
Advanced Methods in Computer Graphics

Ramakrishnan Mukundan

Advanced Methods
in Computer Graphics

With examples in OpenGL

123

R. Mukundan
Department of Computer Science and Software Engineering
University of Canterbury
Christchurch, New Zealand

ISBN 978-1-4471-2339-2 e-ISBN 978-1-4471-2340-8
DOI 10.1007/978-1-4471-2340-8
Springer London Dordrecht Heidelberg New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2012931936

© Springer-Verlag London Limited 2012
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms of licenses issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

To my daughter
Lalitha

Preface

The field of Computer Graphics has evolved rapidly over the past decade following
the development of a large collection of algorithms and techniques for various appli-
cations in modelling, animation, visualisation, real-time rendering and game engine
design. Advances in graphics hardware capabilities and processor technology have
continuously fuelled this growth. As a result, this field continues to have enormous
potential for further research and development. Computer graphics has also been
one of the popular subjects in the computer science and computer engineering
disciplines for several years. It is a field where one could always find new and
interesting ideas, elegant algorithms and robust implementations.

I have been teaching both introductory and advanced courses on computer
graphics for the past 12 years, and have constantly observed the enthusiasm
of students in learning as well as mastering various techniques used for three-
dimensional modelling, rendering and animation. The visual effects some of these
methods produce captivate their interest, and motivate them to further study and
research more advanced techniques. This book evolved from a compilation of my
lecture notes and reference material for a graduate course in advanced computer
graphics taught in the Department of Computer Science and Software Engineering
at the University of Canterbury. The primary aim of this book project has been
to develop a reference text suitable for both students and researchers, providing
an in-depth and comprehensive coverage of important methods that are useful
in the field of character animation. Working towards this goal, I soon realised
that a book covering a large number of subfields ranging from physically based
simulation to non-photorealistic rendering would be a highly ambitious project. This
book includes a selection of topics which I consider as fundamental to the area of
animation and rendering, and I hope that it will contribute to a deeper and broader
understanding of key algorithms used in advanced computer graphics.

I am very much indebted to the graduate students and staff in the Department
of Computer Science and Software Engineering, University of Canterbury, for
their support, valuable feedback, and encouragement. My sincere thanks go to
Dr. Richard Lobb (Adjunct Senior Fellow, Department of Computer Science and
Software Engineering, University of Canterbury) for devoting so much of his

vii

viii Preface

valuable time and expertise for reviewing the manuscript. I am thankful to Dr.
Christian Long (Department of English, University of Canterbury), for copy-editing
the manuscript. His thorough and meticulous checking of spelling, punctuation and
grammar has helped improve the clarity of the material presented.

I would like to thank the editorial team members for their help throughout this
book project. While the manuscript was being prepared, a series of unfortunate
events, including the passing away of my mother, and two major earth quakes in
Christchurch, brought the progress to a standstill for several months. Special thanks
to Helen Desmond and Beverley Ford for their continuous encouragement. They
showed a tremendous amount of patience, and always so kindly agreed to extend
the manuscript submission deadline a number of times.

I am very grateful to my family for their endless support. I greatly appreciate their
patience and understanding throughout the time when I was obsessed with writing
this book.

Department of Computer Science R. Mukundan
and Software Engineering
University of Canterbury
Christchurch, New Zealand

Contents

1 Introduction . 1
1.1 Advanced Computer Graphics . 1
1.2 Supplementary Material . 2
1.3 Notations .. 2
1.4 Contents Overview . 3

2 Mathematical Preliminaries . 5
2.1 Points and Vectors . 5
2.2 Signed Angle and Area . 9
2.3 Lines and Planes . 11
2.4 Intersection of 3 Planes . 14
2.5 Curves .. 16
2.6 Affine Transformations .. 17
2.7 Affine Combinations . 19
2.8 Barycentric Coordinates . 22
2.9 Basic Lighting . 24
2.10 Summary .. 26
2.11 Supplementary Material for Chap. 2 . 26
2.12 Bibliographical Notes . 29
References . 29

3 Scene Graphs . 31
3.1 The Basic Structure of a Scene Graph . 31
3.2 Transformation Hierarchy .. 33

3.2.1 A Mechanical Part . 34
3.2.2 A Simple Character Model. 35
3.2.3 A Planetary System . 36

3.3 Relative Transformations .. 38
3.4 Bounding Volume Hierarchy .. 40
3.5 Sample Implementation . 43

3.5.1 Group Node .. 43
3.5.2 Object Node . 44

ix

x Contents

3.5.3 Camera Node . 45
3.5.4 Light Node . 45

3.6 First-Person View . 47
3.7 Summary .. 49
3.8 Supplementary Material for Chap. 3 . 49
3.9 Bibliographical Notes . 51
References . 52

4 Skeletal Animation . 53
4.1 Articulated Character Models . 53
4.2 Vertex Blending .. 55
4.3 Skeleton and Skin. 57
4.4 Vertex Skinning .. 59

4.4.1 The Bind Pose . 59
4.4.2 Mesh Vertex Transformation.. 60

4.5 Vertex Skinning Using Scene Graphs. 62
4.6 Transformation Blending .. 64
4.7 Keyframe Animation . 66
4.8 Sample Implementation of Vertex Skinning .. 69

4.8.1 Skeleton Node . 69
4.8.2 Skinned Mesh Node . 69

4.9 Summary .. 72
4.10 Supplementary Material for Chap. 4 . 74
4.11 Bibliographical Notes . 76
References . 76

5 Quaternions . 77
5.1 Review of Complex Numbers . 77
5.2 Quaternion Algebra .. 79
5.3 Quaternion Transformation . 81
5.4 Generalized Rotations . 83

5.4.1 Euler Angles . 84
5.4.2 Angle-Axis Transformation .. 86

5.5 Quaternion Rotations . 88
5.5.1 Quaternion Transformation Matrix . 90
5.5.2 Quaternions and Euler Angles . 91
5.5.3 Negative Quaternion . 92

5.6 Rotation Interpolation . 93
5.6.1 Euler Angle Interpolation . 95
5.6.2 Axis-Angle Interpolation.. 96
5.6.3 Quaternion Linear Interpolation (LERP) . 98
5.6.4 Quaternion Spherical Linear Interpolation (SLERP) 99

5.7 Quaternion Exponentiation .. 101
5.8 Relative Quaternions . 102
5.9 Dual Quaternions . 104

5.9.1 Dual Numbers . 104

Contents xi

5.9.2 Algebra of Dual Quaternions . 105
5.9.3 Transformations Using Dual Quaternions.. 108

5.10 Summary .. 109
5.11 Supplementary Material for Chap. 5 . 110
5.12 Bibliographical Notes . 111
References . 112

6 Kinematics . 113
6.1 Robot Manipulators . 113
6.2 Forward Kinematics . 115

6.2.1 Joint Chain in Two Dimensions . 115
6.2.2 Joint Chain in 3D Space. 116

6.3 Linear and Angular Velocity . 118
6.3.1 Velocity in Two Dimensions . 119
6.3.2 Velocity Under Euler Angle Transformations.. 120
6.3.3 Quaternion Velocity . 121
6.3.4 The Jacobian .. 123

6.4 Inverse Kinematics . 124
6.4.1 2-Link Inverse Kinematics . 125
6.4.2 n-Link Inverse Kinematics . 126

6.5 Gradient Descent . 128
6.6 Cyclic Coordinate Descent . 130
6.7 Circular Alignment Algorithm .. 132
6.8 Summary .. 135
6.9 Supplementary Material for Chap. 6 . 135
6.10 Bibliographical Notes . 136
References . 136

7 Curves and Surfaces . 139
7.1 Polynomial Interpolation .. 139
7.2 Cubic Parametric Curves . 141
7.3 Parametric Continuity . 145
7.4 Hermite Splines . 147
7.5 Cardinal Splines . 149
7.6 Bezier Curves . 151

7.6.1 Cubic Bezier Splines . 151
7.6.2 de-Casteljau’s Algorithm . 154
7.6.3 Rational Bezier Curves . 156

7.7 Polynomial Interpolants . 156
7.8 B-Splines . 159

7.8.1 Basis Functions . 160
7.8.2 Approximating Curves . 163
7.8.3 NURBS . 166

7.9 Surface Patches . 167
7.10 Coons Patches. 170
7.11 Bi-Cubic Bezier Patches. 172

xii Contents

7.12 Summary .. 174
7.13 Supplementary Material for Chap. 7 . 174
7.14 Bibliographical Notes . 177
References . 177

8 Mesh Processing . 179
8.1 Mesh Representation . 179
8.2 Polygonal Manifolds . 183
8.3 Mesh Data Structures . 186

8.3.1 Face-Based Data Structure . 187
8.3.2 Winged-Edge Data Structure . 188
8.3.3 Half-Edge Data Structure . 190

8.4 Mesh Simplification . 194
8.4.1 Vertex Decimation .. 194
8.4.2 Edge Collapse Operation. 196

8.5 Mesh Subdivision .. 201
8.5.1 Subdivision Curves . 201
8.5.2 The Loop Subdivision Algorithm . 203
8.5.3 Catmull-Clark Subdivision.. 205
8.5.4 Root-3 Subdivision .. 207

8.6 Mesh Parameterization . 209
8.6.1 Barycentric Embedding . 210
8.6.2 Spherical Embedding.. 214

8.7 Polygon Triangulation .. 215
8.7.1 Polygon Types . 216
8.7.2 Edge-Flip Algorithm . 218
8.7.3 Three Coins Algorithm.. 219
8.7.4 Triangulation of Monotone Polygons . 222

8.8 Summary .. 224
8.9 Supplementary Material for Chap. 8 . 226
8.10 Bibliographical Notes . 228
References . 229

9 Collision Detection . 231
9.1 Bounding Volumes . 231

9.1.1 Axis Aligned Bounding Box (AABB) . 232
9.1.2 Minimal Bounding Sphere . 232
9.1.3 Oriented Bounding Box (OBB). 237
9.1.4 Discrete Oriented Polytope (k-DOP) . 239
9.1.5 Convex Hulls . 241

9.2 Intersection Testing . 243
9.2.1 AABB Intersection . 243
9.2.2 OBB Intersection . 246
9.2.3 Sphere Intersection . 251
9.2.4 k-DOP Intersection .. 252
9.2.5 Triangle Intersection . 253

Contents xiii

9.3 Bounding Volume Hierarchies . 257
9.3.1 Top-Down Design . 258
9.3.2 Bottom-Up Design . 259
9.3.3 Collision Testing Using Hierarchy Traversal 260
9.3.4 Cost Function .. 262

9.4 Spatial Partitioning . 263
9.4.1 Octrees . 263
9.4.2 k-d Trees . 267
9.4.3 Boundary Interval Hierarchy.. 271

9.5 Summary .. 273
9.6 Supplementary Material for Chap. 9 . 273
9.7 Bibliographical Notes . 275
References . 276

Appendices . 277

Appendix A: Geometry Classes . 279
A.1 Point3 Class . 279
A.2 Vec3 Class. 281
A.3 Triangle Class . 282
A.4 Matrix Class . 284

Appendix B: Scene Graph Classes . 287
B.1 GroupNode Class . 287
B.2 ObjectNode Class . 289
B.3 CameraNode Class . 290
B.4 LightNode Class . 291

Appendix C: Vertex Skinning Classes . 293
C.1 SkeletonNode Class . 293
C.2 Skeleton Class . 296
C.3 SkinnedMesh Class . 297

Appendix D: Quaternion Classes . 301
D.1 Quaternion Class. 301
D.2 Dual Quaternion Class. 304

Index . 307

Chapter 1
Introduction

1.1 Advanced Computer Graphics

Computer graphics algorithms are being increasingly used in many scientific and
technological areas, with an explosive growth in applications requiring three-
dimensional rendering and animation. The expansion of computer graphics into
diverse and interdisciplinary areas is the result of many factors such as the ever
increasing power and capability of the graphics hardware, decreasing hardware
costs, availability of a wide range of software tools, research advancements in the
field, and significant improvements in graphics application programming interface
(API). Additionally, vast amounts of resources including images, 3D models, and
libraries are now easily available to developers and researchers for their work. With
the emergence of programmable graphics hardware, the power of graphics APIs to
render complex models and scenes has greatly increased, and it has become easier to
create faster and robust implementations of several advanced algorithms. Following
these developments, there is also an increasing need for reference books that give
an in-depth coverage of advanced methods that are fundamental to many application
domains.

Advanced computer graphics is a field that encompasses a vast range of topics
and a large number of subfields such as game engine development, real-time
rendering, global illumination methods and non-photorealistic rendering. Indeed,
this field includes a large body of concepts and algorithms not generally covered in
introductory graphics texts that deal primarily with basic transformations, projec-
tions, lighting, three-dimensional modelling techniques, texturing and rasterization
algorithms.

This book aims to provide a comprehensive treatment of the theoretical concepts
and associated methods related to four core areas: articulated character animation,
curve and surface design, mesh processing, and collision detection. The area of
character animation is further subdivided into scene graphs, skeletal animation,
quaternion rotations and kinematics. A principal objective of this book is to serve as
a reference text for both students and researchers. It is designed for courses that build

R. Mukundan, Advanced Methods in Computer Graphics: With examples in OpenGL,
DOI 10.1007/978-1-4471-2340-8 1, © Springer-Verlag London Limited 2012

1

2 1 Introduction

upon introductory computer graphics concepts. The topics discussed in the book are
commonly covered in graduate or advanced undergraduate graphics courses. These
include the theoretical as well as the implementation aspects of several algorithms.
To help students understand the concepts clearly, a set of demonstration programs
is included with each chapter. Necessary class libraries giving the implementations
of important methods of each class are also provided. Some of the concepts that
have recently found a great deal of importance in research such as dual quaternion
transformations, and bounding interval hierarchies are also presented.

1.2 Supplementary Material

Each chapter is accompanied by a collection of software modules and demonstration
programs that show the details and working of key algorithms. All programs are
written in CCC. The reader is assumed to be familiar with the basic OpenGL
library, which is a easy-to-program, widely accepted cross platform API for devel-
oping graphics applications. To keep the implementations simple, shader language
functions or any other OpenGL extensions are not used. The source codes including
relevant class definitions and input files can be downloaded from Springer’s website,
http://extras.springer.com/978-1-4471-2339-2.

The programs are written entirely by the author, with the primary aim of
motivating students to explore further each technique, and to implement their own
creative ideas. They are just tools which developers and researchers could use to
build larger frameworks or to try better solutions. A simple programming approach
is used so that students with minimal knowledge of C/CCC language and OpenGL
will be able to start using the code and work towards more complex or useful
applications. None of the software is optimized in terms of algorithm performance
or speed. Similarly, object oriented programming concepts are not heavily used,
leaving room for a lot of further development.

1.3 Notations

In order to have a clear distinction between points, vectors and other mathematical
entities, the following notation is normally used in this book. Note that in excep-
tional cases, a different notation may be used in each of the following categories to
avoid ambiguity. For example, a tangent vector to a curve may be denoted by T(t)
instead of t(t).

Point: A point is generally denoted by an uppercase letter in italics as P. The three-
dimensional coordinates of P will be written as (xp, yp, zp). The vector representation
of P having the same components as above will be denoted as p. The coordinates
of the point P1 will be written as either (xp1, yp1, zp1) or, if there is no ambiguity, as
simply (x1, y1, z1).

http://extras.springer.com/978-1-4471-2339-2

1.4 Contents Overview 3

Vector: A vector will be denoted by a lowercase letter in italics and bold font as v.
Its vector components will be noted as (xv, yv, zv).

Complex number: Complex numbers are treated as two-dimensional vectors and
denoted using a lowercase letter in italics and bold font as z.

Quaternions: Uppercase letters in italic font (such as Q) will be used to denote
quaternions. Dual-quaternions will be denoted using uppercase letters in bold and
italic font as Q.

Line segment: A line segment will be noted using its end points as AB.

Triangle: A triangle will be denoted using its vertices as ABC and its area as
�ABC. A triangle may also be named using an uppercase letter in italics as T.

Plane: Uppercase Greek symbols such as � , …, will be used for denoting planes
and general polygonal surface elements.

Matrices: Matrices will be denoted using uppercase letters in bold font as M.

1.4 Contents Overview

This section gives an outline of subsequent chapters of the book. Chapter 2 should
be treated as revision material on analytical properties of geometrical primitives and
may be skipped if you have a good mathematical background. Chapters 3, 4, 5, 6
are closely related to the area of character animation. Chapters 7, 8, 9 deal with
mutually independent topics, and can be read separately in any order.

Chapter 2 – Mathematical Preliminaries: This chapter outlines important math-
ematical concepts related to points, vectors, transformations, lines and planes that
are fundamental to several methods in computer graphics. Subsequent chapters in
the book make use of the results presented here.

Chapter 3 – Scene Graphs: This chapter introduces scene graphs and gives
examples to show their importance in representing transformation hierarchies in
articulated models. A sample implementation of the basic scene graph structure is
provided.

Chapter 4 – Skeletal Animation: This chapter discusses the animation of two
different types of articulated character models. The processes of vertex blending,
vertex skinning and keyframing are introduced. The chapter also gives a sample
implementation of a skeleton animation module.

Chapter 5 – Quaternions: Quaternions are extensively used in animations to
represent three-dimensional rotations. This chapter gives a comprehensive coverage
of quaternion algebra, transformations and quaternion based methods for rotation
interpolation. A recently introduced concept of dual quaternions is also presented.

4 1 Introduction

Chapter 6 – Kinematics: This chapter presents forward and inverse kinematics
solutions for animating a joint chain. Iterative algorithms suitable for graphics
applications are also presented.

Chapter 7 – Curves and Surfaces: This chapter gives an in-depth treatment of
parametric curves, splines and polynomial interpolants. Fundamental techniques in
curve and surface design using Hermite splines, cardinal splines and B-splines are
presented in detail.

Chapter 8 – Mesh Processing: This chapter discusses mesh data structures
and algorithms. Important edge-based data structures useful for processing adja-
cency queries are introduced. Algorithms for mesh simplification, subdivision and
parameterization are presented. The chapter also outlines methods for polygon
triangulation, which is generally a key component of mesh processing algorithms.

Chapter 9 – Collision Detection: This chapter details commonly used bounding
volume representations of objects in collision detection algorithms, and presents the
computation of bounding volume overlap tests. Bounding volume hierarchies and
spatial partitioning trees are also discussed in detail.

Chapter 2
Mathematical Preliminaries

Overview

Mathematical operations on points, vectors and matrices are needed for processing
information related to geometrical objects. Even in the modelling of a simple three-
dimensional scene, vectors and matrices play an important role in specifying an
object’s position, orientation and transformations. Methods for lighting, intersection
testing, projections, etc., use a series of vector operations. This chapter gives an
overview of computations using geometrical primitives and shapes that form the
basis for several algorithms presented in subsequent chapters of the book.

Parametric representations are often used in methods involving geometrical
primitives. This chapter deals with analytical equations of lines, planes and curves,
and their applications in geometrical computations. Properties of three-dimensional
transformations are discussed using their matrix representations. The chapter also
introduces concepts such as signed area and distance, affine combinations of points
and barycentric coordinates.

2.1 Points and Vectors

A point is the most fundamental graphics primitive, and is represented in a three-
dimensional Cartesian coordinate system by the 3-tuple (x, y, z), where x, y, z
denote the distances of the point from the origin of the system along the respective
axes directions. In graphics, we commonly use an extended coordinate system,
where the same point is denoted by the 4-tuple (x, y, z, 1). This representation is
called the homogeneous coordinate system. Homogeneous coordinates provide a
unified and elegant framework for representing different types of transformations
and projections that are commonly applied to both points and vectors (Box 2.1).

R. Mukundan, Advanced Methods in Computer Graphics: With examples in OpenGL,
DOI 10.1007/978-1-4471-2340-8 2, © Springer-Verlag London Limited 2012

5

6 2 Mathematical Preliminaries

Box 2.1 Homogeneous Coordinate System

A 3D point given by homogeneous coordinates (a, b, c, d) where d is non-
zero, has an equivalent representation in Cartesian coordinates given by (a/d,
b/d, c/d).
The 4-tuple (a, b, c, 0) denotes a point at infinity that has associated with it a
directional vector (a, b, c).
The many-one mapping from homogeneous to Cartesian space is shown
below:

(hx, hy, hz, h)) 3D Point (x, y, z) for all non-zero values of h.
(x, y, z, w)) 3D Point (x/w, y/w, z/w) if w ¤ 0.
(x, y, z, 0)) 3D Vector (x, y, z).

xz

y

Q

P

P-Q

xz

y

Q

P

P+Q

xz

y

q

p

p+q
a b c

Fig. 2.1 Geometric interpretation of (a) subtraction of a point from another, (b) addition of two
points given in homogeneous coordinates, and (c) addition of two vectors

We will now look at the geometrical interpretations of operations of addition and
subtraction on homogeneous coordinates. When we subtract a point Q D (xq, yq,
zq, 1) from the point P D (xp, yp, zp, 1), we get a vector P�Q which has components
(xp�xq, yp�yq, zp�zq, 0). This vector originates from the point Q and is directed

towards the point P, and is denoted as
!

QP . The direct addition of two points P
and Q is not a geometrically valid operation, as it can produce different results
depending on the coordinate reference frame used. If we use the homogeneous
coordinate representation of P and Q as given above, the operation of addition yields
(xp C xq, yp C yq, zp C zq, 2), which is actually the midpoint of the line segment
PQ (Fig. 2.1b). Points can, however, be added in a special way called the affine
combination (see Sect. 2.7) that gives a well-defined point. The addition of two
vectors p D (xp, yp, zp, 0) and q D (xq, yq, zq, 0) is always a valid operation that
produces another vector p C q D (xp C xq, yp C yq, zp C zq, 0). This vector is along
the diagonal of the parallelogram formed by p and q.

2.1 Points and Vectors 7

v

u

u•v= cosq
|u×v|= 2(ABC)

n

s
n

s
rA

B

C

a b c

∇

θ

u×v

(s•n)n

Fig. 2.2 (a) Dot-product and cross-product of two vectors u,v. (b) Projection of a vector s on a
unit vector u. (c) Reflection of a vector s with respect to a unit vector n

A

B

C

u

vn

Fig. 2.3 The normal vector
and area of a triangle
specified using vertex
coordinates can be computed
with the help of two vectors
defined along the edges

Like addition, the operations of negation and scalar multiplication should also
be carefully performed on points represented in homogeneous coordinates. It can
be seen that the operation of negation given by �P D (�xp, �yp, �zp, �1) in effect
yields the same point P. In general, the operation of scalar multiplication defined as
sP D (sxp, syp, szp, s) for any non-zero value of s, gives the same point P.

We will often require the computation of angles between two vectors. This and
other operations, such as projection, require vectors to be normalized first. The
normalization of a vector is the process of converting it to a unit vector that has
a magnitude 1. In order to normalize a vector p D (xp, yp, zp, 0), we simply divide
each element by the vector magnitude d given by

d D jpj D
q

x2
p C y2

p C z2
p (2.1)

If v is a two-dimensional vector (xv, yv), then the vector v? D (�yv, xv) is
perpendicular to and on the left side of v. The vector v? is sometimes called the
perp-vector. It may be noted that v?? D (�xv, �yv) D �v.

Two important vector operations used in graphics are the dot-product and the
cross-product. Given two unit vectors u D (xu, yu, zu, 0) and v D (xv, yv, zv, 0), their
dot-product u•v D xuxv C yuyv C zuzv is equal to the cosine of the angle between
the vectors. The cross-product u � v D (yuzv � yvzu, zuxv � zvxu, xuyv � xvyu, 0) is a
vector perpendicular to both u and v, so that u, v, u � v form a right-handed system
(Fig. 2.2). Obviously, this operation is useful for computing the surface normal
vector of a planar element defined by two vectors u and v. The magnitude of u � v
(denoted by ju � vj) gives twice the area of the triangle formed by the two vectors
(Figs. 2.2a and 2.3). For unit vectors, ju � vj is also equal to the sine of the angle
between the two vectors (Box 2.2).

8 2 Mathematical Preliminaries

Box 2.2 Vector Products

The following facts are commonly used in computations involving vectors:

If u is a unit vector, then u•u D 1.
If u is perpendicular to v, then u•v D 0.
If u is parallel to v, then u � v D 0. In particular, u � u D 0.
The magnitude of u � v is the area of the parallelogram formed by u, v.
The scalar triple product u•(v � w) gives the volume of the parallelepiped
formed by the vectors u,v and w. The value does not change with a cyclic
permutation of the vectors: u•(v � w) D v•(w � u) D w•(u � v).

u•(v � w) can be written as the determinant

ˇ̌
ˇ̌
ˇ̌
xu yu zu

xv yv zv

xw yw zw

ˇ̌
ˇ̌
ˇ̌

The vector triple product u � (v � w) is the same as (u•w)v � (u•v)w.
The magnitudes of the dot and cross products of two vectors u and v are
related by the equation: ju � vj2 D juj2jvj2 � (u•v)2.

We saw in the previous paragraph that both the dot and the cross products of
two unit vectors can give us the information about the angle between them in the
form of trigonometric functions cos() and sin() respectively. Note that the
function acos(u•v) returns the angle in the range [0,] only. Neither can we
use asin(ju � vj) to determine the angle correctly because the resulting value will
always be in the restricted range [0, /2] (even though asin() returns a value in
the range [� /2, /2], since ju � vj is always positive, so would be the result). We
will explore ways to compute the true angle in the range [� ,] in Sect. 2.2.

If we represent the vertices of a triangle by points A D (xa, ya, za), B D (xb, yb, zb),
C D (xc, yc, zc), the surface normal vector and the area of the triangle can be obtained
from the cross product of two vectors u, v constructed as shown in Fig. 2.3.

The normal vector n of the triangle in Fig. 2.3 has components (xn, yn, zn)
given by

xn D ya .zb � zc/ C yb.zc � za/ C yc.za � zb/

yn D za .xb � xc/ C zb.xc � xa/ C zc.xa � xb/

zn D xa .yb � yc/ C xb.yc � ya/ C xc.ya � yb/ (2.2)

The above vector is the same as u � v. The area of the triangle ABC can be
computed from the above components of the normal vector as follows:

�ABC D 1

2

q
x2

n C y2
n C z2

n D 1

2
ju � vj (2.3)

2.2 Signed Angle and Area 9

Let us turn our attention to another important vector operation called projection.
A vector s can be projected onto a unit vector n, with the projected vector given
by (s•n)n (see Fig. 2.2b). This also implies that the length of the projection of s on
a unit vector n is s•n. We can use this fact to express any vector s in terms of its
projections along three mutually orthogonal unit vectors u,v, and w as

s D .s � u/u C .s � v/v C .s � w/w (2.4)

If s is also a unit vector, then the terms s•u, s•v, s•w are called the direction
cosines of the vector in the coordinate space spanned by the unit vectors u, v, and
w. In a new coordinate space defined by u, v, and w, the components of any vector
s are therefore given by (s•u, s•v, s•w).

The reflection of the vector s with respect to a unit vector n is the vector r that lies
on the plane containing s and n as shown in Fig. 2.2c, such that the angle between r
and n is the same as the angle between s and n. The reflection vector is commonly
used in lighting calculations and ray tracing, where s stands for the vector towards a
light source, and n is the surface normal vector. The vector components of r can be
computed using the formula

r D 2.s � n/n � s (2.5)

2.2 Signed Angle and Area

In the previous section, we noted that the computation of the angle between two
vectors using acos() or asin() functions always yielded only positive values
in the range [0,]. One may suggest using the function atan2(ju � vj, u•v). This
form of computation of angle has the advantage that neither u nor v needs to be
normalized. However, this function also returns values in the positive range [0,]
only, because the numerator ju � vj is always positive. The difference between the
positive and negative sense of angle is completely view dependent. For vectors
residing on the two-dimensional xy-plane, the direction to the viewer is always
implied to be the C z direction. In a general three-dimensional case, we need to
specify this view direction in order to determine the signed angle in the range
[� ,] between two given vectors.

If we denote the view direction by w (Fig. 2.4), the angle measured from u to
v is positive if the sense of rotation from u to v is anticlockwise when viewed
from w. In other words, if w is in the same direction as u � v, then the angle is
positive, otherwise negative. We can now define the signed angle between u and v
with respect to the view vector w as

� D sign..u � v/ � w/:cos�1

�
u � v
jujjvj

�
(2.6)

10 2 Mathematical Preliminaries

A

B

C

uv

For this view direction, both
angle and area are positive.

For this view direction, both
angle and area are negative.

w

q

u×v

Fig. 2.4 The angle between two vectors and the area of the triangle formed by the vectors can
have either a positive or a negative sign depending on the orientation of the vertices with respect to
a given direction

If u and v are two-dimensional vectors on the xy-plane, we can have the following
simplified form for the signed angle:

� D atan2.xuyv � xvyu; xuyu C xvyv/ (2.7)

We can also define a view-dependent sign for the area of a triangle based on the
above concept. If the view vector w has components (xw, yw, zw, 0), Eq. 2.3 now gets
modified as follows:

�ABC D fsign.xnxw C ynyw C znzw/g
�

1

2

q
x2

n C y2
n C z2

n

�

D sign.n � w/

�
1

2
ju � vj

�
(2.8)

where xn, yn, zn are computed from the vertex coordinates using Eq. 2.2.
For a triangle on the xy-plane, the right-hand side of the above equation reduces

to zn/2. Thus the signed area of a triangle with vertices A D (xa, ya), B D (xb, yb),
C D (xc, yc) is

�ABC D 1

2
.xa .yb � yc/ C xb .yc � ya/ C xc .ya � yb// (2.9)

The signed area is positive only if the vertices A, B, C are oriented in an
anticlockwise sense with respect to the view direction. The signed area of a triangle
is useful in determining if a point is inside the triangle or not. This method is
discussed in detail in Sect. 2.8. The concepts presented above are also used for

2.3 Lines and Planes 11

defining the orientation of three points. Three points A, B, C are said to be oriented
in the anticlockwise sense with respect a direction w if

..B � A/ � .C � A// � w > 0: (2.10)

If the above condition is satisfied, the three points are said to make a left turn
when viewed from the direction w. With reference to Fig. 2.4, the equivalent
condition in vector notation is (u � v)•w > 0. On the xy-plane, the three points make
a left turn if

xa.yb � yc/ C xb.yc � ya/ C xc.ya � yb/ > 0: (2.11)

The reversal of the inequality implies a right turn. The points are collinear if
the above expression yields 0. In the next section we will use vector notations and
related operations to get concise forms of line and plane equations.

2.3 Lines and Planes

Lines and planes form integral parts of three-dimensional models and virtual worlds.
A good understanding of line and plane equations and their analytical properties is
essential for the development of many applications. For example, even a simple ray
tracing application requires the computation of several line-plane intersections.

A straight line segment can be defined using two points, say P D (xp, yp, zp, 1)
and Q D (xq, yq, zq, 1). The equation of this line in terms of a single parameter t can
be expressed as

x D xp C t.xq � xp/I y D yp C t.yq � yp/I z D zp C t.zq � zp/ (2.12)

For any value of t between 0 and 1, the above set of equations gives the
coordinates of a point on the straight line that lies between P and Q. We can also
write the equation of this line segment using vector notation as follows:

r D p C tm; 0 � t � 1: (2.13)

where r D (x, y, z, 1), p D (xp, yp, zp, 1) and m D Q�P. The above equation can also
be used to represent a ray starting from the point p and having a direction given by
the vector m. In this representation, m is generally a unit vector and t can have any
positive value. The line given in Eq. 2.12 can be rewritten in the standard form by
eliminating t:

x � xp

xq � xp

D y � yp

yq � yp

D z � zp

zq � zp

(2.14)

12 2 Mathematical Preliminaries

P

Q

V

S

V

P

n

Q

RD
D

a bFig. 2.5 Computation of
shortest distances of a point V
from (a) a line PQ and (b) a
plane PQR

From the above equation, we immediately get the condition for the collinearity
of three points P D (xp, yp, zp, 1), Q D (xq, yq, zq, 1) and R D (xr, yr, zr , 1):

xr � xp

xq � xp

D yr � yp

yq � yp

D zr � zp

zq � zp

(2.15)

Using Eq. 2.12, we can determine the point S on the line PQ that lies closest to
a general three-dimensional point V D (xv, yv, zv, 1). The shortest distance of the
point V from the line is given by VS (Fig. 2.5), where S is the projection of the point
V on PQ. The point S satisfies the condition that the line segments PQ and VS are
orthogonal to each other. Using this condition, the parametric value t of the point S
can be obtained as follows:

t D .xv � xp/.xq � xp/ C .yv � yp/.yq � yp/ C .zv � zp/.zq � zp/

.xq � xp/2 C .yq � yp/2 C .zq � zp/2
(2.16)

Substitution of the above value in Eq. 2.12 gives the coordinates of the point S.
The shortest (or the perpendicular) distance D of the point V from the line PS is
obtained as the distance jV�Sj.

A plane in three-dimensional space is uniquely defined by three non-collinear
points, or equivalently, by a point P that lies on the plane and its surface normal
vector n. The equation of the plane in terms of the coordinates of the three points
P D (xp, yp, zp, 1), Q D (xq, yq, zq, 1), R D (xr, yr, zr, 1), is given by the determinant

ˇ̌
ˇ̌
ˇ̌
ˇ̌

x y z 1

xp yp zp 1

xq yq zq 1

xr yr zr 1

ˇ̌
ˇ̌
ˇ̌
ˇ̌

D 0: (2.17)

From this equation of the plane, we get the condition for the coplanarity of four
points P, Q, R, S:

ˇ̌
ˇ̌
ˇ̌
ˇ̌

xp yp zp 1

xq yq zq 1

xr yr zr 1

xs ys zs 1

ˇ̌
ˇ̌
ˇ̌
ˇ̌

D 0: (2.18)

2.3 Lines and Planes 13

The determinant is equivalent to (P�Q)•(r � s) C (R�S)•(p � q). The condition
in Eq. 2.18 also points to the fact that the vectors (Q�P) and (R�S) are coplanar.
Thus we can rewrite the above equation using the following scalar triple product:

.R � P / � f.Q � P / � .S � R/g D 0: (2.19)

The surface normal vector n for the above plane can be obtained (similar to
Eq. 2.2), by taking the cross-product of vectors Q�P and R�P. The components
of n written as a column vector are given below:

2
664

xn

yn

zn

0

3
775 D

2
664

.yq � yp/.zr � zp/ � .yr � yp/.zq � zp/

.zq � zp/.xr � xp/ � .zr � zp/.xq � xp/

.xq � xp/.yr � yp/ � .xr � xp/.yq � yp/

0

3
775 (2.20)

The plane equation can be written in point-normal form as

.x � xp/xn C .y � yp/yn C .z � zp/zn D 0 (2.21)

which can always be simplified into a linear equation ax C by C cz C d D 0, or
expressed using vector notation as

.r � p/ � n D 0; or equivalently; r � n D �d; (2.22)

where d D �p•n. The point of intersection of this plane and a ray can be obtained by
substituting the equation of the ray, r D q C t m, in the above equation and solving
for t.

t D �.q � n/ � d

m � n
(2.23)

The denominator in the above equation becomes zero when the line is orthogonal
to n, i.e., parallel to the plane. The shortest distance D of the point v from the plane
(see Fig. 2.5b) is given by the equation

D D .xv � xp/xn C .yv � yp/yn C .zv � zp/znp
x2

n C y2
n C z2

n

D .v � n/ C d

jnj (2.24)

The above term is also called the signed distance of the point v from the
plane, as it assumes a positive value if v is on the same side as n, and a negative
value otherwise. In general, if the plane’s equation is given in the normal form
ax C by C cz C d D 0, where a2 C b2 C c2 D 1, the signed distance of the point
v D (xv, yv, zv) is given by

D D axv C byv C czv C d (2.25)

14 2 Mathematical Preliminaries

P
Q

R

r=P +su+ tv

u

v

(s= 0, t= 0)

(s= 0, t= 1)

(s= 1, t= 0)

Fig. 2.6 Two-parameter representation of a plane

The above expression can be thought of as the dot product between the vector
(a, b, c, d) and (xv, yv, zv, 1), which is the homogeneous representation of v. Note
that the unit normal vector to the plane is given by (a, b, c). Signed distances are
extensively used in collision detection and point inclusion tests using bounding
volumes.

