kinds of affine
transformations, to get the rest automatically.

Since a non-singular linear transformation of R2 is simply an affine
transformation with null translational component, we have also proved the
following on the way to proving Proposition 5.3:

Proposition 5.4. Any non-singular linear transformation of R2 is the
composition successively of a rotation about the origin, a scaling and another
rotation about the origin. 2

5.3.2 Euclidean and Rigid Transformations

Proposition 5.2 tells us that transformations such as translations, scalings,
rotations and reflections are respectful of a bunch of geometric attributes,
from straightness to convexity. How about that most important geometric
attribute of all, though, namely, distance? We would say a transformation g
preserves distance if it were true that, for any pair of points P and Q, the
distance between f(P ) and f(Q) is the same as that between P and Q.

It’s clear, if one thinks of scalings, that distance is not preserved by
transformations in general. However, there certainly are transformations
that seem to preserve distance. Translations come to mind, as points
are “carried together” by a translation, so neither pulled apart nor drawn
closer together. Similar thoughts apply to rotations. We’ll see soon that
translations and rotations do indeed preserve distance.

Distance-preserving transformations are important in animation because
they preserve shape as well. In fact, an object’s shape is not changed precisely
when the distance between every pair of points belonging to it is not changed.
See Figure 5.11. Comparing the pre-hit and post-hit heads, one observes
that the distance between at least two pairs of points is different from those
between the transformed pairs: the eyeballs, and P and Q. On the other
hand, the distance between any pair of points of the book remains unchanged.

Transformations preserving distances are the ones, therefore, to use when
animating rigid objects such as balls, bats (not the flying kind) and houses.208
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P

Q

P´

Q´

C
G C G

Figure 5.11: Square-headed student struck by a CG book: the shape of the head is
distorted, but not that of the book.

They are important enough, in fact, to have been honored with the name of
the great ancient geometer Euclid. Here’s a formal definition.

Definition 5.4. A Euclidean transformation (also called isometry) of R2

is one that preserves distance. Precisely, f : R2 → R2 is Euclidean if
|f(P )f(Q)| = |PQ| for any two points P,Q ∈ R2.

(d)(b)(a) (c)

Figure 5.12: Transformations (a)-(c) are Euclidean, (d) is not.

See Figure 5.12 for three simple examples of Euclidean and one of non-
Euclidean transformation. It may seem, as it cannot alter shape, that all
a Euclidean transformation can do is “slide” an object around the plane,
which, if true, would imply that it is merely a composition of translations
and rotations. However, compare the Euclidean transformations in cases (a),
(b) and (c) of Figure 5.12. The first two can certainly be obtained by sliding
the top L around the page. However, it’s not hard to convince oneself that
(c) cannot and, therefore, is not a combination of translations and rotations.

Let’s examine (c). As indicated in Figure 5.13, it can, in fact, be obtained
by applying a reflection about a vertical mirror l, followed by translation
and rotation. A reflection is required because (c) is a so-called orientation-
reversing transformation. Here’s the relevant definition:

209



i
i

i
i

i
i

i
i

Chapter 5

Inside Animation:

The Theory of

Transformations l

RQ

P

orientation-reversing
reflection

orientation-preserving
translation

orientation-preserving
rotation

P´

R´ Q´

(c)

Figure 5.13: Executing (c) of Figure 5.12 by a reflection about the mirror l followed by
translation and rotation.

Definition 5.5. A Euclidean transformation f of R2 is said to be orientation-
reversing if there exist three non-collinear points P , Q and R in R2 such
that, looking at R2 from a fixed side, one of the two sequences PQR and
f(P )f(Q)f(R) appears clockwise (CW) and the other counter-clockwise
(CCW).

A Euclidean transformation that is not orientation-reversing is said to
be orientation-preserving .

Orientation-preserving Euclidean transformations are also called rigid
transformations.

Remark 5.3. The property of the transformation f described in the first
paragraph of the preceding definition does not depend on the choice of the
non-collinear points P , Q and R. In fact, as we’ll see, if for some three
non-collinear points P , Q and R it is true that PQR and f(P )f(Q)f(R)
appear oriented differently, then this is true for any three non-collinear
points.

Rigid transformations are so called because they model the physical
motion of a rigid object restricted always to a plane – such motion can never
reverse orientation. Conceptually, reversing orientation requires the object
to be “lifted off” the plane, “flipped” and “placed back” again.

The sequence PQR in Figure 5.13 appears CCW to the reader, while
that of their images P ′Q′R′ by reflection about l appears CW, proving that
the reflection is indeed orientation-reversing and, therefore, not rigid.

Exercise 5.35. Show that a Euclidean transformation f preserves angles,
i.e., ∠ABC = ∠f(A)f(B)f(C), where A, B, C are any three points on the
plane.210
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We’ll see next how to determine algorithmically if PQR appears CW or
CCW to a given viewer, which will in turn help decide if a transformation is
orientation-preserving or not.

Lemma 5.1. Let P = [x1 y1]T , Q = [x2 y2]T and R = [x3 y3]T be three
points on the plane. Define the scalar D by

D = x1y2 − x2y1 + x2y3 − x3y2 + x3y1 − x1y3 =

∣∣∣∣∣∣
x1 x2 x3
y1 y2 y3
1 1 1

∣∣∣∣∣∣
the rightmost term being called the discriminant determinant.

Let V be a viewer on the positive side of the z-axis of a hypothetical
right-handed system. We have then the following:

1. If D = 0, then P , Q and R are collinear.

2. If D < 0, then V perceives the order PQR as CW.

3. If D > 0, then V perceives the order PQR as CCW.

Note: The column vectors of the discriminant determinant are the
coordinates of P , Q and R, respectively, homogenized; so, it can be written

D =

∣∣∣∣ P Q R
1 1 1

∣∣∣∣
Proof. We’ll first prove the lemma assuming that R = O, the origin, in
which case

D =

∣∣∣∣∣∣
x1 x2 0
y1 y2 0
1 1 1

∣∣∣∣∣∣ = x1y2 − x2y1

If P = O as well, then P , Q and R are trivially collinear, and it’s easily
seen that the determinant D = 0, too, which falls into case 1 of the lemma.
Accordingly, suppose that P 6= O as in Figure 5.14. The straight line l
through P and R has the equation

x1y − y1x = 0

If Q does not lie on l, then whether PQR appears CW or CCW to V
depends on which half-plane of l contains Q. In particular, if Q lies in the
half-plane x1y − y1x > 0 – the case depicted in the figure – then PQR
appears CCW to V ; if in the half-plane x1y − y1x < 0, then CW. Plugging
in Q’s coordinates means that PQR appears CCW to V if x1y2 − y1x2 > 0
and CW if x1y2 − y1x2 < 0. Of course, x1y2 − y1x2 = 0 if Q lies on l, in
which case P , Q and R are collinear. Therefore, we’ve proved the lemma
assuming R = O. 211
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y

x

z
V

l: x1y − y1x = 0

half-plane x1y − y1x < 0 (CW)half-plane x1y − y1x > 0 (CCW)
O = R

P(x1, y1)
Q(x2, y2)

Figure 5.14: The orientation of PQR perceived by V depends on the half-plane of l
containing Q (Q is depicted here in the half-plane x1y − y1x > 0).

The case of arbitrary R can be reduced to that of R = O by applying the
translation −R to all three points, because the relative dispositions of P , Q
and R as they appear to V are the same as those of P −R, Q−R and R−R
(= O). Now, P −R = [x1 − x3 y1 − y3]T and Q−R = [x2 − x3 y2 − y3]T ,
and we leave it to the reader to use the case R = O to finish up the proof. 2

Exercise 5.36. Verify the lemma for the following triples by plotting the
points on graph paper:

(a) P = [1 0]T , Q = [0 1]T , R = [0 0]T

(b) P = [−1 − 1]T , Q = [−2 1]T , R = [3 4]T

The following proposition is intuitively fairly clear but, nevertheless, has
to be proved formally.

Proposition 5.5. A translation or a rotation about an arbitrary point is a
rigid transformation of 2-space. A reflection about an arbitrary mirror is an
orientation-reversing Euclidean transformation of 2-space.

Proof. We’ll prove first that a translation t by the displacement vector
D = [dx dy]T preserves both distance and orientation.

Let P = [x1 y1]T and Q = [x2 y2]T be two points in R2. The images
of P and Q by t are, respectively, P ′ = P + D = [x1 + dx y1 + dy]

T and
Q′ = Q+D = [x2 + dx y2 + dy]T . Now,

|PQ| =
√

(x1 − x2)2 + (y1 − y2)2

and

|P ′Q′| =
√

((x1 + dx)− (x2 + dx))2 + ((y1 + dy)− (y2 + dy))2

=
√

(x1 − x2)2 + (y1 − y2)2

proving t indeed preserves distance.212
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Let P = [x1 y1]T , Q = [x2 y2]T and R = [x3 y3]T be three points in R2,
and V a viewer on the positive side of the z-axis. Lemma 5.1 says that PQR
are collinear, appear CW to V , or CCW to V , according as the determinant

D =

∣∣∣∣∣∣
x1 x2 x3
y1 y2 y3
1 1 1

∣∣∣∣∣∣
is equal to, less than, or greater than 0.

The images of P , Q and R by t are P ′ = P +D = [x1 + dx y1 + dy]
T ,

Q′ = Q+D = [x2 + dx y2 + dy]
T and R′ = R +D = [x3 + dx y3 + dy]

T ,
respectively. By another application of Lemma 5.1, P ′Q′R′ are collinear,
appear CW to V , or CCW to V , according as the determinant

D′ =

∣∣∣∣∣∣
x1 + dx x2 + dx x3 + dx
y1 + dy y2 + dy y3 + dy

1 1 1

∣∣∣∣∣∣
is equal to, less than, or greater than 0.

However, subtracting dx times the third row of D′ from its first and dy
times the third row from its second, we see that, in fact, D = D′. It follows
that the relative dispositions of PQR and of P ′Q′R′ (either CCW or CW)
with respect to V are identical, giving the conclusion that t indeed preserves
orientation.

The proofs for rotations and reflections are left to the reader. 2

Exercise 5.37. Scalings in general are not Euclidean transformations, but
for certain choices of scaling factors they are. List these choices and for each
say if it preserves or reverses orientation.

Exercise 5.38. Show that the composition of two Euclidean transforma-
tions is Euclidean and that of two rigid transformations is rigid.

Exercise 5.39. Show that the composition of two orientation-reversing
Euclidean transformations is an orientation-preserving Euclidean trans-
formation (in other words, rigid). Show that the composition of an
orientation-preserving and an orientation-reversing Euclidean transformation
is orientation-reversing.

We saw in Proposition 5.3 that an affine transformation can be factored
as a composition of translations, scalings and rotations about the origin. The
following proposition shows how Euclidean and rigid transformations can
be factored. The first part verifies our intuition that a rigid transformation
slides an object around the plane by translation and rotation, while the
second says that a Euclidean transformation is at most one reflection away
from being rigid. 213
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Proposition 5.6. A rigid transformation of R2 keeping the origin fixed
is a rotation about the origin, while an arbitrary rigid transformation is a
composition of a rotation about the origin followed by a translation.

A Euclidean transformation of R2 is a composition of a rotation about
the origin, followed by a translation, possibly followed again by a reflection.

Proof. Consider, first, a rigid transformation f : R2 → R2 keeping the
origin fixed, i.e., f(O) = O. Let P ∈ R2 be different from the origin. By the
distance-preserving property

|OP | = |f(O)f(P )| = |Of(P )|

so both P and f(P ) lie on a circle c centered at O. See Figure 5.15(a) or (b).
Say the angle from OP to Of(P ) is θ measured counter-clockwise. We’ll
show for any point Q ∈ R2 that its image f(Q) is obtained by rotating Q
counter-clockwise by an angle of θ about the origin as well, proving the claim
that f is a rotation about the origin.

P
Qα

α θ

O O

θ

c c

P
Q

f(P) f(P)
f(Q)

f(Q)

(a) (b)
c´ c´

Figure 5.15: Illustrations for the proof of Proposition 5.6.

Let Q be an arbitrary point on the plane. Without loss of generality
assume Q 6= O. Reasoning as before, then, both Q and f(Q) lie on some
circle c′ centered at O. By the distance-preserving property

|PQ| = |f(P )f(Q)|

Consider first the case that Q lies on the straight line through O and
P (Figure 5.15(a)). Because |PQ| = |f(P )f(Q)|, it’s seen that f(Q) lies at
the intersection with c′ of the straight line through O and f(P ), as all other
points on c′ are at a distance more than |PQ| from f(P ). In this case, f(Q)
is indeed obtained by rotating Q counter-clockwise by an angle of θ about
the origin.

Next, consider the case that Q does not lie on the straight line through
O and P . First, suppose that the vertex order POQ of triangle POQ
appears CCW to the viewer (Figure 5.15(b)). Let the angle POQ be α.214
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The congruence of the triangles POQ and f(P )Of(Q), a consequence of
the distance-preserving property, implies that angle f(P )Of(Q) is α as well.
Furthermore, f being rigid preserves orientation, so f(P )Of(Q) appears
CCW to the viewer as well. It follows from simple angular arithmetic that
f(Q) is θ counter-clockwise about the origin from Q.

If the vertex order POQ appears CW instead, a similar conclusion can
still be reached. This completes the proof that, if f is a rigid transformation
keeping the origin fixed, then it is a rotation about the origin.

Suppose, next, that f is an arbitrary rigid transformation, not necessarily
fixing the origin. Let f(O) = O′ and t be translation by the displacement
vector O′O. Then the transformation f ′ = t ◦ f is a rigid transformation
such that f ′(O) = O, i.e., fixing the origin. Therefore, as proved earlier, f ′

is a rotation about the origin. Consequently, f = t−1 ◦ f ′ is a rotation about
the origin followed by a translation, proving the statement of the proposition
about arbitrary rigid transformations and completing the proof of the first
paragraph.

Note: If f is itself a translation then, of course, the rotation f ′ about the
origin is the identity, i.e., zero rotation.

For the second paragraph of the proposition, suppose that f is an
orientation-reversing Euclidean transformation, because if f is orientation-
preserving, then it is rigid, and there is nothing to prove after the first
paragraph.

Let w be a reflection about any mirror, an orientation-reversing Euclidean
transformation by Proposition 5.5. Then f ′ = w ◦ f , being a composition of
two orientation-reversing Euclidean transformations, is rigid by Exercise 5.39.
By the first part of the proposition, f ′ is a rotation about the origin followed
by a translation, implying that f = w−1 ◦ f ′ is the composition of a rotation
about the origin, followed by a translation and, then, a reflection. This
completes the proof of the second paragraph. 2

Exercise 5.40. Apply the proposition to show that a rigid transformation
which keeps

(a) no point fixed is a translation.

(b) exactly one point fixed is a rotation (about the fixed point as center).

(c) more than one point fixed is the identity (which, therefore, keeps every
point fixed, so also is a zero translation and a zero rotation).

Exercise 5.41. Use Exercises 5.16 and 5.40 to prove that any Euclidean
transformation can be obtained by composing reflections about at most three
mirrors.

Exercise 5.42. At the end of Section 5.1.3 we saw one case that the
composition of two rotations is a translation and one where it is again 215
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a rotation. Use Exercise 5.40 to prove now that these are the only two
possibilities in general for the composition of two rotations.

Moreover, show how to decide which case arises by proving:

1. The composition of two rotations, either both counter-clockwise or
both clockwise, one of angle θ1 and one of angle θ2, about arbitrary
centers, is a translation if either θ1 = θ2 = 0 or θ1 + θ2 = 2π (assume
0 ≤ θ1, θ2 < 2π); otherwise, it is a rotation.

2. The composition of two rotations, one counter-clockwise of angle θ1 and
the other clockwise of angle θ2, about arbitrary centers, is a translation
if θ1 = θ2 (assume 0 ≤ θ1, θ2 < 2π); otherwise, it is a rotation.

Proposition 5.7. Affine, Euclidean and rigid transformations of 2-space
are related by the following inclusions, which are each proper:

rigid transforms ⊂ Euclidean transforms ⊂ affine transforms

Proof. The first inclusion follows from the definitions. It is proper because
a reflection about any mirror is Euclidean but not rigid.

From Proposition 5.6 it follows that a Euclidean transformation is a
composition of affine transformations (because translations, rotations and
reflections are all affine) and, therefore, itself affine, proving the second
inclusion. The inclusion is proper because a scaling by factors not all of unit
magnitude is affine but not Euclidean. 2

Remark 5.4. An interesting perspective on the proposition is to think of
affine transformations as being made from translations, rotations, reflections
and scalings; Euclidean transformations from translations, rotations and
reflections; and rigid transformations from translations and rotations.

The worked example next says that Definition 5.5 about whether
a Euclidean transformation reverses or preserves orientation is, in fact,
independent of the choice of the three non-collinear points P , Q and R.

Example 5.10. Suppose that an affine transformation g of R2 maps some
three non-collinear points P , Q and R in a manner that, looking at R2 from
a fixed side, one of the sequences PQR and g(P )g(Q)g(R) appears CW and
the other CCW.

Show, then, that for any three non-collinear points X, Y and Z, one of
the sequences XY Z and g(X)g(Y )g(Z) appears CW and the other CCW,
looking at R2 from the same side.

Answer : Use homogeneous coordinates to write [g(W ) 1]T = M [W 1]T ,
where M is a fixed non-singular 3×3 matrix, and W = [x y]T is an arbitrary
point of the plane.

Suppose that P = [x1 y1]T , Q = [x2 y2]T and R = [x3 y3]T . Consider
the equation

M

 x1 x2 x3
y1 y2 y3
1 1 1

 =

 x′1 x′2 x′3
y′1 y′2 y′3
1 1 1
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in matrices, which gives the following

det(M) ∗

∣∣∣∣∣∣
x1 x2 x3
y1 y2 y3
1 1 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
x′1 x′2 x′3
y′1 y′2 y′3
1 1 1

∣∣∣∣∣∣
relating determinants. Now, [x′1 y′1 1]T = M [x1 y1 1]T = M [P 1]T =
[g(P ) 1]T . Likewise, [x′2 y

′
2 1]T = [g(Q) 1]T and [x′2 y

′
2 1]T = [g(R) 1]T .

Therefore, the preceding equation can be written

det(M) ∗
∣∣∣∣ P Q R

1 1 1

∣∣∣∣ =

∣∣∣∣ g(P ) g(Q) g(R)
1 1 1

∣∣∣∣
Considering the signs of the three determinants above, and applying
Lemma 5.1, one sees that PQR and g(P )g(Q)g(R) appear differently
oriented, from a fixed side of the plane, if and only if det(M) is negative.
But, then, by similar calculations, exactly the same would be true ofXY Z
and g(X)g(Y )g(Z), for any points X, Y and Z.

5.3.3 Shear

With translations, rotations and scalings, and their compositions, we know
that we “cover” all affine transformations. Shears, though, are a particularly
distinctive kind of affine transformation that arise naturally from physical
processes. For this reason they merit separate discussion. Roughly, a shear
is the kind of distortion caused by placing a lump of putty between a pair of
palms and then moving one palm parallel to the other.

A 2D shear s is uniquely determined by two parameters:

1. A directed line l called the line of shear .

2. An angle α called the angle of shear .

Here’s how a point P ∈ R2 is mapped to the point P ′ by s (see
Figure 5.16(a)):

(a) If P lies on l, then it is unchanged.

(b) If P lies a distance of h left of l, then it moves parallel to l in the
positive direction of l a distance of h tanα.

(c) If P lies a distance of h right of l, then it moves parallel to l in the
negative direction of l a distance of h tanα.

Note : Left or right is according to a viewer standing upright on the plane
at a point of l, head pointing toward the positive z-axis (of a hypothetical
right-handed coordinate system) and facing toward the direction of l. 217
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l

P

h h

l
Q

P

R

S

Vα

α

x

yP´ P´

S´
R´

Q´

V´h t
an 
α y tan α

P´(x + y tan α, y)P(x, y)

(a) (b) (c)

Figure 5.16: 2D shears: l is a directed line, α the angle of shear.

Another way to think of the shear is as a force parallel to l which
“bends” each perpendicular to it a fixed angle α. The rectangle PQRS in
Figure 5.16(b) is sheared into the parallelogram P ′Q′R′S′. The farther
points are from l, the proportionately more they travel under the shear;
e.g., compare V 7→ V ′ and P 7→ P ′ in Figure 5.16(b). Figure 5.17 shows a
sheared sheep (pictorial pun).

Figure 5.17: Sheared
sheep.

If the directed line l of the shear is the x-axis, then it is particularly
simple to determine its transformation equation. See Figure 5.16(c). The
shear maps the point P = [x y]T to the point

P ′ = [x+ y tanα y]T =

[
1 tanα
0 1

]
P (5.22)

A shear along the x-axis, then, is a non-singular linear transformation
given by Equation (5.22). Therefore, by Proposition 5.4, it is equivalent to a
rotation about the origin, followed by a scaling, followed by another rotation
about the origin. In fact, write[

1 tanα
0 1

]
=

[
cosφ − sinφ
sinφ cosφ

] [
sx 0
0 sy

] [
cos θ − sin θ
sin θ cos θ

]
(5.23)

It turns out that solving this equation is simpler than solving the more
general (5.17). Indeed, it may be verified that the following four equations
derive from (5.23):

tan2 θ + tanα tan θ − 1 = 0 (5.24)

φ = θ − 90◦ (5.25)

sx = tan θ (5.26)

sy =
1

tan θ
(5.27)218
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The value of θ can then be calculated from (5.24) and those of φ, sx and sy
subsequently from (5.25)-(5.27). In fact, it’s interesting to visualize a shear
along the x-axis as a rotation-scaling-rotation as in Figure 5.18.

θ φ

rotation by θ  scaling by sx, sy rotation by φ

Figure 5.18: A shear as a rotation-scaling-rotation.

Exercise 5.43. Verify that the Equations (5.24)-(5.27) indeed follow from
(5.23).

Example 5.11. Let s be the shear of angle α = 45◦ along the x-axis.
Then tanα = 1 and Equation (5.24) in this case becomes

tan2 θ + tan θ − 1 = 0

solving to (ignoring the negative root)

tan θ =
−1 +

√
5

2
' 0.618034

so that
θ ' 31.72◦

Equations (5.25)-(5.27) give next:

φ ' −58.28◦

sx ' 0.62

sy ' 1.62

Therefore, s is equivalent to a rotation of 31.72◦ counter-clockwise about
the origin, followed by scaling by factors 0.62, 1.62 along thex- and y-axes,
respectively, followed by a rotation of 58.28◦ clockwise about the origin.

Exercise 5.44. Express the shear of angle 30◦ along the y-axis as a
rotation-scaling-rotation.

Remark 5.5. We’ll code shears in Section 5.4.8 following a discussion of
their 3D version. 219
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5.4 Geometric Transformations in 3-Space

Finally, the real world. Our discussions will mirror those of the previous
section. In fact, extending translations, scalings and reflections from 2D to
3D is almost automatic. We’ll pay our dues, though, for entering 3-space
with a fair bit of work on rotations.

5.4.1 Translation

A translation is specified by a displacement vector D = [dx dy dz]
T . The

image of the point P = [x y z]T by this translation is P ′ = [x+dx y+dy z+
dz]

T (see Figure 5.19).

x

y

z

P (x, y, z)

displacement
vector (dx, dy, dz)

P´(x´, y´, z´) =(x+dx, y+dy, z+dz)

Figure 5.19: Translation.

Equivalently,

P ′ = P +D =

 1 0 0
0 1 0
0 0 1

P +D

which in homogeneous form, analogous to the 2D version (5.13), is

[
P ′

1

]
=


1 0 0 dx
0 1 0 dy
0 0 1 dz
0 0 0 1

[ P
1

]
(5.28)

For the record, the 4 × 4 matrix corresponding to translation by the
displacement vector [dx dy dz]

T is denoted T (dx, dy, dz) and given by

T (dx, dy, dz) =


1 0 0 dx
0 1 0 dy
0 0 1 dz
0 0 0 1

 (5.29)
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Exercise 5.45. Write the 4 × 4 matrix corresponding to translation by
the displacement vector [3 0 − 1]T .

Exercise 5.46. Use Equation (5.28) to prove that the composition of
translations is a translation and that the inverse of a translation is a
translation as well.

Note: By default we’re in 3-space from now on and all exercises and examples
are in 3D.

5.4.2 Scaling

A scaling is specified by scaling factors sx, sy and sz along the x-, y- and
z-axis, respectively. The image of the point P = [x y z]T by this scaling is
P ′ = [sxx syy szz]

T (see Figure 5.20).

P´(sxx, syy, szz)

x

y

z

P(x, y, z)

Figure 5.20: Scaling.

Without further ado we write the 4 × 4 matrix corresponding to this
scaling as (compare the 2D Equation (5.14))

S(sx, sy, sz) =


sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

 (5.30)

If any one or more of the scaling factors sx, sy and sz is zero, the scaling
is said to be degenerate; otherwise, it is non-degenerate. Clearly, a scaling

is non-degenerate if and only if its matrix is non-singular. By a scaling we
shall always mean a non-degenerate one, unless stated otherwise.

Exercise 5.47. Write the 4 × 4 matrix corresponding to scaling by the
factors −1, 3 and 4 along the x-, y- and z-axis, respectively.

Exercise 5.48. Use (5.30) to prove that the composition of scalings is a
scaling and that the inverse of a non-degenerate scaling is a non-degenerate
scaling.

5.4.3 Rotation

Warning upfront : This section is much longer than the corresponding
Section 5.1.3 on 2D rotations as there’s much more magic going around in
3D!

A rotation about a radial axis is specified by (a) a directed line l through
the origin, which is the axis of rotation, and (b) the angleθ of the rotation.

We’ll describe as a physical process how such a rotation maps a point P .
First, if P lies on the axis l itself, then it does not move. Suppose, then, that
P does not lie on l. Here’s how it’s mapped by the rotation (see Figure 5.21): 221
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1. Drop the perpendicular from P to the point Q on l. Denote as L the
segment PQ. L lies on the plane h perpendicular to l through Q.

Note that Figure 5.21 has Q and h on the positive side of l, but they
could very well be on the other side, or even touching the origin,
depending on where P is.

QP´

z

x

y

h

V

L´

L 1

O

P

(a, b, c)

θ

Figure 5.21: Rotation.

2. Locate a viewer at V far enough in the positive direction of l as to be
able to see h when looking toward the origin.

3. Rotate the segment L about Q (on the plane h) an angle θ counter-
clockwise, as measured by the viewer.

4. If L′ is the new position of L after rotation, then P is mapped to the
corresponding endpoint P ′ of L′.

Remark 5.6. Giving a single point (a, b, c), not equal to the origin, is enough
to specify the directed radial line l through it, as indicated in Figure 5.21.
Therefore, all that remains to specify a rotation about l is the angle θ. This,
of course, is exactly how the OpenGL command glRotatef(θ, a, b, c)
works, as described earlier in Section 4.1.3.

Rotation about the Coordinate Axes

The matrices corresponding to rotations in 3D about the coordinate axes
are straightforwardly deduced from the 2D equation (5.3), reproduced below[

x′

y′

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
(5.31)222
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where [x′ y′]T is the image of [x y]T by a rotation on the xy-plane by an
angle of θ about the origin, measured counter-clockwise by a viewer V on
the positive side of the z-axis (Figure 5.22(a)).

z

y

x
2D

z

x

θ

x

y

z

V

z

P

P´

P´

P´
x

y y
P

P

θ
θ

θ

P´(x´, y´)

P(x, y)

(a) (b) (c) (d)

Figure 5.22: (a) 2D rotation on the xy-plane (b)-(d) 3D rotations about the coordinate
axes.

In 3D, rotation about the x-axis by an angle θ (Figure 5.22(b)) maps a
point P = [x y z]T to the point P ′ = [x′ y′ z′]T , where

(a) x′ = x, because P travels parallel to the yz-plane, so its x value never
changes.

(b) [y z]T 7→ [y′ z′]T is precisely as for a 2D rotation by an angle θ CCW
about the origin on the yz-plane, looking from the positive side of the
x-axis.

Therefore, replacing x with y and y with z in (5.31), we have[
y′

z′

]
=

[
cos θ − sin θ
sin θ cos θ

] [
y
z

]
Therefore, the 4× 4 matrix of 3D rotation about the x-axis is

Rx(θ) =


1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

 (5.32)

(the first row serving to keep x unchanged).
Rotation about the y-axis by an angle θ (Figure 5.22(c)) maps a point

P = [x y z]T to the point P ′ = [x′ y′ z′]T , where:

(a) y′ = y

(b) [x z]T 7→ [x′ z′]T is as for a 2D rotation by an angle θ CCW about the
origin on the xz-plane, looking from the positive side of the y-axis. 223
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We have to be careful, though, in applying (5.31). For, compare Figure 5.22(a)
with Figure 5.22(c) to observe that the role of x in the 2D figure is played
by z in the 3D one, that of the 2D y by the 3D x, and, of course, that of
the 2D z (the viewer’s axis) by the 3D y. (You can verify this by scratching
out the current labels on the axes in Figure 5.22(a), relabeling them as just
suggested, and then “mentally” turning the system to match Figure 5.22(c).)
So, (5.31) gives [

z′

x′

]
=

[
cos θ − sin θ
sin θ cos θ

] [
z
x

]
or, equivalently, [

x′

z′

]
=

[
cos θ sin θ
− sin θ cos θ

] [
x
z

]
Finally, since y is fixed, we have

Ry(θ) =


cos θ 0 sin θ 0

0 1 0 0
− sin θ 0 cos θ 0

0 0 0 1

 (5.33)

We ask the reader to verify that the matrix of rotation about the z-axis
by an angle θ (Figure 5.22(d)) is

Rz(θ) =


cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1

 (5.34)

Exercise 5.49. Write the 4 × 4 matrix corresponding to rotation by an
angle of 30◦ about the y-axis.

Rotation about an Arbitrary Radial Axis

It is a bit of work to find the matrix corresponding to rotation about an
arbitrary axis through the origin. But it’s important enough that we’ll do it
in two different ways. The first is mainly geometric and fairly intuitive. The
second involves a bit of algebraic legerdemain, so it is a little less intuitive,
but the final form it yields is more compact than that of the first.

Let the axis of rotation be specified as the directed line l through the
origin O toward a point P = (a, b, c) (6= O), and the angle of rotation as
θ. See Figure 5.23. To simplify computation we’ll assume that P is a unit
vector, i.e., |P | =

√
a2 + b2 + c2 = 1. There is no loss in generality because,

if P is not of unit length, we can always divide it by |P | to obtain a unit
vector specifying the same rotation. Our goal is to compute the matrix,
denote it Ra, b, c(θ), corresponding to this rotation.224
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l

z

O

y

x

P = (a, b, c)θ

Figure 5.23: Rotating about an arbitrary radial axis.

Remark 5.7. To be honest, at this point we don’t even know if a rotation
about an arbitrary radial axis has a matrix representation at all, in other
words, if it is a linear transformation!

Before we proceed, here’s a possible temptation, and, then, an exercise
to nip it in the bud.

Can’t we simply “add rotational axes” like vectors? For example,
isn’t it true, say, that glRotatef(90.0, 0.0, 1.0, 1.0) is the same
as glRotatef(90.0, 0.0, 1.0, 0.0) followed by glRotatef(90.0, 0.0,

0.0, 1.0) or, maybe, the other way around? Certainly, translations do work
this way: glTranslatef(0.0, 1.0, 1.0) is, indeed, glTranslatef(0.0,
1.0, 0.0) followed by glTranslatef(0.0, 0.0, 1.0), or vice versa.

If rotational axes could be so added, then writing the matrix corre-
sponding to glRotatef(90.0, 0.0, 1.0, 1.0) would be simple: it would
be the product of the matrices corresponding to glRotatef(90.0, 0.0,

1.0, 0.0) and glRotatef(90.0, 0.0, 0.0, 1.0) in some order, both
matrices easily written from what we know already about rotating about
the coordinate axes themselves.

Exercise 5.50. Prove that we cannot , in general, add rotational
axes. In fact, show that glRotatef(90.0, 0.0, 1.0, 1.0) is neither
glRotatef(90.0, 0.0, 1.0, 0.0) followed by glRotatef(90.0, 0.0,

0.0, 1.0), nor the other way around.

Hint : If, say, glRotatef(90.0, 0.0, 1.0, 1.0) were equal to the transfor-
mation glRotatef(90.0, 0.0, 1.0, 0.0) followed by glRotatef(90.0,

0.0, 0.0, 1.0), then the two would move all points identically. Consider
the point (0, 1, 1). How is it moved by glRotatef(90.0, 0.0, 1.0, 1.0)?
By glRotatef(90.0, 0.0, 1.0, 0.0) followed by glRotatef(90.0, 0.0,

0.0, 1.0)?

225
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A Method to Compute the Rotation Matrix Which Is Mainly
Geometric

Even though we can’t quite add axes, the plan is still to express the rotation
of θ about the radial axis l as a composition of rotations about the coordinate
axes. We’ll use the Trick. First we’ll apply rotations to align l along one of
the coordinate axes, then rotate by θ about that coordinate axis and, last,
undo the initial rotations to bring l back where it was. For our plan to work,
of course, the rotations to align l along a coordinate axis must themselves
be about coordinate axes!

Here’s a simple motivating experiment.

(a)

l

z

y

x
O

P = (0, 1, 1)

(1) 45o

(3) −45o

90o

(2) 90o

(b)

Figure 5.24: Experiment 5.1: (a) Screenshot of output (b) Trick-based rotation scheme.

Experiment 5.1. Fire up box.cpp and insert a rotation command – in
fact, the same one as in the previous exercise – just before the box definition
so that the transformation and object definition part of the drawing routine
becomes:

// Modeling transformations.

glTranslatef(0.0, 0.0, -15.0);

glRotatef(90.0, 0.0, 1.0, 1.0);

glutWireCube(5.0); // Box.

The rotation command asks to rotate 90◦ about the line l from the origin
through (0, 1, 1). See Figure 5.24(a) for the displayed output.

Let’s try now, instead, to use the strategy suggested above to express the
given rotation in terms of rotations about the coordinate axes. Figure 5.24(b)
illustrates the following simple scheme. Align l along the z-axis by rotating
it 45◦ about the x-axis. Therefore, the given rotation should be equivalent
to (1) a rotation of 45◦ about the x-axis, followed by (2) a rotation of 90◦

about the z-axis followed, finally, by a (3) rotation of −45◦ about the x-axis.226
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Give it a whirl. Replace the single rotation command glRotatef(90.0,
0.0, 1.0, 1.0) with a block of three as follows:

// Modeling transformations.

glTranslatef(0.0, 0.0, -15.0);

glRotatef(-45.0, 1.0, 0.0, 0.0);

glRotatef(90.0, 0.0, 0.0, 1.0);

glRotatef(45.0, 1.0, 0.0, 0.0);

glutWireCube(5.0); // Box.

Seeing is believing, is it not?! End

Returning to the general problem, let’s plan to rotate to align l along the
z-axis in a manner that P = (a, b, c) maps to the point P ′′ = (0, 0, 1) on the
positive side of the z-axis. We accomplish this by applying two successive
rotations (see Figure 5.25):

(1) Rotate l an angle α about the x-axis onto a line l′ on the xz-plane,
taking P to P ′.

(2) Rotate l′ an angle −β about the y-axis till it’s aligned along the z-axis,
taking P ′ to P ′′ (the minus sign in front of β is because the rotation
is CW).

P´´= (0, 0, 1)

−β

α(rotation (1))

l

x

y

R

β
S

l’(rotation (2))
z

α O
d

a

P = (a, b, c)Q = (0, b, c)

b

c

P´ = (a, 0, d)

1

1

Figure 5.25: Aligning l along the z-axis.

Note: The choice of the z-axis as l’s final alignment was arbitrary – it could
have been any of the three coordinate axes. 227
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We must determine α and β. In fact, we’ll simply determine the sine and
cosine of both, which is sufficient to write the matrices Rx(α) and Ry(−β)
corresponding to the rotations (1) and (2), respectively.

Observe that the angle α that OP turns by rotation (1) about the x-axis
is the same as the angle between its projection OQ on the yz-plane and the
positive direction of the z-axis. In fact, imagine OQ as the “shadow” of OP
cast on the yz-plane by a light shining down the x-axis – as OP turns so
does its shadow, and by the same amount.

The coordinates of Q are [0 b c]T as Q is the projection of [a b c]T on
the yz-plane. Drop the perpendicular from Q to the point R on the z-axis.
The angle QOR then is equal to α. We see from the coordinates of Q that
|OR| = c and |RQ| = b. Denoting |OQ| by d, it follows from the right-angled
triangle ORQ that d =

√
b2 + c2. Therefore, assuming that d 6= 0, we have

sinα = b
d and cosα = c

d .

Note: We don’t lose any generality in assuming d 6= 0, because d = 0 means
Q = O, which in turn means P is on the x-axis, implying that l lies along
the x-axis as well, in which case we already know the matrix for rotation
about l.

We can now use Equation (5.32) to write the matrix of rotation (1) as

Rx(α) =


1 0 0 0
0 cosα − sinα 0
0 sinα cosα 0
0 0 0 1

 =


1 0 0 0
0 c/d −b/d 0
0 b/d c/d 0
0 0 0 1


After rotation (1), l coincides with l′ on the xz-plane, and P with P ′. The
x coordinate of P ′ is a, the same as that of P , because rotation about the
x-axis leaves this value unchanged; the z coordinate is d because rotation
by α about the x-axis causes OQ, the shadow of OP whose length is d, to
coincide with OS, the projection of OP ′ on the z-axis; the y coordinate, of
course, is 0 as P ′ lies on the xz-plane.

Therefore, P ′ = [a 0 d]T , which means that in the right-angled triangle
OSP ′, |OS| = d, |SP ′| = a, and, therefore, |OP ′| =

√
a2 + d2 =√

a2 + b2 + c2 = 1 (the latter evident as well from the fact that OP ′ is
the unit vector OP rotated). Moreover, angle P ′OS = β, where −β is the
angle turned by l′ to align along the z-axis in rotation (2) above. Therefore,
from the triangle OSP ′ we have sinβ = a and cosβ = d.

We can now use Equation (5.33) to write the matrix of rotation (2) as

Ry(−β) =


cos(−β) 0 sin(−β) 0

0 1 0 0
− sin(−β) 0 cos(−β) 0

0 0 0 1

 =


d 0 −a 0
0 1 0 0
a 0 d 0
0 0 0 1


Returning to our original Trick-based plan, the first step of aligning l

along the z-axis is accomplished, then, by the composition Ry(−β) Rx(α).228
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The next, of rotating by θ about the z-axis, is simply a matter of applying
Rz(θ). Finally, the initial rotations aligning l along the z-axis are undone
by the inverse transformation (Ry(−β) Rx(α))−1 = Rx(α)−1 Ry(−β)−1 =
Rx(−α) Ry(β).

Putting everything together we have, finally,

Ra, b, c(θ) = Rx(−α) Ry(β) Rz(θ) Ry(−β) Rx(α)

=


1 0 0 0
0 c/d b/d 0
0 −b/d c/d 0
0 0 0 1




d 0 a 0
0 1 0 0
−a 0 d 0
0 0 0 1




cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1



d 0 −a 0
0 1 0 0
a 0 d 0
0 0 0 1




1 0 0 0
0 c/d −b/d 0
0 b/d c/d 0
0 0 0 1

 (5.35)

The five matrices on the right side of the formula can be multiplied to
give a single matrix, which would then be the value of Ra, b, c(θ). However,
we’ll not do so as the next method to calculate Ra, b, c(θ) gives a more concise
form directly.

Exercise 5.51. Is rotation about an arbitrary radial axis a linear
transformation? If so, is it always non-singular, or can it be singular?

Exercise 5.52. Use the Trick to write a rotation about an arbitrary axis
l, not necessarily radial, as a seven-matrix product.

Example 5.12. (a) Determine the 4× 4 matrix corresponding to a 90◦

rotation about the radial axis l directed toward the point [1 1 1]T ,
which corresponds to the OpenGL command glRotatef(90.0, 1.0,

1.0, 1.0).

(b) Express glRotatef(90.0, 1.0, 1.0, 1.0) as a composition of five
successive rotations about the coordinate axes and experimentally
verify.

Answer :

(a) The unit vector along l in the direction of [1 1 1]T is P = [ 1√
3

1√
3

1√
3
]T .

Accordingly, keeping the notation used above,

a = b = c =
1√
3

, d =
√
b2 + c2 =

√
2√
3

and, of course, θ = π/2. 229
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Plugging these values into (5.35) we get the required matrix as

RP (θ) =


1 0 0 0
0 1√

2
1√
2

0

0 − 1√
2

1√
2

0

0 0 0 1




√
2√
3

0 1√
3

0

0 1 0 0

− 1√
3

0
√
2√
3

0

0 0 0 1




0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1



√
2√
3

0 − 1√
3

0

0 1 0 0
1√
3

0
√
2√
3

0

0 0 0 1




1 0 0 0
0 1√

2
− 1√

2
0

0 1√
2

1√
2

0

0 0 0 1



=


1
3

1
3 −

1√
3

1
3 + 1√

3
0

1
3 + 1√

3
1
3

1
3 −

1√
3

0
1
3 −

1√
3

1
3 + 1√

3
1
3 0

0 0 0 1


after some tedious computation.

(b) Now, (5.35) says that

RP (θ) = Rx(−α) Ry(β) Rz(θ) Ry(−β) Rx(α)

where α = sin−1 1√
2

= 45◦ and β = sin−1 1√
2

= 35.26◦. So,

RP (θ) = Rx(−45◦) Ry(35.26◦) Rz(90◦) Ry(−35.26◦) Rx(45◦)

which means glRotatef(90.0, 1.0, 1.0, 1.0) is equivalent to the
sequence

glRotatef(-45.0, 1.0, 0.0, 0.0);

glRotatef(35.26, 0.0, 1.0, 0.0);

glRotatef(90.0, 0.0, 0.0, 1.0);

glRotatef(-35.26, 0.0, 1.0, 0.0);

glRotatef(45.0, 1.0, 0.0, 0.0);

We’ll leave verification along the lines of Experiment 5.1 to the reader.

Exercise 5.53. Determine the 4×4 matrix corresponding to a 90◦ rotation
about the radial axis l directed toward the point [0 1 1]T , which corresponds
to the OpenGL command glRotatef(90.0, 0.0, 1.0, 1.0). (Recall that
in Experiment 5.1 we had already written glRotatef(90.0, 0.0, 1.0,

1.0) as a composition of rotations about the coordinate axes.)230
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Exercise 5.54. (a) Determine the 4× 4 matrix corresponding to a 45◦

rotation about the radial axis l directed toward the point [1 − 1 1]T ,
which corresponds to the OpenGL command glRotatef(45.0, 1.0,

-1.0, 1.0).

(b) Express glRotatef(45.0, 1.0, -1.0, 1.0) as a composition of five
successive rotations about the coordinate axes and experimentally
verify.

Before discussing the second method to compute the matrix corresponding
to rotation about an arbitrary axis, here are some facts about cross-products
that we’ll need. Skip this part if you are already familiar with cross-products
of vectors.

Sidebar on Cross-Products

|u|
|v|

 si
nθ

(b)

P

u x v 

v
u

|v|
|u|

θ

O

(a)

Figure 5.26: (a)
Non-zero collinear vectors
drawn from the origin (b)
Taking the cross-product.

The cross-product (also called vector product) of two vectors u and v in R3

is another vector, denoted u× v, defined as follows:

(a) If u and v are collinear, then u× v is the zero vector.

Note: Two vectors are collinear if and only if any one is a scalar
(positive, zero or negative) multiple of the other. Therefore, if at least
one of the vectors is zero, the two are trivially collinear. (Figure 5.26(a)
shows an example of three non-zero vectors, each pair being collinear.)

(b) If u and v are not collinear, then u×v is the vector whose (a) magnitude
is |u||v|| sin θ|, where θ is the angle between u and v, and (b) direction
is perpendicular to the plane spanned by u and v, such that u, v and
u× v form a right-handed system. See Figure 5.26(b).

Here’s another way to think of the cross-product. The magnitude
|u||v|| sin θ| of the cross-product is nothing but the area of the parallelogram
P with u and v as adjacent sides. The area of this parallelogram is, in fact,
zero if and only if u and v are collinear. Consequently, the following is an
alternate definition:

u× v is the vector whose magnitude is the area of the parallelogram with
u and v as adjacent sides; if the magnitude is non-zero, then the direction of
u× v is perpendicular to the plane spanned byu and v, such that u, v and
u× v form a right-handed system.

If u = [ux uy uz]
T and v = [vx vy vz]

T , a formula for the cross-product
is the following:

u× v = [uyvz − vyuz vxuz − uxvz uxvy − vxuy]T (5.36)

A convenient way to remember this formula is with the help of a
determinant, as you are asked to show in the following exercise. 231
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Exercise 5.55. If

u = uxi + uyj + uzk and v = vxi + vyj + vzk

where i, j and k are the unit vectors in the directions of the positive x-, y-
and z-axes, show that

u× v =

∣∣∣∣∣∣
i ux vx
j uy vy
k uz vz

∣∣∣∣∣∣ (5.37)

Example 5.13. Determine the cross-product [2 1 0]T × [1 − 2 4]T .

Answer :

[2 1 0]T × [1 − 2 4]T =

∣∣∣∣∣∣
i 2 1
j 1 2
k 0 4

∣∣∣∣∣∣ = 4i− 8j− 5k = [4 − 8 − 5]T

Exercise 5.56. Determine the cross-product [3 − 1 2]T × [−1 0 3]T .

Exercise 5.57. Write the result of the cross-product of every ordered pair
from the three vectors i, j and k (there are 9 such products if you include
products of vectors with themselves).

Remark 5.8. An easy way to remember the answer to the preceding exercise
is the following:

The cross-product of any of i, j and k with itself is the zero vector. For
the product of two different ones from i, j and k, keep in mind the cyclic
order i → j → k → i. Then, if two successive elements in this order are
multiplied, the result is the next; if two successive elements are multiplied
in reverse order, then the result is the negative of the next element. For
example, j× k = i and k× j = −i.

Exercise 5.58. Prove the following about cross-products, where u, v and
w are any three vectors, and c an arbitrary scalar:

(a) u and v are collinear if and only if u× v = 0 (collinearity test)

Note: The “only if” direction follows from the definition of cross-
product; “if” needs to be proved.

(b) u× u = 0

(c) u× v = −(v × u) (cross-product is anti-commutative)

(d) It may not be true that (u× v)× w = u× (v × w) (cross-product is
not associative). Give an example of u, v and w where it isn’t true.232
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(e) (cu)× v = u× (cv) = c (u× v)

(f) u × (v + w) = u × v + u × w and (v + w) × u = v × u + w × u
(cross-product distributes over a sum)

Exercise 5.59. Prove that if u is a unit vector and v arbitrary, then the
vector (u× v)× u is the component of v perpendicular to u.

Interestingly, it turns out, as the next example shows, that a cross-product
with one fixed vector is a linear transformation.

Example 5.14. Show for a fixed vector u = uxi + uyj + uzk that the
transformation of R3 defined by v 7→ u× v is linear.

Answer : Check from the formula (5.36) for u× v that

u× v = Mv

where

M =

 0 −uz uy
uz 0 −ux
−uy ux 0


which proves that v 7→ u× v is indeed linear, with defining matrix M .

A Method to Compute the Rotation Matrix Which Is Part
Geometry and Part Algebra

The problem statement again:
The axis of rotation is the directed line l through the origin toward a

point P = [a b c]T and the angle of rotation is θ. The goal is to compute
the matrix Ra, b, c(θ) corresponding to this rotation. As before, we assume
without loss that |P | = 1.

l

X

z

O

y

x

P = (a, b, c)θ
f(X)

Figure 5.27: The vector f(X) is obtained by rotating X an angle of θ about the radial
line l. 233
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Let the image of a vector X by the given rotation be f(X). See
Figure 5.27. First, split X as

X = X1 +X2

into components X1 and X2 parallel and perpendicular, respectively, to l.
See Figure 5.28.

l
P (a, b, c)

O

p
X

α

θf(X2)
X1

X2
P x X 

Figure 5.28: X1 and X2 are components of X parallel and perpendicular, respectively,
to l; X2, f(X2) and P ×X all lie on the plane p through O perpendicular to l. X2 and
P ×X are mutually perpendicular as well.

Since a rotation is a linear transformation, we have

f(X) = f(X1) + f(X2) (5.38)

As X1 lies on l, rotation about l leaves it unchanged. So

f(X1) = X1 (5.39)

Now, X2 lies on the plane p through O perpendicular to l and rotates
by an angle θ about l, to f(X2). Therefore, f(X2) lies on p as well. We’ll
assume for now that X2 is non-zero, meaning that X is not parallel to l, for,
otherwise, f(X) = f(X1) = X1 and there’s nothing more to do.

Observe that the vector P × X, being perpendicular to l, lies on p;
moreover, P ×X is perpendicular to X2 as it is perpendicular to the plane
containing P and X, which contains X2 as well. It follows, then, that
the plane p is spanned by the two perpendicular vectors X2 and P × X.
Consequently, these two specify coordinate axes on p. Let’s determine the
coordinates of f(X2) with respect to these axes, equivalently, the components
of f(X2) parallel to X2 and to P ×X.

The component of f(X2) parallel to X2 has signed length |f(X2)| cos θ.
Moreover, the unit vector in the direction ofX2 is X2/|X2|. Therefore, the
component of f(X2) parallel to X2 is

|f(X2)| cos θ ×X2/|X2| = X2 cos θ (5.40)234
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using the fact that |f(X2)| = |X2|, because f(X2) is X2 rotated.
The component of f(X2) parallel to P ×X has signed length

|f(X2)| sin θ = |X2| sin θ (using again |f(X2)| = |X2|)
= |X sinα| sin θ (where α is the angle between P and X)

= |P ||X|| sinα| sin θ (as |P | = 1)

= |P ×X| sin θ (by definition of the cross-product)

The unit vector in the direction of P ×X is (P ×X)/|P ×X|. It follows
that the component of f(X2) parallel to P ×X is

|P ×X| sin θ (P ×X)/|P ×X| = (P ×X) sin θ (5.41)

Adding its components parallel to X2 and P ×X with help of (5.40) and
(5.41), we conclude that

f(X2) = X2 cos θ + (P ×X) sin θ (5.42)

Plugging the values from (5.39) and (5.42) into (5.38) we see that

f(X) = X1 +X2 cos θ + (P ×X) sin θ

= X1 + (X −X1) cos θ + (P ×X) sin θ

= X cos θ +X1(1− cos θ) + (P ×X) sin θ (5.43)

Note: The preceding equation is valid even if X2 is the zero vector, for,
then, X = X1 and P ×X = 0, so that the equation says f(X) = X, which
is correct. So we’re completely general from here on.

Use the results of Example 4.5 and Example 5.14 to replace X1 and
P ×X, respectively, with their equivalent matrix products:

f(X) = cos θ

 1 0 0
0 1 0
0 0 1

X + (1− cos θ)

 a2 ab ac
ab b2 bc
ac bc c2

X +

sin θ

 0 −c b
c 0 −a
−b a 0

X
=

( a2 ab ac
ab b2 bc
ac bc c2

 + cos θ

 1− a2 −ab −ac
−ab 1− b2 −bc
−ac −bc 1− c2

 +

sin θ

 0 −c b
c 0 −a
−b a 0

) X (5.44)

Finally, adding the matrices in the parentheses and writing the result in
homogeneous coordinates, we get a second form for the rotation matrix, 235
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different from the earlier geometrically-derived (5.35):

Ra, b, c(θ) =
a2(1− cos θ) + cos θ ab(1− cos θ)− c sin θ ac(1− cos θ) + b sin θ 0
ab(1− cos θ) + c sin θ b2(1− cos θ) + cos θ bc(1− cos θ)− a sin θ 0
ac(1− cos θ)− b sin θ bc(1− cos θ) + a sin θ c2(1− cos θ) + cos θ 0

0 0 0 1


(5.45)

Remark 5.9. One can replace X1 in (5.43) by (X · P )P , as X1 is the
component of X parallel to the vector P of unit length (see Exercise 4.41(a)).
The resulting equation

f(X) = X cos θ + (X · P )P (1− cos θ) + (P ×X) sin θ (5.46)

is called Rodrigues’ rotation formula.

Exercise 5.60. Verify the result of Example 5.12 by computing the rotation
matrix using Equation (5.45) instead of (5.35).

Exercise 5.61. Verify your answer to Exercise 5.53 by computing the
rotation matrix using Equation (5.45) instead of (5.35).

Remark 5.10. An exercise which may have been conspicuous by its absence
so far is to show that the composition of two rotations about radial axes is
also a rotation about a radial axis. Unfortunately, though true, this is not
easy to prove.

In fact, unlike its 2D counterpart, it’s not even obvious that it is true. For
example, is it evident that, say, a rotation of 45◦ about the x-axis followed
by another, say, of 30◦ about the y-axis is a rotation about some axis in
the first place? We’ll prove that rotations do, in fact, compose to rotations
using properties of rigid transformations in Section 5.4.5.

Whew, we told you this section was going to be long! It turned out to
be fairly technical, too. We’ll be coasting downhill the rest of the way and,
believe it or not, get to see some code before long.

5.4.4 Reflection

X p

P

P´

Figure 5.29: Reflection
about plane p
(|XP | = |XP ′|).

The image of the point P = [x y z]T by reflection about a plane p, called
the mirror, is P ′ = [x′ y′ z′]T such that:

(a) if P lies on p, then P ′ = P ;

(b) if P does not lie on p, then P ′ is the point on the other side of p such
that PP ′ is perpendicular to p, and P ′ is the same distance from p as
P . See Figure 5.29.236
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Reflection about the xy-plane is simply scaling by the factors sx = 1,
sy = 1 and sz = −1. Its matrix, therefore, is

M = S(1, 1,−1) =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 (5.47)

Exercise 5.62. Let p be an arbitrary plane mirror. Use the Trick to show
that the matrix corresponding to reflection about p is of the form

M−11 M−12 S(1, 1,−1)M2M1

where M1 corresponds to a translation and M2 to a rotation about a radial
axis. You don’t need to find exact values for M1 and M2.

Exercise 5.63. Write the 4× 4 matrix corresponding to reflection about
the plane x− z = 0.

Exercise 5.64. What is the result of composing reflections about the same
mirror? What transformation is the result of composing reflections about
two parallel mirrors? About two perpendicular mirrors? What is the inverse
of a reflection?

Exercise 5.65. (Commutativity of transformations of 3-space)

(a) Do translations commute with each other?

(b) Do scalings commute with each other?

(c) Do rotations about the same radial axis commute with each other?

(d) Does a rotation about one radial axis commute with another about a
different radial axis?

(e) Do translations and rotations commute?

(f) Do reflections about two different mirrors ever commute?

5.4.5 Affine Geometric Transformations

From Equations (5.29), (5.30), (5.45) and (5.47) and judicious applications of
the Trick one sees that translations, rotations about arbitrary axes, scalings
and reflections about arbitrary mirrors are all affine transformations of
3-space. Consequently, one has the following 3D analogue of Proposition 5.2
about their geometric niceness.

Proposition 5.8. Let g be either a translation, a scaling, a rotation (about
an arbitrary radial axis) or a reflection (about an arbitrary mirror). Then: 237
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(a) g maps straight lines to straight lines and planes to planes. Moreover,
it maps parallel straight lines to parallel straight lines, intersecting
straight lines to intersecting straight lines, parallel planes to parallel
planes and intersecting planes to intersecting planes.

(b) g maps a convex set on one plane to a convex set on another
plane. Moreover, it transforms the convex hull of a set of points
{P1, P2, . . . , Pk} on one plane to the convex hull of {g(P1), g(P2), . . . ,
g(Pk)} lying on another plane.

Proof. Follows from Proposition 5.1 about affine transformations in general.
2

Translations, rotations, scalings and reflections are all affine. In the
opposite direction, the following analogues of the 2D Propositions 5.3 and 5.4
are true as well, though there seem to be no “low-level” proofs similar to the
2D ones. Fairly sophisticated linear algebra appears unavoidable. So at this
time we’ll only state Propositions 5.9 and 5.10, deferring the proof of the latter
to later in this chapter as optional reading for the mathematically inclined.
Mind that Proposition 5.9 follows straightforwardly from Proposition 5.10.

Proposition 5.9. Any affine transformation of R3 is the composition in
some order of translations, scalings and rotations about radial axes.

In particular, an affine transformation g : R3 → R2 can be factored into
a composition g = g4 ◦ g3 ◦ g2 ◦ g1, where g1 is a rotation about a radial axis,
g2 a scaling, g3 another rotation about a radial axis and g4 a translation. 2

Proposition 5.10. Any non-singular linear transformation of R3 is the
composition successively of a rotation about a radial axis, a scaling and
another rotation about a radial axis. 2

OpenGL and Affine Transformations

The importance of Proposition 5.9, particularly to the design of an API like
OpenGL, cannot be overstated. The modeling transformations one creates
using OpenGL are compositions of translations ( glTranslatef() ), scalings
( glScalef(), excluding for the moment degenerate calls ) and rotations
about a radial axis ( glRotatef() ). The whole collection, therefore, is affine
as a composition of affine transformations is affine. Proposition 5.9 tells
us that, conversely, any affine transformation of 3-space is a composition
of translations, scalings and rotations about a radial axis and, so, may be
implemented in OpenGL.

Conclusion: barring degenerate scalings, the modeling transformations
one can create in OpenGL are precisely the affine transformations of 3-space
and nothing else. And, as we argued in Section 5.2.2, this is a welcome
situation both from the API designer’s point of view of being able to
implement a simple rendering engine, and the application programmer’s
point of view of having a comprehensive set of transformations at her disposal.238
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Example 5.15. Express the affine transformation

f([x y z]T ) = [−y x z + 2]T

as a composition of OpenGL transformations.

Answer : The mapping by f is the composition

[x y z]T 7→ [−y x z]T 7→ [−y x z + 2]T

Now, the first map is easily seen to be a rotation of π/2 about the z-axis,
while the second is a translation of 2 in the z-direction. We have, therefore,
the required block of OpenGL transformations:

glTranslatef(0.0, 0.0, 2.0);

glRotatef(90.0, 0.0, 0.0, 1.0);

Exercise 5.66. Express each of the following affine transformations as a
composition of OpenGL transformations:

(a) f([x y z]T ) = [y x z]T

(b) f([x y z]T ) = [y z x]T

(c) f([x y z]T ) = [x− y x+ y − z]T

Verifying the Matrices Generated by OpenGL

Appendix E of the red book lists the matrices which OpenGL generates for
the modeling transformations.

The translation and scaling matrices are simple and seen to agree
with Equations (5.29) and (5.30), respectively. We leave it to the reader
to verify that the rotation matrix R which OpenGL generates for the
rotation transformation glRotate{fd}(a, x, y, z) is equivalent to that of
Equation (5.45); in fact, the red book expresses it in the form of the prior
more expansive Equation (5.44).

Incidentally, it’s clear now and worth emphasizing that the composition
of modelview transformations is implemented in the OpenGL engine as 4× 4
matrix multiplication. Almost all of the “action” in animation is, therefore,
matrix multiplication. In fact, it’s not an oversimplification to say that a
graphics card animates as fast as it multiplies.

Projection Transformations

There is another set of transformations which OpenGL implements as 4× 4
matrix multiplication as well: these are the projection transformations used
to transform the viewing box (respectively, frustum) created by a glOrtho() 239
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(respectively, glFrustum()) call into a cubical so-called canonical viewing
box.

However, we defer consideration of projection transformations to
Chapter 18 because transformation at least of a frustum into a box cannot
be done affinely, but requires an understanding of projective spaces (if the
transformation matrix is not to be pulled out of a hat). Nevertheless, a reader
with some math preparation who is eager to see all of OpenGL’s matrices
can proceed to Chapter 18 right away as it may be read independently.
Moreover, it is written in a manner to be at least accessible to the reader
even without much projective math under her belt.

5.4.6 Accessing and Manipulating the Current
Modelview Matrix

Finally, we surface from deep theory to see – code!
There are four commonly-used methods to access the current modelview

matrix, i.e., the matrix at the top of the OpenGL modelview matrix stack,
three to change its value and one to read it. After setting the matrix mode
to GL MODELVIEW with the command glMatrixMode(GL MODELVIEW) if need
be, the call

1. glLoadIdentity() sets the current modelview matrix to the identity
matrix I4.

2. glLoadMatrix(*matrixData) sets the current modelview matrix to
the 4×4 matrix whose elements are listed in the one-dimensional array
pointed by *matrixData in column-major order (which means elements
of the first column are listed first in order of increasing row, then those
of the second column and so on).

3. glMultMatrix(*matrixData) multiplies the current modelview matrix
on the right by the 4× 4 matrix whose elements are listed in column-
major order in the one-dimensional array pointed by *matrixData.

4. glGetFloatv(GL MODELVIEW MATRIX, *modelviewMatrixData) stores
the 16 elements of the current modelview matrix in column-major
order in the one-dimensional array pointed by *modelviewMatrixData.

Figure 5.30: Screenshot
from Experiment 5.2.

Experiment 5.2. Run manipulateModelviewMatrix.cpp. Figure 5.30
is a screenshot, although in this case we are really more interested in the
transformations in the program rather than its visual output.

The gluLookAt(0.0, 0.0, 10.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0)

statement we understand to multiply the current modelview matrix on the
right by the matrix of its equivalent modeling transformation. The current
modelview matrix is changed again by the glMultMatrixf(matrixData)

call, which multiplies it on the right by the matrix corresponding to a rotation240
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of 45◦ about the z-axis, equivalent to a glRotatef(45.0, 0.0, 0.0, 1.0)

call. It’s changed one last time by glScalef(1.0, 2.0, 1.0).

The current modelview matrix is output to the command window initially
and then after each of the three modelview transformations. We’ll see next
if the four output values match our understanding of the theory. End

As expected, the first matrix output by the program is the identity

I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


The gluLookAt(0.0, 0.0, 10.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0)

command is equivalent to glTranslatef(0.0, 0.0, -10.0), whose matrix,
from Equation (5.29), is

T (0, 0,−10) =


1 0 0 0
0 1 0 0
0 0 1 −10
0 0 0 1


Therefore, after the gluLookAt() call the current modelview matrix

should equal
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 −10
0 0 0 1

 =


1 0 0 0
0 1 0 0
0 0 1 −10
0 0 0 1


which indeed is the second one output.

Next, the current modelview matrix is multiplied on the right by the
matrix

M =


X −X 0 0
X X 0 0
0 0 1 0
0 0 0 1


where X = 0.70710678 ' 1/

√
2, so M corresponds to a rotation of 45◦ about

the z-axis. The third matrix output then is, as expected,
1 0 0 0
0 1 0 0
0 0 1 −10
0 0 0 1



X −X 0 0
X X 0 0
0 0 1 0
0 0 0 1

 =


X −X 0 0
X X 0 0
0 0 1 −10
0 0 0 1
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The final matrix output is after the call glScalef(1.0, 2.0, 1.0), a
scaling by a factor of 2 along the y-axis. From Equation (5.30)

S(1, 2, 1) =


1 0 0 0
0 2 0 0
0 0 1 0
0 0 0 1


which multiplies the third matrix on the right to indeed give the final output
matrix as

X −X 0 0
X X 0 0
0 0 1 −10
0 0 0 1




1 0 0 0
0 2 0 0
0 0 1 0
0 0 0 1

 =


X −2X 0 0
X 2X 0 0
0 0 1 −10
0 0 0 1


Exercise 5.67. (Programming) Replace the gluLookAt() statement
in manipulateModelviewMatrix.cpp with the following

gluLookAt(0.0, 10.0, 10.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

Theoretically verify the correctness of the modelview matrix output by the
program after the new gluLookAt() statement.
Hint : The new gluLookAt() statement is simulated as a translation by
displacement vector [0 − 10 − 10]T , followed by a rotation of 45◦ about the
x-axis.

Exercise 5.68. (Programming) Verify your answer to Exercise 5.53 by
comparing it with the output from an appropriately modified manipulate-

ModelviewMatrix.cpp.

Exercise 5.69. (Programming) What is the current modelview matrix
after the following piece of code in the drawing routine:

glMatrixMode(GL MODELVIEW);

glLoadIdentity();

glScalef(1.0, 2.0, 2.0);

glTranslatef(2.0, 1.0, 0.0);

glRotatef(90.0, 1.0, 0.0, 0.0);

Find the answer theoretically by multiplying appropriate 4× 4 matrices and
then verify with the help of manipulateModelviewMatrix.cpp.

Exercise 5.70. (Programming) Verify your answers to Exercise 4.50(a)-
(e) by using manipulateModelviewMatrix.cpp to find the matrix corre-
sponding to the given gluLookAt() call, as well as that corresponding to
the composed sequence of modeling transformations which you gave as being
equivalent.242
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Exercise 5.71. (Programming) In Remark 4.15 about the viewing
transformation being simulated by modeling transformations, we claimed
that, following a gluLookAt() call, the current modelview matrix changes,
but not the current projection matrix.

The part about the current modelview matrix is clearly true from what
we have just seen in Experiment 5.2.

We ask the reader to verify the claim about the current projection
matrix, particularly for the program manipulateModelviewMatrix.cpp, by
reading the current projection matrix, both before and after the gluLookAt()
statement, with the help of glGetFloatv(GL PROJECTION MATRIX, *projec-
tionMatrixData) calls.

5.4.7 Euclidean and Rigid Transformations

We have definitions analogous to the 2D case for Euclidean and rigid
transformations of 3-space. Euclidean transformations are important because
they preserve distance and, therefore, shape as well.

Definition 5.6. A Euclidean transformation (also called isometry) f of R3

is such that |f(P )f(Q)| = |PQ| for any two points P,Q ∈ R3.

For the discussion of orientation coming up next, we need first to know
when triples of vectors in 3-space are right-handed or left-handed.

Definition 5.7. An ordered triple of non-coplanar vectors {u, v, w}, each
assumed originating from the same point O, is said to form a right-handed
system (or, simply, be right-handed) if the rotation of u about O toward
v, along the plane containing u and v, and along the smaller of the angles
between the two, appears counter-clockwise to a viewer watching from the
endpoint of w; otherwise, it is said to be left-handed . See Figures 5.31(a)
and (b) for examples.

Remark 5.11. We actually first discussed handedness in the context of
coordinate systems way back in Section 2.2.

Remark 5.12. Another term for handedness – more scientific-sounding, but
less used – is chirality.

Definition 5.8. A Euclidean transformation f of R3 is said to be orientation-
reversing if there exist four non-coplanar points P , Q, R and S in R3

such that one of the two ordered triples of vectors {PQ,PR, PS} and
{f(P )f(Q), f(P )f(R), f(P )f(S)} is right-handed, while the other is left-
handed.

A Euclidean transformation that is not orientation-reversing is said to
be orientation-preserving .

Orientation-preserving Euclidean transformations are called rigid trans-
formations. 243
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v

R
Sf(S)

(a) (b) (c)

u

w
v

O

O

u

w P Q

p

CCWCW

f(R)

f(Q) f(P)

Figure 5.31: (a) {u, v, w} is left-handed (b) {u, v, w} is right-handed (c) The reflection
f about the plane p is orientation-reversing, because the triple {PQ,PR, PS} is
right-handed, while the triple of images {f(P )f(Q), f(P )(R), f(P )(S)} is left-handed.

Remark 5.13. The property of the transformation f described in the
first paragraph of the definition does not depend on the choice of the
non-coplanar points: we’ll see that if it is true for some four non-
coplanar points P , Q, R and S in R3 that one of {PQ,PR, PS} and
{f(P )f(Q), f(P )f(R), f(P )f(S)} is right-handed, while the other left-
handed, then it is true for any four non-coplanar points.

Example 5.16. The reflection f of Figure 5.31(c) about the plane p is
an orientation-reversing Euclidean transformation.

Exercise 5.72. Scalings in general are not Euclidean transformations, but
with certain choices of scaling factors they are. List these choices and for
each say if the scaling preserves or reverses orientation.

Exercise 5.73. Show that the composition of two Euclidean transforma-
tions is Euclidean and that of two rigid transformations is rigid.

Exercise 5.74. Show that the composition of two orientation-reversing
Euclidean transformations is an orientation-preserving Euclidean trans-
formation (in other words, rigid). Show that the composition of an
orientation-preserving and an orientation-reversing Euclidean transformation
is orientation-reversing.

The following result gives a way to decide if an ordered triple of vectors
is right-handed or left-handed.

Lemma 5.2. Assuming that the coordinate axes themselves form a right-
handed system, then an ordered triple {u, v, w} of non-coplanar vectors, where
u = [ux uy uz]

T , v = [vx vy vz]
T and w = [wx wy wz]

T , is right-handed or
left-handed according as the determinant∣∣∣∣∣∣

ux vx wx
uy vy wy
uz vz wz

∣∣∣∣∣∣244
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is greater or less than zero (it cannot be zero as {u, v, w} is non-coplanar).

Proof. The proof is not difficult, but uses more linear algebra than we
would like to assume at this time, so we ask the reader to refer to a text
such as [8]. 2

The next exercise, analogue of the 2D Example 5.10, says that
Definition 5.8 about a Euclidean transformation reversing or preserving
orientation is independent of the choice of the four non-coplanar points P ,
Q, R and S.

Exercise 5.75. Suppose that an affine transformation f of R3 maps some
four non-coplanar points P , Q, R and S in R3 such that one of the two ordered
triples of vectors {PQ,PR, PS} and {f(P )f(Q), f(P )f(R), f(P )f(S)} is
right-handed, while the other is left-handed.

Show, then, that for any four non-coplanar points, P ′, Q′, R′ and
S′, one of the two ordered triples of vectors {P ′Q′, P ′R′, P ′S′} and
{f(P ′)f(Q′), f(P ′)f(R′), f(P ′)f(S′)} is right-handed, while the other is
left-handed.
Hint : Use the same approach as for Example 5.10. You will need as well to
apply the preceding lemma.

Next is the 3D analogue of the 2D Proposition 5.5.

Proposition 5.11. A translation or a rotation about an arbitrary axis is a
rigid transformation of 3-space. A reflection about an arbitrary mirror is an
orientation-reversing Euclidean transformation of 3-space.

Proof. The proof that a 3D translation t is distance-preserving is exactly
similar to the 2D version in the proof of Proposition 5.5. That t is
orientation-preserving is even simpler, because the two ordered triples of
vectors {PQ,PR, PS} and {t(P )t(Q), t(P )t(R), t(P )t(S)} are identical for
any four points P , Q, R and S in R3.

We’ll leave the reader to prove the claims for rotations and reflections. 2

The following is the 3D version of the 2D Proposition 5.6.

Proposition 5.12. A rigid transformation of R3 keeping the origin fixed is
a rotation about a radial axis, while an arbitrary rigid transformation of R3

is a composition of a rotation about a radial axis followed by a translation.
A Euclidean transformation of R3 is a composition of a rotation about a

radial axis followed by a translation, possibly followed again by a reflection.

Proof. The first statement of the proposition can be proved using linear
algebra, but more interesting is to apply elementary arguments along the lines
of Proposition 5.6. In fact, we ask the reader who doesn’t mind wallowing
in a bit of geometry to follow the approach suggested below to make a proof
herself. If you are not so inclined it won’t hurt to skip the proof altogether.
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Suggested approach: Show first that a rigid transformation f of 3-space
fixing the origin O is a rotation about a radial axis as follows:

If f is the identity, then it is trivially a rotation.
If f is not the identity, then suppose that P is a point such that f(P ) 6= P .

There are three possibilities:

(a) f(f(P )) 6= P .

Argue that the three points P , f(P ) and f(f(P )) cannot be collinear.
Therefore, they belong to a unique plane p. Show that the line l
through O perpendicular to p is the axis of f ; further, the angle of
rotation θ is the angle between the perpendiculars from P and f(P )
to l. See Figure 5.32(a).

θ

(a)

(b)

(c)

(d)

P

f(P)

f(f(P))

O

l

p

l
O

f(Q)

l´´

π

P = f(f(P))

l´

l´

l´

l
O

O

l
P = f(f(P))

P = f(f(P))

f(P)

Q = f(Q)

f(P) f(P)

Q = f(f(Q))

Figure 5.32: Finding the axis of a rigid transformation that fixes the origin.

(b) f(f(P )) = P and the line l′ joining P and f(P ) does not contain O.

Show in this case that the line l through O perpendicular to l′ is the
axis of f ; furthermore, the angle of rotation is π. See Figure 5.32(b).

(c) f(f(P )) = P and the line l′ joining P and f(P ) does contain O.

In this case, let Q be a point not lying on l′.

If f(Q) = Q, then show that the line l through O and Q is the axis of
f and the angle of rotation is π. See Figure 5.32(c).

If f(Q) 6= Q, then assume that f(f(Q)) = Q and that the line l′′ joining
Q and f(Q) contains O, for, if not, this case is equivalent to one of (a)
or (b). Then show that the line l through O perpendicular to both l
and l′ is the axis and the angle of rotation is π. See Figure 5.32(d).

The rest of the proposition follows easily from the first part. 2

Remark 5.14. The first part of Proposition 5.12, that a rigid transformation
of R3 which keeps the origin fixed is a rotation about a radial axis, is often
called Euler’s Theorem. It is actually one of several theorems, proved by246
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the great eighteenth century Swiss mathematician Leonhard Euler, bearing
his name.

Finally, here’s the 3D analogue of the 2D Proposition 5.7.

Proposition 5.13. Affine, Euclidean and rigid transformations of 3-space
are related by the following inclusions, which are each proper:

rigid transforms ⊂ Euclidean transforms ⊂ affine transforms

Proof. We leave this to the reader. 2

A proposition whose proof we kept putting off, because of its apparent
difficulty, is now all of a sudden simple to prove:

Proposition 5.14. The composition of two rotations about radial axes in
3-space is another such.

Proof. Let f1 and f2 be rotations about radial axes in 3-space. By
Proposition 5.11 they are rigid transformations and, moreover, both fix
the origin. By Exercise 5.73 the composition f1 ◦ f2 is rigid, and it obviously
fixes the origin because both f1 and f2 do so. Proposition 5.12 then completes
the proof. 2

Exercise 5.76. Consider reflections through points. For example, the
reflection through the origin corresponds to the transformation [x y z]T 7→
[−x − y − z]T . This transformation is clearly affine, in fact, linear. Is it
Euclidean? Rigid? How about reflections through arbitrary points?

Sketch how the boy of Figure 4.7 of the last chapter would be transformed
by reflection through the origin.

Proof of Proposition 5.10

This section is only for those with a good knowledge of linear algebra and
may be safely skipped by others with no consequences to their learning of
CG .

Lemma 5.3. A special orthogonal transformation of R3, i.e., one whose
matrix is orthogonal with determinant 1, is a rotation about a radial axis.

Proof. It’s easy to verify that a linear transformation f of R3 defined by an
orthogonal matrix of determinant 1 preserves both distance and orientation.
Therefore, it is rigid and the lemma follows from Proposition 5.12. 2

The author learned the proof of the following lemma from T. K. Mukherjee
[97].

Lemma 5.4. For any non-singular real n× n matrix M , there exist special
orthogonal matrices P and Q and a real diagonal matrix D with all non-zero
entries such that

M = PDQ 247
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Proof. Consider the product MMT . As it is symmetric, by a standard
result of linear algebra there exists a real orthogonal matrix P such that

P−1(MMT )P = D′

where D′ is a diagonal matrix.
Moreover, MMT is positive definite, which implies that D′ is as well.

Therefore, each element of the diagonal ofD′ is positive. Let D =
√
D′. In

particular, if D′ = [d′i], then D = [di], where di is the positive square root of
d′i.

Accordingly,
P−1MMTP = D2

It follows that

I = D−1 (P−1MMTP )D−1 = (D−1P−1M) (MTPD−1)

= (D−1P−1M) (D−1P−1M)T

as (D−1)T = D−1 and (P−1)T = P .
Writing

Q = D−1P−1M

we have from the above that QQT = I, so Q is orthogonal
Now

M = PDQ

and we can assume that both P and Q are, in fact, special orthogonal, for, if
either is not, then it can be multiplied by a diagonal matrix with determinant
−1, viz.

R =


−1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0

. . . . . . . . .
0 0 0 . . . 1


and, correspondingly, D multiplied by R−1 (=R). 2

The two lemmas combine to establish Proposition 5.10. 2

Remark 5.15. Proposition 5.10 and its 2D sibling Proposition 5.4 are both
deducible as cases of the Singular Value Decomposition Theorem. For an
account of this fundamental theorem of linear algebra see, for example,
Roman [119].

5.4.8 Shear

Thinking back to the analogy made in Section 5.3.3, imagine again placing
a lump of putty between your palms and then moving one palm parallel to
the other. In proper 3D there are three choices to make: (1) how to initially248
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align your palms in space with putty between them, (2) which direction to
move, say, the upper palm, but keeping it parallel to the fixed lower one
and, finally, (3) how far to move the upper palm. Accordingly, a 3D shear s
is uniquely determined by three parameters:

1. A plane p called the plane of shear .

2. A directed line l called the line of shear , which is parallel to p.

3. An angle α called the angle of shear .

The action of s is equivalent to that of “infinitely many” 2D shears applied
to parallel planes. Here’s how (see Figure 5.33)(a)):

Given a point P ∈ R3, let q be the unique plane containing P which is
both perpendicular to the plane p of shear s and parallel to the line l of
shear s. Therefore, q intersects p in a directed line, denote it l′, parallel to
l. P , then, is transformed by s to the point P ′ exactly as it would by the
particular 2D shear s′, on the plane q, specified by the directed line l′ and
the angle α.

p

P´
(x+

y t
an

 
, y

, z
)

l

P 
(x

, y
, z

)

(a) (b)

x

y

P

P´

l´
q

z

Figure 5.33: (a) A 2D slice of a 3D shear on the plane q and two more “copies” of q (b)
A shear along the xz-plane whose line is the x-axis.

In other words, imagine 3D space “sliced” into infinitely many parallel
planes, each perpendicular to p and parallel to l, and s as the “union of
identical 2D shears” on each of these slices (Figure 5.33)(a) depicts two more
slices parallel to q).

Example 5.17. Figure 5.33(b) depicts a 3D shear along the xz-plane
whose line is the x-axis and angle α, shearing a cube into a parallelepiped. As 249
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the “slices” are all parallel to the xy-plane and the line of the shear in each
parallel to the x-axis, one can straightforwardly apply the 2D Equation (5.22)
to write the equation of this shear as follows:

P ′ =


1 tanα 0 0
0 1 0 0
0 0 1 0
0 0 0 1

P
Exercise 5.77. Verify that the 4 × 4 matrix of a 3D shear along the
xz-plane, whose line is the z-axis and angle α, is:

1 0 0 0
0 1 0 0
0 tanα 1 0
0 0 0 1


Exercise 5.78. What is the 4 × 4 transformation matrix of a 3D shear
along the xy-plane, whose line is the x-axis and angle α?

Exercise 5.79. Prove that a shear along a radial plane is a non-singular
linear transformation of 3-space, while an arbitrary 3D shear is an affine
transformation. Conclude that any 3D shear is a composition of translations,
scalings and rotations about radial axes.

When implementing a shear s in OpenGL, it’s typically more efficient to
compute the matrix M of s and then use a glMultMatrix() call to directly
multiply the current modelview matrix by M , rather than expressing s as a
composition of modeling transformations.

Exercise 5.80. (Programming) From Example 5.11 it follows that the
3D shear s along the xz-plane, whose line is the x-axis and angle α = 45◦,
is the composition of a rotation of 31.72◦ about the z-axis, followed by
scaling by factors 0.62, 1.62 and 1.0 along the x-, y- and z-axes, respectively,
followed by a rotation of −58.28◦ about the z-axis (up to floating point
error).

Verify this by modifying manipulateModelviewMatrix.cpp to output
the current modelview matrix after applying the preceding modeling
transformations and separately computing the value of the shear matrix.

Figure 5.34: Screenshot
of shear.cpp.

Experiment 5.3. Run shear.cpp. Press the left and right arrow keys
to move the ball. The box begins to shear when struck by the ball. See
Figure 5.34.

The shear matrix is explicitly computed in the code and multiplied from
the right into the current modelview matrix via a glMultMatrix() call.

End250
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Exercise 5.81. (Programming) Recall the program ballAndTorus-

Shadowed.cpp from Experiment 4.35. Modify the shadow-drawing part of
the program to cast shadows by the sun at 45◦ in the sky. Figure 5.35
indicates that the transformation to be implemented in the xy-plane is

(x, y) 7→ (x+ y, 0)

sun ray

x

y

shadow
(x+y, 0)

point
(x, y)

45o

Figure 5.35: Shadow of a
point cast by the sun at
45◦ in the sky.

5.5 Summary, Notes and More Reading

In this chapter we opened up the graphics animation engine to find out
what makes it tick. The short answer is 4× 4 matrix multiplication and we
learned why.

Each modeling transformation corresponds to an affine transformation of
3-space, which is represented using homogeneous coordinates by a 4×4 matrix.
The composition of modeling transformations corresponds to multiplication
of their matrices. Viewing transformations, being compositions of modeling
transformations, each corresponds to a 4× 4 matrix as well. We learned the
particular matrix representations of basic geometric transformations such as
translation, scaling, rotation and reflection.

We learned as well that the modeling transformations of OpenGL –
translation, scaling and rotation – were chosen for good reasons by the
designers of the API. Not only are these transformations affine, but they
combine to generate all affine transformations.

We studied certain particularly useful subclasses of affine transformations.
One was that of shape-preserving transformations, the Euclidean transfor-
mations, which in turn include rigid transformations that model the motion
of rigid objects in space. Another special class of affine transformations
which we studied was that of the shears.

We learned to access and manipulate OpenGL’s modelview matrix stack
as well, allowing us to program transformations directly into the stack if need
be, rather than through calls to OpenGL’s own modeling transformations.

Till Chapter 4 we were primarily interested in using OpenGL. Now
we have an understanding of the working of this API as well. True,
familiarity, say, with the functioning of an internal combustion engine does
not necessarily make one a better driver; however, it certainly does help one
better understand technical issues, more confidently deal with them and,
generally, be a more informed consumer, which has its value.

One topic the knowledgeable reader might think missing from this chapter
on transformations is discussion of the so-called projection transformation
in the graphics pipeline – which is critical to the shoot part of the shoot-
and-print rendering paradigm from Chapter 2 – and how it is implemented
by means of mathematical projective transformations. However, we thought
it best to introduce the projection transformation as an application of
projective spaces and their transformations later in the book in Chapter 18. 251
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The reason is that the choice of the particular transformations applied in the
graphics pipeline is hard to motivate without an understanding of projective
spaces, and we were reluctant to pull it out of a hat.

For further reading about geometric transformations the reader is
recommended to see Mortenson [95] and Yaglom’s series [155, 156, 157].
Articles about transformations and their role in computer graphics, written
in recreational style and yet very informative, can be found in the books by
Blinn [17, 18] and Glassner [54, 55].
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Advanced Animation Techniques

T
he goal for this chapter is to learn techniques to cope with two
issues that arise often in animation projects. The first is managing
large worlds where the polygon count may painfully slow down

the rendering pipeline. The programmer can help ease the logjam by pre-
filtering objects lying outside the camera’s field of view. This process is
called frustum culling and we describe how to do it by means of space
partitioning in Section 6.1. The related process of occlusion culling, where
objects blocked from the camera’s view by other objects are filtered, is the
topic of Section 6.2. This section discusses, as well, occlusion queries and
conditional rendering.

The second issue is that of animating the orientation of an object. In
Chapter 4 we learned all about animating motion, coding balls and boxes
that flew, fell, spun and revolved around one another. But how about
animating orientation or pose? For example, an aircraft maneuvering in
a dogfight or a camera tracking a scene. Changing orientation involves
modeling transformations as well, particularly rotation, but first one must
develop a method to quantify orientation, just as (x, y, z) quantify position.
Only then comes the question of moving between two orientations.

In Section 6.3 we learn how to use Euler angles – which we first
encountered in Section 4.6.3 – to quantify orientation in 3D. Animating
between a pair of orientations given by their Euler angle tuples is possible
but, as we shall see, potentially problematic. A more sophisticated approach
is with the use of quaternions. This is the topic of Section 6.4, which begins
with an introduction to the mathematics of quaternions, and then goes on
to describe their application to representing and animating orientation.

There is a fair amount of theory in this chapter but it has important
practical applications and we back it all the way with code.

253
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6.1 Frustum Culling by Space Partitioning

Frustum culling is de rigueur for game programmers or, for that matter,
anyone creating scenes with large polygon counts. We’ll motivate the
proceedings by rerunning Experiment 4.32.

Experiment 6.1. First, run the program spaceTravel.cpp with its
current values of ROWS and COLUMNS, being the size of the asteroid grid,
as 8 and 5, respectively. Move the spacecraft with the arrow keys. Next,
increase both ROWS and COLUMNS to 100. Figure 6.1 is a screenshot. The
spacecraft now begins to respond sluggishly to the arrow keys, at least on a
typical desktop. You may have to pump up even more the values of ROWS
and COLUMNS if yours is exceptionally fast. End

Figure 6.1: Screenshot of spaceTravel.cpp with a 100× 100 array of asteroids.

Let’s first do a back-of-the-envelope calculation to understand what’s
happening. Assuming the viewable space of spaceTravel.cpp to be a box
of sides 250, significantly larger, in fact, than the viewing frustum defined
by the glFrustum(-5.0, 5.0, -5.0, 5.0, 5.0, 250.0) statement of the
program, and noting that asteroids are 30 units apart in both the x and z
directions, one deduces that at most 9*9=81 asteroids are viewable in either
viewport at any given time. That’s not a lot for OpenGL to draw. In fact,
set ROWS to 9 and COLUMNS to 9 to find no perceptible slow-down! So
what’s going on? Why the slow-down in simply creating a larger asteroid
field?

A moment’s consideration of the rendering pipeline reveals the answer.
At every redisplay, in other words, every arrow press, the ROWS × COLUMNS

number of asteroids in arrayAsteroids[ROWS][COLUMNS] are all – in fact,
their collective polygons are all – zapped first with the modelview matrix,
then with the projection matrix, and then those that fall outside the viewing
volume are clipped, and the rest projected to the viewing face and rendered.
Specifically, if ROWS and COLUMNS are both 100, then the polygons of all
10,000 asteroids, several hundred thousand in total, enter the rendering254
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pipeline before only those belonging to approximately 80 are drawn. That’s
more than 99% of the polygons, each incurring computational cost in the
pipeline, ultimately not being drawn. Talk about waste!

It’s not OpenGL’s fault though. OpenGL finds out which polygons
belong on-screen and off only after transforming and clipping, operations
well into the pipeline. However, the programmer can help by pre-identifying
as many objects as possible that do not intersect the viewing frustum, which
means that they will end up being clipped, and not letting them into the
pipeline in the first place. This is a process called frustum culling , which
consists, then, of adding to the program routines to check if a polygon (or
object) intersects the frustum and filtering through to the drawing routine
only those which do or, equivalently, culling those which do not.

6.1.1 Space Partitioning

The most straightforward way to frustum cull is to test each object
individually if it intersects the frustum. This may, in fact, give decent
speed-up if the objects are simple enough that the combined cost of testing
them all is still cheap.

However, frustum culling is typically more efficient if space is first
partitioned in a hierarchical manner into cells which each contain only
a few objects. Cost-effective partitioning must be driven by the distribution
of the objects – subdividing into smaller ones only cells containing many
objects. Once space is partitioned, frustum culling can be accomplished by
hierarchically checking cells to determine if they intersect the frustum and
passing to the drawing routine objects belonging only to those which do.
This approach is based on a few premises:

(a) That partitioning space and determining the distribution of the objects
in individual cells is primarily a one-time pre-processing cost, which is
true if most objects in the scene are static. The few moving objects,
in this case, can be passed mandatorily to the drawing routine.

(b) That the cells are of a shape easy to check for intersection with the
frustum.

(c) That the hierarchical nature of the partition leads to efficiency because,
if a cell is found not to intersect the frustum, then its sub-cells and
the objects which they contain can all be eliminated from further
consideration, a process called pruning .

(d) That the partitioning process is efficient in that, if a cell contains only
a few objects, then it is not subdivided, so that the final partition
reflects the distribution of the objects in space.

There’s more than one way to hierarchically partition space, but
intuitively simplest is the octree for 3-space and its analogue, the quadtree, for 255
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2-space. We’ll explain quadtree-based space partitioning using the scenario
of spaceTravel.cpp as a running example because we have, in fact, an
implementation in the program spaceTravelFrustumCulled.cpp.

6.1.2 Quadtrees

Note, first, that spaceTravel.cpp is essentially a 2D problem as the
spacecraft, asteroids and frustum can all be projected onto the xz-plane
and intersection testing done on that plane – note that the spacecraft has
no motion in the y-direction. Therefore, a quadtree is appropriate for
spaceTravel.cpp even though, nominally, the scene is 3D.

A quadtree partitions 2-space into axis-aligned squares, the collection
having the hierarchy of a tree. In frustum culling applications the root
node corresponds to a square large enough to contain all objects that might
potentially be culled.

Terminology : We’ll use the terms “node” and “square” interchangeably in
the context of quadtrees.

Figure 6.2(a) illustrates a hypothetical projected scenario of space-

Travel.cpp (an irregular distribution of asteroids is obtained by setting
FILL PROBABILITY to a value less than 100). The craft itself is ignored
because it moves; therefore, it’s always passed into the pipeline.

To begin with, the root square of the quadtree is chosen big enough
to bound the entire asteroid field – see the setting of the initialSize

variable of the setup() routine of spaceTravelFrustumCulled.cpp. (Note
that we’ll be running spaceTravelFrustumCulled.cpp soon enough, but,
for now, let’s see how the code is developed through incorporating frustum
culling into spaceTravel.cpp.)

Subsequently, at each level, each square may be subdivided into four equal
sub-squares (quadrants). The criterion to subdivide is generally determined
by the programmer. In the particular case of spaceTravelFrustumCulled.-
cpp we subdivide a square if it intersects more than one asteroid. If a
square is subdivided, then its four quadrants become its children in the tree
hierarchy and are denoted SW, NW, NE and SE according to their location
in the parent square. Given our condition for when to subdivide, evidently
leaf squares – which are not further subdivided – intersect either one asteroid
or none.

The squares of the quadtree corresponding to the arrangement of asteroids
in Figure 6.2(a) are shown in Figure 6.2(b) and the underlying tree structure
in Figure 6.2(c).

Once the quadtree is built, culling is straightforward: check, starting at
the root, for squares that intersect the frustum; if a non-leaf square intersects
the frustum, then recursively process its children; if a leaf square intersects
the frustum, then pass its asteroid (if any) to the drawing routine.256
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(a)

(c)

(b)

NENW SESW

Root node

Root square

x

z

Figure 6.2: (a) Projection of the asteroids and the frustum of spaceTravel.cpp onto
the xz-plane. (b) Corresponding quadtree squares (the root square is bold) (c) The tree
structure with children at each node drawn SW, NW, NE, SE from left to right; the
nodes in the red circle are some of those pruned.

Let’s verify the premises (a)-(d) for space partitioning, mentioned earlier,
in the case of the spaceTravelFrustumCulled.cpp quadtree:

(a) The asteroids are all static while the spacecraft is the only object which
is not, so a one-time quadtree is built for the asteroids, while the craft
itself is always passed to the drawing routine.

In the second viewport the camera moves, which, as we know, is
implemented by actually transforming the scene. However, in order not
to have to update the quadtree structure, it’s preferable to imagine the
viewing frustum itself moving, attached to the front of the spacecraft,
as in Figure 6.3.

Craft

Frustum

Figure 6.3: Spacecraft
carrying a viewing frustum
“attached” to its front.(b) The cells are each a square, a shape easy to test for intersection with

the trapezoidal projection of a frustum.

(c) Several of the nodes, even in the simple example of Figure 6.2, are
pruned, e.g., the ones inside the red circle (and others). 257
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(d) It can be seen from Figure 6.2 that the spatial distribution of the
quadtree squares indeed tracks that of the asteroids.

Exercise 6.1. Indicate all the nodes of the tree of Figure 6.2 which are
pruned by the quadtree-based frustum culling.

6.1.3 Implementation

Experiment 6.2. Run spaceTravelFrustumCulled.cpp, which enhances
spaceTravel.cpp with optional quadtree-based frustum culling. Pressing
space toggles between frustum culling enabled and disabled. As before, the
arrow keys maneuver the craft.

The current size of the asteroid field is 100× 100. Dramatic isn’t it, the
speed-up from frustum culling?!

Note: Make sure the file intersectionDetectionRoutines.cpp is in the
same directory as spaceTravelFrustumCulled.cpp.

Note: When the number of asteroids is large, the display may take a while
to come up because of pre-processing to build the quadtree structure.

End

We have already described the development of spaceTravelFrustum-
Culled.cpp, which follows pretty much word for word the quadtree-based
strategy described at the start of the section. Here are specifics.

The quadtree asteroidsQuadtree is an object of the Quadtree class
containing nodes belonging to the QuadtreeNode class. The member function
numberAsteroidsIntersected() of the class QuadtreeNode helps decide
for each quadtree square if it is to be subdivided, while the member list
asteroidList stores for each leaf square the asteroid (if any) intersecting
it.

In addition to checkSpheresIntersection() from the original space-
Travel.cpp, used in asteroidCraftCollisiond() to detect (approxi-
mately) intersection between the spacecraft and an asteroid, routines from
the program intersectionDetectionRoutines.cpp are invoked for other
intersection tests. In particular, checkQuadrilateralsIntersection()

determines if the frustum in either viewport intersects a quadtree square,
while checkDiscRectangleIntersection() if an asteroid intersects a
quadtree square.

In Figure 6.2, asteroids lie either entirely inside or outside a square. This
need not be the case in general, of course, and in our code an asteroid
straddling the boundary of a quadtree square is associated with it.

With large numbers of asteroids, the speed-up through frustum-culling
is clearly enormous. Even so, our implementation spaceTravelFrustum-

Culled.cpp is minimal and there are further optimizations to be made. We
ask the reader to explore a couple next.258
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Exercise 6.2. (Programming) A large quadtree costs both in RAM
space and pre-processing time. Try the following two options in space-

TravelFrustumCulled.cpp to control its size:

(a) The size of the quadtree tends to grow exponentially with its height.
Accordingly, set a cut-off depth beyond which nodes cannot be
partitioned.

(b) The criterion for subdividing a square, currently if it intersects more
than one asteroid, can be made stricter by setting a larger threshold for
the number to be intersected, again reducing the size of the quadtree.

6.1.4 More about Space Partitioning

Figure 6.4: An octree
cube and one of its 8
octants.

Octrees are a straightforward generalization of quadtrees to 3-space – space
is partitioned into a tree-like hierarchy of axis-aligned cubes. Each cube in
an octree can be partitioned into 8 child octants (see Figure 6.4).

Quadtrees and octrees are not the only ways to partition space. There
are more sophisticated data structures such as kd-trees, range trees and BSP
(Binary Space Partitioning) trees, which can be applied in two and higher
dimensions.

Moreover, applications of space partitioning are not limited to frustum
culling either. Another important one is collision detection. The principle is
that two objects can intersect only if they belong to the same or adjacent
cells; accordingly, one can pre-process and pass only “nearby” pairs to the,
typically, costly intersection-checking routines.

Dynamic scenes with multiple mobile objects are a challenge for any
space partitioning application. Options include predictively locating moving
objects in cells if there is prior knowledge of their trajectories, followed,
possibly, by a repartitioning of space or a redistribution of objects to cells.

Bottom line: There is overhead both in code and pre-processing in setting
up a space-partitioning structure, but if the application is appropriate, e.g.,
frustum culling a fairly static scene, the bang for the buck is enormous.

Exercise 6.3. (Programming) Currently, spaceTravelFrustumCulled-
.cpp checks for intersection between the spacecraft and every asteroid. Use
the quadtree to improve on this. In particular, check only for collision
between the craft and each asteroid associated with a leaf square that the
craft intersects.

Exercise 6.4. (Programming) Design a busy scene, maybe part of a
game, and draw it using frustum culling.

6.2 Occlusion Culling

Often, a programmer’s global view of a scene allows her to conclude for a
given position of the camera that certain objects are blocked from view and, 259
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therefore, need not be sent into the rendering pipeline. For example, in the
scene of Figure 6.5 of two rooms opening to a hall, if the camera is inside one
room, then objects in the other are always occluded by the wall in between.

R
oom

1
R

oom
2

Obj1

Obj5Obj3

H
al

l

Obj4

Obj2 A

Figure 6.5: Two rooms
off a hall. A dashed
bounding box is shown
containing the first object.

Therefore, part of the drawing routine could be as the pseudo-code below:

if (camera is in Room1)

{
draw Obj1;

draw Obj2;

}
if (camera is in Room2)

{
draw Obj3;

draw Obj4;

draw Obj5;

}

This technique of occlusion culling can improve immensely efficiency of
rendering, as can be imagined if, say, the objects in Figure 6.5 are complex.
In this example, occlusion culling is coded in by the programmer herself from
a fairly coarse global understanding of the scene. Evidently, she could dig
even deeper and implement more refined tests, e.g., one which determines that
a camera at location A will find Obj1 occluded, applying, possibly, geometric
intersection tests of the kind used in spaceTravelFrustumCulled.cpp.

OpenGL itself provides a powerful device to help with occlusion culling:
one can set up a so-called occlusion query to determine if an object is visible
after depth testing. Before we get to an actual example, here’s the general
idea. In a situation as depicted in Figure 6.5, the camera being at A, before
attempting to render (the complex) Obj1, one could query if its bounding
box, the (much simpler) dashed rectangles, is visible. If the box is visible,
then render Obj1; if not, don’t. Hopefully, in more configurations than not,
the investment in querying occlusion for a simple object is more than offset
by being able, subsequently, to toss a complex object from the pipeline.
Let’s get to code.

Figure 6.6: Screenshot of
occlusion.cpp.

Experiment 6.3. Run occlusion.cpp, which initially shows only a green
rectangle. Use the arrow keys to move a solid red cube into view from behind
the rectangle (see Figure 6.6). Press the space bar, which is a toggle, to
reveal a red wire sphere contained in the box. The sphere is our “complex”
object, while the cube, of course, is its bounding box. We’ll analyze this
program next. End

The call glGenQueries(1, &query) in the setup routine generates a
query object, storing its id in the variable query.

The drawing routine begins with a piece of code to draw the obscuring
green rectangle. Next comes the block to draw the bounding box enclosed
in a query:260
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glBeginQuery(GL_SAMPLES_PASSED, query);

if (!boxVisible)

{
glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);

glDepthMask(GL_FALSE);

}
glutSolidCube(1.0);

if (!boxVisible)

{
glDepthMask(GL_TRUE);

glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);

}
glEndQuery(GL_SAMPLES_PASSED);

The command glBeginQuery(GL SAMPLES PASSED, query) in the block
above tells OpenGL to start counting samples – as we’re not multisampling, a
sample is simply a fragment – which pass the depth test. The complementary
call glEndQuery(GL SAMPLES PASSED) stops the counting. For now, ignore
the four masking statements.

Next,

while (!resultAvailable) glGetQueryObjectuiv(query,

GL_QUERY_RESULT_AVAILABLE, &resultAvailable);

places a Boolean in resultAvailable saying if the query had indeed
completed counting. For, observe that, especially if multiple queries are
being run, it is quite possible that all the drawing commands before a
glEndQuery() had not completed before the fragment total was retrieved
into result, in which case the latter value may not be accurate. So, the
while loop spins until the query has, in fact, completed.

The next statement in the drawing routine

glGetQueryObjectuiv(query, GL_QUERY_RESULT, &result);

retrieves the total number of fragments counted by the query and places it
in result. Obviously, if this number is more than zero, then the box, the
only object for which depth-test passed fragments were counted, is visible.
The following statement

if (result) glutWireSphere(0.5, 16, 10);

draws the sphere only if the box is visible.
Messages at the top left of the display indicate the current values of

result (the box being visible if it’s more than zero) and resultAvailable.
Finally, we deal with the technical issue that, while we dropped the

bounding box into the pipeline in order to query it, we may not want to
see it actually displayed in a real scene. This is where the four masking
statements, conditional on making the box invisible, in the glBeginQuery()-
glEndQuery() block above, come into play. 261
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First, we disable writes to the color buffer prior to rendering the box
so that indeed it cannot display. Moreover, we obviously want the box to
compete in depth tests with the green rectangle in order to resolve our
query; however, we do not want it to update the depth buffer (when it wins)
because, at time of drawing the actual scene, the sphere should compete
only with the green rectangle, certainly not its own bounding box. For this
reason, we further emasculate the box by setting the depth mask so that it
cannot write the depth buffer. The masks are obviously reset once the box
is drawn.

Is the program really doing what it’s supposed to when the box is behind
the green rectangle, which is suppress rendering of the sphere? A neat way
to check this is to make the box smaller by replacing glutSolidCube(1.0)
with glutSolidCube(0.5). Of course, the box no longer bounds the sphere,
but moving it around we can see now that the sphere indeed disappears as
soon as the box does.

Conditional Rendering

OpenGL versions 3.0 and on support conditional rendering which makes for
even more efficient handling of the query outcome. Conditional rendering
allows the programmer to specify that the results of a particular block of
rendering statements are to be discarded if the query result is zero. This
obviates the need for explicit glGetQueryObject* calls on the programmer’s
part to fetch its result or determine if a query had completed. Code then is
simpler, and, more importantly, the query outcome can be handledentirely
within the GPU – e.g., without having to ship values of variables like result

or resultAvailable in occlusion.cpp back to the application for further
instruction.

The following reworking of occlusion.cpp invokes conditional rendering,
but, otherwise, is functionally equivalent to the original.

Experiment 6.4. Run occlusionConditionalRendering.cpp. The
major change from occlusion.cpp is in the following code block in the
drawing routine, where the rendering of the sphere is made conditional upon
the outcome of the query with id query. The parameter GL QUERY WAIT

says to wait for the query to complete.

glBeginConditionalRender(query, GL QUERY WAIT);

glutWireSphere(0.5, 16, 10);

glEndConditionalRender();

Since OpenGL knows itself what not to render if the query outcome is zero,
there is no need for user-instigated determination of results, so the variables
result and resultAvailable are now gone. End

Exercise 6.5. (Programming) If you move the box in occlusion.cpp

out of the display, i.e., out of the viewing frustum, then the occlusion query262
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indicates it to be invisible – of course, because no fragment even made it
to the depth test, let alone past. So, it seems occlusion queries might be
applied to frustum culling as well.

Rewrite spaceTravelFrustumCulled.cpp to apply occlusion queries
instead of a quadtree. Is the new program faster?

6.3 Animating Orientation Using Euler
Angles

The lead-in to this section is the discussion of viewing transformations in
Section 4.6, particularly orientation and Euler angles in 4.6.3, so you might
want to review this earlier material.

6.3.1 Euler Angles and the Orientation of a Rigid
Body

Consider this for a second: it’s no different to locate and orient a camera in
3-space than it is to locate and orient an aircraft, spacecraft or any other
freely-movable rigid object. The gluLookAt() command simply happens
to provide intuitive syntax to use, in particular, with a camera, namely,
translate to (eyex , eyey , eyez ), point at (centerx , centery , centerz ) and turn
about the line of sight according to the ( upx , upy , upz ) value. As you can
see from Figure 6.7, the captain of a spacecraft could use similar syntax to
steer her ship.

Figure 6.7: Video camera and spacecraft.

Accordingly, replace the camera with an arbitrary rigid object B. Assume
that the location of B is fixed or, more precisely, that the location of a point
P belonging to B is fixed, say, at the origin – see Figure 6.8(a), where the
point P at the end of the long leg of an L-shaped object B is fixed at the
origin.

Now we are exactly at the point in Section 4.6.3 that we considered a
gluLookAt() command with zero translational component, i.e., (eyex , eyey , 263
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eyez ) = (0, 0, 0). From discussions in that section, the orientation of B is
specified by Euler angles α, β and γ such that it can be obtained from a
fixed reference orientation – in the case of the OpenGL camera this is its
default pose – by applying the following rotation sequence:

glRotatef(α, 1.0, 0.0, 0.0);
glRotatef(β, 0.0, 1.0, 0.0);
glRotatef(γ, 0.0, 0.0, 1.0);

Of the two orientations shown of B in Figure 6.8(a), the reference one is
bold.

B

P

yaw

pitch

roll

x

y

z

α

(a) (b)

β

γ

Figure 6.8: (a) Orienting an object in space with respect to fixed axes – the fixed
reference orientation of the L is shown in bold (b) Orientation of an aircraft with respect
to local axes “carried” by it.

Remark 6.1. The yaw, pitch and roll of an aircraft to which pilots refer are
nothing but Euler angles, the difference being that the axis system is carried
by the aircraft itself (e.g., the roll axis is the line through the middle of the
craft from tail to nose). See Figure 6.8(b).

6.3.2 Animating Orientation

It seems, then, that animating orientation is a matter simply of changing
Euler angles. This is true.

Figure 6.9: Screenshot of
eulerAngles.cpp.

Experiment 6.5. Run eulerAngles.cpp, which shows an L, similar to
the one in Figure 6.8(a), whose orientation can be interactively changed.

The original orientation of the L has its long leg lying along the z-axis
and its short leg pointing up parallel to the y-axis. Pressing ‘x/X’, ‘y/Y’ and
‘z/Z’ changes the L’s Euler angles and delete resets. The Euler angle values
are displayed on-screen. Figure 6.9 is a screenshot of the initial configuration.

End

Remark 6.2. If the commands264



i
i

i
i

i
i

i
i

Section 6.3

Animating

Orientation Using

Euler Angles

glRotatef(Xangle, 1.0, 0.0, 0.0);

glRotatef(Yangle, 0.0, 1.0, 0.0);

glRotatef(Zangle, 0.0, 0.0, 1.0);

in eulerAngles.cpp to change the Euler angles look familiar, well, we’ve
been using similar ones since the second chapter to rotate scenes.

It all seems easy enough so far. However, things can get rather strange
with Euler angles. Run eulerAngles.cpp, or use paper and pencil, to
determine the two orientations of the L specified by the following distinct
tuples of Euler angles (all angles are in degrees in this section):

(a) α = 0, β = 90, γ = 0

(b) α = −90, β = 90, γ = 90

start orientation
(0, 0, 0)

destination orientation
(0, 90, 0) or (−90, 90, 90)

x

z

y

Figure 6.10: The bold blue start orientation is given by the Euler angle tuple (0, 0, 0)
and the bold blue destination one by either (0, 90, 0) or (−90, 90, 90). Intermediate
orientations (green) in the linear interpolation between (0, 0, 0) and (0, 90, 0) all lie on the
xz-plane, while those (red) between (0, 0, 0) and (−90, 90, 90) arc above it.

The two orientations are identical, both equal to the destination
orientation of Figure 6.10, with the L’s long leg along the x-axis and short
leg pointing up parallel to the y-axis. Imagine now that the L is a spacecraft
you want to take from its start orientation specified by the Euler angle tuple
(0, 0, 0) to the destination one specified by either of the tuples (a) or (b).

What comes to mind naturally is a linear interpolation between the start
and destination orientations, exactly as if one had to translate the spacecraft
from a start to a destination location , except that, instead of intermediate
positions, one has now intermediate orientations. However, the ambiguity in
representing the destination leads to a surprise we see next.

6.3.3 Problems with Euler Angles: Gimbal Lock and
Ambiguity

Experiment 6.6. Run interpolateEulerAngles.cpp, which is based on
eulerAngles.cpp. It simultaneously interpolates between the tuples (0, 0, 0) 265
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and (0, 90, 0) and between (0, 0, 0) and (−90, 90, 90). Press the left and right
arrow keys to step through the interpolations (delete resets). For the first
interpolation (green L) the successive tuples are (0, angle, 0) and for the
second (red L) they are (−angle, angle, angle), angle changing by 5 at each
step in both.

The paths are different! The green L seems to follow the intuitively
straighter path by keeping its long leg always on the xz-plane as it rotates
about the y-axis, while the red L arcs above the xz-plane, as diagrammed in
Figure 6.10. Figure 6.11 is a screenshot of interpolateEulerAngles.cpp
part way through the interpolation. End

Figure 6.11: Screenshot
of interpolateEuler-
Angles.cpp.

Two different paths arise in the program, of course, because of the non-
unique representation of the destination orientation by Euler angles. Are
(0, 90, 0) and (−90, 90, 90) the only tuples of Euler angles that represent this
particular destination? Emphatically no, as we see next!

Use eulerAngles.cpp to see that any tuple of the form (−A, 90, A)
does as well: the −A rotation about the x-axis seems always to cancel
the A rotation about the z-axis to make an equivalence to (0, 90, 0)!
It’s not hard to understand why. The first rotation that is applied, viz.
glRotatef(A, 0.0, 0.0, 1.0), twists the L about its long leg lying along the
z-axis, the second glRotatef(90, 0.0, 1.0, 0.0) rotates the long leg to line it
up with x-axis, so that the final glRotatef(−A, 1.0, 0.0, 0.0) again twists
the L about its long leg, but equally and oppositely to the first rotation.

We’ve run into the problem of gimbal lock which afflicts the Euler angle
representation of orientation. Let’s get a better understanding of this
phenomenon.

Experiment 6.7. Run eulerAngles.cpp again.
Press ‘x’ and ‘X’ a few times each – the L turns longitudinally. Reset by

pressing delete. Press ‘y’ and ‘Y’ a few times each – the L turns latitudinally.
Reset. Press ‘z’ and ‘Z’ a few times each – the L twists. There appear to
be three physical degrees of freedom of the L derived from rotation about
the three coordinate axes which we might descriptively term, respectively,
longitudinal, latitudinal and “twisting”.

Now, from the initial configuration of eulerAngles.cpp press ‘y’ till
β = 90. Next, press ‘z’ or ‘Z’ – the L twists. Then press ‘x’ or ‘X’ – the L
still twists! End

Even with β fixed in eulerAngles.cpp one would expect two degrees of
freedom to remain, viz. twisting and longitudinal. However, because of the
particular value of β, namely, 90, which takes the L from the z-axis to the
x-axis, we seem to have lost the longitudinal one.

Well, physical space hasn’t changed and all three degrees of freedom are
obviously still there for the taking. It’s simply because of the particular
value of β that the other two Euler angles α and γ both “act on the same
degree of freedom”, disallowing access to the remaining one.266
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This apparent loss of a degree of freedom is precisely gimbal lock, and
it’s the reason as well for the multiple representations of the destination
orientation of the L in interpolateEulerAngles.cpp: rotations about the
x- and z-axes both acting on the same degree of freedom whenβ = 90, one
can be used to cancel the other.

Exercise 6.6. Show that gimbal lock also arises when β = −90.

Even though infinitely many different representations of an orientation
occur only at the two gimbal lock values of β = ±90, there’s actually
instability near these values as well. In fact, two paths beginning and ending
at nearby orientations which happen to be close to gimbal lock values can
differ widely.

Exercise 6.7. (Programming) Verify the preceding remark by modify-
ing interpolateEulerAngles.cpp to simultaneously interpolate between
the Euler angle tuples (0, 0, 0) and (5, 95, 0) and the tuples (0, 0, 0) and
(−95, 85, 95).

Moreover, there’s another pesky problem with Euler angles: that of
non-unique, in fact, dual representation of every orientation. To begin with,
mentally visualize, or run eulerAngles.cpp, to see that the Euler angle
tuple (180, 180, 180) is equivalent to the Euler angle tuple (0, 0, 0), both
representing the initial orientation of the L.

This generalizes:

Proposition 6.1. The Euler angle tuples (α, β, γ) and (α + 180, −β +
180, γ+ 180) are equivalent in that they both represent the same orientation.
(Note the minus sign in front of the β in the second tuple.)

Proof. We’ll not prove this formally, but ask the reader to “visually” verify
it in the next exercise. 2

Exercise 6.8. (Programming) Verify the claim of the proposition by
comparing the orientation of the L of eulerAngles.cpp, as specified by
the Euler angle tuples (α, β, γ) and (α+ 180,−β + 180, γ + 180), for a few
different values of α, β and γ.

Note: If you happen to go outside the range of −180◦ to 180◦ with α or β
or γ, then you can get back in again by adding or subtracting 360◦.

Of course, an Euler angle tuple (α, β, γ) is always equivalent to the Euler
angle tuple (α±360, β±360, γ±360) for any choice of the pluses and minuses,
simply because angular arithmetic is modulo 360. However, the equivalence
of the Euler angle tuples (α, β, γ) and (α+ 180,−β + 180, γ + 180) is not a
consequence of angular arithmetic, but a true geometric duality intrinsic to
Euler angles. 267
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Exercise 6.9. (Programming) Modify interpolateEulerAngles.cpp

to simultaneously interpolate between the initial orientation (0, 90, 0) and
the destination orientation represented dually by the distinct Euler angle
tuples (0, 0, 0) and (180, 180, 180).

Again, the two paths are different.

All this is not the best news if one is in the business of animating
the orientation of a camera or rigid body, as one then wants to be
able to unambiguously choose representations of the start and destination
orientations in order to interpolate between the two. It turns out that there
is, in fact, a more efficient representation by means of mathematical thingies
called quaternions, in which case there’s never gimbal lock and, though
there’s still an issue with ambiguous representation, it’s one that can be
elegantly resolved prior to interpolation. Quaternions and their application
to orientation are the topic of the next section.

6.4 Quaternions

We are going to continue our discussion of animating orientation from the
previous section. However, we’ll now invoke quaternions for this particular
application.

The air of mathematical mystique surrounding them has caused a fair
bit of (mis)apprehension of quaternions among game programmers, which
is particularly unfortunate as it is interactive applications like games that
stand to benefit most from their use. Hopefully, this section will convince at
least the reader that not only are quaternions fairly benign – about as hard
as complex numbers as a matter of fact – they are not hard to apply either.

6.4.1 Quaternion Math 101

Quaternions were invented by the Irish mathematician William Hamilton
in the mid-1900s as part of his investigation into 3D mechanics. Think of
them as complex numbers on steroids. Whereas complex numbers extend
the reals with one imaginary i, a square root of −1, quaternions add three
such numbers i, j and k, all square roots of −1. Formally:

Definition 6.1. A quaternion q is a number of the form

q = w + xi+ yj + zk

where w, x, y and z are real numbers
It’s often written as q = w + v, where w is the real or scalar part, while

v = xi + yj + zk is the vector or pure quaternion part. A quaternion of
the form q = xi + yj + zk, with a zero scalar part, is also called a pure
quaternion.268
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Terminology : In this section vector parts will be denoted in bold to
distinguish them from the scalar (except for i, j and k themselves, as
there’s little risk of ambiguity with the three).

The set of quaternions is commonly denoted H in honor of its inventor.

The real numbers are a subset of the quaternions, the real w being
identified with the quaternion w (= w + 0i + 0j + 0k) with a zero vector
part.

Example 6.1. Some quaternions:

2− 3.4i+ 4.8j + 2k, − i+
√

2k, 10.9, − 6.3j, 0

Quaternions are added component-wise, just as complex numbers:

Definition 6.2. The sum of two quaternions q1 = w1 + x1i+ y1j + z1k and
q2 = w2 + x2i+ y2j + z2k is the quaternion

q1 + q2 = (w1 + w2) + (x1 + x2)i+ (y1 + y2)j + (z1 + z2)k

Exercise 6.10. Add the quaternions

(a) 2− 3.4i+ 4.8j + 2k and −6.3j

(b) −i+ 1√
2
k and 1√

2
k

The “square root of −1” property kicks in when multiplying quaternions.
Here are the rules to keep in mind:

i2 = j2 = k2 = −1

ij = k ji = −k

jk = i kj = −i

ki = j ik = −j

They’re not hard to remember. The square of i, j and k each is −1. For the
rest, simply keep in mind the cyclic order i → j → k → i. If two successive
elements in this order are multiplied, the result is the next element; if two
successive elements are multiplied in reverse order, the result is the negative
of the next element. This second rule is a replica of that of taking the
cross-product of two different ones from the three unit vectors i, j and k
(see Remark 5.8).

When multiplying two quaternions, it’s a matter of applying distributivity
and the preceding rules. Here’s an example: 269
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Example 6.2.

(2− 3i+ 2j)(3 + i− k) = 2(3 + i− k)− 3i(3 + i− k) + 2j(3 + i− k)

= 2 ∗ 3 + 2 ∗ i + 2 ∗ −k − 3i ∗ 3 − 3i ∗ i
−3i ∗ −k + 2j ∗ 3 + 2j ∗ i + 2j ∗ −k

= 6 + 2i− 2k − 9i+ 3− 3j + 6j − 2k − 2i

= 9− 9i+ 3j − 4k

Exercise 6.11. Multiply

(4 + 2i+ 2j − k)(1− k)

Exercise 6.12. Prove the following:

(a) The addition of quaternions is commutative and associative. In
particular,

q1 + q2 = q2 + q1 and (q1 + q2) + q3 = q1 + (q2 + q3)

for any three quaternions q1, q2 and q3.

(b) The formula for the product of two quaternions q1 = w1+x1i+y1j+z1k
and q2 = w2 + x2i+ y2j + z2k is

q1q2 = (w1w2 − x1x2 − y1y2 − z1z2) + (w1x2 + x1w2 + y1z2 − z1y2) i

(w1y2 + y1w2 − x1z2 + z1x2)j+(w1z2 + z1w2 + x1y2 − y1x2)k

(6.1)

(c) The multiplication of quaternions is associative and, moreover,
distributes both ways over addition. In particular,

(q1q2)q3 = q1(q2q3), q1(q2+q3) = q1q2+q1q3, (q2+q3)q1 = q2q1+q3q1

for any three quaternions q1, q2 and q3. Alert : Not hard, but tedious!

(d) The multiplication of quaternions is not commutative. In particular, it
need not be true that q1q2 = q2q1 for two quaternions q1 and q2. Give
an example.

(e) The additive identity is 0 and the multiplicative identity 1. In
particular,

q + 0 = 0 + q = q = q1 = 1q

for any quaternion q.

There is a useful shorter expression for the product of two quaternions
in terms of vector operations:270
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Exercise 6.13. Prove that if q1 = w1 + v1 and q2 = w2 + v2, then

q1q2 = w1w2 − v1 · v2 + w1v2 + w2v1 + v1 × v2 (6.2)

where · and × represent the vector dot and cross-product, respectively.

Note: Here we treat the pure quaternion (vector) part v = xi+ yj + zk of
the quaternion q + v as the geometric vector xi + yj + zk.

Similar to complex numbers, quaternions each have a magnitude and a
conjugate.

Definition 6.3. The magnitude of the quaternion q = w + xi + yj + zk,
denoted |q|, is the non-negative value of the square root√

w2 + x2 + y2 + z2

Therefore, if we write q = w + v, then its magnitude |q| =
√
w2 + |v|2,

where |v| denotes as usual the magnitude of the vector v. A unit quaternion
is one with magnitude 1.

Definition 6.4. The conjugate of the quaternion q = w + xi+ yj + zk is
the quaternion

q = w − xi− yj − zk

In other words, if q = w + v then its conjugate q = w − v.

And, as with complex numbers, a quaternion and its conjugate and
magnitude are related:

Exercise 6.14. Prove that qq = qq = |q|2.

Definition 6.5. The inverse of a quaternion q, if it exists, is the quaternion
q−1 such that

qq−1 = q−1q = 1

Exercise 6.15. Use Exercise 6.14 to prove that a quaternion q has an
inverse if and only if it is non-zero, in which case

q−1 =
q

|q|2

Therefore, q−1 = q for a unit quaternion q.

Example 6.3. Determine the inverse of the quaternion q = 1 + i+ j + k.

Answer :

q−1 =
q

|q|2
=

1− i− j − k
12 + 12 + 12 + 12

=
1

4
(1− i− j − k)

271



i
i

i
i

i
i

i
i

Chapter 6

Advanced Animation

Techniques

Exercise 6.16. Determine the inverses of the quaternions

(a) j

(b)
√

3i+
√

2k

(c) −1 + i+ 2j − k

Exercise 6.17. Prove the following if q1 and q2 are quaternions and c a
scalar:

(a) (q1q2) = q2 q1

(b) (cq1)−1 = c−1q−11 , provided both c and q1 are non-zero.

(c) (q1q2)−1 = q−12 q−11 , provided both q1 and q2 are non-zero.

(d) |q1q2| = |q1||q2|

6.4.2 Quaternions and Orientation

So what do quaternions have to do with orienting a rigid body? The answer
comes by way of the rotation transformation. Recall from the last section
that the orientation of a rigid object B is specified by Euler angles α, β and
γ, so that the specified orientation can be obtained from a fixed reference
orientation by applying the following sequence of rotations:

glRotatef(α, 1.0, 0.0, 0.0);
glRotatef(β, 0.0, 1.0, 0.0);
glRotatef(γ, 0.0, 0.0, 1.0);

Now, we know from Proposition 5.14 that the composition of rotations about
radial axes is another such. Therefore, the three above can be combined
into a single rotation

glRotatef(θ, x, y, z)

for some angle θ and some values of x, y and z.
It follows that, instead of Euler angles, one can represent an orientation

in 3D by means of a single 3D rotation about a radial axis. Moreover, it
turns out that each quaternion, as we shall see, represents a 3D rotation
about a radial axis. The conclusion, then, is that each quaternion represents
a 3D orientation. The next proposition says how a quaternion determines a
3D rotation.

Note: In what follows we’ll often identify the quaternions i, j and k with
their vector counterparts i, j and k, respectively. It should be clear from
the context whether we mean a quaternion or vector.272
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P

X = xi + yj + zk

u = ai + bj + ck

z

O

y

x

θ

f(X)

l

Figure 6.12: The vector f(X) is obtained by rotating X about the line l.

Proposition 6.2. Suppose the axis of a 3D rotation is specified by the
directed line l through the origin O toward a point P = [a b c]T . Assume that
|P | = 1. Denote the unit vector OP = ai + bj + ck by u. (See Figure 6.12.)

If X = xi+ yj + zk is an arbitrary vector in R3 then the image, call it
f(X), of X by a rotation of angle θ about l, is given by

f(X) = qX q−1 (6.3)

where q is the unit quaternion

q = cos
θ

2
+ u sin

θ

2
(6.4)

Let’s put the proposition into context first. It gives one more way to
determine the image f(X) of a vector X by rotation of an angle θ about a
radial axis l. The first, which we derived in Section 5.4.3, expressed f(X)
as the matrix product Ra, b, c(θ) X, where Ra, b, c(θ) was, in fact, given in a
couple of different ways by the equations (5.35) and (5.45). Now, instead of
a matrix, we manufacture a unit quaternion q such that the rotated vector
f(X) is qX q−1 (this operation of pre-multiplying by an element and then
post-multiplying by its inverse is called an inner automorphism by that
element).

The proof itself is a straight slog.

Proof. As q is a unit quaternion, its inverse is

q−1 = q = cos
θ

2
− u sin

θ

2
273
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Repeatedly applying the multiplication formula (6.2) we get the following
equations:

qX q−1

= ( cos
θ

2
+ u sin

θ

2
) X ( cos

θ

2
− u sin

θ

2
)

= (−(u ·X) sin
θ

2
+ X cos

θ

2
+ (u×X) sin

θ

2
) ( cos

θ

2
− u sin

θ

2
)

= −(u ·X) sin
θ

2
cos

θ

2
+ (u ·X) sin

θ

2
cos

θ

2
+ (u×X) · u sin2 θ

2

+ (u ·X) u sin2 θ

2
+ X cos2

θ

2
+ (u×X) sin

θ

2
cos

θ

2

+ (u×X) sin
θ

2
cos

θ

2
− ((u×X)× u) sin2 θ

2

Of the eight terms in the final expression, the first two cancel, while the
third is 0 because u×X is perpendicular to u. Let X = X1 + X2, where X1

and X2 are the components of X parallel and perpendicular, respectively,
to u. Use the facts that X1 = (u ·X) u and X2 = X−X1 = (u×X)× u,
which we know from Exercises 4.41 and 5.59, respectively, to further simplify
the final expression:

qX q−1 = X1 sin2 θ

2
+ X cos2

θ

2
+ (u×X) sin

θ

2
cos

θ

2

+ (u×X) sin
θ

2
cos

θ

2
− (X−X1) sin2 θ

2

= X(cos2
θ

2
− sin2 θ

2
) + 2X1 sin2 θ

2
+ 2(u×X) sin

θ

2
cos

θ

2
= X cos θ + X1(1− cos θ) + (u×X) sin θ (6.5)

Comparing (6.5) with the formula (5.43) derived for f(X) in Section 5.4.3
completes the proof. 2

So, indeed, we have the correspondence:

orientation→ radial rotation→ quaternion

Example 6.4. Let’s verify the preceding proposition in the case of rotating
the vector i by an angle of π/2 about the axis k.

It’s easily checked by hand that this particular rotation takes i to j.

Next, to use the proposition, write first u = k, X = i and θ = π/2. Then
the quaternion

q = cos
θ

2
+ u sin

θ

2
=

1√
2

+
1√
2
k

Therefore, by the proposition the image of i by the rotation of π/2 about274
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axis k is

qX q−1 = (
1√
2

+
1√
2
k) i (

1√
2
− 1√

2
k)

= (
1√
2
i+

1√
2
j) (

1√
2
− 1√

2
k)

=
1

2
i+

1

2
j +

1

2
j − 1

2
i

= j

which, indeed, matches what we checked.

Exercise 6.18. Verify the proposition in the case of rotating the vector
i+ k by an angle of π about j.

Proposition 6.2 says that every radial rotation corresponds to a unit
quaternion. How about the other way around: does every unit quaternion
correspond to a radial rotation in the sense that it gives that rotation by an
inner automorphism? The answer is yes:

Proposition 6.3. Let q = w+xi+ yj+ zk be a unit quaternion. If q = ±1,
then X 7→ qX q−1 is the identity transformation, i.e., a zero rotation about
an arbitrary axis. If q 6= ±1, then there exists a unique pair (u, θ), such that
u is a unit vector and θ ∈ (0, 2π), and such that

q = cos
θ

2
+ u sin

θ

2
,

which implies that X 7→ qX q−1 is a rotation by angle θ about the radial
axis directed along u.

Proof. If q = 1 or q = −1 then it’s obvious that X 7→ qX q−1 is the identity
transformation.

Suppose, then, that q 6= ±1. As w2 + x2 + y2 + z2 = |q|2 = 1, we must
have −1 ≤ w ≤ 1. However, if w = ±1, then we would have x = y = z = 0,
so that q = ±1, contradicting our assumption. One deduces, therefore, that
−1 < w < 1, which implies that there is a unique θ/2 ∈ (0, π) – equivalently,
a unique θ ∈ (0, 2π) – such that cos θ2 = w. Accordingly, sin θ

2 =
√

1− w2,
where the RHS is the positive square root. It follows that

q = w + xi+ yj + zk

= w + (
x√

1− w2
i+

y√
1− w2

j +
z√

1− w2
k)
√

1− w2

= cos
θ

2
+ u sin

θ

2

where
u =

x√
1− w2

i+
y√

1− w2
j +

z√
1− w2

k 275
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is a unit vector because x2 + y2 + z2 = 1− w2. The conclusion in the last
line of the proposition now follows from an application of Proposition 6.2. 2

Example 6.5. Determine the rotation corresponding to the unit quater-
nion

1√
3
i+

1√
3
j +

1√
3
k

and write it in OpenGL form.

Answer : We want to express

q =
1√
3
i+

1√
3
j +

1√
3
k

in the form

cos
θ

2
+ u sin

θ

2

Following the preceding proposition, write

q = w + xi+ yj + zk where w = 0 and x = y = z =
1√
3

Next, set

cos θ/2 = w = 0 =⇒ θ/2 =
π

2
=⇒ θ = π

and

u =
x√

1− w2
i+

y√
1− w2

j +
z√

1− w2
k =

1√
3
i+

1√
3
j +

1√
3
k

It follows that the given quaternion corresponds to the OpenGL rotation
(up to round-off error)

glRotatef(180.0, 0.58, 0.58, 0.58)

Exercise 6.19. Determine the rotation corresponding to the unit quater-
nion

1√
2

+
1

2
i+

1

2
k

and write it in OpenGL form.

We prove next a couple of useful facts related to Proposition 6.2:

Proposition 6.4. (a) If the rotation f1 corresponds to the quaternion q1
and the rotation f2 to q2, then the composed rotation f1◦f2 corresponds
to the product q1q2.

In other words, rotations can be composed by multiplying their
corresponding quaternions.276
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(b) If q is a unit quaternion and c an arbitrary non-zero scalar, then the
transformation

X 7→ (cq) X (cq)−1

is equivalent to the rotation

X 7→ qX q−1

In other words, q and any non-zero scalar multiple cq give the same
rotation by inner automorphism.

Proof. (a) For a vector X,

(f1 ◦ f2)(X) = f1(f2(X)) = q1(q2 X q−12 )q−11

= (q1q2) X (q−12 q−11 ) = (q1q2) X (q1q2)−1

completing the proof.
(b) Since (cq)−1 = c−1q−1, the equalities

(cq) X (cq)−1 = (cq) X (c−1q−1) = (cc−1)qX q−1 = qX q−1

complete the proof (note, for the second equality, that a scalar can be moved
in and out of a product with impunity). 2

Exercise 6.20. Let f1 be a rotation of 60◦ about the x-axis and f2 a
rotation of 90◦ about the y-axis. Determine the composed rotations f1 ◦ f2
and f2 ◦ f1 (by giving their respective axis and amount of rotation).

Part answer : The plan is to go from rotation space to quaternion space,
multiply and return to rotation space.

Proposition 6.2 tells us that rotation f1 corresponds to the quaternion

q = cos
θ

2
+ u sin

θ

2

where u = i and θ = π/3. In other words, f1 corresponds to

√
3

2
+

1

2
i

Likewise, f2 corresponds to

1√
2

+
1√
2
j

By Proposition 6.4(a), f1 ◦ f2 corresponds to(√
3

2
+

1

2
i

)(
1√
2

+
1√
2
j

)
=

√
3

2
√

2
+

1

2
√

2
i+

√
3

2
√

2
j +

1

2
√

2
k
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Applying Proposition 6.3 to determine the rotation corresponding to
the above quaternion, one finds after some calculation f1 ◦ f2 to be
glRotatef(104.48, 0.45, 0.77, 0.45) written as an OpenGL rotation
up to round-off error.

We leave the reader to apply the same method to f2 ◦ f1.

Proposition 6.4 has a couple of interesting consequences.

Firstly, part (a) has an implication for computational efficiency. If a
rotation is represented by a matrix, as in Equation (5.45), then the complexity
of composing two rotations, equivalent to multiplying the corresponding
matrices, is dominated by 27 scalar multiplications – treating the matrix of
(5.45) as 3× 3 because the fourth row and column don’t add complexity and
observing that each of the 9 entries of the product involves 3 multiplications.

On the other hand, if a rotation is represented by a quaternion, then
composing two rotations, equivalent to multiplying the corresponding
quaternions by Proposition 6.4(a), requires 16 scalar multiplications. The
conclusion is that an efficient way to compose multiple rotations is via
quaternion representation.

Secondly, a consequence of part (b) of the proposition is a mathematically
useful, though somewhat abstract, representation of 3D rotations. Note,
first, that the set H of quaternions is in one-to-one correspondence with
4D space R4 via the association w + xi + yj + zk ↔ [w x y z]T . We can,
therefore, identify H with R4 and refer to points of the latter as quaternions.

Now, Proposition 6.4(b) says that all non-zero quaternions on a given
radial line in R4 correspond to the same rotation, as they differ one from
another by a scalar multiple. It can also be verified that non-zero quaternions
on distinct radial lines correspond to different rotations.

O

−p

p

l 
S3

R4

Figure 6.13: The unit
sphere S3 in R4 with a
radial line l, representing a
rotation of R3, passing
through a pair of antipodal
points.

So here’s a summary of the situation. Quaternions are in one-to-one
correspondence with points of R4. Each non-zero quaternion also corresponds
uniquely to a rotation of 3-space, which it gives by inner automorphism.
Rotations, on the other hand, are not as “faithful” because each corresponds
to infinitely many quaternions, in fact, a whole radial line’s worth (except
that the origin O does not correspond to a rotation). See Figure 6.13.
Rotations of 3-space, therefore, are in one-to-one correspondence with the
set of radial lines in R4.

If one is uncomfortable with identifying rotations of R3 with lines in R4,
then here’s a way to identify them with points instead: since a radial line of
R4 intersects S3, the unit sphere of R4, in two antipodal points, rotations
are in 1-1 correspondence with the points of S3, provided one is willing to
undertake the mental trick of identifying each antipodal pair as a single point.
S3 with its antipodal points identified is actually the so-called projective
3-space P3, so, finally, one identifies the space of 3D rotations with P3.

Incidentally, note that since the space H of all quaternions is identified
with R4, the space of unit quaternions identifies with the unit sphere S3 of
R4.278
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Quaternion to Rotation Matrix

Proposition 6.3 enables us to find the unique rotation corresponding to a
unit quaternion in terms of its axis and rotation angle. However, in various
applications, e.g., when using OpenGL, the rotation matrix itself is more
useful. We ask the reader to find the 4× 4 rotation matrix corresponding to
a given quaternion by completing the solution to the following exercise.

Exercise 6.21. Show that the 4 × 4 matrix representing the rotation
corresponding to the unit quaternion

q = w + xi+ yj + zk

is
w2 + x2 − y2 − z2 2xy − 2wz 2xz + 2wy 0

2xy + 2wz w2 − x2 + y2 − z2 2yz − 2wx 0
2xz − 2wy 2yz + 2wx w2 − x2 − y2 + z2 0

0 0 0 1

 (6.6)

Part answer : Verify first the case when q = ±1 (keep in mind that this
implies that w = ±1 and that x = y = z = 0). Suppose, next, that q 6= ±1.
Proposition 6.3 says, then, that q gives, by inner automorphism, the rotation
of angle θ about the unit vector u where

cos
θ

2
= w and u = (x/

√
1− w2) i+ (y/

√
1− w2) j + (y/

√
1− w2) k

In Section 5.4.3 – see Equation (5.45) – we derived the following matrix
corresponding to a rotation of angle θ about the radial axis l toward the
point P = [a b c]T , where |P | = 1.

Ra, b, c(θ) =
a2(1− cos θ)+cos θ ab(1− cos θ)−c sin θ ac(1− cos θ)+b sin θ 0
ab(1− cos θ)+c sin θ b2(1− cos θ)+cos θ bc(1− cos θ)−a sin θ 0
ac(1− cos θ)−b sin θ bc(1− cos θ)+a sin θ c2(1− cos θ)+cos θ 0

0 0 0 1


We ask the reader to finish the exercise by deriving the matrix (6.6) after

plugging the following into the matrix expression above for Ra, b, c(θ):

a = x/
√

1− w2

b = y/
√

1− w2

c = z/
√

1− w2

1− cos θ = 2 sin2 θ

2
= 2(1− w2)

cos θ = 2 cos2
θ

2
− 1 = 2w2 − 1

sin θ = 2 sin
θ

2
cos

θ

2
= 2w

√
1− w2 279
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Techniques Spherical Linear Interpolation

Let’s return to our original objective of applying quaternions to the animation
of orientation. We have a 3-step strategy: (1) represent the start and
end orientations corresponding, say, to the rotations f1 and f2 by unit
quaternions, q1 and q2, respectively; (2) interpolate between the two in
quaternion space, traveling from q1 to q2 along a path of unit quaternions as
well; (3) finally, map this path back to a path in the space of rotations from
f1 to f2, which, of course, is equivalent to a path in the space of orientations
between the original start and end ones. Figure 6.14(a) is a conceptual
diagram (numbers in parentheses indicate steps).

q = slerp(q1, q2,t)

tθθ

plane p

BO v´´

Orientation (= Rotation) 
space            

(1)

(2)

(1)
(3)

(a)       

(b)      
(c)      

        

O

3-sphere S3 f2

q2

q2

q2

f1

q1

q1
q1

Quaternion 
space           

q´

v´

Figure 6.14: (a) Conceptual plan to use quaternion space to interpolate in orientation
space (numbers in parentheses indicate steps) (b) The geodesic path from q1 to q2 on
S3 (c) Slerping from q1 to q2.

Figure 6.14(b) shows the representing unit quaternions q1 and q2 as
points on the unit sphere S3 of R4, the latter being identified with the set H
of all quaternions. A shortest path on S3 between q1 and q2 is along a great
circle – a great circle is the intersection of a radial plane with S3. A shortest
path itself is called a geodesic path. If q1 and q2 are not antipodal, then
there is a unique geodesic path joining them; otherwise, there are infinitely
many (each half a great circle).

Remark 6.3. It helps the intuition to think of shortest paths on the surface
of the Earth, where the situation is exactly the same, only one dimension
lower.

Suppose, first, that q1 and q2 are not antipodal. We want to interpolate
at a constant angular rate from q1 to q2 along the unique geodesic joining
them. This is called spherical linear interpolation , or slerp for short. Even
though q1 and q2 are points of R4, the slerp between them takes place
entirely on the unique 2D plane p containing the two and the origin. See
Figure 6.14(c).280
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Suppose that θ is the smaller of the angles between q1 and q2 on the great
circle containing them. The point q, an angle of tθ from q1 toward q2 on that
same circle, is denoted slerp(q1, q2, t). As t varies from 0 to 1, slerp(q1, q2, t)
travels from q1 to q2. We seek, therefore, a formula for slerp(q1, q2, t).

Let q′ be the unit quaternion on the plane p on the same side of q1 as
q2 and such that Oq′ is perpendicular to Oq1 (this assumes, additionally,
that q2 6= q1, for slerping between them is trivial otherwise). Drop the
perpendicular from q2 to the point B on Oq1 and denote the 4-vector Bq2
by v′ and OB by v′′.

Observe, first, that

|v′| = |q2| sin θ = sin θ and |v′′| = |q2| cos θ = cos θ

because |q2| = 1. Moreover, v′′ = |v′′|q1, because q1 is the unit vector parallel
to v′′, which means v′′ = q1 cos θ. Therefore, we have

v′ = q2 − v′′ = q2 − q1 cos θ

Since q′ is of unit length and parallel to v′, we have as well

q′ =
v′

|v′|
=

v′

sin θ
=
q2 − q1 cos θ

sin θ

(that q1 and q2 are neither equal nor antipodal ensures that θ and sin θ are
both non-zero). Therefore,

q = slerp(q1, q2, t) = q1 cos(tθ) + q′ sin(tθ)

(adding the components of q along q1 and q′)

= q1 cos(tθ) +
q2 − q1 cos θ

sin θ
sin(tθ)

= q1

(
cos(tθ)− cos θ

sin θ
sin(tθ)

)
+ q2

sin(tθ)

sin θ

= q1
sin((1− t)θ)

sin θ
+ q2

sin(tθ)

sin θ
(6.7)

which gives the formula sought for slerp(q1, q2, t) (note that θ, the angle
between them, is easily determined from q1 and q2).

Remark 6.4. Expectedly, linear interpolation has not been able to escape
the ugly diminutive lerp in the CG literature, with the obvious formula

lerp (q1, q2, t) = (1− t)q1 + tq2

Interpolating Orientations via Quaternions

We now have all the pieces in place to implement the following scheme to
interpolate between two orientations corresponding to the rotations f1 and
f2: 281



i
i

i
i

i
i

i
i

Chapter 6

Advanced Animation

Techniques

1. Go from rotation space to quaternion space by finding unit quaternions
q1 and q2 corresponding to f1 and f2, respectively.

2. Observe that both q2 and −q2 represent the same rotation but one of
the two makes an angle of at most π/2 with q1 and the other an angle
at least π/2. We want to interpolate to the one closer to q1, in case
the two are at different angular distances.

Accordingly, determine q1 · q2. If its value is negative, then the angle
between q1 and q2 is greater than π/2, in which case set q2 = −q2;
otherwise, leave it as it is.

Note: It’s in this last step that we resolve the problem from potentially
ambiguous representation of a rotation. In fact, it is only when q1 and
q2 are orthogonal that both q2 and −q2 are at the same angle of π/2
from q1, and we could choose either. The last step above finesses this
choice by leaving q2 unchanged in this case. However, see Exercise 6.22
below.

Recall in this connection how much more troublesome were ambiguous
Euler angle representations in the last section.

3. Compute slerp(q1, q2, t), t varying from 0 to 1.

4. Return to rotation space by computing the rotation f(t) corresponding
to slerp(q1, q2, t). Then f(t) interpolates between the rotations f1 and
f2 (equivalently, the corresponding orientations).A

B

B´

Figure 6.15: Changing
the orientation from AB to
AB′ is inherently
ambiguous.

Exercise 6.22. Show that if q1 and q2 are orthogonal then ambiguity is
inherent , in that the orientation corresponding to one is a rotation of 180◦

about some axis of the orientation corresponding to the other. In this case,
rotating one way about that axis, to change one orientation to the other,
is exactly symmetric to going the other way, and there is no procedure to
prefer one over the other. For example, consider the two ways of going from
the orientation AB to AB′ of the solid straight arrow in Figure 6.15.

Time for code.

Figure 6.16: Screenshot
of quaternionAnimation-
.cpp.

Experiment 6.8. Run quaternionAnimation.cpp, which applies the
preceding ideas to animate the orientation of our favorite rigid body, an
L, with the help of quaternions. Press ‘x/X’, ‘y/Y’ and ‘z/Z’ to change
the orientation of the blue L, whose current Euler angles are shown on the
display. Its start orientation is the currently fixed red L. See Figure 6.16 for
a screenshot.

Pressing enter at any time begins an animation of the red L from the
start to the blue’s current orientation. Press the up and down arrow keys to
change the speed and delete to reset. End282
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The routine eulerAnglesToQuaternion() of the program determines
the unit quaternion corresponding to an orientation specified by three Euler
angles, by computing first the unit quaternion corresponding to the rotation
about a coordinate axis connoted by each Euler angle, and then multiplying
the three.

The routine slerp() implements formula (6.7), except for the following
“hack” to avoid problems with division by zero, or near-zero numbers, when
θ is small. Applying the approximation sinα ' α for small α, formula (6.7)
is modified as follows if θ ≤ 0.000001:

slerp(q1, q2, t) = q1
sin((1− t)θ)

sin θ
+ q2

sin(tθ)

sin θ

= q2
(1− t)θ

θ
+ q2

tθ

θ
= (1− t)q1 + tq2

(the value 0.000001 having been chosen arbitrarily).

The routine quaternionToRotationMatrix() gets us back to rotation
space with help of (6.6) to find the 4× 4 rotation matrix corresponding to a
given quaternion.

Exercise 6.23. (Programming) Extend quaternionAnimation.cpp to
animate the motion of a rigid body, say a spacecraft, from a start disposition
to a user-specified target disposition which can differ both in location and
orientation from the start. Transformation should be simultaneous in both
position and orientation.

The utility of quaternions in interactive animation cannot be over-
emphasized and they should be in every game programmer’s tool kit. For
instance, try to do what quaternionAnimation.cpp does without using
quaternions (good luck!).

6.5 Summary, Notes and More Reading

In this chapter we learned a few practically useful techniques. Particularly
indispensable to programmers of heavily-populated environments are the
methods of frustum culling and occlusion culling. For further reading,
books on game programming, e.g., Lengyel [85] and Eberly [39], will,
typically, contain descriptions of structures such as quadtrees, octrees, kd-
trees and BSP trees in the context of frustum culling, occlusion culling and
collision detection. An excellent computational geometry reference for space
partitioning data structures, including range trees and kd-trees, is the one
by de Berg et al. [11]. Samet [121] is a must for anyone seeking to learn
about spatial data structures in depth. See Slater et al. [135] and the paper
by Kumar et al. [83] for literature on the important problem of partitioning
a space encompassing a dynamic scene. 283
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We learned how to animate orientation with the use of both Euler angles
and quaternions. This will come in handy in camera control and rigid
body animation. The Euler angle representation, as we saw, suffers from
certain problems, surmounted subsequently by the slick mathematics of
quaternions. The books by Buss [22], Lengyel [85] and Watt [147], among
others, contain discussions of Euler angles and quaternions and their relation
to rigid-body kinematics. The ones by Hanson [63] and Kuipers [82] are all
about quaternions and their applications.

284
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CHAPTER 7
Convexity and Interpolation

I
t’s time now to get some of the geometric concepts underlying 3D
modeling and lighting in place before we reach those particular chapters.
We’ve seen programs where colors, defined at the vertices of a primitive,

are mixed and spread throughout the primitive’s interior. This is done by
means of interpolation. In this chapter we’ll study the exact mechanics of
the interpolation process.

Section 7.1 motivates the process of interpolation with simple examples.
Section 7.2 gets to the heart of the matter by showing first that line segment
and triangle primitives are particularly suited for interpolation because of
the property they share that any point of such a primitive can be uniquely
represented as a so-called convex combination of its vertices. Section 7.3
shows precisely how this property is used by OpenGL to interpolate values
such as color.

The geometric property which some objects have of being convex is
closely related to interpolation. Section 7.4 defines convexity and the notion
of the convex hull of a set of points and applies them to understanding if
objects more complicated than line segments and triangles, e.g., polygons
in general, can be equally easily interpolated. We see that the answer is no
and that line segments and triangles are indeed special. We conclude with
Section 7.5.

This chapter and the next two on triangulation and orientation,
respectively, are intimately related and should be read one after another. The
material is somewhat mathematical. However, the math involved is geometric,
which means that it can be “seen to work”, and not particularly abstract.
The importance of these three chapters at the conceptual foundation of 3D
computer graphics cannot be overemphasized. Having said this, it’s true
that this particular chapter will be fairly light reading for someone already
familiar with linear interpolation and convexity, possibly from an earlier 287
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math class. If this is the case, then flip quickly through the pages – make
sure the parts to do with OpenGL make sense – and move on.

7.1 Motivation

OpenGL has three favorites among its several drawing primitives: points,
segments (by segment we’ll always mean a straight line segment) and triangles.
This is not owing to some idiosyncrasy of its specification as an API, but
for a deeper reason. We’ve already seen that material values such as color,
specified at a primitive’s vertices, are apparently interpolated throughout
its interior.

So here, briefly, is why points, segments and triangles are favored: they
have the property that every point in each can be unambiguously (or, uniquely,
same thing) represented in terms of its vertices. This makes it possible for
values defined at the vertices to be unambiguously – therefore, automatically ,
by means of a program – interpolated throughout the primitive. We’ll clarify
all this soon, but to begin with here is a simple example.

(0,0) x

y

T(?, ?)

P(1, 4)

Q(7, 16)

R(4, 10)
S(3, 8)

Figure 7.1: Points that
split segment PQ.

Example 7.1. Using graph paper if you like, draw the segment PQ joining
the point P , with coordinates (1, 4), to the point Q, with coordinates (7, 16).
See Figure 7.1. Measure off the midpoint R of the segment. Verify that its
coordinates are as indicated in the figure. Since the midpoint is halfway
from either endpoint it does make sense that the coordinates of R are an
exact average of those of P and Q, viz.

1

2
∗ (1, 4) +

1

2
∗ (7, 16) =

(
1

2
∗ 1 +

1

2
∗ 7,

1

2
∗ 4 +

1

2
∗ 16

)
= (4, 10)

How about the point S a third of the way from P to Q? Again, measure
it off and see if the coordinates shown in the figure are correct. S splits PQ
in the ratio 2

3 : 1
3 , where it’s 2

3 toward P from Q and 1
3 toward Q from P .

Ergo, S’s coordinates are

2

3
∗ (1, 4) +

1

3
∗ (7, 16) =

(
2

3
∗ 1 +

1

3
∗ 7,

2

3
∗ 4 +

1

3
∗ 16

)
= (3, 8)

Exercise 7.1. We ask you to calculate the coordinates of T , which is
two-thirds of the way from P to Q, and verify by actual measurement.

Interestingly, P itself, which splits PQ in the ratio 1 : 0, has coordinates

1 ∗ (1, 4) + 0 ∗ (7, 16) = (1, 4)

while Q, which splits it in the ratio 0 : 1, has coordinates

0 ∗ (1, 4) + 1 ∗ (7, 16) = (7, 16)288
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It seems then that in the expression

X = c ∗ (1, 4) + (1− c) ∗ (7, 16)

the variable c acts as a “dial” which can be turned from 1 to 0 to move the
point X from P to Q.

Here’s an exercise to get you thinking about using an expression like the last
one to interpolate material properties.

Exercise 7.2. If the end vertex P of the segment in the preceding example
is specified red (RGB = (1, 0, 0)) and Q green (RGB = (0, 1, 0)), then what
should the colors be at the midpoint R? At the point S?

7.2 Convex Combinations

We said at the beginning of the last section that points, segments and
triangles are favored by OpenGL. In fact, they are the building blocks of
OpenGL. Even quadrilaterals and polygons in general, as we’ll see, are first
sub-divided into triangles before being processed. We informally described a
property shared by the three primitives – that each point belonging to one
has a unique expression in terms of its vertices – which makes unambiguous
interpolation possible.

Segments

Here is the formal statement of the aforementioned property in the case of a
segment:

Proposition 7.1. If P and Q are two points in R3, then a point V lies on
the segment PQ if and only if it can be expressed as

V = c1P + c2Q

where 0 ≤ ci ≤ 1, for both i = 1 and i = 2, and where c1 + c2 = 1.
Further, if P and Q are distinct – so that PQ does not degenerate to a

point – then this expression for V is unique.

Before the proof, take a second to match the proposition with the example
of the previous section: the points P , Q, R, S and T on the segment PQ
could each indeed be expressed in the form c1P + c2Q, where c1 and c2 lie
between 0 and 1, and add up to 1.

Proof. Skip this proof if you start to get bogged down in the math. Just
make sure to understand what the proposition says. For the first part of the
proposition, suppose initially that P 6= Q so that PQ is a non-degenerate
segment. Consider a point V on this segment. The vector V − P clearly 289
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is parallel to the vector Q− P (see Figure 7.2). Therefore, one is obtained
from the other by multiplying by the ratio of their lengths:

V − P =
|V − P |
|Q− P |

(Q− P ) =⇒ V − P = c(Q− P )

=⇒ V = (1− c)P + cQ

where c denotes |V−P ||Q−P | . Note then that 0 ≤ c ≤ 1, as |V − P | ≤ |Q − P |.
Writing c1 = 1− c and c2 = c we have, indeed, that

V = c1P + c2Q

where 0 ≤ ci ≤ 1, for both i = 1 and i = 2, and, moreover, c1 + c2 = 1. This
proves the “only if” direction of the first part, provided P 6= Q.

Q − P
V − P

P

V
Q

Figure 7.2: Illustration
for the proof of
Proposition 7.1.

Conversely, for the “if” direction, assuming again P 6= Q, suppose that

V = c1P + c2Q

where 0 ≤ ci ≤ 1, for both i = 1 and i = 2, and c1 + c2 = 1. Then writing
c = c2 we have

V = (1− c)P + cQ = P + c(Q− P ) (7.1)

V is seen to be the point at a distance of c|Q− P | from P in the direction
of Q. As 0 ≤ c ≤ 1, V indeed lies on the segment joining P and Q. This
completes the proof of the first part of the proposition when P 6= Q. If
P = Q, the first part is actually trivial to prove because the segment PQ
degenerates to a point (so any point on it is P itself – we leave the rest to
the reader).

For the second part regarding uniqueness, suppose that the point V on
PQ can be expressed as both V = c1P + c2Q and V = d1P + d2Q, where
c1 + d1 = d1 + d2 = 1. Then

V = c1P + c2Q = d1P + d2Q =⇒ (c1 − d1)P = (d2 − c2)Q (7.2)

From c1 + c2 = d1 + d2 = 1 we have that c1 − d1 = d2 − c2. Therefore, if
these two equal quantities are not 0 we could multiply Equation (7.2) by

1
c1−d1 (= 1

d2−c2 ) to deduce that P = Q, contradicting the hypothesis of the
second part. We are led to conclude that c1 − d1 = d2 − c2 = 0, so that
c1 = d1 and c2 = d2, proving that the expression for V in the proposition is
indeed unique. 2

Remark 7.1. To minimize notation we wrote the endpoints of the segment
in the proposition as single variables P and Q. Of course, one can write
out their coordinates as, say, P = (px, py, pz) and Q = (qx, qy, qz) and,
correspondingly, the equation for V in the statement of the proposition as

(vx, vy, vz)=c1(px, py, pz)+c2(qx, qy, qz)=(c1px+c2qx, c1py+c2qy, c1pz+c2qz)290
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For example, if P = (1, 4, 3) and Q = (2, 5, 2), then the proposition says that
points on the segment PQ are of the form

(c1 + 2c2, 4c1 + 5c2, 3c1 + 2c2), where 0 ≤ c1, c2 ≤ 1 and c1 + c2 = 1.

Remark 7.2. We could have saved ourselves a variable and written V =
cP + (1− c)Q, instead of V = c1P + c2Q, because c1 + c2 = 1, but chose not
to in order to have separate variables for the coefficients of P and Q. This
keeps our notation consistent with the proposition for triangles coming up.

Definition 7.1. A point V of the form

V = c1P + c2Q

where 0 ≤ ci ≤ 1, for both i = 1 and i = 2, and where c1 + c2 = 1, is said to
be a convex combination – or barycentric combination – of P and Q. The
scalars c1 and c2 are called the barycentric coordinates of V .

The following corollary then is just a rewrite of the first part of
Proposition 7.1.

Corollary 7.1. The segment joining two points P and Q consists of all
their convex combinations. 2

A point V = c1P + c2Q on the segment PQ can be usefully thought of
as a weighted sum of P and Q, where the barycentric coordinates c1 and
c2 are the weights – or influence, or ownership, if you will – of P and Q,
respectively, on the location of V . The next exercise follows up on this idea.

