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Preface

The field of Computer Graphics has evolved rapidly over the past decade following
the development of a large collection of algorithms and techniques for various appli-
cations in modelling, animation, visualisation, real-time rendering and game engine
design. Advances in graphics hardware capabilities and processor technology have
continuously fuelled this growth. As a result, this field continues to have enormous
potential for further research and development. Computer graphics has also been
one of the popular subjects in the computer science and computer engineering
disciplines for several years. It is a field where one could always find new and
interesting ideas, elegant algorithms and robust implementations.

I have been teaching both introductory and advanced courses on computer
graphics for the past 12 years, and have constantly observed the enthusiasm
of students in learning as well as mastering various techniques used for three-
dimensional modelling, rendering and animation. The visual effects some of these
methods produce captivate their interest, and motivate them to further study and
research more advanced techniques. This book evolved from a compilation of my
lecture notes and reference material for a graduate course in advanced computer
graphics taught in the Department of Computer Science and Software Engineering
at the University of Canterbury. The primary aim of this book project has been
to develop a reference text suitable for both students and researchers, providing
an in-depth and comprehensive coverage of important methods that are useful
in the field of character animation. Working towards this goal, I soon realised
that a book covering a large number of subfields ranging from physically based
simulation to non-photorealistic rendering would be a highly ambitious project. This
book includes a selection of topics which I consider as fundamental to the area of
animation and rendering, and I hope that it will contribute to a deeper and broader
understanding of key algorithms used in advanced computer graphics.

I am very much indebted to the graduate students and staff in the Department
of Computer Science and Software Engineering, University of Canterbury, for
their support, valuable feedback, and encouragement. My sincere thanks go to
Dr. Richard Lobb (Adjunct Senior Fellow, Department of Computer Science and
Software Engineering, University of Canterbury) for devoting so much of his
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valuable time and expertise for reviewing the manuscript. I am thankful to Dr.
Christian Long (Department of English, University of Canterbury), for copy-editing
the manuscript. His thorough and meticulous checking of spelling, punctuation and
grammar has helped improve the clarity of the material presented.

I would like to thank the editorial team members for their help throughout this
book project. While the manuscript was being prepared, a series of unfortunate
events, including the passing away of my mother, and two major earth quakes in
Christchurch, brought the progress to a standstill for several months. Special thanks
to Helen Desmond and Beverley Ford for their continuous encouragement. They
showed a tremendous amount of patience, and always so kindly agreed to extend
the manuscript submission deadline a number of times.

I am very grateful to my family for their endless support. I greatly appreciate their
patience and understanding throughout the time when I was obsessed with writing
this book.

Department of Computer Science R. Mukundan
and Software Engineering
University of Canterbury
Christchurch, New Zealand
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Chapter 1
Introduction

1.1 Advanced Computer Graphics

Computer graphics algorithms are being increasingly used in many scientific and
technological areas, with an explosive growth in applications requiring three-
dimensional rendering and animation. The expansion of computer graphics into
diverse and interdisciplinary areas is the result of many factors such as the ever
increasing power and capability of the graphics hardware, decreasing hardware
costs, availability of a wide range of software tools, research advancements in the
field, and significant improvements in graphics application programming interface
(API). Additionally, vast amounts of resources including images, 3D models, and
libraries are now easily available to developers and researchers for their work. With
the emergence of programmable graphics hardware, the power of graphics APIs to
render complex models and scenes has greatly increased, and it has become easier to
create faster and robust implementations of several advanced algorithms. Following
these developments, there is also an increasing need for reference books that give
an in-depth coverage of advanced methods that are fundamental to many application
domains.

Advanced computer graphics is a field that encompasses a vast range of topics
and a large number of subfields such as game engine development, real-time
rendering, global illumination methods and non-photorealistic rendering. Indeed,
this field includes a large body of concepts and algorithms not generally covered in
introductory graphics texts that deal primarily with basic transformations, projec-
tions, lighting, three-dimensional modelling techniques, texturing and rasterization
algorithms.

This book aims to provide a comprehensive treatment of the theoretical concepts
and associated methods related to four core areas: articulated character animation,
curve and surface design, mesh processing, and collision detection. The area of
character animation is further subdivided into scene graphs, skeletal animation,
quaternion rotations and kinematics. A principal objective of this book is to serve as
a reference text for both students and researchers. It is designed for courses that build
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2 1 Introduction

upon introductory computer graphics concepts. The topics discussed in the book are
commonly covered in graduate or advanced undergraduate graphics courses. These
include the theoretical as well as the implementation aspects of several algorithms.
To help students understand the concepts clearly, a set of demonstration programs
is included with each chapter. Necessary class libraries giving the implementations
of important methods of each class are also provided. Some of the concepts that
have recently found a great deal of importance in research such as dual quaternion
transformations, and bounding interval hierarchies are also presented.

1.2 Supplementary Material

Each chapter is accompanied by a collection of software modules and demonstration
programs that show the details and working of key algorithms. All programs are
written in CCC. The reader is assumed to be familiar with the basic OpenGL
library, which is a easy-to-program, widely accepted cross platform API for devel-
oping graphics applications. To keep the implementations simple, shader language
functions or any other OpenGL extensions are not used. The source codes including
relevant class definitions and input files can be downloaded from Springer’s website,
http://extras.springer.com/978-1-4471-2339-2.

The programs are written entirely by the author, with the primary aim of
motivating students to explore further each technique, and to implement their own
creative ideas. They are just tools which developers and researchers could use to
build larger frameworks or to try better solutions. A simple programming approach
is used so that students with minimal knowledge of C/CCC language and OpenGL
will be able to start using the code and work towards more complex or useful
applications. None of the software is optimized in terms of algorithm performance
or speed. Similarly, object oriented programming concepts are not heavily used,
leaving room for a lot of further development.

1.3 Notations

In order to have a clear distinction between points, vectors and other mathematical
entities, the following notation is normally used in this book. Note that in excep-
tional cases, a different notation may be used in each of the following categories to
avoid ambiguity. For example, a tangent vector to a curve may be denoted by T(t)
instead of t(t).

Point: A point is generally denoted by an uppercase letter in italics as P. The three-
dimensional coordinates of P will be written as (xp, yp, zp). The vector representation
of P having the same components as above will be denoted as p. The coordinates
of the point P1 will be written as either (xp1, yp1, zp1) or, if there is no ambiguity, as
simply (x1, y1, z1).

http://extras.springer.com/978-1-4471-2339-2


1.4 Contents Overview 3

Vector: A vector will be denoted by a lowercase letter in italics and bold font as v.
Its vector components will be noted as (xv, yv, zv).

Complex number: Complex numbers are treated as two-dimensional vectors and
denoted using a lowercase letter in italics and bold font as z.

Quaternions: Uppercase letters in italic font (such as Q) will be used to denote
quaternions. Dual-quaternions will be denoted using uppercase letters in bold and
italic font as Q.

Line segment: A line segment will be noted using its end points as AB.

Triangle: A triangle will be denoted using its vertices as ABC and its area as
�ABC. A triangle may also be named using an uppercase letter in italics as T.

Plane: Uppercase Greek symbols such as � , …, will be used for denoting planes
and general polygonal surface elements.

Matrices: Matrices will be denoted using uppercase letters in bold font as M.

1.4 Contents Overview

This section gives an outline of subsequent chapters of the book. Chapter 2 should
be treated as revision material on analytical properties of geometrical primitives and
may be skipped if you have a good mathematical background. Chapters 3, 4, 5, 6
are closely related to the area of character animation. Chapters 7, 8, 9 deal with
mutually independent topics, and can be read separately in any order.

Chapter 2 – Mathematical Preliminaries: This chapter outlines important math-
ematical concepts related to points, vectors, transformations, lines and planes that
are fundamental to several methods in computer graphics. Subsequent chapters in
the book make use of the results presented here.

Chapter 3 – Scene Graphs: This chapter introduces scene graphs and gives
examples to show their importance in representing transformation hierarchies in
articulated models. A sample implementation of the basic scene graph structure is
provided.

Chapter 4 – Skeletal Animation: This chapter discusses the animation of two
different types of articulated character models. The processes of vertex blending,
vertex skinning and keyframing are introduced. The chapter also gives a sample
implementation of a skeleton animation module.

Chapter 5 – Quaternions: Quaternions are extensively used in animations to
represent three-dimensional rotations. This chapter gives a comprehensive coverage
of quaternion algebra, transformations and quaternion based methods for rotation
interpolation. A recently introduced concept of dual quaternions is also presented.
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Chapter 6 – Kinematics: This chapter presents forward and inverse kinematics
solutions for animating a joint chain. Iterative algorithms suitable for graphics
applications are also presented.

Chapter 7 – Curves and Surfaces: This chapter gives an in-depth treatment of
parametric curves, splines and polynomial interpolants. Fundamental techniques in
curve and surface design using Hermite splines, cardinal splines and B-splines are
presented in detail.

Chapter 8 – Mesh Processing: This chapter discusses mesh data structures
and algorithms. Important edge-based data structures useful for processing adja-
cency queries are introduced. Algorithms for mesh simplification, subdivision and
parameterization are presented. The chapter also outlines methods for polygon
triangulation, which is generally a key component of mesh processing algorithms.

Chapter 9 – Collision Detection: This chapter details commonly used bounding
volume representations of objects in collision detection algorithms, and presents the
computation of bounding volume overlap tests. Bounding volume hierarchies and
spatial partitioning trees are also discussed in detail.



Chapter 2
Mathematical Preliminaries

Overview

Mathematical operations on points, vectors and matrices are needed for processing
information related to geometrical objects. Even in the modelling of a simple three-
dimensional scene, vectors and matrices play an important role in specifying an
object’s position, orientation and transformations. Methods for lighting, intersection
testing, projections, etc., use a series of vector operations. This chapter gives an
overview of computations using geometrical primitives and shapes that form the
basis for several algorithms presented in subsequent chapters of the book.

Parametric representations are often used in methods involving geometrical
primitives. This chapter deals with analytical equations of lines, planes and curves,
and their applications in geometrical computations. Properties of three-dimensional
transformations are discussed using their matrix representations. The chapter also
introduces concepts such as signed area and distance, affine combinations of points
and barycentric coordinates.

2.1 Points and Vectors

A point is the most fundamental graphics primitive, and is represented in a three-
dimensional Cartesian coordinate system by the 3-tuple (x, y, z), where x, y, z
denote the distances of the point from the origin of the system along the respective
axes directions. In graphics, we commonly use an extended coordinate system,
where the same point is denoted by the 4-tuple (x, y, z, 1). This representation is
called the homogeneous coordinate system. Homogeneous coordinates provide a
unified and elegant framework for representing different types of transformations
and projections that are commonly applied to both points and vectors (Box 2.1).

R. Mukundan, Advanced Methods in Computer Graphics: With examples in OpenGL,
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6 2 Mathematical Preliminaries

Box 2.1 Homogeneous Coordinate System

A 3D point given by homogeneous coordinates (a, b, c, d) where d is non-
zero, has an equivalent representation in Cartesian coordinates given by (a/d,
b/d, c/d).
The 4-tuple (a, b, c, 0) denotes a point at infinity that has associated with it a
directional vector (a, b, c).
The many-one mapping from homogeneous to Cartesian space is shown
below:

(hx, hy, hz, h) ) 3D Point (x, y, z) for all non-zero values of h.
(x, y, z, w) ) 3D Point (x/w, y/w, z/w) if w ¤ 0.
(x, y, z, 0) ) 3D Vector (x, y, z).

xz

y

Q

P

P-Q

xz
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Q

P

P+Q

xz

y

q

p

p+q
a b c

Fig. 2.1 Geometric interpretation of (a) subtraction of a point from another, (b) addition of two
points given in homogeneous coordinates, and (c) addition of two vectors

We will now look at the geometrical interpretations of operations of addition and
subtraction on homogeneous coordinates. When we subtract a point Q D (xq, yq,
zq, 1) from the point P D (xp, yp, zp, 1), we get a vector P�Q which has components
(xp�xq, yp�yq, zp�zq, 0). This vector originates from the point Q and is directed

towards the point P, and is denoted as
!

QP . The direct addition of two points P
and Q is not a geometrically valid operation, as it can produce different results
depending on the coordinate reference frame used. If we use the homogeneous
coordinate representation of P and Q as given above, the operation of addition yields
(xp C xq, yp C yq, zp C zq, 2), which is actually the midpoint of the line segment
PQ (Fig. 2.1b). Points can, however, be added in a special way called the affine
combination (see Sect. 2.7) that gives a well-defined point. The addition of two
vectors p D (xp, yp, zp, 0) and q D (xq, yq, zq, 0) is always a valid operation that
produces another vector p C q D (xp C xq, yp C yq, zp C zq, 0). This vector is along
the diagonal of the parallelogram formed by p and q.
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Like addition, the operations of negation and scalar multiplication should also
be carefully performed on points represented in homogeneous coordinates. It can
be seen that the operation of negation given by �P D (�xp, �yp, �zp, �1) in effect
yields the same point P. In general, the operation of scalar multiplication defined as
sP D (sxp, syp, szp, s) for any non-zero value of s, gives the same point P.

We will often require the computation of angles between two vectors. This and
other operations, such as projection, require vectors to be normalized first. The
normalization of a vector is the process of converting it to a unit vector that has
a magnitude 1. In order to normalize a vector p D (xp, yp, zp, 0), we simply divide
each element by the vector magnitude d given by

d D jpj D
q

x2
p C y2

p C z2
p (2.1)

If v is a two-dimensional vector (xv, yv), then the vector v? D (�yv, xv) is
perpendicular to and on the left side of v. The vector v? is sometimes called the
perp-vector. It may be noted that v?? D (�xv, �yv) D �v.

Two important vector operations used in graphics are the dot-product and the
cross-product. Given two unit vectors u D (xu, yu, zu, 0) and v D (xv, yv, zv, 0), their
dot-product u•v D xuxv C yuyv C zuzv is equal to the cosine of the angle between
the vectors. The cross-product u � v D (yuzv � yvzu, zuxv � zvxu, xuyv � xvyu, 0) is a
vector perpendicular to both u and v, so that u, v, u � v form a right-handed system
(Fig. 2.2). Obviously, this operation is useful for computing the surface normal
vector of a planar element defined by two vectors u and v. The magnitude of u � v
(denoted by ju � vj) gives twice the area of the triangle formed by the two vectors
(Figs. 2.2a and 2.3). For unit vectors, ju � vj is also equal to the sine of the angle
between the two vectors (Box 2.2).
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Box 2.2 Vector Products

The following facts are commonly used in computations involving vectors:

If u is a unit vector, then u•u D 1.
If u is perpendicular to v, then u•v D 0.
If u is parallel to v, then u � v D 0. In particular, u � u D 0.
The magnitude of u � v is the area of the parallelogram formed by u, v.
The scalar triple product u•(v � w) gives the volume of the parallelepiped
formed by the vectors u,v and w. The value does not change with a cyclic
permutation of the vectors: u•(v � w) D v•(w � u) D w•(u � v).

u•(v � w) can be written as the determinant

ˇ̌
ˇ̌
ˇ̌
xu yu zu

xv yv zv

xw yw zw

ˇ̌
ˇ̌
ˇ̌

The vector triple product u � (v � w) is the same as (u•w)v � (u•v)w.
The magnitudes of the dot and cross products of two vectors u and v are
related by the equation: ju � vj2 D juj2jvj2 � (u•v)2.

We saw in the previous paragraph that both the dot and the cross products of
two unit vectors can give us the information about the angle between them in the
form of trigonometric functions cos() and sin() respectively. Note that the
function acos(u•v) returns the angle in the range [0,  ] only. Neither can we
use asin(ju � vj) to determine the angle correctly because the resulting value will
always be in the restricted range [0,  /2] (even though asin() returns a value in
the range [� /2,  /2], since ju � vj is always positive, so would be the result). We
will explore ways to compute the true angle in the range [� ,  ] in Sect. 2.2.

If we represent the vertices of a triangle by points A D (xa, ya, za), B D (xb, yb, zb),
C D (xc, yc, zc), the surface normal vector and the area of the triangle can be obtained
from the cross product of two vectors u, v constructed as shown in Fig. 2.3.

The normal vector n of the triangle in Fig. 2.3 has components (xn, yn, zn)
given by

xn D ya .zb � zc/ C yb.zc � za/ C yc.za � zb/

yn D za .xb � xc/ C zb.xc � xa/ C zc.xa � xb/

zn D xa .yb � yc/ C xb.yc � ya/ C xc.ya � yb/ (2.2)

The above vector is the same as u � v. The area of the triangle ABC can be
computed from the above components of the normal vector as follows:

�ABC D 1

2

q
x2

n C y2
n C z2

n D 1

2
ju � vj (2.3)
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Let us turn our attention to another important vector operation called projection.
A vector s can be projected onto a unit vector n, with the projected vector given
by (s•n)n (see Fig. 2.2b). This also implies that the length of the projection of s on
a unit vector n is s•n. We can use this fact to express any vector s in terms of its
projections along three mutually orthogonal unit vectors u,v, and w as

s D .s � u/u C .s � v/v C .s � w/w (2.4)

If s is also a unit vector, then the terms s•u, s•v, s•w are called the direction
cosines of the vector in the coordinate space spanned by the unit vectors u, v, and
w. In a new coordinate space defined by u, v, and w, the components of any vector
s are therefore given by (s•u, s•v, s•w).

The reflection of the vector s with respect to a unit vector n is the vector r that lies
on the plane containing s and n as shown in Fig. 2.2c, such that the angle between r
and n is the same as the angle between s and n. The reflection vector is commonly
used in lighting calculations and ray tracing, where s stands for the vector towards a
light source, and n is the surface normal vector. The vector components of r can be
computed using the formula

r D 2.s � n/n � s (2.5)

2.2 Signed Angle and Area

In the previous section, we noted that the computation of the angle between two
vectors using acos() or asin() functions always yielded only positive values
in the range [0,  ]. One may suggest using the function atan2(ju � vj, u•v). This
form of computation of angle has the advantage that neither u nor v needs to be
normalized. However, this function also returns values in the positive range [0,  ]
only, because the numerator ju � vj is always positive. The difference between the
positive and negative sense of angle is completely view dependent. For vectors
residing on the two-dimensional xy-plane, the direction to the viewer is always
implied to be the C z direction. In a general three-dimensional case, we need to
specify this view direction in order to determine the signed angle in the range
[� ,  ] between two given vectors.

If we denote the view direction by w (Fig. 2.4), the angle measured from u to
v is positive if the sense of rotation from u to v is anticlockwise when viewed
from w. In other words, if w is in the same direction as u � v, then the angle is
positive, otherwise negative. We can now define the signed angle between u and v
with respect to the view vector w as

� D sign..u � v/ � w/:cos�1

�
u � v
jujjvj

�
(2.6)
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A

B

C

uv

For this view direction, both
angle and area are positive.

For this view direction, both
angle and area are negative.

w

q

u×v

Fig. 2.4 The angle between two vectors and the area of the triangle formed by the vectors can
have either a positive or a negative sign depending on the orientation of the vertices with respect to
a given direction

If u and v are two-dimensional vectors on the xy-plane, we can have the following
simplified form for the signed angle:

� D atan2.xuyv � xvyu; xuyu C xvyv/ (2.7)

We can also define a view-dependent sign for the area of a triangle based on the
above concept. If the view vector w has components (xw, yw, zw, 0), Eq. 2.3 now gets
modified as follows:

�ABC D fsign.xnxw C ynyw C znzw/g
�

1

2

q
x2

n C y2
n C z2

n

�

D sign.n � w/

�
1

2
ju � vj

�
(2.8)

where xn, yn, zn are computed from the vertex coordinates using Eq. 2.2.
For a triangle on the xy-plane, the right-hand side of the above equation reduces

to zn/2. Thus the signed area of a triangle with vertices A D (xa, ya), B D (xb, yb),
C D (xc, yc) is

�ABC D 1

2
.xa .yb � yc/ C xb .yc � ya/ C xc .ya � yb// (2.9)

The signed area is positive only if the vertices A, B, C are oriented in an
anticlockwise sense with respect to the view direction. The signed area of a triangle
is useful in determining if a point is inside the triangle or not. This method is
discussed in detail in Sect. 2.8. The concepts presented above are also used for
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defining the orientation of three points. Three points A, B, C are said to be oriented
in the anticlockwise sense with respect a direction w if

..B � A/ � .C � A// � w > 0: (2.10)

If the above condition is satisfied, the three points are said to make a left turn
when viewed from the direction w. With reference to Fig. 2.4, the equivalent
condition in vector notation is (u � v)•w > 0. On the xy-plane, the three points make
a left turn if

xa.yb � yc/ C xb.yc � ya/ C xc.ya � yb/ > 0: (2.11)

The reversal of the inequality implies a right turn. The points are collinear if
the above expression yields 0. In the next section we will use vector notations and
related operations to get concise forms of line and plane equations.

2.3 Lines and Planes

Lines and planes form integral parts of three-dimensional models and virtual worlds.
A good understanding of line and plane equations and their analytical properties is
essential for the development of many applications. For example, even a simple ray
tracing application requires the computation of several line-plane intersections.

A straight line segment can be defined using two points, say P D (xp, yp, zp, 1)
and Q D (xq, yq, zq, 1). The equation of this line in terms of a single parameter t can
be expressed as

x D xp C t.xq � xp/I y D yp C t.yq � yp/I z D zp C t.zq � zp/ (2.12)

For any value of t between 0 and 1, the above set of equations gives the
coordinates of a point on the straight line that lies between P and Q. We can also
write the equation of this line segment using vector notation as follows:

r D p C tm; 0 � t � 1: (2.13)

where r D (x, y, z, 1), p D (xp, yp, zp, 1) and m D Q�P. The above equation can also
be used to represent a ray starting from the point p and having a direction given by
the vector m. In this representation, m is generally a unit vector and t can have any
positive value. The line given in Eq. 2.12 can be rewritten in the standard form by
eliminating t:

x � xp

xq � xp

D y � yp

yq � yp

D z � zp

zq � zp

(2.14)
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P

Q

V

S

V

P

n

Q

RD
D

a bFig. 2.5 Computation of
shortest distances of a point V
from (a) a line PQ and (b) a
plane PQR

From the above equation, we immediately get the condition for the collinearity
of three points P D (xp, yp, zp, 1), Q D (xq, yq, zq, 1) and R D (xr, yr, zr , 1):

xr � xp

xq � xp

D yr � yp

yq � yp

D zr � zp

zq � zp

(2.15)

Using Eq. 2.12, we can determine the point S on the line PQ that lies closest to
a general three-dimensional point V D (xv, yv, zv, 1). The shortest distance of the
point V from the line is given by VS (Fig. 2.5), where S is the projection of the point
V on PQ. The point S satisfies the condition that the line segments PQ and VS are
orthogonal to each other. Using this condition, the parametric value t of the point S
can be obtained as follows:

t D .xv � xp/.xq � xp/ C .yv � yp/.yq � yp/ C .zv � zp/.zq � zp/

.xq � xp/2 C .yq � yp/2 C .zq � zp/2
(2.16)

Substitution of the above value in Eq. 2.12 gives the coordinates of the point S.
The shortest (or the perpendicular) distance D of the point V from the line PS is
obtained as the distance jV�Sj.