Given three non-collinear points P, Q, R, we can have a parametric representation
of the plane through the points as

r D P C s.Q � P / C t.R � P / D P C s u C tv (2.26)

where u and v are vectors along two sides of the triangle PQR (Fig. 2.6). An
alternate form for the above equation that expresses any point on the plane as a
linear combination of the vertices of the triangle is

r D P .1 � s � t/ C s Q C tR (2.27)

For every point r(s, t) inside the triangle, the following properties hold:

0 � s � 1; 0 � t � 1; 0 � s C t � 1: (2.28)

In addition to the above conditions, points along the edge PQ satisfy the
parametric equation t D 0. Similarly, the edge PR is characterized by the equation
s D 0, and RQ by the property s C t D 1.

2.4 Intersection of 3 Planes

An interesting problem commonly encountered while working with planes is the
computation of the point of intersection (if it exists) where three planes meet.
Even if it is guaranteed that no two planes are parallel, there can be three different
configurations in which three planes can meet (Fig. 2.7).

2.4 Intersection of 3 Planes 15

Fig. 2.7 Three different configurations in which three non-parallel planes can meet

In the first configuration in Fig. 2.7, the lines of intersection formed by taking
two planes at a time coincide with the result that we get a single line of intersection.
In the second configuration, the lines of intersections are parallel even though the
planes are not. It can be easily proven that if two lines of intersection are parallel,
then the third is also parallel to the other two. This situation arises when the three
surface normal vectors of the planes are all coplanar. In the third configuration, the
non-parallel lines of intersection meet at a single point.

Let the three planes be given by the equations (see Eq. 2.22) r•ni D �di, (i D 1, 2,
3) where nis are unit normal vectors. The directions of the three lines of intersection
are then specified by the cross products n1 � n2, n2 � n3, and n3 � n1. The point
of intersection, if it exists, can be expressed as a linear combination of these three
vectors (Goldman 1990):

p D a.n1 � n2/ C b.n2 � n3/ C c.n3 � n1/ (2.29)

The above point lies on all three planes. Substitution in the plane equations gives

bfn1 � .n2 � n3/g D �d1

cfn2 � .n3 � n1/g D �d2

afn3 � .n1 � n2/g D �d3 (2.30)

The scalar triple products on the left side of the above equations are all equal (see
Box 2.2). Equation 2.29 can now be written as

p D �d1.n1 � n2/ � d2.n2 � n3/ � d3.n3 � n1/

n1 � .n2 � n3/
(2.31)

For the first two configurations shown in Fig. 2.7, the vectors n1, n2, n3 are
coplanar, and the denominator of the above equation becomes zero. For the third
configuration, the equation returns a valid point.

16 2 Mathematical Preliminaries

2.5 Curves

In Sect. 2.3, we came across the equation of a straight line expressed in terms of
linear polynomials of a single parameter t (Eq. 2.12). Polynomials of a higher degree
in t can be used to define curves in three-dimensional space. In the most general
form, a curve can be represented as P(t) D (x(t), y(t), z(t)), where x(t), y(t), z(t) are
continuous and differentiable functions of the parameter t. Polynomials of degree
n have the property that their derivatives up to order n�1 exist and are continuous
over any finite interval in the parameter space. We can use the derivatives of the
functions to define the tangential and normal directions to the curve at any point,
and also to construct an orthonormal basis at any point on the curve.

The tangent vector at P(t) is given by the first derivative with respect to t, i.e.,
P0(t) D (x0(t), y0(t), z0(t)). The unit tangent vector is denoted as

T .t/ D P 0.t/
jP 0.t/j (2.32)

The tangent vector represents the local orientation of the curve at a point. If
the parameter t denotes time, then P0(t) represents the instantaneous velocity of
the moving point P(t). The distance travelled from a starting point A D P(t0) to the
current point, or in other words the arc length measured from A, is given by

s.t/ D
tZ

t0

ˇ̌
P 0.u/

ˇ̌
du D

tZ

t0

q
.x0.u//2 C .y0.u//2 C .z0.u//2 du (2.33)

Using the above equation we can express t as a function of arc length s, and
re-parameterize the curve as P(s) D (x(s), y(s), z(s)). The chain rule for differentia-
tion gives

P 0.t/ D P 0.s/s0.t/ D P 0.s/jP 0.t/j (2.34)

from which we find that P0(s) is equivalent to the unit tangent vector T(t). For
convenience, we denote P0(s) by T(s). Since T(s)•T(s) D 1, it immediately follows
that T(s)•T0(s) D 0. Thus the instantaneous rate of change of the tangent direction
is parallel to the normal vector at that point. If the unit normal direction at P(s) is
denoted as N(s), we have

T 0.s/ D d .T .s//

ds
D �.s/N .s/ (2.35)

The proportionality factor �(s) is called the curvature of the curve at P(s). The
curvature is a measure of the deviation of the curve from a straight line. For a straight
line, �(s) D 0 at all points. The magnitude of the curvature is easily obtained as
j�(s)j D jT0(s)j, and the unit normal direction at P(s) is given by

2.6 Affine Transformations 17

Curve Osculating plane

N(s) T(s)

B(s)

Rectifying plane

PFig. 2.8 Frenet frame
attached to a curve at the
point P

N .s/ D P 00.s/

jP 00.s/j D P 0.t/ � .P 00.t/ � P 0.t//
jP 0.t/j jP 00.t/ � P 0.t/j (2.36)

The plane containing the tangent vector and the normal vector is known as the
osculating plane. The cross-product of the two unit vectors T(s) and N(s) gives the
direction of the unit bi-normal vector denoted by B(s):

B.s/ D T .s/ � N .s/ D P 0.s/ � P 00.s/

jP 0.s/ � P 00.s/j D P 0.t/ � P 00.t/
jP 0.t/ � P 00.t/j (2.37)

The three unit vectors T, N, B form an orthonormal basis as shown in Fig. 2.8.
This local reference system is called the Frenet frame. The derivative of the bi-
normal vector B0(s) is perpendicular to both B(s) and T(s), and hence parallel to
N(s):

B 0.s/ D d .B.s//

ds
D ��.s/N .s/ (2.38)

The term �(s) is called the torsion of the curve at s. Torsion is a measure of how
much the curve deviates from the osculating plane.

The plane containing the tangent and binormal vectors is called the rectifying
plane (Fig. 2.8). The plane formed by the normal and binormal vectors is called the
normal plane.

The Frenet frame is useful for defining the local orientation of objects that move
along a curved path. It can also be used for defining the eye-coordinate system for a
camera that undergoes a curvilinear motion.

2.6 Affine Transformations

In this section, we consider linear transformations of three-dimensional points and
vectors. The homogeneous coordinate system (Sect. 2.1) allows all transformations
including translations to be represented using 4 � 4 matrices. We denote a translation

18 2 Mathematical Preliminaries

by a vector v D (xv, yv, zv), by Tv, a rotation about the x-axis by an angle by ™, by
R™(x), and a scaling by a vector k D (xk, yk, zk), by Sk (Box 2.3).

Box 2.3 Fundamental 3D Transformations (Fig. 2.9)

Tv: Translation by an offset vector v (xv, yv, zv) D

2
664

1 0 0 xv

0 1 0 yv

0 0 1 zv

0 0 0 1

3
775

R™(x): Rotation by an angle � about the x-axis D

2
664

1 0 0 0

0 cos � � sin � 0

0 sin � cos � 0

0 0 0 1

3
775

R™(y): Rotation by an angle � about the y-axis D

2
664

cos � 0 sin � 0

0 1 0 0

� sin � 0 cos � 0

0 0 0 1

3
775

R™(z): Rotation by an angle � about the z-axis D

2
664

cos � � sin � 0 0

sin � cos � 0 0

0 0 1 0

0 0 0 1

3
775

Sk: Scaling by factors kx, ky, kz D

2
664

xk 0 0 0

0 yk 0 0

0 0 zk 0

0 0 0 1

3
775

xz

v

xz xz

1

11
xk

yk

zk

q

a b c

Fig. 2.9 Examples showing transformations of (a) a translation by an offset vector v (b) a rotation
about the x-axis by an angle � and (c) scaling by factors kx, ky, kz

2.7 Affine Combinations 19

A linear transformation followed by a translation is called an affine transform. A
general transformation can be given in matrix form as follows:

2
664

x0
p

y0
p

z0
p

1

3
775 D

2
664

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

0 0 0 1

3
775

2
664

xp

yp

zp

1

3
775 (2.39)

In the above equation, the matrix elements aij’s are all constants. (a03, a13,
a23) denote the translation components, and (xp, yp, zp, 1) the point on which the
transformation is applied. The translation parameters do not have any effect on
a vector (xv, yv, zv, 0). Under an affine transformation, line segments transform
into line segments, and parallel lines transform into parallel lines. A fixed point
of a transformation is a point that remains invariant under that transformation. For
example, every point along the x-axis is a fixed point for the transformation R™(x).
Similarly, the origin is a fixed point for the scale transformation. The most general
rotation of an object with the origin as a fixed point, is the rotation by an angle �

about an arbitrary vector v D (xv, yv, zv, 0) passing through the origin. The matrix
for this transformation is given below.

R™.v/ D

2
664

x2
v A C C xvyvA � zvB xvzvA C yvB 0

xvyvA C zvB y2
v A C C yvzvA � xvB 0

xvzvA � yvB yvzvA C xvB z2
vA C C 0

0 0 0 1

3
775 (2.40)

where A D (1�cos™), B D sin™, and C D cos™. A rotation about an axis parallel to the
x-axis, with an arbitrary fixed point P, can be obtained by first applying a translation
T�p from P to the origin, a rotation R™(x) with origin as the fixed point, and finally a
translation Tp back to the original position P. In matrix form, we write the composite
transformation as TpR™(x)Tp

�1. Here T�1 denotes the inverse of the transformation
T. For a translation, the inverse of Tp is T�p; and for a rotation, the inverse of R™(v)
is R�™(v). A transformation of the form TRT-1 is called the conjugate of R.

We have just seen a few examples of affine transformations that are commonly
used for generating new points by transforming existing ones. We could also
combine the coordinates of a set of points using a linear equation to obtain a new
point. Such interpolation methods are discussed in the next section.

2.7 Affine Combinations

A linear combination of a set of points Pi (i D 1,2, : : : n) produces a new point Q as
shown below:

Q D
nX

iD1

wi Pi (2.41)

20 2 Mathematical Preliminaries

Fig. 2.10 (a) Linear interpolation and (b) trigonometric interpolation between two points

where the coefficients (weights) wi are constants. If the weights satisfy the condition

nX
iD1

wi D 1:; (2.42)

then Eq. 2.41 gives an affine combination of points. Additionally, if wi � 0, for all i,
then wi’s form a partition of unity, and Eq. 2.41 is said to give a convex combination
of points. As a special case, when n D 2, we get the formula for linear interpolation
between two points P1 and P2:

Q D .1 � t/P1 C t P2; 0 � t � 1: (2.43)

An interesting variation of the above equation can be derived by expressing the
parameter t as a function of an angle ’, given by t D cos2’. Then the coefficient
(1� t) becomes sin2’, and Eq. 2.43 takes the form Q D sin2’ P1 C cos2’ P2.
However, this trigonometric interpolation formula gives a non-uniform distribution
of points on the line when ’ is varied from 0ı to 90ı in equal steps. A comparison
of linear and trigonometric interpolations is given in Fig. 2.10. In Fig. 2.10a, the
parameter t is varied uniformly in the range [0–1] in steps of 0.1, and in Fig. 2.10b,
the angle ’ is varied uniformly in the range [0–90] in steps of 9ı. Higher order
interpolation between points is discussed in Chap. 7 (Box 2.4).

Box 2.4 Bernstein Polynomials

Given a positive integer value n, we can construct n C 1 polynomials of degree
n of a parameter t as follows:

ˇi;n.t/ D
�

n

i

�
.1 � t/n�i t i ; i D 0; 1; 2; : : : ; n:

2.7 Affine Combinations 21

These polynomials form a partition of unity, i.e.,
nP

iD0

ˇi;n.t/ D 1:

Therefore, they can be used to generate convex combinations of points. Given
n C 1 points Pi, i D 0, : : : ,n, we define a point Q(t) as

Q.t/ D
nX

iD0

ˇi;n.t/ Pi

As the parameter t is varied from 0 to 1, we get a continuous parametric curve
called the Bezier curve. The equations for n D 1, 2, 3 are given below.
First degree (linear): Q(t) D (1�t) P0 C t P1

Second degree (quadratic) : Q(t) D (1�t)2P0 C 2(1�t)t P1 C t2P2

Third degree (cubic) : Q(t) D (1�t)3P0 C 3(1�t)2 t P1 C 3(1�t)t2P2 C t3P3

P1

P3

P2

A B
Q

Fig. 2.11 A bilinear
interpolation scheme first
interpolates along the edges
to get the values at A and B,
and then uses another linear
interpolation along the line
AB to get the value at Q

Given a triangle with vertices P1, P2 and P3, we can perform a bilinear
interpolation between the values defined at the vertices to get the interpolated value
at an interior point Q (Fig. 2.11). Using this scheme, we can compute the colour
value at any point inside a triangle, given the colour values at the vertices. A scan-
line parallel to the base of the triangle sweeps the plane and generates the values of
A and B using the linear interpolation equation in Eq. 2.43 with the same parameter
t. Another linear interpolation between of A and B with a parameter s gives the value
of Q. Thus we get

Q D .1 � s/ f.1 � t/P1 C tP3g C s f.1 � t/P2 C tP3g ; 0 � s; t � 1: (2.44)

The above equation could be simplified into a simple convex combination of
vertex points as

Q D .1 � k1 � k2/P1 C k1P2 C k2P3; 0 � k1; k2; k1 C k2 � 1; (2.45)

where k1 D s(1�t) and k2 D t. The bilinear interpolation of vertex coordinates shown
above can be generalized to interpolate any quantity or attribute inside a triangle,

22 2 Mathematical Preliminaries

given its values at the vertices. Examples of such vertex attributes are colour, texture
coordinates and normal vectors. In the next section, we will consider another closely
related interpolation method for triangles.

2.8 Barycentric Coordinates

The barycentre of a rigid body is its centre of mass. For a triangle, the barycentre
is its centroid. Given vertices P1, P2, P3 of a triangle, the centroid C can be easily
computed as the average of the vertex coordinates (P1 C P2 C P3)/3. Thus C can
be represented as a convex combination of the vertex points. Indeed, Eq. 2.45 has
just shown that any point Q inside the triangle could be expressed as a convex
combination of vertices. If we re-write Eq. 2.45 as

Q D �1P1 C �2P2 C �3P3; 0 � �1; �2; �3 � 1; �1 C �2 C �3 D 1; (2.46)

then the point Q is uniquely specified by a new set of coordinates (�1, �2, �3) defined
by P1, P2, and P3. This local coordinate system is called the barycentric coordinates
for the triangle. Barycentric coordinates are also sometimes referred to as trilinear
coordinates. From Eq. 2.46 we see that the vertices themselves have barycentric
coordinates given by

P1 D .1; 0; 0/

P2 D .0; 1; 0/

P3 D .0; 0; 1/ (2.47)

As seen earlier, the centroid C has barycentric coordinates (1/3, 1/3, 1/3). The
barycentric coordinates of a point Q with respect to P1, P2, P3 have a geometrical
interpretation as the ratios of the areas of triangles QP2P3, QP3P1, QP1P2 to the
area of the triangle P1P2P3. In the following equations, the symbol � denotes the
signed area of a triangle:

�1 D �QP2P3

�P1P2P3

; �2 D �QP3P1

�P1P2P3

; �3 D �QP1P2

�P1P2P3

(2.48)

The barycentric coordinates given in Eq. 2.48 are unique for every point on the
plane of the triangle. They can be directly used to get the interpolated value of
any quantity defined at the vertices of the triangle. If fP1, fP2, fP3 denote the values
of some attribute associated with the vertices, then the interpolated value at Q is
given by

fQ D �1fP1 C �2fP 2 C �3fP 3: (2.49)

2.8 Barycentric Coordinates 23

P1 P2

P3

Q = (l1, l2, l3)

R= l1S1+l2S2+l3S3

R

S3

S2

S1

Fig. 2.12 A one-to-one mapping of points from one triangle to another can be obtained using
barycentric coordinates

Using barycentric coordinates we can establish a one-to-one mapping of points
from within one triangle to another. For any given interior point Q of the first
triangle, we compute the barycentric coordinates. The linear combination of the
vertices of the second triangle with the barycentric coordinates of Q gives the
coordinates of the corresponding point R inside the second triangle (Fig. 2.12).
We can use this mapping to transfer values from the interior of the first triangle
to the second. As an immediate application of this transfer, we can map an image
(or texture) from one triangle to another.

In a simplified two-dimensional case where P1 D (x1, y1), P2 D (x2, y2),
P3 D (x3, y3), Q D (xq, yq), the expressions for the barycentric coordinates of Q
given in Eq. 2.48 assume the following form:

�1 D xq.y2 � y3/ C x2.y3 � yq/ C x3.yq � y2/

x1.y2 � y3/ C x2.y3 � y1/ C x3.y1 � y2/

�2 D xq.y3 � y1/ C x3.y1 � yq/ C x1.yq � y3/

x1.y2 � y3/ C x2.y3 � y1/ C x3.y1 � y2/

�3 D xq.y1 � y2/ C x1.y2 � yq/ C x2.yq � y1/

x1.y2 � y3/ C x2.y3 � y1/ C x3.y1 � y2/
(2.50)

If any of the above quantities is negative, then the point Q lies outside the triangle
P1P2P3. Thus barycentric coordinates find applications in point inclusion tests.
In a general three-dimensional case, however, the area of a triangle computed using
Eq. 2.3 would always be positive, and correspondingly the area ratios in Eq. 2.48
would also be positive. As previously discussed in Sect. 2.2, the computation of
signed areas of triangles requires a view vector w. Since we need this vector to
be fixed with respect to every triangle in Eq. 2.48, we can conveniently choose
w D (P2�P1) � (P3�P1). Now the barycentric coordinates �1, �2 and �3 in Eq. 2.48
can be computed by applying the formula in Eq. 2.8 to each of the triangles QP2P3,
QP3P1, QP1P2 and P1P2P3. If the conditions œ1 C œ2 C œ3 D 1, 0 � �1, �2, �3 � 1

24 2 Mathematical Preliminaries

are met, then Q lies on the plane defined by the points P1, P2, P3, and also lies within
the triangle P1P2P3. Note that in the most general case, the point Q need not be on
the plane of the triangle. Hence we require the additional condition that the sum of
barycentric coordinates equals 1 to ensure that the points are coplanar.

Barycentric coordinates are also useful for finding the centre of a circle that
passes through three non-collinear points, P, Q, R in three dimensions. Denoting
the vectors along the sides of the triangle by a D Q�P, b D R�Q, and c D P�R, the
barycentric coordinates of the centre of the circle are

�1 D �jbj2.c � a/

2ja � bj2

�2 D �jcj2.a � b/

2ja � bj2

�3 D �jaj2.b � c/

2ja � bj2 (2.51)

The centre of the circle is then given by the following linear combination of the
three points:

C D �1P C �2Q C �3R: (2.52)

In the following section, we will look at the application of vectors in the Phong-
Blinn illumination model used for lighting calculations in the OpenGL pipeline.

2.9 Basic Lighting

The hardware accelerated lighting model that is traditionally used in Computer
Graphics applications is based on Phong-Blinn approximation for an omni-
directional point-light source. A local illumination model that does not account for
complex effects such as reflections, refractions, shadows and indirect illumination is
found to be generally adequate for a majority of graphics applications. In this model,
light-material interaction is simply modelled using a component-wise multiplication
of material colour and light colour. We can represent colour by a vector comprising
of red, green and blue components as c D (r, g, b, 0). This vector model can be
further generalized by replacing the fourth component by k that represents the
transparency (or opacity) term which can take non-zero values. In the discussion
that follows, ma, md, ms denote respectively the ambient, diffuse and specular
components of material colour, and Ia, Id, Is the corresponding components of
the light source. Each of these colour components is typically a 3-tuple consisting
of red, green and blue values. For notational convenience, we represent ma by

2.9 Basic Lighting 25

n

r

vLight Vector

s
Reflection Vector

View Vector

Surface Element
P

h

q q f

b

Fig. 2.13 Important vectors
and angles between them,
used in lighting calculations

the vector (rma, gma, bma), Ia by the vector (ria, gia, bia), and so on. The ambient
light-material interaction is then modelled by the component-wise vector product

ma ˝ Ia D .rmaria; gmagia; bmabia/ (2.53)

Figure 2.13 shows the geometry of unit vectors used for computing diffuse and
specular reflections from a surface. From a point P on a surface, s denotes the
unit vector towards the light source, n the unit surface normal vector, and v the
unit vector towards the viewer. The perceived intensity of reflection at the viewer’s
position varies with changes in the angles between these vectors. The variations in
diffuse and specular reflections are represented by multiplicative factors kd and ks

respectively. According to the Lambertian reflectance model, the intensity of diffuse
reflection from a surface is uniform in all directions, and varies as the cosine of the
angle � between the light source vector s and the surface normal vector n, and is
therefore proportional to s•n. If the angle between the two vectors is greater than
90ı, the normal vector faces away from the light source vector, and the surface is in
shadow. In such a situation, the value of kd must be set to 0. We therefore have the
following view-independent factor for the diffuse term:

kd D max.s � n; 0/ (2.54)

The specular reflection factor ks is computed as a function of the cosine of the
angle � between the direction of unit specular reflection r given by Eq. 2.5 and
the unit view vector v, with an exponent f known as the shininess term or the
Phong’s constant. The exponent is useful in controlling the overall brightness and
the concentration of the specular highlight.

ks D max.cosf �; 0/ D max..r � v/f ; 0/ (2.55)

The Blinn’s approximation eliminates the need for computing the specular
reflection vector using Eq. 2.5 by defining a unit vector h along the direction s C v.
This vector is called the half-way vector. If n•h D cosˇ, then equating the angles on
either side of h gives

� C ˇ D � � ˇ C � (2.56)

26 2 Mathematical Preliminaries

Light Source

Net
Reflection

Ambient
Ia

Diffuse
Id

Specular
Is

Ambient
Ma

Diffuse
Md

Specular
Ms

Material Colour

ka

ks

kd

+

Fig. 2.14 Schematic of the calculations performed in a basic lighting model

From the above equation we find that � D 2ˇ. The term r•v in Eq. 2.55 can
therefore be replaced with n•h by absorbing the factor 2 in ks. This gives the Blinn’s
approximation for ks:

ks D max..n � h/f ; 0/: (2.57)

A schematic of the lighting computation using the Phong-Blinn illumination
model outlined above is given in Fig. 2.14.

2.10 Summary

This chapter reviewed some of the geometrical computations involving points, lines,
planes, triangles and curves, that are fundamental to many algorithms in computer
graphics. Important concepts such as homogeneous coordinate representation of
points, signed angles, signed areas of triangles, and barycentric coordinates were
outlined. Equations relating to affine transformations and affine combinations of
points were discussed. This chapter also gave the equations for a basic lighting
model consisting of ambient, diffuse and specular components of reflection.

The concepts presented in this chapter will form the foundation for several
methods that will be discussed in subsequent chapters. The next chapter introduces
a hierarchical structure that is useful for modelling transformations applied to
articulated models and other similar objects containing interconnected parts.

2.11 Supplementary Material for Chap. 2

The section Chapter2/Code on this book’s companion website contains code
examples demonstrating the application of concepts discussed in this chapter.
A brief description of these programs is given below.

2.11 Supplementary Material for Chap. 2 27

1. Point3.cpp

The Point3 class supports most commonly used operations on points
represented using 4-dimensional homogeneous coordinates. The class has the
subclass Vec3 that supports vector operations such as dot and cross products,
vector magnitude calculation and normalization. The documentation of these
classes can be found in Appendix A.

2. Triangle.cpp

The Triangle class provides methods for computing area, surface normal
vector, and the barycentric coordinates of a point with respect to a triangle. It also
has functions for performing the point inclusion test and bilinear interpolation.
The documentation of this class can be found in Appendix A.

3. Matrix.cpp

The Matrix class contains methods for matrix operations (using 4�4
matrices) such as addition, multiplication, computation of transpose and inverse

28 2 Mathematical Preliminaries

matrices, and transformation of points. The documentation of this class can be
found in Appendix A.

4. Interpolate.cpp

The program creates a shape-tween between two user-defined polygonal
shapes using simple linear interpolation between corresponding vertices. Use left
mouse clicks on the upper left side of the screen to define the first polygonal
shape. Similarly, use right mouse clicks on the upper right side of the screen to
draw the second polygon. Pressing the space bar creates the shape-tween between
the first and the second polygons in the bottom half of the window.

5. Bilinear.cpp

The program uses Eq. 2.45 to obtain a bilinear interpolation of color values
at the vertices to fill the interior of a triangle. For comparison, a second similar
triangle is rendered using the OpenGL pipeline that uses the Gouraud shading
algorithm. The vertex colours are randomly generated every time the space bar
is pressed.

6. Bezier2D.cpp

The program uses Bernstein polynomials (Box 2.4) to generate a two-
dimensional Bezier curve for a set of user-defined control points. Use left mouse
clicks on the screen to define a set of control points. The control polygonal line

References 29

is shown in red colour. The Bezier curve for the input points is simultaneously
drawn in blue colour.

7. Barycentric.cpp

The program uses barycentric mapping (Fig. 2.12) to map points from one
triangle to another. Two triangles are displayed when the program is initiated.
Use left mouse clicks inside the left triangle to specify a few points. The points
are connected using a polygonal line drawn in magenta colour. The map of these
points and the polygonal line connecting them inside the triangle on the right
hand side are simultaneously drawn in blue colour.

2.12 Bibliographical Notes

Several books on introductory computer graphics provide an outline of concepts
discussed in this chapter. Some recent publications that can serve as excellent
references are Angel (2008), Hill and Kelley (2007), and McConnell (2006).
A number of books give emphasis to the mathematical tools used in computer
graphics. Notable in this area are Vince and Vince (2006), Lengyel (2004), Buss
(2003), Schneider and Eberly (2003), and Dunn and Parberry (2002).

Comninos (2006) gives a comprehensive coverage of topics on vector and matrix
algebra, transformations, lighting and shading models. A concise description of
homogeneous coordinates and their applications in computer graphics can be found
in Vince (2001). Topics in linear algebra and topology that are used in many
algorithms in computer graphics are discussed at length in Agoston (2005) and Farin
and Hansford (2005).

References

Agoston, M. K. (2005). Computer graphics and geometric modeling. London: Springer.
Angel, E. (2008). Interactive computer graphics: A top-down approach using OpenGL (5th ed.).

Boston/London: Pearson Addison-Wesley.

30 2 Mathematical Preliminaries

Buss, S. R. (2003). 3-D computer graphics: A mathematical introduction with OpenGL. New York:
Cambridge University Press.

Comninos, P. (2006). Mathematical and computer programming techniques for computer graphics.
London: Springer.

Dunn, F., & Parberry, I. (2002). 3D math primer for graphics and game development. Plano: Jones
& Bartlett Publishers.

Farin, G. E., & Hansford, D. (2005). Practical linear algebra: A geometry toolbox. Wellesley:
A K Peters.

Goldman, R. (1990). Intersection of three planes. In A. S. Glassner (Ed.), Graphics gems (Vol. I,
p. 305). San Diego: Academic Press.

Hill, F. S., & Kelley, S. M. (2007). Computer graphics: Using OpenGL (3rd ed.). Upper Saddle
River: Pearson Prentice Hall.

Lengyel, E. (2004). Mathematics for 3D game programming and computer graphics (2nd ed.).
Hingham/London: Charles River Media/Transatlantic.

McConnell, J. J. (2006). Computer graphics: Theory into practice. Boston/London: Jones and
Bartlett Publishers.

Schneider, P. J., & Eberly, D. H. (2003). Geometric tools for computer graphics. Amsterdam/
London: Morgan Kaufmann.

Vince, J. (2001). Essential mathematics for computer graphics fast. London: Springer.
Vince, J., & Vince, J. E. (2006). Mathematics for computer graphics (2nd ed.). London: Springer.

Chapter 3
Scene Graphs

Overview

A scene graph is a data structure commonly used to represent hierarchical relation-
ships between transformations applied to a set of objects in a three-dimensional
scene. It finds applications in a variety of acceleration and rendering algorithms.
A scene graph could also be used to organize visual attributes, bounding volumes,
and animations as a hierarchy in a collection of objects. In the most general form,
any scene related information that can be organized in a hierarchical fashion can be
stored in a scene graph. It also provides a convenient way of representing logical
groups of objects formed using their spatial positions or attributes. In this chapter,
we will outline the fundamental properties of scene graphs, look at some of the
implementation aspects and consider a few applications.

3.1 The Basic Structure of a Scene Graph

The structure and contents of a scene graph will obviously depend on the type of
information it stores, or equivalently, the set of operations it is used for. Let us
consider a simple tree structure that contains three types of nodes:

1. The root node of the tree represents the whole collection of objects in a three-
dimensional scene. We call this node World or Virtual Universe. The root node
is a special type of a group node.

2. A group node is an internal node of the tree. It can contain any number of
children, and represents a logical grouping of objects. A group node does not
store geometrical data, but it can contain some semantic information such as
transformations or visibility attributes applied to a group.

3. Every leaf node represents either an object or a part of an object, and maintains
the necessary geometrical information in addition to some semantic information.
Camera and light sources may also be represented by leaf nodes.

R. Mukundan, Advanced Methods in Computer Graphics: With examples in OpenGL,
DOI 10.1007/978-1-4471-2340-8 3, © Springer-Verlag London Limited 2012

31

32 3 Scene Graphs

World

Object Group Group

Group Object Object Object Object

Object Object

Fig. 3.1 An example of a scene graph, where every internal node is a group node and every leaf
node is an object node

Base

Part-1
Part-2

Part-3 World

Group-1

Part-1 Group-2Base

Part-2 Part-3

Group-2a b

Fig. 3.2 (a) An example of a model consisting of four connected parts that can move relative to
each other. (b) A scene graph of the object model

Figure 3.1 shows an example of a tree with all three types of nodes described
above. The tree structure of a scene graph allows a property associated with a group
node to be inherited by all of its child nodes. For example, a transformation applied
to a group node can be considered as also applied to all its children. Similarly, a
bounding volume, if attached to a group node, also represents the overall bounding
volume for the whole collection of its child nodes.

A scene graph is particularly useful for animating a composite object that has
several parts which should move as if the parts are all physically connected to each
other. A typical example of such an object is an articulated character model. We
illustrate the formation of a scene graph using a simple model consisting of four
interconnected parts: Base, Part-1, Part-2, and Part-3, as shown in Fig. 3.2.

3.2 Transformation Hierarchy 33

Link-1

Link-2

Link-3
Link-4

Link-5

World

Link-1

Link-2

Group-1

Group-2

Group-3

Group-4

Link-3

Link-4

Link-5

Fig. 3.3 A 5-link joint chain and its scene graph

As can be seen from the diagram of the scene graph, the whole model is first
subdivided into three logical groups Part-1, Base and a subgroup Group-2 to which
Part-2 and Part-3 belong. Shortly we will see how we can assign transformation
parameters to the individual nodes of the scene graph in such a way that the parts
can rotate relative to each other while at the same time remaining connected as a
single animatable object. We now consider a closely related object model, a joint
chain consisting of five links as shown in Fig. 3.3.

Joint chains similar to the one shown above are commonly found in robotics and
articulated models in computer graphics. The scene graph represents a hierarchical
subdivision of the model, where at the first level, the whole object belongs to a
single group World. At the next level of subdivision we have Link-1 and a subgroup
Group-1 that contains the remaining links. Any rotational transformation applied
to Group-1 affects all members of that group. It may appear that the group node
Group-4 is redundant as it has only one child. However, the node is useful to provide
a clear separation between the initial transformations applied to the object in Link-5
in its own coordinate system and the transformations applied relative to Link-4’s
frame. We will also later add a camera as an object belonging to Group-4. The
transformation hierarchy represented by scene graphs is explored in more detail in
the next section.

3.2 Transformation Hierarchy

A transformation applied to one part of an object often cascades with the transfor-
mations applied to the adjacent interconnected parts. For example, a change in the
orientation of Part-2 of the model in Fig. 3.2a also affects Part-3. Such dependencies
can be easily converted into hierarchical representations that are suitable for scene
graphs. We consider below three examples involving hierarchical transformations:
(i) the model of a mechanical part shown in Fig. 3.2, (ii) an articulated character
model, and (iii) a small planetary system.