Exercise 7.3. Suppose that V = c1P + c2Q lies on the segment PQ.

(a) If c1 = c2 = 1
2 , prove that V is the midpoint of PQ; in other words, if

the weights of P and Q on V are equal, then it’s in the middle of the
two. (We saw an illustration, though not proof, of this in Example 7.1.)

Suggested approach:

Without using vectors: Say P = (px, py, pz) and Q = (qx, qy, qz). Then

V =
1

2
(px, py, pz) +

1

2
(qx, qy, qz) =

(
px + qx

2
,
px + qx

2
,
px + qx

2

)
Determine the distance between P and V and between Q and V using
the formula for distance between a pair of points, and find that the
two are equal.

Note: The distance between the points (x, y, z) and (x′, y′, z′) is√
(x− x′)2 + (y − y′)2 + (z − z′)2.

Using vectors: V − P = (1
2 P + 1

2 Q) − P = 1
2 Q −

1
2 P . Similarly,

determine Q− V and find that it equals V − P . 291
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(b) Prove generally that PV : V Q equals c2 : c1.

(c) If c1 > c2, prove that V is closer to P than Q, and vice versa.

Exercise 7.4. Say P 6= Q and that V = c1P + c2Q, where c1 and c2 are
any real numbers such that c1 + c2 = 1 (the condition that the ci’s must lie
between 0 and 1 is dropped). Show then that V may be any point on the
(infinite) straight line through P and Q.
Hint : V = (1− c2)P + c2Q = P + c2(Q− P ). How does this point change
as c2 varies?

P
?

?
Q

Figure 7.3: What are the
conditions on c1 and c2 for
V = c1P + c2Q to lie on
either side of PQ?

Exercise 7.5. The previous exercise says that points on the whole straight
line through P and Q (given P 6= Q) are of the form c1P + c2Q, where
c1 + c2 = 1. We already know that points on this line between P and Q
additionally satisfy 0 ≤ c1, c2 ≤ 1. How about those on either side of PQ –
what are the conditions on ci? See Figure 7.3.

Triangles

Statements analogous to Proposition 7.1 can be proved for triangles as well:

Proposition 7.2. If P , Q and R are three points in R3, then a point V
lies on the triangle PQR if and only if it can be expressed as

V = c1P + c2Q+ c3R

where 0 ≤ ci ≤ 1, for 1 ≤ i ≤ 3, and where c1 + c2 + c3 = 1.
Further, if P , Q and R are not collinear – so that PQR does not

degenerate to a segment or a point – then this expression for V is unique.

Proof. Skip this proof if you start to get bogged down in the math. Just
make sure to understand what the proposition says.

For the first part of the proposition, suppose initially that the triangle
PQR is non-degenerate, in other words, that P , Q and R are not collinear.
Consider a point V on this triangle.

If V = P , then, of course, V = 1P + 0Q+ 0R, which is an expression of
the form required.

P

Q R

V

V´

Figure 7.4: Illustration
for the proof of
Proposition 7.2.

If V 6= P , suppose that the straight line from P through V intersects the
edge QR at V ′ (see Figure 7.4). As V lies on the segment joining P and V ′

the previous proposition gives an expression

V = c′1P + c′2V
′ (7.3)

where 0 ≤ c′i ≤ 1, for i = 1 and i = 2, and c′1 + c′2 = 1.
Again, by the previous proposition, since V ′ lies on the segment joining

Q and R,
V ′ = c′′1Q+ c′′2R (7.4)292
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where 0 ≤ c′′i ≤ 1, for i = 1 and i = 2, and c′′1 + c′′2 = 1.
We have by using both (7.3) and (7.4) that

V = c′1P + c′2(c′′1Q+ c′′2R)

= c′1P + c′2c
′′
1Q+ c′2c

′′
2R

Writing c1 = c′1, c2 = c′2c
′′
1 and c3 = c′2c

′′
2 , we see that

V = c1P + c2Q+ c3R (7.5)

where it may be verified that 0 ≤ ci ≤ 1, for 1 ≤ i ≤ 3, and, moreover,
c1 +c2 +c3 = c′1 +c′2c

′′
1 +c′2c

′′
2 = c′1 +c′2(c′′1 +c′′2) = c′1 +c′2 ∗1 = 1. This proves

the “only if” direction of the first part, provided PQR is not degenerate; we
leave the proof in case PQR is degenerate (so, either a point or segment) to
the reader.

We leave the proof of the “if” direction and of the uniqueness of the
expression in the case that PQR is non-degenerate, to the reader as well. 2

Definition 7.2. A point V of the form

V = c1P + c2Q+ c3R

where 0 ≤ ci ≤ 1, for 1 ≤ i ≤ 3, and where c1 + c2 + c3 = 1, is said to be
a convex combination – or barycentric combination – of P , Q and R. The
scalars c1, c2 and c3 are called the barycentric coordinates of V .

The following corollary is a rewrite of the first part of Proposition 7.2.

Corollary 7.2. The triangle with vertices at P , Q and R consists of all
their convex combinations. 2

Similarly as for a segment, a point V = c1P + c2Q+ c3R on the triangle
PQR can be thought of as a weighted sum of P , Q and R, where the
barycentric coordinates c1, c2 and c3 are the respective weights.

Exercise 7.6. Suppose that V = c1P + c2Q + c3R lies on the triangle
PQR. Where is V when

(a) one of the ci’s is 1 and the other two are 0?

(b) one of the ci’s is 0 and the other two equal to 1
2?

(c) all the ci’s are equal to 1
3?

Example 7.2. If P = (0, 0, 0), Q = (20, 0, 0) and R = (20, 30, 0), does the
point V = (10, 20, 0) lie on the triangle PQR? If so, express V as a convex
combination of the three vertices. 293
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Answer : Let’s try to solve the equations

V = c1P + c2Q+ c3R

c1 + c2 + c3 = 1

The first gives

(10, 20, 0) = c1(0, 0, 0) + c2(20, 0, 0) + c3(20, 30, 0)

Equating the values in each coordinate on either side of the above equation
we get the following (the equation in the z coordinate is trivial and not
written):

20c2 + 20c3 = 10

30c3 = 20

With the additional

c1 + c2 + c3 = 1

one solves to find that

c1 =
1

2
, c2 = −1

6
, c3 =

2

3

As the ci’s do not all lie between 0 and 1 we conclude that V is not a convex
combination of P , Q and R and, therefore, does not lie on the triangle
PQR.

Exercise 7.7. If P = (0, 0, 0), Q = (20, 0, 0) and R = (20, 30, 0), does the
point V = (15, 15, 0) lie on the triangle PQR? If so, express V as a convex
combination of the three vertices.

Exercise 7.8. What if V = c1P + c2Q+ c3R, where ci, 1 ≤ i ≤ 3, are any
real numbers such that c1 + c2 + c3 = 1 (the condition that the ci’s must lie
between 0 and 1 is dropped)? Where does V lie?

Exercise 7.9. If P = (30, 50, 45), Q = (40, 20, 5) and R = (30, 20, 0),
which of the points V = (35, 25, 20), V ′ = (35, 25, 15) and V ′′ = (28, 80, 89)
lie on the triangle PQR? Which of them lie on the plane containing P , Q
and R, but not on the triangle PQR?

P

Q E

D F

R

Figure 7.5: A triangle
DEF with vertices at the
midpoints of the edges of a
larger triangle.

Exercise 7.10. In Figure 7.5, points D, E and F are midpoints of the
edges PQ, QR and RP , respectively. Are points in the triangle DEF a
special kind of convex combination of P , Q and R? Precisely, if V ∈ DEF
is expressed as V = c1P + c2Q+ c3R, what restrictions, if any, are there on
the values that the ci can have?294
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7.3 Interpolation

It is straightforward now to explain how OpenGL interpolates property
values over its favorite primitives. Let’s begin with a non-degenerate triangle
P1P2P3.

Suppose that the RGB color tuples at the vertices P1, P2 and P3

are specified by the programmer to be (R1, G1, B1), (R2, G2, B2) and
(R3, G3, B3), respectively. Let V be any point of P1P2P3. See Figure 7.6.

P1 (R1, G1, B1)

P3 (R3, G3, B3) P2 (R2, G2, B2)

V = c1P1+ c2P2 +c3P3

Figure 7.6: Color values specified at the vertices V1, V2 and V3 of a triangle are
interpolated at V .

By Proposition 7.2, there is a unique expression

V = c1P1 + c2P2 + c3P3 (7.6)

of V as a convex combination of the vertices P1, P2 and P3. OpenGL, in
fact, determines this expression, particularly, the values of c1, c2 and c3.
The color at V is then set to

c1(R1, G1, B1) + c2(R2, G2, B2) + c3(R3, G3, B3) (7.7)

= (c1R1 + c2R2 + c3R3, c1G1 + c2G2 + c3G3, c1B1 + c2B2 + c3B3)

Simply put, OpenGL uses the weight of each vertex on the location of V
as its weight on the color of V as well. As the weights c1, c2 and c3 are unique,
the interpolation process is unambiguous (and, therefore, programmable).

OpenGL performs an exactly similar computation to interpolate color
values specified at the end vertices of a non-degenerate segment. In the case
of the third of OpenGL’s favorite primitives, the point, there is obviously
nothing to interpolate.

Remark 7.3. What we call interpolation is often (more accurately) referred
to as linear interpolation because the interpolation parameters enter as
linear variables – i.e., with power one – in the expression for the interpolated
value; e.g., the ci’s in the expression for V in Equation (7.6), viz. V =
c1P1 + c2P2 + c3P3.

Remark 7.4. Color values aren’t the only ones to be interpolated. In fact,
any attribute specified numerically at a triangle’s vertices can be interpolated
through its interior. For example, in Phong’s shading model, normal vector
values defined at a triangle’s vertices are interpolated. 295
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Experiment 7.1. Replace the polygon declaration part of our old favorite
square.cpp with the following (Block 1∗):

glBegin(GL TRIANGLES);

glColor3f(1.0, 0.0, 0.0);

glVertex3f(20.0, 20.0, 0.0);

glColor3f(0.0, 1.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glColor3f(0.0, 0.0, 1.0);

glVertex3f(80.0, 80.0, 0.0);

glEnd();

Observe how OpenGL interpolates vertex color values throughout the triangle.
Figure 7.7 is a screenshot. End

Figure 7.7: Screenshot of
Experiment 7.1. Exercise 7.11. For the triangle of Experiment 7.1 calculate the RGB

colors at the point (70.0, 50.0, 0.0). Verify your answer by drawing a point
with those colors at (70.0, 50.0, 0.0). You should not be able to see this point
but, then, of course, you do see the point (why it should be invisible)!

Exercise 7.12. Show by computation that the interpolated color value at
the centroid (whose barycentric coordinates are all equal) of the triangle of
Experiment 7.1 is a darkish gray. Again, verify your answer by drawing a
point of that color at the centroid.

Exercise 7.13. If the vertices of a triangle at P = (0, 0, 0), Q = (20, 0, 0)
and R = (20, 30, 0) are colored red, cyan and magenta, respectively, what is
the color at the point (15, 15, 0)?

Exercise 7.14. If the vertices of a triangle at P = (10, 10, 0), Q = (40, 10, 0)
and R = (30, 30, 0) are colored white, black and white, respectively, what is
the color at the point (25, 20, 0)?

Remark 7.5. It’s clear now from the per-triangle interpolation process that
the computation involved in rendering a scene is proportional to its triangle
count (or polygon count). In animated applications, in particular, where the
scene is repeatedly re-rendered, an important objective then is to minimize
this count without compromising visual quality.

Experiment 7.2. Run interpolation.cpp, which shows the interpolated
colors of a movable point inside a triangle with red, green and blue vertices.
The triangle itself is drawn white. See Figure 7.8 for a screenshot.

As the arrow keys are used to move the large point, the height of each
of the three vertical bars on the left indicates the weight of the respective
triangle vertex on the point’s location. The color of the large point itself is
interpolated (by the program) from those of the vertices. EndFigure 7.8: Screenshot of

interpolation.cpp.
∗To cut-and-paste you can find the block in text format in the file

chap7codeModifications.txt in the directory ExperimenterSource/CodeModifications.296
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Exercise 7.15. (Programming) Replace the triangle declaration of
interpolation.cpp with (Block 2):

glBegin(GL TRIANGLES);

glColor3f(1.0, 0.0, 0.0);

glVertex3f(20.0, 20.0, 0.0);

glColor3f(0.0, 1.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glColor3f(0.0, 0.0, 1.0);

glVertex3f(80.0, 80.0, 0.0);

glEnd();

The movable large point is no longer visible except when it pokes out of the
triangle. Why?

Exercise 7.16. (Programming) The interpolation procedure described
above requires the triangle or segment to be non-degenerate. Find out by
writing code how OpenGL draws a degenerate segment or triangle.
Hint : It doesn’t!

Exercise 7.17. It is easy to test a segment with vertices at P = (x1, y1, z1)
and Q = (x2, y2, z2) for degeneracy: simply check if the end vertices are
identical, i.e., if x1 = x2 and y1 = y2 and z1 = z2.

How about a triangle? How does one test if the triangle with vertices at
P = (x1, y1, z1), Q = (x2, y2, z2) and R = (x3, y3, z3) is degenerate?
Hint : PQR is degenerate if and only if at least one of the two vectors Q−P
and R− P is zero, or , if they are parallel. It’s easy to test if one of them is
zero; if not, their being parallel implies that each is a multiple of the other.

Exercise 7.18. If you know about determinants, then write a succinct
condition for the degeneracy of a triangle lying on the xy-plane with vertices
at P = (x1, y1), Q = (x2, y2) and R = (x3, y3), using a single determinant.

Remark 7.6. A practical application of interpolation to rendering must take
into account the fact that screen space is not actually a 2D continuum but,
in practice, a rectangular array, called a raster , of finitely many pixels. Each
pixel is not a point either but a square of non-zero size.

We know – see the discussion of shoot-and-print in Section 2.2 – that
a primitive object, such as a triangle t, drawn in the viewing volume is
projected to the volume’s front and, then, scaled to its image t′ on the
OpenGL window. See the left and middle diagrams of Figure 7.9. The
scaled t′ is actually rendered by a set of pixels in the OpenGL window – the
shaded ones in the raster on the right of Figure 7.9 (admittedly at a rather
lousy resolution). A part of the print process, called rasterization or scan
conversion, in fact, consists of choosing and coloring the pixels to render t′.

We’ll be studying rasterization algorithms in depth later on, but it’s
worth noting a couple of issues at this time in relation to interpolation. Since
a pixel is a square that contains not one point, but infinitely many, OpenGL 297
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boundary 
pixels

V
blow-up

scale and rasterize

OpenGL Window

P1

P3

t

project P2

t´

Figure 7.9: Project, scale and rasterize.

must pick a representative one at which to interpolate the color values from
the vertices and then set the entire pixel RGB to those particular values.

For a pixel in the interior of the primitive, a valid choice is its center
point, e.g., V on the right of Figure 7.9 for the pixel to which it belongs.
The color of that pixel is then determined by formula (7.7), viz.

c1(R1, G1, B1) + c2(R2, G2, B2) + c3(R3, G3, B3)

where V = c1P1 + c2P2 + c3P3, and the programmer-specified color at Pi is
(Ri, Gi, Bi), for 1 ≤ i ≤ 3.

Coloring boundary pixels is more complicated, as both foreground and
background colors need to be taken into account. In practice, depending on
if effects such as antialiasing are in force, weights may be decided by the area
of the pixel occupied by the primitive and the background, respectively. For
example, compare the two boundary pixels pointed at by arrows in the right
of Figure 7.9: the lower one should give greater weight to the foreground
color (that of the triangle) than the background, while the opposite is the
case for the upper pixel.

The reader may have been wondering the following for a while now.
Points, segments and triangles seem to be programmably interpolatable, but
how about quadrilaterals and, in general, polygons with four or more vertices?
Isn’t it true that points belonging to such figures have unique expressions
in terms of their vertices as well, in which case they are programmably
interpolatable too? The answer is no, as we’ll see. First, though, let’s learn
about convexity and the convex hull, which will lead to the answer and more.

7.4 Convexity and the Convex Hull

There’s nothing about convex combinations in Definitions 7.1 and 7.2 that’s
specific to two or three points. They can be defined for arbitrary numbers
of points:298
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Definition 7.3. If F = {P1, P2, . . . , Pk} is a set of k points in R2, then a
point V of the form

V = c1P1 + c2P2 + . . .+ ckPk

where 0 ≤ ci ≤ 1, for 1 ≤ i ≤ k, and where c1 + c2 + . . .+ ck = 1, is said to
be a convex combination – or barycentric combination – of F . The scalars
ci, 1 ≤ i ≤ k, are the barycentric coordinates of V .

Remark 7.7. We restrict to R2 as we’ll be computing convex combinations
only on a plane. Definitions and results can all be generalized to R3 and
higher.

Corollaries 7.1 and 7.2 tell us that the convex combinations of two points
form the segment joining them and those of three points the triangle with
corners at these points. How about an arbitrary set F = {P1, P2, . . . , Pk} of
points on the plane? What object is formed by its convex combinations? To
answer the question we need first to define convexity.

Definition 7.4. A non-empty set S of points in R2 is said to be convex if,
for any two points P,Q ∈ S, it is true that the segment PQ ⊂ S; in other
words, if it is true that, if the endpoints of a segment are in S, then the
segment itself is contained in S.

See Figure 7.10 for examples of both convex and non-convex subsets
of R2. Intuitively, convexity ensures that the object has neither holes nor
depressions.

convex

convex

convex

convex

non-convex

non-convex

non-convex

non-convex

single
point

more than
1 point

Figure 7.10: Convex and non-convex subsets of R2 – non-convexity is indicated by an
example of a black line with endpoints in the object but that itself is not contained in it.

Exercise 7.19. Prove that points, segments and triangles are always
convex. 299
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Exercise 7.20. Prove that the entire plane R2 is itself convex. What
about a half-plane , i.e., the part of the plane to only one side of a straight
line? Assume it is a closed half-plane (i.e., one which includes its border
straight line).

Exercise 7.21. Prove that the intersection of (any number of) convex sets
is again convex. Is the union of two convex sets necessarily convex?

A polygon which happens to be a convex set is, of course, a convex polygon.
Convex polygons are particularly important in OpenGL. As we noted even in
the second chapter, a programmer should ensure that polygons he draws with
GL POLYGON calls are convex; otherwise, rendering is unpredictable (we’ll see
why in the next chapter).

Exercise 7.22. Show that it’s possible to tell if a (plane) polygon is convex
by measuring the internal angle at each vertex.
Hint : Compare the two polygons at the right of Figure 7.10, one of which is
convex and the other not.

Exercise 7.23. For the four non-convex figures shown in Figure 7.10, fill
them out minimally to make them convex; in particular, for each, shade in
on the page itself an additional area as small as possible which, together
with the original, forms a convex figure.

Part answer : See Figure 7.11.

Figure 7.11: Part answer to Exercise 7.23.

The previous exercise leads to the consideration of the smallest possible
convex set which contains a given planar set F – obtained by “filling out
the holes and depressions” of F . If F is convex already then there’s nothing
to do as, obviously, F is the smallest convex set containing itself. But does
there always exist a smallest convex set containing an arbitrary F?

Consider the collection of all convex sets containing a given set F . This
collection includes certainly the whole plane itself and, possibly, infinitely
many other sets. Now, the intersection X of this collection surely contains
F as each member does. And Exercise 7.21 tells us that X is convex as well.
Moreover, X is no bigger than any convex set C containing F , because C
was one of the collection that was intersected to derive X in the first place.
So the answer is yes, there always exists a smallest convex set containing a
given planar set F : it is simply the intersection of all convex sets containing
F .300
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Definition 7.5. The smallest convex set containing a set F of points on
the plane is called its convex hull , denoted ch(F ).

Remark 7.8. Again, the restriction to the plane is for our purposes only. It
can all be made to work in higher dimensions as well.

Figure 7.12: A rubber band snapping to bound the convex hull of the nails.

The intersection of infinitely many convex sets is a rather abstract notion.
It’s more intuitive to think of ch(F ) as the “limit” of a shrinking sequence of
convex sets containing F . The process is equivalent to sticking a nail at each
point of F , stretching a rubber band around all the nails, then releasing it.
See Figure 7.12. When the rubber band becomes taut it bounds the convex
hull of F . Figure 7.13 shows the convex hulls of a few small sets of points.

Figure 7.13: Convex hulls.

Figure 7.14: Screenshot
of convexHull.cpp.

Experiment 7.3. Run convexHull.cpp, which shows the convex hull of
8 points on a plane. Use the space bar to select a point and the arrow keys
to move it. Figure 7.14 is a screenshot.

Note: The program implements a very inefficient (but easily coded)
algorithm to compute the convex hull of a set F as the union of all triangles
with vertices in F . End

Example 7.3. What is the convex hull of the set consisting of two opposite
edges of a parallelogram? How about that consisting of two adjacent edges?

Answer : The whole (filled) parallelogram. The triangle on the two edges.

Exercise 7.24. What are the convex hulls of the figures + and ×? 301
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Exercise 7.25. Earlier, in Exercise 7.20, you showed that a closed half-
plane H is convex. Can you find two straight lines S and T , not necessarily
finite, such that H = ch(S ∪ T )?

We relate next convex hulls to convex combinations.

Proposition 7.3. Given a set F = {P1, P2, . . . , Pk} of k points in R2,
ch(F ) is exactly the set of convex combinations of F .

Proof. Skip this proof if you start to get bogged down in the math. Just
make sure to understand what the proposition says.

We’ll prove first that the set X of convex combinations of F is a convex
set. As X obviously contains F , a consequence will be that ch(F ) ⊂ X,
because ch(F ) is the smallest convex set containing F .

Accordingly, given V, V ′ ∈ X, we have to show that the segment V V ′

lies in X. As V and V ′ are convex combinations of F , they can be written
as

V =

k∑
i=1

ciPi and V ′ =

k∑
i=1

c′iPi

where 0 ≤ ci, c′i ≤ 1, for each i, and
∑k
i=1 ci =

∑k
i=1 c

′
i = 1. A point W on

the segment V V ′ is of the form

W = dV + d′V ′

where 0 ≤ d, d′ ≤ 1 and d+ d′ = 1. Therefore,

W = d
k∑
i=1

ciPi + d′
k∑
i=1

c′iPi =
k∑
i=1

(dci + d′c′i)Pi

It’s easily verified that 0 ≤ dci + d′c′i ≤ 1, for each i. Moreover,
∑k
i=1(dci +

d′c′i) = d
∑k
i=1 ci + d′

∑k
i=1 c

′
i = d.1 + d′.1 = 1. One concludes that W is a

convex combination of F as well and, therefore, belongs to X. As W was
an arbitrary point of V V ′, we have proved that V V ′ indeed lies in X and,
therefore, X is convex.

Next, we’ll prove that any convex set Y containing F contains X as well.
This will imply that ch(F ) ⊃ X, which, together with the proof above that
ch(F ) ⊂ X, will complete the proof of the proposition.

In fact, we’ll prove by induction that Y contains all convex combinations
of the sets {P1, P2, . . . , Pr}, for r = 1, 2, . . . , k (the case r = k will, of course,
prove that Y contains X). Starting the induction at r = 1 is trivial as the
only convex combination of {P1} is P1, which belongs to F and, therefore,
to Y .

Suppose, inductively, that Y contains all convex combinations of the set
{P1, P2, . . . , Pr}, for some r, 1 ≤ r ≤ k− 1. Let V =

∑r+1
i=1 ciPi be a convex

combination of {P1, P2, . . . , Pr, Pr+1}. We’ll prove that V ∈ Y , completing302
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the induction. We can assume that cr+1 < 1, because, if cr+1 = 1, then
V = Pr+1 which trivially belongs to Y . Now,

V =
r∑
i=1

ciPi + cr+1Pr+1

= c (
r∑
i=1

ci
c
Pi) + cr+1Pr+1

writing c =
∑r
i=1 ci, which is not 0 as cr+1 < 1.

Since
∑r
i=1

ci
c =

∑r
i=1 ci
c = 1, apply the inductive hypothesis to conclude

that the point

V ′ =
r∑
i=1

ci
c
Pi

is in Y . Next, use the preceding expression for V ′ to rewrite the earlier
equation for V as

V = cV ′ + cr+1Pr+1

which is a convex combination of V ′ and Pr+1, because c+ cr+1 = 1, and so
lies on the segment V ′Pr+1. Since Y is a convex set containing both V ′ and
Pr+1, it contains the segment V ′Pr+1 and, therefore, V as well.

The proof of the proposition is complete. 2

Extreme Points

The reader, contemplating again Figure 7.13, will note that some of the
points of the two sets on the right lie at the corners of their respective hulls,
while others are inside or elsewhere on the boundary. Here’s a definition
that classifies points accordingly.

Definition 7.6. If a point P of a set F of points on the plane is such that
the convex hulls of F and F − {P} (i.e., F with P deleted) are the same,
then P is said to be a non-extreme point of F ; otherwise, it is an extreme
point of F .

Remark 7.9. Colloquially, non-extreme points are “expendable” in that the
elimination of any one doesn’t affect the convex hull. However, removing an
extreme point will change the hull; it will, in fact, become smaller.

Exercise 7.26. What are the extreme points of a set of 10 points chosen
arbitrarily from a given circle?

Interpolation and Convexity

We’ve covered a fair amount of the theory of convexity so far. Let’s pause to
take stock of how it impacts our understanding of the interpolation process. 303
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We asked in the last paragraph of Section 7.3 if it’s true that points in
a polygon with four or more vertices have unique expressions in terms of
these vertices. Since the expressions that we seek are convex combinations
and since the convex hull of the vertex set consists precisely of its convex
combinations, a fair question to ask first is if each point in the convex
hull of a set with at least four points has a unique expression as a convex
combination of these points.

P1(0,0) P2(1,0)

P3(1,1)P4(0,1)

V(0.5, 0.25)

Figure 7.15: V has at
least two expressions as a
convex combination of P1,
P2, P3 and P4.

The answer to this question is without exception no. Figure 7.15 indicates
a counter-example in the case of a four-point set {P1, P2, P3, P4} whose
members are at the corners of a square. The convex hull of the set, of course,
is the square itself. Observe now that the point V has at least two distinct
expressions as a convex combination of P1, P2, P3 and P4:

(i) V = 0.25P1 + 0.5P2 + 0.0P3 + 0.25P4, obtained by computing for V as
belonging to the triangle P1P2P4 (so the coefficient of P3 is 0).

(ii) V = 0.5P1 + 0.25P2 + 0.25P3 + 0.0P4, obtained by computing for V as
belonging to the triangle P1P2P3 (so the coefficient of P4 is 0).

In such a situation, there is no unambiguous way in which to interpolate
values, such as color, which are defined at the vertices. For example, which
set of weights would one use to interpolate at V : (0.25, 0.5, 0.0, 0.25) or
(0.5, 0.25, 0.25, 0.0)? This problem is actually general and arises in the case
of any convex polygon with at least four vertices, as we ask the reader to
show.

Exercise 7.27. Show that in any convex polygon with four or more
vertices a point can be found which has more than one expression as a
convex combination of its vertices.
Hint : If the polygon is P1P2 . . . Pn, a point V in the intersection of the
triangles P1P2P3 and P1P2P4 will do.

Exercise 7.28. Could it be that some strange plane non-convex polygon
has the property that all its points are uniquely expressible as convex
combinations of its vertices?

Suggested approach: If you did Exercise 7.22 you know that a plane non-
convex polygon P1P2 . . . Pn has at least one vertex, say Pr, where the internal
angle is greater than 180◦. Show, in fact, that Pr is a non-extreme member
of the set of vertices {P1, P2, . . . , Pn} and, moreover, contained in a triangle
with corners at some three other vertices, say Pi1 , Pi2 and Pi3 (can you find
such a triangle for the lone non-extreme vertex of the non-convex polygon
on the right of Figure 7.10?). Then Pr itself has more than one expression
as a convex combination of the vertices P1, P2, . . . , Pn.

We conclude that any polygon with four or more vertices, be it convex or
not, contains points with ambiguous representation as a convex combination
of its vertices. It is with good reason, therefore, that OpenGL has chosen
points, segments and triangles, and none other , as its fundamental primitives.304
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Planarity

One final note is that we have been making the tacit assumption that
polygons under consideration are all planar, as evident from the fact that
our definitions of convex combination and convexity have been for a plane.
This assumption is valid because a polygon is not even properly defined if
its vertices do not lie on one plane! The following example illustrates the
problem.

Example 7.4. A quadrilateral q = P1P2P3P4 is made starting from a
square of sides 2 units on the xy-plane and then lifting one vertex a unit in
the z-direction. Specifically, the vertices of q are P1 = (1, 1, 0), P2 = (3, 1, 0),
P3 = (3, 3, 1) and P4 = (1, 3, 0). P1, P2 and P4 lie on the xy-plane, while P3

is one unit above.
Now, which is q: is it the union of the two triangles P1P2P3 and P1P4P3

(Figure 7.16(a)) or is it the union of the two triangles P2P1P4 and P2P3P4

(Figure 7.16(b))? These two shapes are completely disjoint except for the
shared boundary (appropriately bending a couple of sheets of paper will
convince you of this)!

z

y

x
P1(1,1,0) P2(3,1,0)

P3(3,3,1)

P4(1,3,0) P4

P1 P2

P3

z

(a) (b)

y

x

Figure 7.16: A non-planar quad q drawn in two different ways.

As a set of at most three vertices is always planar, no such problem as
in the preceding example can arise for a point, a segment or a triangle –
yet another reason for OpenGL to favor these three. In fact, as we said in
Section 2.6, general polygons, drawn using GL POLYGON, have been discarded
from the core of the newer versions of OpenGL, and even readers using the
compatibility profile are urged to use triangles always instead of polygons.

7.5 Summary, Notes and More Reading

In this chapter we learned that points, segments and triangles are preferred
by a drawing API such as OpenGL for the reason that each of their points
can be unambiguously interpolated from their vertices. This led to exploring 305
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the definition of a convex combination and the notions of convexity and a
convex hull.

To learn more about convexity and related algorithms the place to look
is the computational geometry literature. The introductory computational
geometry texts by de Berg et al. [11] and O’Rourke [107] are good starting
points. The mathematical introduction to computer graphics by Buss [22]

has a chapter on averaging and interpolation and an interesting discussion
of convexity as well.
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Figure 8.1: Screenshot of
ballAndTorus-

Shadowed.cpp.

T
o create a 3D object in CG one assembles its surface, or a good
likeness, with help of 2D primitives. For example, the (seemingly
3D) solid ball and torus in Figure 8.1 are depicted by the 2D surface

sphere and surface torus which bound them, respectively (note that the calls
glutSolidSphere() and glutSolidTorus() in ballAndTorusShadowed.cpp

refer to filled triangles, not solid 3D objects). Boris’s head in Figure 8.2 is a
mesh of quads.

Figure 8.2: Mesh of
Boris’s head (courtesy of
Sateesh Malla at
www.sateeshmalla.com).

The triangle, as we learned in the previous chapter, is the preferred of
the 2D primitives. It turns out, though, that simply cobbling together a
collection of triangles that resembles the desired object may not be good
enough. In order to avoid problems at the time of rendering the collection
must follow certain rules. The goal of this chapter is to formulate these rules
and understand their importance, particularly in the context of OpenGL.

Section 8.1 begins by listing the rules that make a collection of triangles
a so-called triangulation. After several examples of triangulations and non-
triangulations it then explains the logic behind these rules, in particular
why they make a collection behave predictably at the time of rendering.
The next section is a brief discussion of so-called Steiner vertices and how
they can be included to improve the quality of a triangulation. Section 8.3
explains OpenGL’s own somewhat simple-minded triangulation mechanism
and the consequent importance of making sure that all polygons specified in
a program are convex. Section 8.4 concludes.

This short chapter, together with its sisters Chapter 7 on convexity and
interpolation and Chapter 9 on orientation, goes to the geometric core of
CG.
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8.1 Definition and Justification

Definition 8.1. Suppose T is a collection of triangles whose union is an
object X. Then T is said to be a triangulation of X if, given any two
triangles t1 and t2 from T , exactly one of the following three is true:

1. t1 and t2 are disjoint, i.e., do not intersect at all.

2. t1 and t2 intersect in a vertex of both.

3. t1 and t2 intersect in an edge of both.

Informally, triangles in a triangulation are asked to intersect “nicely” or not
at all. If T is a triangulation of X then X is said to be triangulated by T .

A collection of triangles may be such that its union is X, but without
being a triangulation of X according to the preceding rules – such a collection
is called an invalid triangulation of X.

Remark 8.1. We should probably call triangulations “valid triangulations”
to make the contrast with invalid ones clear, but that would be cumbersome.

Figure 8.3(a) shows the triangulation of a simple non-convex polygon.
In Figure 8.3(b), {ABC,ADC} is a triangulation of the rectangle ABCD.

AA

CBCB C

D

B

A

E

DD

invalid triangulationtriangulation triangulated polygon

(a) (b) (c) (d)

(e) (f) (g) (h)

{ABE, BCE, CDE, DAE}
triangulation,
{ABC, DBC, DAE}
invalid triangulation

{ABC, ADC}
triangulation

{ABC, DAE, DEC}
invalid triangulation

triangulated wall

E

Figure 8.3: Triangulations.

In Figure 8.3(c), {ABC,DAE,DEC} is an invalid triangulation of
ABCD as ABC intersects DAE in AE, which is an edge of DAE, but308
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not of ABC (it is only part of the edge AC). Generally, if the vertex of one
triangle lies on another, then it should be a vertex of the second triangle as
well, or there is a violation of the triangulation rules.

In Figure 8.3(d), {ABE,BCE,CDE,DAE} is a triangulation of ABCD,
while {ABC,DBC,DAE} is an invalid triangulation because ABC and
DBC intersect in a triangle EBC, which, of course, is neither an edge nor
vertex of either.

Figure 8.3(e) is a familiar triangulation of a square annulus, while
Figure 8.3(f) is an often drawn invalid triangulation. Figure 8.3(g) is a
triangulated polygon approximating a disc. The approximation may be
made closer by increasing the number and decreasing the size of the sides
of the polygon. Likewise, the wall of Figure 8.3(h) may be made to appear
smoothly curved by increasing the number of flat panels and making them
narrower.

Triangulation is not a unique process and the same object may have
multiple triangulations.

Exercise 8.1. Draw a different triangulation of the polygon of Figure 8.3(a).
Does the number of triangles change?

Exercise 8.2. Can you give a formula for the number of triangles that any
triangulation of a simple polygon with n vertices must have? Assume that
there is no triangle vertex other than those from the original polygon (e.g.,
like Figure 8.3(a), but unlike Figure 8.3(c) where vertex E doesn’t belong
to the input rectangle).

Why the rules for triangulation? As long as a collection of triangles looks
like the desired object why should one care if it happens to be a triangulation
according to Definition 8.1 or not?

To answer this question consider the invalid triangulation {ABC,DBC,
DAE} of the rectangle in Figure 8.3(d). Say the programmer has specified
color values at the vertices A-E. These are interpolated separately through
the three triangles ABC, DBC and DAE. What happens though in the
region of overlap EBC of the two triangles ABC and DBC? The color of
EBC is determined by the one of triangles ABC and DBC which appears
later in the code, as its color values overwrite those of the earlier one. This
exact situation is implemented in the following experiment.

Experiment 8.1. Run invalidTriangulation.cpp, which implements
exactly the invalid triangulation {ABC,DBC,DAE} of the rectangle in
Figure 8.3(d). Colors have been arbitrarily fixed for the five vertices A-E.
Press space to interchange the order that ABC and DBC appear in the
code. Figure 8.4 shows the difference. End

Exercise 8.3. (Programming) Theoretically, in Figure 8.3(c) a similar
ambiguity arises in the coloring of the segment AC, depending on the order 309
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(a) (b)

Figure 8.4: Screenshots of invalidTriangulation.cpp with two different drawing
orders: (a) ABC drawn first in code, DBC next (b) DBC drawn first, ABC next.

of the triangles ABC, DAE and DEC in the code. Try to write code like
invalidTriangulation.cpp to demonstrate this.

Interestingly, you will find that the expected ambiguity does not arise in
practice. The reason is that, at the time of rasterization, pixels on the edge
shared between two abutting polygons are assigned uniquely to one or the
other, independent of code order, by the polygon rasterizing algorithm (we’ll
see how in Section 14.4). Accordingly, color values of these border pixels are
obtained each from its “owning” polygon and there is no ambiguity.

Generally, though, it is not desirable that the image of an object be
sensitive to the order in which the collection of triangles composing it happens
to appear in the code. From a designer’s perspective it should be enough to
simply specify (a) a set of vertices, possibly, with color and other data at each,
and (b) a collection of triangles with corners among these vertices, in other
words, vertex adjacency data. It should not be necessary to additionally
specify a particular order on the collection. We have now the following
proposition which the reader is asked next to prove.

Proposition 8.1. If the collection of triangles composing an object satisfies
the properties of a triangulation, then its image is independent of the order
in which the triangles are rendered, i.e., independent of their code order.

Exercise 8.4. Prove the proposition just stated.
Suggested approach: Let t1 and t2 be two triangles of a triangulation. If
they don’t intersect then, of course, they cannot “conflict” in coloring a
region and code order between them does not matter. If they intersect in
a vertex v of both then there cannot be a conflict to be resolved by code
order either, because colors are specified per-vertex. If they intersect in an
edge . . ..
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8.2 Steiner Vertices and the Quality of a
Triangulation

A vertex used in the triangulation of an input object which is not a vertex of
the object itself is called a Steiner vertex . For example, E is a Steiner vertex
of the triangulation {ABE,BCE,CDE,DAE} of the rectangle ABCD of
Figure 8.3(d). Even though they may not be necessary per se in order to
triangulate, Steiner vertices are often inserted to improve the “quality” of a
triangulation.

Roughly, a good triangulation is one where there are few long and thin
triangles, called slivers, and where most triangles are of nearly equal size
and relatively small with respect to the entire object. We’ll not try to
formalize any further the notion of the quality of a triangulation, but here’s
an example to explain how it can impact rendering.

Consider the long rectangular floor ABCD, triangulated as in the top
of Figure 8.5. Located at either end are two lamps emitting white light –
one can indeed create light sources in OpenGL, as we’ll see. The vertices
A, B, C and D are clearly well-lit; say the color tuple computed at each is
(0.9, 0.9, 0.9). Recalling that OpenGL interpolates over a triangle the values
evaluated at its vertices, the color at every point of ABCD turns out to be
(0.9, 0.9, 0.9), even though, realistically, a point in its interior, such as P ,
should appear darker.

C

D

E F

G

P

P

A

B

Figure 8.5: Triangulations of different quality.

Unfortunately, the sliver ABC causes what should be a local brightness
to propagate globally. Such a problem can often be alleviated by improving
the triangulation – e.g., the lower one of Figure 8.5 which uses Steiner
vertices. There, the color intensities computed at E, F and G will be less
owing to the increased distance from the light sources, so the interpolated
values at P less too.

Exercise 8.5. Typical triangulations of a disc that come to mind are shown
in Figures 8.6(a) and (b), but in either the problem with slivers becomes
severe with an increasing number of edges. Can you suggest a better quality 311
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of triangulation? Maybe so that most of the disc is covered with “good”
triangles and only a small area with slivers.

(a) (b) (c)

Figure 8.6: (a) and (b) Triangulations of a disc (c) Double annulus.

Exercise 8.6. Triangulate the double annulus depicted in Figure 8.6(c)
using exactly one triangle strip, with the help of Steiner vertices.

Exercise 8.7. Can the invalid triangulation of Figure 8.3(f) be made valid
by declaring Steiner vertices?

8.3 Triangulation in OpenGL and the
Trouble with Non-Convexity

We’ll now resolve the mystery that arose in Experiment 2.17 of Chapter 2.
Here’s the experiment again.

Experiment 8.2. Replace the polygon declaration of square.cpp with
(Block 1∗):

glBegin(GL POLYGON);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glVertex3f(40.0, 40.0, 0.0);

glVertex3f(20.0, 80.0, 0.0);

glEnd();

Display it both filled and outlined using appropriate glPolygonMode calls.
A non-convex quadrilateral is drawn in either case (Figure 8.7(a)).

Next, keeping the same cycle of vertices as above, list them starting with
glVertex3f(80.0, 20.0, 0.0) instead (Block 2):

glBegin(GL POLYGON);

glVertex3f(80.0, 20.0, 0.0);

glVertex3f(40.0, 40.0, 0.0);

∗To cut-and-paste you can find the block in text format in the file
chap8codeModifications.txt in the directory ExperimenterSource/CodeModifications.312
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glVertex3f(20.0, 80.0, 0.0);

glVertex3f(20.0, 20.0, 0.0);

glEnd();

Make sure to display it both filled and outlined. When filled it’s a triangle,
while outlined it’s a non-convex quadrilateral identical to the one output
earlier (see Figure 8.7(b))! Because the cyclic order of the vertices is
unchanged, shouldn’t it be as in Figure 8.7(a) both filled and outlined?

End

(a) (b)

Figure 8.7: Outputs: (a) Experiment 8.2 (b) Experiment 8.2, vertices cycled.

Here is what’s happening. When OpenGL is asked to draw a filled polygon
P with n vertices v0, v1, . . . , vn−1, it renders a fan of n− 2 triangles around
the first vertex, exactly as though the call was made using the primitive
GL TRIANGLE FAN instead of GL POLYGON; in particular, the triangles of the
fan are v0v1v2, v0v2v3, . . ., v0vn−2vn−1.∗

v0 v0 v0
v0v1

v1

v1

v2

v2

v2

v2v3 v3 v3

v3

v4

v4

(a) (b) (c) (d)

v1

Figure 8.8: Triangle fans.

Now, if the polygon P = v0v1 . . . vn−1 is convex then the fan around v0 is
a triangulation of P . In fact, if P is convex then it does not matter how the
cycle of vertices is listed, i.e., at which vertex it starts: the fan around the
first vertex, or any vertex for that matter, is always a triangulation of P . For
example, Figures 8.8(a) and (b) show the triangulation fans corresponding
to cyclically rotated listings of the vertices of a convex pentagon.

Remark 8.2. That OpenGL seeks to triangulate the polygon before rendering
is understandable given, from what we learned in Chapter 7, that it can

∗This triangulation is implementation-dependent but all implementations that we are
aware of behave as described. 313
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then unambiguously interpolate property values from the vertices through
individual triangles.

However, if the polygon P = v0v1 . . . vn−1 is not convex then there is no
guarantee that the fan v0v1v2, v0v2v3, . . ., v0vn−2vn−1 is a triangulation of
P . For example, the listing v0v1v2v3 as in Figure 8.8(c) of the vertices of
the non-convex quadrilateral of the preceding experiment does, in fact, give
the fan triangulation {v0v1v2, v0v2v3}. However, the fan from the listing as
in Figure 8.8(d) not only does not give a triangulation, it does not even give
an invalid triangulation, as the union of the triangles v0v1v2 and v0v2v3 is
v0v2v3 itself, which is larger than the input quadrilateral v0v1v2v3! This
explains the differing filled outputs of Experiment 8.2.

It’s accordingly vital to ensure that a filled polygon specified using
GL POLYGON is convex; otherwise, rendering is unpredictable and may even
be incorrect depending on the vertex listing. In fact, as we have said before:
avoid polygons, using triangles instead; indeed, newer versions of OpenGL
(like 4.3, which we’ll study extensively) have discarded polygons altogether.

When asked to draw a polygon in outline, OpenGL draws a line loop
using the given vertex sequence, which is always valid however the vertices
are listed. This explains the correctness of the outlined outputs in both
cases in Experiment 8.2.

Important : As the reader may easily verify, a triangle strip specified
with GL TRIANGLE STRIP and a triangle fan with GL TRIANGLE FAN are
automatically valid triangulations provided they don’t self-intersect, so
use these constructs as much as possible.

Exercise 8.8. (Programming) Replace the polygon declaration of
square.cpp with (Block 3):

glBegin(GL POLYGON);

glColor3f(0.0, 0.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glColor3f(1.0, 0.0, 0.0);

glVertex3f(40.0, 40.0, 0.0);

glColor3f(0.0, 0.0, 0.0);

glVertex3f(20.0, 80.0, 0.0);

glVertex3f(20.0, 20.0, 0.0);

glEnd();

It’s actually the second listing of the polygon of Experiment 8.2 with all
vertices, except the second, colored black, while the second vertex itself is
colored red. The rendered figure is all black with no sign of red at all. Why?

Exercise 8.9. (Programming) Replace the polygon declaration of
square.cpp with the following piece of code specifying a non-convex
pentagon (Block 4):

glBegin(GL POLYGON);314



i
i

i
i

i
i

i
i

Section 8.3

Triangulation in

OpenGL and the

Trouble with

Non-Convexity

glVertex3f(50, 10, 0);

glVertex3f(40, 50, 0);

glVertex3f(10, 60, 0);

glVertex3f(90, 60, 0);

glVertex3f(60, 50, 0);

glEnd();

Sketch the pentagon on graph paper first and then predict the filled output
each time as you rotate the vertices cyclically.

Even in the case of a convex polygon, different triangulations may lead
to different renderings as the following exercise illustrates.

Exercise 8.10. (Programming) Replace the polygon declaration of
square.cpp with the following to make a colored pentagon (Block 5):

glBegin(GL POLYGON);

glColor3f(0.0, 0.0, 0.0);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(50.0, 20.0, 0.0);

glVertex3f(80.0, 50.0, 0.0);

glVertex3f(80.0, 80.0, 0.0);

glColor3f(1.0, 0.0, 0.0);

glVertex3f(20.0, 80.0, 0.0);

glEnd();

All the vertices are black except the last one listed, which is red. Next,
cyclically rotate the vertices, preserving their colors (Block 6):

glBegin(GL POLYGON);

glColor3f(0.0, 0.0, 0.0);

glVertex3f(50.0, 20.0, 0.0);

glVertex3f(80.0, 50.0, 0.0);

glVertex3f(80.0, 80.0, 0.0);

glColor3f(1.0, 0.0, 0.0);

glVertex3f(20.0, 80.0, 0.0);

glColor3f(0.0, 0.0, 0.0);

glVertex3f(20.0, 20.0, 0.0);

glEnd();

Explain the difference in rendering. Verify your understanding by calculating
the color of the point (50.0, 70.0, 0.0) in either pentagon and actually drawing
a point of that color at (50.0, 70.0, 0.0) (which should then be invisible).
Hint : See Figures 8.8(a) and (b).

Exercise 8.11. A polygon with more than three vertices might be worse
than non-convex – it might even be non-planar. Explain what might happen
with different fan-triangulations of such a “polygon”, particularly using
Example 7.4 of the last chapter. 315
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Figure 8.9: Objects to draw.

Exercise 8.12. (Programming) Draw the objects in Figure 8.9 after
first triangulating them. Allow rendering both filled and wireframe.

Make true holes for the eyes and mouth of the mask, which is a flat
object. In addition to the vertices you’ll need on the circular arcs in order to
approximate them, it may be useful to situate Steiner vertices in the interior
of the mask as well (possible strategic locations are indicated in the figure).

Make the car simple and boxy. Keep in mind that it is 3D and depicted
in Figure 8.9 is just a side view. In fact, copy code from hemisphere.cpp

to rotate an object so that the car may be viewed from all angles.
For the flat decorated annulus make sure that the triangles in the darkly

shaded part are separate from those in the lightly shaded part.

8.4 Summary, Notes and More Reading

In this chapter we learned the importance of triangulation and the potential
problems arising from an invalid one. We learned as well of OpenGL’s
somewhat cavalier default attitude toward triangulation and the actually
good reasons for it.

For more on the topic, computational geometry literature, in particular,
deals extensively with theory of triangulation – and tetrahedralization, its
3D equivalent – as well as practical algorithms for both. There are practical
algorithms to triangulate a simple plane polygon with n vertices in O(n log n)
time. You will find them described in de Berg et al. [11] and O’Rourke [107],
both good introductions to computational geometry in general. The CGAL
[28] library is a marvelous source of ready-to-use algorithms for various
geometric applications, including triangulation.

Mesh generation, as triangulation is often called, is obviously key to
object creation in computer graphics. We’ll be seeing much more of this
process as we go along and Chapter 10 on design is mostly devoted to the
topic.

An advanced text on mesh generation is by Edelsbrunner [41]. The
proceedings of the annual Meshing Roundtable Conference organized by
Sandia National Laboratories [74] is a source for the latest developments in
the field.
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T
he notion of orientation is vitally important in CG when drawing
3D scenes but, unfortunately, often confusing for the beginner.
OpenGL itself makes critical use of orientation to determine the

visible side of a surface. Note that the word “orientation” in the current
context relates to handedness, e.g., clockwise or counter-clockwise, as we
shall see, and has nothing to do with the orientation of a camera as discussed
in Section 4.6.3, where the word meant pose or arrangement. The goal for
this chapter is an understanding of orientation and its utility in CG.

The first section motivates the concept of orientation with a benign
thought experiment. Section 9.2 describes how OpenGL applies orientation
to determine the particular side of a 2D primitive which the viewer sees and
then renders it with that side’s specified material properties. If an object is
specified as a collection of triangles, as in a triangulation, the question then
arises of consistently orienting the collection. This is the topic of Section 9.3.
Section 9.4 describes how OpenGL can make use of orientation to improve
the efficiency of its rendering pipeline by culling certain triangles belonging
to a closed surface, a procedure called back-face culling. In Section 9.5
we see how geometric transformations affect the perceived orientation of a
primitive. We conclude in Section 9.6.

Although the three are conceptual in nature without a lot of excitement
by way of programming, this chapter and the two preceding ones form a
good part of the geometric core of CG.

9.1 Motivation

A thought experiment:
You and your friend, environmentally-conscious types both, are headed

separately toward a meeting of the Tree Huggers’ Union. The meeting is 317
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out in the open in a field with, well, lots of trees and no other landmarks.
There is, though, a triangle of long helium-filled balloons with the letters T,
H and U at the corners floating high above the meeting site. See Figure 9.1
(ignore superman with a spray can and the sheet in the middle for now).

You
Friend

THU is CW THU is CCW

T

U
H

Figure 9.1: Meeting of the Tree Huggers’ Union.

Now, you want to meet up with your friend before running into the crowd.
So while walking you call him on his cell phone to try to figure out how he
is currently situated with respect to you. How do you do this?

As both can see the balloons, a start is to determine if you are on the
same side or not. Unfortunately, the letters at the corners (carefully chosen,
of course!) are of no help as they each look the same from either side.

What you can do, though, is ask your friend, “Does the vertex sequence
THU – that’s T→H→U – appear CW (clockwise) or CCW (counter-
clockwise) from where you are?” If the orientation appears the same for
both, then you are on the same side of the balloons; if not, you are on
opposite sides.

OpenGL, as well, must determine for each triangle if the viewer currently
sees one side or the other. And, as we’ll see, it does so in an exactly similar
manner. We’ll understand as well the reason for this (seemingly) roundabout
method. Why does OpenGL need to distinguish sides in the first place?
Because they may have properties (e.g., outlined/filled, color, etc.) specified
differently by the programmer and OpenGL is obliged to display accordingly.

P
Q Rt1

t2

Figure 9.2: A bowl of
two colors.

For example, if the inside of a triangulated bowl is green and the outside
red, then the two sides of every triangle composing it are colored differently
as well. Given a viewpoint, OpenGL must determine the visible side of each
triangle and render it with the appropriate color. See Figure 9.2. From the
current (reader’s) viewpoint the red side of triangle t1 and the green side of318
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triangle t2 are visible. If the viewpoint travels 180 ◦ around the bowl, then
the visible side is reversed for both.

9.2 OpenGL Procedure to Determine Front
and Back Faces

Here then is the procedure that OpenGL follows.

(1) First, it obtains the vertex orders of each 2D primitive from the code.
For example, the declaration

glBegin(GL TRIANGLES);

v0; v1; v2; v3; v4; v5;

glEnd();

specifies the order of the vertices of the first triangle as v0, v1, v2

and that of the second as v3, v4, v5 (these orders are part of the
GL TRIANGLES definition; see Section 2.6). The declaration

glBegin(GL TRIANGLE STRIP);

v0; v1; v2; v3; v4; v5;

glEnd();

specifies the vertex orders of the four successive triangles in the strip as
v0, v1, v2 and v1, v3, v2 and v2, v3, v4 and v3, v5, v4. And,
similarly, for the other 2D primitives.

(2) Second, OpenGL determines for each component primitive if the order
of its vertices as determined in Step (1) is perceived as CW or CCW
by the viewer. This is said to be the orientation of the primitive with
respect to the viewer (keep in mind that orientation as just defined
has nothing to do with the identical word used to describe the pose of
a camera in Section 4.6.3).

OpenGL can make this determination because it knows both the
location of the viewer – at the origin in case of perspective projection
and at some point on the viewing face (it doesn’t matter which) in
case of orthographic projection – and those of the primitive’s vertices.
For example, in Figure 9.3, if the vertex order of the triangle is P,Q,R,
then it is perceived as CCW by the viewer. We’ll see later in this section
a specific algorithm to output the orientation given these respective
inputs.

Viewer

P

Q R

Figure 9.3: PQR is
oriented CCW to the
viewer, so it’s rendered
(red triangle on the
viewing face) according to
properties for its front face.

(3) Finally, those component primitives whose orientation the viewer
perceives as CCW are presumed to be front-facing , i.e., the viewer
is presumed by OpenGL to see their front faces, while those whose 319



i
i

i
i

i
i

i
i

Chapter 9

Orientation

orientation is perceived as CW are back-facing . This is actually the
default, which can be flipped with a glFrontFace(GL CW) call. Front-
facing components are rendered with properties specified for their front
faces, and back-facing ones with those for their back faces.

For example, if the vertex order of triangle t1 in Figure 9.2 happens to
be P,Q,R and the viewer is the reader, then OpenGL determines that
this triangle is oriented CCW with respect to the viewer, who sees,
therefore, the front face. Accordingly, t1 is rendered red, assuming
that the code indeed specifies that front-facing triangles are red. In
Figure 9.3 we show the red rendering on the viewing face itself,
pretending that it is the OpenGL window.

The reader may wonder at this point why one needs to invoke a particular
viewpoint to distinguish sides. In real life the inside of the bowl (which is
absolute and does not depend on the location of any viewer) is painted green
and the outside (absolute as well) red. Subsequently, a viewer’s perception
is determined simply by the laws of nature, in particular, how light from the
bowl travels to her eyes.

Why doesn’t OpenGL try and simulate this phenomenon? The answer
is that, yes, it is true that the inside and outside of the bowl are absolute
irrespective of the viewer, but only after the entire bowl has been created ! If
one breaks off a tiny piece of the bowl – a tiny flat triangle, if you will – and
shows it to someone who has never seen the whole, then it is not possible
for that person to decide which side of the piece originally lay on the bowl’s
inside and which the outside (Figure 9.4). OpenGL has no global notion of
objects either as it simply draws them triangle by triangle, and, therefore,
requires direction from the programmer as to which side of each triangle is
which.

?

Figure 9.4: Was the inside of the bowl red or green?

The three-step procedure described above provides exactly a mechanism
for such direction. Let’s return to the thought experiment at the start of the
section and assume that there is a giant triangular sheet of paper attached
to the balloons (as in Figure 9.1) which you know is colored differently on
either side. Then, of course, you could ask your friend, “What color do
you see up there?” instead of “Does the vertex sequence THU – that’s320
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T→H→U – appear CW or CCW from where you are?” The point is that the
two questions are exactly equivalent in that those who perceive a particular
orientation see a particular side and vice versa.

Continuing with this line of thought, suppose as you are walking that
you notice a man high up about to spray-paint the sides of the triangular
paper and he has a cell phone which you can call. You could then either ask
him to arbitrarily paint one side green and the other red, which would at
least serve the purpose of locating your friend, or you could ask him to paint
your side green and the other red, which allows you (the programmer) to
dictate that “CCW-seers” see red and “CW-seers” green.

There are three points worth emphasizing:

(a) A real-life 2D object (like a piece of paper) actually has two physical
sides regardless of which an observer sees. This is not true of OpenGL,
whose objects are all, of course, virtual. An OpenGL 2D primitive such
as a triangle consists simply of data, e.g., vertex coordinates, color
values, etc., residing inside the computer.

When asked to draw, OpenGL determines if the viewer is supposed to
see the front or the back face according to the procedure described
earlier and then displays the primitive with properties specified for
that face. And, what it displays, of course, is simply a set of colored
pixels in the OpenGL window (which has only one side!).

(b) The terms “front-facing” and “back-facing” are simply used to indicate
one side and the other. There is no intrinsic front or back of an
OpenGL triangle or other 2D primitive. If we didn’t use these terms,
we would have to say things like “the side which the viewer sees when
the order v0v1v2 appears clockwise from the origin”.

(c) OpenGL draws primitives one by one as they occur in the code. It
has no global understanding of the objects formed by these primitives
together .

Exercise 9.1. If a triangle t is specified by

glBegin(GL TRIANGLES); v0; v1; v2; glEnd();

where the vertices are as below, in each case determine which side of
t, front or back, a viewer at the origin sees, assuming the default of
glFrontFace(GL CCW):

(a) v0 = (1, 0, 0), v1 = (0, 1, 0), v2 = (0, 0, 1)

Answer :

x

y

z

v1

o v0

v2

Figure 9.5: v0v1v2
appears CW from O.

The back face because v0v1v2 appears CW from O. See Figure 9.5.

(b) v0 = (0, 1, 0), v1 = (1, 0, 0), v2 = (0, 0, 1)

(c) v0 = (−1, 0, 0), v1 = (0,−1, 0), v2 = (0, 0,−1) 321
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(d) v0 = (1, 1, 1), v1 = (1, 1,−2), v2 = (−1, 1,−2)

Exercise 9.2. A tacit assumption in all of the preceding discussion is that
a viewer at a particular location sees, in fact, only one side – front or back –
of a 2D primitive. For example, if a viewer could see both sides of a triangle,
then is it front or back facing (or both)? Moreover, how then would one
reconcile the situation with the three-step procedure at the start of the
section, which purports to determine a unique orientation for the primitive?

So, is the assumption that only one side is visible a valid one?
Hint : A triangle is always flat (planar), while a polygon should be specified
to be so.

Definition 9.1. Two orders of the vertices of a polygon are said to be
equivalent if one can be cyclically rotated into the other.

v0

v1
v2

v3

q

Figure 9.6: A
quadrilateral.

It follows that the sequence of vertices around any given polygon can
be written in exactly two inequivalent orders. For example, the sequence
of vertices around the quadrilateral q of Figure 9.6 can be written in eight
different ways:

v0v1v2v3 v1v2v3v0 v2v3v0v1 v3v0v1v2

v0v3v2v1 v3v2v1v0 v2v1v0v3 v1v0v3v2

The orders on the top line are all equivalent to each other, while those
on the second all to each other as well, and none on the first equivalent to
any on the second. The notion of equivalence is important precisely because
of the fact that a viewer on one side of a polygon perceives equivalent orders
of vertices as either all CW or all CCW.

Experiment 9.1. Replace the polygon declaration part of square.cpp
with (Block 1∗):

glPolygonMode(GL FRONT, GL LINE);

glPolygonMode(GL BACK, GL FILL);

glBegin(GL POLYGON);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glVertex3f(80.0, 80.0, 0.0);

glVertex3f(20.0, 80.0, 0.0);

glEnd();

This simply adds the two glPolygonMode() statements to the original
square.cpp. In particular, they specify that front-facing polygons are to be
drawn in outline and back-facing ones filled. Now, the order of the vertices
is (20.0, 20.0, 0.0), (80.0, 20.0, 0.0), (80.0, 80.0, 0.0), (20.0, 80.0, 0.0), which

∗To cut-and-paste you can find the block in text format in the file
chap9codeModifications.txt in the directory ExperimenterSource/CodeModifications.322
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appears CCW from the viewing face. Therefore, the square is drawn in
outline.

Next, rotate the vertices cyclically so that the declaration becomes
(Block 2):

glPolygonMode(GL FRONT, GL LINE);

glPolygonMode(GL BACK, GL FILL);

glBegin(GL POLYGON);

glVertex3f(20.0, 80.0, 0.0);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glVertex3f(80.0, 80.0, 0.0);

glEnd();

As the vertex order remains equivalent to the previous one, the square is
still outlined.

Reverse the listing next (Block 3):

glPolygonMode(GL FRONT, GL LINE);

glPolygonMode(GL BACK, GL FILL);

glBegin(GL POLYGON);

glVertex3f(80.0, 80.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(20.0, 80.0, 0.0);

glEnd();

The square is drawn filled as the vertex order now appears CW from the
front of the viewing box. End

Exercise 9.3. (Programming) Return to the first part of the preceding
experiment, where you replaced the polygon declaration part of square.cpp
with Block 1 from chap9codeModifications.txt. Next, add the following
statements just before the polygon declaration.

glTranslatef(50.0, 0.0, 0.0);

glRotatef(180.0, 0.0, 1.0, 0.0);

glTranslatef(-50.0, 0.0, 0.0);

Explain what you observe.

Exercise 9.4. (Programming) If the polygon declaration part of
square.cpp is replaced with the following piece of code (Block 4), then
is an outlined or filled triangle seen? Try to answer first without running
the program.

glFrontFace(GL CW);

glPolygonMode(GL FRONT, GL LINE);

glPolygonMode(GL BACK, GL FILL);

glBegin(GL TRIANGLES); 323
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glVertex3f(80.0, 10.0, -1.0);

glVertex3f(90.0, 75.0, 1.0);

glVertex3f(15.0, 10.0, 0.5);

glEnd();

Remark 9.1. Before we get to Chapter 11 and learn about material properties
and how to color the sides of an object differently, we’ll have to do with
distinguishing them by the unglamorous means of drawing one in outline
and the other filled.

Algorithm to Decide the Orientation Perceived by a Viewer

An algorithmic question, that we did not address then, arose earlier in
this section in Step (2) of OpenGL’s procedure to determine the side of a
primitive a viewer sees: given a viewpoint and a primitive with its vertices
ordered, how to decide if the given order appears CW or CCW? We invite
the reader to answer this for herself in the following exercise, with a fair
amount of input from our end.

Exercise 9.5. Assume that the viewpoint is at the originO and that the
vertices of a triangle are P = (x1, y1, z1), Q = (x2, y2z2) and R = (x3, y3, z3).
See Figure 9.7. Determine if the viewer at O perceives the order PQR as
CCW or CW.

z

y

xO

n = PQ x PR

P

p

Q

R

Figure 9.7: The plane p contains the triangle PQR: the orientation of PQR depends
on which side of p the viewer is located.

If you don’t do the exercise do at least read the conclusion below in terms of
the determinant D.
Suggested approach: Supposing, first, that P , Q and R are not collinear, i.e.,
PQR is a non-degenerate triangle, determine the equation ax+by+cz+d = 0
of the unique plane p containing P , Q and R.

A point (x, y, z) lies on p if ax + by + cz + d = 0. A point lies in one
half-space of p, i.e., on one side of p or the other, depending on whether
ax+ by + cz + d < 0 or ax+ by + cz + d > 0.

Observe, next, that a viewer located on p sees triangle PQR “edge-on”, in
other words, as a line and not a triangle, so the question of orientation does324
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not arise. A viewer not on p, on the other hand, perceives the orientation of
PQR depending on the half-space she is in: particularly, all viewers inside
one half-space perceive CCW, while those in the other CW.

Therefore, the perception at viewpoint O, in particular, depends on
whether O lies on p or, if not, on which side.

Finally, conclude the following:

Let D be the determinant ∣∣∣∣∣∣
x1 x2 x3
y1 y2 y3
z1 z2 z3

∣∣∣∣∣∣
1. If D = 0, then either (a) P , Q and R are collinear, in which case PQR

is a degenerate triangle and the question of an orientation of PQR
does not arise, or (b) O lies on the plane p containing P , Q and R,
so that the viewer at O sees triangle PQR edge-on and, again, the
question of orientation does not arise.

2. If D > 0, then the viewer at O perceives the order PQR as CW.

3. If D < 0, then the viewer at O perceives the order PQR as CCW.

Another approach is with the use of cross-products, by observing that
n = PQ× PR is normal to the plane p and, in fact, points to the half-space
where observers perceive PQR as CCW. Therefore, if the eye direction
vector PO makes an angle of less than 90◦ with n – placing it in the same
half-space as n – then the viewer at O perceives the order PQR as CCW
as well; if greater, then as CW (in the configuration depicted in the figure
the angle is, in fact, greater than 90◦). Whether the angle between the two
vectors n and PO is greater or less than 90◦ can be decided from the sign of
the dot product n · PO.

Note: If you’re not familiar with the dot or cross-product of vectors, we
have short sidebars in Sections 4.6.1 and 5.4.3, respectively.

Exercise 9.6. Does a viewer at the origin perceive the orderPQR of the
points P = (−1, 2, 0), Q = (3, 2, 2) and R = (−3,−8, 6) as CW or CCW?

Exercise 9.7. Does a viewer at the point O′ = (1, 3, 2) perceive the order
PQR of the points P = (3, 7, 5), Q = (4, 1, 2) and R = (0, 1, 2) as CW or
CCW?

Hint : Translate all points by (−1,−3,−2) to bring O′ to the origin and
then apply the result of Exercise 9.5.

Exercise 9.8. Relate Lemma 5.1 to the answer to Exercise 9.5. 325
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9.3 Consistently Oriented Triangulation

The notion of orientation gets even more interesting when one considers
a collection of triangles, as in a triangulation. The issue arises then of
consistency . We have the following definition:

Definition 9.2. Suppose an order is given of the vertices of each triangle
belonging to some triangulation T of an object X. T is said to be consistently
oriented if any two triangles of T which share an edge order the shared edge
oppositely; otherwise, T is inconsistently oriented .

Figure 9.8(a) shows a consistently oriented triangulation. For example,
the edge shared by the two triangles v0v1v2 and v1v3v2 is ordered v1v2 by
the first and v2v1 by the second. The triangulation of Figure 9.8(b) is not
consistently oriented as the edge shared by the two leftmost triangles is
ordered v1v2 by both.

v0

v0

v1v1

v4

v2v2

v5v4

v7

v8

v6
v3

v3

(a) (b)

Figure 9.8: (a) Consistently oriented triangulation (b) Inconsistently oriented
triangulation.

Intuitively, triangles in a consistently oriented triangulation of X appear
oriented either all CW or all CCW “looking at one side of X”. What exactly
does this mean?

A

H

T

B

C

U

Figure 9.9: OpenGL spray-painting bots.

Let’s return again to the earlier thought experiment at the point when
you were about to call the painter. Looking up again you make out that the326
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large triangular sheet is actually composed of four smaller ones and that
there’s a painter for each, so you’ll have to call them separately (Figure 9.9).
Moreover, all that you are allowed to specify to each is the order of his
triangle’s vertices – e.g., you can specify to the painter at the top his vertex
order as either C→A→T or T→A→C – for these painters are nothing but
OpenGL bots that have been programmed to do the following:

Determine if you perceive the order that you just called in as CCW or
CW; if CCW then paint your side red, if not green.

Clearly, the onus then is on you to call in the four orders so that the
small triangles are consistently oriented or else your side of the large triangle
will be colored disparately.

Are we saying that an observer at a given position can see only one side
of a consistently oriented surface? Not at all. For example, the man
in Figure 9.10 can see parts of both sides of the consistently oriented
triangulated wall. However, he sees a change in side, according to the
CW/CCW rule, only across boundary edges, never across an internal edge
– which is physically authentic. If the wall were not consistently oriented,
though, then this would not be the case. For example, the reader using the
CW/CCW rule would believe herself to be seeing two different sides of the
polygon of Figure 9.8(b) along the edge v1v2.

Figure 9.10: Man looking at both sides of a consistently oriented wall.

Recall again the bowl of Figure 9.2 with its inside green and outside red.
If it’s created in OpenGL as a triangulation, the programmer should then
(a) specify that all front faces are of one color and back faces of the other,
and (b) ensure consistent orientation of the triangulation so that the entire
inside and entire outside appear of the desired colors, respectively.

In fact, the preceding rule should apply to all surfaces that we create.
Here’s what can happen if it doesn’t.

Experiment 9.2. Replace the polygon declaration part of square.cpp
with (Block 5):

glPolygonMode(GL FRONT, GL LINE);

glPolygonMode(GL BACK, GL FILL); 327
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glBegin(GL TRIANGLES);

// CCW

glVertex3f(20.0, 80.0, 0.0);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(50.0, 80.0, 0.0);

//CCW

glVertex3f(50.0, 80.0, 0.0);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(50.0, 20.0, 0.0);

// CW

glVertex3f(50.0, 20.0, 0.0);

glVertex3f(50.0, 80.0, 0.0);

glVertex3f(80.0, 80.0, 0.0);

// CCW

glVertex3f(80.0, 80.0, 0.0);

glVertex3f(50.0, 20.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glEnd();

The specification is for front faces to be outlined and back faces filled,
but, as the four triangles are not consistently oriented, we see both outlined
and filled triangles (Figure 9.11(a)). End

(a) (b)

Figure 9.11: Screenshots for (a) Experiment 9.2 and (b) Experiment 9.3.

Experiment 9.3. Continuing the previous experiment, next replace the
polygon declaration part of square.cpp with (Block 6):

glPolygonMode(GL FRONT, GL LINE);

glPolygonMode(GL BACK, GL FILL);

glBegin(GL TRIANGLE STRIP);328
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glVertex3f(20.0, 80.0, 0.0);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(50.0, 80.0, 0.0);

glVertex3f(50.0, 20.0, 0.0);

glVertex3f(80.0, 80.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glEnd();

The resulting triangulation is the same as before, but, as it’s consistently
oriented, we see only outlined front faces. (Figure 9.11(b)). End

In the next experiment we see an example of a consistently oriented
object, both sides of which are visible.

Experiment 9.4. Run squareOfWalls.cpp, which shows four rectangular
walls enclosing a square space. The front faces (the outside of the walls)
are filled, while the back faces (the inside) are outlined. Figure 9.12(a) is a
screenshot.

The triangle strip of squareOfWalls.cpp consists of eight triangles which
are consistently oriented, because triangles in a strip are always consistently
oriented. End

(a) (b)

Figure 9.12: Screenshots of (a) squareOfWalls.cpp and (b) threeQuarterSphere.cpp.

Experiment 9.5. Run threeQuarterSphere.cpp, which adds one half of
a hemisphere to the bottom of the hemisphere of hemisphere.cpp. The
two polygon mode calls ask the front faces to be drawn filled and back ones
outlined. Turn the object about the axes by pressing ‘x’, ‘X’, ‘y’, ‘Y’, ‘z’
and ‘Z’.

Unfortunately, the ordering of the vertices is such that the outside of
the hemisphere appears filled, while that of the half-hemisphere outlined.
Figure 9.12(b) is a screenshot. Likely, this would not be intended in a 329



i
i

i
i

i
i

i
i

Chapter 9

Orientation

real design application where one would, typically, expect a consistent look
throughout one side.

Such mixing up of orientation is not an uncommon error when assembling
an object out of multiple pieces. Fix the problem in the case of
threeQuarterSphere.cpp in four different ways:

(a) Replace the loop statement

for(i = 0; i <= p/2; i++)

of the half-hemisphere with

for(i = p/2; i >= 0; i--)

to reverse its orientation.

(b) Interchange the two glVertex3f() statements of the half-hemisphere,
again reversing its orientation.

(c) Place the additional polygon mode calls

glPolygonMode(GL FRONT, GL LINE);

glPolygonMode(GL BACK, GL FILL);

before the half-hemisphere so that its back faces are drawn filled.

(d) Call

glFrontFace(GL CCW)

before the hemisphere definition and

glFrontFace(GL CW)

before the half-hemisphere to change the front-face default to be CW-
facing for the latter.

Of the four, either (a) or (b) is to be preferred because they go to the
source of the problem and repair the object, rather than hide it with the
help of state variables, as do (c) and (d). End

It is not hard to orient consistently when creating objects in OpenGL
because the primitives themselves tend to help. Verify from the definition of
the drawing primitives in Section 2.6 that the set of triangles created by a call
to GL TRIANGLE STRIP or GL TRIANGLE FAN is, in fact, consistently oriented.
Therefore, a GL TRIANGLE STRIP or a GL TRIANGLE FAN call guarantees
consistent orientation, at least for that particular set of triangles, so it’s a
good idea to use as many such as possible.330
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Non-Orientable Surfaces

Before concluding this section, mention must be made of non-orientability.
There do exist surfaces which can be triangulated but never consistently
oriented. The most famous two, the Möbius band and Klein bottle, are
depicted in Figure 9.13. Such surfaces are said to be non-orientable. Surfaces
for which consistently oriented triangulations do exist are orientable.

Klein bottle
(sort of)

Möbius band

180o

Figure 9.13: Non-orientable surfaces.

Experiment 9.6. Make a Möbius band as follows.
Take a long and thin strip of paper and draw two equal rows of triangles

on one side to make a triangulation of the strip as in the bottom of Figure 9.13.
Turn the strip into a Möbius band by pasting the two end edges together
after twisting one 180◦. The triangles you drew on the strip now make a
triangulation of the Möbius band.

Try next to orient the triangles by simply drawing a curved arrow in
each, in a manner such that the entire triangulation is consistently oriented.
Were you able to?! End

We have less to worry about with the Klein bottle, at least as far as
real-world applications are concerned, because it cannot be created in 3-space.
It needs at least 4D space to hold it properly.

Further formalization of the notion of orientability requires knowledge of
topology, but what we have discussed so far is ample from the point of view
of first-level computer graphics. By the way, in case non-orientability looks
like a potential can of worms, rest assured you will almost never encounter
a non-orientable surface in practical applications.

9.4 Culling Obscured Faces

Consider a closed surface such as a sphere, cube or torus, i.e., a surface that
bounds a solid. See Figure 9.14. If the surface is opaque, then a viewer 331
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outside of it sees only one side, no matter where she is located, while a
viewer inside sees the other. Closedness is essential here, otherwise, a viewer
may be able to see both sides, e.g., as the reader can see for the hemisphere
or cylinder below.

P
RQ

Figure 9.14: First three closed surfaces, next two non-closed. The closed sphere is not
shaded to reveal the inside; the green back face of a triangle is not visible from outside
the sphere.

Such a situation is replicated in OpenGL by a consistently oriented
triangulation of the given closed surface. For example, suppose the outside
of the sphere of Figure 9.14 is painted red, and the inside green. Suppose,
too, it’s consistently oriented so that the orientation of the triangle PQR
appears CCW, as shown in the figure, to a viewer outside the sphere (e.g., the
reader). Then any viewer outside the sphere sees only front-facing (assuming
the default of CCW = front-facing) triangles and never any back-facing
ones (e.g., the green back face of the other triangle in the figure) because,
for such a viewer, all back-facing triangles are hidden behind front-facing
ones. The precise opposite is true for viewers inside the sphere who see only
back-facing triangles.

Now, OpenGL cannot know if a surface is closed or not because this is a
global decision to be made after the entire surface has been drawn (e.g., if
even one triangle were missing from the sphere then it would no longer be
closed). Closedness cannot, therefore, be determined by an API which simply
draws one triangle after another. As a result, what happens, for example,
in the case of the sphere above with the viewer outside, is that OpenGL
processes every triangle, and then ends up discarding back-facing ones at the
time of hidden surface removal because it’s only then that OpenGL discovers
back-facing triangles to be obscured by front-facing ones.

Therefore, for example, knowing that a viewer located outside the closed
sphere can see only front-facing triangles, the programmer can help OpenGL
be more efficient by directing it not to process any further a triangle once
it’s been determined to be back-facing. This is called back-face culling or
polygon culling .

Experiment 9.7. Run sphereInBox1.cpp, which draws a green ball
inside a red box. Press up or down arrow keys to open or close the box.
Figure 9.15(a) is a screenshot of the box partly open.

Ignore the statements to do with lighting and material properties
for now. The command glCullFace(face) where face can be GL FRONT,332
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Faces

GL BACK or GL FRONT AND BACK, is used to specify if front-facing or back-
facing or all polygons are to be culled. Culling is enabled with a call to
glEnable(GL CULL FACE) and disabled with glDisable(GL CULL FACE).

You can see at the bottom of the drawing routine that back-facing
triangles of the sphere are indeed culled, which makes the program more
efficient because these triangles are hidden in any case behind the front-facing
ones.

Comment out the glDisable(GL CULL FACE) call and open the box.
Oops! Some sides of the box have disappeared as you can see in Figure 9.15(b).
The reason, of course, is that the state variable GL CULL FACE is set when
the drawing routine is called the first time so that all back-facing triangles,
including those belonging to the box, are eliminated on subsequent calls.

End

(a) (b) (c)

Figure 9.15: Screenshots for (a) Experiment 9.7 (b) Experiment 9.7 (disable culling
commented out) (c) Experiment 9.8.

Exercise 9.9. So, all back-facing triangles of a closed surface are obscured
to a viewer outside. Is the converse true, in particular, are all obscured
triangles necessarily back-facing?

Experiment 9.8. Here’s a trick often used in 3D design environments like
Maya and Studio Max to open up a closed space. Suppose you’ve finished
designing a box-like room and now want to work on objects inside it. A
good way to do this is to remove only the walls obscuring your view of the
inside and leave the rest; that the obscuring walls are either all front-facing
or all back-facing means a cull will do the trick. Let’s see this in action.

Insert the pair of statements

glEnable(GL CULL FACE);

glCullFace(GL FRONT);

in the drawing routine of sphereInBox1.cpp just before the glDrawElements()
calls. The top and front sides of the box are not drawn, leaving its interior
visible. Figure 9.15(c) is a screenshot. End 333
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9.5 Transformations and the Orientation of
Geometric Primitives

We know now how OpenGL uses the vertex order to determine the orientation
of a primitive perceived by a viewer and, accordingly, the face seen, front
or back. A reader, recollecting the theory of transformations, particularly
Section 5.4.7 about orientation-preserving Euclidean transformations (i.e.,
rigid transformations) and orientation-reversing ones, may have already
thought about and guessed the answer to the following question: how
do these transformations affect the perceived orientation of a geometric
primitive?

Answer : An orientation-preserving Euclidean transformation preserves
the viewer’s perceived orientation of the primitive, while an orientation-
reversing one reverses it. An experiment will help make this clear.

(a) (b) (c)

Figure 9.16: Screenshots from Experiment 9.9: (a) Original (b) Wrongly reflected (c)
Correctly reflected.

Experiment 9.9. Run squareOfWallsReflected.cpp, which is square-

OfWalls.cpp with the following additional block of code, including a
glScalef(-1.0, 1.0, 1.0) call, to reflect the scene about the yz-plane.

// Block to reflect the scene about the yz-plane.

if (isReflected)

{
. . .
glScalef(-1.0, 1.0, 1.0);

// glFrontFace(GL CW);

}
else

{
. . .
// glFrontFace(GL CCW);

}334



i
i

i
i

i
i

i
i

Section 9.6

Summary, Notes and

More Reading

The original walls are as in Figure 9.16(a). Press space to reflect. Keeping
in mind that front faces are filled and back faces outlined, it seems that
glScalef(-1.0, 1.0, 1.0) not only reflects, but turns the square of walls
inside out as well, as you can see in Figure 9.16(b). End

Well, of course! The viewer’s (default) agreement with OpenGL is that
if she perceives a primitive’s vertex order as CCW, then she is shown the
front, if not the back. Reflection about the yz-plane, an orientation-reversing
Euclidean transformation, flips all perceived orientations, so those primitives
whose front the viewer used to see now have their back to her, and vice
versa.

We likely want the reflection to transform the primitives but not
simultaneously change their orientation. This is easily done by revising
the viewer’s agreement with OpenGL with a call to glFrontFace(GL CW).
Accordingly, uncomment the two glFrontFace() statements in the reflection
block. Now the reflection looks right, as shown in Figure 9.16(c). The
primitives are clearly still being reflected about theyz-plane, but front and
back stay the same.

9.6 Summary, Notes and More Reading

In this chapter we learned how OpenGL applies orientation to determine
that side of a 2D primitive which is visible. We saw as well the importance of
consistently orienting a triangulation. The technique of back-face culling to
improve efficiency in rendering a closed surface was a useful addition to our
repertoire. We learned as well how orientation-preserving and orientation-
reversing transformations impact the orientation of a primitive.

Although our discussion of orientation at the elementary level is ample
for the practical programmer, a fairly sophisticated mathematical setting
is required to formalize the concept of the orientability of a surface. The
interested reader is urged to look up an introductory topology text. The two
by Munkres [98, 99], as well as the one by Singer & Thorpe [134], are classics.
Incidentally, the mathematically-inclined student of CG will find many things
of use in topology. One has only to scan the latest ACM SIGGRAPH papers
[131] to see the heavy application of topological ideas in cutting-edge CG.
An excellent introduction to the emerging area of computational topology is
by Edelsbrunner and Harer [42].

335
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CHAPTER 10
Modeling in 3D Space

T
he goal for this chapter is to systematically study the modeling
of objects in 3D space in order to be able to populate the movies,
games and other scenes that we create.

As OpenGL has only straight and flat drawing primitives, curved objects
must necessarily be approximated. We’ll develop general strategies to
manufacture approximations of both curves and surfaces. We’ll examine in
depth certain special classes of curves and surfaces especially important in
applications. Particular attention will be paid to Bézier primitives because
of their utility, as well as the easy-to-use OpenGL syntax available to code
them. Another popular class we’ll study is that of fractals. Although we’ll
delve into some of the mathematics underlying curves and surfaces, we’ll
never be far from practical code: throughout this chapter are numerous
illustrative programming examples and exercises.

We begin in Section 10.1 with the modeling of curves. The first two
subsections, 10.1.1 and 10.1.2, describe how a curve is specified by equations,
either implicitly or parametrically. A strategy to draw a curve as a polyline
approximation is the topic of 10.1.3. We discuss polynomial and rational
parametrizations of curves in 10.1.4, as they are computationally more
efficient than other kinds. The conic sections, including parabolas, ellipses
and hyperbolas, comprise a very important and commonly-occurring class
of curves that we investigate briefly in 10.1.5. Section 10.1.6 is a short
introduction to the mathematics of curves, particularly giving a rigorous
definition of what it means to be a curve, and discussing continuity and
regularity. This section can and probably should be skipped on a first
reading.

We move on to surfaces in Section 10.2. We present the following 2D
primitives in an informal order of increasing drawing complexity: polygons,
meshes, planar surfaces and general surfaces. Subsections 10.2.1-10.2.3 339
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describe the first three, which are straightforward to draw. The next two
subsections, 10.2.4 and 10.2.5, discuss the specification of a general surface
and how to model one as a mesh approximation.

The powerful technique of making a surface by sweeping a curve is the
topic of 10.2.6. In 10.2.7 we pause to apply our newly-acquired skills in a
bunch of modeling projects. We continue our study of surfaces in 10.2.8,
discussing a special class of swept surfaces, called ruled surfaces. This
class includes bilinear patches and generalized cones and cylinders. The
generalization of conic sections to 3D, the quadric surfaces, is described in
10.2.9. Objects of the GLU library which are somewhat inappropriately
called the GLU quadrics are introduced in 10.2.10. The beautifully symmetric
regular polyhedra, or Platonic solids as they are often called, are presented in
10.2.11. Section 10.2.12 parallels 10.1.6 in a formal discussion of surfaces and
the properties of continuity and regularity – and the same recommendation
applies that it be skipped on a first reading.

Although we’ll be discussing Bézier theory in depth in a later chapter, it
turns out that a fair amount of design with Bézier curves and surfaces can
be accomplished even with limited theoretical understanding. Therefore, in
keeping with our aim in this chapter of equipping the reader with as many
practical modeling techniques as possible, Section 10.3 introduces Bézier
design – curves in 10.3.1 and surfaces in 10.3.2.

Fractal curves, ubiquitous in nature, and so often used to create surreal
shapes by designers, are the topic of Section 10.4.

10.1 Curves

One-dimensional objects are unions of straight and curved segments. See
Figure 10.1. Parts composed of straight segments can be drawn exactly –
in an OpenGL environment one would invoke the GL LINES, GL LINE STRIP

and GL LINE LOOP primitives. Curved segments, on the other hand, have to
be approximated.

Terminology : The term ”curve” can mean any segment, curved or straight.

We’ll formalize the process of approximating a curve with a polygonal
line. However, let’s first see how to mathematically specify a curve.

10.1.1 Specifying Plane Curves

We begin with plane curves , which are those that lie on a plane (or 2-space,
mathematically). There are two ways to specify such a curve, implicit and
parametric.

340
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(a)

(f) (g) (h) (i)

(b) (c) (d) (e)

Figure 10.1: One-dimensional objects.

Implicit

A plane curve c is specified implicitly by the equation

F (x, y) = 0 (10.1)

if the points of c are those whose coordinates (x, y) satisfy this equation.
F (x, y) = 0 is said to be the implicit equation of c, and the curve c the graph
of this equation. An implicit equation, therefore, gives a Boolean condition
for points on the curve to satisfy: a point (a, b) lies on the curve F (x, y) = 0
if F (a, b) = 0; it doesn’t if F (a, b) 6= 0.

(−a, 0)

(1, a)(−1, a)

(0, b) (0, r)

(0, −r)
(0, -b)

(a, 0) (−r, 0) (r, 0)

(−a, 0) (a, 0)

(−c/a, 0) (0, −c/b)

Straight line

Parabola Hyperbola

Ellipse Circle

Figure 10.2: Graphs of familiar plane curves (curves are fairly accurate sketches but
not exact plots).

Example 10.1. Here are examples of implicit equations of curves. Five
familiar ones first (see Figure 10.2, which shows a few points on the graph
of each as well):

(a) Straight line: ax+ by + c = 0 341
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(b) Ellipse: x2

a2 + y2

b2 = 1

(c) Circle (special case of ellipse): x2 + y2 = r2

(d) Parabola: y = ax2

(e) Hyperbola: x2

a2 −
y2

b2 = 1

Remark 10.1. An implicit equation is often written in the form F (x, y) =
G(x, y) with the RHS not necessarily equal to 0, but, of course, it can be
rearranged as F (x, y)−G(x, y) = 0.

The following two exotic curves (Figure 10.3) may not be as familiar:

(f) Witch of Agnesi: y(x2 + 4) = 8

(g) Lemniscate of Bernoulli: (x2 + y2)2 = x2 − y2

(0, 2)

(−1, 0) (1, 0)

Lemniscate of BernoulliWitch of Agnesi

Figure 10.3: A couple of exotic curves.

Parametric

A plane curve c is specified parametrically , or explicitly , by the two equations

x = f(t), y = g(t), where t ∈ T (10.2)

if the points of c are those whose coordinates (x, y) satisfy x = f(t) and
y = g(t), for some value of t ∈ T . Mathematically, c = {(f(t), g(t)) : t ∈ T}.

The functions f and g are called parameter functions, t the parameter
variable and T the parameter space (also parameter domain). Typically, T
is an interval of the real line R, bounded or unbounded.

Example 10.2. Here are parametrizations of the curves earlier given
implicitly in Example 10.1:

(a) Straight line: x = t, y = −ab t−
c
b , t ∈ (−∞,∞), assuming b 6= 0.342
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(b) Ellipse: x = a cos t, y = b sin t, t ∈ [−π, π].

Observe that the two different parameter values t = −π and t = π
map to the same point (−a, 0) on the ellipse, which is by no means
illegal. A larger parameter space, e.g., (−∞,∞), would cause even
more overlap of parameter images. The half-open parameter interval
[−π, π) causes no overlap, but is a bit ungainly.

There’s nothing special about [−π, π] other than that it’s symmetric
about the origin. Any other closed interval of size 2π would do as well,
e.g., [0, 2π].

(c) Circle: x = r cos t, y = r sin t, t ∈ [−π, π].

(d) Parabola: x = t, y = at2, t ∈ (−∞,∞).

(e) Hyperbola: x = a sec t, y = b tan t, t ∈ [−π,−π/2) ∪ (−π/2, π/2) ∪
(π/2, π].

As you may check, the parameter space is simply [−π, π] minus the
two values ±π/2, where sec and tan become “infinite”.

(f) Witch of Agnesi: x = 2t, y = 2
1+t2 , t ∈ (−∞,∞). Alternately,

x = 2 tan t, y = 2 cos2 t, t ∈ (−π2 ,
π
2 ).

(g) Lemniscate of Bernoulli: x = cos t
1+sin2 t

, y = cos t sin t
1+sin2 t

, t ∈ [−π, π].

Exercise 10.1. Prove that parametrizations of Example 10.2 are indeed
those of the curves given implicitly in Example 10.1.
Hint : Plug the parametric forms for x and y into the implicit equation and
verify the equality, e.g., for the circle

x2 + y2 = (r cos t)2 + (r sin t)2 = r2(cos2 t+ sin2 t) = r2

Whereas an implicit equation F (x, y) = 0 for a curve gives a Boolean
check for points “aspiring” to be on the curve, a parametric representation
is more functional. If a curve c is given parametrically by the equations
x = f(t) and y = g(t), where t ∈ T , one can think of the image (f(t), g(t))
of the parameter value t as traveling on c, as t travels in the parameter
space. For example, as t goes from −π to π, the point (a cos t, b sin t) sweeps

around the ellipse x2

a2 + y2

b2 = 1 from (−a, 0) and back again.
In summary, while an implicit specification F (x, y) = 0 is ideal for

verifying if a given point lies on a curve c, it’s not as useful for the purpose of
generating points on c; it is exactly the opposite in the case of a parametric
specification such as x = f(t), y = g(t), t ∈ T .

Example 10.3.

(a) Verify if the points (1, 0) and (1,−1) lie on the Lemniscate of Bernoulli. 343
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(b) Generate three distinct points on the Lemniscate of Bernoulli.

Answer : (a) Plugging (1, 0) and (1,−1) successively into the implicit
equation (x2 + y2)2 = x2 − y2, one sees that the first point lies on the
curve, while the second doesn’t.

(b) Plugging t = 0, π/4 and π/2 successively into the parametric
equations

x =
cos t

1 + sin2 t
y =

cos t sin t

1 + sin2 t

one gets the points (1, 0), (
√
2
3 ,

1
3 ) and (0, 0) on the curve.

A parametric representation is to be preferred to an implicit for drawing
as it enables the programmer to efficiently generate sample points on the
curve. Going from one kind of representation to another often requires a bit
of mathematical dexterity. The following two exercises are not particularly
difficult though.

Exercise 10.2. An astroid, a curve traced by a fixed point on a circle
rolling inside another circle of four times the diameter (see Figure 10.4), is
given by the implicit equation

x
2
3 + y

2
3 − 1 = 0

Find parametric equations.

Astroid

x

y

x

y

Lemniscate of Gerono

Figure 10.4: More exotic curves.

Exercise 10.3. Parametric equations for another exotic curve, the
Lemniscate of Gerono (see Figure 10.4), are

x = cos t, y = cos t sin t, t ∈ [−π, π]

Find an implicit equation.344
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Remark 10.2. Neither the implicit nor parametric specification of a curve is
ever unique. For example, the unit circle can be written implicitly as both
x2 + y2 = 1 and 2x2 + 2y2 = 2, or parametrically as x = cos t, y = sin t,
t ∈ [−π, π] and x = cos(t/2), y = sin(t/2), t ∈ [−2π, 2π].

10.1.2 Specifying Space Curves

The extra dimension they have in which to move makes curves in 3-space –
the real world – more interesting than their plane counterparts. Such curves
are called space curves.

Implicit

The implicit specification of a space curve requires two equations:

F (x, y, z) = 0 ,

G(x, y, z) = 0 (10.3)

The reason for two equations rather than the one as in the case of a
plane curve is as follows. R3 itself – unconstrained by any equations –
is of dimension 3. However, each additional equation imposed reduces the
resulting object’s dimension by one. For example, points of R3 satisfying
the one equation

x2 + y2 + z2 − 1 = 0

make a sphere, a surface of dimension 2. Adding the equation of, say, the
plane x+ y + z − 1 = 0, one obtains the circle

x2 + y2 + z2 − 1 = 0,

x+ y + z − 1 = 0

which is a curve of dimension 1 at the intersection of the two (Figure 10.5).
Generally, two equations imposed on R3 give an object of dimension 3−2 = 1,
a curve.

Figure 10.5: A sphere
and a plane intersect in a
circle.

If the implicit equation of a plane curve is already known to be F (x, y) = 0,
then it can be written easily as a space curve by means of the two equations

F (x, y) = 0,

z = 0

Remark 10.3. We have used the term “dimension” without defining it
formally. We’ll not do so at this time as it would take us too far afield, but
think intuitively of an object’s dimension as the number of “independent
directions of movement” – “degrees of freedom” would be apt as well – on it.

For example, there is only one independent direction of movement on a
curve (mind that forward and backward are not independent, but merely 345
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the negative of one another). A surface allows two independent directions
of movement. True, there are infinitely many directions of movement from
any given point on a surface, but at most any two are independent. For
example, take a point on a sphere – using only latitude and longitude one
can represent any direction starting from it.

Exercise 10.4. What space curve is

x2 + y2 = 1,

x+ z = 1

Describe or sketch the curve.

Exercise 10.5. What space curve is

x2 + y2 + z2 = 1,

x2 + y2 + z2 − 2x = 0

Describe or sketch the curve.

Parametric

The parametric, or explicit, specification of a space curve is similar to that
of a plane one except, as one would expect, another parameter function is
required to determine the z coordinate value:

x = f(t), y = g(t), z = h(t), t ∈ T (10.4)

Any plane curve is a space curve as well, of course, and its parametric
equations in 2-space are extended to 3-space by adding z = 0.

Example 10.4. Parametric equations for a helix whose axis is along the
z-axis (Figure 10.6) are

x = r cos t, y = r sin t, z = t, t ∈ R

which, in fact, we used (slightly modified) to draw one in Section 2.8.2.

y

x

z

Figure 10.6: Helix.

Example 10.5. Parametric equations for a general straight line in space
are

x = a1t+ b1, y = a2t+ b2, z = a3t+ b3, t ∈ R
where the ai, bi, 1 ≤ i ≤ 3, are constants.

Example 10.6. Give implicit equations for the helix of Example 10.4.

Answer :

x− r cos z = 0

y − r sin z = 0

346
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Exercise 10.6. Give parametric equations for the infinite straight line
through (px, py, pz) and (qx, qy, qz). How is the parameter space restricted
if we are interested only in the finite segment between the two points?

Exercise 10.7. Sketch using pencil and paper the curve, called a conical
helix , specified parametrically by

x = t cos t, y = t sin t, z = t, t ∈ (−∞,∞)

10.1.3 Drawing Curves

Drawing a curve from its parametric equations is straightforward. We did
this in Chapter 2 for a few particular curves, in particular, the circle, parabola
and helix. We’ll describe next the procedure for a general space curve c
given parametrically by

x = f(t), y = g(t), z = h(t), t ∈ T (10.5)

Assume that T is [a, b], a closed interval. The point (f(t), g(t), h(t)) on c is
denoted c(t).

It’s useful to imagine T as being part of the real line and to imagine
c as lying in a “separate” 3-space. The parameter equations together
c(t) = (f(t), g(t), h(t)) can then be thought to map the former to the latter
or, more vividly, to lift and shape T into c. See Figure 10.7.

R3

a = = b 

x

c
l

z

y

T
tR

c(t) = (f(t), g(t), h(t))
c(t0)

c(t1) c(t13)

c(t14)

t0 t1 t13 t14

Figure 10.7: Parameter space T = [a, b] mapped to a curve c. The sample grid on T , as
well as its corresponding mapped sample on c, has 15 points (not all labeled). The
polyline l connecting the mapped sample approximates c.

A sample

a = t0 < t1 < . . . < tn = b 347
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of n+ 1 points from [a, b] is called a sample grid on [a, b] (note that the end
points a and b are always included in the sample). It maps to a sample

c(t0), c(t1), . . . , c(tn)

of n+ 1 points of c, called the mapped sample.
The polyline l joining, successively, c(t0), c(t1), . . . , c(tn) is an approxima-

tion of c. Each individual segment c(ti−1)c(ti), 1 ≤ i ≤ n, of l approximates
the arc of c between c(ti−1) and c(ti). The sample grid and its corresponding
mapped sample in Figure 10.7 contain 15 points each.

Keep in mind that a sample which is uniformly spaced along [ a, b] may
not map to one which is uniformly spaced along c. For, the length of the arc
of c between c(ti−1) and c(ti) depends not only on the length of the interval
[ti−1, ti], but also on the “speed” of c(t) with respect to t. We see next an
example of this.y

x

Figure 10.8: A uniformly
sampled parabola y = x2.

Example 10.7. Figure 10.8 shows the parabola y = x2. The seven sample
points on the real line are uniformly spaced, but their images on the curve
are not because the rate of change of y with respect to x – equaling dy

dx = 2x
for the parabola – increases away from the origin.

Experiment 10.1. Compare the outputs of circle.cpp, helix.cpp and
parabola.cpp, all drawn in Chapter 2.

The sample is chosen uniformly from the parameter space in all three
programs. The output quality is good for both the circle – after pressing ‘+’
a sufficient number of times for a dense enough sample – and the helix. The
parabola, however, shows a difference in quality between its curved bottom
and straighter sides, the sides becoming smoother more quickly than the
bottom. In curves such as this, one may want to sample non-uniformly, in
particular, more densely from parts of greater curvature. End

Here’s another simple curve-drawing program.

Experiment 10.2. Run astroid.cpp, which was written by modifying
circle.cpp to implement the parametric equations

x = cos3 t, y = sin3 t, z = 0, 0 ≤ t ≤ 2π

for the astroid of Exercise 10.2. Figure 10.9 is a screenshot. End

Figure 10.9: Screenshot
of astroid.cpp.

Exercise 10.8. (Programming) Draw the Lemniscate of Bernoulli with
the help of the parametric equations given in Example 10.2(g).

Exercise 10.9. (Programming) Draw the conical helix of Exercise 10.7.

Exercise 10.10. (Programming) Draw a curve with a repeating
pattern as close as possible to that of Figure 10.10(a). The two arcs of the
“shark’s fin” could be parts of circles. Your program should allow the user to
specify the number of repetitions.348
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(a) (b)

Figure 10.10: (a) Curve with a repeating pattern (b) Ax head.

Exercise 10.11. (Programming) Draw an ax head as in Figure 10.10(b).

Exercise 10.12. (Programming) The twisted cubic is a space curve
given parametrically by the equations

x = t, y = t2, z = t3

Draw a part of it near the origin.

Exercise 10.13. (Programming) Animate the drawing of an astroid,
as described in Exercise 10.2, as the curve traced by a point of a circle rolling
inside another four times as large. The popular children’s drawing toy called
Spirograph can draw an astroid, among other curves.

Superellipses

1/2

2
1

n = 4

Figure 10.11:
Supercircles
|x|n + |y|n = 1, for
n = 1/2, 1, 2, 4.

A class of plane curves that generalizes both the ellipse and the astroid is
that of the superellipses, invented by Lamé in 1818, given by the implicit
equation: ∣∣∣x

a

∣∣∣n +
∣∣∣y
b

∣∣∣n = 1

where a, b and n each is a positive constant.

Note : Because the exponent n can be fractional, the modulus signs are to
avoid imaginaries if x or y is negative.

Figure 10.11 shows a few superellipses for a = b = 1 – when their
equation is |x|n+ |y|n = 1 – and different values of n. Generally, if a = b, the
superellipse is called a supercircle . When n = 1 the supercircle is a square,
when n > 1 it’s convex outwards, and when n < 1 concave outwards.

Exercise 10.14. Justify the claim that superellipses generalize both ellipses
and astroids.

Exercise 10.15. Deduce the parametric equations of a superellipse.

Exercise 10.16. (Programming) Write a program to draw a supercircle
|x|n + |y|n = 1, allowing the user to choose n.

349
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10.1.4 Polynomial and Rational Parametrizations

A rational function is the ratio of two polynomials. For example,

1 + 2t

1− t+ t2 − t3
and

x

1 + x
(10.6)

are rational functions of t and x, respectively. A polynomial function is, of
course, simply a special case of a rational function where the denominator is
1, e.g.,

1 + 2t− 3t2 + 4t3 and x3 (10.7)

Unlike polynomial functions, rational functions may become undefined, which
happens when their denominator vanishes. The first rational function of
(10.6) is undefined at t = 1 and the second at x = −1.

If the parameter functions of a curve c are all rational, then it is said to be
a rational curve and to have a rational parametrization; if they are, in fact, all
polynomial, then c is a polynomial curve with a polynomial parametrization.
E.g., Examples 10.2 (a) and (d) give polynomial parametrizations, while the
first part of (f) a rational one.

The parametrization

x = r cos t, y = r sin t, t ∈ [−π, π]

of Example 10.2(c) of the circle x2 + y2 = r2 uses trigonometric functions
and is called, of course, a trigonometric parametrization . It turns out that
there’s an alternate rational parametrization of the circle, as the reader is
asked to show in the following exercise.

Exercise 10.17. Show, first, that

x = r
1− t2

1 + t2
and y = r

2t

1 + t2

satisfy x2 + y2 = r2 for all values of t.

y

x

t=2 
t=1 

t=1/2 

t=−1/2 

t=0 
(−r,0)

t=−1 

t=3 
t=4 

t=−4 
t=−3 

t=−2 

Figure 10.12: Points on
a circle from a rational
parametrization.

By plotting a few values of (x, y) for values of t = 0,±1,±2, . . . (see
Figure 10.12) convince yourself that

x = r
1− t2

1 + t2
, y = r

2t

1 + t2
, t ∈ (−∞,∞)

is a parametrization of the entire circle of radius r centered at the origin
minus the point (−r, 0). The point (−r, 0), which the parametrization
“cannot reach,” is called a singularity of the curve (with respect to this
particular parametrization).

Polynomial and rational parametrizations are often preferred to trigono-
metric ones in applications because the former can be computed exactly (up
to round-off error) while a trigonometric function can at best be approximated
by a series. For example, the power series 1− x2/2! + x4/4! − x6/6! + . . .
must be summed to some desired degree of accuracy to determine cosx.350
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Exercise 10.18. (Programming) Draw a unit circle centered at the
origin with the help of a rational parametrization. Avoid the problem of
the singularity at (−r, 0) in the previous exercise, as well as the infinite
parameter domain there, by using the equations

x =
1− t2

1 + t2
, y =

2t

1 + t2
, t ∈ [−1, 1]

to draw the right half semi-circle and

x = −1− t2

1 + t2
, y =

2t

1 + t2
, t ∈ [−1, 1]

to draw the left half.

Exercise 10.17 gave a rational parametrization of a circle. Is there a
polynomial parametrization which might, in fact, be computationally better
because it does not require the expensive division operation? The answer is
no, as is shown in the following.

Example 10.8. Prove that the circle x2 + y2 = r2 has no polynomial
parametrization.

Answer : Suppose, if possible, that x = f(t) and y = g(t) is a polynomial
parametrization of the circle. Then f(t) and g(t) are polynomial functions
such that

f(t)2 + g(t)2 = r2 (10.8)

If f(t) and g(t) are both constants, i.e., neither contains a power of t, then
(f(t), g(t)) is just one point and certainly cannot represent a circle. Therefore,
either one or both of the two functions must contain a power of t. Let tm

be the highest power of t in f(t) or g(t). Write

f(t) = amt
m + am−1t

m−1 + . . . a0 and g(t) = bmt
m + bm−1t

m−1 + . . . b0

where at least one of am and bm is non-zero. Then

f(t)2 + g(t)2 = (a2m + b2m)t2m + lower powers of t

where the coefficient of t2m is non-zero, in fact, positive, because at least
one of am and bm is non-zero.

We see, then, that the LHS of (10.8) contains a non-zero power of t, but,
in this case, it cannot equal the RHS which is only scalar, proving that the
circle x2 + y2 = r2 indeed has no polynomial parametrization.

10.1.5 Conic Sections

The ellipse, parabola and hyperbola are well-known members of a special
class of plane curves called conic sections or, simply, conics. A conic is 351
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nothing but the graph on the plane of a quadratic equation in two variables,
typically written:

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0 (10.9)

(At least one of A, B and C should not be zero, or the equation is no longer
that of a quadratic.)

Conditions on the coefficients determine the type of conic. If the quantity
B2 − 4AC, called the discriminant of the conic, is less than zero, then the
conic is an ellipse, if it is zero then a parabola, and if it is greater than zero
then a hyperbola. If A = C are non-zero and B = 0 we get a circle, which
is a special case of the ellipse. However, in all cases, there are degenerate
instances when the equation is that of a point, straight line(s), or nothing at
all, as the reader is asked to find for herself next.

Exercise 10.19. Show that the following are equations of degenerate
conics by determining their graphs:

x2 + 2y2 + 1 = 0, x2 + y2 = 0, x2 + 2xy + y2 = 0, x2 − y2 = 0

In each case say as well if it is a degenerate ellipse, circle, parabola or
hyperbola.

Conics arise frequently in design applications. Consequently, it’s useful
that they all have polynomial or rational parametrizations. In fact, any
non-degenerate conic can be transformed by translation and rotation to one
of the following four particular normalized forms (pictured in Figure 10.13):

Conic Implicit Polynomial or Rational Parametrization Singu-
larity

Ellipse x2

a2 + y2

b2
= 1 x = a 1−t2

1+t2
, y = b 2t

1+t2
, t ∈ (−∞,∞) (−a, 0)

Circle x2 + y2 = r2 x = r 1−t2

1+t2
, y = r 2t

1+t2
, t ∈ (−∞,∞) (−r, 0)

Parabola y = ax2 x = t, y = at2, t ∈ (−∞,∞) None

Hyperbola x2

a2 −
y2

b2
= 1 x = a 1+t2

1−t2
, y = b 2t

1−t2
, t ∈ (−∞,∞)− {−1, 1} (−a, 0)

Geometric Construction

There is a rather neat geometric construction of the conics which, in fact,
explains why they are called conic sections. Consider the double cone C
formed from all the lines through the origin intersecting a circle c centered
some distance vertically above the origin. See Figure 10.14(a).

Now, the section of C by a non-radial plane p aligned as in Figure 10.14(b)
is a hyperbola (a non-radial line or plane is one that does not pass through
the origin). A hyperbola is not the only curve that can be sectioned off a
double cone, as the reader is asked to show next.

Exercise 10.20. Using paper and pencil draw three non-radial planes so
that their intersections with a double cone are a circle, ellipse and parabola,
respectively.352
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Ellipse Circle

(0, −b)
(a, 0)

(−a, 0)

(0, r)

(0, −r)

(−r, 0)
(r, 0)

(1, a)(−1, a)
(−a, 0) (a, 0)

Parabola  Hyperbola

(0, b)

Figure 10.13: Conic sections.

Let’s try to determine precisely the section of the double cone C by some
given plane p. Assume that the half-angle at the vertex of C is θ and that
the angle between p and the axis of C is φ. A typical cross-sectional view is
drawn in Figure 10.14(c).

First, suppose that p is non-radial, as in Figure 10.14(c). We have then
the following: the section of C by p is an ellipse, parabola or hyperbola
according as θ < φ, θ = φ or θ > φ. We’ll leave the reader to convince
herself of this fact by mentally rotating the plane p of Figure 10.14(c), where,
in fact, currently θ < φ.

(a) (b) (c)

O

c

p p

C C
θ
ᵠ

Figure 10.14: (a) A double cone C showing two of the lines through the origin lying on
it (b) A hyperbolic section of C by a non-radial plane p (c) Cross-sectional view of a
non-radial plane p intersecting C.

353
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Exercise 10.21. Suppose now that p is radial . Determine the three
different degenerate conic sections that arise, again according as θ <=> φ.

10.1.6 Curves More Formally

This section may be safely skipped on a first reading .
As we make our living in computer graphics drawing curves and surfaces,

it’s reasonable to try and understand some of their underlying mathematical
formalism. We’ll make a start with curves in this section. The theory of
curves is a vast area within mathematics. Our objective in contrast is modest:
to bring across a few definitions and results we believe most relevant to
graphics applications, and in as intuitive a manner as possible.

We assume that you have some basic calculus. In other words, statements
such as the function f(x) = x2 is continuous and derivable (derivable,
differentiable, same thing), that its derivative is the function f ′(x) = 2x,
and that its tangent at the point (1, 1) has gradient 2 all make sense to you.
Good!

Moving on, we’ll first examine some “holes” in the rules given earlier to
specify a curve. We’ll then try to fix these and motivate in the process a
more rigorous definition.

An implicit equation of the form F (x, y) = 0 on the plane may well
specify an object that does not agree with our notion of what a curve should
be. For example, x2 − y2 = 0 specifies two intersecting straight lines. See
Figure 10.15(a). Writing x2−y2 = 0 as (x−y)(x+y) = 0 explains the graph.
And x2 + y2 = 0 defines just the single point (0, 0), as in Figure 10.15(b)!

x + y = 0 x − y = 0 

(a) (b) (c)

Figure 10.15: Non-curves: (a) x2 − y2 = 0 (b) x2 + y2 = 0 (c) y = 0, if x is an integer,
1 otherwise (gaps in the blue line indicate missing points).

Parametric equations may not fare better. The following is contrived
certainly but makes the point:

x = t, y =

{
0, t is an integer
1, t is not an integer

, t ∈ R

define a disconnected union of points and straight segments (Figure 10.15(c)).354
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It seems, therefore, that the definition earlier of implicit and parametric
curves simply by sets of equations might not be enough to agree always
with our intuition at least of what a curve should be. To motivate a better
definition, contemplate again the one-dimensional objects in Figure 10.1. All,
except (f) and (g), seem to match the notion of a curve as being the trajectory
of a continuously-moving point . We’ll build on this simple observation.

In fact, we begin with the following definition of so-called C0-continuity:

Definition 10.1. A real-valued function f defined on a closed interval T is
said to be C0-continuous or, simply, C0, if it is continuous on T .

Remark 10.4. Yes, the definition simply re-christens what we know already
as continuous. The reason to do this is that we’ll soon be encountering
so-called higher orders of continuity, to be called C1, C2, etc.

Remark 10.5. As the only functions that we consider are real-valued we
won’t explicitly say this any more.

Remark 10.6. A closed interval (like T in the preceding definition) is either
bounded of the form [a, b] or unbounded in one direction of the form (−∞, b]
or [a,∞) or unbounded in both when it can only be (−∞,∞).

The C0-continuity of functions leads to the definition of C0 curves:

Definition 10.2. Three C0 functions f , g and h defined on a closed interval
T give the following C0-parametrization of a space curve c:

x = f(t), y = g(t), z = h(t), t ∈ T

The curve c itself is the set of all image points {(f(t), g(t), h(t)) : t ∈ T}. If
a curve c has a C0-parametrization, then it is said to be C0-continuous or,
simply, C0.

Remark 10.7. An equivalent definition of a C0 plane curve is obtained
by dropping the “z = h(t)” term. Henceforth, we’ll stick to 3D and give
definitions only for space curves.

Example 10.9. The parametrization

x = t, y =

{
0, t is an integer
1, t is not an integer

, t ∈ R

given earlier is not C0 as y is not a continuous function of t.

Example 10.10. The single point (0, 0) defined implicitly by x2 + y2 = 0
is, strangely enough, a C0 curve. For, it has the C0-parametrization

x = 0, y = 0, t ∈ (−∞,∞)

on the plane, for the constant functions x = 0 and y = 0 are, in fact,
continuous. 355
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Example 10.11. All the parametrizations given in Example 10.2, except
for the hyperbola, are C0. The problem with the hyperbola is that its
parameter space is not a (single) closed interval as we require. See the next
exercise.

Exercise 10.22. Parametrize either of the two wings of the hyperbola of
Example 10.2(e) so that each is a C0 curve defined on a closed interval.

Example 10.12. Even though there are no actual parametrizations given
there to go by, it’s believable that, except for (f) and (g), the one-dimensional
objects of Figure 10.1 are each a C0 curve. The problem with (f) and (g) is
that both seem composed of more than one trajectory.

Exercise 10.23. How about the astroid of Exercise 10.2 and the
Lemniscate of Gerono of Exercise 10.3? Are they C0?

Exercise 10.24. Is the graph of the following function C0?

y =

{
0, x ≤ 0
1, x > 0

Exercise 10.25. Is the graph of the function y = |x| C0?

Because of the continuity conditions, a C0 curve is at least minimally
well-behaved. However, it is not even guaranteed to possess a tangent at
any given point (e.g., the one-point curve x2 + y2 = 0, or the hexagon of
Figure 10.1(c) at its corners, do not seem to have meaningful tangents). In
fact, it’s often desirable that a curve be “smooth” in that, not only does it
possess a tangent at every point, but the tangent turns continuously along
the curve as well.

Note: We use the term “smooth” now as an informal descriptor. There are
technical definitions of a “smooth function” and a “smooth curve” which
will come up shortly.

The following two definitions are formulated to impose smoothness:

Definition 10.3. A function f defined on a closed interval T is said to be
C1-continuous or, simply, C1 if its derivative f ′ exists and is continuous on
T ; equivalently, if f ′ exists and is C0 on T .

Definition 10.4. Three C1 functions f , g and h defined on a closed interval
T give the following C1-parametrization of a curve c:

x = f(t), y = g(t), z = h(t), t ∈ T

The curve c itself is the set of all image points {(f(t), g(t), h(t)) : t ∈ T}. If
a curve c has a C1-parametrization, then it is said to be C1-continuous or,
simply, C1.

If, additionally, the three derivatives f ′, g′ and h′ never vanish together
at any point of [a, b], then the parametrization is said to be regular , and c is
said to be a regular curve.356
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Because derivability implies continuity, C1 curves and regular curves are
C0 as well. Regularity is “nice enough” for most CG applications. Why?
Because regularity assures the smoothness of a curve c in the following sense:

(a) The tangent line to c at any point c(t) = (f(t), g(t), h(t)) exists. In
fact, it is parallel to the vector c′(t) = (f ′(t), g′(t), h′(t)), which is
non-zero because the derivatives of the parameter functions do not
vanish simultaneously (see Figure 10.16(a)). The existence of a tangent
line everywhere on c means that it has a well-defined direction at every
point.

tangent vector

c(t)
c

tangent line

(a) (b)

P

c´(t)

Figure 10.16: (a) A smooth curve (b) A non-smooth curve with a corner at P where
the tangent changes direction abruptly.

(b) Since f ′, g′ and h′ are continuous, c′(t) = (f ′(t), g′(t), h′(t)) is
continuous along c, which means that, not only does the tangent
line exist at all points of c, it turns continuously along c as well
(intuitively, this means that c cannot have a corner where its direction
changes abruptly as in Figure 10.16(b)).

The upshot is that a regular curve appears smooth when drawn.

It’s precisely the non-vanishing property of c′(t) that is not guaranteed by
mere C1-continuity, as opposed to regularity, as we see in the following
example.

Example 10.13. The astroid of Exercise 10.2 has parametric equations

x = cos3 t, y = sin3 t, t ∈ [0, 2π]

As x = cos3 t and y = sin3 t are continuous functions of t, the astroid is
C0. Now

dx

dt
= −3 cos2 t sin t,

dy

dt
= 3 sin2 t cos t

which are continuous functions of t as well, proving that the astroid is C1 as
well. However, as both dx

dt and dy
dt vanish at t = 0, π2 , π and 3π

2 , the astroid
is not regular. In fact, it has cusps at precisely these four parameter values.
Intuitively, as well, one sees that a point traveling along the astroid has to
abruptly reverse direction on reaching a cusp. 357
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Exercise 10.26. How about the Lemniscate of Gerono of Exercise 10.3?
Is it C0, C1, regular?

Figure 10.17: Tangent
vectors to a circle.

The (non-zero) vector c′(t) = (f ′(t), g′(t), h′(t)) is called a tangent vector
to a regular curve c(t) = (f(t), g(t), h(t)). We say a tangent vector because
any non-zero multiple of c′(t), i.e., a vector collinear with it, is tangent at
c(t) as well. For example, Figure 10.17 shows tangent vectors, intentionally
drawn of varying lengths and inconsistently oriented, at three points of a
circle.

Example 10.14. Consider the helix given by the parametrization

x = cos t, y = sin t, z = t, t ∈ R

A tangent vector at the point (cos t, sin t, t) of the helix is by differentia-
tion (− sin t, cos t, 1), which never vanishes, so the helix is regular.

Exercise 10.27. The stationary curve

x = 0, y = 0, t ∈ (−∞,∞)

which is just the point (0, 0), we saw earlier to be C0. Is it C1? Regular?

Exercise 10.28. What about the hexagon of Figure 10.1(c)? Is it C0?
C1? Imagine a parametrization for it by “stringing” together parametric
equations for its straight sides.

Exercise 10.29. What is a tangent vector to the graph of the function y =
f(x) on the xy-plane at the point (x, f(x))? Assume f to be differentiable.

Exercise 10.30. Is the graph of the function

y =

{
x3, x < 0
x2, x ≥ 0

C0? C1? Regular? The point of interest obviously is the origin.

Exercise 10.31. (Programming) Animate the non-regularity of the
astroid. In particular, draw the asteroid and animate its tangent vector,
moving along the curve with changing t, as an arrow from (cos3 t, sin3 t) to
(cos3 t− 3 cos2 t sin t, sin3 t+ 3 sin2 t cos t).

The tangent vector shrinks to zero at each cusp and grows again as it
leaves the cusp.

We can loosen up the definition of regularity to be a bit more inclusive.

Definition 10.5. A curve c is said to be piecewise regular if it can be made
by sequentially joining a finite number of regular curves end to end .

In other words, a piecewise regular curve is regular except, possibly, for
a finite number of corners inside it.358
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Example 10.15. Of those 1D objects depicted in Figures 10.1, the
hexagon (c) is piecewise regular but not regular, while (f) and (g) are
not even piecewise regular. The others are all regular curves.

Exercise 10.32. What about the curves of Figures 10.3 and 10.4? Identify
those that are piecewise regular but not regular.

We define next a regular one-dimensional object as composed of pieces
that are each a regular curve, except that they are not required to be joined
end to end as for a piecewise regular curve.

Definition 10.6. A regular one-dimensional object is a finite union of
regular curves.

In other words, even though composed of pieces that are regular, a regular
one-dimensional object may not have the property of a curve that it can be
continuously traversed end to end.

Example 10.16. Figures 10.1(f) and (g) are regular one-dimensional
objects, but not piecewise regular curves. So are the letters ‘K’, ‘Q’ and ‘X’.

We have the obvious proper inclusions

regular curves ⊂ piecewise regular curves ⊂ regular 1D objects

Remark 10.8. Curves arising in real life – strings, wires, rubber bands, edges
of a car or aircraft – are almost invariably piecewise regular, if not regular.
Likewise, one-dimensional objects we see around us are almost all regular
one-dimensional.

y = x

x

y
(t, t) 
or  
(t3, t3)?

Figure 10.18: Good and
bad parametrizations.

It is important to keep in mind that a curve is regular (orC0, or C1) if
there is some parametrization according to the respective definition. For
example, the curve c on the plane given by the parametric equations

x = y = t, t ∈ (−∞,∞) (10.10)

is regular as c′(t) = (1, 1) for all t. (Yes, it’s the straight line y = x drawn
in Figure 10.18.)

However, the same straight line is defined by the cubic equations

x = y = t3, t ∈ (−∞,∞) (10.11)

but now regularity is “lost” at the origin (verify)!
In fact, to preempt the issue of finding the “best” parametrization,

mathematical texts often define a curve to be the set of parameter functions
itself, rather than the image, so, e.g., (10.10) and (10.11) would actually
represent different curves, thus avoiding ambiguity over continuity.

If the reader is now wondering, no, there is no parametrization which
will make either the hexagon or the astroid regular, though we’ll not try to
prove these facts.

The following intuitive proposition suggests how to join two regular
curves end to end so that their union is regular. 359
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Proposition 10.1. If two regular curves c1 and c2 meet at the point P ,
which is an endpoint of both, and if their tangent vectors at P are collinear,
then the curve c1 ∪ c2 is regular as well (Figure 10.19).

P
c1

c2

Figure 10.19: Regular
curves that share a tangent
line at a common endpoint
join to make one regular
curve.

Proof. We leave it to the reader. 2

Hint : One must find a regular parametrization for the union c1∪c2. Change
the parametrization of one of the curves, say c1, from t 7→ c1(t) to t 7→ αt 7→
c1(αt), choosing the constant α so that c1’s tangent vector at P becomes
identical to that of c2 (such rescaling of the parameter necessitates that
the parameter interval be resized as well). Finally, “move” one parameter
interval to abut the other.

Exercise 10.33. Prove that the two helixes

x = cos t, y = sin t, z = t, t ∈ [0, 10π]

and
x = 2 + cos t, y = − sin t, z = t− π, t ∈ [π, 10π]

meet at their common endpoint (1, 0, 0), corresponding to t = 0 of the first
curve and t = π of the second, and share there a tangent vector. Can you
come up with a single parametrization for the union of the two?

As expected, there are higher orders of continuity (C0 is said to be
zero-order, C1 first-order) one can define as well, pretty much in the obvious
manner:

Definition 10.7. A function f defined on a closed interval T is said to be
Cm-continuous or, simply, Cm, where m ≥ 1, if all of its derivatives of order
m and less exist and are continuous on T .

A function f that is Cm-continuous for all m is said to be C∞-continuous
or, simply, C∞. C∞ functions are also called smooth.

Definition 10.8. Three Cm functions (m can be ∞ as well) f , g and h
defined on a closed interval T give the following Cm-parametrization of a
curve c:

x = f(t), y = g(t), z = h(t), t ∈ T

The curve c itself is the set of all image points {(f(t), g(t), h(t)) : t ∈ T}. If
a curve c has a Cm-parametrization, then c is said to be Cm-continuous or,
simply, Cm. If it has a C∞-parametrization, then c is said to be smooth.

Remark 10.9. Cm-continuity implies Cn continuity for any n < m.

Remark 10.10. It is usual to assume regularity in addition to Cm-continuity,
if m ≥ 1.

Exercise 10.34. How continuous is a polynomial curve, in other words,
what is the maximum order of continuity it possesses?360
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C2 is about the highest order of continuity which can be distinguished
visually. Even so, the lack of C2-continuity is not as easy for the eye to catch
as the lack of C0 or C1-continuity, which is, typically, obvious. The labeled
continuity of all the curves of Figure 10.20, except the third, is probably
easy to understand.

not C0 C0, not C1 C1, not C2 C∞

P

Q

Figure 10.20: Various orders of continuity.

The third one is C1-continuous but loses C2-continuity at the two points
P and Q where the half-circle meets straight segments, because the tangent
stops turning. More explicitly, the tangent vector which is rotating at a
uniform speed along the half-circle “suddenly” stops rotating altogether
when it crosses into one of the straight segments, so that its rate of change
drops from uniform to zero, giving rise to C2-discontinuity.

An interesting application of C2-continuity arises in planning the motion
of a camera. We ask the reader to see this for herself in the following two
exercises.

Exercise 10.35. Verify that the graph of the function (encountered earlier
in Exercise 10.30)

y =

{
x3, x < 0
x2, x ≥ 0

is not C2 because of a second-order discontinuity at the origin.

Exercise 10.36. (Programming) Use gluLookAt() to simulate the
view of a simple scene (populated, say, by spheres) from a camera moving
along the graph of the preceding exercise and pointing always along its
tangent. See Figure 10.21. Move the camera by uniformly incrementing its
x-value at each time step.

The viewer perceives a jolt as the camera passes the origin. The reason
is as follows. Even though the path of the camera is smooth, in that it is
C1, the direction of the camera, which is along the tangent to this path,
does not turn smoothly past the origin because of the C2-discontinuity there.
Moreover, the location of the camera and its direction together determine
the scene, so a discontinuity in either is echoed in the animation.

Bottom line: (Regular) C1 is good enough for a curve to appear smooth,
while smooth camera movement should be (regular) C2. 361
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O

y = x3

y = x2

Figure 10.21: Camera moving along a path with a C2-discontinuity at the origin O.

10.2 Surfaces

Two-dimensional objects are composed of surfaces. Analogously to the
situation for one-dimensional objects, parts of a two-dimensional object
which cannot be drawn exactly using triangles – OpenGL’s fundamental 2D
primitives as we know – must be approximated.

We’ll discuss two-dimensional objects in an informal taxonomy ordered
by increasing complexity from the point of view of drawing.

10.2.1 Polygons

The simplest two-dimensional object is the familiar polygon. By a polygon
we shall always mean, unless stated otherwise, a simple planar polygon, i.e.,
one whose boundary lies on a plane and consists of a single component
which is a non-self-intersecting line loop. All the polygons in Figure 10.22
are planar. However, (a) and (b) are non-simple polygons, while (c) and
(d) are simple. A simple planar polygon can be equivalently described as a
connected planar surface bounded by straight edges, and without any holes.

A convex polygon, e.g., Figure 10.22(c), can be drawn as a single
GL POLYGON primitive. A non-convex polygon should be drawn after
decomposing it into convex pieces, otherwise (recall from Section 8.3) it may
not render correctly. Figure 10.22(d) is an example of a non-convex polygon
decomposed into triangles, in other words, triangulated . It’s recommended,
in fact, that all polygons, convex or otherwise, be first triangulated and then
drawn using GL TRIANGLE* primitives.

362
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Convex Non-convex (with a
triangulation indicated)

Self-intersecting
boundary

Multiple boundary
components

(a) (b) (c) (d)

Figure 10.22: (a) and (b) Non-simple planar polygons (c) and (d) Simple planar
polygons (what we call polygons).

10.2.2 Meshes

The next simplest kind of two-dimensional object is a polygonal mesh or,
simply, mesh, also called a polyhedral surface. A mesh is a union of polygons
satisfying the following two conditions:

1. Any two polygons in the union are either disjoint or intersect in a
vertex of both or intersect in an edge of both.

Note: This is a repetition of the condition for a collection of triangles
to be a triangulation (see Definition 8.1) and motivated likewise to
ensure deterministic rendering.

2. The “neighborhood around each vertex is sheet-like”.

We said the taxonomy would be informal. We’ll not try to define
what it means exactly for a neighborhood around a vertex to be sheet-
like, leaving it instead to the reader’s intuition with a few suggestive
examples coming next.

Figure 10.23(a) is part of a hexagonal tiling of the plane with the shaded
piece in the middle missing. Figure 10.23(b) is the surface of a glass with
a hexagonal base and six rectangular walls. Figure 10.23(c) is the surface
of an octahedron. Evident from the drawings themselves, all three objects
are unions of polygons satisfying the first condition above. Moreover, for
any vertex V belonging to any one of them, one can imagine fitting a small
rubber sheet exactly onto the surface in an area around V , for an informal
verification of the second condition above. Therefore, Figures 10.23(a)-(c)
are meshes.

Both Figures 10.23(d) and (e) clearly satisfy the first condition to be a
mesh as well. However, Figure 10.23(d) fails the second condition because
it’s crimped at U – no rubber sheet, no matter how pliable, can be squeezed
to a point. Figure 10.23(e), which consists of three rectangles sharing an
edge, is not a mesh either because it has multiple panels around W . One
would have to tear a sheet into pieces to cover a neighborhood of W . 363
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(a) (b) (c)

W
U

(d) (e) (f)

Figure 10.23: (a), (b) and (c) Meshes (d) and (e) Not meshes: parts around vertices V
and W are not sheet-like (f) Your call.

Exercise 10.37. Is Figure 10.23(f) a mesh?

Remark 10.11. If you must know, in mathematical terms condition 2 above
is for a mesh to be a so-called topological manifold, which guarantees a
certain respectability to shapes that a mesh can take.

The polygons comprising a mesh are its faces. The boundary of a
mesh consists of those edges with a polygon on only one side. The
mesh of Figure 10.23(a) has two boundary components (one inside
bordering the shaded missing piece and the other on the outside); that
of Figure 10.23(b) has one boundary component (the rim of the glass); and
that of Figure 10.23(c) has no boundary. A mesh with no boundary, a closed
mesh as such is called, bounds a solid figure. For example, the closed mesh
of Figure 10.23(c) bounds an octahedron.

It’s usual to require that the faces of a mesh be convex polygons. In fact,
from an OpenGL point of view it’s best they all be triangles. A mesh, all of
whose faces are triangles, is a triangular mesh. Of course, any mesh can be
made triangular by triangulating every face.

Drawing a mesh is, of course, simply a matter of drawing each of its
polygonal faces. Again, the recommendation is that each face be triangulated
first, if it’s not already a triangle, then drawn using GL TRIANGLE* primitives.
Because of the first condition for a mesh, the rendering is consistent whatever
order the faces be drawn (for why, see the discussion in Section 8.1 of the
reasons for the rules for a triangulation).

In fact, a moment’s consideration of its primitives indicates that the
only 2D objects OpenGL can draw exactly are meshes and unions of meshes.
Others have to be approximated. So for the remaining two classes of 2D364
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objects we will be trying to find good mesh approximations.

Example 10.17. Figures 10.23(d) and (e) are not meshes as we have seen.
But are they a union of meshes?

Answer : Easily yes. For example, Figure 10.23(d) is the union of four
meshes, each consisting of a single triangle.

10.2.3 Planar Surfaces

A planar surface is a generalization of a polygon. A polygon is a connected
planar surface bounded by straight edges, and with no holes, while a general
planar surface has no such restrictions. It may comprise multiple components
and contain holes, while its boundary may be composed of both straight and
curved parts; of course, the whole must lie on one plane. See Figure 10.24.

(a) (b) (c) (d) 

Figure 10.24: Planar surfaces with colored boundary; the last one has two components.
The black edges belong to approximating meshes.

The drawing of a general planar surface can be reduced to that of drawing
an approximating mesh by the following approach:

1. Apply the technique of Section 10.1.3 to make polyline approximations
of the curved edges on the surface’s boundary. Together with the
existing straight edges, these polylines then bound a (possibly, non-
simple) planar polygon, or a union of such if there are multiple
components, approximating the surface.

2. Triangulate the approximating polygon(s). The result is a triangular
mesh approximation of the surface.

The black edges in Figures 10.24(a)-(d) clarify the approach.

Exercise 10.38. (Programming) Draw a rounded rectangle as in
Figure 10.24(c).

Exercise 10.39. (Programming) Draw a likeness in wireframe of the
chair in Figure 10.25. Figure 10.25: Wooden

chair.First of all, assume all the panels to be of zero thickness. So, for example,
the seat is a flat rounded quad, while all four legs are bow-shaped planar 365
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surfaces. The only part that’s evidently not planar, even at zero thickness,
is the back rest, so, in fact, replace it with a rounded rectangle. Be sure
to use the symmetries: the two front legs are identical, as are the two back
legs, so make only one of each.

10.2.4 General Surfaces

More general surfaces, which may be neither planar nor a union of polygons,
are drawn by approximation by triangular meshes as well. But, let’s see how
a general surface s is specified in the first place. An implicit specification
consists of an equation

F (x, y, z) = 0 (10.12)

such that points of s are those whose coordinates (x, y, z) satisfy this equation.
A parametric, or explicit , specification consists of three equations

x = f(u, v), y = g(u, v), z = h(u, v), where (u, v) ∈W (10.13)

In this case, the points of s are those whose coordinates (x, y, z) satisfy
x = f(u, v), y = g(u, v) and z = h(u, v), for some value of (u, v) ∈ W .
The parameter space W itself is a subset of the plane R2. There are two
parameter variables for a surface, versus one for a curve, because it is of
dimension two.

The point (f(u, v), g(u, v), h(u, v)) on the surface s is often denoted
s(u, v).

Example 10.18. The (infinitely long circular) cylinder with its axis along
the z-axis, and a circular cross-section of radius 1, is given by the implicit
equation

x2 + y2 = 1

It’s also given by the parametric equations

x = cosu, y = sinu, z = v, (u, v) ∈ [−π, π]× (−∞,∞)

where the parameter space is an infinitely long rectangular subset of the
plane.

Figure 10.26 shows a finite part of the parameter space, namely, the
rectangle bounded by the lines u = ±π and v = ±1, as well as the
corresponding part of the cylinder.

If the parameter variables are u and v, then the image on the surface s,
of a straight line v = β in the parameter space, is a curve, denoted s(v = β),
and called a u-parameter curve of s; in other words, a u-parameter curve is
traced on s by fixing the parameter v and varying u. Similarly, the image
s(u = α) on s, of the line u = α, is called a v-parameter curve.

The u-parameter curves of the cylinder of the preceding example are
circles, while the v-parameter curves are vertical straight lines. One curve
of either class is shown on the right of Figure 10.26.366
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Figure 10.26: Parametric mapping of a circular cylinder s.

One can imagine the surface of s either as the union of its u-parameter
curves s(v = β) as β varies, or the union of its v-parameter curves s(u =
α) as α varies, each over its respective range. For example, the infinite
cylinder of the preceding example is the union of its u-parameter circles
as the corresponding parameter β varies in (−∞,∞), while the finite part
depicted in Figure 10.26 as β varies in [−1, 1]. More graphically, the infinite
cylinder is swept by its u-parameter circle as β changes from −∞ to ∞.
Complementarily, it’s swept by its v-parameter straight lines as α varies
from −π and π.

Exercise 10.40. The implicit equation x2 + y2 = 1 of the cylinder of the
preceding example did not involve z at all. In fact, it’s the equation of a
circle on the xy-plane simply applied to 3-space. Generally, if the implicit
equation of a plane curve is F (x, y) = 0, then what surface is represented by
the same equation in 3-space?

10.2.5 Drawing General Surfaces

The strategy to approximate a surface is similar to that for a curve. However,
instead of straight line segments to approximate sub-arcs of a curve, triangles
are used to approximate small patches of the surface and a triangular mesh
the entire surface. We make the assumption that the parametric specification
of a surface s is given as

x = f(u, v), y = g(u, v), z = h(u, v), (u, v) ∈W (10.14)

where the parameter space W is the plane rectangle [a, b] × [c, d]. Think
then of the parametric equations as lifting and shaping the rectangle W
from uv-space into s in xyz-space, e.g., Figure 10.26 shows the shaping of
the rectangle [−π, π]× [−1, 1] into a circular cylinder. 367
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Sample W at the (p+ 1)(q + 1) points

(ui, vj), 0 ≤ i ≤ p, 0 ≤ j ≤ q

of a rectangular sample grid where

a = u0 < u1 < . . . < up = b

c = v0 < v1 < . . . < vq = d

The mapped sample

s(ui, vj), 0 ≤ i ≤ p, 0 ≤ j ≤ q

of (p + 1)(q + 1) points of s are used as vertices of a triangular mesh
approximation of s. This mesh consists of the following 2pq triangular faces:

4 s(ui, vj) s(ui+1, vj) s(ui, vj+1) and 4 s(ui, vj+1) s(ui+1, vj) s(ui+1, vj+1),

for 0 ≤ i ≤ p − 1, 0 ≤ j ≤ q − 1. (Note that 4ABC denotes the triangle
with vertices at A, B and C.)

Each face approximates a patch of the surface. In particular, the face with
corners at the images of the vertices of a grid triangle approximates the image
of that triangle on the surface. Spelling this out for the two triangles listed
above: the face 4 s(ui, vj) s(ui+1, vj) s(ui, vj+1) approximates the patch
s(4 (ui, vj) (ui+1, vj) (ui, vj+1)) which is the image on s of the grid triangle
4 (ui, vj) (ui+1, vj) (ui, vj+1); likewise, the face 4 s(ui, vj+1) s(ui+1, vj)
s(ui+1, vj+1) approximates the patch s(4 (ui, vj+1) (ui+1, vj) (ui+1, vj+1)).

It’s easiest to understand this visually. Let’s use again the circular
cylinder

x = cosu, y = sinu, z = v, (u, v) ∈ [−π, π]× [−1, 1]

from the previous example. Refer to Figure 10.27. Sample points in the
parameter space are seen at the upper left and the corresponding mapped
sample points on the cylinder at the upper right (here, p = 6 and q = 4).
The triangles of the mesh along a band of the cylinder are shown at the
upper right as well.368
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u

R s(R)

s

v

s(u0,v1)
= s(u6,v1)s(u0,v0)
= s(u6,v0)

(u0,v0)

(u0,v1) (u1,v1)
(u6,v1)

(u6,v0)(u5,v0)(u1,v0)

(ui+1,vj+1)
s(ui+1,vj+1)

s(u5,v0)

s(u1,v0)

s(u1,v1)

(ui+1,vj)(ui,vj)

(ui,vj+1)

s(ui+1,vj)

s(ui,vj)

s(ui,vj+1)

Figure 10.27: Triangular mesh approximation of a circular cylinder. Upper : A uniform
sample grid on the parameter rectangle and its corresponding mapped sample on the
cylinder. Only a few points are labeled. Vertices of a triangle strip on the rectangle maps
to those of a strip approximating a band of the cylinder. Lower : A map from a grid
rectangle to a patch of the cylinder.

The lower left and right diagrams are blow-ups, respectively, of a grid
rectangle R, with corners at (ui, vj), (ui+1, vj), (ui+1, vj+1) and (ui, vj+1),
and the patch s(R) of the cylinder which is its image. The two triangles
s(ui, vj)s(ui+1, vj)s(ui, vj+1) and s(ui, vj+1)s(ui+1, vj)s(ui+1, vj+1) of the
approximating mesh together approximate s(R).

Cylinder

Figure 10.28: Screenshot
of cylinder.cpp.

Experiment 10.3. Run cylinder.cpp, which shows a triangular mesh
approximation of a circular cylinder, given by the parametric equations

x = f(u, v) = cosu, y = g(u, v) = sinu, z = h(u, v) = v,

for (u, v) ∈ [−π, π]× [−1, 1]. Pressing arrow keys changes the fineness of the
mesh. Press ‘x/X’, ‘y/Y’ or ‘z/Z’ to turn the cylinder itself. Figure 10.28 is
a screenshot. End

The approximating mesh of cylinder.cpp is constructed according to
the method above. However, a minor technicality is that the parameter
space of the program is taken to be the square [0, 1]× [0, 1], rather than the
parameter rectangle [−π, π]× [−1, 1] of the definition, so the former has first
to be scaled to the latter. In fact, see the definitions of the functions f, g
and h in the program: 369
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float f(int i, int j)

{
return ( cos( (-1 + 2*(float)i/p) * PI ) );

}

float g(int i, int j)

{
return ( sin( (-1 + 2*(float)i/p) * PI ) );

}

float h(int i, int j)

{
return ( -1 + 2*(float)j/q );

}

The expression returned by f first applies the mapping u 7→ (−1 + 2u)π to
scale [0, 1] to [−π, π], then applies cos; likewise, the expression returned by
g applies u 7→ (−1 + 2u)π, then sin; the expression returned by h applies
v 7→ −1 + 2v to scale [0, 1] to [−1, 1]. Figure 10.29 indicates the scheme.

u

u

vv

v = 0 

v = 1 

v = −1 

v = 1 

u 
= 

0 

u 
= 

1 u 
= 

−π

u 
= 
π

(u, v) −−> (cos u, sin u, v)(u, v) −−> ((−1+2u)π, −1+2v)

Figure 10.29: The composed mapping implemented in cylinder.cpp: first the
parameter space is scaled, then mapped to the cylinder.

The most important part of cylinder.cpp’s implementing the drawing
strategy of Section 10.2.5 is that the coordinate values (i/p, j/q) run over a
uniformly-spaced (p+ 1)× (q + 1) grid of sample points in [0, 1]× [0, 1], as
the integer argument i runs from 0 to p, and j from 0 to q. Correspondingly,
( f(i, j), g(i, j), h(i, j) ) run over the mapped sample points on the cylinder
itself. These mapped sample coordinate values are written into a vertex
array by the fillVertexArray() routine. Triangles corresponding to each
row of the grid in parameter space are drawn as a single triangle strip in the
drawing routine, so that there are q triangle strips consisting of 2p triangles
each.

The right and left arrow keys are programmed to increase and decrease
p, respectively; the up and down arrow keys increase and decrease q,
respectively.370
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Let’s revisit next a surface we had first drawn in Experiment 2.24 of
Chapter 2 to put it into the perspective of our general drawing strategy.

Exercise 10.41. (Programming) Run hemisphere.cpp from Chap-
ter 2, which draws a triangulated hemisphere. Figure 10.30 is a screenshot.
Press ‘p/P’ and ‘q/Q’ to coarsen or refine the triangulation. The parametric
equations of the hemisphere implemented in the program are

x = R cosφ cos θ, y = R sinφ, z = R cosφ sin θ,

for 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π/2.

Figure 10.30: Screenshot
of hemisphere.cpp.

Does the program use the drawing strategy of cylinder.cpp above?
Yes, it does. Accordingly, alter only the f, g and h function definitions of
cylinder.cpp to obtain a program equivalent to hemisphere.cpp.

You can write down any set of parametric equations you like and
implement the corresponding surface with the help of the template of
cylinder.cpp. All that changes in the program are the function definitions
f, g and h. If you have a shape in mind then, of course, first deduce
appropriate functions.

Helical Pipe

Figure 10.31: Screenshot
of helicalPipe.cpp.

Experiment 10.4. Without really knowing what to expect (honestly!) we
tweaked the parametric equations of the cylinder to the following:

x = cosu+ sin v, y = sinu+ cos v, z = u, (u, v) ∈ [−π, π]× [−π, π]

It turns out the resulting shape looks like a helical pipe – run helical-

Pipe.cpp. Figure 10.31 is a screenshot.
Functionality is the same as for cylinder.cpp: press the arrow keys to

coarsen or refine the triangulation and ‘x/X’, ‘y/Y’ or ‘z/Z’ to turn the pipe.
Looking at the equations again, it wasn’t too hard to figure out how this

particular surface came into being. See the next exercise. End

Exercise 10.42. Why do the parametric equations of the preceding
experiment create a helical pipe?
Hint : The equation of the surface is

s(u, v) = (cosu+sin v, sinu+cos v, u) = (cosu, sinu, u)+(sin v, cos v, 0)

Note now that u 7→ (cosu, sinu, u) gives a helix, while v 7→ (sin v, cos v, 0)
a circle.

Exercise 10.43. (Programming) Changing only the functions f, g and
h of cylinder.cpp, draw wireframe surfaces resembling those in Figure 10.32.

371
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(a) (b) (c) (d) (e)

Figure 10.32: Draw these by modifying cylinder.cpp.

Exercise 10.44. (Programming) Nothing to do with drawing as such
but practice in preparation for the newest OpenGL we’ll be covering from
Chapter 20 which no more has glBegin()-glEnd() type commands: replace
the glBegin(GL TRIANGLE STRIP)-glEnd() loop in cylinder.cpp with one
(see Section 3.1) glMultiDrawElements(GL TRIANGLE STRIP, ...) call.

10.2.6 Swept Surfaces

A powerful design method to create surfaces is by sweeping a curve. For
example, consider the circular cylinder of Figure 10.33(a). One can think
of it as the surface swept by a circle moving up, its center traveling along
a vertical line. The curve that sweeps the surface is called its profile curve
or, simply, profile. The path followed by the profile is the trajectory . The
trajectory is actually the path of a point on the profile, or some point fixed
with respect to it, such as the center of the circle sweeping the cylinder. The
surface itself is the swept surface.

(a) (b) (c)

Figure 10.33: Swept surfaces: trajectories dashed arrows, profiles solid black.

A torus (Figure 10.33(b)) is swept by a circular profile itself traveling
along a circular trajectory. When the trajectory is a circle, the swept surface
is called a surface of revolution. A cone (Figure 10.33(c)) is a surface of
revolution swept by a straight segment profile in a circular trajectory about
the cone’s axis.372
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When the trajectory is a straight segment, as in the case of the cylinder
swept by a circle, the resulting surface is said to be an extrusion, or extruded
surface, obtained by extruding the profile curve. In this case the profile is
often called the base curve.

Exercise 10.45. Our description of a cylinder was as an extrusion of a
circle. Can it be conceived of as a surface of revolution as well? If so, what
are the profile and trajectory curves?

Exercise 10.46. How about a sphere, a hemisphere, an ellipsoid (egg shape)
and (the surface of) a cube? Are they surfaces of revolution, extrusions, . . .?

The advantage of being able to describe a surface as a swept surface is
that its parametric equations are often, then, easy to deduce from those of
its profile and trajectory curves. We see a few examples of this next.

Torus

Example 10.19. Let’s compute the parametric equations of a torus. The
profile is a circle c of radius r, whose center revolves along a circular trajectory
C. C itself is of radius R, centered at the origin O and lying on the xy-plane.
Each configuration of c, as it revolves, lies on a plane containing the z-axis
and a radius of C. See Figure 10.34, where both the torus and a section
through it are drawn.

θ
R

C

R

c

x

y

O O´

z
c O´   

O P´´

z r
P

P´

rᵠ

ᵠ

P
P´

(a) (b)

Figure 10.34: Computing parametric equations of a torus: (a) Profile circle c revolves
along trajectory circle C (b) Sectional view of the left diagram along the plane containing
the z-axis and OO′.

A point P on the torus is specified by two angles θ and φ as follows:

(a) θ is the angle made with the x-axis by the radius OO′ of C from its
center (the origin) to the center of the configuration of c containing P . 373
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(b) φ is the angle made by O′P , a radius of the configuration of c containing
P , with the extension of OO′.

Let P ′ be the projection of P on the xy-plane and P ′′ be the projection
of P ′ on the x-axis.

The x coordinate of P is

OP ′′ = OP ′ cos θ = (OO′ +O′P ′) cos θ = (OO′ +O′P cosφ) cos θ

= (R+ r cosφ) cos θ

The y coordinate of P is

P ′P ′′ = OP ′ sin θ = (OO′ +O′P ′) sin θ = (OO′ +O′P cosφ) sin θ

= (R+ r cosφ) sin θ

The z coordinate of P is

P ′P = O′P sinφ = r sinφ

These give the parametric equations of the torus as

x = (R+r cosφ) cos θ, y = (R+r cosφ) sin θ, z = r sinφ, −π ≤ θ, φ ≤ π
(10.15)

Figure 10.35: Screenshot
of torus.cpp.

Experiment 10.5. Run torus.cpp, which applies the parametric equa-
tions deduced above in the template of cylinder.cpp (simply swapping new
f, g and h function definitions into the latter program). The radii of the
circular trajectory and the profile circle are set to 2.0 and 0.5, respectively.
Figure 10.35 is a screenshot.

Functionality is the same as for cylinder.cpp: press the arrow keys
to coarsen or refine the triangulation and ‘x/X’, ‘y/Y’ or ‘z/Z’ to turn the
torus. End

Figure 10.36: Screenshot
of torusSweep.cpp.

Experiment 10.6. Run torusSweep.cpp, modified from torus.cpp to
show the animation of a circle sweeping out a torus. Press space to toggle
between animation on and off. Figure 10.36 is a screenshot part way through
the animation. End

Exercise 10.47. (Programming) Plump a toroidal helix – which is a
helix coiling around a torus (Figure 10.37(a)) – into a pipe (Figure 10.37(b)).
Allow the user to choose the number of times the pipe coils before closing.
No need to draw the torus itself.

Suggested approach : Begin by using the parametric equations of the torus
itself as determined in Example 10.19, namely,

x = (R+r cosφ) cos θ, y = (R+r cosφ) sin θ, z = r sinφ, −π ≤ θ, φ ≤ π374
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(a) (b)

Figure 10.37: (a) Part of a toroidal helix (b) Part of a toroidal helix pipe.

to find those for the toroidal helix.

The torus, being a surface, has the two degrees of freedom represented
by θ and φ. For a curve lying on it, φ should depend on θ, leaving only a
single degree of freedom. The function φ = nθ yields a helix coiling n times
around the torus before closing. Substituting, then, for φ in the equation
above, one gets the parametric equations of a toroidal helix:

x = (R+r cos(nθ)) cos θ, y = (R+r cos(nθ)) sin θ, z = r sin(nθ),−π ≤ θ ≤ π

To plump the toroidal helix into a pipe, observe that the pipe is swept
by a circle c traveling along the toroidal helix.

Exercise 10.48. (Programming) For the mathematically inclined, a
fun programming exercise is to draw a (p, q)-torus knot, where the user
specifies p and q. You may have to look up torus knots – they are not hard
at all and aesthetically pleasing.

Table

We’ll draw next a table as the surface of revolution swept by revolving a
profile curve c about the y-axis. The profile c is a polygonal line composed of
seven segments lying on the xy-plane, starting at the point A and ending at
B, as shown in Figure 10.38(a) (where the 0 z-coordinates are not written).

We’ll parametrize c first by using the length t along c measured from A
to P as the parameter value for a point P on c. Then the x coordinate xc(t)
of a point with parameter value t is given below, as can be verified from a 375
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straightforward reading of Figure 10.38(a).

xc(t) =



t, 0 ≤ t ≤ 4
4, 4 ≤ t ≤ 5

9− t, 5 ≤ t ≤ 8
1, 8 ≤ t ≤ 22

t− 21, 22 ≤ t ≤ 31
10, 31 ≤ t ≤ 32

42− t, 32 ≤ t ≤ 42

plane y = yc(t) 

P
direction of rotation

(0, −8)

(4, −7)

(4, −8)

(1, −7)

(1, 7) (10, 7)

(10, 8)(0, 8)

x

y

Az

B

(a) (b)

t
θ

z

xP(xc(t), yc(t)) 

(xc(t), yc(t), 0) 

xc(t)

(xc(t)cosθ, yc(t), xc(t)sinθ)P´

Q

Figure 10.38: (a) The profile curve for a table on the xy-plane, with the z-coordinates,
all 0, not written (b) A point on the profile curve after a rotation θ CW about the y-axis.

Likewise, the y coordinate yc(t) is given by:

yc(t) =



−8, 0 ≤ t ≤ 4
t− 12, 4 ≤ t ≤ 5
−7, 5 ≤ t ≤ 8

t− 15, 8 ≤ t ≤ 22
7, 22 ≤ t ≤ 31

t− 24, 31 ≤ t ≤ 32
8, 32 ≤ t ≤ 42

When c revolves an angle of θ clockwise about the y-axis from its
start configuration on the xy-plane, then a point P on c with coordinates
(xc(t), yc(t), 0) rotates an angle of θ on the plane y = yc(t) about the point
Q = (0, yc(t), 0) to a new point P ′. See Figure 10.38(b). Since |QP ′| =
|QP | = xc(t), the coordinates of P ′ are (xc(t) cos θ, yc(t), xc(t) sin θ).

Therefore, parametric equations for the table are

x = xc(t) cos θ, y = yc(t), z = xc(t) sin θ, 0 ≤ t ≤ 42 and −π ≤ θ ≤ π
(10.16)376
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Experiment 10.7. These equations are implemented in table.cpp, again
using the template of cylinder.cpp. Press the arrow keys to coarsen or
refine the triangulation and ‘x/X’, ‘y/Y’ or ‘z/Z’ to turn the table. See
Figure 10.39 for a screenshot of the table.

Note that the artifacts at the edges of the table arise because sample
points may not map exactly to corners (0,−8), (4,−8), . . . , (0, 8) of the profile
drawn in Figure 10.38(a) – which can be avoided by including always t values
0, 4, 5, 8, 22, 31, 32 and 42 in the sample grid. End

Figure 10.39: Screenshot
of table.cpp.

Exercise 10.49. (Programming) Modify table.cpp to eliminate the
artifacts at the edges in the manner suggested above.

Doubly-Curled Cone

Next is an experiment where the alignment of the profile curve varies as it
travels along its trajectory. We want to make a “doubly-curled” cone, much
like a cone made by curling a sheet of paper so that the edges don’t meet,
but that one wraps inside the other.

θ
A A+aθ 

x

z

x

t
P

(a) (b)

θ

z

O O

P

Figure 10.40: (a) A cone and (b) a doubly-curled cone as swept surfaces.

Let’s write first the parametric equations for a plain-vanilla cone obtained
by revolving a straight segment profile c of length 1 about the z-axis, with
one end of c fixed at the origin, and with c making an angle of A with the
xy-plane. We’ll leave the reader to use Figure 10.40(a) to verify that the
coordinates of the point P at a distance t from the origin along c, after the
latter has revolved an angle of θ CCW from an original configuration on the
xz-plane, are given by:

x = t cosA cos θ, y = t cosA sin θ, z = t sinA, 0 ≤ t ≤ 1 and 0 ≤ θ ≤ 2π

To make the cone doubly-curled we’ll bring the profile c in toward the
z-axis as it rotates, by increasing its angle with the xy-plane. Moreover,
we’ll rotate c twice about the z-axis to make a double curl. 377
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A simple way to bring c in uniformly is to increment A, the angle that
it makes with the xy-plane, by a multiple aθ of the amount of c’s rotation.
Figure 10.40(b) indicates the plan and it’s straightforward to modify the
parametric equations of the plain cone to write those of the doubly-curled:

x = t cos(A+ aθ) cos θ, y = t cos(A+ aθ) sin θ, z = t sin(A+ aθ),

for 0 ≤ t ≤ 1 and 0 ≤ θ ≤ 4π.

Figure 10.41: Screenshot
of doublyCurledCone.cpp.

Experiment 10.8. The plan above is implemented in doublyCurled-

Cone.cpp, again using the template of cylinder.cpp, with the value of A
set to π/4 and a to 0.05. Press the arrow keys to coarsen or refine the
triangulation and ‘x/X’, ‘y/Y’ or ‘z/Z’ to turn the cone. Figure 10.41 is a
screenshot. End

Exercise 10.50. (Programming) Modify doublyCurledCone.cpp to
change as well the length of the revolving segment c as it sweeps the cone.

Exercise 10.51. A superellipsoid is given generally by the implicit equation∣∣∣x
a

∣∣∣n +
∣∣∣y
b

∣∣∣n +
∣∣∣z
c

∣∣∣n = 1 (10.17)

where a, b, c and n are each a positive constant. It’s an extension to 3D of
the superellipse of Section 10.1.3.