A plane in three-dimensional space is uniquely defined by three non-collinear
points, or equivalently, by a point P that lies on the plane and its surface normal
vector n. The equation of the plane in terms of the coordinates of the three points
P D (xp, yp, zp, 1), Q D (xq, yq, zq, 1), R D (xr, yr, zr, 1), is given by the determinant

ˇ̌
ˇ̌
ˇ̌
ˇ̌

x y z 1

xp yp zp 1

xq yq zq 1

xr yr zr 1

ˇ̌
ˇ̌
ˇ̌
ˇ̌

D 0: (2.17)

From this equation of the plane, we get the condition for the coplanarity of four
points P, Q, R, S:

ˇ̌
ˇ̌
ˇ̌
ˇ̌

xp yp zp 1

xq yq zq 1

xr yr zr 1

xs ys zs 1

ˇ̌
ˇ̌
ˇ̌
ˇ̌

D 0: (2.18)
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The determinant is equivalent to (P�Q)•(r � s) C (R�S)•(p � q). The condition
in Eq. 2.18 also points to the fact that the vectors (Q�P) and (R�S) are coplanar.
Thus we can rewrite the above equation using the following scalar triple product:

.R � P / � f.Q � P / � .S � R/g D 0: (2.19)

The surface normal vector n for the above plane can be obtained (similar to
Eq. 2.2), by taking the cross-product of vectors Q�P and R�P. The components
of n written as a column vector are given below:

2
664

xn

yn

zn

0

3
775 D

2
664

.yq � yp/.zr � zp/ � .yr � yp/.zq � zp/

.zq � zp/.xr � xp/ � .zr � zp/.xq � xp/

.xq � xp/.yr � yp/ � .xr � xp/.yq � yp/

0

3
775 (2.20)

The plane equation can be written in point-normal form as

.x � xp/xn C .y � yp/yn C .z � zp/zn D 0 (2.21)

which can always be simplified into a linear equation ax C by C cz C d D 0, or
expressed using vector notation as

.r � p/ � n D 0; or equivalently; r � n D �d; (2.22)

where d D �p•n. The point of intersection of this plane and a ray can be obtained by
substituting the equation of the ray, r D q C t m, in the above equation and solving
for t.

t D �.q � n/ � d

m � n
(2.23)

The denominator in the above equation becomes zero when the line is orthogonal
to n, i.e., parallel to the plane. The shortest distance D of the point v from the plane
(see Fig. 2.5b) is given by the equation

D D .xv � xp/xn C .yv � yp/yn C .zv � zp/znp
x2

n C y2
n C z2

n

D .v � n/ C d

jnj (2.24)

The above term is also called the signed distance of the point v from the
plane, as it assumes a positive value if v is on the same side as n, and a negative
value otherwise. In general, if the plane’s equation is given in the normal form
ax C by C cz C d D 0, where a2 C b2 C c2 D 1, the signed distance of the point
v D (xv, yv, zv) is given by

D D axv C byv C czv C d (2.25)
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P
Q

R

r=P +su+ tv

u

v

(s= 0, t= 0)

(s= 0, t= 1)

(s= 1, t= 0)

Fig. 2.6 Two-parameter representation of a plane

The above expression can be thought of as the dot product between the vector
(a, b, c, d) and (xv, yv, zv, 1), which is the homogeneous representation of v. Note
that the unit normal vector to the plane is given by (a, b, c). Signed distances are
extensively used in collision detection and point inclusion tests using bounding
volumes.

Given three non-collinear points P, Q, R, we can have a parametric representation
of the plane through the points as

r D P C s.Q � P / C t.R � P / D P C s u C tv (2.26)

where u and v are vectors along two sides of the triangle PQR (Fig. 2.6). An
alternate form for the above equation that expresses any point on the plane as a
linear combination of the vertices of the triangle is

r D P .1 � s � t/ C s Q C tR (2.27)

For every point r(s, t) inside the triangle, the following properties hold:

0 � s � 1; 0 � t � 1; 0 � s C t � 1: (2.28)

In addition to the above conditions, points along the edge PQ satisfy the
parametric equation t D 0. Similarly, the edge PR is characterized by the equation
s D 0, and RQ by the property s C t D 1.

2.4 Intersection of 3 Planes

An interesting problem commonly encountered while working with planes is the
computation of the point of intersection (if it exists) where three planes meet.
Even if it is guaranteed that no two planes are parallel, there can be three different
configurations in which three planes can meet (Fig. 2.7).
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Fig. 2.7 Three different configurations in which three non-parallel planes can meet

In the first configuration in Fig. 2.7, the lines of intersection formed by taking
two planes at a time coincide with the result that we get a single line of intersection.
In the second configuration, the lines of intersections are parallel even though the
planes are not. It can be easily proven that if two lines of intersection are parallel,
then the third is also parallel to the other two. This situation arises when the three
surface normal vectors of the planes are all coplanar. In the third configuration, the
non-parallel lines of intersection meet at a single point.

Let the three planes be given by the equations (see Eq. 2.22) r•ni D �di, (i D 1, 2,
3) where nis are unit normal vectors. The directions of the three lines of intersection
are then specified by the cross products n1 � n2, n2 � n3, and n3 � n1. The point
of intersection, if it exists, can be expressed as a linear combination of these three
vectors (Goldman 1990):

p D a.n1 � n2/ C b.n2 � n3/ C c.n3 � n1/ (2.29)

The above point lies on all three planes. Substitution in the plane equations gives

bfn1 � .n2 � n3/g D �d1

cfn2 � .n3 � n1/g D �d2

afn3 � .n1 � n2/g D �d3 (2.30)

The scalar triple products on the left side of the above equations are all equal (see
Box 2.2). Equation 2.29 can now be written as

p D �d1.n1 � n2/ � d2.n2 � n3/ � d3.n3 � n1/

n1 � .n2 � n3/
(2.31)

For the first two configurations shown in Fig. 2.7, the vectors n1, n2, n3 are
coplanar, and the denominator of the above equation becomes zero. For the third
configuration, the equation returns a valid point.
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2.5 Curves

In Sect. 2.3, we came across the equation of a straight line expressed in terms of
linear polynomials of a single parameter t (Eq. 2.12). Polynomials of a higher degree
in t can be used to define curves in three-dimensional space. In the most general
form, a curve can be represented as P(t) D (x(t), y(t), z(t)), where x(t), y(t), z(t) are
continuous and differentiable functions of the parameter t. Polynomials of degree
n have the property that their derivatives up to order n�1 exist and are continuous
over any finite interval in the parameter space. We can use the derivatives of the
functions to define the tangential and normal directions to the curve at any point,
and also to construct an orthonormal basis at any point on the curve.

The tangent vector at P(t) is given by the first derivative with respect to t, i.e.,
P0(t) D (x0(t), y0(t), z0(t)). The unit tangent vector is denoted as

T .t/ D P 0.t/
jP 0.t/j (2.32)

The tangent vector represents the local orientation of the curve at a point. If
the parameter t denotes time, then P0(t) represents the instantaneous velocity of
the moving point P(t). The distance travelled from a starting point A D P(t0) to the
current point, or in other words the arc length measured from A, is given by

s.t/ D
tZ

t0

ˇ̌
P 0.u/

ˇ̌
du D

tZ

t0

q
.x0.u//2 C .y0.u//2 C .z0.u//2 du (2.33)

Using the above equation we can express t as a function of arc length s, and
re-parameterize the curve as P(s) D (x(s), y(s), z(s)). The chain rule for differentia-
tion gives

P 0.t/ D P 0.s/s0.t/ D P 0.s/jP 0.t/j (2.34)

from which we find that P0(s) is equivalent to the unit tangent vector T(t). For
convenience, we denote P0(s) by T(s). Since T(s)•T(s) D 1, it immediately follows
that T(s)•T0(s) D 0. Thus the instantaneous rate of change of the tangent direction
is parallel to the normal vector at that point. If the unit normal direction at P(s) is
denoted as N(s), we have

T 0.s/ D d .T .s//

ds
D �.s/N .s/ (2.35)

The proportionality factor �(s) is called the curvature of the curve at P(s). The
curvature is a measure of the deviation of the curve from a straight line. For a straight
line, �(s) D 0 at all points. The magnitude of the curvature is easily obtained as
j�(s)j D jT0(s)j, and the unit normal direction at P(s) is given by
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Curve Osculating plane

N(s) T(s)

B(s)

Rectifying plane

PFig. 2.8 Frenet frame
attached to a curve at the
point P

N .s/ D P 00.s/

jP 00.s/j D P 0.t/ � .P 00.t/ � P 0.t//
jP 0.t/j jP 00.t/ � P 0.t/j (2.36)

The plane containing the tangent vector and the normal vector is known as the
osculating plane. The cross-product of the two unit vectors T(s) and N(s) gives the
direction of the unit bi-normal vector denoted by B(s):

B.s/ D T .s/ � N .s/ D P 0.s/ � P 00.s/

jP 0.s/ � P 00.s/j D P 0.t/ � P 00.t/
jP 0.t/ � P 00.t/j (2.37)

The three unit vectors T, N, B form an orthonormal basis as shown in Fig. 2.8.
This local reference system is called the Frenet frame. The derivative of the bi-
normal vector B0(s) is perpendicular to both B(s) and T(s), and hence parallel to
N(s):

B 0.s/ D d .B.s//

ds
D ��.s/N .s/ (2.38)

The term �(s) is called the torsion of the curve at s. Torsion is a measure of how
much the curve deviates from the osculating plane.

The plane containing the tangent and binormal vectors is called the rectifying
plane (Fig. 2.8). The plane formed by the normal and binormal vectors is called the
normal plane.

The Frenet frame is useful for defining the local orientation of objects that move
along a curved path. It can also be used for defining the eye-coordinate system for a
camera that undergoes a curvilinear motion.

2.6 Affine Transformations

In this section, we consider linear transformations of three-dimensional points and
vectors. The homogeneous coordinate system (Sect. 2.1) allows all transformations
including translations to be represented using 4 � 4 matrices. We denote a translation



18 2 Mathematical Preliminaries

by a vector v D (xv, yv, zv), by Tv, a rotation about the x-axis by an angle by ™, by
R™(x), and a scaling by a vector k D (xk, yk, zk), by Sk (Box 2.3).

Box 2.3 Fundamental 3D Transformations (Fig. 2.9)

Tv: Translation by an offset vector v (xv, yv, zv) D

2
664

1 0 0 xv

0 1 0 yv

0 0 1 zv

0 0 0 1

3
775

R™(x): Rotation by an angle � about the x-axis D

2
664

1 0 0 0

0 cos � � sin � 0

0 sin � cos � 0

0 0 0 1

3
775

R™(y): Rotation by an angle � about the y-axis D

2
664

cos � 0 sin � 0

0 1 0 0

� sin � 0 cos � 0

0 0 0 1

3
775

R™(z): Rotation by an angle � about the z-axis D

2
664

cos � � sin � 0 0

sin � cos � 0 0

0 0 1 0

0 0 0 1

3
775

Sk: Scaling by factors kx, ky, kz D

2
664

xk 0 0 0

0 yk 0 0

0 0 zk 0

0 0 0 1

3
775

xz

v

xz xz

1

11
xk

yk

zk

q

a b c

Fig. 2.9 Examples showing transformations of (a) a translation by an offset vector v (b) a rotation
about the x-axis by an angle � and (c) scaling by factors kx, ky, kz
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A linear transformation followed by a translation is called an affine transform. A
general transformation can be given in matrix form as follows:

2
664

x0
p

y0
p

z0
p

1

3
775 D

2
664

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

0 0 0 1

3
775

2
664

xp

yp

zp

1

3
775 (2.39)

In the above equation, the matrix elements aij’s are all constants. (a03, a13,
a23) denote the translation components, and (xp, yp, zp, 1) the point on which the
transformation is applied. The translation parameters do not have any effect on
a vector (xv, yv, zv, 0). Under an affine transformation, line segments transform
into line segments, and parallel lines transform into parallel lines. A fixed point
of a transformation is a point that remains invariant under that transformation. For
example, every point along the x-axis is a fixed point for the transformation R™(x).
Similarly, the origin is a fixed point for the scale transformation. The most general
rotation of an object with the origin as a fixed point, is the rotation by an angle �

about an arbitrary vector v D (xv, yv, zv, 0) passing through the origin. The matrix
for this transformation is given below.

R™.v/ D

2
664

x2
v A C C xvyvA � zvB xvzvA C yvB 0

xvyvA C zvB y2
v A C C yvzvA � xvB 0

xvzvA � yvB yvzvA C xvB z2
vA C C 0

0 0 0 1

3
775 (2.40)

where A D (1�cos™), B D sin™, and C D cos™. A rotation about an axis parallel to the
x-axis, with an arbitrary fixed point P, can be obtained by first applying a translation
T�p from P to the origin, a rotation R™(x) with origin as the fixed point, and finally a
translation Tp back to the original position P. In matrix form, we write the composite
transformation as TpR™(x)Tp

�1. Here T�1 denotes the inverse of the transformation
T. For a translation, the inverse of Tp is T�p; and for a rotation, the inverse of R™(v)
is R�™(v). A transformation of the form TRT-1 is called the conjugate of R.

We have just seen a few examples of affine transformations that are commonly
used for generating new points by transforming existing ones. We could also
combine the coordinates of a set of points using a linear equation to obtain a new
point. Such interpolation methods are discussed in the next section.

2.7 Affine Combinations

A linear combination of a set of points Pi (i D 1,2, : : : n) produces a new point Q as
shown below:

Q D
nX

iD1

wi Pi (2.41)
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Fig. 2.10 (a) Linear interpolation and (b) trigonometric interpolation between two points

where the coefficients (weights) wi are constants. If the weights satisfy the condition

nX
iD1

wi D 1:; (2.42)

then Eq. 2.41 gives an affine combination of points. Additionally, if wi � 0, for all i,
then wi’s form a partition of unity, and Eq. 2.41 is said to give a convex combination
of points. As a special case, when n D 2, we get the formula for linear interpolation
between two points P1 and P2:

Q D .1 � t/P1 C t P2; 0 � t � 1: (2.43)

An interesting variation of the above equation can be derived by expressing the
parameter t as a function of an angle ’, given by t D cos2’. Then the coefficient
(1� t) becomes sin2’, and Eq. 2.43 takes the form Q D sin2’ P1 C cos2’ P2.
However, this trigonometric interpolation formula gives a non-uniform distribution
of points on the line when ’ is varied from 0ı to 90ı in equal steps. A comparison
of linear and trigonometric interpolations is given in Fig. 2.10. In Fig. 2.10a, the
parameter t is varied uniformly in the range [0–1] in steps of 0.1, and in Fig. 2.10b,
the angle ’ is varied uniformly in the range [0–90] in steps of 9ı. Higher order
interpolation between points is discussed in Chap. 7 (Box 2.4).

Box 2.4 Bernstein Polynomials

Given a positive integer value n, we can construct n C 1 polynomials of degree
n of a parameter t as follows:

ˇi;n.t/ D
�

n

i

�
.1 � t/n�i t i ; i D 0; 1; 2; : : : ; n:
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These polynomials form a partition of unity, i.e.,
nP

iD0

ˇi;n.t/ D 1:

Therefore, they can be used to generate convex combinations of points. Given
n C 1 points Pi, i D 0, : : : ,n, we define a point Q(t) as

Q.t/ D
nX

iD0

ˇi;n.t/ Pi

As the parameter t is varied from 0 to 1, we get a continuous parametric curve
called the Bezier curve. The equations for n D 1, 2, 3 are given below.
First degree (linear): Q(t) D (1�t) P0 C t P1

Second degree (quadratic) : Q(t) D (1�t)2P0 C 2(1�t)t P1 C t2P2

Third degree (cubic) : Q(t) D (1�t)3P0 C 3(1�t)2 t P1 C 3(1�t)t2P2 C t3P3

P1

P3

P2

A B
Q

Fig. 2.11 A bilinear
interpolation scheme first
interpolates along the edges
to get the values at A and B,
and then uses another linear
interpolation along the line
AB to get the value at Q

Given a triangle with vertices P1, P2 and P3, we can perform a bilinear
interpolation between the values defined at the vertices to get the interpolated value
at an interior point Q (Fig. 2.11). Using this scheme, we can compute the colour
value at any point inside a triangle, given the colour values at the vertices. A scan-
line parallel to the base of the triangle sweeps the plane and generates the values of
A and B using the linear interpolation equation in Eq. 2.43 with the same parameter
t. Another linear interpolation between of A and B with a parameter s gives the value
of Q. Thus we get

Q D .1 � s/ f.1 � t/P1 C tP3g C s f.1 � t/P2 C tP3g ; 0 � s; t � 1: (2.44)

The above equation could be simplified into a simple convex combination of
vertex points as

Q D .1 � k1 � k2/P1 C k1P2 C k2P3; 0 � k1; k2; k1 C k2 � 1; (2.45)

where k1 D s(1�t) and k2 D t. The bilinear interpolation of vertex coordinates shown
above can be generalized to interpolate any quantity or attribute inside a triangle,
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given its values at the vertices. Examples of such vertex attributes are colour, texture
coordinates and normal vectors. In the next section, we will consider another closely
related interpolation method for triangles.

2.8 Barycentric Coordinates

The barycentre of a rigid body is its centre of mass. For a triangle, the barycentre
is its centroid. Given vertices P1, P2, P3 of a triangle, the centroid C can be easily
computed as the average of the vertex coordinates (P1 C P2 C P3)/3. Thus C can
be represented as a convex combination of the vertex points. Indeed, Eq. 2.45 has
just shown that any point Q inside the triangle could be expressed as a convex
combination of vertices. If we re-write Eq. 2.45 as

Q D �1P1 C �2P2 C �3P3; 0 � �1; �2; �3 � 1; �1 C �2 C �3 D 1; (2.46)

then the point Q is uniquely specified by a new set of coordinates (�1, �2, �3) defined
by P1, P2, and P3. This local coordinate system is called the barycentric coordinates
for the triangle. Barycentric coordinates are also sometimes referred to as trilinear
coordinates. From Eq. 2.46 we see that the vertices themselves have barycentric
coordinates given by

P1 D .1; 0; 0/

P2 D .0; 1; 0/

P3 D .0; 0; 1/ (2.47)

As seen earlier, the centroid C has barycentric coordinates (1/3, 1/3, 1/3). The
barycentric coordinates of a point Q with respect to P1, P2, P3 have a geometrical
interpretation as the ratios of the areas of triangles QP2P3, QP3P1, QP1P2 to the
area of the triangle P1P2P3. In the following equations, the symbol � denotes the
signed area of a triangle:

�1 D �QP2P3

�P1P2P3

; �2 D �QP3P1

�P1P2P3

; �3 D �QP1P2

�P1P2P3

(2.48)

The barycentric coordinates given in Eq. 2.48 are unique for every point on the
plane of the triangle. They can be directly used to get the interpolated value of
any quantity defined at the vertices of the triangle. If fP1, fP2, fP3 denote the values
of some attribute associated with the vertices, then the interpolated value at Q is
given by

fQ D �1fP1 C �2fP 2 C �3fP 3: (2.49)
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P1 P2

P3

Q = (l1, l2, l3)

R= l1S1+l2S2+l3S3

R

S3

S2

S1

Fig. 2.12 A one-to-one mapping of points from one triangle to another can be obtained using
barycentric coordinates

Using barycentric coordinates we can establish a one-to-one mapping of points
from within one triangle to another. For any given interior point Q of the first
triangle, we compute the barycentric coordinates. The linear combination of the
vertices of the second triangle with the barycentric coordinates of Q gives the
coordinates of the corresponding point R inside the second triangle (Fig. 2.12).
We can use this mapping to transfer values from the interior of the first triangle
to the second. As an immediate application of this transfer, we can map an image
(or texture) from one triangle to another.

In a simplified two-dimensional case where P1 D (x1, y1), P2 D (x2, y2),
P3 D (x3, y3), Q D (xq, yq), the expressions for the barycentric coordinates of Q
given in Eq. 2.48 assume the following form:

�1 D xq.y2 � y3/ C x2.y3 � yq/ C x3.yq � y2/

x1.y2 � y3/ C x2.y3 � y1/ C x3.y1 � y2/

�2 D xq.y3 � y1/ C x3.y1 � yq/ C x1.yq � y3/

x1.y2 � y3/ C x2.y3 � y1/ C x3.y1 � y2/

�3 D xq.y1 � y2/ C x1.y2 � yq/ C x2.yq � y1/

x1.y2 � y3/ C x2.y3 � y1/ C x3.y1 � y2/
(2.50)

If any of the above quantities is negative, then the point Q lies outside the triangle
P1P2P3. Thus barycentric coordinates find applications in point inclusion tests.
In a general three-dimensional case, however, the area of a triangle computed using
Eq. 2.3 would always be positive, and correspondingly the area ratios in Eq. 2.48
would also be positive. As previously discussed in Sect. 2.2, the computation of
signed areas of triangles requires a view vector w. Since we need this vector to
be fixed with respect to every triangle in Eq. 2.48, we can conveniently choose
w D (P2�P1) � (P3�P1). Now the barycentric coordinates �1, �2 and �3 in Eq. 2.48
can be computed by applying the formula in Eq. 2.8 to each of the triangles QP2P3,
QP3P1, QP1P2 and P1P2P3. If the conditions œ1 C œ2 C œ3 D 1, 0 � �1, �2, �3 � 1
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are met, then Q lies on the plane defined by the points P1, P2, P3, and also lies within
the triangle P1P2P3. Note that in the most general case, the point Q need not be on
the plane of the triangle. Hence we require the additional condition that the sum of
barycentric coordinates equals 1 to ensure that the points are coplanar.

Barycentric coordinates are also useful for finding the centre of a circle that
passes through three non-collinear points, P, Q, R in three dimensions. Denoting
the vectors along the sides of the triangle by a D Q�P, b D R�Q, and c D P�R, the
barycentric coordinates of the centre of the circle are

�1 D �jbj2.c � a/

2ja � bj2

�2 D �jcj2.a � b/

2ja � bj2

�3 D �jaj2.b � c/

2ja � bj2 (2.51)

The centre of the circle is then given by the following linear combination of the
three points:

C D �1P C �2Q C �3R: (2.52)

In the following section, we will look at the application of vectors in the Phong-
Blinn illumination model used for lighting calculations in the OpenGL pipeline.

2.9 Basic Lighting

The hardware accelerated lighting model that is traditionally used in Computer
Graphics applications is based on Phong-Blinn approximation for an omni-
directional point-light source. A local illumination model that does not account for
complex effects such as reflections, refractions, shadows and indirect illumination is
found to be generally adequate for a majority of graphics applications. In this model,
light-material interaction is simply modelled using a component-wise multiplication
of material colour and light colour. We can represent colour by a vector comprising
of red, green and blue components as c D (r, g, b, 0). This vector model can be
further generalized by replacing the fourth component by k that represents the
transparency (or opacity) term which can take non-zero values. In the discussion
that follows, ma, md, ms denote respectively the ambient, diffuse and specular
components of material colour, and Ia, Id, Is the corresponding components of
the light source. Each of these colour components is typically a 3-tuple consisting
of red, green and blue values. For notational convenience, we represent ma by
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Fig. 2.13 Important vectors
and angles between them,
used in lighting calculations

the vector (rma, gma, bma), Ia by the vector (ria, gia, bia), and so on. The ambient
light-material interaction is then modelled by the component-wise vector product

ma ˝ Ia D .rmaria; gmagia; bmabia/ (2.53)

Figure 2.13 shows the geometry of unit vectors used for computing diffuse and
specular reflections from a surface. From a point P on a surface, s denotes the
unit vector towards the light source, n the unit surface normal vector, and v the
unit vector towards the viewer. The perceived intensity of reflection at the viewer’s
position varies with changes in the angles between these vectors. The variations in
diffuse and specular reflections are represented by multiplicative factors kd and ks

respectively. According to the Lambertian reflectance model, the intensity of diffuse
reflection from a surface is uniform in all directions, and varies as the cosine of the
angle � between the light source vector s and the surface normal vector n, and is
therefore proportional to s•n. If the angle between the two vectors is greater than
90ı, the normal vector faces away from the light source vector, and the surface is in
shadow. In such a situation, the value of kd must be set to 0. We therefore have the
following view-independent factor for the diffuse term:

kd D max.s � n; 0/ (2.54)

The specular reflection factor ks is computed as a function of the cosine of the
angle � between the direction of unit specular reflection r given by Eq. 2.5 and
the unit view vector v, with an exponent f known as the shininess term or the
Phong’s constant. The exponent is useful in controlling the overall brightness and
the concentration of the specular highlight.

ks D max.cosf �; 0/ D max..r � v/f ; 0/ (2.55)

The Blinn’s approximation eliminates the need for computing the specular
reflection vector using Eq. 2.5 by defining a unit vector h along the direction s C v.
This vector is called the half-way vector. If n•h D cosˇ, then equating the angles on
either side of h gives

� C ˇ D � � ˇ C � (2.56)
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Fig. 2.14 Schematic of the calculations performed in a basic lighting model

From the above equation we find that � D 2ˇ. The term r•v in Eq. 2.55 can
therefore be replaced with n•h by absorbing the factor 2 in ks. This gives the Blinn’s
approximation for ks:

ks D max..n � h/f ; 0/: (2.57)

A schematic of the lighting computation using the Phong-Blinn illumination
model outlined above is given in Fig. 2.14.