34 3 Scene Graphs

Base

Part-1

Part-2
Part-3

a

x

y

0

d1

d2

d3

q

Fig. 3.4 A general transformation of the model in Fig. 3.2, showing translational and rotational
parameters associated with links. The x and y axes denote the reference frame for the world
coordinate system

3.2.1 A Mechanical Part

A general two-dimensional transformation of the model in Fig. 3.2a along with the
translational and rotational parameters of each link is shown in Fig. 3.4. We will
use T(a) to denote a translation by a vector a, and R(�) to denote an anticlockwise
rotation through an angle � . Note that the joint angles ı1, ı2, ı3 define relative angles
of rotations of one part with respect to another. In order to build the transformation
hierarchy, we have to consider first the transformation of each link from its own
local coordinate frame to the coordinate frame of its group. The sequence in which
the transformations are applied is shown in Fig. 3.5.

As shown in Fig. 3.5, transformations are applied from the leaf nodes upward
to the root of the scene graph. Part-3 is first rotated by an angle ı3, and then
translated along the length of Part-2 by a vector d3. This composite transformation
has a matrix given by T(d3)R(ı3). Group-2 now contains Part-2 and the transformed
version of Part-3. In other words, both Part-2 and Part-3 have been transformed
into the coordinate space of Group-2. It should be noted here that any rotational
transformation of Part-2 is always applied to Group-2. The transformation matrix
T(d2)R(ı2), effectively converts the points from the coordinate system of Group-2
to that of its parent group, Group-1. Figure 3.6 shows the scene graph with the
transformation matrices added to the tree nodes.

From the above discussion, we note that every node transformation is defined
relative to the node’s parent. At a leaf node, a transformation converts vertices from
the local coordinate space of an object to its parent’s coordinate space. If an object
node has an identity transformation I, it only shows that its parent’s node has the
same coordinate reference frame as the object node. This also means that any trans-
formation applied to that node is actually applied to its parent group node. In the
above example, transformations applied to the Base are actually applied to Group-1,
and they indirectly affect the transformations of each of Group-1’s child nodes.

3.2 Transformation Hierarchy 35

x

y

x

y

Part-2

Part-3

x

y

Group-2

T(d3)R(d3)

T(d2)R(d2) T(a)R(q)

T(d1)R(d1)

y

Base

Part-1

x

x

y

Group-1

x

y

World
x

I

I

a

d2

d3

d1

Fig. 3.5 Each moveable component of an object model is transformed from its local coordinate
space to its group’s space, and subsequently to the coordinate space of the group’s parent

World

Group-1

Part-1 Group-2Base

Part-2 Part-3

I

I T(d3)R(d3)

T(d1)R(d1)

T(d2)R(d2)

T(a)R(q)

Fig. 3.6 Scene graph with transformation matrices attached to nodes

3.2.2 A Simple Character Model

We now consider an articulated character model and its scene graph shown in
Fig. 3.7. As in the previous example, we can define the translational and rotational
transformations for each node, based on the joint position and angle of each link
relative to its parent. Vectors v1 : : : v9 denote the offsets of the origin of the links
relative to their parent’s local coordinate system in the initial configuration. The
vector v0 denotes the position of the base link (Torso) in the world coordinate frame.

36 3 Scene Graphs

World

Group-1

Group-2

Left
Upper
Arm

Left
Lower
Arm

Group-3

Right
Upper
Arm

Right
Lower
Arm

Group-4

Left
Upper
Leg

Left
Lower
Leg

Group-5

Right
Upper
Leg

Right
Lower
Leg

Torso HeadI

II I IT(v3)R(q3) T(v5)R(q5) T(v7)R(q7) T(v9)R(q9)

T(v8)R(q8)

T(v1)R(q1)

T(v6)R(q6)

T(v0)R(yz) R(yy) R(yx)

T(v4)R(q4)T(v2)R(q2)

Fig. 3.7 Scene graph of a basic articulated character model

The angles x, y, z represent a generalized rotation of the whole model in terms
of Euler angles defined with respect to the principal axes of the world coordinate
system. A detailed description of Euler angle rotations can be found in Sect. 5.4.1.

The model can be animated using key-frame sequences for the joint angles
�1..�9, and its position and orientation can be controlled using key-frame sequences
for v0, x, y, and z. The transformation hierarchy, if properly defined, ensures
that the links stay connected and are rotated only about the joints. Owing to the
symmetry of the model, we can also make use of the following relationships among
the components (xi, yi, zi) of translational parameters vi:

x2 D �x4I y2 D y4

x3 D �x5I y3 D y5

x6 D �x8I y6 D y8

x7 D �x9I y7 D y9 (3.1)

3.2.3 A Planetary System

As the third example, we consider a simple planetary system consisting of the
Sun, the Earth and the Moon. The translational and rotational parameters used in
modelling the system are shown in Fig. 3.8.

The rotation angles �E, �M represent the spin of the Earth and the Moon
respectively about vertical axes, �E denotes the revolution of the Earth-Moon

3.2 Transformation Hierarchy 37

Sun

Moon
Earth

dE
dM

fE

fM

qM qE

Fig. 3.8 A simple planetary system showing the translational and rotational parameters used for
the construction of its scene graph

World

Sun Group

Earth Moon

I

R(qE)

R(fE)T(dE)

R(fE)T(dM)R(qM)

Fig. 3.9 Scene graph of the planetary system

system around the Sun, and �M the revolution of the Moon around the Earth. The
scene graph for this system is shown in Fig. 3.9.

One notable difference between the planetary system example and the previous
ones is the form of transformation matrices applied to nodes. Most of the transfor-
mations applied in a hierarchical fashion have a general form T(v)R(�), which is a
rotation followed by a translation. In simple implementations, the structure of nodes
is often designed to accept only transformations of the form T(v)R(�) or I. Scene
graphs where transformations at internal nodes have one of the forms I, T(v), R(�),
or T(v)R(�) are said to be in the standard form. The example given in Fig. 3.9 is
an exception to this rule. However, this scene graph can be easily converted to the
standard form with the addition of a group node as shown in Fig. 3.10.

The equivalence of the scene graphs in Figs. 3.9 and 3.10 can be verified by
obtaining the combined final transformation matrices applied to the leaf nodes. In
a scene graph, transformations are combined using a recursive procedure starting at
the root node, accumulating transformations at internal nodes and ending at object
nodes. This process will be explained in detail in the next section.

38 3 Scene Graphs

R(fE)

World

Sun Group-1

Earth

Moon

I

Group-2

T(dE)R(qE)

T(dE)R(fM)

T(dM)R(qM)

Fig. 3.10 The scene graph in Fig. 3.9 converted to the standard form

3.3 Relative Transformations

The transformation of one node relative to another can be readily obtained from
a scene graph. The model transformation matrix of an object gives the composite
transformation that converts points from the local coordinate space of the object
to the world coordinate space. In a scene graph, this is the transformation of the
object node relative to the root (the world node). The composite matrix can be
obtained by collecting all matrices along the path from the root node to the leaf
node representing the object. At each node, the matrix is post-multiplied by the
transformation matrix of that node. The process is illustrated in Fig. 3.11, where
node transformation matrices are denoted by letters A..G. The model transformation
matrix of the object node in the figure is ABCDE.

Leaf nodes can also be used to represent fictitious objects such as light sources
and camera. In Fig 3.11, the transformation from the coordinate system of the
camera to world coordinates is given by AFG. The inverse of this matrix, (AFG)�1,
transforms a point from world space to camera space. This matrix is called the
view matrix. The combined model-view matrix that transforms the object’s local
coordinates to camera space is therefore given by (AFG)�1ABCDE, or equivalently,
G�1 F�1BCDE. An upward tree traversal from a leaf node to root can be quickly
performed if every node has a pointer to its parent. On the other hand, a downward
traversal would typically require a recursive algorithm similar to the depth-first
search method.

The above example can be generalized to a procedure for finding the transfor-
mation from one object’s local coordinate frame to another’s. If we require the
transformation from Object-1 (source) to Object-2 (target) in a scene graph, we
have to first find the Lowest Common Ancestor (LCA) of both the object nodes. Let
the transformation matrix of this common ancestor be denoted by M (Fig. 3.12).
Let S1 : : : Sm denote the transformations of nodes starting from the child of LCA

3.3 Relative Transformations 39

World

Object

A

B

C

D

E

F

Camera G

View Matrix

Model
Transformation

Matrix

Fig. 3.11 Computation of the model transformation matrix of an object represented by a leaf node
in a scene graph

LCA

X

Object-1

M

S1

Sm

Y T1

Object-2 Tn

Fig. 3.12 Representing Object-1’s coordinates relative to Object-2’s local reference frame
requires the computation of the Lowest Common Ancestor (LCA) of both the nodes

towards Object-1, and T1..Tn the transformations towards Object-2 as shown in
Fig. 3.12. The composite transformation from the source’s frame to the target’s
frame is given by the matrix Tn

�1..T1
�1S1..Sm. Note that this matrix product does

not involve the transformation M of the LCA or any of its ancestors.
There are several well-known algorithms to compute the Lowest Common

Ancestor of two nodes in a tree. A simple method uses two lists of nodes visited
in sequential upward traversals of the tree from the two nodes towards the root.
The last item of both lists would be the world node. Corresponding entries in the

40 3 Scene Graphs

Object-1

Object-2

List-1:

List-2:

LCA

LCA

X

Y

World

World

Comparison
starts here

Comparison
ends (X≠Y)

Fig. 3.13 An algorithm for finding the Lowest Common Ancestor

lists are compared for equality, starting from the last item towards the beginning
of each list. The process of comparison stops when the list entries are different.
The previous matched entry in the lists gives the reference to the Lowest Common
Ancestor (Fig. 3.13).

3.4 Bounding Volume Hierarchy

Bounding volumes of objects are used for fast collision detection and also in
acceleration algorithms such as view frustum culling. Bounding volumes can be
computed for different moving parts of an object and then combined in a hierarchical
manner to obtain the overall bounding volume (Fig. 3.14). The geometric parameters
defining a bounding volume can be stored in a scene graph node, and computed on
the fly whenever a transformation is applied to the vertices.

Commonly used bounding volumes are axis-aligned bounding boxes (AABB),
oriented bounding boxes (OBB), spheres, discrete oriented polytopes, and convex
hulls. Each bounding volume has certain advantages and limitations over others,
and is suitable for a specific set of applications. An AABB can be computed and
represented using six parameters that define the minimum and maximum values of
x, y, and z coordinates of points it encloses. However, these parameters will have
to be recomputed every time an object is rotated. On the other hand, OBBs and
spheres are rotation invariant. In this chapter, examples are provided using AABBs
and spheres only. Other types of bounding volumes and their computational aspects
are discussed in detail in Chap. 9.

Since the bounding volume parameters depend on the transformed object
coordinates, bounding volume updates can be performed only after applying the
transformations. Unlike transformations, this process starts at the nodes containing
object primitives, and the bounding volume parameters of group nodes are updated

3.4 Bounding Volume Hierarchy 41

Fig. 3.14 Two-dimensional bounding volume hierarchies for the model in Fig. 3.2, using axis-
aligned rectangles (top row) and circles (bottom row)

a b c

Fig. 3.15 (a) Bounding circles of two objects. (b) Combined bounding circle formed using the
parameters of the two component bounding circles. (c) The minimal bounding circle

based on the computed values at the child nodes. It is therefore often desirable that
the parameters defining a bounding volume stored at a group node can be computed
based on the bounding volume parameters of its child nodes. It should also be noted
here that such a computation may not always yield a minimal bounding volume.
For example, the bounding sphere computed as the union of two bounding spheres
may not necessarily be the minimal bounding sphere for the union of points within
those spheres. A two-dimensional equivalent of this case is shown in Fig. 3.15, using
bounding circles of two objects.

We discuss below the process of updating the bounding volume parameters
(using AABBs and spheres as examples) at a group node based on the updated
parameters of its child nodes. If there are n child nodes, we combine the volumes of

42 3 Scene Graphs

Box 3.1 Bounding Volumes

Given a set of mesh vertices with coordinates fxi, yi, zig, i D 0 : : :N�1,
the bounding volume parameters for AABB and sphere are computed as
follows:

Axis Aligned Bounding Box (AABB): fxmin, ymin, zmin, xmax, ymax, zmaxg
xmin D mini .xi / ; xmax D maxi .xi /
ymin D mini .yi / ; ymax D maxi .yi /
zmin D mini .zi / ; zmax D maxi .zi /

Sphere: fu, v, w, rg
Computation of bounding sphere using the geometric centre of points:

u D; 1
N

N�1P

iD0
xi ; di D .xi � u/2 C .yi � v/2 C .zi � w/2;

i D 0 : : : N � 1:
v D 1

N

N�1P

iD0
yi ;

w D 1
N

N�1P

iD0
zi ; r D p

maxi .di /

Computation of bounding sphere using AABB of points:

u D 1

2
.xmin C xmax/ ; v D 1

2
.ymin C ymax/ ; w D 1

2
.zmin C zmax/

r D 1

2

q

.xmax � xmin/
2 C .ymax � ymin/

2 C .zmax � zmin/
2

two children at a time and obtain the final bounding volume of the parent, in n�1
steps. Given two AABBs with parameters fxmin1, ymin1, zmin1, xmax1, ymax1, zmax1g
and fxmin2, ymin2, zmin2, xmax2, ymax2, zmax2g, the combined volume has parameters
fmin(xmin1, xmin2), min(ymin1, ymin2), min(zmin1, zmin2), max(xmax1, xmax2), max(ymax1,
ymax2), max(zmax1, zmax2)g (Box 3.1).

In the case of spheres, let the parameters of the two volumes be given by
fu1, v1, w1, r1g and fu2, v2, w2, r2g. The required parameters of the combined sphere
are denoted as fuc, vc, wc, rcg. First we compute the distance between the centres:

d D
q

.u2 � u1/
2 C .v2 � v1/

2 C .w2 � w1/
2 (3.2)

If d � jr1 � r2j, then one of the spheres is inside the other. The combined sphere
in this case is the same as the larger among the two spheres. If d> jr1 � r2j, the
spheres either overlap or are disjoint. For this configuration, we compute the radius
and the centre of the combined sphere as follows:

3.5 Sample Implementation 43

rc D 1

2
.d C r1 C r2/

uc D u1 C 1

2d
.d � r1 C r2/ .u2 � u1/

vc D v1 C 1

2d
.d � r1 C r2/ .v2 � v1/

wc D w1 C 1

2d
.d � r1 C r2/ .w2 � w1/ (3.3)

A detailed description of different types of bounding volumes, their computation
and intersection tests is given later in Sect. 9.1.

3.5 Sample Implementation

In this section, we will discuss the design of a set of classes that implement the
functionality of a scene graph with transformation matrices attached to its nodes.
Internal nodes that can store a list of children, and also a transformation matrix,
are represented by the class GroupNode. All transformation matrices are assumed
to have the general form given by T(v)R(�). The properties of leaf nodes are
specified by three classes: ObjectNode that can represent a three-dimensional
object, CameraNode that represents the camera, and LightNode that represents
a light source. These three classes are derived from GroupNode so that we can
store all child nodes (including group nodes and object nodes) with the same type,
and also use polymorphic functions to implement tree traversal algorithms.

3.5.1 Group Node

The declarations of attributes and functions of GroupNode can be found in
Listing 3.1 below. The primary functions associated with a group node include
adding and removing children, and setting the transformation parameters. We use
the List container of the Standard Template Library (STL) for storing references
to the child nodes. The data members angleX, angleY, angleZ specify
the Euler angles of rotation about the principal axes of the group’s coordinate
frame. Similarly tx, ty, tz denote the components of the translation vector
along the principal axes directions. Together, these attributes define the composite
transformation for the group node in the form T(v) Rz(z) Ry(y)Rx(x), where v
is the translation vector, and s denote Euler angles. The function render() is
called on the root node to render the scene.

44 3 Scene Graphs

Listing 3.1 Class definition for a group node

3.5.2 Object Node

The class definition for an object node must cater to the requirements of defining
and storing three-dimensional object models. Listing 3.2 gives the declarations of
important attributes and functions of the class. To simplify the implementation,
we use only the built-in objects provided by the GL Utility Toolkit (GLUT)
of the OpenGL API. These objects are assigned numbers using the enumerated
type ObjType. When an object is initially defined using the setObject()
function, it may also be optionally scaled using parameters scaleX, scaleY
and scaleZ. These parameters are used to set the values of the corresponding
data members of the class. An object may also be given a material colour using the
function setColor(). A scene is rendered by calling the function render()
of the GroupNode class on an instance that represents the scene graph’s root.
This function in turn calls the polymorphic function draw()which is declared as
virtual in GroupNode. The implementation of the function in ObjectNode
will call the necessary OpenGL functions to apply the transformations and to draw
the object.

3.5 Sample Implementation 45

Listing 3.2 Class definition for an object node

3.5.3 Camera Node

Any three-dimensional scene is assumed to have an active camera that contains
information about the projective transformation used while rendering the scene. The
camera also provides the view matrix needed for the transformation of vertices to
the eye coordinate space. A camera can be added to a scene graph as a special type
of object node. Listing 3.3 gives the class definition for the camera node. Since
only one instance of the camera is used in a scene at any point in time, the class
cameraNode is defined as a singleton class. It has a private constructor, and the
static instance is made available to a program using the function getInstance().
The frustum parameters are specified by an application by calling the function
perspective(). The function projection() uses these parameters to set up
the projection matrix, and is called by render() of the GroupNode class. The
view transformation matrix is constructed by the function viewTransform() by
traversing the tree along the path from the camera node to the root node (Fig. 3.11).
The class does not store any drawable object, and therefore draw() has an empty
function body.

3.5.4 Light Node

The LightNode class as defined in Listing 3.4 has a simple structure containing no
public functions other than the constructor. The constructor accepts a single integer
between 0 and 7 as the argument which directly represents one of the OpenGL light

46 3 Scene Graphs

Listing 3.3 Class definition for a camera node

Listing 3.4 Class definition for a light node

sources GL LIGHT0, : : :,GL LIGHT7. In OpenGL, light sources are transformed
like any other point. The function draw() defines the initial position of the light
source at (0,0,0), and transforms it exactly like its counterpart in ObjectNode.
The class does not store or set any other light or material properties. They can be
set by the application by directly calling the appropriate OpenGL functions. The
same applies to setting OpenGL states such as enabling lighting, selecting two sided
lighting, enabling colour material, and so on.

The sample implementation of a scene graph discussed above concatenates only
transformation matrices along different paths from the root node to the leaf nodes.
The hierarchical structure of a scene graph allows several other attributes to be
propagated from an internal node to object nodes through various branches. One
such attribute is the visibility of a node. If a node’s visibility attribute is set to false,
then the visibility attribute of every node in that sub-tree can also be implicitly set to
false by using a logical AND operation with the values from the parent nodes. Thus

3.6 First-Person View 47

an object node will not be rendered if any of its ancestors has a visibility attribute
set to false. A similar attribute that can be attached to the nodes is transparency. The
transparency values can be multiplied together along every path from the root node,
to determine the net transparency of objects stored in the leaf nodes.

3.6 First-Person View

The design of the camera node as outlined in the previous section permits a highly
flexible implementation of a scene graph, since the only static instance of the class
can be obtained anywhere by calling the getInstance() function. The camera
node need not even be a part of the scene graph, if the camera is meant to be in a
fixed location with respect to the scene. In this case, the transformations defined for
the camera node specify the position and the orientation of the camera with respect
to the origin of the world coordinate frame. These transformations will be directly
used to obtain the view matrix for the whole scene.

Often you will require the first-person view of a scene with the camera placed on
a moving object. For the articulated character model in Fig. 3.7, the first-person view
is provided when the camera is attached to the head. This is done by first applying
transformations to the camera node so that it points to the right direction in the
coordinate frame of the object node to which it should be attached. In the scene
graph, the object node is replaced by a new group node. Both the camera node and
the object node are attached to the new group node as its children. Figure 3.16
shows the reference frame (xe, ye, ze) of the camera and the coordinate frame
(x, y, z) of the head of the character model. The camera initially points towards –ze

direction. It is rotated about the y-axis by 180ı to point towards the head direction.
This transformation is represented by the matrix R(�). Figure 3.16 also shows the
modified portion of the scene graph in Fig. 3.7 with the addition of a new group
node and the camera node.

Now consider the 5-link joint chain shown in Fig. 3.3. Robotic arms such as this
can be found in autonomous systems for inspection, welding and painting. The arm
is driven by feeding joint angles to the controllers. Some constraints may be applied
to the joint angles based on the application requirements. For example, a robotic
arm for welding or painting may require the end effector (denoted by Link-5 in
Fig. 3.3) to be kept in a horizontal position. It may also be required to have a camera
attached to the end effector to obtain a clear perspective of the surrounding scene
from its viewpoint. The graphical rendering of the scene as viewed from the position
of Link-5 can be obtained by adding the camera node to the group node Group-4 as
shown in Fig. 3.17.

From the previous examples, we have seen that the first step in the process
of attaching a camera to an object node is to determine the transformation R(�)
necessary to appropriately orient the camera in the local coordinate frame of the
object. In the example in Fig. 3.17, this composite transformation comprises of two

48 3 Scene Graphs

zze

xxe

yye

World

Group-1

Head

T(v1)R(q1)

T(v0)R(yz)R(yy)R(yx)

New
Group

Camera

R(f) I

View
axis

f

a b

c

Fig. 3.16 (a) Camera coordinate system. (b) A 3D object “Head” in its local coordinate frame.
(c) The modified portion of the scene graph in Fig. 3.7, with the camera node attached

z

x

y

ye

xe

View
Axis

ze

Group-4

Camera Link-5

R(f) I

a b c

Fig. 3.17 (a) Local coordinate frame of a link of the joint chain in Fig. 3.3. (b) The desired
orientation of the camera frame relative to the frame of the link. (c) Addition of the camera node
to the scene graph in Fig. 3.3

rotations: a rotation of 90ı about the x-axis followed by another rotation of �90ı
about the y-axis. The transformation functions given in Listing 3.1 allow us to define
such rotations. It is also important to note that when a new group node is formed
with the camera node and the object node as its children, transformations that were
previously applied to the object node should now be applied to the camera as well.
Therefore, the transformation matrix that was attached to the object node must now
be transferred to the common group node. This would often leave the object node
with the identity matrix as shown in Fig. 3.17.

3.8 Supplementary Material for Chap. 3 49

3.7 Summary

Scene graphs are powerful data structures that can be used for hierarchical rep-
resentations of transformations, bounding volumes and other visual attributes of
groups of objects in a scene. This chapter showed the application of scene graphs in
defining the transformations of interconnected systems. Robotic manipulator arms
and articulated character models are examples of such systems containing one or
more joint chains. Using a scene graph, the relative transformation of one object
with respect to another can be easily computed. Relative transformations are useful
for displaying billboards and first person views. This chapter also introduced the
definition of a scene graph in the standard form. An object oriented framework
for a scene graph was presented and some of the key implementation aspects were
discussed.

The next chapter will show that scene graphs play an important role in skeletal
animation. Skeletal structures and the associated hierarchical transformations used
in vertex skinning algorithms fit perfectly well with the scene graph model.

3.8 Supplementary Material for Chap. 3

The folder Chapter3/Code on the companion website contains code examples
demonstrating the application of the scene graph class in the modelling and
rendering of simple three-dimensional scenes. A brief description of these programs
is given below.

1. GroupNode.cpp

These are the header and implementation files for a scene graph class as
discussed in Sect. 3.5. The documentation of methods in this class can be found
in Appendix B.

50 3 Scene Graphs

2. Scene3D.cpp

This program uses a scene graph to model a scene consisting of four different
stationary objects and demonstrates the use of the classes discussed in Sect. 3.5.
The scene graph has a simple structure consisting of the World node and
four object nodes. The camera node is not attached to the scene graph and
is independently transformed to simulate camera motion along a circular path
around the group of objects. The light source is kept fixed in the middle of the
scene, at its default position (0, 0, 0).

3. Planet.cpp

This program uses the scene graph in Fig. 3.10, to model the planetary system
in Fig. 3.8. The angles of revolution of the Moon around the Earth, and the
joint Earth-Moon system around the Sun are continuously updated to generate
an animation sequence. The light source is kept fixed at the location of the Sun.

4. Link5.cpp

This program uses the scene graph model given in Fig. 3.3, to construct
an animated 5-link robotic arm. The joint angles are read in from the file
JointAngles.txt. The arm moves continuously up and down in front of
a vertical coloured wall. The joint angles are defined such that the end effector
of the arm is always horizontal. Pressing ‘c’ on the keyboard causes the scene
graph to be modified as in Fig. 3.17 to produce the effect of the camera being
placed on the end effector. This gives a close-up view of the coloured wall from
the perspective of the continuously moving end effector.

3.9 Bibliographical Notes 51

5. GlutMan.cpp

The program GlutMan demonstrates the use of a scene graph in modelling
and animating an articulated character model. A scene graph similar to the one
given in Fig. 3.7 is used. The values of eight joint angles defining a simple
walk sequence are read from the input file WalkCycle.txt and interpolated
to generate a continuous animation sequence.

3.9 Bibliographical Notes

An excellent introduction to scene graphs and other tools for scene management
can be found in Sherrod (2007). The book also deals with the design of data
structures and algorithms for similar applications. Angel (2008), McConnell (2006)
and McReynolds and Blythe (2005) give an overview of hierarchical modelling
techniques and applications using scene graphs. Eberly (2007) contains a chapter
on hierarchical scene representations, and provides a detailed description of scene
graph operations designed for merging a set of bounding volumes.

Support for scene graphs including sophisticated high-level functionalities can
be found in graphics APIs. Java-3D provides powerful classes for constructing the
nodes of a scene graph that can be used for rendering scenes. Many examples of
applications in Java can be found in Davison (2005). The M3G API of Java Micro
Edition also contains a versatile collection of methods useful for retained-mode
rendering based on scene graphs. These methods incorporate high-level functions
for generating key-frame animations on mobile devices. Pulli (2008) provides an
excellent coverage of the M3G API and shows the importance of scene graphs in
the design of animation sequences.

OpenSceneGraph is a versatile high-level 3D graphics toolkit useful for the
development of high-end graphics applications based on a full-fledged and powerful
scene graph implementation. More information can be found on the website,
http://www.openscenegraph.org.

http://www.openscenegraph.org

52 3 Scene Graphs

References

Angel, E. (2008). Interactive computer graphics: A top-down approach using OpenGL (5th ed.).
Boston/London: Pearson Addison-Wesley.

Davison, A. (2005). Killer game programming in Java. Beijing/Farnham: O’Reilly.
Eberly, D. H. (2007). 3D game engine design: A practical approach to real-time computer graphics

(2nd ed.). Amsterdam/London: Morgan Kaufmann.
McConnell, J. J. (2006). Computer graphics: Theory into practice. Boston/London: Jones and

Bartlett Publishers.
McReynolds, T., & Blythe, D. (2005). Advanced graphics programming using OpenGL.

Amsterdam/London: Morgan Kaufmann Publishers.
Pulli, K. (2008). Mobile 3D graphics: With OpenGL ES and M3G. Amsterdam/London:

Elsevier/Morgan Kaufmann Publishers.
Sherrod, A. (2007). Data structures and algorithms for game developers (1st ed.).

Hingham/Charles River Media/London: Thomson Learning [distributor].

Chapter 4
Skeletal Animation

Overview

This chapter discusses concepts such as vertex blending, vertex skinning and
keyframing that are fundamental to the animation of articulated character models.
Vertex blending is the process of constructing blending surfaces between two
different parts that move relative to each other, in order to create the appearance of
a single deformable object. Vertex blending is useful in the animation of character
models constructed by joining together several individual components.

Mesh models of animatable characters are often subdivided into groups of
vertices that represent moveable body parts. A skeleton is an abstract representation
of this form of partitioning of a mesh. Skeletal animation refers to the process
of computing the transformations of each segment in the skeleton using joint
angles, and mapping them on to mesh vertices. The chapter discusses various stages
in skeletal animation, describes the transformations applied to a mesh, and also
outlines a scene graph based implementation.

4.1 Articulated Character Models

Animated character models can be found in numerous applications of computer
graphics, ranging from simple computer games to virtual agents and computer gen-
erated feature films. Depending on the application requirements, the character mesh
and the animation sequence can have varying levels of complexity. Sophisticated
virtual character agents incorporate several forms of articulation including facial
expression animation. In this chapter we will look at the basics of human character
animation with simple polygonal models and a small number of joint angles.

We broadly classify character models into two groups: (i) character models
constructed using several objects or “parts” where each object is independently
transformed and moved into its respective position within the model, and (ii) single
mesh models that are animated by attaching vertices to different transformation

R. Mukundan, Advanced Methods in Computer Graphics: With examples in OpenGL,
DOI 10.1007/978-1-4471-2340-8 4, © Springer-Verlag London Limited 2012

53

54 4 Skeletal Animation

Fig. 4.1 Character models
constructed using (a) several
component objects, and
(b) a single mesh

groups. An example of each type is shown in Fig. 4.1. The first model, the “Glut
Man”, is constructed entirely using scaled and transformed versions of cubes
generated using glutSolidCube() or glutWireCube(), hence the name.
The second belongs to the more commonly found class of mesh models.

In the case of the model constructed using individual parts, each component
is first created in its own local coordinate space. A series of transformations is
then applied to it based on where in a joint chain that component appears. This
process, which is very similar to what we saw in the previous chapter (Fig. 3.5),
is repeated for every part of the model to reshape the character in a required pose.
The transformations often have a well-defined hierarchical structure as discussed in
the context of scene graphs. Figure 3.7 shows how the main body parts of a simple
humanoid model are transformed.

A character model defined using a single mesh surface as in Fig. 4.1b requires
a completely different set of coordinate transformations, as all mesh vertices are
specified in a common reference system. However, we should be able to use the
same set of joint angles to animate this model also, producing a similar effect
such as a walk cycle. We can indeed construct a “virtual” skeleton consisting of
joints and links that has a structure similar to our previous model in Fig. 4.1a.
We can then associate the skeleton with the continuous mesh. This association is
done by attaching a set of vertices belonging to each body part (e.g., forearm)
to the corresponding link of the skeleton. The scene graph based transformations
computed using joint angles can now be directly applied to the skeleton. The mesh
vertices are transformed using a simple method introduced in Sect. 4.4.2.

If a model is made up of several parts as in Fig. 4.1a, where parts move or
rotate relative to their neighbours, gaps can appear at joints when the model is
animated. The next section addresses this problem, and introduces the method of
vertex blending for creating deformable surface patches between parts that move
relative to each other.

4.2 Vertex Blending 55

4.2 Vertex Blending

When two different mesh objects attached to a common pivot rotate by different
angles, certain parts of the surfaces can interpenetrate, and gaps can appear on the
opposite side (Fig. 4.2a). Repairing or “re-meshing” an area where two surfaces
interpenetrate is a difficult task. Moveable surfaces are therefore often separated by
a small distance from each other, so that they do not touch for the allowable range
of movement or rotation angles (Fig. 4.2b). A sphere is sometimes placed at rotary
joints, as in Fig. 4.2c, to fill the gap. While this approach is suitable for robot-like
models, interpolation methods could be used for obtaining a better approximation of
blending surfaces between moving parts. The process of creating such in-between
surfaces is called vertex blending.

Corresponding pairs of points on two moving parts can be joined together to form
a triangular or quadrilateral element belonging to the intermediate surface. These
elements could be further subdivided using a simple linear interpolation formula
(Eq. 2.43) to get a tessellated surface (Fig. 4.3a). We discuss below higher order
interpolation methods for generating blending surfaces (Fig. 4.3b).

In Chap. 2 (Sect. 2.7) we saw examples of second and higher degree interpolation
functions with Bernstein polynomials as basis. We can use cubic Bezier polynomials
to generate interpolating curves between moving parts with tangential continuity at
end points. In Fig. 4.4a, P0 and P3 denote a pair of corresponding points on two
moving parts of a character model. Q0 and Q3 are two points on the surfaces that
are selected to define the local tangent directions P0�Q0 and P3�Q3 respectively.
Using these tangent directions, we can specify two more points, P1 and P2, as

P1 DP0 C ˛.P0 � Q0/

P2 DP3 C ˛.P3 � Q3/ (4.1)

where ˛ is a positive quantity used to increase or decrease the length of the tangent
vectors P1 � P0 and P2 � P3. Points on the interpolating Bezier curve are generated

Fig. 4.2 (a) Moving parts of
an animated model can
interpenetrate and form gaps
at joints. (b) Links can be
separated by a short distance
to avoid surface intersections.
(c) A sphere is sometimes
attached to a rotary joint to
fill the gap between two
moving parts

56 4 Skeletal Animation

Fig. 4.3 Generation of
blending surfaces using
(a) linear interpolation and
(b) Hermite interpolation

P0 P0

Q0 Q0

P3 P3

Q3 Q3

P1

P2

a bFig. 4.4 Generation of a
blending surface using
(a) Bezier interpolation and
(b) Hermite interpolation

using the parametric equation (see Box 2.4, Sect. 2.7)

Q.t/ D .1 � t/3 P0 C 3.1 � t/2 tP1 C 3.1 � t/t2 P2 C t3 P3; 0 � t � 1: (4.2)

Substituting the expressions from Eq. 4.1 in the above equation gives

Q.t/ D.1 � 3t2 C 2t3/ P0 C 3.1 � t/2t ˛.P0 � Q0/

C 3.1 � t/t2 ˛.P3 � Q3/ C .3t2 � 2t3/ P3 (4.3)

4.3 Skeleton and Skin 57

When ˛ is increased, the weight of the tangent vectors on the interpolating curve
is increased, and the curve gets closer to the tangents at the end points P0, P3. Care
should be taken to ensure that the points P0, P1 both lie on the same side of the
tangent P2 � P3, and similarly points P2, P3 lie on the same side of the tangent
P1 � P0. Setting a large value of ˛ violates this condition, resulting in a distorted
Bezier curve.

A second interpolation method that is suitable for vertex blending is Hermite
interpolation. Here, the tangent directions are defined using vectors P0�Q0 and
Q3 � P3 (Fig. 4.4b), and the interpolating curve is given by

H.t/ D.1 � 3t2 C 2t3/P0 C .t � 2t2 C t3/ ˛.P0 � Q0/

C .�t2 C t3/˛.Q3 � P3/ C .3t2 � 2t3/P3 (4.4)

The coefficients of P0, P3 are exactly same as that of Bezier interpolation.
Since tangents are defined along the direction of the curve from P0 to P3, Hermite
interpolation does not have problems associated with large ˛ values. Hermite and
other types of approximating splines are discussed in more detail in Chap. 7.