In fact, a special type of superellipsoid is obtained as a surface of
revolution by simply revolving a superellipse about either the x- or y-axis.
Accordingly, deduce the parametric equations of the superellipsoid obtained
by revolving the superellipse ∣∣∣x

a

∣∣∣n +
∣∣∣y
b

∣∣∣n = 1

about the y-axis.

Exercise 10.52. (Programming) Draw the general superellipsoid given
by (10.17) above, allowing the user to choose parameters.

Extruded Helix

For the record, here’s a simple example of extrusion.

Figure 10.42: Screenshot
of extrudedHelix.cpp.

Experiment 10.9. Run extrudedHelix.cpp, which extrudes a helix,
using yet again the template of cylinder.cpp. The parametric equations
of the extrusion are

x = 4cos(10πu), y = 4sin(10πu), z = 10πu+ 4v, 0 ≤ u, v ≤ 1

the constants being chosen to size the object suitably. As the equation for z
indicates, the base helix is extruded parallel to the z-axis. Figure 10.42 is a
screenshot. End

Exercise 10.53. (Programming) Can you extrude the panels of the
chair of Exercise 10.39, all of which you were then asked to draw flat, to
make them now truly solid? Make the back rest curved too.378
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10.2.7 Drawing Projects

Here are real-life 3D projects for your drawing pleasure.

Exercise 10.54. (Programming) Draw the objects depicted in Fig-
ure 10.43: wine glass, vase, helmet with visor, extruded ‘A’, arch. Draw in
wireframe.

(a) (b) (c) (d) (e)

Figure 10.43: Stuff to draw.

Exercise 10.55. (Programming) Draw your name in 3D text.

Exercise 10.56. (Programming) Draw the six different chess pieces.

Exercise 10.57. (Programming) You have a chair from Exercise 10.39
(or Exercise 10.53) and a table from Experiment 10.7. Can you place these
into animateMan1.cpp of Experiment 4.33, and get the man to walk up to
the chair, sit and lean forward with his elbows on the table?

Figure 10.44: Model these? You gotta be kidding!

379
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Exercise 10.58. (Programming) Make a likeness of an interesting
structure at the place where you live, e.g., building, bridge, multi-level
highway crossing, train station, or a famous one, e.g., the Eiffel Tower or
Taj Mahal, of which images are available (Figure 10.44). Ignore details. Try
to be as faithful as possible to the large-scale geometry.
Hint : The Eiffel Tower and Taj Mahal may seem daunting at first, but
there are multiple symmetries in each which can be exploited to simplify the
design process.

Consider the Eiffel Tower. The base has four identical panels reminiscent
of the arch of Exercise 10.54 a little earlier. As for the tower above the base,
it has fourfold symmetry. Once a suitable profile curve has been chosen for
one of the four identical edges of the tower – its designer Gustave Eiffel used
an exponential equation in order for the structure to be able to withstand
severe wind forces – it’s a matter of placing this curve four times, rotated 90◦

each time, and filling identical wireframes between successive pairs. Don’t
forget display lists from Section 3.4 in your design process.

The Taj Mahal has arches as well and numerous surfaces of revolution.

You can skip the rest of Section 10.2 on a first reading and go directly
now to Section 10.3 on Bézier curves and surfaces. The reason is that
Sections 10.2.8-10.2.11 deal with special classes of surfaces which you can
explore later at leisure, while 10.2.12 is about the theory of surfaces which
can be deferred as well.

10.2.8 Ruled Surfaces

A ruled surface is a swept surface whose profile curve is a straight line. In
other words, a ruled surface is traced by a straight line traveling through
space. Each instance of the sweeping line is called a ruling . See Figure 10.45.

rulings

de
fin

in
g

tra
jec

to
ry

de
fin

in
g

tra
jec

to
ry

c2(u)

c1(u)

Figure 10.45: A ruled surface showing several rulings and two defining trajectories.

The parametrization of a ruled surface is particularly simple. Say that
the paths of two distinct points on the profile line are c1(u) and c2(u),380
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u ∈ [a, b], respectively, each called a defining trajectory of the surface. A
parametrization then is

s(u, v) = (1− v)c1(u) + vc2(u), u ∈ [a, b], v ∈ (−∞,∞) (10.18)

where u varies over the defining trajectories, and v over the (infinite) straight
line through a pair of corresponding points on the two. If we want only the
part of the surface between the defining trajectories, then we have to restrict
the parameter space as follows:

s(u, v) = (1− v)c1(u) + vc2(u), u ∈ [a, b], v ∈ [0, 1] (10.19)

Various surfaces arise as ruled surfaces. Here are three interesting ones.

Bilinear Patches

p2

p1

q1

q2

c2 c1

Figure 10.46: Bilinear
patch.

A bilinear patch is a ruled surface whose defining trajectories c1 and c2 are
straight line segments both. The bilinear patch itself lies between the two
trajectories. See Figure 10.46. Suppose the endpoints of c1 are p1 and q1, so
that it can be parametrized c1(u) = (1− u)p1 + uq1, 0 ≤ u ≤ 1, while the
endpoints of c2 are p2 and q2, and it is parametrized c2(u) = (1−u)p2 +uq2,
0 ≤ u ≤ 1. Plugging these equations into (10.19) we get the equation of the
bilinear patch:

s(u, v) = (1− u)(1− v) p1 + u(1− v) q1 + (1− u)v p2 + uv q2, u, v ∈ [0, 1]
(10.20)

Counter-intuitively, even though a bilinear patch is made of a family
of straight segments joining points again on two straight segments c1 and
c2, it need not be flat! In fact, it’s flat only when c1 and c2 are coplanar;
otherwise, it is a curved surface. Interestingly, it turns out, as we’ll see in
upcoming Section 10.2.9, that, generally, a bilinear patch is nothing but the
familiar saddle surface.

Figure 10.47: Screenshot
of bilinearPatch.cpp.

Experiment 10.10. Run bilinearPatch.cpp, which implements pre-
cisely Equation (10.20). Press the arrow keys to refine or coarsen the
wireframe and ‘x/X’, ‘y/Y’ or ‘z/Z’ to turn the patch. Figure 10.47 is a
screenshot. End

Generalized Cones

A generalized cone is a ruled surface, one of whose defining trajectories is an
arbitrary curve c, while the other is stationary, in other words, a single point
p, which should not belong to c. The cone is said to be over c with apex at
p. See Figure 10.48 for three examples. Unless the qualifier “generalized” is
used, the curve c is typically presumed closed. Often, informally meant by
the term cone is a right circular cone, which is a cone over a circle c whose 381
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Right circular coneGeneralized cone Cone (on a closed curve)

c

p

Figure 10.48: Generalized cones: (a) over a non-closed curve (b) over a closed curve (c)
Right circular cone. Only the part between the two trajectories is drawn.

apex is located on the line which is through the center of c and perpendicular
to its plane.

The equation of the part of the generalized cone between its trajectories –
a part like those depicted in Figure 10.48 – is obtained by plugging c1(u) = p
for the trajectory stationary at the apex p, and c2(u) = c(u) for the other,
into (10.19):

s(u, v) = (1− v)p+ vc(u), u ∈ [a, b], v ∈ [0, 1] (10.21)

Evidently, all rulings pass through the apex p, at v = 0.

Exercise 10.59. (Programming) Draw a cone over the astroid of
astroid.cpp.

Generalized Cylinders

A generalized cylinder is a ruled surface whose defining trajectories c1 and
c2 are translates of one another. See Figure 10.49. Colloquially, a cylinder
typically means the familiar right circular cylinder , where c1 and c2 are
circles whose centers are joined by a line perpendicular to the plane of both.

The equation for the generalized cylinder is obtained by writing the
equation of one trajectory as c(u) and the other as c(u) + d, where u ∈ [a, b],
and d is the vector translating the first trajectory to the second. Plugging
these equations into (10.19) we get the generalized cylinder as

s(u, v) = (1−v)c(u)+v(c(u)+d) = c(u)+vd, u ∈ [a, b], v ∈ [0, 1] (10.22)

The rulings are evidently all parallel to the vector d.

Exercise 10.60. Are generalized cylinders the same as extrusions?

Exercise 10.61. (Programming)Draw a generalized cylinder using an
astroid as a trajectory.

382
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d

Generalized cylinder Right circular cylinder

c2

c1

Figure 10.49: A generalized cylinder and a special case.

10.2.9 Quadric Surfaces

As we saw in 10.1.5, conics are curves on a plane given by a quadratic
equation in two variables. Quadric surfaces or, simply, quadrics, are their
generalization to one dimension higher. They are surfaces in 3D space given
by a quadratic equation in three variables:

Ax2 +By2 + Cz2 +Dyz + Ezx+ Fxy + Px+Qy +Rz +H = 0

Excluding degenerate instances (e.g., x2 + y2 + z2 = 0, which gives a single
point) a quadric is of one of the nine kinds shown in Figure 10.50. In fact,
any non-degenerate quadric can be transformed by translation and rotation
to one of the normalized forms in the following table, corresponding each to
one of those pictured in Figure 10.50.

Quadric Implicit Equation

Ellipsoid x2

a2 + y2

b2 + z2

c2 = 1

Elliptic Paraboloid x2

a2 + y2

b2 − z = 0

Hyperbolic Paraboloid x2

a2 −
y2

b2 − z = 0

Hyperboloid (1 sheet) x2

a2 + y2

b2 −
z2

c2 = 1

Hyperboloid (2 sheets) x2

a2 −
y2

b2 −
z2

c2 = 1

Elliptic Cone x2

a2 + y2

b2 −
z2

c2 = 0

Elliptic Cylinder x2

a2 + y2

b2 = 1
Parabolic Cylinder y = ax2

Hyperbolic Cylinder x2

a2 −
y2

b2 = 1

A sphere is, of course, a special case of an ellipsoid. The hyperbolic
paraboloid, for an obvious reason, is often called a saddle surface. The
three cylindrical quadrics along the bottom row are probably the least
interesting, as they are merely extrusions of plane conics. Parametrization,
both trigonometric and rational, of the quadrics are not hard to derive.

Example 10.20. Find both trigonometric and rational parametrizations
of the ellipsoid. 383
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Ellipsoid

Hyperboloid of one sheet Hyperboloid of two sheets Elliptic Cone

Elliptic Cylinder Hyperbolic CylinderParabolic Cylinder

Elliptic Paraboloid Hyperbolic Paraboloid

Figure 10.50: The nine non-degenerate quadric surfaces (from Wikimedia).

Answer : We begin with the ellipsoid’s implicit equation

x2

a2
+
y2

b2
+
z2

c2
= 1

A trigonometric parametrization is

x = a cos θ cosφ, y = b sin θ cosφ, z = c sinφ, θ ∈ [−π, π], φ ∈ [−π/2, π/2]

while a rational one is

x = a
1− u2 + v2

1 + u2 + v2
, y = b

2uv

1 + u2 + v2
, z = c

2u

1 + u2 + v2
, u, v ∈ (−∞,∞)

with a singularity at (−a, 0, 0).

Exercise 10.62. Find trigonometric and rational parametrizations of the
elliptic paraboloid.

Remark 10.12. If a = b in the equation of the elliptic paraboloid – the

equation becomes x2

a2 + y2

a2 −z = 0 in this case – then it’s actually a surface of384
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revolution obtained from revolving a parabola around its axis. This special
case of an elliptic paraboloid is called a circular paraboloid . It is the shape
used in mirrors behind headlamps because light from a bulb placed at its
focal point reflects in a parallel beam.

Drawing the quadrics is simple. We’ll use a trigonometric parametrization
to draw next the hyperboloid of one sheet.

Experiment 10.11. Run hyperboloid1sheet.cpp, which draws a trian-
gular mesh approximation of a single-sheeted hyperboloid with the help of
the parametrization

x = cosu sec v, y = sinu sec v, z = tan v, u ∈ [−π, π], v ∈ (−π/2, π/2)

Figure 10.51(a) is a screenshot. In the implementation we restrict v to
[−0.4π, 0.4π] to avoid ±π/2 where sec is undefined. End

(a) (b) (c)

Figure 10.51: (a) Screenshot of hyperboloid1sheet.cpp (b) Edible hyperbolic
paraboloids (c) Hyperboloid footbridge over Corporation Street in Manchester in
England supported by its rulings (courtesy of Patrick Litherland).

It’s interesting that a few of the non-degenerate quadrics are, in fact,
ruled surfaces and, therefore, traced by a straight line traveling through
space. The ones on the bottom row of Figure 10.50 are evidently so. We’ll
prove a less obvious case.

Example 10.21. Show that the hyperbolic paraboloid is a ruled surface.

Answer : We’ll work with the instance s given by the implicit equation

x2 − y2 = z

as setting the coefficients all equal to 1 simplifies calculations (without
costing in generality). Write the equation as

(x+ y)(x− y) = z 385
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Setting u = x+ y and v = x− y then leads to the following parametrization
of s:

x =
u+ v

2
, y =

u− v
2

, z = uv, u, v ∈ (−∞,∞) (10.23)

Now, a u-parameter curve of s is obtained by fixing v = β:

x =
u+ β

2
, y =

u− β
2

, z = βu, u ∈ (−∞,∞)

which is a straight line. Therefore, s is swept by a straight line profile,
particularly the u-parameter curve for v = β, as β varies, proving it is indeed
ruled. Evidently, it’s doubly-ruled , the u-parameter curves and v-parameter
curves defining distinct symmetric families of rulings.

In fact, it gets even more interesting! Two defining trajectories for s can
be obtained as the v-parameter curves corresponding to a couple of distinct
values of u, because they intersect each u-parameter curve in a distinct pair
of points. Accordingly, set u equal to 0 and 1 in Equation (10.23) to get,
respectively, the equations

x =
v

2
, y = −v

2
, z = 0, v ∈ (−∞,∞)

and

x =
1 + v

2
, y =

1− v
2

, z = v, v ∈ (−∞,∞)

which are both straight lines. So a hyperbolic paraboloid is a ruled surface
with straight-line defining trajectories, which means it’s a bilinear patch.
This justifies an earlier remark that bilinear patches are saddle surfaces in
general.

Remark 10.13. People often snack on hyperbolic paraboloids! See
Figure 10.51(b).

Exercise 10.63. Prove that the single-sheeted hyperboloid is doubly-ruled.
Figure 10.51(c) illustrates how this fact is applied to build a bridge – note
the two sets of steel rulings and how they intersect in a grid. You likely have
seen baskets woven in the shape of single-sheeted hyperboloids as well.

Exercise 10.64. (Programming) Animate a straight line segment
sweeping out a single-sheeted hyperboloid.

10.2.10 GLU Quadric Objects

We are already familiar with several FreeGLUT library objects such as
spheres, cubes and cones which are ready-to-use for 3D drawing. The
OpenGL Utility Library GLU provides additional routines to create four
kinds of so-called quadric objects: sphere, tapered cylinder, annular disc
and partial annular disc. See Figure 10.52.386
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(a) (b) (c) (d)

Figure 10.52: GLU quadrics: (a) Sphere (b) Tapered cylinder (c) Annular disc (d)
Partial annular disc.

Experiment 10.12. Run gluQuadrics.cpp to see all four GLU quadrics.
Press the left and right arrow keys to cycle through the quadrics and ‘x/X’,
‘y,Y’ and ‘z/Z’ to turn them. The images in Figure 10.52 were, in fact,
generated by this program. End

Remark 10.14. It’s a bit unfortunate that OpenGL chooses to render the
quadrics quadrilateralized, rather than triangulated.

Here’s how the syntax works (refer to Figure 10.53):

x

y

z

radius
x

y

z

height

baseRadius
topRadius

y

outerRadiusinnerRadius

x

y

Annular Disc Partial Annular Disc

sweepAngle

x

innerRadius

outerRadius

startAngle

Tapered CylinderSphere

Figure 10.53: Defining the GLU quadrics.

1. gluSphere(*qobj, radius, slices, stacks)

Draws a sphere of radius radius centered at the origin. The parameters
slices and stacks determine the fineness of the quadrilateralization. 387
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Note: The parameter qobj in this case, and in the following, points to
a quadric object.

2. gluCylinder(*qobj, baseRadius, topRadius, height, slices, stacks)

Draws a tapered cylinder with its axis along the z-axis, whose base
is a circle of radius baseRadius lying on the z = 0 plane and
whose top a circle of radius topRadius lying on the z = height
plane. If either baseRadius or topRadius is zero then the object is a
cone. The parameters slices and stacks determine the fineness of the
quadrilateralization.

3. gluDisk(*qobj, innerRadius, outerRadius, slices, rings)

Draws an annular disc centered at the origin and lying on the z =
0 plane, whose inner boundary is of radius innerRadius and outer
boundary of radius outerRadius. The parameters slices and rings
determine the fineness of the quadrilateralization.

4. gluPartialDisk(*qobj, innerRadius, outerRadius, slices, rings,
startAngle, sweepAngle)

Draws a partial annular disc: precisely, the sector of the annular
disc defined by gluDisk(*qobj, innerRadius, outerRadius, slices,
rings), starting from angle startAngle and ending at startAngle +
sweepAngle, where either angle is measured clockwise (looking from
the +z-direction) along the xy-plane starting from the y-axis.

GLU calls of the form gluQuadric*(*qobj, *) determine various prop-
erties of the quadric. For example, the call gluQuadricDrawStyle(qobj,
GLU LINE) causes the quadric to be rendered in wireframe.

Remark 10.15. The GLU quadrics are somewhat ambitiously named.
Although they are each a part of one of the mathematical quadric surfaces
described in the preceding section, they will hardly help in drawing the more
complex ones.

10.2.11 Regular Polyhedra

To begin with here’s a definition of a particular kind of polygon which should
be familiar:

Definition 10.9. A regular polygon is a simple planar polygon whose sides
are of equal length and which has equal interior angles at its vertices.

A regular polygon with n sides is convex and its vertices are spaced
equally along a circle, called its circumscribed circle, at an angle of 2π/n
apart (Figure 10.54). The larger the n, the more closely the polygon
approximates its circumscribed circle.388
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3 4 5 6 10

Figure 10.54: Regular polygons with number of sides indicated. The triangle shows its
circumscribed circle.

Exercise 10.65. What is the interior angle at a vertex of an n-sided
regular polygon?

Exercise 10.66. Show that if the condition “and which has equal interior
angles at its vertices” is dropped from the definition of a regular polygon,
then we could make one not belonging to the family of Figure 10.54.

Regular polyhedra are a generalization of regular polygons to three
dimensions. Here first is the definition of a polyhedron based on that of a
polygonal mesh (described in Section 10.2.2).

Definition 10.10. A polyhedron is a solid object whose boundary is a
polygonal mesh (in other words, a solid whose faces are all polygons).

Definition 10.11. A regular polyhedron is a polyhedron all of whose faces
are identical regular polygons.

Because of the symmetry constraints on their faces, there exist only
five different regular polyhedra, ignoring difference in size. They are the
tetrahedron, hexahedron (familiarly, cube), octahedron, dodecahedron and
icosahedron in order of increasing number of faces. See Figure 10.55.

4 6 8 12 20

Figure 10.55: The five regular polyhedra with the number of faces indicated.

Geometric data for the five in numerical form is collected in the following
table. 389
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Faces Edges Vertices Edges of Faces at
a face a vertex

Tetrahedron 4 6 4 3 3
Hexahedron (cube) 6 12 8 4 3

Octahedron 8 12 6 3 4
Dodecahedron 12 30 20 5 3
Icosahedron 20 30 12 3 5

The hexahedron is bounded by squares, the dodecahedron by regular
pentagons and the remaining three by equilateral triangles. The value (m,n)
for a regular polyhedron, where m is the number of edges of a face and n
the number of faces meeting at a vertex – the items in the last two columns
of the table – is called its Schläfli symbol . The five different Schläfli symbols
are (3, 3), (4, 3), (3, 4), (5, 3) and (3, 5), and each uniquely identifies a regular
polyhedron. It’s not an accident, as we’ll see, that the reverse of each Schläfli
symbol is another.

Remark 10.16. Regular polyhedra are also called Platonic solids because
they were known to Plato, as recorded in his Timaeus dialogues. In fact,
archeological finds suggest that these beautiful shapes were familiar to even
earlier people.

Modeling Regular Polyhedra

There’s an easy way to draw regular polyhedra using OpenGL: call them
from the FreeGLUT library! All five are available as FreeGLUT objects.

Experiment 10.13. Run glutObjects.cpp, a program we originally saw
in Chapter 3. Press the left and right arrow keys to cycle through the various
FreeGLUT objects and ‘x/X’, ‘y/Y’ and ‘z/Z’ to turn them. Among other
objects you see all five regular polyhedra, both in solid and wireframe. End

However, in case you are the hardy do-it-yourself type, here’s what you
need to know.

Figure 10.56: Screenshot
of tetrahedron.cpp.

Experiment 10.14. Run tetrahedron.cpp. The program draws a wire-
frame tetrahedron of edge length 2

√
2 which can be turned using the ‘x/X’,

‘y/Y’ and ‘z/Z’ keys. Figure 10.56 is a screenshot. End

The coordinates of the vertices of the tetrahedron of tetrahedron.cpp,
as well as the indices of the vertices comprising each of its triangular faces,
are listed in the following two global arrays:

// Vertex coordinate vectors for the tetrahedron.

static float vertices[] =

{
1.0, 1.0, 1.0, // V0

-1.0, 1.0, -1.0, // V1

1.0, -1.0, -1.0, // V2390
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-1.0, -1.0, 1.0 // V3

};

// Vertex indices for the four triangular faces.

static int triangleIndices[4][3] =

{
{1, 2, 3}, // F0

{0, 3, 2}, // F1

{0, 1, 3}, // F2

{0, 2, 1} // F3

};

For example, the face F0 is a triangle with corners at the vertices V 1, V 2
and V 3.

Here’s similar data for a cube of edge length 2:

Cube

Vertex Coordinates
V 0 (1, 1, 1)
V 1 (1, 1,−1)
V 2 (1,−1,−1)
V 3 (1,−1, 1)
V 4 (−1, 1, 1)
V 5 (−1, 1,−1)
V 6 (−1,−1,−1)
V 7 (−1,−1, 1)

Face Vertices
F0 (V 3, V 0, V 1, V 2)
F1 (V 2, V 1, V 5, V 6)
F2 (V 6, V 5, V 4, V 7)
F3 (V 7, V 4, V 0, V 3)
F4 (V 1, V 0, V 5, V 4)
F5 (V 3, V 2, V 6, V 7)

You may be wondering why we bothered at all with the totally trivial
cube. The reason is that a cube sets up modeling an octahedron by way of
the beautiful relationship of duality between regular polyhedra.

Duality

The dual of a regular polyhedron P is the polyhedron P ′ inscribed in P as
follows:

(a) For each face f of P there is a vertex of P ′, called f ’s dual, located at
the center of f .

(b) For each edge e of P there is an edge of P ′, called e’s dual, joining the
dual of the two faces of P adjacent to e.

(c) For each vertex v of P there is a face of P ′, called v’s dual, with
vertices at the duals of the faces of P that meet at v. 391
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See Figure 10.57. Fascinatingly enough, it turns out that the dual of a
regular polyhedron is another regular polyhedron. Cubes and octahedrons
are duals of one another, as are dodecahedrons and icosahedrons, while
tetrahedrons are self-dual.

V0

V1V5

V4

V6

V7
V3

V2

Figure 10.57: The five regular polyhedra each containing its inscribed dual (the cube is
labeled to help with Exercise 10.67).

It’s clear from the construction that a regular polyhedron and its dual
have the same number of edges, while the number of vertices of one equals
the number of faces of the other. Moreover, their Schläfli symbols are flips
one of the other.

Returning to the drawing of regular polyhedra, it’s easy now to compute
the data for the octahedron dual to the cube whose data we listed earlier.
In fact, we leave the reader to verify data for the dual octahedron in the
next exercise.

Exercise 10.67. Verify the data for the octahedron, dual to the cube
whose data was listed earlier, as given in the two tables just below. Note
that the vertex V ′i of the octahedron is the dual of the face Fi of the
cube, while the face F ′j of the octahedron dual of the face V j of the cube.
Moreover, the edge length of this particular octahedron is

√
2.

392
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Octahedron

Vertex Coordinates
V ′0 (1, 0, 0)
V ′1 (0, 0,−1)
V ′2 (−1, 0, 0)
V ′3 (0, 0, 1)
V ′4 (0, 1, 0)
V ′5 (0,−1, 0)

Face Vertices
F ′0 (V ′0, V ′4, V ′3)
F ′1 (V ′4, V ′0, V ′1)
F ′2 (V ′5, V ′1, V ′0)
F ′3 (V ′5, V ′0, V ′3)
F ′4 (V ′2, V ′3, V ′4)
F ′5 (V ′1, V ′2, V ′4)
F ′6 (V ′2, V ′1, V ′5)
F ′7 (V ′5, V ′3, V ′2)

Icosahedron

Vertex Coordinates
V 0 (0, 1, X)
V 1 (0, 1,−X)
V 2 (1, X, 0)
V 3 (1,−X, 0)
V 4 (0,−1,−X)
V 5 (0,−1, X)
V 6 (X, 0, 1)
V 7 (−X, 0, 1)
V 8 (X, 0,−1)
V 9 (−X, 0,−1)
V 10 (−1, X, 0)
V 11 (−1,−X, 0)

Note: The constant X =
(
√

5 − 1)/2 is the recip-
rocal of the golden ratio.
Its value is approximately
0.618.

Face Vertices
F0 (V 6, V 2, V 0)
F1 (V 2, V 6, V 3)
F2 (V 3, V 6, V 5)
F3 (V 6, V 7, V 5)
F4 (V 0, V 7, V 6)
F5 (V 8, V 2, V 3)
F6 (V 1, V 2, V 8)
F7 (V 2, V 1, V 0)
F8 (V 10, V 0, V 1)
F9 (V 9, V 10, V 1)
F10 (V 8, V 9, V 1)
F11 (V 4, V 8, V 3)
F12 (V 3, V 5, V 4)
F13 (V 11, V 4, V 5)
F14 (V 10, V 11, V 7)
F15 (V 0, V 10, V 7)
F16 (V 4, V 11, V 9)
F17 (V 8, V 4, V 9)
F18 (V 11, V 5, V 7)
F19 (V 10, V 9, V 11)

Part answer : In addition to the data for the cube, it’s helpful as well to
refer to the diagram of the octahedron inscribed in the labeled cube in
Figure 10.57.

V ′0, dual of the face F0, is located at the center of F0. Its coordinates,
therefore, are

1

4
(V 3 + V 0 + V 1 + V 2) =

1

4
( (1,−1, 1) + (1, 1, 1) + (1, 1,−1) + (1,−1,−1) )

= (1, 0, 0)

F ′0, dual of the vertex V ′0, has vertices that are the duals of the faces of
the cube that contain V 0. From the cube’s table the faces containing V 0 393
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are F0, F3 and F4. Therefore, F ′0 has vertices V ′0, V ′3 and V ′4.

Use the data for an icosahedron in the two tables above to solve the
following two problems.

Exercise 10.68. (Programming) Draw an icosahedron.

Exercise 10.69. (Programming) Use duality to compute the data for
a dodecahedron from that of an icosahedron. In fact, write a short program
for this purpose which takes as input the icosahedron data.

10.2.12 Surfaces More Formally

The material in this section is fairly theoretical though we do our best to
motivate it practically. We suggest skipping it on a first reading of the book
and returning later. If it proves not to your taste at all then you can skip it
altogether without affecting your CG skills.

In addition to calculus 101, a basic understanding of partial derivatives
is required in order to formalize the notion of surfaces, particularly that
of the regular surfaces. If you’re not familiar with partial derivatives then
a math class or calculus book, e.g., Stewart [137] or Schaum’s Outlines
[5, 152], is the place to pick the stuff up. We have a handy primer ourselves
in Section 11.10 (independent of the rest of that chapter).

Recall that a C0 curve was defined as the continuous image of a closed
interval. Defining a surface as the continuous image of, say, a rectangle
seems then a reasonable thing to do.

roll and
roll again

easy roll

W

? ?

Figure 10.58: Mapping a rectangle onto surfaces.

This does indeed pass muster for simple surfaces. See the objects of
Figure 10.58. It’s straightforward to map the rectangle W continuously onto394
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the disc. The cylinder requires the parametric functions to roll W – mapping
an edge onto the opposite one. The torus can be made in an additional
step from the cylinder, by mapping the cylinder’s opposite ends onto each
other. How about the double torus though, which is certainly a surface? Is
it apparent how to map W onto a double torus? Or, consider something
as simple as the punctured rectangle, also a surface. How can one map the
(unpunctured) rectangle W onto a punctured one in a continuous manner?

It’s not quite clear, then, if the view of a surface as simply the image of
a rectangle can be successful. Well, even if it might not succeed globally, it
does locally . Huh?

Here’s a thought experiment to explain what we mean. Straighten and
bring the fingers of your right hand together so that it looks like an ellipse.
Actually, let’s pretend that it’s the rectangle W of Figure 10.58. A question
now: if you coated your palm and fingers with gray ink could you color each
of the surfaces of Figure 10.58 gray by patting repeatedly? Pats are allowed
to overlap. Ignore size constraints as well – think of your palm or any of the
surfaces to be as small or large as you like. After a couple of minutes, then,
the double torus may look like Figure 10.59.

Figure 10.59: Patting
gray a double torus.

Well, . . .? We’re hoping your answer is yes, that you could pat each
of the surfaces fully gray. What would that mean then? Exactly that the
surfaces can each be covered by patches, each of which is a continuous image
of a rectangle – continuous in the sense that you’ll probably have to bend
and squeeze your palm a lot, but not do anything drastic like poke a hole
through it! In other words, per patch (locally!) the surface is indeed the
continuous image of a rectangle.

We’re close to a definition of a surface. First, though, we have to formalize
the notion of a so-called C0 coordinate patch.

Definition 10.12. A C0 coordinate patch in R3 is specified by three real-
valued C0 functions f , g and h, all defined on a closed rectangle W =
[a, b]× [c, d] on the plane, such that the function

(u, v) 7→ (f(u, v), g(u, v), h(u, v))

from W to its image B is one-to-one. The image set

B = {(f(u, v), g(u, v), h(u, v)) : (u, v) ∈W}

itself is called a C0 coordinate patch in R3.

Remark 10.17. The one-to-one condition ensures that B is topologically
equivalent to W , which is stronger than if B were merely a continuous image
of W . The examples next clarify this.

Example 10.22. Assume W to be the rectangle [−1, 1]× [−1, 1] on the
plane. Refer to Figure 10.60 for diagrams of the following functions from W . 395
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(a)

(u, v) 7→ (u, v, u2 + v2)

specifies a coordinate patch that covers the bottom part of a paraboloid.

z

x

z
y

z

x

y

(u, v) −−> (u, 0, |u|v)(u, v) −−> (cos u, sin u, v)

0 1−1
0

1

u

v

−1 W

x

y

(u, v) −−> (u, v, u2 + v2) 

Figure 10.60: Functions (u, v) 7→ (f(u, v), g(u, v), h(u, v)) and their images.

(b)

(u, v) 7→ (cosu, sinu, v)

specifies a coordinate patch that covers part of a cylinder.

(c)

(u, v) 7→ (u, 0, |u|v)

continuously maps the rectangle onto the union of two triangles but is
not one-to-one – the entire segment {0} × [−1, 1] of W is mapped to
the single point (0, 0, 0) – so does not specify a coordinate patch.

The union cannot be patted gray either, as you can squeeze your palm
as thin as you like, but never to a point.

We employ coordinate patches next to define surfaces.396
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Definition 10.13. A subset s of R3 is a C0 surface if there is a collection
B of C0 coordinate patches in R3 such that

(a) the union of the coordinates patches in B equals s, and

(b) for each point P ∈ s, a sufficiently small neighborhood of P – i.e.,
consisting of points within a distance δ of P for some small positive δ
– lies inside a single coordinate patch belonging to B.

Remark 10.18. Patches in B can overlap.

Remark 10.19. B can be an infinite collection.

Remark 10.20. A C0 surface is said to be a two-dimensional topological
manifold or topological surface.

s

P

Figure 10.61: Any
neighborhood of P will
consist of two intersecting
fragments, which cannot
lie in one coordinate patch.

The first condition of the definition formalizes the intuition of a surface
being covered by “rectangle-like” patches. The second one is to eliminate
the sort of pathology shown in Figure 10.61. The object s consisting of
two intersecting planes should not qualify as a surface – even though it
can evidently be covered by patches – as it’s not of a single sheet. In fact,
a neighborhood of P , no matter how small, consists of two intersecting
fragments, which can never lie in a single coordinate patch.

Example 10.23. What is the minimum number of coordinate patches
required to cover the cylinder

x = cosu, y = sinu, z = v, (u, v) ∈ [−π, π]× [−1, 1]

to prove that it’s a C0 surface according to Definition 10.13? You don’t
have to write equations for the coordinate patches. Just sketch them on the
cylinder.

Answer : Two coordinate patches are sufficient. Figure 10.62(a) indicates
one patch covering a sector of more than 180◦. Another patch that’s a
mirror image of this one would cover the rest of the cylinder. The two would
overlap, of course.

(a) (b)

Figure 10.62: (a) One coordinate patch wrapping almost all the way around a
cylinder (b) A punctured square. 397
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One coordinate patch by itself will never do. Although this is fairly evident
given the shape of the cylinder, a proof requires topology (in particular, the
fact that the cylinder is not “homeomorphic” to a rectangle). Thus, two
patches is the minimum.

Exercise 10.70. The two coordinate patches of the preceding example
overlapped significantly. To avoid “waste” suppose we had two patches
that each spanned 180◦, covering exactly one half of the cylinder, one a
mirror image of the other. Their intersection would then consist of two line
segments.

Would these two patches do to prove a cylinder to be a C0 surface?

Exercise 10.71. How about the following punctured square lying on the
xy-plane?

[−1, 1]× [−1, 1]× {0} − {(x, y, 0) : x2 + y2 < 0.5}

See Figure 10.62(b). Note that it’s closed with two boundary components –
an outside one bounding the square and an inside one bounding the missing
disc. How many coordinate patches does one need to prove that it’s a C0

surface? Answer with a sketch.

Exercise 10.72. Consider the following open disc (i.e., missing its
boundary) lying on the xy-plane:

{(x, y, 0) : x2 + y2 < 1}

How does one cover it with coordinate patches to prove that it’s a C0 surface?

Suggested approach: A finite number of coordinate patches will not do. Find,
first, a continuous mapping of a closed rectangle W to the closed disc

Dr = {(x, y, 0) : x2 + y2 ≤ 1− 1/r}

for any r ≥ 2, to make Dr a coordinate patch. Consider, then, the union
∪∞r=2Dr.

Defining Cm surfaces for values of m greater than zero is the next natural
step and not hard. One must first define the Cm continuity of a function of
more than one variable. Not surprisingly, this involves partial derivatives.
Compare the following with Definition 10.7 of the Cm-continuity of a function
of a single variable.

Definition 10.14. A function f defined on a closed rectangle W = [a, b]×
[c, d] on the plane is said to be Cm-continuous or, simply, Cm, where m ≥ 1,
if all of its partial derivatives of order m and less exist and are continuous
on W .

Cm coordinate patches will obviously invokeCm functions of two variables:398
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Definition 10.15. A Cm coordinate patch in R3, where m ≥ 1, is specified
by three real-valued Cm functions f , g and h, all defined on a closed rectangle
W = [a, b]× [c, d] on the plane, such that the function

(u, v) 7→ (f(u, v), g(u, v), h(u, v))

from W to its image B is one-to-one. The image set

B = {(f(u, v), g(u, v), h(u, v)) : (u, v) ∈W}

itself is called a Cm coordinate patch.
If, additionally, the two vectors[

∂f

∂u

∂g

∂u

∂h

∂u

]T
and

[
∂f

∂v

∂g

∂v

∂h

∂v

]T
are linearly independent – i.e., if they are both non-zero and are not collinear
– for every (u, v) ∈W , then the coordinate patch is said to be regular .

It’s usual to consider regular Cm coordinate patches, when m ≥ 1, rather
than just Cm. Accordingly, here’s the definition of a surface covered by such
patches:

Definition 10.16. A subset s of R3 is a regular Cm surface, where m ≥ 1,
if there is a collection B of regular Cm coordinate patches in R3 such that

(a) the union of the coordinate patches in B equals s, and

(b) for each point P ∈ s, all points of s sufficiently close to P lie in a single
coordinate patch belonging to B.

A regular Cm surface, m ≥ 1, is often simply called a regular surface. A
regular surface that is Cm for any m is regular C∞, also called smooth.

T

s

P

∂f       ∂g     ∂h      
∂v      ∂v      ∂v      

T
∂f       ∂g     ∂h      
∂u      ∂u      ∂u      

Figure 10.63: The non-zero linearly independent tangent vectors
[
∂f
∂u

∂g
∂u

∂h
∂u

]T
and[

∂f
∂v

∂g
∂v

∂h
∂v

]T
span the tangent plane p at P .

399
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Remark 10.21. Recall that the regularity condition in the case of a curve
– that the tangent vector never vanishes – ensures a meaningful tangent
direction at each of its points. The regularity condition for a surface
ensures likewise that a meaningful tangent plane exists at each point. See
Figure 10.63.

Figure 10.64 shows four surfaces of various orders of continuity. All labels
should be clear except maybe for the second one, which is a cylinder capped
by a hemisphere. This surface is regular C1 but not regular C2, for precisely
the same reason that the third curve of Figure 10.20 is C1 and not C2 (we’ll
leave the reader to revisit the explanation there if need be).

The table in Figure 10.64 is not regular, though it is composed of regular
pieces. It would be nice to have a definition of piecewise regularity to apply
to such surfaces. However, formulating an analogue of Definition 10.5 of
piecewise regular curves is not straightforward, as it isn’t clear what it means
to join a number of surfaces end to end. The following definition finesses
the problem.

C0, 
not regular C1

regular C1, 
not regular C2

smooth smooth

Figure 10.64: Various orders of surface continuity.

Definition 10.17. A piecewise regular surface in R3 is a C0 surface that is
the union of finitely many regular surfaces.

The requirement of C0-continuity in the definition assures the sheet-like
nature of the union. The table is then piecewise regular, but the intersecting
planes of Figure 10.61 are not as they don’t form a C0 surface.

Exercise 10.73. Is the surface of a regular polyhedron C0, C1, piecewise
regular, . . .?

We finish up with a definition of regular two-dimensional objects
analogous to Definition 10.6 of regular one-dimensional objects, which does
apply to the intersecting planes of Figure 10.61, and pretty much everything
else one is likely to run into in 3D graphics.

Definition 10.18. A regular two-dimensional object is a finite union of
regular surfaces.400
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And for the record we have the proper inclusions

regular surfaces ⊂ piecewise regular surfaces ⊂ regular 2D objects

10.3 Bézier Phrase Book

Bézier and NURBS (Non-Uniform Rational B-Spline) curves and surfaces
are two special classes of curves and surfaces widely used in 3D design. Their
utility to the applications programmer lies in the ability to sculpt a primitive
in an intuitive manner by manipulating so-called control points, rather than
by devising equations (the equations do exist but are created and managed
transparently by the API). Several 3D modeling systems, in fact, allow the
user to interactively design Bézier and NURBS primitives in a WYSIWYG
environment. OpenGL, however, offers both in a sparser code-it-yourself
manner.

There is a fair amount of theory underlying both, which is the reason for
their effectiveness in the first place, and it’s important that designers have
a reasonable understanding in order to use them effectively. We’ll study
polynomial Bézier and NURBS theory in depth in Chapters 15-16. The
rational version of both classes of primitives is developed in Chapter 18.

Although it is most convenient to design Bézier and NURBS primitives
in a WYSIWYG environment, nevertheless, with a little effort fairly complex
designs can be coded in straight OpenGL. Polynomial Bézier curves and
surfaces, in particular, are quite intuitive and it’s perfectly possible to learn
their OpenGL syntax and begin design even before fully grasping the theory.
Unfortunately, such is not the case with the B-splines, polynomial or rational
or, for that matter, rational Bézier primitives, as it’s difficult to make sense
of their OpenGL syntax without some theoretical understanding.

In keeping, therefore, with the goal of this chapter to acquaint the reader
with as many 3D design techniques as possible, we’ll discuss polynomial
OpenGL Bézier primitives – both curves and surfaces – without, for now,
much of the theory.

10.3.1 Curves

Figure 10.65: Screenshot
of bezierCurves.cpp with
six control points, showing
both the Bézier curve and
its control polygon.

A Bézier curve c is specified by a sequence P0, P1, . . . , Pn of control points
in 3-space, whose number n+ 1 is called the order of c. The curve starts at
the first control point P0, ends at the last Pn and approaches, but does not
necessarily pass through, the intermediate ones. Think of the intermediate
control points as “attractors” which mold the shape of c. See Figure 10.65,
a screenshot of the program bezierCurves.cpp, which we’ll be discussing
momentarily, showing six control points and their Bézier curve (the curvy
line). 401
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Specifying the control points defines c in a parametric form

x = f(t), y = g(t), z = h(t)

where t belongs to a user-specified interval [t1, t2]. We’ll leave discussing
how the functions f , g and h are obtained to Chapter 15.

Experiment 10.15. Run bezierCurves.cpp. Press the up and down
arrow keys to select an order between 2 and 6 on the first screen. Press
enter to proceed to the next screen where the control points initially lie on a
straight line. Press space to select a control point and then the arrow keys
to move it. Press delete to start over. Figure 10.65 is a screenshot for order
6.

In addition to the black Bézier curve, drawn in light gray is its control
polygon, the polyline through successive control points. Note how the Bézier
curve tries to mimic the shape of its control polygon. End

We’ll explain the syntax of the OpenGL Bézier curve with the help of
the following two simpler programs.

Figure 10.66:
Screenshot of bezier-
CurveWithEvalCoord.cpp.

Experiment 10.16. Run bezierCurveWithEvalCoord.cpp, which draws
a fixed Bézier curve of order 6. See Figure 10.66 for a screenshot. End

The pair of statements

glMap1f(GL MAP1 VERTEX 3, 0.0, 1.0, 3, 6, controlPoints[0]);

glEnable(GL MAP1 VERTEX_3);

in the initialization routine of bezierCurveWithEvalCoord.cpp specify and
enable the Bézier curve. The command

glMap1f(target, t1, t2, stride, order, *controlPoints)

defines what OpenGL calls a one-dimensional Bézier evaluator . Depending
on how the parameter target is specified, the evaluator can be used to
generate data for position, color, texture or normal direction. For now,
we’ll use it only to generate positional data and, accordingly, set target to
GL MAP1 VERTEX 3: the ‘1’ is the dimension of the evaluator, while ‘3’ calls
for x, y and z coordinate values.

The parameters t1 and t2 specify the endpoints of the parameter interval
of the curve; order specifies the number of control points, the coordinate
values of which are to be found in the array pointed by controlPoints; stride
is the number of floating point values between the start of the data set for
one control point and that of the next in the array.

An evaluator of the form glMap1f(target, . . .) must be enabled with a
corresponding glEnable(target) command.

The Bézier curve itself of bezierCurveWithEvalCoord.cpp is drawn
as a line strip joining vertices returned by calls to glEvalCoord1f-

((GLfloat)i/50.0). Generally, glEvalCoord1f(t) evaluates the coordi-
nates of the point on the Bézier curve corresponding to the value t in the
parameter interval.402
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Exercise 10.74. (Programming) Guess what will be displayed if
the line strip definition in the drawing routine of bezierCurveWithEval-
Coord.cpp is changed to either of the two below:

(a) glBegin(GL LINE STRIP);

for (i = 0; i <= 25; i++) glEvalCoord1f( (float)i/50.0 );

glEnd();

(b) glBegin(GL LINE STRIP);

for (i = 0; i <= 4; i++) glEvalCoord1f( (float)i/4.0 );

glEnd();

As Bézier curves are most often sampled evenly through the parameter
interval, OpenGL provides a convenient way to do so, as we see in the next
experiment.

Experiment 10.17. Run bezierCurveWithEvalMesh.cpp. This program
is the same as bezierCurveWithEval.cpp except that, instead of calls to
glEvalCoord1f(), the pair of statements

glMapGrid1f(50, 0.0, 1.0);

glEvalMesh1(GL LINE, 0, 50);

are used to draw the approximating polyline.
The call glMapGrid1f(n, t1, t2) specifies an evenly-spaced grid of

n + 1 sample points in the parameter interval, starting at t1 and ending
at t2. The call glEvalMesh1(mode, p1, p2) works in tandem with the
glMapGrid1f(n, t1, t2) call. For example, if mode is GL LINE, then it
draws a line strip through the mapped sample points, starting with the
image of the p1th sample point and ending at the image of the p2th one,
which is a polyline approximation of part of the Bézier curve. End

End Tangents

Not only does a Bézier curve pass through its first and last control points,
the tangent at the first control point is along the straight line joining the
first two control points. In other words, it lies along the first segment of the
control polygon. Likewise, the tangent at the other end lies along the last
control polygon segment. This makes it possible to smoothly join two Bézier
curves which meet at a common end control point v, by arranging v and its
adjacent control points in either curve so that all three are on one straight
line. See Figure 10.67.

v

v́

v́ ´

Figure 10.67: Two
Bézier curves, one blue and
one red, meet smoothly at
an endpoint, as their
control polygons meet
smoothly (because v′, v
and v′′ are collinear).

Figure 10.68:
Screenshot of bezier-
CurveTangent.cpp.

Experiment 10.18. Run bezierCurveTangent.cpp. The blue curve may
be shaped by selecting a control point with the space key and moving it with
the arrow keys. Visually verify that the two curves meet smoothly when
their control polygons meet smoothly. Figure 10.68 is a screenshot of such a
configuration. End

403
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10.3.2 Surfaces

From Bézier curves to Bézier surfaces is straightforward. A Bézier surface
(also called Bézier patch) s is specified by an (n + 1) × (m + 1) array of
control points Pij , 0 ≤ i ≤ n, 0 ≤ j ≤ m. The surface passes through
the four “corner” control points P00, Pn0, P0m, Pnm, but not necessarily the
others which, nevertheless, act as attractors. Let’s continue the discussion
with live code in front.

Figure 10.69: Screenshot
of bezierSurface.cpp,
showing both the surface
mesh and its control
polyhedron.

Experiment 10.19. Run bezierSurface.cpp, which allows the user
herself to shape a Bézier surface by selecting and moving control points
originally in a 6× 4 grid. Drawn in black actually is a 20× 20 quad mesh
approximation of the Bézier surface. Also drawn in light gray is thecontrol
polyhedron, which is the polyhedral surface with vertices at control points.

Press the space and tab keys to select a control point. Use the left/right
arrow keys to move the selected control point parallel to the x-axis, the
up/down arrow keys to move it parallel to the y-axis, and the page up/down
keys to move it parallel to the z-axis. Press ‘x/X’, ‘y/Y’ and ‘z/Z’ to turn
the surface. Figure 10.69 is a screenshot. End

Specifying the control points array causes a Bézier surface s to be defined
in a parametric form

x = f(u, v), y = g(u, v), z = h(u, v)

where u belongs to the interval [u1, u2] and v to the interval [v1, v2]. We’ll
see in Chapter 15 how the functions f , g and h are obtained.

The statement

glMap2f(GL MAP2 VERTEX 3, 0, 1, 3, 4, 0, 1, 12, 6,

controlPoints[0][0]);

in the drawing routine of bezierSurface.cpp specifies the Bézier surface,
while

glEnable(GL MAP2 VERTEX 3);

enables it.
The syntax of the command

glMap2f(target, u1, u2, ustride, uorder, v1, v2, vstride,
vorder, *controlPoints)

defining a two-dimensional Bézier evaluator , or Bézier surface, is an extension
of that for a one-dimensional evaluator, taking into account the extra
dimension. Like its one-dimensional counterpart, a two-dimensional evaluator
can be used to generate data for position, color, texture or normal direction.
We’ll restrict ourselves to positional data for the present, setting target to
GL MAP2 VERTEX 3 (indicating a 2D surface in 3D space).404
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The values u1 and u2 specify the endpoints of the u-parameter interval
and v1 and v2 those of the v-parameter interval. The parameter uorder is
m+ 1, the number of columns of the control points array Pij ; vorder is n+ 1,
the number of rows.

The coordinate values of the control points are located in the array
pointed by controlPoints . The parameter ustride is the number of floating
point values between the starts of the data sets for control points Pij and
Pi,j+1; vstride is the number of floating point values between the starts of
the data sets for control points Pij and Pi+1,j .

The pair of statements

glMapGrid2f(20, 0.0, 1.0, 20, 0.0, 1.0);

glEvalMesh2(GL LINE, 0, 20, 0, 20);

are analogous in functionality to glMapGrid1f() and glEvalMesh1()

discussed in the context of drawing Bézier curves. In particular,

glMapGrid2f(numberU, u1, u2, numberV, v1, v2)

specifies a (numberU + 1) × (numberV + 1) grid of sample points in the
parameter rectangle, evenly spaced along both rows and columns, each
row starting with u-value u1 and ending with u-value u2, and each column
starting with v-value v1 and ending with v-value v2. The call

glEvalMesh2(mode, i1, i2, j1, j2)

works in tandem with the glMapGrid1f(nu, u1, u2, nv, v1, v2) call.
For example, if mode is GL LINE, then a stack of outlined quad strips is
drawn with vertices at the mapped sample points, making a quadrilateral
mesh approximation of the Bézier surface; if mode is GL FILL then the strips
are drawn filled.

Remark 10.22. It’s a minor design flaw of OpenGL that a Bézier surface is
approximated with a stack of quad strips, rather than triangle strips.

Remark 10.23. The u-parameter curves and v-parameter curves of a Bézier
surface are (no surprise) Bézier curves. Think of the parameter u as being
associated with (i.e., varying along) the columns of the control points array,
and v with the rows. Accordingly, for a fixed i, the points Pi0, Pi1, . . . , Pim
on the ith row are the control points of a u-parameter curve. The order of
a u-parameter curve, therefore, is m+ 1, which is the parameter uorder of
glMap2f().

Likewise, for a fixed j, P0j , P1j , . . . , Pnj are the control points of a v-
parameter curve, whose order is n+ 1, the parameter vorder of glMap2f().

Remark 10.24. There is a glEvalCoord2f() call available as well, analogous
to glEvalCoord1f(), to evaluate the coordinates of a point on the surface
corresponding to parameter point (u, v).

Next is an example of how to make a target shape by manipulating the
control points of a Bézier surface. 405
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Experiment 10.20. Run bezierCanoe.cpp. Repeatedly press the right
arrow key for a design process that starts with a rectangular Bézier patch,
and then edits the control points in each of three successive steps until a
canoe is formed. The left arrow reverses the process. Press ‘x/X’, ‘y/Y’ and
‘z/Z’ to turn the surface.

The initial configuration is a 6 × 4 array of control points placed in a
rectangular grid on the xz-plane, making a rectangular Bézier patch.

The successive steps are:

(1) Lift the two end columns of control points up in the y-direction and
bring them in along the x-direction to fold the rectangle into a deep
pocket.

(2) Push the middle control points of the end columns outwards along the
x-direction to plump the pocket into a “canoe” with its front and back
open.

(3) Bring together the two halves of each of the two end rows of control
points to stitch closed the erstwhile open front and back. Figure 10.70
is a screenshot after this step.

End

Figure 10.70: Screenshot
of bezierCanoe.cpp.

Bicubic Bézier Patches and How to Join Them

Most often invoked in design are Bézier surfaces specified by a 4× 4 array of
control points, called bicubic Bézier patches. Complex shapes can be made
by connecting multiple such patches. A similar principle applies to joining
two bicubic patches – in fact, arbitrary Bézier patches – smoothly, as applies
to joining two Bézier curves smoothly. First, two patches are contiguous
if they share a common end row or end column of control points, in which
case their control polyhedrons abut along that row or column. For the two
patches to join smoothly, one further requires every pair of edges, one from
either control polyhedron, meeting at a vertex of the shared border but not
lying on the border itself, to be collinear.

P0 P1 P2
P3

e´ e´e´e´

e´´ e´´
e´´ e´´

0

0

1

1

2

2

3

3

Figure 10.71: Two
bicubic Bézier patches and
their control polyhedrons,
one pair blue and one red.
The patches meet
smoothly along a shared
boundary curve which,
together with its control
polygon, is black.

For example, in Figure 10.71 two bicubic patches meet along a common
boundary curve specified by their shared control points P0, P1, P2 and P3,
which also specify the shared border of their control polyhedrons. The edges
of the control polyhedrons on either side that meet at the border, viz. the
pairs e′i and e′′i , for 0 ≤ i ≤ 3, are collinear, so the patches join smoothly.

Utah Teapot

Probably the most famous object ever made from bicubic Bézier patches is
the Utah Teapot , created originally by Martin Newell, then at the University
of Utah, in 1975. It rapidly became an iconic benchmark model within the406
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CG community for the testing of rendering algorithms. The FreeGLUT
library’s wireframe version is shown on the left of Figure 10.72.

Figure 10.72: FreeGLUT library’s version of the Utah teapot and Martin Newell’s
original porcelain Melitta model (from Wikimedia).

Newell’s original design consisted of 28 patches and had neither a bottom
nor a rim for the lid to rest on. The current incarnation, available from the
FreeGLUT library, has both, and consists of 32 patches and a total of 306
different control points – 12 patches specify the body of the teapot, 4 the
handle, 4 the spout, 8 the lid and 4 the bottom. Patches that meet obviously
share control points and those composing the same part of the teapot join
smoothly based on the principle described above.

Newell modeled an actual porcelain teapot that he owned, manufactured
by the Melitta company. It’s now on exhibit at the Computer History
Museum in California. A picture is on the right of Figure 10.72. The
rendered version, in fact, is squatter than the original. For the reason why
and an entertaining account of the teapot’s evolution read Crow’s article
[32]. Crow gives the patch control points data as well.

Torpedo

Experiment 10.21. Run torpedo.cpp, which shows a torpedo composed
of a few different pieces, including bicubic Bézier patch propeller blades:

(i) Body: GLU cylinder.

(ii) Nose: hemisphere.

(iii) Three fins: identical GLU partial discs.

(iv) Backside: GLU disc.

(v) Propeller stem: GLU cylinder.

(vi) Three propeller blades: identical bicubic Bézier patches (control points
arranged by trial-and-error). 407
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Press space to start the propellers turning. Press ‘x/X’, ‘y/Y’ and ‘z/Z’
to turn the torpedo. Figure 10.73 is a screenshot. End

Figure 10.73: Screenshot
of torpedo.cpp.

Figure 10.74: Bézier
lady’s shoe (courtesy of
Pongpon Nilaphruek).

Exercise 10.75. (Programming) Emulate Newell by modeling an
everyday object using multiple bicubic Bézier patches. First, modify
bezierSurface.cpp for an editable bicubic patch over a 4 × 4 array of
control points.

A shoe is about as everyday as it gets. Figure 10.74 is a screenshot of a
shoe designed using three different Bézier patches by a CG student.

Exercise 10.76. (Programming) Animate a river scene with many
boats. Modify the canoe from bezierCanoe.cpp for a couple of different
kinds of boats and put them in display lists and place (scaled and colored)
copies on the river. Give a split screen view, one global from the bank and
one from a particular boat.

Figure 10.75: Aircraft and express train.

Exercise 10.77. (Programming) Model the aircraft (Figure 10.75) and
make it fly. Use bicubic patches. Parts like the wings, tail and fins can be
panels of zero thickness, as can be the jet engine cases. Ignore logos and
details. These can be textured in later. Focus on large-scale geometry.

Exercise 10.78. (Programming) Model a running version of the
express train (Figure 10.75) using bicubic patches.

Exercise 10.79. (Programming) Make a recognizable replica of some
familiar automobile using bicubic patches.

Remark 10.25. We reiterate our opinion that the new programmer gains
most creating objects almost by hand as it were in the minimalist OpenGL
environment. However, it is no doubt true, too, that designing complicated
objects and busy scenes in this manner can be hard. So, once the programmer408
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“knows what she is doing” we recommend, in fact, she learn a sophisticated
WYSIWYG modeling software like Maya, Studio Max or Blender in order to
take on larger projects. Note that there are plug-ins for most 3D modelers
to export their triangles and geometry to OpenGL.

10.4 Fractals

Fractals are fun, but not essential to design. You can safely skip this section
if you are in a hurry to progress through the book.

A fractal shape, or just fractal for short, is one that possesses the
characteristic of self-similarity . A canonical example of a fractal in nature is
a coastline. The sketch on the left of Figure 10.76 is that of a hypothetical
stretch of a hundred miles of coastline, as it may appear from an aircraft,
outlining the shape of a country’s border with the sea. To its right is a view
zoomed in on a part of maybe about ten miles, seen from a low-flying aircraft,
showing bays and inlets. Rightmost is an even closer zoom-in on a stretch
of one mile of beach showing its own features. One notices the similarity
across different levels of resolution – self-similarity – in the undulations of
the coastline. Clouds, trees and neural systems of animals are among a
multitude of other naturally occurring fractals.

100 miles

1 m
ile10 miles

Figure 10.76: A coastline at increasing degrees of resolution: pairs of arrows indicate a
blow-up.

Self-similarity lends itself immediately to programming by recursion.
We’ll give a semi-formal definition of fractal curves which makes self-
similarity explicit. Our goal is not mathematical rigor, but a reasonable
framework within which to write recursive code. The running example we’ll
use is a classic fractal curve – the Koch curve – invented by the Swedish
mathematician Helge von Koch.

The first step in defining a fractal curve is to specify a source curve s.
The location and orientation of s are not specified: it can be placed freely
anywhere on the plane if we are drawing in 2D or space if in 3D. In the case
of the Koch curve, s is a straight line segment on a fixed plane. See the top
diagram in Figure 10.77. 409
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Level 0 

Level 1 

Level 2 

Level 3 

Koch source s = line segment

Associated source curves

Koch sequel s´ = Koch polyline

Figure 10.77: Koch curves.

The next step is to specify a rule to generate a sequel curve s′ from the
source curve. The sequel is rigidly associated with the source in that, if
the location and orientation of s are fixed, then so are those of s′. The
sequel for a Koch curve, in particular, is obtained by deleting the middle
one-third segment of the source s and replacing it with two edges of an
equilateral triangle such that the third edge would occupy the position of
the now-deleted middle third. See the second diagram from the top in
Figure 10.77. This particular 4-segment polyline sequel is called the Koch
polyline.

The third and final step is to specify a rule to allow iterative reproduction
of the sequel curves. In particular, for a sequel s′ this rule specifies a finite set
{s1, s2, . . . , sn} of curves that are each a “transformed” copy of the source s.
We’ll not try to be precise as to how the transformations must be specified.
It’s best to imagine them being such that the si each are similar in shape to
the source s, differing only in scale and location, which is the most common
situation. Moreover, each si, 0 ≤ i ≤ n, is rigidly associated with s′ in that,
if the location and orientation of s′ are fixed, then so are those of si. The si,410
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0 ≤ i ≤ n, are said to be the source curves associated with the sequel. In
the case of the Koch curve, the associated source curves are simply the four
segments of the Koch polyline, as indicated in Figure 10.77, each obviously
a scaled version of the Koch source.

We are now ready to recursively produce the fractal curve to any desired
level. Level 0 is a fixed copy s of the source. Level 1 is s replaced with
its sequel s′. Level 2 is s′ replaced with the union of the sequels of its
associated sources s1, s2, . . . , sn, with the proviso that transformed copies of
the source each generate equally transformed copies of the sequel. Level 3
and higher are obtained by repeating the procedure. Figure 10.77 shows the
Koch curves till level 3.

The following program demonstrates the flexibility afforded by the
framework just described.

Experiment 10.22. Run fractals.cpp, which draws three different
fractal curves – a Koch snowflake, a variant of the Koch snowflake and
a tree – all within the framework above, by simply switching source-sequel
specs! Press the left/right arrow keys to cycle through the fractals and the
up/down arrow keys to change the level of recursion. Figure 10.78 shows all
three at level 4. End

(a) (b) (c)

Figure 10.78: Screenshots from fractals.cpp: (a) Koch snowflake (b) Variant Koch
snowflake (c) Tree.

The first curve of fractals.cpp drawn is the so-called Koch snowflake
which consists of three Koch curves, as described earlier, each starting with
one edge of an equilateral triangle as its level 0 source.

The variant Koch snowflake is produced with a single change from the
definition of the Koch snowflake: instead of specifying the four segments of a
sequel Koch polyline as its associated sources, the two segments joining the
end vertices of the polyline to its middle are specified. See the upper two
diagrams in Figure 10.79. Observe that it’s not necessary that the associated
sources be parts of the sequel.

The source for the fractal tree is a straight line segment as well, the initial
copy being vertical. The sequel is a V-shaped two-segment polyline located 411
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Tree source s = line segment

Associated source curves

Tree sequel = V polyline

Variant Koch source s = line segment

Variant Koch sequel s´ = Koch polyline (bold)

Associated source curves

Figure 10.79: The variant Koch curve and fractal tree.

atop the source, the length of each segment being a specified fraction (the
constant RATIO in the program) of the length of the corresponding source,
with a specified angle (the constant ANGLE) between them. The sources
associated with the sequel are its two segments. See the bottom diagram of
Figure 10.79.

The tree is produced by drawing the original vertical source line segment,
as also the succeeding sequels at all levels, till the highest level of recursion.
Note the difference here with the Koch curve and its variant, only the
highest-level sequels being drawn in the case of the latter two. Moreover,
sequels at successive levels of the fractal tree are drawn thinner – not part
of the fractal definition. The final drawing is also embellished with leaves –
not part of the fractal structure either – which are quadrilaterals at random
angles at the ends of the top-level V’s.

The program combines all three fractals by providing different member
functions for each in the classes Source and Sequel.

Exercise 10.80. (Programming) Create a non-uniform tree by adding
randomization so that not all sequels are drawn.

Exercise 10.81. (Programming) The variant of the Koch snowflake
drawn in fractals.cpp self-intersects at high enough levels. Draw an
“interesting” variation of the snowflake which doesn’t self-intersect.

Exercise 10.82. (Programming) Draw a fractal cloud.

Exercise 10.83. (Programming) Draw a fractal flower.
412
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10.5 Summary, Notes and More Reading

In this chapter we learned how to create a range of objects in 3D space. Of
course, we had already been creating objects earlier, but in this chapter we
studied 3D drawing techniques systematically. These included polygonal
line approximation of curves and mesh approximation of surfaces. Special
classes of curves and surfaces particularly useful in drawing, including conics
and quadrics, swept and ruled surfaces, regular polyhedra, Bézier curves and
surfaces, and fractals were discussed. We were introduced at an elementary
level to the mathematical theory underlying curves and surfaces.

The dictum that practice makes perfect applies particularly to drawing.
The more drawing projects one completes the better one will know how to
proceed on the next one, not to mention the reusable object parts and code
one will begin to accumulate.

A great thing about drawing scenes for movies and games is that if it
walks like a duck and talks like a duck, then it is a duck. We have already
taken advantage of this notion in faking curved objects with the help of
straight and flat primitives. There’s more to it though as the following
example shows.

(a) (b)

Figure 10.80: A T-pipe is simulated by sticking one GLU cylinder into another.

On the left of Figure 10.80 is a picture of what seems a perfectly
respectable T-pipe of a sort one might find at a plumbing goods store. The
picture on the right though reveals how it’s drawn – by pushing one GLU
cylinder into another so that an end of it protrudes inside (run fakeT.cpp).
This is unlikely to be an acceptable industrial design of a T-pipe, but for the
purposes of 3D graphics it is. Consider the saving in complexity. Authentic
industrial design would require a hole whose boundary is a non-planar loop
to be excised in one cylinder and an end of the other pared to match –
neither trivial operations at all!

One is reminded of the amusing story of a farmer and a mathematics 413
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professor traveling together on a train through the countryside. The farmer
looking out of the window remarks to the professor, “The sheep look like
they’ve just been sheared.” The ever-precise professor replies, “Well, we
can say only that the side that we see has been sheared. Nothing can be
concluded about the other side!” In CG one can indeed get away with
shearing only the sides that the viewer sees. This liberation from real-world
rectitude (or even rationality!) throws the doors wide open to creativity. If
you are working on a game or a movie, now is the time to enhance it with
various objects. And, if you are getting a bit tired now of wireframe, it won’t
be long – less than a page as a matter of fact – before we begin to color and
illuminate!

Figure 10.81: Sheared?
But, what about the other
side?

All introductory texts on 3D graphics have parts devoted to drawing
curves and surfaces in 3-space. Books containing a more specialized treatment
of modeling include Farin [45], the two by Mortenson [94, 96] and Rogers &
Adams [118]. They all include discussions of the Bézier primitives as well.
In Simmons [133]) the reader will find more about conics and quadrics. The
author’s own paper [62] is a mathematical investigation of a rather curious
irregularity of regular polyhedra.

Keep in mind that we are not at all done with modeling ourselves. This
chapter laid the groundwork. More of the theory of Bézier curves and surfaces
comes in Chapter 15. Chapter 16 is about B-spline curves and surfaces,
which are staples in modern design. That chapter discusses the polynomial
version of B-splines, while NURBS – non-uniform rational B-splines, the
most general version – are a topic of the later Chapter 18. Chapter 17 is
about Hermite curves and patches, which interpolate – i.e., actually pass
through – their control points, rather than merely approximate.

The reader interested in the mathematical theory of curves and surfaces,
especially those wishing at some point to get into the research end of 3D
graphics, should refer to math books such as Lipschutz [88] and Pressley
[115] for a fairly soft introduction to differential geometry, while the books
by Do Carmo [37], Kreyszig [81], O’Neill [106] and Singer & Thorpe [134]
are written at a higher level.

Our account of fractals, though basic, has probably enough for the person
who primarily wants to draw them. There are several excellent books to
learn more about this popular topic. In addition to Mandelbrot’s classic [91],
which had seminal influence in formalizing fractals and attracting popular
interest, a couple of more recent ones are by Barnsley [9] and Falconer [44].
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CHAPTER 11
Color and Light

O
ur objects so far have mostly looked as if they plan to spend the
afternoon home watching the game. It’s time now to dress them
up and go party. The goal for this chapter is to learn how to

use light sources to illuminate a scene and complementarily define material
properties of objects to determine how they appear when lit.

We begin with a brief discussion of the theory of vision and color models in
Section 11.1, learning particularly about the RGB color model so important
in CG, as well as a few other models which pop up occasionally, such as CMY,
CMYK and HSV. In Section 11.2 we study Phong’s lighting model and how
it conceives of light coming off an object as comprised of three components
– ambient, diffuse and specular – based on the nature of their reflectance.
This section concludes with a formula to derive the RGB intensities of the
light reflected at a vertex based on Phong’s model.

We move on to OpenGL in Section 11.3 and see how faithfully it
implements Phong’s model. And, we begin extensively to experiment and
code. Section 11.4 describes OpenGL’s so-called lighting model – not to be
confused with Phong’s lighting model – which sets certain environmental
parameters. Directional light sources, located far from the scene, and
positional lights, located in or near it, are discussed in Section 11.5, as is the
related notion of attenuation of light over distance. Spotlights are the topic
of Section 11.6. At this point we have all the parts needed to formulate in
Section 11.7 the famous lighting equation that OpenGL actually implements
to calculate color intensities at a vertex.

We discuss the two so-called shading models OpenGL offers, smooth and
flat, in Section 11.8. The former familiarly interpolates the vertex colors
through a primitive, while the latter is a somewhat idiosyncratic discrete
coloring scheme. Animation of light sources is the topic of Section 11.9.

Specifying appropriate surface normals is critical to good lighting. 417
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OpenGL can sometimes help with automatic normals, but often the user is
on her own and the task can require a fair amount of calculation. Before
we begin with normal computation proper, we have an introduction in
Section 11.10 to the calculus of partial derivatives, to the extent required to
calculate tangent planes and normals to the kinds of surfaces typical in CG.

The long Section 11.11 is devoted to computing and applying surface
normals to lighting. It begins by following the informal taxonomy of 2D
objects introduced in Section 10.2, and moves on to Bézier and quadric
surfaces for which automatic normals are available.

Section 11.12 contains a discussion of an alternate shading model proposed
by Phong, which is more sophisticated (and more computation-intensive)
than OpenGL’s smooth shading.

Section 11.13 is a whole bunch of exercises. In fact, the reader will find
few programming exercises before that section as we decided to collect them
in one place after getting most of the theory out of the way. However, this
does not mean that the interested reader should not attempt them earlier.
She should keep an eye on Section 11.13 as she reads to see what comes
within reach. We conclude with Section 11.14.

11.1 Vision and Color Models

We begin with a bit of the physics and biology underlying color and its
perception.

Electromagnetic (EM) radiation consists of oscillating electric and
magnetic fields moving through space. It is produced by the motion of
electrically charged particles. From a physics point of view, EM radiation
can be treated dually as waves or a stream of massless particles called
photons traveling through a vacuum at the speed of light. EM radiation
is characterized by its frequency or, equivalently, wavelength, the inverse
of frequency. The EM spectrum consists of EM radiation of all possible
frequencies. Visible light is a (very small) part of the EM spectrum. See
Figure 11.1.

Gamma-rayRadio Microwave Infrared Visible UV X-ray
Hz:

Red O Violet
Visible spectrum

Y G B I

3*109 3*1011 4*1014 3*1016 3*10197.5*1014

Figure 11.1: EM spectrum indicating approximate frequency ranges in Hz.

Visible light emitted from a source is rarely pure, i.e., of one particular418
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frequency. Rather, there is an intensity distribution across the entire visible
spectrum, and the perceived color depends on the particular distribution.
Light from a source with an intensity distribution, for example, as in
Figure 11.2(a), would be perceived as blue, as this color’s intensity dominates,
while one with the distribution of Figure 11.2(b) would appear white, because
white is a mix of all colors in the visible spectrum.

R     O     Y      G      B      I    V     Frequency Frequency

In
te

ns
ity

In
te

ns
ity

(a)                                                          (b)

R     O     Y      G      B      I    V     

Figure 11.2: Intensity distributions across the visible spectrum: (a) appears blue (b)
appears white.

We humans can see because of millions of light-sensitive cells embedded
in the retinas of our eyes (see Figure 11.3 for a simplified anatomy). These
cells are of two kinds, rod and cone. Rod cells are sensitive to low-intensity
light, but not its frequency, which accounts for our night vision, as well as
the fact that we have particular difficulty distinguishing colors in the dark.
Cone cells, on the other hand, are stimulated only by fairly bright light, but
can efficiently distinguish frequencies in the visible light spectrum, enabling
us to perceive color. In fact, there are three kinds of cones – red, green and
blue – according to the color of the light that most stimulates them. This is
the basis of the tristimulus theory of human vision that perceived color is
the net effect of the stimulation of these three kinds of cells.

lens

iris
optic nerve pupil

ga
ng

lio
n

cone
rod

bi
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cornea

 ce
lls

 ce
lls

retina

Figure 11.3: The eye.
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11.1.1 RGB Color Model

A consequence of the tristimulus theory is the ubiquitous RGB color model :
each color is represented as a sum of the three primary colors, red, green
and blue, and each with a certain intensity, typically a value between 0 and
1 (for this reason RGB is called an additive color model). A color is denoted
by a color tuple (r, g, b), where each component is the respective primary
color’s intensity.

Note: An intensity distribution curve, as those in Figure 11.2, one
corresponding to each primary color, has been standardized by the
International Commission on Illumination (CIE, from its French name
Commission Internationale de L’Éclairage), as also a standard to convert
intensity distributions across the visible spectrum to RGB triplets.

(a) (b)

b

r

g

Cyan
(0, 1, 1)

Gray
sca

leBlack
(0, 0, 0)

Red
(1, 0, 0)

Yellow
(1, 1, 0)

Green
(0, 1, 0)

White
(1, 1, 1)

Blue
(0, 0, 1)

Magenta
(1, 0, 1)

Figure 11.4: (a) The RGB color cube (b) Venn diagram combining colors.

The RGB color space can be depicted as a cube, called a color cube, with
axes corresponding to R, G and B values (see Figure 11.4(a)). The origin
(0, 0, 0) of the cube corresponds to black, while its diagonally opposite vertex
(1, 1, 1) to white, which, of course, is the maximal equal mix of red, green
and blue. The other three diagonally opposite pairs each corresponds to a
primary color and its complement (the complement of a color being that
which with it combines to produce white). The straight line segment from
black to white, each point (x, x, x) of which has equal parts of the primary
colors, represents the gray scale. Figure 11.4(b) is a popularly drawn Venn
diagram, where discs correspond to primary colors and their intersections
are colored according to the mixing of the primaries.

The mechanics of the “addition” of colors in the RGB model is interesting.
The color cube, for instance, indicates that an equal mix of red (which is
(1, 0, 0)) and green ((0, 1, 0)) produces yellow ((1, 1, 0)). The reason for this
is that the sensation produced in the human eye by a mix of two lights,
one whose red frequency dominates and another whose green dominates, is
similar to that produced by a single light dominant in the yellow frequency.420
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This is a consequence of how our optic nerves react to the stimulation of
particular combinations of cone cells, and not because the frequencies of
red and green combine according to some law of physics to produce that
of yellow! The RGB model, therefore, rests more on the biology of human
vision than the physics of light.

RGB Color Model and Computer Graphics

The RGB model is implemented in millions of color display units around
us, including computer monitors, both CRT and LCD. A CRT (cathode-ray
tube) monitor has phosphors of the three primary colors located at each
one of a rectangular array of pixels, and three electron guns that each fires
a beam at phosphors of one color. A mechanism to aim and control their
intensities causes the beams to travel together row by row, striking successive
pixels in order to excite the RGB phosphors at each to values specified for it
in the color buffer. See Figure 11.5(a).

pixel

electron
guns

electron beams

(a) (b)

phosphors

Figure 11.5: (a) Color CRT monitor with electron beams aimed at a pixel with
phosphors of the 3 primaries (b) A raster of pixels showing a rasterized triangle.

Pixels in an LCD (liquid crystal display) monitor, on the other hand, each
consist of three subpixels made of liquid crystal molecules, which separately
filter through light of only one primary color. The amount of primary color
emerging through each subpixel is controlled by an electric charge, whose
intensity in turn is determined by the corresponding value in the color buffer.

From the point of view of OpenGL and, indeed, most CG theory, what
matters most is that the pixels in a monitor, CRT or LCD, are, in fact,
arranged in a rectangular array, called a raster (as depicted in Figure 11.5(b)).
The number of rows and columns in the raster determines the monitor’s
resolution. This rectangular layout is the basis of the lowest-level CG
algorithms, the so-called raster algorithms, which actually select and color
the pixels to represent user-specified shapes such as lines and triangles on
the monitor. Figure 11.5(b), for example, shows the rasterization of a right- 421
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angled triangle (with terrible jaggies because of the low resolution). We’ll
be studying raster algorithms in fair depth ourselves in Chapter 14.

Furthermore, a memory location called the color buffer , either in the
CPU or graphics card, contains, typically, 32 bits of data per raster pixel
– 8 bits for each of RGB and 8 for the alpha value (used for blending). It
is the RGB values in the color buffer which determine the corresponding
raster pixel’s color intensities. The values in the color buffer are read by the
raster – at which time the raster is said to be refreshed – at a rate called the
monitor’s refresh rate. Beyond this, the technology underlying a particular
display device matters little practically in computer graphics.

11.1.2 CMY and CMYK Color Models

The CMY color model , whose augmentation CMYK is typically used in
color printing, is a subtractive color model. CMY stands for cyan, magenta
and yellow, and they are, respectively, the complements of red, green and
blue. For example, cyan reflects blue and green but absorbs (or subtracts)
red. Likewise, magenta and yellow subtract green and blue, respectively.
Accordingly, cyan, magenta and yellow are referred to as the subtractive
primaries. The color cube and Venn diagram for the CMY color model are
depicted in Figure 11.6.

(a) (b)

y

c

m

Cyan

BlackRed

Yellow Green

White

BlueMagenta

Figure 11.6: (a) The CMY color cube (b) Venn diagram of the CMY model.

Going between the RGB and CMY color spaces is simple: c
m
y

 =

 1
1
1

−
 r
g
b

 and

 r
g
b

 =

 1
1
1

−
 c
m
y

 (11.1)

Ink of the color of each of the three subtractive primaries is coated as
a grid of dots (called a screen) on a sheet of paper during printing. The
relative proportions of CMY ink at each dot determine the amounts of light422
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of various frequencies subtracted there; the remaining light emerges through
the ink layers and imparts to the dot its perceived color.

However, in practice, the combination of CMY ink to produce RGB
color does not work as well as Equations (11.1) might suggest. The CMY
pigments in printer toner cartridges are never pure enough that an equal
mix produces 100% black or even proper shades of gray. In addition to this
technical problem there is an economic one too: making blacks and grays, by
far the most common colors in printing, by mixing colored inks is expensive.
Modern color printers, accordingly, supplement their CMY inks with a black
ink to directly produce both blacks and the gray scale, the resulting process
being called four-color printing .

The CMY model augmented with black is called the CMYK color model
(for reasons to do with printing terminology black is denoted by K rather
than B). Conversion formulae between the CMYK color space and the RGB
and CMY color spaces are more complicated than those between the latter
two and we’ll not discuss them here. However, drawing and image editing
programs, such as GNU’s GIMP (freeware [53]), which offer both RGB and
CMYK models will automatically convert between the two.

A practical point to keep in mind is that mapping from RGB to CMYK
is often device-dependent and rarely 100% accurate, which is why CMYK
print-outs are frequently significantly different from the original RGB display.
Moreover, the space of colors representable in the RGB and CMYK color
models – their gamuts – are not identical either, so some colors simply cannot
be transferred exactly from monitor to paper (or vice versa).

11.1.3 HSV (or HSB) Color Model

The RGB color model, though pretty much ingrained into applications
around us, is not particularly intuitive for the mixing of colors. For example,
what RGB values should an artist combine for a jungle green, sunset orange,
ocean blue, . . .? The HSV color model was created by Alvy Ray Smith (one
of the co-founders of Pixar Corporation) in 1978 as a more user-friendly
alternative for designers. HSV is the abbreviation for hue, saturation and
value. The model is also called HSB, where B stands for brightness.

The HSV model gets past the problem of having to numerically mix
primaries by allowing the designer to choose a color’s “coloredness” (that
which we perceive as jungle green, sunset orange, ocean blue, etc.) directly
with a single parameter, the hue . The hue parameter space is circular and
often called the color wheel .

Here’s how the color wheel is derived. See Figure 11.7. Begin with a
triangle with corners representing the red, green and blue hues. Double
the number of vertices to make a hexagon and fill in the middle hues,
yellow, cyan and magenta (e.g., yellow is an equal mix of red and green, so
midway between them). Again double to a dodecagon and add new hues
by interpolating between previous ones. Continuing the process leads to a 423
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Green DodecagonTriangle Hexagon Circle (Color Wheel)

0o

120o
240o

Figure 11.7: Hues on a triangle, hexagon, dodecagon and circle (color wheel).

continuum of hues in a circle. A position on this circle – or, the color wheel
as it’s called – thus represents a particular hue. Typically, red, green and
blue are located at 0◦, 120◦ and 240◦, respectively.

The hue parameter, though, by itself is insufficient to specify a color. Two
other parameters are required as well. The saturation of a color, typically

given as a percentage, represents its purity. The higher the saturation the
richer and more vibrant the color appears; conversely, less saturated colors
(called desaturated) appear faded and grayish. The final parameter is value,
given as a percentage as well, representing a color’s intensity or brightness.

(a) (b)

H

S

V

Figure 11.8: (a) The outer small hollow circle is positioned on the colored wheel to set
the H value and the inner one inside the triangle to set S and V values. (b) The Gimp
color dialog box making a 100% blue using the HSV color wheel option.

The saturation and value amounts of a color are often specified by
positioning a point on an equilateral triangle inscribed in the color wheel,
with a vertex of that triangle located at and turning with the color’s hue
position on the wheel. As indicated in Figure 11.8(a), value changes parallel
to the edge opposite the hue vertex, while saturation increases with distance
from the opposite edge. Figure 11.8(b) shows GIMP’s color dialog box
setting a 100% blue in HSV mode.

424
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11.1.4 Summary of the Models

In drawing applications the predominant model is RGB and we’ll really not
have use for any other through the rest of this book. It’s useful, though,
to have a nodding acquaintance with models that may occasionally pop
up elsewhere. With CMY, CMYK and HSV we have covered the ones the
user is most likely to encounter. CMYK does, in fact, become particularly
important when one goes from drawing to printing (e.g., a CG book!). There
are other color models not used as much, such as Lab (an option in Adobe’s
Photoshop) and HLS (for hue, lightness, saturation).

The gold standard among color models was established by the CIE in
1931. It’s called the CIE XYZ model (also the CIE 1931 model) where the
X, Y and Z parameters represent, respectively, three theoretical primaries,
each corresponding to a particular intensity distribution standardized by the
CIE. Although not seen in practical interfaces, the CIE XYZ color model is
used to calibrate implementations of the other ones.

11.2 Phong’s Lighting Model

A model of interaction between light sources and objects is called a lighting
model (or reflection model, or illumination model). In 1975 Vietnamese
computer scientist Phong Bui Tuong [109] invented a particular lighting
model, now known by his name, which is currently the one most widely used
in practice. Despite the subsequent development of more authentic lighting
models, e.g., Cook-Torrance [29], ray tracing, etc., Phong’s has endured
in popularity, especially because it delivers realistic lighting at moderate
computational cost. OpenGL implements Phong’s model. But, before we
start coding up light let’s first get an understanding of the model.

11.2.1 Phong Basics

In Phong’s model the light reflected off an object O is the sum of three
components – ambient , diffuse and specular – based on the reflectance
properties of its surface. We’ll describe each component next before
explaining how to specify and calculate them.

Ambient: Ambient reflectance models O’s reflection of background
light that strikes it from multiple directions. For this reason ambient light
is scattered equally in all directions from the surface of O as well. See
Figure 11.9.

Of the light sources in the environment – e.g., lamps and the sun – a
part of the light from each is presumed ambient in that it’s scattered in the
environment, e.g., by minute particles such as dust, effectively becoming
part of background light before striking O. The direction of the light’s
source, therefore, is lost in that part of it which is ambient. Neither does 425
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Ambient Diffuse Specular

O O O 

Figure 11.9: Ambient, diffuse and specular reflectance: incident light drawn blue,
reflected red.

it matter where the viewer is located because of the scattered reflection
from the surface of O, presumed equal in all directions. In practical terms,
the ambient component models that part of light which supplies constant
illumination throughout a scene. An example of a familiar light source
which is mostly ambient is a tube lamp recessed behind a frosted panel
(the material of the panel serving to scatter light rather than let through a
focused beam).

In addition to the ambient parts of each light source, there is presumed
to be a global ambient light as well, from no identifiable source (i.e., “true”
background light). For example, when modeling a scene inside a building,
we can adjust the global ambient to account for light coming in from outside
through doors and windows, without trying to model every possible light
source such as the sun and lights on the street, which would be very complex
indeed.

The total ambient component of the light reflected from an object O is
the sum of what it reflects of the ambient parts from each source, plus what
it reflects of the global ambient. Informally (we’ll be getting to more precise
equations soon):

ambient reflectance from O =
∑

(reflectance of ambient part from each

light source) + reflectance of global

ambient

Diffuse: Diffuse reflectance specifically models the fine-scale graininess
of the surface: the diffuse part of light from a particular source travels in a
coherent beam toward O and then is scattered equally in all directions by
diffuse reflectance from the surface of O. See Figure 11.9. Therefore, the426
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direction of the light source does matter in the case of diffuse reflectance,
but not that of the viewer. Practically, then, the diffuse component models
the “soft” part of the light with little focus, e.g., that reflected off polished
wood or silky fabric.

The total diffuse component of light reflected from O is the sum of the
reflectances of the diffuse parts from each source:

diffuse reflectance from O =
∑

(reflectance of diffuse part from each

light source)

Specular: Specular reflectance models the shininess of the surface: the
specular part of light from a particular source travels in a coherent beam
toward O and then is reflected in mirror-like manner, again in a coherent
beam, by specular reflectance from the surface of O. Both the direction of
the light source and the viewer matter in the case of specular reflectance.
Specular light is “hard” light with a focus, e.g., that from a beam bouncing
off a polished metal surface.

The total specular component of the light reflected from O is the sum of
the reflectances of the specular parts from each source:

specular reflectance from O =
∑

(reflectance of specular part from each

light source)

Remark 11.1. Because specular reflection is mirror-like, while the ambient
and diffuse reflections are due to scattering from the surface of the object,
the color of specularly reflected light depends primarily on that of the source
itself, while those of the ambient and diffusely reflected on the native color
of the object, as well as the light source.
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Figure 11.10:
Orthogonal splitting of
light: (a) Reflectance
followed by color (b) Color
followed by reflectance.

Remark 11.2. The split of light into the three components of ambient,
diffuse and specular according to reflectance is independent of the split into
the primary color components of red, green and blue, in that each of the
ambient, diffuse and specular components has RGB subcomponents and all
nine subcomponents can be independently set. Or, one can equivalently
say that each of RGB has ambient, diffuse and specular subcomponents
which can all be independently set. In other words, you can think of light
as being split as in Figure 11.10(a) or Figure 11.10(b) – it does not matter.
Yet another way this is often phrased is by saying that color and reflectance
splits are orthogonal .

A final component of light emerging from O is not reflected.

Emissive: The emissive component of light from an object O is that
which is “manufactured” at O and unrelated to external light sources or the
global ambient light. An example of an emissive object would be a lamp or
the headlight of an automobile. 427
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It is extremely important to keep in mind that, in OpenGL imple-
mentations, emissive light is perceived only by the viewer and does not
illuminate other objects – it does not make O a light source for the rest of
the environment.

11.2.2 Specifying Light and Material Values

OpenGL allows several light sources to be specified – the exact number
depending on the implementation. For each of the, say, N specified light
sources Li, 0 ≤ i ≤ N − 1, the RGB intensities of each of its ambient, diffuse
and specular components can be set to between 0 and 1, for nine values
altogether per light source. These are written, typically, in a 3 × 3 light
properties matrix :  Liamb, R Liamb, G Liamb, B

Lidiff, R Lidiff, G Lidiff, B
Lispec, R Lispec, G Lispec, B

 (11.2)

Similarly, for each object O or, more precisely, each vertex V of O, one
can set scaling factors between 0 and 1 to determine how much of each
component of the incident light is reflected, for again nine values, contained
in a 3× 3 material properties matrix : Vamb, R Vamb, G Vamb, B

Vdiff, R Vdiff, G Vdiff, B
Vspec, R Vspec, G Vspec, B

 (11.3)

These so-called reflectance values represent the object’s color: the higher
one is, the more of the corresponding incoming light is reflected, and the
more of that color the object appears to be.

The RGB values of the global ambient light are contained in a 3-vector
called the global ambient light vector :

[globAmbR globAmbG globAmbB ] (11.4)

The RGB values of the emissive light from a vertex V is a 3-vector called
the emissive light vector :

[Vemit, R Vemit, G Vemit, B ] (11.5)

11.2.3 Calculating the Reflected Light

We come now to calculating each component of the reflected light.428
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Ambient

Calculating the ambient component emerging from a vertex V owing to a
particular light source consists simply of scaling the light’s ambient intensity
by V ’s ambient reflectance. If the original intensity of the ambient light of
some primary color from a source L (or the global ambient) is I, then that
of its reflection from the surface at V is

I ∗material ambient scaling factor (11.6)

The material ambient scaling factor is the fraction of the incident ambient
light that the material reflects. It is nothing but the ambient reflectance
value Vamb, X , where X may be R, G or B, in the first row of the material
properties matrix. An example will clarify use of the equation.

Example 11.1. Say the intensities of the ambient light from source L are
given by

Lamb, R = 0.4, Lamb, G = 0.9, Lamb, B = 0.2

and the ambient reflectances of V by

Vamb, R = 0.9, Vamb, G = 0.9, Vamb, B = 0.1

Then the part of the red light emanating from V owing to the L ambient
is

Lamb, R ∗ Vamb, R = 0.36

and the part of the green light emanating from V owing to the L ambient is

Lamb, G ∗ Vamb, G = 0.81

and the part of the blue light emanating from V owing to the L ambient is

Lamb, B ∗ Vamb, B = 0.02

Exercise 11.1. If the global ambient light vector is

[0.2 0.2 0.2]

and all the ambient reflectances of a vertex V are as in the preceding example,
calculate the parts of the RGB light emanating fromV owing to the global
ambient.

Diffuse

Calculation of the diffuse component of the light reflected from V is more
complex than that of the ambient as, not only must the incident light be
scaled by the reflectance at V , but its direction taken into account as well.
The latter is done by measuring the angle between the direction of the light
source and the normal to the surface at V . 429
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Remark 11.3. A line l is normal to a surface s at the point P if it is
perpendicular to the tangent plane p of s at P . Any non-zero vector n
parallel to l is a normal vector to s at P . See Figure 11.11. (Think intuitively
of the tangent plane as a hard board pressed to touch s at P .)

n

l

s

p

P

Figure 11.11: A normal
vector n to a surface s at
P lies along the normal
line l there and is
perpendicular to the
tangent plane p at P .

The light source L is modeled as a point. Further, the surface of the
object O around the illuminated vertex V is assumed flat; in fact, it’s taken
to coincide with its own tangent plane at V . See Figure 11.12(a). Diffuse
light is reflected in all directions from V .

light pencil

w´(= w/cos θ) 

n

light pencil

V

L

(a) (b)

tangent plane

w

lθ

Figure 11.12: Calculating the diffuse component: (a) A light pencil from a point source
L hits the surface, represented by its tangent plane at V (b) A blow-up of the pencil
showing the normal vector n and the light direction vector l.

One observes from the blow-up in Figure 11.12(b) that a pencil of light
of cross-sectional width w from L illuminates an area of width w′, which is,
typically, greater than w.

In this figure, θ is the angle between a direction vector l from V toward
the light source L, called the light direction vector, and an outward normal
vector n at V . The angle θ is called the angle of incidence of the light. We
ask the reader to show next, by elementary trigonometry in Figure 11.12(b),
that the width w′ = w/ cos θ.

Exercise 11.2. Verify the claim just made about the width of the area
illuminated by a light of width w being w′ = w/ cos θ.

Since the area illuminated is greater by a factor of 1/ cos θ than the
cross-sectional area of the light pencil, the intensity of the light is diminished
by a factor of 1/ cos θ from I to 1/(1/ cos θ) ∗ I = cos θ ∗ I. Accordingly, if
the original intensity of the diffuse light of some primary color emanating
from the light source L is I, then that of its reflection from the surface of O
at V is

cos θ ∗ I ∗material diffuse scaling factor (11.7)

The material diffuse scaling factor, given by the values Vdiff, X , where X is
R, G or B, in the second row of material properties matrix, determines the
fraction of the incident diffuse light the material reflects.430
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Example 11.2. Say the intensities of the diffuse light from source L are
given by

Ldiff, R = 0.3, Ldiff, G = 1.0, Ldiff, B = 1.0

and the diffuse reflectances of a vertex V by

Vdiff, R = 0.8, Vdiff, G = 1.0, Vdiff, B = 0.8

and that the angle θ of incidence at V is 60◦.
Then the part of the red light emanating fromV owing to the L diffuse

is

cos θ ∗ Ldiff, R ∗ Vdiff, R = 0.5 ∗ 0.3 ∗ 0.8 = 0.12

Likewise, the part of the green light emanating from V owing to the L diffuse
is

cos θ ∗ Ldiff, G ∗ Vdiff, G = 0.5

and the part of the blue light emanating from V owing to the L diffuse is

cos θ ∗ Ldiff, B ∗ Vdiff, B = 0.4

Remark 11.4. The relationship that the intensity of the reflected light varies
as the cosine of the angle of incidence is known as Lambert’s law . It is
Lambert’s law which explains why early mornings and late evenings, when
the sun is lower in the sky, are cooler and darker than mid-day.

Specular

For specular light, as in the case of diffuse light, the light source L is
modeled as a point and the surface of O identified with its tangent plane
at the illuminated vertex V . An outward normal vector to the surface ofO
at V is n. In case of specular light, though, unlike for diffuse light, the eye
comes into the equation. It is modeled as the point E.

V V

E

L Lr

e ψ
φ φ = 0

n = s n

(a) (b)

l
ψ = 0

e = r
l

E
s

tangent plane

Figure 11.13: Calculating the specular component: (a) The light direction vector l, eye
direction vector e, halfway vector s, normal vector n and reflection vector r (b) The
special case when reflection is in the direction of the eye. (Double arcs indicate equal
angles.) 431
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The direction vector from V toward the light source L is l and the
direction vector from V toward the eye E is e, Further, let s be a vector,
called a halfway vector , which bisects the angle between l and e. See
Figure 11.13(a) (ignore r for now).

We’ll next state a relationship between the intensity of the reflected
specular light and that of the incident which may seem unintuitive at first,
but motivation will soon be apparent:

If the intensity of the specular light of some primary color emanating
from the light source L is I, then that of its reflection from the surface of O
at V is

cosf φ ∗ I ∗material specular scaling factor (11.8)

where φ is the angle between halfway vector s and the normal vector n,
f ≥ 0 is a scalar, called the shininess exponent and the material specular
scaling factor, a value read from the material properties matrix, determines
the fraction of the incident specular light the material reflects.

Here’s what’s happening. If the surface of O is perfectly mirror-like, then
a ray of light from L to V reflects according to the laws of reflection, which
say that the normal to O at V , the incident ray and the reflected ray all lie
on the same plane and, moreover, that the incident ray and the reflected ray
make the same angle with the normal. In this case of a perfect mirror, if the
eye E is located in the direction of reflection, given by the reflection vector
r, then it perceives all of the incident light from L, if not no light at all.

Note: Figure 11.13(a) should have double arcs between the pair r and n
and the pair l and n, as well, to indicate equal angles, but that would have
made it a bit too busy.

Say, ψ is the angle the reflection vector makes with the eye direction
vector e, as in Figure 11.13(a). Figure 11.13(b) shows a particular case of the
general Figure 11.13(a), where the eye is actually situated in the direction
of perfect reflection, so that ψ = 0. Observe, in this case, that the halfway
vector is aligned with the normal, in other words, φ = 0 as well.

Most real surfaces, however, are not perfectly mirror-like and do not
reflect light only along the direction of reflection, but, rather, spread it about
that direction with an intensity which diminishes with increasing angle. In
other word, maximum intensity is perceived by the viewer in a configuration
as in Figure 11.13(b); nevertheless, even in a general configuration as in
Figure 11.13(a), the eye receives light, though, with intensity inversely related
to ψ.

This suggests that the intensity of specular reflection be modeled by the
formula

angular attenuation factor ∗ I ∗material specular scaling factor (11.9)

where the angular attenuation factor, in fact, is in inverse relationship with
ψ.432
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Phong suggested the angular attenuation factor cosf ψ, where the
exponent f is larger the more mirror-like (i.e., shiny) the surface is. His
considerations were empirical rather than based on actual physics. In
particular, cosψ is a function of ψ which is at its maximum of 1 when ψ = 0
and drops off as ψ increases, behavior expected of the angular attenuation
factor. The function cosf ψ also shows the same behavior, but more markedly,
as f increases. In particular, the larger the value of f the more rapid the
drop from the value of 1 as ψ increases from 0. See Figure 11.14. Practically,
the shinier the surface the more rapidly the light diminishes away from the
direction of reflection.

π/2

1

00

f =1
f =5

f =50
ψ

Figure 11.14: Graphs of
cosf ψ for different values
of f (not exact plots).

The angle ψ is often replaced by φ, the angle between the halfway vector
s and the normal vector n, because φ is easier to compute, and because it is
legitimate to do so given the following linear relation between the two.

Example 11.3. Show that ψ = 2φ.

Answer : Label the angles from the tangent plane to the light direction,
the reflection and eye direction vectors θ1, θ2 and θ3, respectively, as in
Figure 11.15.

r ns

l

e

L

V

E

θ3
θ2

θ1

tangent plane

Figure 11.15: Proving that ψ = 2φ.

The angle to the halfway vector, then, is (θ1 + θ3)/2, implying that the
angle between the halfway vector and the normal is φ = (θ1 + θ3)/2− π/2.

The angle between the light vector and the normal, which is π/2− θ1, is
the same as the angle between the normal and the reflection vector, by laws
of reflection. Therefore, θ2 = π/2 + (π/2− θ1) = π − θ1. This, then, implies
that the angle between the eye direction vector and the reflection vector is
ψ = θ3 − θ2 = θ3 − (π − θ1) = θ1 + θ3 − π. That ψ = 2φ now follows.

Given the relationship between φ and ψ contained in the preceding
example, substituting cosf φ for cosf ψ as the angular attenuation factor
in Equation (11.9) makes no qualitative difference. The result of the
substitution, in fact, is Equation (11.8), which is now fully justified.

Example 11.4. Give a formula for the halfway vector s in terms of the
light direction vector l and the eye direction vector e from V , which are, of
course, the two vectors that s bisects. Assume that both l and e are of unit
length. Give s as a unit vector as well. 433
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l+e

O

A
B

e 

C

l

Figure 11.16: The vector
l + e bisects l and e.

Answer : See Figure 11.16, where l =
−→
OA, e =

−−→
OB, and where l + e is

drawn with the help of the parallelogram law of addition of vectors. Since
|l| = |e| = 1, all four sides of the parallelogram OACB are of unit length as
well. A consequence is that corresponding sides of the triangles OAC and
OBC are of equal lengths. The two triangles are, therefore, congruent, so
∠AOC = ∠BOC. One concludes that the vector l + e bisects l and e.

Accordingly, the unit halfway vector

s =
l + e

|l + e|
(provided that l + e is not the zero vector)

Remark 11.5. When a vector u is used to represent a direction, so that its
magnitude is not of importance, it is often convenient to scale it to unit
length, a step called normalizing u. Normalization of a non-zero vector u
(note that a vector representing a direction cannot be zero) consists simply
of dividing it by its length, in other words, replacing u by u/|u|.

Exercise 11.3. Give a simple formula, in an OpenGL setting, for the eye
direction vector e from a vertex V whose position vector is v. Accordingly,
rewrite the formula for the halfway vector of the preceding example in terms
of l and v.
Hint : The OpenGL eye is always at the origin, so e is the vector from V
to the origin, which is just the opposite of the vector from the origin to V ,
this, of course, being V ’s position vector v.

Example 11.5. Say the intensities of the specular light from source L are
given by

Lspec, R = 1.0, Lspec, G = 1.0, Lspec, B = 1.0

and the specular reflectances of a vertex V by

Vspec, R = 0.0, Vspec, G = 1.0, Vspec, B = 0.6

and that the angle φ between the halfway vector and the outward normal
vector at V is 60◦ and that the shininess exponent is 2.0.

Then the part of the red light emanating from V owing to the L specular
is

cosf φ ∗ Lspec, R ∗ Vspec, R = 0.52 ∗ 1.0 ∗ 0.0 = 0.0

Likewise, the part of the green light emanating from V owing to the L
specular is

cosf φ ∗ Lspec, G ∗ Vspec, G = 0.25

and the part of the blue light emanating from V owing to the L specular is

cosf φ ∗ Lspec, B ∗ Vspec, B = 0.15434
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It’s interesting that calculation of the reflected light never actually
required determination of the reflection vector r itself. It’s not hard though
to find r, as we see next.

Exercise 11.4. Suppose that n is the unit (outward) normal vector and l
the unit light direction vector at a vertex V . Prove that the unit vector r in
the direction of reflection is given by the equation

r = 2(n · l)n− l

Part answer : According to the laws of reflection we have to verify that r
lies on the plane of l and n and makes the same angle with n as l. We must
also prove that r is of unit length.

That r lies on the plane of l and n follows from its formula above, because
of the linear dependence of r on l and n. Now

|r|2 = r ·r = (2(n · l)n− l) · (2(n · l)n− l) = 4(n · l)2−4(n · l)2 + l · l = |l|2 = 1

proving that r indeed is a unit vector.
We’ll leave the reader to prove that r makes the same angle with n as l

by computing its dot product with n.

11.2.4 First Lighting Equation

At the end of the day we need a color vector for each vertex V in the scene,
in other words, values for R, G and B. This is obtained by adding – for
each of R, G and B – contributions of the ambient, diffuse and specular
reflected light plus the emitted light. The corresponding equation, the so-
called lighting equation , is straightforwardly obtained from the formulae of
the last section.

Assume that we are given the values of the lighting properties
matrix (11.2) for each light source Li, 0 ≤ i ≤ N − 1, the material properties
matrix (11.3) for the vertex V , the global ambient light vector (11.4), as
well as the emissive light vector (11.5) at V . Further, denote the normalized
light direction and halfway vectors corresponding to light source Li at vertex
V by li and si, respectively. Denote the normalized outward surface normal
vector at V by n and its shininess exponent by f .

Here then is the lighting equation giving the color intensity VX at V ,
where X may be any of RGB:

VX = Vemit, X +

globAmbX ∗ Vamb, X +

N−1∑
i=0

(
Liamb, X ∗ Vamb, X +

max{li ·n , 0} ∗ Lidiff, X ∗ Vdiff, X +

(max{si ·n , 0})f ∗ Lispec, X ∗ Vspec, X
)

(11.10) 435
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Note: The dot product of two unit vectors gives the cosine of the angle
between them.

Note: If the RHS sums to more than 1, for any of X equal to R, G or B,
then it is clamped to 1.

The lighting equation simply collects the components we have already
discussed separately. The first summand on the RHS is the emissive
component, while the second the global ambient scaled by the ambient
reflectance. The third summand is a summation over the n light sources of

(a) The incident ambient component scaled by the ambient reflectance
(Equation (11.6)).

(b) The incident diffuse component scaled by the diffuse reflectance and
the cosine of the incident angle (Equation (11.7)).

(c) The incident specular component scaled by the specular reflectance
and the angular attenuation factor (Equation (11.8)).

The reason for the max{∗ , 0} terms is not to allow a negative multiplier,
which would imply the physically impossible phenomenon of light being
subtracted. For example, li · n is negative when the angle between li and
n is greater than π/2, which means that the light source Li is behind the
surface on which V is located, contributing zero light, rather than negative
light.

Equation (11.10) is actually a first draft. The final lighting equation
of OpenGL, which we’ll see soon, enhances it by taking into account the
attenuation of light over distance, as well as the spotlight effect, where light
from a source emerges as a cone, rather than in all directions.

Exercise 11.5. There are two light sources, L0 and L1, the respective
values of whose lighting properties matrices are 0.0 0.0 0.0

0.7 0.1 0.1
0.7 0.1 0.1

 and

 0.0 0.0 0.0
0.1 0.7 0.1
0.1 0.7 0.1


The material properties matrix at a vertex V is 0.1 0.8 0.9

0.1 0.8 0.9
1.0 1.0 1.0


Furthermore, the shininess exponent of the surface at V is 2.0, there is no
emission from V , and the unit outward normal vector at V is

[0.0 1.0 0.0]T436
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The position vectors of L0, L1, V and the eye are, respectively,

[0.0 5.0 5.0]T , [5.0 5.0 5.0]T , [0.0 0.0 5.0]T and [0.0 0.0 0.0]T

The global ambient light vector is

[0.1 0.1 0.1]T

Fill out color values at V in the table below.

R G B
Emission
Global Ambient
Ambient
Diffuse
Specular
Total (color vector at V)

L

V

l

s1

s2

Figure 11.17: Light ray
from V toward L, along l,
is blocked by s2.

Remark 11.6. It is important to realize that Phong’s lighting model is local :
the color at each vertex V depends only on the interaction between the
external light properties and the material properties at V itself . No account
is taken of whether V is obscured from a light source by another object
(shadows), or of light that strikes V not directly from a light source but
having bounced off other objects (reflection and secondary lighting).

For example, in Figure 11.17, the color at vertex V is determined
according to Equation 11.10, where the light direction vector l is the
unit vector in the direction from V to L, calculated by OpenGL to be
(L− V )/|L− V |, without checking that the ray from V along l is blocked by
the surface s2 before reaching L, meaning that really V is in s2’s shadow.
So, effectively, s1 is drawn and lit as if s2 does not exist!

Colloquially, object-object light interaction is not considered, only light-
object. We will discuss two global lighting models, ray tracing and radiosity,
where shadows, reflections and other secondary effects are captured, in a
later chapter.

11.3 OpenGL Light and Material Properties

Time for code!
The mapping from Phong’s lighting model to OpenGL syntax is pretty

much one-to-one. For each light source the user defines the values in the
lighting properties matrix (11.2), as also the values in the material properties
matrix (11.3) for each vertex. The global ambient vector (11.4) is user-
defined as well. The user, too, defines the shininess exponent f , the emission
color vector (11.5) and, very importantly, the normal vector at each vertex. 437
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If you are beginning to worry that that’s a lot of values to specify to
light a scene, don’t! Remember that OpenGL is a state machine, so material
properties – which are state variables – persist in their current setting until
explicitly changed, making it convenient for the programmer to apply the
same properties to all vertices of a single object. Moreover, OpenGL has
sensible defaults for values the programmer doesn’t care to define.

Figure 11.18: Screenshot
of sphereInBox1.cpp.

Experiment 11.1. Run again sphereInBox1.cpp, which we ran the first
time in Section 9.4. Press the up-down arrow keys to open or close the box.
Figure 11.18 is a screenshot of the box partly open. We’ll use this program
as a running example to explain much of the OpenGL lighting and material
color syntax. End

11.3.1 Light Properties

Properties of light sources are set by statements of the form:

glLight*(light, parameter, value)

where light is the label of the light source (viz. GL LIGHT0, GL LIGHT1, . . .)
and its particular parameter set to value.

The properties of the single light source of sphereInBox1.cpp are
specified by the following statements in the setup() routine:

glLightfv(GL LIGHT0, GL AMBIENT, lightAmb);

glLightfv(GL LIGHT0, GL DIFFUSE, lightDifAndSpec);

glLightfv(GL LIGHT0, GL SPECULAR, lightDifAndSpec);

glLightfv(GL LIGHT0, GL POSITION, lightPos);

The values of GL AMBIENT, GL DIFFUSE and GL SPECULAR – lightAmb,
lightDifAndSpec and lightDifAndSpec, respectively, above – are 4-vectors
representing RGBA components. The fourth component, the alpha value,
should always be 1.0 for a light source.

Typically, the diffuse and specular color vectors, i.e., the values of the
GL DIFFUSE and GL SPECULAR parameters, respectively, are set identically
to values perceived as the actual color of the light source. So, that of
sphereInBox1.cpp, being {1.0, 1.0, 1.0, 1.0}, is a bright white.

It’s simplifying, as well, to consolidate all light source ambients – their
GL AMBIENT values – into the global ambient; in other words, set light source
ambient colors all to 0.0 and adjust the one global ambient light vector. We
follow this approach in sphereInBox1.cpp, as in all our lit programs.

The value {x, y, z, w} of GL POSITION specifies the location [x y z w]T of
the light source in homogeneous coordinates. If w 6= 0 then the light source
is said to be positional and is located at world coordinates

[x/w y/w z/w]T

The value of lightPos being {0.0, 1.5, 3.0, 1.0}, the single positional
light source of sphereInBox1.cpp is at [0.0 1.5 3.0]T , which is just above438
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and some ways in front of the box. We’ll discuss what happens if w = 0 in
Section 11.5 when we discuss directional light sources.

Note that no visible object is created by OpenGL at the location of a
light source! This location is simply a point used for the purpose of lighting
calculation. If you want the light to appear to be from a lamp or car headlight
or such object you’ll have to model the object and position it yourself.

Global ambient light in sphereInBox1.cpp is set with the statement

glLightModelfv(GL LIGHT MODEL AMBIENT, globAmb);

in the setup() routine, where the second parameter globAmb points to
the global ambient vector, whose value is the mild white {0.2, 0.2, 0.2,

1.0}.
Finally, mind that lighting calculation is enabled with the call glEnable-

(GL LIGHTING) and individual lights with calls to glEnable(GL LIGHTi).

Exercise 11.6. Show that nothing, in fact, is lost according to the first
lighting equation (11.10) by setting all light source ambient colors to 0.0. In
particular, prove that, however the light source ambients are initially set,
they can all be reset to 0.0 and the global ambient adjusted accordingly so
that the color computed at each vertex by (11.10) remains unchanged.

11.3.2 Material Properties

Material properties at a vertex are set by statements of the form:

glMaterial*(face, parameter, value)

where the parameter of face is set to value. The value of face can be GL FRONT,
GL BACK or GL FRONT AND BACK for both faces.

Material properties of (each vertex of) the box of sphereInBox1.cpp are
specified by the following statements in the drawScene() routine:

glMaterialfv(GL FRONT AND BACK, GL AMBIENT AND DIFFUSE, matAmbAndDif1);

glMaterialfv(GL_FRONT AND BACK, GL SPECULAR, matSpec);

glMaterialfv(GL FRONT AND BACK, GL SHININESS, matShine);

As for a light source, the values of GL AMBIENT, GL DIFFUSE and
GL SPECULAR for a material are 4-vectors representing RGBA components.
The fourth, or alpha, components are currently all set to the default value
of 1.0 – the alpha value pertains to blending, which is discussed in a later
chapter.

Typically, the ambient and diffuse color vectors are set identically to
values perceived as an object’s native color. OpenGL makes it convenient to
do so via the GL AMBIENT AND DIFFUSE parameter, which, in fact, is how the
ambient and diffuse values of the box are both set to the red {0.9, 0.0, 0.0, 1.0}.
However, the ambient and diffuse values may be set separately as well using
GL AMBIENT and GL DIFFUSE. 439
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As specular light is obtained from reflection from the light source,
it’s reasonable to set an object’s GL SPECULAR value either to white
{1.0, 1.0, 1.0, 1.0}, as for the box, fully reflecting the incident specular light,
or a shade of gray {γ, γ, γ, 1.0}, equally diminishing each color component.

The value of GL SHININESS – 50.0 for the box – is, of course, the shininess
exponent f of the first lighting equation (11.10). Its value must be in the
range [0.0, 128.0]. The default is 0.0, which causes no angular attenuation of
specular reflectance.

The emissive color at a vertex can be set using the GL EMISSION

parameter, but we choose to go with the default of {0.0, 0.0, 0.0, 1.0}, in
other words, no emission at any vertex in sphereInBox1.cpp.

Exercise 11.7. (Programming) What are the material ambient,
diffuse and specular values and the shininess exponent of the sphere of
sphereInBox1.cpp?

Remark 11.7. Note that, with our conventions, specifying the nine
components each of the light properties and material properties matrices
reduces, essentially, to specifying an RGB triple for each. Particularly, for
each light source, the diffuse and specular values are an identical RGB, while
ambient is black (only the global ambient being adjusted); for each vertex,
the ambient and diffuse values are set to the same RGB triple, while the
specular is white, reflecting all specular light (though this might be adjusted
to a a shade {γ, γ, γ, 1.0} of gray, equally scaling each specular component).

Remark 11.8. We’ll be discussing the choice of the particular normal values
in sphereInBox1.cpp when we begin a systematic discussion of normals in
Section 11.11.

Remark 11.9. As stated at the start of the chapter, programming exercises
are mostly collected in Section 11.13. However, this should not deter the
reader from visiting that section as she reads and attempting exercises she
can.

11.3.3 Experimenting with Properties

The two programs lightAndMaterial1.cpp and lightAndMaterial2.cpp

allow the user to experiment with various material and light properties. Both
show a blue ball lit by two lights, one white and one green, whose positions
are indicated by small wire spheres. Figure 11.19 shows screenshots of both
the programs.

Using the first program one can change material properties of the blue
ball, as well as move it. The second program, on the other hand, allows
properties of the white light to be controlled, as also those of the global
ambient, and enables the user to rotate the white light. Text messages show
property values. Let’s take a quick tour of the two before experimenting
with properties.440
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(a) (b)

Figure 11.19: Screenshots of (a) lightAndMaterial1.cpp (b) lightAndMaterial2.cpp.

Experiment 11.2. Run lightAndMaterial1.cpp.
The ball’s current ambient and diffuse reflectances are identically set to

a maximum blue of {0.0, 0.0, 1.0, 1.0}, its specular reflectance to the highest
gray level {1.0, 1.0, 1.0, 1.0} (i.e., white), shininess to 50.0 and emission to
zero {0.0, 0.0, 0.0, 1.0}.

Press ‘a/A’ to decrease/increase the ball’s blue Ambient and diffuse
reflectance. Pressing ‘s/S’ decreases/increases the gray level of itsSpecular
reflectance. Pressing ‘h/H’ decreases/increases its sHininess, while pressing
‘e/E’ decreases/increases the blue component of the ball’s Emission.

The program has further functionalities which we’ll explain as they
become relevant. End

Experiment 11.3. Run lightAndMaterial2.cpp.
The white light’s current diffuse and specular are identically set to a

maximum of {1.0, 1.0, 1.0, 1.0} and it gives off zero ambient light. The
green light’s attributes are fixed at a maximum diffuse and specular of
{0.0, 1.0, 0.0, 1.0}, again with zero ambient. The global ambient is a low
intensity gray at {0.2, 0.2, 0.2, 1.0}.

Press ‘w’ or ‘W’ to toggle the White light off and on. Pressing ‘g’ or
‘G’ toggles the Green light off and on. Press ‘d/D’ to decrease/increase the
gray level of the white light’s Diffuse and specular intensity (the ambient
intensity never changes from zero). Pressing ‘m/M’ decreases/increases the
gray intensity of the global aMbient. Rotate the white light about the ball
by pressing the arrow keys.

This program, too, has added functionality which we’ll need later. End

Experiment 11.4. Run lightAndMaterial1.cpp.
Reduce the specular reflectance of the ball. Both the white and green

highlights begin to disappear, as it’s the specular components of the reflected
lights which appear as specular highlights. End

441
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Exercise 11.8. (Programming) The specular highlight is sharpened
or blunted, respectively, by increasing or decreasing the shininess exponent.
Why?
Hint : The higher the shininess exponent the more rapidly the specular light
diminishes as the vertex normals turn away from the eye direction (recall
the definition of the angular attenuation factor in Section 11.2.3).

Experiment 11.5. Restore the original values of lightAndMaterial1.cpp.
Reduce the diffuse reflectance gradually to zero. The ball starts to lose its

roundness until it looks flat as a disc. The reason for this is that the ambient
intensity, which does not depend on eye or light direction, is uniform across
vertices of the ball and cannot, therefore, provide the sense of depth that
obtains from a contrast in color values across the surface. Diffuse light, on
the other hand, which varies across the surface depending on light direction,
can provide an illusion of depth.

Even though there is a specular highlight, sensitive to both eye and light
direction, it’s too localized to provide much depth contrast. Reducing the
shininess does spread the highlight but the effect is not a realistic perception
of depth.
Moral : Diffusive reflectance lends three-dimensionality.

Figure 11.20 shows the ball starting with only ambient reflectance, then
adding in diffuse and specular.

End

(a) (b) (c)

Figure 11.20: Screenshots of lightAndMaterial1.cpp: (a) Only ambient reflectance
(b) Ambient and diffuse (c)Ambient, diffuse and specular.

Experiment 11.6. Restore the original values of lightAndMaterial1.cpp.
Now reduce the ambient reflectance gradually to zero. The ball seems

to shrink! This is because the vertex normals turn away from the viewer at
the now hidden ends of the ball, scaling down the diffuse reflectance there
(recall the cos θ term in the diffusive reflectance equation (11.7)). The result
is that, with no ambient reflectance to offset the reduction in diffuse, the
ends of the ball are dark.442
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Moral : Ambient reflectance provides a level of uniform lighting over a surface.
End

Experiment 11.7. Restore the original values of lightAndMaterial1.cpp.
Reduce both the ambient and diffuse reflectances to nearly zero. It’s

like the cat disappearing, leaving only its grin! Specular light is clearly for
highlights and not much else. End

Exercise 11.9. (Programming) Restore the original values of light-
AndMaterial1.cpp.

Reduce all three of the ball’s diffuse, ambient and specular reflectances
and raise its emissive light intensity. It does appear to glow but also appears
flat. Why?

Experiment 11.8. Run lightAndMaterial1.cpp with its original values.
With its current high ambient, diffuse and specular reflectances the ball

looks a shiny plastic. Reducing the ambient and diffuse reflectances makes
for a heavier and less plastic appearance. Restoring the ambient and diffuse
to higher values, but reducing the specular reflectance makes it a less shiny
plastic. Low values for all three of ambient, diffuse and specular reflectances
give the ball a somewhat wooden appearance. End

Experiment 11.9. Run lightAndMaterial2.cpp.
Reduce the white light’s diffuse and specular intensity to 0. The ball

becomes a flat dull blue disc with a green highlight. This is because the
ball’s ambient (and diffuse) is blue and cannot reflect the green light’s diffuse
component, losing thereby three-dimensionality.

Raising the white global ambient brightens the ball, but it still looks flat
in the absence of diffusive light. End

Exercise 11.10. (Programming) When the white light is switched off
in lightAndMaterial2.cpp, the only evidence of green on the ball is the
specular highlight; moreover, if the ambient is tamped down as well then
the ball begins to disappear altogether.

However, this is not so in the opposite situation, when the white light
is switched on and the green off – a sector of the ball is clearly visible no
matter how low the ambient. Why?

Experiment 11.10. Nate Robins has a bunch of great tutorial programs
at the site [100]. This is a good time to run his lightmaterial tutorial, which
allows the user to control a set of parameters as well. End

11.3.4 Color Material Mode

Remember glColor*() which we used to set color in the dark days before
there were light sources? Now that we do have light and glMaterial*()

allows us to set all sorts of material properties, it seems there’s no use any 443
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more for glColor*(). Well, it turns out that the good folk who designed
OpenGL found a way to keep it on the payroll.

Here’s how. Suppose you’re in the not uncommon situation coloring a
scene where only a particular color attribute, say the ambient and diffuse
reflectances of the front faces, changes from one object to the next, other
attributes remaining constant. What you can do in this case, instead
of repeatedly calling glMaterialfv(GL FRONT, GL AMBIENT AND DIFFUSE,

value), is to:

1. Enable the so-called color material mode with a call to glEnable(GL -

COLOR MATERIAL).

2. Call glColorMaterial(GL FRONT, GL AMBIENT AND DIFFUSE), which
tells OpenGL to use the current color, set by glColor*(), to determine
the front-face ambient and diffuse color values.

Generally, the glColorMaterial() call can be of the form glColor-

Material(face, parameter) where face can be GL FRONT, GL BACK or
GL FRONT AND BACK, and parameter one of GL AMBIENT, GL DIFFUSE,
GL AMBIENT AND DIFFUSE, GL SPECULAR or GL EMISSION.

3. Make a call to glColor*() to set the front-face ambient and diffuse
color from one object to the next.

This method may, in fact, be more efficient with certain implementations
of OpenGL, not to mention the convenience of not having to change a
programming habit if one is used to coloring with glColor*().

Figure 11.21: Screenshot
of spotLight.cpp.

Experiment 11.11. Run spotlight.cpp. The program is primarily to
demonstrate spotlighting, the topic of a forthcoming section. Nevertheless,
press the page-up key to see a multi-colored array of spheres. Figure 11.21
is a screenshot.

Currently, the point of interest in the program is the invocation of the
color material mode for the front-face ambient and diffuse reflectances by
means of the last two statements in the initialization routine, viz.

glEnable(GL COLOR MATERIAL);

glColorMaterial(GL FRONT, GL AMBIENT AND DIFFUSE);

and subsequent coloring of the spheres in the drawing routine by glColor4f()

statements. End

11.4 OpenGL Lighting Model

The so-called OpenGL lighting model sets certain environmental parameters.
The terminology, even though used in the red book, is somewhat unfortunate
as it may suggest laws of interaction between light and objects, or a relation
with Phong’s model – neither of which is true. The four parameters the
OpenGL lighting model sets are the following:444
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1. The global ambient light with the statement

glLightModel*(GL LIGHT MODEL AMBIENT, globAmb)

where globAmb is the global ambient light vector. This we’ve seen
already.

2. Whether to use a local or infinite viewpoint for lighting calculation.

See again the lighting equation (11.10). The halfway vector si at a
vertex, one for each light source, is the unit vector bisecting the angle
between the direction vector li to the light source Li and the direction
vector e to the eye.

The OpenGL eye being fixed at the origin [0 0 0]T , evidently e =
−V , where V is the vertex’s position vector, which changes from one
to another. However, it simplifies lighting computation to keep e
constant, particularly e = [0 0 1]T , equivalent to assuming an eye that
is infinitely far up the z-axis and so, effectively, in the same direction
from every vertex. See Figure 11.22. This simplification, often, still
gives adequately authentic lighting.

infinitely
far
eye local eye

x

y

O
z

[0 0 1]T

[0 0 1]T V1

−V1

V0

−V0

Figure 11.22: Local versus infinite viewpoint: the direction vector from each vertex
toward the infinite viewpoint is black, while that toward the local viewpoint – i.e., the
eye vector – is blue. Vi denotes both a vertex and its position vector.

Remark 11.10. The direction vector li to the light source, too, changes
from vertex to vertex if the source is a positional one, i.e., ifw 6= 0 in
the value [x y z w]T of the source’s GL POSITION parameter. Moreover,
a simplification exactly similar to that of assuming an infinite viewpoint
can be achieved, not by tweaking the OpenGL lighting model, but by
making the light directional by setting w = 0. We’ll discuss this in the
next section.

The OpenGL default viewpoint, in fact, is infinite. For lighting
calculation to be done using a local viewpoint instead – i.e., with
the eye at the origin – call 445
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glLightModel*(GL LIGHT MODEL LOCAL VIEWER, GL TRUE)

which is what we do in the setup() routines of both sphereIn-

Box1.cpp and lightAndMaterial1.cpp, while lightAndMaterial2.-

cpp provides an option. The local viewpoint is more realistic at the
expense of greater computation.

Remark 11.11. The chosen light model viewpoint is used only for
lighting calculations. The viewing frustum or box stays unchanged –
therefore, in the case of a frustum, for example, we still see the scene
from the eye at the origin.

Exercise 11.11. (Programming) Press ‘l’ or ‘L’ to toggle between
the Local and the infinite viewpoint in lightAndMaterial2.cpp. The
change seems to be only in the highlights, in other words, only the
specular reflectances. Why?

3. Whether to enable two-sided lighting.

The OpenGL default is to perform lighting calculations for each polygon
based on its specified GL FRONT face parameter values and its specified
vertex normals, regardless if it is front or back facing. As the user
likely sets material properties and normal values with the front faces of
polygons in mind, results tend to be unrealistic for those whose back
faces happen to be visible. So, when back faces might be visible, the
command to use is

glLightModel*(GL LIGHT MODEL TWO SIDE, GL TRUE)

which causes OpenGL to

(a) use the GL BACK (or GL FRONT AND BACK) parameter values to
color back-facing polygons, and

(b) reverse the specified vertex normal for back-facing polygons.

Experiment 11.12. Run litTriangle.cpp, which draws a single
triangle, whose front is coded red and back blue, initially front-facing
and lit two-sided. Press the left and right arrow keys to turn the triangle
and space to toggle two-sided lighting on and off. See Figure 11.23 for
screenshots.

Notice how the back face is dark when two-sided lighting is disabled
– this is because the normals are pointing oppositely of the way they
should be. End446



i
i

i
i

i
i

i
i

Section 11.5

Directional Lights,

Positional Lights

and Attenuation of

Intensity

(a) (b)

Figure 11.23: Screenshots of litTriangle.cpp showing the back face with
(a) two-sided lighting on (b) two-sided lighting off.

4. Whether to apply specular light before or after texturing.

The following remarks will be more meaningful after the discussion of
textures in the next chapter .

The OpenGL default is to apply textures after all lighting calculations,
which can cause specular highlights to be smothered. However, the
command

glLightModel*(GL LIGHT MODEL COLOR CONTROL,

GL SEPARATE SPECULAR COLOR)

makes OpenGL

(a) separately produce two colors at each vertex: a primary color
calculated from all incoming non-specular components and a
secondary color from all incoming specular components,

(b) combine only the primary color with texture color at the time of
texture mapping and, finally,

(c) add in the secondary color to the result of the previous step,
which assures the specular highlights.

11.5 Directional Lights, Positional Lights
and Attenuation of Intensity

Directional and Positional Light Sources

We know that the value of the GL POSITION parameter of a light source L
specifies its location [x y z w]T in homogeneous coordinates. 447
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If w 6= 0, then the light source is called positional , or local , and located
at world coordinates [x/w y/w z/w]T . This is the kind of source we have
used so far. If w = 0, then the light source is directional and assumed
located at an infinite distance in the direction of [x y z]T from the origin.
See Figure 11.24.

(x, y, z)

(x/w, y/w, z/w) = position of light specified
to be at (x, y, z, w)

O

V1

V0

infinitely
far
light source

Figure 11.24: Directional versus positional light: the direction vector from each vertex
toward the directional light is black and parallel to the direction of the directional light,
while that toward the positional light is blue.

A positional light is located within the environment, e.g., a car headlight,
while a directional light is far removed, e.g., the sun. From the point of view
of lighting calculation, the difference is that the light direction vector l from
a vertex V to the light source L depends on the coordinates of V if L is
positional, while it is constant for all vertices if L is directional. Evidently,
lighting calculation is cheaper for directional sources.

The default value for GL POSITION is [0 0 1 0]T , which defines a directional
light shining down from high up the z-axis.

Experiment 11.13. Press ‘p’ or ‘P’ to toggle between Positional and
directional light in lightAndMaterial2.cpp.

The white wire sphere indicates the positional light, while the white
arrow the incoming directional light. End

Attenuation of Light

In the real world, the intensity of light from a source diminishes with distance
from the source following an inverse square law. This phenomenon, called
distance attenuation, can be modeled in OpenGL as well by a multiplicative
distance attenuation factor

1

kc + kld+ kqd2448
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where d is the distance from the light source and kc, kl and kd are the values of
the light parameters GL CONSTANT ATTENUATION, GL LINEAR ATTENUATION

and GL QUADRATIC ATTENUATION, respectively. These values are set by
statements of the form

glLightf(GL LIGHTi, GL CONSTANT ATTENUATION, kc);
glLightf(GL LIGHTi, GL LINEAR ATTENUATION, kl);
glLightf(GL LIGHTi, GL QUADRATIC ATTENUATION, kq);

The default values are kc = 1 and kl = kq = 0, which imply no attenuation
over distance at all. Attenuating the intensity of a directional light over
distance is not meaningful as it’s already infinitely far from every vertex;
therefore, default values for the attenuation parameters cannot be changed
for such a source.

Experiment 11.14. Run lightAndMaterial1.cpp. The current values
of the constant, linear and quadratic attenuation parameters are 1, 0 and 0,
respectively, so there’s no attenuation. Press ‘t/T’ to decrease/increase the
quadratic aTtenuation parameter. Move the ball by pressing the up/down
arrow keys to observe the effect of attenuation. End

11.6 Spotlights

The default for a light source is that it’s regular , emitting light in all directions
(a fancy word for a regular light source would be omnidirectional). This can
be altered by turning it into a spotlight , in which case the emitted light is
in the shape of a cone, the purpose being, of course, to simulate a real-life
spotlight illuminating a limited area.

Figures 11.25(a) and (b) show, respectively, plane sections of the light
from both a regular and a spotlight.

Experiment 11.15. Run spotlight.cpp, which shows a bright white
spotlight illuminating a multi-colored array of spheres. A screenshot was
shown earlier in Figure 11.21.

Press the page up/down arrows to increase/decrease the angle of the
light cone. Press the arrow keys to move the spotlight. Press ‘t/T’ to change
the spotlight attenuation factor. A white wire mesh is drawn along the light
cone boundary. End

The following block of statements in the drawScene() routine specify
the position and all the spotlight properties of the single light source of
spotlight.cpp:

glLightfv(GL_LIGHT0, GL_POSITION, lightPos);

glLightf(GL_LIGHT0, GL_SPOT_CUTOFF, spotAngle);

glLightfv(GL_LIGHT0, GL_SPOT_DIRECTION, spotDirection);

glLightf(GL_LIGHT0, GL_SPOT_EXPONENT, spotExponent); 449



i
i

i
i

i
i

i
i

Chapter 11

Color and Light

spotlight L 

l

−l
α

regular light source

light cone section
light ball section

(a) (b)

V

spotDirection

spotAngle

Figure 11.25: Sections of (a) regular light (b) spotlight. Shown for the spotlight are
the light direction vector l from vertex V toward light source L, the inverse vector −l
from the light source toward the vertex, the direction vector spotDirection of the cone’s
axis and the half-angle spotAngle at its apex.

The first step to turning a light source L into a spotlight is to specify the
half-angle at the apex of the light cone, called the spotlight cone angle, with
the command

glLightf(GL LIGHT0, GL SPOT CUTOFF, spotAngle)

which, in fact, sets the spotlight cone angle to the value spotAngle. This
should be between 0.0 and 90.0. The default is the special value of 180.0,
meaning that L is not a spotlight, but a regular source emitting in all
directions. Its initial value in spotlight.cpp, in fact, is 10◦.

The next step is to specify the spotlight direction or, more specifically,
that of the axis of its cone with a command

glLightfv(GL LIGHT0, GL SPOT DIRECTION, spotDirection)

which sets the axis in a direction parallel to the vector

spotDirection = [x y z]T

The default value of GL SPOT DIRECTION is [0 0 − 1]T , aiming the spotlight
down the negative z-axis. It is set to {0.0,−1.0, 0.0} pointing in the negative
y-direction in spotlight.cpp.

A final spotlight parameter is GL SPOT EXPONENT, whose value is called the
spotlight attenuation factor and which controls the distribution of intensity
through the light cone. If the value of GL SPOT EXPONENT is h and the
angle between the axis of the light cone and the direction from source L
toward vertex V is α, then the intensity of light at V is attenuated by the
multiplicative factor cosh α. This, of course, presumes that V lies within the
light cone in the first place; if not, no light reaches V from L at all. Note
that, as depicted in Figure 11.25, a vector from L toward V is, simply, −l,
the negative of a light direction vector.450
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The spotlight attenuation factor is set to 2.0, initially, in spotlight.cpp;
it can be changed by pressing ‘t/T’.

The motivation behind the spotlight attenuation factor is similar to that
for the angular attenuation factor in the calculation of specular reflection in
Equation (11.8) – so that the greater the value of h, the more rapidly the
intensity of the spotlight attenuates away from the cone’s axis. Equivalently,
the greater h the more “concentrated” the spotlight. The default value of
GL SPOT EXPONENT is 0, implying no attenuation at all.

Experiment 11.16. Run again spotlight.cpp. Note the change in
visibility of the balls near the cone boundary as the attenuation changes.
End

Exercise 11.12. A spotlight should always be positional. Why?

For use in the upcoming final OpenGL light equation, let’s write a single
complete formula for a spotlight attenuation factor or, briefly, saf , at a vertex
V , for a given light source L. Denote the unit vector along the spotlight
axis – the normalized value of GL SPOT DIRECTION – by d and assume that
l, the light direction vector from V , is normalized as well (see Figure 11.25).
Then:

saf =

 1 , if spotAngle = 180◦

0 , if − l · d < cos(spotAngle)
(−l · d)h , otherwise

(11.11)

Here’s how to parse the formula.
The first line is the case when L is not a spotlight, so there’s no

attenuation.
For the second line, recall that −l is the unit vector from L toward V .

Therefore, −l · d = cosα, where α is the angle between the axis of the light
cone and the direction of V from L. Now, if cosα < cos(spotAngle), then
α > spotAngle, which means that V lies outside the light cone and gets zero
light. This explains the second line.

The third line, of course, gives the angular attenuation factor.

Exercise 11.13. Why isn’t it necessary to write (max{−l ·d , 0})h, instead
of (−l · d)h, in Equation (11.11) in a manner similar to the first lighting
equation (11.10)?

11.7 OpenGL Lighting Equation

We now have the two additional pieces needed to enhance the first lighting
equation (11.10) to the form that is, in fact, used by OpenGL to calculate
RGB color intensities at a vertex V , namely, distance attenuation and
spotlight attenuation. The enhancement is straightforward. 451
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All symbols from the first lighting equation retain the same meaning.
Additionally, di denotes the distance of V from the ith light source; kic, k

i
l

and kiq denote, respectively, the constant, linear and quadratic attenuation

parameters for the ith light source; and saf i is the spotlight attenuation
factor for the ith light source at the vertex V , as given by Equation (11.11).

So, finally, here it is, the grand ole lighting equation of OpenGL:

VX = Vemit, X +

globAmbX ∗ Vamb, X +

N−1∑
i=0

1

kic + kild
i + kiq(d

i)2
∗ saf i ∗(

Liamb, X ∗ Vamb, X +

max{li ·n , 0} ∗ Lidiff, X ∗ Vdiff, X +

(max{si ·n , 0})f ∗ Lispec, X ∗ Vspec, X
)

(11.12)

where VX is the color intensity at V , X being any of RGB.
The additions to the first lighting equation (11.10) are exactly the two

multiplicative terms on the third line of the current equation, representing
distance attenuation and spotlight attenuation, respectively.

Remark 11.12. It’s really Phong’s lighting equation, but, given the context,
we’ll more often than not call it the OpenGL lighting equation.

Remark 11.13. We must revisit Exercise 11.6 at this time. Its implication
that all individual light source ambients can be consolidated into the global
ambient is not true any more if one uses Equation (11.12) instead of
Equation (11.10), because the same light source can contribute different
amounts of ambient light to different vertices owing to distance and spotlight
attenuation.

Nevertheless, the simplification of setting all individual light source
ambients to zero, and adjusting only the global, is probably still authentic
enough for most applications.

Exercise 11.14. If there is a single directional light source in an OpenGL
program, which is not distance attenuated, which of the three – ambient,
diffuse and specular – reflectance components at its vertices is changed by
translating an object?

Exercise 11.15. If there is a single positional light source in an OpenGL
program, which is not a spotlight and not distance attenuated, which of the
three – ambient, diffuse and specular – reflectance components at an object’s
vertex can change by moving the light source? By translating the object?

Exercise 11.16. Which of the three components – ambient, diffuse and
specular – of light reflected from a vertex V are affected if the normal at V
is altered?452
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11.8 OpenGL Shading Models

A shading model is a method to shade, or color, the interiors of primitives.
Keep in mind that Phong’s lighting model, as implemented through the
OpenGL lighting equation, determines colors only at the vertices of primitives,
but says nothing about how to spread them inside. OpenGL’s default shading
model, called smooth shading or Gouraud shading, is to interpolate color
values computed at its vertices through a primitive’s interior. We discussed
in Section 7.2 the mechanics of interpolation by computing barycentric
coordinates of interior points.

An alternate shading model, called flat shading , is available, as well, in
OpenGL. It is specified by a call to

glShadeModel(GL FLAT)

The default of smooth shading is restored by calling

glShadeModel(GL SMOOTH)

When flat shading, even if the color values differ across the vertices of a
primitive, OpenGL chooses one of them, called the provoking vertex , and
applies its color to the entire primitive. For example, the provoking vertex of
a triangle is its first (according to the order of the vertices in the code). In a
triangle strip, the provoking vertex of the i th triangle is the i+ 2 th vertex.
The reader is referred to the red book for a full description of provoking
vertices for each primitive type.

Flat shading can be a reasonable alternative in the absence of lighting.
Computationally it’s, of course, far less expensive than smooth shading. One
interesting application of flat shading is in applying “discrete” color schemes,
which, often, is difficult with smooth shading. The following experiment is
an illustration.

Figure 11.26: Screenshot
of checkeredFloor.cpp.

Experiment 11.17. Run checkeredFloor.cpp, which creates a checkered
floor drawn as an array of flat shaded triangle strips. See Figure 11.26. Flat
shading causes each triangle in the strip to be painted with the color of the
last of its three vertices, according to the order of the strip’s vertex list.

End

Exercise 11.17. (Programming) Try and replicate the checkered floor
of the preceding experiment using smooth shading instead of flat.

11.9 Animating Light

There are three ways that a light source can be animated by changing spatial
properties:

1. By moving its position. 453
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2. By changing its direction if it’s a spotlight.

3. By changing the light cone angle if it’s a spotlight.

We’ve already seen light animation in two programs in this chapter:
lightAndMaterial2.cpp and spotlight.cpp.

The things to keep in mind are:

(a) A light source’s position vector, specified by a glLightfv(light,
GL POSITION, lightPos) statement, is transformed by the value of
the current modelview matrix by multiplication from the left. (See
Section 4.2 if you need to review modelview matrices.)

Effectively, then, modelview transformations in the code prior to
the glLightfv(light, GL POSITION, lightPos) statement apply to a
light’s position, exactly as those prior to a glVertex3f() statement,
defining a vertex, apply to that vertex.

(b) Likewise, a spotlight source’s direction vector, specified by the
glLightfv(light, GL SPOT DIRECTION, spotDirection) statement, is
transformed by the value of the current modelview matrix by
multiplication from the left.

For example, as the light source of sphereInBox1.cpp is positioned
by the glLightfv(GL LIGHT0, GL POSITION, lightPos) statement in
the initialization routine setup(), it is unaffected by any modelview
transformations in drawScene().

However, both lights of lightAndMaterial1.cpp are positioned in the
display routine following the viewing command gluLookAt(), so their
positions are, in fact, transformed by gluLookAt(), which effectively means
that the lights stay static relative to the scene, no matter if the viewpoint
is changed. The light positions of lightAndMaterial2.cpp are similarly
transformed by its own gluLookAt().

Note: The push-pop pairs surrounding the code to position the lights in
both programs are to isolate the transformations applied to the spheres that
depict the light sources.

The spotlight of spotlight.cpp is positioned in the display routine after
the viewing transformation and a user-specified translation; moreover, its
cone angle can be changed by the user too.

Remark 11.14. We’ve discussed only animating the spatial attributes of a
light source. Obviously, color values can be animated as well.

454
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11.10 Partial Derivatives, Tangent Planes
and Normal Vectors 101

This section is an introduction to the calculus sometimes required to calculate
normals to surfaces. It is not mandatory reading. We suggest you skip this
section initially and consult it later if need be.

Actually, if you know how to compute derivatives of a function of a single
variable, e.g., f(x) = x2 or f(x) = sinx, as we’ll assume you do, you already
know how to compute partial derivatives. Because . . .

Definition 11.1. Suppose that f is a function of more than one variable
x, y, . . .. The partial derivative of f with respect to one of these variables,
say x, is the derivative of f as a function only of x, assuming the other
variables all fixed. The partial derivative of f with respect to x is denoted
∂f
∂x .

Example 11.6. Evaluate the partial derivatives of

f(x, y) = x2 + y2

at the point (1, 2).

Answer : We have

∂f

∂x
(x, y) = 2x,

∂f

∂y
(x, y) = 2y

Therefore,
∂f

∂x
(1, 2) = 2,

∂f

∂y
(1, 2) = 4

Remark 11.15. Often ∂f
∂x (x, y) is simply written ∂f

∂x , e.g., the first two
equations of the preceding answer could be written

∂f

∂x
= 2x,

∂f

∂y
= 2y

Example 11.7. Evaluate the partial derivatives of

f(x, y) = x2 sin y

at the point (1, π/2).

Answer : We have

∂f

∂x
= 2x sin y,

∂f

∂y
= x2 cos y

Therefore,
∂f

∂x
(1, π/2) = 2,

∂f

∂y
(1, π/2) = 0

455
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Example 11.8. Evaluate the partial derivatives of

f(x, y, z) = xz + sinx cos y cos z + y

at the point (π/2, π, 0).

Answer : We have

∂f

∂x
= z+cosx cos y cos z,

∂f

∂y
= 1−sinx sin y cos z,

∂f

∂z
= x−sinx cos y sin z

Therefore,

∂f

∂x
(π/2, π, 0) = 0,

∂f

∂y
(π/2, π, 0) = 1,

∂f

∂y
(π/2, π, 0) = π/2

Exercise 11.18. Evaluate the partial derivatives of

f(x, y) = xy

at the point (2, 3).

Exercise 11.19. Evaluate the partial derivatives of

f(x, y, z) = x cos y + y cos z + z cosx

at the point (π/2, 0, π/2).

The reader may wonder that if the partial derivative ∂f
∂x , for example, is

obtained by differentiating f with respect to the single variable x, assuming
the others fixed, then why do those other variables pop up again in the
expression for ∂f

∂x? Here’s the reason.
Consider the function f(x, y) = x2 sin y of Example 11.7 above. Fixing

y at, say, the value π/6 gives the function f(x, π/6) = x2/2, while fixing y
at π/2 gives the function f(x, π/2) = x2. Both f(x, π/6) and f(x, π/2) are
functions of the one variable x, but they are different functions because y’s
been fixed at two different values.

Moreover,
∂f

∂x
(x, π/6) =

d

dx
(x2/2) = x and

∂f

∂x
(x, π/2) =

d

dx
(x2) = 2x

are different as well, as they are derivatives of different functions. This is
why ∂f

∂x depends on y, as well as on x.
So far so good. At least calculating partial derivatives is no different

from calculating ordinary derivatives. But what do partial derivatives mean
geometrically (in “real life”, that is)?

For example, an ordinary derivative on a curve specifies its tangent. Let’s
see how first for both implicit and parametric declarations:456
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(a) Implicit : Suppose a curve is given by the equation

y = f(x)

Then the value of
df

dx

at x = a is the gradient of the tangent line to the curve at the point
(a, f(a)).

For example, the gradient of the tangent line l at the point (1, 1) of
the parabola

y = x2

is 2 as
d

dx
(x2) = 2x

which equals 2 when x is 1. See Figure 11.27(a).

l

v = [−1 0 1]T

(a) (b)

(1, 1)

x

y y

(0, 1, π/2)

z

x

 (gradient 2)

Figure 11.27: Tangents: (a) Tangent line l to the parabola y = x2 at (1, 1) (b) Tangent
vector v to the helix c(t) = (cos t, sin t, t) at (0, 1, π/2).

(b) Parametric: Suppose a curve is given by

c(t) = (f(t), g(t), h(t))

Then the value of the vector

c′(t) =

[
df

dt

dg

dt

dh

dt

]T
at t = a is a tangent vector (provided it’s non-zero) to the curve at
the point (f(a), g(a), h(a)).

For example, a tangent vector v to the helix

c(t) = (cos t, sin t, t) 457
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at the point (0, 1, π/2), corresponding to t = π/2, is [−1 0 1]T , as[
d

dt
(cos t)

d

dt
(sin t)

d

dt
(t)

]T
= [− sin t cos t 1]T

which equals [−1 0 1]T when t = π/2. See Figure 11.27(b).

It turns out that, just as the computation of partial derivatives is based
on computing ordinary derivatives, their geometric significance obtains from
that of ordinary derivatives too. Here’s how:

x

z

yy

z

x

P P

s: z = f(x, y) s: z = f(x, y)

(a) (b)

plane 
y = b 

plane 
x = a 

l1 l2

z = f(x, b)

z = f(a, y)

Figure 11.28: Section of the graph s of z = f(x, y) by the (a) plane y = b, giving the
tangent line l1 at P = (a, b, f(a, b)), (b) plane x = a, giving the tangent line l2 at P .

(a) Implicit : Consider z = f(x, y), a function of two variables. It defines
a surface s, called the graph of f . See Figure 11.28(a).

Now, if we fix y at, say, the value b, then z = f(x, b) gives a curve s.
In fact, this curve is the section of s by the plane y = b.

We know that the value of ∂f∂x at (a, b) is the value at a of the ordinary

derivative d
dxf(x, b). This helps find geometric meaning for the partial

derivative as follows.

The value of
∂f

∂x

at (a, b) is the gradient of the tangent line l1 to the sectional curve
z = f(x, b) at the point P = (a, b, f(a, b)).

Likewise, the value of
∂f

∂y458
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at (a, b) is the gradient of the tangent line l2, at the point P =
(a, b, f(a, b)), to the curve z = f(a, y), which is the section of s by
the plane x = a (Figure 11.28(b)).

(b) Parametric:

Consider next the surface s specified by the parametric equations

x = f(u, v), y = g(u, v), z = h(u, v), (u, v) ∈W

where W = [u1, u2]× [v1, v2] is a rectangle in uv parameter space. The
function (u, v) 7→ s(u, v) = (f(u, v), g(u, v), h(u, v)) maps W to the
surface s in 3-space. See Figure 11.29.

∂f       ∂h
∂v

y

z

x

(a, b)

c1(u) = s(u, b)

c2(u) = s(a, v)u
s

P = s(a, b)

v

v = b 

u 
= 

a

W

∂v∂v
∂g

∂u∂u∂u
∂f       ∂h∂g

p

T

T

Figure 11.29: The surface s is the image of a parameter rectangle W by the map
(u, v) 7→ s(u, v) = (f(u, v), g(u, v), h(u, v)). Tangents to the parameter curves on s at
the point P = s(a, b) span the tangent plane p at P .

Fix a point (a, b) ∈ W . The image of the line v = b by s is the
u-parameter curve c1 with equation

c1(u) = (f(u, b), g(u, b), h(u, b)), u ∈ [u1, u2]

The tangent vector to this curve is

c′1(u) =

[
d

du
f(u, b)

d

du
g(u, b)

d

du
h(u, b)

]T
=

[
∂f

∂u
(u, b)

∂g

∂u
(u, b)

∂h

∂u
(u, b)

]T
at u ∈ [u1, u2]. Therefore, the value of the vector[

∂f

∂u

∂g

∂u

∂h

∂u

]T
459
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at the point (a, b) is a tangent vector (provided it’s non-zero) to the
u-parameter curve

c1(u) = s(u, b)

at the point s(a, b).

Likewise, the value of the vector[
∂f

∂v

∂g

∂v

∂h

∂v

]T
at the point (a, b) is a tangent vector (provided it’s non-zero) to the
v-parameter curve

c2(v) = s(a, v)

at the point s(a, b).

So, we see that, just as an ordinary derivative on a curve specifies its
tangent, the two partial derivatives on a surface specify tangents as well,
particularly, of two sectional curves. In fact, these two tangents together
can supply us even more geometric information about the surface – they can
give us a tangent plane as we see next.

Definition 11.2. If the tangent vectors[
∂f

∂u

∂g

∂u

∂h

∂u

]T
and [

∂f

∂v

∂g

∂v

∂h

∂v

]T
to the two parameter curves through the point P = s(a, b) are linearly
independent – in other words, they are not collinear – then they span a
plane p, called the tangent plane to the surface s at P . This is the case in
Figure 11.29.

Any line l on p through P is said to be a tangent line to s at P and any
non-zero vector v lying on p is said to be a tangent vector to s at P (v is
usually drawn emanating from P ). See Figure 11.30. The line perpendicular
to p through P is said to be the normal line to s at P and any non-zero
vector lying on this line a normal vector to s at P .

A tangent plane to a surface is precisely the geometric analogue of a
tangent line to a curve. A thin straight stick pressed to a plane wire curve
aligns itself along the tangent line at the point of contact; similarly, a thin
flat board pressed to a surface in 3-space aligns itself along the tangent plane
at the point of contact.460
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s 

P tangent
plane p

tangent line
tangent line

tangent vector
tangent vector

normal line

normal
vector

Figure 11.30: Two tangent lines and vectors on them, normal line and a normal vector
to the surface s at P .

Example 11.9. Determine the tangent plane and a normal vector to the
paraboloid

z = x2 + y2

at the point (1, 2, 5).

Answer : It’s easy first to write the given implicit equation in the parametric
form

x = u, y = v, z = u2 + v2 (11.13)

Differentiating, [
∂x

∂u

∂y

∂u

∂z

∂u

]T
= [1 0 2u]T[

∂x

∂v

∂y

∂v

∂z

∂v

]T
= [0 1 2v]T (11.14)

The point (1, 2, 5) corresponds to the parameter values u = 1 and v = 2
in (11.13). Therefore, two tangent vectors to the paraboloid at (1, 2, 5) are
obtained by substituting these particular parameter values into the general
expressions (11.14) above for tangent vectors at arbitrary points. Specifically,
these two vectors are [1 0 2]T and [0 1 4]T , which are evidently linearly
independent. Therefore, the tangent plane to the paraboloid at (1, 2, 5) is
spanned by [1 0 2]T and [0 1 4]T . See Figure 11.31.

A normal vector to the paraboloid at the point (1, 2, 5) is perpendicular
to its tangent plane there and, therefore, to both spanning vectors [1 0 2]T

and [0 1 4]T . It is obtained, then, as the cross-product of the latter (cross-
products of vectors were reviewed in Section 5.4.3), viz.

[1 0 2]T × [0 1 4]T = [−2 − 4 1]T

461
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tangent

x

y

z

(1, 2, 5)

[1 0 2]T

tangent
[0 1 4]T

normal

paraboloid

[−2 −4 1]T

z = x2 + y2

Figure 11.31: Tangent vectors, tangent plane and normal vector at the point (1, 2, 5) to
the paraboloid z = x2 + y2.

Remark 11.16. Computing the tangent plane at a point of a surface and
computing a normal vector there are equivalent.

Exercise 11.20. Determine the tangent plane and a normal vector to the
circular cylinder

x = cosu, y = sinu, z = v

at the point corresponding to the parameter values (u, v) = (π/4, 3).

Exercise 11.21. Determine the tangent plane and a normal vector to the
saddle-shaped surface (hyperbolic paraboloid is the mathematical name)

z = xy

at the point (2, 3, 6).

Exercise 11.22. (Programming) Draw the paraboloid of Example 11.9
and its tangent plane at some point. The paraboloid should be wireframe
and the tangent plane a finely meshed rectangle. Allow the user to press the
arrow keys to slide the tangent plane over the paraboloid.

Normals from Function Gradients

Definition 11.2 of a tangent plane assumes a parametric representation of
the surface. There’s, however, a neat way to compute directly a normal
vector at a point of a surface given implicitly.

If a surface s is specified implicitly by an equation of the form

F (x, y, z) = 0

then a normal vector to the surface at the point (a, b, c) is given by the value
of the so-called gradient of F , denoted grad(F ), at that point, provided this462
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value is not the zero vector. The gradient is defined by

grad(F ) =

[
∂F

∂x

∂F

∂y

∂F

∂z

]T
We’ll not try to prove that grad(F ) is indeed normal to the surface

F (x, y, z) = 0, but simply assume so for the purpose of computation. For
the actual proof and more about the gradient, as well as its related functions
divergence and curl , the reader is referred to books on vector calculus, e.g.,
Schey [123] and Spiegel [136].

Example 11.10. Determine a normal vector to the paraboloid

z = x2 + y2

at the point (1, 2, 5).

Answer : Write the implicit equation in the form

F (x, y, z) = z − x2 − y2 = 0

Then

grad(F ) =

[
∂F

∂x

∂F

∂y

∂F

∂z

]T
= [−2x − 2y 1]T

Therefore, a normal vector at the point (1, 2, 5) is [−2 − 4 1]T , which is
obtained from putting x = 1 and y = 2 in the preceding equation. This
result checks with Example 11.9.

Exercise 11.23. Verify your answer to Exercise 11.20 by finding a normal
vector to the cylinder using the grad function. You must write an implicit
equation for the cylinder first.

11.11 Computing Normals and Lighting
Surfaces

V

n

O

Figure 11.32: Three
vectors at a vertex on a
sphere, one of which has
been chosen as the normal.

Look carefully at the OpenGL lighting equation (11.12) once more. Outside
of a bunch of user-specified color properties, the only data needed to compute
the color intensities at a vertex V of an object O consists of the position of
V , the positions of the light sources and the normal vector n at V .

The position of V is, of course, part of O’s design. As for the light
sources, they are usually few, and the user is free to locate them as he
pleases. Remaining is the normal vector n, which the user is free to set as
well. However, for authentic lighting it should actually be perpendicular to
the surface of O at V or at least nearly so. For example, the choice of the
normal vector n at the vertex V of the sphere in Figure 11.32 seems good, 463
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though either of the other two vectors drawn there could conceivably have
been picked as well.

We’ll discuss computing surface normals following the informal taxonomy
of 2D objects in Section 10.2 before moving on to Bézier and quadric surfaces
for which OpenGL provides automatic normals.

11.11.1 Polygons and Planar Surfaces

Polygons in particular, and planar surfaces in general, are the simplest. The
normal at each vertex is simply normal to the plane itself containing the
surface. In particular, unit vertex normals are all identical across a given
side of the surface.

n = u x v 
v

u
P1P0

P2

P3

P4

Figure 11.33: Vector n
is normal to the plane p.

So how does one determine the normal direction to a plane p? If two
non-collinear vectors u and v are known to lie on p, then the cross-product
u × v is normal to p (cross-products were reviewed in Section 5.4.3). For
example, any two adjacent edges of a polygon determine non-collinear vectors
u and v spanning the plane p containing the polygon; therefore, u × v is
normal to p. In Figure 11.33, n = (P1 − P0)× (P4 − P0) is normal to p.

Exercise 11.24. Determine a normal to the plane p of the triangle with
vertices at

P0 = [0 3 5]T , P1 = [1 − 2 0]T , P2 = [3 3 3]T

11.11.2 Meshes

Polygonal meshes are of interest next. Let’s work with real examples.

Experiment 11.18. Run again sphereInBox1.cpp. The normal vector
values at the eight box vertices of sphereInBox1.cpp, placed in the array
normals[], are

[±1/
√

3 ± 1/
√

3 ± 1/
√

3]T

each corresponding to one of the eight possible combinations of signs. End

The choice of the normals in sphereInBox1.cpp is easily motivated.
The box being situated symmetrically about the origin, the normal values
are chosen as unit vectors along the lines from the origin to each of the
eight vertices, which indeed give the values above. The box is depicted in
Figure 11.34(a), where only the normal vector at the lower-right vertex V
of the front face is shown: it is the arrow n drawn by extending OV a unit
distance from V .