2.10 Summary

This chapter reviewed some of the geometrical computations involving points, lines,
planes, triangles and curves, that are fundamental to many algorithms in computer
graphics. Important concepts such as homogeneous coordinate representation of
points, signed angles, signed areas of triangles, and barycentric coordinates were
outlined. Equations relating to affine transformations and affine combinations of
points were discussed. This chapter also gave the equations for a basic lighting
model consisting of ambient, diffuse and specular components of reflection.

The concepts presented in this chapter will form the foundation for several
methods that will be discussed in subsequent chapters. The next chapter introduces
a hierarchical structure that is useful for modelling transformations applied to
articulated models and other similar objects containing interconnected parts.

2.11 Supplementary Material for Chap. 2

The section Chapter2/Code on this book’s companion website contains code
examples demonstrating the application of concepts discussed in this chapter.
A brief description of these programs is given below.
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1. Point3.cpp

The Point3 class supports most commonly used operations on points
represented using 4-dimensional homogeneous coordinates. The class has the
subclass Vec3 that supports vector operations such as dot and cross products,
vector magnitude calculation and normalization. The documentation of these
classes can be found in Appendix A.

2. Triangle.cpp

The Triangle class provides methods for computing area, surface normal
vector, and the barycentric coordinates of a point with respect to a triangle. It also
has functions for performing the point inclusion test and bilinear interpolation.
The documentation of this class can be found in Appendix A.

3. Matrix.cpp

The Matrix class contains methods for matrix operations (using 4�4
matrices) such as addition, multiplication, computation of transpose and inverse
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matrices, and transformation of points. The documentation of this class can be
found in Appendix A.

4. Interpolate.cpp

The program creates a shape-tween between two user-defined polygonal
shapes using simple linear interpolation between corresponding vertices. Use left
mouse clicks on the upper left side of the screen to define the first polygonal
shape. Similarly, use right mouse clicks on the upper right side of the screen to
draw the second polygon. Pressing the space bar creates the shape-tween between
the first and the second polygons in the bottom half of the window.

5. Bilinear.cpp

The program uses Eq. 2.45 to obtain a bilinear interpolation of color values
at the vertices to fill the interior of a triangle. For comparison, a second similar
triangle is rendered using the OpenGL pipeline that uses the Gouraud shading
algorithm. The vertex colours are randomly generated every time the space bar
is pressed.

6. Bezier2D.cpp

The program uses Bernstein polynomials (Box 2.4) to generate a two-
dimensional Bezier curve for a set of user-defined control points. Use left mouse
clicks on the screen to define a set of control points. The control polygonal line



References 29

is shown in red colour. The Bezier curve for the input points is simultaneously
drawn in blue colour.

7. Barycentric.cpp

The program uses barycentric mapping (Fig. 2.12) to map points from one
triangle to another. Two triangles are displayed when the program is initiated.
Use left mouse clicks inside the left triangle to specify a few points. The points
are connected using a polygonal line drawn in magenta colour. The map of these
points and the polygonal line connecting them inside the triangle on the right
hand side are simultaneously drawn in blue colour.

2.12 Bibliographical Notes

Several books on introductory computer graphics provide an outline of concepts
discussed in this chapter. Some recent publications that can serve as excellent
references are Angel (2008), Hill and Kelley (2007), and McConnell (2006).
A number of books give emphasis to the mathematical tools used in computer
graphics. Notable in this area are Vince and Vince (2006), Lengyel (2004), Buss
(2003), Schneider and Eberly (2003), and Dunn and Parberry (2002).

Comninos (2006) gives a comprehensive coverage of topics on vector and matrix
algebra, transformations, lighting and shading models. A concise description of
homogeneous coordinates and their applications in computer graphics can be found
in Vince (2001). Topics in linear algebra and topology that are used in many
algorithms in computer graphics are discussed at length in Agoston (2005) and Farin
and Hansford (2005).
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Chapter 3
Scene Graphs

Overview

A scene graph is a data structure commonly used to represent hierarchical relation-
ships between transformations applied to a set of objects in a three-dimensional
scene. It finds applications in a variety of acceleration and rendering algorithms.
A scene graph could also be used to organize visual attributes, bounding volumes,
and animations as a hierarchy in a collection of objects. In the most general form,
any scene related information that can be organized in a hierarchical fashion can be
stored in a scene graph. It also provides a convenient way of representing logical
groups of objects formed using their spatial positions or attributes. In this chapter,
we will outline the fundamental properties of scene graphs, look at some of the
implementation aspects and consider a few applications.

3.1 The Basic Structure of a Scene Graph

The structure and contents of a scene graph will obviously depend on the type of
information it stores, or equivalently, the set of operations it is used for. Let us
consider a simple tree structure that contains three types of nodes:

1. The root node of the tree represents the whole collection of objects in a three-
dimensional scene. We call this node World or Virtual Universe. The root node
is a special type of a group node.

2. A group node is an internal node of the tree. It can contain any number of
children, and represents a logical grouping of objects. A group node does not
store geometrical data, but it can contain some semantic information such as
transformations or visibility attributes applied to a group.

3. Every leaf node represents either an object or a part of an object, and maintains
the necessary geometrical information in addition to some semantic information.
Camera and light sources may also be represented by leaf nodes.

R. Mukundan, Advanced Methods in Computer Graphics: With examples in OpenGL,
DOI 10.1007/978-1-4471-2340-8 3, © Springer-Verlag London Limited 2012
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World

Object Group Group

Group Object Object Object Object

Object Object

Fig. 3.1 An example of a scene graph, where every internal node is a group node and every leaf
node is an object node
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Part-2 Part-3

Group-2a b

Fig. 3.2 (a) An example of a model consisting of four connected parts that can move relative to
each other. (b) A scene graph of the object model

Figure 3.1 shows an example of a tree with all three types of nodes described
above. The tree structure of a scene graph allows a property associated with a group
node to be inherited by all of its child nodes. For example, a transformation applied
to a group node can be considered as also applied to all its children. Similarly, a
bounding volume, if attached to a group node, also represents the overall bounding
volume for the whole collection of its child nodes.

A scene graph is particularly useful for animating a composite object that has
several parts which should move as if the parts are all physically connected to each
other. A typical example of such an object is an articulated character model. We
illustrate the formation of a scene graph using a simple model consisting of four
interconnected parts: Base, Part-1, Part-2, and Part-3, as shown in Fig. 3.2.
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Fig. 3.3 A 5-link joint chain and its scene graph

As can be seen from the diagram of the scene graph, the whole model is first
subdivided into three logical groups Part-1, Base and a subgroup Group-2 to which
Part-2 and Part-3 belong. Shortly we will see how we can assign transformation
parameters to the individual nodes of the scene graph in such a way that the parts
can rotate relative to each other while at the same time remaining connected as a
single animatable object. We now consider a closely related object model, a joint
chain consisting of five links as shown in Fig. 3.3.

Joint chains similar to the one shown above are commonly found in robotics and
articulated models in computer graphics. The scene graph represents a hierarchical
subdivision of the model, where at the first level, the whole object belongs to a
single group World. At the next level of subdivision we have Link-1 and a subgroup
Group-1 that contains the remaining links. Any rotational transformation applied
to Group-1 affects all members of that group. It may appear that the group node
Group-4 is redundant as it has only one child. However, the node is useful to provide
a clear separation between the initial transformations applied to the object in Link-5
in its own coordinate system and the transformations applied relative to Link-4’s
frame. We will also later add a camera as an object belonging to Group-4. The
transformation hierarchy represented by scene graphs is explored in more detail in
the next section.

3.2 Transformation Hierarchy

A transformation applied to one part of an object often cascades with the transfor-
mations applied to the adjacent interconnected parts. For example, a change in the
orientation of Part-2 of the model in Fig. 3.2a also affects Part-3. Such dependencies
can be easily converted into hierarchical representations that are suitable for scene
graphs. We consider below three examples involving hierarchical transformations:
(i) the model of a mechanical part shown in Fig. 3.2, (ii) an articulated character
model, and (iii) a small planetary system.
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Fig. 3.4 A general transformation of the model in Fig. 3.2, showing translational and rotational
parameters associated with links. The x and y axes denote the reference frame for the world
coordinate system

3.2.1 A Mechanical Part

A general two-dimensional transformation of the model in Fig. 3.2a along with the
translational and rotational parameters of each link is shown in Fig. 3.4. We will
use T(a) to denote a translation by a vector a, and R(�) to denote an anticlockwise
rotation through an angle � . Note that the joint angles ı1, ı2, ı3 define relative angles
of rotations of one part with respect to another. In order to build the transformation
hierarchy, we have to consider first the transformation of each link from its own
local coordinate frame to the coordinate frame of its group. The sequence in which
the transformations are applied is shown in Fig. 3.5.

As shown in Fig. 3.5, transformations are applied from the leaf nodes upward
to the root of the scene graph. Part-3 is first rotated by an angle ı3, and then
translated along the length of Part-2 by a vector d3. This composite transformation
has a matrix given by T(d3)R(ı3). Group-2 now contains Part-2 and the transformed
version of Part-3. In other words, both Part-2 and Part-3 have been transformed
into the coordinate space of Group-2. It should be noted here that any rotational
transformation of Part-2 is always applied to Group-2. The transformation matrix
T(d2)R(ı2), effectively converts the points from the coordinate system of Group-2
to that of its parent group, Group-1. Figure 3.6 shows the scene graph with the
transformation matrices added to the tree nodes.

From the above discussion, we note that every node transformation is defined
relative to the node’s parent. At a leaf node, a transformation converts vertices from
the local coordinate space of an object to its parent’s coordinate space. If an object
node has an identity transformation I, it only shows that its parent’s node has the
same coordinate reference frame as the object node. This also means that any trans-
formation applied to that node is actually applied to its parent group node. In the
above example, transformations applied to the Base are actually applied to Group-1,
and they indirectly affect the transformations of each of Group-1’s child nodes.
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Fig. 3.5 Each moveable component of an object model is transformed from its local coordinate
space to its group’s space, and subsequently to the coordinate space of the group’s parent
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Fig. 3.6 Scene graph with transformation matrices attached to nodes

3.2.2 A Simple Character Model

We now consider an articulated character model and its scene graph shown in
Fig. 3.7. As in the previous example, we can define the translational and rotational
transformations for each node, based on the joint position and angle of each link
relative to its parent. Vectors v1 : : : v9 denote the offsets of the origin of the links
relative to their parent’s local coordinate system in the initial configuration. The
vector v0 denotes the position of the base link (Torso) in the world coordinate frame.
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Fig. 3.7 Scene graph of a basic articulated character model

The angles  x,  y,  z represent a generalized rotation of the whole model in terms
of Euler angles defined with respect to the principal axes of the world coordinate
system. A detailed description of Euler angle rotations can be found in Sect. 5.4.1.

The model can be animated using key-frame sequences for the joint angles
�1..�9, and its position and orientation can be controlled using key-frame sequences
for v0,  x,  y, and  z. The transformation hierarchy, if properly defined, ensures
that the links stay connected and are rotated only about the joints. Owing to the
symmetry of the model, we can also make use of the following relationships among
the components (xi, yi, zi) of translational parameters vi:

x2 D �x4I y2 D y4

x3 D �x5I y3 D y5

x6 D �x8I y6 D y8

x7 D �x9I y7 D y9 (3.1)

3.2.3 A Planetary System

As the third example, we consider a simple planetary system consisting of the
Sun, the Earth and the Moon. The translational and rotational parameters used in
modelling the system are shown in Fig. 3.8.

The rotation angles �E, �M represent the spin of the Earth and the Moon
respectively about vertical axes, �E denotes the revolution of the Earth-Moon
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Fig. 3.8 A simple planetary system showing the translational and rotational parameters used for
the construction of its scene graph
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Fig. 3.9 Scene graph of the planetary system

system around the Sun, and �M the revolution of the Moon around the Earth. The
scene graph for this system is shown in Fig. 3.9.

One notable difference between the planetary system example and the previous
ones is the form of transformation matrices applied to nodes. Most of the transfor-
mations applied in a hierarchical fashion have a general form T(v)R(�), which is a
rotation followed by a translation. In simple implementations, the structure of nodes
is often designed to accept only transformations of the form T(v)R(�) or I. Scene
graphs where transformations at internal nodes have one of the forms I, T(v), R(�),
or T(v)R(�) are said to be in the standard form. The example given in Fig. 3.9 is
an exception to this rule. However, this scene graph can be easily converted to the
standard form with the addition of a group node as shown in Fig. 3.10.

The equivalence of the scene graphs in Figs. 3.9 and 3.10 can be verified by
obtaining the combined final transformation matrices applied to the leaf nodes. In
a scene graph, transformations are combined using a recursive procedure starting at
the root node, accumulating transformations at internal nodes and ending at object
nodes. This process will be explained in detail in the next section.
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Fig. 3.10 The scene graph in Fig. 3.9 converted to the standard form

3.3 Relative Transformations

The transformation of one node relative to another can be readily obtained from
a scene graph. The model transformation matrix of an object gives the composite
transformation that converts points from the local coordinate space of the object
to the world coordinate space. In a scene graph, this is the transformation of the
object node relative to the root (the world node). The composite matrix can be
obtained by collecting all matrices along the path from the root node to the leaf
node representing the object. At each node, the matrix is post-multiplied by the
transformation matrix of that node. The process is illustrated in Fig. 3.11, where
node transformation matrices are denoted by letters A..G. The model transformation
matrix of the object node in the figure is ABCDE.

Leaf nodes can also be used to represent fictitious objects such as light sources
and camera. In Fig 3.11, the transformation from the coordinate system of the
camera to world coordinates is given by AFG. The inverse of this matrix, (AFG)�1,
transforms a point from world space to camera space. This matrix is called the
view matrix. The combined model-view matrix that transforms the object’s local
coordinates to camera space is therefore given by (AFG)�1ABCDE, or equivalently,
G�1 F�1BCDE. An upward tree traversal from a leaf node to root can be quickly
performed if every node has a pointer to its parent. On the other hand, a downward
traversal would typically require a recursive algorithm similar to the depth-first
search method.

The above example can be generalized to a procedure for finding the transfor-
mation from one object’s local coordinate frame to another’s. If we require the
transformation from Object-1 (source) to Object-2 (target) in a scene graph, we
have to first find the Lowest Common Ancestor (LCA) of both the object nodes. Let
the transformation matrix of this common ancestor be denoted by M (Fig. 3.12).
Let S1 : : : Sm denote the transformations of nodes starting from the child of LCA
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Fig. 3.11 Computation of the model transformation matrix of an object represented by a leaf node
in a scene graph
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Fig. 3.12 Representing Object-1’s coordinates relative to Object-2’s local reference frame
requires the computation of the Lowest Common Ancestor (LCA) of both the nodes

towards Object-1, and T1..Tn the transformations towards Object-2 as shown in
Fig. 3.12. The composite transformation from the source’s frame to the target’s
frame is given by the matrix Tn

�1..T1
�1S1..Sm. Note that this matrix product does

not involve the transformation M of the LCA or any of its ancestors.
There are several well-known algorithms to compute the Lowest Common

Ancestor of two nodes in a tree. A simple method uses two lists of nodes visited
in sequential upward traversals of the tree from the two nodes towards the root.
The last item of both lists would be the world node. Corresponding entries in the
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Fig. 3.13 An algorithm for finding the Lowest Common Ancestor

lists are compared for equality, starting from the last item towards the beginning
of each list. The process of comparison stops when the list entries are different.
The previous matched entry in the lists gives the reference to the Lowest Common
Ancestor (Fig. 3.13).

3.4 Bounding Volume Hierarchy

Bounding volumes of objects are used for fast collision detection and also in
acceleration algorithms such as view frustum culling. Bounding volumes can be
computed for different moving parts of an object and then combined in a hierarchical
manner to obtain the overall bounding volume (Fig. 3.14). The geometric parameters
defining a bounding volume can be stored in a scene graph node, and computed on
the fly whenever a transformation is applied to the vertices.

Commonly used bounding volumes are axis-aligned bounding boxes (AABB),
oriented bounding boxes (OBB), spheres, discrete oriented polytopes, and convex
hulls. Each bounding volume has certain advantages and limitations over others,
and is suitable for a specific set of applications. An AABB can be computed and
represented using six parameters that define the minimum and maximum values of
x, y, and z coordinates of points it encloses. However, these parameters will have
to be recomputed every time an object is rotated. On the other hand, OBBs and
spheres are rotation invariant. In this chapter, examples are provided using AABBs
and spheres only. Other types of bounding volumes and their computational aspects
are discussed in detail in Chap. 9.

Since the bounding volume parameters depend on the transformed object
coordinates, bounding volume updates can be performed only after applying the
transformations. Unlike transformations, this process starts at the nodes containing
object primitives, and the bounding volume parameters of group nodes are updated
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Fig. 3.14 Two-dimensional bounding volume hierarchies for the model in Fig. 3.2, using axis-
aligned rectangles (top row) and circles (bottom row)

a b c

Fig. 3.15 (a) Bounding circles of two objects. (b) Combined bounding circle formed using the
parameters of the two component bounding circles. (c) The minimal bounding circle

based on the computed values at the child nodes. It is therefore often desirable that
the parameters defining a bounding volume stored at a group node can be computed
based on the bounding volume parameters of its child nodes. It should also be noted
here that such a computation may not always yield a minimal bounding volume.
For example, the bounding sphere computed as the union of two bounding spheres
may not necessarily be the minimal bounding sphere for the union of points within
those spheres. A two-dimensional equivalent of this case is shown in Fig. 3.15, using
bounding circles of two objects.

We discuss below the process of updating the bounding volume parameters
(using AABBs and spheres as examples) at a group node based on the updated
parameters of its child nodes. If there are n child nodes, we combine the volumes of
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Box 3.1 Bounding Volumes

Given a set of mesh vertices with coordinates fxi, yi, zig, i D 0 : : :N�1,
the bounding volume parameters for AABB and sphere are computed as
follows:

Axis Aligned Bounding Box (AABB): fxmin, ymin, zmin, xmax, ymax, zmaxg
xmin D mini .xi / ; xmax D maxi .xi /
ymin D mini .yi / ; ymax D maxi .yi /
zmin D mini .zi / ; zmax D maxi .zi /

Sphere: fu, v, w, rg
Computation of bounding sphere using the geometric centre of points:

u D; 1
N

N�1P

iD0
xi ; di D .xi � u/2 C .yi � v/2 C .zi � w/2;

i D 0 : : : N � 1:
v D 1

N

N�1P

iD0
yi ;

w D 1
N

N�1P

iD0
zi ; r D p

maxi .di /

Computation of bounding sphere using AABB of points:

u D 1

2
.xmin C xmax/ ; v D 1

2
.ymin C ymax/ ; w D 1

2
.zmin C zmax/

r D 1

2

q

.xmax � xmin/
2 C .ymax � ymin/

2 C .zmax � zmin/
2

two children at a time and obtain the final bounding volume of the parent, in n�1
steps. Given two AABBs with parameters fxmin1, ymin1, zmin1, xmax1, ymax1, zmax1g
and fxmin2, ymin2, zmin2, xmax2, ymax2, zmax2g, the combined volume has parameters
fmin(xmin1, xmin2), min(ymin1, ymin2), min(zmin1, zmin2), max(xmax1, xmax2), max(ymax1,
ymax2), max(zmax1, zmax2)g (Box 3.1).

In the case of spheres, let the parameters of the two volumes be given by
fu1, v1, w1, r1g and fu2, v2, w2, r2g. The required parameters of the combined sphere
are denoted as fuc, vc, wc, rcg. First we compute the distance between the centres:

d D
q

.u2 � u1/
2 C .v2 � v1/

2 C .w2 � w1/
2 (3.2)

If d � jr1 � r2j, then one of the spheres is inside the other. The combined sphere
in this case is the same as the larger among the two spheres. If d> jr1 � r2j, the
spheres either overlap or are disjoint. For this configuration, we compute the radius
and the centre of the combined sphere as follows:
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rc D 1

2
.d C r1 C r2/

uc D u1 C 1

2d
.d � r1 C r2/ .u2 � u1/

vc D v1 C 1

2d
.d � r1 C r2/ .v2 � v1/

wc D w1 C 1

2d
.d � r1 C r2/ .w2 � w1/ (3.3)

A detailed description of different types of bounding volumes, their computation
and intersection tests is given later in Sect. 9.1.

3.5 Sample Implementation

In this section, we will discuss the design of a set of classes that implement the
functionality of a scene graph with transformation matrices attached to its nodes.
Internal nodes that can store a list of children, and also a transformation matrix,
are represented by the class GroupNode. All transformation matrices are assumed
to have the general form given by T(v)R(�). The properties of leaf nodes are
specified by three classes: ObjectNode that can represent a three-dimensional
object, CameraNode that represents the camera, and LightNode that represents
a light source. These three classes are derived from GroupNode so that we can
store all child nodes (including group nodes and object nodes) with the same type,
and also use polymorphic functions to implement tree traversal algorithms.

3.5.1 Group Node

The declarations of attributes and functions of GroupNode can be found in
Listing 3.1 below. The primary functions associated with a group node include
adding and removing children, and setting the transformation parameters. We use
the List container of the Standard Template Library (STL) for storing references
to the child nodes. The data members angleX, angleY, angleZ specify
the Euler angles of rotation about the principal axes of the group’s coordinate
frame. Similarly tx, ty, tz denote the components of the translation vector
along the principal axes directions. Together, these attributes define the composite
transformation for the group node in the form T(v) Rz( z) Ry( y)Rx( x), where v
is the translation vector, and  s denote Euler angles. The function render() is
called on the root node to render the scene.
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Listing 3.1 Class definition for a group node

3.5.2 Object Node

The class definition for an object node must cater to the requirements of defining
and storing three-dimensional object models. Listing 3.2 gives the declarations of
important attributes and functions of the class. To simplify the implementation,
we use only the built-in objects provided by the GL Utility Toolkit (GLUT)
of the OpenGL API. These objects are assigned numbers using the enumerated
type ObjType. When an object is initially defined using the setObject()
function, it may also be optionally scaled using parameters scaleX, scaleY
and scaleZ. These parameters are used to set the values of the corresponding
data members of the class. An object may also be given a material colour using the
function setColor(). A scene is rendered by calling the function render()
of the GroupNode class on an instance that represents the scene graph’s root.
This function in turn calls the polymorphic function draw()which is declared as
virtual in GroupNode. The implementation of the function in ObjectNode
will call the necessary OpenGL functions to apply the transformations and to draw
the object.
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Listing 3.2 Class definition for an object node

3.5.3 Camera Node

Any three-dimensional scene is assumed to have an active camera that contains
information about the projective transformation used while rendering the scene. The
camera also provides the view matrix needed for the transformation of vertices to
the eye coordinate space. A camera can be added to a scene graph as a special type
of object node. Listing 3.3 gives the class definition for the camera node. Since
only one instance of the camera is used in a scene at any point in time, the class
cameraNode is defined as a singleton class. It has a private constructor, and the
static instance is made available to a program using the function getInstance().
The frustum parameters are specified by an application by calling the function
perspective(). The function projection() uses these parameters to set up
the projection matrix, and is called by render() of the GroupNode class. The
view transformation matrix is constructed by the function viewTransform() by
traversing the tree along the path from the camera node to the root node (Fig. 3.11).
The class does not store any drawable object, and therefore draw() has an empty
function body.