4.3 Skeleton and Skin

Animating a three-dimensional character model (Fig. 4.1b) containing hundreds of
vertices and polygons can be a challenging task. This task can be simplified to a
great extent by grouping together a number of mesh vertices as forming body parts
that move as a single unit, connected together by a set of joints. A human model
may be modelled as a collection of body parts with joints at neck, shoulders, elbows,
wrists, hips, knees, and ankles. The grouping of mesh primitives into body parts and
the definition of joints depend on the complexity of the animation. In a simple walk
sequence, for instance, the arms and legs could be considered as the only parts that
move relative to the main body. For a more complex animation, one might require
movement of the head, hands, fingers, facial muscle regions, and so on. Figure 4.5a
shows how points in a mesh could be grouped into ten body parts: head (HEA), torso
(TOR), left upper arm (LUA), left lower arm (LLA), right upper arm (RUA), right
lower arm (RLA), left upper leg (LUL), lower left leg (LLL), right upper leg (RUL),
and right lower leg (RLL). Every group can then have an abstract representation
called a bone. The complete set of bones, along with their connectivity information,
is called a skeleton (Fig. 4.5b).

The notion of a skeleton consisting of a set of joint chains comprised of bones is
central to articulated character animation. A skeleton can be easily animated; i.e., the
transformations for the bones can be easily determined given the angles at each joint.
The skeleton has the hierarchical structure similar to that of the model in Fig. 4.1a,
the main difference being that in a skeleton, each component or bone is just an

58 4 Skeletal Animation

Fig. 4.5 (a) Vertices in a mesh model are grouped together into parts that move relative to each
other. (b) A skeleton definition formed based on a vertex grouping

Fig. 4.6 Two simple ways of associating vertices with bones of a skeleton

abstract structure, not a graphics primitive. A bone essentially stores information
about its position and orientation relative to its parent in the skeleton.

Every bone is given a unique index as shown in Fig. 4.5b. Vertices belonging
to a group are associated with a bone using the bone’s index. The part of a mesh
represented by a bone is called its skin. In the example given in Fig. 4.5, the skin
of bone “8” is the mesh segment that belongs to the set LUL. Two simple ways of
associating groups of vertices with bones are shown in Fig. 4.6. In the first method,
every entry in the vertex list is appended with a bone index. This method is suitable
when vertices need to be associated with more than one bone (we will discuss this

4.4 Vertex Skinning 59

process later in Sect. 4.6). If several consecutive entries in the vertex list have the
same bone index, then the second method is preferred where the minimum and
maximum indices of a range of vertices are stored against a bone index.

4.4 Vertex Skinning

In order to define the hierarchical nature of a skeleton, the parent–child relationship
between every two connected bones must be shown. We could represent a bone
using a point with arrow(s) pointing to its child node(s), as in Figs. 4.7a, c. Another
common representation of a bone uses triangles. Fig. 4.7b shows the mesh model of
a human arm, and the associated skeleton consisting of a set of bones. Each bone
stores the index of its parent and the bone’s position relative to its parent. Using this
information, a complete hierarchical structure can be built, as shown in Fig. 4.7c.
There are two special nodes in this skeleton tree. The root node always represents
the origin of the world coordinate system, and has an index 0. The base node is that
bone in the skeleton which has root as its parent. The position and the orientation of
the base define the pose of the skeleton in the world coordinate space.

Bones are not physical structures present in a polygonal mesh, but are only
animation tools or controlling mechanisms used to transform the mesh in a realistic
manner. A bone also loosely represents the region of influence of a transformation.

4.4.1 The Bind Pose

The hierarchical organization of bones in a skeleton allows the geometric transfor-
mation for each bone to be defined with respect to its parent. The transformations

Parent
1

6

2 34

7 8

9 10

Child

5

Base

Base

a

b

c

Fig. 4.7 (a) A simple joint chain. (b) A skeletal structure for the arm, hand and fingers.
(c) Modified version of the skeleton in Fig. 4.5b

60 4 Skeletal Animation

V
W

Local coordinates frame of
bone with index = i

Bi

B′i
Transformed bone matrix

Initial bone matrix

θ

Fig. 4.8 Transformation of a mesh vertex V using the transformations of its bone

that are associated with a bone are normally a joint angle rotation followed by a
translation from its parent bone. The translations of the bones, each relative to its
parent, together define the initial configuration of a skeleton. For this configuration,
the joint angles are set to 0. The corresponding mesh is said to be in the bind
pose (Fig. 4.5a). The placement of bones in the skeleton can be obtained by first
computing the axis-aligned bounding boxes (see Box 3.1 of Chap. 3) of vertex
groups (defined as in Fig. 4.6), and then determining the joint positions for each box.
Fig. 4.5b shows an example. For now, we will assume that each vertex is attached to
one and only one bone. We will consider a more general case of associating a vertex
with two or more bones, in Sect. 4.6. In the following section, we will see how joint
angle transformations applied to bones can be transferred to mesh vertices attached
to them.

4.4.2 Mesh Vertex Transformation

Consider a mesh vertex V attached to a bone i in bind pose (Fig. 4.8). In this
configuration, each bone has an associated matrix Bi that defines the transforma-
tion from the bone’s local coordinate space to the skeleton’s coordinate space.

4.4 Vertex Skinning 61

y

y

z

z

V1 V2
V3

Bone-1 Bone-2 Bone-3

W1

W2

W3

x

x

a

b q3

q2

q1

Fig. 4.9 An example
showing transformations
using three bones. (a) Bind
pose and (b) transformed
pose

This transformation depends only on the translations of bones in the hierarchy
relative to their parents. The process of obtaining this transformation matrix will
be discussed below. For a given joint rotation by an angle � , the transformed
configuration of the bone in the skeleton’s coordinate space is represented by
another bone matrix B0

i . To get the transformed vertex W, we transfer the original
point V from the coordinate space of the mesh (which is the same as the skeleton
space) back to its bone’s local coordinate space, and then apply the joint angle
transformation to return to the skeleton space. In other words, the vertex V is first
transformed using the inverse of the matrix Bi, then by B0

i. The first transformation
gives the point Bi

�1V. Applying the matrix B0
i to this point yields coordinates of the

transformed point W. Thus

W D .B0
i Bi

�1/V (4.5)

The above equation is fundamental to skeletal animation, as it describes how
transformations applied to a bone i can be propagated to an attached mesh vertex V.
The matrix Bi depends only on the initial configuration of the skeleton, and therefore
the points Bi

�1V can be pre-computed and used for the entire animation sequence.
As an example, we consider the model in Fig. 4.9, and show how it can be
transformed using a skeleton comprising of three bones.

62 4 Skeletal Animation

Let d1 denote the translation vector used for moving Bone-1 from its local
coordinate space to the skeleton space. Let d2 denote the vector by which Bone-2
is translated in Bone-1’s coordinate space. The vector d3 similarly represents the
translation of Bone-3 in the coordinate space of Bone-2. Vertices V1, V2, V3 are
attached to Bone-1, Bone-2, and Bone-3 respectively on the mesh in its bind pose
(Fig. 4.9a). We seek to find the transformed coordinates of these vertices, when
the skeleton is transformed using joint angles �1, �2, �3 respectively as shown in
Fig. 4.9b. If we represent translation matrices by T, the initial bone matrices are
given by

B1 DT.d1/

B2 DT.d1/ T.d2/ D T.d1 C d2/

B3 DT.d1/T.d 2/T.d3/ D T.d1 C d2 C d3/ (4.6)

When the bones are transformed using the joint angles, the bone matrices for the
transformed configuration become

B0
1 DT.d1/ R.�1/

B0
2 DT.d1/ R.�1/ T.d2/ R.�2/

B0
3 DT.d1/ R.�1/ T.d2/ R.�2/ T.d 3/ R.�3/ (4.7)

where R denotes a rotational transformation matrix. Now applying Eq. 4.5, we can
write the expressions for the transformed vertex coordinates as

W1 DT.d1/ R.�1/ T.�d 1/ V1

W2 DT.d1/ R.�1/ T.d 2/ R.�2/ T.�d1 � d2/ V2

W3 DT.d1/ R.�1/ T.d 2/ R.�2/ T.d3/ R.�3/ T.�d1 � d2 � d3/ V3 (4.8)

So far we have assumed that each vertex is associated with only a single bone.
Section 4.6 discusses a more general case.

4.5 Vertex Skinning Using Scene Graphs

The vertex transformations (Eqs. 4.6, 4.7, 4.8) given in the previous section can
be implemented using a scene graph for the skeleton. The scene graph is slightly
different to the one we saw earlier in Chap. 3 (Fig. 3.3), in that each group
node represents a bone with a matrix of the form M D TR defining the relative
transformation of the bone with respect to its parent. Each bone has a child node
representing the set of mesh vertices associated with that bone. In Fig. 4.10,
Bone-1, Bone-2, and Bone-3 form a joint chain in a skeleton, and S2 denotes a

4.5 Vertex Skinning Using Scene Graphs 63

Root

Bone-1

Bone-2

Bone-3

Root

S1¢

Bone-1

Bone-2

Bone-3
S2¢

S3¢

S1

S2

S3

M1¢

M2¢

M3¢M3=T(d3)

M2=T(d2)

M1=T(d1)

Base node
a b

Fig. 4.10 (a) Scene graph of a joint chain used for the pre-processing phase. (b) The updated
mesh vertices in the animation phase

set of mesh vertices associated with Bone-2. The initial bone matrix for Bone-3
is B3 D M1M2M3. The vectors Bi

�1V in Eq. 4.5 are obtained in a pre-processing
phase, where each vertex set is transformed using the inverses of the matrices
attached to nodes. As shown in Eq. 4.6, these matrices involve only translation
components, and their inverses (as well as the product of inverses) can be easily
computed. In the example given in Fig. 4.10a, a vertex V belonging to the set S3

would be transformed into

V 0 D M�1
3 M�1

2 M�1
1 V D V � d1 � d2 � d3 (4.9)

As the tree is traversed from the root, matrices are combined by pre-multiplying
the current product by the inverse of the matrix at the node, until a leaf node is
reached. The vertices in a leaf node are transformed using the product of matrix
inverses gathered up to that point. Thus the set S3 becomes a new set S3

0 after the
transformation in Eq. 4.9. The transformed set of vertices replaces the original set
for the animation phase (Fig. 4.10b).

In the animation phase, matrices at scene graph nodes are updated using the joint
angles of the bones. The updated matrices are represented by M0 in Fig. 4.10b. The
scene graph is again traversed from the root; matrices are combined, this time using
post-multiplication, and applied to the vertices at leaf nodes to get the transformed
mesh vertices. The vertices in the set S3

0 would transform according to the following
equation:

W D M1
0 M2

0 M3
0 V 0 (4.10)

If the set of vertices attached to each bone can be specified as a range of indices
(i, j) where i is the start index and j the end index of the set as in Fig. 4.6, then the
structure of the scene graph can be simplified to a great extent as shown in Fig. 4.11.
The vertex indices in the pre-processing phase point to the initial vertex list fVg

64 4 Skeletal Animation

Root

Bone-1

Bone-2

Bone-3

M2
(i2 , j2)

M1
(i1 , j1)

M3
(i3 , j3)

M2′
(i2 , j2)

M1′
(i1 , j1)

M3′
(i3 , j3)

Root

Bone-1

Bone-2

Bone-3

{W }

{V ′ }

{V }

Vertex lists

Fig. 4.11 Simplified scene graph for a joint chain using a vertex index range for each bone

of the mesh. After the pre-processing phase, they point to the list of intermediate
vertices fV 0g that are used as inputs in the animation phase. The transformed list of
vertices fWg is used for rendering the mesh after applying joint angle rotations to
the bones (Fig. 4.11).

4.6 Transformation Blending

If every vertex is attached to only a single bone, then transformations applied to the
bones may cause mesh surfaces to interpenetrate at a joint (Fig. 4.12a, b).

Figure 4.12b also shows how large flat surface patches can appear at a joint
when two adjacent vertices move away from each other because of a rotational
transformation. It is intuitive to transform vertices in the neighbourhood of a joint
using a combination of bone matrices which influence that joint. If i and j are two
bones that influence a joint, then a vertex V in the vicinity of the joint may be
transformed using a weighted combination of the bone’s matrices Bi and Bj. The
weights wi and wj are usually selected based on the relative distances of the vertex
from the bones (Fig. 4.13). The final transformed point W (Fig. 4.12c) is obtained as

W D ˚
wi

�
B0

i Bi
�1

� C wj

�
B0

j Bj
�1

��
V (4.11)

4.6 Transformation Blending 65

i j

Mesh

V

W

a

b c

Fig. 4.12 (a) A joint formed by two bones, and the attached mesh. (b) Interpenetration of mesh
surfaces at a joint. (c) Mesh transformation using a combination of two bone matrices

i j

(1.0, 0.0) (0.5, 0.5) (0.0, 1.0)(0.7, 0.3) (0.3, 0.7) (0.1, 0.9)(0.9, 0.1)

Fig. 4.13 Multiple weights associated with vertices for combining bone matrices

We also require the weights to satisfy the condition wi C wj D 1. A sample
distribution of weights for mesh vertices of the joint in Fig. 4.12a is shown above
(Fig. 4.13).

In general, if n bones with indices 1, 2, : : : , n meet at a joint, the vertices
surrounding the joint may be transformed using a matrix

M D
nX

iD1

wi B0Bi
�1 where;

nX

iD1

wi D 1: (4.12)

The method outlined above is called transformation blending, and it usually
produces smooth mesh deformations near joints. However when the angle of
rotation of a bone is very large compared to its parent, the averaging scheme in
Eq. 4.11 can produce two types of undesirable artefacts shown in Fig. 4.14. The first
one is called a collapsing elbow effect, which appears when the angle between the
axes of two adjacent bones becomes small. In this situation, vertex points on the
inner edge of the mesh that are located near the joint move towards the centre.
The second type of artefact is called the candy-wrapper effect, where one of the
bones is twisted by 180ı about its axis. In this case, vertices with nearly equal
weights get transformed to closely located points near the joint.

66 4 Skeletal Animation

a b

Fig. 4.14 (a) Collapsing elbow effect. (b) Candy-wrapper effect

4.7 Keyframe Animation

The animation of an articulated character model is usually done by specifying a set
of keyframes that contain the information about the required joint transformation
parameters at certain discrete points in time. Keyframes are generally predefined by
an artist or an animator who can clearly specify the motion an object is required to
produce. The joint angles for a character model at various instances in an animation
sequence can also be obtained from motion capture systems. Here, the actions
performed by a human actor are captured through the placement of markers near
each joint of the body, and their recorded positions used to compute joint angles.

A keyframe is essentially a time stamp of important transformation parameters
and, optionally, other attributes such as colour, transparency etc. that are needed to
render one frame of an animation sequence. As an example, consider a keyframe

Y

Z

X

Body
Centre

Neck

Right
Hip

Right
Knee

Right
Ankle

Left
Hip

Left
Knee

Left
Ankle

Right
Shoulder

Right
Elbow

Right
Wrist

Left
Shoulder

Left
Elbow

Left
Wrist

0

1

2 3

4 5

76

8 9

10 11

12 13

a b

Fig. 4.15 (a) Model of a stick figure and (b) the joint chains used for its animation. The
hierarchical structure of links consists of five branches (chains), and 14 internal nodes. A leaf
node is indicated by a blank square

4.7 Keyframe Animation 67

Fig. 4.16 The four primary keyframes used for generating a walk sequence of the stick figure. The
graphs show the values of some of the joint angles, and a linear interpolation between the values is
indicated by dotted lines

animation of the model of a stick figure shown in Fig. 4.15a. This model has five
joint chains, and a total of 14 joints (Fig. 4.15b). A single configuration or “pose”
of the model is therefore given by 14 joint angles �0, �1, : : : , �13, and the position
(x0, y0, z0) of the root joint. A joint rotation that moves a link forward (towards C z)
is considered as positive. For example, the elbow joints are constrained to rotate
the arm only forward, by assigning only positive values for �4 and �5. Similarly
the knee joint angles (�10, �11) are always assigned a negative value. An alternative
definition for these joint angles can be obtained by viewing them as rotations about
the x-axis. In this case, the angles at shoulders and elbows will have negative values,
and the angles at the knees will have positive values.

For a simple walk sequence for the stick figure, four key-frames are defined as
shown in Fig. 4.16. These are the primary postures from which the intermediate
motion can be generated by linear interpolation. In our example, movements of the

68 4 Skeletal Animation

-10

10

-10

10

-10

10

Step interpolation

Linear interpolation

Spline interpolation

a

b

c

Fig. 4.17 Commonly used interpolation methods in keyframe animation

neck, shoulder and wrists are neglected, and hence values of only ten joint angles
are specified for each keyframe. More complex and realistic movements such as
running, jumping or performing somersaults can be produced by creating a larger
number of keyframes using motion capture systems.

The “in-between” frames of an animation sequence are generated by interpolat-
ing keyframe values using either step, linear or spline functions. A step function uses
the previous keyframe values for all subsequent frames until another keyframe is
encountered (Fig. 4.17a). A linear interpolation produces points along line segments
connecting two consecutive keyframes (Fig. 4.17b). If k1 denotes a parameter in a
keyframe at time t1, and k2 denotes the value of the same parameter in the next
keyframe at time t2, the value k for an in-between frame at time t is given by

k D
�

t2 � t

t2 � t1

�
k1 C

�
t � t1

t2 � t1

�
k2 (4.13)

or equivalently,

k D .1 � �/k1 C �k2; 0 � � � 1: (4.14)

where

�D t � t1

t2 � t1
; (4.15)

For smoother motion interpolation, keyframe values are connected using piece-
wise cubic splines (Fig. 4.17c). Catmull-Rom splines are commonly used for this
purpose, as they have properties of both C0 and C1 continuity between consecutive

4.8 Sample Implementation of Vertex Skinning 69

spline segments. Please refer to Chap. 7 (Sects. 7.2 and 7.5) for more information on
Catmull-Rom and other types of splines that are useful for generating approximating
curves and surfaces.

4.8 Sample Implementation of Vertex Skinning

In Sect. 3.5 we discussed the implementation of a scene graph class. For vertex
skinning, we will use a highly simplified model where the information attached to
each node is appended with a vertex index range given by the first and the last indices
of the range. In this model, there is no need for an object node, and the vertices are
processed at group nodes only. Listing 4.1 gives the class definition for a skeleton
node. A documentation of the methods in this class can be found in Appendix C.
Just like a scene graph node, a skeleton node also stores transformation parameters
and a list of pointers to its child nodes.

4.8.1 Skeleton Node

The primary function of the SkeletonNode is to provide a convenient frame-
work for representing the bone hierarchy and also to transform the vertex list
of a mesh model using joint angles specified for each bone. The two functions
preprocessPhase() and animationPhase() both initiate a recursive
traversal of the tree to transform entries in the vertex lists as shown in Fig. 4.11.

It is useful to have a Skeleton class with functions to load a skeleton definition
and to define joint angles for bones during animation (Listing 4.2). These two
functions provide the main interface between the classes and the user application.
A Skeleton object represents the whole skeleton of a mesh model consisting of
several bones (skeleton nodes).

The contents of the skeleton definition file are organized as shown in Fig. 4.18.
The loadSkeleton() function reads in the parameters and builds the hierarchi-
cal structure. The reference to the root node is available to the application via the
function getRoot().

4.8.2 Skinned Mesh Node

The SkinnedMesh class encapsulates data and related functions for loading
a mesh file consisting of vertex and polygon lists, attaching a skeleton, and
transforming the vertices using the joint angles associated with the bones of the
skeleton (Listing 4.3).

As shown in Fig. 4.11, the SkinnedMesh class uses three vertex lists in the
form of vectors to store the initial vertices of the mesh in bind pose, the intermediate
set of vertices after the pre-processing phase, and the final set of vertices after

70 4 Skeletal Animation

Listing 4.1 Class definition for a single node of a skeleton

applying joint angle transformations. The mesh definition file has a simple structure
consisting of the list of vertices and polygons. Polygons are specified using vertex
indices (three indices for triangles and four for quads). The vertex index starts
from 1. Figure 4.19 gives the mesh definition for a rectangular prism.

The framework described above also uses the Point3 and Matrix classes for
various vertex and transformation related functions (see Appendix A). This book’s

4.8 Sample Implementation of Vertex Skinning 71

Listing 4.2 Class definition for a skeleton

Fig. 4.18 Sample skeleton definition file

companion website contains the header and implementation files of all the above
classes.

An example of a simple application using the skeleton animation framework
is shown in Listing 4.4. At the initialization stage, both mesh and skeleton
objects are created, corresponding data loaded from input files, the skeleton
is attached to the mesh, and the preprocess() function is called on
the mesh object. This function in turn passes the vertex data to the root
node of the skeleton via the preprocessPhase()function and gets back the
intermediate vertices. The display() function performs the animation of the
mesh by defining joint angles for the bones. In the example, the function call
skeleton->rotate(3,30,0,-75) is used to rotate the bone with index 3
by 30ı about the x-axis and �75ı about the z-axis. The sequence of rotations is

72 4 Skeletal Animation

Listing 4.3 Class definition for a mesh

pre-defined. The function call mesh->render() is used inside the display loop
to render the mesh with the transformed vertex coordinates.

4.9 Summary

This chapter addressed the problem of animating articulated character models.
Character models are divided into two main categories: those constructed using
individual component objects, and those modelled as a single mesh surface.
The first category of objects requires blending of surfaces at the joints to avoid
interpenetration of component objects and the appearance of gaps during animation.

4.9 Summary 73

Fig. 4.19 A sample mesh definition file

Listing 4.4 Example of an application using the vertex skinning
algorithm

It was shown that Hermite polynomials and cubic Bezier polynomials could be
effectively used for vertex blending.

This chapter also presented the vertex skinning algorithm which is a well-known
method used in skeletal animation. Various aspects of vertex skinning including

74 4 Skeletal Animation

the transformation of mesh vertices using skeletons, application of scene graphs in
vertex skinning, and transformations using a combination of bone matrices have
been discussed in detail. The process of keyframe interpolation has been outlined.
This chapter also demonstrated the implementation of the vertex skinning algorithm.

The next chapter introduces the quaternion algebra and transformations that are
used for interpolating between orientations in three-dimensional space. Quaternions
have a very important role in animation sequences where generic rotational trans-
formations are applied to objects.

4.10 Supplementary Material for Chap. 4

The folder Chapter4/Code on the companion website contains code examples
demonstrating the application of concepts introduced in this chapter. A brief
description of these programs is given below.

1. SkeletonNode.cpp

This class implements the basic functionalities of a scene graph for skeleton
animation as detailed in Sect. 4.8. The class documentation can be found in
Appendix C.

2. SkinnedMesh.cpp

This class supports several functions for loading and rendering a skinned mesh
file. A brief description of the class can be found in Sect. 4.8.2, and the class
documentation in Appendix C.

4.10 Supplementary Material for Chap. 4 75

3. VertexBlending.cpp

This program generates a blending surface between two cylinders using
Hermite interpolation. Clicking the left mouse button starts the rotation of one
of the cylinders. Use up or down arrow keys to increase or reduce the weight ˛

of the tangent vectors. Press left or right arrow keys to change the view direction.

4. TwoBoneTransform.cpp

The program demonstrates the collapsing elbow and candy wrapper effects
seen in transformations using a combination of two bone matrices. Use left
and right arrow keys to increase or decrease the bending angle (rotation about
the z-axis). Use up and down arrow keys to decrease or increase the twist
angle (rotation about the x-axis). The spread of the weights can be increased
by pressing the ‘s’ key, and decreased by pressing the ‘a’ key.

5. HumanModel.cpp

This program uses the vertex skinning method to transform a mesh based
on transformations applied to a skeleton. It requires two input files, “Human-
Model.txt” (mesh definition) and “Skeleton.txt” (skeleton definition). The bone

76 4 Skeletal Animation

indices are defined as given in Fig. 4.5. The bone transformations are defined
inside the display() function of the program. Use left and right arrow keys to
change the view direction.

4.11 Bibliographical Notes

Both vertex blending and vertex skinning are often used synonymously in computer
graphics literature. In this book, vertex blending refers to an interpolation method
between polyhedral surfaces, while vertex skinning refers to a completely different
method of animating a mesh using a skeleton. The process of constructing blending
surfaces between polyhedral objects is often referred to as polyhedral vertex
blending. Such methods were originally introduced for Computer Aided Design
(CAD) applications. Bajaj and Ihm (1992) gives the fundamental concepts for
designing blending surfaces with Hermite polynomials. A description of parametric
cubic curves and surfaces generated using Hermite polynomials can be found in
Foley (1994, 1996), and Angel (2008). Cubic interpolation methods using Hermite
curves are discussed in Eberly (2007) and Moller et al. (2008).

Skeleton animation is an important technique in game programming and char-
acter animation. Books such as Astle (2006), Moller et al. (2008) and Erleben
(2005) provide a description of skeleton based mesh transformation methods. Eberly
(2007) gives an outline of the vertex skinning method. The implementation aspects
of vertex skinning are presented in Lander (1998) and Kavan (2003).

References

Angel, E. (2008). Interactive computer graphics: A top-down approach using OpenGL (5th ed.).
Boston/London: Pearson Addison-Wesley.

Astle, D. (2006). More OpenGL game programming. Boston: Thomson/Course Technology.
Bajaj, C. L., & Ihm, I. (1992). Algebraic surface design with Hermite interpolation. ACM

Transactions on Graphics, 11(1), 61–91.
Eberly, D. H. (2007). 3D game engine design: A practical approach to real-time computer graphics

(2nd ed.). Amsterdam/London: Morgan Kaufmann.
Erleben, K. (2005). Physics-based animation (1st ed.). Hingham: Charles River Media.
Foley, J. D. (1994). Introduction to computer graphics (Abridged and modified edn.). Reading/

Wokingham: Addison-Wesley.
Foley, J. D. (1996). Computer graphics: Principles and practice (2nd ed.). Reading/Wokingham:

Addison-Wesley.
Kavan, L. (2003). Real-time skin deformation with bones blending. International conference

in central Europe on computer graphics, visualization and computer vision. Plzen, Czech
Republic.

Lander, J. (1998). Skin them bones. Game Developer, 5, 11–16.
Moller, T., Haines, E., & Hoffman, N. (2008). Real-time rendering (3rd ed.). Wellesley:

A.K. Peters.

Chapter 5
Quaternions

Overview

In computer graphics applications, quaternions are used to represent three-
dimensional rotations. They provide some key advantages over the traditional
way of defining generic rotational transformations using Euler angles. Quaternions
are also extremely useful for interpolating between two orientations in three-
dimensional space. Keyframe animations requiring orientation interpolation
therefore find a very convenient mathematical tool in quaternions.

This chapter gives an overview of the algebra of quaternions, the geometrical
interpretation of quaternion transformations, and quaternion based linear and
spherical interpolation functions. A comparison of rotation interpolation methods
using Euler angles, angle-axis representations, and quaternions is presented. The
extension of quaternions to eight-dimensional dual quaternions and their usefulness
in representing general rigid-body transformations are also discussed.

5.1 Review of Complex Numbers

Quaternions are hyper-complex numbers of rank 4, and therefore it is useful to
review some of the basic concepts related to complex number algebra to gain
a better insight into quaternion operations. Even though a complex number z is
commonly represented in the form a C i b where i D p�1, and a, b are respectively
the real and imaginary parts of z, we will use the two-tuple notation (a, b) for z.
With this notation, we can write 1 D (1, 0), and i D (0, 1). These two-dimensional
vectors (1, 0) and (0, 1) form an orthogonal basis for the complex space, where any
number z D (a, b) can be expressed as their linear combination a (1, 0) C b (0, 1).
The operations of addition, subtraction and multiplication in the field of complex
numbers are defined as follows:

.a1; b1/˙ .a2; b2/ D .a1 ˙ a2; b1 ˙ b2/ (5.1)

R. Mukundan, Advanced Methods in Computer Graphics: With examples in OpenGL,
DOI 10.1007/978-1-4471-2340-8 5, © Springer-Verlag London Limited 2012

77

78 5 Quaternions

x

y

p

p¢

(x cosd -y sind, x sind+y cosd)

(x,y)

d

Fig. 5.1 Multiplication by a
unit complex number has the
effect of rotation of vectors
and points about the origin on
a two-dimensional plane

.a1; b1/.a2; b2/ D .a1a2 � b1b2; a1b2 C a2b1/ (5.2)

c.a; b/ D .ca; cb/; (5.3)

where c is a real number. The multiplication rule given in Eq. 5.2 establishes the
fact that i2 D (0,1) (0,1) D (�1, 0). The complex conjugate of z D (a, b) is given by
z* D (a, �b). The magnitude of z is a positive real number defined as

jzj D
p
a2 C b2 (5.4)

Using the multiplication rule, we find that

zz� D jzj2 D a2 C b2 (5.5)

If a complex number z has a unit magnitude, then zz* D 1. This implies that for a
unit complex number, z* is the multiplicative inverse of z. All unit complex numbers
can be expressed in the general form

z D .cosı; sinı/ (5.6)

Consider any vector (or point) p D (x, y) in a two-dimensional coordinate system.
If we treat p as a complex number, and multiply it by the unit complex number z
given above, the product zp can be evaluated using Eq. 5.2 as follows:

p0 D .cosı; sinı/.x; y/

D .xcosı � ysinı; xsinı C ycosı/ (5.7)

The transformed vector (or point) p0 has the same magnitude as p, and can be
obtained by rotating p about the origin by an angle ı (Fig. 5.1). The unit complex
vector therefore represents a rotation in two-dimensional space.

The geometrical interpretation of unit complex numbers as rotation operators
forms the basis for the framework for an extended set of hyper-complex numbers

5.2 Quaternion Algebra 79

called quaternions. We will see shortly that unit quaternions represent three-
dimensional rotations. In the following section, we introduce the algebra of
quaternion numbers.

5.2 Quaternion Algebra

We have seen above that the field of complex numbers have 1 D (1, 0), i D (0, 1)
as the orthogonal basis. The quaternion set has an extended orthogonal basis
consisting of four elements 1 D (1, 0, 0, 0), i D (0, 1, 0, 0), j D (0, 0, 1, 0), k D (0,
0, 0, 1). Thus a quaternion Q D (q0, q1, q2, q3) has an equivalent representation
q0 C q1i C q2j C q3 k, where the quaternion components qi are all real values. The
term q0 is called the scalar part of Q, and the 3-tuple (q1, q2, q3) the vector part. The
operations of addition, subtraction and scalar multiplication are defined as follows:

.p0; p1; p2; p3/ ˙ .q0; q1; q2; q3/ D .p0 ˙ q0; p1 ˙ q1; p2 ˙ q2; p3 ˙ q3/ (5.8)

c.q0; q1; q2; q3/ D .cq0; cq1; cq2; cq3/; (5.9)

where c is any real number. Analogous to Eq. 5.2, the quaternion product is given by

.p0; p1; p2; p3/.q0; q1; q2; q3/

D .p0q0 � p1q1 � p2q2 � p3q3; p0q1 C p1q0 C p2q3 � p3q2;
p0q2 � p1q3 C p2q0 C p3q1; p0q3 C p1q2 � p2q1 C p3q0/ (5.10)

From the above definition of a quaternion product, it is obvious that quaternion
multiplication is not commutative. That is, for any two quaternions P D (p0, p1, p2,
p3), Q D (q0, q1, q2, q3), the product PQ need not necessarily be the same as QP.
If we denote the vector part of P by v D (p1, p2, p3) and the vector part of Q by
w D (q1, q2, q3), then Eq. 5.10 becomes

.p0; v/.q0;w/ D .p0q0 � v � w; p0w C q0v C v � w/ (5.11)

where v•w denotes the dot product and v�w the cross product of the two vectors.
The right-hand side of Eq. 5.10 when treated as a column vector, can be conveniently
expressed as a product of a matrix of elements of P and a vector containing elements
of Q as given below.

PQ D

2

6
6
4

p0 �p1 �p2 �p3
p1 p0 �p3 p2
p2 p3 p0 �p1
p3 �p2 p1 p0

3

7
7
5

2

6
6
4

q0

q1
q2
q3

3

7
7
5 ; (5.12)

80 5 Quaternions

or, equivalently as

PQ D

2

6
6
4

q0 �q1 �q2 �q3
q1 q0 q3 �q2
q2 �q3 q0 q1
q3 q2 �q1 q0

3

7
7
5

2

6
6
4

p0

p1
p2
p3

3

7
7
5 (5.13)

From Eq. 5.10, we can derive the following properties satisfied by the quaternion
basis:

i 2 D j 2 D k2 D ijk D � 1
ij D �j i D k

jk D �kj D i

ki D �ik D j (5.14)

Quaternions also form a commutative group under addition, where (0,0,0,0) is
the identity element. Quaternion multiplication is associative, and distributes over
addition. If P, Q, R are any three quaternions,

.PQ/R D P.QR/

.P CQ/R D PRCQR

P.Q CR/ D PQC PR (5.15)

The conjugate Q* of the quaternion Q D (q0, q1, q2, q3) is defined as

Q� D .q0; � q1;�q2;�q3/ (5.16)

Thus, if Q D (q0, w), then Q* D (q0, �w). Also, Q C Q* D 2q0. The magnitude
(also called the length, or norm) of Q denoted by jQj, is

jQj D
q
q20 C q21 C q22 C q23 (5.17)

By taking the magnitude of the quaternion product in Eq. 5.10 we get

jPQj D jP jjQj (5.18)

Using Eq. 5.11, it is easy to find that

QQ� D Q�Q D jQj2: (5.19)

5.3 Quaternion Transformation 81

By dividing the above equation by jQj2, we get the equation for the quaternion
inverse. If we denote the quaternion inverse of Q by Q�1, then

Q�1 D Q�

jQj2 (5.20)

A quaternion Q can be normalized to a unit quaternion by dividing each of its
components by the length jQj given in Eq. 5.17. A unit quaternion satisfies the
following equations:

jQj D 1:

q0
2 C q1

2 C q2
2 C q3

2 D 1:

Q�1 D Q�
(5.21)

If the real part q0 of a quaternion is zero, it represents a vector (q1, q2, q3) in
three-dimensional space. Such a quaternion that has the form (0, q1, q2, q3) D (0, q)
is called a pure quaternion. Similarly, quaternions of the type (a, 0, 0, 0) with the
vector component zero are called real quaternions. The algebra of real quaternions
is the same as that of real numbers. Similarly, quaternions of the type (a, b, 0, 0)
behave exactly like complex numbers (a, b).

5.3 Quaternion Transformation

A special type of quaternion product in the form QPQ* plays an important role in
three-dimensional transformations. We have just seen that a vector p in the three-
dimensional space corresponds to a pure quaternion P D (0, p). An interesting fact
that leads to the notion of a quaternion transformation is that given any quaternion
Q and a pure quaternion P, the product P0 D QPQ* is also a pure quaternion. Thus
QPQ* can be viewed as the transformation of a pure quaternion P D (0, p1, p2, p3)
using another quaternion Q. We can derive the matrix form of this transformation by
using Eq. 5.13 for obtaining the matrix expression for PQ* and then using Eq. 5.12
for getting the final product Q(PQ*).