In fact, probably a better rationale for this particular choice of normals –
which would still hold if the same box happened to be drawn not centered at
the origin, but elsewhere – is that the one at each vertex is the normalized
average of the unit outward normals to the three faces meeting at that
vertex. For example, in Figure 11.34(a) the unit outward normals to f1, f2464
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(a) (b)

V
nnormal to f2 

normal 
to f3 

normal to f1 

x

y

z

O

f
3

f2

f1

f
3

f2

f1

Figure 11.34: (a) The box of sphereInBox1.cpp with the averaged normal vector n at
vertex V , together with the normals to the three faces that meet at V (f1 right face, f2
front face, f3 bottom face) (b) The unaveraged normals of sphereInBox2.cpp.

and f3 are [1 0 0]T , [0 0 1]T and [0 − 1 0]T , respectively, whose average is
[1/3 − 1/3 1/3]T , which normalizes to [1/

√
3 − 1/

√
3 1/

√
3]T , which

one can verify from the code is indeed the value of the normal at V in
sphereInBox1.cpp.

Although they possess the virtue of symmetry, it’s clear, nevertheless,
the box normals of sphereInBox1.cpp are not nearly actually perpendicular
to the surface of the box, in particular, not to any of its faces. This
consideration leads to another approach – to set the normal at each vertex
of a face as a normal to that face itself. This is implemented as an option in
sphereInBox2.cpp.

Experiment 11.19. Run sphereInBox2.cpp, which modifies sphereIn-

Box1.cpp. Press the arrow keys to open or close the box and space to toggle
between two methods of drawing normals.

The first method is the same as that of sphereInBox1.cpp, specifying
the normal at each vertex as an average of incident face normals. The second
creates the box by first drawing one side as a square with the normal at
each of its four vertices specified to be the unit vector perpendicular to the
square, then placing that square in a display list and, finally, drawing it six
times appropriately rotated. Figure 11.34(b) shows the vertex normals to
three faces. Figure 11.35 shows screenshots of the box created with and
without averaged normals. End 465
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(a) (b)

Figure 11.35: Screenshot of sphereInBox2.cpp: (a) Averaged box normals
(b) Unaveraged box normals.

The contrast in output between the two ways of defining box normals
in sphereInBox2.cpp is clear and the reason not hard to understand. The
first method softens the edges because the averaged normal at each vertex
is shared by all its three adjacent faces. Consequently, the interpolation of
color values in each face’s interior continues smoothly across its boundary.

The second method is significantly different. As each face is drawn
separately with the normals at all its four vertices equal and perpendicular
to the face itself, interpolation in the interior results in the entire face being
colorized as if with that one normal value throughout. Moreover, this normal
value turns abruptly by 90◦ from one face to the next. The upshot is that
there is a significant difference in color intensities, as well, from one face
to the next, throwing the edges between them into sharp relief. Which
approach to choose depends on the effect desired.

Remark 11.17. Using the second method, colors at pixels along an edge are
defined differently by its two adjacent faces, while pixel colors at a vertex
are defined, in fact, by its three adjacent faces. At these pixels, therefore,
code order determines which color prevails. This is not desirable, but it is
not a serious issue because such “ambiguous” pixels lie only along edges and
not in the interior of faces which constitute the bulk of the figure.

Versions of the averaging approach implemented sometimes to achieve
greater realism use a weighted average rather than a straight one. Two
possibilities are:

(a) Weight each adjacent face normal with the angle of that face at the
vertex. In Figure 11.36, five faces meet at the vertex V subtending
angles θ1, θ2, . . . , θ5, respectively. The angle-weighted average value of
the normal at V is:

n =
θ1n1 + θ2n2 + θ3n3 + θ4n4 + θ5n5

θ1 + θ2 + θ3 + θ4 + θ5
466
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V n5

n1

A1

θ1

θ3 θ4

θ5
θ2 A5

A3 A4

A2

n2

n3 n4

Figure 11.36: Weighted average of normals: θi are angles, Ai area, ni face normals and
n a weighted average normal at V .

(b) Weight each adjacent face normal with the area of that face. The
areas of the five faces in Figure 11.36 meeting at V are A1, A2, . . . , A5,
respectively. The area-weighted average value of the normal at V is
then:

n =
A1n1 +A2n2 +A3n3 +A4n4 +A5n5

A1 +A2 +A3 +A4 +A5

Important : Whatever approach you adopt to compute normals, make sure,
as a last step, to normalize each to unit length (easy enough – just divide
each by its length). The reason is that OpenGL uses the dot product to
compute the cosine of the angle between two vectors (see Equation (11.12)),
which is correct only if both are of unit length.

Example 11.11. For the trash can mesh whose vertices are given in
Figure 11.37, compute the unit normals to the three faces adjacent to the
vertex V . Then compute the (unweighted) average of these three normals
and normalize to unit length.

Answer : The three edge vectors emanating from V are:

u1 = [1 − 1 − 1]T − [1 − 1 1]T = −2k

u2 = [1.2 1 1.2]T − [1 − 1 1]T = 0.2i + 2j + 0.2k

u3 = [−1 − 1 1]T − [1 − 1 1]T = −2i

Therefore, the outward unit normal to the face with edges u1 and u2 is

n12 = (u1 × u2) / |u1 × u2| = (4i− 0.4j) /
√

42 + 0.42 ' 0.995i− 0.0995j

and that to the face with edges u2 and u3 is

n23 = (u2×u3) / |u2×u2| = (−0.4j+4k) /
√

42 + 0.42 ' −0.0995j+0.995k 467
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(−1, −1, 1)

(1, −1, −1)(−1, −1, −1)
(−1.2, 1, 1.2) (1.2, 1, 1.2)

(−1.2, 1, −1.2) (1.2, 1, −1.2)

V (1, −1, 1)

u2

u3

n

u1

n12

n31
n23

Figure 11.37: Trash can of five quadrilateral sides. The vectors n12, n23 and n31 from
V are normals to V ’s adjacent faces, while n is the averaged normal.

while the outward unit normal to the face with edges u3 and u1, the bottom
face, is easily seen to be

n31 = −j

The normalize average of these normals is

n = (n12 + n23 + n31) / |n12 + n23 + n31|

' (0.995i− 1.199j + 0.995k) /
√

0.9952 + 1.1992 + 0.9952

' 0.538i− 0.649j + 0.538k

Exercise 11.25. (Programming) Use data from the preceding example
to replace the box of sphereInBox2.cpp with a trash can. Omit the sphere.
Let the user choose between averaged and unaveraged normals. Allow the
can to be rotated keeping the light source fixed.

11.11.3 General Surfaces

As a general surface is drawn by approximating it with a polygonal mesh,
the thought comes to mind to simply use the methods of the preceding
section to find normals. Precisely, (a) formulate a mesh approximation of
the surface and (b) specify the normal at each vertex as an average of those
of its adjacent faces (we really want to use an average here, especially if the
original surface is smooth, to avoid color discontinuities between adjacent
mesh faces).

This approach is perfectly reasonable if the surface is known to the user
only by its mesh approximation. However, if one knows, say, a parametric
representation of the surface, why not get the normals from the “horse’s
mouth” – that being the parametrization itself? In other words, use the
parametrization to analytically compute the normals at the mesh vertices.
This makes for stable normals independent of the vagaries of the particular468
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mesh approximation, not to mention those of the averaging process (possibly,
angle-weighted or area-weighted). For example, working from the mesh
approximation of the surface s in Figure 11.38, normals to the six faces
adjacent to vertex V must be averaged to determine the normal n at V .
However, knowledge of s itself could enable a direct computation.

V

n

s

Figure 11.38: Normal
vector n to the surface s at
a vertex V of its mesh
approximation.

So let’s see how to compute normals analytically. We’re going to assume
in the following that you know that a tangent plane at the point s(u, v) to a
surface s given parametrically by the equations

x = f(u, v), y = g(u, v), z = h(u, v)

is spanned by the two vectors[
∂f

∂u

∂g

∂u

∂h

∂u

]T
and

[
∂f

∂v

∂g

∂v

∂h

∂v

]T
evaluated at (u, v) (provided they are not collinear). Moreover, a normal
vector to s at s(u, v) is the cross-product[

∂f

∂u

∂g

∂u

∂h

∂u

]T
×
[
∂f

∂v

∂g

∂v

∂h

∂v

]T
(11.15)

evaluated at (u, v). If you need to brush up, Section 11.10 is a review of the
needed calculus.

Denote the normalized value of the vector (11.15) – obtained by dividing
it by its magnitude – by

[fn(u, v) gn(u, v) hn(u, v)]T (11.16)

which, therefore, is a unit normal to s at s(u, v).
Finally, we’ll specify either [fn(u, v) gn(u, v) hn(u, v)]T or its reverse,

[−fn(u, v) − gn(u, v) −hn(u, v)]T , as the unit normal at s(u, v) depending
on which direction is appropriate for front-facing triangles. There’s not
much to worry about making a wrong choice, as it’ll be plenty clear from
the viewable output! Let’s get to work on a benign surface first.

Cylinder

Example 11.12. Consider the circular cylinder s(u, v) with parametric
equations

x = cosu, y = sinu, z = v, where (u, v) ∈ [−π, π]× [−1, 1]

We drew it using these equations in cylinder.cpp of Experiment 10.3.
To color and light, let’s do normal calculations. The vectors spanning the
tangent plane at s(u, v) are[

∂x

∂u

∂y

∂u

∂z

∂u

]T
=

[
∂(cosu)

∂u

∂(sinu)

∂u

∂v

∂u

]T
= [− sinu cosu 0]T 469
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and [
∂x

∂v

∂y

∂v

∂z

∂v

]T
=

[
∂(cosu)

∂v

∂(sinu)

∂v

∂v

∂v

]T
= [0 0 1]T

so a normal vector is

[− sinu cosu 0 ]T × [ 0 0 1 ]T = [ cosu sinu 0]T

which happens to be normalized already. So, in the terminology of (11.16),
for the cylinder,

fn(u, v) = cosu, gn(u, v) = sinu, hn(u, v) = 0

We’ll add this normal data to cylinder.cpp next.

Figure 11.39: Screenshot
of litCylinder.cpp.

Experiment 11.20. Run litCylinder.cpp, which builds upon cyl-

inder.cpp using the normal data calculated above, together with color
and a single directional light source. Press ‘x/X’, ‘y/Y’ and ‘z/Z’ to turn
the cylinder. The functionality of being able to change the fineness of the
mesh approximation has been dropped. Figure 11.39 is a screenshot. End

Compare the two programs cylinder.cpp and litCylinder.cpp – it’s
not really a lot of code from the first to the second. Essentially, the additions
are (a) the fn(), gn() and hn() normal component functions as calculated
above, (b) the fillNormalArray() function to fill the array normals[], and
(c) a bunch of routine code specifying light and material properties, which
can be kept similar across most programs with lighting.

So the extra code arising from analytic normal computation is really
in (a) and (b), about 20 lines all told. Not too bad, huh? And it gets
better. As we used the template of cylinder.cpp to draw various surfaces,
simply swapping in new f(), g() and h() functions according to the
given parametrization, so we can use litCylinder.cpp for lit applications,
additionally swapping in new fn(), gn() and hn() functions.

Exercise 11.26. (Programming) Reverse the normals of litCylin-

der.cpp by changing their specification in the fillNormalArray() routine
as follows:

normals[k++] = -fn(i,j);

normals[k++] = -gn(i,j);

normals[k++] = -hn(i,j);

Not good! As we remarked earlier, wrongly-oriented normals are easy to
spot. Can you fix the problem caused by the normal values above by a
minimal amount of code change only in the drawing routine?
Hint : Think orientation, in particular, reversing the orientation of the strip
triangles.470
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Exercise 11.27. It’s a bit late now, but do we really need partial
derivatives, as in Example 11.12, to determine the normal to the cylinder at
the point V = (cosu, sinu, v)?

The outward normal to the cylinder at V evidently lies along a radius
of the circle C which is the section of the cylinder through V by a plane
perpendicular to its axis. See Figure 11.40. Use this to compute the
parametric equation for a unit normal vector to the cylinder without any
calculus.

C
x

z

V
n

Figure 11.40: Normal n
to a cylinder.

Often, as in the preceding exercise, normals to a surface can be determined
by elementary geometric considerations. Unfortunately, this does not seem
to be the case with the doubly-curled cone of Experiment 10.8.

Doubly-curled Cone

Next, we light the doubly-curled cone of doublyCurledCone.cpp. Its
parametric equations are

x = t cos(A+ aθ) cos θ, y = t cos(A+ aθ) sin θ, z = t sin(A+ aθ),

where 0 ≤ t ≤ 1 and 0 ≤ θ ≤ 4π. A somewhat tedious calculation gives a
normal to the cone as[
∂x

∂θ

∂y

∂θ

∂z

∂θ

]T
×
[
∂x

∂t

∂y

∂t

∂z

∂t

]T
= [−at sin θ + t sin(A+ aθ) cos(A+ aθ) cos θ,

at cos θ + t sin(A+ aθ) cos(A+ aθ) sin θ,

− t cos2(A+ aθ)]T (11.17)

Moreover, the length of this normal is

t
√
a2 + cos2(A+ aθ) (11.18)

Dividing the normal (11.17) by its length (11.18) gives a unit normal to the
cone.

Figure 11.41: Screenshot
of litDoublyCurled-
Cone.cpp.

Experiment 11.21. The program litDoublyCurledCone.cpp, in fact,
applies the preceding equations for the normal and its length. Press ‘x/X’,
‘y/Y’, ‘z/Z’ to turn the cone. See Figure 11.41 for a screenshot.

As promised, litDoublyCurledCone.cpp is pretty much a copy of
litCylinder.cpp, except for the different f(), g(), h(), fn(), gn() and
hn() functions, as also the new normn() to compute the normal’s length.

End

Exercise 11.28. Verify Equations (11.17) and (11.18) for the normal and
its magnitude of the doubly-curled cone. 471
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Programmed Normal Calculation

Exact normals deduced from the equation of a surface – as in the preceding
examples of the cylinder and doubly-curled cone – are the most honest as we
have observed. Nevertheless, if one wishes to avoid admittedly often tedious
calculations, then the next program, a reworking of litCylinder.cpp, shows
a simple programmable way to find approximate normals to a surface mesh.

Figure 11.42: Screenshot
of litCylinder-
ProgrammedNormals.cpp.

Experiment 11.22. Run litCylinderProgrammedNormals.cpp. Press
‘x/X’, ‘y/Y’, ‘z/Z’ to turn the cylinder. Figure 11.42 is a screenshot. End

Let’s understand now the normal calculations in litCylinderProgrammed-

Normals.cpp.
First, for the vertex with parameters (i, j), the chord, call it t1(i, j),

joining the vertices with parameters (i− 1, j) and (i+ 1, j), is taken to be

an approximation to the tangent
[
∂x
∂u

∂y
∂u

∂z
∂u

]T
; likewise, the chord t2(i, j)

joining the vertices with parameters (i, j − 1) and (i, j + 1) is taken as an

approximation to the tangent
[
∂x
∂v

∂y
∂v

∂z
∂v

]T
(care taken at the boundaries

of the parameter domain, where i = 0 or p, and j = 0 or q as i± 1 or j ± 1
may not exist). See Figure 11.43. Evidently, the closer the mesh vertices,
i.e., the finer the mesh, the better the approximations. The approximate
(unnormalized) normal un(i, j) is then the cross-product t1(i, j)× t2(i, j).
Dividing un(i, j) by its length nl(i, j) gives a normalized approximate normal
at the mesh vertex with parameters (i, j).

un(i, j)

v(i, j+1)

t2(i, j)

v(i+1, j)

v(i, j)

t1(i, j)

v(i−1, j)

v(i, j−1)

Figure 11.43:
Approximate tangents and
normal.

The neat thing about litCylinderProgrammedNormals.cpp, of course,
is that the approximate normals are calculated automatically from the base
functions f(), g() and h() defining the surface. Therefore, one can cut
and paste in any set of f(), g() and h() into the litCylinderProgrammed-

Normals.cpp template to instantly illuminate the corresponding surface,
normals done and dusted transparently!

11.11.4 Bézier and Quadric Surfaces

Good news! All one has to do is type in the command glEnable(GL AUTO -

NORMAL) for OpenGL to automatically calculate unit normals at the vertices
of a Bézier surface which has been created using glMap2f(GL MAP2 VERTEX 3,

. . . ) and glEnable(GL MAP2 VERTEX 3).

Canoe

Figure 11.44: Screenshot
of litBezierCanoe.cpp.

Experiment 11.23. Run litBezierCanoe.cpp. Press ‘x/X’, ‘y/Y’, ‘z/Z’
to turn the canoe. You can see a screenshot in Figure 11.44.

This program illuminates the final shape of bezierCanoe.cpp of
Experiment 10.20 with a single directional light source. Other than the
expected command glEnable(GL AUTO NORMAL) in the initialization routine,472
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an important point to notice about litBezierCanoe.cpp is the reversal of
the sample grid along the u-direction. In particular, compare the statement

glMapGrid2f(20, 1.0, 0.0, 20, 0.0, 1.0)

of litBezierCanoe.cpp with

glMapGrid2f(20, 0.0, 1.0, 20, 0.0, 1.0)

of bezierCanoe.cpp. This change reverses the directions of one of the
tangent vectors evaluated at each vertex by OpenGL and, correspondingly,
that of the normal (which is the cross-product of the two tangent vectors).

Modify litBezierCanoe.cpp by changing

glMapGrid2f(20, 1.0, 0.0, 20, 0.0, 1.0);

back to bezierCanoe.cpp’s

glMapGrid2f(20, 0.0, 1.0, 20, 0.0, 1.0);

Wrong normal directions! The change from bezierCanoe.cpp is necessary.
Another solution is to leave glMapGrid2f() as it is in bezierCanoe.cpp,
instead making a call to glFrontFace(GL CW). End

The lesson to take from this is that if you obtain normals automatically
from OpenGL, then you might have to subsequently alter their orientation
for authenticity, which is not unreasonable because OpenGL cannot know
which you intend to be the front face of a primitive.

Remark 11.18. If the user wishes to define her own normals for a Bézier
surface, she can do so with a glMap2f(GL MAP2 NORMAL, . . .) call. We’ll
not have occasion to do this ourselves.

Quadrics are even simpler. The call

gluQuadricNormals(qobj, GLU SMOOTH)

automatically generates a normal at each vertex of the quadric pointed by
qobj.

The next program we’ll look at is a fairly substantial animation which
invokes both glEnable(GL AUTO NORMAL) for Bézier surface normals and
gluQuadricNormals(qobj, GLU SMOOTH) for quadric surfaces.

Movie with a Ship and Torpedo

Figure 11.45: Screenshot
of shipMovie.cpp.

Experiment 11.24. Run shipMovie.cpp. Pressing space start an
animation sequence which begins with a torpedo traveling toward a moving
ship and which ends on its own after a few seconds. Figure 11.45 is a
screenshot as the torpedo nears the ship. End 473
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There are a few different objects in shipMovie.cpp. The hull of the
ship is obviously inspired by the Bézier canoe of the previous experiment.
The deck is a flat Bézier surface – all its control point y-values are identical
– which is designed to fit the hull. Each of the ship’s three stories is a
cylindrical quadric, as is its chimney.

The torpedo should be familiar from the program torpedo.cpp of
Experiment 10.21. Each of the four grayish boats in the background is
a couple of quads, while the sea itself is a solid blue cube.

The smoke from the chimney is a simple-minded particle system. In
particular, we render a sequence of quadric discs in point mode and hack a
coloring and animation scheme.

11.11.5 Transforming Normals

Normals are transformed by modelview transformations, but not as
straightforwardly as vertices are by multiplication from the left by the
transformation matrix. Let’s see first how they are transformed by each of
the fundamental transformations – translation, rotation and scaling.

1. Translation:

A translation leaves a normal vector at a vertex unchanged because
the normal simply translates parallely (see Figure 11.46(a)).

n

translate
x

(a)

(b)

V

Figure 11.46: (a) Vertex normals translate parallely as the torus is translated (b) The
normal n at V is perpendicular to any vector x which lies on the tangent plane at V .

2. Rotation and Scaling:

These cases are not as simple and require a bit of calculation.

A rotation or non-degenerate scaling, say t, corresponds to a non-
singular 3 × 3 defining matrix, say N . Suppose that n is a normal
vector at a vertex V of an object O. Therefore, n is perpendicular474
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to an arbitrary vector, say x, tangent to the surface of O at V (see
Figure 11.46(b)).

Now, if we apply t, it will transform all the vertices of O, as well as
vectors tangent to O’s surface, by multiplication on the left by N .

Note: To convince yourself that tangent vectors are transformed
identically with vertices, think of a tangent vector as connecting two
vertices infinitesimally close together on the surface of O. Therefore,
these two vertices “carry” the tangent vector with them.

So x is transformed to Nx. We would, therefore, like to transform n
to a vector perpendicular to Nx. Since n is perpendicular to x, we
already have n ·x = 0, which is equivalent to nTx = 0, the latter being
a matrix equation. It follows that

nT (N−1N)x = nTx = 0

Therefore,

0 = nT (N−1N)x = (nTN−1)(Nx) = ((N−1)Tn)T (Nx)

(invoking rules of matrix algebra).

One sees that ((N−1)Tn) ·Nx = 0, so (N−1)Tn is indeed perpendicular
to Nx.

The conclusion, then, is that the appropriate transformation to apply
to the normal vector n, under a rotation or non-degenerate scaling
corresponding to the matrix N , is left multiplication by (N−1)T , i.e.,
n 7→ (N−1)Tn.

OpenGL actually transforms normals as just described. If the current
modelview matrix is

M =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a24
a41 a42 a43 a44


then “erasing” the translational part, which, as we know, has no impact on
the normal, leaves its upper-left 3× 3 submatrix

N =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


and, in fact, the matrix (N−1)T , called the normal matrix, is used to
transform normals. It should be noted that the OpenGL normal is a 3D, not
4D, vector; in fact, recall that it was only to accommodate translations into
the matrix multiplication scheme that we homogenized 3D vectors to 4D. 475
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Exercise 11.29. We gave above a general formula for how a normal vector
is transformed by a rotation or non-degenerate scaling in terms of its defining
matrix. Ignoring the formula for a moment, can you deduce from elementary
considerations what should happen in the particular case of a rotation? Then
relate your answer to the formula.

11.11.6 Normalizing Normals

Normalizing a (non-zero) vector means dividing it by its magnitude to obtain
a vector with the same direction, but of unit length. We’ve already seen
that it’s important to specify normalized normals because OpenGL uses the
dot product to compute the cosine of the angle between two vectors, which
is correct only if they are both of unit length.

Here’s a simple modification of litTriangle.cpp to show what can
happen if one is careless.

Figure 11.47: Screenshot
of sizeNormal.cpp.

Experiment 11.25. Run sizeNormal.cpp based on litTriangle.cpp.
The ambient and diffuse colors of the three triangle vertices are set to

red, green and blue, respectively. The normals are specified separately as
well, initially each of unit length perpendicular to the plane of the triangle.

However, pressing the up/down arrow keys changes (as you can see) the
size, but not the direction, of the normal at the red vertex. Observe the
corresponding change in color of the triangle. Figure 11.47 is a screenshot.

End

There are, typically, two reasons why normals turn out not normalized:

(a) The user does not specify them of unit length in the first place.

(b) Even if they are specified of unit length, a subsequent application of a
scaling transformation changes the length.

If the user is not inclined to write code to ensure normals of unit length,
there’s a way to ask OpenGL’s help. Calling glEnable(GL NORMALIZE)

causes OpenGL to normalize all normal vectors before lighting calculation.
Beware, though, it’s not a particularly efficient call and should be avoided if
possible.

Experiment 11.26. Run sizeNormal.cpp after placing the statement
glEnable(GL NORMALIZE) at the end of the initialization routine. Press the
up/down arrow keys. The triangle no longer changes color (though the
white arrow still changes in length, of course, because its size is that of the
program-specified normal). End

There’s a cheaper renormalization call, glEnable(GL RESCALE NORMAL),
which can be used if you originally did provide unit normals that were
subsequently all changed by the same scaling transformation.476
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11.12 Phong’s Shading Model

Recall from Section 11.8 that a shading model is a method to color the interior
of a primitive. A shading model, first proposed by Phong, different from
either that OpenGL offers – Gouraud or smooth shading and flat shading
– though computationally intensive, significantly improves the realism of a
rendered image.

Note: Phong’s shading model should not be confused with his lighting
model, which we know already that OpenGL implements.

Instead of computing light values only at a primitive’s vertices and then
interpolating through its interior as in Gouraud shading, Phong suggested
to (a) interpolate the vertex normal values through the primitive, and then
(b) compute light values at each pixel using the interpolated normals.

V
n1

n0V0

V1V2

n2

n

t

Figure 11.48: Normals
n0, n1 and n2 at the
vertices of the triangle are
programmer-specified.
Shown also are (black)
normalized interpolated
normals at a few points
and a pixel centered at V .

Figure 11.48 illustrates the idea. Unit normals n0, n1 and n2 are specified
by the programmer at the vertices V0, V1 and V2, respectively, of triangle
t. These normals are then interpolated, and normalized, throughout t. For
example, if the barycentric coordinates of the point V are given by

V = c0V0 + c1V1 + c2V2

then the normal value n at V is computed to be

n = (c0n0 + c1n1 + c2n2) / |c0n0 + c1n1 + c2n2| (11.19)

(provided the denominator is not zero).
The color values of a pixel which happens to be centered at V are then

computed in Phong’s model using the lighting equation (11.12), where, now,
the normal value n applied is from (11.19) above, the color valuesV∗, X are
interpolated from the vertices as well, while the light direction and halfway
vectors li and si are either determined from the coordinates of V itself or
interpolated again from the vertices.

Remark 11.19. Phong lighting calculation at each vertex followed by
Gouraud shading, OpenGL’s default process, is often called per-vertex
lighting to contrast it with the per-pixel lighting of Phong’s shading model.

OpenGL itself, as we know, offers only flat and Gouraud shading as
automatic shading options. However, the OpenGL Shading Language,
or GLSL, allows individual pixels to be programmed, which means the
programmer herself can code in Phong shading. We’ll be doing precisely
this as an application when we get to fourth generation OpenGL and the
GLSL ourselves in Chapter 20.

11.13 Lighting Exercises

Here’s a bunch of exercises to light up your life. Feel free to pick and choose. 477
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Exercise 11.30. (Programming) As Figure 11.42 shows, there is a dis-
tinct seam on the cylinder drawn by litCylinderProgrammedNormals.cpp

of Experiment 11.22, not present in litCylinder.cpp. Why is this so? Can
you fix the problem?

Exercise 11.31. (Programming) The doubly-curled cone of Experi-
ment 11.21 would probably benefit from at least one more light source,
particularly to brighten the inside. Code this in.

Exercise 11.32. (Programming) Program distance attenuation into
spotlight.cpp. Add vertical motion capability to the light source to bring
out the effect of distance attenuation.

And while you’re at it, why not make the light emerge from a well at
the bottom of a flying saucer?!

Exercise 11.33. (Programming) Extending the previous exercise: add
capability to aim the spotlight of spotlight.cpp.

Exercise 11.34. (Programming) Our first experiment in this chapter
ran sphereInBox1.cpp, which, though a useful workhorse, was rather bland.
Jazz it up by replacing the single large ball with a small ball (or balls)
bouncing around inside the box.

Exercise 11.35. (Programming) Program ballAndTorusShadowed.-

cpp of Experiment 4.35, way back in Chapter 4, was actually prettified with
lighting. Examine this program again. Add a satellite revolving around the
ball a la Experiment 4.21.

Exercise 11.36. (Programming) Continuing the previous exercise:
make the ball carry a spotlight, which is aimed always at the torus, and
whose cone angle and color change as the ball travels.

Exercise 11.37. (Programming) It’s alway fun merging projects! So,
merge ballAndTorusShadowed.cpp and sphereInBox1.cpp by “placing”
the former in the box of the latter; in other words, opening the box reveals
a torus with a ball flying around it.

Exercise 11.38. (Programming) Color and light the helical pipe of
Experiment 10.4 in two different ways:

(a) Using exact normals found with calculus.

(b) Using approximate normals with help of the template of litCylinder-
ApproximateNormals.cpp.

Exercise 11.39. (Programming) Color and light the table of Exper-
iment 10.7. You don’t really need any calculus in order to compute the
normals to the various component surfaces – which happen each to be either
cylindrical or flat. Make sure to choose normals so that edges appear sharp.478
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Exercise 11.40. (Programming) Color and light the single-sheeted
hyperboloid of Experiment 10.11.

Exercise 11.41. (Programming) Revisit your drawing projects from
Chapter 10 and color and light the objects.

Exercise 11.42. (Programming) In Exercise 10.76 you animated a
river scene using the canoe of bezierCanoe.cpp to make boats. Now, that
we know from Experiment 11.23 how to light the canoe as well, illuminate
the river scene.

Exercise 11.43. (Programming) Animate a night street scene. Build-
ings and cars can be boxy. Make sure to use emission to create authentic
street lights.

Exercise 11.44. (Programming) The program shipMovie.cpp of
Experiment 11.24 bears improvement. Try at least the following:

(a) Add detail to the ship.

(b) Make the water more realistic, possibly by adding movement, variation
in color, etc.

(c) Put stars and a moon in the sky.

(d) Improve the smoke particle system.

(e) Make a particle system to simulate water spray from the torpedo’s
propeller.

Exercise 11.45. (Programming) Fill, paint and light the character of
animateMan*.cpp of Section 4.7.1 in surroundings less bland than a plane
with a ball. Make an animation sequence.

11.14 Summary, Notes and More Reading

In Chapters 4, 5 and 6 we learned to animate objects, in Chapter 10 to
draw them, and now we have begun to “dress them up” with color and
light. In this chapter we learned the underlying color and lighting models
which OpenGL implements, the related syntax, and how to use them to
specify light sources and material properties, as well as related environmental
parameters. The technical issue of normal computation was an important
part of our program too. We’ll continue this theme in the next chapter when
we learn of yet another technique to decorate an object, texturing.

For a further reference on coloring models, the somewhat encyclopedic
Wyszecki and Stiles [153] is frequently called the bible of color science. The
books by Berns [12] and Jackson et al. [75] are probably easier to read
though. 479
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Since the publication of Phong’s model in 1975 [109] several other lighting
models, both local and global, have been proposed. Local models like Phong’s
do not consider object-object light interaction, while global ones do, thereby
displaying secondary effects such as shadows and reflections. Lighting models
are often used in an application-specific manner, certain models being more
realistic in rendering particular material properties and finishes.

A few of the local models which appeared after Phong’s are Blinn [15],
Cook-Torrance [29], He et al. [67, 68], Nayar-Oren [101], Poulin-Fournier
[112] and Schlick [125]. However, the only local model that we discuss or
use in this book is Phong’s.

The two most commonly implemented global models are ray tracing
[4, 148] and radiosity [58], which as a matter of fact complement each other.
Global models, though much more realistic than local ones, are notoriously
computation-intensive, so rarely apt for interactive applications. However,
they are often used when frames can be created off-line, as in movies. We
discuss both ray tracing and radiosity in Chapter 19.

The theory of lighting models necessarily involves a fair amount of physics
and mathematics. The reader interested in learning more is best advised
to start with advanced books such as those by Akenine-Möller, Haines &
Hoffman [1], Buss [22] and Watt [147] and then proceed to original research
papers, as the area is particularly active. The canonical source for the latest
in CG research in general is the annual ACM SIGGRAPH conference [131].

480
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W
e continue to explore methods to attire objects and enhance
realism, which we began in the last chapter with color and
light. The topic of this chapter is texturing. Textures are a

vital part of the wardrobe available to designers. Texturing makes it possible
to create lifelike scenes at acceptable costs. It’s an enormously important
technique in modern-day CG. We’ll examine how texturing is implemented
in OpenGL and various aspects of texturing in practice. Textures can be
combined, as well, with color and light to good effect, as we’ll see.

We cover the basics of loading and applying textures in Section 12.1, as
well as the so-called texture map that specifies how a texture is painted onto
an object. Sections 12.2-12.3 discuss setting various texturing parameters
including the very important ones to control filtering. Specifying texture
coordinates to determine the texture map is the topic of Section 12.4.
Section 12.5 explains how to combine texture with light and color. We learn
multitexturing and how to combine multiple textures in Section 12.6 and,
finally, conclude with Section 12.7.

12.1 Texture Basics and the Texture Map

Texturing a surface consists essentially of painting a picture onto it, a process
which can be used to two great advantages when programming graphics:

Figure 12.1: Beer can
label.

Figure 12.2: Screenshot
of can with textured label
and top.

(a) Authenticity : Realistically depicting an object which happens to be
painted in real life, requires painting the surface that models the object
as well.

For example, the beer can label of Figure 12.1 has been textured
onto the surface of a cylinder to make a realistic-looking beer can in
Figure 12.2. 481
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(b) Illusion of geometric detail : Instead of faithfully recreating an object
with geometric primitives, painting a picture of it in a scene can achieve
a realistic result at a fraction of the cost in the number of polygons.

Figure 12.3: Field.

Figure 12.4: Trees on
white background.

For example, instead of modeling the individual blades of a grass in a
field, paint a picture of a field (Figure 12.3) onto a single rectangle;
instead of modeling individual trees in the backdrop of a scene, paint
pictures of trees (Figure 12.4) onto appropriately located polygons.
The top of the can of Figure 12.2, including the fairly complex pop
tab, is a texture too.

There are various ways to go about applying a texture in OpenGL. We’ll
discuss the one which is most common: where the texture is a rectangular
array of pixels and applied to a polygonal surface. The pixels in a texture
are called texels , each texel storing color values, such as 24-bit RGB or 32-bit
RGBA, just as their counterpart pixels in the frame buffer.

The texture itself can be an external image which is imported into an
OpenGL program or one created in the program itself. The former is called
an external texture while the latter a procedural , or synthetic, texture. Once
loaded though there is no difference between the two. Let’s run a program
using both kinds.

Figure 12.5: The two textures of loadTextures.cpp: shuttle launch (external, from
NASA) and chessboard (synthetic).

Experiment 12.1. Run loadTextures.cpp, which loads an external
image of a shuttle launch as one texture and generates internally a chessboard
image as another.

The program paints both the external and the procedural texture onto a
square. Figure 12.5 shows the two. Press space to toggle between them, the
left and right arrow keys to turn the square and delete to reset it.

Important : Our own texture images are in the folder ExperimenterSource/-
Textures.482
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Our programs all use the particular routine getbmp() to read in external
image files, which is in the associated source file getbmp.cpp, and included
in the application program via the header getbmp.h. Because getbmp() is
written to accept input image files in uncompressed 24-bit color RGB bmp
format, image files in other formats must first be converted, which can be
done using image-editing software like Windows Paint, GIMP and Adobe
Photoshop.

Note, though, that the input file is written internally into a 32-bit RGBA
format, the A (alpha) field allowing for use in blending applications. End

Let’s start to understand the texture-related OpenGL commands in
loadTextures.cpp. First, the call

glGenTextures(2, texture)

in the setup() routine returns two texture IDs in the array texture.
Generally, a call of the form glGenTextures(n, texture) returns n such IDs.
Next, setup() calls

loadExternalTextures()

which first creates storage and loads the texture image launch.bmp with the
statements

BitMapFile *image[1];

image[0] = getBMPData("../../Textures/launch.bmp");

Next, loadExternalTextures() creates a new 2D texture object with id
texture[0] by the statement

glBindTexture(GL_TEXTURE_2D, texture[0]);

Then

glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, image[0]->sizeX,

image[0]->sizeY, 0, GL_RGBA, GL_UNSIGNED_BYTE, image[0]->data);

specifies the texture image for the currently bound texture object, this being
texture[0]. Generally,

glTexImage2D(target, level, internalFormat, width, height, border, format,
type, *pointer);

specifies the texture image pointed to by pointer , which is of (external)
format format and type type; the kind of texture is target , the mipmap level
(to be discussed later) is level, the size of the texture image is width × height,
while internalFormat tells OpenGL how to store the image data; border is a
legacy parameter which must be 0.

Ignore, for now, the final four parameter-setting commands of the form
glTexParameteri() in the loadExternalTextures() routine – they are,
in fact, the topics of the two sections after this.

Returning to setup(), the 483
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createChessboard();

routine next creates the chessboard image in the 64×64×4 array chessboard

of RGBA values (each square of the board is represented by an 8 × 8 × 4
subarray of chessboard, consisting either of all black or all white color
values). The routine

loadProceduralTextures();

binds the chessboard image to texture[1] similarly to how loadExternal-

Textures() bound the launch image to texture[0]. Finally

glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);

glEnable(GL_TEXTURE_2D);

specify the texture environment parameters – in this case, asking that the
texture replace the surface’s current color values – and enable texturing.

On to the drawScene() next. The call

glBindTexture(GL_TEXTURE_2D, texture[id]);

activates texture object texture[id] (if a previously created texture object
is bound, then it becomes active). The polygon drawing command of
drawScene() which specifies the so-called texture coordinates of each vertex,
in fact, is what we’ll discuss in detail next, but first a couple of light exercises.

Exercise 12.1. (Programming) Replace the image of the launch with
others downloaded from the web.

Figure 12.6: A striped
board.

Exercise 12.2. (Programming) Write a routine createStriped-

Board() that generates the image of a striped board, depicted in Figure 12.6,
in a 64× 64 RGB array.

Texture Coordinates

A texture, once loaded, occupies the unit square with corners at (0,0), (1,0),
(1,1) and (0,1) of an imaginary plane called texture space. This is regardless
of whether the original rectangle of texels itself is equal-sided or not. If it
is not, then it is scaled to fit the square, as illustrated in Figure 12.7. The
axes of texture space are usually denoted s and t.

Each of the four statements within the glBegin(GL POLYGON)–glEnd()
pair of the following piece of code, from the drawing routine of load-

Textures.cpp, maps the vertex of a (square) polygon to a point in texture
space.

glBegin(GL POLYGON);

glTexCoord2f(0.0, 0.0); glVertex3f(-10.0, -10.0, 0.0);

glTexCoord2f(1.0, 0.0); glVertex3f(10.0, -10.0, 0.0);

glTexCoord2f(1.0, 1.0); glVertex3f(10.0, 10.0, 0.0);

glTexCoord2f(0.0, 1.0); glVertex3f(-10.0, 10.0, 0.0);

glEnd();484
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Original image

10
0

1
Texture

s

t
Texture space

Figure 12.7: An image stored as a texture in a unit square of texture space.

The first statement, for example, maps the vertex at (−10.0,−10.0, 0.0) of
world space to the point (0.0, 0.0) of texture space. The coordinates of
the mapped point in texture space are called the texture coordinates of the
vertex. The mapping of the polygon vertices to texture space is interpolated
throughout the polygon to obtain the so-called texture map, which, therefore,
is a map from a part of world space (that occupied by the polygon) to
texture space. The texture, finally, is painted onto the polygon by applying
to each point of it the RGB color values of its image by the texture map.

Exercise 12.3. In loadTextures.cpp, what are the texture coordinates
of the following points of the world-space square?

(a) (0.0, 0.0, 0.0)

(b) (5.0, 5.0, 0.0)

(c) (10.0, 0.0, 0.0)

Part answer : (a) (0.5, 0.5), as the midpoint of the world-space square maps
to the midpoint of the texture square by linearity.

Experiment 12.2. Replace every 1.0 in each glTexCoord2f() command
of loadTextures.cpp with 0.5 so that the polygon specification is (Block 1∗):

glBegin(GL POLYGON);

glTexCoord2f(0.0, 0.0); glVertex3f(-10.0, -10.0, 0.0);

glTexCoord2f(0.5, 0.0); glVertex3f(10.0, -10.0, 0.0);

glTexCoord2f(0.5, 0.5); glVertex3f(10.0, 10.0, 0.0);

glTexCoord2f(0.0, 0.5); glVertex3f(-10.0, 10.0, 0.0);

glEnd();

The lower left quarter of the texture is interpolated over the square
(Figure 12.8(a)). Make sure to see both the launch and chessboard textures!

End

∗To cut-and-paste you can find the block in text format
in the file chap12codeModifications.txt in the directory
ExperimenterSource/CodeModifications. 485
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(a) (b)   

(c) (d)   

TexturePolygon Polygon Texture

Texture Polygon TexturePolygon

Figure 12.8: Texture maps.

Experiment 12.3. Restore the original loadTextures.cpp and delete the
last vertex from the polygon so that the specification is that of a triangle
(Block 2):

glBegin(GL POLYGON);

glTexCoord2f(0.0, 0.0); glVertex3f(-10.0, -10.0, 0.0);

glTexCoord2f(1.0, 0.0); glVertex3f(10.0, -10.0, 0.0);

glTexCoord2f(1.0, 1.0); glVertex3f(10.0, 10.0, 0.0);

glEnd();

Exactly as expected, the lower-right triangular half of the texture is
interpolated over the world-space triangle (Figure 12.8(b)).

Change the coordinates of the last vertex of the world-space triangle
(Block 3):

glBegin(GL POLYGON);

glTexCoord2f(0.0, 0.0); glVertex3f(-10.0, -10.0, 0.0);

glTexCoord2f(1.0, 0.0); glVertex3f(10.0, -10.0, 0.0);

glTexCoord2f(1.0, 1.0); glVertex3f(0.0, 10.0, 0.0);

glEnd();

Interpolation is clearly evident now. Parts of both launch and chessboard
are skewed by texturing, as the triangle specified by texture coordinates is
not similar to its world-space counterpart (Figure 12.8(c)).

Continuing, change the texture coordinates of the last vertex (Block 4):

glBegin(GL POLYGON);

glTexCoord2f(0.0, 0.0); glVertex3f(-10.0, -10.0, 0.0);

glTexCoord2f(1.0, 0.0); glVertex3f(10.0, -10.0, 0.0);

glTexCoord2f(0.5, 1.0); glVertex3f(0.0, 10.0, 0.0);

glEnd();486
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The textures are no longer skewed as the triangle in texture space is
similar to the one being textured (Figure 12.8(d)). End

Experiment 12.4. Restore the original loadTextures.cpp and replace
launch.bmp with cray2.bmp, an image of a Cray 2 supercomputer. View
the original images in the Textures folder and note their sizes: the launch
is 512 × 512 pixels while the Cray 2 is 512 × 256. As you can see, the Cray
2 is scaled by half width-wise to fit the square polygon. End

Exercise 12.4. (Programming) Change the polygon specs so that the
Cray 2 is not distorted.

(a) (b)

Figure 12.9: Screenshots from Experiment 12.5.

Experiment 12.5. Restore the original loadTextures.cpp and then
change the coordinates of only the third world-space vertex of the textured
polygon (Block 5):

glBegin(GL POLYGON);

glTexCoord2f(0.0, 0.0); glVertex3f(-10.0, -10.0, 0.0);

glTexCoord2f(1.0, 0.0); glVertex3f(10.0, -10.0, 0.0);

glTexCoord2f(1.0, 1.0); glVertex3f(20.0, 0.0, 0.0);

glTexCoord2f(0.0, 1.0); glVertex3f(-10.0, 10.0, 0.0);

glEnd();

The launch looks odd. The rocket rises vertically, but the flames underneath
are shooting sideways! Toggle to the chessboard and it’s instantly clear
what’s going on. Figure 12.9 shows both textures. End

The polygon and the texture have evidently been triangulated equivalently
– in particular, triangles in the triangulation of one correspond to those in
the other via the texture map. Corresponding triangles in this case, though,
evidently differ in shape. Subsequently, each triangle of the texture has 487
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been separately interpolated over the corresponding triangle of the polygon,
causing the perceived distortion. See Figure 12.10.

When we had said a little earlier that the texture map is obtained by
interpolating over the entire polygon the mapping from its vertices to points
in texture space, we had not taken into account the fact that there is no
unambiguous way to do this if the polygon has more than three sides (recall
discussions to this effect in Section 7.4). We know now how OpenGL gets
past the problem: It determines the texture map by interpolating the vertex
texture coordinates not over the polygon but, after triangulation, over each
triangle separately.

Texture

Polygon

Figure 12.10: Each of
the two texture triangles is
interpolated over the
corresponding polygon
triangle.

Exercise 12.5. (Programming) Change the polygon specification in
loadTextures.cpp to map a five-sided polygon in world space to a five-sided
polygon in texture space (Block 6):

glBegin(GL POLYGON);

glTexCoord2f(0.0, 0.0); glVertex3f(-10.0, -10.0, 0.0);

glTexCoord2f(1.0, 0.0); glVertex3f(10.0, -10.0, 0.0);

glTexCoord2f(1.0, 0.5); glVertex3f(20.0, 0.0, 0.0);

glTexCoord2f(0.5, 1.0); glVertex3f(0.0, 10.0, 0.0);

glTexCoord2f(0.0, 1.0); glVertex3f(-10.0, 0.0, 0.0);

glEnd();

Can you make out the triangulations in world and texture space, as well as
the correspondence between triangles?

12.2 Repeating and Clamping Textures

So far we’ve been careful to keep texture coordinates in the range [0, 1],
along both the s- and t-axes. What happens if they slip outside? Let’s find
out.

Figure 12.11: Screenshot
of Experiment 12.6.

Experiment 12.6. Restore the original loadTextures.cpp and change
the texture coordinates of the polygon as follows (Block 7):

glBegin(GL POLYGON);

glTexCoord2f(-1.0, 0.0); glVertex3f(-10.0, -10.0, 0.0);

glTexCoord2f(2.0, 0.0); glVertex3f(10.0, -10.0, 0.0);

glTexCoord2f(2.0, 2.0); glVertex3f(10.0, 10.0, 0.0);

glTexCoord2f(-1.0, 2.0); glVertex3f(-10.0, 10.0, 0.0);

glEnd();

It seems that the texture space is tiled using the texture. See Figure 12.11.
In particular, the texture seems repeated in every unit square of texture

space with integer vertex coordinates. As the world-space polygon is mapped
to a 3 × 2 rectangle in texture space, it is painted with six copies of the
texture, each scaled to an aspect ratio of 2:3. The scheme itself is indicated
Figure 12.12. End488
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−1

(10, −10, 0)
0 1 2

Texture space
(−10, −10, 0)

(−10, 10, 0) (10, 10, 0)

s

t

Polygon

1

2

0

Figure 12.12: Tiling of texture space. The curved bold black arrows indicate the
texture map. The straight arrow indicates the painting of one tile onto a sub-rectangle of
the polygon; other tiles similarly paint corresponding sub-rectangles.

Experiment 12.7. Change the texture coordinates again by replacing
each −1.0 with −0.5 (Block 8):

glBegin(GL POLYGON);

glTexCoord2f(-0.5, 0.0); glVertex3f(-10.0, -10.0, 0.0);

glTexCoord2f(2.0, 0.0); glVertex3f(10.0, -10.0, 0.0);

glTexCoord2f(2.0, 2.0); glVertex3f(10.0, 10.0, 0.0);

glTexCoord2f(-0.5, 2.0); glVertex3f(-10.0, 10.0, 0.0);

glEnd();

Again it’s apparent that the texture space is tiled with the specified texture
and that the world-space polygon is painted over with its rectangular image
in texture space. End

That the texture space is tiled with the texture is because of the following
two statements in both the loadExternalTextures() and loadProcedural-

Textures() routines of loadTextures.cpp, specifying the wrapping mode
to be repeated along both s- and t-directions:

glTexParameteri(GL TEXTURE 2D, GL TEXTURE WRAP S, GL REPEAT);

glTexParameteri(GL TEXTURE 2D, GL TEXTURE WRAP T, GL REPEAT);

There is another option for the wrapping mode, instead of repeated,
namely, clamped .

Experiment 12.8. Restore the original loadTextures.cpp and then
change the texture coordinates as below, which is the same as in
Experiment 12.6 (Block 7):

glBegin(GL POLYGON);

glTexCoord2f(-1.0, 0.0); glVertex3f(-10.0, -10.0, 0.0);

glTexCoord2f(2.0, 0.0); glVertex3f(10.0, -10.0, 0.0);

glTexCoord2f(2.0, 2.0); glVertex3f(10.0, 10.0, 0.0);

glTexCoord2f(-1.0, 2.0); glVertex3f(-10.0, 10.0, 0.0);

glEnd(); 489
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Next, replace the GL REPEAT parameter in the

glTexParameteri(GL TEXTURE 2D, GL TEXTURE WRAP S, GL REPEAT);

statement of both the loadExternalTextures() and loadProcedural-

Textures() routines with GL CLAMP so that it becomes

glTexParameteri(GL TEXTURE 2D, GL TEXTURE WRAP S, GL CLAMP);

This causes the wrapping mode to be clamped in the s-direction. It’s
probably easiest to understand what happens in this mode by observing in
particular the chessboard texture: see Figure 12.13. Texture s coordinates
greater than 1 are clamped to 1, those less than 0 to 0. Precisely, instead of
the texture space being tiled with the texture, points with coordinates (s, t),
where s > 1, obtain their color values from the point (1, t), while those with
coordinates (s, t), where s < 0, obtain them from (0, t). End

Figure 12.13: Screenshot
from Experiment 12.8.

Experiment 12.9. Continue the previous experiment by clamping the
texture along the t-direction as well. In particular, replace the GL REPEAT

parameter in the

glTexParameteri(GL TEXTURE 2D, GL TEXTURE WRAP T, GL REPEAT);

statement with GL CLAMP. We leave the reader to parse the output. End

The repeating option is appropriate to tile the surface of an object with
a particular pattern, e.g., a wall with a brick pattern, a table with a wood
grain pattern, the ground with a grass pattern and so on, while the clamping
option is appropriate to paint on a single copy of the texture, e.g., the facade
of a building onto a rectangle, with the texture boundary, typically, aligned
with the rectangle boundary.

12.3 Filtering

Figure 12.14: Screenshot
of fieldAndSky.cpp.

Experiment 12.10. Run fieldAndSky.cpp, where a grass texture is tiled
over a horizontal rectangle and a sky texture clamped to a vertical rectangle.
There is the added functionality of being able to transport the camera over
the field by pressing the up and down arrow keys. Figure 12.14 shows a
screenshot.

As the camera travels, the grass seems to shimmer – flash and scintillate
are terms also used to describe this phenomenon. This is our first encounter
with the aliasing problem in texturing. Any visual artifact which arises owing
to the finite resolution of the display device and the correspondingly “large”
size of individual pixels – at least to the extent that they are discernible to
the human eye – is said to be caused by aliasing. End490
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Let’s try and understand why shimmer is caused by aliasing. Recall
that the texture map is obtained by interpolating through each triangle the
texture coordinates specified at its vertices. Subsequently, each point of the
triangle is colored with the values of its mapped texture point. However, a
technicality arises at this stage we did not consider earlier. Color values in
the computer are not associated per point , either in texture space or the
polygon. In reality, they are associated one set (RGB or RGBA) per pixel
in the display, as also one set per texel in the texture.

P

Q

ras
teri

zat
ion texture map

World space

“real” texture map

Raster (Screen space)
Texture space

v0

´

v1

v2
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v0 v1
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Figure 12.15: The aliasing problem in texture mapping. A single pixel P is mapped to
a quadrilateral Q covering many texels (minification).

Now, once the polygon has been rasterized – i.e., its set of corresponding
pixels determined – the texture map is unlikely to map pixels to texels
in a one-to-one manner. The situation, more typically, is as depicted in
Figure 12.15, where the triangle v1v2v3 in world space is mapped to the
raster triangle v′1v

′
2v
′
3 – or screen space triangle, if you like, as it is the one to

be displayed – via the rasterization process and to the texture space triangle
v′′1 v
′′
2 v
′′
3 via the texture map. These two maps (downwards in the figure)

induce the “real” texture map from raster to texture space (left to right)
which takes pixels to texels (precisely, this map is rasterization reversed
followed by the texture map).

The dark pixel P in the raster maps to the dark quadrilateral Q in
texture space (mind that the texture map need not preserve shape). As Q
intersects multiple texels, how should OpenGL choose color values for P?
Particularly, which texel should OpenGL pick to apply its particular color
values to P?

Here’s a reasonable solution: if the texture map takes the center p of P to
the point t in texture space, then choose the texel whose center is nearest to t.
In Figure 12.15, then, the chosen texel is centered at t1, so this texel’s colors 491



i
i

i
i

i
i

i
i

Chapter 12

Texture

would be applied to P . In fact, this is precisely the so-called filtering option
specified by the GL NEAREST value in the following two parameter-setting
commands in both the statement blocks that bind the grass and sky textures
of the loadExternalTextures() routine of fieldAndSky.cpp:

glTexParameteri(GL TEXTURE 2D, GL TEXTURE MIN FILTER, GL NEAREST);

glTexParameteri(GL TEXTURE 2D, GL TEXTURE MAG FILTER, GL NEAREST);

(We’ll discuss the difference between MIN and MAG filters momentarily.)
The reason for the shimmer observed in fieldAndSky.cpp is now not

hard to grasp. See again Figure 12.15. Suppose that the object in world
space moves a small distance so that its rasterization changes a small amount
as well, causing the map from raster to texture space to map p to a new point
just to the left of t, closer to the pixel center t4 than t1. Correspondingly,
according to the GL NEAREST filtering principle, there is a switch in the color
values at pixel P , obtained now from the texel centered at t4, rather than
the one at t1. It’s exactly these relatively large discrete changes in pixel
colors arising from minute movements of the object which cause shimmer.

Figure 12.15 itself suggests a way to ameliorate the problem: instead of
obtaining color values from just the one texel centered at t1, take an average
of the values at the four texels whose centers ( t1, t2, t3 and t4) surround t.
This smooths the color transitions and, in fact, is offered by OpenGL as the
GL LINEAR filtering option.

Remark 12.1. The basis for linear filtering is exactly the same as for moving
averages in statistics. For example, as part of analyzing the stock market,
one may chart average values over a sliding window of size one week or
month, instead of daily values, in order to smooth out near-term fluctuations.

Experiment 12.11. Change to linear filtering in fieldAndSky.cpp by
replacing every GL NEAREST with GL LINEAR. The grass still shimmers though
less severely. The sky seems okay with either GL NEAREST or GL LINEAR.
End

The process of selecting color values for pixels based on the texture map
is called filtering. OpenGL offers a few different filtering options, in addition
to GL NEAREST and GL LINEAR, allowing the user to trade between speed and
output quality. OpenGL makes a distinction, as well, between minification
and magnification when filtering. Minification occurs when a pixel is mapped
onto multiple texels as in Figure 12.15, while magnification is when many
pixels map onto a single texel as in Figure 12.16.

Remark 12.2. The term minification arises because the phenomenon of a
pixel being mapped to many texels occurs when a painted surface moves
into the distance to occupy a smaller part of the screen or, equivalently,
when the viewer zooms out. For example, as an aircraft flies away from the
camera, the texels comprising its logo occupy an increasingly smaller region
of the screen, until, when the craft is far enough, multiple texels occupy492
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Q

“real” texture map
B

Raster Texture space

Figure 12.16: A block B of many pixels is mapped to a quadrilateralQ inside a single
texel (magnification).

single pixels (which is equivalent to the texture map taking a single pixel
to multiple texels). Magnification, related to zooming in, is, of course, the
inverse phenomenon.

The statement

glTexParameteri(GL TEXTURE 2D, case, filter)

causes the filtering option filter to be applied in the case of minification or
magnification, according as the value of case is GL TEXTURE MIN FILTER or
GL TEXTURE MAG FILTER. With the commands

glTexParameteri(GL TEXTURE 2D, GL TEXTURE MIN FILTER, GL NEAREST);

glTexParameteri(GL TEXTURE 2D, GL TEXTURE MAG FILTER, GL NEAREST);

fieldAndSky.cpp asks for the GL NEAREST filter in the case of either
minification or magnification.

In the case of minification, particularly, OpenGL offers an assortment of
efficient filtering options based on pre-assigning a set of textures to be used at
different levels of minification. The idea, conceived by Lance Williams [150],
is clever yet simple. Starting with the original texture, the base texture, a
set of textures of progressively lower resolution, called mipmaps , is prepared.
These mipmaps are either computed by OpenGL by an averaging process –
we’ll see momentarily how – or supplied by the programmer.

Subsequently, during run-time, OpenGL maps a geometric primitive,
based upon the size it occupies in the raster, to that particular mipmap
which affords a nearly one-to-one correspondence between pixels and texels,
rather than the one-to-many which would occur if the base texture were used.
This (a) saves on run-time filtering computation, and (b) assures quality
(provided mipmaps are initially well-chosen).

Figure 12.17 illustrates the idea with an idealized example. The base
texture is of resolution 8× 4 with a single scalar color value at each texel.
Mipmaps of successively lower resolution till 2×1 are computed by averaging
the color values in 2×2 squares of texels; finally, the 1×1 mipmap is computed
by averaging the two color values in the 2× 1 mipmap. For example, the 493
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8 x 4 base texture

1 3 24 0 8 6 5

 2           4 3 3 1 6 0 2

1 1 0 5 2 3 1 2

2 0 4 1 131 1

2.5 3 3.75 3.25

1 3.25 2.25 1.25

pixel

raster triangle

minifying map to
base texture

“one-to-one”
map to lower
res mipmap

4 x 2 mipmap
2 x 1 
mipmap

1 x 1 
mipmap

2.532.622.43

Figure 12.17: Mipmapping.

value 3 in the dark texel in the 4 × 2 mipmap is the average of the four
values in the dark square of texels in the 8 × 4 mipmap. A set of mipmaps
is often called a pyramid of mipmaps – think of them stacked one on top of
the other, highest resolution at the bottom to the lowest at the top.

Now, when the triangle primitive shown is mapped to the base texture,
minification causes the shaded pixel to map to the shaded square of texels,
which requires run-time linear filtering to return the color value 3. On the
other hand, if it is mapped to the 4×2 mipmap, then there is no minification
and the color value of 3 is returned without run-time filtering. For this reason
mipmaps are often called pre-filtered textures.

Generally, if a base texture of resolution 2m × 2n is to be mipmapped,
then OpenGL requires mipmaps of resolution 2m−1×2n−1, 2m−2×2n−2, . . .,
obtained by halving both width and height, until one of the dimensions
becomes 1; subsequently, if the other dimension is still greater than 1, then it
must be repeatedly halved and mipmaps provided for each resolution down
to 1× 1.

Example 12.1. What is the total space required to store all the mipmaps
for a base texture of resolution 2m × 2n? What is the ratio of this space to
that required for only the base texture?

Answer: Suppose without loss of generality thatm ≥ n. The total number
of texels in all the mipmaps is

2m × 2n + 2m−1 × 2n−1 + . . .+ 2m−n+1 × 2 + 2m−n × 1

+ 2m−n−1 + 2m−n−2 + . . .+ 1

(the first line above bringing one dimension down to 1, the second the next)494
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= 2m−n(1 + 22 + . . .+ 22n) + (1 + 2 + . . .+ 2m−n−1)

= 2m−n(22n+2 − 1)/3 + 2m−n − 1

=
4

3
2m+n +

2

3
2m−n − 1

The space required is, therefore, the above quantity multiplied by the number
of bits per texel.

Now, the number of texels in the base texture is 2m × 2n = 2m+n and

4

3
2m+n +

2

3
2m−n − 1 <

4

3
2m+n +

2

3
2m+n = 2× 2m+n

so the ratio of the space required for all the mipmaps to that for the base
texture is less than 2.

Exercise 12.6. If the base texture is 4× 8 with color values at the texels
as follows

1 0 4 2
3 2 1 5
0 1 2 6
8 2 7 7
2 3 1 2
6 4 3 8
7 3 6 1
3 5 0 2

then find all the mipmaps down to the one of lowest resolution.

Example 12.1 says that mipmapping offers efficiency and quality at a cost
of only twice the amount of space. Once mipmaps have been set, OpenGL has
four filtering options, in addition to GL NEAREST and GL LINEAR, available for
use in case of minification. In order of increasing quality and computational
cost they are:

(1) GL NEAREST MIPMAP NEAREST: Applies the mipmap that’s a closest
fit resolution-wise to the rasterized primitive and then uses the
GL NEAREST filtering option within that mipmap.

(2) GL LINEAR MIPMAP NEAREST: Applies the mipmap that’s a closest fit
resolution-wise to the rasterized primitive and then the GL LINEAR

filtering option within that mipmap.

(3) GL NEAREST MIPMAP LINEAR: Finds the two mipmaps that are closest
resolution-wise to the rasterized primitive, then uses the GL NEAREST

filtering option within either mipmap to produce two sets of color
values and, finally, takes a weighted average of the two sets. 495
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(4) GL LINEAR MIPMAP LINEAR: Finds the two mipmaps that are closest
resolution-wise to the rasterized primitive, then uses the GL LINEAR

filtering option within either mipmap to produce two sets of color
values and, finally, takes a weighted average of the two sets.

Mipmaps are not used in the case of magnification because, with the
viewer zooming in, one wants only the highest resolution, namely, the base
texture. Accordingly, the only two filters available in the case of magnification
are GL NEAREST and GL LINEAR.

Terminology : In OpenGL speak a texture object comprises a texture together
with its associated parameters, specified by glTexParameter[i/f]()

commands, such as the filter option and whether clamped or repeated.

It’s time to see mipmapping in action. Generating mipmaps automatically
is simple. The command glGenerateMipmap(target) – implemented in
OpenGL 3.0 and on – generates a full set of mipmaps for the texture
associated with target as in the following program.

(a) (b)

Figure 12.18: Screenshots of fieldAndSkyFiltered.cpp: (a) Weakest filter
(b) Strongest filter.

Experiment 12.12. Run fieldAndSkyFiltered.cpp, identical to field-

AndSky.cpp except for additional filtering options. Press the up/down arrow
keys to move the camera and the left/right ones to cycle through filters for
the grass texture. Messages at the top identify the current filters. End

The call

glGenerateMipmap(GL_TEXTURE_2D)

just after glTexImage2D(), when binding textures with min filter GL -

NEAREST MIPMAP NEAREST and higher, generates mipmaps.
The loadExternalTextures() routine loads the same grass image as

six different textures with the min filter ranging from GL NEAREST to496
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GL LINEAR MIPMAP LINEAR. The mag filter used is GL NEAREST when the
min filter is GL NEAREST as well; otherwise, it’s GL LINEAR. The sky texture
is not mipmapped.

As one sees, the more expensive filters do nearly eliminate shimmering,
but at the same time tamp down possibly desirable sharpness. For example,
blades of grass can be distinguished easily in Figure 12.18(a), where the
weakest filter is applied, but this is not so in Figure 12.18(b), which applies
the strongest.

We have a couple more programs for you to experiment with mipmaps
and filters.

Experiment 12.13. Run compareFilters.cpp, where one sees side-by-
side identical images of a shuttle launch bound to a square. Press the up
and down arrow keys to move the squares. Press the left arrow key to cycle
through filters for the image on the left and the right arrow key to do likewise
for the one on the right. Messages at the top say which filters are currently
applied. Figure 12.19 is a screenshot of the initial configuration.

Compare, as the squares move, the quality of the textures delivered by
the various min filters. Of course, if one of the four mipmap-based min
filters – GL NEAREST MIPMAP NEAREST through GL LINEAR MIPMAP LINEAR –
is applied, then the particular mipmap actually chosen by OpenGL depends
on the screen space occupied by the square. End

Figure 12.19: Screenshot of compareFilters.cpp initially.

An unavoidable artifact of filtering using mipmaps is that of popping
when one mipmap is replaced with another. The next program illustrates
this in a purposely dramatic manner.

Experiment 12.14. Run mipmapLevels.cpp, where the mipmaps are sup-
plied by the program, rather than generated automatically byglGenerate-
Mipmap(). The mipmaps are very simple: just differently colored square
images, created by the routine createMipmaps(), starting with the blue
64× 64 mipmapRes64 down to the black 1× 1 mipmapRes1. Commands of
the form 497
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glTexImage2D(GL TEXTURE 2D, level, GL RGBA, width, height,
0, GL RGBA, GL UNSIGNED BYTE, image);

each binds a width × height mipmap image to the current texture index,
starting with the highest resolution image with level parameter 0, and with
each successive image of lower resolution having one higher level all the way
up to 6.

Move the square using the up and down arrow keys. As it grows smaller
a change in color indicates a change in the currently applied mipmap.
Figure 12.20 is screenshot after the first change. As the min filter setting is
GL NEAREST MIPMAP NEAREST, a unique color, that of the closest mipmap, is
applied to the square at any given time. End

Figure 12.20: Screenshot
of mipmapLevels.cpp.

Remark 12.3. OpenGL offers options in addition to those that we have
discussed to fine-tune mipmapping. The interested reader is referred to the
chapter on textures in the red book.

Remark 12.4. Mipmapping is one of a class of LOD (level-of-detail) methods,
or multiresolution methods as they are also called, which are important in
graphics from the point of view of run-time efficiency.

Representing objects by polygonal meshes of varying levels of refinement
is another practically important LOD application and one related to the
drawing methods that we studied in Chapter 10. For example, if the camera
is close to a spacecraft, then one may want a “base mesh” of thousands, or
even millions, of triangles to be rendered. However, after the ship has flown
some distance off to occupy a smaller portion of the screen, a mesh with
fewer triangles may not only be visually adequate, but, in fact, desirable
both for quicker rendering and to avoid aliasing artifacts. Accordingly, it’s
often advantageous to pre-compute a set of meshes for a moving object,
exactly as mipmaps for a texture, with varying numbers of triangles.

Instead of a spacecraft, we have a cow at three different levels of resolution
in Figure 12.21, starting from the highest at left, and then simplified twice
with the help of mesh simplification software [24] co-developed by the author.

(a) (b) (c)

Figure 12.21: Cow at 3 different resolutions: (a) 5804 (b) 1772 (c) 328 triangles.

There’s an extensive literature on LOD methods, of which a good starting
point would be the book by Luebke et al. [89].

498
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12.4 Specifying Texture Coordinates

Our programs so far have been simple from the point of view of specifying
the texture map. The surfaces textured were all polygons, so that we
simply had to specify texture coordinates at the corners. How about more
complicated surfaces? It’s actually surprisingly straightforward if the surface
is parametrized – we can leverage the parametrization to derive texture
coordinates.

12.4.1 Parametrized Surfaces

Figure 12.22: Screenshot
of texturedTorus.cpp.

Experiment 12.15. Run texturedTorus.cpp, which shows the shuttle
launch texture mapped onto a torus. Figure 12.22 is a screenshot. Press
‘x’-‘Z’ to turn the torus. End

The program texturedTorus.cpp is based on torus.cpp of Experi-
ment 10.5. As i runs from 0 to p and j from 0 to q, (i/p, j/q) runs over sample
points in [0, 1]× [0, 1], and ( f(i, j), g(i, j), h(i, j) ) – see the corresponding
function definitions f(), g() and h() in the program – over mapped sample
points on the torus. Since the (i, j)th entry in the vertex array is the image
of the point (i/p, j/q) of the parameter rectangle [0, 1]× [0, 1], an obvious
texture map is to associate this very same image with the point (i/p, j/q) of
texture space, effectively identifying the parameter rectangle with the texture!
See Figure 12.23. This is exactly what’s done in texturedTorus.cpp by
the routine fillTextureCoordArray(), which fills values into a texture
coordinates array holding texture coordinates per vertex (just like vertex
coordinates arrays hold coordinates per vertex and color arrays hold colors
per vertex).

v

0
0

1

1 u

texture map s(u, v) → (u, v)

parametrization (u, v) → s(u, v)parameter 
rectangle 
= 
texture

Figure 12.23: Texturing a torus by identifying the parameter rectangle with the
texture.

Exercise 12.7. (Programming) If you did Exercise 12.2 to create the
synthetic striped board texture of Figure 12.6, apply it now to the torus of
texturedTorus.cpp. 499
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Exercise 12.8. (Programming) Texture the helical pipe of Experi-
ment 10.4 to give it an appearance of rusted metal.

Exercise 12.9. (Programming) Texture the table of Experiment 10.7
with a wood grain texture.

12.4.2 Bézier and Quadric Surfaces

It’s fairly simple to use OpenGL to automatically generate texture
coordinates for Bézier and quadric surfaces, as is demonstrated in the
next experiment.

Figure 12.24: Screenshot
of texturedTorpedo.cpp:
propeller blades textured
with the chessboard, body
with stripes.

Experiment 12.16. Run texturedTorpedo.cpp, which textures parts of
the torpedo of torpedo.cpp – from Experiment 10.21 – as you can see in
the screenshot in Figure 12.24. Press space to start the propeller turning.
End

The texturing of the propeller blade Bézier surface of textured-

Torpedo.cpp is most important. We want to do this in the same manner
as the torus of Experiment 12.15 – by identifying parameter rectangle and
texture. However, because of the way OpenGL is set up for texture coordinate
generation we are forced to a slightly roundabout approach described next.

First, we have to create a Bézier surface s′ in texture space. The statement

glMap2f(GL MAP2 TEXTURE COORD 2, 0, 1, 2, 2, 0, 1, 4, 2,

texturePoints[0][0])

in the display list for the propeller blade does just this. The syntax of
this statement is similar to that of the glMap2f(GL MAP2 VERTEX 3, . . .)
we are already familiar with to create a world-space Bézier surface. Control
points of s′ stored in the texturePoints array are (0, 0), (0, 1), (1, 0) and
(1, 1), making s′ the rectangle [0, 1]× [0, 1]. See Figure 12.25. Moreover, the
bilinearity of the parametric mapping of s′ (it’s of order 2, or degree 1, along
both u and v) implies that it is simply the identity map from the rectangle
[0, 1]× [0, 1] in parameter space to s′ in texture space.

Observe, next, that the statement

glMap2f(GL_MAP2_VERTEX_3, 0, 1, 3, 3, 0, 1, 9, 4,

controlPointsPropellerBlade[0][0])

defines the parameter space for the propeller blade Bézier surface to be
[0, 1]× [0, 1] as well. Given, then, that the parameter spaces for the blade
Bézier surface s in world space and the Bézier surface s′ in texture space
are identical, OpenGL defines the texture map between the two in the
following simple manner: for each parameter point (u, v), the image of
(u, v) on the blade surface s is mapped to the image of (u, v) on s′ (see
Figure 12.25). Given how s′ itself is defined, evidently texture coordinates
(u, v) are assigned to the image of the parameter point (u, v) on the blade500



i
i

i
i

i
i

i
i

Section 12.4

Specifying Texture

Coordinates

v

x

Bezier
surface s  

parameter map

pa
ram

ete
r m

ap

z

y t

0
1

1texture map

u

s

1
0

1

Parameter space

Texture space

parameter
rectangle

Bezier
surface s´

0

0

World space

(u,v)

Figure 12.25: Texture mapping a Bézier surface via a Bézier surface in texture space.
The parameter map on the right from parameter to texture space is the identity in the
case of texturedTorpedo.cpp.

Bézier surface, effectively identifying the texture with the parameter rectangle
as we set out to do.

The two statements

glEnable(GL MAP2 TEXTURE COORD 2);

glMapGrid2f(5, 0.0, 1.0, 5, 0.0, 1.0);

in the propeller blade’s display list actually instigate texture coordinate
generation at the image on the world-space Bézier surface – the propeller
blade in this case – of an evenly-spaced 5× 5 grid of sample points in the
parameter domain.

OpenGL’s particular mechanism to generate texture coordinates for a
Bézier surface offers flexibility. For example, by changing the control points
of the texture-space surface and so its extent, one can paint the real-world
surface with a different region of texture space. The next exercise asks you
to try this.

Exercise 12.10. (Programming) Make the red and blue squares of
the chessboard pattern on the propeller blades of texturedTorpedo.cpp
twice as big are they are currently, without changing the original texture as
generated by the program.

Getting OpenGL to generate texture coordinates for a quadric is even simpler.
The statement

gluQuadricTexture(qobj, GL TRUE) 501
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in the drawScene() routine of texturedTorpedo.cpp is all that it takes to
automatically generate texture coordinates for the quadric torpedo body.

Exercise 12.11. (Programming) Texture the parts of the torpedo of
texturedTorpedo.cpp which are still wire mesh.

12.4.3 Texture Matrix and Animating Textures

Recall from Section 4.4 that the current modelview matrix, say M , the
topmost one in the modelview matrix stack, transforms a vertex V by
multiplication from the left, in particular, V →MV . Likewise, the texture
matrix stack contains 4× 4 texture matrices, the topmost one of which is
the current texture matrix ; moreover, texture coordinates are transformed
by multiplication from the left by the current texture matrix.

When being multiplied by the current texture matrix, texture coordinates
are all written as column vectors with four components, typically denoted
[s t r q]T . For example, texture coordinates represent points (s, t) in plane
texture space for the 2D textures we have been using; however, extended to
4D, (s, t) would be written [s t 0 1]T . As expected, by default, the current
texture matrix is the 4× 4 identity.

The texture matrix stack and the current texture matrix can be manip-
ulated with exactly the same commands as their modelview counterparts.
Transforming texture coordinates with help of the current texture matrix,
one can animate a texture in various ways. Let’s see a simple example.

Experiment 12.17. Run texturedTorusAnimated.cpp, which animates
the launch texture of texturedTorus.cpp by applying a translation to the
current texture matrix. Press space to toggle between animation on and
off, the up and down arrow keys to change its speed and ‘x’-‘Z’ to turn the
torus.

The modification of texturedTorus.cpp is simple. In particular, the
following block of code in the drawing routine does the trick by entering
texture matrix mode and applying a translation in the t-direction, effectively
translating the texture coordinates in the t-direction:

glMatrixMode(GL_TEXTURE);

glLoadIdentity();

glTranslatef(0.0, shift, 0.0);

glMatrixMode(GL_MODELVIEW);

The rest of the modification of texturedTorus.cpp is in managing the
animation. End

Exercise 12.12. (Programming) Apply the rotation glRotatef(60.0,

0.0, 0.0, 1.0) first to the current texture matrix of texturedTorus-

Animated.cpp followed by the existing translation.

Exercise 12.13. (Programming) Animate the sky texture of field-
AndSky.cpp to make the clouds move.502
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12.5 Lighting Textures

By now the reader may be wondering if color and light can coexist with
texture or if the two are mutually exclusive ways of adorning an object. The
answer is that OpenGL, in fact, offers more than one option to combine
them. An option is selected using the following texture function statement,
most often located in the initialization routine:

glTexEnvf(GL TEXTURE ENV, GL TEXTURE ENV MODE, parameter)

If parameter is GL REPLACE, as it has been in our programs thus far, then the
texture colors overwrite the current primitive pixel colors (i.e, the primitive’s
own material colors as well as light sources in the environment are ignored).

The most common way, though, to combine color and light with texture
is by setting parameter to GL MODULATE, in which case OpenGL does the
following:

(a) Computes RGB values at a primitive’s vertices using OpenGL’s lighting
equation (11.12) and interpolates these through its interior – assuming
that smooth shading is on – to determine the RGB values at each of
its pixels.

(b) Uses the texture map to obtain RGB values from the texture at each
of the primitive’s pixels.

(c) Determines the final RGB values at each pixel as the product of the
corresponding values from the preceding two steps.

In short, OpenGL separately computes RGB values for color and light as if
there were no texture and RGB values for texture as if there were no color
and light and, finally, scales one with the other.

Example 12.2. If the RGB tuple at a pixel P is (0.5, 0.75, 0.1) as obtained
by interpolation from vertex RGB values computed after lighting, while
that determined at P from the texture via the texture map is (0.4, 0.5, 1.0),
then the final color applied to P using the GL MODULATE option is (0.5 ×
0.4, 0.75× 0.5, 0.1× 1.0) = (0.2, 0.375, 0.1).

Experiment 12.18. Run fieldAndSkyLit.cpp, which applies lighting to
the scene of fieldAndSky.cpp with help of the GL MODULATE option. The
light source is directional – imagine the sun – and its direction controlled
using the left and right arrow keys, while its intensity can be changed using
the up and down arrow keys. A white line indicates the direction and
intensity of the sun. Figure 12.26(a) is a mid-morning screenshot.

The material colors are all white, as is the light. The normal to the
horizontal grassy plane is vertically upwards. Strangely, we use the same
normal for the sky’s vertical plane, because using its “true” value toward
the positive z-direction has the unpleasant, but expected, consequence of a
sky that doesn’t darken together with land. End 503
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(a) (b)

Figure 12.26: Screenshots of (a) fieldAndSkyLit.cpp and (b) litTextured-

Cylinder.cpp.

Experiment 12.19. Run litTexturedCylinder.cpp, which adds a label
texture and a can top texture to litCylinder.cpp. Press ‘x’-‘Z’ to turn
the can. Figure 12.26(b) is a screenshot.

Most of the program is routine – the texture coordinate generation is, in
fact, a near copy of that in texturedTorus.cpp – except for the following
lighting model statement in setup() which we’re using for the first time:

glLightModeli(GL LIGHT MODEL COLOR CONTROL, GL SEPARATE SPECULAR COLOR)

We had briefly encountered this statement as an OpenGL lighting model
option in Section 11.4. It causes a modification of OpenGL’s GL MODULATE

procedure: the specular color components are separated and not multiplied
with the corresponding texture color components, as are the ambient and
diffuse, but added in after. The result is that specular highlights are preserved
rather than blended with the texture. End

Exercise 12.14. (Programming) Close off the bottom of the cylinder
of litTexturedCylinder.cpp with a metal-textured disc.

Exercise 12.15. (Programming) Animate a lit textured flag fluttering
in the wind.
Hint : A surface whose section is of the form y = sin(x+ t), where t depends
on time, in other words a “moving” sine curve, simulates fluttering.

Exercise 12.16. (Programming) Continue improvement of ship-

Movie.cpp, which you began in Exercise 11.44, now with the help of textures.
There are numerous possibilities of which a few are:

(a) Texture the black back plane with the image of a night-time city
skyline.

(b) Paint the surface of the sea with a water texture, possibly animated.504
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(c) Add detail to the ship by texturing it with images of parts of real
ships.

(d) Texture the background boats. You may want to strategically place
additional light sources.

Exercise 12.17. (Programming) Continue with Exercise 11.45 where
you enhanced animateMan*.cpp with color and light, now using texture.

12.6 Multitexturing and Texture Combining

OpenGL allows more than one texture to be applied to a polygon in a
pipelined process, each texture being combined with its predecessor in
programmer-specified manner. This so-called multitexturing makes possible
myriad visual effects depending upon the textures and how they are combined.
Let’s get to work on a particular one – transforming a night sky into day
– by interpolating between night and day sky textures, illustrating in the
process the key steps in multitexturing.

(a) (b) (c)

Figure 12.27: Screenshots of multitexture.cpp: (a) Mid-day (b) Late evening (c)
Night.

Experiment 12.20. Run multitexture.cpp, which interpolates between
night and day sky texture. Press the left/right arrow keys to transition
between night and day. Figure 12.27 shows stages in the transition. End

Multitexturing requires more than one texture unit – a binding point for
a texture to the OpenGL context – each with id of the form GL TEXTUREi.
Here’s the block in the initialization routine of multitexture.cpp which
initializes GL TEXTURE0:

glActiveTexture(GL TEXTURE0);

glEnable(GL TEXTURE 2D);

glBindTexture(GL TEXTURE 2D, texture[0]);

glTexEnvi(GL TEXTURE ENV, GL TEXTURE ENV MODE, GL REPLACE); 505
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The first statement selects GL TEXTURE0 as the currently active texture unit,
the second enables 2D texturing, the third binds texture object texture[0]
to the active texture unit, while the last specifies that surface colors come
from the active texture unit.

The block initializing GL TEXTURE1 is identical except for the last
statement

glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE)

where the third parameter GL COMBINE, instead of GL REPLACE, indicates
that the first texture unit combines with the zeroth by application of a
texture combiner function, which, in fact, is interpolation according to

glTexEnvi(GL TEXTURE ENV, GL COMBINE RGB, GL INTERPOLATE);

the next statement in the initialization routine. This particular interpolation
combiner function is

Arg0 ∗Arg2 +Arg1 ∗ (1−Arg2)

The following block of statements specify the combiner function’s arguments.

glTexEnvi(GL TEXTURE ENV, GL SRC0 RGB, GL PREVIOUS);

glTexEnvi(GL TEXTURE ENV, GL SRC1 RGB, GL TEXTURE);

glTexEnvi(GL TEXTURE ENV, GL SRC2 ALPHA, GL CONSTANT);

glTexEnvi(GL TEXTURE ENV, GL OPERAND0 RGB, GL SRC COLOR);

glTexEnvi(GL TEXTURE ENV, GL OPERAND1 RGB, GL SRC COLOR);

glTexEnvi(GL TEXTURE ENV, GL OPERAND2 ALPHA, GL SRC ALPHA);

The first two statements specify that the zeroth and first source’s RGB value
are from, respectively, GL TEXTURE0 and GL TEXTURE1; the third statement
specifies that the second source’s alpha value is from the constant environment
color (specified in the display routine); the fourth statement says that Arg0’s
RGB values are from the zeroth color source, i.e., GL TEXTURE0; likewise,
the fifth statement says that Arg1’s RGB values are from the first color
source GL TEXTURE1; the last statement says that Arg2, the interpolation
parameter, is the environment color alpha value.

The two statements

glTexEnvfv(GL TEXTURE ENV, GL TEXTURE ENV COLOR, constColor);

constColor[3] = alpha;

in the display routine specify that the texture environment color values are
to be read from the global array constColor, and set its alpha value, the
interpolation parameter; note that its RGB values are never defined because
they are never used.

The final piece is to specify independently the texture coordinates for the
two texture units, which is done within the polygon definition via statements
of the form glMultiTexCoord2f(GL TEXTUREi, *, *), e.g., the block506
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glMultiTexCoord2f(GL_TEXTURE0, 0.0, 0.0);

glMultiTexCoord2f(GL_TEXTURE1, 0.0, 0.0);

glVertex3f(-20.0, -20.0, 0.0);

says that the polygon vertex (−20.0,−20.0, 0.0) has texture coordinates
(0.0, 0.0) for both texture units.

In addition to interpolation, other texture combiners, e.g., modulation,
addition and subtraction, can be used to create various effects. We ask you
to apply modulation, which has the combiner function Arg0 ∗Arg1, next.

Figure 12.28: Stained
metal.

Exercise 12.18. (Programming) Modulate an image (texture) of an
object like a ball or table with that of stained metal, as in Figure 12.28, to
give the former a tarnished finish. You may need to refer to the red book or
OpenGL docs for glTexEnv*() specs.

Remark 12.5. “Textures may not be only images !”, a seemingly odd thing
to say at the end of a chapter of applying exclusively images as textures.
But it may not appear so strange upon noting that texels are bit arrays
which, thus far, we have interpreted as RGBA values.

We don’t have to, e.g., we could very well interpret a 32-bit texel as a
32-bit floating point value. Moreover, the hardware accelerated access to
textures in the GPU – in order, in the case of images, for the texture map
to be calculated rapidly – may be put to good use in accessing other kinds
of data, as well, effectively using the texture as a giant look-up table.

In fact, there are various applications of such non-image data textures.
We’ll be seeing one ourselves in Section 18.2 on shadow mapping, where a
so-called depth texture is used to store z-buffer values.

12.7 Summary, Notes and More Reading

Texturing, the process of painting an image onto the surface of an object,
is of great practical importance in computer graphics. In this chapter we
learned the basics of how to apply a texture, underlying principles of the
texturing process and a fair number of techniques to effectively manage
textures, amongst them being combining textures with lighting as well as
multitexturing to combine multiple textures.

The seminal reference for textures in CG is Heckbert [70]. The article
by Haeberli and Segal [65] is easily-readable and informative as well. More
advanced CG books, e.g., the ones by Akenine-Möller, Haines & Hoffman [1]
and Watt [147], all have sections on texturing that will take the reader beyond
what she has learned in this chapter. The book by Reynolds and Blythe
[92] is a good reference for texturing in OpenGL in particular. Texturing
techniques are a field of active research and, as for CG research in general,
the place to visit for the latest developments is the annual ACM SIGGRAPH
conference [131]. 507
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CHAPTER 13
Special Visual Techniques

A
nd now for special effects! Special visual techniques are the topic
of the next nine sections of this chapter. These include blending,
fog, billboarding, antialiasing and multisampling, point sprites,

environment mapping, stencil buffer techniques, image manipulation and
bump mapping.

The goal of blending objects by combining their color values, the topic
of Section 13.1, is primarily to engender translucency; however, blending
can also be used in effects such as reflection and morphing. Section 13.2
shows how to use fog to cue the viewer to the distance of an object. This
imparts realism to a scene, as does the technique of billboarding introduced
in Section 13.3, a cost-effective way to create the illusion of a 3D object by
means of its 2D image.

We’ll learn in Section 13.4 how to antialias points and straight lines, as
well as how to multisample polygons, in order to remove jaggedness in their
rendering. Section 13.5 shows how to turn plain points into spectacular
point sprites, multitudes of which can then combine to form particle systems.
Environment mapping, the topic of Section 13.6, enables a shiny object to
reflect its surroundings, again making more realistic the rendering of things
such as gleaming teapots and rocket nose cones.

The stencil buffer, described in Section 13.7, which allows drawing only to
selected regions of the display, is useful in creating certain effects. Section 13.8
describes OpenGL’s image manipulation commands, allowing the user to
write pixel data directly to the frame buffer, and retrieve them too. We
show how to use such commands to move an image around the screen. Pixel
buffer objects (PBOs) for server-side storage are discussed as well.

Bump mapping, which we’ll study in Section 13.9, is a technique to
add the illusion of detail to an object by altering its normals, but without
changing its geometry. Section 13.10 concludes the chapter. 509
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13.1 Blending

We spend a little time first assimilating the theory of blending before putting
it into practice.

13.1.1 Theory

Our plan is to understand first how OpenGL operates without blending, and
then with.

No Blending

Consider the following piece of pseudo-code and how OpenGL would process
it without blending:

glClear(GL COLOR BUFFER BIT | GL DEPTH BUFFER BIT);

draw triangle T;
draw quad Q;

See Figure 13.1. The z-values in the depth buffer are each initialized to
a very large value by the glClear() command, as are values in the color
buffer all to the clearing color white. This initial configuration is depicted
in the upper left grid, where pixels only in a region of interest are labeled
with their z-values, unlabeled pixels all having ∞ z-value as well.

The triangle T is then rasterized , i.e., the set of pixels corresponding
to T determined, and color and z-values computed for each – the upper
middle grid using hypothetical z-values. A raster pixel, together with its
color values and z-value, is called a fragment .

OpenGL next renders T to the color buffer, which will be viewed when
flushed to the screen, according to sets of rules depending on whether depth
testing is on or not.

If depth testing is enabled , then the process is two-step:

1. The z-value of each of T ’s fragments, called a source fragment , is
compared with that in the corresponding pixel, called the destination
pixel , in the color buffer.

2. If the source fragment’s z-value is less than that of the destination
pixel, then it passes the depth test and its color values overwrite the
current color values of the destination pixel and its z-value overwrites
the current z-value, as well; if the source fragment’s z-value is not less
than that of the destination pixel, then it fails the depth test and its
color values and z-value are discarded, leaving all destination values
unchanged.

Note: That its z-value be less than that in the destination pixel is the
default test that a source fragment has to pass in order to overwrite the510
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Figure 13.1: Assuming depth testing on: T rasterized and rendered (upper row),
followed by Q rasterized and rendered (lower row). The starred pixel is considered in an
example below.

destination. Other tests can be invoked with a call to glDepthFunc()

(see the red book for a listing of possible tests).

If depth testing is not enabled , then the process is a simple single step:

1. Each one of T ’s fragments unconditionally overwrites the color values
of its destination pixel. The z-values are not relevant and never change.

Given depth testing as enabled, the result of rendering T is depicted in
the upper right grid in Figure 13.1, and also in the lower left. Following
T , Q is rasterized (lower middle) and rendered (lower right) in an identical
manner, Q replacing T in the two-step procedure above. One sees that three
of Q’s fragments pass the depth test and overwrite their destination pixels.

The Difference with Blending

Next, let’s understand what happens with blending. The differences are
precisely the following:

1. In all the cases above – without blending, that is – where a source
fragment’s color values are supposed to overwrite those of its destination
pixel, OpenGL instead combines , or blends , the two sets and applies
the result to the destination pixel. We’ll discuss momentarily how
color values are, in fact, combined. 511
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2. In all the cases above, where the source fragment does not overwrite
its destination pixel – e.g., if depth testing is on and its z-value is
greater – then it’s discarded as before.

3. As for the z-values, only if depth testing is on does a lower source
z-value replace that of the destination, regardless of blending.

Here’s how OpenGL combines color values in order to blend them in
item 1 just above. Say the source fragment’s color values are (srcR, srcG,
srcB), while those of the destination are (dstR, dstG, dstB). Based upon the
programmer’s specifications, OpenGL assigns so-called blending factors, in
particular, a scalar srcb to the source, and a scalar dstb to the destination. It
then determines the final color values of the destination pixel as a sum of the
source and destination color vectors weighted by their respective blending
factors, particularly, using the the following blending equation:

(dstR, dstG, dstB) = srcb ∗ (srcR, srcG, srcB) +

dstb ∗ (dstR, dstG, dstB) (13.1)

We’ll say soon how, in fact, the programmer specifies the blending factors,
but first an example and an exercise.

Example 13.1. Consider the starred pixel in the lower right grid of
Figure 13.1. Say its RGB color values prior to the rendering of Q, in
particular, those of the corresponding pixel in the triangle T in the lower left
grid, are (0.6, 0.4, 0.2), while those of the corresponding pixel of the quad
in the lower middle are (0.5, 0.5, 0.5). Suppose as well that srcb = 0.3 and
dstb = 0.7 and that depth testing is on. What are the final color and depth
values of the starred pixel if blending is not enabled? If it is?

Answer : Suppose, first, that blending is off. The source fragment’s z of
8 being less than the destination’s 9, it overwrites the destination’s colors.
Final color values of the starred pixel are, therefore, (0.5, 0.5, 0.5).

Next, suppose blending is enabled. Since the source would overwrite the
destination colors if blending were off, given that blending is, in fact, on,
their color values are combined instead. The blending equation (13.1) gives
the resulting values as

0.3 ∗ (0.5, 0.5, 0.5) + 0.7 ∗ (0.6, 0.4, 0.2) = (0.57, 0.43, 0.29)

The resulting z of 8 for the starred pixel is the same, though, both in
blended and unblended applications, as it is determined only by competition
in the depth buffer.

Exercise 13.1. How about the pixel just to the left of the starred one?
What are its color and depth values with blending enabled, assuming that
the color values in the corresponding pixels in the left and middle grids are
the same as for the starred one in the preceding example and that blending
factors are identical as well? Consider when depth testing is both on and off.512
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Specifying Blending Factors: Alpha

It’s in assigning the blending factors that the programmer can make use of
the alpha values, the A in RGBA. For example, the blend function command

glBlendFunc(GL SRC ALPHA, GL ONE MINUS SRC ALPHA)

causes OpenGL to set

srcb = srcA and dstb = 1− srcA

where srcA denotes the source fragment’s alpha value. The consequence of
this particular blend function, as one sees from plugging the blending factors
into (13.1) to get

(dstR, dstG, dstB) = srcA ∗ (srcR, srcG, srcB) +

(1− srcA) ∗ (dstR, dstG, dstB)

is that the greater the source’s alpha the more its contribution to the final
color or, intuitively, the more opaque it is.

In general, blending factors are set by calling

glBlendFunc(srcFactor, dstFactor)

where the values of the parameters srcFactor and dstFactor tell OpenGL how
to determine the source and destination blending factors, respectively. We’ve
already seen that the value GL SRC ALPHA chooses the source alpha value srcA,
while GL ONE MINUS SRC ALPHA chooses 1 − srcA. Likewise, GL DST ALPHA

and GL ONE MINUS DST ALPHA choose dstA and 1− dstA, respectively.
The reader is referred to the red book for a full list of possible values for sr-

cFactor and dstFactor , though GL SRC ALPHA and GL ONE MINUS SRC ALPHA

are, in fact, most commonly used. Moreover, any of these values may be used
for either parameter, e.g., even GL SRC ALPHA for dstFactor , which would be
an odd choice indeed.

Finally, the alpha value dstA of the destination pixel changes, too, being
combined from those of the source and destination by a blending equation
exactly similar to (13.1), precisely:

dstA = srcb ∗ srcA + dstb ∗ dstA (13.2)

Remark 13.1. The blending equation (13.1), though the default and most
commonly used, isn’t the only option in OpenGL to combine source and
destination color values. Other formulae are available as well, which can be
chosen by a call to the command glBlendEquation(). Moreover, certain
parameter choices for glBlendFunc() allow (13.1) to be refined to apply
different blending factors to each of R, G, and B of the source, and to each
of R, G and B of the destination. Refer to the red book for details. 513
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13.1.2 Experiments

Experiment 13.1. Run blendRectangles1.cpp, which draws two translu-
cent rectangles with their alpha values equal to 0.5, the red one being closer
to the viewer than the blue one. The code order in which the rectangles are
drawn can be toggled by pressing space. Figure 13.2 shows screenshots of
either order. End

(a) (b)

Figure 13.2: Screenshot of blendRectangles1.cpp with (a) the blue rectangle first in
code (b) the red rectangle first in code.

Blending is enabled in blendRectangles1.cpp with the call

glEnable(GL BLEND)

and the blend function used is

glBlendFunc(GL SRC ALPHA, GL ONE MINUS SRC ALPHA)

As depth testing is currently disabled, if there were no blending, then the
rectangle second in code would overwrite the one drawn first. Therefore,
from our understanding of theory now, with blending on, their colors are
combined.

As srcA = 1− srcA = 0.5, no matter which rectangle is drawn first, the
blending equations (13.1) and (13.2) together give simply

(dstR, dstG, dstB , dstA) = 0.5 ∗ (srcR, srcG, srcB , srcA) +

0.5 ∗ (dstR, dstG, dstB , dstA) (13.3)

which is symmetric in source and destination. So one may wonder why
the one drawn second seems to dominate where the images intersect. The
reason is that the rectangle drawn first is blended with the background
white, diluting its color, while the second-drawn rectangle comes in at “full
strength”. Let’s verify that this is actually so in the next example.514
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Example 13.2. For blendRectangles1.cpp, in the case when the blue
rectangle is drawn first, use the blending equations to compute the colors
of each region of the composite output shape. Verify the color values
experimentally.

Answer : For the two parts of the blue rectangle which are not intersected,
(13.3) gives the RGBA vector as

0.5 ∗ (0.0, 0.0, 1.0, 0.5) + 0.5 ∗ (1.0, 1.0, 1.0, 0.0) = (0.5, 0.5, 1.0, 0.25)

because the source fragment vector is (0.0, 0.0, 1.0, 0.5) and the destination
(background) vector is (1.0, 1.0, 1.0, 0.0).

Where the blue and red rectangles intersect, the RGBA vector is

0.5 ∗ (1.0, 0.0, 0.0, 0.5) + 0.5 ∗ (0.5, 0.5, 1.0, 0.25) = (0.75, 0.25, 0.5, 0.375)

because the source fragment vector is (1.0, 0.0, 0.0, 0.5) and the destination
vector is (0.5, 0.5, 1.0, 0.25) as calculated above.

Note: Even though the destination alpha changes after the first blend,
this does not matter subsequently as the program’s particular blend
function glBlendFunc(GL SRC ALPHA, GL ONE MINUS SRC ALPHA) uses the
source alpha to define both source and destination blending factors.

We leave it to the reader to calculate the RGBA vector for the non-
intersected parts of the red rectangle.

For experimental verification, draw a point inside each region with its
calculated RGB values – the points should be invisible!

Exercise 13.2. (Programming) Change the alpha values of both
rectangles in blendRectangles1.cpp successively to 0.0, 0.25, 0.75 and 1.0.
Verify the color values in each region both theoretically and experimentally,
as in the preceding example, for the case when alpha is 0.75.

Exercise 13.3. (Programming) Although there is a depth buffer
in blendRectangles1.cpp, depth testing has been disabled. Enable
it by replacing the call glDisable(GL DEPTH TEST) in setup() with
glEnable(GL DEPTH TEST). Explain what you observe.
Hint : The z-value of the red rectangle is 0.5 (i.e., its distance from the front
face of the viewing box), which is less than that of the blue, which is 0.9.
Therefore, here is the situation with no blending: if the blue rectangle is
first in code, then the red rectangle values following will overwrite the blue’s
in their intersection; on the other hand, if the red rectangle is first in code,
then the blue rectangle values are discarded. Now, refer to the theoretical
discussion earlier to see what changes, given blending is enabled .

Exercise 13.4. (Programming) Continuing the preceding exercise,
Keeping depth testing enabled, disable blending by replacing the call
glEnable(GL BLEND) in setup() with glDisable(GL BLEND). Again, ex-
plain what you observe. 515



i
i

i
i

i
i

i
i

Chapter 13

Special Visual

Techniques

13.1.3 Opaque and Translucent Objects Together

Experiment 13.2. Run blendRectangles2.cpp, which draws three
rectangles at different distances from the eye. The closest one at depth 0.5 is
vertical and a translucent red (α = 0.5), the next one at depth 0.7 is angled
and opaque green (α = 1), while the farthest at depth 0.9 is horizontal and
a translucent blue (α = 0.5). Figure 13.3(a) is a screenshot of the output.

(a) (b) (c)

Figure 13.3: Screenshots of blendRectangles2.cpp: (a) Original (b) With rectangles
re-ordered to blue, green, red in the code (c) New ordering seen from the −z-direction.

The scene is clearly not authentic as no translucency is evident in either
of the two areas where the green and blue rectangles are behind the red.
The fault is not OpenGL’s as it is rendering as it’s supposed to with depth
testing, as we see next. End

Example 13.3. Verify the claim just made that the program is doing as
it’s supposed to, using our understanding of the rendering process.

Figure 13.4: Screenshot
of blendRectangles2.cpp
with depth testing
disabled.

Answer : The program’s drawing order is:

drawRedRectangle(); // Red rectangle closest to viewer, translucent.

drawGreenRectangle(); // Green rectangle second closest, opaque.

drawBlueRectangle(); // Blue rectangle farthest, translucent.

Once the red rectangle, the closest, is drawn, the green and blue both
fail the depth test where they intersect the red, so there’s no translucency
apparent in those two regions (keep in mind that only if the source fragment
passes the depth test does blending kick in).

Returning to the experiment, disabling depth testing doesn’t help either,
as the green blocks out the red (which it shouldn’t as it’s farther away), while
it doesn’t block out the blue (which it should as it’s closer). See Figure 13.4.

In fact, trying all 6 (=3!) possible orders to draw the rectangles, it’s seen
that the only one producing an authentic rendering is:

drawBlueRectangle(); // Blue rectangle farthest, translucent.516
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drawGreenRectangle(); // Green rectangle second closest, opaque.

drawRedRectangle(); // Red rectangle closest to viewer, translucent.

See Figure 13.3(b). As one would expect, both green and blue rectangles can
be seen through the red, while the green blocks out the blue. The order that
the primitives are drawn in code happens to be according to their distance
from the viewer, starting with the farthest; moreover, with this order it
doesn’t matter if depth testing is on or off.

Exercise 13.5. Explain why the (farthest-to-nearest) blue-green-red
drawing order is successful, regardless of whether depth testing is enabled or
not.

Unfortunately, this method is not a particularly robust way to produce
an authentic scene, as the farthest-to-nearest order depends on the viewpoint.
For example, keeping the same blue-green-red drawing order, replace the
viewing transformation

gluLookAt(0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 1.0, 0.0);

with

gluLookAt(0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0);

to view the rectangles from the −z-direction, which means now the blue is
closest, the green next and the red farthest away. Oops! See Figure 13.3(c).
The result is no longer authentic as the closest translucent blue rectangle
blocks out both red and green, which, of course, it shouldn’t. The reason for
the breakdown is clearly that what used to be farthest-to-nearest rendering
is now no longer.

So, what is one to do? Precisely, the following:

1. Enable depth testing.

2. Draw first the opaque objects. Because of depth testing they block one
another out according to distance from viewpoint, as one would want.

3. Make the depth buffer read-only with a call to glDepthMask(GL FALSE).

4. Draw next the translucent objects. As depth testing is still on,
translucent objects farther than the nearest opaque one – which per-
pixel has written the z-buffer – are discarded, again as one wants.

However , as they can no longer update the z-buffer to their own z-
values, closer translucent objects don’t block out farther ones – which
is what would happen if their z-values were recorded – but blend
instead. In fact, all translucent objects, which are closer than the
closest opaque one, blend successively into the latter. Exactly as the
doctor ordered. 517
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5. Restore the depth buffer’s writability by calling glDepthMask(GL -

TRUE).

Note: The depth buffer is writable by default.

Try it.

Experiment 13.3. Rearrange the rectangles and insert two glDepth-

Mask() calls in the drawing routine of blendRectangles2.cpp as follows:

// Draw opaque objects, only one.

drawGreenRectangle();

glDepthMask(GL FALSE); // Make depth buffer read-only.

// Draw translucent objects.

drawBlueRectangle();

drawRedRectangle();

glDepthMask(GL TRUE); // Make depth buffer writable.

Try both gluLookAt(. . ., 0.0, 0.0, -1.0, . . .) and gluLookAt(. . .,
0.0, 0.0, 1.0, . . .) to see the rectangles from the front and back.
Interchange the drawing order of the two translucent rectangles as well.
The scene is authentic in every instance. End

Experiment 13.4. Run sphereInGlassBox.cpp, which makes the sides
of the box of sphereInBox2.cpp glass-like by rendering them translucently.
Only the unaveraged normals option of sphereInBox2.cpp is implemented.
Press the up and down arrow keys to open or close the box and ‘x/X’, ‘y/Y’
and ‘z/Z’ to turn it.

The opaque sphere is drawn first and then the translucent box sides,
after making the depth buffer read-only. A screenshot is Figure 13.5(a).

End

(a) (b) (c)

Figure 13.5: Screenshots of blended effects: (a) sphereInGlassBox.cpp (b) fieldAnd-

SkyTexturesBlended.cpp (c) ballAndTorusReflected.cpp.518
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Exercise 13.6. (Programming) Inscribe a glass dodecahedron inside
a glass icosahedron.

Exercise 13.7. (Programming) Make a solid ball travel through a
glass helical pipe (see Experiment 10.4 for the helical pipe).

13.1.4 Blending Textures

There’s no reason why textures cannot be blended – it’s simply a matter of
either one or both of the source fragment and destination pixel obtaining
color values from a texture map. Here’s a fun program doing just that.

Experiment 13.5. Run fieldAndSkyTexturesBlended.cpp, which is
based on fieldAndSkyLit.cpp. Press the arrow keys to move the sun.
As the sun rises the night sky morphs into a day sky (yes, we saw this very
same morph as an application of multitexturing, using the interpolation
combiner, in Section 12.6). Figure 13.5(b) shows late evening. End

The program’s a fairly straightforward application of alpha blending. We
point out a few interesting features:

(a) The sky rectangle is no longer lit as in fieldAndSkyLit.cpp because
the night texture itself causes the sky to darken.

(b) Source blending factors all 1 (GL ONE) and destination blending factors
all 0 (GL ZERO enable the grass and night sky textures to initially paint
their respective rectangles without dilution.

(c) The statements

if (theta <= 90.0) alpha = theta/90.0;

else alpha = (180.0 - theta)/90.0;

glColor4f(1.0, 1.0, 1.0, alpha);

in the drawing routine link the alpha value to the angle theta of the
sun in the sky, so that the former increases from 0 to 1 as the sun rises
from the horizon to vertically above.

(d) The day sky is blended into the night sky because both textures paint
the same rectangle and because the prior disabling of depth testing
allows an incoming fragment to write to a destination pixel, even if
its z-value is equal to the current one (with depth testing on it has
to be less in order to do so). The call glBlendFunc(GL SRC ALPHA,

GL ONE MINUS SRC ALPHA) in the drawing routine sets the source
blending factor equal to alpha and the destination blending factor to
1 - alpha. 519
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Remark 13.2. The simple-minded alpha-morph just described should work
fairly well if the transition required is mainly in the colors of a scene and
not the geometry, because it is a straight linear interpolation between
corresponding source and destination color values. For the same reason,
one should not expect much from it by way of morphing shapes, as in the
Terminator movies.

Exercise 13.8. (Programming) Morph a day image of a static scene
(e.g., city skyline, mountainous landscape, etc.) to a night image.

13.1.5 Creating Reflections

Another neat application of blending is to simulate reflection.

Experiment 13.6. Run ballAndTorusReflected.cpp, which builds on
ballAndTorusShadowed.cpp. Press space to start the ball traveling around
the torus and the up and down arrow keys to change its speed.

The reflected ball and torus are obtained by drawing them scaled by a
factor of −1 in the y-direction, which creates their reflections in the xz-plane,
and then blending the floor into the reflection. Figure 13.5(c) shows a
screenshot. End

Exercise 13.9. (Programming) Draw the reflection of the ship of
shipMovie.cpp in the sea.

Exercise 13.10. (Programming) Make the character of animate-

Man1.cpp walk along a shiny reflective floor to a window. The camera
should then move to the character’s point of view as he looks down at a city
scene which is really a single textured image.

13.2 Fog

Fog is an atmospheric effect that OpenGL offers ready to use. What fog does
is blend objects with a programmer-specified fog color so that the farther
away an object is from the viewer the more the fog color dominates, the
effect being of objects fading into the distance.

We’ll explain how fog is implemented in OpenGL using the program
fieldAndSkyFogged.cpp as a running example.

Figure 13.6: Screenshot
of fieldAndSkyFogged.cpp
with exponential fogging.

Experiment 13.7. Run fieldAndSkyFogged.cpp, which is based on our
favorite workhorse program fieldAndSky.cpp, adding to it a movable black
ball and controllable fog. Figure 13.6 is a screenshot.

Press the up/down arrow keys to move the ball. When the program
starts there is no fog. We’ll describe the fog controls after we discuss their
implementation in the following. End520
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The following block of fog-related calls are near the top of the drawing
routine:

if (isFog) glEnable(GL_FOG); else glDisable(GL_FOG);

glFogfv(GL_FOG_COLOR, fogColor);

glFogi(GL_FOG_MODE, fogMode);

glFogf(GL_FOG_START, fogStart);

glFogf(GL_FOG_END, fogEnd);

glFogf(GL_FOG_DENSITY, fogDensity);

glHint(GL_FOG_HINT, GL_NICEST);

Fog is enabled or disabled by a call to glEnable(GL FOG) or glDisable(GL FOG),
respectively. The fog color is specified by the statement

glFogfv(GL FOG COLOR, fogColor)

where fogColor points to the fog color values (a medium gray in the program).
The user can set the fog mode to be one of three – GL LINEAR, GL EXP

and GL EXP2 – by assigning that value to the parameter fogMode in

glFogi(GL FOG MODE, fogMode)

It is the fog mode which, together with a few associated parameters,
determines the “thickness” of the fog. Here’s how.

OpenGL invokes the fog mode and the z-distance of an incoming fragment
from the eye to compute a number f , called the fog factor , which is used to
blend the fragment with the fog color. The equation which determines the
fog factor f depends on the fog mode as follows:

GL LINEAR: f =
fogEnd− z

fogEnd− fogStart
GL EXP: f = e−(fogDensity ∗ z)

GL EXP2: f = e−(fogDensity ∗ z)
2

(13.4)

The values of the parameters fogStart , fogEnd and fogDensity are user-
specified as well by the statements:

glFogf(GL FOG START, fogStart);
glFogf(GL FOG END, fogEnd);
glFogf(GL FOG DENSITY, fogDensity);

Their default values are 0, 1 and 1, respectively. One sees from
Equations (13.4) that if fog mode is GL LINEAR, then fogStart and fogEnd give
the two endpoints of a linear ramp along the z-axis along which f decreases
from 1 to 0; moreover, if fog mode is GL EXP or GL EXP2 then fogDensity
controls the (exponential or doubly exponential) rate of diminishment of f
with increasing z – the greater fogDensity the more rapidly f diminishes.
See Figure 13.7 for sketches of how f changes with z. 521
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f

z

GL_EXP (fogDensity = 0.1)

GL_EXP2 (fogDensity = 0.1)

GL_EXP2 (fogDensity = 0.5)

GL_LINEAR (fogStart = 0, fogEnd = K)

GL_EXP (fogDensity = 0.5)

K
0

1

0

Figure 13.7: f versus z for various parameter values – the graphs are not
mathematically exact. Values of fogStart and fogEnd are 0 and K, respectively.

After it’s computed from (13.4), the fog factor f is clamped in the range
[0, 1]. OpenGL then blends the fog color tuple fogColor with the incoming
fragment’s color tuple Cin, using the equation

Cdest = (1− f) fogColor + f Cin

to determine the color tuple Cdest of the destination pixel. The smaller the
fog factor, therefore, the more the fog dominates and the fragment fades.
One sees, as well, from the equations in (13.4) that fog modes GL LINEAR,
GL EXP and GL EXP2 in that order create increasingly thicker fog in general,
though the constants in the equations have to be taken into account as well.

Finally,

glHint(GL FOG HINT, GL NICEST)

is a run-time advisory to OpenGL to use the highest-quality (and
computationally most expensive) option available. Instead of GL NICEST

one could also pass as parameter values GL FASTEST (computationally least
expensive) or GL DONT CARE (no particular preference).

Interaction : Let’s return now to fieldAndSkyFogged.cpp to describe how
to control the fog. Press the space bar to cycle through the different fog
modes. If the fog mode is linear, then the left and right arrow keys change
the fogEnd parameter, while if it’s exponential or doubly exponential, they
change the fogDensity parameter. The fogStart parameter is fixed at 0.
Messages on the display indicate the fog mode and parameter values. Press
delete at any time to reset the ball. Observe how even a mild fog depth cues
the sky and the ball when the latter travels away.

Note: The rendition of the ball suffers from the lack of lighting – loss of
three-dimensionality in particular – but we wanted to keep the program
simple.522
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Note: If you move the ball far enough it suddenly disappears altogether.
That’s not because of the fog, but because it’s gone behind the sky rectangle!

Exercise 13.11. (Programming) Exercise 12.16 was about enhancing
shipMovie.cpp. Fog can be used to good effect in the scene as well to depth
cue the traveling torpedo and ship.

13.3 Billboarding

The technique of billboarding is to simulate a 3D object in a scene by placing
an image of it as a texture on a rectangle, the billboard . The latter is then
continuously rotated to keep it normal always to the direction of the viewer,
giving the latter an illusion of the real object. See Figure 13.8.

As long as the object is a peripheral one, e.g., trees, road sign or furniture
in the background, the device of holding up a 2D image is often authentic
enough, thereby saving on the geometry required to make a “real” 3D version.

θ

θ
d

b

Figure 13.8: Billboard-
ing: the original placement
of the billboard (bold
border) is rotated so its
plane is normal to the
direction of the viewer.

Experiment 13.8. Run billboard.cpp, where an image of two trees is
textured onto a rectangle. Press the up and down arrow keys to move the
viewpoint and the space bar to turn billboarding on and off. See Figure 13.9
for screenshots. End

(a) (b)

Figure 13.9: Screenshots of billboard.cpp: (a) Billboarding off (b) Billboarding on.

The billboard rectangle of billboard.cpp is located in the scene by
drawing it first on the xy-plane centered about the z-axis and then translating
it d units down the z-direction and b units left (Figure 13.8). Therefore, the
angle θ that the billboard must be rotated about the vertical line through
its center to keep it normal to the viewer’s direction is given by

θ = tan−1(b/d) 523
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This particular rotation is implemented if billboarding is on; otherwise, the
billboard remains parallel to the xy-plane (the position indicated by the
bordered rectangle in Figure 13.8). The effect of billboarding is marked as
the viewer travels “into” the scene by pressing the up arrow key.

Remark 13.3. One way to seamlessly fit a billboard into a scene is to paint
its background texels a color matching the scene’s backdrop (e.g., both
white in the case of billboard.cpp). Another is to make the billboard’s
background texels transparent by setting their alpha values to 0 and then
blend the billboard onto the backdrop.

Exercise 13.12. (Programming) Hopefully, somewhere along the line
you created a car. Make it now travel down a road against a billboard
backdrop of houses and trees.

13.4 Antialiasing Points and Lines,
Multisampling Polygons

A straight line segment s specified, say, to be one pixel wide can be rasterized
by selecting a set of fragments that best approximates it and setting each to
the color specified for s, while unselected fragments remain of the background
color. See Figure 13.10(a) for a particularly low res example. Such discrete
on/off rasterization protocols are computationally inexpensive, but tend to
give poor visual quality at certain alignments of the segment owing to the
jaggedness of the rasterization, so-called jaggies.

(a) (b)

ss

R

P Q

Figure 13.10: (a) Dark fragments represent a rasterization of a line segment s, specified
to be one pixel wide (b) Shaded fragments are those that are intersected by the one-pixel
wide rectangle R centered on s: the area that R covers of individual fragments, e.g., P
and Q, varies.

Jaggies are another example of aliasing , a visual artifact that arises
because of the limited resolution of the display device (an earlier example of
aliasing that we saw was texture shimmering in the previous chapter). Since524
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a line segment not parallel to one of the axes can at best be approximated
in a raster, one cannot hope to eliminate jaggies altogether. However, there
are techniques to attenuate their visual impact, not surprisingly at the cost
of extra computation.

13.4.1 Antialiasing

OpenGL, in particular, offers an antialiasing method for line segments based
on so-called coverage values. Consider again the line segment s. A one-
pixel wide rectangle R centered on s intersects the 14 fragments shaded in
Figure 13.10(b). However, the area that R covers of each, called its coverage
of that fragment, varies. For example, the coverage value of fragment P is
more than twice that of Q. When antialiasing is enabled, OpenGL draws
the line by setting all of the 14 intersected fragments’ color to that of s, then
multiplying the alpha value of each with its coverage and, finally, using the
resulting weighted alpha to blend the fragment with the corresponding pixel
already in the color buffer. The amount of the segment’s color, therefore,
blended into a destination pixel is proportional to the area of its source
fragment covered by R. This has the effect of smoothing out the jaggies.

Points can be antialiased too. The mechanism is simpler – the point is
rounded into a disc whose edge is smoothed by blending. The experiment
next illustrates antialiasing of both a line and a point. In the process we’ll
learn an interesting fact about how points are rendered!

(a) (b)

Figure 13.11: Screenshots of antiAliasing+multisampling.cpp: (a) Antialiasing off
(b) Antialiasing on. Multisampling off both cases.

Experiment 13.9. Run antiAliasing+multisampling.cpp. Ignore the
multisampling controls, as well as the blue-yellow rectangle, for now. Focus
on the red line segment and the green point, which are both either antialiased
or not, ‘a’ or ‘A’ toggling between the two modes. The width of the line is
changed by pressing ‘l/L’, while the size of the point with ‘p/P’. The scene 525
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can be turned by the ‘x’-‘Z’ keys and translated by pressing the arrow and
page up/down keys. A wire cube is drawn as frame of reference to view the
motion.

Figure 13.11 shows screenshots of antialiasing both off and on. The effect
of antialiasing is especially marked when the line is just shy of horizontal or
vertical. End

Antialiasing is simple to implement in OpenGL. One has to enable
blending, of course. The blending factors GL SRC ALPHA and GL ONE MINUS -

SRC ALPHA, used in antiAliasing+multisampling.cpp, are the best choices.
A high alpha value – we use 0.8 for both line and point – enhances the
antialiased effect. Line and point antialiasing are enabled, respectively,
with glEnable(GL LINE SMOOTH) and glEnable(GL POINT SMOOTH); they
are disabled, of course, by the corresponding glDisable() calls. Note
that we ask for best possible antialiasing for lines and points with the
calls glHint(GL LINE SMOOTH HINT, GL NICEST) and glHint(GL POINT -

SMOOTH HINT, GL NICEST).

Rendering points

Antialiasing, of course, rounds the green point, but observe how its size
and shape are never changed by translation or rotation. The reason is that
a point is created zero-dimensional, so of zero size, in world space, then
projected to the viewing face – equivalently, screen space – and only there
given size as an n × n square of pixels (assuming the point is unaliased)
centered at the projected point, where n, of course, may be specified by
glPointSize(n).

Therefore, its position in world space, in particular, how near or far it
may be from the viewing space, has no bearing on a point’s size or shape on
the screen; and, of course, a point’s “alignment” by rotation is a non-factor,
too.

So, we see that, even though points are grouped with lines and triangles
as OpenGL’s fundamental drawing primitives, they are of a very different
DNA at least when comes the projection step of the rendering process.

13.4.2 Multisampling

One can indeed call glEnable() with the parameter GL POLYGON SMOOTH to
antialias polygons, particularly, their edges. However, the problem with this
method is that, being based upon blending, polygons need to be properly
sorted in the drawing routine as discussed in Section 13.1.3. OpenGL offers
another antialiasing method, based on so-called multisampling , to avoid this
constraint.

In multisampling, color, depth and stencil values are computed at a
sample of points in a pixel’s area, stored in a dedicated sample buffer, to
be subsequently resolved into one color to apply to that pixel. Figure 13.12526
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shows the idea using a simple 2×2 sampling scheme: the 12 shaded fragments
generated by the triangle have their color, depth and stencil values sampled
at four points each.

Figure 13.12:
Multisampling using a
2× 2 sampling scheme.

Though we’ll not go into details of the process of resolving multiple
sample values into a pixel value, one can see even from Figure 13.12 how
multisampling might be able to diminish jaggies at the edges of a polygon
by taking into account sample values both just inside and outside. Let’s
observe multisampling in practice.

Experiment 13.10. Fire up again antiAliasing+multisampling.cpp.
Multisampling is toggled on/off, independently of antialiasing, by pressing
‘m’ or ‘M’.

Multisampling antialiases polygons particularly effectively and its effect
in our program is best observed on the boundary of the blue-yellow rectangle,
as well as the edge between its two colored halves, particularly, when they
are nearly horizontal or vertical.

When multisampling is enabled, lines and points are antialiased regardless
if GL POINT SMOOTH or GL LINE SMOOTH have been enabled, which you can
see as well. End

Multisampling is simple to get going. First, one has to create an
OpenGL window which supports multisampling: passing GLUT MULTISAMPLE

as a parameter to glutInitDisplayMode() does the trick for us. Next,
multisampling is enabled and disabled, respectively, with glEnable() and
glDisable() given GL MULTISAMPLE as the parameter. That’s it!

Note: The number of sample buffers, shown at the top of program’s window
when multisampling is enabled, should be at least one, or there is effectively
no multisampling and you may need to check the settings of your graphics
card.

Keep in mind that multisampling comes at a cost because of the additional
processing per fragment. So, if you are particularly performance-conscious it
might make sense to enable multisampling only for polygons and disabling
it for lines and points, drawing the latter with only smoothing enabled.

Exercise 13.13. The unaided human eye can resolve to a minimum size of
approximately 0.1 mm. (about 0.004 inch). So, what resolution levels must
a 22 inch desktop monitor reach in terms of number of pixels by number
of pixels for aliasing problems (and antialiasing algorithms) to go the way
of the floppy disc? What’s your best guess as to how long it will take for
technology to get there? (By the way, do you even know what a floppy disc
is, young reader?! If not, look it up in Wikipedia.)

527
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13.5 Point Sprites

So, from the last section we know that points are created dimensionless in
world space and only bestowed shape as a square of pixels after arrival by
projection into screen space. Not particularly interesting is this? However,
one can bring points to life by turning them into so-called point sprites ! A
point sprite is simply a point, usually of a large size, with a texture mapped
on to it.

Point sprites are particularly useful in manufacturing particle systems,
where a swarm of particles on the screen create a certain visual effect, e.g.,
smoke, sparks, starry sky, and so on. Because they are always flat on the
display facing the viewer, point sprites can be invoked as a sort of poor
man’s billboard as well. Point sprites are easy to code. Let’s have a look at
the real thing.

Figure 13.13: Screenshot
of pointSprite.cpp.

Experiment 13.11. Fire up pointSprite.cpp. The space bar toggles
animation on and off. The particle system of six sprites of fluctuating size,
imprinted with the same star texture, spinning in a circle is simple-minded,
though, hopefully, indicative of the possibilities. Figure 13.13 is a screenshot.

End

In addition to the usual commands to prepare a texturing environment,
there are three new ones in the setup routine of pointSprite.cpp. The call

glTexEnvi(GL POINT SPRITE, GL COORD REPLACE, GL TRUE)

enables texture interpolation across point sprites, while the parameter
GL LOWER LEFT in

glPointParameteri(GL POINT SPRITE COORD ORIGIN, GL LOWER LEFT)

causes the texture t-coordinate to increase from 0 to 1 from bottom to top
of the sprite. The texture s-coordinate always increases 0 to 1 from left to
right.

Finally, as one would expect, glEnable(GL POINT SPRITE) enables point
sprites.

If you were wondering how textures can be painted on round antialiased
point sprites, the answer is that point sprites cannot be antialiased.

Exercise 13.14. (Programming) The only other option for the
second parameter of glPointParameteri(GL POINT SPRITE COORD ORIGIN,

GL LOWER LEFT) is GL UPPER LEFT, causing the texture t-coordinate to
increase from 0 to 1 from top to bottom. The s-coordinate always increases
from 0 to 1 from left to right of the sprite.

Try GL UPPER LEFT instead of GL LOWER LEFT. It will be hard to spot the
difference with the rather symmetric star texture, but using launch.bmp

instead should make it clear.

Exercise 13.15. (Programming) Create the effect of sparks flying by
coding up a particle system of sprites.528
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13.6 Environment Mapping

The goal of environment mapping is to simulate an object reflecting its
surrounding, e.g., a shiny kettle reflecting the kitchen or a well-polished car
reflecting the street. As the environment can be seen by reflection off the
object, it is said to be mapped onto the object. An approach to environment
mapping originally invented by Blinn and Newell [19] in the seventies is still
popular today because of its ease of implementation.

The Blinn-Newell method makes clever use of textures, but the basic
idea is not hard. An image of the environment (presumed static) is captured
in a texture or multiple textures. Subsequently, the particular texture and
texture coordinates used to paint a point on the environment-mapped object
are determined from the position of the viewer relative to the object.

V

A´

B´

normal

environment texture

A

B

Figure 13.14: Blinn-Newell environment mapping principle: texture coordinates for a
vertex V on an environment-mapped surface are obtained from the point on the texture
image struck by the reflected ray originating from the eye.

Figure 13.14 illustrates the principle. The texture coordinates at the
vertex V of an environment-mapped quad are determined by the point of the
environment – more precisely, the corresponding point of the environment
texture – seen by the viewer by reflection off the object. For example, when
the viewer is at A, V is painted with the color values at B (red in the
figure); when she moves to A′, those of B′ are used (green). The crux of the
Blinn-Newell approach then is to dynamically compute texture coordinates,
based on the laws of reflection, as the viewpoint changes.

OpenGL provides support for two methods of environment mapping:
sphere mapping and cube mapping. Both are based on the Blinn-Newell
approach, the difference being in the way that the environment is captured
on texture and that texture coordinates are computed. OpenGL provides
automatic texture coordinate generation for either method. We’ll discuss
sphere mapping in fair detail.

We’ll, however, split our presentation into implementation and theory,
as the former is straightforward and what the practitioner needs most to
grasp, while the latter is rather more theoretical and demanding. 529
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13.6.1 Sphere Mapping

Getting It to Work

Implementing sphere mapping using OpenGL is simple, as the following
program shows.

Figure 13.15: Screenshot
of sphereMapping.cpp.

Experiment 13.12. Run sphereMapping.cpp, which shows the scene of
a shuttle launch with a reflective rocket cone initially stationary in the sky in
front of the rocket. Press the up and down arrow keys to move the cone. As
the cone flies down, the reflection on its surface of the launch image changes.
Figure 13.15 is a screenshot as it’s about to crash to the ground. End

The two commands

glTexGeni(GL S, GL TEXTURE GEN MODE, GL SPHERE MAP);

glTexGeni(GL T, GL TEXTURE GEN MODE, GL SPHERE MAP);

in the initialization routine of sphereMapping.cpp ask OpenGL to use
functions from its library to generate the s and t texture coordinates for
sphere mapping.

The pair of commands

glEnable(GL TEXTURE GEN S);

glEnable(GL TEXTURE GEN T);

and its inverse

glDisable(GL TEXTURE GEN S);

glDisable(GL TEXTURE GEN T);

in the drawing routine, bracketing the drawing of the cone, enable and disable
the use of these functions. That’s pretty much all there is to implementing
a sphere map using OpenGL! Note that at the time sphere mapping is
activated the currently bound texture is the launch image, which, of course,
is why it is reflected in the cone.

Now, a reader watching the cone as it zooms down may be wondering
how authentic actually is the reflection. Good question, and it leads us to
investigate how OpenGL computes sphere-mapped texture coordinates.

How It Works

This part is fairly mathematical. If your interest is practical and limited to
using the technique, you can safely skip it and jump to the part on preparing
the environment texture.

u = v/|v|
n

V
v−u r 

O

Figure 13.16: The
vectors involved in
generating texture
coordinates.

Here’s how sphere-mapped texture coordinates are generated at a vertex
V . See Figure 13.16. The unit vector u from the eye (the origin O in
OpenGL) toward V is v/|v|, where v is the position vector of V , assuming,
of course, that v 6= 0. The unit eye direction vector from V then is −u. The
unit normal n at V is user-provided.530
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OpenGL computes the reflection vector r, the unit vector in the direction
that a hypothetical ray from the eye is reflected at V , with the help of the
following equation (obtained by replacing light direction vector l with eye
direction vector −u in the formula of Exercise 11.4):

r = u− 2(n · u)n

Suppose, then, OpenGL finds that r = (rx, ry, rz). Computed next is the
quantity

m = 2
√
r2x + r2y + (rz + 1)2

Finally, the texture coordinates at V are calculated as

s =
rx
m

+
1

2
and t =

ry
m

+
1

2

Whew!
If we parse the expressions for s and t carefully, though, it’ll not be hard

to understand the game plan. Using the expression for m above, write

s =
1

2

rx√
r2x + r2y + (rz + 1)2

+
1

2
and t =

1

2

ry√
r2x + r2y + (rz + 1)2

+
1

2

or

s =
1

2
Rx +

1

2
and t =

1

2
Ry +

1

2
(13.5)

where the variables

Rx =
rx√

r2x + r2y + (rz + 1)2
and Ry =

ry√
r2x + r2y + (rz + 1)2

(13.6)

Once we understand what the mapping

(rx, ry, rz) 7→ (Rx, Ry)

does geometrically the rest will be straightforward.
The reflection vector r = (rx, ry, rz) is the position vector of some point,

say P , on the unit sphere S centered at the origin. See Figure 13.17(a).
Now, the position vector of P with respect to the south pole (0, 0,−1) of S
is r′ = (rx, ry, rz + 1). And r′ normalized is the vector

r′′ =
1√

r2x + r2y + (rz + 1)2
(rx, ry, rz+1) =

Rx, Ry, rz + 1√
r2x + r2y + (rz + 1)2


(13.7)

In fact, r′′ itself is the position vector, with respect to the south pole,
of the point Q of intersection of the line from the south pole to P with the 531
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(a) (b) (c)

Q

z

(0, 0, −1)(0, 0, −1)

x

y

z

S

xx

z

Pr
r´

S S

S´S´

r´´south pole:
(0, 0, −1)

r = (rx, ry, rz)
(Rx, 0, 0)

r´ = (rx, ry, rz+1)P

P2

P3 P4

P1

Figure 13.17: Determining Rx from r.

unit sphere S′ centered at the pole. S′ is not drawn in Figure 13.17(a), but
Figure 13.17(b) shows both S and S′ in section along the xz-plane (for this
particular drawing we assume that P lies on this section). Rx being the
x-value of Q by (13.7), the projection of Q on the x-axis in Figure 13.17(b)
is (Rx, 0, 0) (Q’s y-value Ry is 0, of course, as it’s on the xz-plane). Here’s
an exercise to reinforce your understanding of the preceding construction to
find Rx from r.

Exercise 13.16. For each point Pi, 1 ≤ i ≤ 4, in Figure 13.17(c), use a
ruler and pencil to draw the corresponding point (Rx, 0, 0) on the x-axis.

Part answer : Red lines indicate the construction for P1.

The reader may now agree that, at least asP varies over the xz-section
of S, (Rx, 0, 0) varies between (−1, 0, 0) and (1, 0, 0) and, correspondingly,
Rx between −1 and 1. Moreover, the closer P gets to the south pole the
closer is Rx to −1 or 1, depending on which side of the pole P is. However,
P should never be at the south pole, for, otherwise, the construction to
determine Rx breaks down. It follows that Rx itself reaches neither value −1
nor 1. In fact, considering now all of the sphere S, not just its xz-section,
it’s not hard to see that Rx varies over the open interval (−1, 1) as P varies
over S minus its south pole.

The mapping from P to Ry is similar. Therefore, as P moves over S minus
its south pole, (Rx, Ry) moves within the interior of the square [−1, 1]×[−1, 1].
For an even better understanding, let’s determine analytically the dependence
of (Rx, Ry) on P .

Choose a Z in −1 < Z ≤ 1. The plane z = Z intersects S in a latitudinal
circle

x2 + y2 + Z2 = 1 or x2 + y2 = 1− Z2

Now, from (13.6) we have that

R2
x +R2

y =
r2x + r2y

r2x + r2y + (rz + 1)2532
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Therefore, if P lies on the latitudinal circle x2 + y2 = 1 − Z2, so that
r2x+ r2y = 1−Z2 and rz = Z, then the preceding equation says that (Rx, Ry)
lies on the circle

R2
x +R2

y =
1− Z2

1− Z2 + (1 + Z)2
=

1− Z2

2 + 2Z
(13.8)

Now, we can see how (Rx, Ry) varies with r = (rx, ry, rz) as we had set
out to. In fact, we’ll draw a picture. See the two diagrams on the left of
Figure 13.18.

O

t

(0, 0)

(0, 1) (1, 1)

(1, 0) s

z
(0, 0, 1)

S

(−1, 1) (1, 1)

(−1, −1) (1, −1)

12
3

4
51

2

3

4
5

P (s, t)

texture
space

(1/2, 1/2)

Ry

Rx

(Rx, Ry) (Rx, Ry)

south 
pole

north 
pole

Figure 13.18: The maps P 7→ (Rx, Ry) and (Rx, Ry) 7→ (s, t).

Keep in mind that r is P ’s position vector, the latter varying over S.
Each latitudinal circle on S (now drawn upright at left with the north pole
at the top to better see these circles) maps to a circle centered at the origin
and in the square [−1, 1]× [−1, 1] in RxRy-space (drawn in the middle). In
particular, the north pole maps to the origin, and latitudinal circles from the
north pole downward map to increasingly larger circles inside [−1, 1]× [−1, 1].
Five pairs of corresponding circles have been drawn and labeled similarly in
the two diagrams. As the latitudinal circles approach the south pole, the
mapped circles draw nearer and nearer to the containing square.

Exercise 13.17. What is the radius of the circle to which the equator
maps? What are the radii of the images of the latitudinal circles 45◦N and
60◦S?
Hint : Equation (13.8) gives the radius of the circle in RxRy-space, which is
the image of the latitudinal circle at z = Z. For example, the latitudinal
circle 45◦N has z-value sin 45◦ = 1/

√
2, so plug Z = 1/

√
2 into (13.8) to

find the radius of its mapped circle in RxRy-space.

Exercise 13.18. How do longitudinal great circles on S map?
Hint : Straight lines through the origin in RxRy-space . . .. 533
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The final transformation from RxRy-space to st-space (texture space) is
simple. See the rightmost two diagrams of Figure 13.18. (Rx, Ry) is mapped
to ( 1

2Rx + 1
2 ,

1
2Ry + 1

2 ) via Equations (13.5), which linearly transform the
square [−1, 1] × [−1, 1] in RxRy-space to the unit square [0, 1] × [0, 1] in
texture space. The images in texture space of the five circles in RxRy-space
are shown as well in the rightmost diagram.

Bottom Line

P

S

V

Figure 13.19: The
environment S around a
perfect mirror vertex V .

Time for a wrap-up in plain English. If vertex V were on a perfect mirror
and the environment around it arranged along the unit sphere S centered
at V , then the eye would see the point P where S is intersected by the
reflection of the line of sight at V (see Figure 13.19). However, OpenGL’s
only knowledge of the environment is from a user-provided texture occupying
a unit square in texture space. So what it does is this: if the eye wants to
see the point P in the spherical environment, OpenGL shows it instead the
point (s, t) in texture space to which P is mapped as described above by
P 7→ (Rx, Ry) 7→ (s, t).

The calculations above tell exactly what happens in physical terms. If
the eye asks to see the north pole of the environment, then it’s shown instead
the center of the texture. As the eye travels to see points farther and farther
from the north pole, it’s shown points farther and farther from the center of
the texture. Precisely, latitudinal circles in the environment are replaced for
viewing by circles in the texture centered at its middle.

Preparing the Environment Texture

Given this sphere-mapped scheme to present the environment to the viewer
via a texture, what is the right way to prepare the texture? Practically
speaking, how then should one photograph the environment in order to create
the texture image? Comparing the left and right diagrams of Figure 13.18
suggests an answer. The camera should be located at the origin O pointing
up the z-axis toward the north pole and have a very wide-angle lens; in fact,
it would be helpful if the field of view were nearly 360◦! Of course, this is
impossible, but a fairly wide-angle picture taken with a camera located in
the vicinity of the object to be environment mapped, focused up the z-axis
of world space, should be good.

Remark 13.4. Since the texel used depends only on the value of the reflection
vector at a vertex, and not the vertex’s location, reflections in parallel
directions appear the same at all vertices. Practically, this means that the
environment-mapped object should be small compared to its surroundings
for authenticity.

Remark 13.5. Some practitioners advocate the application of filters to the
texture prior to sphere mapping. For example, NeHe [102] suggests using
the spherizing filter (available, e.g., in Adobe’s Photoshop software).534
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Exercise 13.19. (Programming) Sphere map the torpedo in ship-

Movie.cpp.

It’s fun experimenting with sphere mapping – as with any special effect
– as long as you remember that in CG authenticity lies in the eyes of the
beholder. If it looks real then it is real. Which still leaves unanswered the
question that started our mathematical investigation in the first place: how
authentic is the reflection in the cone of sphereMapping.cpp? But perhaps
the reader at this point has an opinion already!

13.6.2 Cube Mapping

r
V

Figure 13.20: Cube
mapping.

Cube mapping is even simpler than sphere mapping and often more authentic.
The only difficulty with implementing it is that the environment has to be
captured on multiple textures. In fact, the environment is imagined to be
a cube and the user asked to provide an image of each of the six faces.
Figure 13.20 gives the idea.

In the case of cube mapping, given the reflection vector r, first must be
computed which of the six faces is struck by the reflected ray, and then the
actual point, to extract color values from the texel at that location. As for
sphere mapping, there is support in OpenGL for cube mapping. OpenGL
automatically generates cube-mapped texture coordinates once the user
loads the six environment textures. We’ll leave cube mapping at this, not
pursuing the topic any further, referring instead the interested reader to the
red book.

13.7 Stencil Buffer Techniques

A space in memory reserved for pixel-related data is called a buffer . A
computer system can have multiple buffers of different sizes for various
purposes, though a given buffer will have an equal amount of space - in
particular, the same number of bits - assigned to each pixel. We’ll briefly
introduce all the system buffers OpenGL supports and their uses before
focusing in particular on the stencil buffer.

13.7.1 OpenGL Buffers

An OpenGL system can support the following types of buffers:

• Color

• Depth

• Stencil

• Accumulation 535
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We are already familiar with the first two kinds and they are, in fact,
the most commonly used of the buffers.

A color buffer stores primary RGB color values and the alpha A value,
typically to a precision of 8 bits each, for a total of 32 bits per pixel. Color
buffers are the only ones of the buffers the user can directly draw into, and
it is the final RGB values in some particular color buffer which are flushed
to the screen for viewing.

In fact, there may be more than one color buffer. A double-buffered
system has at least two – front (viewable) and back (drawable) – critical to
smooth animation, as we learned in Section 4.5.1. If stereoscopic viewing is
supported, there will be left and right color buffers, possibly even front-left,
back-left, front-right and back-right, if combined with double buffering. The
left buffers are shown to the left eye and the right ones to the right eye,
typically with the user wearing special glasses. If the images in the left and
right buffers are of the same scene projected toward two points slightly offset
one from the other, as are human eyes, a perception of 3D is created.

Additionally, a system may have so-called auxiliary color buffers, usually
in hardware, to store intermediate steps of a complicated rendering process.

We are also familiar with the depth buffer (or z-buffer as it’s popularly
called) which stores depth information, usually a 24-bit integer, per pixel.
When depth testing is enabled, the depth buffer helps sort out objects
according to their depth from the viewer along lines of sight, permitting
nearer objects to obscure further ones in the rendering phase.

Less familiar to the reader might be the stencil buffer . This is a buffer
used to tag pixels in the color buffer. The stencil buffer most often contains
8 bits, called tags, per pixel. The typical way to use the stencil buffer is
to set the tags in a first phase when nothing is drawn to the screen and
then employ these tags as controls in a second phase when actual drawing
takes place. The tag values allow the user to constrain drawing to limited
portions of the screen, making possible various creative applications. We’ll
be studying the stencil buffer in fair detail shortly.

The accumulation buffer is yet another buffer used for special effects.
Think of the accumulation buffer as a giant color buffer. It contains RGBA
values per pixel as well, but often to a much higher precision. Typical
accumulation buffers dedicate 16 bits to each of RGBA, for a total of 64 bits
per pixel.

The primary use of the accumulation buffer is to composite several
drawings into one. The accumulation buffer cannot be directly drawn into,
nor can it be directly displayed. Rather, drawings are made to color buffers
and combined one by one into the accumulation buffer. Successive incoming
drawings can be combined with the one currently resident in the accumulation
buffer in various ways, e.g., added or multiplied, the latter explaining the
need for higher precision. The final composited drawing is returned from
the accumulation buffer to a color buffer for display.536
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The collection of all buffers in a system is called its frame buffer .
Figure 13.21(a) shows a frame buffer containing all four kinds of buffers
supported by OpenGL. The size of each constituent buffer – which is its
width × height as an array of bit strings – matches that of the display device.
This size is also called the resolution of the frame buffer.

height

Depth
Color

Stencil
Accumulation

width

buffer
buffer

buffer
buffer

he
ig

ht

(a) (b)

Fram
e b

uffe
r

bitplane 0 

bitplane 2 
bitplane 1

bitplane 3 

Figure 13.21: (a) A complete frame buffer (b) A 4× 4 buffer with 4-bit precision as a
stack of four bitplanes: points represent bits.

The number of bits per pixel in a buffer determines the buffer’s precision.
Bits in the buffer in some particular bit position, between 0 to precision − 1,
form an array called a bitplane. So, of course, a buffer’s precision is identical
to its number of bitplanes. Figure 13.21(b) depicts a 4× 4 buffer of 4-bit
precision as a stack of bitplanes.

Exercise 13.20. Suppose we want a graphics card which has four 32-bit
precision color buffers for stereoscopic viewing with double-buffering, an
auxiliary color buffer of similar precision, a 24-bit depth buffer, an 8-bit
stencil buffer and a 64-bit accumulation buffer, all to support a 1024× 768
resolution display. How much on-card memory are we asking for?

Remark 13.6. A given OpenGL implementation may not support all the
possible buffers. One can determine which are supported, as well as
the number of bitplanes in each, with the help of glGet*v() calls, e.g.,
glGetIntegerv(GL DEPTH BITS, *pointer) returns the number of bitplanes
in the depth buffer. Check the blue book for the specs for such calls.

13.7.2 Using the Stencil Buffer

Applications using the stencil buffer usually set the stencil bits, or tags as
they are called – typically there being 8 for each pixel – in a first phase, by
means of a stencil test applied to each incoming fragment. Stencil testing is
enabled by calling glEnable(GL STENCIL TEST). The particular test applied
depends on a glStencilFunc() call. The stencil test is applied in the
graphics pipeline just before the depth test and only if a fragment passes 537
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the stencil test does it proceed to the depth test. If a fragment fails either
test then it is discarded from the drawing pipeline.

How the incoming fragments set tags depends on a glStencilOp() call
paired with the glStencilFunc() call. Incoming fragments that fail the
stencil test, those that pass the stencil test but fail the depth test and those
that pass both tests can set tags differently. The color buffer, typically,
is disabled during the tag-setting first phase so that nothing is actually
rendered to the display.

Once the tags have been set, actual drawing to the display occurs in
the second phase, when tags are read per incoming fragment and a stencil
test applied to determine if it is to continue on down the pipeline. We’ll
describe next the mechanics of the twin commands glStencilFunc() and
glStencilOp() before putting everything together in a program.

The glStencilFunc(func, ref, mask) command sets a comparison
function func to use in the stencil test, as well as a reference value ref
to compare the stencil tag with. For example, if func is GL LESS, then the
test passes if ref is less than the value of the stencil tag. The reference
value is clamped to the range [0, 2k − 1] if the stencil buffer contains k
bitplanes and the stencil tag, too, interpreted as an integer in the same
range. However, prior to comparison, the mask is bitwise ANDed with both
the reference value and the stencil tag. Effectively, therefore, comparison is

between the two integers made from bits in the reference value and stencil
tag, respectively, at positions corresponding to the 1-bits in the mask.

Example 13.4. If the call is glStencilFunc(GL EQUAL, 0xFF, 0x3F)

and the stencil tag corresponding to a fragment is 0xBF, then the fragment
passes the stencil test because only the lower six bits of the mask are 1, and
the reference value and the given stencil tag, in fact, agree in each of these
positions.

We henceforth will use always a mask value of 1 (=00000001, assuming
an 8-bit stencil buffer), which means that the lowest bit of the reference
value is compared with the lowest bit of the stencil tag, other bits of no
matter.

Example 13.5. The call glStencilFunc(GL EQUAL, 1, 1) allows a
fragment to pass the stencil test only if the lowest bit in its corresponding
stencil tag equals 1. Suppose this, in fact, is the call prior to drawing the
square R consisting of four fragments, as shown in Figure 13.22(a), and that
the contents of the stencil buffer are as in Figure 13.22(b) (only the lowest
bit of each tag is drawn). Then the left two fragments of R pass the stencil
test and proceed on to the depth test, while the right two fail and are ejected
from the pipeline. Ignore the right grid for now.

The call glStencilOp(fail, zfail, zpass), paired with glStencil-

Func(), specifies how a stencil tag is updated following a stencil test. The
values of the three parameters fail, zfail and zpass determine the update action538
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0 011
0 011
0 011
0 011

0 011
1 011
1 011
0 011

R

(a) (c)(b)

Figure 13.22: (a) Square R, which is drawn after calls to glStencilFunc(GL EQUAL, 1,

1) and glStencilOp(GL REPLACE, GL REPLACE, GL REPLACE) (b) Stencil buffer
configuration before R is drawn (c) Stencil buffer configuration before R is drawn. Only
each lowest bit in the stencil buffer is shown.

in case the fragment fails the stencil test, passes the stencil test but fails the
ensuing depth test, and passes both tests, respectively. Figure 13.23 indicates
the scheme. Values that we’ll use are GL KEEP, GL REPLACE and GL INVERT

which, respectively, keep the current stencil tag unchanged, replace it with
the reference value, and invert it bitwise (for the full list of possible parameter
values consult the red book). Note that failed and zfailed fragments are
ejected from the pipeline.

Stencil test

Depth test
(z-test)

fail
fail pass

fail pass

zfail zpass

Figure 13.23: Potential
outcomes for a fragment
through the stencil and
depth tests.

Example 13.6. The call glStencilOp(GL REPLACE, GL REPLACE, GL -

REPLACE) causes the stencil tag to be replaced with the reference value in
all cases. If this call were indeed paired with glStencilFunc(GL EQUAL, 1,

1) prior to drawing the square R of Figure 13.22(a), then the stencil buffer
would be updated as in Figure 13.22(c).

Exercise 13.21. Determine how the stencil buffer would be updated
in the situation of Figure 13.22 if the call were glStencilOp(GL INVERT,

GL REPLACE, GL KEEP) instead of glStencilOp(GL REPLACE, GL REPLACE,

GL REPLACE), and it was known that rectangle fragments all fail the depth
test if they come to it. Assume that the call glStencilFunc(GL EQUAL, 1,

1) remains.

Drawing reflections in a constrained area is a canonical application of
the stencil buffer which we illustrate next.

Figure 13.24: Screenshot
of ballAndTorus-
Stenciled.cpp.

Experiment 13.13. Run ballAndTorusStenciled.cpp, based on ball-

AndTorusReflected.cpp. The difference is that in the earlier program the
entire checkered floor was reflective, while in the current one the red floor is
non-reflective except for a mirror-like disc lying on it. Pressing the arrow
keys moves the disc and pressing the space key starts and stops the ball
moving. As you can see in the screenshot of Figure 13.24, the ball and torus
are reflected only in the disc and nowhere else. End

The effect of restricted reflection in ballAndTorusStenciled.cpp is
obtained using four successive pairs of glStencilFunc() and glStencilOp()

calls in the drawing routine. The first pair 539
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glStencilFunc(GL ALWAYS, 1, 1);

glStencilOp(GL REPLACE, GL REPLACE, GL REPLACE);

causes the next drawing statement drawReflectiveDisc(xVal, zVal) to
create a “mask” of the disc (nothing to do with the mask parameter of
glStencilFunc() !) in the stencil buffer with 1’s at positions corresponding
to a disc fragment and 0’s elsewhere. The reason for this is that the GL ALWAYS

parameter value of glStencilFunc() ensures that every fragment of the
disc passes the stencil test, while the second two GL REPLACE values of
glStencilOp(), for zfail and zpass, respectively, ensure that the stencil
tag corresponding to a disc fragment is always replaced with the reference
value 1, regardless the result of the depth test. The remaining stencil tags
remain at their clearing value 0 set by the call glClearStencil(0) in the
initialization routine.

Note, as well, that both color and depth buffers are disabled prior to the
drawing statement with appropriate glColorMask() and glDepthMask()

commands, so that only the stencil buffer is updated and nothing is drawn
to the screen by the first drawReflectiveDisc(xVal, zVal).

Remark 13.7. It’s because the stencil buffer itself cannot be directly drawn
into, that the mask of the disc has to be created indirectly with the help of
the buffer-manipulating command glStencilOp().

Once the mask of the disc in the stencil buffer has been created, actual
drawing to the window commences. The color and depth buffers are
accordingly enabled next. The second pair of stencil-buffer manipulating
calls

glStencilFunc(GL EQUAL, 1, 1);

glStencilOp(GL KEEP, GL KEEP, GL KEEP);

causes the subsequent drawing statement drawFlyingBallAndTorus() to
draw the reflected ball and torus in the mask area of the disc, because only
fragments corresponding to this area pass the stencil test and proceed on
down the pipeline. The contents of the stencil buffer are kept unchanged.

The next drawing statement, drawReflectiveDisc(xVal, zVal), actu-
ally draws (or, rather, blends) the disc onto the reflected ball and torus.

The third pair of stencil-buffer manipulating calls

glStencilFunc(GL NOTEQUAL, 1, 1);

glStencilOp(GL KEEP, GL KEEP, GL KEEP);

prevents the red quad drawn next from erasing the disc by allowing drawing
only outside the area corresponding to the disc.

The final pair of stencil-buffer manipulating calls

glStencilFunc(GL ALWAYS, 1, 1);

glStencilOp(GL KEEP, GL KEEP, GL KEEP);540
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allows the real ball and torus to be drawn by a drawFlyingBallAndTorus()

statement regardless of the stencil tags.

Exercise 13.22. (Programming) Reverse the roles of the floor and disc
in ballAndTorusStenciled.cpp. In particular, make the floor reflective,
while a movable red disc blocks reflection.

Exercise 13.23. (Programming) Draw the glass door of a roadside
building reflecting a passing vehicle – all shapes in your scene being simple
and boxy.

For more about drawing shadows and reflections with the help of the
stencil buffer read Mark Kilgard’s tutorial [78].

Scissor Test

The scissor test is simply a stencil test applied to a rectangular region of
the display window. The command

glScissor(x, y, width, height)

specifies the lower left corner (x, y) of a scissor rectangle (also called scissor
box ), as well as its width and height , all in windows coordinates, such
that only fragments inside the rectangle pass the scissor test. Scissoring
is enabled and disabled, respectively, by glEnable(GL SCISSOR TEST) and
glDisable(GL SCISSOR TEST). The reason for singling out this special case
of stencilling as a separate test is that it can be highly optimized in the
GPU.

Exercise 13.24. (Programming) Add in ballAndTorusStenciled.cpp

a vertical rectangular mirror on the wall directly behind the torus with help
of a scissor test.

13.8 Image and Pixel Data Manipulation

OpenGL has powerful commands to manipulate images on the screen. Let’s
get to the first one glDrawPixels(), which draws a 2D array of pixels from
client memory onto the frame buffer at the current raster position, in a
program which applies this command to move a texture image around the
OpenGL window.

Figure 13.25: Screenshot
of imageManipulation.-
cpp.

Experiment 13.14. Run imageManipulation.cpp. An image of the
numeral 1 appears at the bottom left of the OpenGL window. Clicking the
mouse left button anywhere on the window will move the image to that
location, while you can, as well, drag the image with the left button pressed.
Figure 13.25 is a screenshot of the initial configuration. End 541
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The code is fairly simple to understand. Following the loading of the
image of the “1” into image[0] in the initialization routine, memcpy() is
invoked to copy the image data to textureImage, a global 2D array of
RGBA data.

In the drawing routine, the command

glDrawPixels(TextureWidth, TextureHeight, GL_RGBA,

GL_UNSIGNED_BYTE, textureImage)

draws the pixel data contained in textureImage onto the OpenGL window,
the lower-left of the image being positioned at the current raster position,
which itself is specified by the statement

glRasterPos2i(rasterX, rasterY)

Generally, glDrawPixels(width, height, format, type, *pixelData) reads
a width × height arrays of pixel data from the memory location pointed by
*pixelData and draws it onto the OpenGL window with lower-left corner at
the current raster position. The values of format and type specify, respectively,
the kind of pixel data (RGBA in our case) and its data type (unsigned 8-bit
integer in our case).

The two mouse function routines simply update the current raster position
to track the mouse.

4 3

43

21

21

Figure 13.26: Rearrange
the tiles from the order on
the top to that on the
bottom.

Exercise 13.25. (Programming) Program a tile-moving game. See
Figure 13.26. The object is to rearrange the four tiles from the order on
the top to that on the bottom by sliding them around in the big rectangle –
tiles may not be picked up – the white space at the bottom being available
for intermediate moves. The user should be able to select and drag a tile
with the mouse. Makes sure to implement collision detection so that one
tile cannot climb over another.

There are two other basic image manipulation commands available in
OpenGL, in addition to glDrawPixels(). The command glReadPixels()

is simply the inverse of glDrawPixels(), reading a rectangular array of pixel
data from the frame buffer to client memory, whileglCopyPixels() copies
a rectangular array of pixels from one location of the frame buffer to another.
We ask the interested reader to see the red book for the straightforward
specs and attempt the following exercise.

Exercise 13.26. (Programming) Code a simple image-editing program,
where the user can load an image, tweak it and save. (You might want to
make use of the command glPixelZoom() to scale the image in connection
with an invocation of a glDrawPixels() or glCopyPixels().)

Pixel Buffer Objects

We saw in Section 3.2 how vertex-related data may be stored in the graphics
server in so-called VBOs (vertex buffer objects) for reasons of efficiency.542
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Likewise, pixel data may be stored in the graphics server in PBOs (pixel
buffer objects), the process being similar.

Experiment 13.15. Fire up imageManipulationPBO.cpp, which modifies
imageManipulation.cpp to store the pixel data in a PBO. Otherwise, the
functionality of both programs is identical, the image of the numeral being
moved by mouse clicks and drags. End

The reader who has reviewed vbo.cpp, showing how to use VBOs, will
easily understand the parallel commands of imageManipulationPBO.cpp to
create, bind and initialize a PBO. The block

glGenBuffers(1, &pixelBuffer);

glBindBuffer(GL_PIXEL_UNPACK_BUFFER, pixelBuffer);

glBufferData(GL_PIXEL_UNPACK_BUFFER, TextureWidth*TextureHeight*4,

textureImage, GL_STATIC_DRAW);

in the initialization routine generates a PBO buffer id, binds it to the
target GL PIXEL UNPACK BUFFER (effectively activating it for drawing) and
initializes it with data from the 2D array texureImage of RGB pixel values.
Note that textureImage itself has been moved from global storage in
imageManipulation.cpp to local storage in the current program as the
latter’s drawing routine will read data from the PBO, not texureImage, so
this array need no longer be kept as a permanent global.

The only other change of note from imageManipulation.cpp is in the
drawing statement

glDrawPixels(TextureWidth, TextureHeight, GL_RGBA,

GL_UNSIGNED_BYTE, BUFFER_OFFSET(0))

where now the fourth parameter is a byte offset value in the PBO.

13.9 Bump Mapping

Blinn [16] developed an ingenious method, called bump mapping , to give
the illusion of geometric detail on a surface, e.g., making it appear ridged or
dimpled, by means of perturbing the surface normals, but without actually
changing any geometry. The idea is to re-align the normals to the original
surface so that light reflects from it as if it were detailed. A one-dimensional
example will make matters clear.

Consider the straight line c of Figure 13.27(a). The unit normals n(u) at
points c(u) of c are identical vectors perpendicular to c (drawn in the figure
as a discrete sequence of points).