3.5.4 Light Node

The LightNode class as defined in Listing 3.4 has a simple structure containing no
public functions other than the constructor. The constructor accepts a single integer
between 0 and 7 as the argument which directly represents one of the OpenGL light
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Listing 3.3 Class definition for a camera node

Listing 3.4 Class definition for a light node

sources GL LIGHT0, : : :,GL LIGHT7. In OpenGL, light sources are transformed
like any other point. The function draw() defines the initial position of the light
source at (0,0,0), and transforms it exactly like its counterpart in ObjectNode.
The class does not store or set any other light or material properties. They can be
set by the application by directly calling the appropriate OpenGL functions. The
same applies to setting OpenGL states such as enabling lighting, selecting two sided
lighting, enabling colour material, and so on.

The sample implementation of a scene graph discussed above concatenates only
transformation matrices along different paths from the root node to the leaf nodes.
The hierarchical structure of a scene graph allows several other attributes to be
propagated from an internal node to object nodes through various branches. One
such attribute is the visibility of a node. If a node’s visibility attribute is set to false,
then the visibility attribute of every node in that sub-tree can also be implicitly set to
false by using a logical AND operation with the values from the parent nodes. Thus
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an object node will not be rendered if any of its ancestors has a visibility attribute
set to false. A similar attribute that can be attached to the nodes is transparency. The
transparency values can be multiplied together along every path from the root node,
to determine the net transparency of objects stored in the leaf nodes.

3.6 First-Person View

The design of the camera node as outlined in the previous section permits a highly
flexible implementation of a scene graph, since the only static instance of the class
can be obtained anywhere by calling the getInstance() function. The camera
node need not even be a part of the scene graph, if the camera is meant to be in a
fixed location with respect to the scene. In this case, the transformations defined for
the camera node specify the position and the orientation of the camera with respect
to the origin of the world coordinate frame. These transformations will be directly
used to obtain the view matrix for the whole scene.

Often you will require the first-person view of a scene with the camera placed on
a moving object. For the articulated character model in Fig. 3.7, the first-person view
is provided when the camera is attached to the head. This is done by first applying
transformations to the camera node so that it points to the right direction in the
coordinate frame of the object node to which it should be attached. In the scene
graph, the object node is replaced by a new group node. Both the camera node and
the object node are attached to the new group node as its children. Figure 3.16
shows the reference frame (xe, ye, ze) of the camera and the coordinate frame
(x, y, z) of the head of the character model. The camera initially points towards –ze

direction. It is rotated about the y-axis by 180ı to point towards the head direction.
This transformation is represented by the matrix R(�). Figure 3.16 also shows the
modified portion of the scene graph in Fig. 3.7 with the addition of a new group
node and the camera node.

Now consider the 5-link joint chain shown in Fig. 3.3. Robotic arms such as this
can be found in autonomous systems for inspection, welding and painting. The arm
is driven by feeding joint angles to the controllers. Some constraints may be applied
to the joint angles based on the application requirements. For example, a robotic
arm for welding or painting may require the end effector (denoted by Link-5 in
Fig. 3.3) to be kept in a horizontal position. It may also be required to have a camera
attached to the end effector to obtain a clear perspective of the surrounding scene
from its viewpoint. The graphical rendering of the scene as viewed from the position
of Link-5 can be obtained by adding the camera node to the group node Group-4 as
shown in Fig. 3.17.

From the previous examples, we have seen that the first step in the process
of attaching a camera to an object node is to determine the transformation R(�)
necessary to appropriately orient the camera in the local coordinate frame of the
object. In the example in Fig. 3.17, this composite transformation comprises of two
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Fig. 3.16 (a) Camera coordinate system. (b) A 3D object “Head” in its local coordinate frame.
(c) The modified portion of the scene graph in Fig. 3.7, with the camera node attached
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Fig. 3.17 (a) Local coordinate frame of a link of the joint chain in Fig. 3.3. (b) The desired
orientation of the camera frame relative to the frame of the link. (c) Addition of the camera node
to the scene graph in Fig. 3.3

rotations: a rotation of 90ı about the x-axis followed by another rotation of �90ı
about the y-axis. The transformation functions given in Listing 3.1 allow us to define
such rotations. It is also important to note that when a new group node is formed
with the camera node and the object node as its children, transformations that were
previously applied to the object node should now be applied to the camera as well.
Therefore, the transformation matrix that was attached to the object node must now
be transferred to the common group node. This would often leave the object node
with the identity matrix as shown in Fig. 3.17.
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3.7 Summary

Scene graphs are powerful data structures that can be used for hierarchical rep-
resentations of transformations, bounding volumes and other visual attributes of
groups of objects in a scene. This chapter showed the application of scene graphs in
defining the transformations of interconnected systems. Robotic manipulator arms
and articulated character models are examples of such systems containing one or
more joint chains. Using a scene graph, the relative transformation of one object
with respect to another can be easily computed. Relative transformations are useful
for displaying billboards and first person views. This chapter also introduced the
definition of a scene graph in the standard form. An object oriented framework
for a scene graph was presented and some of the key implementation aspects were
discussed.

The next chapter will show that scene graphs play an important role in skeletal
animation. Skeletal structures and the associated hierarchical transformations used
in vertex skinning algorithms fit perfectly well with the scene graph model.

3.8 Supplementary Material for Chap. 3

The folder Chapter3/Code on the companion website contains code examples
demonstrating the application of the scene graph class in the modelling and
rendering of simple three-dimensional scenes. A brief description of these programs
is given below.

1. GroupNode.cpp

These are the header and implementation files for a scene graph class as
discussed in Sect. 3.5. The documentation of methods in this class can be found
in Appendix B.
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2. Scene3D.cpp

This program uses a scene graph to model a scene consisting of four different
stationary objects and demonstrates the use of the classes discussed in Sect. 3.5.
The scene graph has a simple structure consisting of the World node and
four object nodes. The camera node is not attached to the scene graph and
is independently transformed to simulate camera motion along a circular path
around the group of objects. The light source is kept fixed in the middle of the
scene, at its default position (0, 0, 0).

3. Planet.cpp

This program uses the scene graph in Fig. 3.10, to model the planetary system
in Fig. 3.8. The angles of revolution of the Moon around the Earth, and the
joint Earth-Moon system around the Sun are continuously updated to generate
an animation sequence. The light source is kept fixed at the location of the Sun.

4. Link5.cpp

This program uses the scene graph model given in Fig. 3.3, to construct
an animated 5-link robotic arm. The joint angles are read in from the file
JointAngles.txt. The arm moves continuously up and down in front of
a vertical coloured wall. The joint angles are defined such that the end effector
of the arm is always horizontal. Pressing ‘c’ on the keyboard causes the scene
graph to be modified as in Fig. 3.17 to produce the effect of the camera being
placed on the end effector. This gives a close-up view of the coloured wall from
the perspective of the continuously moving end effector.
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5. GlutMan.cpp

The program GlutMan demonstrates the use of a scene graph in modelling
and animating an articulated character model. A scene graph similar to the one
given in Fig. 3.7 is used. The values of eight joint angles defining a simple
walk sequence are read from the input file WalkCycle.txt and interpolated
to generate a continuous animation sequence.

3.9 Bibliographical Notes

An excellent introduction to scene graphs and other tools for scene management
can be found in Sherrod (2007). The book also deals with the design of data
structures and algorithms for similar applications. Angel (2008), McConnell (2006)
and McReynolds and Blythe (2005) give an overview of hierarchical modelling
techniques and applications using scene graphs. Eberly (2007) contains a chapter
on hierarchical scene representations, and provides a detailed description of scene
graph operations designed for merging a set of bounding volumes.

Support for scene graphs including sophisticated high-level functionalities can
be found in graphics APIs. Java-3D provides powerful classes for constructing the
nodes of a scene graph that can be used for rendering scenes. Many examples of
applications in Java can be found in Davison (2005). The M3G API of Java Micro
Edition also contains a versatile collection of methods useful for retained-mode
rendering based on scene graphs. These methods incorporate high-level functions
for generating key-frame animations on mobile devices. Pulli (2008) provides an
excellent coverage of the M3G API and shows the importance of scene graphs in
the design of animation sequences.

OpenSceneGraph is a versatile high-level 3D graphics toolkit useful for the
development of high-end graphics applications based on a full-fledged and powerful
scene graph implementation. More information can be found on the website,
http://www.openscenegraph.org.

http://www.openscenegraph.org
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Chapter 4
Skeletal Animation

Overview

This chapter discusses concepts such as vertex blending, vertex skinning and
keyframing that are fundamental to the animation of articulated character models.
Vertex blending is the process of constructing blending surfaces between two
different parts that move relative to each other, in order to create the appearance of
a single deformable object. Vertex blending is useful in the animation of character
models constructed by joining together several individual components.

Mesh models of animatable characters are often subdivided into groups of
vertices that represent moveable body parts. A skeleton is an abstract representation
of this form of partitioning of a mesh. Skeletal animation refers to the process
of computing the transformations of each segment in the skeleton using joint
angles, and mapping them on to mesh vertices. The chapter discusses various stages
in skeletal animation, describes the transformations applied to a mesh, and also
outlines a scene graph based implementation.

4.1 Articulated Character Models

Animated character models can be found in numerous applications of computer
graphics, ranging from simple computer games to virtual agents and computer gen-
erated feature films. Depending on the application requirements, the character mesh
and the animation sequence can have varying levels of complexity. Sophisticated
virtual character agents incorporate several forms of articulation including facial
expression animation. In this chapter we will look at the basics of human character
animation with simple polygonal models and a small number of joint angles.

We broadly classify character models into two groups: (i) character models
constructed using several objects or “parts” where each object is independently
transformed and moved into its respective position within the model, and (ii) single
mesh models that are animated by attaching vertices to different transformation

R. Mukundan, Advanced Methods in Computer Graphics: With examples in OpenGL,
DOI 10.1007/978-1-4471-2340-8 4, © Springer-Verlag London Limited 2012
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Fig. 4.1 Character models
constructed using (a) several
component objects, and
(b) a single mesh

groups. An example of each type is shown in Fig. 4.1. The first model, the “Glut
Man”, is constructed entirely using scaled and transformed versions of cubes
generated using glutSolidCube() or glutWireCube(), hence the name.
The second belongs to the more commonly found class of mesh models.

In the case of the model constructed using individual parts, each component
is first created in its own local coordinate space. A series of transformations is
then applied to it based on where in a joint chain that component appears. This
process, which is very similar to what we saw in the previous chapter (Fig. 3.5),
is repeated for every part of the model to reshape the character in a required pose.
The transformations often have a well-defined hierarchical structure as discussed in
the context of scene graphs. Figure 3.7 shows how the main body parts of a simple
humanoid model are transformed.

A character model defined using a single mesh surface as in Fig. 4.1b requires
a completely different set of coordinate transformations, as all mesh vertices are
specified in a common reference system. However, we should be able to use the
same set of joint angles to animate this model also, producing a similar effect
such as a walk cycle. We can indeed construct a “virtual” skeleton consisting of
joints and links that has a structure similar to our previous model in Fig. 4.1a.
We can then associate the skeleton with the continuous mesh. This association is
done by attaching a set of vertices belonging to each body part (e.g., forearm)
to the corresponding link of the skeleton. The scene graph based transformations
computed using joint angles can now be directly applied to the skeleton. The mesh
vertices are transformed using a simple method introduced in Sect. 4.4.2.

If a model is made up of several parts as in Fig. 4.1a, where parts move or
rotate relative to their neighbours, gaps can appear at joints when the model is
animated. The next section addresses this problem, and introduces the method of
vertex blending for creating deformable surface patches between parts that move
relative to each other.
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4.2 Vertex Blending

When two different mesh objects attached to a common pivot rotate by different
angles, certain parts of the surfaces can interpenetrate, and gaps can appear on the
opposite side (Fig. 4.2a). Repairing or “re-meshing” an area where two surfaces
interpenetrate is a difficult task. Moveable surfaces are therefore often separated by
a small distance from each other, so that they do not touch for the allowable range
of movement or rotation angles (Fig. 4.2b). A sphere is sometimes placed at rotary
joints, as in Fig. 4.2c, to fill the gap. While this approach is suitable for robot-like
models, interpolation methods could be used for obtaining a better approximation of
blending surfaces between moving parts. The process of creating such in-between
surfaces is called vertex blending.

Corresponding pairs of points on two moving parts can be joined together to form
a triangular or quadrilateral element belonging to the intermediate surface. These
elements could be further subdivided using a simple linear interpolation formula
(Eq. 2.43) to get a tessellated surface (Fig. 4.3a). We discuss below higher order
interpolation methods for generating blending surfaces (Fig. 4.3b).

In Chap. 2 (Sect. 2.7) we saw examples of second and higher degree interpolation
functions with Bernstein polynomials as basis. We can use cubic Bezier polynomials
to generate interpolating curves between moving parts with tangential continuity at
end points. In Fig. 4.4a, P0 and P3 denote a pair of corresponding points on two
moving parts of a character model. Q0 and Q3 are two points on the surfaces that
are selected to define the local tangent directions P0�Q0 and P3�Q3 respectively.
Using these tangent directions, we can specify two more points, P1 and P2, as

P1 DP0 C ˛.P0 � Q0/

P2 DP3 C ˛.P3 � Q3/ (4.1)

where ˛ is a positive quantity used to increase or decrease the length of the tangent
vectors P1 � P0 and P2 � P3. Points on the interpolating Bezier curve are generated

Fig. 4.2 (a) Moving parts of
an animated model can
interpenetrate and form gaps
at joints. (b) Links can be
separated by a short distance
to avoid surface intersections.
(c) A sphere is sometimes
attached to a rotary joint to
fill the gap between two
moving parts
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Fig. 4.3 Generation of
blending surfaces using
(a) linear interpolation and
(b) Hermite interpolation

P0 P0

Q0 Q0

P3 P3

Q3 Q3

P1

P2

a bFig. 4.4 Generation of a
blending surface using
(a) Bezier interpolation and
(b) Hermite interpolation

using the parametric equation (see Box 2.4, Sect. 2.7)

Q.t/ D .1 � t/3 P0 C 3.1 � t/2 tP1 C 3.1 � t/t2 P2 C t3 P3; 0 � t � 1: (4.2)

Substituting the expressions from Eq. 4.1 in the above equation gives

Q.t/ D.1 � 3t2 C 2t3/ P0 C 3.1 � t/2t ˛.P0 � Q0/

C 3.1 � t/t2 ˛.P3 � Q3/ C .3t2 � 2t3/ P3 (4.3)
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When ˛ is increased, the weight of the tangent vectors on the interpolating curve
is increased, and the curve gets closer to the tangents at the end points P0, P3. Care
should be taken to ensure that the points P0, P1 both lie on the same side of the
tangent P2 � P3, and similarly points P2, P3 lie on the same side of the tangent
P1 � P0. Setting a large value of ˛ violates this condition, resulting in a distorted
Bezier curve.

A second interpolation method that is suitable for vertex blending is Hermite
interpolation. Here, the tangent directions are defined using vectors P0�Q0 and
Q3 � P3 (Fig. 4.4b), and the interpolating curve is given by

H.t/ D.1 � 3t2 C 2t3/P0 C .t � 2t2 C t3/ ˛.P0 � Q0/

C .�t2 C t3/˛.Q3 � P3/ C .3t2 � 2t3/P3 (4.4)

The coefficients of P0, P3 are exactly same as that of Bezier interpolation.
Since tangents are defined along the direction of the curve from P0 to P3, Hermite
interpolation does not have problems associated with large ˛ values. Hermite and
other types of approximating splines are discussed in more detail in Chap. 7.

4.3 Skeleton and Skin

Animating a three-dimensional character model (Fig. 4.1b) containing hundreds of
vertices and polygons can be a challenging task. This task can be simplified to a
great extent by grouping together a number of mesh vertices as forming body parts
that move as a single unit, connected together by a set of joints. A human model
may be modelled as a collection of body parts with joints at neck, shoulders, elbows,
wrists, hips, knees, and ankles. The grouping of mesh primitives into body parts and
the definition of joints depend on the complexity of the animation. In a simple walk
sequence, for instance, the arms and legs could be considered as the only parts that
move relative to the main body. For a more complex animation, one might require
movement of the head, hands, fingers, facial muscle regions, and so on. Figure 4.5a
shows how points in a mesh could be grouped into ten body parts: head (HEA), torso
(TOR), left upper arm (LUA), left lower arm (LLA), right upper arm (RUA), right
lower arm (RLA), left upper leg (LUL), lower left leg (LLL), right upper leg (RUL),
and right lower leg (RLL). Every group can then have an abstract representation
called a bone. The complete set of bones, along with their connectivity information,
is called a skeleton (Fig. 4.5b).

The notion of a skeleton consisting of a set of joint chains comprised of bones is
central to articulated character animation. A skeleton can be easily animated; i.e., the
transformations for the bones can be easily determined given the angles at each joint.
The skeleton has the hierarchical structure similar to that of the model in Fig. 4.1a,
the main difference being that in a skeleton, each component or bone is just an
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Fig. 4.5 (a) Vertices in a mesh model are grouped together into parts that move relative to each
other. (b) A skeleton definition formed based on a vertex grouping

Fig. 4.6 Two simple ways of associating vertices with bones of a skeleton

abstract structure, not a graphics primitive. A bone essentially stores information
about its position and orientation relative to its parent in the skeleton.

Every bone is given a unique index as shown in Fig. 4.5b. Vertices belonging
to a group are associated with a bone using the bone’s index. The part of a mesh
represented by a bone is called its skin. In the example given in Fig. 4.5, the skin
of bone “8” is the mesh segment that belongs to the set LUL. Two simple ways of
associating groups of vertices with bones are shown in Fig. 4.6. In the first method,
every entry in the vertex list is appended with a bone index. This method is suitable
when vertices need to be associated with more than one bone (we will discuss this
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process later in Sect. 4.6). If several consecutive entries in the vertex list have the
same bone index, then the second method is preferred where the minimum and
maximum indices of a range of vertices are stored against a bone index.

4.4 Vertex Skinning

In order to define the hierarchical nature of a skeleton, the parent–child relationship
between every two connected bones must be shown. We could represent a bone
using a point with arrow(s) pointing to its child node(s), as in Figs. 4.7a, c. Another
common representation of a bone uses triangles. Fig. 4.7b shows the mesh model of
a human arm, and the associated skeleton consisting of a set of bones. Each bone
stores the index of its parent and the bone’s position relative to its parent. Using this
information, a complete hierarchical structure can be built, as shown in Fig. 4.7c.
There are two special nodes in this skeleton tree. The root node always represents
the origin of the world coordinate system, and has an index 0. The base node is that
bone in the skeleton which has root as its parent. The position and the orientation of
the base define the pose of the skeleton in the world coordinate space.

Bones are not physical structures present in a polygonal mesh, but are only
animation tools or controlling mechanisms used to transform the mesh in a realistic
manner. A bone also loosely represents the region of influence of a transformation.

4.4.1 The Bind Pose

The hierarchical organization of bones in a skeleton allows the geometric transfor-
mation for each bone to be defined with respect to its parent. The transformations

Parent
1

6

2 34

7 8

9 10

Child

5

Base

Base

a

b

c

Fig. 4.7 (a) A simple joint chain. (b) A skeletal structure for the arm, hand and fingers.
(c) Modified version of the skeleton in Fig. 4.5b
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V
W

Local coordinates frame of
bone with index = i

Bi

B′i
Transformed bone matrix

Initial bone matrix

θ

Fig. 4.8 Transformation of a mesh vertex V using the transformations of its bone

that are associated with a bone are normally a joint angle rotation followed by a
translation from its parent bone. The translations of the bones, each relative to its
parent, together define the initial configuration of a skeleton. For this configuration,
the joint angles are set to 0. The corresponding mesh is said to be in the bind
pose (Fig. 4.5a). The placement of bones in the skeleton can be obtained by first
computing the axis-aligned bounding boxes (see Box 3.1 of Chap. 3) of vertex
groups (defined as in Fig. 4.6), and then determining the joint positions for each box.
Fig. 4.5b shows an example. For now, we will assume that each vertex is attached to
one and only one bone. We will consider a more general case of associating a vertex
with two or more bones, in Sect. 4.6. In the following section, we will see how joint
angle transformations applied to bones can be transferred to mesh vertices attached
to them.

4.4.2 Mesh Vertex Transformation

Consider a mesh vertex V attached to a bone i in bind pose (Fig. 4.8). In this
configuration, each bone has an associated matrix Bi that defines the transforma-
tion from the bone’s local coordinate space to the skeleton’s coordinate space.
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Fig. 4.9 An example
showing transformations
using three bones. (a) Bind
pose and (b) transformed
pose

This transformation depends only on the translations of bones in the hierarchy
relative to their parents. The process of obtaining this transformation matrix will
be discussed below. For a given joint rotation by an angle � , the transformed
configuration of the bone in the skeleton’s coordinate space is represented by
another bone matrix B0

i . To get the transformed vertex W, we transfer the original
point V from the coordinate space of the mesh (which is the same as the skeleton
space) back to its bone’s local coordinate space, and then apply the joint angle
transformation to return to the skeleton space. In other words, the vertex V is first
transformed using the inverse of the matrix Bi, then by B0

i. The first transformation
gives the point Bi

�1V. Applying the matrix B0
i to this point yields coordinates of the

transformed point W. Thus

W D .B0
i Bi

�1/V (4.5)

The above equation is fundamental to skeletal animation, as it describes how
transformations applied to a bone i can be propagated to an attached mesh vertex V.
The matrix Bi depends only on the initial configuration of the skeleton, and therefore
the points Bi

�1V can be pre-computed and used for the entire animation sequence.
As an example, we consider the model in Fig. 4.9, and show how it can be
transformed using a skeleton comprising of three bones.
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Let d1 denote the translation vector used for moving Bone-1 from its local
coordinate space to the skeleton space. Let d2 denote the vector by which Bone-2
is translated in Bone-1’s coordinate space. The vector d3 similarly represents the
translation of Bone-3 in the coordinate space of Bone-2. Vertices V1, V2, V3 are
attached to Bone-1, Bone-2, and Bone-3 respectively on the mesh in its bind pose
(Fig. 4.9a). We seek to find the transformed coordinates of these vertices, when
the skeleton is transformed using joint angles �1, �2, �3 respectively as shown in
Fig. 4.9b. If we represent translation matrices by T, the initial bone matrices are
given by

B1 DT.d1/

B2 DT.d1/ T.d2/ D T.d1 C d2/

B3 DT.d1/T.d 2/T.d3/ D T.d1 C d2 C d3/ (4.6)

When the bones are transformed using the joint angles, the bone matrices for the
transformed configuration become

B0
1 DT.d1/ R.�1/

B0
2 DT.d1/ R.�1/ T.d2/ R.�2/

B0
3 DT.d1/ R.�1/ T.d2/ R.�2/ T.d 3/ R.�3/ (4.7)

where R denotes a rotational transformation matrix. Now applying Eq. 4.5, we can
write the expressions for the transformed vertex coordinates as

W1 DT.d1/ R.�1/ T.�d 1/ V1

W2 DT.d1/ R.�1/ T.d 2/ R.�2/ T.�d1 � d2/ V2

W3 DT.d1/ R.�1/ T.d 2/ R.�2/ T.d3/ R.�3/ T.�d1 � d2 � d3/ V3 (4.8)

So far we have assumed that each vertex is associated with only a single bone.
Section 4.6 discusses a more general case.