QPQ� D

2

66
4

q0 �q1 �q2 �q3
q1 q0 �q3 q2

q2 q3 q0 �q1
q3 �q2 q1 q0

3

77
5

2

66
4

q0 q1 q2 q3
�q1 q0 �q3 q2

�q2 q3 q0 �q1
�q3 �q2 q1 q0

3

77
5

2

66
4

p0
p1

p2
p3

3

77
5 (5.22)

82 5 Quaternions

The following matrix equation immediately follows by multiplying the two
matrices together, and setting p0 D 0:

2

6
66
6
4

0

p0
1

p0
2

p0
3

3

7
77
7
5

D

2

6
66
6
4

1 0 0 0

0 q20 C q21 � q22 � q23 2 .�q0q3 C q1q2/ 2 .q0q2 C q1q3/

0 2 .q0q3 C q1q2/ q20 � q21 C q22 � q23 2 .�q0q1 C q2q3/

0 2 .�q0q2 C q1q3/ 2 .q0q1 C q2q3/ q20 � q21 � q22 C q23

3

7
77
7
5

2

6
66
6
4

0

p1

p2

p3

3

7
77
7
5

(5.23)

This equation defines the quaternion transformation of a three-dimensional point
(or vector) p D (p1, p2, p3) to another three-dimensional point (or vector) p0 D (p1

0,
p2

0, p3
0). An alternative form of the equation can be derived as follows:

QPQ� D .q0; w/.0;p/.q0;�w/; (5.24)

where w D (q1, q2, q3) . Using Eq. 5.11 to expand the product term, we get

QPQ� D .0; q0
2p C w.p � w/C 2q0.w � p/C w � .w � p// (5.25)

The above equation proves that the transformation of P is also a pure quaternion.
We can therefore write

p0 D q0
2p C w.p � w/C 2q0.w � p/C w � .w � p/ (5.26)

Further simplification of the right-hand side using vector algebra gives

p0 D .q0
2 � w2/ p C 2w.p � w/C 2q0.w � p/ (5.27)

where, w2 D jwj2 D q1
2 C q2

2 C q3
2.

It should be noted that QPQ* generally is not a scale-preserving transformation
because

jP 0 j D jQj2jP j (5.28)

If we impose the constraint that Q is a unit quaternion (i.e., jQj D 1), we get a
scale-invariant (or length-preserving) transform. With this additional criterion, we
can also write the inverse quaternion transform in a concise form as

P D Q�P 0Q (5.29)

We also note that when P is the zero-quaternion (0, 0, 0, 0), so is P0. Therefore
the origin is a fixed point of the transformation. A length-preserving transformation
with a fixed point is a rotation. In the following sections we will attempt to find a

5.4 Generalized Rotations 83

geometric interpretation of the quaternion transformation as a pure rotation in three-
dimensional space, and express the components of a unit quaternion in terms of the
angle and the axis of rotation.

5.4 Generalized Rotations

Before we further analyze the transform properties of quaternions, it would be
worthwhile to review some of the key concepts relating to general three-dimensional
rotations.

Any composite transformation that preserves length, angle and area is called a
rigid-body transformation. If a rigid body transformation has also a fixed point
(pivot), then it is a rotation. A rotation can be measured in terms of the angular
deviation of an orthogonal right-handed system fixed on the rotating body, with the
origin of the system at the fixed point of rotation. In Fig. 5.2a, Ox, Oy, Oz are the
axes of an orthogonal triad before rotation, and Oxt, Oyt, Ozt denote the transformed
axes directions after a rotation about O. The coordinate reference frame is inertially
fixed and is represented by X, Y, Z axes.

A general rigid body transformation of an object without a fixed point can
be treated as a rotation followed by a translation. Such a transformation can be
equivalently performed by first carrying out a rotation that aligns the axes parallel to
the final directions, followed by a translation that moves the fixed point O to its final
position Ot (Fig. 5.2b). While any translation can be unambiguously represented by
a three component vector, a general rotation may be specified in several ways. In
the following, we consider the Euler angle and angle-axis representations of three-
dimensional rotations.

X

Y

Z

O

x

y

z

yt

ytxt

xt

zt

zt

X

Y

Z

O
y

x

z

Ot

a b

Fig. 5.2 (a) A generalized rotation with a fixed point O that transforms the directions of body-
fixed axes from O(x, y, z) to O(xt , yt, zt). (b) A general transformation without a fixed point

84 5 Quaternions

5.4.1 Euler Angles

The Euler’s theorem on rotations states that any general rotation can be performed
using a sequence of elementary rotations about the coordinate axes passing through
the fixed point. The theorem further states that if no two successive rotations is
about the same axis, then the maximum number of rotations needed to achieve the
transformation is three. Thus any rotational transformation can be represented by
a sequence of three rotations about mutually independent axes. These angles are
called Euler angles. Before defining an Euler angle representation, we need to fix
the sequence in which the rotations are performed. If we denote rotations about the
X-axis by , rotations about Y by �, and rotations about Z by � , a set of Euler angles
can be defined using any of the following 12 sequences:

 � � � � � �

 � � � � � �

 1� 2 �1� �2 �1 �2

 1� 2 �1 �2 �1� �2

The Euler angle sequence f � �g represents a rotation about X followed by a
second rotation about Y, followed by a third rotation about the Z axis. The sequence
f�1 �2g gives another Euler angle representation in terms of a rotation about the Y
axis, followed by a second rotation about the X axis, and then a third rotation again
about the Y axis. The six sequences where each axis is used exactly once are called
proper Euler angles.

The transformation matrix for the f � �g sequence is obtained by concatenating
the transformation matrices as shown below.
2

6
6
6
4

x0

y0

z0

1

3

7
7
7
5

D

2

6
6
6
4

cos � � sin � 0 0

sin � cos � 0 0

0 0 1 0

0 0 0 1

3

7
7
7
5

2

6
6
6
4

cos' 0 sin' 0

0 1 0 0

� sin ' 0 cos ' 0

0 0 0 1

3

7
7
7
5

2

6
6
6
4

1 0 0 0

0 cos � sin 0

0 sin cos 0

0 0 0 1

3

7
7
7
5

2

6
6
6
4

x

y

z

1

3

7
7
7
5

D

2

66
6
4

cos' cos � sin sin' cos � � cos sin � cos sin' cos � C sin sin � 0

cos ' sin � sin sin ' sin � C cos cos � cos sin ' sin � � sin cos � 0

� sin' sin cos ' cos cos ' 0

0 0 0 1

3

77
7
5

2

66
6
4

x

y

z
1

3

77
7
5

(5.30)

The above equation can be interpreted as the transformation of any point (x, y, z)
to (x0, y0, z0) in a fixed coordinate frame. This interpretation does not use any
information pertaining to body-fixed axes. On the other hand, if we assume that
x, y, z represent the body-fixed axes which initially coincide with the coordinate
reference axes X, Y, Z, respectively, Eq. 5.30 can be viewed as the transformation
of a point from the moving body frame to the fixed coordinate reference frame. The
Euler angle representation described above (and shown in Fig. 5.3) used rotations

5.4 Generalized Rotations 85

Fig. 5.3 An extrinsic composition of Euler angle rotations performed using the sequence
f , �, �g

Fig. 5.4 An intrinsic composition of Euler angle rotations performed using the sequence f , �, �g

that are performed about the fixed principal axes directions X, Y, Z of the reference
frame. Such a transformation is called an extrinsic composition of rotations.

An intrinsic composition, on the other hand, uses rotations about body-fixed axes
whose directions change in the reference frame after every rotation. For example,
an aircraft orientation is defined in this manner. In Fig. 5.4, the yaw rotation is
performed about the x-axis, the roll rotation � about the transformed body y-axis,
and the pitch rotation � about the transformed body z-axis. For this sequence
of intrinsic composition of rotations, the transformation from body frame to the
coordinate reference frame is given by

2

6
6
4

X

Y

Z

1

3

7
7
5 D

2

6
6
4

1 0 0 0

0 cos � sin 0

0 sin cos 0

0 0 0 1

3

7
7
5

2

6
6
4

cos� 0 sin � 0

0 1 0 0

� sin � 0 cos� 0

0 0 0 1

3

7
7
5

�

2

6
6
4

cos � � sin � 0 0

sin � cos � 0 0

0 0 1 0

0 0 0 1

3

7
7
5

2

6
6
4

x

y

z
1

3

7
7
5 (5.31)

86 5 Quaternions

Fig. 5.5 Two different Euler angle interpolation sequences generated for the same initial and target
orientations

P

u = (l, m,n)

t

s

a

r

P¢

O

p
p¢

d

Fig. 5.6 Transformation of a
vector under a general
rotation about the origin in
three-dimensional space

A three-dimensional orientation can be represented in different ways using
different Euler angle sequences. Even if we keep the sequence fixed, certain
orientations can have more than one set of Euler angles. For instance, using the same
sequence f � �g, both f�45, �80, 0g and f135, �100, �180g represent the same
transformation. This can be verified by evaluating the product matrix in Eq. 5.30 for
the two sets of angles. The non-uniqueness of the Euler angle representation also
means that you may not get a unique interpolation path between two orientations
(Fig. 5.5).

5.4.2 Angle-Axis Transformation

The Euler’s theorem concerning three-dimensional rotations states that any number
of rotational transformations with a single fixed point applied to an object can be
replaced by a single rotation of the object about an axis passing through the fixed
point. The axis is often called the equivalent axis of rotation. Any orientation of an
object with the origin as a fixed point can therefore be specified using an angle of
rotation ı and an axis of rotation given by a unit vector u D (l, m, n). In the following
discussion, we assume that the axis of rotation passes through the origin. Figure 5.6
depicts the rotational transformation applied to a vector p (or a point P).

If we denote the projected lengths of the vector p along directions of u (axis of
rotation) and s (perpendicular to axis of rotation) by a and r respectively, we can

5.4 Generalized Rotations 87

write p D au C rs, where a D p•u. During any rotation of the vector p about the axis
u, both these projected distances a and r remain constant. If t denotes the vector
orthogonal to both u and s, the transformed vector direction p0 can be written as

p0 D au C .r cos ı/s C .r sin ı/t

D au C .p � au/cos ı C .u � p/sin ı

D p cos ı C .1 � cos ı/.p � u/u C .u � p/sin ı (5.32)

The above equation is the well-known Rodrigues’ rotation formula. The matrix
version of the Rodrigues’ formula can be derived by defining a 3 � 3 skew-
symmetric matrix UX as

Ux D
2

4
0 �n m

n 0 �l
�m l 0

3

5 ; (5.33)

and replacing u, p, p0 by the corresponding column vectors:

U D
2

4
l

m

n

3

5 ; p D
2

4
x

y

z

3

5 ; p0 D
2

4
x0
y0
z0

3

5 : (5.34)

With the above notations, the vector cross-product u�p has an equivalent matrix
representation (UX) p. It can also be easily verified that the term (p•u) u in Eq. 5.32
is equivalent to the matrix (UUT) p. Thus we get

p0 D �
I cos ı C .1 � cos ı/UUT C UX sin ı

�
p (5.35)

Noting that

U2
X D UUT C I (5.36)

Equation 5.35 can be written in an alternate form as below.

p0D �
I C .1 � cos ı/U2

X C UX sin ı
�

p (5.37)

Equation 5.35 can also be written in the expanded matrix form as follows
for defining the rotational transformation of a point P expressed in homogeneous
coordinates:
2

6
6
6
6
4

x0

y0

z0

1

3

7
7
7
7
5

D

2

6
6
6
6
4

l2.1� cos ı/C cos ı lm.1� cos ı/� n sin ı nl.1� cos ı/Cm sin ı 0

lm.1� cos ı/C n sin ı m2.1� cos ı/C cos ı mn.1� cos ı/� l sin ı 0

nl.1� cos ı/�m sin ı mn.1� cos ı/C l sin ı n2.1� cos ı/C cos ı 0

0 0 0 1

3

7
7
7
7
5

2

6
6
6
6
4

x

y

z

1

3

7
7
7
7
5

(5.38)

88 5 Quaternions

Let us consider the problem of computing the equivalent angle and axis of
rotation from a transformation matrix. Given a general 4�4 rotation matrix in the
form

2

66
4

m00 m01 m02 0

m10 m11 m12 0

m20 m21 m22 0

0 0 0 1

3

77
5 (5.39)

we get the following equations using the matrix elements from Eq. 5.38:

m00 Cm11 Cm22 D 1C 2cos ı

m21 �m12 D 2l sin ı

m02 �m20 D 2m sinı

m10 �m01 D 2nsinı (5.40)

From the above equations, we can derive the expressions for angle and axis of
rotation as follows:

ı D tan�1

0

B
@

q
.m21 �m12/

2 C .m02 �m20/
2 C .m10 �m01/

2

m00 Cm11 Cm22 � 1

1

C
A

l D m21 �m12

2 sin ı

m D m02 �m20

2 sin ı

n D m10 �m01

2 sin ı
(5.41)

In the next section, we will establish the equivalence between an angle-axis
transformation and a unit quaternion transformation of the form QPQ* where P
is a pure quaternion (0, p).

5.5 Quaternion Rotations

We will now try to represent the rotational transformation in Fig. 5.6 by a unit
quaternion Q D (q0,w), where the vector component w of the quaternion is along
the axis of rotation. Therefore we have

w D ku; for some constant k: (5.42)

5.5 Quaternion Rotations 89

We saw earlier that a vector p can be transformed into another vector p0 using
a unit quaternion Q and the result of this transformation is given by Eq. 5.27.
In the previous section, we considered an angle-axis transformation of a vector p
given by Eq. 5.32. We find a striking similarity between the two equations, which
suggests that the quaternion transformation in Eq. 5.27 is indeed an angle-axis
transformation. Equating the corresponding terms in both the equations, we find that

q0
2 � w2 D cos ı

2q0k D sin ı

1 � cos ı D 2k2 (5.43)

From the above equations, we can see that k D sin(ı/2), and q0 D cos(ı/2).
Therefore the unit quaternion that represents the rotation in Fig. 5.6 is given by

Q D
�

cos
ı

2
; l sin

ı

2
; m sin

ı

2
; n sin

ı

2

�
(5.44)

This result is fundamental to the theory of generalized rotations, as it provides
a direct mechanism for converting angle-axis representations of three-dimensional
rotations into unit quaternions. From this equation, we can also derive the relation-
ship between the components of any unit quaternion Q D (q0, q1, q2, q3) and the
parameters of rotation it represents. The angle of rotation is given by

ı D 2tan�1

0

B
@

q
q21 C q22 C q23

q0

1

C
A (5.45)

and the unit vector along the axis of rotation (l, m, n) can be obtained as

l D q1q
q21 C q22 C q23

m D q2q
q21 C q22 C q23

n D q3q
q21 C q22 C q23 (5.46)

Replacing ı/2 with ı in Eq. 5.44, we can summarize our discussion above as
follows:

Any unit quaternion Q can be expressed in the form Q D (cosı, u sinı), and it
represents a rotation by an angle 2ı about a unit vector u passing through the origin.

90 5 Quaternions

5.5.1 Quaternion Transformation Matrix

From the above discussion, we can conclude that if Q is a unit quaternion,
then Eq. 5.27 gives a rotational transformation of a vector p D (x, y, z, 0). This
transformation equation could also be written in the conventional matrix form as
shown below:

2

6
66
6
4

x0

y0

z0

0

3

7
77
7
5

D

2

6
66
6
4

1� 2q22 � 2q23 2q1q2 � 2q0q3 2q1q3 C 2q0q2 0

2q1q2 C 2q0q3 1� 2q21 � 2q23 2q2q3 � 2q0q1 0

2q1q3 � 2q0q2 2q2q3 C 2q0q1 1� 2q21 � 2q22 0

0 0 0 1

3

7
77
7
5

2

6
66
6
4

x

y

z

0

3

7
77
7
5

(5.47)

The same transformation matrix can be applied to transform a point P D (x, y,
z, 1) to another point P0 D (x0, y0, z0, 1) using the quaternion Q. The quaternion
transformation matrix in Eq. 5.47 is orthogonal, meaning that its inverse is the same
as its transpose. The matrix also has some very useful properties. If we equate this
matrix to a general 4 � 4 matrix given in Eq. 5.39, we can find that the following
relationships hold among the matrix elements:

m00 Cm11 Cm22 C 1 D 4q0
2

m21 �m12 D 4q0q1

m02 �m20 D 4q0q2

m10 �m01 D 4q0q3 (5.48)

The above equations are useful for extracting the quaternion elements from a
given 4 � 4 rotational transformation matrix:

q0 D
p
1Cm00 Cm11 Cm22

2

q1 D m21 �m12

4q0

q2 D m02 �m20

4q0

q3 D m10 �m01

4q0
(5.49)

We will choose only the positive value of the square-root for computing q0.
A negative value for q0 will change the sign of all remaining components and yield
the quaternion �Q in place of Q. Shortly (Eq. 5.57) we will see that both Q and
�Q represent the same rotation, and therefore we can safely impose the constraint

5.5 Quaternion Rotations 91

that the sign of q0 is positive, and compute the remaining components from it. Note
also that the above equations are valid only when q0 ¤ 0. If q0 D 0, then the angle
of rotation ıD ˙180ı, and the matrix in Eq. 5.47 becomes a symmetric matrix. For
this special case, the remaining quaternion elements can be derived as follows:

q1 D sign .m21 �m12/

�p
1Cm00 �m11 �m22

2

�

q2 D sign .m02 �m20/

�p
1 �m00 Cm11 �m22

2

�

q3 D sign .m10 �m01/

�p
1 �m00 �m11 Cm22

2

�
(5.50)

If a point (or a vector) P is first transformed by a quaternion Q1 and then by
a quaternion Q2, the resulting point (or vector) P0 is obtained by applying the
transformation formula twice:

P 0 D Q2.Q1PQ1
�/Q2

� D .Q2Q1/P .Q2Q1/
� (5.51)

The above equation shows that the composite rotation is given by the quaternion
product Q2Q1. Generalising this result, a series of rotational transformations
performed using unit quaternions Q1, Q2, : : :Qk in that order, is equivalent to
a single rotational transformation produced by the combined product quaternion
(Qk : : :Q2Q1).

5.5.2 Quaternions and Euler Angles

In this section, we explore the relationship between unit quaternions and Euler
angles. Using Eq. 5.44, we can represent elementary rotations about X, Y, and Z
axes by angles , �, � respectively, as follows:

QX D
�

cos

2
; sin

2
; 0; 0

�
(5.52)

QY D
�

cos
�

2
; 0; sin

�

2
; 0

�
(5.53)

QZ D
�

cos
�

2
; 0; 0; sin

�

2

�
(5.54)

A sequence of Euler angle rotations f , �, �g is equivalent to the quaternion
product QZQYQX . We will denote this product by QE. Using the quaternion

92 5 Quaternions

multiplication rule in Eq. 5.10, we can easily express the components of QE in terms
of the Euler angles. For convenience, the four quaternion components are arranged
as a column vector in the equation below.

QE D

0

B
B
B
B
BB
B
B
B
BB
B
@

cos

�

2

�
cos

�
�

2

�
cos

�
�

2

�
C sin

�

2

�
sin

�
�

2

�
sin

�
�

2

�

sin

�

2

�
cos

�
�

2

�
cos

�
�

2

�
� cos

�

2

�
sin

�
�

2

�
sin

�
�

2

�

cos

�

2

�
sin

�
�

2

�
cos

�
�

2

�
C sin

�

2

�
cos

�
�

2

�
sin

�
�

2

�

cos

�

2

�
cos

�
�

2

�
sin

�
�

2

�
� sin

�

2

�
sin

�
�

2

�
cos

�
�

2

�

1

C
C
C
C
CC
C
C
C
CC
C
A

(5.55)

Conversely, given a unit quaternion Q D (q0, q1, q2, q3), we can compute the
equivalent Euler angle representation by comparing the elements of the quaternion
transformation matrix and the Euler angle transformation matrix. As an example, by
equating the corresponding elements from only the first column and the third row
of the matrices in Eqs. 5.47 and 5.30, we get the following expressions for the Euler
angles , �, � in terms of quaternion components:

 D tan�1
�
2 .q0q1 C q2q3/

1 � 2q21 � 2q22

�

� D sin�1 .2q0q2 � 2q1q3/

� D tan�1
�
2 .q0q3 C q1q2/

1 � 2q22 � 2q23

�
(5.56)

There are many other ways in which the above parameters can be obtained by
comparing the remaining elements of the two matrices. However, each derivation
has its own set of singularities that need to be handled as special cases. For example,
the unit quaternion

Q D
�
1p
2
; 0;

1p
2
; 0

�

presents a singularity for , with both the numerator and the denominator of the
first equation in Eq. 5.56 becoming zero.

5.5.3 Negative Quaternion

In this section, we consider another geometrical property of quaternions, taking QZ

(Eq. 5.54) as an example. Figure 5.7 shows the plot of the first and the fourth non-
zero components of QZ as the rotation angle � is varied over two cycles from 0ı
to 720ı.

5.6 Rotation Interpolation 93

Fig. 5.7 Plot showing the variation of quaternion components with rotation angle

Figure 5.7 shows that one cycle in quaternion space takes two revolutions in the
Cartesian coordinate space. This means that two rotations by angles � and 360 C �

that are geometrically equivalent, can have different quaternion representations. If a
unit quaternion Q is given by Eq. 5.44, then replacing • with 360 C • we get,

Q0 D
�

cos
360C ı

2
; l sin

360C ı

2
; m sin

360C ı

2
; n sin

360C ı

2

�

D
�

� cos
ı

2
;�l sin

ı

2
;�m sin

ı

2
;�n sin

ı

2

�

D �Q (5.57)

The above equation shows that both Q and �Q represent the same rotational
transformation. In the next section, we will consider the problem of interpolating
between two orientations (which we had briefly touched on while introducing Euler
angles), and then use some of the properties of quaternion rotations discussed above
to define quaternion based interpolation methods.

5.6 Rotation Interpolation

Animation sequences commonly use interpolated values between two poses. A pose
defines the position and orientation an object. Position interpolation can be carried
out either by interpolating between the corresponding coordinate values, or by fitting
parametric curves (splines) through the points. However, interpolation between
two orientations in three-dimensional space need not always produce a smooth
transition from one orientation to another. Depending on the mechanism we use
for representing rotations, we can get completely different interpolation sequences
between the same initial and target orientations. Generally, one would prefer an
interpolation that yields an optimal path that gives minimum rotation and uniform

94 5 Quaternions

X

Y

Z
xB

yB

X

X

Y

Y

zB

zB
zB

yB

yB

Initial Configuration Orientation-1 Orientation-2

O

O

O

Fig. 5.8 Initial configuration and two orientations of an object

angular velocity between two configurations. In this section, we will compare
different interpolation methods using different representations of rotation we have
considered so far, and establish that quaternions have a clear advantage over others.

We define orientation as the result of a rotational transformation from the initial
configuration of an object to its current configuration. A configuration is uniquely
specified by an orthogonal system of axes fixed on the object. Some of these
concepts are explained in a little more detail below with the help of an example.
Figure 5.8 shows a simple model, “Hammer”, constructed using four primitives, a
cylinder, a cone, a sphere and a cube. The figure also shows two orientations of this
model.

The initial configuration of the object defines its orientation when no rotational
transformation is applied. In this configuration, an orthogonal right-handed system
of body-fixed axes OxByBzB coincides with the inertially fixed coordinate reference
axes OXYZ. Without any loss of generality, we can assume that all rotations take
place about the origin. The unit vectors along body fixed axes have components
xB D (1, 0, 0), yB D (0, 1, 0), zB D (0, 0, 1) in the initial configuration. An orientation
can be uniquely defined using the transformed components of these three vectors.
For example, Orientation-1 in Fig. 5.8 is defined by the vectors xB D (0, 0, 1),
yB D (�1, 0, 0), zB D (0, �1, 0). During any rotational transformation the tips of
these vectors move on a unit sphere centered at the origin (Fig. 5.9a).

The rotational transformation of an object can thus be visualized using the trace
of the unit vectors along the body-fixed axes on a unit sphere. Any unit vector has
a spherical parameterization in terms of its azimuth (or longitude) ˛, and elevation
(or latitude) ˇ (Fig. 5.9). The variation of the tip of a vector v D (xv, yv, zv) on a unit
sphere can be conveniently represented as a 2D-graph of the values (˛, ˇ) computed
as follows:

˛ D tan�1
�
xv

zv

�

ˇ D tan�1

yvp
x2v C z2v

!

(5.58)

5.6 Rotation Interpolation 95

xB

yBzB

Z

v

Y

O X
a

b

a b

Fig. 5.9 Spherical parameterization of rotations: (a) Movement of unit vectors attached to body
axes during a rotation of the object. (b) Parametric representation of unit vectors on a sphere

Table 5.1 Graph values
(’,“) of the two orientations
in Fig. 5.8

Orientation-1 Orientation-2

xB (0, 0) (˙180, 0)
yB (�90, 0) (�, 90)
zB (�, �90) (90, 0)

Transformation matrix

2

4
0 �1 0

0 0 �1
1 0 0

3

5

2

4
0 0 1

0 1 0

�1 0 0

3

5

�indicates an indeterminate value

We call the above method of representing the three-dimensional variations of
a unit vector as the ˛ˇ-graph method. Note that when ˇD ˙90ı, the value of ˛
is indeterminate. In the following sections, we will use ˛ˇ-graphs of the body-
fixed axes for a given interpolation sequence to compare the paths generated by
different methods. For the example given in Fig. 5.8, the graph values (in degrees)
of Orientation-1 and Orientation-2 are shown in Table 5.1. The variation of a graph
between the two points will help us visualize how a sequence of rotational transfor-
mations operates on an object for transforming it from one orientation to the other.

Another method for visualizing three-dimensional rotations is to show a small
triangle (see Fig. 5.9a) at the position of one of the body axes (say, zB) on the
unit sphere, oriented towards another axis (say yB). The triangle uniquely represents
the three-dimensional orientation of the object. Triangles displayed at equal time
intervals during a rotational transformation will clearly show the movement of an
axis of interest, and also indicate the spin of the object about that axis (see Fig. 5.10).

5.6.1 Euler Angle Interpolation

Let us first consider the interpolation between two orientations represented using
Euler angles. For our example, we will use the Euler angle sequence f , �, �g

96 5 Quaternions

Fig. 5.10 Interpolation sequence generated using Euler angles (90, �90, 0) and (0, 90, 0)

introduced in Sect. 5.4.1. Given two sets of Euler angles f 1, �1, �1g and f 2, �2,
�2g, all intermediate sets can be obtained using a linear interpolation between the
corresponding Euler angles:

 D .1 � t/ 1 C t 2

� D .1 � t/�1 C t�2

� D .1 � t/�1 C t�2; 0 � t � 1: (5.59)

The transformation matrix in Eq. 5.30 then defines the rotation from the initial
configuration to the intermediate orientation. Earlier in Fig. 5.5, we saw examples
of interpolation sequences generated in this manner. For the example given in
Fig. 5.8, Orientation-1 is defined by Euler angles f 1 D 90, �1 D �90, �1 D 0g,
and Orientation-2 by f 2 D 0, �2 D 90, �2 D 0g. The ˛ˇ-graph for the interpolation
sequence is given in Fig. 5.10. For this specific example, linear interpolation in
the domain of Euler angles also generates a perfect linear interpolation in ˛ˇ-
space, consisting of equidistant points. However, when we look at the trace of the
hammer’s axis from �Y direction to CX direction on the surface of the unit sphere,
we observe that the rotational motion from the source to the destination in three-
dimensional space is not uniform.

The “Hammer” example in Fig. 5.8 also presents an interesting aspect of Euler
angles. Orientation-2 can have an infinite number of Euler angle representations
given by f 2 Dœ, �2 D 90, �2 Dœg where œ is any value. Thus between the same
two orientations, we can have several interpolation paths using Euler angles. As
an example, the interpolated values obtained using œD �170ı give a distinctly
different and curvilinear path between Orientation-1 and Orientation-2, as shown
in Fig. 5.11.

5.6.2 Axis-Angle Interpolation

The equivalent angles and axes of rotation for both Orientation-1 and Orientation-2
can be computed from the corresponding transformation matrices using Eq. 5.41.

5.6 Rotation Interpolation 97

Fig. 5.11 Interpolation sequence generated using Euler angles (90, �90, 0) and (�170, 90, �170)

Fig. 5.12 Interpolation sequence generated using the angle-axis transformation

The parameters for Orientation-1 are ı1 D 120ı, l1 D 0.57735, m1 D �0.57735,
n1 D 0.57735, and for Orientation-2 the values are ı2 D 90ı, l2 D 0, m2 D 1, n2 D 0.
A straightforward linear interpolation gives

ı D .1 � t/ı1 C tı2

l D .1 � t/l1 C t l2

m D .1 � t/m1 C tm2

n D .1 � t/n1 C tn2; 0 � t � 1: (5.60)

The interpolated vector will need to be normalized before constructing the
transformation matrix in Eq. 5.38. The intermediate orientations generated using
the above equation are shown in Fig. 5.12.

In the example shown above, the angle axis transformation generates a non-
uniform motion with a large variation in the angular velocity. As can be seen
from both the ˛ˇ-graph and the trace on the sphere, the density of points around
the source and the destination points is very large compared to the middle. The
parameters used in the interpolation belong to completely different domains, the
angle being a scalar and the axis of rotation being a vector. Quaternions help us to

98 5 Quaternions

Q1

Q2

Interpolated quaternion Unit quaternion

Fig. 5.13 Interpolated and
unit quaternions on a unit
sphere in quaternion space

eliminate this disparity in the type of the interpolants, and achieve a rotation where
both the axis of rotation as well as the rate of change of angle remain constant. In the
next section, we consider a linear interpolation using quaternions.

5.6.3 Quaternion Linear Interpolation (LERP)

Given two unit quaternions Q1 D fq0
(1), q1

(1), q2
(1), q3

(1)g and Q2 D fq0
(2), q1

(2),
q2

(2), q3
(2)g, a linear interpolation gives the quaternion

Q D .1 � t/Q1 C tQ2; 0 � t � 1: (5.61)

The quaternion resulting from the above equation is converted to a unit quater-
nion before a transformation of the form QPQ* is applied to all points P of the
object. Every unit quaternion lies on a unit sphere in the four-dimensional space
spanned by the quaternion basis (1, i, j, k). The interpolated quaternions obtained
from Eq. 5.61 lie on a straight line between the two points Q1 and Q2. Converting
them to unit quaternions moves each interpolated quaternion to the surface of the
sphere along a radial (Fig. 5.13), resulting in an uneven distribution of points and
a corresponding non-uniformity in the angular velocity of the object. The speed in
the middle of the interpolation path is generally much higher than the speed at the
end points. The interpolated quaternions after normalization lie on an arc of a great
circle between Q1 and Q2.

Continuing with our “Hammer” example in Fig. 5.8, the source and the target
orientations in Table 5.1 can be converted into quaternions using Eq. 5.49. For
Orientation-1, the quaternion parameters are q0

(1) D 0.5, q1
(1) D 0.5, q2

(1) D �0.5,
q3

(1) D 0.5, and for Orientation-2, the values are q0
(2) D 0.71, q1

(2) D 0, q2
(2) D 0.71,

q3
(2) D 0. The ˛ˇ-graph and the trace of the hammer axis on the sphere are shown

in Fig. 5.14.

5.6 Rotation Interpolation 99

Fig. 5.14 Interpolation sequence generated using quaternion linear interpolation

Q1 Q1

P

sinWR

tW

Q

Q2′

Q2 Q2

cosW

a bFig. 5.15 Subdivision of the
angle between unit
quaternions

The interpolation path obtained using quaternions is along a circular arc between
the end points, which is often the most desired path. However, the non-uniform
spacing of points along the arc indicates that the angular velocity is initially smaller,
then increases towards the middle and slows down again towards the target.

5.6.4 Quaternion Spherical Linear Interpolation (SLERP)

In the previous section we saw that linear interpolation generates intermediate
quaternions along a chord between Q1 and Q2 (Fig. 5.13) on the unit sphere in
quaternion space. If we subdivide the angle between Q1 and Q2 uniformly, then we
will get an even distribution of points on the sphere. Such a distribution will also
yield a smooth rotation of the object from one orientation to another with nearly
constant angular velocity. The spherical linear interpolation (SLERP) technique uses
this approach to compute intermediate quaternions.

Figure 5.15 shows the geometrical constructions needed to derive the SLERP
formula. In the figure, Q1 D fq0

(1), q1
(1), q2

(1), q3
(1)g and Q2 D fq0

(2), q1
(2), q2

(2),
q3

(2)g are any two unit quaternions and P is another unit quaternion that is orthogonal
to Q1. Treating them as vectors in quaternion space, Q2 � Q1cos˝ is a vector

100 5 Quaternions

Fig. 5.16 Interpolation sequence generated using quaternion spherical linear interpolation

(denoted by R) from Q2
0 (the projection of Q2 on Q1) to Q2, where ˝ is the angle

between Q1 and Q2. ˝ is computed from the following formula:

cos˝ D q0
.1/q0

.2/ C q1
.1/q1

.2/ C q2
.1/q2

.2/ C q3
.1/q3

.2/ (5.62)

Dividing R by its magnitude (sin˝), we get the unit quaternion in the direction
of R. Thus

P D Q2 �Q1 cos˝

sin˝
(5.63)

Figure 5.15 shows the angle between Q1 and Q2 subdivided using an interpola-
tion parameter t (0 � t � 1), and the interpolated unit quaternion Q generated using
this subdivision. Resolving Q along the orthogonal unit directions of Q1 and P
we get

Q D Q1cos.t˝/C P sin.t˝/ (5.64)

Substituting Eq. 5.63 and simplifying we get

Q D Q1 sin ..1 � t/˝/CQ2 sin .t˝/

sin .˝/
(5.65)

The above equation has a singularity when ˝D 0 or ˙180ı. When ˝D 0,
both the initial and final quaternions are the same, and therefore no interpolation
is necessary. When ˝ D ˙180ı, Q2 D �Q1. From Eq. 5.57 we know that this
condition also corresponds to the situation where both orientations are the same.

The interpolated sequence generated by Eq. 5.65 for the “Hammer” example is
shown in Fig. 5.16. Compared with the results obtained from previously discussed
forms of interpolation, the smoothness of the interpolating curves as well as the uni-
formity in the distribution of points along them are noticeable. Spherical linear inter-
polation yields an optimal angle interpolation between two orientations with a con-
stant axis of rotation. If the interpolation parameter is incremented in constant steps,
spherical linear interpolation will generate a motion with constant angular velocity.