Next, suppose that one wants to wrinkle c to make it look like the blue
curve c′ of Figure 13.27(b). Actually wrinkling c entails replacing it with
a multi-segment polyline approximation of c′, an object substantially more
complex than c. The bump mapping approach is to leave c as it is, but, 543



i
i

i
i

i
i

i
i

Chapter 13

Special Visual

Techniques

n´(u)

n´(u)

c´(u)

c(u)

n(u)

(a)

bump-mapped c (c)

(b)straight c 

straight c 

wrinkly c´

Figure 13.27: Bump mapping: (a) The original curve c and its true unit normals
n(u) (b) The wrinkled curve c′ and its unit normal n′(u) at a single point c′(u) (c)
Bump mapped c with redefined normals n′(u).

instead, to redefine the normal at each point c(u) so that it equals n′(u),
the normal at the corresponding point c′(u) of c′. Figure 13.27(b) shows
n′(u) at one point c′(u) of c′, while Figure 13.27(c) shows the so-called bump
mapped c with its perturbed normals.

The premise of bump mapping is that c with normals redefined to match
those of c′ will resemble c′ when lit, because the reflection of light from a
surface depends on the normals there. We describe next Blinn’s method to
compute the perturbed normals.

Suppose that s is a surface in 3-space defined parametrically on some
domain W by

s(u, v) = (f(u, v), g(u, v), h(u, v))

and that n(u, v) is a unit normal vector to s at s(u, v).

n(u,v)

d(u,v)
s(u,v)s

s´ s´(u,v)

Figure 13.28: The
bumped surface s′ is
obtained from s by
displacing each point
s(u.v) a distance d(u, v)
along the normal n(u, v) at
s(u, v).

Suppose, as well, that the desired (hypothetical) detailed surface s′ is
obtained from s by displacing each point s(u, v) a distance d(u, v) along
n(u, v). See Figure 13.28. The scalar-valued function d(u, v) giving this
displacement is called the bump map.

Accordingly,
s′(u, v) = s(u, v) + d(u, v)n(u, v)

which we write more simply by dropping the arguments as

s′ = s+ dn (13.9)

A normal n′ to s′ is given by

n′ =
∂s′

∂u
× ∂s′

∂v
(13.10)544
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because the partial derivatives of s′ with respect to u and v span the tangent
plane to that surface at s′(u, v), so that their cross-product is normal (see
Section 11.10 for more about partial derivatives and their application to
finding tangents and normals to a surface). We evaluate n′ next.

First, from (13.9),

∂s′

∂u
=

∂s

∂u
+
∂d

∂u
n+ d

∂n

∂u

' ∂s

∂u
+
∂d

∂u
n

where the approximation in the second line is made by dropping the term
d∂n∂u , which is negligibly small on the assumptions that

(a) the displacement d is small, and

(b) ∂n
∂u is small as well, from the reasonable premise that the original
surface s lacked detail and was fairly smooth, meaning that its normal
direction changed only slowly with u.

Likewise, one writes

∂s′

∂v
' ∂s

∂v
+
∂d

∂v
n

Plugging the preceding two approximations into (13.10) one gets

n′ ' (
∂s

∂u
+
∂d

∂u
n)× (

∂s

∂v
+
∂d

∂v
n)

= (
∂s

∂u
× ∂s

∂v
) +

∂d

∂u
(n× ∂s

∂v
)− ∂d

∂v
(n× ∂s

∂u
)

= n+
∂d

∂u
(n× ∂s

∂v
)− ∂d

∂v
(n× ∂s

∂u
) (13.11)

which expresses the perturbed normal n′ in terms of the original surface s,
the original normal n and the bump map d. Finally, the new normal function
for the bump mapped s is obtained by normalizing n′ to unit length.

Bump mapping comes into its own in the per-pixel lighting of Phong’s
shading model, as the programmer can then apply Equation (13.11) to
compute normal values at each pixel for subsequent use in the lighting
equation. However, as we noted in Section 11.12, Phong’s shading model is
not an option in first-generation OpenGL, but can be implemented using
the GLSL of the second generation and on.

In fact, when we get to fourth generation OpenGL (version 4.3) later
in the book, we shall implement the per-pixel lighting of Phong’s model
and bump mapping itself will be a case study. Without per-pixel lighting
bump mapping is at best awkward but, nevertheless, we do have a simple
proof-of-concept program. 545
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Experiment 13.16. Run bumpMapping.cpp, where a plane is bump
mapped to make it appear corrugated. Press space to toggle between
bump mapping turned on and off. Figure 13.29 shows screenshots. End

(a) (b)

Figure 13.29: Screenshots of bumpMapping.cpp: (a) Bump mapping off (b) Bump
mapping on.

The equation of the plane in bumpMapping.cpp is

s(u, v) = (u, 0,−v)

(the minus sign in front of v is so that the normal ∂s
∂u ×

∂s
∂v to the plane

points in the upward y-direction) and that of the bump map

d(u, v) = sin(2u)

We leave it to the reader to verify that with these equations for s and d,
(13.11) gives

n′(u, v) = (2 cos(2u), 1, 0)

This formula for the perturbed normals to the plane is, in fact, implemented
in bumpMapping.cpp when bump mapping is turned on (together with a call
to glEnable(GL NORMALIZE) to normalize the normals).

13.10 Summary, Notes and More Reading

In this chapter we learned a few different visual techniques to help embellish
our scenes, games and movies. It’s worth emphasizing that visual techniques
are as much an art as a science. Experience counts a lot in knowing how to
get the “right effect”, a subjective notion in the first place. Collect code to
save re-inventing the wheel and for inspiration. A lot of people out there
are doing amazingly creative stuff. Although much of it is commercial, still546
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there’s plenty of free stuff to be found on the net. The OpenGL site [103]
has numerous pointers. Check out Nehe [102] as well.

It’s worth noting that we’ve just crossed a milestone in the progression
of this book. With only the significant exceptions of NURBS, to come
in a later chapter, we’ve mostly covered all in this book to do with coding
pre-shader OpenGL. Pre-shader OpenGL itself is a perfectly serviceable 3D
API. Moreover, as we said at the start, a grasp of pre-shader OpenGL makes
the modern shader-based versions easier to learn. In particular, the reader
is now well set to take on our own coverage of fourth generation OpenGL
(version 4.3) which begins in Chapter 20, if she so desires.

There’s much more to CG than OpenGL, of course, and topics we’ve yet
to see such as rasterization, Bézier, B-spline and NURBS theory, projective
spaces, ray tracing and radiosity, among others, are extremely important for
a solid understanding of the field. Nevertheless, it’s heartening to realize
how far we have come since the first chapter, particularly from the point of
view of practical programming.
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CHAPTER 14
Raster Algorithms

I
n this chapter we are going to be traveling almost all the way from one
end of the graphics pipeline to the other – from world space to just
behind screen space – to understand some of the low-level processes

which take place at the time primitives are transformed to pixels in the
raster. In particular, the goal for this chapter is to learn algorithms to
clip and rasterize lines and polygons. These are operations a user cannot
herself call directly or interact with via a high-level API such as OpenGL,
which is not a bad thing as she can devote herself then to modeling and
animation. Nevertheless, it’s useful to have a grasp overall of the functioning
of the pipeline. We’ll not attempt here a comprehensive coverage of raster
algorithms, but focus instead on four which are commonly implemented and
fairly representative.

First comes clipping, which is the process of determining the part of
a primitive within some restricted area. We’re already familiar with the
functionality of OpenGL’s clipping to a viewing volume and in this chapter
we’ll learn how the operation is implemented in two 2D cases, namely, those
of a straight line segment and a convex polygon, both clipped to a rectangle.
In particular, the Cohen-Sutherland line clipper is the topic of Section 14.1
and the Sutherland-Hodgeman polygon clipper that of Section 14.2. Both
clippers can be straightforwardly extended to 3D to clip a line segment
or convex polygon against a box, the version actually implemented in the
rendering pipeline.

Next, we’ll investigate rasterization, the process of selecting and coloring
pixels from the raster to represent a given primitive. We’ll again limit
ourselves to the two cases of straight segments and polygons. Moreover, we
shall only be choosing pixels to comprise a primitive, leaving the problem
of coloring them to a later chapter. Section 14.3 presents Bresenham’s line
rasterizer, actually as an improvement over the DDA (Digital Differential 551
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Analyzer) line rasterizing algorithm. Section 14.4 next discusses scan-based
polygon rasterization. Section 14.5 concludes the chapter.

14.1 Cohen-Sutherland Line Clipper

Straight line segments traveling down the OpenGL graphics pipeline are
clipped to within an axis-aligned 3D viewing box prior to rasterization.
Cohen-Sutherland is the classic algorithm for this purpose. Our exposition
of Cohen-Sutherland, though, will be in 2D – clipping a segment to a
rectangle – for the sake of simplicity. However, extension of the 2D version
to 3D, where a segment is clipped to a box, is fairly straightforward.

Remark 14.1. How about clipping to a viewing volume which is not a
box, but a frustum, as when the projection statement is glFrustum() or
gluPerspective()? It turns out that in a stage in the pipeline, prior to
clipping, the frustum is “straightened” into a box by a so-called projective
transformation, so one need clip only to a box.

The inputs to (2D) Cohen-Sutherland are, then, the endpoints pi and
pj of a straight line segment S on a plane, and an axis-aligned rectangle R
on the same plane bounded by the lines x = a, x = b, y = c and y = d. See
Figure 14.1(a) for a diagram with multiple input segments. R is called the
clipping rectangle.

R R

1001 1000 1010

0001 0000 0010

01000101 0110

p1

p5

p8

p7

p4

p6
p2

p3

x = a

y = c

y = d

x = b x = a

y = c

y = d

x = b

(a) (b)

´p1

p2́

Figure 14.1: (a) A clipping rectangle R and four straight line segments with their parts
clipped to R colored (b) Nine regions of the plane by outcode.

The output consists of the endpoints p′i and p′j of the intersection S ∩R
of S with R if it is non-empty, and empty otherwise. The output is said
to be the segment S clipped to R. The parts of the segments p1p2, p3p4
and p5p6 clipped to R are indicated with color in Figure 14.1(a), while the
output for p7p8 is empty (the end points of the colored segments are not all
labeled to avoid clutter).
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Outcodes and Trivial Termination

Critical to Cohen-Sutherland is a classification of points of the plane,
according to their disposition with respect to the input rectangle R, by
means of so-called outcodes. A point p = (x, y) is said to have outcode the
4-bit string k3k2k1k0, whose value is determined by comparing the x- and
y-values of p with those of the edges of R as follows:

• k0 = 0, if x ≥ a; k0 = 1, if x < a

• k1 = 0, if x ≤ b; k1 = 1, if x > b

• k2 = 0, if y ≥ c; k2 = 1, if y < c

• k3 = 0, if y ≤ d; k3 = 1, if y > d

It’s easily seen that the four infinite straight lines, viz. x = a, x = b, y = c
and y = d, bounding R divide the plane into nine regions by outcode, as
indicated in Figure 14.1(b). All points in each region have the outcode with
which the region is labeled. For each of the lines x = a, x = b, y = c and
y = d, call the side of it containing R the inside, the other the outside. The
line itself is included on its inside (so, e.g., the inside of x = a is the closed
half-plane x ≥ a, while its outside is the open half-plane x < a). The rules
above say, then, that each of the four lines determines an outcode bit, which
is 0 if the point is on its inside, 1 if it’s outside.

Cohen-Sutherland begins with the first step of determining the outcodes
oi and oj of the endpoints pi and pj , respectively, of the input segment S,
using the rules above. The next step is to determine if one of the following
two cases applies, when the algorithm can immediately return the answer
and terminate:

(a) S lies entirely inside R. In this case, both outcodes oi and oj are 0000,
which can be verified by performing the logical bitwise operation oi∨oj
and checking that the result is false, i.e., 0000.

(b) S lies entirely outside one of the four straight lines bounding R. In
this case, both outcodes must have a 1-bit in the same position, which
can be verified by performing the operation oi ∧ oj and checking that
the result is true, i.e., not 0000.

If (a) holds, the algorithm trivially accepts , returning the endpoints of S
itself; if (b) holds, it trivially rejects, returning empty .

Recursion

If the outcome of the second step is neither a trivial accept nor a trivial
reject, then Cohen-Sutherland proceeds recursively as follows.

There exists a bit position where oi and oj differ for, otherwise, one of
the cases (a) and (b) above would have occurred. Scan the bits of oi and 553
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oj from right to left to find the first (i.e., lowest) bit position, say the rth,
where they differ. It follows that pi and pj lie on opposite sides of the infinite
straight line bounding R, call it L, corresponding to the rth bit. Therefore,
S intersects L and the algorithm calculates the point of intersection q. As
they lie on opposite sides of L, exactly one of pi and pj lies inside L. The
algorithm, then, calls itself recursively on the segment piq or pjq, according
as pi or pj is inside L.

The next example illustrates the working of Cohen-Sutherland.

Example 14.1. Apply the Cohen-Sutherland algorithm to the segment
p1p2 in Figure 14.1(a).

Answer : The rectangle R and segment p1p2 of Figure 14.1(a) are drawn
separately in Figure 14.2. The outcodes of p1 and p2 are 1001 and 0010,
respectively, and neither of the two conditions that terminate Cohen-
Sutherland trivially holds.

R

1001
1000 1010

0001 0000 0010

01000101 0110

x = a

y = c

y = d

x = b

p1 q1

q2

q3

p2

Figure 14.2: Cohen-Sutherland, called on segment p1p2, recursively calls itself on p2q1,
q1q2 and q2q3, successively.

Scanning the bits of the two outcodes from right to left, they are seen to
differ in the rightmost bit k0, corresponding to the line x = a. Accordingly,
the intersection q1 of p1p2 with x = a is determined. As p2 lies inside x = a,
a recursive call is made on the segment p2q1.

The outcodes of p2 and q1 are, respectively, 0010 and 1000. Again, there
is no trivial termination. The rightmost bit at which the outcodes differ is
k1, so the intersection q2 of p2q1 with x = b is computed. As q1 lies inside
x = b, a recursive call is made next on the segment q1q2.

The outcodes of q1 and q2 are, respectively, 1000 and 0000. There is no
trivial termination. The rightmost bit the outcodes differ at is k3, so the
intersection q3 of q1q2 with y = d is computed. As q2 lies inside y = d, a
recursive call is made on the segment q2q3.

The outcodes of q2 and q3 are both 0000 and the call terminates trivially,
returning q2 and q3.

Exercise 14.1. Apply Cohen-Sutherland to the other three segments in
Figure 14.1(a).554
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Exercise 14.2. Show that the maximum number of times Cohen-
Sutherland can recursively call itself on a single input segment is four.
Give an example of a segment where, in fact, four calls are made.

Exercise 14.3. (Programming) Animate Cohen-Sutherland using
OpenGL. Draw a fixed clipping rectangle R, but allow the user to specify the
endpoints of an arbitrary segment. Subsequently, highlight its subsegments
as they are recursively processed.

The following two exercises extend Cohen-Sutherland.

Exercise 14.4. Extend Cohen-Sutherland to handle semi-infinite segments.
A semi-infinite segment S is specified by one finite endpoint p1 and another
point p2 in the direction of which it is infinite. See Figure 14.3.

S

R

x = a

y = c

y = d

x = b
p1

p2

Figure 14.3: Clipping a semi-infinite segment to a rectangle.

p1

p2

S

Figure 14.4: Clipping a
line segment to an
axis-aligned box.

Exercise 14.5. Extend Cohen-Sutherland to 3D: pseudo-code a 3D version
to clip a straight-line segment S in 3-space against an axis-aligned box. See
Figure 14.4. This is the actual clipper invoked in a 3D synthetic-camera
rendering pipeline, like OpengGL’s.

Questions to ponder: How does one define outcodes in 3D? How many
bits are there in an outcode? Into how many regions is 3-space divided by
outcode? Beyond these, need there be a significant difference between the
2D and 3D algorithms?

Extend your 3D clipper to handle semi-infinite segments as well.

Complexity

The complexity of Cohen-Sutherland lies mainly in the intersection
computation resulting if the logical operation on the outcodes in the second
step fails to terminate the algorithm trivially. Suppose the endpoints of the
input segment S are p1 = (x1, y1) and p2 = (x2, y2) as in Example 14.1,
drawn again in Figure 14.5. The first intersection to be calculated is
q1 = (x3, y3), where S and x = a meet. 555
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R

x = a

y = c

y = d

x = b

p1 = (x1, y1) q = (a, y3)

p2 = (x2, y2)

Figure 14.5: Cohen-Sutherland intersection computation.

The slope-intercept form of the equation of the straight line on whichS
lies is

y =
y2 − y1
x2 − x1

x+ x1

Obviously, x3 = a, so y3 can be found by plugging x = a into this
equation to get

y3 =
y2 − y1
x2 − x1

a+ x1

Intersections with x = b, y = c and y = d can be found similarly as
required.

If the input segments are pre-processed to determine their slope-intercept
form, e.g., in the case above this entails pre-computing y2−y1

x2−x1
, then,

evidently, one floating point multiplication and one addition is performed
per intersection finding.

Note: When pre-processing the slope-intercept form, one has to be careful to
check for vertical line segments for which this form is not defined. However,
once detected, vertical segments are obviously easy to clip to any rectangle.

We know from Exercise 14.2 that a call to Cohen-Sutherland to clip an
input segment spawns at most four more recursive calls. The conclusion
then is that a call to Cohen-Sutherland may require four floating point
multiplications and four additions per input segment beyond pre-processing,
in the worst case, which is fairly expensive. Refinements of Cohen-Sutherland,
e.g., Liang-Barsky [86], invest in greater pre-processing in order to reduce
subsequent intersection computation.

14.2 Sutherland-Hodgeman Polygon Clipper

The Sutherland-Hodgeman strategy for clipping a convex polygon P to
a rectangle R is to successively clip off parts of P lying outside the four
straight lines bounding R – the outside being the side of the straight line not
containing R. The process can be conceived of as a pipeline of four clippers,556
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as in Figure 14.6. The clipping rectangle is drawn only in outline in this
section.

Clip
left

Clip
right

Clip
bottom

Clip
top

R
P

Figure 14.6: A pipeline of clippers.

Remark 14.2. There is no particular merit to the left-right-bottom-top
ordering in Figure 14.6 – any other ordering could have been chosen.

The implementation of the four clippers is similar and we explain in
detail only the leftmost one, which clips off outside the line bordering the left
of R. In general, the input to this clipper is an ordered list {v0, v1, . . . , vn}
of the vertices of a convex polygon P and a vertical straight line L. See
Figure 14.7. The output is an ordered list of vertices of the polygon P ′

resulting from clipping P off to the left of L.

output

P P´

v3

v0

v1

L v2

v0

v1

v2

w
w´

Figure 14.7: The left clipper in action: input = {v0, v1, v2, v3}, output =
{v0, v1, v2, w, w′}.

Output Rules for Left Clipper

The input list {v0, v1, . . . , vn} of vertices is processed, in fact, in successive
pairs, plus a final pair containing the first and last vertices, in particular,
v0v1, v1v2, . . . , vnv0. Equivalently, processing is edge by edge around the
polygon P . Each edge outputs zero, one or two vertices to the output list.
The output of an edge depends on the respective disposition of its end
vertices with respect to L, in particular, if either is inside or outside L.

There is, therefore, a total of four possible dispositions. The four output
rules, one corresponding to each disposition, are listed below. Refer to
Figure 14.8 as you read (take vi+1 to be v0, if vi is vn).

(a) In-in: Both vi and vi+1 are inside L. Output is vi+1. 557
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In-in

(a) (b) (c) (d)

L

Output: vi+1 

w

In-out

L

Out-out

L

Output: empty

Out-in

L

w

Output: (i) w, vi+1  (ii) vi+1  
Output: (i) w
  (ii) empty 

(ii)

(i)
(i)

(ii)

vi+1

vi

vi

vi+1

vi+1

vi+1

vi

vi

vi+1

vi

vi+1

vi

Figure 14.8: Output of a pair of successive vertices (equivalently, edge) entering the left
clipper. Note both in-out and out-in dispositions have a special case, labeled (ii), where
the vertex on the inside actually lies on L.

(b) In-out: vi is inside, while vi+1 outside L. There are two subcases,
according as vi lies strictly right of L or on it:

(i) vi is strictly right of L. Output is w, the point where the segment
vivi+1 intersects L.

(ii) vi lies on L. Output is empty.

(c) Out-out: Both vi and vi+1 are outside L. Output is empty .

(d) Out-in: vi is outside, while vi+1 inside L. There are two subcases,
according as vi+1 lies strictly right of L or on it:

(i) vi+1 is strictly right of L. Output is w, vi+1, where w is the point
where the segment vivi+1 intersects L (this is the only case when two
vertices are output).

(ii) vi+1 lies on L. Output is vi+1.

Observe that, if L is x = a, it is easy to determine if a point is inside or
outside L by simply comparing its x-value with a. Therefore, it’s easy as
well to decide which of the four rules above to apply to each successive pair
of vertices. We ask the reader next to determine the new vertex w, in case
it arises, in the following exercise.

Exercise 14.6. Suppose vi = (xi, yi), 0 ≤ i ≤ n, and L is the line x = a.
Observe, from the rules above, that if a new vertex – one not belonging to
the original input sequence – is at all output, then there is only one such.
Give a formula to determine the new vertex.

Example 14.2. Let’s apply the rules above to the initial polygon P , at
the leftmost of Figure 14.6, and the vertical straight line L along the left558
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(a) (b) (c)

P

v3

v0

v1

v2

w
w´

L

v3

v4
v0

v1

v2

v3

v0

v1

v2

Figure 14.9: Applying the clipping rules.

edge of the rectangle R. See Figure 14.9(a). The output of successive vertex
pairs is as follows:

v0v1 ⇒ v1 (in-in)

v1v2 ⇒ v2 (in-in)

v2v3 ⇒ w (in-out (i))

v3v0 ⇒ w′, v0 (out-in (i))

Accordingly, the vertex list returned by the left clipper is {v1, v2, w, w′, v0},
which indeed is the sequence of vertices around the polygon resulting from
clipping off the part of P outside L.

Exercise 14.7. Clip the initial polygon P of Figure 14.6 to the top, in
other words, apply the top clipper to it first. See Figure 14.9(b). Rules,
exactly as for those given already for the left clipper, apply to the top.

Exercise 14.8. Clip the polygon P of Figure 14.9(c) to the left.

Pipelining

Now that we understand the implementation of its individual clippers, we
come to the beauty of the Sutherland-Hodgeman algorithm: that it can be
pipelined with all four clippers running in parallel , each one after the first
using as input the output of its predecessor. This follows from observing
that each clipper incrementally produces its output list as it incrementally
consumes its input vertices. Therefore, the next clipper in the sequence does
not have to wait till its predecessor completes processing – it can begin to
operate as soon as it receives the first two vertices output by its predecessor.

For example, we saw in Example 14.2 that the successive vertices output
by the left clipper operating on P are {v1, v2, w, w′, v0}. Observe, now, that
as soon as v1 and v2 enter the next clipper in the sequence – the right one
according to the scheme in Figure 14.6 – the latter can process them to
output w′′, v2. See Figure 14.10, where the disposition of v1 and v2 with
respect to L′ is case (i) of out-in. 559
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R

P

v3

v0

v0,v1,v2, ... v1,v2, ... w´´,v2, ... 

v1

v2

v0

v1

v2 v2 w´´
L L´

Left clipper Right clipperInput

Figure 14.10: The right clipper consumes the first two vertices v1 and v2 entering into
it from the left clipper to output w′′ and v2.

The Sutherland-Hodgeman pipeline of four clippers is often implemented
in hardware, the clippers being identical but separate modules.

Exercise 14.9. Assuming that each clipper takes unit time to perform the
operation of applying one of the rules of Figure 14.8 to a pair of successive
vertices and that vertices move from one clipper to the next in zero time,
how long does it take for the clipping pipeline of Figure 14.6 to process the
particular polygon P in that figure?

Exercise 14.10. (Programming) Code and creatively animate the
Sutherland-Hodgeman clipping pipeline.

Exercise 14.11. Extend Sutherland-Hodgeman to 3D to clip a convex
polygon against an axis-aligned box. This, in fact, is simpler than generalizing
the Cohen-Sutherland line clipper to three dimensions, which we considered
in Exercise 14.5, because the Sutherland-Hodgeman output rules go through
pretty much verbatim in one higher dimension, except that the part of the
polygon to one side of a plane, rather than a line, is clipped off.

14.3 DDA and Bresenham’s Line Rasterizers

Rasterization of a straight line segment consists of picking and coloring
the pixels to comprise that segment, given its start and end vertices and
their color attributes. Both the DDA and Bresenham’s algorithm actually
only pick pixels. Coloring them is a straightforward application of linear
interpolation which we learned in Chapter 7, except for the added twist of
“perspective correction” needed in case of perspective projection. We’ll fill
out details of the coloring process when we examine the synthetic-camera
pipeline in Chapter 19.

Let’s take the raster to be a rectangular m × n grid of square pixels,
each of side length one, located axis-aligned on a plane, so that the pixel
centers have integer coordinates (i, j), 0 ≤ i ≤ m− 1 and 0 ≤ j ≤ n− 1. See
Figure 14.11(a).560
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(a) (b)

(0, 0)

SS

m pixels

n 
pi

xe
ls

(m−1, n−1)

(i1, j1)

(i2, j2)

(i1, j1)

(i2, j2)

Figure 14.11: An m× n raster of pixels and a rasterized straight line segment.

We’ll assume that both end vertices of an input segment S have already
been projected and scaled onto the raster – shot on film and printed according
to the analogy in the second chapter – so that they lie at the pixels centered
at (i1, j1) and (i2, j2), respectively, as shown in Figure 14.11(a).

Note: Even though S is actually a segment in world space, we’ll call its
image on the raster S as well – which of the two we mean should be clear
from the context.

The rasterization task then is to choose the pixels between its two ends
to represent S, as, say, in Figure 14.11(b). We can assume that one end of
S lies strictly to the right of the other because, otherwise, either both ends
are at the same pixel or one is vertically above the other, both cases being
trivial to rasterize. Suppose, without loss of generality then, that (i2, j2) is
to the right of (i1, j1), meaning i2 > i1. The line equation of S is:

y − j1
x− i1

=
j2 − j1
i2 − i1

or y = m(x− i1) + j1 (14.1)

where m = j2−j1
i2−i1 is the slope of S.

DDA Algorithm – Floating Point Heavy

We’ll warm up with the very simple DDA (Digital Differential Analyzer) ras-
terization algorithm which Bresenham subsequently improves by eliminating
floating point computation.

Remark 14.3. The rather fancy name Digital Differential Analyzer comes
first from Differential Analyzer, a class of mechanical machines invented in
the 1800s to solve differential equations. A Digital Differential Analyzer,
or DDA, is a digital version of the Differential Analyzer. The DDA line
rasterizer implements an incrementing loop borrowed from the DDA, hence
the name.

Suppose, first, that its slope m lies between −1 and 1, so that the
input segment S makes an angle of at most 45◦ with the x-axis (as in 561
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Figure 14.11(a)). It’s clear in this case that a rasterization of S should
contain exactly one pixel per x-value within the x-span of S. Moreover, the
equation on the right of (14.1) implies that the y-value along S increases
by m as the x-value increases by 1. This motivates the following DDA
algorithm:

// DDA Line Rasterizer

// Assume i2 > i1 and -1 <= m <= 1

float y = j1;

float m = (j2 - j1)/(i2 - i1);

for (int x = i1; x <= i2; x++)

{
pickPixel(x, round(y));

y += m;

}

Note: Due to obvious typesetting constraints we write variables such as i1
and j1 as i1 and j1 in the code snippet.

The algorithm starts with the pixel centered at (i1, j1), then increases
the x-value by 1 and the y-value by m at each step, until x equals i2. The
pixel chosen at each step by the pickPixel() function follows rounding of
the y-value to an integer.

Figure 14.12: Screenshot
of DDA.cpp.

Experiment 14.1. Run DDA.cpp, which is pretty much a word for word
implementation of the DDA algorithm above. A point of note is the simula-
tion of the raster by the OpenGL window: the statement gluOrtho2D(0.0,
500.0, 0.0, 500.0) identifies “pixel-to-pixel” the viewing face with the
500×500 OpenGL window (a “pixel” of the viewing face being a 1×1 square
with corners at integer coordinates).

There’s no interaction and the endpoints of the line are fixed in the code
at (100, 100) and (300, 200). Figure 14.12 is a screenshot. End

Exercise 14.12. (Programming) The restriction on the slope m in the
DDA rasterizer can be removed by noting that a rasterization of S should
contain exactly one pixel per y-value in its y-span, if it makes an angle of
more than 45◦ with the x-axis.

Accordingly, rewrite DDA.cpp so that there are no restrictions at all and
that it interactively accepts arbitrary input end vertices (i1, j1) and (i2, j2).

The problem with the DDA algorithm is that it invokes two floating
point operations per loop iteration – an addition and a rounding – floating
point operations always being computationally expensive. We’ll see next
how Bresenham manages to dispense with floating point calculations.

Eliminating Floating Points – Bresenham’s Algorithm

Bresenham’s algorithm avoids floating point operations altogether. Here’s
the idea in a nutshell. The algorithm incrementally picks one pixel after562
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another starting with the left end vertex of S, the smarts being in using the
location of the current pixel to cost-effectively deduce that of the next.

Assume first that the slope of S satisfies 0 < m < 1; we’ll handle other
cases later. Given this constraint, there is exactly one pixel of S for each
x-value within its x-span.

Suppose that pixel (i, j) has just been picked – pixel (i, j) means, of
course, the pixel centered at (i, j). See Figure 14.13(a), where only pixel
centers are shown in a grid. One can assume that the point p = (px, py) of
the intersection of S with the line x = i is at least as close to (i, j) as it is to
the centers of either pixel above or below it, for, otherwise, pixel (i, j) would
not have been chosen. In other words, j− 1

2 ≤ py ≤ j+ 1
2 . These inequalities,

together with the condition 0 < m < 1 on the gradient of S, imply that S
intersects x = i+ 1 at the point q = (qx, qy), where j − 1

2 < qy < j + 3
2 , as

we’ll show next.

S

j+2

j+1

i i+1 i+2

j

j−1

p

q(i, j)
(i+1, j+1/2)

S´

S´´

j+2

(a) (b)

j+1

i i+1

m=0

m=1

i+2

j

j−1

(i+1, j+3/2)

(i, j−1/2) (i+1, j−1/2)

(i, j)
(i, j+1/2)

Figure 14.13: The larger circles are pixel centers. (a) Pixel (i, j) shown filled blue has
just been chosen, the two candidate pixels for the next step are filled orange (b) Diagram
for Example 14.3.

Example 14.3. Prove the inequalities claimed on qy in the preceding
statement.

Answer : Let the line S′ go through (i, j− 1
2 ) with gradient 0 and the line S′′

go through (i, j + 1
2 ) with gradient 1. See Figure 14.13(b), where S′ and S′′

are shown but not S. Since j − 1
2 ≤ py ≤ j + 1

2 and 0 < m < 1, S intersects
x = i+ 1 at a point q = (qx, qy) strictly between the points where S′ and S′′

intersect x = i+ 1. It’s straightforward geometry to see that S′ intersects
x = i+ 1 at (i+ 1, j − 1

2 ) and S′′ intersects x = i+ 1 at (i+ 1, j + 3
2 ). It

follows that, indeed, j − 1
2 < qy < j + 3

2 . 563
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As j − 1
2 < qy < j + 3

2 , the pixel chosen when x is incremented to i+ 1
is either (i+ 1, j) or (i+ 1, j + 1), depending on which of the two is closer
to q. Now, q is closer to (i+ 1, j) if the midpoint (i+ 1, j + 1

2 ) between the
two candidate pixels is above S (the situation depicted in Figure 14.13(a));
it’s closer to (i+ 1, j + 1) if the midpoint is below S.

Evidently, we need to determine the disposition of q with respect to S.
So, how does one generally determine the disposition of some given point
(x, y) with respect to S? Rewrite the line equation of S, on the left of
Equation (14.1), as

(i2 − i1)y − (j2 − j1)x+ i1j2 − i2j1 = 0

Denote the LHS of the preceding equation by D′(x, y), i.e.,

D′(x, y) = (i2 − i1)y − (j2 − j1)x+ i1j2 − i2j1 (14.2)

y

S

x

D´(x, y) = 0

D´(x, y) > 0

D´(x, y) < 0

Figure 14.14: Discrim-
inating the position of a
point with respect to a
segment: S is bold, while
the straight line through it
is thin.

Therefore, if (x, y) satisfies D′(x, y) = 0, then the point lies on the
straight line containing S. In fact, it lies on S itself if, additionally, its
x-value lies within the x-span of S. Furthermore, (x, y) lies above that
straight line if D′(x, y) > 0 and below if D′(x, y) < 0. See Figure 14.14.

Exercise 14.13. Verify the claim made in the last statement.
Hint : Consider a point (x, y) lying on the straight line containing S, so that
D′(x, y) = 0. If only its y-value is increased to raise it above the line, as
indicated in Figure 14.14, then the value of D′(x, y) increases because the
coefficient of y in the formula (14.2) for D′(x, y) is positive.

For a reason which will soon be apparent, we’ll use

D(x, y) = 2D′(x, y) = 2(i2 − i1)y − 2(j2 − j1)x+ 2(i1j2 − i2j1) (14.3)

whose sign is always the same as that of D′(x, y), as the discriminant to
determine the disposition of (x, y) with respect to the straight line on S.

Returning to the question of which of the candidate pixels (i+ 1, j) or
(i+ 1, j + 1) to choose when x = i+ 1, we see the answer now as:

• Choose (i+ 1, j) if D(i+ 1, j+ 1
2 ) > 0 (when the midpoint (i+ 1, j+ 1

2 )
between the candidate pixels lies above S, implying that S is closer to
the center of the lower one).

• Choose (i+ 1, j + 1) if D(i+ 1, j + 1
2 ) < 0 (complementary to the first

case).

• Choose (i + 1, j + 1) if D(i + 1, j + 1
2 ) = 0 (this choice being made

arbitrarily as S is equidistant from the centers of both candidates).

We near the crux of Bresenham’s algorithm, which is to use the old value
of D to compute its new value after x is incremented once again to i + 2.
There are two cases:564
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(a) D(i + 1, j + 1
2 ) > 0, which implies, according to the pixel-choosing

process just described, that (i+ 1, j) was chosen when x = i+ 1.

Repeating the reasoning that took us from x = i to x = i + 1, we
see that the two candidate pixels when x = i + 2 are (i + 2, j) and
(i + 2, j + 1); moreover, (i + 2, j) is chosen if D(i + 2, j + 1

2 ) > 0
and (i+ 2, j + 1) if D(i+ 2, j + 1

2 ) ≤ 0. As for the new value of the
discriminant, we ask the reader to verify from (14.3) that it can be
calculated from its previous value by:

D(i+ 2, j +
1

2
) = D(i+ 1, j +

1

2
)− 2(j2 − j1) (14.4)

(b) D(i+ 1, j + 1
2 ) ≤ 0, which implies that (i+ 1, j + 1) was chosen when

x = i+ 1.

The two candidate pixels when x = i + 2 are now (i + 2, j + 1) and
(i+ 2, j + 2); moreover, (i+ 2, j + 1) is chosen if D(i+ 2, j + 3

2 ) > 0
and (i+ 2, j + 2) if D(i+ 2, j + 3

2 ) ≤ 0. Again, we ask the reader to
verify that:

D(i+ 2, j +
3

2
) = D(i+ 1, j +

1

2
) + 2(i2 − i1 − j2 + j1) (14.5)

We have in hand now the crux of Bresenham’s algorithm: Equations (14.4)
and (14.5) together say how D changes as x is incremented by 1. It only
remains to get the algorithm started by initializing D. The first pixel picked
is at the left endpoint (i1, j1) of S. Accordingly, the candidate pixels for the
next value of x, namely, x = i1 + 1, are (i1 + 1, j1) and (i1 + 1, j1 + 1), whose
midpoint is (i1, j1 + 1

2 ). Therefore, the first value of D is

D(i1 + 1, j1 +
1

2
) = i2 − i1 − 2(j2 − j1) (14.6)

It’s here that taking D(x, y) = 2D′(x, y), rather than D′(x, y) itself, pays
off. For, D′(i1 + 1, j1 + 1

2 ) = 1
2 (i2 − i1)− (j2 − j1), which may be fractional

(remember, we want to stay away from floating points).
With (14.4)-(14.6) all pieces now are in place to implement Bresenham’s

strategy: initialize D using (14.6) and then successively increment it with
the help of (14.4)-(14.5), picking at each step the next pixel based on the
sign of D. Here’s code:

// Bresenham’s Line Rasterizer

// Assume i2 > i1 and 0 < m < 1

int y = j1;

int diff1 = -2*(j2 - j1);

int diff2 = 2*(i2 - i1 - j2 + j1);

int D = i2 - i1 - 2*(j2 - j1);

for (int x = i1; x <= i2; x++) 565
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{
pickPixel(x, y);

if (D > 0) D += diff1;

else {y++; D += diff2;}
}

Compare this with the DDA algorithm earlier which required floating
point rounding and addition – there’s nary a floating point value in sight
in Bresenham’s procedure! Bresenham is extremely efficient and, often,
implemented in the graphics card itself for even higher rendering speeds.

Exercise 14.14. Use Bresenham’s Line Rasterizer as coded above to pick
the pixels on the straight line segment joining pixel centers (9, 17) and
(25, 25).

Part answer : We’ll get the reader started. Set (i1, j1) = (9, 17) and
(i2, j2) = (25, 25) in the code above. Accordingly,

diff1 = −2 ∗ (j2− j1) = − 16

diff2 = 2 ∗ (i2− i1− j2 + j1) = 16

D = i2− i1− 2 ∗ (j2− j1) = 0 (initially)

The first pixel picked is the left endpoint (9 , 17). As D = 0, the next pixel
picked is (10, 18) and D changes to D + diff2 = 16 > 0. Therefore, the
next pixel picked is (11, 18) and D changes to D + diff1 = 0, . . ..

The reader should sketch the rasterization on graph paper and verify
that it indeed starts and ends at the given endpoints.

Exercise 14.15. (Programming) We ask the reader now to implement
Bresenham’s algorithm, simulating the raster using the OpenGL window,
as in DDA.cpp. Remove, as well, the assumptions in our formulation of
Bresenham’s algorithm. In particular, allow the two input end vertices
(i1, j1) and (i2, j2) to be arbitrary.

Moreover, ensure that your program is not sensitive to the order that the
end vertices are input. In other words, the rasterization should be identical
if (i1, j1) and (i2, j2) are swapped in the routine. This is as a user would
expect: it should not matter in what order the end vertices happen to appear
in the segment definition in code.

14.4 Scan-Based Polygon Rasterizer

We’ll describe a commonly-implemented scan-based rasterization algorithm
to draw a polygon, or fill it, as is commonly said, because pixels comprising
the interior of the polygon are selected. The notion of scanning arises from
CRT technology where an electron gun repeatedly scans the screen, pixel row
by pixel row. One row of pixels is called a scan line. Although rasterization566



i
i

i
i

i
i

i
i

Section 14.4

Scan-Based Polygon

Rasterizer

algorithms are implemented when filling pixel values in the frame buffer
and have really nothing to do with the front-end display technology, this
particular algorithm for polygon rasterization happens to mimic the scan
process, hence the CRT reference.

A central part of the scan-based algorithm is to use the so-called parity
test, also called the inside-outside test, to determine if a point lies inside or
outside a polygon P .

Parity Test

Suppose P is a simple planar polygon, i.e., one which lies on a plane and
whose boundary is a single line loop which doesn’t self-intersect. Let q be
a point known to lie outside P (possibly, by choosing q’s x- or y-value to
be either very large or very small). Now, suppose we wish to determine if
another given point p lies inside or outside P . Consider the ray R from q
to p. The ray, obviously, starts from outside P . Upon its first intersection
(if any) with the boundary of P , R enters P ; upon its second intersection
with the boundary of P , it exits P ; upon its third intersection, it re-enters
P ; and so on. See Figure 14.15.

1 2 3
4 5

q

p

R

P

Figure 14.15: Intersections of R with the boundary of P are labeled with their
respective ranks.

This leads to the following test to decide if p lies inside P or outside.

Parity Test : If the ray R from a point q, known to lie outside P , to some
given point p, intersects the boundary of P an odd number of times, then
p lies inside P , while if it intersects the boundary of P an even number of
times, then P lies outside P . We assume, when applying the parity test,
that p itself does not lie on the boundary of P , i.e., it is either inside or
outside.

The parity of the number of intersections of R with the boundary of
P , odd or even, is often called the parity of p. So the parity test may be
rephrased to say that points of odd parity lie inside P , while those of even
parity outside.

Note: If R does not intersect the boundary of P at all, then P ’s parity is
that of zero, which is even, and, of course, p lies outside P . 567
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Exercise 14.16. For the five points p1, p2, p3, p4, p5 in Figure 14.16, use
the parity test to verify where they lie with respect to P . The rays from
an outside point q are already drawn. Consider how you would handle the
particular singularities seen in the case of p3 and p4 without revising the
statement of the parity test itself (we’ll be discussing this matter in some
detail momentarily).

q
p1

p2

p3

p4p5

Figure 14.16: Testing parity: the points p3 and p4 require handling a singularity.

See Figure 14.17. The integer label beneath each segment of the semi-
infinite ray R from q indicates the number of intersections of R with the
boundary of P before it reaches that segment. Therefore, all points in the
interior of a segment share the same parity (the restriction to the interior is
to avoid endpoints lying on the boundary of P , whose parity is not defined).
For example, points in the interior of qp1 have even parity, those in the
interior of p1p2 odd parity and so on. The segments w and w′ are not labeled
because they each lie entirely on the boundary.

One has to be careful, evidently, when counting intersections, to take
into account edges such as w and w′, as well as points such as p6, where
the ray touches the polygon without properly intersecting it. Here are the
conventions to follow, and which have been followed in Figure 14.17, to
ensure that these singularities are handled correctly.

Conventions for Singularities:

(a) When the ray R passes through a vertex v, but neither of the edges
adjacent to v lie along R, there are two cases:

(i) if these two edges lie on opposite sides of R, then v is a proper
intersection point and counted once (p4 in Figure 14.17);

(ii) otherwise, R touches P at v, and v is counted as two intersections
(p6, explaining the difference in count on either side of it).

(b) When the ray R passes through a vertex v and one of the edges, say e,
adjacent to v lies along R (we’ll assume that successive edges of P are
never collinear, so that both edges adjacent to v cannot lie on R):568
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q

w

q´

R´

w´

1
0

2
3

4
5

7

P

9

8

11
12

R

p1
p2 p3

p4
p5 p6 p7 p8 p9

p10 p11

p12

Figure 14.17: Applying the parity test: the integer label beneath a segment of R
indicates the number of intersections of R with the boundary of P prior to reaching that
segment. The reason for the change from 5 to 7 after p6 and from 9 to 11 after edge w′ is
explained in the text. The edges w and w′ are not labeled because they lie on the
boundary.

(i) if the two edges adjacent to e lie on opposite sides of R, then
count the entire edge e as one intersection (w in Figure 14.17);

(ii) otherwise, count the entire edge e as two intersections (edge w′).

In other words, case (b) is the same as (a) if one imagines e as one
giant vertex.

Exercise 14.17. Label the segments of the ray R′ emanating from the
point q′ in Figure 14.17 in a manner similar to that of segments along R.

Exercise 14.18. (Programming) Implement the parity test. Allow
the user to select a polygon P , as well as a test point p, by clicking on
the OpenGL window. Either ask the user to, or automatically, choose a
point q outside P . Then display the working of the test with some creative
animation. For example, you might show the ray from q approaching p,
highlighting and labeling intersections and segments on the way.

It’s easy now to explain the strategy of the scan-based polygon-filling
algorithm. Treating each scan line as a horizontal ray starting from some
point far to the left of the screen, pixels along it are selected to fill a polygon
P according to the parity test. Figure 14.18 shows one such scan line. In
particular, each scan line is split into segments, each with endpoints at
intersections with the boundary of P . Moreover, pixels in one segment all
have the same parity. The result is alternate runs of pixels filling and not
filling P .

Before we proceed to specify exactly a scan-based polygon filling
algorithm, we need first to resolve how to deal with pixels which happen to 569
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oddeven evenodd even

PScan line

Figure 14.18: The scan line as a ray with parities along segments indicated. Pixels fill
the polygon according to the parity test: pixels in the polygon are drawn solid, others are
hollow.

lie on the boundary of a polygon, whose parity, therefore, is indeterminate.
We do this next.

Ownership of Boundary Pixels

P

Q

Figure 14.19: Abutting
polygons.

One must be cautious in scan-based filling about pixels lying on the boundary
of a polygon. For example, given a couple of abutting polygons – ones whose
edges overlap, e.g., P and Q in Figure 14.19 – one has to decide ownership
of the pixels along the overlapping part, which, in turn, decides the coloring
of these pixels. Clearly, it is desirable to do this in a consistent manner,
independent of the order in which the polygons happen to appear in the
code.

For example, if each polygon is awarded ownership of all its boundary
pixels, then the color of shared boundary pixels depends, in fact, on the
order in which the abutting polygons appear in the code, the color of the
one appearing last prevailing. At the other extreme, if boundary pixels
are excluded altogether from a polygon, then there will arise gaps in the
rendering between abutting polygons.

Remark 14.4. If one follows the rules of triangulation as described in
Chapter 8, then there will be no anomalies, as we saw then, if every triangle
simply owns its boundary. However, the intention here is to set up rules
robust enough to hold even given an invalid triangulation, as in Figure 14.19.

A simple and oft-implemented method to resolve the ownership of a
polygon’s boundary and, accordingly, boundary pixels is by means of the
following:

Edge Ownership Rule: Among its non-horizontal edges, a polygon owns only
the left edges, while, among its horizontal edges, it owns only the bottom
ones. A vertex shared by a left and right edge is owned only if both incident
edges extend above the vertex; it is not owned otherwise.

Note: A left edge of a polygon is one such that its interior lies to the
right of the edge; the edge does not have to be physically located at a left570
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extreme of the polygon. Similar remarks apply to right, bottom and top
edges. Figure 14.20 labels the edges of the polygon P accordingly.

t

l

l
rl

b

r

r
b

r

Q

Q´
P

Figure 14.20: The non-horizontal edges of P are labeled left or right, while the
horizontal ones top or bottom. P owns the part of the boundary it shares with Q; P does
not own the part of the boundary it shares with Q′.

Remark 14.5. The rule above does not resolve the ownership question in
every case of a vertex being incident to one edge which is owned by the
polygon, and another which is not. Generally, this depends on the particular
filling algorithm implemented.

In Figure 14.20, from the edge ownership rule, P owns the pixels on the
part of the edge it shares with Q, while those on the part of the edge it
shares with Q′ are owned by the latter. The two pixels in Figure 14.18 on
the boundary of the polygon P have been processed according to this rule
as well.

Remark 14.6. The edge ownership rule explains why the expected ambiguity
in edge color did not arise in Exercise 8.3.

14.4.1 Algorithms

Assume that P is a simple polygon input as the list of its edges, each edge
specified by the coordinates of its end vertices. Here’s a first cut at an
algorithm to rasterize P :

Scan-based Polygon-filling Algorithm (Version 1)
for each scan line s
{

1. for each non-horizontal edge e of P intersecting s
determine the intersection point between s and e;

2. sort the points from the preceding step from left to right along s
in a list p1, . . . , pk;

3. fill, as belonging to P , pixels strictly between each of the pairs 571
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p1 and p2, p3 and p4, . . .;
4. if a pixel coincides with a pi, which means it’s a boundary pixel,

fill it or not according as i is odd or even;
5. for each horizontal edge e intersecting s

include/exclude e according as it is a bottom/top edge;
}

The reader will agree that this algorithm is at least a forthright attempt
to implement the scan-based strategy: the first three statements inside the
bracketed for loop apply the parity test to select alternate runs of pixels
to fill, while the fourth statement implements the disambiguation rule for
ownership of left and right edges and the fifth that for bottom and top edges.

However, upon a more careful examination, Version 1 is seen to have
three significant flaws:

(1) When a scan line passes through a vertex whose adjacent edges are
non-horizontal and lie on either side of the scan line, that vertex
is listed twice as an intersection point, in violation of clause (i) of
convention (a) for singularities listed earlier.

e´

e´

e´´

e
e

(a) (b)

s s p2

p2 p33p3 = p4

p5 p1p1

Figure 14.21: Problems with Version 1.

For example, in Figure 14.21(a), the sorted list of intersection points
for scan line s is {p1, p2, p3, p4, p5}, where p3 (= p4) appears twice
on the list, once as an intersection with the edge e and once as an
intersection with edge e′, leading to pixels between p4 and p5 being
wrongfully left unfilled by statement 3 of Version 1.

(2) If a pixel coincides with more than one pi – in particular, if it’s at a
vertex adjacent to two non-horizontal edges – how do we decide to
include/exclude it when executing statement 4?

For example, in Figure 14.21(a), do we treat the pixel at the vertex
shared by e and e′ as a pi with an odd subscript (i.e., p3), or even
subscript (p4), at the time of processing statement 4?

(3) There may be ambiguity in rendering pixels along a horizontal edge
because its vertices are those as well of its non-horizontal neighbors
and will be processed as such for the scan line upon which it lies.572
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For example, in Figure 14.21(b), pixels in the interior of the horizontal
edge e (strictly between p1 and p2) are filled when processing scan line
s at statement 3, because s’s sorted list of intersections is {p1, p2, p3}.
However, when processing e itself at statement 5, we find that these
pixels should be excluded, as e is a top edge.

It looks like rescuing Version 1 will be tricky, but it turns out, in fact,
that a fix is not hard at all. Just add in the following two rules:

(i) For a non-horizontal edge, don’t list the intersection of a scan line with
the upper endpoint of that edge.

(ii) Moreover, don’t process horizontal edges at all.

That’s it! Here’s the amended algorithm with the few changes from Version 1
highlighted with comments:

Scan-based Polygon-filling Algorithm (Version 2)
for each scan line s
{

1. for each non-horizontal edge e of P intersecting s
{

determine the intersection point between s and e;
ignore this intersection point if it is the upper endpoint
of e; // New line.

}
2. sort the points from the preceding step from left to right along s

in a list p1, . . . , pk;
3. fill, as belonging to P , pixels strictly between each of the pairs
p1 and p2, p3 and p4, . . .;

4. if a pixel coincides with a single pi, which means it’s a boundary
pixel, fill it or not according as i is odd or even; // Modified.

5. if a pixel coincides with more than one pi, which also means it’s
a boundary pixel, fill it; // New line. Processing of horizontal edges

// is now omitted.
}

We’ll soon see why this version is correct, but let’s take it for a spin
first. Figure 14.22 shows how many times each intersection point along
the boundary of a polygon P appears in the sorted list for the scan line
containing it according to statements 1 and 2 of Version 2. Based on these
labels is an exercise next to run the new version (with a part answer).

Exercise 14.19. Describe how pixels are filled along each of the eight scan
lines drawn in Figure 14.22 by Version 2.

Part answer : We’ll assume first that all the vertices of P are located exactly
at pixels. 573
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Figure 14.22: Counting intersections according to Version 2: shown are eight scan lines,
their intersections with the polygon boundary and the number of times each intersection
point appears in the sorted list for that scan line, according to statements 1 and 2 of
algorithm Version 2. Polygon vertices and intersection points are not named to avoid
clutter.

Bottom scan line: Denote the single vertex on this scan line by p1 (note
that the labels pi are not drawn in the figure to avoid clutter). Then the
sorted list on this scan line, after statements 1 and 2, is {p1, p1}. Only the
pixel at p1 is filled (by statement 5); all others on the scan line are not.

Second scan line: Denote the four intersection points along this scan
line from left to right by p1, p2, p3, p4. Then the sorted list (statements 1
and 2) is {p1, p2, p3, p4}. All pixels strictly between p1 and p2 and strictly
between p3 and p4 are filled (statement 3). If there is a pixel at p1, it is
filled (statement 4). The pixel at p3 is filled (statement 4 again). All other
pixels on the scan line are not filled.

Third scan line: Denote the three intersection points along this scan line
from left to right by p1, p2, p3. Then the sorted list (statements 1 and 2) is
{p1, p3}. All pixels strictly between p1 and p3 are filled (statement 3). Note
that the pixel at p2 is filled. If there is a pixel at p1, it is filled (statement 4).
All other pixels on the scan line are not filled.

As the reader may have surmised from completing the exercise, the new
version gets past the three problems of the earlier one as follows:

(1) Ignoring upper endpoints eliminates the first flaw.

(2) Noting that a pixel coincides with more than one pi only when it is the
bottom endpoint of two adjacent edges – upper endpoints are ignored,
remember – and, therefore, must be included, removes the second flaw.

(3) Noting that the pixels on a horizontal edge lie, as well, between the
endpoints of the two non-horizontal edges adjacent to it suggests that
we can leave off separately processing horizontal edges altogether.
Version 2 does so, resolving the last flaw.

Exercise 14.20. How are the problems with Version 1, as indicated
particularly in Figures 14.21(a) and (b), resolved in Version 2?574



i
i

i
i

i
i

i
i

Section 14.4

Scan-Based Polygon

Rasterizer

14.4.2 Optimizing Using Edge Coherence – Active
Edge List

Version 2 is pretty much ready to go as long as a couple of statements
requiring efficient implementation in code are kept in mind: in particular,
statements 1 and 2 to determine and sort the intersection points of a scan
line with polygon edges. These two tasks need not be done from scratch per
scan line – which wouldn’t be efficient at all – if one exploits so-called edge
coherence.

Sc
an

 li
ne

s

s´

s

e

Figure 14.23: Edge
coherence.

This simple but very useful concept is illustrated in Figure 14.23, which
shows an edge e straddling a run of scan lines. Now, if scan lines are processed
in order, say from bottom to top, then e first appears in the intersection list
for scan line s, remains in the intersection list for each scan line until s′ and
then disappears forever. Moreover, the intersection of e with successive scan
lines clearly travels uniformly along the x-direction.

Consideration of edge coherence leads to the creation and maintenance of
a particular dynamic data structure, called the active edge list (AEL). The
AEL is a linked list of records, one for each non-horizontal edge e intersecting
the current scan line s (hence the qualifier “active”). The record for an edge
e contains three data items:

1. The y-value of the upper endpoint of e.

2. The reciprocal 1/m of e’s gradient (as e can’t be horizontal, m 6= 0).

3. The x-value of the intersection of e with s.

The reason for choosing these particular items will become apparent as
we learn to process the AEL. The AEL, additionally, is sorted according
to the left to right order of the intersections of its member edges with s, a
left edge (of the polygon) preceding a right one if their intersections with s
coincide. Observe that the first two items of each record are static, depending
only on the particular edge e, while the value of the third item varies as s
sequences through successive scan lines.

See Figure 14.24, which shows a polygon P in a 19× 11 raster, as well
as the AEL values for scan lines 0, 4 and 5. For example, the data values
in the first record of the bottom AEL arise because it corresponds to the
edge joining vertices at (12, 7) and (13, 0), the reciprocal of whose gradient,
therefore, is −1/7 ' −0.143, and which intersects scan line 0 at x-value 13.

Exercise 14.21. Verify the data values in each record of each of the three
AEL values shown in Figure 14.24.

Given the value of the AEL for a scan line s, it’s straightforward to apply
Version 2 to compute the runs of filled pixels along s by traversing the AEL
from left to right, reading off the third data value from successive records. 575
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Figure 14.24: The AEL values for scan lines 0, 4 and 5 for a polygon P in a 19× 11
raster. Pixels are drawn as hollow circles only for these three scan lines.

Initialization – Edge Table

All that’s left now to do is initialize the AEL data structure and say how to
update it from scan line to scan line. To this end, a bit of pre-processing
first is needed to put the non-horizontal edges of P into a data structure
called the edge table (ET).

The ET is an array of linked lists, one for each scan line. The linked
list for a scan line consists of one record for each non-horizontal edge which
has a lower endpoint on that scan line. Each record is similar in structure
to an AEL record and, in fact, the first two data items are identical, while
the third contains the x-value of the lower endpoint of the edge. Moreover,
each list is sorted according to the left to right order of its lower endpoints,
with a left polygon edge again preceding a right one if their lower endpoints
coincide.

Figure 14.25 shows the ET for the polygon P of Figure 14.24. The ET is576
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evidently a static data structure, consisting, essentially, of a bucket sort of
the non-horizontal edges keyed on their lower y-value.

50
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Figure 14.25: Edge table for the polygon P of Figure 14.24.

Processing the AEL

With the ET in hand, processing the AEL is straightforward. Set j = −1, the
number of an imaginary scan line just below the drawing area and initialize
the AEL to empty. To update the AEL from scan line j to scan line j + 1,
do the following:

Updating the AEL
for each record in the AEL
{

1. if the first data value (i.e., the y-value of the upper endpoint of the
corresponding edge) equals j + 1, delete the record;
2. else, update the third data value (i.e., the x-value of the intersection
of the edge with the scan line) by adding to it the second data value
(i.e., the reciprocal of the edge’s gradient);

}
if the ET list for scan line j + 1 is not empty, merge that list with the AEL
using the third data value as the key;

The reader is asked next to prove the one fact required to assure the
validity of the AEL update procedure. 577
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Exercise 14.22. Show that the third data value is correctly computed for
each record in the new AEL by the update procedure.

Exercise 14.23. Refer to Figure 14.24. Apply the update procedure to
compute the AEL values for scan lines 1, 2, 3 and 6.

Exercise 14.24. Incorporate into the Scan-based Polygon-filling Algorithm
(Version 2) both initialization of the edge table and subsequent AEL-driven
processing.

If you’re coming to this polygon-filling algorithm fresh from Bresenham’s
line rasterizer, then alarm bells are probably going off in your head right now
regarding floating point computation. And rightly so. The update procedure
as just described does require a floating point addition in its step 2 to update
a record. This, in fact, can be avoided by optimizing the implementation.
We’ll let you figure out how in the next exercise.

if e is a right edge
run ends here

if e is a left edge
run starts here

if e´ is a left edge
run starts here

if e´ is a right edge
run ends here

(a)

single pixel 
always filled

(b)

e

e

e´

e´

Figure 14.26: (a) Typ-
ical dispositions of a left
and right edge with respect
to a run of pixels (b) The
one exceptional case where
a left and a right edge
meet at a common lower
endpoint.

Exercise 14.25. To cut floating points from Version 2, observe that,
generally, a run of filled pixels along a given scan line s will (1) start at at
the intersection of a left edge e with s if there is a pixel at the intersection
or, if not, at the pixel just after the intersection, and (2) the run will end at
the pixel before the intersection of a right edge e with s, even if there is a
pixel at the intersection. See Figure 14.26(a). The one exceptional case –
easily detected – is shown in Figure 14.26(b).

Therefore, instead of the floating point x-value, call it X, of the
intersection of a segment e with a scan line s, one can store in AEL records
the smallest integer greater than or equal to X if e is a left edge, or the
largest integer strictly less than X if it is a right edge.

Accordingly, suggest a new form of the AEL with no floating point data
items and a method to update it.

Remark 14.7. Polygon rasterization in OpenGL is particularly simple, as it
consists only of rasterizing triangles in the case of polygon drawing calls –
recall that OpenGL polygons are always automatically fan-triangulated – or
axis-aligned rectangles in the case of glRectf() calls.

Flood-fill

The scan-based polygon rasterization algorithm does not explicitly draw
a polygon P ’s boundary given its vertices. Rather, its output is directly
a set of pixels filling an area corresponding to P . Another approach to
rasterizing P is, in fact, to draw first its boundary by, say, repeatedly
applying Bresenham’s line rasterizer for each edge, and then fill its interior.

Once the boundary of P has been drawn, a particularly intuitive algorithm
to fill its interior is the so-called flood-fill algorithm. Here’s how flood-fill
works:

Start with a pixel p known to be in P ’s interior, found, possibly, by
following a ray through the raster and applying the parity test. Fill p. Then578
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examine four of p’s neighboring pixels, in particular, the ones to its north,
south, east and west. Of these pixels, which are said to be 4-adjacent to p, fill
those that don’t belong to the boundary and have not yet been filled. Next,
examine the pixels 4-adjacent to the ones just filled and, again, fill those
that don’t belong to the boundary and have not yet been filled. Continue
in this manner until no more pixels can be filled. See Figure 14.27 for the
initial configuration and the next two steps of a flood-fill.

(a) (b) (c) 

boundary
of 

P
p *

Figure 14.27: Flood-fill: (a) Initially (b) Fill pixels 4-adjacent to p (c) Fill pixels
4-adjacent to the ones filled in the previous step. The starred pixel of (b) is examined by
both its south and west neighbors at this step.

Exercise 14.26. In how many more steps after Figure 14.27(c) does the
flood-fill algorithm terminate?

Coding flood-fill is simple and we ask the reader to do this next.

Exercise 14.27. Assume that initially all pixels in the raster are of
background color, that a line rasterizer has subsequently been invoked
on the edges of an input polygon P to set its boundary pixels to
foreground color and that the pixel at location (x, y) is known to be
in the interior of P .

Pseudo-code a recursive flood-fill procedure to set pixels in the interior
of P to foreground color as well.

Q

Figure 14.28: Flood-fill
fails on the polygon Q
whose boundary is drawn.

Now, the flood-fill algorithm will fill the interior of a polygon P provided
that it is 4-connected, in that any pair of pixels in the interior can be joined by
a path of pixels, each consecutive pair of which is 4-adjacent. The interior of
the polygon P of Figure 14.27 is 4-connected and flood-fill indeed terminates
successfully after filling the whole interior. On the other hand, the boundary
of a polygon Q where flood-fill will not succeed is shown in Figure 14.28.
Evidently, Q’s interior is not 4-connected and, whichever of its two pixels is
chosen to start with, flood-fill will terminate after filling only that one.

It might seem, then, that one need only enhance flood-fill to examine
all eight neighbors of the current pixel, which are said to be 8-adjacent
to it, instead of only the 4-adjacent ones. However, care is needed. For,
consider the two interior pixels of Q in Figure 14.28. Both are 8-adjacent 579
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to pixels belonging neither to Q’s boundary nor its interior. Therefore,
a simple-minded enhancement of flood-fill could “leak” and fill the whole
raster. We’ll leave the reader to ponder an appropriate enhancement.

Exercise 14.28. Enhance flood-fill to examine all 8-adjacent neighbors
of the current pixel, instead of only the 4-adjacent ones. Make sure your
procedure does not leak.

Flood-fill is not efficient, particularly compared to scan-based filling. The
primary reason is that flood-fill examines the same pixel repeatedly as a
neighbor of different ones. For example, the starred pixel in Figure 14.27(b)
is examined twice in the second step, once by its south neighbor and once
by its west neighbor. Nevertheless, flood-fill is simple to implement and,
moreover, can be applied even to curved non-polygonal shapes, once the
shape’s boundary has been identified. For this reason many paint programs
allow the user to flood-fill the interior of a “blob”.

14.5 Summary, Notes and More Reading

In this chapter we learned a few important algorithms from deep in the
graphics pipeline. These included line and polygon clipping, as well as the
raster-conversion of these primitives. This knowledge will hardly impact
our programming of graphics, particularly because high-level API’s like
OpenGL allow no access to these algorithms. Still, it’s good to have
some understanding of what goes on at the far end of the pipeline. And,
in Section 19.1, when we assemble the entire synthetic-camera rendering
pipeline, clipping and rasterization algorithms will be incorporated into its
final stage.

The algorithms in this chapter are all from the foundational period
of modern CG, particularly the sixties and early seventies. The Cohen-
Sutherland line clipper is from Sketchpad [139], the pioneering interactive CG
system Sutherland developed in 1963. The Sutherland-Hodgeman polygon
clipper [140] is from that period as well, as is Bresenham’s line rasterizer
[21], the latter originally being proposed as a method to plot lines on real
paper using a computer-controlled pen. The scan-based filling techniques
migrated from pen-plotters to raster displays as well.

The classic books by Foley et al. [47] and Rogers [117] contain extensive
discussions of various raster algorithms, while the two by Akenine-Möller,
Haines & Hoffman [1] and Watt [147] describe modern-day implementations.
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Bézier

T
he goal for this chapter is an understanding of the theory underlying
Bézier primitives. We are already familiar with many of their
practical aspects. In Section 10.3 of the chapter on drawing we

saw how to specify Bézier curves and surfaces and incorporate them into
our designs. This was possible then – even before theory – as an intuitive
understanding of control points and their role as attractors in shaping Bézier
primitives is sufficient to grasp the OpenGL syntax. We went even further
in Sections 11.11.4 and 12.4.2, learning how to light and texture Bézier
surfaces.

We’ll restrict ourselves in this chapter to polynomial Bézier primitives.
The more general form is rational – a rational function being the ratio of
two polynomials. We’ll postpone the discussion of the rational primitives to
Chapter 18, as an application of projective spaces, which are the natural
setting for these primitives.

Several 3D modeling systems support rational Bézier primitives – in fact,
often, the even more general class of NURBS primitives – in a WYSIWYG
environment where users create primitives interactively by manipulating
control points. Of course, a system supporting rational primitives supports
as well its polynomial subclass. OpenGL is often the front-end of such
modelers, itself offering both rational Bézier and NURBS primitives in a
low-level “code-it-yourself” manner.

There is a bit of math in the development of Bézier theory, but behind it
always is the fairly intuitive “mechanics” of Bézier primitives, which we’ll try
to make as apparent as possible. Illustrative code is interspersed throughout
this chapter as well.

We begin with Bézier curves in Section 15.1. First, de Casteljau’s
procedural approach to defining linear and quadratic Bézier curves is
explained in Sections 15.1.1-15.1.2. The reader is asked to do most of 583



i
i

i
i

i
i

i
i

Chapter 15
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the work for cubic Bézier curves in 15.1.3. Section 15.1.4 generalizes the
development to Bézier curves of arbitrary order and we see as well a host of
properties that make Bézier curves so useful in design. From Bézier curves to
Bézier surfaces in Section 15.2 is a fairly intuitive progression. Section 15.3
concludes the chapter.

15.1 Bézier Curves

Suppose a programmer specifies a sequence P0, P1, . . . , Pn of n+ 1 control
points , asking for a curve not necessarily passing through them, but, rather,
whose shape is molded by the control points. In other words, the control
points are expected to act as “attractors”, each exerting a pull on the curve.
The generated curve is said to approximate the control points. Figure 15.1
is illustrative of the situation.

P0

P1

P2

P3

P4

Figure 15.1: A curve approximating five control points.

Circa 1960, two French automotive designers, Bézier [13, 14] and
de Casteljau [35, 36], independently invented a particular method to
approximate a sequence of control points. It bears the name of Bézier
because his publications had earlier circulation in the design community.
However, de Casteljau’s approach to Bézier curves is actually the more
intuitive and it is what we’ll first describe.

15.1.1 Linear Bézier Curves

Let’s start with the simplest case, where there are only two control points
P0 and P1. The Bézier curve c approximating P0 and P1 is, simply, the
straight line segment joining the two. We write the parametric equation of c
as follows:

c(u) = (1− u)P0 + uP1 (0 ≤ u ≤ 1) (15.1)

See Figure 15.2(a). This Bézier curve is said to be linear , or of degree one ,
or of second order , order being the number of control points.584
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P0= c(0)

 (a)  (b)
10

0

1

B0,1

B1,1

c(u)

Figure 15.2: (a) Bézier curve of degree 1 (b) Bernstein polynomials of degree 1:
B0,1(u) = 1− u, B1,1(u) = u.

If the ambient space is R2, and P0 = [x0 y0]T and P1 = [x1 y1]T , we can
write (15.1) as

c(u) = [(1− u)x0 + ux1 (1− u) y0 + u y1]T (0 ≤ u ≤ 1) (15.2)

Exercise 15.1. Write an equation analogous to (15.2) if the ambient space
is R3.

Remark 15.1. As far as the theory goes, the control points can belong to a
real space of arbitrary dimension, but practical applications are in R2 or R3.

Remark 15.2. It is evident from either (15.1) or (15.2) that a linear Bézier
curve linearly interpolates between its two control points (recall linear
interpolation from Section 7.2).

Example 15.1. What is the equation of the linear Bézier curve c with
control points [5 1]T and [−1 0]T ? What are the points on c corresponding
to the values 0, 0.3 and 1 of the parameter u?

Answer : The equation of c is

c(u) = (1− u)[5 1]T + u[−1 0]T = [5− 6u 1− u]T (0 ≤ u ≤ 1)

The point corresponding to u = 0 is [5 1]T , the first control point.
The point corresponding to u = 0.3 is [3.2 0.7]T .
The point corresponding to u = 1 is [−1 0]T , the second control point.

Exercise 15.2. What is the equation of the linear Bézier curve c with
control points [0 − 2 − 4]T and [3 8 0]T ? What are the points on c
corresponding to the values 0, 0.3 and 1 of the parameter u?

We make the following observations, all straightforward, for a linear
Bézier curve c:

1. The parametric equation (15.1) for c is linear in u, which, of course, is
why it’s called a linear Bézier curve. 585
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2. The point c(u) of the curve c is a weighted sum of the control points
P0 and P1, the weights of P0 and P1 being the values of 1 − u and u,
respectively. Accordingly, the curve c can be thought of as a weighted
sum of P0 and P1, where the weights of P0 and P1 are the functions
1− u and u, respectively.

These functions are called the blending functions of the respective
control points (the term basis function is used as well).

The blending functions 1− u (of the first control point) and u (of the
second control point) are known as the Bernstein polynomials of degree
1. They are denoted B0,1(u) and B1,1(u), respectively. Figure 15.2(b)
shows their graphs. Accordingly, Equation (15.1) can be written as

c(u) = B0,1(u)P0 +B1,1(u)P1 (0 ≤ u ≤ 1) (15.3)

The blending function B0,1(u) of the first control point decreases from
1 to 0 as u goes from 0 to 1, while exactly the opposite is true of that
of the second control point.

3. Because

(a) B0,1(u) and B1,1(u) both lie between 0 and 1, and

(b) B0,1(u) +B1,1(u) = 1,

for each u in 0 ≤ u ≤ 1, every point of c is a convex combination
(recall Definition 7.3) of the control points P0 and P1 and, therefore,
lies in their convex hull, which is actually pretty obvious in this simple
case.

4. c starts at the first control point P0, when u = 0, and ends at the
second one P1, when u = 1.

If an approximating curve passes through a control point, then it is
said to interpolate it. So a linear Bézier curve interpolates both its
control points.

15.1.2 Quadratic Bézier Curves

Consider next three control points P0, P1 and P2. We want to construct the
Bézier curve approximating these control points by means of a process of
linear interpolation. Is there, though, an evident way to linearly interpolate
a curve between three control points “simultaneously”? What does this even
mean?

A possibility, of course, is to linearly interpolate between P0 and P1 and
then between P1 and P2, to get the two-segment polyline P0P1P2, which is
not particularly attractive because of the corner at P1 (see Figure 15.3(a)).
De Casteljau’s method, however, succeeds by adding a third interpolation586
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(a) (b) (c)
100

1

P0 P0

P1 P1

B1,2

B2,2B0,2

P2 P2

a(u) c(u)

b(u)

Figure 15.3: (a) An “unhappy” way of approximating three control points (b) c(u)
describes a Bézier curve of degree 2 interpolating P0, P1 and P2 after a “triple”
interpolation (c) Bernstein polynomials of degree 2:
B0,2(u) = (1− u)2, B1,2(u) = 2(1− u)u, B2,2(u) = u2.

step to “amalgamate” the two segments P0P1 and P1P2, smoothening thereby
the corner. Here’s how it works.

Given a u, 0 ≤ u ≤ 1 (see Figure 15.3(b)):

1. First interpolate between P0 and P1 to find the point

a(u) = (1− u)P0 + uP1

2. Next interpolate between P1 and P2 to find the point

b(u) = (1− u)P1 + uP2

3. Finally, interpolate between a(u) and b(u) to determine the point

c(u) = (1− u)a(u) + ub(u)

Substituting the expressions for a(u) and b(u) into that for c(u), one
obtains the parametric equation for a curve c:

c(u) = (1− u)2P0 + 2(1− u)uP1 + u2P2 (0 ≤ u ≤ 1) (15.4)

As u varies from 0 to 1, c(u) describes the quadratic, or degree two, or
third-order , Bézier curve approximating three control points P0, P1 and P2,
which is indeed smooth.

Note: Curves drawn in this chapter are fairly accurate sketches, but not
necessarily exact plots of their equations.

Figure 15.4: Screenshot
of deCasteljau3.cpp.

Experiment 15.1. Run deCasteljau3.cpp, which shows an animation of
de Casteljau’s method for three control points. Press the left or right arrow
keys to decrease or increase the curve parameter u. The interpolating points
a(u), b(u) and c(u) are colored red, green and blue, respectively. Figure 15.4
is a screenshot. End 587
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If the ambient space is R2, and P0 = [x0 y0]T , P1 = [x1 y1]T and
P2 = [x2 y2]T , one can write (15.4) as

c(u) = [(1− u)2 x0 + 2(1− u)ux1 + u2 x2

(1− u)2 y0 + 2(1− u)u y1 + u2 y2]T (0 ≤ u ≤ 1) (15.5)

Example 15.2. What is the equation of the third-order Bézier curve c
with control points [0 − 1]T , [1 2]T and [5 − 1]T ?

Answer : The equation of c is

c(u) = (1− u)2[0 − 1]T + 2(1− u)u[1 2]T + u2[5 − 1]T

= [2u+ 3u2 − 1 + 6u− 6u2]T (0 ≤ u ≤ 1)

Exercise 15.3. What is the equation of the third-order Bézier curve c
with control points [−2 2 2]T , [0 3 5]T and [−6 0 2]T ? What are the points
on c corresponding to the values 0, 0.5 and 1 of the parameter u?

Figure 15.5: Screenshot
of bezierCurves.cpp with
three control points,
showing both the Bézier
curve and its control
polygon.

Experiment 15.2. Run bezierCurves.cpp, which allows the user to
choose a Bézier curve of order 2-6 and move each control point.

You can choose an order in the first screen by pressing the up and down
arrow keys. Select 3. Press enter to go to the next screen to find the control
points initially on a straight line. Press space to select a control point – the
selected one is red – and then arrow keys to move it. Delete resets to the
first screen. Figure 15.5 is a screenshot.

The polygonal line joining the control points, called the control polygon
of the curve, is drawn in light gray. Evidently, the Bézier curve “mimics” its
control polygon, but smoothly, avoiding a corner. End

Compare the following observations for a third-order Bézier curve c with
the corresponding ones, made earlier, for a second-order curve:

1. c is quadratic in u.

2. c is a weighted sum of the control points P0, P1 and P2, where the
weights of P0, P1 and P2 are the blending functions (1 − u)2, 2(1 −
u)u and u2, respectively. These blending functions are called the
Bernstein polynomials of degree 2, and denoted B0,2(u), B1,2(u) and
B2,2(u), respectively. Figure 15.3(c) shows their graphs. Accordingly,
Equation (15.4) can be written as

c(u) = B0,2(u)P0 +B1,2(u)P1 +B2,2(u)P2 (0 ≤ u ≤ 1) (15.6)

It’s useful to think of the value of a control point’s blending function
at c(u) as the amount of its “attraction” (or “pull”, or “weight”) on588



i
i

i
i

i
i

i
i

Section 15.1
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that point of the Bézier curve and of u as a dial propelling c(u) along
the curve by altering these attractions.

The blending function B0,2(u) of the first control point P0 decreases
from 1 to 0 as u goes from 0 to 1; the blending function B1,2(u) of
the middle control point P0 starts and ends at 0, reaching a maximum
value of 1

2 at u = 1
2 ; finally, the blending function B2,2(u) of the last

control point P0 increases from 0 to 1. So, e.g., the attraction of the
middle control point is greatest on the point of the curve corresponding
to u = 1

2 .

3. Every point of c is a convex combination of the control points P0, P1

and P2, because

(a) B0,2(u), B1,2(u) and B2,2(u) all lie between 0 and 1, and

(b) B0,2(u) +B1,2(u) +B2,2(u) = (1− u)2 + 2(1− u)u+ u2 = 1,

for each u in 0 ≤ u ≤ 1. It follows that the entire curve c is contained
in the convex hull of P0, P1 and P2.

Colloquially, (a) and (b) say that the attraction of each control point is
between 0 and 1 and that the total attraction of all three is always 1.

4. c interpolates the first and last control points, but not necessarily the
middle one.

Exercise 15.4. What is the attraction of each of the control points P0, P1

and P2 on c(0.2)?

Exercise 15.5. Verify that Equation (15.4) can be written in the matrix
form:

c(u) = [P0 P1 P2]

 1 −2 1
−2 2 0
1 0 0

 [u2 u 1]T (15.7)

15.1.3 Cubic Bézier Curves

Consider, now, four control points P0, P1, P2 and P3. We’re going to ask
you, dear reader, to do most of the work. Perform step-by-step interpolation,
similarly to the case of three control points, as follows.

Given a u in 0 ≤ u ≤ 1 (see Figure 15.6(a)):

1. a(u) interpolates between P0 and P1.

2. b(u) between P1 and P2.

3. d(u) between P2 and P3.

4. e(u) between a(u) and b(u). 589



i
i

i
i

i
i

i
i

Chapter 15
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5. f(u) between b(u) and d(u).

6. Finally, c(u) between e(u) and f(u).

As u varies from 0 to 1, c(u) describes the cubic, or degree three, or fourth-
order , Bézier curve approximating the four control points P0, P1, P2 and
P3.

P3

(a) (b)
10

0

1

P0

P1

B0,3

B1,3 B2,3

B3,3P2

a(u)

e(u) c(u)

b(u) f(u) d(u)

Figure 15.6: (a) Bézier curve of degree 3 (b) Bernstein polynomials of degree 3:
B0,3(u) = (1− u)3, B1,3(u) = 3(1− u)2u, B2,3(u) = 3(1− u)u2, B3,3(u) = u3.

Exercise 15.6. Prove that the parametric equation of the Bézier curve c
approximating the four control points P0, P1, P2 and P3 is

c(u) = B0,3(u)P0 +B1,3(u)P1 +B2,3(u)P2 +B3,3(u)P3 (0 ≤ u ≤ 1)
(15.8)

where the Bernstein polynomials are

B0,3(u) = (1−u)3, B1,3(u) = 3(1−u)2u, B2,3(u) = 3(1−u)u2, B3,3(u) = u3

Figure 15.6(b) shows their graphs.

Exercise 15.7. If the ambient space is R2 write an equation analogous to
(15.5) for the cubic Bézier curve.

Exercise 15.8. What is the equation of the cubic Bézier curve c with
control points [−2 2]T , [0 − 3]T , [3 4]T and [7 0]T ? What are the points on
c corresponding to the values 0, 0.5 and 1 of the parameter u?

Experiment 15.3. Run bezierCurves.cpp and choose order 4 to get a
feel for cubic Bézier curves. Note again how the curve mimics its control
polygon. End

Exercise 15.9. Make four observations for a fourth-order Bézier curve c,
corresponding to the four made for Bézier curves of orders 2 and 3.590
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Exercise 15.10. What is the attraction of each of the control points P0,
P1, P2 and P3 at c(0.2), where c is their approximating Bézier curve?

Exercise 15.11. Write Equation (15.8) in a matrix form similar to (15.7).

Exercise 15.12. (Programming) Write a program deCasteljau4.cpp,
in the style of deCasteljau3.cpp, to illustrate de Casteljau’s method for
four control points.

Remark 15.3. Cubic Bézier curves are the ones most commonly used in
design applications as three is a sort of “Goldilocks” degree, high enough to
allow the curve good flexibility, yet not too high as to be computationally
cumbersome.

Here’s an exercise to get you warmed up for the general case coming
next.

Exercise 15.13. From only the cases n = 1, 2 and 3, that we have seen,
it’s clear how the variable part of the Bernstein polynomial changes from
B0,n(u) to B1,n(u), . . ., finally, to Bn,n(u). In fact, the variable part of
B0,n(u) is (1− u)nu0. (Of course, u0 = 1.) Next, for B1,n(u), the power of
1− u decreases by one and that of u increases by one, so its variable part
is (1 − u)n−1u1. And so it continues, until the variable part of Bn,n(u) is
(1− u)0un.

How about the constant coefficients though? Let’s see what they are.
For Bernstein polynomials of degree 1: 1 1
For Bernstein polynomials of degree 2: 1 2 1
For Bernstein polynomials of degree 3: 1 3 3 1

Do you see a pattern? (Hints: Pascal’s triangle, binomial coefficients.) Can
you write down now the parametric equation for a fifth-order Bézier curve,
without going through a de Casteljau process?

15.1.4 General Bézier Curves

It should now be fairly clear how to generalize de Casteljau’s method to
construct the Bézier curve approximating an arbitrary number of control
points. We’ll show that the parametric equation for the Bézier curve c
approximating n+ 1 control points P0, P1, . . . , Pn is

c(u) =
n∑
i=0

Bi,n(u)Pi (0 ≤ u ≤ 1) (15.9)

where Bi,n(u), 0 ≤ i ≤ n, called the ith Bernstein polynomial of degree n, is
given by

Bi,n(u) =

(
n

i

)
(1− u)n−iui (15.10) 591
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where
(
n
i

)
= n!

(n−i)!i! is a binomial coefficient. The curve c is called a Bézier

curve of degree n, or order n+ 1.
We’ll verify Equation (15.9) by induction based on the following recursive

specification of de Casteljau’s method.

Recursive de Casteljau

We’ll start the recursive definition by specifying (again) that the Bézier
curve approximating two control points P0 and P1 is the straight segment
joining them, given by (repeating (15.3)):

c(u) = B0,1(u)P0 +B1,1(u)P1 (0 ≤ u ≤ 1) (15.11)

Assume, then, that we can specify the Bézier curve approximating any n
control points, for some given n ≥ 2, and that, next, we are given n+1 control
points P0, P1, . . . Pn. Say the Bézier curve c0(u), 0 ≤ u ≤ 1, approximates
the first n of these P0, P1, . . . Pn−1, and that c1(u), 0 ≤ u ≤ 1, approximates
the last n P1, P2, . . . Pn.

Recursive de Casteljau says, then, that the Bézier curve approximating
all n+ 1 control points P0, P1, . . . Pn is

c(u) = (1− u)c0(u) + uc1(u) (0 ≤ u ≤ 1) (15.12)

which is an “interpolation” between c0(u) and c1(u). The scheme is indicated
in Figure 15.7.

P0

P1

P2

Pnc0(u)

c1(u)
c(u)

Pn−2

Pn−1

Figure 15.7: Recursive de Casteljau scheme: c0(u) approximates P0, P1, . . . , Pn−1;
c1(u) approximates P1, P2, . . . , Pn; c(u) interpolates between c0(u) and c1(u) to
approximate P0, P1, . . . , Pn.

Exercise 15.14. Verify that the recursive specification above yields the
same equations as de Casteljau’s method for three and four control points
described earlier.

Note that in the case of three control points the earlier description
matches exactly the recursive one above. However, in the case of four, we
earlier did repeated linear interpolation between pairs of points on separate
straight segments, while the recursive specification above would have us
linearly interpolate just once between points on two separate quadratic
Bézier curves.592
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Let’s turn now to proving the general formula (15.9) by induction.
Starting the induction is simply a matter of noting that (15.9) is identical
to (15.11) when n = 1.

Suppose, inductively, that (15.9) is true with n − 1 in place of n, i.e.,
it is true for n control points. We’ll prove it next for n+ 1 control points
P0, P1, . . . Pn. By the inductive hypothesis, the Bézier curve approximating
the first n of these, P0, P1, . . . Pn−1, is given by

c0(u) =
n−1∑
i=0

Bi,n−1(u)Pi (0 ≤ u ≤ 1)

and that approximating the last n points, P1, P2, . . . Pn, by

c1(u) =
n−1∑
i=0

Bi,n−1(u)Pi+1 (0 ≤ u ≤ 1)

The Bézier curve approximating all n+ 1 control points P0, P1, . . . Pn by
the recursive formula (15.12), therefore, is

c(u) = (1− u)c0(u) + uc1(u)

= (1− u)
n−1∑
i=0

Bi,n−1(u)Pi + u
n−1∑
i=0

Bi,n−1(u)Pi+1

= (1− u)

n−1∑
i=0

(
n− 1

i

)
(1− u)n−i−1 ui Pi +

u
n−1∑
i=0

(
n− 1

i

)
(1− u)n−i−1 ui Pi+1

(applying formula (15.10) for Bernstein polynomials of degree n− 1)

= (1− u)

n−1∑
i=0

(
n− 1

i

)
(1− u)n−i−1 ui Pi +

u
n∑
i=1

(
n− 1

i− 1

)
(1− u)n−i ui−1 Pi

(changing the limits on the second summation by replacing i by i− 1)

= (1− u)n P0 +
n−1∑
i=1

((
n− 1

i

)
(1− u)n−i ui +

(
n− 1

i− 1

)
(1− u)n−i ui

)
Pi +

un Pn

(bringing together terms for i = 1, . . . , n− 1 from the two summations) 593
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= (1− u)n P0 +

n−1∑
i=1

((
n

i

)
(1− u)n−i ui

)
Pi + un Pn

(using the property of binomial coefficients that
(
n−1
i

)
+
(
n−1
i−1
)

=
(
n
i

)
)

=
n∑
i=0

Bi,n(u)Pi

This completes the inductive verification of Equation (15.9).
If the control points are Pi = [xi yi zi]

T , 0 ≤ i ≤ n, in real-world 3-space,
then (15.9) can be written as

c(u) =

[
n∑
i=0

Bi,n(u)xi

n∑
i=0

Bi,n(u)yi

n∑
i=0

Bi,n(u)zi

]T
(0 ≤ u ≤ 1)

(15.13)
We collect facts about general Bézier curves in the following:

Proposition 15.1. If c is the Bézier curve approximating the sequence of
n+ 1 control points P0, P1, . . . , Pn – called a Bézier curve of order n+ 1, or
degree n – then the following hold:

(a) c is polynomial of degree n in the parameter u. In particular, each
coordinate value of c is polynomial of degree n in u.

(b) c is a weighted sum of the control points P0, P1, . . . , Pn, where the
weight of Pi, for 0 ≤ i ≤ n, is its blending function Bi,n(u).

Definition 15.1. A set of functions is said to a form a partition of
unity over some domain if they are each non-negative and add up to 1
everywhere in that domain.

(c) The blending functions Bi,n(u), 0 ≤ i ≤ n, form a partition of unity
over the parameter space [0, 1].

(d) Every point of c is a convex combination of the control points
P0, P1, . . . , Pn; therefore, c lies inside the convex hull of P0, P1, . . . , Pn.

(e) c interpolates the first and last control points, but not necessarily
intermediate ones.

(f) (Affine Invariance) If the control points P0, P1, . . . , Pn belong to R3

and g : R3 → R3 is an affine transformation, then the image curve g(c)
is the Bézier curve approximating the images g(P0), g(P1), . . . , g(Pn)
of the control points.

In other words, the transformed curve approximates the transformed
control points.594
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Bézier Curves

(g) (End Tangents) The tangent to c at P0 lies along the straight line from
P0 to P1 and the tangent to c at Pn lies along the straight line from
Pn−1 to Pn.

Note: Further discussions of affine invariance and end tangents follow the
proof.

Proof. Items (a) and (b) follow straightforwardly from Equation (15.9).
It’s easily seen that Bernstein polynomials Bi,n(u) =

(
n
i

)
(1− u)n−iui all

lie between 0 and 1, for each u in 0 ≤ u ≤ 1. Further, for any such u,

n∑
i=0

Bi,n(u) =
n∑
i=0

(
n

i

)
(1− u)n−iui = ( (1− u) + u )n = 1 (15.14)

by the Binomial Theorem. This proves that the blending functions form a
partition of unity over the parameter space [0, 1], establishing (c). It follows,
as well, that the point c(u) =

∑n
i=0Bi,n(u)Pi, for 0 ≤ u ≤ 1, is indeed a

convex combination of the points P0, P1, . . . , Pn, proving (d).
Item (e) is verified by checking that c(0) = P0 and c(1) = Pn.
The proof of (f) exploits the fact that the blending functions form a

partition of unity over the parameter space. Let the affine transformation
g : R3 → R3 be given by g(P ) = MP + D, where M is a non-singular
3× 3 matrix and D a 3-vector (the translational component). For any u in
0 ≤ u ≤ 1, we then have

g(c(u)) = Mc(u) +D

= M(
n∑
i=0

Bi,n(u)Pi ) +D

=
n∑
i=0

Bi,n(u)(MPi) + (
n∑
i=0

Bi,n(u))D

(invoking the partition-of-unity property
∑n
i=0Bi,n(u) = 1)

=
n∑
i=0

Bi,n(u)(MPi +D)

=
n∑
i=0

Bi,n(u)g(Pi)

proving (e).
For (g), observe that the derivative

c′(u) =
d

du
( (1− u)nP0 + n(1− u)n−1uP1 + . . .)

= −n(1− u)n−1P0 + n(1− u)n−1P1 + terms that

each contain the factor u (15.15) 595
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Therefore, the tangent vector at P0, when u = 0, is

c′(0) = −nP0 + nP1 = n(P1 − P0)

as terms after the second of (15.15) all vanish. Evidently, then, the tangent
at P0 is in the direction toward P1, proving the first part of (g). The second
part follows symmetrically. 2

Remark 15.4. From (a) it follows that a Bézier curve is C∞, or smooth
(recall definitions from Section 10.1.6).

Experiment 15.4. Run bezierCurves.cpp and choose the higher orders.
It’s straightforward to enhance the code for orders even greater than 6. End

Affine Invariance of Bézier Curves

The affine invariance of Bézier curves given by Proposition 15.1(f) is extremely
useful. Here’s a simple example of what it means practically. Suppose a
cubic Bézier curve c approximating the four control points

P0 = [5 5]T P1 = [7 8]T P2 = [8 4]T P3 = [11 5]T

is drawn as a 10-segment polyline l (Figure 15.8(a), where l is drawn at an
offset to c).

g(c)=c 
l

cP0

P1

P2

P3

g(P0)

g(l)

g(P1)

g(P3)

g(P2)(a) (b)

Figure 15.8: (a) A 10-segment fairly smooth-looking polyline l approximation (drawn
at an offset) of the Bézier curve c with control points P0, P1, P2 and P3 (b) The
magnification g(l) (also at an offset) is not a good approximation of g(c).

Next, suppose we want to magnify c twofold by scaling it a factor of
2 in each coordinate direction. For the purpose of drawing, if the scaling
transformation, call it g, is applied simply to the polyline l, then the result
g(l) (Figure 15.8(b)) is likely too coarse an approximation of the magnified
curve g(c).596
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Affine invariance, however, says that g(c) is the same as the cubic Bézier
curve c approximating the four control points

g(P0) = [10 10]T g(P1) = [14 16]T g(P2) = [16 8]T g(P3) = [22 10]T

Therefore, one can “forget” the original polyline and, instead, approximate
c at a resolution of one’s choosing (e.g., with a 20-segment polyline).

Bottom Line: Affine invariance means that if a Bézier curve is affinely
transformed to a new one, then the original control points transform to the
new. Therefore, the only “data” required to generate the transformed Bézier
curve are the transformed control points.

Exercise 15.15. The transformations

glScalef(1.0, 2.0, 2.0);

glTranslatef(2.0, 3.0, 0.0);

are applied to the cubic Bézier curve with control points

[2 1 1]T [3 3 2]T [−2 7 − 1]T [0 0 4]T

Describe the resulting curve.

End Tangents and Joining Bézier Curves

Proposition 15.1(g) enables the user to smoothly join two Bézier curves c0
(approximating control points P0, P1, . . . , Pn) and c1 (approximating control
points Q0, Q1, . . . , Qm) by, for instance, making Pn coincide with Q0 and
arranging the three points Pn−1, Pn(= Q0) and Q1 in that order on one
straight line. See Figure 15.9. Another way to say this is that two Bézier
curves meet smoothly if their control polygons meet smoothly.

P3= Q0 

Q1

Q2

c1

c0

Q3

P0

P1

P2

Figure 15.9: Two cubic Bézier curves (one blue, other black) meet smoothly at an
endpoint.

Figure 15.10: Screenshot
of bezierCurveTangent.-
cpp.

Experiment 15.5. Run bezierCurveTangent.cpp which shows two cubic
Bézier curves. The second curve may be shaped by selecting a control point
with the space bar and moving it with the arrow keys. See Figure 15.10.
Visually verify Proposition 15.1(g). End 597
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Exercise 15.16. (Programming) Show how to use Proposition 15.1(g)
to arrange a sequence of control points, so that the approximating Bézier
curve is a smooth closed loop. Illustrate with the help of bezierCurves.cpp.

Exercise 15.17. A Bézier loop is drawn approximating the six control
points

[0 0 0]T [4 0 0]T [8 − 5 3]T [−1 − 5 − 3]T [x y z]T [0 0 0]T

Suggest values for x, y and z for the second to last control point to make
the loop smooth at [0 0 0]T .

A curve made by joining Bézier curves end to end, but not necessarily
smoothly, is called piecewise Bézier . See Figure 15.11.

Q2= R0  

P3= Q0 

P0

P1

P2

Q1 
R1  

R2 

R3 

Figure 15.11: A piecewise Bézier curve consisting of three Bézier arcs.

Exercise 15.18. Can a piecewise Bézier curve be Bézier? For example, in
Figure 15.11 one may ask if the union of the three Bézier curves is merely the
ninth-order Bézier curve with control points P0, P1, P2, P3 = Q0, Q1, Q2 =
R0, R1, R2, R3. Consider, in particular, the case when the Bézier pieces
happen all to join smoothly (which is not the case in Figure 15.11).

Exercise 15.19. The sequence P0, P1, . . . , Pn of the control points of a
Bézier curve is obviously important. Jumbling them up will not give the
same curve. How about if the sequence is reversed to Pn, Pn−1, . . . , P0?

Exercise 15.20. There is nothing special about the parameter space
[0, 1]. Show how to change the parameter space of the Bézier curve, given
by Equation (15.9), to [u1, u2], where u1 < u2 may be arbitrary, without
changing the curve’s shape.

Exercise 15.21. Show that the blending function Bi,n(u) of the ith control
point Pi reaches its maximum at u = i

n , and at this point the value of
Bi,n(u) exceeds that of all the other blending functions. This means that
the attraction of Pi is greatest on the point c( in ) of the curve.598
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Polynomial Curves and Bézier Curves

As noted in Proposition 15.1(a), each coordinate value of a degree n
Bézier curve is a polynomial of degree n in the parameter u. Recall from
Section 10.1.4 that a polynomial curve (in R3) is of the form

b(u) = [f(u) g(u) h(u)]T

where each coordinate value f(u), g(u) and h(u) is polynomial in u. Bézier
curves are, therefore, polynomial. How about the other way around? Are
polynomial curves Bézier? It’s nice to know, in fact, that all polynomial
curves are Bézier. Precisely:

Proposition 15.2. If

b(u) = [f(u) g(u) h(u)]T (0 ≤ u ≤ 1)

is a polynomial curve, each coordinate value being a polynomial of degree
at most n, then one can find n + 1 control points P0, P1, . . . Pn, such that
b(u) = c(u), where c is the Bézier approximation of the Pi, 0 ≤ i ≤ n. In
other words, the Bézier approximation of these control points is the given
polynomial curve.

Proof. The proof is beyond our scope here and the interested reader is
referred to the text by Buss [22]. 2

Remark 15.5. It’s certainly gratifying that, despite their arising from the
very special de Casteljau construction, the proposition assures us that the
class of Bézier curves is just as general as the class of polynomial curves.

At this point let’s pause a moment to appreciate the power and utility
of Bézier curves, particularly in light of the preceding proposition. Suppose
that a developers’ group set out to design 1D primitives for a modeler. They
might quite reasonably decide to support, in addition to straight lines and
polylines, cubic polynomial curves, namely, those of the form

p(u) = [f0+f1u+f2u
2+f3u

3 g0+g1u+g2u
2+g3u

3 h0+h1u+h2u
2+h3u

3]T

for 0 ≤ u ≤ 1. That’s 12 scalar coefficients f0, f2, . . . , h3 required to specify
such a curve and a (very simple-minded) design decision might be to allow
the user to edit the curve by changing each.

Contrast this with representing a cubic polynomial curve as a cubic
Bézier curve specified by four control points. The size of the representation
is still 12 scalars – three coordinates per control point – and the preceding
proposition says that we still get all cubic polynomial curves. Consider,
though, how much more convenient it is to mold the curve by manipulating
control points rather than coefficients!

In fact, is there at all an easy-to-understand relationship between the
coefficients f0, f2, . . . , h3 and the shape of p(u) as given above? Even for 599
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the simple plane paper graph of a curve, say, y = 3x3 − x2 + 5x + 7, do
the four coefficients 3, −1, 5 and 7 themselves convey anything immediately
meaningful about its shape?

15.2 Bézier Surfaces

From an understanding of Bézier curves it’s a fairly intuitive next step to
defining Bézier surfaces. Suppose we have an (n + 1) × (m + 1) array of
control points

Pi,j , for 0 ≤ i ≤ n, 0 ≤ j ≤ m

and wish to approximate these with a surface s. A construction of s via
Bézier curves is as follows:

Think of the (n+ 1)× (m+ 1) array Pi,j as n+ 1 different sequences,
each of m+ 1 control points. In particular, the ith sequence, for 0 ≤ i ≤ n,
consists of Pi,0, Pi,0, . . . , Pi,m, these being the points along the ith row of
the control points array. Construct the Bézier curve approximating each of
these n+ 1 sequences to obtain n+ 1 different Bézier curves, each of order
m+ 1. Say the Bézier curve approximating the ith sequence is ci, 0 ≤ i ≤ n.
See Figure 15.12, where both n and m are 3.

c0(v)

c1(v)

c2(v)

c3(v)

P0,0

c3

c2

c1

c0

c1

c0
cv

P2,3P1,3

P0,3

P3,2

P2,2

P1,2

P0,2

P3,1

P2,1

P1,1

P0,1

P3,0

P2,0

P1,0

P3,3

Figure 15.12: Constructing the Bézier surface approximating a 4× 4 array of control
points by sweeping a Bézier curve of order 4.

For each v in 0 ≤ v ≤ 1, there are n + 1 points, one on each
curve ci, corresponding to the parameter value v, namely, the sequence
c0(v), c1(v), . . . , cn(v). Say the Bézier curve cv of order n+ 1 approximates
these points. One such cv is shown in the figure.

The union of all the Bézier curves cv, for 0 ≤ v ≤ 1, is the Bézier surface
s approximating the control points array Pi,j , 0 ≤ i ≤ n, 0 ≤ j ≤ m. One
can, as well, think of s as being swept by cv, as v changes from 0 to 1.600
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P1,0

P1,1

P1,2

P1,3

P2,0

P2,1

P2,2

P2,3

P3,0

P3,1

P3,2

P3,3

P0,0

P0,1

P0,2

P0,3

Figure 15.13: The Bézier surface approximating a 4× 4 array of control points and its
control polyhedron (dashed).

The polyhedral surface composed of the quadrilateral faces
Pi,jPi+1,jPi+1,j+1Pi,j+1, 0 ≤ i ≤ n − 1, 0 ≤ j ≤ m − 1, is called the
control polyhedron of the Bézier surface specified by the control points
Pi,j , 0 ≤ i ≤ n, 0 ≤ j ≤ m. As a Bézier curve mimics its control polygon,
so a Bézier surface mimics its control polyhedron. See Figure 15.13.

Figure 15.14: Screen-
shot of sweepBezier-
Surface.cpp.

Experiment 15.6. Run sweepBezierSurface.cpp to see an animation
of the procedure. Press the left/right (or up/down) arrow keys to move the
sweeping curve and the space bar to toggle between the two possible sweep
directions. Figure 15.14 is a screenshot.

The 4 × 4 array of the Bézier surface’s control points (drawn as small
squares) consists of a blue, red, green and yellow row of four control points
each. The four fixed Bézier curves of order 4 are drawn blue, red, green and
yellow, respectively (the curves are in 3-space, which is a bit hard to make
out because of the projection). The sweeping Bézier curve is black and its
(moving) control points are drawn as larger squares. The currently swept
part of the Bézier surface is the dark mesh. The current parameter value is
shown at the top left. End

Determining the parametric equation of the Bézier surface s constructed
as above is not difficult. The equation of ci, the Bézier curve along the ith
row of control points, is

ci(v) =
m∑
j=0

Bj,m(v)Pi,j (0 ≤ v ≤ 1)

for 0 ≤ i ≤ n. Therefore, the equation of the Bézier curve cv approximating 601
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the “column” control sequence c0(v), c1(v), . . . , cn(v) is

cv(u) =
n∑
i=0

Bi,n(u)ci(v)

=
n∑
i=0

Bi,n(u)

 m∑
j=0

Bj,m(v)Pi,j


=

n∑
i=0

m∑
j=0

Bi,n(u)Bj,m(v)Pi,j (0 ≤ u ≤ 1)

Letting both u and v vary one obtains the following parametric equation for
the Bézier surface s approximating the control points array Pi,j , 0 ≤ i ≤ n,
0 ≤ j ≤ m:

s(u, v) =
n∑
i=0

m∑
j=0

Bi,n(u)Bj,m(v)Pi,j (0 ≤ u ≤ 1, 0 ≤ v ≤ 1) (15.16)

Exercise 15.22. If the control points of a Bézier surface are Pi,j =
[xi,j yi,j zi,j ]

T , 0 ≤ i ≤ n, 0 ≤ j ≤ m, write a parametric equation
for its x-, y- and z-values, analogous to (15.13) for Bézier curves. There will
now, of course, be two parameter variables instead of the one for curves.

Figure 15.15: Screenshot
of bezierSurace.cpp.

Experiment 15.7. Run bezierSurface.cpp, which allows the user to
shape a Bézier surface by selecting and moving control points. Press the
space and tab keys to select a control point. Use the left/right arrow keys
to move the control point parallel to the x-axis, the up/down arrow keys to
move it parallel to the y-axis and the page up/down keys to move it parallel
to the z-axis.

Press ‘x/X’, ‘y/Y’ and ‘z/Z’ to turn the viewpoint. Figure 15.15 is a
screenshot. End

Exercise 15.23. If the procedure to construct the Bézier surface s via
Bézier curves is “inverted” to first (a) construct m + 1 different Bézier
curves, each of order n+ 1, approximating a column of control points, and
then (b) sweep the Bézier curve approximating the points corresponding
to the same parameter value on each of these m+ 1 curves, prove that the
same surface s is obtained. In particular, derive the parametric form of the
surface resulting from the inverted process and show it to be identical to
Equation (15.16).

The program sweepBezierSurface.cpp of Experiment 15.6 allows the
user to toggle between either process by pressing the space bar.

The following proposition is similar to Proposition 15.1 for Bézier curves:602
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Bézier Surfaces

Proposition 15.3. If s is the Bézier surface approximating an (n+ 1)×
(m+1) array of control points Pi,j , 0 ≤ i ≤ n, 0 ≤ j ≤ m, then the following
hold:

(a) s is polynomial of degree n in one parameter variable u and polynomial
of degree m in the other parameter variable v.

(b) s is a weighted sum of the control points Pi,j, 0 ≤ i ≤ n, 0 ≤ j ≤ m,
where the weight of Pi,j is the blending function Bi,n(u)Bj,m(v) (a
product of Bézier curve blending functions).

(c) The blending functions Bi,n(u)Bj,m(v), 0 ≤ i ≤ n, 0 ≤ j ≤ m, form a
partition of unity over the parameter space [0, 1]× [0, 1].

(d) Every point of s is a convex combination of the control points Pi,j,
0 ≤ i ≤ n, 0 ≤ j ≤ m, and, therefore, c lies inside the convex hull of
the Pi,j.

(e) s passes through the four corner control points P0,0, Pn,0, P0,m and
Pn,m, but not necessarily the others.

(f) (Affine Invariance) If the control points Pi,j, 0 ≤ i ≤ n, 0 ≤ j ≤ m,
belong to R3 and g : R3 → R3 is an affine transformation, then the
image surface g(s) is the Bézier surface approximating the images
g(Pi,j), 0 ≤ i ≤ n, 0 ≤ j ≤ m, of the control points.

In other words, the transformed surface approximates the transformed
control points.

Proof. We begin by observing that the blending functionsBi,n(u)Bj,m(v),
0 ≤ i ≤ n, 0 ≤ j ≤ m, form a partition of unity over the parameter space
[0, 1]× [0, 1] because

n∑
i=0

m∑
j=0

Bi,n(u)Bj,m(v) =

n∑
i=0

Bi,n(u)

m∑
j=0

Bj,m(v) = 1 ∗ 1 = 1

proving (c). We leave the rest of the proof, which is similar to that of
Proposition 15.1, to the reader. 2

Exercise 15.24. What kinds of curves are the u- and v-parameter curves
– recall these from Section 10.2.4 – on the following Bézier surface?

s(u, v) =
n∑
i=0

m∑
j=0

Bi,n(u)Bj,m(v)Pi,j

Exercise 15.25. Recall Equation (10.20)

s(u, v) = (1− u)(1− v) p1 + u(1− v) q1 + (1− u)v p2 + uv q2, u, v ∈ [0, 1] 603
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of a bilinear patch from Section 10.2.8. It’s again a weighted sum of the
“control” points p1, p2, q1 and q2. Do the blending functions form a partition
of unity? Is a bilinear patch a Bézier surface?

Exercise 15.26. What condition would you impose on the control
polyhedrons of two abutting Bézier surfaces, say, s defined by an (n +
1)× (m+ 1) array of control points and s′ defined by an (n+ 1)× (m′ + 1)
array of control points – the number of rows is the same – so that they join
smoothly?
Hint : A similar discussion for bicubic patches was in Section 10.3.2.

15.3 Summary, Notes and More Reading

This chapter was a fairly thorough introduction to the theory of the Bézier
primitives. Our exploration was restricted, however, to the polynomial
version, which itself is popularly used in design and, moreover, sets the stage
for the rational primitives in a forthcoming chapter. Theory too has now
caught up with practice: we learned to code polynomial Bézier curves and
surfaces much earlier in Chapter 10.

There are a number of excellent books – Farin [45], Mortenson [94,
96], Rogers & Adams [118] and Vince [146] to name a few – which both
complement the material here and take the reader beyond it. It is interesting
to read in the first chapter of Farin’s book an account by Bézier himself of
the invention of the UNISURF CAD system that uses his primitives. In
addition to those just mentioned, which are mostly math and modeling
books, any CG book itself will likely have a section or two on Bézier theory
and practice. The reader should have no trouble now in following discussions
of Bézier primitives in even advanced CG texts, such as Akenine-Möller,
Haines & Hoffman [1], Buss [22], Slater et al. [135] and Watt [147].

604
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O
ur aim in this chapter is to master the theory underpinning B-spline
primitives, the dominant class of primitives used in freeform design
nowadays. As in the preceding chapter on Bézier theory, we’ll

restrict ourselves here to the polynomial version, reserving the more general
rational class of NURBS (Non-Uniform Rational B-Spline) primitives for
Chapter 18, as an application of projective spaces, which are the natural
setting for these primitives.

Almost all 3D modelers support NURBS primitives – and so, of course,
their polynomial subclass as well – in a WYSIWYG design environment. In
such a setting, the user can get by merely pushing control points around,
with little understanding of theory. OpenGL, on the other hand, provides
an interface at a much lower level. In fact, there is almost a one-to-one
correspondence between NURBS theory and OpenGL syntax. Consequently,
some knowledge at least of the former is required in order to use the latter.

Unfortunately, as NURBS theory is more complex than Bézier, there
really is no use-now-learn-later approach. This is the reason we did not
introduce NURBS, or even its polynomial subclass, in the earlier chapter on
drawing, as we did polynomial Bézier primitives. True, the lack of shortcuts
and a fancy interface will be seen as drawbacks by those who care only
about design and not so much about what is under the hood. On the other
hand, OpenGL’s minimalist setting is ideal for the purpose of grasping the
underlying theory.

Our account of B-splines begins in Section 16.1 with an analysis of the
weakness of Bézier primitives, motivating the progression to B-splines as
a search, in fact, for better blending functions. The investigation of the
B-spline primitives themselves begins with curves in Section 16.2, setting the
stage with so-called knot vectors in anticipation of new blending functions
that are polynomial in knot intervals. In subsections 16.2.1-16.2.3, we go 605
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from (uniform) first-order to quadratic B-spline curves, applying an intuitive
“break-and-make” procedure to repeatedly increase the degree of the spline
functions. The reader is asked to apply this procedure herself in 16.2.4 to
fill in the details for cubic B-splines. A significant generalization is made in
16.2.5, not only by extending the theory to B-splines of arbitrary order, but
by allowing the knot vector to be non-uniform as well. We’ll see the utility
of non-uniform knot vectors, particularly of repeated knots which empower
the designer with the best of both worlds, Bézier and B-spline.

From B-spline curves to surfaces in Section 16.3 is exactly the same
process as from Bézier curves to surfaces. The topic of Section 16.4 is the
OpenGL NURBS drawing primitives, though we use them in this chapter
only to the extent of their polynomial functionality. Subsections 16.4.1
and 16.4.2 discuss drawing B-spline curves and surfaces, respectively. We
describe how to light and texture a B-spline surface in 16.4.3. The useful
technique of trimming a B-spline surface is described in 16.4.4. Section 16.5,
with notes and suggestions for future reading, concludes the chapter.

16.1 Problems with Bézier Primitives:
Motivating B-Splines

Bézier curves and surfaces, the topics of the previous chapter, are easy to
use, especially in an interactive environment, and powerful enough to create
complex designs. However, they suffer from two weaknesses:

1. Lack of local control .

Observe that the blending function of each control point of a Bézier
curve is non-zero over the entire open parameter interval (0, 1); in other
words, each has non-zero weight (attraction, pull, . . .) at every point of
the curve, except, possibly, the endpoints. For example, Figure 16.1(a)
shows the blending functions of a cubic Bézier curve, which are, of
course, the Bernstein polynomials of degree three.

This makes modifying a Bézier curve difficult: moving any one control
point alters the entire curve, not just near the control point. Albeit
points on the curve far from the relocated control point move little
because its weight is small at distant points, nevertheless, there is
change. Moving control point P1 in Figure 16.1(b), for example, from
a reading of its blending function B1,3(u) in Figure 16.1(a) maximally
affects the curve in the vicinity of c(0.33), but all points on the curve,
except for the endpoints, are altered to some extent.

The situation for Bézier surfaces is similar, as each control point has
non-zero weight at every point of the surface, except, possibly, the
corners.606
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(a) (b)

c

0.33 0.66 10
0

1

P0

P1

B0,3 B3,3

B1,3 B2,3

P2

P3

Figure 16.1: (a) Bernstein polynomials of degree 3: B0,3(u) = (1− u)3,
B1,3(u) = 3(1− u)2u, B2,3(u) = 3(1− u)u2, B3,3(u) = u3 (b) A cubic Bézier curve.

Typically, in designing a complex object with numerous control points
a designer would prefer to be able to modify parts of the object
independently, in other words, have local control, which in turn would
necessitate restricting each control point to its own limited “region of
influence”. For example, in arranging Boris’s smirk – see Figure 16.2 –
the designer may want to leave his nose and eyes exactly as they are.

Figure 16.2: Mesh of
Boris’s head (courtesy of
Sateesh Malla at
www.sateeshmalla.com).

2. The degree increases with the number of control points.

The Bézier curve c(u) approximating n+1 control points is polynomial
of degree n in u. Evaluating a high-degree polynomial is expensive
and repeated products lead to numerical instability. Complex curves,
therefore, with multiple control points present a computational problem.
And ditto for surfaces.

What to do about these problems? First, let’s step back a bit to take
the following abstract view of Bézier curves: a Bézier curve is the sum

c(u) = f0(u)P0 + f1(u)P1 + . . .+ fn(u)Pn (0 ≤ u ≤ 1) (16.1)

of its control points Pi weighted by blending functions fi which happen
to be Bernstein polynomials. There’s no reason they have to be Bernstein
polynomials, provided that the resulting curve c – maybe no longer Bézier –
does a satisfactory job of approximating the control points. The plan then is
to try and find new blending functions which, hopefully, alleviate the Bézier
difficulties.

Before proceeding, here’s a bit of useful terminology: if a function f ,
defined on the interval domain [a, b], is non-zero everywhere inside the
subinterval [a′, b′], excepting possibly its endpoints a′ and b′, and zero on the
rest of [a, b], then it is said to have support in [a′, b′]. Figure 16.3(a) depicts
a function fi(u) defined on [0, 1] with support in the subinterval [a′, b′].

Exercise 16.1. If the blending function fi of control point Pi in expression
(16.1) has support in the proper subinterval [a′, b′] of the parameter interval 607
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Pi

fi

10 a´ b´

(b)

c(a´) c(b´)

(a) 

Figure 16.3: (a) Function fi defined on [0, 1] has support in [a′, b′] (b) Moving Pi, with
associated blending function fi, changes c only between c(a′) and c(b′).

[0, 1], then show that moving Pi changes the arc of the approximating curve
c only between c(a′) and c(b′). See Figure 16.3(b).

Exercise 16.2. Prove that the ith Bernstein polynomial of degree n for
every i, 0 ≤ i ≤ n, has support in the entire parameter interval [0, 1] (keep in
mind that the behavior of the polynomial outside of [0, 1] is of no interest).

From the preceding two exercises, it seems, then, that the first problem
with Bézier curves mentioned above arises because the blending function
of every control point has support in the entire parameter interval [0, 1]. A
solution, therefore, would be to find blending functions each having support
in only part of that interval.

Moreover, the second problem would be solved if the degree of the
blending functions could be decoupled from the number of control points, so
that increasing the latter did not necessarily raise the former. So now we
have an idea of what we want, let’s see what we can find.

Suppose, to begin with, that we ask for blending functions all quadratic,
no matter the number of control points. The first thing to do then is
find quadratics with limited support – whose graphs resemble that of fi
in Figure 16.3(a). Unfortunately, this is a hopeless task because there are
none such! For, a quadratic is zero only at its at most two roots, not on
any interval stretch like that between 0 and a′, or b′ and 1. But, look again
at fi. Except for the two straight zero parts at either end, the graph of fi
does resemble somewhat an upside-down parabola – see the graph of the
parabola f(u) = u2 in Figure 16.4(a).

Note: Curves drawn in this chapter are fairly accurate sketches, but not
necessarily exact plots of their equations.

Here, then, is a drastic solution. Let’s make a blending function f like fi
by assembling it from three parts – one quadratic (an upside-down parabola)
and two straight zero – as follows:

f(u) =

 0, −2 ≤ u ≤ −1
−u2 + 1, −1 ≤ u ≤ 1

0, 1 ≤ u ≤ 2608



i
i

i
i

i
i

i
i

Section 16.1

Problems with
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u0

(a) (b)

1

−2 −1 0 1 2
u

f(u) = u2

f(u) = 0f(u) = 0

f(u) = −u2 +1 

Figure 16.4: (a) Parabola (b) Three-part function: one upside-down parabola and two
straight.

There’s no law that says that a formula has to be one line! So the
specification of f is fine. Figure 16.4(b) shows its graph. As the two end
parts are constant, they are actually “cheaper” than a quadratic!

We seem to be headed in the right direction. We have a blending function
which is at most quadratic and which has support in [−1, 1], just half of its
whole domain [−2, 2].

Note : If the reader is wondering about the new parameter interval [−2, 2],
keep in mind that there’s nothing special about the parameter interval [0, 1]
we use most often, other than that it’s convenient to write. Parameter
intervals can be any [a, b], with a < b. In the case above, [−2, 2] helps avoid
fractions.

The corners (C1-discontinuities, to be precise) at u = ±1, where the
straight parts of f meet the parabolic, are undesirable though, because
discontinuities in the blending function will carry over to discontinuities in
the approximating curve employing such a function. It’ll be nice to be rid of
them. How do we get a parabolic part to join a straight part without making
a corner? Oddly enough, Figure 16.4(a) suggests a solution. Consider the
part of the parabola f(u) = u2 to the right of the y-axis and the (straight)
part of the x-axis to the left of the y-axis: they meet smoothly at the origin!
See Figure 16.5.

u

f(u) = u2

Figure 16.5: The right
wing of the parabola
f(u) = u2 meeting the
straight left half of the
x-axis smoothly at the
origin.

So here’s the next draft. For u ≤ 0 and u ≥ 4, define f(u) to be 0,
giving two long straight parts; define f(u) = u2 between 0 and 1; and,
f(u) = (u − 4)2 between 3 and 4. See the blue curves in Figure 16.6.
Particularly, f(u) = u2 in [0, 1] is part of the right wing of the parabola of
Figure 16.4(a), while f(u) = (u− 4)2 in [3, 4] from the left wing of the same
parabola (but shifted 4 units to the right). The two quadratics meet the
straight parts smoothly, so that’s taken care of, but there’s a piece missing
in between (pretend you don’t see the black curve!). Now, if we could only
find a quadratic to sit smoothly atop the two side quadratics and cap the
gap.

It turns out that a fairly intuitive choice works: drag f(u) = u2 two units
to the right, flip it upside down and then raise it two units. The equation
is f(u) = −(u − 2)2 + 2, giving the black curve in Figure 16.6. We leave 609



i
i

i
i

i
i

i
i

Chapter 16

B-Spline

verification to the reader in the next two exercises.

u

(1, 1) (3, 1)

2

1

0 21 3 4
0f(u) = 0 f(u) = 0

f(u) = −(u−2)2 +2 

f(u) = u2 f(u) = (u−4)2

Figure 16.6: Five-part function: three parabolic and two straight parts. Joints are
black points.

Exercise 16.3. Show that the curve f(u) = −(u− 2)2 + 2 indeed meets
f(u) = u2 at (1, 1) and f(u) = (u− 4)2 at (3, 1).

Exercise 16.4. Show that at each of the four joints (0, 0), (1, 1), (3, 1) and
(4, 0) of the five-part function depicted in Figure 16.6 the tangent lines of
the curves on either side are equal. Therefore, there is no C1-discontinuity
at a joint and the function is C1-continuous everywhere.

Part answer : At (1, 1), where u = 1, the tangent on the left is from f(u) = u2

and on the right from f(u) = −(u − 2)2 + 2. Now, d
duu

2 = 2u, which is 2

at u = 1, and d
du (−(u− 2)2 + 2) = −2(u− 2), which is also 2 at u = 1, so,

indeed, the tangent lines on either side of the joint (1, 1) are equal.

For the record, here’s the 5-line formula specifying f :

f(u) =


0, u ≤ 0
u2, 0 ≤ u ≤ 1

−(u− 2)2 + 2, 1 ≤ u ≤ 3
(u− 4)2, 3 ≤ u ≤ 4

0, 4 ≤ u

(16.2)

f has support in [0, 4] and, from the preceding exercise, is C1-continuous
throughout. Moreover, if its parameter interval is chosen to be an interval
larger than [0, 4], e.g., [−2, 6], then we have indeed a C1-continuous blending
function with limited support.

The moral then is to look for blending functions among the class of
piecewise polynomial functions: a function is piecewise polynomial if its
domain can be split into subintervals in each of which it’s polynomial.
For example, f above is composed of five polynomial pieces. From a
computational point of view, evaluating a piecewise polynomial is not much610
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harder than evaluating a polynomial. If one thinks in terms of C or C++ code,
then there is simply an extra if/else ladder to determine the appropriate
subinterval and corresponding polynomial.

The piecewise polynomials to be used as blending functions must be cho-
sen carefully though. For example, looking back at Propositions 15.1 and 15.3
of the last chapter, it’s desirable for the set of blending functions to form
a partition of unity over the parameter space. Good things happen then:
(a) points on the curve (or surface) are convex combinations of its control
points, so the whole lies in the convex hull of its control points and (b) affine
invariance.

Writing down all the properties we want, then, we put together a Wish
List for blending functions. We ask that they

(a) be at least a C1-continuous piecewise polynomial,

(b) be of a low degree independent of the number of control points,

(c) each have support in only part of the parameter space, and,

(d) together form a partition of unity over the parameter space.

We’re indeed led to B-splines.

16.2 B-Spline Curves

Let’s set the stage for the B-spline blending functions (or, as they are also
called, B-spline functions , or B-splines , or spline functions) that we are going
to define. Each will be piecewise polynomial, in other words, polynomial on
subintervals. In anticipation, then, let’s fix a particular parameter space and
chop it up into subintervals. For convenience now, we choose [0, r], where r
is some positive integer, and its r subintervals to be the equally sized

[0, 1], [1, 2], . . . , [r − 1, r]

1 r20

Figure 16.7: Parameter
space [0, r] with
uniformly-spaced knots.

See Figure 16.7. The sequence

{0, 1, . . . , r}

of successive interval endpoints is called the knot vector and the endpoints
0, 1, . . . , r themselves, knots . Each subinterval [i, i+1], for 0 ≤ i ≤ r−1, is a
knot interval . We expect to define blending functions which are polynomial
in each knot interval.

Remark 16.1. A knot vector as above with equally spaced knots is called
a uniform knot vector. Later in this chapter we’ll see non-uniform knot
vectors as well.

Remark 16.2. The “B” in B-splines, the name given these functions by
Schoenberg [127], a pioneer in their use, comes from “basis”. 611
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16.2.1 First-Order B-Splines

We’ll start at the lowest level possible and define the B-splines of degree
0 by means of constant functions. There are r B-splines of degree 0, each
equal to 1 on one knot interval and 0 outside it. Precisely, the ith B-spline
of degree 0, for 0 ≤ i ≤ r − 1, denoted Ni,1, is defined as follows.

When i = 0:

N0,1(u) =

{
1, 0 ≤ u ≤ 1
0, otherwise

(16.3)

When 1 ≤ i ≤ r − 1:

Ni,1(u) =

{
1, i < u ≤ i+ 1
0, otherwise

(16.4)

(a) (b)
r − 1

1 1

210 r r − 1210 r

Nr−1,1N0,1 N1,1

Figure 16.8: First-order B-splines: (a) N0,1 (b) Non-zero parts of Ni,1, 0 ≤ i ≤ r − 1,
distinguished by alternate blue and black colors.

In other words, each Ni,1 is 1 on the knot interval [i, i + 1], except,
possibly, at the endpoints, and 0 outside it. Figure 16.8(a) shows the graph
of N0,1 over the entire parameter space [0, r], while Figure 16.8(b) only
the non-zero parts of the graphs of Ni,1, for 0 ≤ i ≤ r − 1. The niggling
technicality – see the first line of the two equations above – of having to
define N0,1 to be 1 on a closed interval, while the other B-splines of degree
0 are equal to 1 on a half-open interval, is unavoidable. For, we want the r
B-splines of degree 0 to form together a partition of unity over [0, r], so no
two are allowed to be 1 at the same point.

Experiment 16.1. Run bSplines.cpp, which shows the non-zero parts
of the spline functions from first order to cubic over the uniformly spaced
knot vector

[0, 1, 2, 3, 4, 5, 6, 7, 8]612
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Press the up/down arrow keys to choose the order. Figure 16.9 is a screenshot
of the first order. The knot values can be changed as well, but there’s no
need to now. End

Figure 16.9: Screenshot
of bSplines.cpp at first
order.

B-splines of degree 0 are commonly called first-order B-splines. If the
knot vector is uniform, as above, they are called uniform first-order B-splines.

Interestingly, as the reader may easily verify, all items on the Wish List
at the end of Section 16.1 are fulfilled by the first-order B-splines, except for
C1-continuity, where, in fact, they fail badly because the Ni,1 are not even
continuous (i.e., not even C0-continuous). As we see next, unfortunately,
this deficiency carries over to approximating curves made from first-order
B-splines as well.

First-Order B-Spline Curves

A first-order B-spline approximation of r control points P0, P1, . . . , Pr−1 is
called a first order B-spline curve. This is the curve c obtained from applying
the first-order B-splines as blending functions to these control points, namely,

c(u) =

r−1∑
i=0

Ni,1(u)Pi (0 ≤ u ≤ r) (16.5)

What sort of a curve is c? Well, one would be hard pressed to call c a curve in
the first place! Applying the definitions of Ni,1 from Equations (16.3)-(16.4)
to Equation (16.5) above, one sees that c is stationary at P0 for u from 0 to
1. When u crosses 1, c jumps to P1, staying stationary again till u crosses 2,
when c jumps to P2 and so on. The graph of c is then just the collection
of its own control points! See Figure 16.10. Obviously, if there are even
two distinct control points then c is not C0. Clearly, we’ll have to move to
higher orders of B-splines for satisfaction.

P0

P1

P2

P3

P4

P5

Figure 16.10: First-order B-spline approximation – the “curve” consists of its control
points.

613
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First-order B-Spline Properties

However, before leaving the first order, here are a few of their properties for
future reference:

1. Each Ni,1 is piecewise polynomial, consisting of at most three pieces,
each of which is constant.

2. Ni,1 has support in the single knot interval [i, i+ 1].

3. Each Ni,1 is not C0 only at the endpoints of its supporting interval;
elsewhere, it’s C∞. In other words, it’s smooth – remember from
Definition 10.7 that C∞ is also called smooth – apart from its joints.

4. Together, the Ni,1 form a partition of unity over the parameter space
[0, r].

5. Except for N0,1, the Ni,1 are translates of one another, i.e., the graph
of one is a translate of that of another. This is a consequence of the
knots being uniformly spaced.

6. A first-order B-spline approximation is, generally, not even C0.

16.2.2 Linear B-Splines

The clear problem with first-order B-splines is that their polynomial degree 0
is too low, allowing them little flexibility in shape. Straight and horizontal is
all they can be. Let’s go one higher to degree 1. We’ll do this in a particular
way which will be easy to generalize down the road.

The trivial formula that

1 = u+ (−u+ 1) (16.6)

allows one to “break” each B-spline Ni,1, of degree 0, into two functions N0
i,1

and N1
i,1 of degree 1. For example, N0,1 breaks into N0

0,1 and N1
0,1, where

N0
0,1(u) =

{
u, 0 ≤ u ≤ 1
0, otherwise

(16.7)

and N1
0,1(u) =

{
−u+ 1, 0 ≤ u ≤ 1

0, otherwise
(16.8)

The two obviously add up to give back N0,1, viz.

N0,1(u) = N0
0,1(u) +N1

0,1(u) (16.9)

Ni,1, when i > 0, can likewise be broken into N0
i,1 and N1

i,1, where

N0
i,1(u) =

{
u− i, i < u ≤ i+ 1

0, otherwise
(16.10)614
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and N1

i,1(u) =

{
−u+ i+ 1, i < u ≤ i+ 1

0, otherwise
(16.11)

which actually applies the i-shift of (16.6), in particular, 1 = (u− i) + (−u+
i+ 1). And, again

Ni,1(u) = N0
i,1(u) +N1

i,1(u) (16.12)

Figure 16.11 shows the two parts of each first-order B-spline. For obvious
reasons, we call the N0

i,1’s “up” and the N1
i,1’s “down”. The up parts are all

left or right translates of one another, as are the down parts, except that
the technicality that their values at the left end of the knot interval [0, 1]
are different from those at the left end of other knot intervals persists from
first-order.

0 1 2 rr − 1

1
N0,1 Nr−1,1N1,1

N0,1
0

N0,1
1

Figure 16.11: First-order B-splines each broken into an up part (dashed) N0
i,1 and a

down part (dotted) N1
i,1. Successive Ni,1’s are distinguished by color.

Remark 16.3. This is important! For future reference, think of what we
have just done as the following: each Ni,1 is broken into two functions
over its support, one obtained from multiplying Ni,1 by a straight-line
function increasing from 0 to 1 from the left end of its support to the right
(namely, u− i), while the other from multiplying it by a straight-line function
decreasing from 1 to 0 over the same interval (namely, −u+ i+ 1).

Equations (16.9) and (16.12) evidently guarantee that N0
i,1 and N1

i,1,
for 0 ≤ i ≤ r − 1, together form a partition of unity because the Ni,1,
0 ≤ i ≤ r − 1, do. But there are 2r of the former, which is twice as many as
we need to blend r control points. Figure 16.11, in fact, suggests a way to pair
them up nicely – join each up part to the following down part! Accordingly,
define the second-order B-splines (or linear B-splines), for 0 ≤ i ≤ r − 2, as
follows:

Ni,2(u) = N0
i,1(u) +N1

i+1,1(u) =


0, u ≤ i

u− i, i ≤ u ≤ i+ 1
−u+ i+ 2, i+ 1 ≤ u ≤ i+ 2

0, i+ 2 ≤ u

(16.13)

615



i
i

i
i

i
i

i
i

Chapter 16

B-Spline

Figure 16.12 shows the non-zero parts of the linear B-splines Ni,2, 0 ≤
i ≤ r − 2, on the domain [0, r]. See the magic: pairing has removed all
C0-discontinuities! The linear B-splines are each continuous everywhere.

new parameter space

20 1

1

r3 4 r − 1r − 2

N0,2 N2,2 Nr−2,2N1,2

Figure 16.12: Non-zero parts of linear B-splines. Each is an inverted V. Successive ones
are distinguished by color. The down part in the first knot interval and the up part in
the last are discarded. The new (truncated) parameter space is [1, r − 1].

Figure 16.13: Screenshot
of bSplines.cpp at
second-order.

Experiment 16.2. Run again bSplines.cpp and select the linear B-
splines over the knot vector

[0, 1, 2, 3, 4, 5, 6, 7, 8]

Figure 16.13 is a screenshot. End

Exercise 16.5. Verify that the multi-part formula above for Ni,2(u) indeed
follows from joining up and down parts (using the equations for N0

i,1 and

N1
i,1 given earlier).

Remark 16.4. The technicality at the left endpoint of a supporting interval
is now gone. The definition of Ni,2 is the same for all i in 0 ≤ i ≤ r − 2.

Remark 16.5. Second-order B-splines as defined above are often called
uniform linear B-splines to emphasize the use of a uniform knot vector.

Note that the down part N1
0,1 of N0,1 and the up part N0

r−1,1 of Nr−1,1
have no partners, so are discarded, which is why we have r−1 linear B-splines
Ni,2, for i = 0 to r − 2, versus the r first-order B-splines we started with.
It’s clear from Figure 16.12 that the parameter space must be truncated
from [0, r] to [1, r − 1] as well, for, otherwise, there’s a problem with the
partition-of-unity property in the two end knot intervals [0, 1] and [r − 1, r].
Once this is done, though, we’re in good shape, or at least in significantly
better shape than the first-order B-splines. All items in the Wish List at the
end of Section 16.1 are now fulfilled except for C1-continuity, but now the
functions are at least C0, if not quite C1 (because of corners at the joints).616
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Linear B-Spline Curves

What sort of curve is the linear B-spline approximation c of r − 1 control
points P0, P1, . . . , Pr−2, which uses the linear B-splines as blending functions?
It’s defined as follows:

c(u) =
r−2∑
i=0

Ni,2(u)Pi (1 ≤ u ≤ r − 1) (16.14)

Exercise 16.6. Verify that the linear B-spline approximation c given by
Equation (16.14) is the polygonal line through the control points in the
sequence they are given. See Figure 16.14, where r = 7. This is certainly
more respectable a curve than the first-order approximation.

P0

P1

P2

P3

P4

P5

Figure 16.14: Linear B-spline approximation.

Terminology : A B-spline approximation of a sequence of control points is
often called a B-spline curve, a spline curve or, simply, a spline. There is
ambiguity sometimes, therefore, with the terminology for B-spline blending
functions, but it’ll be clear from the context if the term refers to a blending
function or an approximating curve.

Linear B-Spline Properties

Here’s a list of properties of linear B-splines similar to the one made earlier
for first-order B-splines:

1. Each Ni,2 is piecewise polynomial, consisting of at most four pieces,
each of which is linear, except for zero end pieces.

2. Ni,2 has support in [i, i+2], the union of two consecutive knot intervals.

3. Each Ni,2 is C0, but not C1, at its joints. Apart from its joints it’s
smooth everywhere.

4. Together, the Ni,2 form a partition of unity over the parameter space
[1, r − 1]. 617
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5. The Ni,2 are translates of one another.

6. A linear B-spline approximation is C0, but, generally, not C1.

16.2.3 Quadratic B-Splines

Linear B-splines are certainly preferable to first-order ones, but we’re still
shy of C1-continuity. If we could raise the degree of the polynomial pieces
yet again, from 1 to 2, we might do better continuity-wise.

It turns out that the approach introduced in the last section of breaking
first-order B-splines into up and down parts of one higher degree, and then
pairing them up to make linear ones, generalizes. Consider first N0,2, graphed
in Figure 16.15(a). Recall Remark 16.3: to breakN0,2 into two, multiply it
by a straight-line function increasing from 0 at the left end of its support
to 1 at the right, as well as by the complementary function decreasing from
1 to 0. Since the supporting interval of N0,2 is [0, 2], the two straight-line
functions called for are u/2 and −u/2 + 1, respectively, which are shown in
Figure 16.15(a) as well.

(a) (b)
20 1 20 1

1

u/2

1

1/2
1−u/2

N0,2 N0,2

0N0,2
1N0,2

Figure 16.15: (a) The graphs of the two straight-line multiplying functions for N0,2,
one dashed and one dotted (b) The result of the multiplication: the up part N0

0,2

(dashed) and the down part N1
0,2 (dotted).

Accordingly, break N0,2 as follows:

N0,2 =
u

2
N0,2 + (−u

2
+ 1)N0,2 (16.15)

where the up part – it’s not really increasing any more but we’ll stick with
the term – is

N0
0,2(u) =

u

2
N0,2 =


0, u ≤ 0

1
2u

2, 0 ≤ u ≤ 1
− 1

2u
2 + u, 1 ≤ u ≤ 2

0, 2 ≤ u

(16.16)

618



i
i

i
i

i
i

i
i

Section 16.2

B-Spline Curves

and the down part is

N1
0,2(u) = (−u

2
+ 1)N0,2 =


0, u ≤ 0

− 1
2u

2 + u, 0 ≤ u ≤ 1
1
2u

2 − 2u+ 2, 1 ≤ u ≤ 2
0, 2 ≤ u

(16.17)

The graphs of the two parts, resembling opposing shark fins, are shown in
Figure 16.15(b).

Exercise 16.7. Verify the formulae for N0
0,2 and N1

0,2 by multiplying that
for N0,2 by u/2 and −u/2 + 1, respectively.

The other linear B-splines Ni,2, for 1 ≤ i ≤ r−2, can similarly be broken.
Figure 16.16 shows the graphs of the up and down parts.

0 1 2

1

rr − 2 r − 13

1/2

4

N0,2 Nr−2,2N1,2 N2,2

Figure 16.16: Linear B-splines each broken into an up (dashed) part N0
i,2 and down

(dotted) part N1
i,2. Successive ones are distinguished by color.

Next, as in the first-order case, pair them up, adding each up part to the
down part of the following linear B-spline. Non-zero pieces of the up and
down parts did not overlap in the first-order case, so adding meant simply
splicing graphs end to end. Now we do actually have to add on the overlaps.

And again magic! Two adjacent and opposing shark fins, one dashed
and the other dotted, both with a sharp corner in the middle, add up to
a smooth-looking floppy hat! See Figure 16.17. Precisely, the up part of
one linear B-spline adds to the down part of the following one to make a
quadratic B-spline (or, third order B-spline).

Figure 16.17 explains exactly what’s happening. The graph of N0
0,2 is

blue dashed, while that of N1
1,2 black dotted. The graph N0,3 of their sum

consists of the outer blue dashed arc on [0, 1], the outer black dotted arc
on [2, 3] and the unbroken red arc on [1, 2] in the middle, the latter being
the sum of the inner blue dashed and the inner black dotted. So it’s in the
middle interval [1, 2] that actual summing takes place. We’ll see the summed
equation itself momentarily. 619
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+

0 1 2

1

3

1/2

=

0N0,2
1N0,2

N0,3

Figure 16.17: Adding N0
0,2 and N1

1,2 to make N0,3. N0,3 consists of three parts: on

[0, 1] it’s just N0
0,2, on [2, 3] it’s N1

1,2, while in the middle, on [1, 2] it is the sum of N0
0,2

and N1
1,2.

Experiment 16.3. Run again bSplines.cpp and select the quadratic
B-splines over the knot vector

[0, 1, 2, 3, 4, 5, 6, 7, 8]

Figure 16.18 is a screenshot. Note the joints indicated as black points. End

Figure 16.18: Screenshot
of bSplines.cpp at third
order.

N0,3 is the first quadratic B-spline. Figure 16.19 depicts the sequence of
quadratic B-splines Ni,3, 0 ≤ i ≤ r − 3, on the domain [0, r].

new parameter spaceleft quad

middle quad

(1, 1/2)

right quad

210 3

1/2

3/4

1

(2, 1/2)

r5 64 r − 2r − 3 r − 1

N0,3 Nr−3,3N3,3N1,3 N2,3

Figure 16.19: Non-zero parts of the quadratic B-splines; the four joints of the first one
are indicated as points as well. Successive splines are distinguished by color.

Now for the equations of the quadratic B-splines. As they are evidently
translates of one another, it’s sufficient to write only that of the first one:

N0,3(u) = N0
0,2(u) +N1

1,2(u) =


0, u ≤ 0

1
2u

2, 0 ≤ u ≤ 1
3
4 − (u− 3

2 )2, 1 ≤ u ≤ 2
1
2 (−u+ 3)2, 2 ≤ u ≤ 3

0, 3 ≤ u

(16.18)
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Exercise 16.8. Verify the preceding formula with the help of (16.16) and
(16.17). Don’t forget to shift the second equation one unit to the right for
the formula for N1

1,2.

Exercise 16.9. Use Equation (16.18) to determine the equation of N1,3(u)
and, generally, Ni,3(u).

Exercise 16.10. Verify that the first quadratic B-spline N0,3 is C1

everywhere by differentiating the functions on the RHS of (16.18) and
comparing the tangents on either side at each joint (which is only where
discontinuity might occur). The four joints of N0,3, with x-values 0, 1, 2
and 3, are indicated in Figure 16.19.

Differentiating again, verify that N0,3 is not C2 at its joints.

As the quadratic B-splines are translates one of one another, it follows
from the preceding exercise that they are all C1 everywhere, though not C2

at their joints.

Remark 16.6. Compare the 5-line formulas (16.2) and (16.18) to see that
we’ve come now full circle back to almost the same piecewise quadratic
blending function which we used to motivate B-splines in the first place!

As in the linear case, the parameter space must be truncated, this time
to [2, r− 2], to ensure that the partition-of-unity property holds. The key to
keep in mind is that partition-of-unity holds in those knot intervals on which
there is defined a left, a middle and a right quadratic arc – from successive
quadratic B-splines.

Pop the champagne bottle: we now officially have every item on the
Wish List!

Quadratic B-Spline Curves

So what sort of curve is the quadratic B-spline approximation c of r − 2
control points P0, P1, . . . , Pr−3, defined by

c(u) =

r−3∑
i=0

Ni,3(u)Pi (2 ≤ u ≤ r − 2) (16.19)

where the quadratic B-splines are used as blending functions?
First, and importantly, since the quadratic B-splines are all C1, so is

a quadratic B-spline approximation. We’ve gained at least respectable
continuity then. However, as we ask the reader to show next, the property
of interpolating the first and last control points has been lost (though not
on our Wish List, this, nevertheless, is desirable).

Exercise 16.11. Prove that the quadratic spline curve c defined by
Equation (16.19) begins at the midpoint of P0 and P1, ends at the midpoint
of Pr−4 and Pr−3 and doesn’t necessarily interpolate any of the control
points. See Figure 16.20. 621
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P0

P1

P2

P3

P4

P5

Figure 16.20: Quadratic B-spline approximation.

Darn, just when we thought things were going our way, a potentially
nasty bug rears its ugly head. Not to worry, as soon as we are able to loosen
up the knot vector from being uniform, we’ll be happily interpolating first
and last control points again.

Figure 16.21: Screenshot
of quadraticSpline-
Curve.cpp.

Experiment 16.4. Run quadraticSplineCurve.cpp, which shows the
quadratic spline approximation of nine control points over a uniformly
spaced vector of 12 knots. Figure 16.21 is a screenshot.

The control points are green. Press the space bar to select a control point
– the selected one turns red – and the arrow keys to move it. The knots are
the green points on the black bars at the bottom. At this stage there is no
need to change their values. The blue points are the joints of the curve, i.e.,
images of the knots. Also drawn in light gray is the control polygon. End

Exercise 16.12. What part of the quadratic spline curve c approximating
the control points P0, P1, . . . , Pr−3 is altered by moving only Pi? Your
answer should be in terms of an arc of c between a particular pair of its
joints. Verify using quadraticSplineCurve.cpp.

Quadratic B-Spline Properties

A list of properties for quadratic B-splines:

1. Each Ni,3 is piecewise polynomial, consisting of at most five pieces,
each of which is quadratic, except for zero end pieces.

2. Ni,3 has support in [i, i + 3], the union of three consecutive knot
intervals.

3. Each Ni,3 is C1, but not C2, at its joints. Apart from its joints it’s
smooth everywhere.

4. Together, the Ni,3 form a partition of unity over the parameter space
[2, r − 2].

5. The Ni,3 are translates of one another.622
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6. A quadratic B-spline approximation is C1, but, generally, not C2.

When placing it on our Wish List, we expected to be rewarded
for the partition-of-unity property by felicitous behavior of the B-spline
approximating curves. The reader is asked to show next that indeed we are.

Exercise 16.13.

(a) Prove that the quadratic spline curve approximating a sequence of
control points lies in the convex hull of the latter.

(b) Affine invariance: prove that an affine transformation of a quadratic
spline curve is the same as the quadratic spline curve approximating
the transformed control points.

16.2.4 Cubic B-Splines

We’re going to ask you to do most of the lifting in this section.
To start with, break the first quadratic B-spline N0,3 into two parts: an

“up” part obtained from multiplying it by a straight-line function increasing
from 0 at the left end of its support to 1 at the right end and a “down” part
from multiplying it by the complementary function decreasing from 1 to 0
over its support. Here’s the equation showing the split:

N0,3 =
u

3
N0,3 + (−u

3
+ 1)N0,3 (16.20)

Exercise 16.14. Write equations for the up part

N0
0,3(u) =

u

3
N0,3

and the down part

N1
0,3(u) = (−u

3
+ 1)N0,3

in a manner analogous to Equations (16.16) and (16.17) for the quadratic
B-splines. Both up and down parts are piecewise cubic.

Exercise 16.15. Verify by adding N0
0,3(u) and N1

1,3(u) that the equation
of the first cubic B-spline is:

N0,4(u) =



0, u ≤ 0
p(2− u), 0 ≤ u ≤ 1
q(2− u), 1 ≤ u ≤ 2
q(u− 2), 2 ≤ u ≤ 3
p(u− 2), 3 ≤ u ≤ 4

0, 4 ≤ u

(16.21)

where the functions p and q are given by:

p(u) =
1

6
(2− u)3 623
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and

q(u) =
1

6
(3u3 − 6u2 + 4)

See Figure 16.22.

joint

40 321

1/6

2/3

1

0

q(u−2)

p(u−2)

q(2−u)

p(2−u) joint

joint

joint joint

Figure 16.22: The first cubic B-spline function N0,4.

Exercise 16.16. Verify that cubic B-splines are C2, but not C3, at their
joints.

Exercise 16.17. Sketch the sequence of cubic B-splines Ni,4, for 0 ≤ i ≤
r − 4, over [0, r] similarly to Figure 16.19 for quadratic B-splines. What
should be the new parameter range?

Experiment 16.5. Run bSplines.cpp and change the order to see a
sequence of cubic B-splines. End

Cubic B-Spline Curves

The cubic spline curve c approximating r− 3 control points P0, P1, . . . , Pr−4
is obtained as

c(u) =
r−4∑
i=0

Ni,4(u)Pi (3 ≤ u ≤ r − 3) (16.22)

Figure 16.23: Screenshot
of
cubicSplineCurve1.cpp.

Experiment 16.6. Run cubicSplineCurve1.cpp, which shows the cubic
spline approximation of nine control points over a uniformly-spaced vector
of 13 knots. The program is similar to quadraticSplineCurve.cpp. See
Figure 16.23 for a screenshot.

The control points are green. Press the space bar to select a control
point – the selected one is colored red – then the arrow keys to move it. The
knots are the green points on the black bars at the bottom. The blue points
are the joints of the curve. The control polygon is a light gray. End624



i
i

i
i

i
i

i
i

Section 16.2

B-Spline Curves

Cubic B-Spline Properties

A list of properties for cubic B-splines:

1. Each Ni,4 is piecewise polynomial, consisting of at most six pieces,
each of which is cubic, except for zero end pieces.

2. Ni,4 has support in [i, i+4], the union of four consecutive knot intervals.

3. Each Ni,4 is C2, but not C3, at its joints. Apart from its joints it’s
smooth everywhere.

4. Together, the Ni,4 form a partition of unity over the parameter space
[3, r − 3].

5. The Ni,4 are translates of one another.

6. A cubic B-spline approximation is C2, but, generally, not C3.

Remark 16.7. Cubic B-splines are the most commonly used in design
applications, because they offer the best trade-off between continuity and
computational efficiency.

16.2.5 General B-Splines and Non-uniform Knot
Vectors

It’s probably evident now how to manufacture B-splines of arbitrary order
over the uniform knot vector {0, 1, . . . , r}. One would apply the break-and-
make procedure to B-splines of each order to derive ones of one higher order.
We formalize the derivation of B-splines of arbitrary order over {0, 1, . . . , r}
recursively as follows:

Definition 16.1. The first-order B-splines Ni,1, 0 ≤ i ≤ r−1, are as defined
in Section 16.2.1.

Suppose, recursively, that the B-splines Ni,m−1, for 0 ≤ i ≤ r −m+ 1,
have been defined for some order m− 1 ≥ 1. Then define the ith B-spline
Ni,m of order m, for 0 ≤ i ≤ r −m, by the equation:

Ni,m(u) =

(
u− i
m− 1

)
Ni,m−1(u) +

(
i+m− u
m− 1

)
Ni+1,m−1(u) (16.23)

Equation (16.23) comes from a straightforward application of break-and-
make. The summand (

u− i
m− 1

)
Ni,m−1(u)

is the up part of Ni,m−1(u) obtained from multiplying it by the straight-line
function (u− i)/(m− 1) increasing from 0 at i, the left end of its support,
to 1 at i+m− 1, the right end. 625
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Likewise, the summand(
i+m− u
m− 1

)
Ni+1,m−1(u)

is the down part of Ni+1,m−1(u) obtained from multiplying it by the straight-
line function (i+m− u)/(m− 1) decreasing from 1 to 0 from the left end
i+ 1 to the right i+m of its support.

Terminology : The degree of a B-spline is that of its polynomial pieces, while
its order is its degree plus one.

Exercise 16.18. Make a six-point list of properties for uniform B-splines
of the mth order like the ones earlier for uniform lower-order splines.

Before proceeding further, though, we are going to loosen restrictions on
the knot vector, which till now had been the uniform sequence

{0, 1, . . . , r}

Keep in mind that the operative word is uniform, in particular, that knots
are equally spaced; it does not matter that they are integers. For instance,
if the knot vector were of the form

{a, a+ δ, a+ 2δ, . . . , a+ rδ}

for some a, and some δ > 0, e.g.,

{1.3, 2.8, 4.3, . . . , 1.3 + 1.5r}

all calculations made so far would clearly go through again, though with
different (and awkward) number values, and all properties of B-splines
deduced previously would hold, too.

The restriction of uniformity is removed by allowing the knot vector to
be any sequence of knots of the form

T = {t0, t1, . . . , tr}

where the ti are non-decreasing , i.e.,

t0 ≤ t1 ≤ . . . ≤ tr (16.24)

Such knot vectors are called non-uniform. Yes, successive knots can even
be equal and such so-called multiple knots have important applications, as
we’ll see.

Remark 16.8. The term non-uniform knot vector is a little unfortunate
in that it actually means not necessarily uniform, because a uniform knot
vector evidently satisfies (16.24) as well!626
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Hmm, do we start afresh working our way up from first-order splines,
this time around over non-uniform knot vectors? Not at all. Pretty much all
our earlier discussions go through again, including break-and-make. Without
further ado then, here’s the recursive definition of B-splines over non-uniform
knot vectors.

Definition 16.2. Let

T = {t0, t1, . . . , tr} (16.25)

be a non-uniform knot vector, where r ≥ 1.
The (non-uniform) first-order B-spline functions Ni,1, for 0 ≤ i ≤ r − 1,

are defined as follows.
When i = 0:

N0,1(u) =

{
1, t0 ≤ u ≤ t1
0, otherwise

(16.26)

When 1 ≤ i ≤ r − 1:

Ni,1(u) =

{
1, ti < u ≤ ti+1

0, otherwise
(16.27)

The (non-uniform) mth order B-spline functions Ni,m, where the order
m lies within 1 < m ≤ r, and the index i in 0 ≤ i ≤ r −m, are recursively
defined by:

Ni,m(u) =

(
u− ti

ti+m−1 − ti

)
Ni,m−1(u) +

(
ti+m − u
ti+m − ti+1

)
Ni+1,m−1(u)

(16.28)

Note: The convention to follow in case the denominator of either of the two
fractional terms is 0 – which may occur if there are equal knots – is the
following: if the term is of the form 0

0 , then declare its value to be 1; if it is
of the form a

0 , where a is not 0, then declare its value to be 0.

This recursive formula (16.28), discovered by Cox, de Boor and Mansfield
independently in 1972, known accordingly as the Cox-de Boor-Mansfield
(CdM) formula or recurrence, was an important milestone in B-spline theory.
However, it’s really straightforward for us to understand now, given our
development of the topic so far:

Equations (16.26) and (16.27), respectively, replicate, with obvious
changes, (16.3) and (16.4) for first-order B-splines over a uniform knot
vector. Equation (16.28) follows (16.23). It formalizes break-and-make – the
summands are the up and down parts, respectively, of two successive spline
functions of one lower order. Figure 16.24 shows graphs of all four functions
on the RHS of Equation (16.28). 627
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1 (ti+1, 1) (ti+m−1, 1)ti+m − u

u − ti  

ti+m − ti+1

ti+m−1 − ti

ti+m

Ni+1,m−1(u)

Ni,m−1(u)

ti+m−1ti+1ti

Figure 16.24: Graphs of the functions on the RHS of Equation (16.28): Ni,m−1 and

Ni+1,m−1 and their respective linear multipliers u−ti
ti+m−1−ti

and
ti+m−u

ti+m−ti+1
.

Figure 16.25 shows the graphs of the first-order B-splines over a non-
uniform knot vector, while Figure 16.26 those of linear B-splines over the
same knot vector.

The equations of the spline functions themselves are a little more
complicated than in the case of integer knots for the simple reason that
they now involve variables for knot values. For example, here’s the equation,
analogous to (16.18), for the first quadratic B-spline over a non-uniform
knot vector:

N0,3(u) =


0, u ≤ t0

u−t0
t2−t0

u−t0
t1−t0 , t0 ≤ u ≤ t1

u−t0
t2−t0

t2−u
t2−t1 + t3−u

t3−t1
u−t1
t2−t1 , t1 ≤ u ≤ t2

t3−u
t3−t1

t3−u
t3−t2 , t2 ≤ u ≤ t3

0, t3 ≤ u

(16.29)

Not pretty, but B-spline computations are invariably done recursively, so a
formula like this rarely needs to be written explicitly.

Experiment 16.7. Run again bSplines.cpp. Change the knot values
by selecting one with the space bar and then pressing the left/right arrow
keys. Press delete to reset knot values. Note that the routine Bspline()

implements the CdM formula (and its convention for 0 denominators).
In particular, observe the quadratic and cubic spline functions. Note

how they lose their symmetry about a vertical axis through the center, and
that no longer are they translates of one another.

Play around with making knot values equal – we’ll soon be discussing
the utility of multiple knots.

Figures 16.27(a) and (b) are screenshots of the quadratic and cubic
functions, respectively, both over the same non-uniform knot vector with a
triple knot at the right end. End

628
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0
0

1 Nr−1,1N0,1 N1,1 N2,1 N3,1

t2 t4t1 t3 tr−1 trt0

Figure 16.25: Non-zero parts of the first-order B-splines over a non-uniform knot
vector.

0

1

0t0 t1 t2 t3 t4 tr−1tr−2 tr

N0,2 Nr−2,2N1,2 N2,2

Figure 16.26: Non-zero parts of the linear B-splines over a non-uniform knot vector.

Example 16.1. Find the values of (a) N3,3(5) and (b) N4,3(5), if the knot
vector is {0, 1, 2, 3, 4, 5, 5, 5, 6, 7, . . .}, the non-negative integers, except that
5 has multiplicity three.

Answer : The successive knot values are

t0 =0, t1 =1, t2 =2, t3 =3, t4 =4, t5 =5, t6 =5, t7 =5, t8 =6, t9 =7, . . .

(a) Instantiating the CdM formula (16.28):

N3,3(u) =
u− t3
t5 − t3

N3,2(u) +
t6 − u
t6 − t4

N4,2(u)

Plugging in u = 5 and the given knot values:

N3,3(5) =
5− 3

5− 3
N3,2(5) +

5− 5

5− 4
N4,2(5) = N3,2(5) (16.30)

Using CdM again,

N3,2(u) =
u− t3
t4 − t3

N3,1(u) +
t5 − u
t5 − t4

N4,1(u) 629
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(a) (b)

Figure 16.27: Screenshots of bSplines.cpp over a non-uniform knot vector with a
triple knot at the right end: (a) Quadratic (b) Cubic.

so that

N3,2(5) =
5− 3

4− 3
N3,1(5) +

5− 5

5− 4
N4,1(5)

= 2 ∗ 0 + 0 ∗ 1 (from Equations (16.26) and (16.27))

= 0

Taking the above back to (16.30) we have

N3,3(5) = 0

(b)

N4,3(u) =
u− t4
t6 − t4

N4,2(u) +
t7 − u
t7 − t5

N5,2(u)

giving

N4,3(5) =
5− 4

5− 4
N4,2(5) +

5− 5

5− 5
N5,2(5)

= N4,2(5) +
0

0
N5,2(5)

= N4,2(5) + N5,2(5) (using convention 0
0 = 1) (16.31)

Using CdM again,

N4,2(u) =
u− t4
t5 − t4

N4,1(u) +
t6 − u
t6 − t5

N5,1(u)

so that

N4,2(5) =
5− 4

5− 4
N4,1(5) +

5− 5

5− 5
N5,1(5)

= 1 ∗ 1 + 1 ∗ 0 (note by (16.27) that N5,1 is zero everywhere)

= 1 (16.32)630
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CdM again gives

N5,2(u) =
u− t5
t6 − t5

N5,1(u) +
t7 − u
t7 − t6

N6,1(u)

implying

N5,2(5) =
5− 5

5− 5
N5,1(5) +

5− 5

5− 5
N6,1(5)

= 1 ∗ 0 + 1 ∗ 0

= 0 (16.33)

Using (16.32) and (16.33) in (16.31) we have

N4,3(5) = 1

Exercise 16.19. Find the values of N5,3(5) and N6,3(5) for the same knot
vector as in the preceding example.