4.5 Vertex Skinning Using Scene Graphs

The vertex transformations (Eqs. 4.6, 4.7, 4.8) given in the previous section can
be implemented using a scene graph for the skeleton. The scene graph is slightly
different to the one we saw earlier in Chap. 3 (Fig. 3.3), in that each group
node represents a bone with a matrix of the form M D TR defining the relative
transformation of the bone with respect to its parent. Each bone has a child node
representing the set of mesh vertices associated with that bone. In Fig. 4.10,
Bone-1, Bone-2, and Bone-3 form a joint chain in a skeleton, and S2 denotes a
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Fig. 4.10 (a) Scene graph of a joint chain used for the pre-processing phase. (b) The updated
mesh vertices in the animation phase

set of mesh vertices associated with Bone-2. The initial bone matrix for Bone-3
is B3 D M1M2M3. The vectors Bi

�1V in Eq. 4.5 are obtained in a pre-processing
phase, where each vertex set is transformed using the inverses of the matrices
attached to nodes. As shown in Eq. 4.6, these matrices involve only translation
components, and their inverses (as well as the product of inverses) can be easily
computed. In the example given in Fig. 4.10a, a vertex V belonging to the set S3

would be transformed into

V 0 D M�1
3 M�1

2 M�1
1 V D V � d1 � d2 � d3 (4.9)

As the tree is traversed from the root, matrices are combined by pre-multiplying
the current product by the inverse of the matrix at the node, until a leaf node is
reached. The vertices in a leaf node are transformed using the product of matrix
inverses gathered up to that point. Thus the set S3 becomes a new set S3

0 after the
transformation in Eq. 4.9. The transformed set of vertices replaces the original set
for the animation phase (Fig. 4.10b).

In the animation phase, matrices at scene graph nodes are updated using the joint
angles of the bones. The updated matrices are represented by M0 in Fig. 4.10b. The
scene graph is again traversed from the root; matrices are combined, this time using
post-multiplication, and applied to the vertices at leaf nodes to get the transformed
mesh vertices. The vertices in the set S3

0 would transform according to the following
equation:

W D M1
0 M2

0 M3
0 V 0 (4.10)

If the set of vertices attached to each bone can be specified as a range of indices
(i, j) where i is the start index and j the end index of the set as in Fig. 4.6, then the
structure of the scene graph can be simplified to a great extent as shown in Fig. 4.11.
The vertex indices in the pre-processing phase point to the initial vertex list fVg
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Fig. 4.11 Simplified scene graph for a joint chain using a vertex index range for each bone

of the mesh. After the pre-processing phase, they point to the list of intermediate
vertices fV 0g that are used as inputs in the animation phase. The transformed list of
vertices fWg is used for rendering the mesh after applying joint angle rotations to
the bones (Fig. 4.11).

4.6 Transformation Blending

If every vertex is attached to only a single bone, then transformations applied to the
bones may cause mesh surfaces to interpenetrate at a joint (Fig. 4.12a, b).

Figure 4.12b also shows how large flat surface patches can appear at a joint
when two adjacent vertices move away from each other because of a rotational
transformation. It is intuitive to transform vertices in the neighbourhood of a joint
using a combination of bone matrices which influence that joint. If i and j are two
bones that influence a joint, then a vertex V in the vicinity of the joint may be
transformed using a weighted combination of the bone’s matrices Bi and Bj. The
weights wi and wj are usually selected based on the relative distances of the vertex
from the bones (Fig. 4.13). The final transformed point W (Fig. 4.12c) is obtained as

W D ˚
wi

�
B0

i Bi
�1

� C wj

�
B0

j Bj
�1

��
V (4.11)
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Fig. 4.12 (a) A joint formed by two bones, and the attached mesh. (b) Interpenetration of mesh
surfaces at a joint. (c) Mesh transformation using a combination of two bone matrices
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Fig. 4.13 Multiple weights associated with vertices for combining bone matrices

We also require the weights to satisfy the condition wi C wj D 1. A sample
distribution of weights for mesh vertices of the joint in Fig. 4.12a is shown above
(Fig. 4.13).

In general, if n bones with indices 1, 2, : : : , n meet at a joint, the vertices
surrounding the joint may be transformed using a matrix

M D
nX

iD1

wi B0Bi
�1 where;

nX

iD1

wi D 1: (4.12)

The method outlined above is called transformation blending, and it usually
produces smooth mesh deformations near joints. However when the angle of
rotation of a bone is very large compared to its parent, the averaging scheme in
Eq. 4.11 can produce two types of undesirable artefacts shown in Fig. 4.14. The first
one is called a collapsing elbow effect, which appears when the angle between the
axes of two adjacent bones becomes small. In this situation, vertex points on the
inner edge of the mesh that are located near the joint move towards the centre.
The second type of artefact is called the candy-wrapper effect, where one of the
bones is twisted by 180ı about its axis. In this case, vertices with nearly equal
weights get transformed to closely located points near the joint.
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a b

Fig. 4.14 (a) Collapsing elbow effect. (b) Candy-wrapper effect

4.7 Keyframe Animation

The animation of an articulated character model is usually done by specifying a set
of keyframes that contain the information about the required joint transformation
parameters at certain discrete points in time. Keyframes are generally predefined by
an artist or an animator who can clearly specify the motion an object is required to
produce. The joint angles for a character model at various instances in an animation
sequence can also be obtained from motion capture systems. Here, the actions
performed by a human actor are captured through the placement of markers near
each joint of the body, and their recorded positions used to compute joint angles.

A keyframe is essentially a time stamp of important transformation parameters
and, optionally, other attributes such as colour, transparency etc. that are needed to
render one frame of an animation sequence. As an example, consider a keyframe
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Fig. 4.15 (a) Model of a stick figure and (b) the joint chains used for its animation. The
hierarchical structure of links consists of five branches (chains), and 14 internal nodes. A leaf
node is indicated by a blank square
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Fig. 4.16 The four primary keyframes used for generating a walk sequence of the stick figure. The
graphs show the values of some of the joint angles, and a linear interpolation between the values is
indicated by dotted lines

animation of the model of a stick figure shown in Fig. 4.15a. This model has five
joint chains, and a total of 14 joints (Fig. 4.15b). A single configuration or “pose”
of the model is therefore given by 14 joint angles �0, �1, : : : , �13, and the position
(x0, y0, z0) of the root joint. A joint rotation that moves a link forward (towards C z)
is considered as positive. For example, the elbow joints are constrained to rotate
the arm only forward, by assigning only positive values for �4 and �5. Similarly
the knee joint angles (�10, �11) are always assigned a negative value. An alternative
definition for these joint angles can be obtained by viewing them as rotations about
the x-axis. In this case, the angles at shoulders and elbows will have negative values,
and the angles at the knees will have positive values.

For a simple walk sequence for the stick figure, four key-frames are defined as
shown in Fig. 4.16. These are the primary postures from which the intermediate
motion can be generated by linear interpolation. In our example, movements of the
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Fig. 4.17 Commonly used interpolation methods in keyframe animation

neck, shoulder and wrists are neglected, and hence values of only ten joint angles
are specified for each keyframe. More complex and realistic movements such as
running, jumping or performing somersaults can be produced by creating a larger
number of keyframes using motion capture systems.

The “in-between” frames of an animation sequence are generated by interpolat-
ing keyframe values using either step, linear or spline functions. A step function uses
the previous keyframe values for all subsequent frames until another keyframe is
encountered (Fig. 4.17a). A linear interpolation produces points along line segments
connecting two consecutive keyframes (Fig. 4.17b). If k1 denotes a parameter in a
keyframe at time t1, and k2 denotes the value of the same parameter in the next
keyframe at time t2, the value k for an in-between frame at time t is given by

k D
�

t2 � t

t2 � t1

�
k1 C

�
t � t1

t2 � t1

�
k2 (4.13)

or equivalently,

k D .1 � �/k1 C �k2; 0 � � � 1: (4.14)

where

�D t � t1

t2 � t1
; (4.15)

For smoother motion interpolation, keyframe values are connected using piece-
wise cubic splines (Fig. 4.17c). Catmull-Rom splines are commonly used for this
purpose, as they have properties of both C0 and C1 continuity between consecutive
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spline segments. Please refer to Chap. 7 (Sects. 7.2 and 7.5) for more information on
Catmull-Rom and other types of splines that are useful for generating approximating
curves and surfaces.

4.8 Sample Implementation of Vertex Skinning

In Sect. 3.5 we discussed the implementation of a scene graph class. For vertex
skinning, we will use a highly simplified model where the information attached to
each node is appended with a vertex index range given by the first and the last indices
of the range. In this model, there is no need for an object node, and the vertices are
processed at group nodes only. Listing 4.1 gives the class definition for a skeleton
node. A documentation of the methods in this class can be found in Appendix C.
Just like a scene graph node, a skeleton node also stores transformation parameters
and a list of pointers to its child nodes.

4.8.1 Skeleton Node

The primary function of the SkeletonNode is to provide a convenient frame-
work for representing the bone hierarchy and also to transform the vertex list
of a mesh model using joint angles specified for each bone. The two functions
preprocessPhase() and animationPhase() both initiate a recursive
traversal of the tree to transform entries in the vertex lists as shown in Fig. 4.11.

It is useful to have a Skeleton class with functions to load a skeleton definition
and to define joint angles for bones during animation (Listing 4.2). These two
functions provide the main interface between the classes and the user application.
A Skeleton object represents the whole skeleton of a mesh model consisting of
several bones (skeleton nodes).

The contents of the skeleton definition file are organized as shown in Fig. 4.18.
The loadSkeleton() function reads in the parameters and builds the hierarchi-
cal structure. The reference to the root node is available to the application via the
function getRoot().

4.8.2 Skinned Mesh Node

The SkinnedMesh class encapsulates data and related functions for loading
a mesh file consisting of vertex and polygon lists, attaching a skeleton, and
transforming the vertices using the joint angles associated with the bones of the
skeleton (Listing 4.3).

As shown in Fig. 4.11, the SkinnedMesh class uses three vertex lists in the
form of vectors to store the initial vertices of the mesh in bind pose, the intermediate
set of vertices after the pre-processing phase, and the final set of vertices after
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Listing 4.1 Class definition for a single node of a skeleton

applying joint angle transformations. The mesh definition file has a simple structure
consisting of the list of vertices and polygons. Polygons are specified using vertex
indices (three indices for triangles and four for quads). The vertex index starts
from 1. Figure 4.19 gives the mesh definition for a rectangular prism.

The framework described above also uses the Point3 and Matrix classes for
various vertex and transformation related functions (see Appendix A). This book’s
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Listing 4.2 Class definition for a skeleton

Fig. 4.18 Sample skeleton definition file

companion website contains the header and implementation files of all the above
classes.

An example of a simple application using the skeleton animation framework
is shown in Listing 4.4. At the initialization stage, both mesh and skeleton
objects are created, corresponding data loaded from input files, the skeleton
is attached to the mesh, and the preprocess() function is called on
the mesh object. This function in turn passes the vertex data to the root
node of the skeleton via the preprocessPhase()function and gets back the
intermediate vertices. The display() function performs the animation of the
mesh by defining joint angles for the bones. In the example, the function call
skeleton->rotate(3,30,0,-75) is used to rotate the bone with index 3
by 30ı about the x-axis and �75ı about the z-axis. The sequence of rotations is
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Listing 4.3 Class definition for a mesh

pre-defined. The function call mesh->render() is used inside the display loop
to render the mesh with the transformed vertex coordinates.

4.9 Summary

This chapter addressed the problem of animating articulated character models.
Character models are divided into two main categories: those constructed using
individual component objects, and those modelled as a single mesh surface.
The first category of objects requires blending of surfaces at the joints to avoid
interpenetration of component objects and the appearance of gaps during animation.
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Fig. 4.19 A sample mesh definition file

Listing 4.4 Example of an application using the vertex skinning
algorithm

It was shown that Hermite polynomials and cubic Bezier polynomials could be
effectively used for vertex blending.

This chapter also presented the vertex skinning algorithm which is a well-known
method used in skeletal animation. Various aspects of vertex skinning including
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the transformation of mesh vertices using skeletons, application of scene graphs in
vertex skinning, and transformations using a combination of bone matrices have
been discussed in detail. The process of keyframe interpolation has been outlined.
This chapter also demonstrated the implementation of the vertex skinning algorithm.

The next chapter introduces the quaternion algebra and transformations that are
used for interpolating between orientations in three-dimensional space. Quaternions
have a very important role in animation sequences where generic rotational trans-
formations are applied to objects.

4.10 Supplementary Material for Chap. 4

The folder Chapter4/Code on the companion website contains code examples
demonstrating the application of concepts introduced in this chapter. A brief
description of these programs is given below.

1. SkeletonNode.cpp

This class implements the basic functionalities of a scene graph for skeleton
animation as detailed in Sect. 4.8. The class documentation can be found in
Appendix C.

2. SkinnedMesh.cpp

This class supports several functions for loading and rendering a skinned mesh
file. A brief description of the class can be found in Sect. 4.8.2, and the class
documentation in Appendix C.
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3. VertexBlending.cpp

This program generates a blending surface between two cylinders using
Hermite interpolation. Clicking the left mouse button starts the rotation of one
of the cylinders. Use up or down arrow keys to increase or reduce the weight ˛

of the tangent vectors. Press left or right arrow keys to change the view direction.

4. TwoBoneTransform.cpp

The program demonstrates the collapsing elbow and candy wrapper effects
seen in transformations using a combination of two bone matrices. Use left
and right arrow keys to increase or decrease the bending angle (rotation about
the z-axis). Use up and down arrow keys to decrease or increase the twist
angle (rotation about the x-axis). The spread of the weights can be increased
by pressing the ‘s’ key, and decreased by pressing the ‘a’ key.

5. HumanModel.cpp

This program uses the vertex skinning method to transform a mesh based
on transformations applied to a skeleton. It requires two input files, “Human-
Model.txt” (mesh definition) and “Skeleton.txt” (skeleton definition). The bone
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indices are defined as given in Fig. 4.5. The bone transformations are defined
inside the display() function of the program. Use left and right arrow keys to
change the view direction.

4.11 Bibliographical Notes

Both vertex blending and vertex skinning are often used synonymously in computer
graphics literature. In this book, vertex blending refers to an interpolation method
between polyhedral surfaces, while vertex skinning refers to a completely different
method of animating a mesh using a skeleton. The process of constructing blending
surfaces between polyhedral objects is often referred to as polyhedral vertex
blending. Such methods were originally introduced for Computer Aided Design
(CAD) applications. Bajaj and Ihm (1992) gives the fundamental concepts for
designing blending surfaces with Hermite polynomials. A description of parametric
cubic curves and surfaces generated using Hermite polynomials can be found in
Foley (1994, 1996), and Angel (2008). Cubic interpolation methods using Hermite
curves are discussed in Eberly (2007) and Moller et al. (2008).

Skeleton animation is an important technique in game programming and char-
acter animation. Books such as Astle (2006), Moller et al. (2008) and Erleben
(2005) provide a description of skeleton based mesh transformation methods. Eberly
(2007) gives an outline of the vertex skinning method. The implementation aspects
of vertex skinning are presented in Lander (1998) and Kavan (2003).
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Chapter 5
Quaternions

Overview

In computer graphics applications, quaternions are used to represent three-
dimensional rotations. They provide some key advantages over the traditional
way of defining generic rotational transformations using Euler angles. Quaternions
are also extremely useful for interpolating between two orientations in three-
dimensional space. Keyframe animations requiring orientation interpolation
therefore find a very convenient mathematical tool in quaternions.

This chapter gives an overview of the algebra of quaternions, the geometrical
interpretation of quaternion transformations, and quaternion based linear and
spherical interpolation functions. A comparison of rotation interpolation methods
using Euler angles, angle-axis representations, and quaternions is presented. The
extension of quaternions to eight-dimensional dual quaternions and their usefulness
in representing general rigid-body transformations are also discussed.

5.1 Review of Complex Numbers

Quaternions are hyper-complex numbers of rank 4, and therefore it is useful to
review some of the basic concepts related to complex number algebra to gain
a better insight into quaternion operations. Even though a complex number z is
commonly represented in the form a C i b where i D p�1, and a, b are respectively
the real and imaginary parts of z, we will use the two-tuple notation (a, b) for z.
With this notation, we can write 1 D (1, 0), and i D (0, 1). These two-dimensional
vectors (1, 0) and (0, 1) form an orthogonal basis for the complex space, where any
number z D (a, b) can be expressed as their linear combination a (1, 0) C b (0, 1).
The operations of addition, subtraction and multiplication in the field of complex
numbers are defined as follows:

.a1; b1/˙ .a2; b2/ D .a1 ˙ a2; b1 ˙ b2/ (5.1)

R. Mukundan, Advanced Methods in Computer Graphics: With examples in OpenGL,
DOI 10.1007/978-1-4471-2340-8 5, © Springer-Verlag London Limited 2012
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(x cosd -y sind, x sind+y cosd)   
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d

Fig. 5.1 Multiplication by a
unit complex number has the
effect of rotation of vectors
and points about the origin on
a two-dimensional plane

.a1; b1/.a2; b2/ D .a1a2 � b1b2; a1b2 C a2b1/ (5.2)

c.a; b/ D .ca; cb/; (5.3)

where c is a real number. The multiplication rule given in Eq. 5.2 establishes the
fact that i2 D (0,1) (0,1) D (�1, 0). The complex conjugate of z D (a, b) is given by
z* D (a, �b). The magnitude of z is a positive real number defined as

jzj D
p
a2 C b2 (5.4)

Using the multiplication rule, we find that

zz� D jzj2 D a2 C b2 (5.5)

If a complex number z has a unit magnitude, then zz* D 1. This implies that for a
unit complex number, z* is the multiplicative inverse of z. All unit complex numbers
can be expressed in the general form

z D .cosı; sinı/ (5.6)

Consider any vector (or point) p D (x, y) in a two-dimensional coordinate system.
If we treat p as a complex number, and multiply it by the unit complex number z
given above, the product zp can be evaluated using Eq. 5.2 as follows:

p0 D .cosı; sinı/.x; y/

D .xcosı � ysinı; xsinı C ycosı/ (5.7)

The transformed vector (or point) p0 has the same magnitude as p, and can be
obtained by rotating p about the origin by an angle ı (Fig. 5.1). The unit complex
vector therefore represents a rotation in two-dimensional space.

The geometrical interpretation of unit complex numbers as rotation operators
forms the basis for the framework for an extended set of hyper-complex numbers
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called quaternions. We will see shortly that unit quaternions represent three-
dimensional rotations. In the following section, we introduce the algebra of
quaternion numbers.

5.2 Quaternion Algebra

We have seen above that the field of complex numbers have 1 D (1, 0), i D (0, 1)
as the orthogonal basis. The quaternion set has an extended orthogonal basis
consisting of four elements 1 D (1, 0, 0, 0), i D (0, 1, 0, 0), j D (0, 0, 1, 0), k D (0,
0, 0, 1). Thus a quaternion Q D (q0, q1, q2, q3) has an equivalent representation
q0 C q1i C q2j C q3 k, where the quaternion components qi are all real values. The
term q0 is called the scalar part of Q, and the 3-tuple (q1, q2, q3) the vector part. The
operations of addition, subtraction and scalar multiplication are defined as follows:

.p0; p1; p2; p3/ ˙ .q0; q1; q2; q3/ D .p0 ˙ q0; p1 ˙ q1; p2 ˙ q2; p3 ˙ q3/ (5.8)

c.q0; q1; q2; q3/ D .cq0; cq1; cq2; cq3/; (5.9)

where c is any real number. Analogous to Eq. 5.2, the quaternion product is given by

.p0; p1; p2; p3/.q0; q1; q2; q3/

D .p0q0 � p1q1 � p2q2 � p3q3; p0q1 C p1q0 C p2q3 � p3q2;
p0q2 � p1q3 C p2q0 C p3q1; p0q3 C p1q2 � p2q1 C p3q0/ (5.10)

From the above definition of a quaternion product, it is obvious that quaternion
multiplication is not commutative. That is, for any two quaternions P D (p0, p1, p2,
p3), Q D (q0, q1, q2, q3), the product PQ need not necessarily be the same as QP.
If we denote the vector part of P by v D (p1, p2, p3) and the vector part of Q by
w D (q1, q2, q3), then Eq. 5.10 becomes

.p0; v/.q0;w/ D .p0q0 � v � w; p0w C q0v C v � w/ (5.11)

where v•w denotes the dot product and v�w the cross product of the two vectors.
The right-hand side of Eq. 5.10 when treated as a column vector, can be conveniently
expressed as a product of a matrix of elements of P and a vector containing elements
of Q as given below.

PQ D

2

6
6
4

p0 �p1 �p2 �p3
p1 p0 �p3 p2
p2 p3 p0 �p1
p3 �p2 p1 p0

3

7
7
5

2

6
6
4

q0

q1
q2
q3

3

7
7
5 ; (5.12)
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or, equivalently as

PQ D

2

6
6
4

q0 �q1 �q2 �q3
q1 q0 q3 �q2
q2 �q3 q0 q1
q3 q2 �q1 q0

3

7
7
5

2

6
6
4

p0

p1
p2
p3

3

7
7
5 (5.13)

From Eq. 5.10, we can derive the following properties satisfied by the quaternion
basis:

i 2 D j 2 D k2 D ijk D � 1
ij D �j i D k

jk D �kj D i

ki D �ik D j (5.14)

Quaternions also form a commutative group under addition, where (0,0,0,0) is
the identity element. Quaternion multiplication is associative, and distributes over
addition. If P, Q, R are any three quaternions,

.PQ/R D P.QR/

.P CQ/R D PRCQR

P.Q CR/ D PQC PR (5.15)

The conjugate Q* of the quaternion Q D (q0, q1, q2, q3) is defined as

Q� D .q0; � q1;�q2;�q3/ (5.16)

Thus, if Q D (q0, w), then Q* D (q0, �w). Also, Q C Q* D 2q0. The magnitude
(also called the length, or norm) of Q denoted by jQj, is

jQj D
q
q20 C q21 C q22 C q23 (5.17)

By taking the magnitude of the quaternion product in Eq. 5.10 we get

jPQj D jP jjQj (5.18)

Using Eq. 5.11, it is easy to find that

QQ� D Q�Q D jQj2: (5.19)
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By dividing the above equation by jQj2, we get the equation for the quaternion
inverse. If we denote the quaternion inverse of Q by Q�1, then

Q�1 D Q�

jQj2 (5.20)

A quaternion Q can be normalized to a unit quaternion by dividing each of its
components by the length jQj given in Eq. 5.17. A unit quaternion satisfies the
following equations:

jQj D 1:

q0
2 C q1

2 C q2
2 C q3

2 D 1:

Q�1 D Q�
(5.21)

If the real part q0 of a quaternion is zero, it represents a vector (q1, q2, q3) in
three-dimensional space. Such a quaternion that has the form (0, q1, q2, q3) D (0, q)
is called a pure quaternion. Similarly, quaternions of the type (a, 0, 0, 0) with the
vector component zero are called real quaternions. The algebra of real quaternions
is the same as that of real numbers. Similarly, quaternions of the type (a, b, 0, 0)
behave exactly like complex numbers (a, b).