5.7 Quaternion Exponentiation 101

Q1

Q2

Q1

Q2

-Q2a b

W

W

Fig. 5.17 Two different
interpolation paths on the
quaternion sphere

When interpolating between two quaternions Q1 and Q2, we have to make sure
that the interpolation is performed along the shorter arc on the great circle through
the two points on the quaternion sphere. If the angle ˝ between Q1 and Q2 is
less than 90ı, we interpolate between the two quaternions (Fig. 5.17), otherwise
we interpolate between Q1 and �Q2 (Fig. 5.17). In other words, if Q1• Q2 D cos˝
< 0, we negate the sign of Q2. The value of cos˝ is computed using the formula in
Eq. 5.62.

The following sections discuss a few more applications of quaternions for
representing transformations in a three-dimensional space.

5.7 Quaternion Exponentiation

We will extend the notion of exponentiation from the field of complex numbers to
the domain of quaternions and also define the associated logarithmic function that is
consistent with exponentiation. However, there are some subtle differences between
the way in which these operations are performed on real and complex numbers and
the way they are applied to quaternions.

From Eq. 5.6 we know that a unit complex number can be expressed as z D (cosı,
sinı). The same complex number has an alternate representation in the form z D eiı .
This is the well known Euler’s formula in complex numbers. We know that a unit
quaternion can also be written as Q D (cosı, u sinı). Similar to complex numbers,
an exponential notation for unit quaternions can be introduced as follows:

Q D .cos ı;u sin ı/ D euı (5.66)

where u D (l, m, n) is a unit vector in three-dimensional space. For the time
being, we will treat the above equation as only an alternate representation of unit
quaternions. We will see the formal definition of the exponential function and how
it is related to the above notation immediately after the next equation. The logarithm
of the unit quaternion in Eq. 5.66 is defined as

QL D log.Q/ D log.euı/ D .0;uı/ D .0; lı;mı; nı/ (5.67)

102 5 Quaternions

QL is a pure quaternion and its magnitude is ı. The definition of an exponential
function for quaternions must be consistent with the above operation and the
inverse of the log() function, such that exp(log(Q))D Q. We thus have the following
definition:

exp.QL/ D exp..0; uı// D .cos ı;u sin ı/ D euı: (5.68)

The above definition leads to the following important result for any unit
quaternion Q D (cosı, u sinı), and any real value t:

Qt D exp.t log.Q// D exp..0;utı// D .cos.tı/;u sin.tı// (5.69)

Note that the operations Qt and exp(QL) both return unit quaternions. As a special
case, when t D 0, we have

Q0 D .1; 0; 0; 0/ for any unit quaternionQ: (5.70)

Since quaternion multiplication is non-commutative, it immediately follows that
QaQb ¤ QbQa and, log(PQ) ¤ log(P) C log(Q). However, the following equations
are valid for all unit quaternions Q:

QaQb D QaCb

.Qa/b D Qab (5.71)

We know that the unit quaternion Q given in Eq. 5.66 represents a rotation by
an angle 2ı about the unit vector u passing through the origin. From Eq. 5.69, we
see that raising Q to the power of t effectively changes the angle of rotation. Thus if
0 � t � 1, then Qt gives a unit quaternion that represents a partial rotation 2tı. This
result is useful for interpolating between orientations. In the next section, we will
define the relative quaternion between two orientations, and then apply Eq. 5.69 to
perform incremental rotations along a path from the source orientation to the target
orientation. As a result, we will get another equation for the quaternion spherical
linear interpolation using the exponential notation.

5.8 Relative Quaternions

In Sect. 5.6, we defined the three-dimensional orientation of an object using the
parameters of rotation that transforms the object from its initial configuration to the
current. This rotation can be represented by a unit quaternion. Thus two independent
orientations of an object can be represented by two unit quaternions Q1 and Q2

(Fig. 5.18). In the following, we try to find the relative quaternion that performs

5.8 Relative Quaternions 103

Initial Configuration

Orientation-1

Orientation-2

P

P1

P2

Q2

Q1
Relative quaternion

Fig. 5.18 The relative quaternion transforms an object from one orientation to another

a rotation from the first orientation to the second. This relative quaternion can
be easily obtained by noting how Q1 and Q2 transform points from one frame to
another.

In Fig. 5.18, the point P1 in Orientation-1 corresponds to the point P in the initial
configuration. In other words, the quaternion Q1 transforms P into P1. Similarly the
quaternion Q2 transforms P into P2 in Orientation-2. Therefore,

P1 D Q1PQ1
�

P2 D Q2PQ2
�

(5.72)

Now we seek a quaternion that transforms P1 into P2. From the first equation
above, we get the inverse transformation,

P D Q1
�P1Q1 (5.73)

Substituting in the second equation, we have

P2 D Q2Q1
�P1 Q1Q2

�

D .Q2Q1
�/P1 .Q2 Q1

�/� (5.74)

The above equation shows that the quaternion Q2Q1* transforms the point P1 into
P2, and therefore represents the transformation from Orientation-1 to Orientation-2.
Note that Q2Q1* is a unit quaternion. Q2Q1* is called the relative quaternion
between Q1 and Q2.

We now revisit the problem of interpolating between Orientation-1 and
Orientation-2. Any intermediate orientation in the above example can be obtained
by first applying the unit quaternion Q1 to get to Orientation-1 from the initial

104 5 Quaternions

Listing 5.1 Pseudo-code for computing SLERP equation in exponent form

configuration, and then applying a partial rotation using the relative quaternion
Q2Q1*. From Eq. 5.69, we know that this partial rotation can be effected by
(Q2Q1*)t, where, 0< t<1. Combining the two transformations together, we get
the quaternion (Q2Q1*)tQ1. By varying t uniformly between 0 and 1, we get
the quaternions that interpolate between the two orientations. What we have just
obtained is another form for the quaternion spherical interpolation (SLERP) formula
using the exponent function. The pseudo-code in Listing 5.1 outlines this method
for rotation interpolation. When t D 0, (Q2Q1*)tQ1 becomes Q1, and when t D 1,
the interpolated quaternion becomes identical to Q2.

5.9 Dual Quaternions

In previous sections we saw applications of unit quaternions in representing
rotational transformations. Dual quaternions generalize the notion of quaternions
to an 8-tuple, and provide a convenient tool for representing rigid body transfor-
mations containing both rotations and translations in three-dimensional space. The
mathematical structure of dual quaternions uses two quaternions that are combined
using the algebra of dual numbers. Before considering the theoretical aspects of dual
quaternions, we will look at the definition and properties of dual numbers.

5.9.1 Dual Numbers

The structure and the algebra of dual numbers are very similar to complex numbers.
Given two real numbers a and b, a dual number can be written as a C " b, where
"2 D 0. The number a is then called the real part, and b the dual part. " is often
referred to as the dual unit. As in the case of complex numbers, we can use a tuple
notation d D (a, b) to represent a dual number. The algebra of dual numbers satisfies
the following rules for addition and multiplication:

.a1; b1/˙ .a2; b2/ D .a1 ˙ a2; b1 ˙ b2/ (5.75)

5.9 Dual Quaternions 105

.a1; b1/.a2; b2/ D .a1a2; a1b2 C a2b1/ (5.76)

c.a; b/ D .ca; cb/; for any real number c: (5.77)

Using the multiplication rule in Eq. 5.76 we find that

.a; b/

�
1

a
;

�b
a2

�
D .1; 0/ (5.78)

Therefore, the second term in the product above is the multiplicative inverse of
(a, b), provided a ¤ 0. The conjugate of a dual number d D (a, b) is defined in a way
similar to that of a complex number:

d� D .a;�b/ (5.79)

Using Eq. 5.76, it can be verified that dd* D a2. We also note that (a, b)2 D (a2,
2ab). Hence,

�p
a;

b

2
p
a

�2
D .a; b/ (5.80)

The above equation directly leads to the definition of the square-root of a dual
number:

p
.a; b/ D

�p
a;

b

2
p
a

�
(5.81)

In the next section, we will extend the concepts introduced above to the algebra
of dual quaternions. For notational convenience, dual numbers will often be written
as (a, Qa).

5.9.2 Algebra of Dual Quaternions

A dual quaternion is a quaternion constructed using dual numbers as its components:
Q D (q0, q1, q2, q3), where qi D (qi, Qqi), i D 0, : : : 3. Equivalently, we can also define
a dual quaternion as a dual number whose components are quaternions: Q D (Q, QQ)
where Q D (q0, q1, q2, q3), and QQD (Qq0, Qq1, Qq2, Qq3). Q is a pure dual quaternion if
q0 D 0, or equivalently if q0 D Qq0 D 0. We can also represent any dual quaternion
Q as an 8-tuple (q0, q1, q2, q3, Qq0, Qq1, Qq2, Qq3). The following representation of Q
reveals the products of quaternion units and the dual units that are associated with
each component of the 8-tuple.

Q D q0 C iq1 C jq2 C kq3 C " Qq0 C " i Qq1 C " j Qq2 C " k Qq3 (5.82)

106 5 Quaternions

Table 5.2 Multiplication table for dual quaternion units

1 i j k " "i "j "k

1 1 i j k " "i "j "k
i i �1 k �j "i �" "k �"j
j j �k �1 i "j �"k �" "i
k k j �i �1 "k "j �"i �"
" " "i "j "k 0 0 0 0
"i "i �" "k �"j 0 0 0 0
"j "j �"k �" "i 0 0 0 0
"k "k "j �"i �" 0 0 0 0

The following dual quaternions form a mutually orthogonal set of basis vectors
for the entire 8-dimensional space of dual quaternions.

i 0 D 1 D .1; 0; 0; 0; 0; 0; 0; 0/

i 1 D i D .0; 1; 0; 0; 0; 0; 0; 0/

i 2 D j D .0; 0; 1; 0; 0; 0; 0; 0/

i 3 D k D .0; 0; 0; 1; 0; 0; 0; 0/

i 4 D " D .0; 0; 0; 0; 1; 0; 0; 0/

i 5 D "i D .0; 0; 0; 0; 0; 1; 0; 0/

i 6 D "j D .0; 0; 0; 0; 0; 0; 1; 0/

i 7 D "k D .0; 0; 0; 0; 0; 0; 0; 1/ (5.83)

Any dual quaternion is a linear combination of the above basis vectors:

Q D
7X

kD0
i kqk (5.84)

Using the multiplication rule for quaternion basis, we observe that i("j) D "k,
("k)j D �"i, ("i)("j) D 0 etc. Note also that "i D i". The complete multiplication table
is given in Table 5.2. The multiplication rule for dual numbers given in Eq. 5.76 can
be extended to quaternions:

PQ D .P; QP / .Q; QQ/ D .P Q; QPQ C P QQ/ (5.85)

We can also multiply a dual quaternion P by a quaternion Q:

PQ D .P; QP / Q D .P Q; QP Q/ (5.86)

The conjugate of a dual quaternion is defined in three different ways, as discussed
below.

5.9 Dual Quaternions 107

Conjugate type 1: As mentioned in the beginning of this section, we can treat a
dual quaternion Q as a quaternion with dual number components (q0, q1, q2, q3).
Applying the rule for a quaternion conjugate, we get Q* D (q0, �q1, �q2, �q3),
hence

Q� D .Q�; QQ�/ D .q0;�q1;�q2;�q3; Qq0;� Qq1;� Qq2;� Qq3/ (5.87)

This definition satisfies the following property:

QQ� D .QQ�; QQQ� CQ QQ�/

D �
q0
2 C q1

2 C q2
2 C q3

2; 2.q0 Qq0 C q1 Qq1 C q2 Qq2 C q3 Qq3/
�

D Q�Q (5.88)

In the above derivation, note that QQ* D (jQj2, 2 Q• QQ), where • indicates
the dot product between the two quaternions. It can also be easily verified that
(PQ)* D Q*P*, for any two dual quaternions P, Q. This property is useful for
combining two or more successive transformations (see Eq. 5.51). The norm of a
dual quaternion can now be defined as follows:

jjQjj D
p

QQ� D
q�jQj2; 2.Q � QQ/ � D

jQj; 2.Q � QQ/
jQj

!

(5.89)

The above derivation is based on the definition of the square-root of a dual
number as given in Eq. 5.81. A unit dual quaternion Q satisfies the condition
jjQjj D 1. From Eq. 5.89, we see that Q D (Q, QQ) is a unit dual quaternion if and
only if jQj D 1 (i.e., Q is a unit quaternion) and Q• QQD 0 (i.e., Q is orthogonal to QQ
in quaternion space, or QQD0).

Conjugate type 2: If we treat Q as a dual number (Q, QQ), then the application of
the rule in Eq. 5.79 gives the following definition:

Q� D .Q;� QQ/ D .q0; q1; q2; q3;� Qq0;� Qq1;� Qq2;� Qq3/ (5.90)

The main drawback of the above definition is that it does not lead to a convenient
definition for the unit norm. Further, it does not satisfy the condition (PQ)* D Q*P*.

Conjugate type 3: Here we combine both the above definitions to form a new type
of conjugate as given below:

Q� D .Q�;� QQ�/ D .q0;�q1;�q2;�q3 � Qq0; Qq1; Qq2; Qq3/ (5.91)

The above definition satisfies the properties (PQ)* D Q*P*, and (Q*)* D Q. The
norm in this case is defined as

108 5 Quaternions

jjQjj D
p

QQ� D
r�

jQj2; QQQ� � . QQQ�/�
	

D

jQj;
QQQ� � . QQQ�/�

jQj

!

(5.92)

With the above norm, a unit dual quaternion Q must have a unit quaternion Q
for its real part, and QQQ* must be a real quaternion. In the next section, we will
use the above definition (type 3) of the conjugate to construct dual quaternions that
represent rigid body transformations.

5.9.3 Transformations Using Dual Quaternions

Recall that any unit quaternion Q can be used to perform a rotational transformation
of a vector p D (x, y, z) in three-dimensional space using the quaternion product
QPQ* where P is the quaternion (0, p). We can also represent the vector p by the
dual quaternion P D (1, P) D (1, 0, 0, 0, 0, x, y, z). P is a unit dual quaternion.
Similarly, if Q is a unit quaternion, then Q D (Q, 0) is a unit dual quaternion. Then

QPQ� D .Q; 0/.1; P /.Q�; 0/ D .Q;QP/Q� D .1;QPQ�/

D .1; P 0/ D P 0 (5.93)

where P0 is the quaternion (0, p0) that represents the transformed (rotated) vector.
The above result is valid for all types of dual quaternion conjugates described in the
previous section. It shows that for every unit quaternion there exists a corresponding
unit dual quaternion that performs exactly the same rotational transformation of
vectors. We now ask the question: does such a transformation exist for translations
in three-dimensional space?

Given a translation vector t D (t1, t2, t3), let us construct a quaternion T in the
form (0, t/2), and from it, a dual quaternion T as

T D .1; T / D
�
1; 0; 0; 0; 0;

t1

2
;
t2

2
;
t3

2

�
(5.94)

Note the division of the vector components by 2 in T, similar to that of a rotation
angle in a unit quaternion (see Eq. 5.44). Using conjugate type 3,

T � D .1; � T �/ D .1; T / D T (5.95)

Applying a transformation of P using T similar to Eq. 5.93,

TPT � D .1; T /.1; P /.1; T �/ D .1; P C 2T / D P 0 (5.96)

The above equation shows that a point p D (x, y, z) gets transformed into the
point p0 D (x C t1, y C t2, z C t3) if p was embedded in a quaternion as P D (0, p),

5.10 Summary 109

the quaternion itself embedded in a dual quaternion P as (1, P). Thus we can
use T as a dual quaternion representing spatial translations. We will now use the
above results to construct a dual quaternion that represents the most general rigid
body transformation: a rotation by an angle ı about an arbitrary vector (l, m, n)
through the origin, followed by a displacement by a translation vector (t1, t2, t3). Let
Q D (Q, 0), T D (1, T) represent rotation and translation respectively. The composite
transformation is then represented by the dual quaternion G D (Q, TQ) as seen in the
following derivation:

GPG � D .Q; TQ/.1; P /.Q; TQ/� D .Q;QP C TQ/.Q�;�Q� T �/

D .QQ�;QPQ� C TQQ� �QQ�T �/ D .1;QPQ� C 2T / D P 0

(5.97)

The quaternion QPQ* C 2T gives the transformed point after the required
rotation and translation.

5.10 Summary

This chapter gave an overview of the quaternion algebra including the properties
that are useful for graphics applications. Unit quaternions represent rotations about
the origin. Composite rotations can be represented by a product of quaternions.
The multiplicative inverse of a unit quaternion is the same as its conjugate. A unit
quaternion with all of its components negated represents the same orientation as the
original quaternion.

Computer graphics animations generally involve several rotation interpolations.
This chapter compared the effects produced by Euler angle interpolation, axis-
angle interpolation and quaternion interpolation. The spherical linear interpolation
of rotations using unit quaternions produced optimal rotation with uniform angular
velocity. Methods for visualising three-dimensional rotation sequences were dis-
cussed.

This chapter also presented the algebra of dual quaternions which has recently
found applications in graphics. Dual quaternions are defined based on the concept of
dual numbers, and they can be viewed as 8-dimensional vectors. The conjugate of a
dual quaternion can be defined in three different ways. The property of dual numbers
that is important from the point of view of computer graphics is that the most general
rigid-body transformation in three-dimensional space can be represented by unit
dual quaternions.

The next chapter further analyses three-dimensional motion using forward and
inverse kinematics equations. In this chapter, we will revisit quaternion representa-
tion of rotations to define angular velocity components of motion.

110 5 Quaternions

5.11 Supplementary Material for Chap. 5

The folder Chapter5/Code on the companion website contains the definition
and implementation files for both the quaternion and the dual quaternion classes. It
also contains the following programs demonstrating the effects of different types of
interpolation methods on rotational transforms.

1. Quaternion.cpp

The quaternion class defines methods for performing quaternion operations,
and representing three-dimensional rotations using quaternions. The class also
has methods for both linear and spherical linear interpolation of rotations using
quaternions. The class documentation can be found in Appendix D.

2. DualQuat.cpp

This class is used for the construction of dual quaternions and for performing
basic operations and transformations using them. The class documentation can
be found in Appendix D.

3. EulerInterp.cpp

The program displays a texture mapped cube with its orientation clearly
shown using the markings of initial direction on each face. For a given set of

5.12 Bibliographical Notes 111

initial and final orientations specified using Euler angles, the program generates
the display of ten intermediate orientations using Euler angle interpolation.

4. RotationInterp1.cpp

The program uses the object model in Fig. 5.8, and two orientations as given
in Table 5.1 to compare the paths taken by Euler, quaternion and angle-axis
interpolations. Pressing key ‘1’ selects Euler, ‘2’ angle-axis, and ‘3’ quaternion
interpolation. Pressing space bar shows the motion of the object through the
interpolated sequence.

5. RotationInterp2.cpp

The program displays an interpolation sequence using triangles placed on a
sphere. Different parts of the sphere can be viewed by rotating it using the arrow
keys. The initial, final and the interpolated values are also displayed in text form.
Pressing key 1 selects Euler interpolation, key 2 selects angle-axis interpolation,
and key 3 selects quaternion interpolation.

5.12 Bibliographical Notes

The algebra of quaternions was first discovered by the Irish mathematician Sir
William Rowan Hamilton (1805–1865). Most of his work on the quaternion group
were later published as a book (Hamilton and Joly 1899). A detailed description
of the quaternion algebra including definitions, properties and proofs of theorems
are given in Kuipers (1999) and Hanson (2006). An in-depth theoretical analysis of
the quaternion group, associative algebras and higher dimensional structures can be
found in Conway and Smith (2003), Ward (1997), Kamberov (2002).

112 5 Quaternions

Shoemake’s paper (Shoemake 1985) established the effectiveness of quaternions
as a powerful mathematical tool in graphics applications. Several books on computer
graphics such as Eberly (2007), Foley (1996), Watt and Policarpo (2003) describe
the applications of quaternions in rotational transformations of objects.

One of the early publications containing references to dual numbers and dual
quaternions highlighting their importance in kinematics is Bottema and Roth (1979).
However, it is a more recent publication by Ladislav Kavan et al. (2007) that showed
that dual quaternions could indeed be used in computer graphics, particularly in the
area of vertex skinning, for representing rotations combined with displacements.

References

Bottema, O., & Roth, B. (1979). Theoretical kinematics. Amsterdam/Oxford: North-Holland
Publishing Co.

Conway, J. H., & Smith, D. A. (2003). On quaternions and octonions: Their geometry, arithmetic,
and symmetry. Natick: AK Peters.

Eberly, D. H. (2007). 3D game engine design: A practical approach to real-time computer graphics
(2nd ed.). Amsterdam/London: Morgan Kaufmann.

Foley, J. D. (1996). Computer graphics: Principles and practice (2nd ed.). Reading/Wokingham:
Addison-Wesley.

Hamilton, W. R. S. (1899). Elements of quaternions (2nd ed.), 2 vols. London: Longmans, Green
& Co.

Hanson, A. (2006). Visualizing quaternions. San Francisco/London: Morgan Kaufmann.
Kamberov, G. (2002). Quaternions, spinors and surfaces. Providence/Great Britain: American

Mathematical Society.
Kavan, L., Collins, S., Zara, J., & O’Sullivan, C. (2007). Skinning with dual quaternions.

Proceedings of the 2007 symposium on Interactive 3D graphics and games, Seattle, WA.
Kuipers, J. B. (1999). Quaternions and rotation sequences: a primer with applications to orbits,

aerospace, and virtual reality. Princeton/Chichester: Princeton University Press.
Shoemake, K. (1985). Animating rotation with quaternion curves. SIGGRAPH Computer

Graphics, 19(3), 245–254.
Ward, J. P. (1997). Quaternions and cayley numbers: Algebra and applications. Dordrecht/London:

Kluwer.
Watt, A. H., & Policarpo, F. (2003). 3D games: Animation and advanced real-time rendering.

Harlow: Addison-Wesley.

Chapter 6
Kinematics

Overview

The term “kinematics” refers to the study of the translational and rotational motion
of objects without reference to mass, force or torque. Kinematics equations are
used to describe three-dimensional motion of a multi-body system in terms of
translational and rotational motions, and optionally, linear and angular velocities.
Kinematics analysis becomes important in the animation of articulated models and
skeletal structures containing serial chains of joints and links.

To set the context for developing the kinematics equations for graphics applica-
tions, we first give an outline of robot manipulators comprising a chain of joints.
Both forward and inverse kinematics equations of joint chains are then discussed in
detail. Iterative numerical algorithms for computing joint angles for a given target
position are also presented. These methods are useful for performing goal-directed
motion in an animation sequence.

6.1 Robot Manipulators

In a system containing several interconnected links, it is often required to find the
global position of the end-point of the last link. This end-point is called the end
effector. In an animated character model that performs a certain task, this could
be the tip of a finger. In a robot manipulator, knowing the end effector position
is important to carry out tasks such as inspection, picking, welding, painting, etc.
Robot manipulators usually contain many links and different types of joints. In such
systems, the motion of the end effector becomes exceedingly complex, as it depends
on many joint parameters.

The Programmable Universal Machine for Assembly (PUMA) is a classic
example of a robot manipulator arm. A graphics model of the PUMA robot is
shown in Fig. 6.1. It consists of a chain of links and joints, with the end effector

R. Mukundan, Advanced Methods in Computer Graphics: With examples in OpenGL,
DOI 10.1007/978-1-4471-2340-8 6, © Springer-Verlag London Limited 2012

113

114 6 Kinematics

Fig. 6.1 A graphics model of a PUMA robot

Revolute
Joint

Prismatic
Joint

Hooke’s
Joint

Spherical
Joint

Fig. 6.2 Commonly used joints in robot manipulator arms

or the gripping device forming the last link. The other end of the joint chain is
fixed to the base. This link forms the root of the tree that represents the hierarchy of
transformations applied to the links. This hierarchical structure is the same as that of
the scene graph we saw in Chap. 3. The transformations depend on the rotation and
displacement of each link relative to its parent. The joint types as well as physical
mounting constraints dictate the degrees of freedom of a particular configuration.
The range of allowable angular and linear displacements at a joint also depends on
the joint type.

Several types of joints can be found in robot manipulators. The most common
is the revolute joint that is used for a simple rotation of a link about a fixed axis,
providing one degree of freedom. A prismatic joint, on the other hand allows a
translation or displacement of a link with respect to its parent. Compound rotations
about two orthogonal axes can be performed using a Cardan joint or a Hooke’s
joint. A Hooke’s joint can be modelled by two revolute joints whose axes intersect.
A more sophisticated type of joint providing three axes rotation is the spherical joint,
also known as the ball and socket joint. Sample illustrations of these joints are given
in Fig. 6.2.

For graphics applications, joint chains with only rotational transformations are
commonly used. Some examples of such systems were given earlier in Chaps. 3and
4. Generalised rotations with multiple degrees of freedom can be easily modelled
using either Euler angles or quaternions as described in the previous chapter. In
the next section, we consider the problem of finding the global position of the end
effector, given the joint angle parameters.

6.2 Forward Kinematics 115

6.2 Forward Kinematics

The term forward kinematics refers to the movement of a joint chain, given all the
information about the relative position and orientation of each link with respect to
its parent, and absolute position of the root joint. Forward kinematics equations are
used to determine the position of the end effector in the world coordinate system for
a given set of joint angles.

6.2.1 Joint Chain in Two Dimensions

Consider a 3-link chain shown in Fig. 6.3, that is constrained to move on a two-
dimensional xy-plane. Assume that the absolute position of the base link is specified
by the point A D (xa, ya), and that the link lengths d1, d2, d3, and the joint angles �1,
�2, �3 are given. These parameters completely specify the configuration of the joint
chain. Note that the joint angles are defined relative to the parent link. Using this
information, we seek the coordinates of the end effector E.

For a planar motion, the angles are simply summed up from the base link to the
current link to find the absolute orientation of that link. In the example given above,
angles �1, �2 are positive while �3 is negative. The coordinates of the points B, C,
E can be computed in a sequence starting from the base as follows:

xb D xa C d1 cos.�1/

yb D ya C d1 sin.�1/

xc D xb C d2 cos.�1 C �2/

yc D yb C d2 sin.�1 C �2/

xe D xc C d3 cos.�1 C �2 C �3/

D d3cos.�1 C �2 C �3/C d2cos.�1 C �2/C d1cos.�1/C xa

ye D yc C d3 sin.�1 C �2 C �3/

D d3sin.�1 C �2 C �3/C d2sin.�1 C �2/C d1sin.�1/C ya (6.1)

x

y

B

C

d1

d2

A

E
d3

Base

q1

q2

q3

Fig. 6.3 A planar motion of
a three-link joint chain

116 6 Kinematics

u1

v1

w1

d1

d2
d3

d4

w2

v2

u2

w3

v3

u3 w4

v4 u4

E

x

y

P1

P2

z

P3
P4

Fig. 6.4 A 4-link joint chain
in three-dimensional space

The above sequence can be extended to any number of links and joint angles:

xn D xn�1 C dncos

nX
iD1

�i

!

yn D yn�1 C dnsin

nX
iD1

�i

!
(6.2)

where (xn, yn) is the position of the nth link, and dn its length. If n is the index
of the last link containing the end effector, then its direction is given by the unit
vector.cos.

Pn
iD1 �i /; sin.

Pn
iD1 �i //.

6.2.2 Joint Chain in 3D Space

In a three-dimensional coordinate system, we should be able to apply the most
general rotational transformation to every link of the joint chain. We can then
simulate the movement of links connected by a revolute joint, a Hooke’s joint, or a
spherical joint. In order to define the relative orientation of a link with respect to its
parent, we will need to define an orthogonal right-handed body-fixed frame on each
link.

Consider a 4-link joint chain shown in Fig. 6.4. A link i has a body-fixed frame
(ui, vi, wi) and a length di. Every link is assumed to be aligned along the x-direction
in its frame, given by the ui axis. The rotation of the link i is defined by the relative
orientation of the frame (ui, vi, wi) with respect to its parent’s frame (ui�1, vi�1,
wi�1). This is specified by a 3 � 3 rotation matrix Ri. The rotation matrix can
be formed using any representation of generalized rotations such as Euler angles,

6.2 Forward Kinematics 117

angle-axis parameters, or quaternions. The end effector is denoted by the point E.
The position of link i is indicated by the point Pi. The forward kinematics solution
for this joint chain attempts to find the coordinates (xe, ye, ze) of the point E in the
world coordinate system, given the position of the base link P1 D (x1, y1, z1), lengths
of the links d1..d4, and rotation matrices R1..R4.

Note that the matrix R1 represents the rotational transformation of the first link’s
local frame (u1, v1, w1) in the world coordinate space. Therefore,

u1 D R1

2
410
0

3
5 ; v1 D R1

2
4 01
0

3
5 ; w1 D R1

2
4 00
1

3
5 : (6.3)

The position of the point P2 can be determined as

2
4x2y2

z2

3
5 D R1

2
4d10
0

3
5C

2
4x1y1

z1

3
5 (6.4)

The matrix R2 gives the rotation of the frame (u2, v2, w2) with respect to the
frame (u1, v1, w1). The position of the point P3 can be obtained in terms of the
coordinates of P2 as follows:

2
4x3y3

z3

3
5 D R1R2

2
4d20
0

3
5C

2
4x2y2

z2

3
5 (6.5)

Continuing as above, the coordinates of the end effector E are obtained as shown
below.

2
4xeye

ze

3
5 D R1R2R3R4

2
4d40
0

3
5C

2
4x4y4

z4

3
5 (6.6)

The above equation can be expanded and expressed in terms of the known
parameters:

"
xe
ye
ze

#
D R1R2R3R4

"
d4
0
0

#
C R1R2R3

"
d3
0
0

#
C R1R2

"
d2
0
0

#
C R1

"
d1
0
0

#
C
"
x1
y1
z1

#

(6.7)

118 6 Kinematics

World

Link-1

Group-1

Group-2

Group-3Link-2

Link-3 Link-4

T4R4

T3R3

T2R2

T1R1

I

I

I

Fig. 6.5 A scene graph based
representation of the
transformations applied to the
links of the joint chain in
Fig. 6.4

The orientation of the frame of the end effector in the world coordinate system
is given by the product matrix R1R2R3R4. The sequence of derivations given above
can be extended to form an iterative algorithm for computing the end effector
position of a general n-link joint chain.

We can use a scene graph to represent the transformations of the joint chain as
shown in Fig. 6.5. Using this scene graph model, the coordinates of the end effector
in the root node’s reference frame is given by

2
4xeye

ze

3
5 D T1R1T2R2T3R3T4R4

2
4d40
0

3
5 (6.8)

In the above equation,

Ti D
2
4di�10

0

3
5 ; i D 2; 3; 4; and T1 D

2
4x1y1

z1

3
5 : (6.9)

The equivalence of Eqs. 6.7 and 6.8 can be readily established.

6.3 Linear and Angular Velocity

In addition to the position and the orientation, the velocity of the end effector is also
an important parameter in many applications involving a serial chain. For example,
an articulated character model may be required to move an object with constant
velocity. The velocity of the end effector is a combination of the linear velocity of
the chain itself and the angular velocity introduced by the joint rotations.

6.3 Linear and Angular Velocity 119

A

B

(xa, ya)

(xb, yb)

x

y

rva

vavq

v

q

Fig. 6.6 Velocity vectors
on a single link in
two-dimensional space

6.3.1 Velocity in Two Dimensions

First, we consider a single link AB that can move on the xy-plane, and rotate about
the point A (Fig. 6.6). The position of the link at any instant is defined by the
coordinates (xa, ya) of the point A. The point B takes the role of the end effector.
The orientation of the link is measured by the angle � made by the link with the
direction of the x-axis. The linear velocity of the link is the instantaneous speed
with which it is moved from its current position A. If (�x, �y) denote the change
in the position of the link from A in an infinitesimal interval of time �t, the linear
velocity components are given by

va D lim
t!0

�
�x

�t
;
�y

�t

�
(6.10)

The angular velocity ! of the link is defined as the instantaneous change in the
rotation angle � :

! D P� D lim
t!0

�
��

�t

�
(6.11)

The direction of angular velocity is perpendicular to the xy-plane. If k is a unit
vector along the z-direction, the angular velocity vector is

! D !k (6.12)

The linear velocity v� of the point B induced by the above rotation is tangential to
the circular arc with radius r at B (Fig. 6.6). This velocity is relative to the point A.
If r denotes the vector from A to B given by (xb � xa, yb � ya), then v� is defined as
the following vector cross product:

v� D ! � r D .ya � yb; xb � xa/ P� (6.13)

120 6 Kinematics

The total velocity of the end effector B relative to the coordinate frame is simply
the vector sum

v D va C v� (6.14)

Now consider a three-link joint chain on the xy-plane, shown in Fig. 6.3. We
define the vectors r1, r2, r3 along the links as follows:

r1 D .d1cos�1; d1 sin�1/

r2 D .d2cos.�1 C �2/; d2sin.�1 C �2//

r3 D .d3cos.�1 C �2 C �3/; d3 sin.�1 C �2 C �3// (6.15)

The linear velocity v� of the end effector E induced by the three joint angle
rotations is given by

v� D .!1 � .r1 C r2 C r3//C .!2 � .r2 C r3//C .!3 � r3/ (6.16)

where !1 D P�1k, !2 D P�2k, !3 D P�3k, and k is a unit vector along the z-axis.
Therefore

v� D .�d1 sin.�1/� d2 sin.�1 C �2/� d3 sin.�1 C �2 C �3/;

d1cos.�1/C d2cos.�1 C �2/C d3cos.�1 C �2 C �3// P�1
C .�d2 sin.�2/� d3 sin.�2 C �3/; d2cos.�2/C d3cos.�2 C �3// P�2
C .�d3 sin.�3/; d3cos.�3// P�3 (6.17)

The total velocity of the end effector E is v� C va where va is the velocity of the
chain induced by the translational movement of the base A. As a particular case of
Eq. 6.13, if p is a vector from A to B that undergoes only a rotational motion about
A, then the linear velocity of the point B is given by

Pp D ! � p (6.18)

6.3.2 Velocity Under Euler Angle Transformations

The animation of a general serial chain in a three-dimensional space can be
performed using Euler angle rotations (see Eq. 5.30) applied at the joints. In an
extrinsic composition of rotations, the axes of rotation are fixed relative to the joint
chain. In such a case, if the Euler angle sequence is given by f , �, �g as described
in Sect. 5.4.1, the angular rate vector has the following form:

6.3 Linear and Angular Velocity 121

r1

r2

r3

P2

P3
D

P1

Y

X

Z

w1

w2 w3

Fig. 6.7 Angular velocity
vectors on a joint chain in
three-dimensional space

! D
2
4 P

P�
P�

3
5 (6.19)

Let us now consider a joint chain that is transformed using Euler angle rotations,
as shown in Fig. 6.7.