Exercise 16.20. Compute N4,3(7) again over the knot vector of the
preceding example. You will have to invoke the convention that a

0 = 0,
if a is not 0.

General B-Spline Curves

The mth order B-spline approximation c of r − m + 1 control points
P0, P1, . . . , Pr−m is the curve obtained by applying the mth order B-splines
as blending functions. Its equation is:

c(u) =
r−m∑
i=0

Ni,m(u)Pi (tm−1 ≤ u ≤ tr−m+1) (16.34)

Figure 16.28: Screenshot
of quadraticSpline-
Curve.cpp with one double
knot and one triple knot.

Experiment 16.8. Run again quadraticSplineCurve.cpp. Press ‘k’ to
enter knots mode and alter knot values using the left/right arrow keys and
‘c’ to return to control points mode. Press delete in either mode to reset.

Try to understand what happens if knots are repeated. Do you notice
a loss of C1-continuity when knots in the interior of the knot vector
coincide? What if knots at the ends coincide? Figure 16.28 is a screenshot
of quadraticSplineCurve.cpp with a double knot at 5 and a triple at the
end at 11. End

Exercise 16.21. Can you find an arrangement of the knots for the
quadratic spline curve to interpolate its first and last control points?

Exercise 16.22. Why does changing the value of only the first, or only
the last knot, not affect the quadratic spline curve? 631
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Experiment 16.9. Run again cubicSplineCurve1.cpp. Press ‘k’ to enter
knots mode and alter knot values using the left/right arrow keys and ‘c’ to
return to control points mode. Press delete in either mode to reset. End

Exercise 16.23. Can you find an arrangement of the knots so that the
cubic spline curve interpolates its first and last control points?

Exercise 16.24. What part of the mth order spline curve c approximating
the control points P0, P1, . . . , Pr−m is altered by moving only Pi? Your
answer should be in terms of an arc of c between a particular pair of its
joints.

We collect information about mth order B-spline functions and their
corresponding approximating spline curves in the following proposition.

Proposition 16.1. Let

T = {t0, t1, . . . , tr}

be a non-uniform knot vector, where r ≥ 1.
The mth order B-spline functions Ni,m, for some order m lying within

1 ≤ m ≤ r, and, where 0 ≤ i ≤ r −m, satisfy the following properties:

(a) Each Ni,m is piecewise polynomial, consisting of at most m+ 2 pieces,
each of which is a degree m − 1 polynomial, except possibly for zero
end pieces.

(b) Ni,m has support in [ti, ti+m], the union of m consecutive knot intervals.

(c) If the knots in T are distinct, each Ni,m is Cm−2, but not Cm−1, at
its joints. In this case, apart from its joints, each Ni,m is smooth
everywhere.

(d) The Ni,m together form a partition of unity over the parameter space
[tm−1, tr−m+1].

(e) Every point of the mth order B-spline approximation c of r −m+ 1
control points P0, P1, . . . , Pr−m, defined by Equation (16.34), over the
parameter space [tm−1, tr−m+1], is a convex combination of the control
points and lies inside their convex hull.

(f) (Affine Invariance) If g : R3 → R3 is an affine transformation, and c
is the mth order B-spline approximation of r −m+ 1 control points
P0, P1, . . . , Pr−m in R3, then the image curve g(c) is the mth order
B-spline approximation of the images g(P0), g(P1), . . . , g(Pr−m) of the
control points.

(g) If the knots in T are distinct, the mth order B-spline approximation c
of r−m+1 control points P0, P1, . . . , Pr−m defined by Equation (16.34)
is Cm−2, but, generally, not Cm−1.632
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Proof. The proofs are a straightforward technical slog and we’ll not write
them out. 2

The following relation for a B-spline curve is useful to remember:

number of knots = number of control points + order (16.35)

Exercise 16.25. Deduce (16.35).
Hint : Count the number of knots and control points in (16.34).

Non-uniform Knot Vectors

So, of what use are non-uniform knot vectors?
One is to be able to control the influence that a control point has over

an approximating curve. For example, consider the cubic spline curve c
approximating control points P0, P1, . . . over the knot vector {t0, t1, . . .}, as
in Figure 16.29(a), which shows a few intermediate control points. Moving
control point, say, P5 alters only the arc of c between a = c(t5) and b = c(t9),
as N5,4 has support in [t5, t9]. Consequently, the closer or farther apart are
the knots from t5 to t9, the more concentrated or diffuse the influence of
P5. This generalizes, of course, to all Pi, allowing the designer to vary the
domain of influence of control points by rearranging knots.

new control points

c
= new joint

(a) (b)

c

b = c(t9) b = c(t10)
P5

P6

P7
P8

a = c(t5) a = c(t5)
c(t6)

P´5

P´7P´6

P´8
P´9

c(t7)
c(t8)

c(t6)
c(t7)

c(t8)
c(t9)

Figure 16.29: (a) Part of a cubic spline curve (b) With a new knot inserted.

Another practical consequence of non-uniform knot vectors is the
technique of knot insertion, implemented in many commercial modelers,
to allow the designer increasingly fine control over part of a spline curve.
Clearly, the more knot images (joints, that is) there are in an arc of a curve,
the more control points have influence over it and, therefore, the more finely
it can be edited. Refer again to Figure 16.29(a). Currently, the shape of
the arc between a and b is determined by the four control points P5, P6,
P7 and P8. If one could insert a new knot, say, between t6 and t7 without 633
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changing the shape of the curve, there would then be five control points,
instead of four, acting upon the same arc, affording the designer an added
level of control.

Knots can, in fact, be inserted without changing either the shape of a
spline curve or its degree, though, with a newly computed set of control
points. See Figure 16.29(b), where a new knot has been inserted between
t6 and t7, giving rise to a corresponding new joint. The joints have been
re-labeled in sequence and a (hypothetical) new set of control points shown.
We’ll not go into the theory of knot insertion ourselves, referring the reader
instead to more mathematical texts such as Buss [22], Farin [45] and Piegl
& Tiller [111].

Multiple Knots

Coincident knots – multiple knots and repeated knots are the terms most
commonly used – have a special application.

We’ll motivate our discussion with a running example using the knot
vector

T = {t0 =0, t1 =1, t2 =2, t3 =3, t4 =3, t5 =4, t6 =5, t7 =6, . . .}

which has a double knot at t3 = t4 = 3. Generally, the multiplicity of a knot
is the number of times it repeats.

The graphs of some of the B-spline functions over T are shown in
Figure 16.30.

Exercise 16.26. Verify that the graphs of the first-order B-splines over T
are correctly depicted in the top row of Figure 16.30 by applying the defining
Equations (16.26) and (16.27). In particular, the first-order B-splines are all 1
on their supporting intervals, excluding possibly endpoints, and 0 elsewhere,
except for N3,1, which is 0 throughout.

Exercise 16.27. Derive the equations of the linear B-splines from the
first-order ones – by plugging m = 2 into the recursive Equation (16.28) –
to verify their graphs in the second row of Figure 16.30, as well as at the
leftmost in the third. In particular, the linear B-splines over T are all C0

and translates of one another, except for N2,2 and N3,2, neither of which is
C0.

Unfortunately, the artifact of vertical edges in the display when knots
coincide makes it tricky to use bSplines.cpp to visually verify the linear B-
spline graphs in Figure 16.30. However, there is no such issue with quadratic
B-splines, so we ask the reader to do the following.

Exercise 16.28. (Programming) Arrange the knots of bSplines.cpp
to make their nine successive values 0, 1, 2, 3, 3, 4, 5, 6 and 7, which are the
first few knots of T . Then verify visually the graphs of the five quadratic634
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31 2 654

1

0

31 2 6540

31 2 6540

31 2 6540 31 2 6540 31 2 6540

31 2 6540 31 2 6540

31 2 6540 31 2 6540

31 2 6540 31 2 6540

1

1

1

11

1 1

1 1 1

1

N2,1 N3,1

N1,2 N2,2 N3,2

N4,1

N4,2 N1,3N0,3

N2,3 N4,3N3,3

Figure 16.30: B-spline functions over the knot vector T = {0, 1, 2, 3, 3, 4, 5, . . .} with a
double knot at 3 (distinguished inside a box).

B-splines in Figure 16.30. In fact, all the quadratic B-splines over T are C1

and translates of one another, except for N1,3, N2,3 and N3,3, which are C0

but not C1.

Next, we investigate the behavior of the approximating B-spline curve in
the presence of repeated knot values.

Exercise 16.29. Use Equation (16.34) and the graphs already drawn of
the first-order and linear spline functions over T to verify that the first-
order and linear spline curves approximating nine control points – arranged,
alternately, in two horizontal rows – are correctly drawn in Figures 16.31(a)
and (b), respectively.

In particular, the first-order approximation loses the control point P3

(drawn hollow) altogether, while the linear approximation loses the segment
P2P3 and, therefore, is no longer C0.

635
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(a)

P5

P0

P1

P2

P3

P4 P6

P7

P8

P5

P0

P1

P2

P3

P4 P6

P7

P8

(b)

Figure 16.31: (a) First-order and (b) linear spline curves over the knot vector
T = {0, 1, 2, 3, 3, 4, 5, 6, 7, . . .}, approximating nine control points arranged alternately in
two horizontal rows. The (hollow) control point P3 is the only one missing from the
first-order “curve”, which consists of the remaining eight points. The second-order curve
is the polyline P0P1 . . . P8 minus P2P3.

Experiment 16.10. Use the programs quadraticSplineCurve.cpp and
cubicSplineCurve1.cpp to make the quadratic and cubic B-spline approx-
imations over the knot vector T = {0, 1, 2, 3, 3, 4, 5, 6, 7, . . .} of nine control
points placed as in Figure 16.31(a) (or (b)). See Figure 16.32(a) and (b) for
screenshots of the quadratic and cubic curves, respectively.

(a) (b)

Figure 16.32: Screenshots of (a) quadraticSplineCurve.cpp and
(b) cubicSplineCurve1.cpp over the knot vector T = {0, 1, 2, 3, 3, 4, 5, 6, 7, . . .} and
approximating nine control points arranged in two horizontal rows.

The quadratic approximation loses C1-continuity precisely at the control
point P2, which it now interpolates as the curve point c(3). It’s still C0

everywhere.
It’s not easy to discern visually, but the cubic spline drops from C2 to

C1-continuous at c(3). End

Let’s see next what happens with even higher multiplicity.

Experiment 16.11. Continuing with cubicSplineCurve1.cpp with636
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control points as in the preceding experiment, press delete to reset and
then make equal t4, t5 and t6, creating a triple knot. Figure 16.33 is a
screenshot of this configuration. Evidently, the control point P3 is now
interpolated at the cost of a drop in continuity there to mere C0. Elsewhere,
the curve is still C2. End

Figure 16.33: Screenshot
of cubicSplineCurve1.cpp
with a triple knot.

It seems, generally, that repeating a knot increases the influence of a
particular control point, to the extent that if the repetition is sufficient then
that control point itself is interpolated, though at the cost of continuity at
the control point itself. This does not appear to be a particularly appealing
trade-off unless a low-continuity artifact, e.g., a corner, is itself a design goal.

Let’s examine more closely how the loss arises – evidently, because of
the difference in the value of the derivative (of some order) of c on either
side of a control point P . For example, the tangents to the arcs on either
side of the interpolated control point P2 of the quadratic spline curve in
Figure 16.32(a) are different.

Consider now if P were an endpoint of c. Then continuity cannot be lost
by derivatives differing on the two sides of P , for the simple reason that the
curve is only to one side! And, yet, there is no reason why the influence
of P cannot still be increased by repeating knots. We are on our way to
recovering the property of interpolating end control points that was lost at
first by quadratic spline curves.

Experiment 16.12. Make the first three and last three knots separately
equal in quadraticSplineCurve.cpp (Figure 16.34(a)). Make the first
four and last four knots separately equal in cubicSplineCurve1.cpp

(Figure 16.34(b)). The first and last control points are interpolated in
both. Do you notice any impairment in continuity? No! End

(a) (b)

Figure 16.34: Screenshots of (a) quadraticSplineCurve.cpp and
(b) cubicSplineCurve1.cpp, both with knots repeated at the end to interpolate the first
and last control points. 637
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Generally, if the first m and last m knots of an mth order spline curve are
coincident, and there are no other multiple knots, then the curve interpolates
its first and last control points without losing Cm−2-continuity anywhere. In
fact, a knot vector which starts and ends with a multiplicity of m and whose
intermediate knots are uniformly spaced is called a standard knot vector .

A standard knot vector for a quadratic spline with nine control points is

{0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 7, 7}

The above is the canonical (and simplest) way to write standard knot vectors,
though, for example

{2.7, 2.7, 2.7, 3.5, 4.3, 5.1, 5.9, 6.7, 7.5, 8.3, 8.3, 8.3}

would be equivalent.
The size of the standard knot vector is calculated from formula (16.35),

viz.
number of knots = number of control points + order

when given the two quantities on its RHS.

Exercise 16.30. Jot down a standard knot vector for a quadratic spline
over 10 control points and for a cubic spline over 9 control points.

Exercise 16.31. Use the CdM formula to show that N0,3(t2) = 1 over the
standard knot vector

T = {0, 0, 0, 1, 2, . . . , r − 6, r − 5, r − 5, r − 5}

of size r for a quadratic spline. Use this to prove that the quadratic spline

c(u) =
r−3∑
i=0

Ni,3(u)Pi (t2 = 0 ≤ u ≤ r − 5 = tr−2)

approximating the r−m+ 1 control points Pi, 0 ≤ i ≤ r−m, over T indeed
interpolates the first one, in particular, c(t2) = P0.

For the record here’s a proposition:

Proposition 16.2. A spline curve over a standard knot vector interpolates
its first and last control points.

Proof. The proof is a generalization of the preceding exercise to establish
that the first control point is always interpolated. We’ll leave the reader to
do this by an induction. That the last control point is interpolated as well
follows by symmetry. 2

The use of a standard knot vector for splines bequeaths yet another Bézier-
like property – recall Proposition 15.1(f) – in addition to the interpolation
of the end control points:638
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Proposition 16.3. The tangent lines at the endpoints of a spline curve
over a standard knot vector each pass through the adjacent control point.

Proof. We’ll not prove this in full generality, but only for quadratic splines
in the next example. The general proof is not difficult, but tedious. 2

Example 16.2. Prove that the tangent lines at the endpoints of a
quadratic spline curve over a standard knot vector each pass through the
adjacent control point.

Answer : We’ll show that the tangent vector at the first control point passes
through the second. The result at the other end follows by symmetry.

For quadratic splines, the standard knot vector is

T = {0, 0, 0, 1, 2, . . .}

The quadratic spline curve approximating the control points P0, P1, P2, . . .
is

c(u) = N0,3(u)P0 +N1,3(u)P1 +N2,3(u)P2 +N3,3(u)P3 + . . .

Now, the blending functions Ni,3, for i ≥ 3, all vanish in [t2, t3] = [0, 1].
Consequently, in [0, 1]:

c(u) = N0,3(u)P0 +N1,3(u)P1 +N2,3(u)P2

Plugging the standard knot vector values into formula (16.29) for N0,3

we get
N0,3(u) = 1− 2u+ u2, u ∈ [0, 1]

One can use (16.29) to determine N1,3(u) as well by incrementing the
subscripts on its RHS by 1. This gives

N1,3(u) = 2u− 3

2
u2, u ∈ [0, 1]

Likewise, it’s found that

N2,3(u) =
1

2
u2, u ∈ [0, 1]

Therefore,

c(u) = (1− 2u+ u2)P0 + (2u− 3

2
u2)P1 + (

1

2
u2)P2, u ∈ [0, 1]

Differentiating,

c′(u) = (−2 + 2u)P0 + (2− 3u)P1 + uP2, u ∈ [0, 1]

Plugging in u = 0, one sees that

c′(0) = 2(P1 − P0)

which is indeed in the direction from P0 to P1.

We see it’s for good reason, therefore, that standard knot vectors are
most often used in B-spline design. 639
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Exercise 16.32. Proposition 16.1(e) says that a spline curve is contained
in the convex hull of (all) its control points. Prove the stronger statement
that a spline curve of order m can be divided into successive stretches that
each lie in the convex hull of only some m of its control points.

Bézier Curves and Spline Curves

It turns out that Bézier curves are special cases of spline curves:

Proposition 16.4. The (n + 1)th order Bézier curve approximating the
n+ 1 control points

P0, P1, . . . , Pn

coincides with the (n+1)th order spline curve approximating the same control
points over the particular standard knot vector

{0, 0, . . . , 0, 1, 1, . . . , 1}

consisting of n+ 1 0’s followed by n+ 1 1’s.

Proof. Again, in the following example, we’ll restrict ourselves to estab-
lishing the quadratic case, leaving the general proof by induction to the
mathematically inclined reader. 2

Example 16.3. Show that the quadratic Bézier curve approximating the
three control points P0, P1 and P2 coincides with the quadratic spline curve
approximating the same control points over the particular standard knot
vector {0, 0, 0, 1, 1, 1}.

Answer : Recall from the previous chapter that the Bézier curve approxi-
mating P0, P1 and P2 is

cB(u) = (1− u)2P0 + 2(1− u)uP1 + u2P2, u ∈ [0, 1]

The quadratic spline approximating the same three points over the knot
vector T = {t0 =0, t1 =0, t2 =0, t3 =1, t4 =1, t5 =1} is

cS(u) = N0,3(u)P0 +N1,3(u)P1 +N2,3(u)P2, u ∈ [t2, t3] = [0, 1]

Therefore, we must show that spline blending functions of the preceding
equation match the Bernstein polynomial blending functions of the one
before it, over the knot interval [0, 1]. Refer to formula (16.29) for N0,3. The
fourth line on the RHS gives

N0,3(u) =
t3 − u
t3 − t1

t3 − u
t3 − t2

= (1− u)2

(after plugging in the knot values t0 = t1 = t2 = 0 and t3 = 1)640
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in t2 = 0 ≤ u ≤ 1 = t3, confirming a match with the first Bernstein
polynomial.

We can use (16.29) for N1,3 as well, making sure to increment the
subscripts on the RHS by 1. This gives

N1,3(u) =
u− t1
t3 − t1

t3 − u
t3 − t2

+
t4 − u
t4 − t2

u− t2
t3 − t2

= 2(1− u)u

(after plugging in the knot values t0 = t1 = t2 = 0 and t3 = 1)

in 0 ≤ u ≤ 1, matching the second Bernstein polynomial. We’ll leave the
reader to verify that N2,3(u) = u2, u ∈ [0, 1], completing the answer.

In the opposite direction, the following is true because spline curves are
piecewise polynomial (from the way they are constructed) and polynomial
curves are Bézier (from Proposition 15.2).

Proposition 16.5. A spline curve is piecewise Bézier. 2

Exercise 16.33. Why is it not possible that the preceding proposition can
somehow be strengthened to say that spline curves are, in fact, Bézier, not
just piecewise?
Hint : Bézier curves are smooth throughout.

16.3 B-Spline Surfaces

The construction of B-spline surfaces as a continuum of B-spline curves
parallels exactly the construction of Bézier surfaces from Bézier curves
described in Section 15.2. See Figure 16.35 for the following.

Suppose that we are given an (n+ 1)× (n′ + 1) array of control points

Pi,j , for 0 ≤ i ≤ n, 0 ≤ j ≤ n′

and two spline orders m and m′, and a knot vector

T = {t0, t1, . . . , tr}, whose size satisfies |T | = r + 1 = n+ 1 +m

(to ensure that number of knots = number of control points + order) and
another knot vector

T ′ = {t0, t1, . . . , t′r}, whose size satisfies |T ′| = r′ + 1 = n′ + 1 +m′

Think of the control points array as n+ 1 different sequences, each of
n′ + 1 control points. In particular, the ith sequence, for 0 ≤ i ≤ n, consists
of Pi,0, Pi,1, . . . , Pi,n′ , lying along the ith row of the control points array.
Construct the m′th order B-spline curve ci, for 0 ≤ i ≤ n, approximating
the ith sequence, each using the knot vector T ′ over the parameter space
[tm′−1, tr′−m′+1]. 641
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P0,n´

P1,0

c0(v)

cv

cn

c1

c0

c1(v)

cn(v)Pn,0

P0,0

P1,1

Pn,1

P0,1

Pn,n´

P1,n´

Figure 16.35: Constructing the B-spline surface approximating an array of control
points by sweeping a B-spline curve. The B-spline curves depicted all interpolate both
end control points, which need not always be the case in practice.

For each v in tm′−1 ≤ v ≤ tr′−m′+1, generate the mth order B-spline
curve cv approximating the control points sequence c0(v), c1(v), . . . , cn(v),
using the knot vector T over the parameter space [tm−1, tr−m+1]. The union
of all these B-spline curves cv, for tm′−1 ≤ v ≤ tr′−m′+1, then, is the B-spline
surface s approximating the control points array Pi,j , 0 ≤ i ≤ n, 0 ≤ j ≤ m.
One may imagine s as being swept by cv, as v varies from tm′−1 to tr′−m′+1.

Exercise 16.34. Prove that the parametric equation of the B-spline surface
s constructed as above is

s(u, v) =
n∑
i=0

n′∑
j=0

NT
i,m(u)NT ′

j,m′(v)Pi,j (16.36)

for tm−1 ≤ u ≤ tr−m+1 and tm′−1 ≤ v ≤ tr′−m′+1, and where NT
i,m

(respectively, NT ′

j,m′) denotes the B-spline function Ni,m over the knot vector
T (respectively, Nj,m′ over T ′).

In other words, the surface is obtained from applying the blending
function NT

i,m(u)NT ′

j,m′(v) to the control point Pi,j , over the parameter
domain tm−1 ≤ u ≤ tr−m+1, tm′−1 ≤ v ≤ tr′−m′+1.
Hint : Mimic the proof of (15.16) for a Bézier surface.

Exercise 16.35. Formulate an analogue for B-spline surfaces of Proposi-
tion 16.1 for curves.

We’ve given thus far an account of NURBS (non-uniform rational B-
spline) theory, except for the ‘R’, or rational, part. Instead of generally642
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rational, our functions have all been polynomial. You could say that we have
covered NUPBS, or simply NUBS, as the default for B-splines is polynomial!
We’ll put the ‘R’ into NURBS in Chapter 18 with the help of projective
spaces.

16.4 Drawing B-Spline Curves and Surfaces

NURBS – the full-blown rational version of B-splines – curves and surfaces
are implemented in the GLU library of OpenGL. Now that we have a fair
amount of the theory, the GLU NURBS interface will turn out to be fairly
simple to use, as the mapping between theory and syntax is almost one-to-
one. We’ll, of course, restrict ourselves to polynomial B-spline primitives for
now, leaving the rational ones to a later chapter.

16.4.1 B-Spline Curves

We had already used OpenGL to draw polynomial B-spline curves in
the programs quadraticSplineCurve.cpp and cubicSplineCurve1.cpp

earlier this chapter, without caring then about the drawing syntax itself.
Let’s look at this now.

The command

gluNurbsCurve(*nurbsObject, knotCount, *knots, stride, *controlPoints,
order, type)

defines a B-spline curve which is pointed by nurbsObject . The parameter
knotCount is the number of knots in the knot vector – a one-dimensional
array – pointed by knots. The parameter order is the order of the spline
curve, controlPoints points to the one-dimensional array of control points,
and stride is the number of floating point values between the start of the
data set for one control point and that of the next in the control points array.
The number of control points is not explicitly specified, but computed by
OpenGL with the help of (16.35):

number of control points = number of knots – order

The parameter type is GL MAP1 VERTEX 3 or GL MAP1 VERTEX 4, according
as the spline curve is polynomial or rational.

A gluNurbsCurve() command must be bracketed between a gluBegin-
Curve()-gluEndCurve() pair of statements. The following statements from
the drawing routine of quadraticSplineCurve.cpp, defining a quadratic
B-spline curve approximating nine control points, should now be clear:

gluBeginCurve(nurbsObject);

gluNurbsCurve(nurbsObject, 12, knots, 3, ctrlpoints[0], 3,

GL_MAP1_VERTEX_3);

gluEndCurve(nurbsObject); 643
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Exercise 16.36. Refer to Section 10.3.1 for the syntax of the com-
mand glMap1f() defining a Bézier curve and compare it with that of
gluNurbsCurve().

There are certain initialization steps to be completed prior to a
gluNurbsCurve() call. First, gluNewNurbsRenderer() returns the pointer
to a NURBS object, which is passed to the subsequent gluNurbsCurve()

call. Then optional gluNurbsProperty() calls control the quality of the
rendering. They can activate as well a callback interface. There are several
possible attributes for gluNurbsProperty() and we refer to the red book
for details. Our own usage is kept to a simple minimum – the relevant
statements from the setup() routine of quadraticSplineCurve.cpp are
the following:

nurbsObject = gluNewNurbsRenderer();

gluNurbsProperty(nurbsObject, GLU_SAMPLING_METHOD, GLU_PATH_LENGTH);

gluNurbsProperty(nurbsObject, GLU_SAMPLING_TOLERANCE, 10.0);

The last two statements specify that the longest length of a line segment in
a strip approximating a NURBS curve (or that of a quad edge, in the case
of a mesh approximating a NURBS surface) is at most 10.0 pixels.

Experiment 16.13. Change the last parameter of the statement

gluNurbsProperty(nurbsObject, GLU_SAMPLING_TOLERANCE, 10.0);

in the initialization routine of quadraticSplineCurve.cpp from 10.0 to
100.0. The fall in resolution is noticeable. End

If you are wondering whether a B-spline curve can be drawn in a
manner similar to that using glMapGrid1f() followed by glEvalMesh1()

for a Bézier curve – sampling the curve uniformly through the parameter
domain – the answer is yes. We don’t use them ourselves but the
needed calls are gluNurbsProperty(*nurbsObject, GLU SAMPLING METHOD,

GLU DOMAIN DISTANCE) and gluNurbsProperty(*nurbsObject, GLU U STEP,

value). The reader is referred to the red book for implementation details.

Figure 16.36: Screenshot
of cubicSplineCurve2-
.cpp.

Experiment 16.14. Run cubicSplineCurve2.cpp, which draws the cubic
spline approximation of 30 movable control points, initially laid out on a
circle, over a fixed standard knot vector. Press space and backspace to cycle
through the control points and the arrow keys to move the selected control
point. The delete key resets the control points. Figure 16.36 is a screenshot
of the initial configuration.

The number of control points being much larger than the order, the user
has good local control. End

Exercise 16.37. (Programming) Use cubicSplineCurve2.cpp to
draw two smooth closed loops like those in Figure 16.37.

644
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Figure 16.37: Use cubicSplineCurve2.cpp to draw a man and his cat.

16.4.2 B-Spline Surfaces

The OpenGL syntax for a B-spline surface is a straightforward extension
of that for a B-spline curve. The gluNurbsSurface() command, which
must be bracketed between a gluBeginSurface()-gluEndSurface() pair
of statements, has the following form:

gluNurbsSurface(*nurbsObject, uknotCount, *uknots, vknotCount, *vknots,
ustride, vstride, *controlPoints, uorder, vorder, type)

*vknots points to the knot vector used with the control point row, in other
words, to make the parameter curves ci in the discussion in Section 16.3 of
a B-spline curve sweeping a surface; *uknots points to the knot vector used
with the control point columns, i.e., to make the curves cv in that discussion.

The parameter vknotCount is the number of knots in the vector pointed
by *vknots, vorder is the order of the B-spline curves ci and vstride is the
number of floating point values between the data set for one control point and
the next in a row of the control points array. The parameters uknotCount ,
uorder and ustride represent similar values for the control point columns.

The parameter type is GL MAP2 VERTEX 3 or GL MAP2 VERTEX 4 for
polynomial or rational surfaces, respectively; it can have other values as well
to specify surface normals and texture coordinates.

Figure 16.38: Screenshot
of bicubicSpline-
Surface.cpp.

Experiment 16.15. Run bicubicSplineSurface.cpp, which draws a
spline surface approximation to a 15 × 10 array of control points, each
movable in 3-space. The spline is cubic in both parameter directions and a
standard knot vector is specified in each as well.

Press the space, backspace, tab and enter keys to select a control point.
Move the selected control point using the arrow and page up and down keys.
The delete key resets the control points. Press ‘x/X’, ‘y/Y’ and ‘z/Z’ to
turn the surface. Figure 16.38 is a screenshot. End

Exercise 16.38. (Programming) Use bicubicSplineSurface.cpp to
draw a hilly terrain and a boat.

645
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16.4.3 Lighting and Texturing a B-Spline Surface

Lighting and texturing a B-spline surface is similar to doing likewise for a
Bézier surface. Normals are required for lighting and the quickest way to
create normals for a B-spline surface is to generate them automatically with
a call, as for Bézier surfaces, to glEnable(GL AUTO NORMAL).

And, again as for Bézier surfaces, determining texture coordinates for a
B-spline surface requires, first, the creation of a “fake” B-spline surface in
texture space on the same parameter rectangle as the real one – the reader
should review if need be the discussion in Section 12.4 on specifying texture
coordinates for a Bézier surfaces. OpenGL, subsequently, assigns as texture
coordinates to the image on the real surface of a particular parameter point
the image of that same point on the fake surface in texture space. Code will
clarify.

Figure 16.39: Screenshot
of bicubicSplineSurface-
LitTextured.cpp.

Experiment 16.16. Run bicubicSplineSurfaceLitTextured.cpp, which
textures the spline surface of bicubicSplineSurface.cpp with a red-white
chessboard texture. Figure 16.39 is a screenshot. The surface is illuminated
by a single positional light source whose location is indicated by a large black
point. User interaction remains as in bicubicSplineSurface.cpp. Note
that pressing the ‘x’-‘Z’ keys turns only the surface, not the light source.

The bicubic B-spline surface, as well as the fake bilinear one in texture
space, are created by the following statements in the drawing routine:

gluBeginSurface(nurbsObject);

gluNurbsSurface(nurbsObject, 19, uknots, 14, vknots,

30, 3, controlPoints[0][0], 4, 4, GL_MAP2_VERTEX_3);

gluNurbsSurface(nurbsObject, 4, uTextureknots, 4, vTextureknots,

4, 2, texturePoints[0][0], 2, 2, GL_MAP2_TEXTURE_COORD_2);

gluEndSurface(nurbsObject);

We’ll leave the reader to parse in particular the third statement and verify
that it creates a “pseudo-surface” – a 10× 10 rectangle – in texture space
on the same parameter domain [0, 12]× [0, 7] as the real one. End

Exercise 16.39. (Programming) Light and texture the B-spline
surfaces you created for Exercise 16.38.

16.4.4 Trimmed B-Spline Surface

A powerful design tool is to trim (i.e., excise or remove) part of a B-spline
surface. Here, first, is what happens theoretically.

Say the parametric specification of a surface s is given to be

x = f(u, v), y = g(u, v), z = h(u, v), where (u, v) ∈W = [u1, u2]×[v1, v2]

The parametric equations map the rectangle W from uv-space onto the
surface s in xyz-space. Moreover, a loop (closed curve) c on W maps to a
loop c′ on s. See Figure 16.40.646
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Figure 16.40: The loop c on the parameter space W is mapped to the loop c′ on the
surface s by the parametric equations for s. Then s is trimmed by c.

If the part of s inside, or outside, the loop c′ is excised, then s is said to
be trimmed by the loop c (probably, more accurate would be to say that it
is trimmed by c′, but the given usage is common). Figure 16.40 shows the
inside trimmed. Loop c itself is called the trimming loop.

OpenGL allows B-spline surfaces to be trimmed. We use the program
trimmedBicubicBsplineSurface.cpp, as a running example to explain
OpenGL syntax for trimming.

Experiment 16.17. Run trimmedBicubicBsplineSurface.cpp, which
shows the surface of cubicBsplineSurface.cpp trimmed by multiple loops.
The code is modified from bicubicBsplineSurface.cpp, functionality
remaining same. Figure 16.41(a) is a screenshot. End

All the code relevant to trimming is in the drawing routine:

gluBeginSurface(nurbsObject);

gluNurbsSurface(nurbsObject, 19, uknots, 14, vknots,

30, 3, controlPoints[0][0], 4, 4, GL_MAP2_VERTEX_3);

gluBeginTrim(nurbsObject);

gluPwlCurve(nurbsObject, 5, boundaryPoints[0], 2,

GLU_MAP1_TRIM_2);

gluEndTrim(nurbsObject);

gluBeginTrim(nurbsObject);

gluPwlCurve(nurbsObject, 11, circlePoints[0], 2,

GLU_MAP1_TRIM_2);

gluEndTrim(nurbsObject);

gluBeginTrim(nurbsObject);

gluNurbsCurve(nurbsObject, 10, curveKnots, 2, curvePoints[0], 4,

GLU_MAP1_TRIM_2);

gluEndTrim(nurbsObject);

gluEndSurface(nurbsObject); 647
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v

u

(0, 7)

(0, 0)

(12, 7)
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rectangular polyline 
trimming loop

circular polyline 
trimming loop

(a) (b)

B-spline 
trimming loop

Figure 16.41: (a) Screenshot of trimmedBicubicBsplineSurface.cpp (b) The three
trimming loops – two polygonal and one B-spline.

Points to note:

1. Each trimming loop is defined within a gluBeginTrim()-gluEndTrim()
pair of statements, which itself must lie within the gluBeginSurface()-
gluEndSurface() pair. The trimming loop definitions are located after
the gluNurbsSurface() definition.

2. Each trimming loop must be a closed curve in the parameter space.

3. There are two ways to define a trimming loop:

(a) As a polygonal line loop defined by a

glPwlCurve(*nurbsObject, pointsCount, *pointsArray,
stride, type)

statement, where pointsCount is the number of vertices in an
array of the form {v0, v1, . . . , vn} pointed by pointsArray (it is
required that v0 = vn).

There are two such polyline trimming loops in the program (see
Figure 16.41(b)):

(i) The five vertices (first and last equal) of one are in the array
boundaryPoints, describing the rectangular boundary of the
parameter space itself, oriented counter-clockwise. We’ll soon
see why this particular bounding trimming loop is required.

(ii) The eleven vertices (again, first and last equal) of the other
are in the array circlePoints, equally spaced along a circle,
oriented clockwise.

(b) As a B-spline loop defined by

gluNurbsCurve(nurbsObject, knotCount, *knots, stride,
*controlPoints, order, type)648
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In the program there is a single such B-spline trimming loop,
whose six control points (first and last equal) are in the array
curvePoints oriented clockwise (Figure 16.41(b)).

4. The part outside a trimming loop oriented counter-clockwise is trimmed,
while that inside a trimming loop oriented clockwise is trimmed.

Accordingly, the first trimming polyline loop of the program, which
bounds the parameter space going counter-clockwise, trims off the
exterior of the drawn surface, not trimming the surface itself per se.
The other two trimming loops actually create holes in the surface.

Exercise 16.40. (Programming) Draw a terrain with a few extinct
volcanoes (or smoking ones if you like particle systems).

16.5 Summary, Notes and More Reading

We have learned a fair amount of the theory underlying the widely-used class
of 3D design primitives – B-splines, both curves and surfaces. Emphasis was
on motivating each new concept. We did not want to pull stuff out of a hat.
A test if we were successful is for the reader to deduce some formula, e.g.,
(16.18) for the first quadratic B-spline N0,3 over a uniform knot vector or the
Cox-de Boor-Mansfield recurrence (16.28), using just pencil and paper, and
not referring again to the text! This chapter prepares the reader, as well,
for the rational version of the theory – NURBS – coming up in Chapter 18.

As for OpenGL, we learned not only how to draw B-spline curves and
surfaces, but to illuminate, texture and trim the latter as well.

While B-spline theory is extensive, material we covered in this chapter
of the polynomial B-spline primitives, together with what is covered in
Chapter 18 of NURBS, is ample for an applications programmer to function
knowledgeably. However, the reader is well-advised to expand her knowledge,
particularly, of such practical topics as “knot insertion”, “degree elevation”,
etc. It’s easy enough given the number of excellent books available – Bartels
et al. [10], Farin [45], Mortenson [94], Piegl & Tiller [111] and Rogers &
Adams [118] are a few that come to mind. The mathematically inclined
reader, in particular, will find much to fascinate her in the more specialized
nooks and crannies. Advanced 3D CG books, e.g., Akenine-Möller, Haines
& Hoffman [1], Buss [22], Slater et al. [135] and Watt [147], should each
have a thorough presentation of B-spline theory as well.

B-spline functions were first studied in the 1800s by the Russian
mathematician Nicolai Lobachevsky. However, the modern theory began
with Schoenberg’s [126] application of spline functions to data smoothing
and received particular impetus with the discovery in 1972 of the recursive
formula (16.28) for B-spline functions by Cox [30], de Boor [34] and Mansfield.
It has since seen explosive growth and B-spline (and NURBS) primitives are
de rigueur in modern-day CG design. 649
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O
ur objective in this chapter is to learn a method of interpolating
a set of control points, in other words, finding a curve (or surface)
that passes through each. Bézier curves, as we know, mandatorily

interpolate only their first and last control points, while Bézier surfaces only
the four corner control points. B-spline curves and surfaces of quadratic
and higher degree do not necessarily interpolate any of their control points.
Nevertheless, we learned in Section 16.2.5 how to force a B-spline curve to
interpolate a control point by raising the multiplicity of a knot. In fact, the
so-called standard knot vector, with repeated end knots, is often used to
ensure the interpolation of end control points.

However, if a designer wishes to draw a curve or surface interpolating
all its control points, then it’s best to apply an intrinsically interpolating
technique, rather than try to coax an approximating one like Bézier or
B-spline into interpolating. A popular class of interpolating curves is that of
the Hermite splines and this short chapter introduces this class, together
with two special subclasses, that of the natural cubic splines and the cardinal
splines. We discuss Hermite surface patches, as well, to interpolate 2D arrays
of control points.

We begin with a discussion of general Hermite splines in Section 17.1.
These curves, unfortunately, are guaranteed only to be piecewise smooth –
they can have corners at control points. Moreover, the user is required to
specify tangent vectors at all the control points. The subclass of natural cubic
splines, the topic of Section 17.2, automatically determines these tangent
vectors by imposing an additional C2-continuity requirement. Cardinal
splines, in Section 17.3, are based upon yet another scheme to automatically
specify tangent vectors at control points.

We make a brief presentation of Hermite surfaces in Section 17.4 and
conclude in Section 17.5. 651
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17.1 Hermite Splines

A Hermite spline, also called a cubic spline, interpolating a sequence
P0, P1, . . . , Pn of n+ 1 control points, is a piecewise cubic curve c passing
through the control points. Each cubic arc of c joins successive pairs of
control points, so that the entire spline comprises n cubic arcs joined end
to end. Figure 17.1 shows a Hermite spline through four control points on
a plane. There are corners at the middle two because the tangents of the
cubics on either side don’t agree.

Terminology : A cubic arc is a part of a cubic curve; e.g., an arc of the graph
of y = x3 is a cubic arc on the plane. Sometimes we’ll loosen cubic to mean
a polynomial of degree at most three, rather than exactly three.

P1

P2

P3

P0

Figure 17.1: A (non-smooth) Hermite spline through four control points, composed of
three cubic arcs.

Remark 17.1. Hermite splines are named after the nineteenth-century French
mathematician Charles Hermite.

Remark 17.2. Curves of degree higher than three could be used to
interpolate, or even lower, e.g., quadratic. However, three is a “Goldilocks”
degree: a happy medium value, high enough to assure flexibility, and yet low
enough to be computationally efficient.

Hermite interpolation for evident reasons is often called cubic interpola-
tion.

We’ll soon find a way to eliminate the corners in the interior and create
a smooth Hermite spline through a given sequence of control points, but
let’s see first how to make a single cubic arc joining two arbitrary pointsP
and Q.

Write the parametric equation of a general cubic curve c as

c(u) = A3u
3 +A2u

2 +A1u+A0 (0 ≤ u ≤ 1) (17.1)

where each Ai, 0 ≤ i ≤ 3, is a point – precisely, its vector of coordinates –
in the ambient space. If you are wondering about polynomial coefficients
which are vectors rather than scalars, then consider the following example.652
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Example 17.1. Suppose that we are interested in Hermite splines in the
real world so that our ambient space is R3. Then the equation of a cubic
curve is

c(u) = A3u
3 +A2u

2 +A1u+A0 (0 ≤ u ≤ 1)

where each Ai, 0 ≤ i ≤ 3, is a point in 3-space.
To illustrate, say,

A3 = [−1 2 0]T , A2 = [3 0 − 2]T , A1 = [4 3 4]T , and A0 = [0 8 7]T

Then,

c(u) = [−1 2 0]Tu3 + [3 0 − 2]Tu2 + [4 3 4]Tu + [0 8 7]T

= [−u3 + 3u2 + 4u 2u3 + 3u+ 8 − 2u2 + 4u+ 7]T

over the interval [0, 1]. As one would expect, the cubic c in R3 is simply a
scalar cubic in each of its three coordinates.

Example 17.2. Express in the form (17.1) the twisted cubic given
parametrically by

x = t, y = t2, z = t3

Answer :

c(t) = [t t2 t3]T = [0 0 1]T t3 + [0 1 0]T t2 + [1 0 0]T t

Returning to the general form (17.1) of the cubic, rewrite it as a matrix
equation:

c(u) = [u3 u2 u 1]


A3

A2

A1

A0

 (0 ≤ u ≤ 1) (17.2)

Note: The RHS is a product of a 1× 4 matrix of scalars with a 4× 1 matrix
of vectors, but this is not a problem if we appropriately multiply a vector by
a scalar while following the usual rules of matrix multiplication.

Differentiating (17.2) one obtains the derivative of c as

c′(u) = [3u2 2u 1 0]


A3

A2

A1

A0

 (0 ≤ u ≤ 1) (17.3)

Substitute 0 and 1 for u in Equations (17.2) and (17.3) to find that

c(0) = A0, c(1) = A3+A2+A1+A0, c′(0) = A1, c′(1) = 3A3+2A2+A1

(17.4) 653
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It seems that if one could specify c(0), c(1), c′(0) and c′(1), then one would
have four equations in the four unknowns A0, A1, A2 and A3, which should
solve to find these coefficients and specify c (alert : that’s four equations in
four vector unknowns, so, e.g., if we are in 3-space, we’ll have actually twelve
equations in twelve scalar unknowns!). Since c goes from P to Q we know
at least that c(0) = P and c(1) = Q; as for the tangent vectors c′(0) and
c′(1), we have freedom to specify them as we please. Let’s choose them to
be two vectors denoted P ′ and Q′, respectively. See Figure 17.2.

c´(0) = P´

c´(1) = Q´
c(0) = P 

c(1) = Q 

Figure 17.2: Four boundary constraints on a cubic curve c.

Accordingly, write (17.4) as

P = A0, Q = A3 +A2 +A1 +A0, P ′ = A1, Q′ = 3A3 + 2A2 +A1

(17.5)
which in matrix form is the equation

P
Q
P ′

Q′

 =


0 0 0 1
1 1 1 1
0 0 1 0
3 2 1 0



A3

A2

A1

A0

 (17.6)

Solve this equation by inverting the coefficient matrix as follows
A3

A2

A1

A0

 =


0 0 0 1
1 1 1 1
0 0 1 0
3 2 1 0


−1 

P
Q
P ′

Q′



=


2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0




P
Q
P ′

Q′

 (17.7)

to see that the four coefficients A0, A1, A2 and A3 can indeed be derived
from the four boundary constraints P , Q, P ′ and Q′. The 4× 4 matrix in
the second line of the equation is called the Hermite matrix and denoted
MH , so (17.7) is written concisely as

[A3 A2 A1 A0]T = MH [P Q P ′ Q′]T (17.8)654
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Finally, let’s use (17.2) to write c’s equation in terms of its boundary
constraints:

c(u) = [u3 u2 u 1] [A3 A2 A1 A0]T

= [u3 u2 u 1]MH [P Q P ′ Q′]T

= (2u3 − 3u2 + 1)P + (−2u3 + 3u2)Q+

(u3 − 2u2 + u)P ′ + (u3 − u2)Q′ (17.9)

in 0 ≤ u ≤ 1, after performing the matrix multiplications in the second line.
Therefore,

c(u) = H0(u)P +H1(u)Q+H2(u)P ′ +H3(u)Q′ (0 ≤ u ≤ 1) (17.10)

where the polynomials

H0(u) = 2u3 − 3u2 + 1, H1(u) = −2u3 + 3u2,

H2(u) = u3 − 2u2 + u, H3(u) = u3 − u2

are called Hermite blending polynomials, which, of course, are blending
functions, but obviously different from those used earlier in Bézier and
B-spline theory (moreover, not just control points, but tangent vectors,
too, enter the mix!). Their graphs are sketched in Figure 17.3. Certain
symmetries are evident. Observe, as well, that H3(u) is non-positive in
0 ≤ u ≤ 1, reaching a minimum value of nearly −0.15.

1

1

0

−0.2
0

H0 H1

H2

H3

Figure 17.3: Hermite blending polynomials (not exact plots).

The curve c(u) itself is called a Hermite cubic. Equation (17.10) is called
the geometric form of the cubic because its expression is in terms of c’s
boundary constraints, while (17.1) is its algebraic form.

Remark 17.3. Readers familiar with programs such as Adobe Photoshop
or Illustrator will recognize that the pen tool can be used to draw Hermite
cubics by specifying endpoints and the tangents at the endpoints. 655
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Exercise 17.1. Use calculus to determine the maximum value of H2(u)
and the minimum value of H3(u) in the interval [0, 1].

Exercise 17.2. Determine the symmetries among the Hermite blending
polynomials. For example, that H0(u) and H1(u) are mirror images across
the vertical line u = 1

2 down the middle of the parameter interval [0, 1] can
be seen by substituting (1− u) for u in the equation of one to obtain that of
the other.

Figure 17.4: Screenshot
of hermiteCubic.cpp.

Experiment 17.1. Run hermiteCubic.cpp, which implements Equa-
tion (17.10) to draw a Hermite cubic on a plane. Press space to select
either a control point or tangent vector and the arrow keys to change it.
Figure 17.4 is a screenshot. The actual cubic is simple to draw, but as you
can see in the program we invested many lines of code to get the arrow heads
right! End

Exercise 17.3. What sort of curve is c if the two boundary constraints P ′

and Q′ are both zero (i.e., if the two end velocities vanish)? Determine this
from the geometric form of the Hermite cubic and verify in the program.

It’s interesting to contrast (17.10) with the equation of the cubic Bézier
curve (Equation (15.8)):

c(u) = B0,3(u)P0 +B1,3(u)P1 +B2,3(u)P2 +B3,3(u)P3 (0 ≤ u ≤ 1)

In the case of the Bézier curve, the control points are blended with weights
equal to the Bernstein polynomials of degree 3; in the case of the Hermite
cubic, the two end control points and their respective tangents are blended
with weights equal to the Hermite blending polynomials, which are of degree
3 as well.

Remark 17.4. Since a Hermite cubic interpolates not only its two specified
control points, but also the specified tangents there, it’s said to make a
first-order interpolation (versus a zeroth-order one which would interpolate
merely control points).

Exercise 17.4. Prove the affine invariance of the cubic curve c given by
Equation (17.10).

Note: Keeping in mind that an affine transformation is a linear trans-
formation followed by a translation, we’ll want its linear transformation
part applied to all four boundary constraints P , Q, P ′ and Q′, while the
translation should apply only to P and Q.

Let’s return to the original problem of joining successive pairs of the n+1
control points P0, P1, . . . , Pn by means of cubic arcs so that the resulting
Hermite spline is smooth. A strategy that comes to mind from the discussion
above is to ask the designer to specify, in addition to the n+ 1 control points,
the tangent vectors P ′0, P

′
1, . . . , P

′
n at each, as indicated in Figure 17.5.656
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P0

´

P1
´

P2

P3

P0

P1

P3
c0

c1
c2

P2

Pn−1
cn−1

´´

´ PnPn−1

Pń

Figure 17.5: Specifying a Hermite spline by specifying the tangent vector at each
control point.

Then, using (17.10) to manufacture each of the n successive Hermite
cubic arcs ci, 0 ≤ i ≤ n, subject to the respective boundary constraints Pi,
Pi+1, P ′i and P ′i+1 yields a C1-continuous Hermite spline, as the derivatives
on either side of each internal control point agree by design.

However, asking the designer for n + 1 tangent values, in addition to
the control points themselves, may be a bit much. It would be nice to have
an automatic way to deduce these tangent values from other constraints,
transparently to the user. In fact, there is and we’ll discuss next two popular
types of Hermite splines arising from particular sets of constraints. These
are the natural cubic and cardinal splines.

17.2 Natural Cubic Splines

A natural cubic spline is a Hermite spline which is C2-continuous (i.e., its
second derivative is continuous) and whose second derivative vanishes at its
two end control points. It turns out, as we’ll see, that these constraints are
enough to uniquely determine the spline.

Assume that the n + 1 control points through which a natural cubic
spline passes are P0, P1, . . . , Pn. Because of C1-continuity (remember that
C2-continuity implies C1-continuity) one assumes that the tangents at the
control points are uniquely defined as well – say they are P ′0, P

′
1, . . . , P

′
n,

respectively. The values P ′i , 0 ≤ i ≤ n, are not user-specified; rather, we’ll
compute them.

Rewrite (17.9) as the equation of the cubic arc ci from Pi to Pi+1:

ci(u) = (2u3 − 3u2 + 1)Pi + (−2u3 + 3u2)Pi+1 +

(u3 − 2u2 + u)P ′i + (u3 − u2)P ′i+1 (0 ≤ u ≤ 1) (17.11)

Differentiating twice one finds the second derivative

c′′i (u) = (12u−6)Pi+(−12u+6)Pi+1+(6u−4)P ′i+(6u−2)P ′i+1 (0 ≤ u ≤ 1)
(17.12)

Observe now that the second-order constraints on a natural cubic spline
through P0, P1, . . . , Pn can be written as the n+ 1 equations:

c′′0(0) = 0, c′′i−1(1) = c′′i (0) for 1 ≤ i ≤ n− 1, c′′n−1(1) = 0 (17.13) 657
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(the middle equations say that the values of the second derivative on either
side of each internal control point are equal, assuring C2-continuity). Expand
the constraint equations using (17.12):

−6P0 + 6P1 − 4P ′0 − 2P ′1 = 0

6Pi−1 − 6Pi + 2P ′i−1 + 4P ′i = −6Pi + 6Pi+1 − 4P ′i − 2P ′i+1, 1 ≤ i ≤ n− 1

6Pn−1 − 6Pn + 2P ′n−1 + 4P ′n = 0

Simplifying and rearranging, we have the system

2P ′0 + P ′1 = −3P0 + 3P1

P ′i−1 + 4P ′i + P ′i+1 = −3Pi−1 + 3Pi+1, 1 ≤ i ≤ n− 1

P ′n−1 + 2P ′n = −3Pn−1 + 3Pn (17.14)

of n + 1 equations in n + 1 unknowns, which can be solved for the P ′i in
terms of the Pi. In fact, writing out the system (17.14) in matrix form one
obtains



2 1 0 0 0 0 . . . 0 0 0 0
1 4 1 0 0 0 . . . 0 0 0 0
0 1 4 1 0 0 . . . 0 0 0 0
0 0 1 4 1 0 . . . 0 0 0 0
. . . . . . . . . . . .
0 0 0 0 0 0 . . . 0 1 4 1
0 0 0 0 0 0 . . . 0 0 1 2





P ′0
P ′1
P ′2
P ′3
. . .
P ′n−1
P ′n


=



−3P0 + 3P1

−3P0 + 3P2

−3P1 + 3P3

−3P2 + 3P4

. . .
−3Pn−2 + 3Pn
−3Pn−1 + 3Pn


(17.15)

where the coefficient matrix is tridiagonal because it has non-zero entries
only along the principal diagonal and its two neighbors. Tridiagonal matrices
are particularly efficient to invert and, accordingly, equation systems with a
tridiagonal coefficient matrix are efficiently solvable [114].

Finally, using the solved tangent values P ′0, P
′
1, . . . , P

′
n and the geometric

form (17.10) of the Hermite cubic, one determines the n Hermite cubic arcs
between successive pairs from P0, P1, . . . , Pn. These arcs then join end to
end to give the natural cubic spline through these n+ 1 control points.

Exercise 17.5. (Programming) Solve (17.15) by hand for only three
control points P0, P1 and P2. Write a program to draw a natural cubic
spline through three control points, each of which can be moved on a plane.

Exercise 17.6. Investigate the local control (or lack thereof) of natural
cubic splines. In particular, which of the cubic arcs of a natural cubic spline
are affected by moving only one control point?

Hint : Playing with a natural cubic spline applet (there are many on the
web) should suggest an answer.658
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17.3 Cardinal Splines

A cardinal spline is a C1 Hermite spline whose tangent vector at each internal
control point is determined by the location of its two adjacent control points in
the following simple manner. Say the control points through which a cardinal
spline passes are P0, P1, . . . , Pn. The tangent vector at Pi, 1 ≤ i ≤ n− 1, is
specified to be parallel to the vector from Pi−1 to Pi+1 by the equation

P ′i =
1

2
(1− ti)(Pi+1 − Pi−1) (17.16)

See Figure 17.6.

Pi Pi = 1/2(1 − ti)(Pi+1 − Pi−1)

Pi−1

Pi+1Pi+1 − Pi−1

´

Figure 17.6: The tangent vector at an internal control point of a cardinal spline is
parallel to the vector joining the adjacent control points – the tension parameter ti is
user-specified.

The constant of proportionality 1
2 (1− ti) in (17.16) involves a designer-

specified parameter ti, called the tension parameter . The tension parameter
is usually set between −1 and 1 at each internal control point. If it is set to
0 at every internal control point, one gets a popularly used special kind of
cardinal spline called a Catmull-Rom spline. Specifically, the tangent vector
at the internal control point Pi of a Catmull-Rom spline is

P ′i =
1

2
(Pi+1 − Pi−1) (17.17)

Now, from (17.16), 1 ≤ i ≤ n−1, one has only n−1 equations in the n+1
unknowns P ′i , 0 ≤ i ≤ n. Therefore, two more are required to uniquely solve
for these unknowns and determine the cardinal spline through Pi, 0 ≤ i ≤ n.
Typically, as in the case of a natural cubic spline, these are obtained from
requiring the second derivatives to vanish at the two end control points.

Exercise 17.7. Write a matrix equation analogous to (17.15) relating P ′i
to Pi for a cardinal spline, assuming the additional constraints that the
second derivatives vanish at the terminal control points. Is the coefficient
matrix tridiagonal?

Exercise 17.8. What can you say of local control in cardinal splines? In
other words, which of the cubic arcs of a cardinal spline are affected by
moving a specific control point? 659
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Exercise 17.9. Natural cubic splines are C2 by definition. How about
cardinal splines – are they C2?
Hint : The answer is no in general and we ask the reader to try and come
up with a counter-example. A Catmull-Rom spline through three control
points which loses C2-continuity in the middle is probably easiest.

17.4 Hermite Surface Patches

We’ll give a brief introduction to the 2D version of Hermite curves, namely,
Hermite surfaces. Analogously to (17.1), one can write the parametric
equation of a Hermite surface patch (or bicubic surface patch ) in algebraic
form as

s(u, v) =
3∑
i=0

3∑
j=0

Ai,ju
ivj

= A3,3 u
3v3 +A3,2 u

3v2 +A3,1 u
3v +A3,0 u

3

+A2,3 u
2v3 +A2,2 u

2v2 +A2,1 u
2v +A2,0 u

2

+A1,3 uv
3 +A1,2 uv

2 +A1,1 uv +A1,0 u

+A0,3 v
3 +A0,2 v

2 +A0,1 v +A0,0 (17.18)

for 0 ≤ u, v ≤ 1. The expression after the second equality consists of 16
monomial summands, where Aij , 0 ≤ i ≤ 3, 0 ≤ j ≤ 3, are points in the
ambient space.

Going back to curves for a moment, observe that the geometric form
(17.10), viz.

c(u) = H0(u)P +H1(u)Q+H2(u)P ′ +H3(u)Q′

of the equation of a Hermite cubic is more useful than the algebraic (17.1),
viz.

c(u) = A3u
3 +A2u

2 +A1u+A0

because it gives an equation in terms of perceptible boundary constraints, in
particular, the endpoints P and Q and the tangent vectors P ′ and Q′ there.
Moreover, we were able to derive the algebraic form from the geometric
because these four boundary constraints were sufficient to uniquely recover
the four coefficients Ai, 0 ≤ i ≤ 3, of the algebraic form.

So what would be a suitable set of boundary constraints for a geometric
form of the equation of a Hermite patch? Clearly, one would want sixteen
constraints leading to a unique determination of the sixteen coefficients Aij ,
0 ≤ i ≤ 3, 0 ≤ j ≤ 3, on the RHS of (17.18).

Twelve choices are fairly clear. See Figure 17.7. They are the four corners
s(0, 0), s(1, 0), s(1, 1), s(0, 1) of the patch s (or, more precisely, the position
vectors of these corners) and values of the partial derivatives with respect660
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Patchess(1, 1)

(0, 0)(0, 0)

∂s
∂u ∂s

∂u

∂s
∂u

∂s
∂u

(0, 1)
∂s
∂v

∂s
∂v

∂s
∂v

∂s
∂v

(0, 1)

(1, 0)

(1, 0)

(1, 1)

(1, 1)

s(0, 0)
s(1, 0)

s(0, 1)

Figure 17.7: Twelve boundary constraints on a bicubic patch.

to u and v at each corner. The two partial derivatives at each corner are
nothing but the tangent vectors to the two boundary curves meeting there.
The four remaining boundary constraints are usually taken to be values of
the second-order mixed partial derivatives at the corners, namely,

∂2s

∂u∂v
(0, 0),

∂2s

∂u∂v
(1, 0),

∂2s

∂u∂v
(0, 1),

∂2s

∂u∂v
(1, 1)

These four are called twist vectors and have geometric significance too –
though not as straightforwardly as the first twelve – which we’ll not go into
here.

We’ll conclude our discussion by saying that it turns out that, indeed,
the four corner position vectors, the eight tangent vectors at the corners and
the four twist vectors together provide sixteen boundary constraints which
are sufficient to uniquely specify a Hermite patch. We’ll not go further into
the derivation ourselves, but refer the interested reader to the chapter on
Hermite surfaces in the book by Mortenson [94].

Lagrange Interpolation

At the conclusion of this chapter, we’ll briefly describe a method of polynomial
(in fact, entirely polynomial, not piecewise like Hermite) interpolation, called
Lagrange interpolation , actually of more theoretical interest than practical
value in design.

The Lagrange polynomial fi,n, where n is a positive integer and i is an
integer between 0 and n, is defined by the equation

fi,n(u) =
∏

0≤j≤n, j 6=i

u− j
i− j 661
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For example,

f2,4(u) =
(u− 0)(u− 1)(u− 3)(u− 4)

(2− 0)(2− 1)(2− 3)(2− 4)

=
1

4
u(u− 1)(u− 3)(u− 4)

Lagrange polynomials have the easily verified property that

fi,n(u) =

{
1, u = i
0, u ∈ {0, 1, . . . , n}, u 6= i

In other words, on the particular set of integers {0, 1, . . . , n}, the Lagrange
polynomial fi,n is 1 at exactly one point, namely i, and 0, elsewhere.

Exercise 17.10. Write the formula for f0,4(u) and check it for the above-
mentioned property.

If, now, one uses the Lagrange polynomials as blending functions for
n+ 1 control points Pi, 0 ≤ i ≤ n, obtaining the curve

c(u) = f0,n(u)P0 + f1,n(u)P1 + . . .+ fn,n(u)Pn (0 ≤ u ≤ n)

then c, called a Lagrange curve, is a polynomial curve of degree n. It’s
seen easily from its definition that c interpolates all its control points; in
particular, c is equal to Pi at the point i of the parameter domain [0, n], for
0 ≤ i ≤ n.

Exercise 17.11. Write the formula for the Lagrange curve interpolating
the four control points

[0 − 1 3]T [1 2 − 3]T [5 − 1 4]T [2 0 8]T

Lagrange interpolation is rarely used in practice because it suffers from
the Bézier-like problem that the degree of the interpolating curve grows with
its number of control points. It lacks local control as well.

17.5 Summary, Notes and More Reading

After a couple of chapters on Bézier and B-spline approximation of control
points, we learned in this chapter practical methods to interpolate. These will
come in handy in design applications that do require interpolation and most
3D modelers, in fact, offer at least a flavor or two of Hermite interpolation,
such as natural cubic and Catmull-Rom splines. It’s true, though, in the
majority of real-life applications that the only known constraints on a curve
or surface are at its boundary, e.g., by the way a surface patch meets its
neighbors, so the designer typically prefers using internal control points as
attractors a la Bézier or B-spline, rather than having them tightly latched
to an interpolating curve or surface.

For more about Hermite interpolation the reader should consult Farin
[45] and Mortenson [94].662
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CHAPTER 18
Applications of Projective Spaces

P
rojective spaces and transformations play an important role in
computer graphics and our goal in this chapter is to study three
powerful applications. The first is in the “shoot” part of shoot-and-

print in the OpenGL pipeline, which comes down to devising a so-called
projection transformation. The next is in shadow mapping, a technique to
authentically cast shadows of a local light source on curved surfaces, which
is based on an understanding of the projection transformation. The final
application is developing rational versions of Bézier and B-spline theory.

It’s best to come to this chapter with some familiarity with projective
spaces. If you have this already, maybe from a college math course or from
books on projective geometry such as Henle [71], Jennings [76] and Pedoe
[108], you are set; if not, Appendix A, which is an introduction to projective
spaces and transformations, has all you need. Appendix A has been written
particularly for a CG audience, with connections constantly drawn to familiar
CG settings. In fact, you are strongly urged to flip through this appendix
even if already acquainted with projective geometry.

However, we do realize there might be a significant readership as yet
unfamiliar with projective spaces who, nevertheless, would like a view of
their applications without necessarily going through all the math first. This
chapter has been arranged to be accessible to such persons as far as possible.
Before each part that invokes projective theory, the reader is alerted with a
note containing the minimum information needed to make sense of it. Of
course, understanding will not be 100%, but, hopefully, good enough for a
first light on the applications. Familiarity at least with Section 5.2 on affine
transformations, though, particularly the use of homogeneous coordinates,
is assumed on everyone’s part.

The first application of projective transformations in Section 18.1 is to
accomplish the so-called projection transformation step in the synthetic- 665
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camera graphics pipeline – mapping the viewing volume to a box. This
leads to a derivation of OpenGL’s 4 × 4 projection matrices, as well as
an understanding of how these matrices compose in the graphics pipeline
with modelview matrices. An immediate practical bonus of this insight into
matrix computations in the pipeline is the ubiquitous technique of shadow
mapping used to draw projective shadows in real-time.

An understanding of the projection transformation is needed in Sec-
tion 18.2 which explains the shadow mapping technique.

The final application is in Section 18.3 where we learn the rational
versions of both Bézier and B-spline theory. This lengthy section begins with
an extensive discussion of rational Bézier curves which, once assimilated,
lends itself to fairly straightforward generalization, first to rational Bézier
surfaces and then rational B-spline, or NURBS, primitives. Section 18.4
concludes the chapter.

18.1 OpenGL Projection Transformations

Way back in Section 2.2 we described OpenGL’s rendering as conceptually a
two-step process, shoot-and-print. Shooting consists of projecting – parallely
in the case of a viewing box and perspectively in that of a viewing frustum –
the scene onto the viewing face. Printing consists of scaling the viewing face
to fit the OpenGL window. This account, though simplified, is not far from
the actual implementation in the OpenGL graphics pipeline.

The second step of scaling is evidently straightforward, but the first of
projection is more difficult. Projection itself is performed in two stages.

In the first stage, OpenGL transforms the viewing volume – a box defined
by glOrtho() or a frustum by glFrustum() and gluPerspective() – into
a canonical viewing box . The canonical viewing box is an axis-aligned cubical
box centered at the origin with side lengths two. Figure 18.1 shows the
canonical viewing box, as well as a generic viewing box and a generic viewing
frustum. The transformation from the given viewing volume to the canonical
viewing box is called the projection transformation of OpenGL.

We’ll deduce equations for the projection transformation soon, but the
crux of what it does geometrically is to take lines of sight to lines of
sight, “straightening” them out in the process in the case of a frustum.
See Figure 18.2 for a sectional view along the xz-plane. For example, the
lines of sight l1 and l2, both in the box and frustum, are mapped by the
projection transformation to the corresponding lines of sight l′1 and l′2 in the
canonical viewing box. Note the little quirk that orientation of the lines of
sight seem reversed by the transformation. The points p, q and r on both
lines of sight l1 are mapped to p′, q′ and r′, respectively, on the line of sight
l′1. Rectangle X in the box and rectangle Y in the frustum are transformed
to rectangle X ′ and the trapezoid Y ′, respectively, bold edge going to bold
edge. The distortion from Y to Y ′ is precisely the foreshortening one would666
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projection
transformation

projection
transformation

x

y

canonical viewing box

z

viewing box viewing frustum

(l, t, −f)

(l, t, −n)

(l, b, −n) (r, b, −n)

(r, t, −n)

(l, b, −f)

(r, t, −f)

(r, b, −f)
(l, t, −n)

(l, b, −n) (r, b, −n)

(r, t, −n)

((f/n)l, (f/n)t, −f) 

((f/n)l, 
(f/n)b, −f) 

((f/n)r, 
(f/n)b, −f) 

((f/n)r, (f/n)t, −f) 

(1 , −1, 1)(−1, −1, 1)

(−1, −1, −1) (1, −1, −1)

(1, 1, 1)(−1, 1, 1)

(−1, 1, −1) (1, 1, −1)

Figure 18.1: As part of the OpenGL rendering pipeline a glOrtho(l, r, b, t, n,
f)-defined viewing box or glFrustum(l, r, b, t, n, f)-defined viewing frustum is
transformed into the canonical viewing box by a projection transformation.

expect from a perspective view.

In the second stage of the two-stage projection process, OpenGL projects
primitives in the canonical viewing box parallely onto its back face, the one
lying on z = −1. It’s because of this reversal of the direction of projection –
a quirk of OpenGL as a projection to the front face would have worked just
as well – that the orientation of the lines of sight is reversed.

Observe, now, that projection in the canonical viewing box is exactly
equivalent to that in the original viewing volume, precisely because the
projection transformation preserves lines of sight. In Figure 18.2, for example,
the point p, in both box and frustum, projects to the point r on the respective
viewing face, while p′ (the image of p by the projection transformation)
projects to r′ (the image of r by the projection transformation) in the
canonical viewing box.

Of the two stages of the projection process, the second one of back-face
projection is certainly computationally simpler, as it’s a matter simply of
tossing the z-values after they’ve been used in depth testing if need be. 667
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z = −n

r

z = −1

z =1 

z = −n

z = −f z = −f

projection
transformation

projection
transformation

r´

p´

q´

r
X

Y

X´

Y´

(0, 0, 0)

viewing frustum

viewing box

q

p
p

canonical viewing box

q
l1

l1

l2

l2

l1 l2́x

z

´

Figure 18.2: Sectional view along the xz-plane of the viewing volumes from Figure 18.1.
Black arrows inside the viewing volumes are lines of sight: they are directed toward the
+z direction in the viewing box and frustum and toward the −z direction in the
canonical viewing box.

If depth testing is enabled, then z-values in the canonical box are used
for this purpose, rather than the original ones from world space. It’s valid
to do so because if, say, point q obscures point p in the viewing volume prior
to transformation, as in Figure 18.2, then transformed point q′ obscures
transformed point p′ as well, again because lines of sight are preserved. Of
course, given the direction of the lines of sight in the canonical box, lower
z-values win the depth competition.

OpenGL accomplishes the projection transformation, from programmer-
specified viewing volume to canonical viewing box, by means of a 4 × 4
projection matrix whose nature depends on whether it is a box or frustum
to be transformed into the canonical box. Our next objective is to derive
the projection matrix in both cases.

Remark 18.1. To be fastidious we should now rephrase our earlier description
of the print part of shoot-and-print to say that it scales the back face of the
canonical box, rather than the front face of the viewing volume, to fit the
OpenGL window.

668
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18.1.1 Viewing Box to Canonical Viewing Box

The strategy to transform a glOrtho()-defined viewing box into the
canonical box is straightforward: translate the viewing box so that its
center coincides with that of the canonical one, then scale its sides so that
they match those of the canonical box.

The center of the viewing box defined by a call to glOrtho(l, r, b, t,
n, f) is at [(r + l)/2 (t + b)/2 − (f + n)/2]T , while the center of the
canonical box is at the origin [0 0 0]T . Therefore, the displacement vector
translating the first to the second is [−(r + l)/2 − (t+ b)/2 (f + n)/2]T .
The corresponding 4× 4 translation matrix is

T ( −(r + l)/2, −(t+ b)/2, (f + n)/2 )

(see Section 5.4 for a listing of affine transformation matrices in homogeneous
form).

Since the viewing box is of size (r − l) × (t − b) × (f − n), while the
canonical box is of size 2 × 2× 2, the scaling transformation matching the
sides of the former with those of the latter has the matrix

S( 2/(r − l), 2/(t− b), 2/(f − n) )

Finally, to account for the reversal in direction of the lines of sight, the
needed transformation is (x, y, z) 7→ (x, y,−z), whose matrix is

S(1, 1,−1)

Composing the preceding three transformations, one obtains the projec-
tion transformation, denoted P (glOrtho(l, r, b, t, n, f)), mapping the
viewing box of the call glOrtho(l, r, b, t, n, f) to the canonical viewing
box. The projection matrix corresponding to P (glOrtho(l, r, b, t, n,
f)), using eponymous notation, is

P (glOrtho(l, r, b, t, n, f))

= S(1, 1,−1) S( 2/(r − l), 2/(t− b), 2/(f − n) )

T ( −(l + r)/2, −(b+ t)/2, (n+ f)/2 )

=


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1




2
r−l 0 0 0

0 2
t−b 0 0

0 0 2
f−n 0

0 0 0 1




1 0 0 − r+l2

0 1 0 − t+b2
0 0 1 f+n

2
0 0 0 1



=


2
r−l 0 0 − r+lr−l
0 2

t−b 0 − t+bt−b
0 0 − 2

f−n − f+nf−n
0 0 0 1

 (18.1)

As it is a composition of a translation and scalings, P (glOrtho(l, r, b,
t, n, f)) is an affine transformation of R3. 669
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Example 18.1. Determine how the point [20 80 0]T is transformed by
the projection transformation corresponding to glOrtho(0, 100, 0, 100,

-1, 1).

Answer : Now

P (glOrtho(0, 100, 0, 100,−1, 1)) =


2

100 0 0 − 100
100

0 2
100 0 − 100

100
0 0 − 2

2
0
2

0 0 0 1



=


0.02 0 0 −1

0 0.02 0 −1
0 0 −1 0
0 0 0 1

(18.2)

Writing [20 80 0]T in homogeneous coordinates as [20 80 0 1]T , one sees that
it’s transformed to the point

0.02 0 0 −1
0 0.02 0 −1
0 0 −1 0
0 0 0 1




20
80
0
1

 =


−0.6
0.6
0
1


which is [−0.6 0.6 0]T in Cartesian coordinates.

Exercise 18.1. Determine how the following points are transformed by
the projection transformation corresponding to glOrtho(-20, 20, 0, 50,

-1, 1): (a) [0 40 0]T (b) [50 20 0.5]T (see the following remark)

Remark 18.2. Just as points inside the viewing box are transformed to
points inside the canonical box, those outside, e.g., (b) of the preceding
exercise, are transformed to points outside the canonical box. The latter
are clipped subsequently in the pipeline prior to rendering; in other words,
operationally, clipping is done against the canonical box.

18.1.2 Viewing Frustum to Canonical Viewing Box

No affine transformation can map the viewing frustum defined by the call
glFrustum(l, r, b, t, n, f) to the canonical viewing box, for the simple
reason that this requires mapping intersecting lines (along edges of the
frustum) to parallel ones (along edges of the box), while we know (see
Proposition 5.1) that an affine transformation of R3 takes parallel straight
lines to parallel straight lines and intersecting ones again to intersecting
ones. We’ve run into a brick wall as far as affine transformations go. It’s
time to appeal to the projective.

Note to Readers Unfamiliar with Projective Geometry : Here’s what you
need to know for the rest of this particular section. Projective 3-space P3670



i
i

i
i

i
i

i
i

Section 18.1

OpenGL Projection

Transformations

consists of 4-tuples of the form [x y z w]T , where these so-called homogeneous
coordinates cannot all be zero. Two tuples represent the same point if one’s
a scalar multiple of the other, e.g., [2 4 1 −3]T and [4 8 2 −6]T . Real 3-space
R3 is embedded in P3 by mapping the point [x y z]T of R3 to [x y z 1]T of
P3, e.g., [2 4 1]T maps to [2 4 1 1]T .

Yet another thing to keep in mind is that, in addition to the points of
R3 embedded into it as above, P3 has points corresponding to “directions”
in R3. These points, which are called points at infinity, have a w-value of 0;
e.g., [0 0 1 0]T is the point at infinity corresponding to the direction along
the z-axis (both up and down directions along any line are regarded equal).
Points with non-zero w-values, embedded from R3, are called regular points.

Finally, a projective transformation of P3 is defined by a non-singular
4×4 matrix and acts on tuples of P3 by multiplication from the left (similarly
to how linear transformations of R3 act on 3-tuples).

You should jump now to the paragraph below containing Equation (18.3).

(Resuming from just before the note . . ..) However, our experience with
projective transformations – Example A.17 which illustrates a projective
transformation of P3 mapping a trapezoid to a rectangle is particularly
motivating – suggests applying one.

Projectively transforming R3 is analogous to projectively transforming
R2. For the latter, we identified R2 with a “film” in R3, almost always
the plane z = 1, to capture the transformation of 2D objects lifted to P2

(note that the allusion to films is developed in Appendix A). Likewise, to
projectively transform R3, we’ll identify it with the hyperplane w = 1 in
four-dimensional xyzw-space R4 in order to capture the transformation of
3D objects lifted to P3.

In particular, for the current application, we seek a projective transfor-
mation hM of P3 which is captured on R3 as taking the viewing frustum
specified by the call glFrustum(l, r, b, t, n, f) to the canonical box – as
indicated by the thick blue arrow on the right of both Figures 18.1 and 18.2.
Suppose its defining matrix is

M =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 (18.3)

so that it maps the point [x y z w]T of P3 to M [x y z w]T .

The four lines along the four sides of the frustum that meet at its apex,
which is the regular point [0 0 0 1]T , are mapped, respectively, to four lines
along edges of the canonical box all parallel to the z-axis, meeting, therefore,
at the point at infinity [0 0 1 0]T . Accordingly, we ask that

hM ([0 0 0 1]T ) = [0 0 1 0]T 671
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giving the matrix equation
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44




0
0
0
1

 =


0
0
d
0


where d can be any non-zero scalar because homogeneous coordinates
[0 0 1 0]T and [0 0 d 0]T represent the same point, implying that

a14 = 0, a24 = 0, a34 = d, a44 = 0

It turns out that choosing d = − 2fn
f−n simplifies manipulations down the road

so we’ll write

M =


a11 a12 a13 0
a21 a22 a23 0

a31 a32 a33 − 2fn
f−n

a41 a42 a43 0


The mappings

hM ([l b − n 1]T ) = [−1 − 1 − 1 1]T

hM ([r b − n 1]T ) = [1 − 1 − 1 1]T

hM ([l t − n 1]T ) = [−1 1 − 1 1]T

hM ([r t − n 1]T ) = [1 1 − 1 1]T

from the mapping of the four vertices at the front of the frustum to the
corresponding ones at the back of the canonical box give the four matrix
equations 

a11 a12 a13 0
a21 a22 a23 0

a31 a32 a33 − 2fn
f−n

a41 a42 a43 0




l
b
−n
1

 =


−c1
−c1
−c1
c1



a11 a12 a13 0
a21 a22 a23 0

a31 a32 a33 − 2fn
f−n

a41 a42 a43 0




r
b
−n
1

 =


c2
−c2
−c2
c2



a11 a12 a13 0
a21 a22 a23 0

a31 a32 a33 − 2fn
f−n

a41 a42 a43 0




l
t
−n
1

 =


−c3
c3
−c3
c3



a11 a12 a13 0
a21 a22 a23 0

a31 a32 a33 − 2fn
f−n

a41 a42 a43 0




r
t
−n
1

 =


c4
c4
−c4
c4


672
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(ci, 1 ≤ i ≤ 4, are non-zero scalars) leading to 16 equations simultaneously
in 16 unknowns:

l a11 + b a12 − na13 = −c1
l a21 + b a22 − na23 = −c1

l a31 + b a32 − na33 −
2fn

f − n
= −c1

l a41 + b a42 − na23 = c1

. . . = . . .

r a41 + t a42 − na43 = c4

These can be solved – not difficult, but tedious – to find

a11 =
2n

r − l
, a12 = 0, a13 =

r + l

r − l
, a21 = 0, a22 =

2n

t− b
,

a23 =
t+ b

t− b
, a31 = 0, a32 = 0, a33 = −f + n

f − n
, a41 = 0,

a42 = 0, a43 = −1, c1 = n, c2 = n, c3 = n, c4 = n

It follows that the projection transformation mapping the viewing frustum
of the call glFrustum(l, r, b, t, n, f) to the canonical viewing box is
given by the matrix

P (glFrustum(l, r, b, t, n, f)) =


2n
r−l 0 r+l

r−l 0

0 2n
t−b

t+b
t−b 0

0 0 − f+nf−n − 2fn
f−n

0 0 −1 0

 (18.4)

That a43 6= 0 confirms that P (glFrustum(l, r, b, t, n, f)) is not affine,
as a 4 × 4 projective transformation matrix is affine if and only if its last
row is all 0 except for the last element.

Exercise 18.2. Characterize those regular points that P (glFrustum(l, r,
b, t, n, f)) maps to points at infinity.

At this time we ask the reader to open the red book to Appendix F,
where OpenGL’s 4×4 projection matrices are given and compare their values
to those in Equations (18.1) and (18.4) above. Seeing these together with
its 4× 4 matrices for translation, rotation and scaling, listed in Appendix F
as well, and derived by us in Section 5.4, the reader may tend to agree that
OpenGL “lives” in projective 3-space.

Example 18.2. Determine how the point [0 0 − 10]T is transformed by
the projection transformation corresponding to glFrustum(-5, 5, -5, 5,

5, 100), a command used frequently in earlier chapters. 673
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Answer :

P (glFrustum(−5, 5,−5, 5, 5, 25)) =


10
10 0 0

10 0
0 10

10
0
10 0

0 0 − 105
95 − 1000

95
0 0 −1 0



=


1 0 0 0
0 1 0 0
0 0 −1.105 −10.526
0 0 −1 0


Writing [0 0 − 10]T in homogeneous coordinates as [0 0 − 10 1]T , one sees
that it’s transformed to the point

1 0 0 0
0 1 0 0
0 0 −1.105 −10.526
0 0 −1 0




0
0
−10

1

 =


0
0

0.524
10


which is [0 0 0.0524]T in Cartesian coordinates.

The last step, where the homogeneous coordinates are divided by the
w-value – in this case [0 0 0.524 10]T by 10 – to project the transformed point
back into xyz-space (w = 1) is often called perspective division, especially
when performed as a part of the graphics pipeline.

Exercise 18.3. Determine how the following points are transformed by
the projection transformation corresponding to glFrustum(-10, 10, -10,

10, 1, 10): (a) [1 1 − 2]T (b) [10 20 − 1]T (c) [5 5 0]T .
If any of them is mapped to a point at infinity – whose w-value is 0 –

simply identify it as such. Obviously, you’ll not be able to complete the
projection transformation for such points, as they will not pass perspective
division. We’ll discuss in Section 19.1 of the next chapter how they are, in
fact, handled in the pipeline.

Remark 18.3. Do keep in mind the terminological distinction that a
projective transformation is one of projective space, while a projection
transformation is a particular transformation in the graphics pipeline, which
is implemented by means of a projective transformation, if the viewing
volume is a frustum.

Projection Matrix of gluPerspective()

We are going to leave the reader to solve the following:

Exercise 18.4. Write an equation similar to (18.4) for the projection
matrix corresponding to the GLU call gluPerspective(fovy, aspect, n,
f).674
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18.1.3 Projection Matrix in the Pipeline

We know now how the projection matrix corresponding to a programmer-
specified projection command – glOrtho(), glFrustum() or gluPerspec-

tive() – is computed by OpenGL. How, then, is this matrix stored? And
how is it applied in the graphics pipeline?

The answer to the first question is in a manner exactly similar to
modelview matrices. As the current modelview matrix is at the top of
the modelview matrix stack, so the current projection matrix is the topmost
of the projection matrix stack . Again, as for modelview statements, a
projection statement is applied by multiplying the current projection matrix
on the right by the matrix corresponding to that statement. Moreover,
the projection matrix stack can be pushed and popped, and the current
projection matrix accessed and manipulated, just as the modelview matrix
stack. Refer to Section 5.4.6 for commands to access the current modelview
matrix.

viewing frustum

projection 
transform

canonical box

modelviewtransform

Figure 18.3: Combining
modelview and projection
transformations.

The reader can probably guess the answer to the second question: if the
current modelview and projection matrices are M and P , respectively, then
the vertex V at [x y z 1]T in world space is transformed to the vertex V ′ at

P M [x y z 1]T (18.5)

In fact, Figure 18.3 illustrates what is actually the first part of the graphics
pipeline. We’ll be digging deeper into the pipeline in the next chapter.

Remark 18.4. The transformation above is one of world space which takes
the viewing frustum into the canonical box. Moreover, points inside the
frustum map inside the box, while those outside the frustum map outside
the box.

Figure 18.4: Screenshot
of manipulateProjection-
Matrix.cpp.

Experiment 18.1. Run manipulateProjectionMatrix.cpp, a simple
modification of manipulateModelviewMatrix.cpp of Chapter 5. Figure 18.4
is a screenshot, though the output to the OpenGL window is of little
interest. Of interest, though, are the new statements in the resize()

routine that output the current projection matrix just before and after the
call glFrustum(-5.0, 5.0, -5.0, 5.0, 5.0, 100.0).

Compare the second matrix output to the command window with
P (glFrustum(-5.0, 5.0, -5.0, 5.0, 5.0, 100.0)) computed with the
help of Equation (18.4). End

Exercise 18.5. (Programming) Continue with the preceding experi-
ment by replacing the projection statement

glFrustum(-5.0, 5.0, -5.0, 5.0, 5.0, 100.0)

with

glOrtho(-10.0, 10.0, -10.0, 10.0, 0.0, 20.0) 675
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Compare the second matrix output to the command window with

P(glOrtho(-10.0, 10.0, -10.0, 10.0, 0.0, 20.0))

as computed using Equation (18.4).

Remark 18.5. It’s unlikely that you’ll ever need to access the projection
matrix stack in an ordinary program, other than in the mandatory definition
of the viewing volume, which would be exactly one of glOrtho() or
glFrustum() or gluPerspective().

18.2 Shadow Mapping

We’ll now apply our insight into the matrix computations in the pipeline,
learned from the preceding subsection, to understand the very popular
technique of shadow mapping, formulated by Lance Williams in his 1978
paper “Casting curved shadows on curved surfaces” [ 149], to authentically
draw shadows cast by a local light source – such shadows are called perspective
or projective.

shadow

object

Figure 18.5: A camera
and light source at the
“same” location.

Consider a scene with a single point light source L. The first key
insight of shadow mapping is that the lit region is the one to every point of
which there is an unobstructed straight-line ray from L, in other words, it
consists precisely of those points which would be visible from L’s viewpoint,
equivalently, from a camera located at L (Figure 18.5). Now, if we had
access to the z-buffer for such a camera, then we could determine which
scene fragments are visible – lit by L – by comparing their z-values to
corresponding ones in the z-buffer. Fragments whose z-values are greater
than the corresponding ones in the z-buffer are hidden from L and not lit.
Shadow mapping takes exactly this approach: it starts off by locating a
camera at L and saving its z-buffer values in a texture, such a texture being
called a depth texture for obvious reasons.

But, given a scene viewed through a programmer-defined camera, not
necessarily located at the light, how do we determine z-values from the light’s
viewpoint? Here is where the second key insight of shadow mapping comes
in. Suppose, the programmer’s camera, call it C, sees a vertex at [x y z 1]T .
Now, the vertex arrived at these (world space) coordinates after modeling
transformations in the program followed by a viewing transformation, namely,
C’s gluLookAt(), which itself, as we know from Section 4.6, is simulated by
a sequence of modeling transformations. However, from the light’s viewpoint
C’s viewing transformation is “fake” – equivalent to a sequence of modeling
transformations applied to the scene simply to keep the camera at its fixed
disposition at the origin.

For example, say the only modeling transformation applied to a scene is
glTranslatef(10.0, 0.0, 0.0), while the camera’s viewing transforma-
tion is gluLookAt(0.0, 0.0, 10.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0).
Then, the combined transformation applied is glTranslatef(10.0, 0.0,676
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-10.0). However, from the viewpoint of another stationary observer, the
scene is transformed by glTranslatef(10.0, 0.0, 0.0) only , and not
glTranslatef(10.0, 0.0, -10.0). In other words, one needs to undo the
camera’s viewing transformation in order to perceive the scene from the
second observer’s viewpoint.

Denote, then, C’s viewing transformation, defined by its gluLookAt(),
by Vcamera; suppose, as well, there is a second camera located at the light,
call it L too to keep notation simple, with its projection transformation
(derived from its own frustum) being Plight and its viewing transformation
(derived from its gluLookAt()) Vlight. So, the transformation

Plight Vlight V
−1
camera [x y z 1]T (18.6)

applied to a vertex at [x y z 1]T undoes C’s viewing transformation and , by
Equation (18.5), takes L’s viewing frustum to the canonical box, whence the
vertex’s z-value from L’s viewpoint may simply be read off! Keep in mind,
though, Remark 18.4 of the previous section, noting that vertices mapping
outside the canonical box are clipped, so safely ignored.

There is one last technicality to navigate before we can put shadow
mapping into production. It arises from the fact that a [0 , 1]× [0, 1] depth
texture is used to store z-values, these values themselves ranging in [0, 1],
while the canonical box is [−1, 1] × [−1, 1] × [−1, 1]. So, we need a final
transformation of the box [−1, 1]× [−1, 1]× [−1, 1] to the box [0, 1]× [0, 1]×
[0, 1] in order to make correct z-value comparisons. This is not hard: the
linear 2-transformation sequence

glTranslatef(0.5, 0.5, 0.5);

glScalef(0.5, 0.5, 0.5);

does the needful, its corresponding matrix, often called the bias matrix,
being

B =


0.5 0 0 0.5
0 0.5 0 0.5
0 0 0.5 0.5
0 0 0 1


Tacking B onto (18.6), we have finally the transformation to use in shadow
mapping to read z-values from the light’s viewpoint:

B Plight Vlight V
−1
camera [x y z 1]T (18.7)

Time to turn words into deeds!

Experiment 18.2. Before running ballAndTorusShadowMapped.cpp you
may want to run again ballAndTorusShadowed.cpp from Section 4.7.2,
which implements a simple-minded blacken-and-flatten strategy, with help
of a scaling degenerate along the y-direction, to draw shadows on the floor. 677
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The scenes of the two programs are almost identical, except, of course,
that ballAndTorusShadowMapped.cpp shadow maps a local light source,
whose position is indicated by a red sphere. Controls are identical too: press
space to start the ball traveling around the torus and the up and down arrow
keys to change its speed. Figure 18.6 is a screenshot. End

Figure 18.6: Screenshot
of ballAndTorusShadow-
Mapped.cpp.

We’ll narrate ballAndTorusShadowMapped.cpp starting from the top.
First comes a bunch of globals whose purpose will be clear as we go along. The
drawFlyingBallAndTorus(), drawCheckeredFloor() and timer routines
are copied from ballAndTorusShadowed.cpp, except now there is no option
in the first one to blacken the ball and torus as it’s not needed in the current
program.

There are three points of note in the initialization routine:

1. With glDepthFunc(GL LEQUAL) the comparison in the z-buffer is set
to “≤”, rather than the default “<”, so that brightly lit regions, drawn
in the third drawing pass, can overwrite their dark versions drawn
earlier in the second pass.

2. The shadow map texture is created in a manner similar to image (RGB)
textures, except now the GL DEPTH COMPONENT parameter indicates that
it is a depth texture intended to store z-values.

3. The camera and the light’s projection and viewing transformation
matrices are computed and stored in globals. By the light’s
transformations, of course, we mean those of a camera located
there. The parameters for the respective gluPerspective() and
gluLookAt() commands are set as globals.

The computations are done all in the modelview matrix stack, which
we use through the program as our personal matrix calculator! (Indeed,
it may seem odd to apply a gluPerspective() to the modelview stack,
but it’s not illegal and we care only about the corresponding matrix.)

The drawing routine next has four passes which we discuss one after
another.

FIRST PASS: We set the shadow map texture values in this pass. First,
we load the light’s projection and viewing transformation matrices to draw
the scene from its viewpoint. The viewport dimensions are set to match
those of the shadow map texture so that there is one-to-one correspondence
between pixels and texels. Rendering of the scene to the color buffer is
disabled by passing GL FALSE parameters to glColorMask(), as we don’t
want to actually see the scene, but only fill the depth buffer.

Front faces are culled prior to drawing so that only back faces go into
the depth buffer, ensuring that in ensuing z-value competitions front faces
with their lower z-values will prevail over back faces (as they should from
the light’s viewpoint). Finally, the scene is drawn and z-values captured in
the shadow map texture using a glCopyTexImage2D() command.678
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SECOND PASS: In this pass the whole scene is drawn as if shadowed.
First, the camera’s projection and viewing transformation matrices are
loaded. The viewport is set to the OpenGL window size and back face
culling is enabled as is usual for efficient drawing. Rendering to the color
buffer is enabled as well. Lighting is enabled prior to drawing the scene,
but the local light source GL LIGHT0 is not enabled, permitting only the
dim global ambient light, which, of course, is the only light which should
illuminate shadowed regions.

THIRD PASS: Now, we’ll draw with the local light source turned on,
eliminating first, however, with help of the shadow map texture, fragments
which are shadowed. Thus, the lit parts only, which were drawn shadowed
in the previous pass, are redrawn illuminated by the light source.

First, the light source GL LIGHT0 is enabled. Next, we want to calculate
and apply the transformation matrixB Plight Vlight V

−1
camera of (18.7). More

than one step will be needed to do this. To begin with, the matrix
product B Plight Vlight, which we call the texture matrix, is calculated in the
modelview matrix stack and saved in the global texMat. Post-multiplying
the texture matrix by V −1camera and then using it to transform vertices is up
next. Unfortunately, though, there is no inversion operation available in
any OpenGL matrix stack. Still, there is another resource which solves our
problem exactly. The automatic texture coordinate generation sequence

glEnable(GL_TEXTURE GEN X);

glTexGeni(GL X, GL TEXTURE GEN MODE, GL EYE LINEAR);

glTexGenfv(GL X, GL EYE PLANE, eyePlaneParams);

X being any one of the four texture coordinates S , T , R and Q and
eyePlaneParams pointing to a 4-vector [px py pz pw], generates the coordinate
value

p′xx+ p′yy + p′zz + p′ww

for X , where [x y z w]T are the homogeneous coordinates of the current
vertex and where

[p′x p
′
y p
′
z p
′
w] = [px py pz pw]M−1

M being the current modelview matrix. Now, consider the program. The
current modelview matrix, in fact, is Vcamera; moreover, the code sequence
above is repeated once for each of the texture coordinates S , T , R and
Q, with eyePlaneParams pointing to successive rows of the texture matrix
B Plight Vlight. It’s not hard to check then that

[S T R Q]T = B Plight Vlight V
−1
camera [x y z w]T

which is precisely the transformation the doctor ordered if you see again
Equation (18.7). So, R is the z-value from the light’s viewpoint, which we
must compare with the corresponding value in the shadow map texture.
OpenGL has specialized support for exactly this. The three statements 679
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glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE,

GL_COMPARE_R_TO_TEXTURE);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC, GL_LEQUAL);

glTexParameteri(GL_TEXTURE_2D, GL_DEPTH_TEXTURE_MODE, GL_INTENSITY);

cause a fragment’s R-value to be compared with the corresponding value in
the currently bound depth texture, the comparison passing if the former is
less than or equal to the latter, failed comparisons generating an intensity
value of 0, successful ones an intensity value of 1 (an intensity value of ρ
corresponds to a gray scale signal of R = G = B = A = ρ). At the end of
these statements, then, shadowed fragments, which failed the comparison
because of an R-value greater than their shadow map counterpart, will have
an alpha value of 0, while lit fragments have an alpha value of 1.

Finally, the two statements

glEnable(GL_ALPHA_TEST);

glAlphaFunc(GL_GREATER, 0.5);

prior to drawing the scene set up an alpha test which will be failed by
fragments with an alpha value of 0, namely, shadowed ones. The net result
is that the lit region is redrawn illuminated by the light source in this pass.
Combined with the dim lighting of the whole scene from the previous pass,
shadow mapping is now complete.

FOURTH PASS: This is a trivial pass whose purpose is only to draw a
red sphere at the light’s position.

The reshape routine is interesting too in that, instead of simply declaring
a viewing frustum, it goes on to compute the frustum’s projection matrix
and accordingly update the cameraProjMat global, because it is this global
from which the program obtains the camera’s projection matrix. The rest of
the program is straightforward.

Exercise 18.6. (Programming) Shadow map sphereInBox1.cpp of
Experiment 11.1, but, first, make the ball smaller, move it up a bit and
tilt the box toward the viewer so that the ball’s shadow can be clearly seen
inside the box.

Remark 18.6. Shadow mapping is a powerful and much-implemented real-
time shadowing technique. However, a couple of its drawbacks are seen
even in our program ballAndTorusShadowMapped.cpp. Firstly, aliasing is
evidently an issue with the shadows – it is, in fact, inversely correlated to
the resolution of the shadow map. Secondly, multiple drawing passes may
become computationally taxing, especially with more than one light source.

Refinements of shadow mapping have been developed, though, in order
to circumvent these issues. A popular alternative to shadow mapping, that
of shadow volumes, was first developed by Crow [33] in 1977. The reader is
referred to more advanced texts such as those by Akenine-Möller et al. [1]
and McReynolds-Blythe [92], as well as the research literature, for more on
shadow mapping and alternatives such as shadow volumes.680
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18.3 Rational Bézier and NURBS Curves
and Surfaces

Our final application of projective geometry is to set the stage for rational
Bézier primitives, as well as to put the ‘R’ – ‘R’ stands for rational, of course
– into NURBS. In Chapters 15 and 16 we investigated the polynomial versions
of Bézier and NURBS theory, respectively.

We’ll begin with rational Bézier curves, as conceptually they are the
simplest and notationally least cumbersome. Once we have rational Bézier
curves under our belts, extending our understanding to rational Bézier
surfaces and then to NURBS curves and surfaces will not be difficult.

18.3.1 Rational Bézier Curves Basics

Recall Equation (15.13) of a Bézier curve in R3 specified by n+ 1 control
points Pi = [xi yi zi]

T , 0 ≤ i ≤ n:

C(u) =

[
n∑
i=0

Bi,n(u)xi

n∑
i=0

Bi,n(u)yi

n∑
i=0

Bi,n(u)zi

]T
(0 ≤ u ≤ 1)

(18.8)

Note to Readers Unfamiliar with Projective Geometry : Here’s what you need
to know for most of this particular section. Projective 2-space P2 consists of
3-tuples of the form [x y z]T , where these so-called homogeneous coordinates
cannot all be zero. Two tuples represent the same point if one’s a scalar
multiple of the other, e.g., [0 − 1 2]T and [0 − 4 8]T .

Real 2-space R2 is embedded in P2 by mapping the point [x y]T of R2 to
[x y 1]T of P2, e.g., [2 4]T maps to [2 4 1]T . Conversely, a point [x y z]T of
P2, with z 6= 0, is an image by this embedding of the point [x/z y/z]T of
R2.

Getting back to the equation at the top of the section, what if none
of the Pi has coordinates all zero, so that one can imagine each to be a
projective point with homogeneous coordinates [xi yi zi]

T , rather than the
real point [xi yi zi]

T ? Certainly, then, Equation (18.8) defines a point C(u)
in P2 for every u in 0 ≤ u ≤ 1, as long as all its three components are not
simultaneously zero either. In this case, one could call C the projective
Bézier curve over the projective control points Pi, 0 ≤ i ≤ n, provided that
it doesn’t depend on the choice of the Pi’s homogeneous coordinates, for,
otherwise, (18.8) would give different curves C(u) for different choices and
not be a proper definition at all.

Let’s see if C is, in fact, independent of the choice of homogeneous
coordinates for its control points. Accordingly, write Pi = [wixi wiyi wizi]

T , 681
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where wi 6= 0, for 0 ≤ i ≤ n, and plug into (18.8):

D(u) =

[
n∑
i=0

Bi,n(u)wixi

n∑
i=0

Bi,n(u)wiyi

n∑
i=0

Bi,n(u)wizi

]T
(0 ≤ u ≤ 1)

Is D(u) = C(u)? Not necessarily! Playing a bit with the equation it’s clear
that there’s no way to “pull the wi’s out of the square brackets” and write[

n∑
i=0

Bi,n(u)wixi

n∑
i=0

Bi,n(u)wiyi

n∑
i=0

Bi,n(u)wizi

]T

= w

[
n∑
i=0

Bi,n(u)xi

n∑
i=0

Bi,n(u)yi

n∑
i=0

Bi,n(u)zi

]T
for some one scalar w, unless all the wi’s happen to be equal to w.

Ouch! Major road block? Quit and start over? Nah, we’ll just make
a feature of the bug! Choosing different homogeneous coordinates for the
projective control points gives different projective Bézier curves? Well, then,
more choice for the designer!

Let’s start with control points all on the real plane as, at the end of the
day, we’ll be modeling in real space, not projective. However, first, identify
R2 with the plane z = 1 in R3, i.e., [x y]T ∈ R2 with [x y 1]T ∈ R3.

z=1

C

c

P0

P1

P2

P3

p0 p1

p2 p3

x

y
z

Figure 18.7: Four real control points pi = [xi yi 1]T , with weights wi, are lifted to the
projective control points Pi = [wixi wiyi wi]

T , 0 ≤ i ≤ 3. The (black) polynomial
projective Bézier curve C projects to the (blue) rational real Bézier curve c.

Choose n+ 1 control points pi = [xi yi 1]T , 0 ≤ i ≤ n, in R2, as well as
n + 1 non-zero scalars wi, 0 ≤ i ≤ n. Lift each pi to the projective point
Pi = [wixi wiyi wi]

T in P2, expressed using these particular homogeneous
coordinates. See Figure 18.7. The scalar wi is called the weight of the control
point pi. The projective polynomial Bézier curve C specified by the control
points Pi = [wixi wiyi wi]

T is

C(u) =

[
n∑
i=0

Bi,n(u)wixi

n∑
i=0

Bi,n(u)wiyi

n∑
i=0

Bi,n(u)wi

]T
(0 ≤ u ≤ 1)

(18.9)682
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To return to R2, divide C throughout by its z-coordinate to get the plane
curve

c(u) =

[∑n
i=0Bi,n(u)wixi∑n
i=0Bi,n(u)wi

∑n
i=0Bi,n(u)wiyi∑n
i=0Bi,n(u)wi

1

]T
(0 ≤ u ≤ 1)

(18.10)
assuming that

∑n
i=0Bi,n(u)wi 6= 0 in 0 ≤ u ≤ 1, so there’s never division by

zero. Rewriting (18.10) as a proper equation inR2 by dropping the z-value
1, we have

c(u) =

[∑n
i=0Bi,n(u)wixi∑n
i=0Bi,n(u)wi

∑n
i=0Bi,n(u)wiyi∑n
i=0Bi,n(u)wi

]T
(0 ≤ u ≤ 1) (18.11)

which is said to be the rational Bézier curve in R2 approximating the control
points pi = [xi yi]

T , with respective weights wi, 0 ≤ i ≤ n.
If the weights wi, 0 ≤ i ≤ n, are all positive, then it’s guaranteed that

the denominator
∑n
i=0Bi,n(u)wi in (18.11) is positive, and so non-zero, in

0 ≤ u ≤ 1. Consequently, this condition on the weights is, typically, assumed
as a design constraint. We’ll make a tacit assumption ourselves of positive
weights henceforth.

It’s a bit hard to make out from (18.11) exactly what’s going on. Let’s
consider a particular case with few control points, say n = 2, for three
control points. Write out the Bernstein polynomials in (18.11) to obtain
the following equation for the quadratic rational Bézier curve on three
control points [x0 y0]T , [x1 y1]T and [x2 y2]T , with weights w0, w1 and w2,
respectively:

c(u) =

[
w0x0(1− u)2 + 2w1x1(1− u)u+ w2x2u

2

w0(1− u)2 + 2w1(1− u)u+ w2u2

w0y0(1− u)2 + 2w1y1(1− u)u+ w2y2u
2

w0(1− u)2 + 2w1(1− u)u+ w2u2

]T
(18.12)

in 0 ≤ u ≤ 1.
Compare with (15.5), which is

c(u) = [x0(1−u)2 + 2x1(1−u)u+x2u
2 y0(1−u)2 + 2y1(1−u)u+ y2u

2]T

in 0 ≤ u ≤ 1, the equation of the quadratic polynomial Bézier curve on the
same three control points. Observe, first, that both the x- and y-values on
the RHS of (18.12) are rational functions, i.e., ratios of two polynomials,
particularly of two quadratics in this case. The values on the RHS of the
equation for the polynomial curve, on the other hand, are simply quadratic
polynomials. The following three exercises shed further light on the quadratic
rational Bézier curve.

Exercise 18.7. Putting u = 0 and 1 in Equation (18.12), show that,
whatever the assignment of weights, a quadratic rational Bézier curve always
interpolates both its first and last control points. 683
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Exercise 18.8. Show that if the weights of its three control points are
equal, then a quadratic rational Bézier curve coincides with the quadratic
polynomial Bézier curve specified by the same control points.

Evidently, then, at least for three control points, a polynomial Bézier
curve is simply a special case of a rational one.

Exercise 18.9. The quadratic polynomial Bézier curve is a weighted sum
of its control points. One can rewrite (15.5) above as follows to see this.

c(u)

= [x0(1− u)2 + 2x1(1− u)u+ x2u
2 y0(1− u)2 + 2y1(1− u)u+ y2u

2]T

= (1− u)2 [x0 y0]T + 2(1− u)u [x1 y1]T + u2 [x2 y2]T

in 0 ≤ u ≤ 1, where the weights in the second line, namely, (1 − u)2,
2(1− u)u and u2, are the so-called blending functions of the control points.
As we know, these particular blending functions, called degree 2 Bernstein
polynomials, form a partition of unity.

How about the quadratic rational Bézier curve of (18.12)? Write it
similarly as a sum

c(u) = (. . .) [x0 y0]T + (. . .) [x1 y1]T + (. . .) [x2 y2]T

weights being rational blending functions, rather than polynomial. Do these
new blending functions still form a partition of unity?

Going from quadratic rational to cubic rational with four weighted control
points is straightforward, as we ask the reader to show next.

Exercise 18.10. Write an equation analogous to (18.12) for a cubic rational
Bézier curve.

Figure 18.8: Screenshot
of rationalBezier-
Curve1.cpp.

Experiment 18.3. Run rationalBezierCurve1.cpp, which draws the
cubic rational Bézier curve specified by four control points on the plane at
fixed locations, but with changeable weights.

The control points on the plane (light gray triangular mesh) are all red,
except for the currently selected one, which is black. Press space to cycle
through the control points. The control point weights are shown at the
upper-left, that of the currently selected one being changed by pressing the
up/down arrow keys. The rational Bézier curve on the plane is red as well.
Figure 18.8 is a screenshot.

Drawn in green are all the lifted control points, except for that of the
currently selected control point, which is black. The projective polynomial
Bézier curve approximating the lifted control points is green too. The lifted
control points are a larger size as well.

Note: The lifted control points and the projective Bézier curve are primitives
in P2, of course, but represented in R3 using their homogeneous coordinates.684
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Also drawn is a cone of several gray lines through the projective Bézier
curve which intersects the plane in its projection, the rational Bézier curve.

Observe that increasing the weight of a control point pulls the (red
rational Bézier) curve toward it, while reducing it has the opposite effect.
Moreover, the end control points are always interpolated regardless of
assigned weights. It’s sometimes hard to discern the very gradual change in
the shape of the curve as one varies the weights. A trick is to press delete
for the curve to spring back to its original configuration, at which moment
the difference should be clear.

It seems, then, that the control point weights are an additional set of
“dials” at the designer’s disposal for use to edit the curve.

The code of rationalBezierCurve1.cpp is instructive as well, as we’ll
see in the next section on drawing. End

We’ve been studying rational Bézier curves on the plane for really no
other reason than that, though we started with the 3D equation (18.8), we
soon projected it down to 2D. Deriving the equation for a rational Bézier
curve in 3-space is not hard and, in fact, almost a repeat of the 2D process,
as we ask the reader to show next.

Exercise 18.11. Identify R3 with the hyperplane w = 1 in xyzw-space
R4, just as we identify R2 with the plane z = 1 in xyz-space R3. Suppose
pi = [xi yi zi 1]T , 0 ≤ i ≤ n, are n+ 1 control points in R3 with assigned
weights wi, 0 ≤ i ≤ n.

Lift each pi to the projective point Pi = [wixi wiyi wizi wi]
T in P3,

expressed using those particular homogeneous coordinates. Reasoning as
earlier in the 2D case, show that the equation of the rational Bézier curve in
R3 approximating the control points pi = [xi yi zi]

T , with respective weights
wi, 0 ≤ i ≤ n, is

c(u) =

[∑n
i=0Bi,n(u)wixi∑n
i=0Bi,n(u)wi

∑n
i=0Bi,n(u)wiyi∑n
i=0Bi,n(u)wi

∑n
i=0Bi,n(u)wizi∑n
i=0Bi,n(u)wi

]T
(18.13)

for 0 ≤ u ≤ 1, which, of course, is the analogue of the 2D equation (18.11)
that we have already derived.

18.3.2 Drawing Rational Bézier Curves

OpenGL can draw rational Bézier curves in 3-space. To draw the curve with
control points pi = [xi yi zi]

T and weights wi, 0 ≤ i ≤ n, the command is

glMap1f(GL MAP1 VERTEX 4, t1, t2, stride, order, *controlPoints)

where controlPoints points to the (n+ 1)× 4 array

{{w0x0 w0y0 w0z0 w0}, {w1x1 w1y1 w1z1 w1}, . . . , {wnxn wnyn wnzn wn}}
(18.14)

and other parameters have the same meaning as for the command 685
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glMap1f(GL MAP1 VERTEX 3, t1, t2, stride, order, *controlPoints)

with which we are familiar from drawing polynomial Bézier curves in
Section 10.3.1.

Returning to rationalBezierCurve1.cpp, let’s see if OpenGL’s com-
mands to draw a rational Bézier curve in 3-space have been correctly invoked.
Say the four planar control points of the program are [xi yi]

T , 0 ≤ i ≤ 3,
represented in homogeneous coordinates by [xi yi 1]T , the values of the latter
being stored in the array controlPoints. Their respective weights wi are
stored in the array weights.

Note: We are using variable names for convenience, of course. The actual
values in the program, as you can see, are [7.0 2.0]T for [x1 y1]T , 1.5 for w1,
and so on.

The array ControlPointsLifted is filled by the routine compute-

ControlPointsLifted() with the lifted coordinate values [wixi wiyi wi]
T ,

0 ≤ i ≤ 3. The green Bézier curve is the 3D polynomial Bézier approximation
of the lifted points drawn using glMap1f(GL MAP1 VERTEX 3, . . .).

The array controlPointsHomogeneous is filled by computeControl-

PointsHomogeneous() with the values [wixi wiyi wi wi]
T . From our

understanding of the syntax of glMap1f(GL MAP1 VERTEX 4, . . .) –
compare, in particular, array controlPointsHomogeneous with array (18.14)
above – the red rational Bézier curve approximates the control points
[xi yi 1]T in R3 with weights wi, 0 ≤ i ≤ 3. By (18.13) the equation
of the latter is seen to be

c(u) =

[∑n
i=0Bi,n(u)wixi∑n
i=0Bi,n(u)wi

∑n
i=0Bi,n(u)wiyi∑n
i=0Bi,n(u)wi

1

]T
(0 ≤ u ≤ 1)

which is precisely the 2D rational Bézier approximation of the control points
[xi yi]

T , 0 ≤ i ≤ 3, drawn on the plane z = 1.
We have verified, therefore, that the green and red curves of rational-

BezierCurve1.cpp are indeed the particular Bézier approximations claimed
in Experiment 18.3.

So what do rational Bézier curves have that the polynomial curves do
not? Let’s see . . ..

18.3.3 Rational Bézier Curves and Conic Sections

Figure 18.9: Screenshot
of rationalBezier-
Curve2.cpp with the
weight of the middle
control point 1.13.

Experiment 18.4. Run rationalBezierCurve2.cpp, which draws a red
quadratic rational Bézier curve on the plane specified by the three control
points [1, 0]T , [1, 1]T and [0, 1]T . See Figure 18.9. Also drawn is the unit
circle centered at the origin. Press the up/down arrow keys to change the
weight of the middle control point [1, 1]T . The weights of the two end control
points are fixed at 1.

Decrease the weight of the control point [1, 1]T from its initial value of
1.5. It seems that at some value between 0.70 and 0.71 the curve lies exactly686
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along a quarter of the circle (the screenshot of Figure 18.9 is at 1.13). This
is no accident, as the following exercise shows. End

Exercise 18.12. Plug the values

[x0 y0]T = [1, 0]T , [x1 y1]T = [1, 1]T , [x2 y2]T = [0, 1]T

of the control points of the preceding experiment, together with the weights

w0 = 1, w1 = 1/
√

2, w2 = 1

into Equation (18.12). Show, then, that the rational functions x(u) giving
the x-value and y(u) the y-value, satisfy x(u)2 + y(u)2 = 1.

One sees from the preceding exercise that the quadratic rational Bézier
curve specified by the control points [1, 0]T with weight 1, [1, 1]T with weight
1/
√

2 (' 0.7071) and [0, 1]T with weight 1 is indeed a quarter of a circle. It
follows that any whole circle can be obtained by joining end to end at most
four quadratic rational Bézier curves. In fact, this generalizes to a very close
relationship between quadratic rational Bézier curves and conic sections:

Proposition 18.1. Any bounded arc of a conic section can be obtained by
joining end to end a finite number of quadratic rational Bézier curves.

In the other direction, any quadratic rational Bézier curve is an arc of a
conic section. 2

The proof is beyond our scope here. We refer the interested reader to the
text by Buss [22].

Remark 18.7. The qualifier “bounded” in the proposition is necessary
simply because a rational Bézier curve is bounded by definition, so that
no unbounded arc of a conic section (e.g., an entire parabola or wing of a
hyperbola) can be assembled from a finite number of rational Bézier curves.

Remark 18.8. If the reader is wondering how a quadratic rational Bézier
curve which happens to be a straight line segment, e.g., if its three control
points are collinear, can be an arc of a conic section, keep in mind that
straight lines are, in fact, degenerate conic sections (refer to Exercise 10.21).

Now, not even a circle, the simplest of conic sections, can be constructed
from polynomial Bézier curves, because no non-trivial arc of a circle has a
polynomial parametrization, as we saw in Example 10.8. This is important!
Using rational Bézier curves, though not polynomial ones, one can draw
conic sections, including circles, ellipses, parabolas and hyperbolas, all curves
which arise naturally in diverse applications.

Score one for the rationals!

Remark 18.9. The original Utah Teapot, discussed toward the end of
Section 10.3.2, composed of bicubic polynomial Bézier patches, is not – and
can never be – perfectly round! To make it so, it has to be redesigned with
the help of rational patches. 687
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18.3.4 Properties of Rational Bézier Curves

We ask the reader to establish some properties of rational Bézier curves in
general. Observe first that the x and y components of the rational Bézier
curve c given by Equation (18.11), written below again,

c(u) =

[∑n
i=0Bi,n(u)wixi∑n
i=0Bi,n(u)wi

∑n
i=0Bi,n(u)wiyi∑n
i=0Bi,n(u)wi

]T
(0 ≤ u ≤ 1)

are both ratios of polynomials of degree n in u. Accordingly, c is said to be
the rational Bézier curve of degree n, or order n + 1, the latter being the
number of control points.

The earlier Exercises 18.7 and 18.8 both generalize to rational Bézier
curves of arbitrary order, as we see next.

Exercise 18.13. Prove that a rational Bézier curve (of arbitrary order)
always interpolates both its first and last control points, no matter what the
assignment of weights.

Exercise 18.14. Prove that a rational Bézier curve (of arbitrary order)
whose control points have all equal weights coincides with the polynomial
Bézier curve specified by the same control points.

Therefore, generally, a polynomial Bézier curve is simply a special case
of a rational one.

Let’s massage (18.11) into a form which will afford us a familiar way of
understanding rational Bézier curves:

c(u) =

[∑n
i=0Bi,n(u)wixi∑n
i=0Bi,n(u)wi

∑n
i=0Bi,n(u)wiyi∑n
i=0Bi,n(u)wi

]T
=

[
n∑
i=0

Bi,n(u)wi∑n
i=0Bi,n(u)wi

xi

n∑
i=0

Bi,n(u)wi∑n
i=0Bi,n(u)wi

yi

]T

=
n∑
i=0

Bi,n(u)wi∑n
i=0Bi,n(u)wi

pi (18.15)

in 0 ≤ u ≤ 1, where the control point pi = [xi yi]
T , 0 ≤ i ≤ n.

One sees from Equation (18.15) that a rational Bézier curve is a weighted
sum of its control points, as is a polynomial Bézier curve, but using a different
set of blending functions as weights: instead of the Bernstein polynomial
Bi,n(u), the rational function

Bi,n(u)wi∑n
i=0Bi,n(u)wi

blends control point pi.688
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Exercise 18.15. Verify that the blending functions of a rational Bézier
curve form a partition of unity. Therefore, a rational Bézier curve is (a)
constrained to lie in the convex hull of its control points, and (b) affinely
invariant.
Hint : See the proof of Proposition 15.1.

Exercise 18.16. Prove that if the weight wi of one particular control point
pi is increased in Equation (18.15), then the value

Bi,n(u)wi∑n
i=0Bi,n(u)wi

of its blending function increases everywhere in the open interval 0 < u < 1,
while that of every other control point decreases.

This explains the phenomenon observed in Experiment 18.3, that
increasing a control point’s weight attracts the curve to it.

Figure 18.10: Screenshot
of rationalBezier-
Curve3.cpp.

Experiment 18.5. Run rationalBezierCurve3.cpp, which shows a
rational Bézier curve on the plane specified by six control points. See
Figure 18.10 for a screenshot. A control point is selected by pressing the
space key, moved with the arrow keys and its weight changed by the page
up/down keys. Pressing delete resets. End

From a design point of view then a control point’s weight is a dial to
turn up or down its attraction on the curve. It adds a level of control to edit
a rational Bézier curve beyond what is available for a polynomial one.

That’s score two for the rationals!

18.3.5 Rational Bézier Curves and Projective
Invariance

Note to Readers Unfamiliar with Projective Geometry : This section
investigates how a projective transformation transforms a Bézier curve.
It begins, though, with the effect of so-called snapshot transformations, a
subclass of the projective, defined in Appendix A. Informally, a snapshot
transformation is the change induced in how an object is seen by altering
the alignment of a point camera. Unfortunately, just this much may not be
enough to follow the entire discussion in this section, but to go farther it seems
unavoidable to refer to Appendix A. Our suggestion, therefore, to the reader
not inclined to peruse that appendix is to simply read once Proposition 18.2,
which describes how a rational Bézier curve changes through projective
transformation, and take it for granted.

What happens when a snapshot transformation (snapshot transforma-
tions, a special subclass of the projective, are introduced in Section A.5 of
Appendix A) is applied to a Bézier curve, either polynomial or rational? Let’s 689
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try and repeat Experiment A.1, where we ran the program turnFilm1.cpp

to compare snapshots of parallel power lines taken with the film along the
z = 1 and x = 1 plane, respectively, but, with power lines now replaced by a
polynomial Bézier curve drawn on the z = 1 plane.

c

c

O

z=1

x=1

p1

´

p2́

p0

´

c´

p0

p2

p1

x

y
z

Figure 18.11: The (red solid) quadratic polynomial Bézier curve c on the z = 1 plane is
specified by the control points p0, p1 and p2. The points p0, p1 and p2 and the curve c
project to the points p′0, p′1 and p′3 and the (red dashed) curve c′, respectively, on the
plane x = 1. The (green dashed) curve c, different from c′, is the polynomial Bézier
approximation of p′0, p′1 and p′3.

See Figure 18.11, where the control points p0, p1 and p2 lie on the z = 1
plane, and the (red solid) quadratic polynomial Bézier curve c approximates
them. The points p0, p1 and p2 and the curve c are projected along lines
toward the origin to the points p′0, p′1 and p′3 and the (red dashed) curve c′

on the plane x = 1. Therefore, c′ is the snapshot transformation of c.

Is c′ the polynomial Bézier curve approximating p′0, p′1 and p′3? No! That
happens to be a different (green dashed) curve c. Coding is believing . . ..

Experiment 18.6. Run turnFilm2.cpp, which animates the snapshot
transformation of a polynomial Bézier curve described above. Three control
points and their red dashed approximating polynomial Bézier curve are
initially drawn on the z = 1 plane. See Figure 18.12(a). The locations of
the control points, and so of their approximating curve as well, are fixed in
world space. However, they will appear to move as the film rotates.

Initially, the film lies along the z = 1 plane. Pressing the right arrow
key rotates it toward the x = 1 plane, while pressing the left arrow key
rotates it back. The film itself, of course, is never seen. As the film changes
position, so do the control points and the red dashed curve, these being
the projections (snapshot transformations, particularly) onto the current
film of the control points and their approximating curve (all fixed, as said,
in world space). Also drawn on the film is a green dashed curve, which is
the polynomial Bézier curve approximating the current projections of the
control points.690
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Note: The control points and their approximating curve, all fixed on the
z = 1 plane, and corresponding to the control points p0, p1 and p2 and the
solid red curve in Figure 18.11, are not drawn by the program – only their
snapshot transformations on the turning film.

Initially, when the plane of the film coincides with that on which the
control points are drawn, viz. z = 1, the projection onto the film of
the polynomial Bézier curve approximating the control points (the red
dashed curve) coincides with the polynomial Bézier curve approximating the
projected control points (the green dashed curve). This is to be expected
because the control points coincide with their projections. However, as the
film turns away from the z = 1 plane, the red and green dashed curves begin
to separate. Their final configuration, when the film lies along x = 1, is
shown in Figure 18.12(b).

There is more functionality to the program that we’ll discuss momentarily.
End

(a) (b)

Figure 18.12: Screenshots of turnFilm2.cpp: (a) Initial configuration (b) Final.

So, if the snapshot transformation c′ of the approximating polynomial
Bézier curve (the red dashed curve of turnFilm2.cpp) is not the polynomial
Bézier curve c approximating the transformed control points (the green
dashed curve), then what is it?

It’s not hard to deduce the answer by comparing the earlier Figure 18.7
with Figure 18.11. Imagine the plane z = 1 of the former figure replaced by
x = 1 of the latter. Accordingly, points p0, p1 and p2 of Figure 18.11 are
liftings of their respective projections p′0, p′1 and p′2 on x = 1, the weights
associated with the latter three being the respective x-values of the first
three.

Conclusion: the snapshot transformation of the polynomial Bézier curve
on the control points p0, p1 and p2, from the plane z = 1 to x = 1, is not
the polynomial Bézier curve approximating the projected control points p′0, 691
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p′1 and p′2, but, rather, the rational Bézier curve approximating them, with
the weight of p′i equal to the x-value of pi, 0 ≤ i ≤ 2.

What about snapshot transforming an arbitrary rational Bézier curve,
rather than a polynomial one? Exactly the same principle applies. The result
is a rational Bézier curve approximating the transformed control points, with
new weights.

Figure 18.13 explains how the new weights are calculated in the simple
case of transforming from z = 1 to x = 1. If the control point p on the
z = 1 plane is [x y 1]T with weight w, then its lifted control point P in R3

is [wx wy w]T . The projection of p, as that of P , on x = 1 is the point
p′ = [1 y/x 1/x]T . Therefore, the weight of p′ so that its lifting coincides
with P is wx.

O

z =1

x=1

x

y
z

p (x, y, 1)

P (wx, wy, w)

p´(1, y/x, 1/x)

Figure 18.13: Both the control point p on z = 1, with weight w, and its lifting P
project to the point p′ on x = 1.

Suppose, now, that c is the rational Bézier curve approximating n+ 1
control points [xi yi 1]T on the plane z = 1, with weights wi, 0 ≤ i ≤ n. It
follows that the snapshot transformation of c from z = 1 to x = 1 is the
rational Bézier curve on the transformed control points p′i = [1 yi/xi 1/xi]

T ,
with weights wixi, 0 ≤ i ≤ n.

Example 18.3. Compute the snapshot transformation of the rational
Bézier curve c on the z = 1 plane with control points [1 − 1 1]T , [2 1 1]T

and [4 3 1]T , and respective weights 0.5, 2.0 and 1.0, onto the x = 1 plane.

Answer : From the preceding discussion the transformation of c onto the
x = 1 plane is the rational Bézier curve with control points [1 − 1 1]T ,
[1 0.5 0.5]T and [1 0.75 0.25]T , and respective weights 0.5, 4 and 4.

Example 18.4. A polynomial Bézier curve c is drawn in 3-space with
control points at [2 2 5]T , [3 1 4]T and [0 4 2]T . What is its projection on
the z = 1 plane?692
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Answer : The projection of c on z = 1 is the rational Bézier curve with
control points at [0.4 0.4 1]T , [0.75 0.25 1]T and [0 2 1]T , and respective
weights 5, 4 and 2.

Exercise 18.17. Compute the snapshot transformation of the rational
Bézier curve c on the z = 1 plane with control points at [2 2 1]T , [1 4 1]T

and [5 1 1]T , and respective weights 1.0, 4.0 and 0.5, onto the y = 1 plane.

Exercise 18.18. A polynomial Bézier curve c is drawn in 3-space with
control points at [4 1 5]T , [2 2 3]T and [1 2 2]T . What is its projection on
the z = 1 plane?

Experiment 18.7. Fire up turnFilm2.cpp once again. Pressing space at
any time draws, instead of the green dashed curve, a blue dashed rational
Bézier curve approximating the projected control points on the current plane
of the film. The control point weights of the blue dashed curve are computed
according to the strategy just described. Voilà! The blue dashed rational
curve and the red dashed projection are inseparable. End

Exercise 18.19. (Programming) Verify that turnFilm2.cpp does as
just claimed. In particular, check that the weights of the projected control
points used to draw the blue dashed curve are correctly calculated as the
new weights following a snapshot transformation.
Hint : The code is a little tricky as the projection of the control
points on the turning film are computed “by hand”, via the routine
computeProjectedControlPoints(). What this routine does, in fact, is
simulate the rotation of the film clockwise about the y-axis by computing
the projection of the control points on the plane z = 1, after rotating the
control points counter-clockwise about the y-axis (but leaving the film fixed).
For this reason, the first viewing transformation, which is used to turn the
film, is not applied to the projected control points, but rather a second one
keeping the camera pointed at the z = 1 plane.

The routine computeWeightedProjectedControlPoints() assigns the
new weights to the projected control points that then are used to draw the
blue dashed curve.

Let’s pause a moment to take stock. A snapshot transformation of a
polynomial Bézier curve may not even be a polynomial Bézier curve. However,
that of a rational Bézier curve is not only a rational Bézier curve, but the
control points of the transformed curve are transformations of the original
control points. Moreover, their new weights can be computed from values of
the original weights and original control points. We call this property the
snapshot invariance of rational Bézier curves.

In fact, rational Bézier curves are projectively invariant :

Proposition 18.2. Applying a projective transformation of P2 to a rational
Bézier curve in R2 gives another rational Bézier curve in R2 whose control 693
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points are the transformations of the original control points, and with altered
weights which can be computed from the values of the original weights and
original control points.

Proof. Again, do keep in mind that a projective transformation acts on a
curve in R2 by transforming its lifting (which belongs to P2). The proof
of the proposition, though not difficult, involves a fair amount of algebraic
manipulation which we’ll not get into. The mathematically inclined reader
should try to prove it for herself. Otherwise, refer to Piegl and Tiller [111].
2

Projective invariance versus only affine: make that 3-0 in favor of the
rationals then!

In Exercise 18.15 we deduced the affine invariance of rational Bézier
curves as a consequence of the partition-of-unity property of their blending
functions. It’s also a consequence of the preceding proposition because affine
transformations are a subclass of the projective.

Exercise 18.20. Prove that an affine transformation of a rational Bézier
curve in R2 does not alter its weights.

Exercise 18.21. Find the flaw in the following argument:
Rational Bézier curves are projectively invariant. Polynomial Bézier

curves are special cases of rational Bézier curves with weights all equal.
Therefore, polynomial Bézier curves are projectively invariant as well.

Recall that a projective transformation can map a regular point to a
point at infinity (and vice versa) with respect to a particular embedding of
R2 in P2. In fact, one may even contemplate control points of a Bézier curve
at infinity! Here’s an interesting application to obtain a very familiar curve
as a rational Bézier curve with one control point indeed at infinity:

Exercise 18.22. Embed R2 in P2 as the plane z = 1. Prove that the
polynomial Bézier curve in P2 with control points [1 0 1]T , [0 1 0]T and
[−1 0 1]T projects to the upper-half of the unit circle centered at the origin
of R2. Observe that the middle control point is at infinity with respect to
z = 1.

18.3.6 Rational Bézier Curves in the Real World

Except for Exercise 18.11, our discussion thus far in this section has been
exclusively of rational Bézier curves on the plane. Extension to curves in
3-space, however, is straightforward. For example, Equation (18.13)

c(u) =

[∑n
i=0Bi,n(u)wixi∑n
i=0Bi,n(u)wi

∑n
i=0Bi,n(u)wiyi∑n
i=0Bi,n(u)wi

∑n
i=0Bi,n(u)wizi∑n
i=0Bi,n(u)wi

]T
0 ≤ u ≤ 1, of a rational Bézier curve in R3 approximating the control points
[xi yi zi]

T , with respective weights wi, 0 ≤ i ≤ n, which the reader was694



i
i

i
i

i
i

i
i

Section 18.3

Rational Bézier and
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asked to deduce in Exercise 18.11, adds the expected z-component to its 2D
counterpart (18.11)

c(u) =

[∑n
i=0Bi,n(u)wixi∑n
i=0Bi,n(u)wi

∑n
i=0Bi,n(u)wiyi∑n
i=0Bi,n(u)wi

]T
(0 ≤ u ≤ 1)

Exercise 18.23. Show that the projection of a rational 3D Bézier curve
on any plane is a rational 2D Bézier curve.

Exercise 18.24. (Programming) Write a 3D version of rational-

BezierCurve3.cpp of Experiment 18.5 with control points which can be
moved in 3-space, and with changeable weights. Add functionality to rotate
the viewpoint.

18.3.7 Rational Bézier Surfaces

With the spadework for rationalization already mostly done, the next step
up to rational Bézier surfaces is not going to be much more than a matter
of jotting down equations one by one with an eye still on curves.

Recall from Section 15.2 the equation

s(u, v) =
n∑
i=0

m∑
j=0

Bi,n(u)Bj,m(v)pi,j (0 ≤ u ≤ 1, 0 ≤ v ≤ 1) (18.16)

of a polynomial Bézier surface in 3-space with control points pi,j , for 0 ≤
i ≤ n and 0 ≤ j ≤ m, and the process of “sweeping by a Bézier curve” by
which it was derived.

Following a similar process, one can write the equation of a rational
Bézier surface specified by control points pi,j with respective weights wi,j ,
0 ≤ i ≤ n and 0 ≤ j ≤ m:

s(u, v) =
n∑
i=0

m∑
j=0

Bi,n(u)Bj,m(v)wi∑n
i=0

∑m
j=0Bi,n(u)Bj,m(v)wi

pi,j (0 ≤ u ≤ 1, 0 ≤ v ≤ 1)

(18.17)
From (18.16) to (18.17) the change is simply in the blending functions,

now rational, rather than polynomial. We ask the reader next to determine
equations for a rational Bézier surface in forms analogous to those that we
have already deduced for curves.

Exercise 18.25. Find equations for rational Bézier surfaces in R3

analogous to Equations (18.8)-(18.12) for rational Bézier curves.

It should come as no surprise to the reader that rational Bézier surfaces
are projectively invariant and, therefore, affine and snapshot invariant as
well. Moreover, they can represent exactly parts of paraboloids, ellipsoids 695
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and hyperboloids, and other quadric surfaces. From a designer’s perspective,
a control point’s weight, as in the case of a rational Bézier curve, is an
additional dial to turn up or down its attractive pull on the surface.

All the advantages of rational Bézier curves over polynomial propagate,
therefore, to rational Bézier surfaces.

Drawing Rational Bézier Surfaces

As expected, the main change in drawing polynomial versus rational Bézier
surfaces, as we saw in Section 18.3.2 going from polynomial to rational Bézier
curves, is replacing “VERTEX 3” with “VERTEX 4” to include the extra weight
parameter w, in addition to x, y and z, per control point.

Figure 18.14: Screenshot
of rationalBezier-
Surface.cpp.

Experiment 18.8. Run rationalBezierSurface.cpp, based on bezier-

Surface.cpp, which draws a rational Bézier surface with the functionality
that the location and weight of each control point can be changed. Press
the space and tab keys to select a control point. Use the arrow and page
up/down keys to translate the selected control point. Press ‘</>’ to change
its weight. Press delete to reset. The ‘x/X’, ‘y/Y’ and ‘z/Z’ keys turn the
viewpoint. Figure 18.14 is a screenshot.

Mark the use of glMap2f(GL MAP2 VERTEX 4, . . .), as also of glEnable-
(GL MAP2 VERTEX 4). The 2’s in the syntax are for a surface. End

18.3.8 The ‘R’ in NURBS

With all the groundwork laid in rational Bézier theory, putting the ‘R’
now into NURBS (Non-Uniform Rational B-Splines) is going to be rather
anti-climactic.

Recall Equation (16.34) of the mth order B-spline curve c approximating
r−m+ 1 control points p0, p1, . . . , pr−m over the knot vector {t0, t1, . . . , tr}:

c(u) =
r−m∑
i=0

Ni,m(u)pi (tm−1 ≤ u ≤ tr−m+1) (18.18)

where the blending function of the ith control point is the mth order B-spline
function Ni,m, 0 ≤ i ≤ r −m.

Following a development exactly parallel to that for rational Bézier curves,
one can write for a NURBS curve an equation analogous to (18.15), which
expresses a rational Bézier curve as a weighted sum of its control points,
the weights being rational blending functions. In fact, the equation for a
NURBS curve approximating r −m+ 1 control points pi, with weights wi,
0 ≤ i ≤ r −m, over the knot vector {t0, t1, . . . , tr}, is

c(u) =
r−m∑
i=0

Ni,m(u)wi∑r−m
i=0 Ni,m(u)wi

pi (tm−1 ≤ u ≤ tr−m+1) (18.19)
696
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where, of course, the blending functions are now ratios of terms composed
of B-splines.

We’ll leave finding the equation of a NURBS surface to the reader in the
following exercise.

Exercise 18.26. Recall Equation (16.36) of a B-spline surface approximat-
ing an (n+ 1)× (n′ + 1) array of control points over a pair of non-uniform
knot vectors. Rewrite it for a NURBS surface, taking into account control
point weights. What is the blending function of the control point pi,j ,
0 ≤ i ≤ n, 0 ≤ j ≤ n′?

Exercise 18.27. Prove that NURBS curves and surfaces are affinely
invariant. (In fact, they are projectively invariant.)
Hint : Think partition of unity.

Drawing NURBS Curves and Surfaces

The reader may wish to review Section 16.4 where the GLU NURBS interface
is explained and used to draw polynomial B-spline curves and surfaces. With
the practicalities of the transition from drawing polynomial Bézier primitives
to rational ones already learned from earlier in this chapter, those for drawing
rational NURBS primitives are straightforward and left to the reader. The
following two exercises ask her to apply the NURBS interface to draw a
rational curve and a rational surface, respectively.

Exercise 18.28. (Programming) Modify cubicSplineCurve1.cpp of
Experiment 16.6 to draw a cubic NURBS curve so that the weight of
the selected control point can be changed, in addition to all the original
functionality. You must use the call gluNurbsCurve(GL MAP1 VERTEX 4,
. . .).

Exercise 18.29. (Programming) Modify bicubicSplineSurface.cpp

of Experiment 16.15 to draw a NURBS surface.

18.4 Summary, Notes and More Reading

In this chapter we studied three important applications of projective spaces
to CG: (a) the projection transformation to convert a viewing volume into
the canonical box in the synthetic-camera pipeline, (b) shadow mapping
based on applying the math from (a), and, finally, (c) rational Bézier and B-
spline theory. The first demonstrates the practical importance of projective
geometry in the CG rendering pipeline. The second of shadow mapping
is a particularly useful addition to our repertoire of authentic rendering
techniques. The final application is important for a deeper understanding of
design because rational primitives, in particular NURBS, are the de facto
standard in CAD. 697
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There are several excellent sources for the reader to follow up on both
rational Bézier and NURBS primitives. A few are the books by Buss [22],
Farin [45, 46], Mortenson [94], Piegl & Tiller [111] and Rogers [116].
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CHAPTER 19
Fixed-Functionality Pipelines

A
t the end of Chapter 4 about moving and shaping objects and
manipulating the OpenGL camera, we said that it was like having
got our driver’s license. It’s time now to look at the engine under

the hood to understand the whole process, from ignition to motion. So in
this chapter we are going to study graphics rendering pipelines – processes
that transform a user-defined scene into an image on a raster display.

The particular topic of this chapter, though, is fixed-functionality
pipelines where, once the programmer has specified the scene, she has
little further say in the rendering process. In this category falls the first-
generation synthetic-camera pipeline, which, in fact, our OpenGL programs
thus far have all invoked. The basic ray tracing pipeline, based on a global
illumination model – versus a local in the case of the synthetic camera – is
fixed-functionality as well, as is radiosity, another global illumination model
often implemented in tandem with ray tracing.

We begin in Section 19.1 with the fixed-functionality synthetic-camera
pipeline. This is the pipeline that the first generation of OpenGL (versions
1.x) implements and the one used so far in this book. Our description of
this particular pipeline began, in fact, with the shoot-and-print analogy of
Chapter 2. We’ll put all the pieces together now to get a fairly complete
idea of its implementation.

Section 19.2 introduces ray tracing, the most popular global illumination
model and its rendering pipeline. As its name suggests, ray tracing is
based upon following individual light rays through a scene. It is a near
photorealistic way of rendering, but computationally so expensive as to
be almost never used in real-time applications such as games. For off-line
applications, though, e.g., movies, where computational resources and time
are not major constraints, ray tracing is far more authentic an alternative
to synthetic-camera-based rendering. 701
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Radiosity, another global lighting model and the topic of Section 19.3,
is frequently implemented together with ray tracing, as the two have
complementary models of light transport.

We conclude in Section 19.4.

19.1 Synthetic-Camera Pipeline

We’re in a position now to put together, with pieces learned so far in this
book, a complete synthetic-camera rendering pipeline, though without a lot
of the bells and whistles that practical implementations come with. Let’s
begin with a review of our understanding of how a piece of OpenGL code
turns into a picture on the monitor.

First, following the programmer’s definition of a scene (points, lines,
triangles, . . .), the modelview transformation, as described, particularly
in Sections 4.1-4.2, is applied to the scene. Section 5.4 explains how to
compute the matrix corresponding to any given modelview transformation
– the transformation being applied to a vertex by multiplying it by the
transformation’s matrix from the left. Next, the scene is “captured on film”
by applying the shoot-and-print paradigm of Section 2.2, where primitives
are projected to the front face of the viewing box or frustum (shoot) and
then scaled to fit the OpenGL window (print).

In Section 18.1 we saw that the shoot process itself is implemented in
two stages. First comes a projection transformation mapping the viewing
volume to the canonical viewing box, which itself consists of multiplying the
vertices in homogeneous xyzw-coordinates by the projection matrix, and
then, possibly, a perspective division step to divide out the w-value. The
next stage is a parallel projection to the canonical box’s back plane of the
parts of primitives inside it, because only these are rendered to the screen.

Implicit in the second stage, then, is the clipping of primitives to within
the canonical box. This can be accomplished for 1D and 2D primitives,
respectively, with use of the Cohen-Sutherland line clipper from Section 14.1
(particularly its extension to 3-space suggested in Exercise 14.5) and the
Sutherland-Hodgeman polygon clipper from Section 14.2 (Exercise 14.11
suggests the 3-space version). Note that clipping 0D primitives, i.e., points,
is a trivial matter of tossing those whose coordinates place them outside the
canonical box.

The last print step, where the back face of the canonical box is scaled
to the OpenGL window, involves choosing and coloring a set of pixels in
the latter for each primitive on the former, which, of course, is rasterization.
Again, 0D primitives, or points, are rasterized in obvious manner, while 1D
and 2D primitives can be processed with the use, respectively, of the line and
polygon rasterizers from Sections 14.3 and 14.4. Just prior to rasterization,
depth testing may be invoked to decide which part, if any, of a primitive
is obscured by others, in which case this part is not allowed to colorize its702
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corresponding pixels.
That’s it. This is enough to give us a skeletal code-to-image pipeline.

Texture, lighting and other capabilities can come in later. Let’s keep it
simple to start with.

19.1.1 Pipeline: Preliminary Version

Time now for specifics. Let’s follow a vertex, given in homogeneous
coordinates, down a simple pipeline which follows the strategy outlined
above (description of each stage is just below its line to the right; see also
the notes below the pipeline):

Synthetic-camera Rendering Pipeline (Preliminary Version)

1. [x y z 1]T −→ [xM yM zM 1]T

Modelview transformation =
multiplication by the modelview matrix .

2. −→ [xPM yPM zPM wPM ]T

Multiplication by the projection matrix .

3. −→
[
xPM

wPM
yPM

wPM
zPM

wPM

]T
Perspective division.

4. −→
[
xPM

wPM
yPM

wPM
zPM

wPM

]T
Clipping to the canonical box .

5. −→
[
xPM

wPM
yPM

wPM

]T
Projection to the back of the canonical box
(z-values possibly retained for depth testing).

6. −→ [i j]T

Rasterization.

Notes:

(i) Superscripts indicate the transforming matrix, e.g., [xM yM zM 1]T =
M [x y z 1]T . Notation: M = modelview, P = projection and PM
their product.

(ii) Multiplication by the projection matrix P (Stage 2) + perspective
division (Stage 3) = projection transformation of Section 18.1, which
transforms the viewing volume into the canonical viewing box.

(iii) Perspective division is a non-operation in the case of a glOrtho()-
defined viewing box as wPM are all 1. 703
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(iv) All the x-, y-, z- and w-values, with or without superscripts, are
floating points up to and including Stage 5. It’s only at the final
Stage 6 that the vertex “jumps” from R2 (where lies the back face of
the canonical box) to a discrete m × n raster (in the frame buffer),
in other words, from being an [x y]T floating point tuple to an [i j]T

integer tuple.

clip

raster

rasterizeviewing frustum

projection transform=
mult. by projection matrix
+perspective division 

canonical box

canonical box

modelview
transform

backface
project

Figure 19.1: Synthetic-camera rendering pipeline (the dashed part of the small drawn
box is outside the viewing frustum; the corresponding transformed part is outside the
canonical box, so clipped).

Figure 19.1 is a pictorial view, implicit in which is an additional primitive
assembly step when geometric data is used to connect points into line,
triangles, etc. There are two significant technicalities, though, to deal with
before the pipeline can be put into production. First is the problem of
handling zero w-values in the perspective division of Stage 3; the next is
the issue of so-called perspective correction needed to be taken into account
when colorizing a raster primitive in Stage 6. The next two subsections
discuss these two technicalities, respectively. Both are fairly mathematical,
so if you are not so inclined skip to Section 19.1.4, taking the revised pipeline
there for granted .

19.1.2 Perspective Division by Zero

You may need to review Section 18.1 as our discussion here is a follow-on704
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of the account in that section of the projection transformation.
Perspective division in Stage 3 of the pipeline could involve division by
zero. Prima facie, however, this appears to be not much of a problem
because the canonical box, into which the viewing volume is transformed by
multiplication by the projection matrix, consists only of regular points (with
respect to w = 1). Therefore, a point that’s mapped to a point at infinity
– with w-value 0 and, hence, outside the canonical box – never belonged
to the viewing volume in the first place. So it seems all we have to do is
add a filter before the perspective division stage to simply eject points with
w-value equal to 0. Unfortunately, the problem is a bit more complicated,
as the following experiment indicates.

Figure 19.2: Screenshot
of Experiment 19.1.

Experiment 19.1. Replace the box glutWireCube(5.0) of box.cpp with
the line segment

glBegin(GL_LINES);

glVertex3f(1.0, 0.0, -10.0);

glVertex3f(1.0, 0.0, 0.0);

glEnd();

and delete the glTranslatef(0.0, 0.0, -15.0) statement. You see a
short segment, the clipped part of the defined line segment, whose first
endpoint [1 0 − 10]T is inside the viewing frustum defined by the program’s
projection statement glFrustum(-5.0, 5.0, -5.0, 5.0, 5.0, 100.0),
while the second [1 0 0]T is outside (as is easily checked). Figure 19.2
is a screenshot. End

Here’s what’s interesting though about the experiment – the second
endpoint of the drawn segment is mapped to a point at infinity by
multiplication by OpenGL’s projection matrix! This is easy to verify.
Simply take the dot product of [0 0 − 1 0], which is the last row of
the projection matrix corresponding to glFrustum(-5.0, 5.0, -5.0, 5.0,

5.0, 100.0) as given by Equation (18.4), and [1 0 0 1], the homogeneous
coordinates of the second endpoint, to find that the endpoint’s transformed
w-value is 0 (the other coordinate values are irrelevant).

The conclusion from the experiment is that even though vertices that
map to infinity don’t belong in the viewing volume, they may be corners
of primitives which partially do. So we just can’t toss them – we’ll have
to make sure that the primitives they belong to are handed off correctly to
the clipper. This requires a little care. It’s convenient at this time to climb
a dimension down to 2D to visualize the right strategy. Example A.17 of
Appendix A is perfect for this purpose.

Note: If you have not yet read Appendix A on projective spaces and
transformations, then simply take the following transformation for granted.
However, to understand how it was derived you will need to refer to the
appendix. 705
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The projective transformation hM of P2 given by

M =

 −1/2 0 0
0 −3/2 1
0 −1/2 0


transforms the trapezoid q on the plane z = 1, aka R2, with vertices at

[−1 1]T , [1 1]T , [2 2]T and [−2 2]T

to the rectangle q′ with vertices at

[−1 1]T , [1 1]T , [1 2]T and [−1 2]T

precisely the 2D analogue of transforming a frustum to a box – instead of
a frustum we now have a trapezoid and instead of a box a rectangle. See
Figure 19.3.

z = 1 (R2) 

O´

(a)

x

z

O

y

x-axis on z = 1
v

v´
v´´

q´
u

(c)
(b)

q

Figure 19.3: The synthetic camera in Flatland: the point camera is at O′, the “viewing
trapezoid” is q, the “canonical rectangle” q′.

Note: Keep in mind that hM maps the plane point [x y]T to the one on
the plane z = 1 with homogeneous coordinatesM [x y 1]T . For example, to
determine hM ([−1 1]T ), we compute M [−1 1 1]T = [1/2 − 1/2 − 1/2]T .
Dividing the latter through by its z-value, and then dropping the z-value,
we see that hM ([−1 1]T ) = [−1 1]T .

Let’s see how to deal with a line segment primitive, say uv, on R2, subject
to transformation by hM , and, subsequently, clipping to the “canonical”
rectangle q′. Exercise A.28 of Appendix A tells us the nature of hM (uv).
It is either a segment (if no point of uv maps to a point at infinity) or
two semi-infinite segments (if an interior point maps to infinity) or one
semi-infinite segment (if one endpoint maps to infinity) or empty (if both
endpoints map to infinity).706
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It’s checked easily that points of the plane mapped by hM to points at
infinity are precisely those on the x-axis. Here, then, is how to clip hM (uv)
to the canonical rectangle – assumed available is a Cohen-Sutherland line
clipper for this rectangle with the additional ability to clip semi-infinite
segments a la Exercise 14.4. The three cases that may arise are listed
below and for each an example segment correspondingly labeled is seen in
Figure 19.3.

(a) Both u and v are above the x-axis (i.e., with positive y-values):

Pass the transformed segment hM (u)hM (v) to the clipper. Note that
the transformed segment itself is not drawn in the figure.

(b) Both u and v are below or on the x-axis:

Pre-clip uv altogether as it doesn’t intersect the viewing trapezoid.

(c) One endpoint, say u, is above the x-axis and the other endpoint v is
on or below:

Determine the point v′ of intersection of uv with the x-axis. Pass the
image hM (uv′), which is a semi-infinite segment, to the clipper (even if
v is below the x-axis, the image of v′v, another semi-infinite segment,
cannot intersect the trapezoid and need not be transmitted).

Note: If the clipper has been extended to handle semi-infinite segments
in the manner suggested in Exercise 14.4, then it will need as input
the finite endpoint of hM (uv′), as well as the direction in which it is
infinite. The finite endpoint is, of course, hM (u), while the direction it
is infinite is toward hM (v′′), where v′′ is any point between u and v′,
e.g., the midpoint. Mind that hM (v′), being a point at infinity, cannot
decide the direction itself.

Exercise 19.1. Determine what is transmitted to the extended clipper in
the 2D scenario above in the following cases.

(1) u = [0 2]T and v = [3 1]T

(2) u = [0 − 2]T and v = [3 0]T

(3) u = [0 2]T and v = [3 − 1]T

Part answer :

(3) Here, u is above and v below the x-axis, so we are in case (c) above.
The point where uv intersects the x-axis is v′ = [2 0]T . Take v′′ to be
the midpoint [1 1]T of uv′.

Therefore, passed to the extended clipper is a semi-infinite segment
which has a finite end at the point on z = 1 with homogeneous 707
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coordinates

hM (u) =

 −1/2 0 0
0 −3/2 1
0 −1/2 0

 [0 2 1]T = [0 − 2 − 2]T

and is infinite toward the point on z = 1 with homogeneous coordinates

hM (v′′) =

 −1/2 0 0
0 −3/2 1
0 −1/2 0

 [1 1 1]T = [−1

2
− 1

2
− 1

2
]T

One sees, therefore, that the segment passed to the clipper has a finite
end at [0 1]T and is infinite toward [1 1]T .

We’re going to leave it at this, hoping the reader is convinced that the
approach just described to handle vertices, otherwise leading to perspective
division by zero, can be implemented, even in 3D, by appropriately enhancing
Stage 3 of the six-stage synthetic-camera rendering pipeline.

19.1.3 Rasterization with Perspectively Correct
Interpolation

Rasterization is more than a matter of plugging in Bresenham’s rasterizer
for lines and the scan-based rasterizer for polygons (Sections 14.3 and 14.4,
respectively). The reason is that both these rasterizing algorithms choose
the pixels comprising a primitive but say nothing about how to color them.

However, coloring the pixels of a rasterized primitive seems merely a
question of linearly interpolating the values specified at its vertices through
its interior. It really ought to be since we made such a fuss in Chapter 7
about how nice are points, line segments and triangles – the fundamental
primitives of OpenGL – because values at their vertices can, in fact, be
unambiguously interpolated through their interiors! Well, it is, pretty much,
except . . .

Figure 19.4: Screenshot
of perspective-
Correction.cpp.

Experiment 19.2. Run perspectiveCorrection.cpp. You see a thick
straight line segment which starts at a red vertex at its left and ends at a
green one at its right. Also seen is a big point just above the line, which can
be slid along it by pressing the left/right arrow keys. The point’s color can
be changed, as well, between red and green by pressing the up/down arrow
keys. Figure 19.4 is a screenshot.

The color-tuple of the segment’s left vertex, as you can verify in the code,
is (1.0, 0.0, 0.0), a pure red, while that of the right is (0.0, 1.0, 0.0), a pure
green. As expected by interpolation, therefore, there is a color transition
from red at the left end of the segment to green at its right.708
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The number at the topmost right of the display indicates the fraction of
the way the big movable point is from the left vertex of the segment to the
right. The number below it indicates the fraction of the “way” its color is
from red to green – precisely, if the value is u then the color of the point is
(1− u, u, 0).

Initially, the point is at the left and a pure red; in other words, it is 0
distance from the left end, and its color 0 distance from red. Change both
values to 0.5 – the color of the point does not match that of the segment
below it any more. It seems, therefore, that the midpoint of the line is not
colored (0.5, 0.5, 0.0), which is the color of the point. Shouldn’t it be so,
though, by linear interpolation, as it is half-way between two end vertices
colored (1.0, 0.0, 0.0) and (0.0, 1.0, 0.0), respectively? End

r´ (0.33, 0, −1)

x
(0, 0, 0)

q (1, 0, −2)

p (0, 0, −1)

r (0.5, 0, −1.5)

viewing plane z = −1 q´ (0.5, 0, −1)

z

Figure 19.5: The line segment drawn in perspectiveCorrection.cpp is pq and its
projection on the viewing face pq′.

The apparent conundrum of the preceding experiment is not hard to
resolve. Figure 19.5, an xz-section of world space, shows what’s happening.
The line segment drawn in perspectiveCorrection.cpp is from p = [0 0 −
1]T to q = [1 0 −2]T , as specified in the drawScene() routine. The midpoint
of pq is r = [0.5 0 − 1.5]T . Moreover, the perspective projections of p,
q and r on the viewing plane z = −1 are p itself, q′ and r′, respectively.
The coordinates shown in the figure of q′ and r′ can be easily verified by
properties of similar triangles.

One sees, then, that r′, the projection of the midpoint of the segment pq,
is not the midpoint of the projected segment pq′, but rather approximately
0.66 (= 0.33/0.5) of the way from its left end p. With this in mind, return
to the program to set the color fraction of the movable point to 0.5 and its
distance fraction to 0.66 – now you do see a match! If perspective projections
preserved convex combinations, like linear transformations, then midpoints
would map to midpoints, but, unfortunately, as we have just found out, they 709
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do not.
The conclusion, then, is that the colors at its endpoints are linearly

interpolated along the user-specified line segment, which is a virtual object
in world space; however, as perspective projection does not preserve convex
combination, colors of the projected endpoints are not linearly interpolated
through the segment drawn on screen.

We understand the issue now, so let’s square it with our rasterization
procedure by incorporating an additional perspective correction factor.

A point p = [px py pz]
T in the viewing frustum is mapped by projection

transformation to the point p′ = [p′x p
′
y p
′
z]
T in the canonical viewing box;

parallel projection to the back face of the box then maps p′ to p = [p′x p
′
y]T .

See Figure 19.6(a).

parallel projection

(a)

viewing frustum

projection
transformation

canonical box

p = (px, py, pz)
´ ´

´ ´ ´

parallel projection

(b) canonical box

p

q

tp + (1−t)q projection
transformation

q´

p´
up´ + (1−u)q´

viewing frustum

p = (px, py, pz)´

p = (px, py)

up + (1−u)q p

q

Figure 19.6: (a) A point is mapped by the projection transformation from a viewing
frustum to the canonical viewing box, followed by parallel projection to the latter’s back
face. (b) Likewise for a line segment: the projection transformation does not preserve
convex combinations, but parallel projection does.

Moreover, a point tp+ (1− t)q on the segment joining two points p and
q in the viewing frustum maps to a point up′ + (1 − u)q′ on the segment
joining their respective images p′ and q′, though, as we understand now, not
necessarily does u = t. See Figure 19.6(b).

We want to find the function u→ t that gives the pre-image tp+ (1− t)q
of up′ + (1 − u)q′. This will serve our purpose of perspective correction,
for we’ll color the point up + (1 − u)q – now identifying the box’s back710
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face with the raster – with the color values tC(p) + (1 − t)C(q), instead of
uC(p) + (1−u)C(q) as in the case of uncorrected interpolation. C(p) = C(p)
and C(q) = C(q) are, of course, the programmer-specified colors at p and
q, respectively. Observe that correction is required only for the projection
transformation, not the parallel projection to the back face of the canonical
box, as the latter is a linear map preserving convex combinations.