5.3 Quaternion Transformation

A special type of quaternion product in the form QPQ* plays an important role in
three-dimensional transformations. We have just seen that a vector p in the three-
dimensional space corresponds to a pure quaternion P D (0, p). An interesting fact
that leads to the notion of a quaternion transformation is that given any quaternion
Q and a pure quaternion P, the product P0 D QPQ* is also a pure quaternion. Thus
QPQ* can be viewed as the transformation of a pure quaternion P D (0, p1, p2, p3)
using another quaternion Q. We can derive the matrix form of this transformation by
using Eq. 5.13 for obtaining the matrix expression for PQ* and then using Eq. 5.12
for getting the final product Q(PQ*).

QPQ� D

2

66
4

q0 �q1 �q2 �q3
q1 q0 �q3 q2

q2 q3 q0 �q1
q3 �q2 q1 q0

3

77
5

2

66
4

q0 q1 q2 q3
�q1 q0 �q3 q2

�q2 q3 q0 �q1
�q3 �q2 q1 q0

3

77
5

2

66
4

p0
p1

p2
p3

3

77
5 (5.22)
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The following matrix equation immediately follows by multiplying the two
matrices together, and setting p0 D 0:

2

6
66
6
4

0

p0
1

p0
2

p0
3

3

7
77
7
5

D

2

6
66
6
4

1 0 0 0

0 q20 C q21 � q22 � q23 2 .�q0q3 C q1q2/ 2 .q0q2 C q1q3/

0 2 .q0q3 C q1q2/ q20 � q21 C q22 � q23 2 .�q0q1 C q2q3/

0 2 .�q0q2 C q1q3/ 2 .q0q1 C q2q3/ q20 � q21 � q22 C q23

3

7
77
7
5

2

6
66
6
4

0

p1

p2

p3

3

7
77
7
5

(5.23)

This equation defines the quaternion transformation of a three-dimensional point
(or vector) p D (p1, p2, p3) to another three-dimensional point (or vector) p0 D (p1

0,
p2

0, p3
0). An alternative form of the equation can be derived as follows:

QPQ� D .q0; w/.0;p/.q0;�w/; (5.24)

where w D (q1, q2, q3) . Using Eq. 5.11 to expand the product term, we get

QPQ� D .0; q0
2p C w.p � w/C 2q0.w � p/C w � .w � p// (5.25)

The above equation proves that the transformation of P is also a pure quaternion.
We can therefore write

p0 D q0
2p C w.p � w/C 2q0.w � p/C w � .w � p/ (5.26)

Further simplification of the right-hand side using vector algebra gives

p0 D .q0
2 � w2/ p C 2w.p � w/C 2q0.w � p/ (5.27)

where, w2 D jwj2 D q1
2 C q2

2 C q3
2.

It should be noted that QPQ* generally is not a scale-preserving transformation
because

jP 0 j D jQj2jP j (5.28)

If we impose the constraint that Q is a unit quaternion (i.e., jQj D 1), we get a
scale-invariant (or length-preserving) transform. With this additional criterion, we
can also write the inverse quaternion transform in a concise form as

P D Q�P 0Q (5.29)

We also note that when P is the zero-quaternion (0, 0, 0, 0), so is P0. Therefore
the origin is a fixed point of the transformation. A length-preserving transformation
with a fixed point is a rotation. In the following sections we will attempt to find a
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geometric interpretation of the quaternion transformation as a pure rotation in three-
dimensional space, and express the components of a unit quaternion in terms of the
angle and the axis of rotation.

5.4 Generalized Rotations

Before we further analyze the transform properties of quaternions, it would be
worthwhile to review some of the key concepts relating to general three-dimensional
rotations.

Any composite transformation that preserves length, angle and area is called a
rigid-body transformation. If a rigid body transformation has also a fixed point
(pivot), then it is a rotation. A rotation can be measured in terms of the angular
deviation of an orthogonal right-handed system fixed on the rotating body, with the
origin of the system at the fixed point of rotation. In Fig. 5.2a, Ox, Oy, Oz are the
axes of an orthogonal triad before rotation, and Oxt, Oyt, Ozt denote the transformed
axes directions after a rotation about O. The coordinate reference frame is inertially
fixed and is represented by X, Y, Z axes.

A general rigid body transformation of an object without a fixed point can
be treated as a rotation followed by a translation. Such a transformation can be
equivalently performed by first carrying out a rotation that aligns the axes parallel to
the final directions, followed by a translation that moves the fixed point O to its final
position Ot (Fig. 5.2b). While any translation can be unambiguously represented by
a three component vector, a general rotation may be specified in several ways. In
the following, we consider the Euler angle and angle-axis representations of three-
dimensional rotations.
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ytxt
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y
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a b

Fig. 5.2 (a) A generalized rotation with a fixed point O that transforms the directions of body-
fixed axes from O(x, y, z) to O(xt , yt, zt). (b) A general transformation without a fixed point
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5.4.1 Euler Angles

The Euler’s theorem on rotations states that any general rotation can be performed
using a sequence of elementary rotations about the coordinate axes passing through
the fixed point. The theorem further states that if no two successive rotations is
about the same axis, then the maximum number of rotations needed to achieve the
transformation is three. Thus any rotational transformation can be represented by
a sequence of three rotations about mutually independent axes. These angles are
called Euler angles. Before defining an Euler angle representation, we need to fix
the sequence in which the rotations are performed. If we denote rotations about the
X-axis by , rotations about Y by �, and rotations about Z by � , a set of Euler angles
can be defined using any of the following 12 sequences:

 � � � �  �  �

 � � �  � � �  

 1�  2 �1� �2 �1 �2

 1�  2 �1 �2 �1� �2

The Euler angle sequence f � �g represents a rotation about X followed by a
second rotation about Y, followed by a third rotation about the Z axis. The sequence
f�1 �2g gives another Euler angle representation in terms of a rotation about the Y
axis, followed by a second rotation about the X axis, and then a third rotation again
about the Y axis. The six sequences where each axis is used exactly once are called
proper Euler angles.

The transformation matrix for the f � �g sequence is obtained by concatenating
the transformation matrices as shown below.
2

6
6
6
4

x0

y0

z0

1

3

7
7
7
5

D

2

6
6
6
4

cos � � sin � 0 0

sin � cos � 0 0

0 0 1 0

0 0 0 1

3

7
7
7
5

2

6
6
6
4

cos' 0 sin' 0

0 1 0 0

� sin ' 0 cos ' 0

0 0 0 1

3

7
7
7
5

2

6
6
6
4

1 0 0 0

0 cos � sin 0

0 sin cos 0

0 0 0 1

3

7
7
7
5

2

6
6
6
4

x

y

z

1

3

7
7
7
5

D

2

66
6
4

cos' cos � sin sin' cos � � cos sin � cos sin' cos � C sin sin � 0

cos ' sin � sin sin ' sin � C cos cos � cos sin ' sin � � sin cos � 0

� sin' sin cos ' cos cos ' 0

0 0 0 1

3

77
7
5

2

66
6
4

x

y

z
1

3

77
7
5

(5.30)

The above equation can be interpreted as the transformation of any point (x, y, z)
to (x0, y0, z0) in a fixed coordinate frame. This interpretation does not use any
information pertaining to body-fixed axes. On the other hand, if we assume that
x, y, z represent the body-fixed axes which initially coincide with the coordinate
reference axes X, Y, Z, respectively, Eq. 5.30 can be viewed as the transformation
of a point from the moving body frame to the fixed coordinate reference frame. The
Euler angle representation described above (and shown in Fig. 5.3) used rotations
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Fig. 5.3 An extrinsic composition of Euler angle rotations performed using the sequence
f , �, �g

Fig. 5.4 An intrinsic composition of Euler angle rotations performed using the sequence f , �, �g

that are performed about the fixed principal axes directions X, Y, Z of the reference
frame. Such a transformation is called an extrinsic composition of rotations.

An intrinsic composition, on the other hand, uses rotations about body-fixed axes
whose directions change in the reference frame after every rotation. For example,
an aircraft orientation is defined in this manner. In Fig. 5.4, the yaw rotation  is
performed about the x-axis, the roll rotation � about the transformed body y-axis,
and the pitch rotation � about the transformed body z-axis. For this sequence
of intrinsic composition of rotations, the transformation from body frame to the
coordinate reference frame is given by

2

6
6
4

X

Y

Z

1

3

7
7
5 D

2

6
6
4

1 0 0 0

0 cos � sin 0

0 sin cos 0

0 0 0 1

3

7
7
5

2

6
6
4

cos� 0 sin � 0

0 1 0 0

� sin � 0 cos� 0

0 0 0 1

3

7
7
5

�

2

6
6
4

cos � � sin � 0 0

sin � cos � 0 0

0 0 1 0

0 0 0 1

3

7
7
5

2

6
6
4

x

y

z
1

3

7
7
5 (5.31)
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Fig. 5.5 Two different Euler angle interpolation sequences generated for the same initial and target
orientations
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Fig. 5.6 Transformation of a
vector under a general
rotation about the origin in
three-dimensional space

A three-dimensional orientation can be represented in different ways using
different Euler angle sequences. Even if we keep the sequence fixed, certain
orientations can have more than one set of Euler angles. For instance, using the same
sequence f � �g, both f�45, �80, 0g and f135, �100, �180g represent the same
transformation. This can be verified by evaluating the product matrix in Eq. 5.30 for
the two sets of angles. The non-uniqueness of the Euler angle representation also
means that you may not get a unique interpolation path between two orientations
(Fig. 5.5).

5.4.2 Angle-Axis Transformation

The Euler’s theorem concerning three-dimensional rotations states that any number
of rotational transformations with a single fixed point applied to an object can be
replaced by a single rotation of the object about an axis passing through the fixed
point. The axis is often called the equivalent axis of rotation. Any orientation of an
object with the origin as a fixed point can therefore be specified using an angle of
rotation ı and an axis of rotation given by a unit vector u D (l, m, n). In the following
discussion, we assume that the axis of rotation passes through the origin. Figure 5.6
depicts the rotational transformation applied to a vector p (or a point P).

If we denote the projected lengths of the vector p along directions of u (axis of
rotation) and s (perpendicular to axis of rotation) by a and r respectively, we can
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write p D au C rs, where a D p•u. During any rotation of the vector p about the axis
u, both these projected distances a and r remain constant. If t denotes the vector
orthogonal to both u and s, the transformed vector direction p0 can be written as

p0 D au C .r cos ı/s C .r sin ı/t

D au C .p � au/cos ı C .u � p/sin ı

D p cos ı C .1 � cos ı/.p � u/u C .u � p/sin ı (5.32)

The above equation is the well-known Rodrigues’ rotation formula. The matrix
version of the Rodrigues’ formula can be derived by defining a 3 � 3 skew-
symmetric matrix UX as

Ux D
2

4
0 �n m

n 0 �l
�m l 0

3

5 ; (5.33)

and replacing u, p, p0 by the corresponding column vectors:

U D
2

4
l

m

n

3

5 ; p D
2

4
x

y

z

3

5 ; p0 D
2

4
x0
y0
z0

3

5 : (5.34)

With the above notations, the vector cross-product u�p has an equivalent matrix
representation (UX) p. It can also be easily verified that the term (p•u) u in Eq. 5.32
is equivalent to the matrix (UUT) p. Thus we get

p0 D �
I cos ı C .1 � cos ı/UUT C UX sin ı

�
p (5.35)

Noting that

U2
X D UUT C I (5.36)

Equation 5.35 can be written in an alternate form as below.

p0D �
I C .1 � cos ı/U2

X C UX sin ı
�

p (5.37)

Equation 5.35 can also be written in the expanded matrix form as follows
for defining the rotational transformation of a point P expressed in homogeneous
coordinates:
2

6
6
6
6
4

x0

y0

z0

1

3

7
7
7
7
5

D

2

6
6
6
6
4

l2.1� cos ı/C cos ı lm.1� cos ı/� n sin ı nl.1� cos ı/Cm sin ı 0

lm.1� cos ı/C n sin ı m2.1� cos ı/C cos ı mn.1� cos ı/� l sin ı 0

nl.1� cos ı/�m sin ı mn.1� cos ı/C l sin ı n2.1� cos ı/C cos ı 0

0 0 0 1

3

7
7
7
7
5

2

6
6
6
6
4

x

y

z

1

3

7
7
7
7
5

(5.38)
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Let us consider the problem of computing the equivalent angle and axis of
rotation from a transformation matrix. Given a general 4�4 rotation matrix in the
form

2

66
4

m00 m01 m02 0

m10 m11 m12 0

m20 m21 m22 0

0 0 0 1

3

77
5 (5.39)

we get the following equations using the matrix elements from Eq. 5.38:

m00 Cm11 Cm22 D 1C 2cos ı

m21 �m12 D 2l sin ı

m02 �m20 D 2m sinı

m10 �m01 D 2nsinı (5.40)

From the above equations, we can derive the expressions for angle and axis of
rotation as follows:

ı D tan�1

0

B
@

q
.m21 �m12/

2 C .m02 �m20/
2 C .m10 �m01/

2

m00 Cm11 Cm22 � 1

1

C
A

l D m21 �m12

2 sin ı

m D m02 �m20

2 sin ı

n D m10 �m01

2 sin ı
(5.41)

In the next section, we will establish the equivalence between an angle-axis
transformation and a unit quaternion transformation of the form QPQ* where P
is a pure quaternion (0, p).

5.5 Quaternion Rotations

We will now try to represent the rotational transformation in Fig. 5.6 by a unit
quaternion Q D (q0,w), where the vector component w of the quaternion is along
the axis of rotation. Therefore we have

w D ku; for some constant k: (5.42)
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We saw earlier that a vector p can be transformed into another vector p0 using
a unit quaternion Q and the result of this transformation is given by Eq. 5.27.
In the previous section, we considered an angle-axis transformation of a vector p
given by Eq. 5.32. We find a striking similarity between the two equations, which
suggests that the quaternion transformation in Eq. 5.27 is indeed an angle-axis
transformation. Equating the corresponding terms in both the equations, we find that

q0
2 � w2 D cos ı

2q0k D sin ı

1 � cos ı D 2k2 (5.43)

From the above equations, we can see that k D sin(ı/2), and q0 D cos(ı/2).
Therefore the unit quaternion that represents the rotation in Fig. 5.6 is given by

Q D
�

cos
ı

2
; l sin

ı

2
; m sin

ı

2
; n sin

ı

2

�
(5.44)

This result is fundamental to the theory of generalized rotations, as it provides
a direct mechanism for converting angle-axis representations of three-dimensional
rotations into unit quaternions. From this equation, we can also derive the relation-
ship between the components of any unit quaternion Q D (q0, q1, q2, q3) and the
parameters of rotation it represents. The angle of rotation is given by

ı D 2tan�1

0

B
@

q
q21 C q22 C q23

q0

1

C
A (5.45)

and the unit vector along the axis of rotation (l, m, n) can be obtained as

l D q1q
q21 C q22 C q23

m D q2q
q21 C q22 C q23

n D q3q
q21 C q22 C q23 (5.46)

Replacing ı/2 with ı in Eq. 5.44, we can summarize our discussion above as
follows:

Any unit quaternion Q can be expressed in the form Q D (cosı, u sinı), and it
represents a rotation by an angle 2ı about a unit vector u passing through the origin.
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5.5.1 Quaternion Transformation Matrix

From the above discussion, we can conclude that if Q is a unit quaternion,
then Eq. 5.27 gives a rotational transformation of a vector p D (x, y, z, 0). This
transformation equation could also be written in the conventional matrix form as
shown below:

2

6
66
6
4

x0

y0

z0

0

3

7
77
7
5

D

2

6
66
6
4

1� 2q22 � 2q23 2q1q2 � 2q0q3 2q1q3 C 2q0q2 0

2q1q2 C 2q0q3 1� 2q21 � 2q23 2q2q3 � 2q0q1 0

2q1q3 � 2q0q2 2q2q3 C 2q0q1 1� 2q21 � 2q22 0

0 0 0 1

3

7
77
7
5

2

6
66
6
4

x

y

z

0

3

7
77
7
5

(5.47)

The same transformation matrix can be applied to transform a point P D (x, y,
z, 1) to another point P0 D (x0, y0, z0, 1) using the quaternion Q. The quaternion
transformation matrix in Eq. 5.47 is orthogonal, meaning that its inverse is the same
as its transpose. The matrix also has some very useful properties. If we equate this
matrix to a general 4 � 4 matrix given in Eq. 5.39, we can find that the following
relationships hold among the matrix elements:

m00 Cm11 Cm22 C 1 D 4q0
2

m21 �m12 D 4q0q1

m02 �m20 D 4q0q2

m10 �m01 D 4q0q3 (5.48)

The above equations are useful for extracting the quaternion elements from a
given 4 � 4 rotational transformation matrix:

q0 D
p
1Cm00 Cm11 Cm22

2

q1 D m21 �m12

4q0

q2 D m02 �m20

4q0

q3 D m10 �m01

4q0
(5.49)

We will choose only the positive value of the square-root for computing q0.
A negative value for q0 will change the sign of all remaining components and yield
the quaternion �Q in place of Q. Shortly (Eq. 5.57) we will see that both Q and
�Q represent the same rotation, and therefore we can safely impose the constraint
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that the sign of q0 is positive, and compute the remaining components from it. Note
also that the above equations are valid only when q0 ¤ 0. If q0 D 0, then the angle
of rotation ıD ˙180ı, and the matrix in Eq. 5.47 becomes a symmetric matrix. For
this special case, the remaining quaternion elements can be derived as follows:

q1 D sign .m21 �m12/

�p
1Cm00 �m11 �m22

2

�

q2 D sign .m02 �m20/

�p
1 �m00 Cm11 �m22

2

�

q3 D sign .m10 �m01/

�p
1 �m00 �m11 Cm22

2

�
(5.50)

If a point (or a vector) P is first transformed by a quaternion Q1 and then by
a quaternion Q2, the resulting point (or vector) P0 is obtained by applying the
transformation formula twice:

P 0 D Q2.Q1PQ1
�/Q2

� D .Q2Q1/P .Q2Q1/
� (5.51)

The above equation shows that the composite rotation is given by the quaternion
product Q2Q1. Generalising this result, a series of rotational transformations
performed using unit quaternions Q1, Q2, : : :Qk in that order, is equivalent to
a single rotational transformation produced by the combined product quaternion
(Qk : : :Q2Q1).

5.5.2 Quaternions and Euler Angles

In this section, we explore the relationship between unit quaternions and Euler
angles. Using Eq. 5.44, we can represent elementary rotations about X, Y, and Z
axes by angles  , �, � respectively, as follows:

QX D
�

cos
 

2
; sin

 

2
; 0; 0

�
(5.52)

QY D
�

cos
�

2
; 0; sin

�

2
; 0

�
(5.53)

QZ D
�

cos
�

2
; 0; 0; sin

�

2

�
(5.54)

A sequence of Euler angle rotations f , �, �g is equivalent to the quaternion
product QZQYQX . We will denote this product by QE. Using the quaternion
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multiplication rule in Eq. 5.10, we can easily express the components of QE in terms
of the Euler angles. For convenience, the four quaternion components are arranged
as a column vector in the equation below.

QE D

0

B
B
B
B
BB
B
B
B
BB
B
@

cos

�
 

2

�
cos

�
�

2

�
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�
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�
C sin
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�
�

2
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sin

�
�

2

�

sin

�
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�
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�
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�
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�
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�
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�
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�
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�
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2

�
� sin
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2

�
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�
�

2

�
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2

�

1

C
C
C
C
CC
C
C
C
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C
A

(5.55)

Conversely, given a unit quaternion Q D (q0, q1, q2, q3), we can compute the
equivalent Euler angle representation by comparing the elements of the quaternion
transformation matrix and the Euler angle transformation matrix. As an example, by
equating the corresponding elements from only the first column and the third row
of the matrices in Eqs. 5.47 and 5.30, we get the following expressions for the Euler
angles  , �, � in terms of quaternion components:

 D tan�1
�
2 .q0q1 C q2q3/

1 � 2q21 � 2q22

�

� D sin�1 .2q0q2 � 2q1q3/

� D tan�1
�
2 .q0q3 C q1q2/

1 � 2q22 � 2q23

�
(5.56)

There are many other ways in which the above parameters can be obtained by
comparing the remaining elements of the two matrices. However, each derivation
has its own set of singularities that need to be handled as special cases. For example,
the unit quaternion

Q D
�
1p
2
; 0;

1p
2
; 0

�

presents a singularity for  , with both the numerator and the denominator of the
first equation in Eq. 5.56 becoming zero.

5.5.3 Negative Quaternion

In this section, we consider another geometrical property of quaternions, taking QZ

(Eq. 5.54) as an example. Figure 5.7 shows the plot of the first and the fourth non-
zero components of QZ as the rotation angle � is varied over two cycles from 0ı
to 720ı.
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Fig. 5.7 Plot showing the variation of quaternion components with rotation angle

Figure 5.7 shows that one cycle in quaternion space takes two revolutions in the
Cartesian coordinate space. This means that two rotations by angles � and 360 C �

that are geometrically equivalent, can have different quaternion representations. If a
unit quaternion Q is given by Eq. 5.44, then replacing • with 360 C • we get,

Q0 D
�

cos
360C ı

2
; l sin

360C ı

2
; m sin

360C ı

2
; n sin

360C ı

2

�

D
�

� cos
ı

2
;�l sin

ı

2
;�m sin

ı

2
;�n sin

ı

2

�

D �Q (5.57)

The above equation shows that both Q and �Q represent the same rotational
transformation. In the next section, we will consider the problem of interpolating
between two orientations (which we had briefly touched on while introducing Euler
angles), and then use some of the properties of quaternion rotations discussed above
to define quaternion based interpolation methods.

5.6 Rotation Interpolation

Animation sequences commonly use interpolated values between two poses. A pose
defines the position and orientation an object. Position interpolation can be carried
out either by interpolating between the corresponding coordinate values, or by fitting
parametric curves (splines) through the points. However, interpolation between
two orientations in three-dimensional space need not always produce a smooth
transition from one orientation to another. Depending on the mechanism we use
for representing rotations, we can get completely different interpolation sequences
between the same initial and target orientations. Generally, one would prefer an
interpolation that yields an optimal path that gives minimum rotation and uniform
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Fig. 5.8 Initial configuration and two orientations of an object

angular velocity between two configurations. In this section, we will compare
different interpolation methods using different representations of rotation we have
considered so far, and establish that quaternions have a clear advantage over others.

We define orientation as the result of a rotational transformation from the initial
configuration of an object to its current configuration. A configuration is uniquely
specified by an orthogonal system of axes fixed on the object. Some of these
concepts are explained in a little more detail below with the help of an example.
Figure 5.8 shows a simple model, “Hammer”, constructed using four primitives, a
cylinder, a cone, a sphere and a cube. The figure also shows two orientations of this
model.

The initial configuration of the object defines its orientation when no rotational
transformation is applied. In this configuration, an orthogonal right-handed system
of body-fixed axes OxByBzB coincides with the inertially fixed coordinate reference
axes OXYZ. Without any loss of generality, we can assume that all rotations take
place about the origin. The unit vectors along body fixed axes have components
xB D (1, 0, 0), yB D (0, 1, 0), zB D (0, 0, 1) in the initial configuration. An orientation
can be uniquely defined using the transformed components of these three vectors.
For example, Orientation-1 in Fig. 5.8 is defined by the vectors xB D (0, 0, 1),
yB D (�1, 0, 0), zB D (0, �1, 0). During any rotational transformation the tips of
these vectors move on a unit sphere centered at the origin (Fig. 5.9a).