Each joint Pi (i D 1, 2, 3) has a set of Euler angles f i � i � ig from which we
can construct a rotational transformation matrix Ri using Eq. 5.30, and an angular
velocity vector !i using Eq. 6.19. If di is the length of ith link, the vectors ri along
the link directions can be computed as

r1 D R1

2
4d10
0

3
5

r2 D R1R2

2
4d20
0

3
5

r3 D R1R2R3

2
4d30
0

3
5 (6.20)

The linear velocity v� of the end effector E resulting from the changes in the Euler
angles can now be computed using Eq. 6.16. We add this velocity to the translational
velocity of the joint chain at the base P1 to get the total velocity of the end effector
E with respect to the reference frame.

6.3.3 Quaternion Velocity

We know that if P D (0, p) is a pure quaternion, and Q a unit quaternion, then
the equation P0 D QPQ* gives a rotational transformation of the vector p, where

122 6 Kinematics

P0 D (0, p0). The quaternion transformation can be viewed as defining the orientation
of an object where p is a vector specified in a body-fixed frame, and p0 the same
vector in the fixed (inertial) coordinate reference frame. Differentiating both sides
and noting that p is a constant vector,

PP 0 D PQPQ� CQP PQ� (6.21)

The inverse transformation for P is given by P D Q*P0Q. Substituting this
expression in the above equation, we get

PP 0 D PQQ�P 0QQ� CQQ�P 0Q PQ� (6.22)

Since Q is a unit vector, QQ* D 1. Therefore,

PP 0 D PQQ�P 0 C P 0Q PQ� (6.23)

Differentiating both sides of the equation QQ* D 1, we also find that

PQQ� CQ PQ� D 0 (6.24)

The above equation shows that PQQ� C . PQQ�/� D 0. In other words, the real
part of the quaternion PQQ� is zero. Hence PQQ�can be expressed in the form (0, v).
With these observations, Eq. 6.23 becomes

.0; Pp0/ D .0; v/.0; p0/� .0; p0/.0; v/ (6.25)

Using the quaternion multiplication rule in Eq. 5.11, we get

Pp0 D 2.v � p0/ (6.26)

Since we consider only rotational motion of the vector p0, its linear velocity is
given by Eq. 6.18. Comparing both equations, we find that ! D 2v. Hence we can
write

PQQ� D
�
0;

!

2

�
(6.27)

where ! is the angular rate. Conversely, if a vector is rotated using a unit quaternion
Q, the angular rate is given by the vector part of the quaternion product 2 PQQ�.
Using Eq. 5.13, we can write this relationship in matrix form as given below.

2
664
0

!1
!2

!3

3
775 D 2

2
664
q0 q1 q2 q3

�q1 q0 �q3 q2
�q2 q3 q0 �q1
�q3 �q2 q1 q0

3
775
2
664

Pq0
Pq1
Pq2
Pq3

3
775 (6.28)

6.3 Linear and Angular Velocity 123

Note that Q is a quaternion of the type given in Eq. 5.44. Accordingly, PQ takes
the form

PQ D
�

� sin
ı

2
; l cos

ı

2
; m cos

ı

2
; n cos

ı

2

� Pı
2

(6.29)

As expected, the above equations yield the result

! D .l; m; n/ Pı (6.30)

6.3.4 The Jacobian

In general, we can assume that the end effector position E D (xe, ye, ze) of an n-link
joint chain can be expressed as a function of joint angles � i for i D 1,..,n, (for
example, see Eq. 6.1). Thus we can write

xe D xe.�1; �2; : : : ; �n/

ye D ye.�1; �2; : : : ; �n/

ze D ze.�1; �2; : : : ; �n/ (6.31)

If �� i denotes an infinitesimal change in the joint angles � i for i D 1,..,n, and
(�xe, �ye, �ze) the corresponding change in the end effector position during a
small time interval�t, we have,

xe C�xe D xe.�1 C��1; �2 C��2; : : : ; �n C��n/

ye C�ye D ye.�1 C��1; �2 C��2; : : : ; �n C��n/

ze C�ze D ze.�1 C��1; �2 C��2; : : : ; �n C��n/ (6.32)

Assuming that joint angle perturbations are small, we can use Taylor’s first order
approximation to express the above set of equations in matrix form as follows:

2
4�xe�ye
�ze

3
5 D

2
6666664

@xe

@�1

@xe

@�2
� � � @xe

@�n
@ye

@�1

@ye

@�2
� � � @ye

@�n
@ze
@�1

@ze
@�2

� � � @ze
@�n

3
7777775

2
666664

��1

��2
:::

��n

3
777775 (6.33)

From the above equation, it follows that

ve D PE D J P™ (6.34)

124 6 Kinematics

r1

r2

r3

P2

P3

P4

P1

uY

X

Z

r4

E

s2

Fig. 6.8 The Jacobian matrix can be constructed using the axis of rotation of each link and a vector
from that link to the end effector

where

PE D
2
4 Pxe

Pye
Pze

3
5 ; P™ D

2
6664

P�1P�2
:::
P�n

3
7775 (6.35)

The 3 � n matrix J is called the Jacobian of the transformation in Eq. 6.31.
As an example, consider the end effector position of a 3-link chain given in

Eq. 6.1. The Jacobian in this case is a 2 � 3 matrix containing the partial derivatives
of xe and ye with respect to the three joint angles. It can be easily verified that the
expressions for the velocity components obtained using Eq. 6.34 are the same as
those given in Eq. 6.17.

The ith column of the Jacobian in Eq. 6.33 can also be obtained using the axis of
rotation of the ith link and the vector from that link to the end effector. Figure 6.8
shows an example, where the second link’s general rotational transformation has an
equivalent axis of rotation given by the unit vector u. The vector from the second
link to the end effector is E � P2 denoted by s2.

The second column of the 3 � 4 Jacobian matrix for the above example can be
computed using the vector cross product u � s2. Note that s2 D r2 C r3 C r4.

6.4 Inverse Kinematics

Inverse kinematics (IK) deals with the process of computing the joint angles, given
the world coordinates of the end effector. Inverse kinematics solutions are needed
for animating an articulated figure using only the desired positions of end points as
inputs. Two examples are shown in Fig. 6.9, where the known end effector position
is indicated by the point E.

6.4 Inverse Kinematics 125

Fig. 6.9 Inverse kinematics
solutions try to find the joint
angles of a serial chain given
the position of the end
effector

E

X

Y

A d1

d1

d2

d2

d1

d2
k

X

E¢

AA

E

B
q1

q2

f

a b c

Fig. 6.10 (a) Multiple solutions may exist for the inverse kinematics problem for a 2-link chain.
(b) A solution exists only when the target point is between the inner and outer circles. (c) A simple
geometric construction used for an inverse kinematics solution

In the absence of joint angle constraints, multiple solutions may exist for a two
link joint chain as shown in Fig. 6.10a. On the other hand, a solution may not exist
for certain other positions of the end effector. In Fig. 6.10b, a solution cannot be
found if the target position is either inside the inner circle of radius d1 � d2, or
outside the outer circle of radius d1 C d2.

Without loss of generality, we can assume that the base of the joint chain A is
fixed at the origin. We can also assume that there are no joint angle constraints. In
the following sections, we will discuss methods for arriving at inverse kinematics
solutions with these assumptions.

6.4.1 2-Link Inverse Kinematics

We can easily develop an analytical solution for the 2-link inverse kinematics
problem for the configuration shown in Fig. 6.10c. If the coordinates (xe, ye) of
the end point E are given, the joint angles �1, �2 can be determined as follows:

126 6 Kinematics

Let AE D k. Therefore, k2 D xe
2 C ye

2. From triangle ABE we get,

k2 D d1
2 C d2

2 � 2d1d2cos.� � �2/ (6.36)

Hence,

�2 D cos�1
�
x2e C y2e � d21 � d22

2d1d2

�
(6.37)

Also,

tan.� C �1/ D ye

xe
(6.38)

From triangle AEE0,

tan.�/ D d2 sin �2
d1 C d2 cos �2

(6.39)

From the previous two equations, we get

�1 D tan�1
�
ye

xe

�
� tan�1

�
d2 sin �2

d1 C d2 cos �2

�
(6.40)

Equation 6.37 is valid only if

.d1 � d2/2 � xe
2 C ye

2 � .d1 C d2/
2 (6.41)

The above condition corresponds to the situation shown in Fig. 6.10b.

6.4.2 n-Link Inverse Kinematics

For a general n-link configuration, the problem of estimating the joint angles
�1, �2, : : : , �n, given only the end effector coordinates (xe, ye, ze), clearly leads
to an under-determined system of equations when n> 3. Such a system is called
a redundant manipulator, implying that more than one set of joint angles could
possibly lead to the same end effector position. A non-redundant manipulator in
three-dimensional space contains only three links.

Suppose we are required to move the end effector from its current position E to a
desired target location given by T D (xt, yt, zt). The inverse kinematics problem can
be rephrased as follows: Determine the change in joint angles required to produce a
change in the end effector position from E to T. If we denote this displacement of
the end effector by the vector �E D T � E, and the joint angle perturbation vector
by �™, then from Eq. 6.33 we know that

6.4 Inverse Kinematics 127

�E D J �™ (6.42)

where J is the 3 � n Jacobian matrix. J is invertible only for a non-redundant
manipulator (n D 3). Generally when n> 3, J is not a square invertible matrix, and
therefore we cannot directly obtain �™ from the above equation. However, pre-
multiplying both sides by the transpose JT, we can form a symmetric, square and
invertible matrix (JTJ), and then obtain a solution for�™ as

�™ D JC �E (6.43)

where

JC D .JTJ/�1 JT (6.44)

The above matrix is called the left pseudo-inverse of J. For an n-link chain,
(JTJ) is an n � n matrix. One could use Singular Value Decomposition (SVD) to
compute the pseudo-inverse of J. If J has a decomposition of the form USVT, then
the pseudo-inverse of J is given by

JC D VSCUT (6.45)

In the above matrix equation, U is a 3 � 3 orthogonal matrix, S is a 3 � n
diagonal matrix, and V is a n � n orthogonal matrix. Columns of U are orthonormal
eigenvectors of JJT, and the columns of V are orthonormal eigenvectors of JTJ. The
matrix S contains square-roots of eigenvalues of either JJT or JTJ. Its inverse SC
can be readily obtained by transposing S and taking the reciprocals of the diagonal
elements. Denoting the columns of U by vectors ui (i D 1..3), and the columns of V
by vectors vi (i D 1..n), we have

J D �
u1 u2 u3

�
2
664

p
�1 0 0 � � � 0
0

p
�2 0 � � � 0

0 0
p
�3 � � � 0

3
775
2
66664

vT1
vT2
:::

vTn

3
77775 (6.46)

and

JC D �
v1 v2 � � � vn

�
2
666666664

1p
�1

0 0

0 1p
�2

0

0 0 1p
�3

:::
:::

:::

0 0 0

3
777777775

2
4uT1

uT2
uT3

3
5 (6.47)

128 6 Kinematics

where � i denotes the ith eigenvalue of the square matrix JJT, and �1 � �2 � �3.
Substituting the above expression in Eq. 6.43 and simplifying,

2
6664
��1
��2
:::

��n

3
7775 D

h
1p
�1

v1 1p
�2

v2 1p
�3

v3
i2664

uT1
uT2
uT3

3
775
2
4xt � xe
yt � ye
zt � ze

3
5 (6.48)

Note that the sizes of the three matrices on the right-hand side of the above
equation are n � 3, 3 � 3, and 3 � 1 respectively. In the following sections, we
discuss iterative numerical methods that try to move the end effector through a
sequence of points to the desired target position.

6.5 Gradient Descent

The inverse kinematics solution for computing �™ as outlined in the previous
section is based on an important assumption that both �E (the distance from
the current end effector position to the target) and �™ (joint angle perturbations)
are small. Many practical situations violate these conditions. The two-dimensional
analogue of the situation where the distance between the end effector and target is
large is shown in Fig. 6.11a. The y-axis represents the end effector position whose
dependency on the joint angle � is given by the function y D f (�). The desired target
position is indicated by the ordinate T.

y= f(q) y= f(q)

y

T

E

ΔE
λΔE

A B

y

T

E

A B

1

2

3

qq

Δq

a b

Fig. 6.11 (a) Computing�™ from the derivative alone can lead to significant errors if�E is large.
(b) The iterative convergence of the gradient descent algorithm

6.5 Gradient Descent 129

Listing 6.1 Pseudo code for the gradient descent algorithm

The solution given in Eq. 6.43 is equivalent to computing �� in the above
example using the formula

�� D �E�
df .�/

d�

� (6.49)

As can be seen from Fig. 6.11a, there is a large error in the value obtained for
�� , the solution giving only a fraction of the required change in � given by the
distance AB. If �E is large, we will need to approach the target in smaller steps.
This is done by scaling �E by a factor œ (0<œ< 1), each time updating the end
effector position and the derivative. This approach is called the gradient descent
method, and is shown in Fig. 6.11b. The following equation computes the value of
incremental changes in � for each iteration step k, and updates the function value
and its derivative.

��k D � .T � f .�k//�
df .�/

d�

�
k

; �kC1 D �k C��k (6.50)

We can employ the gradient descent method for iteratively computing �™ after
introducing the scaling factor œ in Eq. 6.43. The modified equation is given below.

�™kD�JkC.T �Ek/; ™kC1D™kC�™k (6.51)

where ™k is a column vector of joint angles updated in the kth iteration. The gradient
descent algorithm for computing the joint angles for a n-link chain is given in
Listing 6.1.

130 6 Kinematics

6.6 Cyclic Coordinate Descent

The Cyclic Coordinate Descent (CCD) algorithm is a well-known method used
for inverse kinematics solutions in computer graphics applications involving joint
chains and moving targets. CCD performs a series of rotations on the links of a joint
chain, starting with the last link, each time trying to move the end effector closer to
the target.

A sequence of rotations performed by the CCD algorithm for a 4-link chain on
a two-dimensional plane is shown in Fig. 6.12. The joints of the links are denoted
by P1, P2 : : : etc., the target by T, and the end effector position by E. The last
link is rotated first by an angle �4 about P4, where �4 is the angle between end

E

T

E

T

E

T

E

T

E

P1

P1

T

P2

P2

P3

P3

P4

P4

P1 P2 P3 P4

P1 P2
P3

P4

P1 P2
P3

P4

P1 P2 P3
P4

E

T
u4

u4

u3

u1
u2

u3v4
v3

v2

v4
v3

v1

q4

q4

q3

q2 q1

q3

a b

c d

e f

Fig. 6.12 Sequence of rotations performed by CCD algorithm on a 4-link joint chain

6.6 Cyclic Coordinate Descent 131

Listing 6.2 Pseudo code for the CCD algorithm

effector vector u4 D E � P4 and the target vector v4 D T � P4 (Fig. 6.12a). This
rotation brings the end effector E to a point on the target vector. The second rotation
is performed about the next link position P3, by an angle �3 between the end
effector and target vectors at that point (Fig. 6.12b). This process of rotating links
is continued till the first link P1 is reached (Fig. 6.12d), and then repeated over,
starting again from the last link P4 (Fig. 6.12e). In three-dimensional space, the axis
of rotation for the ith link at position Pi is calculated as

!i D ui � vi
jui � vi j (6.52)

where ui D E � Pi, and vi D T � Pi. The angle of rotation about the unit vector !i is

ıi D cos�1
�

ui � vi
jui j jvi j

�
(6.53)

The general algorithm for a n-link joint chain is given in Listing 6.2.
The terminating condition for the iterative algorithm can be defined based on the

distance TE between the end effector and the target, and also the number of iterations
performed. Physical systems using a set of joints, such as robotic manipulator arms,
have joint angle constraints and other physical limitations that should be taken into
account while designing an inverse kinematics solution. The CCD algorithm can
generate large angle rotations that may violate joint angle constraints. In some cases,
particularly when the target is located close to the base, the CCD algorithm causes
a chain to form a loop, intersecting itself (Fig. 6.13a). Similarly, for certain target
positions, the algorithm can take a large number of iterations resulting in a slow
zigzag motion of the end effector (Fig. 6.13b). The method discussed in the next
section is designed to overcome these drawbacks.

132 6 Kinematics

Fig. 6.13 (a) Two examples showing entangled configurations of a 10-link joint chain generated
by the CCD algorithm. (b) The path showing the convergence of the end effector position towards
a target location

6.7 Circular Alignment Algorithm

The circular alignment algorithm tries to place the given joint chain along a circular
arc between the base and the target position, provided the target is reachable. With
such a placement of the chain, joint angles will automatically assume values in an
acceptable range, and there is no possibility of the chain to intersect itself. This
method has some key advantages over the CCD algorithm:

1. This algorithm is significantly faster than the CCD algorithm. All joint angles
have the same value based on a single solution.

2. The algorithm does not generate large angle rotations.
3. The algorithm does not generate entangled configurations of chains with large

number of links.

The algorithm, however, requires all links to have the same length in order to use
a simple inverse kinematics solution. The algorithm works on a two-dimensional
plane containing the base of the link and the target. A general three-dimensional
problem is thus reduced to two dimensions, assuming that the base link can be
rotated in such a way that the whole chain is reoriented towards the target with
all links constrained to move on a single plane. We will first consider the problem
on the xy-plane, and later discuss how it could be generalized into three dimensions.

We assume that each link of an n-link chain has length d, and the total length of
the chain is L D nd. The distance of the target T from the base P1 of the joint chain is
denoted by D (Fig. 6.13). If the target is reachable (0<D< L) then the joints of the
link can be made to align along a circular path such that the end effector coincides
with the target. There are two possible scenarios as shown in Fig. 6.13.

We first compute the angleˇ subtended by the arc P1T, and then derive the radius,
coordinates of the centre, and joint angle parameters from it. The angle ˇ is acute if
the length L of the chain is less than D/2, otherwise it is obtuse. In either case, we
have

6.7 Circular Alignment Algorithm 133

sin
�
ˇ

2n

�
sin
�
ˇ

2

� D d

D
(6.54)

We seek the solution of the above equation for ˇ, by defining the function

f .ˇ/ D d sin

�
ˇ

2

�
�D sin

�
ˇ

2n

�
: (6.55)

The function has a derivative

f 0.ˇ/ D
�
d

2

�
cos

�
ˇ

2

�
�
�
D

2n

�
cos

�
ˇ

2n

�
(6.56)

The solution for ˇ can be obtained using Newton-Raphson iteration:

ˇkC1 D ˇk � f .ˇk/

f 0.ˇk/
; (6.57)

with the initial condition

ˇ0 D 2 =n: (6.58)

The Newton-Raphson method yields fast convergence for the parameter ˇ, from
which all joint angles can be computed as described below. The radius R of the circle
and the perpendicular distance S (Fig. 6.15) can be obtained as

R D D

2 sin
�
ˇ

2

� ; S D D

2 tan
�
ˇ

2

� (6.59)

Without loss of generality, we can assume that the base of the link P1 is located
at the origin of the coordinate system. If the target T has coordinates (xt, yt), the
centre of the circle is selected among two possible values (Fig. 6.15) as

C D .xc; yc/ D
�
xt

2
� ytS

D
;

yt

2
C xtS

D

�
; if L � D=2

D
�
xt

2
C ytS

D
;

yt

2
� xtS

D

�
; if L > D=2 (6.60)

The above choice causes the chain to orient along an anticlockwise circular path
towards the target, and to have positive values for the joint angles for both the cases
shown in Fig. 6.14.

The joint angles for the two-dimensional case are computed as follows. The base
link’s joint angle �1 is measured with respect to the x-axis, and is given by

134 6 Kinematics

d

D

P1

P1

T

TD

D ≤ L ≤ πD/2
L>πD/2

Rb

b

Fig. 6.14 Circular alignment of joints

T

P1
x

y

D

S
R

C

T

y

x

z

f

a

a

b

Fig. 6.15 (a) Two possible orientations of the joint chain for a given target position. (b) Extension
of the inverse kinematics solution to three dimensions

�1 D tan�1
�
yc

xc

�
C ˇ

2n
� �

2
(6.61)

All remaining joint angles have the same value given by

�i D ˇ=n; i D 2 : : : n: (6.62)

The approach detailed above can be extended to three dimensions where the
target position is given by T D (xt, yt, zt). The problem is first reduced to two
dimensions by transforming the target location to the xy-plane, and computing the
joint angles as described previously. The transformed target position is

x0
t D

q
x2t C z2t

y0
t Dyt (6.63)

6.9 Supplementary Material for Chap. 6 135

After computing the joint angles, the whole chain is rotated about the y-axis by an
angle �� as shown in Fig. 6.15b to achieve the desired configuration. The rotation
angle � can be computed as tan�1(zt/xt). This rotation can be combined with the
joint angle rotation of the base link P1. We can add one more degree of freedom to
the link by allowing the chain to rotate about the line joining the base and the target,
thus varying the direction in which the end effector approaches the target.

6.8 Summary

This chapter discussed forward and inverse kinematics equations for serial links
containing only revolute or spherical joints. Such joint chains are commonly used in
computer graphics for skeletal animation. Forward kinematics equations are used
to compute the position of the end effector, given the joint angles. The chapter
presented methods for computing the linear velocity of the end effector as a function
of angular velocities of the joints. Both Euler angle and quaternion based definitions
of rotations were considered. In the most general case, when the end effector
coordinates are expressed as functions of joint angles, the Jacobian matrix defines
the relationship between the linear and angular velocities.

Inverse kinematics (IK) solutions can have singularities for redundant manipu-
lators. The inverse Jacobian in the general IK solution is calculated in terms of the
pseudo-inverse obtained using methods such as the singular value decomposition. If
the distance between the end effector position and target is large, iterative numerical
techniques are often used for a more accurate solution that converges to the target
position. This chapter also outlined the cyclic coordinate descent and the circular
alignment algorithms that are useful for animating joint chains.

The next chapter introduces parametrically generated curves and surfaces and
discusses their applications in computer graphics.

6.9 Supplementary Material for Chap. 6

The folder Chapter6/Code on the companion website contains the following
programs demonstrating the working of inverse kinematics algorithms.

1. IK CCD.cpp

136 6 Kinematics

The program shows the working of the cyclic coordinate descent algorithm
(Sect. 6.6) in transforming a 4-link chain. Target positions can be interactively
specified using mouse clicks. Pressing the space bar updates the display, showing
the next step in the sequence of rotations performed on the joint chain. The target
vector and the end effector vectors are also drawn to show the amount of rotation
in each step.

2. IK CAA.cpp

The program displays a 10-link joint chain that aligns along a circular path
to reach a target position. Target positions can be interactively specified using
mouse clicks. The circular alignment algorithm was discussed in Sect. 6.7.

6.10 Bibliographical Notes

Kinematic analysis is an integral part of robotic systems, and most of the important
references on the topic can be found in the area of serial manipulators and multi-
body systems. Bottema and Roth (1979), Crane and Duffy (1998), and Jazar (2010)
are just a few among many excellent books that provide a detailed description of the
theory of kinematic manipulators, forward kinematics equations, and several types
of inverse kinematic solutions. Orin and Schrader (1984), Maciejewski and Klein
(1989) discuss the solutions based on Jacobian inverses.

In early 1980s, Korein and Badler (1982) proposed inverse kinematics solutions
for goal directed motion of articulated character models. A comprehensive coverage
of kinematics algorithms that are useful in computer animation of character models
can be found in Parent (2002) and Yamane (2010). The cyclic coordinate descent
(CCD) algorithm was introduced by Chris Welman in his Masters thesis (Welman
1989). An overview of this algorithm and its implementation can also be found in
Lander (1998). An fast iterative solver for animating character models was recently
introduced by A. Aristidou (2011). The circular alignment algorithm was also
recently introduced by O. Cardwell (2011).

References

Aristidou, A. (2011). FABRIK: A fast iterative solver for the inverse kinematics problem.
Graphical Models, 73(5), 243–260.

References 137

Bottema, O., & Roth, B. (1979). Theoretical kinematics. Amsterdam/Oxford: North-Holland
Publishing Co.

Cardwell, O., & R. Mukundan. (2011). Visualization and analysis of inverse kinematics algorithms
using performance metric maps. The 19th international conference in Central Europe on
computer graphics, visualization and computer vision, WSCG-2011, Czech Republic.

Crane, C. D., & Duffy, J. (1998). Kinematic analysis of robot manipulators. Cambridge: Cambridge
University Press.

Jazar, R. N. (2010). Theory of applied robotics: Kinematics, dynamics, and control (2nd ed.).
New York: Springer.

Korein, J. U., & Badler, N. I. (1982). Techniques for generating the goal-directed motion of
articulated structures. IEEE Computer Graphics and Applications, 2(9), 71–81.

Lander, J. (1998, November). Making kine more flexible. Game Developer, 5(3), 15–22.
Maciejewski, A. A., & Klein, C. A. (1989). The singular value decomposition: Computation and

applications to robotics. International Journal of Robotics Research, 8, 63–79.
Orin, D. E., & Schrader, W. W. (1984). Efficient computation of the Jacobian for robot manipula-

tors. International Journal of Robotics Research, 3, 66–75.
Parent, R. (2002). Computer animation: Algorithms and techniques. San Francisco/London:

Morgan Kaufmann Publishers.
Welman, C. (1989). Inverse kinematics and geometric constraints for articulated figure manipula-

tion. Master of Science thesis, Simon Fraser University.
Yamane, K. (2010). Simulating and generating motions of human figures. Berlin/Heidelberg:

Springer.

Chapter 7
Curves and Surfaces

Overview

In computer graphics, blending curves and surfaces are widely used for both
interpolation and approximation. We have previously seen the application of
Hermite polynomials in vertex blending, and Catmull-Rom splines for keyframe
interpolation. Spline curves and surfaces also find applications in the interactive
design of three-dimensional models.

This chapter gives an overview of polynomial interpolation methods, and the
construction of splines using different types of piecewise cubic polynomial curves.
Design aspects such as local control, flexibility and parametric continuity are
discussed in detail. Surface design techniques using two-dimensional Bezier and
B-spline surface patches are also presented. Extensions of these methods using
rational basis functions are then outlined.

7.1 Polynomial Interpolation

Suppose we are given n points (xi, yi), i D 1 : : : n, on the xy-plane where all xis
are distinct. The polynomial interpolation theorem states that there is a unique
polynomial f (x) of degree n � 1 such that

f .xi / D yi ; i D 1:::n: (7.1)

The above equation shows that the polynomial curve given by y D f (x) passes
through all the n points. Such a curve that passes through all input points is called
an interpolating curve. On the other hand, a curve that passes through only a few of
the input points is called an approximating curve. The Bezier spline (see Box 2.4,
Sect. 2.7) is an example of an approximating curve.

R. Mukundan, Advanced Methods in Computer Graphics: With examples in OpenGL,
DOI 10.1007/978-1-4471-2340-8 7, © Springer-Verlag London Limited 2012

139

140 7 Curves and Surfaces

Fig. 7.1 Polynomial interpolation curves of (a) degree 3, and (b) degree 6

Consider the polynomial of degree n � 1 given by

c1.x/ D .x � x2/.x � x3/:::.x � xn/

.x1 � x2/.x1 � x3/:::.x1 � xn/
(7.2)

The above function attains a value 1 if x D x1, and 0 if x D x2, : : : , xn. We
can therefore combine such polynomials to form the required interpolating
polynomial f (x):

f .x/ D c1.x/y1 C c2.x/y2 C ::: C cn.x/yn (7.3)

The polynomials ci(x) are the Lagrange polynomials of degree n � 1 given by

ci .x/ D
nY

k D 1

k ¤ i

.x � xk/

.xi � xk/
(7.4)

As an example, four points (3, 4), (5, 5), (8, 0), (13, 7) are used to construct
a cubic polynomial curve in Fig. 7.1a. Another interpolating curve through seven
points is shown in Fig. 7.1b.

Interpolation curves of degree higher than three can potentially have large
overshoots (marked ‘A’ in Fig. 7.1b), or undesirable oscillations (marked ‘B’ in
Fig. 7.1b). Such curves, even though they pass through all the user input points, may
not describe the shape represented by those points. Piecewise polynomial curves of
a low degree are therefore commonly used for approximating shapes.

The system of equations in Eq. 7.1 can also be written as a matrix equation
Y D VA:

7.2 Cubic Parametric Curves 141

2
6666664

y1

y2

:::

yn

3
7777775

D

2
6666664

1 x1 � � � xn�1
1

1 x2 : : : xn�1
2

:::
::: : : :

:::

1 xn : : : xn�1
n

3
7777775

2
6666664

a0

a1

:::

an�1

3
7777775

(7.5)

where the polynomial is assumed to have the form

f .x/ D a0 C a1x C a2x2 C ::: C an�1x
n�1 (7.6)

The coefficients ai of the polynomial can be obtained by taking the matrix
inverse: A D V � 1Y. The n � n matrix V is called the Vandermonde matrix. Since
xis are all distinct, this matrix is invertible.

We now look at a simple and efficient method for evaluating polynomials of the
form in Eq. 7.6. If we use the formula xk D x.xk � 1 to compute the powers of x
for evaluating the terms of the polynomial from left to right, we need to perform
2(n � 1) multiplications and n � 1 additions. The Horner’s method is used to
reduce the number of multiplications by rearranging the polynomial as a nested
set of expressions:

f .x/ D a0 C x.a1 C x.a2 C : : : C x.an�2 C xan�1/ : : :// (7.7)

Each nested sub-expression in the above equation requires one multiplication and
one addition. Evaluating the polynomial from the innermost expression requires a
total of only n � 1 multiplications.

7.2 Cubic Parametric Curves

Cubic polynomials have the advantage that they can be easily evaluated and used to
generate small curve segments of an interpolating spline with sufficient flexibility.
A cubic polynomial curve can meet four constraints simultaneously such as the
requirement to pass through four distinct points, or a requirement to pass through
two points and have user specified tangent directions at those points. Splines
commonly use parametric representations of piecewise cubic curves defined using
three polynomials in a single parameter t:

x.t/ D a0 C a1t C a2t2 C a3t
3

y.t/ D b0 C b1t C b2t
2 C b3t

3

z.t/ D c0 C c1t C c2t
2 C c3t

3 (7.8)

142 7 Curves and Surfaces

The above polynomials are called the x-polynomial, y-polynomial and
z-polynomial respectively. The parameter t usually varies from 0 to 1, with
each value of t corresponding to a single point P(t) D (x(t), y(t), z(t)) on the
curve. The polynomials thus define a mapping from an interval in the one-
dimensional parameter space to a set of points in the three-dimensional space.
A common example is where t represents time, and P(t) the position of a moving
point at that instant. The equation for x(t) given above can be re-written as
follows:

x.t/ D �
1 t t2 t3

�

2

664

a0

a1

a2

a3

3

775 D TA (7.9)

The polynomial coefficients ai, bi, ci are computed using a set of control
points and continuity constraints. As an example, consider the requirement that the
cubic curve needs to pass through four distinct points Pi D (xi, yi, zi), i D 1 : : : 4.
If ti denotes the values of the parameter t corresponding to the four control points,
we have

2

6666664

x1

x2

x3

x4

3

7777775
D

2

6666664

1 t1 t2
1 t3

1

1 t2 t2
2 t3

2

1 t3 t2
3 t3

3

1 t4 t2
4 t3

4

3

7777775

2

6666664

a0

a1

a2

a3

3

7777775
(7.10)

This equation is the cubic version of Eq. 7.5. The 4 � 4 Vandermonde matrix is
invertible if all tis are distinct. We write this equation in a concise form as Gx D VA,
or equivalently as A D V � 1Gx, where Gx is a column vector containing only the
x-coordinates of the control points. The inverse V � 1 of the Vandermonde matrix
can be computed as the product UL, where U is the following upper triangular
matrix

U D

2
6666664

1 �t1 t1t2 �t1t2t3

0 1 �.t1 C t2/ t1t2 C t2t3 C t3t1

0 0 1 �.t1 C t2 C t3/

0 0 0 1

3
7777775

(7.11)

7.2 Cubic Parametric Curves 143

and L is a lower triangular matrix given by

LD

2
6666666664

1 0
�

1

t1 � t2

� �
1

t2 � t1

�

�
1

.t1 � t2/.t1 � t3/

� �
1

.t2 � t1/.t2 � t3/

�

�
1

.t1 � t2/.t1 � t3/.t1 � t4/

� �
1

.t2 � t1/.t2 � t3/.t2 � t4/

�

0 0

0 0
�

1

.t3 � t1/.t3 � t2/

�
0

�
1

.t3 � t1/.t3 � t2/.t3 � t4/

� �
1

.t4 � t1/.t4 � t2/.t4 � t3/

�

3

777777775

(7.12)

For example, if the parametric values are equally spaced in the interval [0, 1],
so that t1 D 0, t2 D 1/3, t3 D 2/3, t4 D 1, then we have the following values for
V and V � 1:

V D

2

6666666664

1 0 0 0

1

�
1

3

� �
1

9

� �
1

27

�

1

�
2

3

� �
4

9

� �
8

27

�

1 1 1 1

3

7777777775

; V�1 D

2

66666666664

1 0 0 0
��11

2

�
9

��9

2

�
1

9

��45

2

�
18

��9

2

�

��9

2

� �
27

2

� ��27

2

� �
9

2

�

3

77777777775

(7.13)

From Eq. 7.9, we now have

x.t/ D TV�1 Gx (7.14)

The product TV � 1 is a row vector containing four functions of the parameter t.
Thus the above equation can be rewritten as

x.t/ D Œf1.t/; f2.t/; f3.t/; f4.t/�Gx (7.15)

144 7 Curves and Surfaces

Fig. 7.2 Piecewise cubic interpolation polynomials constructed using groups of four points

For the example in Eq. 7.13, we have

f1.t/ D1 �
�

11

2

�
t C 9t2 �

�
9

2

�
t3

f2.t/ D9t �
�

45

2

�
t2 C

�
27

2

�
t3

f3.t/ D �
�

9

2

�
t C 18t2 �

�
27

2

�
t3

f4.t/ D t �
�

9

2

�
t2 C

�
9

2

�
t3 (7.16)

The functions fi(t) are called blending polynomials. Note that the sum of the
above functions is 1 for all values of t. Generalising Eq. 7.15, and since the blending
polynomials are common for x, y, and z axes, we find that

P.t/ D Œf1.t/; f2.t/; f3.t/; f4.t/�

2
664

P1

P2

P 3

P4

3
775 (7.17)

We can thus write the parametric equation for the cubic curve as a combination
of the control points:

P.t/ D f1.t/P1 C f2.t/P2 C f3.t/P3 C f4.t/P4; 0 � t � 1: (7.18)

Figure 7.2 shows a set of points joined together using piecewise cubic polynomial
curves through groups of four points, constructed using the above equation. Each
cubic polynomial curve is called a segment.