Finding the function u → t is a matter of some calculation. Write
p = [px py pz]

T in homogeneous coordinates as [p 1]T = [px py pz 1]T and q
as [q 1]T = [qx qy qz 1]T . Let P be the projection matrix. Denote the results
of multiplying [p 1]T and [q 1]T by P as follows:

P [p 1]T = [p∗x p
∗
y p
∗
z − pz]T and P [q 1]T = [q∗x q

∗
y q
∗
z − qz]T (19.1)

where the starred symbols are variables to be determined, while the two
w-values on the RHS’s follow because the last row of the projection matrix
P is always [0 0 − 1 0] (see Equation (18.4)). Applying perspective division,
denoted D, next, we have

DP [p 1]T = [−p
∗
x

pz
−
p∗y
pz
− p∗z
pz

1]T = [p′x p
′
y p
′
z 1]T = [p′ 1]T

and

DP [q 1]T = [−q
∗
x

qz
−
q∗y
qz
− q∗z
qz

1]T = [q′x q
′
y q
′
z 1]T = [q′ 1]T

where the second equality in both equations above follows because DP , in
fact, is the projection transformation mapping p to p′ and q to q′. The
preceding two equations imply that

p∗x = −pzp′x, p∗y = −pzp′y, p∗z = −pzp′z, q∗x = −qzq′x, q∗y = −qzq′y, q∗z = −qzq′z
(19.2)

Consider, next, an interpolated point tp + (1 − t)q between p and q.
Multiplying it by P :

P [tp+ (1− t)q 1]T

= P ( t [p 1]T + (1− t) [q 1]T )

= t (P [p 1]T ) + (1− t) (P [q 1]T )

= t[p∗x p∗y p∗z − pz]T + (1− t)[q∗x q∗y q∗z − qz]T (applying (19.1))

= [tp∗x + (1− t)q∗x tp∗y + (1− t)q∗y tp∗z + (1− t)q∗z − tpz − (1− t)qz]T 711
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Applying D by dividing through by the w-value:

DP [tp+ (1− t)q 1]T

=

[
− tp

∗
x + (1− t)q∗x

tpz + (1− t)qz
−
tp∗y + (1− t)q∗y
tpz + (1− t)qz

− tp∗z + (1− t)q∗z
tpz + (1− t)qz

1

]T
=

[
tpzp

′
x + (1− t)qzq′x

tpz + (1− t)qz
tpzp

′
y + (1− t)qzq′y

tpz + (1− t)qz
tpzp

′
z + (1− t)qzq′z

tpz + (1− t)qz
1

]T
(using (19.2))

=
tpz

tpz + (1− t)qz
[p′x p

′
y p
′
z 1]T +

(1− t)qz
tpz + (1− t)qz

[q′x q
′
y q
′
z 1]T

=
tpz

tpz + (1− t)qz
[p′ 1]T +

(1− t)qz
tpz + (1− t)qz

[q′ 1]T

= u [p′ 1]T + (1− u) [q′ 1]T

where

u =
tpz

tpz + (1− t)qz
Inverting the preceding relationship gives the desired function u→ t:

t =
uqz

(1− u)pz + uqz

=
qz

( 1
u − 1)pz + qz

, if u > 0 ; 0, if u = 0 (19.3)

Whew! But now we know exactly what to do: Referring back to
Figure 19.6(b), we’ll color the point up + (1 − u)q with the color values
tC(p)+(1−t)C(q), instead of uC(p)+(1−u)C(q) as in the case of uncorrected
interpolation, where t is given by the formula 19.3. This process is called
perspectively correct interpolation or linear interpolation with perspective
correction.

Here, then, is how to apply perspectively correct interpolation in coloring
pixels along a line segment. Say the rasterization R(S) of a line segment S
joining the points p = [px py pz]

T and q = [qx qy qz]
T in the viewing frustum

consists of N + 1 pixels in the raster, as depicted in Figure 19.7.
The end pixel of R(S) corresponding to p is (i1, j1) and that to q is

(i2, j2). Precisely, (i1, j1) is obtained from mapping p to p on the back face
of the canonical box by projection transformation and parallel projection,
followed by mapping p to a point on the raster by the scaling transformation
matching the back face of the canonical box to the raster and, finally, followed
by a rounding to integer coordinates. Likewise, (i2, j2) is obtained from q.
Suppose, as well, that R(S) makes an angle of at most 45◦ with the positive
i-axis – other dispositions of R(S) can be handled by symmetry – so that
i2 = i1 + N , which means that each successive pixel of R(S) from left to
right has one higher i-value.712
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j

u = 
i

N−2N−1 
N N

1 0

R(S)

pixel(i2, j2),
color C(q)

pixel(i1, j1),
color C(p)

Figure 19.7: The rasterization R(S) of a line segment S consists of N + 1 pixels, each
corresponding to a particular u-value (a few u-values are shown vertically below the
corresponding pixel).

Each of the N + 1 pixels of R(S), counting from the left, corresponds
successively to a point up+ (1− u)q of pq, where u = 1, N−1N , N−2N , . . . , 0.
The first few u-values are indicated at the bottom of a pixel’s column in the
figure.

The color tuples C(p) and C(q) of the two end pixels are, of course, the
programmer-specified colors of the corresponding end vertices. It remains to
color the in-between pixels. The pixel next to the leftmost corresponds to
u = N−1

N , therefore, in turn, by Equation (19.3), to the perspectively correct

t =
qz

( 1
N−1
N

− 1)pz + qz
=

qz
pz
N−1 + qz

In other words, that pixel corresponds to the point tp+ (1− t)q of S, where
t is given by the preceding equation. Consequently, the color to apply
is tC(p) + (1 − t)C(q). Likewise, the color to apply to the next pixel is
tC(p) + (1− t)C(q), after updating t to

t =
qz

2pz
N−2 + qz

by setting u = N−2
N in (19.3). The procedure of decrementing u by 1

N ,
updating t and applying the interpolated colors tC(p) + (1− t)C(q) to the
next pixel is repeated until the pixel just before the rightmost is colored,
which, of course, completes the coloring of R(S). This procedure can be
integrated into Bresenham’s line rasterizer: simultaneously picking the pixels
along a line segment and coloring them with perspective correction.

We’ll leave the reader to convince herself that, going from 1D to 2D, a
similar perspective correction can be incorporated into triangle and polygon
rasterization.

Remark 19.1. Not only color values, but other numerical data defined per
vertex, e.g., normals, can be linearly interpolated with perspective correction
as well. 713



i
i

i
i

i
i

i
i

Chapter 19

Fixed-Functionality

Pipelines

19.1.4 Revised Pipeline

Enhancements to the preliminary version of the synthetic-camera rendering
pipeline in Section 19.1.1 are needed then to Stage 3 to handle perspective
division by zero and Stage 6 to incorporate perspective correction into
rasterization. Once these are done we have all the pieces in place to go
into production. For the record, the enhanced version (with additions in
bold) is shown below. Figure 19.8 after it is a pictorial summary – note
the additional primitive assembly step, prior to clipping, when points are
assembled into lines, triangles, and such.

Synthetic-camera Rendering Pipeline

1. [x y z 1]T −→ [xM yM zM 1]T

Modelview transformation =
multiplication by the modelview matrix .

2. −→ [xPM yPM zPM wPM ]T

Multiplication by the projection matrix .

3. −→
[
xPM

wPM
yPM

wPM
zPM

wPM

]T
Perspective division with mechanism
to handle zero w-values.

4. −→
[
xPM

wPM
yPM

wPM
zPM

wPM

]T
Clipping to the canonical box .

5. −→
[
xPM

wPM
yPM

wPM

]T
Projection to the back of the canonical box
(z-values possibly retained for depth testing).

6. −→ [i j]T

Rasterization with perspective correction.
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Figure 19.8: Complete minimal synthetic-camera rendering pipeline.

This is a complete synthetic-camera pipeline in that it will transform a
user-specified scene correctly into a picture on the monitor. However, it is
skeletal. The OpenGL pipeline, as we’ll see next, adds several features.714



i
i

i
i

i
i

i
i

Section 19.1

Synthetic-Camera

Pipeline

19.1.5 OpenGL Fixed-function Pipeline

The OpenGL 1.x fixed-function rendering pipeline, while keeping the gist of
the synthetic-camera pipeline as described above, enhances it with several
new capabilities to make it significantly more powerful. The additions are
indicated in a darker shade in Figure 19.9.
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Figure 19.9: OpenGL fixed-function pipeline. Additions to the minimal
synthetic-camera pipeline are darkly shaded.

The first addition is texturing, where vertex data (vertex and texture
coordinates, particularly) and a set of controlling parameters (filters,
environment settings, etc.) are used to combine the texture images into the
raster. We learned the fundamentals of texturing ourselves in Chapter 12.

Next, instead of simply copying the raster into the frame buffer, the
user can define per-fragment operations – a raster pixel with color data
and z-value is called a fragment. The per-fragment operations allowed in
OpenGL consist of four tests in the order

1. Scissor test

2. Alpha test (discarded from OpenGL 3.1 on)

3. Stencil test

4. Depth test

followed by

5. Blending

If a fragment fails an early test then it is eliminated immediately and does not
proceed to subsequent tests. A fragment which survives all tests graduates
into a pixel.

We are already familiar with the stencil test (Section 13.7) and depth
test (from as far back as Section 2.8). The scissor test is just a special case
of the stencil test, where stencil tags are used to mask a rectangular region
of the OpenGL window. It has been made a separate test because it can be 715
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optimized in hardware, unlike the general stencil test. The alpha test allows
the user to accept or reject a fragment depending upon its alpha value.

Note: The alpha test has been discarded since OpenGL 3.1 because its
functionality can be executed in a fragment shader, part of the programmable
pipeline.

If the reader is wondering why lighting is missing from the pipeline of
Figure 19.9, then note that lighting computations are done along the top
path, starting from vertex data, which includes normal values as well. It’s
simply to avoid clutter in the figure that specific lighting calculation stages
have been omitted, as have some other processing stages, such as fogging
and antialiasing.

Remark 19.2. The shading language in second-generation and higher
OpenGL, called GLSL for GL shading language, transforms the pipeline
of Figure 19.9 by making programmable major sections currently of fixed
functionality. In particular, so-called vertex and fragment shaders allow
the programmer to dictate to a great extent how vertices and fragments
are processed. This permits greater flexibility and, therefore, creativity, in
modeling scenes than with the fixed-functionality pipeline. We’ll be studying
the GLSL ourselves from the next chapter.

19.1.6 1D Primitive Example

Let’s chase a 1D primitive down the synthetic-camera rendering pipeline of
Section 19.1.4, which is the OpenGL pipeline minus bells and whistles.

Example 19.1. The projection statement in the reshape routine of a
program is

glFrustum(-5, 5, -5, 5, 5, 25)

The only primitive definition and only modelview transformation in the
drawing routine are

glTranslatef(0, 5, 0);

glBegin(GL_LINES);

glColor3f(1, 0, 0); glVertex3f(0, 0, -10);

glColor3f(0, 1, 0); glVertex3f(25, 5, -20);

glEnd();

All other statements in the program are routine.
Apply the synthetic-camera rendering pipeline to determine the raster-

ization of the line segment drawn by the program in a 100 × 100 raster.
Determine as well the z-values corresponding to the segment’s pixels.

Answer : The segment endpoints in homogeneous coordinates are

p = [0 0 − 10 1]T and q = [25 5 − 20 1]T716
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The matrix corresponding to the translation is (from Equation (5.28))

M =


1 0 0 0
0 1 0 5
0 0 1 0
0 0 0 1


The matrix corresponding to the projection statement is (from Equa-
tion (18.4))

P =


1 0 0 0
0 1 0 0
0 0 −1.5 −12.5
0 0 −1 0


Apply the modelview transformation first, multiplying both endpoints by
M :

Mp = [0 5 − 10 1]T and Mq = [25 10 − 20 1]T

At this point we note that both z-values are negative, so we are in a situation
analogous to case (a) at the end of the discussion in Section 19.1.2 and can
proceed down the pipeline without worrying about invoking enhancements
to handle zero w-values in Stage 3. Accordingly, multiplying by P next:

PMp = P [0 5 − 10 1]T = [0 5 2.5 10]T

and

PMq = P [25 10 − 20 1]T = [25 10 17.5 20]T

Perspective division, then, gives the Cartesian coordinates of the transformed
endpoints as follows:

[0/10 5/10 2.5/10]T = [0 0.5 0.25]T

and

[25/20 10/20 17.5/20]T = [1.25 0.5 0.875]T

As the first point lies in the canonical box, while the second outside of only
the x = 1 plane, clipping involves a single intersection computation – that
of the transformed segment with the x = 1 plane. We’ll leave the reader
to verify by means of elementary geometry that the intersection, in fact, is
[1 0.5 0.75]T , so that the endpoints of the clipped segment are

[0 0.5 0.25]T and [1 0.5 0.75]T

We must determine the color tuple to assign the new second endpoint. It’s
checked that the new endpoint as a convex combination of the old ones is:

[1 0.5 0.75]T = u[0 0.5 0.25]T + (1− u)[1.25 0.5 0.875]T 717
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where u = 0.2. Therefore, by Equation (19.3), it corresponds to the point
tp+ (1− t)q on pq, where

t =
0.875

( 1
1/0.2 − 1)0.25 + 0.875

= 0.467

Accordingly, the color tuple assigned the new endpoint is

0.467(1, 0, 0) + 0.533(0, 1, 0) = (0.467, 0.533, 0)

Projecting the first endpoint of the clipped segment to the back face of
the canonical box gives then the point [0 0.5]T , with color value (1, 0, 0)
and z-value 0.25 (retained possibly for depth testing). Likewise, the second
endpoint projects to [1 0.5]T with color value (0.467, 0.533, 0) and z-value
0.75.

Time to leap from world space to screen space!

scale

(−1, −1)

(−1, 1)

canonical box

(m−1, n−1)

(m−0.5, 
  n−0.5)

(1, −1)

(1, 1)

raster
(−0.5, −0.5)

x

y

pixel center
pixel

y

x(0, 0)

Figure 19.10: Scaling from the 2× 2 back face of the canonical box, located on an
xy-plane, to the m× n area of the raster.

Generally, if the raster is m×n and pixel centers have integer coordinates
(i, j), where 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1, then the area of the raster
is an axis-aligned rectangle, whose lower-left corner is (−0.5,−0.5) and
upper-right (m − 0.5, n − 0.5). See Figure 19.10. The back face of the
canonical box, on the other hand, can be imagined as a 2× 2 square with
corner coordinates x = ±1 and y = ±1 on the xy-plane (now that projection
is done, we can “forget” z-values, except when they are needed for depth
testing). Accordingly, functions that scale the back face onto the raster –
we’re doing the print part of shoot-and-print now – are:

x→ x+ 1

2
m− 0.5 and y → y + 1

2
n− 0.5

Applying these functions to the projected endpoints on the back face of the
canonical box, with m = n = 100, we get:

[0 0.5]T → [49.5 74.5]T and [1 0.5]T → [99.5 74.5]T718
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Rounding, one has the endpoint pixels on the raster as (49, 74) and (99, 74),
respectively. Data associated with these pixels are the color values (1 , 0, 0)
and (0.467, 0.533, 0) and z-values 0.25 and 0.75, respectively.

As the rasterized segment is horizontal, choosing pixels along it is trivial
– (49, 74), (50, 74), . . . , (99, 74) – obtaining a raster line segment of length
N = 50 (containing 51 pixels).

It remains to color the in-between pixels using perspective correction, as
well as assign their z-values. The u-value corresponding to pixel (50, 74),
second from left, is 1− 1

50 = 0.98, and t-value, therefore (applying (19.3)):

0.75

( 1
0.98 − 1)0.25 + 0.75

= 0.993

Accordingly, its color tuple is

0.993(1, 0, 0) + 0.007(0.467, 0.533, 0) = (0.996, 0.004, 0)

and z-value
0.98 ∗ 0.25 + 0.02 ∗ 0.75 = 0.26

using u itself, rather than t, to interpolate.

Important : z-values need not be perspectively corrected as their values in
the canonical box, following projection transformation, are valid.

We’ll leave the reader to calculate the color and z-values of a few more
pixels or, better still, write a routine to generate them all.

19.1.7 Exercising the Pipeline

Exercise 19.2. Redo the preceding example with only the part in the
drawing routine changed to

glRotatef(45, 0, 0, 1);

glBegin(GL_LINES);

glColor3f(1, 1, 1); glVertex3f(5, 0, -10);

glColor3f(0, 0, 0); glVertex3f(10, 10, -5);

glEnd();

Exercise 19.3. Repeat the previous exercise with the drawing routine
changed again to

glRotatef(90, 0, 1, 0);

glBegin(GL_LINES);

glColor3f(1, 0, 0); glVertex3f(1, 0, -1);

glColor3f(1, 0, 0); glVertex3f(-4, 4, 0);

glEnd();

and the projection statement, as well, to

glOrtho(-5, 5, -5, 5, 5, -5) 719



i
i

i
i

i
i

i
i

Chapter 19

Fixed-Functionality

Pipelines

Exercise 19.4. Repeat the previous exercise with the drawing routine
changed once more to

glTranslatef(1, 1, 1);

glBegin(GL_LINES);

glColor3f(1, 1, 1); glVertex3f(5, 0, -10);

glColor3f(0, 0, 0); glVertex3f(10, 10, 5);

glEnd();

and the projection statement back to

glFrustum(-5, 5, -5, 5, 5, 25)

Note: You can roughly check your result for each of the preceding exercises
by comparing it with the output of a minimal OpenGL program containing
the given statements.

Exercise 19.5. (Programming) This is a substantial programming
project: implement the synthetic-camera pipeline to render (only) 0D and
1D primitives (drawn in 3-space, of course). Use the OpenGL window to
simulate the raster as in DDA.cpp.

19.2 Ray Tracing Pipeline

L

translucent

opaque

opaque

Figure 19.11: Tracing rays from a light source L – only few reach the eye.

The ray tracing pipeline is an “alternate” to the synthetic-camera graphics
pipeline. The reason for the quotes is that the ray tracing approach is very720
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different from that of the synthetic-camera-based approach and rarely does
a programmer have the option of simply exchanging one for the other. Why
this is the case will be apparent once we understand how ray tracing works.

The idea behind ray tracing is straightforward: to follow light rays from
each source as they interact with the scene – reflecting off opaque objects one
to another, and both reflecting off and refracting through translucent ones, in
the process casting shadows and creating reflections – till they finally reach
the eye. However, implementing this idea as just stated is not a particularly
well-advised endeavor, as (a) there is an infinite continuum of light rays
emanating from each source, and (b) even after somehow discretizing them
to a finite number, only a fraction thereof reach the viewer. See Figure 19.11
for an idea of the situation.

Ray tracing, instead, implements the plan “backwards”. Rays are traced
from the eye, one through each pixel, so that no computation is expended
on rays which are ultimately invisible. Each ray is followed through the
pixel and into and around the scene, possibly bouncing off opaque objects
and passing through translucent ones, for a finite amount of time, till a
determination is made of its color. Of course, an implementation has to
“cut off” each ray after a finite number of steps and determine the color it
has picked up through interactions with objects up to that point, or the ray
tracing process will continue indefinitely.

L

opaque

Figure 19.12: Tracing rays from the eye, one through each pixel. Rays are “stopped”
when they strike an object.

See Figure 19.12 for a very simple scene. The screen is virtual – akin
to the front face of an OpenGL viewing box or frustum. In this particular
figure, rays either go off to infinity (there are two such drawn) or stop upon 721
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hitting the surface of an object (there are two such as well). We don’t (as
yet) follow rays beyond their first intersection with an object’s surface.

This, in fact, suggests a simple first implementation of ray tracing: color
pixels, rays through which go off to infinity without collision, the background
color; assign every other pixel the color of the first point of intersection of the
ray through it with an object’s surface. This particular color is determined
from Phong’s lighting model – see Chapter 11, in particular the lighting
equation (11.12).

Here’s pseudo-code:

Ray Tracer Version 1: Non-recursive local

void topLevelRoutineCallsTheRayTracer()

{
positionEye = position of eye in world space;

for (each pixel P of the virtual screen)

{
d = unit vector from positionEye toward the center point of P;

color of P = rayTracer(positionEye, d);

}
}

Color rayTracer(p, d)

{
if (ray from point p in the direction d does not intersect the

surface of any object in the scene) return backgroundColor;

else

{
q = first point of intersection with an object’s surface;

computedColor = color computed at q using Phong’s lighting model;

return computedColor;

}
}

Notes:

1. The base case of Version 1, when the ray is stopped at an intersection
with an object, uses Phong for color calculation. It is typical, in fact,
of ray tracers to invoke a local lighting model at the base case.

2. Intersection detection, implicit in the code, is the most computationally
intensive part of the ray tracer. We’ll not go into intersection
computation in our account of ray tracing, but focus instead on color
calculations.

Interestingly, the ray tracer version above renders the same image as a
synthetic-camera pipeline – a la OpenGL – implementing Phong’s lighting
model with depth testing. The only difference is that depth testing via the722
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z-buffer has been replaced by ray tracing to determine visible surfaces (one
surface obscuring another if it blocks rays from reaching the other).

19.2.1 Going Global: Shadows

The next step up is shadow computation. This is simple to do. If a ray
through a pixel intersects a surface, then send a feeler ray from the point
of intersection toward each light source. If the feeler ray hits an object
before reaching a light source, then the point of intersection is in the shadow
of the struck object and not illuminated directly by the source. Recall
in this connection that, according to Phong’s model, only the diffuse and
specular components of light reflected off a surface depend upon direct, i.e.,
straight-line, illumination from the light source, while the ambient does not.

L1
L2

S2

S1

p1

p2

p3

Figure 19.13: Shadow computation: feeler rays are dashed.

See Figure 19.13. Point p1 on ball S2 is in the shadow of the ball S1 cast
by light from L1 – because the feeler ray from it toward L1 is cut off by
S1 – so it reflects only the ambient component of light from that particular
source. On the other hand, p1 is directly illuminated by L2, so reflects all
components of light from that source. Point p2 is in the shadows of S1, of
which it is a point itself, cast both by L1 and L2. Point p3 is illuminated
directly by both sources.

Here’s pseudo-code for a shadow-computing ray tracer (a top-level routine
the same as that of the first version is not repeated):

723
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Ray Tracer Version 2: Non-recursive global, with shadows

void topLevelRoutineCallsTheRayTracer(); // See Version 1.

Color rayTracer(p, d)

{
if (ray from point p in the direction d does not intersect the

surface of any object) return backgroundColor;

else

{
q = first point of intersection;

computedColor = black; // Color values all set to zero.

for (each light source L)

{
// Object not shadowed.

if (feeler ray from q toward L does not intersect the

surface of any object before reaching L)

computedColor += color computed at q due to light from

L, using Phong’s lighting model;

// Object shadowed.

else computedColor += ambient component of color computed at

q due to light from L using Phong’s

lighting model;

}
return computedColor;

}
}

A hugely significant development in Version 2 is that the lighting model
has now gone global : object-object light interaction comes into play in
computing shadows. A local lighting model, like OpenGL’s default Phong, on
the other hand, does not take into account other objects when coloring a par-
ticular one. Recollect how we computed shadows ourselves in the programs
ballAndTorusShadowed.cpp and ballAndTorusShadowMapped.cpp. Now,
this global version of ray tracing not only gives us shadows automatically,
but ones as authentic as those drawn by Mother Nature, in particular, the
laws of light.

19.2.2 Going Even More Global: Recursive Reflection
and Transmission

We are ready now for the full blast of ray tracing power. So far, we’ve
stopped at the first intersection of a ray from the eye with a surface. In
reality, rays from a light source can bounce from object to object, or even pass
through them, several times before reaching the viewer, giving rise to such
phenomena as reflection and translucence. To model this in keeping with ray
tracing’s backward approach of following rays from the eye into the scene,724
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one must allow a ray to continue even after it hits an object. The physics of
light suggests that a ray striking an object is partially reflected off its surface
and partially transmitted through it, depending on the characteristics of the
material, as well as the color of the light. For example, an opaque object
transmits almost zero light and reflects the remainder according to its surface
finish and color, while a translucent one transmits most.

Accordingly, we’ll enhance Ray Tracer Version 2 such that each ray from
the eye that strikes a surface spawns two additional rays: a reflected ray in
the direction of perfect reflection and a transmitted ray passing through the
surface, possibly with its direction altered by refraction. The two spawned
rays are treated exactly as the incoming ray and may each spawn additional
rays themselves upon subsequent intersection with a surface. If you are
thinking recursion, then that’s exactly where we’re headed.

L

(a) (b)

r

r

p1

p1p3

p3
r1

r1

r2

r2

p4

p4

p2 p2

S2

S1

Figure 19.14: (a) Reflection and transmission: reflected rays are black, transmitted
blue. One dashed feeler ray is drawn. (b) Ray tree (not all edges are labeled).

As an example, Figure 19.14(a) follows a single ray r from the eye through
a few intersections with two translucent balls. The resulting binary ray tree
data structure is shown in Figure 19.14(b). Observe that the transmitted
rays are refracted by the material of the balls. The color computed at a
point now has three components – one computed locally, one returned by
the reflected ray, and one by the transmitted ray – as given by the following
equation:

computedColor = colorlocal + coefrefl colorrefl + coeftran colortran

For example, at point p1 of the figure, colorlocal is computed using Phong
(exactly as in Version 2, with the help of feeler rays to find “visible” light
sources – the feeler ray from p1 to L1 is shown in the figure); colorrefl is the
value returned recursively by the reflected ray r1, attenuated by a material-
dependent multiplicative factor coefrefl, which specifies the fraction of the 725
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incoming ray r that is reflected; colortran is likewise returned recursively by
the transmitted ray r2 and attenuated by coeftran.

Pseudo-code is below. The new top-level routine passes a non-negative
integer depth parameter maxDepth to the ray tracer to cut off recursion after
a finite number of levels.

Ray Tracer Version 3: Recursive global, with shadows, reflection and
transmission

void topLevelRoutineCallsTheRayTracer()

{
positionEye = position of eye in world space;

for (each pixel P of the virtual screen)

{
d = unit vector from positionEye toward the center point of P;

color of P = rayTracer(positionEye, d, maxDepth);

}
}

Color rayTracer(p, d, depth)

{
if (ray from point p in the direction d does not intersect the

surface of any object) return backgroundColor;

else

{
q = first point of intersection;

computedColor = black; // Color values all set to zero.

// Local component, copy of Version 2 calculations.

for (each light source L)

{
// Object not shadowed.

if (feeler ray from q toward L does not intersect the

surface of any object before reaching L)

computedColor += color computed at q, due to light from

L, using Phong’s lighting model;

// Object shadowed.

else computedColor += ambient component of color computed at

q, due to light from L, using Phong’s

lighting model;

}

// Global component.

if (depth > 0)

{
d1 = unit vector from q in direction of perfect reflection;

d2 = unit vector from q in direction of transmission;

726
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// Reflected component added in recursively.

computedColor += coefRefl * rayTracer(q, d1, depth-1)

// Transmitted component added in recursively.

computedColor += coefTran * rayTracer(q, d2, depth-1)

}
return computedColor;

}
}

Notes:

1. Determining where an incident ray strikes an object and spawns
a reflected and a transmitted ray obviously requires intersection
computation. Subsequent calculation of the direction of the reflected
and transmitted rays requires computation of the normal to the surface
at the point of incidence as well:

(a) The direction of the reflected ray is given by the laws of reflection,
which say that both the incident and reflected rays make the same
angle with the normal to the surface, and that all three lie on the
same plane. See Figure 19.15, where the equation for reflection is
A = B.

refracted transmitted ray

surface

normal
incident rayreflected ray AB

C

Figure 19.15: Calculating the direction of the reflected and transmitted rays: A =
angle of incidence, B = angle of reflection, C = angle of refraction.

(b) Routines to compute the direction of transmission can be simple
or as fancy as the need for realism dictates.

For instance, refraction is often taken into account with the help
of Snell’s law, which says that the ratio of the sine of the angle
of incidence to the sine of the angle of refraction is equal to the
ratio of the speed of light in the medium of the incident ray to
that in the medium of the refracted ray; moreover, the incident
ray, refracted ray and normal to the surface all lie on the same
plane. 727
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The ratio of the speed of light in two different media is the
inverse ratio of the refractive indices of the media. Therefore,
in Figure 19.15, one can write the equation for refraction as
sinA
sinC = η2

η1
, where η1 is the refractive index of the medium on the

side of the incident ray and η2 that on the side of the refracted
ray.

2. The direction of the reflected ray is taken to be that of perfect mirror-
like reflection. This models well the transport of specular light but
not that of diffuse. For the latter is needed multiple reflected rays
– remember that diffuse light is scattered in all directions by the lit
object – which would make the ray tracing process computationally
overwhelming.

This inability of ray tracing to realistically model diffuse illumination
is a weakness often overcome by combining it with radiosity, another
global lighting model which is specially designed to track the dispersion
of diffuse light. We’ll discuss radiosity in the next section.

Exercise 19.6. Neither version 2 nor 3 of our ray tracer seems to take
into account global ambient light in their Phong base case. Revise both
versions to do so.

Remark 19.3. It’s interesting to observe that a ray tracer does not ask for
a small set of simple drawing primitives, e.g., points, line segments and
triangles, as needed for efficient implementation of the synthetic-camera
model. As long as their intersection with a given ray can be computed and
the normal at a given point determined, arbitrary curved surfaces may be
rendered.

19.2.3 Implementing Ray Tracing

We’re going to implement ray tracing with the help of POV-Ray (Persistence
of Vision Ray Tracer), a freely downloadable ray tracer from povray.org

[113]. Download and install POV-Ray. The executable is about 10 MB and
there are Linux, Mac OS and Windows versions. It comes packaged with a
nicely written tutorial and a reference manual.

Here’s POV-Ray code to show off how realistic ray traced rendering can
be.

Experiment 19.3. If you have successfully installed POV-Ray, then open
sphereInBoxPOV.pov from that program; if not, use any editor.

If you have installed POV-Ray, then press the Run button at the top;
otherwise, open the output image file sphereInBoxPOV.jpg in the same
folder as sphereInBoxPOV.pov. Figure 19.16(a) is a screenshot. Impressive,
is it not, especially if you compare with the output in Figure 19.16(b) of
sphereInBox1.cpp? The inside of the box, with the interplay of light evident728
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in shadows and reflections, is far more realistic in the ray-traced picture.
End

(a) (b)

Figure 19.16: Ray tracing versus OpenGL: screenshot of (a) sphereInBoxPOV.pov (b)
sphereInBox1.cpp.

The code itself is fairly self-explanatory. It’s written in POV-Ray’s scene
description language (SDL), which, unlike OpenGL, is not a library meant
to be called from a C++ program – the SDL is stand-alone. We’ve obviously
tried to follow the settings in our OpenGL program sphereInBox1.cpp as
far as possible. The camera and a white light source are placed identically
as in sphereInBox1.cpp. The red box, as in sphereInBox1.cpp, is an
axis-aligned cube of side lengths two centered at the origin. It comprises six
polygonal faces, each originally drawn as a square with vertices at (−1,−1),
(1,−1), (1, 1) and (−1, 1) on the xy-plane, and then appropriately rotated
and translated. The top face is opened to an angle of 60◦. Finally drawn is
a green sphere of radius one. The material finishes are minimally complex,
just enough to obtain reflection and a specular highlight on the sphere.

So what gives? If ray tracing is so much more realistic than the synthetic-
camera-based OpenGL pipeline, then why bother with the latter (or, for
that matter, write fat books about it)?! If you noticed how long it took
to render the output of sphereInBoxPOV.pov – a few seconds at least on
a decent desktop – then you have the answer. Ray tracing is very very
computationally intensive. Intersection computations don’t come cheap and
they have to be done for every ray at every level in every ray tree generated,
and there’s one ray tree for each of maybe a million pixels. To even open the
lid of the simple box of sphereInBoxPOV.pov in real-time, in the manner
of sphereInBox1.cpp, is beyond the power of any modern-day desktop.
Interactive animation, therefore, of remotely complex scenes (read games) is
likely to remain beyond the reach of ray traced rendering for a while now.

On the other hand, still-life and movies, where either there is either no
animation or it is all done off-line, are perfect applications for ray tracing. 729
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Computer animation in Hollywood is almost exclusively ray traced, individual
frames of complex and highly realistic animated sequences sometimes taking
hours each to render on special-purpose hardware (often clusters of computers
called render farms). Incidentally, POV-Ray, too, has the capability to
sequence an animation from individually generated frames (refer to their
tutorial).

Remark 19.4. The holy grail of ray tracing research is, in fact, real-time
ray-traced rendering.

Synthetic-camera
pipeline

Ray traced
pipeline

Figure 19.17: The (object-oriented) synthetic-camera pipeline versus the
(screen-oriented) ray traced pipeline.

A somewhat amusing, though fairly authentic, comparison of the
synthetic-camera pipeline with ray tracing is to say that the former is
“object-oriented”, while the latter “screen-oriented”. See Figure 19.17: on
the left, objects (primitives) are dropped into the synthetic-camera pipeline
to emerge rasterized, while on the right, pixels are dropped into the ray
tracing pipeline to emerge colorized.

In case you enjoyed the little of POV-Ray that we showed and want to
try your own hand at ray tracing, here are a couple of exercises.

Exercise 19.7. (Programming) Use POV-Ray to generate a ray
traced “combination” of ballAndTorusReflected.cpp and ballAndTorus-

PerspectivelyShadowed.cpp with both shadows and reflections. It will be
a single still shot, of course. Make sure that both the ball and torus, in730
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addition to the floor and wall, are highly reflective, so that, in fact, they all
reflect each other. You may need additional light sources to liven the scene.

Exercise 19.8. (Programming) Animate the opening of the lid of the
box of sphereInBoxPOV.pov by generating a sequence of stills – one for
every degree the lid turns would mimic sphereInBox1.cpp.

19.3 Radiosity

19.3.1 Introduction

Radiosity is a global lighting model which uses principles of heat transfer to
track the dispersion of diffuse light around a scene.

Figure 19.18: Living room lit mostly with diffuse light (courtesy www.freshome.com).

It is quite often that a significant component of the light illuminating a
scene is, in fact, multiply reflected diffuse light. For an example, consider
a living room scene like the one depicted in Figure 19.18, populated with
non-shiny furniture and lit by early morning rays. In such a setting there
is little specular transport of light (i.e., by mirror-like reflection). Instead,
in addition to the ambient component, which is fairly constant throughout,
there tends to be mostly diffuse activity. For example, light from the floor
and walls reflect diffusely onto the shelves and furniture fabric. Even parts
of the environment obscured from direct lighting, such as the floor between
the sofas, are not in a well-defined shadow, but mildly illuminated by light
reflecting off adjacent objects.

Such multiple diffuse reflections are not modeled by ray tracing at all.
In fact, if you see again the design of Ray Tracer Version 3 in the previous
section, a ray upon intersecting an object spawns a single ray in the direction
of transmission and another in the direction of perfect reflection. Radiosity
complements ray tracing by modeling diffuse illumination. Together, they 731
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can deliver highly realistic rendering, ray tracing emphasizing the shadows
and highlights, and radiosity recording the softer lights.

19.3.2 Basic Theory

Figure 19.19: Patchified
box.

The radiosity algorithm that we’ll describe begins by dividing the scene into
some number n of small flat, typically polygonal, patches , Pi, 1 ≤ i ≤ n, e.g.,
see Figure 19.19. A triangulated scene is, of course, automatically patchified.
However, even then, one may want to refine certain triangles, or combine
others to coarsen the given triangulation in response to two opposing forces
in patchification: the smaller and more numerous the patches the more
authentic is the lighting calculation; on the other hand, the time complexity
of the radiosity algorithm, which is O(n2), increases rapidly with the number
of patches. The best strategy is an adaptive one where a region over which
light intensities are expected to vary rapidly is finely patchified, while one of
steadier light levels more coarsely.

Remark 19.5. Patchifying to compute radiosity means that it is a finite
element method.

The brightness or radiosity of a patch is the light energy per unit time
per unit area leaving the patch, measured, typically, in a unit such as
joules/(second×meter2) (equivalent to watts/meter2). The brightness varies
with the frequency of the light in a manner that determines the perceived
color of the patch; e.g., a red patch emits the greatest intensity at the red
end of the visible spectrum. However, for simplicity’s sake, we’ll develop the
theory assuming the brightness of a patch Pi as a single scalar value Bi, while
a real implementation will have three different scalar values corresponding
to the RGB brightnesses.

Our starting point is the following equation which, in fact, holds for each
i, 1 ≤ i ≤ n,

AiBi = AiEi +Ri

n∑
j=1

FjiAjBj (19.4)

where Ai is the area of patch Pi, Bi its brightness, Ei its emission rate,
Ri the reflective scaling factor and, finally, Fji, the so-called form factor
between patches Pj and Pi.

The equation simply states that the amount of light energy leaving a
patch Pi, which is the area × brightness term on the LHS, is equal to (a)
the amount it emits as a source plus (b) the amount it reflects of incoming
light, the two additive terms, respectively, on the RHS.

The value of (a) as the product of the patch’s area and emission rate is
clear. For (b), note first that the form factor Fji denotes the fraction of the
total light energy leaving patch Pj that reaches Pi. Therefore, Fji(AjBj) is,
in fact, the amount of light leaving Pj for Pi; multiplied by Pi’s reflective
scaling factor Ri, this gives the amount of light from Pj actually reflected
from Pi. Accordingly, the value of (b) is the summation of RiFji(AjBj)732
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over all patches Pj , which is precisely the second term on the RHS of the
equation above.

P1
P4

P3

P2 P5

Figure 19.20: Form factor between patches depends on their respective orientation, the
distance between them and if there is occlusion by other patches.

Shortly, we’ll be computing form factors mathematically but it’s easy
to understand intuitively that Fji depends on the orientation of Pj and Pi
relative to each other, their distance and, further, if there is occlusion by
intermediate patches between the two. For example, in Figure 19.20, the
form factor between patches P1 and P2 and between P2 and P3 is high,
because the two pairs are side by side and parallel, while that between P1

and P3 low because P2 is between them. The form factor between P4 and
any one of P1, P2 and P3 is low because of unfavorable orientation. The
form factor between P5 and any one of P1, P2 and P3 is low as well because
of distance.

Form factors will be seen to satisfy the reciprocity equation:

FijAi = FjiAj (19.5)

Assuming this reciprocity for now, rewrite Equation (19.4) as

AiBi = AiEi +Ri

n∑
j=1

FijAiBj (19.6)

Dividing out Ai, one gets the radiosity equations:

Bi = Ei +Ri

n∑
j=1

FijBj , 1 ≤ i ≤ n (19.7)

which is a set of simultaneous linear equations in the brightnesses Bi, the
latter being the only unknowns, provided we already have at hand the
emissivities Ei and reflectivities Ri from a knowledge of material properties,
and provided we can compute, as well, the form factors Fij from the patch
geometry.

Rearranging the radiosity equations as

(1−RiFii)Bi −
∑

1≤j≤n, j 6=i

RiFijBj = Ei, 1 ≤ i ≤ n
733
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one can write them in matrix form as
1−R1F11 −R1F12 . . . −R1F1n

−R2F21 1−R2F22 . . . −R2F2n

...
... . . .

...
−RnFn1 −RnFn2 . . . 1−RnFnn



B1

B2

...
Bn

 =


E1

E2

...
En

 (19.8)

Denoting

B =


B1

B2

...
Bn

 , E =


E1

E2

...
En

 , and Q =


R1F11 R1F12 . . . R1F1n

R2F21 R2F22 . . . R2F2n

...
... . . .

...
RnFn1 RnFn2 . . . RnFnn


a succinct matrix form of the radiosity equations is obtained from (19.8):

(In −Q)B = E (19.9)

where, of course, In is the n× n identity matrix.
Therefore, once we know how to do the following two tasks efficiently,

we’ll be in a position to practically implement the theory developed thus far:

(a) Compute form factors.

(b) Solve the radiosity equation (19.9) to determine patch brightnesses.

We discuss the two in the next sections.

19.3.3 Computing Form Factors

r

ni

pi

Pi
Pj

pj

nj

dpjdpi
φjφi

Figure 19.21: Comput-
ing form factors.

Consider two patches Pi and Pj . Even though the respective normal
directions, ni and nj , remain constant over the patches, assumed flat, the
amount of light from a point on Pi reaching a point on Pj , e.g., pi and pj in
Figure 19.21, varies as the points vary, depending on the distance between
them and the angle the line joining them makes with ni and nj , respectively.
Therefore, one must integrate over the two patches – points being represented
by infinitesimal areas – in order to determine the total light reaching Pj
from Pi. In the figure, small triangles indicate the infinitesimal areas dpi
and dpj at pi and pj , respectively.

In fact, if patches are presumed to be Lambertian, i.e., they reflect light
uniformly in all directions from every surface point, then it can be proved
that the form factor Fij , the fraction of the total light emanating from Fi
that reaches Fj , is given by:

Fij =
1

Ai

∫
pi∈Pi

∫
pj∈Pj

vij
cosφi cosφj

πr2
dpj dpi (19.10)

734
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where Ai is the area of Pi, φi and φj are the angles between the segment
pipj and the normals ni and nj , respectively, r is the length of pipj , and vij
is a Boolean which is 1 if pj is visible from pi and 0 otherwise.

Exercise 19.9. It is easy now to deduce the reciprocity equation (19.5)
from the formula for a form factor. Do so.

Except for the simplest cases, the double integral in Formula (19.10) is
impossible to compute exactly. The hemicube method , however, is a clever
approximation algorithm developed by Cohen and Greenberg [25], which
takes advantage of fast hardware-based z-buffers.

Write formula (19.10) as

Fij =
1

Ai

∫
pi∈Pi

 ∫
pj∈Pj

vij
cosφi cosφj

πr2
dpj

 dpi (19.11)

The inner integral can be imagined to be the form factor between pi – or,
more precisely, an infinitesimal patch dpi containing pi as in Figure 19.21 –
and Pj , while Fij itself is the average of these form factors over points of Pi.

The first assumption of the hemicube method is that the form factor
between pi and Pj does not vary significantly as pi varies over Pi, which is
justified if the distance between Pi and Pj is large in comparison to their
respective sizes. In such a case, the average Fij can be approximated by a
single value, say that of the form factor at a fixed point pi located centrally
in Pi; precisely,

Fij =

∫
pj∈Pj

vij
cosφi cosφj

πr2
dpj (19.12)

obtained from assuming the inner integral of (19.11) to be constant over Pi.
The next assumption is that this pi–Pj form factor itself can be

approximated by replacing Pj with its projection P ′j on an (imaginary)
hemicube – half a cube – with its base lying on the plane of Pi and centered
at pi. Figure 19.22(a) shows such a hemicube, being half of a cube of side
lengths 2. The justification for this assumption is as follows.

As Pi is Lambertian, light from each of its points emanates uniformly in
all directions, which means that the light from pi uniformly illuminates a
hemisphere with its base along Pi and center at pi. So the projection of Pj
onto such a hemisphere would be an “ideal” replacement for Pj . However, for
the sake of computational advantages, which will be perceived momentarily,
the hemisphere is replaced with a hemicube centered at pi and of dimensions
indicated in Figure 19.22. So we get the following approximation from
(19.12) by replacing the patch Pj with its projection P ′j on the replacement
hemicube:

Fij =

∫
p′j∈P ′j

vij
cosφi cosφj

πr2
dp′j (19.13)
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(a) (b)
2 2

2

´
´

2
11

pi

r

Pj

Pi

Pj

pi

pj=(x, y,1)

φi

φj

Figure 19.22: (a) Projecting a patch onto a hemicube (b) Computing the delta form
factor.

The hemicube algorithm, next, discretizes the computation of the preceding
integral by dividing the hemicube into a grid of squares, called (suggestively,
as we shall see) pixels, and treating each as an infinitesimal area dp′j .
Figure 19.22(b) shows a division into pixels of the top face. This process
effectively replaces the integral with a finite sum.

It’s in the evaluation of this sum that the beauty of the hemicube method
lies. Here’s what it asks: for each of the five faces of the hemicube – top
and four sides – render the scene with the eye at pi and the front face of the
viewing frustum coinciding with that hemicube face. Presto! Screen pixels
now correspond to pixels on the hemicube face so that occlusion – the pesky
vij in the integral – is automatically taken care of by means of thez-buffer.

To determine all vij , then, color code each patch – with, typically, 224

colors to choose from, there should be plenty to assign a unique one to each
patch – and render the scene with depth testing to find the screen pixels of a
given color, which determines the projection of the patch of that color on a
hemicube face. For example, the projection P ′j of patch Pj in Figure 19.22(a)
has a part on the top and one on the side of the hemicube. If Pj were coded,
say, red, then the red pixels, when the scene is rendered with the hemicube
top as the viewing face, comprise the part of the top not occluded (in the
figure there happens to be no occlusion of Pj at all).

Consider, next, a single pixel belonging to patch P ′j , lying on the top face
and centered at the point p′j = (x, y, 1), e.g., the darker one in Figure 19.22(b).

We have r =
√
x2 + y2 + 1, φi = φj and cosφi = cosφj = 1/r. Moreover,

the area of the pixel is 4
wh , where the screen size is w pixels × h pixels.

Therefore, the contribution of the top face of the hemicube to the integral736
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(19.13) is approximated by the sum∑
pixel on top face

of color code of Pj

(1/r)(1/r)

πr2
4

wh
=

4

πwh

∑
pixel on top face

of color code of Pj

1

(x2 + y2 + 1)2

(19.14)

Exercise 19.10. Write sums analogous to (19.14) for the contributions of
each of the four side faces of the hemicube to the integral (19.13).

The implementation of the hemicube algorithm should now be clear.
First, color code patches. Next, for each patch, and for each of the five
faces of the hemicube centered at the middle of the patch, render the scene
using that particular face as the viewing face and then process the resulting
screen by tallying the contribution of each pixel according to its color. The
contribution of a pixel to the form factor between pi and the patch of the
pixel’s color, e.g.,

4

π(x2 + y2 + 1)2wh

for a pixel on top of the hemicube, is called a delta form factor . Accordingly,
the computation of each form factor is reduced to the process of incrementing
it from zero, by a delta form factor at each step, as the screen is swept row
by row, pixel by pixel, for each of the five renderings.

19.3.4 Solving the Radiosity Equation to Determine
Patch Brightnesses

The second and final piece before we can practically implement the radiosity
method is an efficient algorithm to solve the radiosity equation (copied from
(19.9))

(In −Q)B = E

to determine the patch brightness vector B, where the matrix

In −Q =


1−R1F11 R1F12 . . . R1F1n

R2F21 1−R2F22 . . . R2F2n

...
... . . .

...
RnFn1 RnFn2 . . . 1−RnFnn


Trying to solve the preceding equation by writing B = (In − Q)−1E

and straightforwardly inverting In − Q would be prohibitively expensive
as the computation involved is O(n3), where the number n of patches is
typically in the thousands. However, certain properties of the matrix In−Q,
derived from properties of the form factors, lead to an efficient method to
approximate its inverse. 737
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First,

Fii = 0, 1 ≤ i ≤ n

because patches, being flat, cannot self-reflect. Moreover, we can assume as
well that

n∑
j=1

Fij = 1, 1 ≤ i ≤ n

which means all light leaving any given patch strikes other patches, by
closing off the environment with black (i.e., non-reflective) patches. These
properties of the form factors, together with that each reflectivity Ri is at
most 1, imply that the principal diagonal of In −Q consists of all 1’s and
that the sum of non-diagonal entries in any row of In −Q is at most 1. One
can then prove that

(In −Q)−1 = In +Q+Q2 + . . .

where the series on the right converges (which might remind the reader of
the power series expansion (1− x)−1 = 1 + x+ x2 + . . ., which converges if
|x| < 1). Therefore,

B = (In −Q)−1E = E +QE +Q2E + . . .

allowing the patch brightness vector B to be approximated to arbitrary
accuracy by adding sufficiently many terms of the series on the right. Care
needs still to be taken, as a simple-minded computation of the term QkE by
repeatedly multiplying by Q is nearly O(n3) again. A simple observation,
however, helps cut the cost.

Denote successive partial sums of the series E + QE + Q2E + . . . by
B0,B1, . . .. In other words, B0 = E, B1 = E +QE, B2 = E +QE +Q2E
and so on. Then we have the recurrence

Bk+1 = E +QBk, k ≥ 0

so that each successive term of the sequence B0,B1,B2, . . . of partial sums
converging to B can be computed from the previous by a matrix-vector
product and a vector-vector addition, the two operations together being of
O(n2) complexity. In fact, if the matrix Q is sparse, likely if the form factor
between patches at a distance greater than some threshold value are set to
0, then the complexity may be closer to linear.

Exercise 19.11. Consider the operator Ψ that acts on n-vectors by

Ψ(X) = E +QX

Prove that the solution B of the radiosity equation is a fixed point of Ψ, i.e.,
a vector X such that Ψ(X) = X.738
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The preceding exercise leads to Jacobi’s iterative method to approximate
the fixed point B of Ψ as follows. Choose arbitrarily a start vector X ′. Then
repeatedly apply Ψ to X ′ to obtain a sequence X ′,Ψ(X ′),Ψ(Ψ(X ′)), . . ..
Properties of the radiosity equations guarantee that this sequence converges
to the unique fixed point of the operator Ψ. We’ll not discuss the theory
underlying Jacobi’s method any further ourselves, but the interested reader
is referred to Hageman & Young [66].

Exercise 19.12. Prove that Jacobi’s iterative method to approximately
determine the solution B of the radiosity equation, using a zero start vector,
is precisely equivalent to the power series method of approximating B.

Remark 19.6. A useful physical insight into the sequence B0,B1,B2, . . . of
partial sums converging to B is that the first term represents only emitted
light, the second emitted light together with diffuse light coming to the eye
after a single reflection, the third emitted light together with diffuse light
after at most two reflections and so on.

In practical terms, this means that using the sequence B0,B1,B2, . . .
as brightness vectors illuminates the scene in an increasingly authentic
manner, which leads to the cost-saving technique of executing each iteration
to compute Bi only on demand, called progressive refinement .

19.3.5 Implementing Radiosity

possibly

Compute form
factors 

Render sceneSolve radiosity
equations

Patchify scene

Repeat for R, G, B

progressive

Figure 19.23: The radiosity algorithm.

Figure 19.23 shows the four steps of the radiosity algorithm. The first
three are view-independent and may be pre-computed for a scene whose
geometry does not change. The last rendering step, of course, depends on
the location of the viewer. To reduce aliasing artifacts at patch borders,
instead of rendering each patch with its computed brightness, each vertex is
assigned a brightness computed from its adjacent patches, e.g., a weighted
average. Subsequently, vertex colors are interpolated through each patch
via Gouraud shading.

Remark 19.7. As the first three steps of the radiosity algorithm are view-
independent, while the last, even though dependent on the viewer’s location,
is not particularly computationally intensive, radiosity can be efficiently
incorporated into a real-time walk-through of a static scene, e.g., a building
interior. 739
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Experiment 19.4. Run again sphereInBoxPOV.pov. Then run again
after uncommenting the line

global_settings{radiosity{}}

at the top to enable radiosity computation with default settings. The
difference is significant, is it not?

Figure 19.24(a) is the ray-traced output without radiosity, while
Figure 19.24(b) is the output with radiosity (both images are in the folder
ExperimenterSource/Chapter19/ExperimentRadiosity). There clearly is
much more light going around inside the box in the latter rendering. End

(a) (b)

Figure 19.24: Without and with radiosity: screenshot of sphereInBoxPOV.pov with (a)
radiosity disabled (b) radiosity enabled.

Exercise 19.13. If the lighting in a scene changes, then which steps of the
radiosity algorithm need to be redone? How about if the geometry changes,
e.g., with a ball looping in and out of a torus?

19.4 Summary, Notes and More Reading

In this chapter we went into particularly gory detail about the synthetic-
camera pipeline that OpenGL implements, the fixed-functionality variant
in particular. The reader should now be in a position to even implement a
barebones version of her own. The synthetic-camera pipeline is based on a
local illumination model. We were introduced as well to two global models,
those of ray tracing and radiosity, and saw how much more realism they
afford than the synthetic camera, though at hugely more computation cost.

The book by Jim Blinn [17], a CG pioneer, has several insightful articles,
written in his particularly entertaining style, on various pipeline-related
topics. Segal-Akeley [128] is a must-read high-level overview of the OpenGL740



i
i

i
i

i
i

i
i

Section 19.4

Summary, Notes and

More Reading

pipeline written by two members of the original design team and, of course,
the red book itself is a canonical source.

The seminal work on ray tracing was by Appel [4] and Whitted [148],
and on radiosity by Goral [58]. A classic introduction to ray tracing is by
Glassner [56]. For more advanced reading about ray tracing and radiosity,
some useful textbooks are Akenine-Möller, Haines & Hoffman [1], Buss
[22] and Watt [147]. Cohen & Wallace [26] and Sillion & Puech [132] are
especially about radiosity.

741
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OpenGL 4.3, Shaders and the
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P
rogrammers mutiny! We’re going to throw off our shackles and take
over the engine room!

The first radical advancement of OpenGL, since its creation in 1992,
was the inclusion of shaders in OpenGL 2.0 released in 2004. Shaders are
ancillary programs, attached to an OpenGL program, that run on the GPU
and are written by the user to supplant and enhance parts of the graphics
pipeline formerly of fixed-functionality. They are written in a C-like language
called the OpenGL Shading Language (abbreviated GLSL).

Historically, shaders evolved as a response to the increasing capabilities of
GPUs and the need to expose these to the application programmer. Before
the standardization of the GLSL for shaders a programmer had to write code
in vendor-specific language to access individual GPU features – a difficult
and inefficient task at best. Just as high-level programming languages like
C evolved from assembly in order to hide low-level calls from the developer
and give her a structured environment, so did the GLSL.

As a language the GLSL itself is based on C, so coding will not be a
problem for us. In addition to much of C’s functionality, the GLSL necessarily
has features for shaders to interact with each other, as well as with the
application OpenGL program to which they are attached.

The first version of the GLSL – that included in OpenGL 2.0 in 2004 –
was GLSL 1.1. Since then both OpenGL and the GLSL have progressed
in tandem through several versions to, as of this writing, OpenGL 4.3 and
GLSL 4.3 (since OpenGL 3.3, released in 2010, OpenGL and GLSL version
numbers have matched). In this chapter and the next we are going to cover
the OpenGL 4.3 forward-compatible core version, the snooty 1%er which 745
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brooks no legacy or even deprecated commands, and its sister GLSL 4.3.
With this chapter and the next, we intend to take the reader from the

fixed-functionality pre-shader OpenGL thus far in this book to a treatment
of core 4.3 complete except maybe for a few advanced features. We are
confident though that, as she continues, the reader will agree that pre-shader
OpenGL was well worth the effort, even if her goal all along was mastery
of the latest version of the API, because fundamental concepts remain the
same and, most importantly, fixed-functionality allows for a comfortable
learning curve to 4.3, which, otherwise, could well prove vexing for the novice
graphics programmer.

Section 20.1 is an overview of the programmable pipeline with a brief
discussion of its most significant consequences to actually writing OpenGL
code. GLSL, particularly its data types, is introduced in Section 20.2. In
Section 20.3 we take apart our first core 4.3 program to see what makes it
tick – this program, in fact, is a rewrite of our very first OpenGL program
square.cpp. Animation, lighting and textures, as managed in the 4.3
pipeline, are the topics, respectively, of Sections 20.4, 20.5 and 20.6. We
conclude with Section 20.7.

20.1 New Pipeline for OpenGL

We discuss the role of shaders in the programmable pipeline and changes in
OpenGL as it has grown to accommodate shaders.

20.1.1 Shaders in the Rendering Pipeline

There are four possible shader stages in the programmable pipeline: vertex,
tessellation, geometry and fragment. Each stage, except tessellation,
corresponds to a single shader program written in the GLSL; the tessellation
stage can consist of two shader programs, namely, tessellation control and
tessellation evaluation.

Now take a good hard stare again at the fixed-function OpenGL pipeline of
the previous chapter, copied below in Figure 20.1. Next, look at Figure 20.2
which shows the programmable pipeline. As you see, the fixed-function
sequence from perspective division to rasterization remains intact, but now
there are new shading stages before this sequence, as well as between it and
the per-fragment operations which also remain. The texturing path, as we’ll
find, has been subsumed into the fragment shader. Let’s make a quick first
acquaintance of the shaders.

Vertex shader: This is a mandatory shading stage which was part of
the original programmable pipeline specification in OpenGL 2.0. The vertex
shader runs once per input vertex, processing the data associated with it,
e.g., world coordinates, color values, normal values, texture coordinates. At
minimum, it must output xyzw-coordinates for each vertex, presumably after746
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Figure 20.1: OpenGL fixed-function pipeline.
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Figure 20.2: OpenGL programmable pipeline.

multiplication by the modelview matrix (i.e., after modelview transformation)
and by the projection matrix. This make perfect sense if you see the first
two stages of the fixed-function pipeline in Figure 20.2, which, in fact, have
been supplanted by the vertex shader.

Tessellation shader: This is an optional stage comprising two shaders,
the tessellation control and evaluation shaders. In fact, even the tessellation
control shader is optional and tessellation shading can be done with only
the tessellation evaluation shader. Tessellation shading was introduced in
OpenGL 4.0 for the purpose of LOD (level-of-detail) management. It can
adaptively refine or coarsen an object’s mesh, e.g., adding more triangles as
it comes closer to the eye.

Geometry shader: This is yet another optional stage, following
tessellation in the pipeline, but, actually, introduced earlier in OpenGL
3.2. The geometry shader allows the programmer to transform the original
geometry, e.g., replacing triangles with lines, or new triangles of a different
size, or replacing lines with points, and such.

Fragment shader: This is a mandatory shading stage which, like the
vertex shader, was part of the original programmable pipeline of OpenGL
2.0. The fragment shader runs once per output fragment either setting
its color or discarding it (which means simply not drawing the fragment). 747
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The color value set by a fragment shader may, however, be modified by
the per-fragment operations coming next before finally being written to the
frame buffer. Typically, for example, the fragment shader may compute
the interpolated color values per fragment from color values received per
vertex from the vertex shader. The texturing operations of the fixed-function
pipeline are now the responsibility of the fragment shader.

20.1.2 New OpenGL

As shaders have evolved so has OpenGL, the shared aim being to (a) leverage
the computational power of the GPU to the maximum, and (b) minimize
traffic, particularly, transfer of vertex data, along the relatively slow CPU-
GPU bus. To this end, numerous new features have been added in the
progression through versions from (pre-shader) OpenGL 1.0 to OpenGL
version 4.3 as, at the same time, several old ones were deprecated or altogether
discarded. We’ll obviously be seeing many of these differences as we code
4.3. Nevertheless, it’s worth noting even now a few changes with palpably
large footprints on programming:

1. Elimination of immediate mode (viz. glBegin()-glEnd()) drawing :
4.3 allows only retained-mode drawing calls of the glDraw*() and
glMultiDraw*() type. The reason is not hard to understand from the
following analogy.

Compare issuing a stream of instructions via cell phone to a friend in a
supermarket along the lines of “Got the milk? Good! Now, pick up a
loaf of whole wheat from across the aisle. Great! Frosted Flakes next
in cereals on aisle 9 . . .” with, instead, setting him off once and for all
with a shopping list which he can himself optimize together (possibly)
with other stuff that he has to buy.

The first option might make sense if your buddy happens to be a bit
thick like GPUs from a decade ago, but certainly not if he is as quick
as even the low-end ones nowadays.

Fortunately, we switched (well, mostly) from immediate mode to
retained way back in Section 3.1, though our motivation then was
separating data out of drawing procedures more so than efficient GPU
usage.

2. Requirement that all data must be stored in buffer objects: We met
buffer objects a long time ago too, in Section 3.2, learning even then
their utility in saving CPU-GPU traffic by providing server-side storage
for vertex and pixel data. That section was, particularly, about VBOs
(vertex buffer objects), while the next, Section 3.3, was about VAOs
(vertex array objects) which help encapsulate the buffer objects related
to a given geometric object.748
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At the end of Section 3.3 we, in fact, counseled the user against coding
VBOs and VAOs then because the added complexity would detract
from our focus on fundamentals at that time. Now, though, the
situation is changed: VBOs and VAOs are compulsory in 4.3. So, it’s
time for a review exercise if need be.

Exercise 20.1. (Programming) Review Section 3.2 and Sec-
tion 3.3 on VBOs and VAOs, respectively, and do the exercises therein.

It’s important to be comfortable with their usage before starting to code
4.3 .

3. Elimination of modelview transformation commands : glTranslatef(),
glRotatef(), glScalef() and gluLookAt() are all gone from 4.3, the
management of the modelview matrix stack (in fact, also the projection
and texture matrix stacks) now the responsibility of the programmer
who has to write, store and operate on the matrices herself (don’t
worry, we’ll import a library to help with this!).

The principle behind this change is that the vertex shader already
allows the user to change vertex coordinates with her own matrices,
so why not give her full charge, instead of leaving some coordinate
processing to fixed-function.

4. Do-it-yourself lighting : glLight*() and glMaterial*() commands?
All gone from 4.3! You have to calculate the color values at lit vertices
yourself and then if, say, you want to Gouraud (i.e., smooth) shade
the interiors of triangle, you’re going to have to do that yourself too
(no, there is no glShadeModel() either).

Again, this approach makes sense if one observes that lighting is all
about coloring pixels, which is exactly what the fragment shader is for.

One might conclude that 4.3 tends to puts the programmer in a master-slave
relationship with herself.

Defining the OpenGL Context

With changing OpenGL versions, there is naturally demand sometimes from
consumers to ensure continued usability of code written in an older version,
as equally from developers to protect their products from future obsolescence.
For this reason, since OpenGL 3.0, there is a fairly refined way that one can
ask an OpenGL context from the operating system (think of an OpenGL
context as the interface between an OpenGL program and the drivers and
hardware which run it).

Firstly, the command

glutInitContextVersion(major, minor);

specifies the OpenGL version number major.minor. Next 749
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glutInitContextProfile(profile);

where profile can be GLUT CORE PROFILE or GLUT COMPATIBILITY PROFILE

specifies the profile. The core profile excludes all features discarded from the
specification of the current or earlier versions, while the compatibility profile
includes them all. This is why all our programs thus far, till Chapter 19,
which declared a version 4.3 compatibility profile with the statements

glutInitContextVersion(4, 3);

glutInitContextProfile(GLUT_COMPATIBILITY_PROFILE);

in main() were able to use legacy non-4.3 commands. From now on, though,
we’ll be replacing the above block with

glutInitContextVersion(4, 3);

glutInitContextProfile(GLUT_CORE_PROFILE);

glutInitContextFlags(GLUT_FORWARD_COMPATIBLE);

which asks for a 4.3 core profile; in fact, the last statement asks for forward-
compatibility, which means excluding features marked for deprecation in
the current version, thus ensuring compatibility with future versions.

20.2 GLSL Basics

We’ll come to grips in earnest with shaders in the next section but before
that our goal in this one is to give a quick overview of their language, the
GLSL.

To begin with, GLSL has the “Cish” (though, not exactly C)basic data
types:

float 32-bit floating point number

double 64-bit floating point number

int signed 32-bit integer

uint unsigned 32-bit integer

bool Boolean (true/false)

GLSL has, as well, the aggregate data types vectors and matrices to
more accurately support OpenGL functionality. Particularly, 2-, 3- and
4-component vectors are available in each of the five basic types:

float: vec2 vec3 vec4

double: dvec2 dvec3 dvec4

int: ivec2 ivec3 ivec4

uint: uvec2 uvec3 uvec4

bool: bvec2 bvec3 bvec4

Moreover, GLSL implements floating point and double matrices:750
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float: mat2x2 mat2x3 mat2x4

mat3x2 mat3x3 mat3x4

mat4x2 mat4x3 mat4x4

mat2 mat3 mat4

double: dmat2x2 dmat2x3 dmat2x4

dmat3x2 dmat3x3 dmat3x4

dmat4x2 dmat4x3 dmat4x4

dmat2 dmat3 dmat4

Note that matpxq and dmatpxq have each p columns and q rows, while matp
and dmatp are square of size p.

Construction and initialization of both the basic and aggregate types are
pretty much along the lines one would expect coming from C, e.g.,

vec4 color;

color = vec4(1.0, 0.0, 1.0, 1.0);

vec3 rgbColor = vec3(color); // rgbColor has the first

// three components of color

A matrix, e.g.,

M =

[
1.0 3.0 5.0
2.0 4.0 6.0

]
can be initialized in multiple ways including

mat3x2 M = mat3x2(1.0, 2.0, 3.0, 4.0, 5.0, 6.0); // Column major!

and

vec2 column0 = vec2(1.0, 2.0);

vec2 column1 = vec2(3.0, 4.0);

vec2 column2 = vec2(5.0, 6.0);

mat3x2 M = mat3x2(column0, column1, column2);

There’s a simple way to initialize a scalar matrix, e.g.,

mat2 M = mat2(3.0);

sets

M =

[
3.0 0.0
0.0 3.0

]
Accessing the components of an aggregate type is Cish too (e.g., v[i],
M[i][j] to access elements of a vector and matrix, respectively). Addition-
ally, one has the particularly OpenGL-friendly way of accessing the first,
second, third or fourth component of a vector via the corresponding member
of any one of the following three sets of accessors:

x, y, z, w r, g, b, a s, t, p, q 751
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Particularly, if v is a vec4 variable then v.x (or v.r or v.s) is its first
component, v.y (or v.g or v.t) its second component, and so on. The above
sets of accessors, of course, are meant to be used in connection with position
coordinates, color values and texture coordinates, respectively. The sets
cannot be mixed, though, in the same statement. The “.” in the middle
is often called the swizzle operator. The following snippet illustrates both
traditional access and swizzling, which is the use of the swizzle operator to
both access and rearrange components.

vec4 pos1 = vec4(1.0, 2.0, 3.0, 4.0);

float xVal = pos1[0]; // xVal = 1.0

float xVal = pos1.x; // xVal = 1.0

float yVal = pos1.y; // yVal = 2.0

float yVal = pos1.g; // yVal = 2.0

vec4 pos2 = pos1.yxzw; // Rearranging: pos2 = (2.0, 1.0, 3.0, 4.0)

vec4 pos3 = pos1.rrba; // Duplication: pos3 = (1.0, 1.0, 3.0, 4.0)

vec4 pos4 = vec4(pos1.xyz, 5.0); // pos4 = (1.0, 2.0, 3.0, 5.0).

vec2 pos5 = pos1.xy; // pos5 = (1.0, 2.0).

vec4 pos6 = pos1.xgga; // Illegal: mixing names from two sets.

One can swizzle on the left-hand side as well, but repeated components are
disallowed, e.g.,

vec4 pos1 = vec4(1.0, 2.0, 3.0, 4.0);

pos1.xy = vec2(5.0, 6.0); // pos1 = (5.0, 6.0, 3.0, 4.0).

pos1.yx = vec2(5.0, 6.0); // pos1 = (6.0, 5.0, 3.0, 4.0).

pos1.xx = vec2(5.0, 6.0); // Illegal: x is repeated.

Here is a snippet illustrating access of elements of a matrix:

mat3x2 M = mat3x2(1.0, 2.0, 3.0, 4.0, 5.0, 6.0);

vec2 column2 = M[2]; // column2 = vec2(5.0, 6.0)

float xTan = M[2][1]; // xTan = 6.0

float xTan = M[2].y; // xTan = 6.0

Note: Keep in mind the column-major order for matrices! The usual math
convention is that M [i][j] is the element in row i and column j; in GLSL
it’s the element in column i and row j.

The fun with GLSL vectors and matrices starts with applying the
operators “∗” and “+” between them, when they start behaving as in
linear algebra, e.g.,

mat2 M = mat2(1.0, 2.0, 3.0, 4.0);

mat2 N = mat2(1.0, 0.0, 0.0, 2.0);

mat2 P = M + N; // P = mat2(2.0, 2.0, 3.0, 6.0)

P = M * N; // P = mat2(1.0, 2.0, 6.0, 8.0)

vec2 V = vec2(1.0, 2.0);

vec2 W = M * V; // W = vec2(7.0, 10.0)752
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The reader can guess how this feature will, amongst other things, support
modelview and projections transforms.

The complex data types structures (struct) and arrays ([ ]), functioning
as in C, are implemented in GLSL as well. Additionally, and usefully, one
can query the length of an array with help of the Java-likelength method,
e.g., if the array A contains 10 elements then A.length() returns 10.

Variable types discussed thus far are all transparent in that they can be
read and written directly. GLSL has a class of opaque types, as well, which
can be accessed only via built-in functions. Opaque variables are always
handles to other objects. The only opaque type that we’ll use is sampler2D,
a handle to a 2D texture.

Variable declarations may be preceded by at most one of the storage
qualifiers listed in Table 20.1.

const Read-only variable whose value is fixed after initialization.
in Variable whose value is input from a previous shader stage

or the application program.
out Variable whose value is output to a subsequent shader stage.
uniform Variable whose value is supplied to the shader by the

application and is constant across a primitive.
buffer Variable which can be read and written by both the shader

and the application.
shared Variable shared within a local work group (only compute

shaders).

Table 20.1: Storage Qualifiers

A conceptually simple classification of variables is as attribute and
uniform: attribute variables (or, simply, attributes) are those that vary
from vertex to vertex, while uniform variables (or, uniforms) vary from
primitive to primitive (just like its namesake storage qualifier, of course).
The coordinates of a vertex are classic examples of an attribute variable; the
modelview matrix is an example of a uniform; color, e.g., could be attribute
if we define a different color for each vertex, or uniform if we choose to keep
colors constant across objects.

A typical example of the declaration of an attribute variable in the vertex
shader is

layout(location=1) in vec4 coordinates;

which, in fact, introduces the layout qualifier which in/out variables, uniforms
and buffers may have additionally. Generally, the syntax of a layout qualifier
is of the form

layout(parameter1 or parameter1 = value, parameter2 ...) variable definition 753
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where the parameter values specify properties of the variable. Particularly, in
the declaration of coordinates above the value of the parameter location
indicates the buffer which supplies the values of coordinates.

An example of a uniform declaration which might be in the vertex shader,
as well, is

uniform mat4 modelViewMatrix;

As another example, the declaration

out vec4 colors;

in the vertex shader might pair with the declaration

in vec4 colors;

in the fragment shader. The latter, too, might declare

uniform sampler2D aTexture;

as a handle to a texture.
We’ll leave it at this for now. Don’t worry if the definitions don’t all make

sense at this time. It should all come together when we get to live GLSL
code in a bit. However, if you are interested now in a fuller specification
of the language, then see the red book, or even better, refer to the horse’s
mouth, that being the GLSL spec sheet at opengl.org.

20.3 First Core GL 4.3 Program (Dissected)

For our first program we’ll shaderize our trusty guinea pig from way back
when, namely, square.cpp – we coin the rather ugly verb “shaderize” to
indicate converting one of our existing pre-shader programs to compliance
with the latest forward-compatible core profile (GL 4.3 in our case).
Shaderizing the simple square.cpp, making sure we understand each and
every step of the process, should set us on our way.

Figure 20.3: Screenshot
of squareShaderized.cpp.

Experiment 20.1. Fire up the application program squareShaderized.-

cpp, which comes with its two sidekick shaders, the imaginatively named
vertexShader.glsl and fragmentShader.glsl. Compiling and running
the application program should automatically suck in the shaders provided
they are all in the same folder. Not only is the functionality of
squareShaderized.cpp – drawing a black square over white background,
see Figure 20.3 – exactly that of square.cpp, but, as we’ll see, so are its
internals (modulo shaders). End

We’re going to step through the code of squareShaderized.cpp line by
line from top to bottom, but first point out the three statements754
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glutInitContextVersion(4, 3);

glutInitContextProfile(GLUT_CORE_PROFILE);

glutInitContextFlags(GLUT_FORWARD_COMPATIBLE);

in main(), which assert that the program is compliant with the 4.3 forward-
compatible core profile vs. the 4.3 compatibility (i.e., backward-compatibility)
profile as in all earlier programs. Yes, indeed, from now on we are going to
write the latest and greatest∗ OpenGL!

Okay, so back to the top of squareShaderized.cpp. First, to better
manage buffer data we set up the Vertex structure

struct Vertex

{
float coords[4];

float colors[4];

};

with one array field for (x, y, z, w) coordinates and another for RGBA colors.
Next, to manage matrices – 4.3 asks us to do modelview and projection
matrices ourselves – we define the Matrix4x4 structure

struct Matrix4x4

{
float entries[16];

};

to hold the 16 entries of a 4× 4 matrix. Then, we define the 4× 4 identity
matrix

static const Matrix4x4 IDENTITY_MATRIX4x4 =

{
{

1.0, 0.0, 0.0, 0.0,

0.0, 1.0, 0.0, 0.0,

0.0, 0.0, 1.0, 0.0,

0.0, 0.0, 0.0, 1.0

}
};

as a constant. Next, a couple of enums, namely,

static enum buffer {SQUARE VERTICES};
static enum object {SQUARE};

contain names for buffer and vertex array objects, respectively.
Next, we have a block of global variables:

static Vertex squareVertices[] =

{
∗As of this writing. 755
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{ { 20.0, 20.0, 0.0, 1.0 }, { 0.0, 0.0, 0.0, 1.0 } },
{ { 80.0, 20.0, 0.0, 1.0 }, { 0.0, 0.0, 0.0, 1.0 } },
{ { 20.0, 80.0, 0.0, 1.0 }, { 0.0, 0.0, 0.0, 1.0 } },
{ { 80.0, 80.0, 0.0, 1.0 }, { 0.0, 0.0, 0.0, 1.0 } }

};

static Matrix4x4

modelViewMat = IDENTITY_MATRIX4x4,

projMat = IDENTITY_MATRIX4x4;

static unsigned int

programId,

vertexShaderId,

fragmentShaderId,

modelViewMatLoc,

projMatLoc,

buffer[1],

vao[1];

First, above, come the coordinates (same as in square.cpp) and color values
(black) for the four vertices of the square to be drawn. Then, we declare and
initialize our very own modelview and projection matrices. We’ll explain
the seven unsigned int variables declared at the bottom when they are
initialized later on.

The routine readTextFile() to read an external text file into a character
string, obviously to be used to read the shaders, is one whose innards are
not of particular interest.

On to the initialization routine setup() next.

Compiling and Linking Shaders

After the mandatory glClearColor(), the first part of setup() compiles
and links the two shaders into a single shader program executable. Here’s
the first block of statements from this part:

char* vertexShader = readTextFile("vertexShader.glsl");

vertexShaderId = glCreateShader(GL_VERTEX_SHADER);

glShaderSource(vertexShaderId, 1, (const char**) &vertexShader,

NULL);

glCompileShader(vertexShaderId);

The first statement reads in the text file vertexShader.glsl containing
the vertex shader into the character string vertexShader, while the
next creates an empty vertex shader object, returning the non-zero id
vertexShaderId. The third statement sets the source code of the shader
with id vertexShaderId to the value of the character string vertexShader,
the second and fourth parameters of glShaderSource() indicating there
is only one null-terminated string. The last statement compiles the source756
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code for shader id vertexShaderId. So, on completion of this block we have
a compiled vertex shader object.

The second block of statements processes likewise the fragment shader
source file fragmentShader.glsl to produce a compiled fragment shader
object with id fragmentShaderId.

The final block

programId = glCreateProgram();

glAttachShader(programId, vertexShaderId);

glAttachShader(programId, fragmentShaderId);

glLinkProgram(programId);

glUseProgram(programId);

of the first part of setup() is fairly self-explanatory. The first statement
creates an empty shader program object, returning its non-zero id
programId, the next two statements attach the shader objects identified by
vertexShaderId and fragmentShaderId to the program object identified
by programId, while the final two statements, respectively, link the shader
objects attached to the program id programId to create an executable shader
program and install it within the current rendering state. The entire process
is diagrammed in Figure 20.4.
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Figure 20.4: Process to create a shader program executable.

Initializing Data and Communicating with the Vertex Shader

The second part of the setup() routine sets up and initializes both a VAO
(vertex array object) and VBO (vertex buffer object) and associates the
data in the latter with variables in the vertex shader. Now, we are going to
assume that, having reviewed Sections 3.2 and 3.3, the reader understands
how, in fact, the first block of statements 757
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glGenVertexArrays(1, vao);

glGenBuffers(1, buffer);

glBindVertexArray(vao[SQUARE]);

glBindBuffer(GL_ARRAY_BUFFER, buffer[SQUARE_VERTICES]);

glBufferData(GL_ARRAY_BUFFER, sizeof(squareVertices),

squareVertices, GL_STATIC_DRAW);

creates the VAO with id vao[SQUARE] containing the buffer with id
buffer[SQUARE VERTICES], filling the latter with the square’s vertex data.

Here, then, is the next block which, critically, is the first step connecting
the application program to the vertex shader:

glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE,

sizeof(squareVertices[0]), 0);

glEnableVertexAttribArray(0);

glVertexAttribPointer(1, 4, GL_FLOAT, GL_FALSE,

sizeof(squareVertices[0]),

(GLvoid*)sizeof(squareVertices[0].coords));

glEnableVertexAttribArray(1);

Let’s begin to understand it. Generally, the command

glVertexAttribPointer(index, size, type, normalized, stride, pointer)

specifies where data for the shader attribute at location index is to be accessed.
The value of size is the number of components to be read per attribute, while
type is the data type of a component. The Boolean normalized specifies if
the component values are to be normalized prior to access. Finally, stride

is the byte offset between the data sets for successive vertices, and pointer
is the byte offset from the start of the currently-bound buffer object to the
start of the data set for the first vertex.

Time now for our first peek at a shader, bringing it into the discussion.
Open the vertex shader vertexShader.glsl in any text editor. The
statements

layout(location=0) in vec4 squareCoords;

layout(location=1) in vec4 squareColors;

declare the vec4 attribute variables squareCoords and squareColors,
respectively, the storage qualifier in indicating that both get data values
from the application program. The variable squareCoords is at location 0
and squareColors at location 1.

So, the glVertexAttribPointer(0, ...) statement above in the
application program causes the vertex shader to read four floats (a
vec4, in other words) for squareCoords per vertex from the GPU-side
buffer[SQUARE VERTICES] starting from the beginning of the buffer, with a
stride of sizeof(squareVertices[0]) (i.e., the size of data for one vertex)
between data sets.758
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Likewise, glVertexAttribPointer(1, ...) means it will read four
floats for squareColors from buffer[SQUARE VERTICES] starting from byte
offset sizeof(squareVertices[0].coords) (i.e., the size of the coordinates
field) with the same stride of sizeof(squareVertices[0]).

The statements glEnableVertexAttribArray(0) and glEnableVertex-

AttribArray(1), above in the application program as well, activate,
respectively, the attribute data pointed by glVertexAttribPointer(0,

...) and glVertexAttribPointer(1, ...) (this data often being called
a vertex attribute array , hence the name).

See Figure 20.5 for a diagram of how the application program and vertex
shader link up.

Continuing with setup(), the next part, setting the projection matrix
and connecting it to the vertex shader, is

Matrix4x4 projMat =

{
{

0.02, 0.0, 0.0, -1.0,

0.0, 0.02, 0.0, -1.0,

0.0, 0.0, -1.0, 0.0,

0.0, 0.0, 0.0, 1.0

}
};
projMatLoc = glGetUniformLocation(programId, "projMat");

glUniformMatrix4fv(projMatLoc, 1, GL_TRUE, projMat.entries);

Referring back to Example 18.1, particularly matrix (18.2), we see that
the matrix corresponding to the projection command of square.cpp, viz.
glOrtho(0.0, 100.0, 0.0, 100.0, -1.0, 1.0), is, indeed, the value of
projMat as defined in the first line above. At this time we swing over once
more to the vertex shader to note the two uniform declarations

uniform mat4 projMat;

uniform mat4 modelViewMat;

Returning to the application program part earlier above, glGetUniform-
Location() in the next statement returns the location of the shader uniform
variable named projMat, within the (current) program object programId,
into the variable projMatLoc. The last command glUniformMatrix4fv()

updates the uniform at the location given by its first parameter, namely,
projMatLoc – this uniform, indeed, being projMat by the previous line – with
the value pointed by its fourth parameter, namely, that of the application
program variable projMat.

Moreover, the second parameter of glUniformMatrix4fv() specifies that
there is one matrix to update, while the third specifies to use the transpose
of projMat in updating (because GLSL matrices are stored in column-major
order). 759
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glVertexAttribPointer(n, ...);
glEnableVertexAttribArray(n);

aUniformLoc = glGetUniformLocation(..., "aUniform");
glUniform*(aUniformLoc, ..., value);

layout(location=n) in ... anAttribute;

uniform ... aUniform;

Application Program

U
pd

at
e

Vertex Shader

Figure 20.5: Linkages between the application program and vertex shader. During
run-time, the source data for the attribute variables are read from GPU buffers, while
uniform values are shipped from the CPU by the application program.

Note: As the application program and shaders have different name spaces,
we can use identical names (e.g., projMat above) for application and shader
variables, when this makes sense, without risk of ambiguity.

The final part of setup() setting the modelview matrix and connecting
it to the vertex shader is a process exactly similar to that for the projection
matrix and we’ll leave the reader to parse it.

760
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Remaining Routines

The drawing routine drawScene() is extremely simple: the one non-trivial
call glDrawArrays(GL TRIANGLE STRIP, 0, 4) draws the square as a 4-
vertex (2-triangle) triangle strip. Keep in mind that immediate mode
drawing, precisely, glBegin()-glEnd() code, has been banished from 4.3
– we must use retained mode calls of the glDraw*() and glMultiDraw*()

type.
The window reshape routine resize() in squareShaderized.cpp is

simpler, too, than in square.cpp as the vertex shader has now charge of
the projection and modelview matrices: the one statement glViewport(0,

0, w, h) sets the viewport to the entire OpenGL window.
The keyInput() routine is unchanged from square.cpp, while the only

change in main(), as we noted right at the start, is from (backward-)
compatibility to forward-compatible core profile.

Finally, we examine the two shaders, both of which, fortunately, are fairly
minimal.

Vertex Shader

The first line of the vertex shader is the preprocessor command

#version 430 core

which declares the shader’s version of GLSL to be 4.3 core. We’ve already
discussed the four vertex shader variables declared in

layout(location=0) in vec4 squareCoords;

layout(location=1) in vec4 squareColors;

uniform mat4 projMat;

uniform mat4 modelViewMat;

in connection with the application program – these four variables, in fact,
form the communication interface between the application program and the
vertex shader. The remaining vertex shader variable, declared

out vec4 colorsExport;

to match with the fragment shader declaration

in vec4 colorsExport;

is used evidently to communicate color values from the vertex to the fragment
shader. Moreover, as can be seen from its main routine

void main(void)

{
gl_Position = projMat * modelViewMat * squareCoords;

colorsExport = squareColors;

} 761
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our vertex shader does little work. The first line applies modelview and then
projection transformation on input vertex world coordinates, writing the
result into the built-in variable gl Position – built-in variables are system-
defined variables which shaders use to communicate with fixed-function
pipeline stages. In fact, it is gl Position which continues into the fixed-
function perspective division stage of the pipeline (see again Figure 20.2,
noting there is neither tessellation nor geometry shader associated with
squareShaderized.cpp). The second line of main() simply copies the
input color values into the colorsExport variable for output to the fragment
shader.

Fragment Shader

The first line

#version 430 core

of the fragment shader is the same preprocessor GLSL version declaration
as in the vertex shader. Next,

in vec4 colorsExport;

expectedly matches the namesake colorsExport of type out in the vertex
shader. Lastly,

out vec4 colorsOut;

is declared to output the color values of a fragment.

Remark 20.1. OpenGL automatically identifies the fragment shader’s output
variable – it must have exactly one such and of type vec4 – as supplying
the fragment’s final color values.

The one-line main routine

void main(void)

{
colorsOut = colorsExport;

}

simply copies the color values input from the vertex shader into colorsExport
over to colorsOut for output. Such a shader is often called a pass-through
shader because it simply relays incoming values on to the next stage of the
pipeline.

However, there is a bit more going on in that one line in main than meets
the eye. The fragment shader receives color values from the vertex shader per
vertex , while it outputs them per fragment (remember, a fragment shader
runs once per fragment). So, how does it propagate values from vertices to
fragments? Interpolation seems the answer, and indeed is the case with this
fragment shader though, evidently, the process is being done with a bit of762
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“secret” help from fixed-function because there is no pertinent code in the
fragment shader.

The GLSL actually offers options for coloring interior fragments of a
triangle in the form of three interpolation qualifiers – namely, smooth,
noperspective and flat – whose respective functions are described in
Table 20.2. We ask the reader to compare the smooth and flat options
next.

smooth Perspectively correct interpolation (see Section 19.1.3).
This is the default. Works exactly the same as
glShadeModel(GL SMOOTH), the default shading
model (see Section 11.8)) in pre-shader OpenGL.

noperspective Linear interpolation without perspective correction
(rarely used).

flat No interpolation: all fragments given same color value,
which is that of the provoking vertex (see discussion of
flat shading in Section 11.8) of the triangle. Works
like glShadeModel(GL FLAT) in pre-shader OpenGL.

Table 20.2: Interpolation Qualifiers

Exercise 20.2. (Programming) Change the color values of the square’s
four vertices in squareShaderized.cpp to red, green, blue and yellow,
respectively. Smooth interpolation should now be evident. Next, change the
declaration of the colorsExport variable in the vertex shader to

flat out vec4 colorsExport;

and in the fragment shader to

flat in vec4 colorsExport;

Does what you see tally with the rule for provoking vertices of triangles in a
strip described in Section 11.8?

Finally, we are done with our first forward-compatible GL 4.3 core
program! A long slog it was but well worth the effort because subsequent
programs are going to follow pretty much the same template. Before moving
on though here are a couple for you to write.

Exercise 20.3. (Programming) Shaderize squareAnnulus4.cpp from
Chapter 3.

Exercise 20.4. (Programming) Shaderize hemisphereMultidraw-

VBO.cpp from Chapter 3. 763
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20.4 Animation

We move right on to animation. Now, as we have seen, 4.3 asks us to
manage our own modelview matrix; in fact, there is no glTranslatef(),
glRotatef() or glScalef() at our disposal. We are on our own! To save
doing a bunch of 4×4 matrix computation in code, therefore, we first import
the GLM library.

OpenGL Mathematics (GLM)

GLM, standing for OpenGL Mathematics, is a header-only C++ library for
graphics applications meant to replicate the math functionality of the GLSL.
So, a programmer familiar with the GLSL will automatically be able to use
GLM. However, not only does GLM simulate GLSL math, it (amongst other
things) provides replacements for discarded OpenGL functions like, well,
glTranslatef(), glRotatef(), glScalef() (yay!) and the like.

We’ll be using GLM in all our programs from now on so you should
install it right away. Installing GLM is easy. Download the latest version
from the GLM site http://glm.g-truc.net and place the glm folder in the
include path of your environment. Then, include <glm/glm.hpp> in your
code for full GLSL math functionality. Additional functionality requires
including dedicated header files as described in the GLM manual.

With GLM installed we are all set for our first 4.3 animation program
which, in fact, is a shaderization of ballAndTorus.cpp from Chapter 4.

Figure 20.6: Screenshot
of ballAndTorus-
Shaderized.cpp.

Experiment 20.2. Run ballAndTorusShaderized.cpp. The program’s
two shaders are vertexShader.glsl and fragmentShader.glsl. If you
care to run ballAndTorus.cpp again you see that the functionality of
ballAndTorusShaderized.cpp is exactly same. Figure 20.6 is a screenshot.

End

The code is not hard to understand – in fact, it’s mostly made up of
pieces from older programs. Firstly, though, note the GLM headers included
near the top. Further, use of the glm namespace saves us, for example, from
writing glm::vec4 instead of, simply, vec4. Included as well is the header
file shader.h which lists function declarations from the separate source
shader.cpp, the latter containing the routines to create the shader program
executable, all of which we have already seen in squareShaderized.cpp.

Sadly, the GLUT objects we saw in Section 3.10 are no longer available
in 4.3 so we’ll have to make our own ball and torus. The ball will be
two hemispheres face-to-face and, fortunately, we can pretty much copy in
the code from hemisphereMultidrawVBO.cpp of Chapter 3, which draws a
hemisphere using VBOs to hold vertex and index arrays: see our separate
source hemisphere.cpp included via the header hemisphere.h.

Similarly, we have a source torus.cpp and header torus.h to initialize
the torus. Now, comparing hemisphere.cpp and torus.cpp, one sees that764
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only the first functions fillObjVertexArray() differ depending on the
object’s geometry (for the torus we refer back to the program torus.cpp

of Chapter 10 for formulas for the sample point coordinates), while the
remaining functions are identical save for naming. Hopefully, then, drawing
our own objects in future will not be hard if we follow this template.

Both hemisphere.cpp and torus.cpp use the Vertex structure defined
in the header file vertex.h.

Exercise 20.5. Why can’t GLUT calls to draw objects from pre-shader
OpenGL be included as such in 4.3?
Hint : Immediate mode . . ..

The first block of globals of ballAndTorusShaderized.cpp, from lat-

Angle to animationPeriod, are animation-related parameters copied over
from ballAndTorus.cpp. Following are blocks of storage for hemisphere
and torus data, and, finally, a couple of blocks, which should be familiar
from squareShaderized.cpp, containing uniform values and locations, in
addition to shader, buffer and vao ids.

The first few parts of the initialization routine where we create the shader
program executable, call functions to initialize data for a hemisphere and a
torus, and create VAOs and VBOs to hold this data should be clear from
squareShaderized.cpp and hemisphereMultidrawVBO.cpp. Let’s move
on then to where the projection matrix uniform is set:

projMatLoc = glGetUniformLocation(programId,"projMat");

projMat = frustum(-5.0, 5.0, -5.0, 5.0, 5.0, 100.0);

glUniformMatrix4fv(projMatLoc, 1, GL_FALSE, value_ptr(projMat));

The first line retrieves the location of the uniform projMat in the vertex
shader. The second line sees our first use of GLM. As the user might
guess, frustum(left, right, bottom, top, near, far) returns the matrix
corresponding to glFrustum(left, right, bottom, top, near, far). The
last line updates that uniform’s value with the value of projMat – note the
GLM call value ptr(variable) which returns a pointer to variable’s storage.

The next part of setup() sets the hemisphere and torus color uniforms
in the fragment shader, their values being obtained from hemisphere.h

and torus.h, respectively. In the final part, we obtain the locations of the
modelview matrix and object name uniforms for future reference.

On to the drawing routine next where the modelview transformations are,
in fact, copied line for line from ballAndTorus.cpp, except, of course, that
they now are implemented with the help of GLM, rather than pre-shader
OpenGL calls. Here are the first couple:

modelViewMat = mat4(1.0);

modelViewMat = translate(modelViewMat, vec3(0.0, 0.0, -25.0));

The first statement, equivalent to glLoadIdentity(), sets the modelview
matrix to the 4 × 4 identity. To understand the next, note that the 765
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GLM call translate(matrix, vec3(p, q, r)) returns the result of post-
multiplying matrix by the matrix corresponding to glTranslatef(p, q, r).
Effectively, then, the second statement post-multiplies the current value
of the modelview matrix modelViewMat with the matrix corresponding to
the translation glTranslatef(0.0, 0.0, -25.0). Keeping in mind that
the GLM calls rotate() and scale() function similarly to translate(),
the reader should have no difficulty following the rest of the modelview
transformation sequence.

Prior to each glMultiDrawElements() draw call the modelViewMat

uniform value is updated with a glUniformMatrix4fv(modelViewMatLoc,

...) statement so that the correct modelview transformation is applied.
Updated, as well, with a glUniform1ui(objectLoc, ...) statement, is
the object uniform value in both shaders with the name of the object to
be drawn – the value of object determines in the vertex shader if the vec4

coordinates variable coords will read its values from the attribute variable
hemCoords or torCoords, while in the fragment shader it determines the
output colors.

Note: Observe that the uniform object has been declared identically in both
vertex and fragment shader. Their values will be updated simultaneously
too.

Note: As enum isn’t a part of GLSL 4.3, we are unable to replicate the enum

object {HEMISPHERE, TORUS} declaration of the application program, but,
rather, define the values of HEMISPHERE and TORUS in both shaders via
preprocessor directives.

Except for resize() and main(), both of which are straightforward, the
remaining routines of ballAndTorusShaderized.cpp are copied over from
ballAndTorus.cpp.

Exercise 20.6. Doesn’t using GLM to recreate fixed-function commands
defeat the whole purpose of programmable pipelines?!

Exercise 20.7. (Programming) Shaderize floweringPlant.cpp from
Chapter 4.

Exercise 20.8. (Programming) If you did animation projects from
Section 4.5.3 then shaderize at least a couple of them now.

20.5 Lighting

As noted in Section 20.1.2 on major facets of the newer OpenGL, 4.3 asks
us to do our own lighting – which is good and bad. The bad, or rather
tedious, is that, even for classical lighting, we have to implement ourselves
the OpenGL lighting equation, which used to be a free service of the fixed-
function pipeline. To be fair though, this is just a one-time job writing the766
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appropriate shader, which can then be reused. The good is that, now that
we can write our own equations, we can actually go beyond classical lighting
to fancier effects.

Our case study will be bump mapping, which we first encountered as
a special effect in Section 13.9. The idea of bump mapping is to give
an illusion of detail to a surface by perturbing its normals so that light
reflects off it as though it were actually detailed. We applied this idea in
Experiment 13.16 of Section 13.9 to make a plane appear corrugated in
the program bumpMapping.cpp. We remarked then that bump mapping is
particularly effective with the per-pixel lighting of Phong’s shading model,
where normal values are interpolated across primitives, rather than being
fixed at vertices as in classical lighting (aka per-vertex lighting). However,
the fixed-function pipeline cannot do Phong shading; on the other hand, we
can program the pipeline of 4.3 to do so.

So, here’s the plan: first, we’ll shaderize bumpMapping.cpp which’ll mean
essentially setting up per-vertex lighting ourselves; then, to reinforce our
ideas, we’ll shaderize litCylinder.cpp of Experiment 11.20 of Section 11.11;
finally, we’ll move definitively beyond fixed-function by applying per-pixel
lighting to the setting of bumpMapping.cpp.

20.5.1 Per-Vertex Lighting

Per-vertex lighting comprises Phong lighting at each vertex, governed by
the OpenGL lighting equation, followed by Gouraud (smooth) shading to
interpolate colors through triangles. Per-vertex lighting is the default of the
fixed-function pipeline and is what we have used in all our lit programs to
date, including, of course, bumpMapping.cpp.

Let’s see then how to write a shader to implement per-vertex lighting
with no assistance from fixed-function.

Experiment 20.3. Run bumpMappingShaderized.cpp. Interaction is the
same as bumpMapping.cpp: press space to toggle between bump mapping
on and off. Figure 20.7(b) is a screenshot with bump mapping enabled,
evidently identical to that of bumpMapping.cpp in Figure 20.7(a). End

So, let’s understand the code of bumpMappingShaderized.cpp. Note,
first, that the structure Vertex defined in vertex.h now has fields for
the normal and bump mapped normal, in addition to position. The two
simple new header files light.h and material.h define the structures
Light and Material to hold light and material properties, respectively. In
bumpMappingShaderized.cpp, light0 of type Light holds light property
values, planeFandB of type Material holds material property values
(identical for the front and back of the plane), and globAmb holds the
global ambient vector, all these being copied from bumpMapping.cpp.

The first part of the setup() routine (as usual) creates the shader
program executable. The data for the plane, drawn as exactly the 767
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same stack of triangle strips as in bumpMapping.cpp, is initialized next.
Interesting here, if you see plane.cpp, is the definition of two kinds
of normals, the“real” planeVertices[k].normal and the bump mapped
planeVertices[k].bumpedNormal. The real normal is a unit vector in the
y-direction at every vertex as in bumpMapping.cpp, while the bump mapped
normal varies according to a formula again copied from bumpMapping.cpp.

Returning to the initialization routine of bumpMappingShaderized.cpp,
the VAO and VBOs associated with the plane are created next and, then, as
expected, the plane coordinate, real normal and bump mapped normal values
are input via glVertexAttribPointer()-glEnableVertexAttribArray()
statement pairs to attribute variables in the vertex shader – namely,
planeCoords, planeNormal and planeBumpedNormal at locations 0, 1 and
2, respectively.

The projection matrix uniform is set next, while the locations of the
modelview matrix and normal matrix uniforms are retrieved for future
reference. The toggle isBumPMapped uniform is set as well.

In the final parts of the initialization routine, light property values, the
global ambient and material property values are copied, respectively, from
the variables light0, globAmb and planeFandB in the application program
to corresponding fields in like-named structure uniforms in the vertex shader.

The drawing routine is mundane save, possibly, for the calculation of
the normal matrix, following Section 11.11.5, as the transpose inverse of the
upper-left 3× 3 submatrix of the modelview matrix in the line

normalMat = transpose(inverse(mat3(modelViewMat)));

On to the vertex shader next where all of the action is. At this time the
reader may want to review the short Section 11.7 on the OpenGL lighting
equation as we’ll be pretty much implementing the latter line by line. Here’s
the first part of the vertex shader’s main():

normal = (isBumpMapped == 1)? planeBumpedNormal : planeNormal;

normal = normalize(normalMat * normal);

lightDirection = normalize(vec3(light0.coords));

eyeDirection = vec3(0.0, 0.0, 1.0);

halfway = (length(lightDirection + eyeDirection) == 0.0f) ?

vec3(0.0) : (lightDirection + eyeDirection)/

length(lightDirection + eyeDirection);

The first line reads into the variable normal the real or bumped normal
values depending on the value of the toggle isBumpMapped, while the second
line transforms the normal by the normal matrix and then (re-)normalizes it.
The third line sets the light direction vector as thexyz-values of the light’s
position, ignoring its w-value of 0 because the light is directional.

Since bumpMapping.cpp has an infinite viewpoint (the pre-shader default)
for lighting calculation, we accordingly set the eye direction vector pointing
up the z-axis in the fourth line. The halfway vector is set in the last line768
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as the unit vector in the direction of the sum of the light direction and eye
vectors (following the formula derived in Example 11.4) with a zero-division
check first.

Here’s the final part of the vertex shader’s main(), except for the routine
setting of gl Position:

fAndBEmit = planeFandB.emitCols;

fAndBGlobAmb = globAmb * planeFandB.ambRefl;

fAndBAmb = light0.ambCols * planeFandB.ambRefl;

fAndBDif = max(dot(normal, lightDirection), 0.0f) *

light0.difCols * planeFandB.difRefl;

fAndBSpec = pow(max(dot(normal, halfway), 0.0f),

planeFandB.shininess) *

light0.specCols * planeFandB.specRefl;

fAndBColsExport = vec4(vec3(min(fAndBEmit + fAndBGlobAmb +

fAndBAmb + fAndBDif + fAndBSpec,

vec4(1.0))), 1.0);

We ask the reader to now refer to the OpenGL lighting equation (11.12) to
see that the above implements that equation term for term, except there is
no distance or spotlight attenuation factor. The last statement which sums
the color terms and writes them into fAndBColsExport for output to the
fragment shader clamps, in a slightly screwy manner, the individual RGB
values to a maximum of 1, and sets the A value to 1.

The fragment shader is pass-through, the default smooth interpolation
qualifier of the input variable fAndBColsExport assuring Gouraud shading.

(a) (b) (c)

Figure 20.7: Screenshots of (a) bumpMapping.cpp (b) bumpMappingShaderized.cpp

(c) bumpMappingPerPixelLight.cpp.

Let’s shaderize litCylinder.cpp from Chapter 11 for more practice.

Experiment 20.4. Run litCylinderShaderized.cpp. Interaction is the
same as litCylinder.cpp: press the ‘x’-‘Z’ keys to turn the cylinder. As
far as lighting is concerned, the main twist from bumpMappingShaderized

is that now there is two-sided lighting, following litCylinder.cpp where it
was activated by the statement 769
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glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE);

Material properties differ, as well, between the inside and outside of the
cylinder. Figure 20.8 is a screenshot. End

Figure 20.8: Screenshot
of litCylinder-
Shaderized.cpp.

If you followed bumpMappingShaderized.cpp there’s not much really
that needs to be explained in litCylinderShaderized.cpp. As expected,
though, there are two sets of material properties in the latter, namely,
cylFront for the front (actually, outside) of the cylinder and cylBack for
the back (inside), which are input, respectively, to like-named structure
uniforms in the vertex shader.

Lighting calculations in the vertex shader of litCylinderShaderized.-
cpp are almost exactly as in that of bumpMappingShaderized.cpp, too,
except now there are two sets of calculations, identical save for normal
reversal, to determine, respectively, front and back colors, both of which
are output to the fragment shader. The pass-through fragment shader
outputs either the front or back color depending on the value of the Boolean
built-in gl FrontFacing which is true if the current fragment belongs to a
front-facing triangle, false otherwise.

The one difference, though, in the lighting calculations themselves is
because litCylinder.cpp asks for a local viewpoint for lighting calculation
with the command

glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER, GL_TRUE);

To this end, litCylinderShaderized.cpp’s vertex shader statement

eyeDirection = -1.0 * normalize(vec3(modelViewMat * cylCoords));

sets the eye direction vector as the unit vector in the direction from the
vertex (in its current location in world space after transformation by the
modelview matrix) to the origin.

Finally, returning once more to the application program litCylinder-

Shaderized.cpp, we point out a minor change: in order to be faithful to
the command

gluPerspective(60.0, (float)w/(float)h, 1.0, 50.0);

in litCylinder’s resize() routine, litCylinderShaderized.cpp uses the
OpenGL window width and height, obtained from its own resize() routine
via the globals width and height, respectively, to set the projection matrix
in drawScene() by

projMat = perspective(60.0f, (float)width/(float)height,

1.0f, 50.0f);

As the reader might guess, the GLM command perspective(fovy, as-
pect, near, far) returns the projection matrix corresponding to glu-

Perspective(fovy, aspect, near, far).

Exercise 20.9. (Programming) Shaderize spotlight.cpp from Chap-
ter 11.770
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20.5.2 Per-Pixel Lighting

Finally, we are going write a 4.3 program to do something that the fixed-
function pipeline could never, namely, per-pixel lighting. You might want,
though, to first review the discussion of Phong shading in Section 11.12.

Phong shading, also called per-pixel lighting, is a shading model alternate
to Gouraud, where (a) vertex normal values are interpolated through
each triangle, and then (b) light values computed at each pixel using
the interpolated normals. Let’s bump map the exact same plane of
bumpMappingShaderized.cpp, but now applying per-pixel lighting instead.

Experiment 20.5. Run bumpMappingPerPixelLight.cpp. Again, press
space to toggle between bump mapping on and off. Figure 20.7(c) is a
screenshot. The program, its associated C++ source and header files are all
exactly same as for bumpMappingShaderized.cpp – the difference is only in
the shaders! End

A comparison of the shaders of bumpMappingPerPixelLight.cpp with
those of bumpMappingShaderized.cpp reveals quickly the former’s modus
operandi. The star turn is now the fragment shader’s: the lighting equation
statements are brought over from the vertex shader to the fragment shader,
which, as well, gets light and material property values directly from the
application program and imports normal values from the vertex shader .
This last is crucial. The default smooth interpolation qualifier of the input
variable normalExport causes normal values to be interpolated through each
triangle, following which the lighting equation gives precisely Phong shading.

Compare the identical Figures 20.7(a) and (b) with Figure 20.7(c) to
see the crisper waves on the plane of the latter, a consequence of its more
sophisticated shading model.

Exercise 20.10. (Programming) Apply per-pixel lighting to lit-

Cylinder.cpp. Compare the result with litCylinderShaderized.cpp

which is per-vertex lit. Do you see a difference? How about the highlights?

Exercise 20.11. (Programming) Write a per-pixel lit version of
lightAndMaterial1.cpp. Make sure to take into account distance
attenuation and that both lights are positional.

Well, programming shader-based lighting wasn’t too bad, was it? Mostly,
a straightforward implementation of theory that we learned earlier in
Chapter 11, it seemed.

20.6 Textures

Textures can not only be imported into the programmable pipeline without
difficulty, but manipulated there to great effect as well. Let’s start with
shaderizing fieldAndSkyFiltered.cpp from Chapter 12 on textures, which
the reader might want to quickly review at this time. 771
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Experiment 20.6. Run fieldAndSkyFilteredShaderized.cpp. As in
fieldAndSkyFiltered.cpp press the up and down arrow keys to move the
viewpoint. However, unlike the earlier program, fieldAndSkyFiltered-

Shaderized.cpp implements (to keep it simple) only one fixed filter for the
grass texture and no options. Figure 20.9 is a screenshot. End

Figure 20.9: Screenshot
of fieldAndSkyFiltered-
Shaderized.cpp.

Let’s see if texturing in 4.3 is indeed straightforward. The initialization
routine of fieldAndSkyFilteredShaderized.cpp loads the sky and grass
images with

image[0] = getbmp("../../Textures/grass.bmp");

image[1] = getbmp("../../Textures/sky.bmp");

and then generates two texture ids with

glGenTextures(2, texture);

The next block of statements, which binds the grass texture to texture unit
zero, is

glActiveTexture(GL_TEXTURE0);

glBindTexture(GL_TEXTURE_2D, texture[0]);

glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, image[0]->sizeX,

image[0]->sizeY, 0, GL_RGBA,

GL_UNSIGNED_BYTE, image[0]->data);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,

GL_LINEAR_MIPMAP_LINEAR);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

glGenerateMipmap(GL_TEXTURE_2D);

grassTexLoc = glGetUniformLocation(programId, "grassTex");

glUniform1i(grassTexLoc, 0);

The first statement above selects GL TEXTURE0 as the active texture unit,
the second binds the 2D texture object texture[0] to this unit, the
third sets the image data to that of grass, the next four set texture
parameters, while the eighth statement generates the mipmaps required
for the GL LINEAR MIPMAP LINEAR min filter. All of these statements, thus
far, should be familiar from Chapter 12.

It’s the last two statements above which connect the grass texture to the
fragment shader. The second last statement reads the location of grassTex,
a uniform of type sampler2D, in particular, a handle to a 2D texture,
in the fragment shader; the last statement sets grassTex to texture unit
GL TEXTURE0.

A similar block of statements binds the sky texture to texture unit one.
And that’s it for the application program as far as texture-related statements
are concerned. The action moves to the fragment shader next, where the
relevant statements are772
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...

in vec2 texCoordsExport;

uniform sampler2D grassTex;

uniform sampler2D skyTex;

uniform uint object;

...

void main(void)

{
fieldTexColor = texture(grassTex, texCoordsExport);

skyTexColor = texture(skyTex, texCoordsExport);

if (object == FIELD) colorsOut = fieldTexColor;

if (object == SKY) colorsOut = skyTexColor;

}

Firstly, the in variable texCoordsExport reads vertex texture coordinates
from the namesake out variable in the vertex shader, which in turn obtains
them from the vertex attribute array fieldTexCoords. As we have seen
already, the samplers grassTex and skyTex have been set to texture units 0
and 1, respectively, corresponding to the grass and sky images. The uniform
object tells the shader the object currently being processed.

Let’s examine the main routine next. Now, generally, texture(sampler,
texCoords) is a built-in GLSL texture lookup function which computes the
colors at the location texCoords of the texture space corresponding to the
texture bound to sampler .

So, for example, the first statement in main() above returns in fieldTex-

Color the color values of the grass texture at location texCoordsExport, the
latter being interpolated from the texture coordinates at the field’s vertices;
in other words, fieldTexColor are the color values at texCoordsExport,
the latter being precisely the point in texture space corresponding to the
current fragment by the texture map (which is exactly consistent with how
we understood texture coordinates to work in Section 12.1).

Note: The value of texCoordsExport is, in fact, interpolated from the
vertex texture coordinates of the field by the (default) smooth interpolation
qualifier of the input variable texCoordsExport.

The rest of main() in the fragment shader should now be clear. Not too
hard, was it, getting texturing going?

Let’s shaderize a couple more earlier texture programs: texturedTorus.-
cpp from Section 12.4 specified texture coordinates of a parametrized surface,
a torus, using, in fact, the surface parametrization, while litTextured-

Cylinder.cpp from Section 12.5 combined texturing with light.

Experiment 20.7. Run texturedTorusShaderized.cpp. As in textured-

Torus.cpp press ‘x’-‘Z’ to turn the torus. 773
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The point to note is how the associated source torus.cpp defines texture
coordinates for the torus following exactly texturedTorus.cpp. Beyond
that, the application program and shaders should be easily understood. See
Figure 20.10 for a screenshot. End

Figure 20.10: Screenshot
of textureTorus-
Shaderized.cpp.

Experiment 20.8. Run litTexturedCylinderShaderized.cpp. As in
litTexturedCylinder.cpp press ‘x’-‘Z’ to turn the beer can. Figure 20.11
is a screenshot. End

Figure 20.11: Screenshot
of litTexturedCylinder-
Shaderized.cpp.

Obviously, the application program litTexturedCylinderShaderized.-

cpp and its shaders piggyback on litCylinderShaderized.cpp, from the
previous section, and its shaders, respectively, as far as possible. Let’s pick
up the former program then where it brings in texture to combine with light.
For this we need to go to its shaders.

Observe, first, how litTexturedCylinderShaderized.cpp’s vertex
shader separates out the specular component of the computed light for
front and back faces in frontSpecExport and backSpecExport, respec-
tively, while the rest of the computed light is in frontAmbDiffExport

and backAmbDiffExport, again respectively. This is as opposed to
litCylinderShaderized.cpp’s vertex shader storing all the computed front
colors in frontColsExport and back colors in backColsExport. For the
reason for this, refer back to the statement

glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL,

GL_SEPARATE_SPECULAR_COLOR);

in litTexturedCylinder’s initialization routine asking that specular colors
be added in only after mixing the texture with the non-specular colors (in
order not to dilute specular highlights: see the discussion in Section 11.4 on
the OpenGL lighting model).

All four color variables frontAmbDiffExport, frontSpecExport, back-
AmbDiffExport and backSpecExport are exported from litTextured-

CylinderShaderized.cpp’s vertex shader to its fragment shader, whose
main is

void main(void)

{
if (object == CYLINDER) texColor =

texture(canLabelTex, texCoordsExport);

if (objectLet == DISC) texColor =

texture(canTopTex, texCoordsExport);

colorsOut = gl_FrontFacing?

(frontAmbDiffExport * texColor + frontSpecExport) :

(backAmbDiffExport * texColor + backSpecExport);

}774



i
i

i
i

i
i

i
i

Section 20.7

Summary, Notes and

More Reading

The first two lines compute the texture color values at the fragment depending
on if the current object is the cylinder or the disc. The last line combines
the non-specular color component with the texture color by multiplication ,
as asked by the GL MODULATE parameter of

glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);

in litTexturedCylinder’s initialization routine, and afterward adds in the
specular component.

We mentioned earlier that the make-it-yourself lighting of 4.3 allows you
to do your own thing. Here’s an exercise asking you to implement an effect
impossible in fixed-function.

Exercise 20.12. (Programming) Modify the fragment shader of
litTexturedCylinderShaderized.cpp, changing its main’s last line to

colorsOut = gl_FrontFacing? (frontAmbDiffExport * texColor +

2.0*frontSpecExport) :

(backAmbDiffExport * texColor +

2.0*backSpecExport);

In other words, separately double the specular light. See the difference?
(Rotate about the y-axis and you certainly will.) Not particularly pretty,
but one sees the possibilities.

Exercise 20.13. (Programming) Shaderize texturedTorpedo.cpp

from Chapter 12. Texturing the Bézier propeller blades is a challenge.

20.7 Summary, Notes and More Reading

With this chapter began our coverage of the programmable pipeline,
particularly OpenGL and GLSL versions 4.3. After learning the basics
of GLSL we dissected the 4.3 version of, in fact, our very first OpenGL
program from Chapter 2. Then we saw how to do animation, lighting and
textures in 4.3. And, as always, we saw plenty of live code along the way, so
the student by this point should be fairly comfortable with the new way of
doing things. Hopefully, she will agree that the earlier pre-shader pipeline
helped in a solid laying of the foundations. Moreover, she may agree as well
that there are hardly any bad habits from pre-shader to shed, but, rather,
new ones to acquire.

Particularly exciting for students of shader-based programming might be
that, since OpenGL ES (ES for Embedded Systems) 2.0, shaders have gone
mobile with a vengeance: anything that can be done in a shader has been
removed from fixed-functionality and must be done in a shader! OpenGL
ES – a “lean, mean, shadin’ machine” as the OpenGL site called it – is
by far the most common 3D API on mobile devices like smartphones and
tablets. The mobile shading language, GLSL ES, itself is very similar to the 775
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desktop version. Moreover, OpenGL 4.3 is fully compatible with OpenGL
ES 3.0 (the latest version). Therefore, the reader should now be able to
begin coding OpenGL for small devices without trouble if she’s interested.

There is even more good news. WebGL, the emerging standard for 3D
graphics on the web, is based on OpenGL ES 2.0 and, therefore, just a stone’s
throw in programming methodology from 4.3 (though, not surprisingly as
it’s for the web, WebGL is written in JavaScript, rather than C++, using
the HTML5 canvas element). Currently, WebGL is fully supported on the
latest versions of major browsers including Mozilla Firefox, Google Chrome,
Safari and Opera – sadly, Internet Explorer provides only partial support
– and should see the next few years the exponential growth in application
development that mobile 3D has already experienced.

So, the 4.3 programmer has multiple platforms to strut her stuff, with
pretty much recession-proof job skills for the foreseeable future. Don’t go
away though! This chapter got us off the ground. There’s more, much more,
to come.
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W
e’ll now pick up where we left off end of the last chapter. The last
chapter set the foundations of OpenGL 4.3. In this we’ll study
more advanced features, as well as the two optional shader

stages, particularly, tessellation and geometry.

We begin in Section 21.1 by trying to reconstitute the pre-shader toolbox
of Chapter 3. In the process we’ll find that even though a few of the older
gadgets have been discarded from 4.3, new ones have been added and, in
fact, the programmable pipeline often affords a more efficient way to do
what an old gadget used to.

Section 21.2 introduces shader subroutines, which offer an elegant method
of switching threads of control at run-time. In Section 21.3 we’ll learn two
powerful techniques related to animation. The first is for picking an object
on the screen, familiar from Chapter 4, but done entirely differently via the
fragment shader in 4.3. The second is that of transform feedback, which is a
way to look ahead in an animation sequence.

Just as we try to make ourselves a new toolbox in the first section, in
Section 21.4 we revisit Chapter 13 on special visual techniques to see how
they can be done in 4.3. Finally, tessellation and geometry shaders are the
topics of Sections 21.5 and 21.6, respectively, and we conclude the chapter
in Section 21.7.

777
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21.1 Toolbox

What would be a nice collection of gadgets to keep handy while coding 4.3?
Let’s start by opening again the pre-shader OpenGL toolbox of Chapter 3
to see if the contents still work in 4.3, or if we might not add a few new ones.
Let’s run through the gadgets from that earlier chapter in the order they
were presented.

Vertex Arrays, VBOs and VAOs

Vertex arrays and VBOs, the topics, respectively, of Sections 3.1 and 3.2,
obviously need no further comment in 4.3!

21.1.1 VAOs and Instanced Rendering Instead of
Display Lists

VAOs of Section 3.3, too, need little further introduction at this time.
Display lists, on the other hand, so convenient as we saw in Section 3.4
to encapsulate objects and transformations, sadly, are no more in 4.3:
glNewList(), glEndList() and glCallList() are all gone. Now, VAOs
themselves can take up some of the slack, as VAOs and display lists do share
the purpose of encapsulating objects server-side, though, of course, they go
about things rather differently: VAOs package storage states while display
lists package a set of commands.

Interestingly, 4.3 has a new gadget, namely, instanced rendering , to
address a weakness of both VAOs and display lists, that neither can be
parametrized at run-time. Instanced rendering allows the same drawing
command to be repeated multiple times with certain attributes changing
per instance based on the value of a so-called instance counter. There are
actually two different ways to do instanced rendering – by setting instanced
vertex attributes and by using the instance counter in the shader . We’ll
describe both by shaderizing helixList.cpp of Section 3.4 in the two ways.

Instanced Vertex Attributes

Figure 21.1: Screenshot
of helixListShaderized-
InstancedVertAttrib.-

cpp.

Experiment 21.1. Run helixListShaderizedInstancedVertAttrib.-

cpp. The output of six different helixes is exactly the same as that of
helixList.cpp. See Figure 21.1. End

The helix itself is created, of course, in the obligatory separate source
helix.cpp included in the application program via helix.h. Now, first see
the instanced drawing call in the drawing routine:

glDrawArraysInstanced(GL_LINE_STRIP, 0, HEL_SEGS, 6);

What it does is simply execute the statement glDrawArrays(GL LINE STRIP,

0, HEL SEGS) successively six times, incrementing the instance counter778
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gl InstanceID, a built-in shader variable, after each instance (starting from
0). Generally,

glDrawArrays( primitive, first, count, primitivesCount)

executes glDrawArrays(primitive, first, count) successively primitives-
Count times, likewise incrementing gl InstanceID after each instance,
starting from 0.

Next, note the code in setup() associating the helix color data, copied
over from helixList.cpp in the array helColors[6], with the vertex
shader:

glBindBuffer(GL_ARRAY_BUFFER, buffer[HEL_COLORS]);

glBufferData(GL_ARRAY_BUFFER, sizeof(helColors),

helColors, GL_STATIC_DRAW);

glVertexAttribPointer(1, 4, GL_FLOAT, GL_FALSE,

sizeof(helColors[0]), 0);

glEnableVertexAttribArray(1);

glVertexAttribDivisor(1, 1);

It’s all routine except for the last statement which makes the color attribute
instanced. Generally glVertexAttribDivisor(location, divisor) declares
that successive values of the vertex attribute at location of the vertex shader
are read every divisor instances of the instanced drawing statement. So, the
statement glVertexAttribDivisor(1, 1) above means that color values for
the attribute helColors of the vertex shader will be read once for each of the
six instances a helix is drawn by glDrawArraysInstanced(GL LINE STRIP,

0, HEL SEGS, 6). If the statement glVertexAttribDivisor(1, 1) had
not been there, then color values would have been read once per vertex,
rather than once per instance.

In fact, the previous block

glBindVertexArray(vao[HELIX]);

...

glEnableVertexAttribArray(0);

which associates buffer[HEL VERTICES] with the attribute helCoords

has no glVertexAttribDivisor() command, meaning helCoords is unin-
stanced and will be read once per vertex as, of course, one wants.

Finally, the block

glBindBuffer(GL_ARRAY_BUFFER, buffer[HEL_TRANSFORM_MATS]);

glBufferData(GL_ARRAY_BUFFER, sizeof(helTransformMats),

helTransformMats, GL_STATIC_DRAW);

for (int i = 0; i < 4; i++)

{
glVertexAttribPointer(2 + i, 4, GL_FLOAT, GL_FALSE,

sizeof(mat4), (void*)(sizeof(vec4) * i));

glEnableVertexAttribArray(2 + i);

glVertexAttribDivisor(2 + i, 1); // Set attribute instancing.

} 779
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in setup() instances the shader vertex attribute helTransformMats, the
transforming matrices (again, copied over from helixList.cpp), so that
successive ones are applied to successive instances of the helix. The thing to
note is that since helTransformMats is of type mat4, the declaration

layout(location=2) in mat4 helTransformMats;

in the vertex shader causes it to actually occupy locations 2, 3, 4 and 5.
The application program block above, accordingly, associates the data in
buffer[HEL TRANSFORM MATS] with these locations in its for loop.

Finally, of course

gl_Position = projMat * helTransformMats * helCoords;

colorsExport = helColors;

of the vertex shader’s main together generate one matrix transform and one
color per helix instance.

Instance Counter in the Shader

The primary difference of this method from the previous is that the data
to be instanced is stored in server-side buffers, rather than vertex attribute
arrays.

Figure 21.2: Screenshot
of helixListShaderized-
ShaderCounter.cpp.

Experiment 21.2. Run helixListShaderizedShaderCounter.cpp. The
output, just like that of helixListShaderizedInstancedVertAttrib.cpp,
is the same as that of helixList.cpp. See Figure 21.2. End

Since we want the vertex shader itself to access helix color and
transformation matrix values depending on the value of the instance counter
gl InstanceID, we need to store these particular colors and matrices
somewhat differently. In fact, we’ll use texture buffer objects (TBOs), which
are randomly accessible data buffers bound to a texture unit. First, see the
block

glActiveTexture(GL_TEXTURE0);

glBindTexture(GL_TEXTURE_BUFFER, texture[0]);

glTexBuffer(GL_TEXTURE_BUFFER, GL_RGBA32F, buffer[HEL_COLORS]);

helColorsTexLoc = glGetUniformLocation(programId, "helColorsTex");

glUniform1i(helColorsTexLoc, 0);

in the initialization routine binding the color data. The first statement
activates texture unit GL TEXTURE0, the second binds the texture buffer
texture[0] to this unit, creating a TBO, while the third specifies
buffer[HEL COLORS] as the data source for the TBO kept in the 4-
component floating point internal format GL RGBA32F. The fourth statement
reads the location of helColorsTex, a uniform of type samplerBuffer, in
the vertex shader; the last statement sets helColorsTex to texture unit
GL TEXTURE0.

The next block780
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glActiveTexture(GL_TEXTURE1);

glBindTexture(GL_TEXTURE_BUFFER, texture[1]);

glTexBuffer(GL_TEXTURE_BUFFER, GL_RGBA32F,

buffer[HEL_TRANSFORM_MATS]);

helTransformMatsTexLoc = glGetUniformLocation(programId,

"helTransformMatsTex");

glUniform1i(helTransformMatsTexLoc, 1);

creates, likewise, a TBO containing transformation matrix values, which
is referenced by the samplerBuffer uniform helTransformMatsTex in the
vertex shader. The rest of the application program is routine and, mostly,
copied over from helixListShaderizedInstancedVertAttrib.cpp.

So, let’s turn next to the vertex shader where the instance counter is
actually used. The statement

helColors = texelFetch(helColorsTex, gl_InstanceID);

in the vertex shader’s main returns in helColors the value at location
gl InstanceID of the TBO referenced by helColorsTex. Generally,
texelFetch(samplerBuffer, intCoord) returns the value at integer location
intCoord of the TBO referenced by samplerBuffer .

Note: One can, therefore, think of a TBO as a one-dimensional texture with
texels located at integer coordinates.

Likewise, the block

col0 = texelFetch(helTransformMatsTex, gl_InstanceID * 4);

col1 = texelFetch(helTransformMatsTex, gl_InstanceID * 4 + 1);

col2 = texelFetch(helTransformMatsTex, gl_InstanceID * 4 + 2);

col3 = texelFetch(helTransformMatsTex, gl_InstanceID * 4 + 3);

helTransformMats = mat4(col0, col1, col2, col3);

in the vertex shader’s main accesses the TBO referenced by helTransform-

MatsTex to retrieve four column vectors at a time, subsequently assembling
them into a mat4 transformation matrix.

Finally,

gl_Position = projMat * helTransformMats * helCoords;

colorsExport = helColors;

together generate one matrix transform and one color per helix instance.

Exercise 21.1. (Programming) Apply instanced rendering to create a
starry night sky.

Text Drawing, Mouse Programming, Special Keys and Menus

The GLUT text drawing calls of Section 3.5, both glutBitmap*() and
glutStroke*(), are gone from 4.3 because of their immediate mode of 781
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operation. We are unaware at this time of a convenient library to use, so the
only recourse seems to be to create a font oneself, a not-difficult but tedious
task which we have avoided. If labeling is essential, as sometimes it can be,
then we recommend sneaking back into compatibility mode to invoke old
text drawing calls.

Programming the mouse in 4.3 stays exactly as first discussed in
Section 3.6: the commands glutMouseFunc(), glutMotionFunc(), and
glutMouseWheelFunc() to register callbacks for mouse clicks, mouse motion
and wheel rotation, respectively, are used as before.

We have already been using glutSpecialFunc() in 4.3 code to register
the handler for non-ASCII key presses, in exactly same manner as discussed
earlier in Section 3.7.

Pop-up menus, too, can be attached to a 4.3 program exactly as
described in Section 3.8; specifically, by invoking glutCreateMenu(),
glutAddMenuEntry(), glutAddSubMenu() and glutAttachMenu().

21.1.2 Do-It-Yourself Line Stipples

Unfortunately, we can no longer stipple lines in 4.3 as we learned in the
pre-shader Section 3.9. The command glEnable() no longer accepts the
parameter GL LINE STIPPLE and there is no glLineStipple() in 4.3.

However, we can stipple ourselves with little difficulty by programming
the fragment shader. For this purpose, we need help of the built-in input
variable, gl FragCoord of type vec4, accessible by the fragment shader; its
(x, y)-values are the coordinates of the fragment in the windows system,
z-value is the depth of the fragment and w-value is 1/W , the perspective
division factor (recall Section 18.1.2 for the latter). We ask the reader to do
the rest in the next exercise.

Exercise 21.2. (Programming) Stipple a line so that groups of four
pixels are successively off and on by writing a statement of the form

if ( mod(gl_FragCoord.x, 8.0) < 4.0 ) discard;

in the fragment shader.

Here’s the capstone program from Chapter 3 for you to redo.

Exercise 21.3. (Programming) Shaderize canvas.cpp of Chapter 3.

FreeGLUT Objects not Free Anymore

We have already been doing without the FreeGLUT object calls of
Section 3.10, unavailable in 4.3 because of their immediate mode of operation,
instead creating objects - e.g., spheres and tori – ourselves in small ancillary
source programs, which has proved not too hard.

Hopefully, someone will figure out soon a benign way to import readymade
objects into shader programs.782
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21.1.3 Clipping Planes

Setting up user-defined clipping planes, in addition to the six automatic ones
bounding the viewing volume, was discussed in Section 3.11. We can set up
clipping planes in 4.3 as well, though the process, mostly conducted in the
vertex shader, is different. Let’s get straight to code, particularly, a program
made from a quick modification of ballAndTorusShaderized.cpp.

Figure 21.3: Screenshot
of ballAndTorusClipped.-
cpp.

Experiment 21.3. Run ballAndTorusClipped.cpp. The controls are
exactly as for ballAndTorusShaderized.cpp: space to toggle animation on
and off, up/down arrows to change its speed and ‘x’-‘Z’ to rotate the scene.

However, there is now, as will be evident as soon as the animation is
started, a clipping plane slicing through the torus’s initial position. You can
see this from Figure 21.3. Let’s see how the clipping plane is set up. End

The statements

clipPlaneLoc = glGetUniformLocation(programId, "clipPlane");

glUniform4fv(clipPlaneLoc, 1, &clipPlane[0]);

glEnable(GL_CLIP_PLANE0);

at the bottom of the application program’s setup() routine, firstly, pass
the vec4 (0.0, 0.0, 1.0, 25.0), stored in the application program’s clipPlane,
to the vertex shader’s corresponding uniform clipPlane. Of course, vec4
(A,B,C,D) is meant to represent the clipping plane Ax+By+Cz+D = 0, as
in Section 3.11, so (0.0, 0.0, 1.0, 25.0) represents the plane z = −25.0, which
is parallel to the xy-plane and located 25 units in the negative z-direction.
Moreover, a single clip plane GL CLIP PLANE0 is enabled.

To the vertex shader next where

float gl_ClipDistance[1];

initializes the built-in vertex shader array gl ClipDistance in order to
implement a single clip plane. The statement

gl_ClipDistance[0] = dot(clipPlane, modelViewMat * coords);

in the vertex shader’s main then sets the value of gl ClipDistance[0] to
the dot product

(A,B,C,D) · ((x, y, z, 1) = Ax+By + Cz +D

where (A,B,C,D) is the plane’s coefficient vector (here, (0.0, 0.0, 1.0, 25.0))
and (x, y, z, 1) are the point’s post-transformation world coordinates. It’s not
hard to see that this dot product is zero on the plane Ax+By+Cz+D = 0,
negative in one half-plane and positive in the other. The per-vertex values
of gl ClipDistance[0] are then interpolated across the primitive, and
fragments with value less than 0 are culled. 783
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In other words, fragments whose interpolated value of Ax+By+Cz+D
is less than 0 will be culled, which is exactly how clip planes in the fixed-
function pipeline worked. In our case above, then, fragments with z < −25.0
are culled, which are those on the far side of the clipping plane z = −25.0.

We defined only one clip plane in ballAndTorusClipped.cpp, so our
array gl ClipDistance was initialized to size 1. Generally, it can be
initialized to any size n (subject to a system-dependent maximum) by

float gl_ClipDistance[n];

in which case OpenGL culls fragments with at least one interpolated
gl ClipDistance[i] value, from 0 ≤ i ≤ n− 1, being negative.

Keep in mind that it’s up to the user to set per-vertex values for
each gl ClipDistance[i], just as we did above with the statement
gl ClipDistance[0] = dot(...). She should also enable the correspond-
ing clip plane GL CLIP PLANEi in the application program.

Most often gl ClipDistance[i] is calculated so that its sign indi-
cates on which side of some actual clipping plane a vertex lies, as in
ballAndTorusClipped.cpp. Interestingly, though, this does not have to be
the case and the programmer may set gl ClipDistance[i] in any manner
she finds useful, which may have nothing to do with any plane whatsoever.

Exercise 21.4. (Programming) Shaderize clippingPlanes.cpp of
Chapter 3.

gluPerspective() and GLU in General

The GLU call gluPerspective(), explained in Section 3.12, is gone from
4.3 for obvious reasons: the projection matrix must be managed by the user
in the shader. In fact, GLU itself is deprecated so we had best steer away
from all glu*() calls.

However, we have already seen a workaround for gluPerspective().
In fact, in litCylinderShaderized.cpp of the last chapter we applied the
GLM command perspective(fovy, aspect, near, far), which returns the
projection matrix corresponding to gluPerspective(fovy, aspect, near,
far).

Viewports and Multiple Windows

Finally, creating viewports and top-level windows, topics of Sections 3.13
and 3.14, respectively, remains identical in 4.3 to what it was pre-shader.

21.2 Shader Subroutines

To dynamically choose at run-time between alternate threads of control in
a shader, what we’ve been doing so far is use if-type clauses conditioned784
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on the value of a uniform, as exemplified in the following extract from the
vertex shader of the program ballAndTorusShaderized.cpp of the previous
chapter:

uniform uint object;

...

if (object == HEMISPHERE) coords = hemCoords;

if (object == TORUS) coords = torCoords;

...

Shader subroutines offer a somewhat more elegant alternative to the above,
allowing the user to dynamically select a subroutine, albeit at a higher set-up
cost. In short, what the user does is specify a subroutine type, then a bunch
of subroutines of that type, and, finally, a subroutine uniform variable whose
value decides the subroutine to execute. The conceptual forebear of shader
subroutines is the C function pointer.

Let’s get to work. We’ll rewrite ballAndTorusShaderized.cpp to use
shader subroutines instead of the if clauses in the extract above.

Figure 21.4: Screenshot
of ballAndTorusShader-
Subroutines.cpp.

Experiment 21.4. Run ballAndTorusShaderSubroutines.cpp. The
controls are exactly as for ballAndTorusShaderized.cpp: space to toggle
animation on and off, up/down arrows to change its speed, and ‘x’-‘Z’ to
rotate the scene. Figure 21.4 is a screenshot. End

The subroutines are in the vertex shader. First, see the two statements

subroutine void objectAction(void);

subroutine uniform objectAction object;

The first statement declares a subroutine type named objectAction with
both void parameter list and return type. The general form of this
declaration is

subroutine returnType subroutineTypeName(type parameter, type parame-
ter, ...)

The second statement declares the subroutine uniform variable object

corresponding to the just-declared subroutine objectAction. The general
form is

subroutine uniform subroutineTypeName subroutineUniformName

Next, two simple subroutines, named hemisphere and torus, respec-
tively, of type objectAction are defined by

subroutine (objectAction) void hemisphere(void)

{
coords = hemCoords;

colorsExport = hemColor;

} 785
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subroutine (objectAction) void torus(void)

{
coords = torCoords;

colorsExport = torColor;

}

Their function is evidently to set the coordinate values and colors to export
(to the fragment shader) for the hemisphere and torus, respectively. Observe
that both subroutines have return type and parameter list matching the
subroutine type, namely objectAction, to which they belong, as they must.

Now, to the initialization routine of ballAndTorusShaderSubroutines.-
cpp, where the statements

hemSubroutineIndex = glGetSubroutineIndex(programId,

GL_VERTEX_SHADER, "hemisphere");

torSubroutineIndex = glGetSubroutineIndex(programId,

GL_VERTEX_SHADER, "torus");

obtain the indices of the subroutines hemisphere and torus, respectively.

Finally, back again to the vertex shader where the first line of

void main(void)

{
object();

gl_Position = projMat * modelViewMat * coords;

}

invokes the subroutine whose index is chosen in the application program’s
drawing routine by statements of the form

glUniformSubroutinesuiv(GL_VERTEX_SHADER, 1, &XSubroutineIndex);

where X is either hem or tor. Such statements replace those of the form

glUniform1ui(objectLoc, X);

of the earlier ballAndTorusShaderized.cpp using if-based shader control,
where X was either HEMISPHERE or TORUS.

We have as a rule used if-based shader control for simplicity’s sake.
In fact, for relatively small programs like ours it’s unlikely there is any
significant difference in performance between if-based control and shader
subroutines. However, for large programs the user might want to choose
between the two, considering:

(a) Run-time performance: though, certainly, subroutines are more easily
optimizable, there is a trade-off with the overhead in setting them up;
the proof of the pudding is in the running.786
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(b) Clarity of presentation: shader subroutines have an advantage in that
they can make it easier to follow the program logic, especially if there
is a lot going on in the individual threads of control; accordingly,
modifying or extending the program in future might be a less hair-
raising enterprise as well.

Remark 21.1. There’s actually yet another way to dynamically control
shader flow, which is to make separate shader objects. So, for example,
instead of choosing between two lines of control in, say, the one vertex shader
via subroutines or if cases, one could create two different vertex shaders,
dynamically attaching and detaching one or the other during run-time. We’ll
leave the interested reader to peruse the red book for more on this.

21.3 More Animation

We’ll add next to our animation repertoire two powerful practical techniques.
The first, that of picking an object on the screen, is actually familiar from
Chapter 4, but we’ll do it entirely differently in 4.3. The second, so-called
transform feedback, was introduced in OpenGL 3.0 to allow vertices to
be intercepted and their attributes recorded, right after they have been
transformed by the vertex, tessellation and geometry shaders (of course, in
the case of the latter two, only if they are present). These recorded values
may then be used by the program, for example, to modify subsequent passes
through the pipeline.

21.3.1 Picking

Essential to interaction with animated programs is for the user to be able to
pick an object on the screen. Section 4.8 from our pre-shader days showed
how to do this with the help of a pick matrix and entering selection mode
via glRenderMode(GL SELECT).

Sadly, glRenderMode() is gone from 4.3, but the fragment shader rides
to our rescue. In fact, the power of the fragment shader affords a much more
direct approach to picking than our earlier rather roundabout method via
checking for object intersection with a pretend selection volume. Let’s see
this by shaderizing ballAndTorusPicking.cpp.

Figure 21.5: Screenshot
of ballAndTorusPicking-
Shaderized.cpp moments
after the ball has been
clicked.

Experiment 21.5. Run ballAndTorusPickingShaderized.cpp. The
controls are exactly as for ballAndTorusPicking.cpp: space to toggle
animation on and off, up/down arrows to change its speed, ‘x’-‘Z’ to rotate
the scene, and, most importantly, left mouse click to pick either ball or torus.
See Figure 21.5 for a screenshot. End

We saw when discussing stippling in the previous section that the
fragment shader has access to the input built-in gl FragCoord of type vec4,
whose (x, y)-values are the coordinates of the fragment in the windows 787
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system and z-value is the depth of the fragment. So here’s the plan
for ballAndTorusPickingShaderized.cpp: obtain mouse click coordinates
from the application program and, then, match these in the fragment shader
with fragment coordinates; then, pick the object which has a matching
fragment of least depth.

What could be simpler? There’s a minor new technicality to navigate
though. When running the “depth competition” to find the fragment
nearest the viewer, we’ll evidently need storage which can be shared amongst
fragment shader invocations.

The solution is to use variables of the buffer storage type (one of
those listed in Table 20.1). Buffer variables must be placed in so-called
interface blocks, which are blocks of variables declared with a struct-like
syntax. Here’s the definition of the interface block, named shaderStorage,
in ballAndTorusPickingShaderized.cpp’s fragment shader:

layout(std430, binding=0) buffer shaderStorage

{
ivec2 clickedCoords;

uint clickedObj;

float minClickedDepth;

};

The qualifier buffer defines the storage type of the member variables, while
the layout directive specifies that member variables will be stored in memory
following the particular std430 rules – which will tell us what offsets to
use to access these variables from the application program – and that the
binding index of the block is 0.

As for the member variables themselves, it’s fairly evident what they
are intended to hold: the mouse click coordinates place in clickedCoords,
while minClickedDepth will hold the smallest depth of a fragment matching
the clicked coordinates seen so far, and clickedObj the name of the object
to which it belongs.

Note, as well, the redeclaration of gl FragCoord in the fragment shader:

layout(origin_upper_left, pixel_center_integer) in vec4 gl_FragCoord;

which moves its origin of pixel coordinates to the upper-left-most pixel (from
the default of the lower-left-most) and makes the pixel coordinate values,
both gl FragCoord.x and gl FragCoord.y, the integral 0.0, 1.0, . . . (rather
than the default of 0.5, 1.5, . . .). The purpose of this redeclaration is so
the coordinate system of the fragment shader matches exactly that of the
OpenGL window which, of course, the application’s mouse control uses.

To the application program next, where the statements

glBindBuffer(GL_SHADER_STORAGE_BUFFER, buffer[SHADER_STORAGE]);

glBufferData(GL_SHADER_STORAGE_BUFFER, 128, NULL,

GL_DYNAMIC_COPY);

glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 0,788
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buffer[SHADER_STORAGE]);

storageBufferPtrInt = (int*)glMapBuffer(GL_SHADER_STORAGE_BUFFER,

GL_READ_WRITE);

storageBufferPtrFloat = (float*)&storageBufferPtrInt[0];

in the initialization routine set up a shader storage buffer in GPU memory to
hold the buffer variables declared in the interface block shaderStorage (in
particular, note that the second parameter of glBindBufferBase(), being
0, specifies the binding index of the associated interface block) and map
pointers to the buffer data (the integer pointer is also cast as a float pointer
in the last statement because we’ll need to access both kinds of data in the
buffer).

Moreover, the std430 layout rules (see the red book for specs) mean
that the variables of the fragment shader’s interface block shaderStorage

are packed into 128 bits: two successive 32-bit ints for clickedCoords,
followed by one 32-bit uint for clickedObj, and then one 32-bit float for
minClickedDepth.

Now that we have all the data structures in place, the logic of the
program is simple to understand. On a left click, the mouseControl()

function executes the following:

storageBufferPtrInt[0] = x;

storageBufferPtrInt[1] = y;

storageBufferPtrInt[2] = 2;

storageBufferPtrFloat[3] = 1.0;

isSelecting = 1;

glUniform1i(isSelectingLoc, isSelecting);

glutPostRedisplay();

These statements first of all put the click coordinates into clickedCoords,
the value NONE (defined to be 2 in the fragment shader) in clickedObj and
1 in minClickedDepth (note that the fragment depth in gl FragCoord.z is
normalized from 0 to 1, 0 being nearest the eye and 1 farthest away, so a
value of 1 means, effectively, infinity or that no object is selected).

Next, “selection mode” (our own and nothing to do with the OpenGL
environment as in using pre-shader glRenderMode()!) is entered by setting
isSelecting to 1, and the drawing routine called, which means, of course,
that the fragment shader will run for each fragment generated. Accordingly,
see the following block in the fragment shader’s main which runs the “depth
competition” for fragments matching the click:

if (isSelecting == 1)

if ( (abs(gl_FragCoord.x - clickedCoords.x) <= 1)

&& (abs(gl_FragCoord.y - clickedCoords.y) <= 1) 789
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&& (gl_FragCoord.z < minClickedDepth)

)

{
minClickedDepth = gl_FragCoord.z;

clickedObj = object;

}

As you see, we allow a tolerance of one pixel in both thex and y directions
for a fragment to match the click; if a fragment does match and it is closer
to the eye than the currently closest fragment, then we accordingly update
minClickedDepth to the depth of the current fragment and clickedObj to
the object to which this fragment belongs. The remaining statements

if (object == HEMISPHERE)

...

if (object == TORUS)

...

in the fragment shader’s main either highlight the picked object in red if
indeed either ball or torus is picked, or draw both in their respective default
colors.

Finally, returning to the application program, the statements

if (isSelecting == 1)

{
highlightFrames = 10;

glUniform1i(highlightFramesLoc, highlightFrames);

isSelecting = 0;

glUniform1i(isSelectingLoc, isSelecting);

}

at the end of the drawing routine set the number of frames to highlight the
picked object and restore non-selection mode.

Exercise 21.5. (Programming) Redo Exercise 4.70 from Section 4.8
in OpenGL 4.3.

21.3.2 Transform Feedback

Transform feedback is an operation which may be used to tremendous effect,
particularly in animated programs. What it does is record into a buffer
selected attributes of vertices after they have been transformed by the vertex,
tessellation and geometry shaders (or, more precisely, the attributes are
recorded after the last of these three shader stages, depending on which
are present). The contents of this recording buffer may then serve as a
look-ahead.

For example, one might run a transformation step of an animation without
drawing the results to the frame buffer, but using transform feedback to790
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capture, say, the world coordinates of objects post-transformation. These
coordinates may then be used to rearrange the animation, e.g., if a collision
is detected. In fact, we have a program exactly along these lines.

Figure 21.6: Screenshot
of ballAndTorus-
TransformFeedback.cpp

when the balls are close.

Experiment 21.6. Run ballsAndTorusTransformFeedback.cpp. The
controls are exactly as for ballAndTorusShaderized.cpp: space to toggle
animation on and off, up/down arrows to change its speed, and ‘x’-‘Z’ to
rotate the scene.

However, instead of one ball, now there are two, initially coincident, which
travel in opposite directions around the torus. When the balls intersect they
are red, when they are close (closer than a particular threshold distance)
they turn orange, and beyond that they are blue. Figure 21.6 is a screenshot
when the balls are close. End

Exercise 21.6. To better appreciate the power of transform feedback,
contemplate for a minute how to do what the preceding program does in a
pre-shader world.

Here’s the plan how to use transform feedback in the program. Firstly,
observe that since the balls are of radius 2 each, they intersect when the
distance between their centers is at most 4 units. So, we’ll use transform
feedback to record the world coordinates of the two centers in order to
calculate how far apart they are: if they are at most 4 apart then the balls
intersect and we draw them red, if they are at most 8 (an arbitrarily chosen
value) apart then we draw the balls orange.

Now, let’s see how transform feedback is set up in the initialization
routine. The statement

glTransformFeedbackVaryings(programId, 1, varyings,

GL_INTERLEAVED_ATTRIBS);

specifies the shader outputs, aka varyings , to be recorded through transform
feedback. Specifically, the third parameter varyings is the array of names
of the varyings – only one in our case defined in the globals by

static const char* varyings[] = "centerWorldCoords";

The second parameter is the number of names, while the first parameter
identifies the program, and the last specifies the mode in which to record
the varyings. The options for this last are GL INTERLEAVED ATTRIBS,
when all the varyings are recorded one after another in one buffer, and
GL SEPARATE ATTRIBS, when each varying is recorded in its own buffer. Since
we have a single varying centerWorldCoords, both options are effectively
identical for us.

The program must be linked after the transform feedback varyings are
defined which explains the location of the glTransformFeedbackVaryings()
statement in the code.

Now, if you see the vertex shader, then you find the one varying
centerWorldCoords, in fact, is set by 791
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layout(location=2) in vec4 centerCoords;

...

out vec4 centerWorldCoords;

vec4 coords;

...

if (object == CENTER)

{
coords = centerCoords;

centerWorldCoords = modelViewMat * coords;

}

In other words, centerWorldCoords are the world coordinates of the ball
center after modelview transformation.

Returning to the application program’s initialization, a transform feedback
object is created and bound by the statement pair

glGenTransformFeedbacks(1, transformFeedback);

glBindTransformFeedback(GL_TRANSFORM_FEEDBACK, transformFeedback[0]);

similarly to how VAO and VBOs are created and bound, the id of the object,
obviously, stored in transformFeedback[0].

Further down the initialization routine the statement block

glBindBuffer(GL_TRANSFORM_FEEDBACK_BUFFER,

buffer[TRANSFORM_FEEDBACK]);

glBufferData(GL_TRANSFORM_FEEDBACK_BUFFER, 1024,

NULL, GL_DYNAMIC_COPY);

glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0,

buffer[TRANSFORM_FEEDBACK]);

sets up a transform feedback buffer in a manner exactly similar to how we
set up a shader storage buffer in the previous section on picking.

Next,

glGenTextures(1, texture);

glActiveTexture(GL_TEXTURE1);

glBindTexture(GL_TEXTURE_BUFFER, texture[0]);

glTexBuffer(GL_TEXTURE_BUFFER, GL_RGBA32F,

buffer[TRANSFORM_FEEDBACK]);

tfBufferLoc = glGetUniformLocation(programId,

"transformFeedbackTex");

glUniform1i(tfBufferLoc, 1);

creates a TBO – see the discussion of program helixListShaderized-

InstanceCounter.cpp in Section 21.1 where we first used texture buffer
objects – whose data source is the transform feedback buffer set up earlier.
The reason to bind a TBO to the transform feedback buffer is for the
fragment shader to be able to access its values.

Finally, the application program’s drawing routine, as clearly indicated
by comments there, is two phase: first transform feedback, then actual
drawing. The first two statements792
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glBeginTransformFeedback(GL_POINTS);

glEnable(GL_RASTERIZER_DISCARD);

of the first phase start transform feedback, specifying that the type of
primitive to be recorded is points and that they be discarded before
rasterization, so that recording takes place in this phase with nothing
actually drawn to the screen. As expected, the second phase begins with
the inverse pair

glDisable(GL_RASTERIZER_DISCARD);

glEndTransformFeedback();

to begin drawing to the screen without recording. Let’s now see what exactly
is drawn in the two phases. It’s best to examine the second phase first, where
the drawing commands are exactly as in ballAndTorusShaderized.cpp,
except that there is an additional ball revolving in a direction opposite to
the first, the command

modelViewMat = rotate(modelViewMat, -1.0f*longAngle,

vec3(0.0, 0.0, 1.0));

in the transformation block preceding the second ball, vs. the corresponding
command

modelViewMat = rotate(modelViewMat, longAngle, vec3(0.0, 0.0, 1.0));

in the block preceding the first, doing the needful.
Now, if you compare, the first recording phase is identical in its drawing

commands to the second, except that

(a) The torus is not drawn, as it is irrelevant to computing the distance
between the two balls.

(b) Instead of drawing a ball as a hemisphere pair, only its center is drawn,
because it’s only the two balls’ centers’ respective world coordinates
which we need for our calculations, as explained earlier.

The rest of the program logic now falls in place from a reading of the
fragment shader. Here is the latter’s main:

void main(void)

{
center0 = texelFetch(transformFeedbackTex, 0).xyz;

center1 = texelFetch(transformFeedbackTex, 1).xyz;

distBetweenCenters = distance(center0 , center1);

if (object == HEMISPHERE)

{
colorsOut = hemColor;

if (distBetweenCenters <= 8.0) colorsOut = orangeColor; 793
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if (distBetweenCenters <= 4.0) colorsOut = redColor;

}
if (object == TORUS) colorsOut = torColor;

}

The two ball center xyz-coordinates, as recorded in Phase 1 of the drawing
routine, are fetched from the transform feedback buffer, their distance
calculated, and the ball colors set accordingly.

Exercise 21.7. (Programming) Exercise 4.36 from Chapter 4 was to
animate a single cue ball rolling on a pool table. Add a second ball, redoing
the exercise in OpenGL 4.3 to use transform feedback to detect and react to
collisions (between balls and between ball and table edge).

21.4 Special Visual Techniques

We had a glimpse in Exercise 20.12 of the preceding chapter of the kind of
effect one can code up in the fragment shader: we separated out the specular
light and doubled it, something which the conventional pipeline, of course,
can never be made to do. It’s reasonable then to revisit the pre-shader
Chapter 13 on special visual techniques to see how the few there might be
recreated in GL 4.3, and if we can do more.

Blending

First is blending done pre-shader in Section 13.1, which it turns out becomes
almost trivial in the fragment shader. Let’s get straight to blending textures
– we’ll shaderize fieldAndSkyTexturesBlended.cpp.

Figure 21.7: Screenshot
of fieldAndSkyTextures-
BlendedShaderized.cpp

late morning.

Experiment 21.7. Run fieldAndSkyTexturesBlendedShaderized.cpp.
As in fieldAndSkyTexturesBlended.cpp press the arrow keys to move the
sun, the transition between day and night happening from a blending of day
and night textures. See Figure 21.7 for a screenshot. End

All the code of fieldAndSkyTexturesBlendedShaderized.cpp should
be routine for the reader at this point except, maybe, for where the texture
blending actually takes place: see the line

if (object == SKY) colorsOut = mix(nightSkyTexColor,

skyTexColor, alpha);

in the main routine of the fragment shader. Now, the built-in GLSL function
mix(x, y, a) returns the linear combination (1− a) ∗ y + a ∗ y of x and y,
so the line above obtains the exact same blending of the night and day sky
textures as in fieldAndSkyTexturesBlended.cpp.

So, we have total control of blending in 4.3 and it’s not hard.
However, blending can still be enabled in 4.3 with glEnable(GL BLEND)794
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and glBlendFunc(), as well as a host of other glBlend*() commands,
remaining in the fixed-function part of the 4.3 pipeline. This may seem odd
but we’ll see soon the reason why when we discuss antialiasing.

Not the Foggiest

Fog is gone from 4.3. There is no support for fog in the fixed-function part
of 4.3 – glFog*() commands are all now obsolete. The reason is simple: as
is clear from the discussion in Section 13.2 of the mechanics of fog, to fog is
to blend. Ergo, the reader can code fog herself, as we ask her to do next.

Exercise 21.8. (Programming) Shaderize fieldAndSkyFogged.cpp

from Section 13.2. You don’t have to implement all the fog modes exactly.
Just make a realistic fog.

Billboarding

Billboarding, discussed earlier in Section 13.3, is simply the clever placement
of a textured rectangle to give the illusion of a 3D object. Obviously, this
principle does not change whatever OpenGL version we use.

Exercise 21.9. (Programming) Shaderize billboard.cpp.

Antialiasing Lines

We can antialias lines based on the coverage value of their fragments just as
in pre-shader OpenGL – see the discussion in Section 13.4.1 – and using the
very same commands. We ask the reader to verify this next.

Exercise 21.10. (Programming) Antialias a line in 4.3 with the
commands

glEnable(GL_BLEND);

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

glEnable(GL_LINE_SMOOTH);

in the initialization routine.

Now we see a reason for keeping blending in the fixed-function part of
OpenGL 4.3; it would be asking a bit much of the programmer to calculate
coverage value per fragment for a line segment and blend accordingly into
the color buffer.

21.4.1 Points

Points are a whole different ball game. In fact, GLSL 4.3 has a rich set of
controls allowing the programmer to do pretty much as she pleases with
points. You might now want to quickly review the discussion about how
points are rendered at the end of Section 13.4.1 and also point sprites in
Section 13.5. Good, let’s get to code. 795
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Experiment 21.8. Run points.cpp. Drawn are three large points. Press
space to cycle between four different point renderings and the up and down
arrow keys to move the points parallel to the z-axis. Figure 21.8 is a
screenshot of what is seen at first, particularly, three unedited points. End

Figure 21.8: Screenshot
of points.cpp initially.

The four different renderings correspond to the four cases, respectively,
of the switch statement in the fragment shader’s main. The first,

case 0:

colorsOut = pointSetColor;

break;

simply draws the points unedited in the fragment shader. However, as the up
or down arrow keys are pressed to move the points away or near, their size,
respectively, decreases or increases. This change is effected by the statement

gl_PointSize = 100.0 - zTrans * 10.0;

in the vertex shader’s main which sets a simple linear ramp on the built-in
variable gl PointSize. Note, of course, that, if the program didn’t change
the point size, then all three points would be rendered a fixed size, no matter
how they were moved (validate this by changing the statement above to
gl PointSize = 100.0; the reason is explained in the part about rendering
points at the end of Section 13.4.1).

Importantly, it is

glEnable(GL_PROGRAM_POINT_SIZE);

in the application program’s initialization routine which allows the vertex
shader to set the point size in the first place.

The fragment shader’s next switch case

case 1:

coordWRTcenter = gl_PointCoord - pointCoordCenter;

distFromCenter = sqrt(dot(coordWRTcenter, coordWRTcenter));

if (distFromCenter > pointCoordRadius) discard;

colorsOut = pointSetColor;

break;

first computes the fragment’s coordinates w.r.t. the center of the point
within the latter’s built-in texture coordinate system. The fragment’s
coordinates themselves in this system are accessible through the built-in
variable gl PointCoord. The point’s center is pointCoordCenter, set to
(0.5, 0.5), as both texture coordinates s and t run from 0 to 1 along the
point.

Next, the distance of the fragment from the point center is determined and
the fragment discarded if it is greater than the value of pointCoordRadius,
which is 0.5. The function discard is built-in as well. The output of case 1,
then, is a rounded point.