The rotational transformation of an object can thus be visualized using the trace
of the unit vectors along the body-fixed axes on a unit sphere. Any unit vector has
a spherical parameterization in terms of its azimuth (or longitude) ˛, and elevation
(or latitude) ˇ (Fig. 5.9). The variation of the tip of a vector v D (xv, yv, zv) on a unit
sphere can be conveniently represented as a 2D-graph of the values (˛, ˇ) computed
as follows:

˛ D tan�1
�
xv

zv

�

ˇ D tan�1
 

yvp
x2v C z2v

!

(5.58)
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Fig. 5.9 Spherical parameterization of rotations: (a) Movement of unit vectors attached to body
axes during a rotation of the object. (b) Parametric representation of unit vectors on a sphere

Table 5.1 Graph values
(’,“) of the two orientations
in Fig. 5.8

Orientation-1 Orientation-2

xB (0, 0) (˙180, 0)
yB (�90, 0) (�, 90)
zB (�, �90) (90, 0)

Transformation matrix

2

4
0 �1 0

0 0 �1
1 0 0

3

5

2

4
0 0 1

0 1 0

�1 0 0

3

5

�indicates an indeterminate value

We call the above method of representing the three-dimensional variations of
a unit vector as the ˛ˇ-graph method. Note that when ˇD ˙90ı, the value of ˛
is indeterminate. In the following sections, we will use ˛ˇ-graphs of the body-
fixed axes for a given interpolation sequence to compare the paths generated by
different methods. For the example given in Fig. 5.8, the graph values (in degrees)
of Orientation-1 and Orientation-2 are shown in Table 5.1. The variation of a graph
between the two points will help us visualize how a sequence of rotational transfor-
mations operates on an object for transforming it from one orientation to the other.

Another method for visualizing three-dimensional rotations is to show a small
triangle (see Fig. 5.9a) at the position of one of the body axes (say, zB) on the
unit sphere, oriented towards another axis (say yB). The triangle uniquely represents
the three-dimensional orientation of the object. Triangles displayed at equal time
intervals during a rotational transformation will clearly show the movement of an
axis of interest, and also indicate the spin of the object about that axis (see Fig. 5.10).

5.6.1 Euler Angle Interpolation

Let us first consider the interpolation between two orientations represented using
Euler angles. For our example, we will use the Euler angle sequence f , �, �g
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Fig. 5.10 Interpolation sequence generated using Euler angles (90, �90, 0) and (0, 90, 0)

introduced in Sect. 5.4.1. Given two sets of Euler angles f 1, �1, �1g and f 2, �2,
�2g, all intermediate sets can be obtained using a linear interpolation between the
corresponding Euler angles:

 D .1 � t/ 1 C t 2

� D .1 � t/�1 C t�2

� D .1 � t/�1 C t�2; 0 � t � 1: (5.59)

The transformation matrix in Eq. 5.30 then defines the rotation from the initial
configuration to the intermediate orientation. Earlier in Fig. 5.5, we saw examples
of interpolation sequences generated in this manner. For the example given in
Fig. 5.8, Orientation-1 is defined by Euler angles f 1 D 90, �1 D �90, �1 D 0g,
and Orientation-2 by f 2 D 0, �2 D 90, �2 D 0g. The ˛ˇ-graph for the interpolation
sequence is given in Fig. 5.10. For this specific example, linear interpolation in
the domain of Euler angles also generates a perfect linear interpolation in ˛ˇ-
space, consisting of equidistant points. However, when we look at the trace of the
hammer’s axis from �Y direction to CX direction on the surface of the unit sphere,
we observe that the rotational motion from the source to the destination in three-
dimensional space is not uniform.

The “Hammer” example in Fig. 5.8 also presents an interesting aspect of Euler
angles. Orientation-2 can have an infinite number of Euler angle representations
given by f 2 Dœ, �2 D 90, �2 Dœg where œ is any value. Thus between the same
two orientations, we can have several interpolation paths using Euler angles. As
an example, the interpolated values obtained using œD �170ı give a distinctly
different and curvilinear path between Orientation-1 and Orientation-2, as shown
in Fig. 5.11.

5.6.2 Axis-Angle Interpolation

The equivalent angles and axes of rotation for both Orientation-1 and Orientation-2
can be computed from the corresponding transformation matrices using Eq. 5.41.
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Fig. 5.11 Interpolation sequence generated using Euler angles (90, �90, 0) and (�170, 90, �170)

Fig. 5.12 Interpolation sequence generated using the angle-axis transformation

The parameters for Orientation-1 are ı1 D 120ı, l1 D 0.57735, m1 D �0.57735,
n1 D 0.57735, and for Orientation-2 the values are ı2 D 90ı, l2 D 0, m2 D 1, n2 D 0.
A straightforward linear interpolation gives

ı D .1 � t/ı1 C tı2

l D .1 � t/l1 C t l2

m D .1 � t/m1 C tm2

n D .1 � t/n1 C tn2; 0 � t � 1: (5.60)

The interpolated vector will need to be normalized before constructing the
transformation matrix in Eq. 5.38. The intermediate orientations generated using
the above equation are shown in Fig. 5.12.

In the example shown above, the angle axis transformation generates a non-
uniform motion with a large variation in the angular velocity. As can be seen
from both the ˛ˇ-graph and the trace on the sphere, the density of points around
the source and the destination points is very large compared to the middle. The
parameters used in the interpolation belong to completely different domains, the
angle being a scalar and the axis of rotation being a vector. Quaternions help us to
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Q1

Q2

Interpolated quaternion Unit quaternion

Fig. 5.13 Interpolated and
unit quaternions on a unit
sphere in quaternion space

eliminate this disparity in the type of the interpolants, and achieve a rotation where
both the axis of rotation as well as the rate of change of angle remain constant. In the
next section, we consider a linear interpolation using quaternions.

5.6.3 Quaternion Linear Interpolation (LERP)

Given two unit quaternions Q1 D fq0
(1), q1

(1), q2
(1), q3

(1)g and Q2 D fq0
(2), q1

(2),
q2

(2), q3
(2)g, a linear interpolation gives the quaternion

Q D .1 � t/Q1 C tQ2; 0 � t � 1: (5.61)

The quaternion resulting from the above equation is converted to a unit quater-
nion before a transformation of the form QPQ* is applied to all points P of the
object. Every unit quaternion lies on a unit sphere in the four-dimensional space
spanned by the quaternion basis (1, i, j, k). The interpolated quaternions obtained
from Eq. 5.61 lie on a straight line between the two points Q1 and Q2. Converting
them to unit quaternions moves each interpolated quaternion to the surface of the
sphere along a radial (Fig. 5.13), resulting in an uneven distribution of points and
a corresponding non-uniformity in the angular velocity of the object. The speed in
the middle of the interpolation path is generally much higher than the speed at the
end points. The interpolated quaternions after normalization lie on an arc of a great
circle between Q1 and Q2.

Continuing with our “Hammer” example in Fig. 5.8, the source and the target
orientations in Table 5.1 can be converted into quaternions using Eq. 5.49. For
Orientation-1, the quaternion parameters are q0

(1) D 0.5, q1
(1) D 0.5, q2

(1) D �0.5,
q3

(1) D 0.5, and for Orientation-2, the values are q0
(2) D 0.71, q1

(2) D 0, q2
(2) D 0.71,

q3
(2) D 0. The ˛ˇ-graph and the trace of the hammer axis on the sphere are shown

in Fig. 5.14.
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Fig. 5.14 Interpolation sequence generated using quaternion linear interpolation

Q1 Q1
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sinWR

tW

Q

Q2′

Q2 Q2

cosW

a bFig. 5.15 Subdivision of the
angle between unit
quaternions

The interpolation path obtained using quaternions is along a circular arc between
the end points, which is often the most desired path. However, the non-uniform
spacing of points along the arc indicates that the angular velocity is initially smaller,
then increases towards the middle and slows down again towards the target.

5.6.4 Quaternion Spherical Linear Interpolation (SLERP)

In the previous section we saw that linear interpolation generates intermediate
quaternions along a chord between Q1 and Q2 (Fig. 5.13) on the unit sphere in
quaternion space. If we subdivide the angle between Q1 and Q2 uniformly, then we
will get an even distribution of points on the sphere. Such a distribution will also
yield a smooth rotation of the object from one orientation to another with nearly
constant angular velocity. The spherical linear interpolation (SLERP) technique uses
this approach to compute intermediate quaternions.

Figure 5.15 shows the geometrical constructions needed to derive the SLERP
formula. In the figure, Q1 D fq0

(1), q1
(1), q2

(1), q3
(1)g and Q2 D fq0

(2), q1
(2), q2

(2),
q3

(2)g are any two unit quaternions and P is another unit quaternion that is orthogonal
to Q1. Treating them as vectors in quaternion space, Q2 � Q1cos˝ is a vector
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Fig. 5.16 Interpolation sequence generated using quaternion spherical linear interpolation

(denoted by R) from Q2
0 (the projection of Q2 on Q1) to Q2, where ˝ is the angle

between Q1 and Q2. ˝ is computed from the following formula:

cos˝ D q0
.1/q0

.2/ C q1
.1/q1

.2/ C q2
.1/q2

.2/ C q3
.1/q3

.2/ (5.62)

Dividing R by its magnitude (sin˝), we get the unit quaternion in the direction
of R. Thus

P D Q2 �Q1 cos˝

sin˝
(5.63)

Figure 5.15 shows the angle between Q1 and Q2 subdivided using an interpola-
tion parameter t (0 � t � 1), and the interpolated unit quaternion Q generated using
this subdivision. Resolving Q along the orthogonal unit directions of Q1 and P
we get

Q D Q1cos.t˝/C P sin.t˝/ (5.64)

Substituting Eq. 5.63 and simplifying we get

Q D Q1 sin ..1 � t/˝/CQ2 sin .t˝/

sin .˝/
(5.65)

The above equation has a singularity when ˝D 0 or ˙180ı. When ˝D 0,
both the initial and final quaternions are the same, and therefore no interpolation
is necessary. When ˝ D ˙180ı, Q2 D �Q1. From Eq. 5.57 we know that this
condition also corresponds to the situation where both orientations are the same.

The interpolated sequence generated by Eq. 5.65 for the “Hammer” example is
shown in Fig. 5.16. Compared with the results obtained from previously discussed
forms of interpolation, the smoothness of the interpolating curves as well as the uni-
formity in the distribution of points along them are noticeable. Spherical linear inter-
polation yields an optimal angle interpolation between two orientations with a con-
stant axis of rotation. If the interpolation parameter is incremented in constant steps,
spherical linear interpolation will generate a motion with constant angular velocity.
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Fig. 5.17 Two different
interpolation paths on the
quaternion sphere

When interpolating between two quaternions Q1 and Q2, we have to make sure
that the interpolation is performed along the shorter arc on the great circle through
the two points on the quaternion sphere. If the angle ˝ between Q1 and Q2 is
less than 90ı, we interpolate between the two quaternions (Fig. 5.17), otherwise
we interpolate between Q1 and �Q2 (Fig. 5.17). In other words, if Q1• Q2 D cos˝
< 0, we negate the sign of Q2. The value of cos˝ is computed using the formula in
Eq. 5.62.

The following sections discuss a few more applications of quaternions for
representing transformations in a three-dimensional space.

5.7 Quaternion Exponentiation

We will extend the notion of exponentiation from the field of complex numbers to
the domain of quaternions and also define the associated logarithmic function that is
consistent with exponentiation. However, there are some subtle differences between
the way in which these operations are performed on real and complex numbers and
the way they are applied to quaternions.

From Eq. 5.6 we know that a unit complex number can be expressed as z D (cosı,
sinı). The same complex number has an alternate representation in the form z D eiı .
This is the well known Euler’s formula in complex numbers. We know that a unit
quaternion can also be written as Q D (cosı, u sinı). Similar to complex numbers,
an exponential notation for unit quaternions can be introduced as follows:

Q D .cos ı;u sin ı/ D euı (5.66)

where u D (l, m, n) is a unit vector in three-dimensional space. For the time
being, we will treat the above equation as only an alternate representation of unit
quaternions. We will see the formal definition of the exponential function and how
it is related to the above notation immediately after the next equation. The logarithm
of the unit quaternion in Eq. 5.66 is defined as

QL D log.Q/ D log.euı/ D .0;uı/ D .0; lı;mı; nı/ (5.67)
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QL is a pure quaternion and its magnitude is ı. The definition of an exponential
function for quaternions must be consistent with the above operation and the
inverse of the log() function, such that exp(log(Q))D Q. We thus have the following
definition:

exp.QL/ D exp..0; uı// D .cos ı;u sin ı/ D euı: (5.68)

The above definition leads to the following important result for any unit
quaternion Q D (cosı, u sinı), and any real value t:

Qt D exp.t log.Q// D exp..0;utı// D .cos.tı/;u sin.tı// (5.69)

Note that the operations Qt and exp(QL) both return unit quaternions. As a special
case, when t D 0, we have

Q0 D .1; 0; 0; 0/ for any unit quaternionQ: (5.70)

Since quaternion multiplication is non-commutative, it immediately follows that
QaQb ¤ QbQa and, log(PQ) ¤ log(P) C log(Q). However, the following equations
are valid for all unit quaternions Q:

QaQb D QaCb

.Qa/b D Qab (5.71)

We know that the unit quaternion Q given in Eq. 5.66 represents a rotation by
an angle 2ı about the unit vector u passing through the origin. From Eq. 5.69, we
see that raising Q to the power of t effectively changes the angle of rotation. Thus if
0 � t � 1, then Qt gives a unit quaternion that represents a partial rotation 2tı. This
result is useful for interpolating between orientations. In the next section, we will
define the relative quaternion between two orientations, and then apply Eq. 5.69 to
perform incremental rotations along a path from the source orientation to the target
orientation. As a result, we will get another equation for the quaternion spherical
linear interpolation using the exponential notation.

5.8 Relative Quaternions

In Sect. 5.6, we defined the three-dimensional orientation of an object using the
parameters of rotation that transforms the object from its initial configuration to the
current. This rotation can be represented by a unit quaternion. Thus two independent
orientations of an object can be represented by two unit quaternions Q1 and Q2

(Fig. 5.18). In the following, we try to find the relative quaternion that performs
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Initial Configuration

Orientation-1

Orientation-2

P

P1

P2

Q2

Q1
Relative quaternion

Fig. 5.18 The relative quaternion transforms an object from one orientation to another

a rotation from the first orientation to the second. This relative quaternion can
be easily obtained by noting how Q1 and Q2 transform points from one frame to
another.

In Fig. 5.18, the point P1 in Orientation-1 corresponds to the point P in the initial
configuration. In other words, the quaternion Q1 transforms P into P1. Similarly the
quaternion Q2 transforms P into P2 in Orientation-2. Therefore,

P1 D Q1PQ1
�

P2 D Q2PQ2
�

(5.72)

Now we seek a quaternion that transforms P1 into P2. From the first equation
above, we get the inverse transformation,

P D Q1
�P1Q1 (5.73)

Substituting in the second equation, we have

P2 D Q2Q1
�P1 Q1Q2

�

D .Q2Q1
�/P1 .Q2 Q1

�/� (5.74)

The above equation shows that the quaternion Q2Q1* transforms the point P1 into
P2, and therefore represents the transformation from Orientation-1 to Orientation-2.
Note that Q2Q1* is a unit quaternion. Q2Q1* is called the relative quaternion
between Q1 and Q2.

We now revisit the problem of interpolating between Orientation-1 and
Orientation-2. Any intermediate orientation in the above example can be obtained
by first applying the unit quaternion Q1 to get to Orientation-1 from the initial
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Listing 5.1 Pseudo-code for computing SLERP equation in exponent form

configuration, and then applying a partial rotation using the relative quaternion
Q2Q1*. From Eq. 5.69, we know that this partial rotation can be effected by
(Q2Q1*)t, where, 0< t<1. Combining the two transformations together, we get
the quaternion (Q2Q1*)tQ1. By varying t uniformly between 0 and 1, we get
the quaternions that interpolate between the two orientations. What we have just
obtained is another form for the quaternion spherical interpolation (SLERP) formula
using the exponent function. The pseudo-code in Listing 5.1 outlines this method
for rotation interpolation. When t D 0, (Q2Q1*)tQ1 becomes Q1, and when t D 1,
the interpolated quaternion becomes identical to Q2.

5.9 Dual Quaternions

In previous sections we saw applications of unit quaternions in representing
rotational transformations. Dual quaternions generalize the notion of quaternions
to an 8-tuple, and provide a convenient tool for representing rigid body transfor-
mations containing both rotations and translations in three-dimensional space. The
mathematical structure of dual quaternions uses two quaternions that are combined
using the algebra of dual numbers. Before considering the theoretical aspects of dual
quaternions, we will look at the definition and properties of dual numbers.

5.9.1 Dual Numbers

The structure and the algebra of dual numbers are very similar to complex numbers.
Given two real numbers a and b, a dual number can be written as a C " b, where
"2 D 0. The number a is then called the real part, and b the dual part. " is often
referred to as the dual unit. As in the case of complex numbers, we can use a tuple
notation d D (a, b) to represent a dual number. The algebra of dual numbers satisfies
the following rules for addition and multiplication:

.a1; b1/˙ .a2; b2/ D .a1 ˙ a2; b1 ˙ b2/ (5.75)
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.a1; b1/.a2; b2/ D .a1a2; a1b2 C a2b1/ (5.76)

c.a; b/ D .ca; cb/; for any real number c: (5.77)

Using the multiplication rule in Eq. 5.76 we find that

.a; b/

�
1

a
;

�b
a2

�
D .1; 0/ (5.78)

Therefore, the second term in the product above is the multiplicative inverse of
(a, b), provided a ¤ 0. The conjugate of a dual number d D (a, b) is defined in a way
similar to that of a complex number:

d� D .a;�b/ (5.79)

Using Eq. 5.76, it can be verified that dd* D a2. We also note that (a, b)2 D (a2,
2ab). Hence,

�p
a;

b

2
p
a

�2
D .a; b/ (5.80)

The above equation directly leads to the definition of the square-root of a dual
number:

p
.a; b/ D

�p
a;

b

2
p
a

�
(5.81)

In the next section, we will extend the concepts introduced above to the algebra
of dual quaternions. For notational convenience, dual numbers will often be written
as (a, Qa).

5.9.2 Algebra of Dual Quaternions

A dual quaternion is a quaternion constructed using dual numbers as its components:
Q D (q0, q1, q2, q3), where qi D (qi, Qqi ), i D 0, : : : 3. Equivalently, we can also define
a dual quaternion as a dual number whose components are quaternions: Q D (Q, QQ)
where Q D (q0, q1, q2, q3), and QQD ( Qq0, Qq1, Qq2, Qq3). Q is a pure dual quaternion if
q0 D 0, or equivalently if q0 D Qq0 D 0. We can also represent any dual quaternion
Q as an 8-tuple (q0, q1, q2, q3, Qq0, Qq1, Qq2, Qq3). The following representation of Q
reveals the products of quaternion units and the dual units that are associated with
each component of the 8-tuple.

Q D q0 C iq1 C jq2 C kq3 C " Qq0 C " i Qq1 C " j Qq2 C " k Qq3 (5.82)
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Table 5.2 Multiplication table for dual quaternion units

1 i j k " "i "j "k

1 1 i j k " "i "j "k
i i �1 k �j "i �" "k �"j
j j �k �1 i "j �"k �" "i
k k j �i �1 "k "j �"i �"
" " "i "j "k 0 0 0 0
"i "i �" "k �"j 0 0 0 0
"j "j �"k �" "i 0 0 0 0
"k "k "j �"i �" 0 0 0 0

The following dual quaternions form a mutually orthogonal set of basis vectors
for the entire 8-dimensional space of dual quaternions.

i 0 D 1 D .1; 0; 0; 0; 0; 0; 0; 0/

i 1 D i D .0; 1; 0; 0; 0; 0; 0; 0/

i 2 D j D .0; 0; 1; 0; 0; 0; 0; 0/

i 3 D k D .0; 0; 0; 1; 0; 0; 0; 0/

i 4 D " D .0; 0; 0; 0; 1; 0; 0; 0/

i 5 D "i D .0; 0; 0; 0; 0; 1; 0; 0/

i 6 D "j D .0; 0; 0; 0; 0; 0; 1; 0/

i 7 D "k D .0; 0; 0; 0; 0; 0; 0; 1/ (5.83)

Any dual quaternion is a linear combination of the above basis vectors:

Q D
7X

kD0
i kqk (5.84)

Using the multiplication rule for quaternion basis, we observe that i("j) D "k,
("k)j D �"i, ("i)("j) D 0 etc. Note also that "i D i". The complete multiplication table
is given in Table 5.2. The multiplication rule for dual numbers given in Eq. 5.76 can
be extended to quaternions:

PQ D .P; QP / .Q; QQ/ D .P Q; QPQ C P QQ/ (5.85)

We can also multiply a dual quaternion P by a quaternion Q:

PQ D .P; QP / Q D .P Q; QP Q/ (5.86)

The conjugate of a dual quaternion is defined in three different ways, as discussed
below.
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Conjugate type 1: As mentioned in the beginning of this section, we can treat a
dual quaternion Q as a quaternion with dual number components (q0, q1, q2, q3).
Applying the rule for a quaternion conjugate, we get Q* D (q0, �q1, �q2, �q3),
hence

Q� D .Q�; QQ�/ D .q0;�q1;�q2;�q3; Qq0;� Qq1;� Qq2;� Qq3/ (5.87)

This definition satisfies the following property:

QQ� D .QQ�; QQQ� CQ QQ�/

D �
q0
2 C q1

2 C q2
2 C q3

2; 2.q0 Qq0 C q1 Qq1 C q2 Qq2 C q3 Qq3/
�

D Q�Q (5.88)

In the above derivation, note that QQ* D (jQj2, 2 Q• QQ), where • indicates
the dot product between the two quaternions. It can also be easily verified that
(PQ)* D Q*P*, for any two dual quaternions P, Q. This property is useful for
combining two or more successive transformations (see Eq. 5.51). The norm of a
dual quaternion can now be defined as follows:

jjQjj D
p

QQ� D
q�jQj2; 2.Q � QQ/ � D

 

jQj; 2.Q � QQ/
jQj

!

(5.89)

The above derivation is based on the definition of the square-root of a dual
number as given in Eq. 5.81. A unit dual quaternion Q satisfies the condition
jjQjj D 1. From Eq. 5.89, we see that Q D (Q, QQ) is a unit dual quaternion if and
only if jQj D 1 (i.e., Q is a unit quaternion) and Q• QQD 0 (i.e., Q is orthogonal to QQ
in quaternion space, or QQD0).

Conjugate type 2: If we treat Q as a dual number (Q, QQ), then the application of
the rule in Eq. 5.79 gives the following definition:

Q� D .Q;� QQ/ D .q0; q1; q2; q3;� Qq0;� Qq1;� Qq2;� Qq3/ (5.90)

The main drawback of the above definition is that it does not lead to a convenient
definition for the unit norm. Further, it does not satisfy the condition (PQ)* D Q*P*.