The matrix V � 1 is sometimes denoted by M, and referred to as the basis matrix.
With this notation, the blending functions and the basis matrix are related as follows:

Œf1.t/; f2.t/; f3.t/; f4.t/� D TM (7.19)

7.3 Parametric Continuity 145

The points where the polynomial curves meet are called knots. It is often
desirable to have tangential and higher order continuity at the knots. Such curves
are called splines. In the next section, we discuss different orders of continuity
constraints that can be used in the design of interpolating curves and surfaces.

7.3 Parametric Continuity

In the previous section we saw an example (Fig. 7.2) of a set of piecewise cubic
curves joined together to form a single “continuous” curve. Clearly we require
higher levels of continuity at the points where two curves meet, in order to get a
smooth transition from one polynomial curve on to another.

A parametric curve defined using cubic polynomials as in Eq. 7.8 has the property
that the first and second order derivatives exist and are continuous over the interval
in which the curve is defined. Two parametric curves PA(t) D (xA(t), yA(t), zA(t)) and
PB(t) D (xB(t), yB(t), zB(t)) are said to have C0 continuity if they meet at a common
point M (Fig. 7.3). That is, there exits valid parametric values t1, t2 such that

M D .xA.t1/; yA.t1/; zA.t1// D .xB.t2/; yB.t2/; zB.t2// (7.20)

If the tangents to the two curves at M also coincide, then the curves have
C1 continuity. The tangent direction at M is obtained by differentiating the cubic
polynomials with respect to t, and substituting the parametric value for the knot M.
We use the following notation for the derivatives of the x-polynomial in Eq. 7.8:

xA
0.t1/ D

�
dxA.t/

dt

�

tDt1

D a1 C 2a2t1 C 3a3t1
2

xA
00.t1/ D

�
d 2xA.t/

dt2

�

tDt1

D 2a2 C 6a3t1 (7.21)

with similar notations for the y-polynomial and the z-polynomial. The vector (xA
0(t),

yA
0(t), zA

0(t)) gives the tangent direction on the curve A at point P(t). If t denotes
time, then this vector represents the velocity of the point P as it moves along the
curve A. C1 continuity implies that the velocity of P considered as a point on
the curve A at the knot M is the same as its velocity when considered as a point
on the curve B:

.xA
0.t1/; yA

0.t1/; zA
0.t1// D .xB

0.t2/; yB
0.t2/; zB

0.t2// (7.22)

If two curves are joined with C1 continuity, the point P(t) will have at most finite
acceleration as it crosses the knot M. Second order continuity denoted by C2 requires
that the second derivatives of both curves at M are equal. That is,

.xA
00.t1/; yA

00.t1/; zA
00.t1// D .xB

00.t2/; yB
00.t2/; zB

00.t2// (7.23)

146 7 Curves and Surfaces

Fig. 7.3 Examples of piecewise cubic curves with different orders of parametric and geometric
continuity

The above vectors represent the curvature at M, or equivalently acceleration
of the point P(t) if t denotes time. The continuity constraints discussed above
are often relaxed to just smoothness constraints that define only the important
shape characteristics used for constructing splines. For example, the requirement in
Eq. 7.22 to have the same tangent vector for both curves at the joint can be relaxed
to the condition that the tangent vectors are just parallel, with possibly unequal
magnitudes. The modified constraint can be written as

.xA
0.t1/; yA

0.t1/; zA
0.t1// D ˇ.xB

0.t2/; yB
0.t2/; zB

0.t2// (7.24)

for some constant ˇ. Two curves satisfying the above equation are said to have
a geometric continuity G1 at the common point M. Note that we can always
re-parameterize the curve A by substituting t D ˇu in its equation, and the resultant
tangent vectors at M would still be equal, satisfying the C1 continuity constraint.
The geometric continuity G2 is also similarly defined by introducing a constant

7.4 Hermite Splines 147

of proportionality in Eq. 7.23. The difference between parametric and geometric
continuity is illustrated through an example in Fig. 7.3.

In column (a) of Fig. 7.3, the curves A and B meet at M with C0 continuity.
The first and the second derivatives of the curves do not meet at the corresponding
point. Column (b) shows the curves with C1 continuity at M where the tangent
vectors are equal. Correspondingly, the first derivatives of the curves meet at a point.
The curves formed using second derivatives are discontinuous. Column (c) shows
the curves with G1 continuity where the tangent vectors at M are only parallel but
unequal in magnitude. The first derivatives of the curves therefore do not meet at
the corresponding point. In column (d), the curves meet with C2 continuity at M.
In this case, the first derivatives meet at a common point with C1 continuity. The
second derivatives of the curves also meet with C0 continuity. Note that the second
derivatives of cubic polynomial curves are always straight lines.

7.4 Hermite Splines

Hermite splines are cubic polynomial interpolation curves passing through two
control points P1 D (x1, y1, z1) and P2 D (x2, y2, z2), with the additional requirement
that the curve is tangential to the specified directions at the two end points (Fig. 7.4).

In Fig. 7.4a, the required tangent directions at the end points are denoted by
m1 and m2 with components (x1

0, y1
0, z1

0) and (x2
0, y2

0, z2
0) respectively. For the

interpolating curve, we use the parametric equation given in Eq. 7.8. The control
point P1 corresponds to the parameter value of 0, and P2 corresponds to t D 1. The
tangent vector components at t are given by

x0.t/ D a1 C 2a2t C 3a3t
2

y0.t/ D b1 C 2b2t C 3b3t
2

z0.t/ D c1 C 2c2t C 3c3t
2 (7.25)

P1

P2

m1

m2

t = 1

t = 0

a = 10

a = 5

a = 3

a = 1

a b

Fig. 7.4 Hermite polynomial
interpolation

148 7 Curves and Surfaces

Similar to Eq. 7.10, we can now write an equation using position coordinates and
tangent vector components:

2
666664

x1

x2

x0
1

x0
2

3
777775

D

2
666664

1 t1 t2
1 t3

1

1 t2 t2
2 t3

2

0 1 2t1 3t2
1

0 1 2t2 3t2
2

3
777775

2
666664

a0

a1

a2

a3

3
777775

(7.26)

Substituting the parameter values for the end points in the above equation,
we have

2
666664

x1

x2

x0
1

x0
2

3
777775

D

2
666664

1 0 0 0

1 1 1 1

0 1 0 0

0 1 2 3

3
777775

2
666664

a0

a1

a2

a3

3
777775

(7.27)

The basis matrix for Hermite polynomial interpolation is the inverse of the
4 � 4 matrix in the above equation, and is given by

MH D

2
664

1 0 0 0

0 0 1 0

�3 3 �2 �1

2 �2 1 1

3
775 (7.28)

Pre-multiplying the above matrix by T D [1, t, t2, t3], we get the blending
functions fi(t) (see Eq. 7.19):

f1.t/ D 1 � 3t2 C 2t3

f2.t/ D 3t2 � 2t3

f3.t/ D t � 2t2 C t3

f4.t/ D � t2 C t3 (7.29)

From the above expressions, we get the parametric equation for the Hermite
polynomial curve:

P.t/D.1 � 3t2 C 2t3/ P1 C .3t2 � 2t3/ P2 C .t � 2t2 C t3/ m1

C .�t2 C t3/m2; .0 � t � 1/: (7.30)

7.5 Cardinal Splines 149

Fig. 7.5 Hermite interpolation spline

The tangent vectors m1 and m2 can have arbitrary magnitude if we require only
G1 continuity at the end points when two curves are joined together. Increasing
the magnitude causes the curve to align closer to the tangent direction. A scale
parameter ˛ > 0 for the tangents is introduced into this equation to control the shape
of the cubic curve:

P.t/ D.1 � 3t2 C 2t3/P1 C .3t2 � 2t3/P2 C .t � 2t2 C t3/˛m1

C .�t2 C t3/˛m2 (7.31)

˛ is sometimes referred to as the tension parameter of the curve. An example
with four different values of ˛ is shown in Fig. 7.4b. Note that when ˛ D 0, the
above equation represents a linear interpolation between P1 and P2.

Given n points (n > 2), we can develop an interpolating spline that passes through
all the points by constructing Hermite cubic curves for every consecutive pair of
points. The tangent direction at each knot must be carefully specified by the user in
such a way that it corresponds to the tangents to curves on both sides of the knot.

In Fig. 7.5, piecewise Hermite polynomial curves are fitted through a set of
points. The points are the same as the knots of the interpolation curve shown in
Fig. 7.2. The common tangent vectors are all defined as parallel to negative y-axis.

7.5 Cardinal Splines

A cardinal spline is a smooth piecewise cubic polynomial curve that passes through
every point except the first and the last in a given set of control points, maintaining
first-order continuity at every point. A cardinal spline works very much like a
Hermite spline with the exception that the tangent directions are not specified by
the user but derived from the control points themselves.

Consider a set of four control points P0, P1, P2, P3 as shown in Fig. 7.6. The
tangent at P1 is specified in the direction of the vector P2 � P0, and the tangent at P2

in the direction of the vector P3 � P1. We can now use Eq. 7.31 with m1 D P2 � P0,

150 7 Curves and Surfaces

P0 P0

P1 P1
P2 P2

P3 P3

m1 = (P2−P0)

m2 = (P3−P1)

a b

Fig. 7.6 A cardinal spline definition using four points

and m2 D P3 � P1 to generate a Hermite cubic polynomial curve between P1 and
P2. The scaling parameter ˛ controls the tension of the curve. Without any reference
to the tangent directions, the curve’s equation can be rewritten as a function of the
control points alone as below.

P.t/ D .�t C 2t2 � t3/˛P0 C .1 C .˛ � 3/t2 C .2 � ˛/t3/P1

C.˛t C .3 � 2˛/t2 C .˛ � 2/t3/P2 C .�t2 C t3/˛P3 (7.32)

Writing the coefficients of 1, t, t2, t3 of each blending function in the above
equation as columns of a 4 � 4 matrix, we obtain the basis matrix for cardinal
splines:

Mc D

2

664

0 1 0 0

�˛ 0 ˛ 0

2˛ ˛ � 3 3 � 2˛ �˛

�˛ 2 � ˛ ˛ � 2 ˛

3

775 ; ˛ > 0: (7.33)

Given a set of n C 2 control points fP0, P1, : : : , Pn, PnC1g, n > 1, we can fit
a cubic curve with the above basis matrix to every pair of consecutive control
points (Pk, PkC1), 1 � k < n, with tangent vectors defined as mk D PkC1 � Pk � 1,
and mkC1 D PkC2 � Pk. In other words we need to process overlapping blocks of
four control points [Pk � 1, Pk, PkC1, PkC2], with only the middle two points used
for interpolation at a time.

When ˛ D 0.5, we get a special case of cardinal splines called Catmull-Rom
splines. It directly follows from Eq. 7.33 that Catmull-Rom splines are given by the
parametric equation:

P.t/ D �
1 t t2 t3

�

2

664

0 1 0 0

�0:5 0 0:5 0

1 �2:5 2 �0:5

�0:5 1:5 �1:5 0:5

3

775

2

664

P0

P1

P 2

P3

3

775 (7.34)

7.6 Bezier Curves 151

Fig. 7.7 A Catmull-Rom spline through a set of control points

Figure 7.7 shows a Catmull-Rom spline generated using a set of control points.
Compare this figure with the piecewise cubic spline in Fig. 7.2 where the same set
of control points was used.

7.6 Bezier Curves

Bezier splines are approximating curves generated using Bernstein polynomials as
the blending functions (see Box 2.4, Sect. 2.7). Denoting n C 1 control points by
P1 : : : PnC1, the parametric representation of the nth degree Bezier curve is given by

P.t/ D
nX

iD0

ˇi;n.t/PiC1: (7.35)

where, ˇi,n(t) denotes Bernstein polynomials of degree n. Since Bernstein polyno-
mials always yield non-negative values for 0 � t � 1, and form a partition of unity,
every point on a Bezier curve is a convex combination of the control points. In
this section, we discuss the construction of piecewise cubic splines using Bezier
curves, and outline an important algorithm that will be later extended to develop the
framework for B-splines.

7.6.1 Cubic Bezier Splines

The parametric equation of the cubic Bezier curve is given by

P.t/ D.1 � t/3P1 C 3t.1 � t/2P2 C 3t2.1 � t/P3 C t3P4; 0 � t � 1:

D.1 � 3t C 3t2 � t3/P1 C .3t � 6t2 C 3t3/P2 C .3t2 � 3t3/P3 C t3P4

(7.36)

152 7 Curves and Surfaces

P2

P1

P4

P3

P2

P1
P4

P3
m1 = 3(P2−P1)

m2 = 3(P4−P3)

t = 0
t = 1

t = 0.4

t= 0.4

t = 0.4

a b

Fig. 7.8 Cubic Bezier curves

where P1 : : : P4 are the control points. The Bezier spline interpolates between the
first and the last control points. The two middle control points are used to define the
tangent directions at the end points. In the matrix form, the cubic Bezier curve is
given as

P.t/ D �
1 t t2 t3

�

2

664

1 0 0 0

�3 3 0 0

3 �6 3 0

�1 3 �3 1

3

775

2

664

P1

P2

P 3

P4

3

775 (7.37)

Differentiating Eq. 7.36 with respect to t, we get the tangent directions on the
Bezier curve:

P 0.t/ D .�3 C 6t � 3t2/P1 C .3 � 12t C 9t2/ P2 C .6t � 9t2/P3 C 3t2P4

(7.38)

From the above equation, the tangent directions at P1 and P4 are obtained as
follows:

P 0.0/ D 3.P2 � P1/

P 0.1/ D 3.P4 � P3/ (7.39)

The control points and the tangent directions are shown in Fig. 7.8a. Clearly,
the Bezier cubic curve is a special case of the Hermite polynomial curve where
m1 D 3(P2 � P1) and m2 D 3(P4 � P3). The following equation relates the input
vector [P1, P2, m1, m2] of a Hermite curve as given in Eq. 7.30, with the
input vector [P1, P2, P3, P4] of the Bezier curve, so that the resulting splines
coincide.

7.6 Bezier Curves 153

Fig. 7.9 A Bezier spline passing through a set of control points

2

664

P1

P2

m1

m2

3

775

Hermite

D

2

664

1 0 0 0

0 0 0 1

�3 3 0 0

0 0 �3 3

3

775

2

664

P1

P2

P3

P4

3

775

Bezier

(7.40)

Given a set of n control points P1, : : : Pn, the Bezier spline consisting of piecewise
cubic polynomial curves can be made to pass through the first and every fourth
point P3kC1, k D 0, 1, 2 : : : . The remaining points are used for specifying tangent
directions. For G1 continuity of the spline, we need to make sure that the three
points P3k, P3kC1, P3kC2 are collinear for k D 1, 2, : : : . An example of a piecewise
cubic Bezier spline satisfying this condition is shown in Fig. 7.9. The knot positions
are the same as those used earlier in Figs. 7.2 and 7.5.

Bezier splines are widely used in computer graphics and therefore graphics
packages commonly support methods for creating Bezier curves of different orders.
We could also make use of the functionality provided by such libraries for
generating other types of splines (Hermite, Catmull-Rom etc.), if we can compute
the Bezier equivalent set of control points for the required spline. As an example,
by computing the inverse of the 4 � 4 matrix in Eq. 7.40, we can obtain the Bezier
control points for the required Hermite curve as follows:

2
664

P1

P2

P3

P4

3
775

Bezier

D

2
664

1 0 0 0

1 0
�

1
3

�
0

0 1 0 � �
1
3

�

0 1 0 0

3
775

2
664

P1

P2

m1

m2

3
775

Hermite

(7.41)

In a general case, we express the parametric curve P(t) in terms of the required
spline’s basis (denoted by MS) as well as the Bezier basis as

P.t/ D TMBez

2

664

P1

P2

P3

P4

3

775

Bezier

D TMS

2

664

P1

P2

P3

P4

3

775

S

(7.42)

154 7 Curves and Surfaces

from which we obtain

2

664

P1

P2

P3

P4

3

775

Bezier

D M�1
BezMS

2

664

P1

P2

P3

P4

3

775

S

(7.43)

where

M�1
Bez D

2

664

1 0 0 0

1
�

1
3

�
0 0

1
�

2
3

� �
1
3

�
0

1 1 1 1

3

775 (7.44)

The above matrix is the inverse of the 4 � 4 matrix in Eq. 7.37.

7.6.2 de-Casteljau’s Algorithm

The de-Casteljau’s algorithm provides an alternative representation of a Bezier
curve in terms of a combination of linear interpolation functions. Given three control
points P1, P2, P3, we can construct parametric equations of two straight lines

P11.t/ D .1 � t/P1 C tP2

P21.t/ D .1 � t/P2 C tP3 (7.45)

For each parameter value t 2 [0, 1], the above equations give two points. We now
further interpolate between these two points using the same parameter value:

P.t/ D .1 � t/P11 C tP21 (7.46)

The resulting point will lie on the quadratic Bezier curve generated using the
control points P1, P2 and P3. This can be easily proved by substituting for P11 and
P21 from Eq. 7.45 in the above equation:

P.t/ D.1 � t/f.1 � t/P1 C tP2g C tf.1 � t/P2 C tP3g
D.1 � t/2P1 C 2t.1 � t/P2 C t2P3 (7.47)

Figure 7.10 shows the geometrical interpretation of the above equation. Using
the same method, we can obtain the cubic Bezier curve from four control points
(Fig. 7.8b). Using a parameter value in the range [0, 1], we interpolate between
consecutive pairs of control points to get three points, further interpolate between

7.6 Bezier Curves 155

P1

P2

P3 P3

P11 P21
(t= 0.4)

P(t)
(t= 0.4)

(t= 0.4)

P1

P2

Fig. 7.10 Interpolation between three control points using de-Casteljau’s algorithm

P(t) =P13

Level 1

Level 2

Level 3

(1-t)

(1-t)

(1-t) (1-t) (1-t)

(1-t)

t t t

t t

t

P12

P11

P1 P2 P3 P4

P21 P31

P22

Fig. 7.11 Iteration sequence for de-Casteljau’s algorithm with four control points

them to get two points, and again interpolate between the two points to get a single
point on the cubic curve. This interpolation sequence is shown in Fig. 7.11. The
whole process is repeated for the next parameter value.

The de-Casteljau’s algorithm for a general n � 1 degree Bezier curve with control
points P1 : : : Pn can be written as follows:

Pk;d .t/ D .1 � t/Pk;d �1.t/ C tPkC1;d �1.t/ 0 � t � 1; k D 1::n � d:

Pk;0.t/ D Pk; k D 1::n:

P.t/ D P1;n�1: (7.48)

For the above iteration, the index d is varied from 1 to n � 1, and for each d the
index k is varied from 1 to n � d. After each level of iteration (see Fig. 7.11), the
number of points reduces by one. At level n � 1, we get a single point P1,n � 1 which
lies on the Bezier curve P(t) of degree n � 1.

156 7 Curves and Surfaces

P2
(0, 5, 0)
(0, 2, 0)

P1
(1, 1, 1)

P1
(2, 1, 1)

P3
(6, 1, 1)

P2
(1, 7, 1) P3

(4, 6, 1)
(8, 12, 2)
(20, 30, 5)

P4
(2, 14, 1)

a b

Fig. 7.12 (a) Effect of varying homogeneous coordinates on Bezier curve. (b) Conic sections
formed using rational Bezier curves

7.6.3 Rational Bezier Curves

Rational Bezier curves are formed using control points specified in homogeneous
coordinates. A three-dimensional point P D (x, y, z) has an equivalent homogeneous
representation (xh, yh, zh, h), h ¤ 0 (see Box 2.1). The Bezier curve equation in
Eq. 7.35 is applied to each of the components, and correspondingly every point P(t)
also gets a fourth component. The x, y, and z coordinates of P(t) are divided by
its fourth component to get the Cartesian coordinates. The additional parameter h
acts as a weight that can be adjusted to change the shape of the curve. An example
showing the variation of a cubic curve’s shape for three equivalent representations of
the control point P3 is given in Fig. 7.12a. In this 2-D example, the third component
is the homogeneous coordinate h.

The homogeneous coordinate system also allows the representation of points at
infinity, by setting the last component to zero. Defining a control point at infinity
causes the control polygonal line to have disjoint and parallel edges. This feature is
useful for the generation of conic sections using Bezier curves. Figure 7.12b shows
a semi-circular arc and a semi-ellipsoidal arc formed using quadratic Bezier curves.
Among the three control points P1, P2, P3, the point P2 is at infinity along the C y
direction. The control polygonal line therefore degenerates into two parallel vertical
lines meeting at P2.

7.7 Polynomial Interpolants

The parametric curves introduced in previous sections were all based on piecewise
cubic polynomials and the points on each segment were generated by varying
the parameter t from 0 to 1. In this section, we will develop the framework of a
more general class of interpolating splines where t can have an arbitrary range.
First, we consider interpolating polynomials of degree one, two and three, and then
generalize our results to an n � 1 degree polynomial passing through n control
points. The ability to specify parameter values at control points provides added
flexibility to the design of splines.

7.7 Polynomial Interpolants 157

Given two points P1 D (x1, y1, z1), P2 D (x2, y2, z2), and two values t1, t2 of the
parameter t such that t1 < t2, the linear equation of the interpolating line between the
points can be written as

P11.t/ D t2 � t

t2 � t1
P1 C t � t1

t2 � t1
P2; t1 � t < t2 (7.49)

We denote the above polynomial as g1(P1, P2; t1, t2; t) with the control points and
parameter values included in the function argument. The suffix of g indicates the
degree of the polynomial. The first suffix of P11(t) indicates the starting point on the
spline (P1), and the second suffix the degree of the polynomial. Using this notation,
the point P1 itself can be represented as P10 or a polynomial g0(P1; t1; t). If we now
add a third point P3 to the set of control points, with an associated parameter t3
(t1 < t2 < t3), we can construct a quadratic curve that passes through the three points
as follows: Similar to the previous equation, we first perform a linear interpolation
between P2 and P3:

g1.P2; P3I t2; t3I t/ D P21.t/ D t3 � t

t3 � t2
P2 C t � t2

t3 � t2
P3; t2 � t < t3 (7.50)

Then we combine the points P11(t) and P21(t) using a third interpolation formula
with t varying from t1 to t3:

P12.t/ D t3 � t

t3 � t1
P11 C t � t1

t3 � t1
P21; t1 � t < t3 (7.51)

Substituting the expressions for P11 and P21 in the above equation, we get a
quadratic polynomial which we denote as g2(P1, P2, P3; t1, t2, t3; t):

g2 .P1; P2; P3I t1; t2; t3I t/ D P12.t/; t1 � t < t3

D .t2 � t/ .t3 � t /

.t2 � t1/ .t3 � t1/
P1 C .t1 � t/ .t3 � t /

.t1 � t2/ .t3 � t2/
P2 C .t1 � t/ .t2 � t /

.t1 � t3/ .t2 � t3/
P3

(7.52)

Note that the above algorithm is a generalized version of the de-Casteljau’s
method outlined in the previous section. For Bezier curves, we used only values
between 0 and 1. In the above equation, however, the parameter is allowed to vary
over the range [t1, t3), which is the union of the two intervals [t1, t2) and [t2, t3) that
were used to generate the line segments. Since the intervals are disjoint, this would
mean that any value of the parameter will always be outside the range of one of the
intervals. This situation is shown in Fig. 7.13. Compare this process with that shown
in Fig. 7.10, where the parameter value is restricted to the range [0, 1] along each
interpolated direction.

Figure 7.14 shows three quadratic splines generated using Eq. 7.52, all with the
same set of control points P1 D (1, 4), P2 D (3, 1), P3 D (6, 2). For the first curve (a),
the parametric values used were t1 D 2, t2 D 5, and t3 D 8. Since the spacing of

158 7 Curves and Surfaces

P2 (t=4)

P3 (t=5)

P(t)

P21
(t=3.4)

P11
(t=3.4)

P1
(t=3)

P1

P2

P3

Fig. 7.13 A quadratic interpolating polynomial curve passing through three control points

P1 P1

P2
P2

P3
P3

P1

P2

P3

a b c

Fig. 7.14 Quadratic polynomial splines for different parameter values, but with the same control
points

values was uniform, the curve also has a nearly uniform tension across the points. In
the second figure (b), the parameters were changed to t1 D 2, t2 D 3, and t3 D 8. The
reduced spacing between t1 and t2 is seen as a higher tension of the curve between
P1 and P2, closely approximating a straight line. Similarly, in the third figure (c),
we reduced the spacing between t2 and t3 by choosing t1 D 2, t2 D 6.5, and t3 D 8.

The process outlined above can be extended to a larger set of n control
points P1 : : : Pn and n parameter values t1 : : : tn (t1 < t2 < : : : < tn). We start by
combining every consecutive pair of control points as shown in Eq. 7.49, to form
linear equations P11, P21, : : : Pn � 1,1. We then combine consecutive pairs of these
polynomials as in Eq. 7.51 to form quadratic polynomials P12, P22, : : : Pn � 2,2. This
process is iteratively continued till we get the polynomial P1,n � 1 of degree n � 1.
By evaluating this polynomial by varying t from t1 to tn, we get the coordinates
of points along the spline that passes through all the control points. The iterative
procedure for four control points is illustrated in Fig. 7.15.

Note that Pk,d(t) denotes a polynomial of degree d. There are n � d polynomials
of degree d on level d (Fig. 7.15). The polynomial Pk,d(t) is formed by combining
two polynomials from the previous level.

7.8 B-Splines 159

P13(t)

P12(t)

P11(t)

P2P1 P3 P4

P22(t)

P31(t)P21(t)

t2 - t
t2 - t1

t3 - t
t3 - t2

t3 - t
t3 - t1

t4 - t
t4 - t3

t4 - t
t4 - t2

t4 - t
t4 - t1

t - t1
t4 - t1

t - t2
t3 - t2

t - t1
t3 - t1

t - t3
t4 - t3

t - t2
t4 - t2

t - t1
t2 - t1

g3(P1,P2,P3,P4;t1,t2,t3,t4; t)

Level 1

Level 2

Level 3

Fig. 7.15 Computation of a third degree interpolating spline using four control points

Pk;d .t/ D tkCd � t

tkCd � tk
Pk;d�1 C t � tk

tkCd � tk
PkC1;d�1; tk � t < tkCd (7.53)

For the above iteration, d varies from 0 to n � 1, and for each d, k varies from 1
to n � d. The initial conditions are set as

Pk;0 D Pk; k D 1 : : : n: (7.54)

The n � 1 degree parametric curve generated as above passes through all control
points. Being a polynomial, it is differentiable up to order n � 1, and therefore has
Cn � 1 continuity at all points. However, the curve does not lie within the convex
hull of the control points, as clearly seen from Fig. 7.14. In the next section, we
introduce a popular approximating spline called B-spline, that satisfies the convex
hull property, but does not pass through all control points.

7.8 B-Splines

In Fig. 7.14 we observed that interpolating polynomial curves of degree d use a
union of parameter intervals used by the component polynomials of degree d � 1,
causing points to fall outside the convex hull of the control points. Basis splines or
B-splines are commonly used in CAD systems to create approximating splines that
are entirely contained in the convex hull of the control points. In addition, B-splines
of degree d provide Cd � 1 continuity at the knots.

160 7 Curves and Surfaces

t1 t2 t3 t4

B1,0(t) B2,0(t) B3,0(t)

Fig. 7.16 Plot of Bi,o(t)

7.8.1 Basis Functions

B-splines are polynomials defined in the parameter space, where a sequence ftig,
i D 1, : : : m, of non-decreasing values (i.e., t1 � t2 � : : : � tm) of a parameter t are
given. The list of parameter values is called a knot vector. B-splines are used as
basis functions to combine a given set of control points to form an approximating
spline. First, we will look at some important characteristics of B-splines. B-splines
of the lowest degree are constant step functions defined using two parameter values
as below.

Bi;0.t/ D
(

1; if ti � t < tiC1

0; otherwise:
(7.55)

The plot of Bi,0(t) for the knot vector f3, 5, 9,10g is shown in Fig. 7.16.
The second subscript d of the B-spline Bi,d (t) denotes the degree of the

polynomial. Basis polynomials of degree 1 and higher are defined using the
following Cox de Boor recurrence formula:

Bi;d .t/ D t � ti

tiCd � ti
Bi;d�1.t/ C tiCdC1 � t

tiCdC1 � tiC1

BiC1;d�1.t/; ti � t � tiCdC1

(7.56)

To avoid division by zero, the conditions when tiCd D ti and tiCdC1 D tiC1 are
considered separately as follows:

Bi;d .t/D tiCdC1 � t

tiCdC1 � tiC1

BiC1;d�1.t/; if ti D tiCd

D t � ti

tiCd � ti
Bi;d�1.t/; if tiC1 D tiCdC1 (7.57)

7.8 B-Splines 161

t1 t2 t3 t4

B1,1(t) B2,1(t)

Fig. 7.17 Plot of Bi,1(t)

The above conditions do not arise in uniform B-splines where the knots are all
equally spaced. From Eq. 7.56, we obtain the definition of first degree basis splines
as follows:

Bi;1.t/ D

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

�
t � ti

tiC1 � ti

�
; if ti � t < tiC1

�
tiC2 � t

tiC2 � tiC1

�
; if tiC1 � t < tiC2

0; otherwise:

(7.58)

Note that Bi,1(t) requires three knot values for each i, and is non-zero only in the
interval [ti, tiC2). A plot of B-splines of degree one with the knot vector f3, 5, 9, 10g
is shown in Fig. 7.17.

From Eq. 7.56, we get the following equation for second degree B-splines:

Bi;2.t/ D t � ti

tiC2 � ti
Bi;1.t/ C tiC3 � t

tiC3 � tiC1

BiC1;1.t/ (7.59)

Substituting the values from Eq. 7.58 into the above equation, and taking into
account the intervals where Bi,1(t) and BiC1,1(t) are non-zero, we get

Bi;2.t/ D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
:

.t � ti /
2

.tiC2 � ti /.tiC1 � ti /
; if ti � t < tiC1

.t � ti /.tiC2 � t/

.tiC2 � ti /.tiC2 � tiC1/
C .t � tiC1/.tiC3 � t/

.tiC3 � tiC1/.tiC2 � tiC1/
; if tiC1 � t < tiC2

.tiC3 � t/2

.tiC3 � tiC1/.tiC3 � tiC2/
; if tiC2 � t < tiC3

0; otherwise:

(7.60)

The three non-zero sections of B1,2(t) as defined above, are shown in Fig. 7.18.
The knot vector used for generating this figure is again f3, 5, 9, 10g.

162 7 Curves and Surfaces

B1,2(t)
(t2 ≤ t < t3)

B1,2(t)
(t3 ≤ t < t4)

B1,2(t)
(t1 ≤ t <t2)

t1 t2 t3 t4

Fig. 7.18 Plot of Bi,2(t)

[t1, t6)
B1,4(t)

[t1, t5)
B1,3(t)

[t1, t4)
B1,2(t)

[t1, t3)
B1,1(t)

[t1, t2)
B1,0(t)

[t2, t3)
B2,0(t)

[t2, t4)
B2,1(t)

[t2, t5)
B2,2(t)

[t2, t6)
B2,3(t)

[t3, t6)
B3,2(t)

[t3, t5)
B3,1(t)

[t3, t4)
B3,0(t)

[t4, t5)
B4,0(t)

[t4, t6)
B4,1(t)

[t5, t6)
B5,0(t)

t2 - t1

t - t1

t - t1

t - t2
t3 - t2

t3 - t

t3 - t2

t4 - t

t4 - t3

t5 - t

t5 - t4

t6 - t

t6 - t5

t6 - t

t6 - t4

t6 - t

t6 - t3

t6 - t

t6 - t2

t - t3
t4 - t3

t - t4
t5 - t4

t3 - t1

t4 - t

t4 - t2

t5 - t

t5 - t3

t5 - t

t5 - t2

t - t2

t5 - t2

t - t2

t5 - t3

t - t3
t4 - t2

t - t1
t4 - t1

t - t1
t5 - t1

Fig. 7.19 Recursive computation of B1,4(t) in terms of B-splines of lower degrees

In general, a B-spline Bi,d of degree d is defined using a non-decreasing sequence
of d C 2 knots fti, tiC1, : : : , tiCdC1g and is non-zero only in the interval [ti, tiCdC1).
The interval in which a function is non-zero is called its support. The diagram in
Fig. 7.19 shows the recursive computation of Bi,4(t), and also the support of every
intermediate polynomial that is evaluated. Comparing this diagram with Fig. 7.15,
we see that the computations performed are very similar to those used by polynomial
interpolants.

7.8 B-Splines 163

P1

P2

P3

P4

P5

P6

P7

P8

Fig. 7.20 Effect of movement of a control point on the approximating curve

7.8.2 Approximating Curves

We shall now look at ways of constructing approximating curves using a set of n
control points P1 : : : Pn, and B-splines as the blending functions. Since the curve is
not required to pass through all control points, we have a selection of polynomials
of different degrees for blending functions. A parametric curve of degree d can be
formed using n B-splines of degree d as follows:

P.t/ D
nX

iD1

Pi Bi:d .t/; tdC1 � t � tnC1 (7.61)

As seen earlier, the B-spline Bi,d(t) requires a knot vector consisting of a non-
decreasing sequence of d C 2 knots fti, tiC1, : : : , tiCdC1g. Therefore, the summation
in Eq. 7.61 requires n C d C 1 knots ft1, t2, : : : , tnCdC1g. Note that the parametric
curve is generated by varying t within the closed subinterval [tdC1, tnC1] only, even
though other knot values outside this range may be required for computing the
polynomial values. The end point of the parametric curve t D tnC1 is a special point
in the sense that the definition of Bn,0(t) is modified to accommodate the point as
follows:

Bn;0.tnC1/ D 1: (7.62)

The values of the knots can be adjusted while maintaining the non-decreasing
order, to make fine local changes to the shape of the resulting curve. Another
advantage of using B-splines as blending functions is that due to their local support,
changes made to a control point will affect the curve only in the neighbourhood of
the point. As an example, consider the situation when the control point P5 is changed
in Eq. 7.61. Since P5 is multiplied by B5,d which is zero outside the interval [t5,
t6Cd), any change in the position of P5 will not affect the curve outside this interval.
This property is depicted in Fig. 7.20, where a second degree approximating curve
is generated using eight control points, and the position of P5 is shifted vertically
downward by a small distance. The corresponding localized shift in the curve can
be clearly observed in the figure.