One still sees jaggies along the boundary of the rounded point of case 1.
We try to eliminate these in796
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case 2:

coordWRTcenter = gl_PointCoord - pointCoordCenter;

distFromCenter = sqrt(dot(coordWRTcenter, coordWRTcenter));

if (distFromCenter > pointCoordRadius) discard;

alpha = clamp( (distFromCenter - startBlend)/

(pointCoordRadius - startBlend), 0.0, 1.0 );

colorsOut = mix(pointSetColor, backgroundColor, alpha);

break;

which is similar to the preceding case, except that, finally, a linear color
ramp blends the color of the points with the background color, starting
from a distance of startBlend, currently 0.4, from the point’s center and
ending at its border. Note that the built-in GLSL function clamp(x, a, b)
returns, as one would expect, x if a ≤ x ≤ b, a if x < a, and b if x > b.

Point Sprites

Finally,

case 3:

colorsOut = texture(starTex, gl_PointCoord);

break;

very simply implements point sprites – the topic of the pre-shader Section 13.5
– obviously based on the point’s built-in texture coordinate system. Note
that

glPointParameteri(GL_POINT_SPRITE_COORD_ORIGIN, GL_LOWER_LEFT);

glEnable(GL_POINT_SPRITE);

in setup() of the application program cause the texture t-coordinate to
increase from 0 to 1 from bottom to top of the sprite (s is always from left
to right) and enable point sprites.

Exercise 21.11. (Programming) Experiment with antialiasing the
rounded point by changing the value of startBlend in case 2 of the
points.cpp’s fragment shader’s switch statement.

Try, as well, to use the built-in GLSL function smoothstep (look up
the GLSL docs) for a smoother transition from 0 to 1 of the value of the
blending parameter alpha (the linear ramp of case 2 is not smooth where it
reaches 0 at the bottom or 1 at the top).

Multisampling

Multisampling, which we first encountered in Section 13.4.2, is enabled
in 4.3 via the command glEnable(GL MULTISAMPLE), just as in pre-shader
OpenGL. Remember, though, to first create an OpenGL window which
supports multisampling by passing GLUT MULTISAMPLE as a parameter to
glutInitDisplayMode(). 797
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Exercise 21.12. (Programming) Implement multisampling to antialias
polygons in OpenGL 4.3.

Difficult Environment for Mapping

Environment mapping, sadly, can be a chore in 4.3. The reason is that neither
glTexGeni() nor glEnable(GL TEXTURE GEN ?), which made environment
mapping such a joy in pre-shader OpenGL, as we saw in Section 13.6, is
available in 4.3. If you followed the math of texture generation in Section 13.6,
though, you can probably implement environment mapping on your own.
However, we would recommend taking the easy way out, viz. sneak back to
compatibility mode and use pre-shader OpenGL.

Stencils and Scissors

Thankfully, both stencil and scissor tests remain very much alive in the
fixed-function part of the OpenGL 4.3 pipeline, and in exactly the same
manner as discussed in Section 13.7, as we ask the reader to investigate next.

Exercise 21.13. (Programming) Shaderize ballAndTorusStenciled.-
cpp from Section 13.7.

Image Manipulation and PBOs

Image manipulation statements such as glDrawPixels(), glReadPixels()
and glCopyPixels(), discussed in Section 13.8, are, unsurprisingly, gone
from 4.3 as the fragment shader now gives direct access to fragments. All
the functionality of these commands can now be user-programmed. However,
PBOs (pixel buffer objects) to store pixel data can be implemented in 4.3,
exactly as in pre-shader OpenGL as described in Section 13.8.

Exercise 21.14. (Programming) Shaderize imageManipulation.cpp

from Section 13.8.

Bump Mapping

Finally, of course, the pre-shader bump mapping of Section 13.9 was what
we fully redid in the programmable pipeline when discussing 4.3 lighting in
Section 20.5 of the last chapter.

21.5 Tessellation Shaders

Vertex shaders, while they can accomplish much as we have seen, have two
major limitations: (a) they can only update attributes per vertex without
access to data from other, say, neighboring, vertices, and (b) cannot generate
additional geometry, e.g., new vertices. We’ll run into these limitations, for798
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example, if we want to adaptively refine the representation of an object
depending on its closeness to the camera. This will require the generation
of new geometry, namely, more detail, as the object occupies more screen
area, something the vertex shader is incapable of doing. In fact, it was
to solve precisely this kind of problem within the GPU – one can always
generate new vertices in the application program, but then comes the cost
of communication over the CPU-GPU bus – that the tessellation shader was
conceived (and, in fact, got its name).
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Figure 21.9: OpenGL programmable pipeline.

The tessellation shader is a fairly complex optional component of the
programmable pipeline consisting of four modules – the tessellation control
shader (TCS), tessellation primitive generator (TPG), tessellation evaluation
shader (TES) and a primitive assembler (PA) – operating (pretty much but
not exactly as we’ll see) in that sequence. Figure 21.9 (copy of Figure 20.2)
shows how the tessellation shader is situated within the OpenGL pipeline.
Of the four modules, the TCS and TES are programmable, while the TPG
and PA are fixed function. So, the tessellation shader is actually two-shaders-
in-one, plus fixed function support.

We begin with a simple scenario, showing how the four modules combine,
which should make the subsequent discussion fairly easy to follow. p1

p2
p0

Figure 21.10: Arc of a
circle defined by 3 points.

Suppose that input is an ordered sequence of three vertices p0, p1 and p2.
Assume they are not on a straight line, which means there’s a unique arc of
a circle through the three – see Figure 21.10 for the elementary geometry to
construct the arc. Now, suppose we have already made a design decision
that all curves are to be drawn as cubic Bézier curves and all surfaces as
cubic Bézier surfaces. In particular, we want to approximate our circular
arc with a cubic Bézier curve drawn as a 5-segment polyline. Think of 5
segments as the currently desirable level of refinement if you will.

Here’s how this would happen in a tessellation shader. Refer to
Figure 21.11 as you read on.

The three wannabe arc vertices p0, p1 and p2 are first input to the TCS –
together they are the input patch. The TCS waves a math wand over the 799



i
i

i
i

i
i

i
i

Chapter 21

OpenGL 4.3, Shaders

and the

Programmable

Pipeline: Escape

Velocity

0.0, 0.2, ...,1.0

v0, v1, ..., v5

Input patch (arc vertices)p0

q0

q1 q2

q3
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p2

TCS

TPG

TES

Tessellation level = 5

Output patch (cubic Bezier 
curve control points)

Patch domain = interval [0, 1]
0.1        0.2        0.4         0.6        0.8        1.0

Tessellated patch domain

Geometry (vertex adjacency)

v0

v1

v2 v3

v4

v5

Final tessellation shader output
(polyline approximation of a cubic Bezier curve)

PA

Figure 21.11: Tessellation shader scheme.

input patch to conjure up a sequence q0, q1, q2 and q3 of 4 control points
of a cubic Bézier curve nicely approximating the circular arc through p0,
p1 and p2 – we’ll trust this can be done and not sweat the details. The 4
control points together form the output patch. The output patch is delivered
to the TES. Note, then, that a patch, input or output, is simply an ordered
list of vertices with no intrinsic geometry.800
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Next, the TPG receives from the TCS the value of 5 for the tessellation
level , and from the TES the instruction that the primitive to be tessellated,
called the patch domain, is the interval [0, 1]. All this, of course, corresponds
to asking a 5-interval grid on the [0, 1] parameter interval of the Bézier
curve. The TPG computes, say, a regular grid, which, geometrically, is the
5-segment line strip with vertices at 0.0, 0.2, . . . , 1.0.

These line strip, or patch domain, vertices are transmitted from the TPG
to the TES. Remember the TES already has at its disposal the output patch,
i.e., all 4 Bézier control points q0, q1, q2 and q3. What the TES does next is,
for each patch domain vertex, i.e., for each parameter value 0.0, 0.2, . . . , 1.0,
compute the world space coordinates of the corresponding cubic Bézier curve
vertex, denoted, respectively, v0, v1, . . . , v5. Chapter 15 on Bézier theory
tells us that the formula to use is

c(u) = (1− u)3q0 + 3(1− u)2uq1 + 3(1− u)u2q2 + u3q3 (21.1)

so the value of vi is c(0.2i). The vi are sent by the TES to the PA. The
latter also receives the tessellation geometry (line strip in this case) from
the TPG and uses this to assemble the vi into the final output polyline in
world space.

On a first encounter with tessellations shaders, the TPG is often most
confusing. First of all, it’s a bit of a misfit in the OpenGL pipeline – it does
nothing at all with any application data, e.g., patch vertex. The TPG is
more of a refugee from a math app like MATLAB! Given a patch domain,
which is an abstract mathematical domain (the [0, 1] interval in our case),
and a tessellation specification (regular 5-interval grid in our case), the TPG
simply computes a tessellation of the patch domain. It’s the TCS and TES
which actually get grease on their elbows with patch vertex values.

Summing up, roughly, the TCS has first dibs at the input patch with
license to transform it into an output patch in any way it likes, which it then
hands over to the TES. The TES next manufactures a real-world vertex
from each patch vertex it receives from the TCS. Finally, the PA assembles
a real-world object from the TES’s output vertices with help of the abstract
template produced by the TPG.

Moreover, it’s worth repeating that the TCS’s input and output patches
do not carry any geometry. They are simply ordered lists of vertices.

Time now to get all OpenGLly and technical. We’re going to explore,
successively, in fair detail the TCS, TES and TPG, which are tessellation-
specific. The PA, however, is a generic module, which assembles real-world
primitives given their geometry and vertex coordinates. As it is not specific
to tessellation, we won’t discuss it further here.

And, of course, we’re going to back things up with live code. In fact, we
have programmed the example scenario above in tessellatedCurve.cpp

and, as we describe technicalities in general terms, we’ll point to their specific
incarnations in this program. 801
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Experiment 21.9. Run tessellatedCurve.cpp. You see the three input
vertices and an initially 5-segment Bézier curve polyline. Press the up/down
arrow keys to increase/decrease the number of segments. Figure 21.12 is a
screenshot with the initial five segments.

The Bézier curve is evidently a poor approximation to the circular arc
(not drawn) through the three input vertices, the reason being, as we’ll see
in the upcoming discussion, an intentionally simple-minded choice of the
control points; keep in mind, though, that the actual curve itself is of far
less interest here than the programming steps to generate it.

The code is explained through the following sections. End

Figure 21.12: Screenshot
of tessellatedCurve.cpp
initially.

21.5.1 TCS (Tessellation Control Shader)

The input to the TCS is a new OpenGL primitive, namely patch – the
symbol being GL PATCHES – which is just an ordered list of vertices of the
size inputPatchSize set by the statement

glPatchParameteri(GL_PATCH_VERTICES, inputPatchSize)

in the application program. The last line

glPatchParameteri(GL_PATCH_VERTICES, 3);

of the initialization routine of tessellatedCurve.cpp sets inputPatchSize
to 3.

Of course, as is evident from the layout of the OpenGL pipeline
(Figure 21.9), each vertex entering into a patch is first processed by the vertex
shader. In tessellatedCurve.cpp, though, the vertex shader is particularly
hands-off. It simply reads each input vertex’s position coordinates into the
per-vertex built-in variable gl Position, transforming them no further.

Exercise 21.15. The vertex shader of tessellatedCurve.cpp does not
apply modelview or projection transforms to the input coordinates. In fact,
the program seems to dispense with modelview and projection transforms
and their matrices altogether. How does it get away with this?
Hint : See discussion of the canonical viewing box in Section 18.1.

Patches themselves are specified by using GL PATCHES in a drawing
command – one being created every inputPatchSize vertices. Therefore,
given that tessellatedCurve.cpp’s inputPatchSize is 3, the command

glDrawArrays(GL_PATCHES, 0, 3);

in its drawing routine means that its TCS reads exactly one patch.
Generally, the pair of statements

glPatchParameteri(GL_PATCH_VERTICES, inputPatchSize);
...

glDrawArrays(GL_PATCHES, first, count);802
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in the application program would cause the TCS to read count/inputPatchSize
patches from the vertex shader.

The TCS has access to all the per-vertex built-in attributes, set by the
vertex shader, for every vertex in each input patch. Accordingly, the data
for each input patch, as read by the TCS, is a built-in variable gl in, which
is an array of structures – the three fields of the structure corresponding
to the three built-in vertex attributes – of the size of the patch. Here is its
declaration:

in gl_PerVertex

{
vec4 gl_Position;

float gl_PointSize;

float gl_ClipDistance[];

} gl_in[gl_PatchVerticesIn];

The declaration is implicit as gl in is built-in, so the programmer can simply
access the variable without making any declarations of her own. The size
of the above array is the value of the built-in variable gl PatchVerticeIn

accessible by the TCS – it is, of course, equal to inputPatchSize, the size
of an input patch. The TCS may, additionally, be supplied user-defined
per-vertex attribute values, beyond the three built-ins, by the vertex shader.

If you recall the example scenario described at the start of this section,
the TCS has two responsibilities: (a) produce an output patch for each
input patch to send the TES, and (b) set the tessellation levels per
output patch to control operation of the TPG. It is time now to look
at tessellatedCurve.cpp’s TCS, namely, tessControlShader.glsl.

The number of vertices per output patch is set by a statement of the
form

layout(vertices=outputPatchSize) out;

in the TCS. It is accessible by the TCS in the built-in input variable
gl PatchVerticesOut. The TCS of tessellatedCurve.cpp sets output-
PatchSize to 4 with the statement

layout(vertices=4) out;

The TCS executes once per output patch vertex . The sequence number
of the currently processing output patch vertex within the current patch
is the value of the built-in input variable gl InvocationID. Moreover, the
sequence number of the current patch in the current drawing statement
is contained in the built-in input variable gl PrimitiveID. The per-patch
output is a built-in of the same form as the input, viz.

out gl_PerVertex

{
vec4 gl_Position;

float gl_PointSize; 803
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float gl_ClipDistance[];

} gl_in[gl_PatchVerticesOut];

the size of the array being that of an output patch.
The switch statement below in the main routine of tessControlShader.-

glsl creates the four vertices of the output patch (to be used as control
points of a cubic Bézier curve, of course) from the three input vertices in a
simple-minded manner: the first output vertex is the first input vertex, the
second is midway between the first and second input vertices, the third is
midway between the second and third input vertices, while the fourth is the
third input vertex (the particular accuracy of the Bézier approximation not
being of interest in this discussion, we chose output vertices simple to code
in).

switch(gl_InvocationID)

{
case 0: gl_out[ gl_InvocationID ].gl_Position =

gl_in[0].gl_Position;

break;

case 1: gl_out[ gl_InvocationID ].gl_Position =

(gl_in[0].gl_Position + gl_in[1].gl_Position)/2.0;

break;

case 2: gl_out[ gl_InvocationID ].gl_Position =

(gl_in[1].gl_Position + gl_in[2].gl_Position)/2.0;

break;

case 3: gl_out[ gl_InvocationID ].gl_Position =

gl_in[2].gl_Position;

break;

default:

break;

}

The TCS tessControlShader.glsl has now discharged its first responsi-
bility of specifying the one output patch. It discharges the second of fixing
the tessellation levels for this output patch with the statement pair

gl_TessLevelOuter[0] = 1.0;

gl_TessLevelOuter[1] = tessLevelOuter1;

Now, the so-called inner and outer tessellation levels are contained in the
following built-in per-patch arrays, respectively:

patch out float gl_TessLevelInner[2];

patch out float gl_TessLevelOuter[4];

So tessControlShader.glsl sets gl TessLevelOuter[0] to 1.0 and gl -

TessLevelOuter[1] to the value of the application-provided uniform tess-

LevelOuter1 (initially, 5.0). It does not set the two inner tessellation levels
or the other two outer tessellation levels because they are never used in this
particular program, as we’ll see.804
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The TCS may additionally set user-defined per-vertex and per-patch
output variables (tessControlShader.glsl does not).

A very important point to note is that each invocation of the TCS, for
an output patch vertex, has access to the entire gl in and gl out arrays.
This is very different from, say, the vertex shader which, when processing a
vertex, has access to values for that vertex only, effectively ”blind” to its
neighbors. Not so for the TCS, which sees all the vertices in its current
input and output patches. In fact, we see from the switch statement above
of tessellatedCurve.cpp’s TCS how it uses the position of more than one
input vertex to calculate the position of an output vertex.

In fact, this global view is precisely the source of the TCS’s computational
power . However, it may give rise to synchronization issues if the TCS, for
example, asks a value from an invocation, for some output patch vertex,
which has not yet completed (keep in mind that the GPU is free to parallelize
invocations in any order for efficiency). The GLSL barrier() command
provides a mechanism to resolve this problem: it causes all invocations to
complete execution up to that command before proceeding further; therefore,
it is guaranteed that all writes prior to a barrier() command will have
completed.

Remark 21.2. Oddly enough, the TCS is not a mandatory part of the
tessellation shader. In fact, if there is no need to transform the input
patches, simply copying them over as output patches being enough, then
one can omit the TCS altogether, leaving the application program to set the
tessellation levels via calls

glPatchParameterfv(GL_PATCH_DEFAULT_INNER_LEVEL, *pointerToArray)

and

glPatchParameterfv(GL_PATCH_DEFAULT_OUTER_LEVEL, *pointerToArray)

where the pointers are to arrays of inner and outer tessellation levels,
respectively.

21.5.2 TES (Tessellation Evaluation Shader)

The input to the TES includes all the built-in vertex attributes output for
each patch by the TCS, in particular, the array

in gl_PerVertex

{
vec4 gl_Position;

float gl_PointSize;

float gl_ClipDistance[]

} gl in[gl_PatchVerticesIn];

which means, just as for the TCS, the TES sees all vertices in its own input
patch. The size of the above array is the value of the built-in variable 805
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gl PatchVerticesIn accessible by the TES – it is the size of a patch input
to the TES, the same, of course, as the size of a patch output from the TCS
(whose we saw was written in the TCS’s built-in gl PatchVerticesOut).

The TES can also read the input per-patch built-in arrays gl Tess-

LevelInner[2] and gl TessLevelOuter[4] set by the TCS to control the
TPG.

The TES has two functions: (a) produce a world space vertex for each
patch domain vertex (recall patch domain vertices are produced by the TPG
from tessellating its assigned patch domain), and (b) configure the TPG by
assigning values to a particular set of parameters (details coming up).

The TES executes once for each patch domain vertex emitted by the TPG .
For each patch domain vertex, the TES computes and outputs to the PA
the corresponding world space vertex, in particular, setting values for the
following built-in variables

out gl_PerVertex

{
vec4 gl_Position;

float gl_PointSize;

float gl_ClipDistance[];

}

For this purpose, it has access to the coordinates of the current patch
domain vertex in the built-in 3-vector gl TessCoord. Typically, the TES
uses these coordinates, as well as the input patch vertex values, to compute
the current world space vertex. The sequence number of the current patch
in the current rendering statement may be read, too, by the TES in the
built-in gl PrimitiveID.

In the case of tessellatedCurve.cpp, here is the main routine of its
TES tessEvaluationShader.glsl:

void main( )

{
q0 = gl_in[0].gl_Position;

q1 = gl_in[1].gl_Position;

q2 = gl_in[2].gl_Position;

q3 = gl_in[3].gl_Position;

u = gl_TessCoord.x;

c0 = (1.0-u) * (1.0-u) * (1.0-u);

c1 = 3.0 * u * (1.0-u) * (1.0-u);

c2 = 3.0 * u * u * (1.0-u);

c3 = u * u * u;

gl_Position = c0*q0 + c1*q1 + c2*q2 + c3*q3;

}806
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Evidently, the TES is applying the cubic Bézier curve Equation (21.1): the
control points are its input patch vertices, while the curve parameter is the
x-value of the patch domain (which as we’ll see is actually one-dimensional
in this case).

The TES, additionally, configures the TPG with a command of the form

layout(primitive, tessellationSpacing, orientation, pointMode) in

where primitive is one of quads, isolines and triangles, which specifies not
only the kind of primitive output by the TPG, but as well the base primitive,
called patch domain, tessellated by the TPG to produce the output primitives;
tessellationSpacing is one of equal spacing, fractional even spacing and
fractional odd spacing; orientation, required only if output is 2D, is one
of cw and ccw; and, pointMode is an optional parameter which may be
points. We’ll have more to say about these in the next section on the TPG.

The command configuring the TPG in tessEvaluationShader.glsl is

layout(isolines, equal_spacing) in;

whose meaning will be clear once we understand the TPG.

21.5.3 TPG (Tessellation Primitive Generator)

As we have noted before, the mathy gadget, the TPG, lives in fixed-function
– it has no corresponding shader to program. However it is configured by the
TCS and TES, specifically, by

(a) the floating point tessellation level arrays gl TessLevelInner[2] and
gl TessLevelOuter[4] set by the TCS, and

(b) the TES command layout(primitive, tessellationSpacing, orienta-
tion, pointMode) in.

The patch domain itself, the base primitive tessellated by the TPG,
may be a rectangle or a triangle depending on the value of primitive
– quads, isolines or triangles – the latter being the type of the
TPG’s output primitives. The value of tessellationSpacing may be one of
equal spacing, fractional even spacing and fractional odd spacing,
which determines how the TPG subdivides an edge. The parameter
orientation, either cw or ccw, causes the TPG to output vertices in such an
order that 2D primitives produced (if any) are appropriately oriented. If
the optional parameter pointMode is points, then only vertex values are
output by the TPG, no adjacency data being supplied, i.e., the geometry is
suppressed.

We’ll understand the exact mechanism momentarily. Roughly, though,
the inner and outer tessellation levels contained in the arrays gl Tess-

LevelInner[2] and gl TessLevelOuter[4], set by the TCS, determine the 807
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fineness of the subdivision of the interior and perimeter of the patch domain,
respectively.

It is the values of the parameters primitive and tessellationSpacing set
by the TES which, together with the tessellation levels set by the TCS,
determine exactly the tessellation. We are going to make the assumptions,
reasonable for most applications, that the value of tessellationSpacing is
equal spacing and that tessellation levels are all integer-valued.

Now, not all tessellation level values may actually be used: which are
depends on primitive. Depending on primitive as well is the number of
coordinates (either 2 or 3) produced per output vertex by the TPG. The
following table summarizes these dependencies.

Primitive Domain gl TessLevel... Values Tessellation
Used Coordinates

per Vertex
quads rectangle Inner[0]-[1], Outer[0]-[3] u, v
isolines rectangle Outer[0]-[1] u, v
triangles triangle Inner[0], Outer[0]-[2] u, v, w

Table 21.1: Dependencies on Primitive

We’ll make concrete the discussion above successively for each possible
primitive, namely, quads, isolines and triangles.

quads

Let’s work an example, simultaneously explaining the general tessellation
procedure. We choose the following values for tessellation levels.

gl_TessLevelInner[0] = 5.0;

gl_TessLevelInner[1] = 4.0;

gl_TessLevelOuter[0] = 1.0;

gl_TessLevelOuter[1] = 2.0;

gl_TessLevelOuter[2] = 3.0;

gl_TessLevelOuter[3] = 6.0;

The patch domain for a quads is the unit square [0, 1] × [0, 1] on the
uv-plane. The tessellation steps are shown from left to right in Figure 21.13.

Figure 21.13(a): Using the inner tessellation values, first subdivide equally
the patch domain into a 4× 5 mesh of rectangles – gl TessLevelInner[0]

subdivisions in the v direction, gl TessLevelInner[1] subdivisions in the
u direction.

Figure 21.13(b): Next, triangulate each rectangle, except those along the
square’s perimeter, into two triangles each; erase all rectangles along the
perimeter.

Figure 21.13(c): Finally, use the outer values to equally subdivide the
four perimeter edges – gl TessLevelOuter[0] subdivisions of the edge from808
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(1, 1)(0, 1)

(0, 0) (1, 0)
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(1, 1)(0, 1)

(0, 0) (1, 0)

v
(1, 1)(0, 1)

(0, 0) (1, 0)

v

u u
(b) (c)(a)

q
p

r

Figure 21.13: Tessellating quads.

(0, 1) to (0, 0), gl TessLevelOuter[1] subdivisions of the edge from (0, 0) to
(1, 0), and so on counterclockwise; triangulate the annular region along the
perimeter using edges connecting the subdivision vertices on the perimeter
with the outermost vertices of the inner mesh (the particular triangulation
is implementation-dependent).

Figure 21.13(c) shows all the vertices as solid points. These vertices, in
fact, are sent to the TES, which uses their (u, v) coordinates to compute for
each the corresponding world space vertex. The latter are sent next to the
PA, which assembles them into the final object according to the geometry of
the TPG’s tessellated quad, e.g., the world vertices corresponding to vertices
p, q and r of Figure 21.13(c) will define the vertices of one triangle.

Note: Even though primitive is quads, the output primitive type is actually
triangle (the non-perimeter triangles, arising in pairs from quadrilaterals,
somewhat justifying the name).

Note: The reason for separate tessellation levels for the interior and perimeter
is for the user to be able to independently refine the latter, it being the
interface with adjacent patches.

Isolines
(1,1)

(1,0)

(0,1)

(0,0) u

v

Figure 21.14:
Tessellating isolines.

Again, let’s do a running example (tessellatedCurve.cpp will actually
provide another). Only the first two outer tessellation levels are used for
isolines. We’ll set them to be

gl__TessLevelOuter[0] = 5.0;

gl_TessLevelOuter[1] = 4.0;

Refer to Figure 21.14 as you read on. As for quads, the patch domain
for isolines is the unit square [0, 1] × [0, 1] on the uv-plane. However,
instead of triangles, the primitives output are parallel line strips (isolines
being the fancy name) – in particular, gl TessLevelOuter[0] horizontal
line strips, starting with the bottom one on the u-axis (v = 0), splitting 809



i
i

i
i

i
i

i
i

Chapter 21

OpenGL 4.3, Shaders

and the

Programmable

Pipeline: Escape

Velocity

the [0, 1] interval of v into gl TessLevelOuter[0] equal subintervals. Note
that this means that there is no line strip along v = 1, for, otherwise, the
[0, 1] interval would be split into only gl TessLevelOuter[0]-1 subintervals.
The reason not to place a line strip along v = 1 is to avoid overlap between
two adjacent isolines patches. Further, each horizontal line strip consists of
gl TessLevelOuter[1] equal segments.

The final tessellated patch domain output for our example tessellation
levels above consists of the solid lines and vertices in Figure 21.14. Again,
as for quads, it’s the vertices which are delivered to the TES, which uses the
(u, v) coordinates of each input vertex to produce the corresponding world
space vertex.

(1,1)

(1,0)

(0,1)

(0,0) u

v

Figure 21.15:
tessellatedCurve.cpp’s
tessellated patch domain.

Back to tessellatedCurve.cpp next. The statement

layout(isolines, equal_spacing) in;

in tessellatedCurve.cpp’s TES and the two

gl_TessLevelOuter[0] = 1.0;

gl_TessLevelOuter[1] = tessLevelOuter1;

in its TCS mean that the tessellated patch domain output is as in Figure 21.15
initially (when tessLevelOuter1 = 5.0) – a single isoline divided equally
into 5 parts – which is why the TES uses only the u-coordinate of patch
domain vertices to compute the corresponding world vertex.

Remark 21.3. Its interesting to note how tessellatedCurve.cpp goes
about drawing the three input points and the Bézier curve together. Its
initialization routine actually attaches only the vertex and fragment shaders.
The drawing routine, then, first attaches the TCS and TES to draw the
Bézier curve polyline, and, next, detaches both to draw the points (of course,
one does not want any tessellation happening when drawing just points).

Triangles

v

u

(0,0,1)

w

(0,1,0)

(1,0,0)

Figure 21.16: Patch
domain for triangles.

The patch domain for triangles is a triangle situated in uvw 3-space with
corners a unit distance along each axis, as in Figure 21.16. The reason for this,
rather than a flat triangle on the uv-plane, is the convenience of barycentric
coordinates (see Section 7.2). In fact, this patch domain triangle consists
exactly of the points (u, v, w) such that u+ v+w = 1 and u, v, w ≥ 0, where
(u, v, w) serve as barycentric coordinates as well. Evidently, the triangle is
equilateral. Only the first inner tessellation level and the first three outer
levels are used for triangles. So, let’s set up an example with the following
levels:

gl_TessLevelInner[0] = 4.0;

gl_TessLevelOuter[0] = 1.0;

gl_TessLevelOuter[1] = 2.0;

gl_TessLevelOuter[2] = 3.0;810
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First, subdivide each triangle edge into gl TessLevelInner[0] equal
segments. From each subdivision vertex drop the perpendicular into
the triangle to make a nested triangle with each edge subdivided into
gl TessLevelInner[0]- 2 equal segments (see Figure 21.17(a) for our
example value gl TessLevelInner[0] = 4.0).

(0, 1, 0)(0, 1, 0)(0, 1, 0)

(0
, 0

, 1
)

(1
, 0

, 0
)

(0
, 0

, 1
)

(0
, 0

, 1
)

(1
, 0

, 0
)

(1
, 0

, 0
)

(a) (b) (c)

Figure 21.17: Tessellating triangles.

Continue the process of generating nested triangles until one reaches either
a single point (which happens when gl TessLevelInner[0] is even) or an
innermost triangle with no subdivided edge (when gl TessLevelInner[0]

is odd). Figure 21.17(b) shows the end figure of this process for our example,
where gl TessLevelInner[0] = 4.0, while Figure 21.17(c) shows it for
gl TessLevelInner[0] = 5.0, an odd number.

Finally, we’ll replicate very nearly the final steps for quads: triangulate
each quad inside the triangle, except those on the perimeter, into two
triangles; erase quads adjacent to the perimeter; use the outer values
to equally subdivide the three perimeter edges – gl TessLevelOuter[0]

subdivisions of the edge from (0, 1, 0) to (0, 0, 1), gl TessLevelOuter[1]

subdivisions of the edge from (0, 0, 1) to (1, 0, 0), and gl TessLevelOuter[2]

subdivisions of the edge from (1, 0, 0) to (0, 1, 0); triangulate the annular
region along the perimeter using edges connecting the subdivision vertices
on the perimeter with the outermost vertices of the inner mesh (as for quads,
the triangulation itself is implementation-dependent).

(0,1,0)

(1,0,0)(0,0,1)

Figure 21.18: Final
tessellated triangle for the
example tessellation levels.

Figure 21.18 shows the final tessellation for our example above.

Before we leave tessellation shaders here’s a program which tessellates a
surface, rather than a curve.

Figure 21.19: Screenshot
of tessellated-
Hemisphere.cpp.

Experiment 21.10. Run tessellatedHemisphere.cpp. You see a
tessellated hemisphere. Press ‘x’-‘Z’ to turn it, the up/down arrow keys to
increase/decrease the inner tessellation levels (both equal) and the right/left
arrow keys to increase/decrease the outer tessellation levels (all four equal).
Figure 21.19 is a screenshot after raising both inner and outer tessellation
levels a fair amount. 811
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We ask the reader to examine the program in the following exercise.
End

Exercise 21.16. The following are about tessellatedHemisphere.cpp.

(a) The vertex shader is, well, empty, yet we have a vertex-rich object
being drawn. What gives? (Hint : Tessellation shaders can create and
transform geometry . . ..)

(b) The program has no TCS. So, how are tessellation levels being set?

(c) Draw a figure like Figure 21.13(c) showing the tessellated patch domain
for the initial tessellation levels.

(d) Narrate exactly how the TES draws the hemisphere, beginning with
the patch domain vertices it gets from the TPG (for the formula for
hemCoords see Section 2.10).

Exercise 21.17. (Programming) Use the tessellation shader to draw
a cylinder whose tessellation levels are user-controlled.

Figure 21.20:
Hemisphere on top of a
cylinder.

Exercise 21.18. (Programming) Place a hemisphere on top of a
cylinder as in Figure 21.20. Allow their respective tessellations to be
controlled separately, making sure, though, that there is agreement on
the shared circular boundary.

21.6 Geometry Shaders

Geometry shaders are an optional component of the programmable pipeline
meant, just as tessellation shaders, to shift geometry processing from the
application program to the GPU. However, geometry shaders are structured
quite differently from their tessellation sisters and, in fact, far less complex.
A vital commonality, though, is that both derive their computational power
from having a global view of input primitives (vs. the one-vertex-at-a-time
vertex shader).

Here’s an overview of how a geometry shader works: it takes input
primitives of a particular specified type (from one of the familiar points,
lines and triangles, plus a couple of new so-called ”adjacency” types, namely,
lines adjacency and triangles adjacency) and produces output primitives of
a particular type (precisely, one of points, line strips and triangle strips).
Importantly, there is no a priori relationship between the input and output
types: points may generate line strips, triangles points, and so on. Moreover,
one input primitive may generate zero, one or more output primitives. That’s
it barring gory details (coming up)! Not too bad, huh?

The input to a geometry shader arrives from the vertex shader if there is
no tessellation, and from the tessellation evaluation shader if there is. So,
let’s see what sort of input primitive it accepts. The declaration812
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layout(inputPrimitiveType) in;

in the geometry shader sets inputPrimitiveType as that accepted, where its
value is one of the five on the left of Table 21.2.

Input Drawing Command Modes Atomic Input Size
Primitive Primitive
Type
points GL POINTS, GL PATCHES GL POINTS 1
lines GL LINES, GL LINE STRIP, GL LINES 2

GL LINE LOOP, GL PATCHES

triangles GL TRIANGLES, GL TRIANGLES 3
GL TRIANGLE STRIP,
GL TRIANGLE FAN, GL PATCHES

lines adjacency GL LINES ADJACENCY, GL LINES - 4
GL LINE STRIP ADJACENCY ADJACENCY

triangles adjacency GL TRIANGLES ADJACENCY, GL TRIANGLES - 6
GL TRIANGLE STRIP ADJACENCY ADJACENCY

Table 21.2: Dependencies on Input Primitive Type

Note: The reader may be wondering why we aren’t narrating with example
snippets from a live program as we did for tessellation. We certainly have an
example program to show off the geometry shader but thought the technical
presentation for this particular topic would go better if we deferred the
program till after.

The corresponding drawing command modes which may be actually used
to draw primitives in the application program are in the second column of
the preceding table. Whatever drawing command is used, though, input
primitives of a given type are each split into a sequence of atomic primitives
of the type in the third column. For example, the declaration

layout(triangles) in

is consistent with the drawing command glDrawElements(GL TRIANGLE -

STRIP, . . .), each triangle strip being split into a sequence of triangles which
are input successively to the geometry shader. The last column shows the
size, in number of vertices, of the atomic primitive. We’ll be explaining the
GL * ADJACENCY primitives momentarily.

Note: The tessellation shader, if there is one, converts GL PATCHES into
points, lines or triangles before shipping to the geometry shader.

Output from a geometry shader goes to the fragment shader for rendering.
The output type is set to outputPrimitiveType by the declaration

layout(outputPrimitiveType, maxVertices=num) out;

in the geometry shader, where the value of outputPrimitiveType may be
one of points, line strip and triangle strip, while max vertices is the 813
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maximum number of vertices a single output primitive may have. Observe
that 1D and 2D output types are both strips. So, for example, to declare
single triangles as output, the appropriate statement would be

layout(triangle_strip, max_vertices=3) out;

Note, further, that output primitives are produced one per atomic input prim-
itive. So, if the drawing command is glDrawElements(GL TRIANGLE STRIP,

. . .), then the statement just above asks one triangle to be output for each
one into which the input strip is split.

Adjacency Primitive Types

The purpose of the input adjacency primitive types is to provide the geometry
shader with data about the neighborhood of a primitive in the object of
which it is part. Let’s examine the four of them one by one.

GL LINES ADJACENCY: Just as a GL LINES primitive is a sequence of individual
line segment primitives, a GL LINES ADJACENCY primitive is a sequence of
individual 4-vertex base primitives, each as in Figure 21.21(a): the middle
vertices v1 and v2 represent the start and end vertices of a line segment,
respectively, while v0 and v3 represent v1’s predecessor and v2’s successor,
respectively; particularly, v0 and v3 represent adjacency (i.e., neighborhood)
information.

Note that the operative word in the preceding sentence is “represent”. It
is up to the programmer how she wishes to interpret each 4-vertex primitive.
For, keep in mind that input to a geometry shader is not an object in world
space per se; it’s only its output which is intended to be rendered. So, for
example, the four vertices may even be interpreted as four isolated points.

v0 v1 v2 v3

v0 v1 v2 v3 vN vN+1

(b)

(a)

vN+2

Figure 21.21: (a) GL LINES ADJACENCY primitive (b) GL LINE STRIP ADJACENCY

primitive. Arrows indicate line orientation. Unfilled points and broken arrows represent
adjacency information – if there is no geometry shader present, these are discarded and
only the filled points and unbroken segments rendered.

GL LINE STRIP ADJACENCY: A GL LINE STRIP ADJACENCY primitive repre-
senting a strip of N segments consists of a sequence of N + 3 vertices, as814
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shown in Figure 21.21(b). The line strip runs from vertex v1 to vN+1, while
the predecessor of v1 is v0 and the successor of vN+1 is vN+2.

We see from Table 21.2 that the atomic primitive corresponding to a
GL LINE STRIP ADJACENCY primitive is GL LINE ADJACENCY. So, for example,
the N -segment primitive of Figure 21.21(b) is, in fact, split into N
GL LINE ADJACENCY primitives which are sent sequentially to the geometry
shader: the first one consists of v0, v1, v2, v3, the next v1, v2, v3, v4, and so
on, till, finally, vN−1, vN , vN+1, vN+2.

GL TRIANGLES ADJACENCY: Just as a GL TRIANGLES primitive is a sequence
of individual triangle primitives, a GL TRIANGLES ADJACENCY primitive is a
sequence of single 6-vertex base primitives, each as in Figure 21.22(a): the
vertices v0, v2 and v4 represent the vertices of a triangle, while v1, v3 and
v5 each represent the third vertex of one of the three abutting triangles;
specifically, v1, v3 and v5 represent adjacency information.

GL TRIANGLE STRIP ADJACENCY: A GL TRIANGLE STRIP ADJACENCY primi-
tive representing a strip of N triangles, t0, . . . , tN−1, consists of 2N + 4
vertices, configured as in Figure 21.22(b) (N is assumed even for this
particular configuration; if N is odd, then the last triangle tN−1 will look
like t0, rather than t1). For each triangle of the strip, we see as well vertices
defining its three abutting triangles, i.e., adjacency information.

The atomic primitive corresponding to a GL TRIANGLE STRIP ADJACENCY

primitive is GL TRIANGLE ADJACENCY. So, for example, the N -triangle
primitive of Figure 21.22(b) is split into N GL TRIANGLE ADJACENCY

primitives which are sent sequentially to the geometry shader: the first one
consists of the triangle t0 vertices v0, v2 and v4 together with the neighboring
vertices v1, v3 and v6, the next consists of the triangle t1 vertices v2, v4 and
v6 together with the neighboring vertices v0, v5 and v8, and so on, till, finally,
the triangle tN−1 vertices t2N−2, t2N and t2N+2 together with neighboring
vertices t2N−4, t2N+1 and t2N+3.

The geometry shader executes once per input atomic primitive. The
geometry shader has access to all the per-vertex built-in attributes, set
by the vertex shader or tessellation evaluation shader, for every vertex in
each input atomic primitive. This global view is precisely the source of the
geometry shader’s computational power . Accordingly, the data for each such
input primitive, as read by the geometry shader, is a built-in variable gl in,
which is an array of structures – the three fields corresponding to the three
built-in vertex attributes – of the size of the input primitive (see the last
column of Table 21.2). Here is its definition:

in gl PerVertex

{
vec4 gl_Position;

float gl_PointSize;

float gl_ClipDistance[]; 815
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tN−2

v2N+1

v2N−4

v2N−2

v2N

v2N+2
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Figure 21.22: (a) GL TRIANGLES ADJACENCY primitive (b) GL TRIANGLE STRIP ADJACENCY

primitive. Arrows indicate triangle orientation (the shaded strip of triangles is
consistently oriented). Unfilled points and broken arrows represent adjacency information
– if there is no geometry shader present, these are discarded and only the shaded triangles
rendered. (c) Torus mesh with one GL TRIANGLE STRIP ADJACENCY primitive labeled.

} gl_in[];

(Note the similarity with the built-in gl in defined for the tessellation control
shader.) So, for example, if the input primitive type is lines adjacency

then the size of gl in[] is 4. The geometry shader may additionally be
supplied user-defined per-vertex attribute values, beyond the three built-ins.
The sequence number of the current atomic primitive in the current drawing
statement is contained in the geometry shader’s built-in input variable
gl PrimitiveIDIn.

The output data structure of the geometry shader, which goes to the
primitive assembler and then on to the fragment shader, is of the same form
per vertex as the input, namely,

out gl_PerVertex816
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{
vec4 gl_Position;

float gl_PointSize;

float gl_ClipDistance[];

};

Unlike input, though, there is no built-in array to hold gl PerVertex

values to be output. Rather, the geometry shader calls the special function
EmitVertex() to produce a vertex from the current value of gl PerVertex,
and the special function EndPrimitive() to assemble all the vertices
produced since the last EndPrimitive() call (or the beginning of the draw
command) into an output primitive of the type specified by the layout(. . .)
out declaration.

Time now to bring the preceding discussion to life with code. We have
programmed a silhouette-extraction algorithm, a popular application for
geometry shaders.

Figure 21.23: Screenshot
of torusSilhouette.cpp
in silhouette mode.

Experiment 21.11. Run torusSilhouette.cpp. Press the space bar to
toggle between the silhouette and mesh of a torus. Press ‘x’-‘Z’ to turn the
torus. Figure 21.23 is a screenshot of the torus in silhouette. We explain
the program below. End

Let’s first understand the simple geometric principle underlying the
algorithm. Given a consistent orientation of an object’s mesh, an edge is
part of its silhouette if it’s shared by a front-facing triangle and a back-facing
triangle (see Figure 21.24(a)); an edge shared by two front-facing triangles
(Figure 21.24(b)) or two back-facing ones is not on the silhouette. Accordingly,
our plan is to run through the edges of the torus mesh, comparing the
orientations of the triangles on either side.

silhouetteedge

back-
facing

front-
facing

front-
facing

front-
facing

(a)

(b)

Figure 21.24: Making a
silhouette edge.

Since our plan obviously calls for adjacency information to implement,
we draw the torus with use of adjacency primitives, precisely, the call

glMultiDrawElements(GL_TRIANGLE_STRIP_ADJACENCY, torCounts,

GL_UNSIGNED_INT, (const void **)torOffsets,

TOR_LATS);

in the drawing routine. For this call to work correctly, the associated source
torus.cpp is changed from versions associated earlier with programs like
ballAndTorusShaderized.cpp. The main change is the function to create
the array of index arrays:

void fillTorIndices(unsigned int torIndices[TOR_LATS][4*(TOR_LONGS+1)])

{
int i, j;

for(j = 0; j < TOR_LATS; j++)

{
for (i = 0; i <= TOR_LONGS; i++)

{ 817
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torIndices[j][4*i] = j * (TOR_LONGS+1) + i;

torIndices[j][4*i+2] = (j+1) * (TOR_LONGS+1) + i;

}
for (i = 0; i < TOR_LONGS; i++)

{
torIndices[j][4*i+3] = (j > 0 ? j-1 : TOR_LATS) *

(TOR_LONGS+1) + i + 1;

torIndices[j][4*i+5] = ((j+2) % (TOR_LATS+1)) *

(TOR_LONGS+1) + i;

}
torIndices[j][1] = (j+1) * (TOR_LONGS + 1) + TOR_LONGS - 1;

torIndices[j][4*TOR_LONGS+3] = j * (TOR_LONGS + 1) + 1;

}
}

For each of the TOR LATS iterations of the outer loop this function computes
the 4*(TOR LONGS+1) indices of a GL TRIANGLE STRIP ADJACENCY primitive.
The best way to understand the computation is from a small concrete
example. In fact, see Figure 21.22(c), which shows a torus mesh with both
TOR LATS and TOR LONGS equal to 3 (note that since this is a torus, the four
vertices along the top row are identified with the corresponding vertices along
the bottom, and, likewise, for the leftmost and rightmost vertex columns).

Assume that the current value of the outer loop variable j is 1, as
indicated by the leftmost column of notations. The corresponding shaded
GL TRIANGLE STRIP ADJACENCY primitive is a case of the general such prim-
itive shown in Figure 21.22(b) withN = 6. Match Figures 21.22(b) and (c)
to see that the 16 vertices v0, . . . , v15 of the latter are correctly labeled.

That the four vertices v0, v4, v8 and v12, with indices a multiple of 4, lie
successively on row j of the mesh explains the line

torIndices[j][4*i] = j * (TOR_LONGS+1) + i;

in the function above. Similarly, that the four vertices v2, v6, v10 and v14 lie
successively on row j + 1 of the mesh explains the line

torIndices[j][4*i+2] = (j+1) * (TOR_LONGS+1) + i;

We’ll leave the reader to parse the rest of the function keeping in mind the
caveat above identifying the top and bottom rows of vertices, as well as the
leftmost and rightmost columns.

The geometry shader takes the stage next. It receives for each of the
TOR LATS number of GL TRIANGLE STRIP ADJACENCY primitives produced by
the

glMultiDrawElements(GL_TRIANGLE_STRIP_ADJACENCY, ...)

drawing command, a sequence of 2 ∗TOR LONGS of its corresponding atomic
GL TRIANGLE ADJACENCY primitive.818
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Exercise 21.19. Verify that the number 2 ∗TOR LONGS of GL TRIANGLE -

ADJACENCY primitives per GL TRIANGLE STRIP ADJACENCY primitive as claimed
above is correct.

Based on the geometric principle stated earlier, the geometry shader
must check for each input GL TRIANGLE ADJACENCY primitive and for each
edge (refer to Figure 21.22(a)) v0v2, v2v4 and v4v0, if the triangles on either
side are front- or back-facing. If for such an edge a triangle on one side is
front-facing and the other back-facing, then it is to be output as a silhouette
edge.

But, first, see the declarations at the top:

layout(triangles_adjacency) in;

layout(line_strip, max_vertices=2) out;

The first line is consistent with the drawing mode GL TRIANGLE STRIP -

ADJACENCY (see Table 21.2), while the second declares that output will be
individual line segments.

Next, to determine if a triangle is front- or back-facing to a viewer located
at the origin we have to determine its orientation as perceived by this viewer
(by default, CCW means front-facing, CW back-facing). Now, Exercise 9.5
of Chapter 9 tells us that a triangle with vertices (x1, y1, z1), (x2, y2z2) and
(x3, y3, z3), in that order, is perceived by a viewer at the origin to be oriented
CW, CCW or viewed edge-on according as the determinant∣∣∣∣∣∣

x1 x2 x3
y1 y2 y3
z1 z2 z3

∣∣∣∣∣∣
is greater than, less than or equal to zero. Accordingly, the block

float orient024 = determinant(mat3(gl_in[0].gl_Position.xyz,

gl_in[2].gl_Position.xyz,

gl_in[4].gl_Position.xyz));

in the geometry shader’s main calculates the corresponding determinant
for triangle v0v2v4. Similar blocks compute the determinant for triangles
v1v2v0, v2v3v4 and v0v4v5.

Subsequently, in silhouette drawing mode, edge v0v2 is output if
the triangles on either side of it, particularly, v0v2v4 and v1v2v0, are
oppositely oriented, in which case their determinant product is negative; the
implementing code block is

if ( orient024 * orient120 <= 0.0 )

{
gl_Position = gl_in[0].gl_Position;

EmitVertex( );

gl_Position = gl_in[2].gl_Position;

EmitVertex( );

EndPrimitive( );

} 819
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(observe that we output the edge to silhouette, as well, if one of the triangles
is seen edge-on, when its determinant is zero). Similar blocks decide if to
output edges v2v4 and v4v0.

In mesh drawing mode, of course, all three edges v0v2, v2v4 and v4v0 are
always output.

Exercise 21.20. (Programming) Comment out the line

glAttachShader(programId, geometryShaderId);

of torusSilhouette.cpp. What this shows is that, even if there is no
geometry shader active, a drawing primitive of adjacency type is still rendered,
though, not surprisingly, without use of the adjacency data.

21.7 Summary, Notes and More Reading

As they say, all good things must come to an end. This chapter concludes
our coverage of the programmable pipeline, and the book as well.

Following up on the previous chapter, we dove deep into OpenGL 4.3,
learning an assortment of fairly advanced features, including instanced
rendering, shader subroutines and transform feedback amongst others, and
learned as well of a bunch of new ways to do old things in the programmable
pipeline. And, of course, we studied the two new shader stages, tessellation
and geometry, thus rounding off our understanding of the programmable
pipeline.

The canonical source for all things OpenGL, including the GLSL is, of
course, the OpenGL site [103]. Interestingly, just as there is the red book
(programming guide) and the blue book (reference manual), there, too, is the
so-called orange book by Rost & Licea-Kane [120] on the OpenGL shading
language. However, it is somewhat dated and, in fact, the newest edition
of the red book subsumes most of the shader material. A couple of more
recent textbooks devoted to the OpenGL shading language are Bailey &
Cunningham [7] and Wolff [151].

What next? Well, the reader should now be ready to take on fairly
complex 3D projects, and not only in the desktop environment. As we
pointed out at the end of the last chapter, grasp of 4.3 means that one is
ready as well to code OpenGL ES for mobile devices and WebGL for browsers.
The practical-minded reader should indeed now take on a significant project.
Gym work’s all done, time to hit the tracks!

820
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P
rojective geometry is at the heart of computer graphics whichever
view you take of it, practical or theoretical. The various
transformations of real 3-space we learned to use for the purpose of

animation in Chapter 4 and studied mathematically in Chapter 5 are, in fact,
most naturally viewed as transformations of projective 3-space, following a
so-called lifting of the scene from real to projective space. A consequence is
that representing these transformations as projective is more efficient from a
computational point of view, a fact that OpenGL takes constant advantage
of in its design. Capturing the scene after a perspective projection on film
– “shooting” as we imagine the OpenGL point camera to do – involves a
projective transformation as well.

In fact, it’s not an exaggeration to say that projective geometry is
the mathematical foundation of modern-day CG, and that API’s such
as OpenGL “live” in projective 3-space. Unfortunately, though, because
projective geometry works its magic deep inside the graphics pipeline, its
importance often is not realized.

There are several books out there which discuss projective geometry –
Coxeter [31], Henle [71], Jennings [76], Pedoe [108] and Samuel [122] come to
mind – from mainly a geometer’s point of view, as well as a few, such as Baer
[6] and Kadison & Kromann [77], which take an algebraic standpoint. All
these books, however, seem written primarily for a student of mathematics.
There seems none yet dedicated to answering the computer scientist’s (almost
certainly a CG person) question of projective geometry, “What can you do
for me?”

This appendix is a small attempt to fill this gap in the literature and 821
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introduce projective spaces and transformations from a CG point of view.

Projective spaces generalize real space. They are not difficult to
understand, but geometric primitives, such as lines and planes, behave
somewhat differently in a projective space than a real one. By applying a
camera-view analogy from the outset, we try to convey a physical-based
intuition for basic concepts, establishing at the same time connection with
CG.

This appendix is long and the mathematics often admittedly abstract,
but the payback for persevering through it comes in the form of a wealth of
applications, including the projection transformation in the graphics pipeline,
as well as the rational Bézier and all-important NURBS primitives, which
are all topics of Chapter 18 on applications of projective spaces.

Logically, this appendix could as well have been a chapter of the book,
just prior to Chapter 18. However, we decided against upsetting the fairly
easy gradient of the book from the first chapter to the last with the insertion
of a mathematical “hill”. In fact, Chapter 18 on applications has been
written so that the reader reluctant to take on the venture into projective
theory can still make her way through it with minimal loss. This is not
in any way to diminish the importance of the material in this appendix,
but merely recognition of the reality that there are numbers of people out
there who would make fine CG professionals, but care little for abstract
mathematics.

We begin in Section A.1 by invoking a camera’s point of view to
motivate the definition of the projective plane. The geometry of this plane,
including its surprising point-line duality and coordinatization by means of
the homogeneous coordinate system, is the topic of Sections A.2 and A.3.
In Section A.4 we study the structure of the projective plane and learn that
the real plane can be embedded in the projective, which in turn yields a
classification of projective points into regular ones and those at infinity.

A particularly intuitive kind of projective transformation, the so-called
snapshot transformation, comes next in Section A.5. Section A.6 covers a few
applications of homogeneous polynomial equations, including an algebraic
insight into the projective plane’s point-line duality, and an algebraic method
to compute the outcome of a snapshot transformation. Following a brief
discussion of projective spaces of arbitrary dimension in Section A.7, we
move on to projective transformations.

Projective transformations are first defined algebraically in Section A.8
and then understood geometrically in A.9. In Section A.10 we relate
projective, snapshot and affine transformations, and see that projective
transformations are more powerful than either of the other two. The process
of determining the projective transformation to accomplish some particular
mapping – often beyond the reach of an affine transformation – is the topic
of Section A.11.

822
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A.1 Motivation and Definition of the
Projective Plane

Consider a viewer taking pictures with a point camera with a film in front of
it. Light rays from objects in the scene travel toward the camera and their
intersections with the film render the scene. See Figure A.1. Captured on
film is the (perspective) projection of the objects. In the case of OpenGL,
this is precisely the situation when the user defines a viewing frustum: the
point camera is at the apex of the frustum, while the film lies along its front
face.

O (camera)

film

point on aircraft

light ray

projected point

Figure A.1: Perceiving objects with a point camera and a plane film.

Clearly, points in the scene that lie on the same (straight) line through
the camera cannot be distinguished by the viewer. In fact, all objects, e.g.,
points and line segments, lying on one line l through the camera cannot be
distinguished by the viewer. They all project to and are perceived as a single
point on the film. See Figure A.2(a). Assume for the moment that the film
is two-sided and that objects behind project onto it as well (depicted is one
such point). For now, ignore as well that lines through the camera parallel
to the film, e.g., l′, do not intersect the latter at all. This is owing to the
alignment of the film, which can always be changed.

So, one can say that the viewer perceives every line through the camera
as a point. What then does he perceive as a line? The likely answer is a
plane. Indeed, any plane through the camera intersects the film in a line,
though, again, the film may have to be re-aligned so as not to be parallel to
the plane. See Figure A.2(b).

Lines are points, planes are lines, . . .. Let’s take a moment to formalize,
as a new space, the world as it is perceived through a point camera at the
origin. Recall that a radial primitive is one which passes through the origin. 823
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film

film

O (camera)O (camera)

  (a)   (b)

l

l´

real segment
real plane

real point

perceived point

real point (behind the film)

perceived line

Figure A.2: Perceiving points, lines and planes by projection.

Definition A.1. A radial line in 3-space R3 is called a projective point .
The set of all projective points lying on any one radial plane in R3 is called
a projective line. (See Figure A.3.)

The set of all projective points is called 2-dimensional projective space
and denoted P2. P2 is also called the projective plane.

P´
P

L

O

(a) (b)

O

P´´

Figure A.3: (a) Projective points are radial lines (b) A projective line consists of all
projective points on a radial plane: projective points P and P ′ belong to the projective
line L, while P ′′ does not. Keep the distinction in mind that, though we have labeled the
plane L, the projective line L actually consists of all the projective points, e.g., P and
P ′, that lie on this plane, and is different from the plane itself .

Remark A.1. We are taking a significant step up in abstraction in leaving
R2 for P2. The real plane R2 is easy to visualize as, well, a real plane, e.g., a
table top or a sheet of paper. Not so the projective plane. There is no real
object to which it corresponds nicely.

Things such as a line, which is a set of points in one space, being only
a point of another may seem a bit strange as well. It’s mostly a matter of
getting used to it though – like learning a foreign language. As with a new824
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language, some words translate literally, but some don’t simply because the
concept isn’t familiar (what’s sandstorm in Eskimoan?).

It’s recommended that the reader stick close to the real-based definitions
at first. A thought process like “Hmm, the projective point P belongs to
the projective line L. Well, then, this means that the real line which is P
sits inside the real plane which is L” may seem cumbersome at first, but
projective primitives will seem less and less strange as we go along.

The term “projective” arose because objects on the projective plane are
perceived by projection onto a real one, which for us is the film. Observe
that in Figure A.3(b) we denote by L both a radial plane (a primitive in
R3), as well as the projective line (a primitive in P2) consisting of projective
points that lie on that plane. There should be no cause for ambiguity as it’ll
be clear from the context which we mean.

Terminology : We’ll generally use lower case letters to denote primitives in
R2 and upper case for those in P2.

Remark A.2. The dimension of P2 is two (as indicated by the superscript).
This is because, while points in R3 have three “degrees of freedom”, radial
lines in R3 have only two. We’ll elaborate on the dimension of the projective
plane in Section A.7.

A.2 Geometry on the Projective Plane and
Point-Line Duality

We have, then, on the projective plane P2 projective points and projective
lines, just as on the real plane R2 we have real points and lines. It’s interesting
to compare the relationship between points and lines in the two spaces.

Recall the following two facts from Euclidean geometry (geometry in real
space is called Euclidean):

(a) There is a unique line containing two distinct points in R2.

(b) Two distinct lines in R2 intersect in a unique point, except if they are
parallel, in which case they do not intersect at all.

What is the situation in projective geometry?
Two distinct projective points P and P ′ correspond to two distinct radial

lines in R3, and, in fact, there is a unique radial plane L in R3 containing
the latter two. See Figure A.4(a).

It follows that:

(A) There is a unique projective line containing two distinct projective
points in P2.

How about two distinct projective lines? Observe that the corresponding
two distinct radial planes, say, L and L′ in R3, intersect in a unique radial 825
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O

L

L´P

L

 (a)  (b)

P

O

Figure A.4: (a) Radial lines corresponding to projective points P and P ′ are contained
in a unique radial plane corresponding to the projective line L (b) Radial planes
corresponding to projective lines L and L′ intersect in a unique radial line corresponding
to the projective point P .

line corresponding, in fact, to some projective point P . See Figure A.4(b).
We have:

(B) Two distinct projective lines in P2 intersect in a unique projective
point.

No exceptions! There’s no such thing as parallelism in P2! Any two
different lines always intersect in a point. Two points–one line, two lines–one
point, always : P2 has better so-called point-line duality than R2. We’ll have
more to say about the point-line duality of P2 as we go along.

Exercise A.1. Consider three distinct projective lines L, L′ and L′′. We
know that their pairwise intersections are three projective points, say, P , P ′

and P ′′. Give examples where (a) all three points are identical and (b) all
three are distinct. Can only two of them be distinct? If all three are distinct
can they be collinear, i.e., lie on one projective line?

A.3 Homogeneous Coordinates

We want to coordinatize P2, if possible, in a manner similar to that of R2

by Cartesian coordinates. This is important for the purpose of geometric
calculations. For example, Cartesian coordinates on the real plane allow us
to make a statement such as “The equation of the line through the [−2 −5]T

and [1 1]T is y − 2x+ 1 = 0, which is satisfied as well by [0 − 1]T , so that
all three points are collinear.”

So how does one coordinatize P2? As follows:

Definition A.2. The homogeneous coordinates of a projective point are
the Cartesian coordinates of any real point on it, other than the origin. (No,826
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homogeneous coordinates are not unique, a projective point having many
different homogeneous coordinates. This may seem strange at first but read
on . . ..)

O x

z
P

y
[2 6 −4]T

[1 3 −2]T

[−1 −3 2]T

[1.7  5.1  −3.4]T

Figure A.5: The coordinates of any point on P , except the origin, can be used as its
homogeneous coordinates – four possibilities are shown.

Example A.1. The projective point P corresponding to the radial line
through [1 3 − 2]T has, as shown in Figure A.5, among others, homogeneous
coordinates [1 3 − 2]T , [2 6 − 4]T , [−1 − 3 2]T and [1.7 5.1 − 3.4]T . In fact,
any tuple of the form [c 3c − 2c]T , where c 6= 0, can serve as homogeneous
coordinates for P .

Terminology : To avoid clutter in diagrams, we’ll often write homogeneous
coordinates [x y z]T as (x, y, z).

That a projective point has infinitely many different homogeneous
coordinates may seem odd, but it’s not really a problem because two distinct
projective points cannot share the same homogeneous coordinates. This is
because two distinct radial lines do not share any point other than the origin.
In other words, even though projective points have non-unique homogeneous
coordinates, there is no risk of ambiguity. As an analogy, think of a roomful
of people, each having multiple nicknames, but no two having a nickname
in common – there is no danger of confusion then. As a non-zero tuple
[x y z]T gives homogeneous coordinates of a unique projective point, we’ll
often refer to the projective point [x y z]T or write, say, the projective point
P = [x y z]T .

If you are wondering if P2 can at all be coordinatized in a unique manner,
as is R2 by Cartesian coordinates, the answer is that there is no “natural”
way to do this. Don’t take our word for it, but give the question a bit of
thought and you’ll see the pitfalls. For example, a likely approach is to
choose the coordinates of one real point from the radial line corresponding
to each projective point. But then one has to come up with a well-defined 827
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way of choosing such a point; in other words, an algorithm that, given input
a radial line, uniquely outputs a point from it. Try and devise such an
algorithm! (The point on the line a unit distance from the origin? There
are two such! The one in the positive direction? Be careful now: exactly
which direction is this?)

Remark A.3. An important difference between the Cartesian and homoge-
neous coordinate systems is the lack of an origin in the latter. No matter
how one sets up a Cartesian coordinate system in R3, i.e., no matter how one
sets up the coordinate axes, the origin (0, 0, . . . , 0) is always distinguished as
a special point. This is not the case for the homogeneous coordinate system
in P2 – no projective point is special. It is truly homogeneous!

Example A.2. Find homogeneous coordinates of the projective point P
of intersection of the projective lines L and L′, corresponding, respectively,
to the radial planes 2x+ 2y − z = 0 and x− y + z = 0.

Answer : Solving the simultaneous equations

2x+ 2y − z = 0

x− y + z = 0

one finds that points on their intersecting line are of the form

y = −3x, z = −4x

Therefore, homogeneous coordinates of P are (arbitrarily choosing x = 1)

[1 − 3 − 4]T

Exercise A.2. Find homogeneous coordinates of the projective point P
of intersection of the projective lines L and L′ corresponding, respectively,
to the radial planes −x− y + z = 0 and 3x+ 2y = 0.

Exercise A.3. Find the equation of the radial plane in R3 corresponding to
the projective line L which intersects the two projective points P = [1 2 3]T

and P ′ = [2 − 1 0]T .

A.4 Structure of the Projective Plane

We’re going to try and understand the structure of P2 by relating it to that
of R2. In fact, we’ll start off by using the homogeneous coordinate system
of P2 to embed R2 inside P2.828
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A.4.1 Embedding the Real Plane in the Projective
Plane

Associate a point p = [x y]T of R2 with the projective point φ(p) = [x y 1]T .
The easiest way to picture this association is to first identify R2 with the
plane z = 1; particularly, [x y]T of R2 is identified with [x y 1]T of z = 1.
See Figure A.6. Following this, the association p 7→ φ(p) is simply each real
point with the radial line through it, in particular, the real point [x y 1]T

(Cartesian coordinates) with the projective point [x y 1]T (homogeneous
coordinates).

φ(p)
Q

z

x

y

z = 1 (R2)

p (x, y, 1)

Figure A.6: Real point p on the plane z = 1 is associated with the projective point
φ(p). Projective point Q, lying on the plane z = 0, is not associated with any real point.

The association p 7→ φ(p) is clearly one-to-one as distinct points of z = 1
give rise to distinct radial lines through them. It’s not onto as points of P2

that lie on the plane z = 0 or, equivalently, are parallel to z = 1, do not
intersect z = 1 and, therefore, are not associated with any point of R2 (e.g.,
Q in the figure). Precisely, points of P2 with homogeneous coordinates of
the form [x y 0]T are not associated with any point of R2.

R2, therefore, is embedded by φ as the proper subset of P2 consisting of
radial lines intersecting z = 1. We’re at the point now where we can try to
understand how we ended up trading parallelism in R2 for perfect point-line
duality in P2.

A.4.2 A Thought Experiment

Here’s a thought experiment. Two parallel lines l and l′ lie on R2, aka
the plane z = 1 in R3, a distance of d apart. Points p and p′ on l and
l′, respectively, start a distance d apart and begin to travel at the same
speed and in the same direction on their individual lines. See Figure A.7.
Evidently, they remain d apart no matter how far they go. Well, of course,
as l and l′ are parallel!

Consider next what happens to the projective points φ(p) and φ(p′)
associated with p and p′, respectively. See again Figure A.7 to convince 829
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O
l´´ = P´´

z = 1

z

d

x

y

l´

l

p´

p

φ(p´)φ(p)

Figure A.7: The real points p and p′ travel along parallel lines l and l′. Associated
projective points φ(p) and φ(p′) travel with p and p′.

yourself that both φ(p) and φ(p′) draw closer and closer to that particular
radial line l′′ on the plane z = 0 which is parallel to l and l′. As it lies on
z = 0, l′′ corresponds to a projective point P ′′ not associated with any real;
in fact, P ′′’s homogeneous coordinates are of the form [x y 0]T .

Observe that the projective point φ(p) itself travels along a projective
line L – the one whose radial plane contains l. We’ll call L the projective
line corresponding to l. Likewise, the projective point φ(p′) travels along
the projective line L′ corresponding to l′. Moreover, L and L′ intersect in
P ′′. See Figure A.8.

z

xO
l´´ = P´´

p´

p φ(p´)
φ(p)

L

L´

l

l´

Figure A.8: φ(p) travels along L and φ(p′) along L′. L and L′ meet at P ′′.

Let’s take stock of the situation so far. The parallel lines l and l′ on the
real plane never meet, but the projective lines L and L′ corresponding to
them in P2 meet in P ′′. Moreover, every point of L or L′, except for P ′′, is830
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associated by φ to a point of l or l′, respectively. We can say then that the
projective line L equals its real counterpart l plus the extra point P ′′; L′,
likewise, is its real counterpart l′ plus P ′′. And, it’s at this point P ′′, beyond
the reals, that the two projective lines meet, while their real counterparts
never do.

Example A.3. What if both points p and p′, and together with them
φ(p) and φ(p′), travel along their respective lines in directions opposite to
those indicated in Figure A.7? What if only one reversed its direction?

Answer : If both p and p′ reversed directions, then again they would travel
forever exactly d apart. If only one of the two reversed its direction, then,
of course, the distance between them would continuously increase.

However, in either case, φ(p) and φ(p′) draw closer, again both to
P ′′. It seems that, whatever the sense of travel is of φ(p) and φ(p′) along
their respective projective lines L and L′, they approach that one point of
intersection of these two lines. Two points traveling in opposite directions
along a real line ultimately grow farther and farther apart. A projective line,
on the other hand, apparently behaves more like a circle.

A.4.3 Regular Points and Points at Infinity

Recall equivalence relations and equivalence classes from undergrad discrete
math. In particular, recall that the lines of R2 can be split into equivalence
classes by the equivalence relation of being parallel. Consider any equivalence
class l of parallel lines of R2, the latter being identified with the plane z = 1
in R3 as before. There is a unique radial line l on the plane z = 0 parallel
to the members of l. See Figure A.9.

y
l

z = 1

x

z

l = P 

Figure A.9: The line l (= projective point P ) is parallel to lines in l. P is said to be
the point at infinity along the equivalence class l of parallel lines.

Denote the projective point corresponding to l by P . Projective lines
corresponding to lines in l all meet at P , because their radial planes each 831
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contain l. The point P , which is not associated with any real point by φ as
it lies on z = 0, is called the point at infinity along l or, simply, the point at
infinity along any one of the lines in l. Conversely, any radial line l on the
plane z = 0 is the point at infinity along the equivalence class of lines in R2

parallel to it. In other words, the correspondences

equivalence class of parallel lines in R2 ↔ radial line on z = 0

↔ point at infinity of P2

are both one-to-one. Note that points at infinity of P2 are precisely those
with homogeneous coordinates of the form [x y 0]T .

Returning to the thought experiment of Section A.4.2, one can imagine
points at infinity plugging the “holes” along the “border” of R2 through
which parallel lines “run off” without meeting, which explains why every
pair of lines on the projective plane meets.

Projective points which are not points at infinity are called regular points .
Regular points have homogeneous coordinates of the form [x y z]T , where z
is not zero. Moreover, regular points intersect z = 1, so are associated each
by φ−1 with a point of R2 (remember φ takes a real point of R2, represented
by the plane z = 1, to the projective point whose corresponding radial line
passes through that point). Accordingly, one can write:

P2 = R2 ∪ {points at infinity} = {regular points} ∪ {points at infinity}

The union of all points at infinity, called the line at infinity , is the
projective line whose radial plane is z = 0. Therefore, one can as well write:

P2 = R2 ∪ line at infinity = {regular points} ∪ line at infinity

Our embedding φ of R2 as a subset of P2 depends on the plane z = 1,
particularly because we identify z = 1 with R2 and subsequently associate
each point of R2 with the radial line in R3 through it. Is there anything
special about the plane z = 1? Not at all. It just seemed convenient. In
fact, we could have used any any non-radial plane p.

Exercise A.4. Why does p have to be non-radial?

Example A.4. Instead of z = 1, identify R2 with the plane x = 2 in R3.
Accordingly, embed R2 into P2 by associating [x y]T with the radial line
through [2 x y]T . Which now are the regular points and which are the points
at infinity of P2?

Answer : The regular points of P2 are the radial lines in R3 which intersect
the plane x = 2. These are precisely the radial lines which do not lie on the
plane x = 0. The points at infinity are the radial lines which do lie on the
plane x = 0. Equivalently, regular points have homogeneous coordinates of
the form [x y z]T , where x 6= 0, while points at infinity have homogeneous
coordinates of the form [0 y z]T .832
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Exercise A.5. Identify R2 with the plane x+ y+ z = 1 in R3, embedding
it into P2 by associating [x y]T with the radial line through [x y 1−x− y]T .
Which now are the regular points and which the points at infinity of P2?

It may seem strange at first that the separation of P2 into regular points
and points at infinity depends on the particular embedding of R2 in P2.
However, this situation becomes clearer after a bit of thought. It’s related, as
a matter of fact, to the discussion at the beginning of the chapter, where we
motivated projective spaces by observing that lines through a point camera
are perceived as points on the plane film. Even though all lines through the
camera do not intersect the film, we argued this to be merely an artifact
of the alignment of the film, the latter being changeable. Therefore, we
concluded that all radial lines should be taken as points in projective space.

We come now full circle back to this initially motivating scenario.
Embedding R2 in P2 corresponds exactly to choosing an alignment of the
film – the film is a copy of R2 and each point on it associated with the light
ray (= radial line in R3 = point of P2) through that point to the camera.
Light rays toward the camera which intersect the film are regular points of
P2 and visible, while those which do not are points at infinity and invisible.
Moreover, the line at infinity corresponds to the plane through the camera
parallel to the film. And, of course, we are at perfect liberty to align the
film, i.e., embed R2 in P2, as we like, different choices leading to different
sets of visible and invisible light rays.

A.5 Snapshot Transformations

Here’s another interesting thought experiment.

Example A.5. A point camera is at the origin with two power lines passing
over it, both parallel to the x-axis. One lies along the line y = 2, z = 2 (i.e.,
the intersection of the planes y = 2 and z = 2) and the other along the line
y = −2, z = 2.

Take “snapshots” of the power lines with the film aligned along (a) the
plane z = 1 and (b) the plane x = 1. Sketch and compare the two snapshots.

Answer : This is one you might want to try yourself before reading on!
See Figure A.10. Figure A.10(a) shows the snapshot (or, projection)

of the power lines on the plane z = 1. They are two parallel lines y = 1
and y = −1. This is not hard to understand: by simple geometry, the line
y = 2, z = 2 projects toward the origin (the camera) to the line y = 1 on the
plane z = 1; likewise, y = −2, z = 2 projects to y = −1 on z = 1.

Figure A.10(b) shows the snapshot on the plane x = 1. It is the two
intersecting lines z = y and z = −y making an X-shape. This requires
explanation. The top of the X, above its center, is formed from intersections
with the film of light rays through points on the power lines with x-value
greater than zero, while the bottom from rays through points with x-value 833
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P

(a) (b)

x x

y

z z

y z =−y z =y

y = 2, z = 2 

y = 1
y = −1

z = 1

y = −2, z = 2 y = −2, z = 2 

y = 2, z = 2 

OO
(1, 0, 0)

Figure A.10: Power lines y = ±2, z = 2 projected onto the planes (a) z = 1 and (b)
x = 1. Red lines depict light rays. The x-axis corresponds to the projective point P .

less than zero. The rays from the points on either power line with x-value
equal to zero do not strike the film.

The point [1 0 0]T at the middle of the X is included in the snapshot,
though no ray from either power line passes through it, because it’s the
intersection with the film of the “limit” of the rays from points on either
power line as they run off to infinity. It’s convenient to imagine the limits of
visible rays as being visible as well and we ask the reader to accept this. In
geometric drawing parlance [1 0 0]T is the vanishing point of the power lines
– it’s where they seem to meet on the film x = 1.

Contemplate now the situation from the point of view of projective
geometry. The projective lines corresponding to the two power lines meet
at the projective point P corresponding to the x-axis, as the radial planes
through the power lines intersect in the x-axis. Now, P is a point at infinity
with respect to the plane z = 1 (because the x-axis doesn’t intersect this
plane), while it’s a regular point with respect to the plane x = 1 (because
the x-axis intersects this plane at [1 0 0]T ). In terms of shooting pictures,
then, the camera with its film along z = 1 cannot see where the two power
lines meet, so they appear parallel. However, with its film along x = 1 the
camera sees them meet at [1 0 0]T .

Figure A.11: Screenshot
of turnFilm1.cpp.

Experiment A.1. Run turnFilm1.cpp, which animates the setting of the
preceding exercise by means of a viewing transformation. Initially, the film
lies along the z = 1 plane. Pressing the right arrow key rotates it toward the
x = 1 plane, while pressing the left one reverses the rotation. Figure A.11 is
a screenshot midway. You cannot, of course, see the film, only the view of
the lines as captured on it.

The reason that the lower part of the X-shaped image of the power lines834
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cannot be seen is that OpenGL film doesn’t capture rays hitting it from
behind, as the viewing plane is a clipping plane too. Moreover, if the lines
seem to actually meet to make a V after the film turns a certain finite
amount, that’s because they are very long and your monitor has limited
resolution!

This program itself is simple with the one statement of interest being
gluLookAt(), which we ask the reader to examine next. End

Exercise A.6. (Programming) Verify that the gluLookAt() statement
of turnFilm1.cpp indeed simulates the film’s rotation as claimed between
the z = 1 and x = 1 planes.

Example A.6. Refer to Figure A.10(b). Suppose two power lines actually
lie along the two intersecting lines z = y and z = −y on the plane x = 1,
which is the snapshot on the plane x = 1 of the power lines of the preceding
example. What would their snapshot look like on the films z = 1 and x = 1?

Answer : Exactly as in the preceding Example A.5, as depicted in
Figures A.10(a) and (b)! It’s not possible to distinguish between these
two pairs of power lines – the pair in Example A.5 being “really” parallel
and the current one “really” intersecting – with a point camera at the origin.

A somewhat whimsical take on all this is to imagine a Matrix-like world
where one can never know reality. Perception is limited to whatever is
captured on film. Therefore, one agent’s intersecting power lines are just as
real as the other’s parallel ones!

It’s useful to think of one snapshot of Example A.5 or A.6 as a
transformation of the other. Keep in mind that if a snapshot appears
as the two parallel lines y = ±1 on the film z = 1, then it always appears as
the two intersecting lines z = ±y on the film x = 1, regardless of what the
“real” objects are.

Convince yourself of this by mentally tilting one of the power lines
in Figure A.10(a) on the radial plane (not drawn) through it, so that its
projection on the z = 1 plane does not change. The power line’s projection on
the x = 1 plane remains unchanged, as well, because the set of light rays from
it through the camera doesn’t change. For this reason, it makes sense to talk
of transforming one snapshot to another, without any reference to the real
scene. We’ll informally call such transformations snapshot transformations.

Remark A.4. Snapshot transformations as described are not really trans-
formations in the mathematical sense, as they don’t map some space to
itself but, rather, one plane (film) to another. A rigorous formulation is
possible, though likely not worth the effort, as we’ll see soon that snapshot
transformations are subsumed within the class of projective transformations,
which we’ll be studying in depth. Nevertheless, the notion of a snapshot
transformation is geometrically intuitive and useful.

Here are more for you to ponder. 835
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Exercise A.7. In each case below you are told what the snapshot looks
like on the film z = 1, aka R2, and asked what is captured on the film x = 1.
The z = 1 shots are drawn in Figure A.12, each labeled the same as the item
to which it corresponds. You don’t have to find equations for your answer
for x = 1. Just a sketch or a verbal description is enough.

z

O

yz

O

yz

O

y

O

yz

O

y

O

yz

O

yz

O

yz

O

yz

(1, −1)

(0, 1)

(g) (h) (i)

(d) (e) (f)

(a) (b) (c)

z

(2, 2)(1, 1)

(2, −2)
(1, −1)

x

x x

x

x x x

x

xz = 1 z = 1 z = 1

z = 1 z = 1 z = 1

z = 1 z = 1 z = 1

(1, 0)(2, 0)

Figure A.12: Transform these snapshots on the plane z = 1 to the plane x = 1. Some
points on the plane z = 1 are shown with their xy coordinates. Labels correspond to
items of Exercise A.7.

Answers are in italics. Figure A.13 justifies the answer to (h).

(a) Two lines that intersect at the origin, neither being the y-axis (on R2).
Two parallel lines. Why the caveat? What happens if one is the y-axis?

(b) Two lines that intersect at the point [0 1]T , neither being the y-axis.
Two parallel lines.836
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(c) Two lines that intersect at the point [1 − 1]T .
Two intersecting lines.

(d) A triangle in the upper-right quadrant with one vertex at the origin
but, otherwise, not touching the axes.
An infinitely long U-shape with straight sides.

(e) A square in the upper-right quadrant not touching any of the axes.
A quadrilateral with no two parallel sides.

(f) A trapezoid symmetric about the x-axis with vertices at [1 1]T , [1 −1]T ,
[2 − 2]T and [2 2]T .
A rectangle.

(g) A unit radius circle centered at [2 0]T .
An ellipse.

(h) A unit radius circle centered at [1 0]T .
A parabola – see Figure A.13.

(i) A unit radius circle centered at the origin.
A hyperbola. O

y

z

x = 1

x
z = 1

Figure A.13: Answer to
Exercise A.7(h).

Remark A.5. Exercise A.7(f) seems innocuous enough, but it is very
important. Its generalization to 3D will help convert viewing frustums
to rectangular boxes in the graphics pipeline.

Exercise A.8. Refer to the geometric construction of conic sections in
Section 10.1.5 as plane sections of a double cone, and show that any non-
degenerate conic section can be snapshot transformed to another such.

Exercise A.9. (Programming) Write code similar to turnFilm1.cpp

to animate the snapshot transformation of Exercise A.7(h). Again, you’ll
see only part of the parabola because OpenGL cannot see behind its film.

It’s not hard to see that none of the snapshot transformations of
Exercise A.7, except for (c) and (g), can be accomplished using OpenGL
modeling transformations. This is because they are not affine – recall from
Section 5.4.5 that OpenGL implements only affine transformations.

Remark A.6. We just said that most of the snapshot transformations of
Exercise A.7 are not affine and yet seem to be suggesting with the preceding
Exercise A.9 that they may be implemented by means of an OpenGL viewing
transformation. We know, however, that the latter is equivalent to a sequence
of modeling transformations and, therefore, affine.

The apparent conundrum is not hard to resolve. The result of the viewing
transformation of, e.g., turnFilm1.cpp, is indeed a snapshot transformation
in terms of what is seen on the screen . In other words, the transformation
from the OpenGL window prior to applying the viewing transformation to 837
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that after is a snapshot transformation. However, the viewing transformation
serves only to change the scene to one which OpenGL projects onto the
window as the new one. A snapshot transformation, therefore, is more than
a viewing transformation – it’s a viewing transformation plus a projection.

Exercise A.10. By considering how to turn the film, i.e., viewing plane,
show that implementing a snapshot transformation in OpenGL is equivalent
to:

(a) setting the centerx , centery , centerz , upx , upy and upz parameters of
the viewing transformation

gluLookAt(0, 0, 0, centerx, centery, centerz, upx, upy, upz)

and

(b) setting the near parameter of the perspective projection call

glFrustum( left, right, bottom, top, near, far)

where the other five parameters can be kept fixed at some initially
chosen values.

A.6 Homogeneous Polynomial Equations

The only application we’ve made so far of homogeneous coordinates is to
embed R2 in P2. We haven’t used them yet to write equations of curves on
the projective plane. Let’s try now to do this.

We’ll start with the simplest curve on the projective plane, in fact, a
projective line. We want an equation – as for straight lines in real geometry
– that will say if a projective point belongs to a projective line. For example,
an equation such as 2x+ y − 1 = 0 for a straight line on the real plane gives
the condition for a real point [x y]T to lie on that line.

q

p´

ll´

O

p

Figure A.14: Point p of
radial line l lies on radial
plane q, implying that l
lies on q; point p′ of l′

doesn’t lie on q, implying
that no point of l′, other
than the origin, lies on q.

Now, a projective point is a radial line and a projective line a radial
plane. Moreover, a radial line lies on a radial plane if and only if any point
of it, other than the origin, lies on that plane (the origin always does). See
Figure A.14.

Therefore, a projective point P = [x y z]T belongs to a projective line L,
whose radial plane has the equation ax+ by + cz = 0, if and only if the real
point [x y z]T lies on the real plane ax + by + cz = 0. It follows that the
equation of L is identical to that of its radial plane:

ax+ by + cz = 0 (A.1)838
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Accordingly, a projective point P = [x y z]T belongs to L if it satisfies
(A.1). Does it matter if we choose some other homogeneous coordinates for
P? No, because

a(kx) + b(ky) + c(kz) = k(ax+ by + cz) = 0

so any homogeneous coordinates [kx ky kz]T for P satisfy Equation (A.1).

Exercise A.11. Prove that if the projective line L is specified by the
equation

ax+ by + cz = 0

then it is specified by any equation of the form

(ma)x+ (mb)y + (mc)z = 0

where m 6= 0, as well.

Exercise A.12. What is the equation of the projective line through the
projective points [2 1 − 1]T and [3 4 2]T ?

Answer : Suppose that the line is L with equation

ax+ by + cz = 0

Since [2 1 − 1]T and [3 4 2]T lie on L they must satisfy its equation, giving

2a+ b− c = 0

3a+ 4b+ 2c = 0

Any solution to these simultaneous equations, not all zero, then determines
L. As there are more variables then equations, let’s set one of them, say c,
arbitrarily to 1, to get the equations

2a+ b− 1 = 0

3a+ 4b+ 2 = 0

These solve to give a = 1.2 and b = −1.4. The equation of the projective
line L is, therefore,

1.2x− 1.4y + z = 0

(or, equivalently, 6x− 7y + 5z = 0, from Exercise A.11.)

Exercise A.13. What is the projective point of intersection of the
projective lines 3x+ 2y − 4z = 0 and x− y + z = 0?

Exercise A.14. When are three projective points [x y z]T , [x′ y′ z′]T and
[x′′ y′′ z′′]T collinear, i.e., when do they belong to the same projective line?
Find a simple condition involving a determinant. 839
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A.6.1 More About Point-Line Duality

In Section A.4.2 we tried to understand the point-line duality of the projective
plane from a geometric point of view. We’ll examine the phenomenon now
from an algebraic standpoint.

The correspondence from the set of projective points to the set of
projective lines given by

projective point [a b c]T 7→ projective line ax+ by + cz = 0 (A.2)

is well-defined as, whatever homogeneous coordinates we choose for a
projective point, the image is the same projective line (by Exercise A.11).
Moreover, the correspondence is easily seen to be one-to-one and onto.

Definition A.3. The projective line ax+ by + cz = 0 is said to be the dual
of the projective point [a b c]T and vice versa.

Exercise A.15. Prove that a projective point P belongs to a projective
line L if and only if the dual of L belongs to the dual of P .

The preceding exercise implies that if some statement about the incidence
of projective points and lines is true, then so is the dual statement, obtained
by replacing “point” with “line” and “line” with “point”.

Exercise A.16. What is the dual of the following statement? “There is a
unique projective line incident to two distinct projective points.”

From this last exercise one sees, then, the point-line duality of the
projective plane as a consequence of the one-to-one correspondence (A.2)
between projective points and lines. We ask the reader to contemplate if
there exists a similar correspondence between real points and lines.

A.6.2 Lifting an Algebraic Curve from the Real to
the Projective Plane

Let’s see next projective curves more complex than a line. Consider, then, the
curve Q′ in P2 consisting of the projective points intersecting the parabola q

y − x2 = 0 (A.3)

on R2 (the plane z = 1). See Figure A.15.
The intersection of the projective point P = [x y z]T with the plane

z = 1 is the real point [x/z y/z 1]T , assuming z 6= 0, for, otherwise, there
is no intersection. Now, [x/z y/z 1]T satisfies the equation of the parabola
q if

y/z − (x/z)2 = 0 =⇒ yz − x2 = 0

Accordingly, the curve consisting of projective points [x y z]T which
satisfy

yz − x2 = 0 (A.4)840
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Q´    Q

z = 1

z

x

y ( )

(x/z, y/z, 1)

ϵ

O

(x, y, z)

Figure A.15: Lifting a parabola drawn on the real plane z = 1 to the projective plane.

is called the lifting Q of q from the real to the projective plane. Q is
sometimes simply called the lifting of q and also the projectivization of q.
In this particular case, as a lifting of a parabola, Q is a parabolic projective
curve.

The camera analogy is that Q is the set of rays seen, by intersection with
the film z = 1, as q. However, Q is actually one point bigger than Q′, the
set of projective points intersecting the parabola q on R2, as it includes the
projective point [0 1 0]T , the y-axis of 3-space, which satisfies (A.4), but
does not intersect q. We can justify the inclusion of this extra point, with
the help of the proviso from Section A.5 that a limit of visible rays is visible,
as follows.

From its equation y−x2 = 0, a point of q is of the form [x x2 1]T , for any
x. Therefore, the homogeneous coordinates of a projective point intersecting
q are [x x2 1]T , for any x, as well. Rewriting these coordinates as [ 1x 1 1

x2 ]T

we see that its limit as x→∞ is indeed [0 1 0]T . More intuitively, a la the
thought experiment of Section A.4.2, as a point p travels off along either
wing of the parabola, the projective point φ(p), corresponding to the line
through p, approaches [0 1 0]T , the projective point corresponding to the
y-axis.

Definition A.4. A homogeneous polynomial is one whose terms each have
the same degree, the degree of a term being the sum of the powers of the
variables in the term. This common degree is called the degree of the
homogeneous polynomial.

An equation with a homogeneous polynomial on the left and 0 on the
right is called a homogeneous polynomial equation.

The equations ax+ by + cz = 0 of a projective line and yz − x2 = 0 of a
parabolic projective curve are homogeneous polynomial equations of degree
one and two, respectively. That they are both homogeneous is no accident,
as we’ll soon see. 841
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Exercise A.17. Suppose that p(x1, x2, . . . , xn) is a homogeneous poly-
nomial in n variables. Then, if [x1 x2 . . . xn]T satisfies the equation
p(x1, x2, . . . , xn) = 0, so does [cx1 cx2 . . . cxn]T , for any scalar c.
Hint : Show, first, that, if p(x1, x2, . . . , xn) is homogeneous of degree r, then

p(cx1, cx2, . . . , cxn) = crp(x1, x2, . . . , xn)

For example, for the homogeneous polynomial yz − x2 of degree 2,

(cy)(cz)− (cx)2 = c2(yz − x2)

So, in this case, if (x, y, z) satisfies yz − x2 = 0, then so does (cx, cy, cz),
because (cy)(cz)− (cx)2 = 0 as well, by the equation just above.

The preceding exercise implies that a homogeneous polynomial equation
of the form p(x, y, z) = 0 is legitimately an equation in P2, because a
point of P2 can be tested if it satisfies p(x, y, z) = 0, independently of the
homogeneous coordinates used to represent it. Here are some definitions.

Definition A.5. An algebraic curve on the real plane consists of points
satisfying an equation of the form

p(x, y) = 0

where p is a polynomial in the two variables x and y. The degree of the
curve is the highest degree of a term belonging to p(x, y).

A projective algebraic curve on the projective plane consists of points
satisfying an equation of the form

p(x, y, z) = 0

where p is a homogeneous polynomial in the three variables x, y and z. The
degree of the curve is the degree of p(x, y, z).

Familiar algebraic curves of degree one include straight lines, e.g., 2 x+
y − 3 = 0, and of degree two conic sections, e.g., the hyperbola xy − 1 = 0.

At the start of this section we lifted a parabola from the real to the
projective plane. Here are a couple more examples of lifting.

Example A.7. Lift the straight line

ax+ by + c = 0

drawn on the plane z = 1, to P2.

Answer : The projective point [x y z]T intersects the plane z = 1 at the real
point [x/z y/z 1]T (assuming z 6= 0), which belongs to the given straight
line if, replacing x by x/z and y by y/z in the latter’s equation:

ax/z + by/z + c = 0842
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Multiplying throughout by z, one gets the homogeneous polynomial equation
of degree 1

ax+ by + cz = 0

confirming that the lifting of a straight line on z = 1 is the projective line
corresponding to it. A projective line is, of course, a projective algebraic
curve of degree 1.

Example A.8. Lift the algebraic curve of degree 3

x3 + 3x2y + y2 + x+ 2 = 0

drawn on the plane z = 1, to P2.

Answer : The projective point [x y z]T intersects the plane z = 1 at the real
point [x/z y/z 1]T (assuming z 6= 0). Accordingly, replace x by x/z and y
by y/z in the given polynomial equation:

(x/z)3 + 3(x/z)2(y/z) + (y/z)2 + x/z + 2 = 0

=⇒ x3/z3 + 3x2y/z3 + y2/z2 + x/z + 2 = 0

=⇒ x3 + 3x2y + y2z + xz2 + 2z3 = 0

defining the lifted curve, a projective algebraic curve of degree 3.

Exercise A.18. Lift the algebraic curve of degree 5

xy4 − 2x2y2 + 3xy2 + y3 − xy + 2 = 0

drawn on the plane z = 1, to P2.

It should be fairly clear at this point that the lifting of an algebraic curve
p(x, y) = 0 is a projective algebraic curve p(x, y, z) = 0 of the same degree.
We leave a formal proof to the reader in the following exercise.

Exercise A.19. Show that the lifting of an algebraic curve p(x, y) = 0 of
degree r is a projective algebraic curve p(x, y, z) = 0 of degree r.

Definition A.6. The process of going from the equation of an algebraic
curve on the real plane to the homogeneous polynomial equation of its lifting
is called homogenization.

It’s worth keeping mind that the process of homogenization depends on
the particular plane on which the algebraic equation holds. For example, in
Examples A.7 and A.8 and Exercise A.18 the plane was z = 1. This need
not always be the case as we see in the next example.

Example A.9. Homogenize the polynomial equation

y2 + z2 + z = 0

drawn on the plane x = 2. 843



i
i

i
i

i
i

i
i

Appendix A

Projective Spaces

and Transformations

Answer : The projective point [x y z]T intersects the plane x = 2 at the
real point [2 2y/x 2z/x]T (assuming x 6= 0, and multiplying [x y z]T by
2/x). Accordingly, replace y by 2y/x and z by 2z/x in the given polynomial
equation:

(2y/x)2 + (2z/x)2 + 2z/x = 0 =⇒ 4y2/x2 + 4z2/x2 + 2z/x = 0

Multiplying throughout by x2 one gets the homogenized polynomial equation

4y2 + 4z2 + 2xz = 0

Not surprisingly, giving the algebraic equation on different real planes
corresponds, simply, to specifying the algebraic curve as seen by the viewer
on differently aligned films. The lifting itself, of course, is the set of rays
intersecting the film in the given curve, which does not change.

Exercise A.20. Homogenize the polynomial equation

3x4 + 2x2y + 2y3 + 2x2 + xy + x = 0

drawn on the plane z = 1.

Exercise A.21. Homogenize the polynomial equation

x3 + 2xz − z4

drawn on the plane y = 2.

Remark A.7. It’s possible to define the homogenization of a polynomial
in an abstract manner independent of reference to a particular plane. See
Jennings [76].

One sees, then, that the algebraic analogue of lifting an algebraic curve
from the real to the projective plane is homogenization. The reverse process
of projecting a (projective algebraic) curve onto a real plane consists of taking
the section of the projective points composing the curve with the given plane.
Algebraically, this means simultaneously solving the equation of the curve
and that of the plane – a process not surprisingly called de-homogenization.

Example A.10. Project the curve

yz − x2 = 0

in P2 onto the real plane z = 1.

Answer : De-homogenize the equation of the curve by simultaneously solving

yz − x2 = 0

z = 1844
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to get
y − x2 = 0

which is the equation of a parabola.

Exercise A.22. Project the curve of the preceding example onto the real
plane x = 1.

Exercise A.23. Project the curve

4y2 + 4z2 + 2xz = 0

in P2 onto the real plane y = −2.

A.6.3 Snapshot Transformations Algebraically

It should make sense now that the snapshot transformation of an algebraic
curve c from one real plane p to another p′ can be determined by (a) first
homogenizing the equation of c to lift it to the projective plane, and, then
(b) de-homogenizing to project it back onto p′.

Example A.11. Let’s solve the snapshot transformation problem of
Exercise A.7(h) algebraically. The equation of the unit circle, centered
at [1 0]T on the z = 1 plane, is

x2 + y2 − 2x = 0

Homogenizing, one gets
x2 + y2 − 2xz = 0

To project onto the plane x = 1, de-homogenize by simultaneously solving

x2 + y2 − 2xz = 0

x = 1

to get

y2 − 2z + 1 = 0 =⇒ z =
1

2
y2 +

1

2

which indeed agrees with the sketch of a parabola in Figure A.13.

Exercise A.24. Solve Exercises A.7(g) and (i) algebraically.

A.7 The Dimension of the Projective Plane
and Its Generalization to Higher
Dimensions

Note: The next few paragraphs about P2 as a surface require recollecting
some of the material from Section 10.2.12 on surface theory. If the reader is 845
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not inclined to do so, then she can safely skip ahead to Definition A.7. It
won’t affect her understanding of anything that follows.

Why do we say that the projective plane is a projective space of dimension
2? Because, as we’ll see momentarily, P2 is a surface. In fact, it’s a regular
C∞ surface, except that it is not a subset of R3: it’s not possible to embed
P2 in R3. One must go at least one dimension higher to R4.

W
p

P
B

z = 1

O

Figure A.16: The
coordinate patch B
containing P in P2 is in
one-to-one correspondence
with the rectangle W
containing p in R2 (a few
points in W and their
corresponding projective
points are shown).

Ignoring for now the question of the space in which it’s embedded, it’s
not hard to find a coordinate patch containing any given point P ∈ P2.
Suppose, for the moment, that P intersects the point p on the plane z = 1
(our favorite copy of R2). See Figure A.16. Let W be a closed rectangle
containing p and B be the set of projective points intersecting W . The
function

point 7→ the radial line through it

from W to B is a one-to-one correspondence that makes B a coordinate
patch.

And what if P doesn’t intersect z = 1, i.e., if P is a point at infinity with
respect to z = 1? Remember, there’s nothing special about z = 1! Simply
choose another non-radial plane with respect to which P is regular.

The reader has guessed by now that there exist projective spaces of
various dimensions. True.

Definition A.7. A radial line in Rn+1 is said to be an n-dimensional
projective point . The set of all n-dimensional projective points is n-
dimensional projective space, denoted Pn.

P0, not very interestingly, is a one-point space as there is only one line,
radial or otherwise, in R1. We’ll try to convince the reader next, without
being mathematically precise, that P1 is a circle.

Q

y
UP

p

xq1 q2

Figure A.17: Identifying
P1 with a circle.

Let U be the upper-half of a circle centered at the origin of R2. Associate
with each radial line in R2 its intersection(s) with U . See Figure A.17, where,
e.g., the radial line P is associated with the point p. Each radial line in R2

is then associated with a unique point of U , except for the x-axis, which
we denote Q; Q intersects U in two points q1 and q2. And, the other way
around, every point of U is associated with a unique radial line, except only
for q1 and q2, which are associated with the same one Q. It follows, then,
that the set P1 of all radial lines in R2 is in one-to-one correspondence with
the space obtained by “identifying” the two endpoints q1 and q2 of U as
one. But this latter space is clearly a circle (imagine U as a length of string
whose ends are brought together).

One can set up homogeneous coordinates for an arbitrary Pn in a manner
similar to what we did for P2. For example, the homogeneous coordinates of
a point P ∈ P3 are the coordinates of any point, other than the origin, on the
radial line in R4 to which it corresponds. So the homogeneous coordinates
of the point in P3 corresponding to the radial line through [x y z w]T , where846
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x, y, z and w are not all zero, is any tuple of the form [cx cy cz cw]T , where
c 6= 0.

It’s hard to visualize P3 and higher-dimensional projective spaces for the
same reason that it’s hard to visualize R4 and higher-dimensional real spaces.
The trick is to develop one’s intuition in P2, as many of its properties do
generalize.

A.8 Projective Transformations Defined

That the homogeneous coordinates of a point P ∈ P2 are of the form [x y z]T

suggests defining transformations of P2 by mimicking the definition of a
linear transformation of real 3-space. In particular, if

M =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


is a 3× 3 matrix, then tentatively define a transformation of P2 by

[x y z]T 7→M [x y z]T (A.5)

This definition has the virtue at least of being unambiguous because

[cx cy cz]T 7→M [cx cy cz]T = c(M [x y z]T )

which represents the same point as M [x y z]T , implying that the choice of any
homogeneous coordinates for P gives the same image by the transformation.

The potential glitch to consider before putting (A.5) into production
is if it maps a non-zero tuple to a zero tuple, for then it would map the
homogeneous coordinates of a point P ∈ P2 to a value not even belonging
to P2. However, we know from basic linear algebra that there is a non-zero
tuple [x y z]T such that

M [x y z]T = [0 0 0]T

if and only if M is a singular matrix; otherwise, M maps non-zero tuples to
non-zero tuples. We conclude that defining a transformation ofP2 by (A.5)
is indeed valid provided M is non-singular. Ergo:

Definition A.8. If M is a non-singular 3×3 matrix, then the transformation

[x y z]T 7→M [x y z]T

denoted hM , is called a projective transformation of the projective plane.
The transformation fM of R3 – the linear transformation defined by M – is
called a related linear transformation. 847
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A simple relation between hM and fM is the following: if the radial line
corresponding to a point P of P2 is l, then that corresponding to hM (P ) is
fM (l), the image of l by fM .

Exercise A.25. Prove that if M is a non-singular 3 × 3 matrix and c
is a scalar such that c 6= 0, then M and cM define the same projective
transformation of P2, i.e., hM = hcM .

Remark A.8. The preceding exercise implies that actually there is not a
unique linear transformation related to a projective transformation hM ,
because f cM is related to hcM = hM , for any non-zero c. However, when we
do have a specific M that we are using to define hM , then we’ll often speak
of the related linear transformation fM .

Exercise A.26. Prove that a projective transformation hM of P2 takes
projective lines to projective lines.
Hint : The related (non-singular) linear transformation fM takes radial
planes in R3 to radial planes in R3.

Exercise A.27. Prove that the composition hM ◦ hN of two projective
transformations of P2 is equal to the projective transformation hMN .

A.9 Projective Transformations
Geometrically

Our definition of projective transformations was purely algebraic. We would
like to picture, if possible, how they transform primitives in P2. Now,
projective primitives are “seen” by projection onto the real plane – by
capture on a point camera’s film as we’ve been putting it. Let’s find out,
then, what a projective transformation looks like through a point camera.

Here’s what we plan to do. Start with a primitive s, on the plane z = 1,
our favorite copy of R2, as the designated film. Suppose that the given
projective transformation is hM . Then we’ll transform the lifting S of s
by hM to hM (S). Finally, we’ll project hM (S) back to z = 1 to obtain a
new primitive s′. It’s precisely the change from s to s′ which is seen as
the transformation hM by a point camera at the origin. For example, in
Figure A.18, a boxy car is changed (fancifully) into a sleek convertible.

Back to reality, let’s begin with a simple example. Consider a straight
segment s joining two points p and q on z = 1. Given a projective
transformation hM , we want to determine s′. The lifting S of s, which
is the set of all radial lines intersecting s, is not hard to visualize: it forms
an “infinite double triangle” which lies on the radial plane containing s and
the origin. See Figure A.19(a). The radial lines through p and q are denoted
P and Q, respectively.

The related linear transformation fM transforms s to a segment s = p q,
where fM (p) = p and fM (q) = q. See Figure A.19(b). Note that s can be848
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xx

z

z = 1

z

y y

O

S

O

s

hM(S)
hM   

s´

Figure A.18: Projective transformation of a car (purely conceptual!).

s

s

S

s´

x

P Q

t

hM(Q)

x

p´q´

z

z = 1

z

y y

(a) (b)

q
p

q

p

hM(P)

hM(S)

Figure A.19: (a) A segment s on R2 and its lifting S (b) fM transforms s to s and S
to hM (S), while s′ is the intersection of hM (S) with z = 1.

anywhere in 3-space, depending on fM , unlike s and s′, which are both on
z = 1.

Moreover, each radial line in S, the lifting of s, is transformed by fM

to a radial line in hM (S). Each radial line in hM (S), of course, intersects
s. A diagram depicting a particular disposition of s, where it intersects the
xy-plane in a single point t, is shown in Figure A.19(b).

The transformed primitive s′ is the intersection of the radial lines in
hM (S) with z = 1. At this time we ask the reader to complete the following
exercise to find out for herself what it looks like, depending on the situation
of s.

Exercise A.28. Show that exactly one of (a)-(c) is true:

(a) s does not intersect the xy-plane, equivalently, every radial line in 849
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hM (S) is a regular point with respect to z = 1.

In this case, s′ is the segment between the points p′ and q′ where hM (P )
and hM (Q), respectively, intersect z = 1 (remember that P and Q
are the radial lines through p and q, the endpoints of s, respectively).
Sketch this case.

(b) s intersects the xy-plane at one point, equivalently, exactly one radial
line in hM (S) is a point at infinity with respect to z = 1. Now, there
are two subcases:

(b1) If the intersection point, call it t, is in the interior of s, then s′

consists of the entire infinite straight line through p′ and q′, where
hM (P ) and hM (Q), respectively, intersect z = 1, minus the finite
open segment between p′ and q′. This situation is sketched in
Figure A.19(b).

(b2) If the intersection is an endpoint of s, say p, then s′ is a straight
line infinite in one direction and with an endpoint at q′, where
hM (Q) intersects z = 1, in the other. Sketch this case.

(c) s lies on the xy-plane, equivalently, every radial line in hM (S) is a
point at infinity with respect to z = 1.

In this case, s′ is empty.

The answer to the preceding exercise is not tidy, but in most practical
situations it will be case (a), the most benign of the three, which applies.

So we know now what we set out to find: how the projective
transformation of the lifting of a segment looks like on film. Generally, for
any primitive s on the plane, if s′ is the “film-capture” of the transformation
by hM of the lifting of s, we’ll call s′ the projective transformation of s by hM ,
and denote it hM (s) – giving thus a geometric counterpart of the algebraic
definition of a projective transformation in Section A.8. Although hM is
well-defined, it is not a transformation of R2 in general because hM (p) may
not even exist for a point p ∈ R2, particularly if p’s corresponding projective
point is taken by hM to a point at infinity (which has no film-capture).

In our usage, therefore, hM can represent either a transformation of
projective space (as defined in Section A.8) or a transformation of real
primitives (as just defined above). There is no danger of ambiguity as the
nature of the argument in hM (∗) will make clear how it’s being used.

Example A.12. The segment s joins p = [1 − 1]T and q = [−2 − 2]T on
the plane z = 1, the latter identified with R2. The projective transformation
hM : P2 → P2 is specified by

M =

 0 0 −1
0 1 0
1 0 0


850
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which is the matrix corresponding to a rotation fM of R3 by 90◦ about the
y-axis, clockwise when seen from the positive side of the y-axis. Determine
hM (s).

Answer : fM transforms s to the segment s = p q, where p and q are the
images by fM of p and q, respectively. Multiplying p and q, written as
points of z = 1, on the left by M we get:

p = M [1 − 1 1]T = [−1 − 1 1]T

and

q = M [−2 − 2 1]T = [−1 − 2 − 2]T

As the z-values of p and q are of different signs, an interior point of s lies on
the xy-plane. Therefore, we are in case (b1) of Exercise A.28 above.

Let P and Q denote the radial lines through p and q, respectively. The
radial line hM (P ) through p meets z = 1 at hM (p) = [−1 − 1 1]T , which is
p itself. The radial line hM (Q) through q meets z = 1 at hM (q) = [ 12 1 1]T

(multiplying the coordinate tuple of q by − 1
2 to make its z-value equal to 1).

Applying Exercise A.28 case (b1), hM (s) is the entire straight line through
the points [−1 − 1]T and [ 12 1]T minus the finite open segment joining
[−1 − 1]T to [ 12 1]T .

Example A.13. The rectangle r lies on the plane z = 1, the latter
identified with R2. Its vertices are p1 = [0.5 1]T , p2 = [0.5 −1]T , p3 = [1 −1]T

and p4 = [1 1]T . See Figure A.20. Determine hM (r), where hM is the same
projective transformation as in the preceding example.

O

r

x

z y

z=1

p1 p4

p2 p3

hM(p1)

hM(r) hM(p4)

hM(p3)hM(p2)

Figure A.20: Rectangle r is transformed to the trapezoid hM (r).

Answer : fM transforms r to the rectangle r with vertices pi = fM (pi),
1 ≤ i ≤ 4. Multiplying each pi, written as points of z = 1, on the left by M 851
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we get:

p1 = M [0.5 1 1]T = [−1 1 0.5]T

p2 = M [0.5 − 1 1]T = [−1 − 1 0.5]T

p3 = M [1 − 1 1]T = [−1 − 1 1]T

p4 = M [1 1 1]T = [−1 1 1]T

As the z-value of every pi, 1 ≤ i ≤ 4, is greater than 0, none of the edges
of r intersects the xy-plane. According to case (a) of Exercise A.28 then,
hM (r) is the quadrilateral with vertices at the points hM (pi), where the
radial lines through pi, 1 ≤ i ≤ 4, intersect z = 1. See Figure A.20. Multiply
the coordinate tuple of each pi by a scalar to make its z-value equal to 1, to
find that

hM (p1) = [−2 2 1]T

hM (p2) = [−2 − 2 1]T

hM (p3) = [−1 − 1 1]T

hM (p4) = [−1 1 1]T

One sees, therefore, that hM (r) has vertices at [−2 2]T , [−2 − 2]T ,
[−1 − 1]T and [−1 1]T , which makes it a trapezoid.

It’s interesting to note that no affine transformation of R2 can map a
rectangle to a trapezoid: as affine transformations preserve parallelism (see
Proposition 5.1), at most they can transform a rectangle to a parallelogram.

Clearly, with the help of Exercise A.28 we can determine the projective
transformation of any shape specified by straight edges. More general shapes
are curved and curves specified by equations. Let’s see, for example, how a
parabola is projectively transformed.

Example A.14. Determine how the parabola y − x2 = 0 on z = 1, the
latter identified with R2, is mapped by the same projective transformation
hM as in the previous example.

Answer : The point [x y]T on z = 1, which has coordinates [x y 1]T in R3,
is transformed by fM to the point [x y z]T , where x

y
z

 =

 0 0 −1
0 1 0
1 0 0

 x
y
1

 =

 −1
y
x


which gives

x = −1, y = y, z = x

The image [x′ y′]T of [x y]T by hM , then, is the point [x/z y/z]T , where
the radial line through [x y z]T intersects z = 1. Therefore:

x′ = x/z = −1/x =⇒ x = −1/x′852
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and

y′ = y/z = y/x =⇒ y = y′x = −y′/x′ (using x = −1/x′ from above)

Plugging these expressions for x and y into the equation of the parabola
y − x2 = 0, we have the equation

−y′/x′ − 1/x′2 = 0, equivalently, x′y′ + 1 = 0

of the transformed curve, which describes a hyperbola.

Here’s another rather interesting example.

Example A.15. Determine how points of R2, identified with z = 1, are
transformed by the projective transformation hM of P2 specified by

M =

 1 0 7
0 1 0
0 0 1


Answer : The point [x y]T on z = 1, which has coordinates [x y 1]T in R3,
is transformed by fM to the point [x y z]T , where x

y
z

 =

 1 0 7
0 1 0
0 0 1

 x
y
1

 =

 x+ 7
y
1


giving

x = x+ 7, y = y, z = 1

The image [x′ y′]T of [x y]T by hM , then, is the point [x/z y/z 1]T , where
the radial line through [x y z]T intersects z = 1. Therefore,

x′ = x/z = x+ 7 and y′ = y/z = y

which is nothing but a translation by 7 units in the x-direction.
A projection transformation has just done something beyond the reach of

linear transformations, for a linear transformation cannot translate. Transla-
tions, as we learned in Chapter 5, are in the domain of affine transformations.
In fact, in Example A.13, we saw a projective transformation convert a
rectangle into a trapezoid, something beyond even affine transformations.
For transformations inspired by and defined by matrix-vector multiplication,
just like linear transformations, projective transformations certainly seem
to carry plenty of firepower. It turns out that this makes them particularly
worthy allies in the advancement of computer graphics.

Incidentally, we did not pull the matrix M above out of a hat: it is the
transformation matrix of a 3D shear whose plane is the xy-plane and line
the x-axis (recall 3D shears from Section 5.4.8). 853
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Exercise A.29. Find a projective transformation to translate points of R2

3 units in the x-direction and 2 in the y-direction, i.e., whose displacement
vector is [3 2]T .
Hint : Think another shear.

Exercise A.30. Determine how the segment s on R2, the latter identified
with the plane z = 1, joining p = [2 − 2]T and q = [−2 1]T , is mapped by
the projective transformation hM of P2 specified by

M =

 0 1 1
1 0 1
1 1 0


Exercise A.31. Determine how the hyperbola xy = 1 on z = 1, the latter
identified with R2, is mapped by the same projective transformation hM as
in the previous exercise.

Part answer : The problem is not hard but there is a fair amount of
manipulation.

The point [x y]T on z = 1, which has coordinates [x y 1]T in R3, is
transformed by fM to the point [x y z]T , where x

y
z

 =

 0 1 1
1 0 1
1 1 0

 x
y
1


Let’s flip this equation over with the help of an inverse matrix: x

y
1

 =

 0 1 1
1 0 1
1 1 0

−1  x
y
z

 =
1

2

 −1 1 1
1 −1 1
1 1 −1

 x
y
z


which gives

x =
1

2
(−x+ y + z) y =

1

2
(x− y + z) 1 =

1

2
(x+ y − z)

Plugging these expressions into the equation of the hyperbola xy = 1 = 12

we get:
1

4
(−x+ y + z)(x− y + z) =

1

4
(x+ y − z)2

Now, the image [x′ y′]T of [x y]T by hM is the point [x/z y/z]T , where
the radial line through [x y z]T intersects z = 1. We ask the reader to
complete the exercise by dividing the preceding equation by z2 throughout
to obtain an equation relating x′ and y′, and identifying the corresponding
curve.854
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Exercise A.32. Determine how the straight line x+ y + 1 = 0 on z = 1
is mapped by the same projective transformation hM as in the previous
exercise.

Exercise A.33. We saw in Example 5.4 that affine transformations
preserve convex combinations and barycentric coordinates. Show that
projective transformations in general do not.

Remark A.9. Projective transformations of P2 can be thought of as a
powerful class of pseudo-transformations of R2 – pseudo because a projective
transformation may map a regular point to a point at infinity, in which case
the corresponding point of R2 has no valid image. If one is careful, however,
to restrict its domain to a region of R2 where it is valid throughout, one
may be able to exploit the ability of a projective transformation to do more
than an affine one.

A.10 Relating Projective, Snapshot and
Affine Transformations

We’ll explore in this section the inter-relationships between projective,
snapshot and affine transformations.

A.10.1 Snapshot Transformations via Projective
Transformations

Snapshot transformations, being transformations of an object seen through
a point camera as the film changes alignment, are geometrically intuitive.
They are, in fact, a kind of projective transformation, as we’ll now see.

Consider again Example A.13 for motivation. We saw that the rectangle
r on the plane z = 1 (aka R2) with vertices at p1 = [0.5 1]T , p2 = [0.5 − 1]T ,
p3 = [1 − 1]T and p4 = [1 1]T is mapped to the trapezoid r′ = hM (r) with
vertices at p′1 = [−2 2]T , p′2 = [−2 − 2]T , p′3 = [−1 − 1]T and p′4 = [−1 1]T ,
by the projective transformation hM specified by

M =

 0 0 −1
0 1 0
1 0 0


See Figure A.21(a).

We observed, as well, that the related linear transformation fM is a
rotation of R3 by 90◦ about the y-axis, which is clockwise when seen from
the positive side of the y-axis.

Denote the radial line through pi by Pi, 1 ≤ i ≤ 4, and their respective
images hM (Pi) by P ′i . Now rotate the radial lines P ′i , as well as the plane
z = 1, an angle of 90◦ about the y-axis, this time counter-clockwise when 855
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Figure A.21: (a) Projective transformation hM maps rectangle r to trapezoid
r′ = hM (r) (b) r′ is the “same” as r′′, the picture of r captured on a film along x = 1.

seen from the positive side of the y-axis, in order to undo the effect of fM ;
in other words, apply fM

−1

. We see the following:

(a) The radial line P ′i , of course, rotates back onto (its pre-image) the
radial line Pi, 1 ≤ i ≤ 4.

(b) The plane z = 1 is taken by the rotation onto the plane x = 1.

(c) The trapezoid r′, as a consequence of (a) and (b), rotates onto a
trapezoid r′′ with vertices at the intersections p′′i of Pi with x = 1, for
1 ≤ i ≤ 4. See Figure A.21(b) (note that the edge of r that happens
to lie on the intersection of the planes z = 1 and x = 1 is shared with
r′′).

But r′′ is precisely the snapshot transformation of r from the film along
z = 1 to the one along x = 1! Here’s what is happening. The image r′ is
obtained by applying the rotation fM to the radials Pi and intersecting them
with the plane z = 1, while r′′ is obtained from r′ by applying the reverse
rotation fM

−1

, which takes the radials back to the where they were, and, at
the same time, changes the intersecting plane from z = 1 to x = 1. Therefore,
the transformation from r to r′′ comes from a change in the plane (= film)
intersecting the radials, which is precisely a snapshot transformation.

One sees, therefore, that, generally, a snapshot transformation in which
the film is re-aligned by a rotation f about a radial axis is equivalent to a
projective transformation whose related linear transformation is f−1, in that
the images are identical, though situated differently in space (precisely, the
two images differ by a rigid transformation of R3). But, how about snapshot
transformations where the new alignment of the film cannot be obtained
from the original by mere rotation? To answer this question, we ask the856
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reader, first, to prove the following, which says that an arbitrary snapshot
transformation can be composed from two very simple ones.

O

p´

p

Figure A.22: Aligning
plane p with p′ by a
parallel displacement, so
that their respective
distances from the origin
are equal, followed by a
rotation.

Exercise A.34. Prove that any plane p in R3 can be aligned with any
other p′ by a translation parallel to itself followed by a rotation about a
radial axis.

Therefore, any snapshot transformation is the composition of two: first,
a snapshot transformation from one film to a parallely translated one and
then another, where one film is obtained from the other by a rotation about
a radial axis.

Hint : See Figure A.22.

We have already seen how a snapshot transformation from one film
to a rotated one is equivalent to a projective transformation. A snapshot
transformation to a parallely translated one is also equivalent to a projective
transformation, as the next exercise asks the reader to show.

Exercise A.35. Suppose that two parallel non-radial planes p and p′ in R3

are at a distance of c and c′ from the origin, respectively. Then the snapshot
transformation from p to p′ is equivalent to the projective transformation
hM , where

M =

 c′

c 0 0

0 c′

c 0

0 0 c′

c

 =
c′

c
I

(i.e., a projective transformation whose related linear transformation is a

uniform scaling of R3 by a factor of c′

c in all directions).

Hint : See Figure A.23.

O

p´
p

Figure A.23: A snapshot
transformation to a
parallel plane is equivalent
to a scaling by a constant
factor in all directions.

Putting the pieces together we have the following proposition:

Proposition A.1. A snapshot transformation k from a non-radial plane p
in R3 to another p′ is equivalent to a projective transformation hM of P2,
in the sense that the images of primitives by k and hM are identical modulo
a rigid transformation of R3.

In particular, k is equivalent to the projective transformation hM which
is the composition of a projective transformation hdI , whose related linear
transformation is a uniform scaling, with a projective transformation hN ,
whose related linear transformation is a rotation of R3 about a radial axis.

In other words, k is equivalent to hdN , where d is a scalar and N is the
matrix of a rotation of R3 about a radial axis. 2

Exercise A.36. Determine the projective transformation equivalent to
the snapshot transformation from the plane z = 1 to the plane x = 2. 857
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A.10.2 Affine Transformations via Projective
Transformations

We begin by asking if there exist projective transformations that respect
regular points, i.e., map regular points to regular points. Such a
transformation could then be entirely captured on film because it takes
no point of the film out of it, as would happen, say, if a regular point were
mapped to one at infinity. Looking back at Remark A.9, one could then
say that such a projective transformation is no longer “pseudo”, but a true
transformation of R2.

So suppose the film lies along the plane (surprise) z = 1. What condition
must a projective transformation hM , where

M =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


satisfy in order to transform each point regular with respect to z = 1 to
another such? Homogeneous coordinates of regular points are of the form
[x y 1]T . Now,

hM ([x y 1]T ) = M [x y 1]T =

 a11x+ a12y + a13
a21x+ a22y + a23
a31x+ a32y + a33


For this image point to be regular we must have

a31x+ a32y + a33 6= 0

However, if either one of a31 and a32 is non-zero, or if a33 is zero, then it’s
possible to find values of x and y such that a31x + a32y + a33 = 0. The
conclusion then is that for hM to transform all regular points to regular
points, one must have both a31 and a32 equal to zero and a33 non-zero.
Therefore, M must be of the form a11 a12 a13

a21 a22 a23
0 0 a33


with a33 6= 0. By Exercise A.25, M can be multiplied by 1/a33 to still
represent the same projective transformation, so one can assume a33 = 1,
implying that the form of M is a11 a12 a13

a21 a22 a23
0 0 1


858
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In this case, hM transforms [x y 1]T to a11 a12 a13
a21 a22 a23
0 0 1

 x
y
1

 =

 a11x+ a12y + a13
a21x+ a22y + a23

1


Tossing the last coordinate, it transforms [x y]T ∈ R2 to[

a11x+ a12y + a13
a21x+ a22y + a23

]
=

[
a11 a12
a21 a22

] [
x
y

]
+

[
a13
a23

]
which is precisely an affine transformation!

We conclude that a projective transformation of P2 that respects regular
points gives nothing but an affine transformation of R2. Conversely, it’s
not hard to see that any affine transformation of R2 can be obtained as a
projective transformation preserving regular points. We record these facts
in the following proposition.

Proposition A.2. An affine transformation of R2 is equivalent to a
projective transformation of P2, in particular, one that respects regular
points.

Conversely, a projective transformation of P2 that respects regular points
is equivalent to an affine transformation of R2.

Evidently, the constraint to respect regular points is a burden on
projective transformations. It dumbs them down to affine and all the
excitement of parallel lines turning into intersecting ones, rectangles into
trapezoids, and circles into hyperbolas is lost!

However, one does see now a good reason for the use of homogeneous
coordinates of real points in computing affine transformations. When first we
did this in Section 5.2.3, it seemed merely a neat maneuver to obtain an affine
transformation as a single matrix-vector multiplication. The bigger picture
is that affine transformations are a subclass of the projective. Therefore, as
the latter are obtained (by definition) from matrix-vector multiplication, so
can the former, provided we relocate to projective space, in other words, use
homogeneous coordinates.

A Roundup of the Three Kinds of Transformations

Snapshot and affine transformations are subclasses of the projective, as we
have just seen. How about the relationship between these two subclasses
themselves? Are snapshot transformations affine or affine transformations
snapshot?

At the start of Section A.10.1 we saw a projective transformation,
equivalent, in fact, to a snapshot transformation, map a rectangle to a
trapezoid. This is not possible for an affine transformation to do, as it 859
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is obliged to preserve parallelism (Proposition 5.1). Therefore, snapshot
transformations are certainly not all affine.

A shear on the plane, an affine transformation, can map a rectangle to
a non-rectangular parallelogram. We leave the reader to convince herself
that this is not possible for a snapshot transformation. So not all affine
transformations are snapshot.

We see then that neither of the two subclasses, snapshot and affine,
of projective transformations contains the other. However, what transfor-
mations, if any, do they have in common? We ask the reader herself to
characterize the transformations at the intersection of affine and snapshot
in the next exercise.

Affine Snap-
shot

Projective

Uni-
form
scal-
ings

Figure A.24: Venn
diagram of transformation
classes of R2.

Exercise A.37. Prove that projective transformations which are both
affine and snapshot are precisely those whose related linear transformation
is a uniform scaling.

The final important question on the relationship between the three classes
is if the union of snapshot and affine covers projective transformations or if
the latter is strictly bigger. In Exercise A.40 in the next section we’ll see an
example of a projective transformation neither snapshot nor affine. Therefore,
indeed, the class of projective transformations is strictly bigger than the
union of snapshot and affine. Figure A.24 summarizes the relationship
between the three classes.

A.11 Designer Projective Transformations

We know from elementary linear algebra that a linear transformation is
uniquely specified by defining its values on a basis. Here’s a like-minded
claim for projective transformations of P2.

Proposition A.3. If two sets {P1, P2, P3, P4} and {Q1, Q2, Q3, Q4} of four
points each from P2 are such that no three in any one set are collinear, then
there is a unique projective transformation of P2 that maps Pi to Qi, for
1 ≤ i ≤ 4.

Proof. Choose non-zero vectors p1, p2, p3 and p4 from R3 lying on P1, P2, P3

and P4, respectively, and non-zero vectors q1, q2, q3 and q4 lying onQ1, Q2, Q3

and Q4, respectively.
Since P1, P2 and P3 do not lie on one projective line, p1, p2 and p3 do

not lie on one radial plane. The latter three form, therefore, a basis of R3.
Likewise, q1, q2 and q3 form a basis of R3 as well.

Let c1, c2 and c3 be arbitrary scalars, all three non-zero, whose values
will be determined. As q1, q2 and q3 form a basis of R3, so do c1q1, c2q2
and c3q3. Therefore, there is a unique non-singular linear transformation
fM : R3 → R3 such that

fM (pi) = ciqi, for 1 ≤ i ≤ 3860
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which, then, is related to a projective transformation hM : P2 → P2, such
that

hM (Pi) = Qi, for 1 ≤ i ≤ 3

It remains to make hM (P4) = Q4.
As p1, p2 and p3 form a basis of R3, there exist unique scalars α, β and

γ such that

p4 = αp1 + βp2 + γp3

Now, α, β and γ are all three non-zero, for, otherwise, p4 lies on the same
radial plane as two of p1, p2 and p3, which implies that P4 lies on the same
projective line as two of P1, P2 and P3, contradicting an initial hypothesis.
Likewise, there exist unique non-zero scalars, λ, µ and ν such that

q4 = λq1 + µq2 + νq3

For

hM (P4) = Q4

to hold, then, one requires a scalar c4 6= 0 such that

fM (p4) = c4q4

= c4(λq1 + µq2 + νq3)

= λc4q1 + µc4q2 + νc4q3 (A.6)

However,

fM (p4) = fM (αp1 + βp2 + γp3)

= αfM (p1) + βfM (p2) + γfM (p3)

= αc1q1 + βc2q2 + γc3q3 (A.7)

Combining (A.6) and (A.7) one has

αc1q1 + βc2q2 + γc3q3 = λc4q1 + µc4q2 + νc4q3

As q1, q2 and q3 is a basis of R3, it follows that

αc1 = λc4, βc2 = µc4, γc3 = νc4

giving

c1 = (λ/α)c4, c2 = (µ/β)c4, c3 = (ν/γ)c4

determining c1, c2, c3 and c4 uniquely, up to a constant of proportionality,
so completing the proof. 2

The following corollary, which is a straightforward application of the
proposition, is particularly important. 861
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Corollary A.1. Any non-degenerate quadrilateral, i.e., one with no three
collinear vertices, in R2 can be projectively transformed to any other such.
2

More than just theoretically, the proposition is important in that it
suggests how to go about finding projective transformations specified at only
a few points.

Example A.16. Determine the projective transformation hM of P2

mapping the projective points

P1 = [1 0 0]T , P2 = [0 1 0]T , P3 = [0 0 1]T and P4 = [1 1 1]T

to the respective images

Q1 = [2 1 3]T , Q2 = [−1 − 1 1]T , Q3 = [0 1 1]T and Q4 = [0 0 6]T

Answer : Choose (not particularly imaginatively)

p1 = [1 0 0]T , p2 = [0 1 0]T , p3 = [0 0 1]T and p4 = [1 1 1]T

in R3 lying on Pi, 1 ≤ i ≤ 4, and

q1 = [2 1 3]T , q2 = [−1 − 1 1]T , q3 = [0 1 1]T and q4 = [0 0 6]T

lying on Qi, 1 ≤ i ≤ 4.
The linear transformation fM : R3 → R3 such that fM (pi) = ciqi, for

1 ≤ i ≤ 3, where c1, c2 and c3 are non-zero scalars, is easily verified to be
given by

M =

 2c1 −c2 0
c1 −c2 c3
3c1 c2 c3


One can verify as well that

p4 = p1 + p2 + p3

and
q4 = q1 + 2q2 + q3

Therefore,

fM (p4) = fM (p1+p2+p3) = fM (p1)+fM (p2)+fM (p3) = c1q1+c2q2+c3q3

Accordingly, if fM (p4) = c4q4, for some c4 6= 0, then

c1q1 + c2q2 + c3q3 = c4(q1 + 2q2 + q3) = c4q1 + 2c4q2 + c4q3

which implies that

c1 = c4, c2 = 2c4, c3 = c4862
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Setting c4 = 1, one has: c1 = 1, c2 = 2, c3 = 1, c4 = 1. One concludes
that the required projective transformation hM is given by

M =

 2 −2 0
1 −2 1
3 2 1


The following example will help in an application of projective transfor-

mations in the graphics pipeline.

Example A.17. Determine the projective transformation hM of P2 that
transforms the trapezoid q on the plane z = 1 (aka R2) with vertices at

p1 = [−1 1]T , p2 = [1 1]T , p3 = [2 2]T and p4 = [−2 2]T

to the rectangle q′ on the same plane with vertices at

p′1 = [−1 1]T , p′2 = [1 1]T , p′3 = [1 2]T and p′4 = [−1 2]T

See Figure A.25.

x

z

z=1

y

O

qq’
p4

p1=p1 p2=p2

p3q´
´´

p4́
p3́

Figure A.25: Transforming the trapezoid q on z = 1 to the rectangle (bold) q′.

Answer : Suppose that the required projective transformation hM is defined
by the matrix

M =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


We have to determine the aij up to a non-zero multiplicative constant.

The two sides p1p4 and p2p3 of the trapezoid q meet at the regular point
(with respect to z = 1) [0 0 1]T , while the corresponding sides p′1p

′
4 and p′2p

′
3 863
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of the rectangle q′ are parallel and meet at the point at infinity [0 1 0]T .
The transformation must, therefore, map [0 0 1]T to [0 1 0]T , yielding our
first equation

hM ([0 0 1]T ) = [0 1 0]T

(the RHS could be c[0 1 0]T for any non-zero scalar c, but there’s no loss in
assuming that c = 1) which translates to the matrix equation a11 a12 a13

a21 a22 a23
a31 a32 a33

 0
0
1

 =

 0
1
0


giving

a13 = 0, a23 = 1, a33 = 0

So we write

M =

 a11 a12 0
a21 a22 1
a31 a32 0


That we have hM (p1) = p′1 and hM (p2) = p′2 gives two more matrix

equations a11 a12 0
a21 a22 1
a31 a32 0

 −1
1
1

 =

 −cc
c

 and

 a11 a12 0
a21 a22 1
a31 a32 0

 1
1
1

 =

 d
d
d


where c and d are arbitrary non-zero scalars, yielding the six equations

−a11 + a12 = −c
−a21 + a22 + 1 = c

−a31 + a32 = c

a11 + a12 = d

a21 + a22 + 1 = d

a31 + a32 = d (A.8)

Subtracting the first equation from the fourth, adding the second and
fifth, and adding the third and sixth, one gets

a11 =
c+ d

2
, a22 =

c+ d

2
− 1, a32 =

c+ d

2

implying that
a22 = a11 − 1 and a32 = a11

Likewise, adding the first and fourth equations, subtracting the second
from the fifth, and subtracting the third from the sixth, one gets

a12 = a21 = a31864
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We can now write

M =

 a11 a12 0
a12 a11 − 1 1
a12 a11 0


That hM (p3) = p′3 and hM (p4) = p′4 give another two matrix equations a11 a12 0

a12 a11 − 1 1
a12 a11 0

 2
2
1

 =

 e
2e
e

 and

 a11 a12 0
a12 a11 − 1 1
a12 a11 0

 −2
2
1

 =

 −f2f
f


where e and f are arbitrary non-zero scalars. Again one obtains six equations,
as in (A.8), which can be solved to find that

a11 = −1/2 and a12 = 0

We have, finally, that

M =

 −1/2 0 0
0 −3/2 1
0 −1/2 0


(or, a non-zero scalar multiple of the matrix on the RHS).

Exercise A.38. The projective transformation hM of the preceding
example mapped, by design, the regular point [0 0 1]T to the point at
infinity [0 1 0]T . What other regular points, if any, does it map to a point
at infinity?

Exercise A.39. Determine the projective transformation hM of P2 that
transforms the rectangle q on the plane z = 1 with vertices at

p1 = [0.5 1]T , p2 = [0.5 − 1]T , p3 = [1 − 1]T and p4 = [1 1]T

to the trapezoid q′ on z = 1 with vertices at

p′1 = [−2 2]T , p′2 = [−2 − 2]T , p′3 = [−1 − 1]T and p′4 = [−1 1]T

(see Example A.13 earlier for the solution).

O

C

q

q´

Figure A.26: The square
q is mapped to the
quadrilateral q′ by a
snapshot transformation.

Exercise A.40. Prove that there exist projective transformations that are
neither affine nor snapshot. 865
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Suggested approach: Corollary A.1 implies that a square can be projectively
transformed to any non-degenerate quadrilateral. Non-degenerate quadrilat-
erals q′ that can be obtained from a square q by a snapshot transformation
are the intersections of a non-radial plane with the “cone” C through q (see
Figure A.26). Those that can be obtained by an affine transformation, on
the other hand, are parallelograms.

Therefore, if one can find a non-degenerate quadrilateral q′′ which is
neither a parallelogram nor the intersection of C with a plane, then one shows
that there exists a projective transformation neither affine nor snapshot.

866
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APPENDIX B
Math Self-Test

This self-test is designed to help you assess your math readiness. The
essentials in order to study computer graphics are coordinate geometry,
trigonometry, linear algebra and calculus, all at elementary level.

Try to answer all 30 questions. Time is not an issue. And feel free to
dust off old math books you may have stashed away in some corner, stroll
over to the school or public library, or, even, check into the internet. The
principle, of course, is that each and every one of these activities will be
allowed throughout your career as a student and practitioner of CG (except,
maybe, when you are actually in an exam). Having just the right formula
or solution method pop off the top of your head is fantastic, but it’s fine as
well, given a problem, that you know how to go about solving it.

Give yourself 4 points for each correct answer (solutions follow in the
next section). If you score at least 100, come on in, the water’s fine.∗ If
you’re between 80 and 100 then the questions you missed tell where the rust
is and, as long as you are willing to put in the extra work, you should be
okay. If less than 80 then you need to sit down with yourself and be perfectly
honest: is it simply rust that will come off or things that I’ve just never had
in school but trust myself to be able to pick up or is this the kind of stuff
that makes me want to curl up into a fetal position?

A word about math and CG, especially to those who did not fare well in
the test. If you are motivated to study CG then picking up the math on the
way isn’t just possible, it can be a lot of fun. Its application to CG will bring
to life stuff that caused your eyes to roll in high school. “The middle of the
spacecraft is light because of the interpolated color values from the ends of
the long triangle” or “This matrix will skew the evil character’s head” are a

∗There’s more math you’ll learn while studying CG (some from this book itself) than
is covered in the test. Doing well here simply means you’re unlikely to have serious
problems. 867
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lot different from “Groan, that’s 12 different theorems and a chapter-load of
trig formulas I have to cram for the mid-term.”

If you are interested, there are several books out there dedicated to
teaching the math needed for CG. A few that come to mind are Dunn [38],
Lengyel [85], Mortenson [96] and Vince [146].

Use the following if you need to (some are approximations): sin 30◦ =
cos 60◦ = 0.5, sin 45◦ = cos 45◦ = 0.707, sin 60◦ = cos 30◦ = 0.866, π = 3.141,√

2 = 1.414,
√

3 = 1.732.

The first seven questions refer to Figure B.1.

B (2, 1)O (1, 1)

30o

y

x

A

C

Figure B.1: Circle of unit radius.

1. What is the equation of the circle?

2. What are the coordinates of point C?

3. What is the equation of the tangent to the circle at B?

4. What is the length of the short arc of the circle from A to B?

868
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5. What are the coordinates of point A?

6. If the circle is moved (without turning) so that its center lies at
(−3,−4), where then does point B lie?

7. Suppose another circle is drawn with center at A and passing through
O. The two circles intersect in two points. What angles do their
tangents make at these points?

8. If a straight line on a plane passes through the points (3, 1) and (5, 2),
which, if any, of the following two points does it pass through as well:
(9, 4) and (12, 6)?

9. What are the coordinates of the midpoint of the straight line segment
joining the points (3, 5) and (4, 7)?

10. At what point do the straight lines 3x+ 4y−6 = 0 and 4x+ 7y−8 = 0
intersect?

11. What is the equation of the straight line through the point (3, 0) that
is parallel to the straight line 3x− 4y − 6 = 0?

12. What is the equation of the straight line through the point (3, 0) that
is perpendicular to the straight line 3x− 4y − 6 = 0?

869
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13. What are the coordinates of the point that is the reflection across the
line y = x of the point (3, 1)?

14. What is the length of the straight line segment on the plane joining
the origin (0, 0) to the point (3, 4)? In 3-space (xyz-space) what is
the length of the straight line segment joining the points (1, 2, 3) and
(4, 6, 8)?

15. Determine the value of sin 75◦ using only the trigonometric values
given at the top of the test (in other words, don’t use your calculator
to do anything other than arithmetic operations).

16. What is the dot product (or, scalar product, same thing) of the two
vectors u and v in 3-space, where u starts at the origin and ends at
( 1√

2
, 1√

2
, 0) and v starts at the origin and ends at ( 1√

2
, 1√

2
,
√

3), i.e.,

u = 1√
2
i + 1√

2
j and v = 1√

2
i + 1√

2
j +
√

3k.

Use the dot product to calculate the angle between u and v.

17. Determine a vector that is perpendicular to both the vectors u and v
of the preceding question.

18. For the block in Figure B.2, what are the coordinates of the corner
point F?

19. For the block again, what is the angle CDE?
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y

x

z
4

3
3

2
2

O

E

F

B
C

D

60o

Figure B.2: Solid block (some edges are labeled with their length).

20. For the unit sphere (i.e., of radius 1) centered at the origin, depicted
in Figure B.3, the equator (0◦ latitude) is the great circle cut by the
xy-plane, while 0◦ longitude is that half of the great circle cut by the
xz-plane where x-values are non-negative.

What are the xyz coordinates of the point P whose latitude and
longitude are both 45◦?

y
z

x

0o degree longitude

0o degree latitude

Figure B.3: Unit sphere.

21. Multiply two matrices:

[
2 4
3 1

]
×
[

1 1 0
2 1 −1

]
871



i
i

i
i

i
i

i
i

Appendix B

Math Self-Test

22. Calculate the value of the following two determinants:∣∣∣∣ 2 4
3 1

∣∣∣∣ and

∣∣∣∣∣∣
−1 2 −3
0 5 −2
0 3 3

∣∣∣∣∣∣

23. Calculate the inverse of the following matrix:[
4 7
2 4

]

24. If the Dow Jones Industrial Average were a straight-line (or, linear,
same thing) function of time (it isn’t) and if its value on January 1,
2007 is 12,000 and on January 1, 2009 it’s 13,500, what is the value on
January 1, 2010?

25. Are the following vectors linearly independent?

[2 3 0]T [3 7 − 1]T [1 − 6 3]T

26. Determine the linear transformation of R3 that maps the standard
basis vectors

[1 0 0]T [0 1 0]T [0 0 1]T

to the respective vectors

[−1 − 1 1]T [−2 3 2]T [−3 1 − 2]T872
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27. What is the equation of the normal to the parabola

y = 2x2 + 3

at the point (2, 11)?

28. If x and y are related by the equation

xy + x+ y = 1

find a formula for dy
dx .

29. The formula for the height at time t of a projectile shot vertically
upward from the ground with initial velocity u is

h = ut− 1

2
gt2

assuming only the action of gravitational acceleration g (ignoring wind
resistance and other factors).

What is the velocity of the projectile at time t? What is the maximum
height reached by the projectile?

30. At what points do the curves y = sinx and y = cosx meet for values
of x between 0 and 2π? What angles do they make at these points?
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APPENDIX C
Math Self-Test Solutions

Score 4 points for each correct answer. For an assessment of your total, read
the part before the start of the test.

Use the following if you need to (some are approximations): sin 30◦ =
cos 60◦ = 0.5, sin 45◦ = cos 45◦ = 0.707, sin 60◦ = cos 30◦ = 0.866, π = 3.141,√

2 = 1.414,
√

3 = 1.732.

O

A

D

1
1

1
1

B (2, 1)

C

X

x

y

A

O (1, 1)

30o
1 × cos 30o 1 

× 
si

n 
30

o

30o

60o

60o

30o

c1

c2

(a) (b) (c)

Figure C.1: (a) Circle of unit radius (b) Right-angled triangle (c) Two circles of unit
radius.

The first seven questions refer to Figure C.1(a).

1. What is the equation of the circle?

Answer : Generally, the equation of a circle on the xy-plane centered
at (a, b) and of radius r is

(x− a)2 + (y − b)2 = r2 875
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Solutions

So the equation of the drawn circle is

(x−1)2+(y−1)2 = 12 which evaluates to x2+y2−2x−2y+1 = 0

2. What are the coordinates of point C?

Answer : (1, 0).

3. What is the equation of the tangent to the circle at B?

Answer : x = 2.

4. What is the length of the short arc of the circle from A to B?

Answer : The angle subtended at the center by this arc is ∠AOB = 30◦

(Figure C.1(a)).

Therefore, the length of the arc is 30
360 of the circumference = 30

360 ×
2π × 1 = π

6 = 3.141/6 = 0.5235.

5. What are the coordinates of point A?

Answer : Suppose the horizontal line through O and the vertical line
through A intersect at D (Figure C.1(b)). The hypotenuse OA of
the right-angled triangle ODA is of length 1 (= radius of the circle).
Therefore, the length of OD = 1× cos 30◦ = 0.866 and the length of
AD = 1× sin 30◦ = 0.5.

These lengths are the displacements of A in the x- and y-direction,
respectively, from O. Therefore, the coordinates of A are (1, 1) +
(0.866, 0.5) = (1.866, 1.5).

6. If the circle is moved (without turning) so that its center lies at
(−3,−4), where then does point B lie?

Answer : Since the center is originally at (1, 1) the translation that
moves it to (−3,−4) consists of a displacement of −4 in the x-direction
and −5 in the y direction. The same translation applies to B, so B
moves (2, 1) + (−4,−5) = (−2,−4).

7. Suppose another circle is drawn with center at A and passing through
O. The two circles intersect in two points. What angles do their
tangents make at these points?

Answer : The two circles c1 and c2 intersect at points X and Y
(Figure C.1(c)). The triangle OAX is equilateral as all its sides are of
length 1, the radius of either circle. All its angles, therefore, are 60◦.

Now, the tangents to c1 and c2 at X are perpendicular, respectively,
to OX and AX. Therefore, the angle between them is the same as
that between OX and AX, which is 60◦.876
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Solutions

Symmetrically, the tangents to the two circles at Y intersect at 60◦ as
well.

8. If a straight line on a plane passes through the points (3, 1) and (5, 2),
which, if any, of the following two points does it pass through as well:
(9, 4) and (12, 6)?

Answer : Suppose the equation of the straight line is y = mx + c
(any non-vertical straight line has an equation of this form, called the
slope-intercept form). Since it passes through (3, 1) and (5, 2), we have
the two equations

1 = 3m+ c

2 = 5m+ c

Solving simultaneously, we get m = 1
2 and c = − 1

2 , yielding the
equation y = 1

2x−
1
2 for the line. Of the two points (9, 4) and (12, 6),

only (9, 4) satisfies this equation and so lies on it.

9. What are the coordinates of the midpoint of the straight line segment
joining the points (3, 5) and (4, 7)?

Answer : The coordinates of the midpoint are (3+4
2 , 5+7

2 ) = (3.5, 6).

10. At what point do the straight lines 3x+ 4y−6 = 0 and 4x+ 7y−8 = 0
intersect?

Answer : Simultaneously solving the two equations we get the
intersection as (2, 0).

11. What is the equation of the straight line through the point (3, 0) that
is parallel to the straight line 3x− 4y − 6 = 0?

Answer : Any line parallel to 3x − 4y − 6 = 0 may be written as
3x − 4y − c = 0, where c can be an arbitrary number. If such a
line passes through (3, 0) then this point’s coordinates must satisfy
3x− 4y − c = 0.

In other words, 3× 3− 4× 0− c = 0 =⇒ c = 9.

Therefore, the required equation is 3x− 4y − 9 = 0.

12. What is the equation of the straight line through the point (3, 0) that
is perpendicular to the straight line 3x− 4y − 6 = 0?

Answer : Rewrite the given straight line’s equation in slope-intercept
form: y = 3

4x−
3
2 . Its gradient, therefore, is 3

4 . Now the gradient of a
straight line that is perpendicular to one of gradient m is − 1

m .

Therefore, the gradient of the straight line perpendicular to the given
one is − 4

3 and its equation is of the form y = − 4
3x+ c. Since it passes

through (3, 0) we have 0 = − 4
3 × 3 + c =⇒ c = 4. 877
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Solutions

Therefore, the required equation is y = − 4
3x+ 4 or 3y + 4x− 12 = 0.

13. What are the coordinates of the point that is the reflection across the
line y = x of the point (3, 1)?

Answer : Reflecting a point across the line y = x interchanges its x
and y coordinates. So the reflection of (3, 1) is (1, 3).

14. What is the length of the straight line segment on the plane joining
the origin (0, 0) to the point (3, 4)? In 3-space (xyz-space) what is
the length of the straight line segment joining the points (1, 2, 3) and
(4, 6, 8)?

Answer : The (Euclidean) distance between two points (x1, y1)
and (x2, y2) on the plane is

√
(x2 − x1)2 + (y2 − y1)2, while that

between two points (x1, y1, z1) and (x2, y2, z2) in 3-space is (similarly)√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

Therefore, the length of the straight line segment joining (0, 0) and
(3, 4) is

√
(3− 0)2 + (4− 0)2 =

√
25 = 5 and that joining (1, 2, 3) and

(4, 6, 8) is √
(4− 1)2 + (6− 2)2 + (8− 3)2

=
√

50 =
√

25× 2 =
√

25×
√

2 = 5× 1.414 = 7.07

using only the value of
√

2 given above.

15. Determine the value of sin 75◦ using only the trigonometric values
given at the top of the test (in other words, don’t use your calculator
to do anything other than arithmetic operations).

Answer : Use the formula

sin(A+B) = sinA cosB + cosA sinB

to write

sin 75◦ = sin(45◦ + 30◦)

= sin 45◦ cos 30◦ + cos 45◦ sin 30◦

= 0.707× 0.866 + 0.707× 0.5

= 0.966

16. What is the dot product (or, scalar product, same thing) of the two
vectors u and v in 3-space, where u starts at the origin and ends at
( 1√

2
, 1√

2
, 0) and v starts at the origin and ends at ( 1√

2
, 1√

2
,
√

3), i.e.,

u = 1√
2
i + 1√

2
j and v = 1√

2
i + 1√

2
j +
√

3k.

Use the dot product to calculate the angle between u and v.878
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Answer :

u · v = ( 1√
2
, 1√

2
, 0) · ( 1√

2
, 1√

2
,
√

3) = 1√
2
× 1√

2
+ 1√

2
× 1√

2
+ 0× 1√

3
= 1

Moreover,

|u| =
√

( 1√
2
)2 + ( 1√

2
)2 + 02 = 1 and |v| =

√
( 1√

2
)2 + ( 1√

2
)2 + (

√
3)2 =

2.

Now, u·v = |u||v| cos θ, where θ is the angle between u and v. Therefore,
cos θ = u·v

|u||v| = 1
1×2 = 1

2 , which means θ = 60◦.

17. Determine a vector that is perpendicular to both the vectors u and v
of the preceding question.

Answer : The cross-product of two (non-zero and non-collinear) vectors
is perpendicular to both of them. Now, u× v = ( 1√

2
i + 1√

2
j)× ( 1√

2
i +

1√
2
j +
√

3k) = ∣∣∣∣∣∣∣
i 1√

2
1√
2

j 1√
2

1√
2

k 0
√

3

∣∣∣∣∣∣∣ =

√
3√
2
i−
√

3√
2
j

Therefore, the vector that starts at the origin and ends at (
√
3√
2
,−
√
3√
2
, 0)

is perpendicular to both u and v (the answer is not unique).

y

x

z
4

3
3

2
2

O

E

F

B
C

G

D

60o

Figure C.2: Solid block (some edges are labeled with their length).

18. For the block in Figure C.2, what are the coordinates of the corner
point F?

Answer : Drop the perpendicular DG from D to the straight line
through B and C (Figure C.2). 879
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Solutions

The x-coordinate of F is |BC|+|CG| = 2+3 cos 60◦ = 2+3×0.5 = 3.5.

The y-coordinate of F is |DF | = 4.

The z-coordinate of F is |AB|+ |GD| = 2 + 3 sin 60◦ = 2 + 3× 0.866 =
4.598.

Therefore, F = (3.5, 4, 4.598).

19. For the block again, what is the angle CDE?

Answer : ∠CDE = ∠CDG+ ∠GDE = 30◦ + 90◦ = 120◦.

yz

P

Q
O R x

0o degree longitude

0o degree latitude

45o

45o

Figure C.3: Unit sphere.

20. For the unit sphere (i.e., of radius 1) centered at the origin, depicted
in Figure C.3, the equator (0◦ latitude) is the great circle cut by the
xy-plane, while 0◦ longitude is that half of the great circle cut by the
xz-plane where x-values are non-negative.

What are the xyz coordinates of the point P whose latitude and
longitude are both 45◦?

Answer : Drop the perpendicular from P to Q on the xy-plane and
then the perpendicular from Q to R on the x-axis (Figure C.3).

Now, |OP | = 1, so that |PQ| = 1 × sin 45◦ = 1√
2

and |OQ| = 1 ×
cos 45◦ = 1√

2
.

Moreover, QR = |OQ| sin 45◦ = 1√
2
× 1√

2
= 1

2 and OR =

|OQ| cos 45◦ = 1√
2
× 1√

2
= 1

2 .

Now, the x, y and z coordinates of P are |OR|, |QR| and |PQ|,
respectively. Therefore, P = (1

2 ,
1
2 ,

1√
2
).

21. Multiply two matrices:[
2 4
3 1

]
×
[

1 1 0
2 1 −1

]
880
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Answer : [
2 4
3 1

]
×
[

1 1 0
2 1 −1

]
=

[
10 6 −4
5 4 −1

]
.

22. Calculate the value of the following two determinants:∣∣∣∣ 2 4
3 1

∣∣∣∣ and

∣∣∣∣∣∣
−1 2 −3
0 5 −2
0 3 3

∣∣∣∣∣∣
Answer : ∣∣∣∣ 2 4

3 1

∣∣∣∣ = 2× 1− 4× 3 = −10

∣∣∣∣∣∣
−1 2 −3
0 5 −2
0 3 3

∣∣∣∣∣∣ = −1×
∣∣∣∣ 5 −2

3 3

∣∣∣∣− 0×
∣∣∣∣ 2 −3

3 3

∣∣∣∣+ 0×
∣∣∣∣ 2 −3

5 −2

∣∣∣∣
= −(5× 3− (−2)× 3) = −21

23. Calculate the inverse of the following matrix:[
4 7
2 4

]
Answer : To obtain the inverse we have to replace each element by its
cofactor, take the transpose and, finally, divide by the determinant of
the original matrix.

Replacing each element by its cofactor we get the matrix[
4 −2
−7 4

]
Taking the transpose next gives[

4 −7
−2 4

]
Finally, dividing by the determinant 4 × 4− 2× 7 = 2 of the original
matrix, we have its inverse [

2 −3.5
−1 2

]
881
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24. If the Dow Jones Industrial Average were a straight-line (or, linear,
same thing) function of time (it isn’t) and if its value on January 1,
2007 is 12,000 and on January 1, 2009 it’s 13,500, what is the value on
January 1, 2010?

Answer : As a linear function of time then the DJIA grows 1500 points
in two years, or 750 per year, which takes it to 14,250 on January 1,
2010.

25. Are the following vectors linearly independent?

[2 3 0]T [3 7 − 1]T [1 − 6 3]T

Answer : The vectors are linearly independent if the only solution to
the equation

c1[2 3 0]T + c2[3 7 − 1]T + c3[1 − 6 3]T = [0 0 0]T

is c1 = c2 = c3 = 0.

The vector equation above is equivalent to the following set of three
simultaneous equations – one from each position in the vectors – in c1,
c2 and c3:

2c1 + 3c2 + c3 = 0

3c1 + 7c2 − 6c3 = 0

−c2 + 3c3 = 0

Solving we find solutions not all 0, e.g., c1 = 5, c2 = −3 and c3 = −1,
proving that the given set of vectors is not linearly independent.

26. Determine the linear transformation of R3 that maps the standard
basis vectors

[1 0 0]T [0 1 0]T [0 0 1]T

to the respective vectors

[−1 − 1 1]T [−2 3 2]T [−3 1 − 2]T

Answer : The required linear transformation is defined by the matrix
whose columns are, respectively, the images of the successive basis
vectors. In particular, then, its matrix is −1 −2 −3

−1 3 1
1 2 −2
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27. What is the equation of the normal to the parabola

y = 2x2 + 3

at the point (2, 11)?

Answer : dy
dx = 4x, so at the point (2, 11) the gradient of the tangent is

4× 2 = 8. The gradient of the normal, therefore, is − 1
8 . Its equation,

accordingly, is

y − 11

x− 2
= −1

8
or x+ 8y − 90 = 0

28. If x and y are related by the equation

xy + x+ y = 1

find a formula for dy
dx .

Answer : Differentiating the equation throughout with respect to x:

(
d

dx
x)y + x(

d

dx
y) +

d

dx
x+

d

dx
y =

d

dx
1

which simplifies to

y + x
dy

dx
+ 1 +

dy

dx
= 0

giving
dy

dx
= −y + 1

x+ 1

29. The formula for the height at time t of a projectile shot vertically
upward from the ground with initial velocity u is

h = ut− 1

2
gt2

assuming only the action of gravitational acceleration g (ignoring wind
resistance and other factors).

What is the velocity of the projectile at time t? What is the maximum
height reached by the projectile?

Answer : Its velocity at time t is

dh

dt
= u− gt

When the projectile attains maximum height, its velocity is 0.
Therefore, u− gt = 0, implying that t = u

g . Therefore, the maximum 883
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height reached by the projectile is obtained by substituting t = u
g in

the formula for its height, which gives the maximum height as

u
u

g
− 1

2
g

(
u

g

)2

=
u2

g
− u2

2g
=
u2

2g

30. At what points do the curves y = sinx and y = cosx meet for values
of x between 0 and 2π? What angles do they make at these points?

-1

(π/4, 1/  2)

π/20 3π/2 2π0 π
A

B

A-B

cos x sin x

1

Figure C.4: Graphs of sinx and cosx (sketch, not exact).

Answer : When the curves (see Figure C.4) meet, their y-values are
equal, so sinx = cosx, giving tanx = sin x

cos x = 1. The two values
in the interval [0, 2π] where tanx = 1 are π

4 and 5π
4 . Therefore,

the two points at which the curves meet are (π4 ,
1√
2
) and ( 5π

4 ,−
1√
2
)

(cos π4 = sin π
4 = 1√

2
and cos 5π

4 = sin 5π
4 = − 1√

2
).

For the first curve dy
dx = cosx, while for the second dy

dx = − sinx. At
the point of intersection (π4 ,

1√
2
), therefore, the gradients of the two

curves are cos π4 = 1√
2

and − sin π
4 = − 1√

2
, respectively.

If the tangent lines at (π4 ,
1√
2
) make angles A and B, respectively, with

the x-axis, then the gradients are precisely the tan of these angles.
Therefore, tanA = 1√

2
and tanB = − 1√

2
(B is a negative angle). The

angle between the curves – which by definition is the angle between
their tangents – at (π4 ,

1√
2
) is A−B. Now,

tan(A−B) =
tanA− tanB

1 + tanA tanB
=

1√
2

+ 1√
2

1− 1√
2

1√
2

= 2
√

2

which means A − B = tan−1 2
√

2 = tan−1 2.828 = 1.231 radians or
70.526◦ (approximately). The angle between the curves at the other
point of intersection is the same by symmetry.
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