Conjugate type 3: Here we combine both the above definitions to form a new type
of conjugate as given below:

Q� D .Q�;� QQ�/ D .q0;�q1;�q2;�q3 � Qq0; Qq1; Qq2; Qq3/ (5.91)

The above definition satisfies the properties (PQ)* D Q*P*, and (Q*)* D Q. The
norm in this case is defined as



108 5 Quaternions

jjQjj D
p

QQ� D
r�

jQj2; QQQ� � . QQQ�/�
	

D
 

jQj;
QQQ� � . QQQ�/�

jQj

!

(5.92)

With the above norm, a unit dual quaternion Q must have a unit quaternion Q
for its real part, and QQQ* must be a real quaternion. In the next section, we will
use the above definition (type 3) of the conjugate to construct dual quaternions that
represent rigid body transformations.

5.9.3 Transformations Using Dual Quaternions

Recall that any unit quaternion Q can be used to perform a rotational transformation
of a vector p D (x, y, z) in three-dimensional space using the quaternion product
QPQ* where P is the quaternion (0, p). We can also represent the vector p by the
dual quaternion P D (1, P) D (1, 0, 0, 0, 0, x, y, z). P is a unit dual quaternion.
Similarly, if Q is a unit quaternion, then Q D (Q, 0) is a unit dual quaternion. Then

QPQ� D .Q; 0/.1; P /.Q�; 0/ D .Q;QP/Q� D .1;QPQ�/

D .1; P 0/ D P 0 (5.93)

where P0 is the quaternion (0, p0) that represents the transformed (rotated) vector.
The above result is valid for all types of dual quaternion conjugates described in the
previous section. It shows that for every unit quaternion there exists a corresponding
unit dual quaternion that performs exactly the same rotational transformation of
vectors. We now ask the question: does such a transformation exist for translations
in three-dimensional space?

Given a translation vector t D (t1, t2, t3), let us construct a quaternion T in the
form (0, t/2), and from it, a dual quaternion T as

T D .1; T / D
�
1; 0; 0; 0; 0;

t1

2
;
t2

2
;
t3

2

�
(5.94)

Note the division of the vector components by 2 in T, similar to that of a rotation
angle in a unit quaternion (see Eq. 5.44). Using conjugate type 3,

T � D .1; � T �/ D .1; T / D T (5.95)

Applying a transformation of P using T similar to Eq. 5.93,

TPT � D .1; T /.1; P /.1; T �/ D .1; P C 2T / D P 0 (5.96)

The above equation shows that a point p D (x, y, z) gets transformed into the
point p0 D (x C t1, y C t2, z C t3) if p was embedded in a quaternion as P D (0, p),
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the quaternion itself embedded in a dual quaternion P as (1, P). Thus we can
use T as a dual quaternion representing spatial translations. We will now use the
above results to construct a dual quaternion that represents the most general rigid
body transformation: a rotation by an angle ı about an arbitrary vector (l, m, n)
through the origin, followed by a displacement by a translation vector (t1, t2, t3). Let
Q D (Q, 0), T D (1, T) represent rotation and translation respectively. The composite
transformation is then represented by the dual quaternion G D (Q, TQ) as seen in the
following derivation:

GPG � D .Q; TQ/.1; P /.Q; TQ/� D .Q;QP C TQ/.Q�;�Q� T �/

D .QQ�;QPQ� C TQQ� �QQ�T �/ D .1;QPQ� C 2T / D P 0

(5.97)

The quaternion QPQ* C 2T gives the transformed point after the required
rotation and translation.

5.10 Summary

This chapter gave an overview of the quaternion algebra including the properties
that are useful for graphics applications. Unit quaternions represent rotations about
the origin. Composite rotations can be represented by a product of quaternions.
The multiplicative inverse of a unit quaternion is the same as its conjugate. A unit
quaternion with all of its components negated represents the same orientation as the
original quaternion.

Computer graphics animations generally involve several rotation interpolations.
This chapter compared the effects produced by Euler angle interpolation, axis-
angle interpolation and quaternion interpolation. The spherical linear interpolation
of rotations using unit quaternions produced optimal rotation with uniform angular
velocity. Methods for visualising three-dimensional rotation sequences were dis-
cussed.

This chapter also presented the algebra of dual quaternions which has recently
found applications in graphics. Dual quaternions are defined based on the concept of
dual numbers, and they can be viewed as 8-dimensional vectors. The conjugate of a
dual quaternion can be defined in three different ways. The property of dual numbers
that is important from the point of view of computer graphics is that the most general
rigid-body transformation in three-dimensional space can be represented by unit
dual quaternions.

The next chapter further analyses three-dimensional motion using forward and
inverse kinematics equations. In this chapter, we will revisit quaternion representa-
tion of rotations to define angular velocity components of motion.
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5.11 Supplementary Material for Chap. 5

The folder Chapter5/Code on the companion website contains the definition
and implementation files for both the quaternion and the dual quaternion classes. It
also contains the following programs demonstrating the effects of different types of
interpolation methods on rotational transforms.

1. Quaternion.cpp

The quaternion class defines methods for performing quaternion operations,
and representing three-dimensional rotations using quaternions. The class also
has methods for both linear and spherical linear interpolation of rotations using
quaternions. The class documentation can be found in Appendix D.

2. DualQuat.cpp

This class is used for the construction of dual quaternions and for performing
basic operations and transformations using them. The class documentation can
be found in Appendix D.

3. EulerInterp.cpp

The program displays a texture mapped cube with its orientation clearly
shown using the markings of initial direction on each face. For a given set of



5.12 Bibliographical Notes 111

initial and final orientations specified using Euler angles, the program generates
the display of ten intermediate orientations using Euler angle interpolation.

4. RotationInterp1.cpp

The program uses the object model in Fig. 5.8, and two orientations as given
in Table 5.1 to compare the paths taken by Euler, quaternion and angle-axis
interpolations. Pressing key ‘1’ selects Euler, ‘2’ angle-axis, and ‘3’ quaternion
interpolation. Pressing space bar shows the motion of the object through the
interpolated sequence.

5. RotationInterp2.cpp

The program displays an interpolation sequence using triangles placed on a
sphere. Different parts of the sphere can be viewed by rotating it using the arrow
keys. The initial, final and the interpolated values are also displayed in text form.
Pressing key 1 selects Euler interpolation, key 2 selects angle-axis interpolation,
and key 3 selects quaternion interpolation.

5.12 Bibliographical Notes

The algebra of quaternions was first discovered by the Irish mathematician Sir
William Rowan Hamilton (1805–1865). Most of his work on the quaternion group
were later published as a book (Hamilton and Joly 1899). A detailed description
of the quaternion algebra including definitions, properties and proofs of theorems
are given in Kuipers (1999) and Hanson (2006). An in-depth theoretical analysis of
the quaternion group, associative algebras and higher dimensional structures can be
found in Conway and Smith (2003), Ward (1997), Kamberov (2002).
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Shoemake’s paper (Shoemake 1985) established the effectiveness of quaternions
as a powerful mathematical tool in graphics applications. Several books on computer
graphics such as Eberly (2007), Foley (1996), Watt and Policarpo (2003) describe
the applications of quaternions in rotational transformations of objects.

One of the early publications containing references to dual numbers and dual
quaternions highlighting their importance in kinematics is Bottema and Roth (1979).
However, it is a more recent publication by Ladislav Kavan et al. (2007) that showed
that dual quaternions could indeed be used in computer graphics, particularly in the
area of vertex skinning, for representing rotations combined with displacements.
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Chapter 6
Kinematics

Overview

The term “kinematics” refers to the study of the translational and rotational motion
of objects without reference to mass, force or torque. Kinematics equations are
used to describe three-dimensional motion of a multi-body system in terms of
translational and rotational motions, and optionally, linear and angular velocities.
Kinematics analysis becomes important in the animation of articulated models and
skeletal structures containing serial chains of joints and links.

To set the context for developing the kinematics equations for graphics applica-
tions, we first give an outline of robot manipulators comprising a chain of joints.
Both forward and inverse kinematics equations of joint chains are then discussed in
detail. Iterative numerical algorithms for computing joint angles for a given target
position are also presented. These methods are useful for performing goal-directed
motion in an animation sequence.

6.1 Robot Manipulators

In a system containing several interconnected links, it is often required to find the
global position of the end-point of the last link. This end-point is called the end
effector. In an animated character model that performs a certain task, this could
be the tip of a finger. In a robot manipulator, knowing the end effector position
is important to carry out tasks such as inspection, picking, welding, painting, etc.
Robot manipulators usually contain many links and different types of joints. In such
systems, the motion of the end effector becomes exceedingly complex, as it depends
on many joint parameters.

The Programmable Universal Machine for Assembly (PUMA) is a classic
example of a robot manipulator arm. A graphics model of the PUMA robot is
shown in Fig. 6.1. It consists of a chain of links and joints, with the end effector

R. Mukundan, Advanced Methods in Computer Graphics: With examples in OpenGL,
DOI 10.1007/978-1-4471-2340-8 6, © Springer-Verlag London Limited 2012
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Fig. 6.1 A graphics model of a PUMA robot

Revolute
Joint

Prismatic
Joint

Hooke’s
Joint

Spherical
Joint

Fig. 6.2 Commonly used joints in robot manipulator arms

or the gripping device forming the last link. The other end of the joint chain is
fixed to the base. This link forms the root of the tree that represents the hierarchy of
transformations applied to the links. This hierarchical structure is the same as that of
the scene graph we saw in Chap. 3. The transformations depend on the rotation and
displacement of each link relative to its parent. The joint types as well as physical
mounting constraints dictate the degrees of freedom of a particular configuration.
The range of allowable angular and linear displacements at a joint also depends on
the joint type.

Several types of joints can be found in robot manipulators. The most common
is the revolute joint that is used for a simple rotation of a link about a fixed axis,
providing one degree of freedom. A prismatic joint, on the other hand allows a
translation or displacement of a link with respect to its parent. Compound rotations
about two orthogonal axes can be performed using a Cardan joint or a Hooke’s
joint. A Hooke’s joint can be modelled by two revolute joints whose axes intersect.
A more sophisticated type of joint providing three axes rotation is the spherical joint,
also known as the ball and socket joint. Sample illustrations of these joints are given
in Fig. 6.2.

For graphics applications, joint chains with only rotational transformations are
commonly used. Some examples of such systems were given earlier in Chaps. 3and
4. Generalised rotations with multiple degrees of freedom can be easily modelled
using either Euler angles or quaternions as described in the previous chapter. In
the next section, we consider the problem of finding the global position of the end
effector, given the joint angle parameters.
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6.2 Forward Kinematics

The term forward kinematics refers to the movement of a joint chain, given all the
information about the relative position and orientation of each link with respect to
its parent, and absolute position of the root joint. Forward kinematics equations are
used to determine the position of the end effector in the world coordinate system for
a given set of joint angles.

6.2.1 Joint Chain in Two Dimensions

Consider a 3-link chain shown in Fig. 6.3, that is constrained to move on a two-
dimensional xy-plane. Assume that the absolute position of the base link is specified
by the point A D (xa, ya), and that the link lengths d1, d2, d3, and the joint angles �1,
�2, �3 are given. These parameters completely specify the configuration of the joint
chain. Note that the joint angles are defined relative to the parent link. Using this
information, we seek the coordinates of the end effector E.

For a planar motion, the angles are simply summed up from the base link to the
current link to find the absolute orientation of that link. In the example given above,
angles �1, �2 are positive while �3 is negative. The coordinates of the points B, C,
E can be computed in a sequence starting from the base as follows:

xb D xa C d1 cos.�1/

yb D ya C d1 sin.�1/

xc D xb C d2 cos.�1 C �2/

yc D yb C d2 sin.�1 C �2/

xe D xc C d3 cos.�1 C �2 C �3/

D d3cos.�1 C �2 C �3/C d2cos.�1 C �2/C d1cos.�1/C xa

ye D yc C d3 sin.�1 C �2 C �3/

D d3sin.�1 C �2 C �3/C d2sin.�1 C �2/C d1sin.�1/C ya (6.1)

x

y
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C

d1

d2

A

E
d3

Base

q1

q2

q3

Fig. 6.3 A planar motion of
a three-link joint chain
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Fig. 6.4 A 4-link joint chain
in three-dimensional space

The above sequence can be extended to any number of links and joint angles:

xn D xn�1 C dncos

 
nX
iD1

�i

!

yn D yn�1 C dnsin

 
nX
iD1

�i

!
(6.2)

where (xn, yn) is the position of the nth link, and dn its length. If n is the index
of the last link containing the end effector, then its direction is given by the unit
vector.cos.

Pn
iD1 �i /; sin.

Pn
iD1 �i //.

6.2.2 Joint Chain in 3D Space

In a three-dimensional coordinate system, we should be able to apply the most
general rotational transformation to every link of the joint chain. We can then
simulate the movement of links connected by a revolute joint, a Hooke’s joint, or a
spherical joint. In order to define the relative orientation of a link with respect to its
parent, we will need to define an orthogonal right-handed body-fixed frame on each
link.

Consider a 4-link joint chain shown in Fig. 6.4. A link i has a body-fixed frame
(ui, vi, wi) and a length di. Every link is assumed to be aligned along the x-direction
in its frame, given by the ui axis. The rotation of the link i is defined by the relative
orientation of the frame (ui, vi, wi) with respect to its parent’s frame (ui�1, vi�1,
wi�1). This is specified by a 3 � 3 rotation matrix Ri. The rotation matrix can
be formed using any representation of generalized rotations such as Euler angles,
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angle-axis parameters, or quaternions. The end effector is denoted by the point E.
The position of link i is indicated by the point Pi. The forward kinematics solution
for this joint chain attempts to find the coordinates (xe, ye, ze) of the point E in the
world coordinate system, given the position of the base link P1 D (x1, y1, z1), lengths
of the links d1..d4, and rotation matrices R1..R4.

Note that the matrix R1 represents the rotational transformation of the first link’s
local frame (u1, v1, w1) in the world coordinate space. Therefore,

u1 D R1

2
410
0

3
5 ; v1 D R1

2
4 01
0

3
5 ; w1 D R1

2
4 00
1

3
5 : (6.3)

The position of the point P2 can be determined as

2
4x2y2

z2

3
5 D R1

2
4d10
0

3
5C

2
4x1y1

z1

3
5 (6.4)

The matrix R2 gives the rotation of the frame (u2, v2, w2) with respect to the
frame (u1, v1, w1). The position of the point P3 can be obtained in terms of the
coordinates of P2 as follows:

2
4x3y3

z3

3
5 D R1R2

2
4d20
0

3
5C

2
4x2y2

z2

3
5 (6.5)

Continuing as above, the coordinates of the end effector E are obtained as shown
below.

2
4xeye

ze

3
5 D R1R2R3R4

2
4d40
0

3
5C

2
4x4y4

z4

3
5 (6.6)

The above equation can be expanded and expressed in terms of the known
parameters:

"
xe
ye
ze

#
D R1R2R3R4

"
d4
0
0

#
C R1R2R3

"
d3
0
0

#
C R1R2

"
d2
0
0

#
C R1

"
d1
0
0

#
C
"
x1
y1
z1

#

(6.7)



118 6 Kinematics

World

Link-1

Group-1

Group-2

Group-3Link-2

Link-3 Link-4

T4R4

T3R3

T2R2

T1R1

I

I

I

Fig. 6.5 A scene graph based
representation of the
transformations applied to the
links of the joint chain in
Fig. 6.4

The orientation of the frame of the end effector in the world coordinate system
is given by the product matrix R1R2R3R4. The sequence of derivations given above
can be extended to form an iterative algorithm for computing the end effector
position of a general n-link joint chain.

We can use a scene graph to represent the transformations of the joint chain as
shown in Fig. 6.5. Using this scene graph model, the coordinates of the end effector
in the root node’s reference frame is given by

2
4xeye

ze

3
5 D T1R1T2R2T3R3T4R4

2
4d40
0

3
5 (6.8)

In the above equation,

Ti D
2
4di�10

0

3
5 ; i D 2; 3; 4; and T1 D

2
4x1y1

z1

3
5 : (6.9)

The equivalence of Eqs. 6.7 and 6.8 can be readily established.

6.3 Linear and Angular Velocity

In addition to the position and the orientation, the velocity of the end effector is also
an important parameter in many applications involving a serial chain. For example,
an articulated character model may be required to move an object with constant
velocity. The velocity of the end effector is a combination of the linear velocity of
the chain itself and the angular velocity introduced by the joint rotations.
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Fig. 6.6 Velocity vectors
on a single link in
two-dimensional space

6.3.1 Velocity in Two Dimensions

First, we consider a single link AB that can move on the xy-plane, and rotate about
the point A (Fig. 6.6). The position of the link at any instant is defined by the
coordinates (xa, ya) of the point A. The point B takes the role of the end effector.
The orientation of the link is measured by the angle � made by the link with the
direction of the x-axis. The linear velocity of the link is the instantaneous speed
with which it is moved from its current position A. If (�x, �y) denote the change
in the position of the link from A in an infinitesimal interval of time �t, the linear
velocity components are given by

va D lim
t!0

�
�x

�t
;
�y

�t

�
(6.10)

The angular velocity ! of the link is defined as the instantaneous change in the
rotation angle � :

! D P� D lim
t!0

�
��

�t

�
(6.11)

The direction of angular velocity is perpendicular to the xy-plane. If k is a unit
vector along the z-direction, the angular velocity vector is

! D !k (6.12)

The linear velocity v� of the point B induced by the above rotation is tangential to
the circular arc with radius r at B (Fig. 6.6). This velocity is relative to the point A.
If r denotes the vector from A to B given by (xb � xa, yb � ya), then v� is defined as
the following vector cross product:

v� D ! � r D .ya � yb; xb � xa/ P� (6.13)
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The total velocity of the end effector B relative to the coordinate frame is simply
the vector sum

v D va C v� (6.14)

Now consider a three-link joint chain on the xy-plane, shown in Fig. 6.3. We
define the vectors r1, r2, r3 along the links as follows:

r1 D .d1cos�1; d1 sin�1/

r2 D .d2cos.�1 C �2/; d2sin.�1 C �2//

r3 D .d3cos.�1 C �2 C �3/; d3 sin.�1 C �2 C �3// (6.15)

The linear velocity v� of the end effector E induced by the three joint angle
rotations is given by

v� D .!1 � .r1 C r2 C r3//C .!2 � .r2 C r3//C .!3 � r3/ (6.16)

where !1 D P�1k, !2 D P�2k, !3 D P�3k, and k is a unit vector along the z-axis.
Therefore

v� D .�d1 sin.�1/� d2 sin.�1 C �2/� d3 sin.�1 C �2 C �3/;

d1cos.�1/C d2cos.�1 C �2/C d3cos.�1 C �2 C �3// P�1
C .�d2 sin.�2/� d3 sin.�2 C �3/; d2cos.�2/C d3cos.�2 C �3// P�2
C .�d3 sin.�3/; d3cos.�3// P�3 (6.17)

The total velocity of the end effector E is v� C va where va is the velocity of the
chain induced by the translational movement of the base A. As a particular case of
Eq. 6.13, if p is a vector from A to B that undergoes only a rotational motion about
A, then the linear velocity of the point B is given by

Pp D ! � p (6.18)

6.3.2 Velocity Under Euler Angle Transformations

The animation of a general serial chain in a three-dimensional space can be
performed using Euler angle rotations (see Eq. 5.30) applied at the joints. In an
extrinsic composition of rotations, the axes of rotation are fixed relative to the joint
chain. In such a case, if the Euler angle sequence is given by f , �, �g as described
in Sect. 5.4.1, the angular rate vector has the following form:
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5 (6.19)

Let us now consider a joint chain that is transformed using Euler angle rotations,
as shown in Fig. 6.7.

Each joint Pi (i D 1, 2, 3) has a set of Euler angles f i � i � ig from which we
can construct a rotational transformation matrix Ri using Eq. 5.30, and an angular
velocity vector !i using Eq. 6.19. If di is the length of ith link, the vectors ri along
the link directions can be computed as

r1 D R1

2
4d10
0

3
5

r2 D R1R2

2
4d20
0

3
5

r3 D R1R2R3

2
4d30
0

3
5 (6.20)

The linear velocity v� of the end effector E resulting from the changes in the Euler
angles can now be computed using Eq. 6.16. We add this velocity to the translational
velocity of the joint chain at the base P1 to get the total velocity of the end effector
E with respect to the reference frame.

6.3.3 Quaternion Velocity

We know that if P D (0, p) is a pure quaternion, and Q a unit quaternion, then
the equation P0 D QPQ* gives a rotational transformation of the vector p, where
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P0 D (0, p0). The quaternion transformation can be viewed as defining the orientation
of an object where p is a vector specified in a body-fixed frame, and p0 the same
vector in the fixed (inertial) coordinate reference frame. Differentiating both sides
and noting that p is a constant vector,

PP 0 D PQPQ� CQP PQ� (6.21)

The inverse transformation for P is given by P D Q*P0Q. Substituting this
expression in the above equation, we get

PP 0 D PQQ�P 0QQ� CQQ�P 0Q PQ� (6.22)

Since Q is a unit vector, QQ* D 1. Therefore,

PP 0 D PQQ�P 0 C P 0Q PQ� (6.23)

Differentiating both sides of the equation QQ* D 1, we also find that

PQQ� CQ PQ� D 0 (6.24)

The above equation shows that PQQ� C . PQQ�/� D 0. In other words, the real
part of the quaternion PQQ� is zero. Hence PQQ�can be expressed in the form (0, v).
With these observations, Eq. 6.23 becomes

.0; Pp0/ D .0; v/.0; p0/� .0; p0/.0; v/ (6.25)

Using the quaternion multiplication rule in Eq. 5.11, we get

Pp0 D 2.v � p0/ (6.26)

Since we consider only rotational motion of the vector p0, its linear velocity is
given by Eq. 6.18. Comparing both equations, we find that ! D 2v. Hence we can
write

PQQ� D
�
0;

!

2

�
(6.27)

where ! is the angular rate. Conversely, if a vector is rotated using a unit quaternion
Q, the angular rate is given by the vector part of the quaternion product 2 PQQ�.
Using Eq. 5.13, we can write this relationship in matrix form as given below.

2
664
0

!1
!2

!3

3
775 D 2

2
664
q0 q1 q2 q3

�q1 q0 �q3 q2
�q2 q3 q0 �q1
�q3 �q2 q1 q0

3
775
2
664

Pq0
Pq1
Pq2
Pq3

3
775 (6.28)



6.3 Linear and Angular Velocity 123

Note that Q is a quaternion of the type given in Eq. 5.44. Accordingly, PQ takes
the form

PQ D
�

� sin
ı

2
; l cos

ı

2
; m cos

ı

2
; n cos

ı

2

� Pı
2

(6.29)

As expected, the above equations yield the result

! D .l; m; n/ Pı (6.30)

6.3.4 The Jacobian

In general, we can assume that the end effector position E D (xe, ye, ze) of an n-link
joint chain can be expressed as a function of joint angles � i for i D 1,..,n, (for
example, see Eq. 6.1). Thus we can write

xe D xe.�1; �2; : : : ; �n/

ye D ye.�1; �2; : : : ; �n/

ze D ze.�1; �2; : : : ; �n/ (6.31)

If �� i denotes an infinitesimal change in the joint angles � i for i D 1,..,n, and
(�xe, �ye, �ze) the corresponding change in the end effector position during a
small time interval�t, we have,

xe C�xe D xe.�1 C��1; �2 C��2; : : : ; �n C��n/

ye C�ye D ye.�1 C��1; �2 C��2; : : : ; �n C��n/

ze C�ze D ze.�1 C��1; �2 C��2; : : : ; �n C��n/ (6.32)

Assuming that joint angle perturbations are small, we can use Taylor’s first order
approximation to express the above set of equations in matrix form as follows:

2
4�xe�ye
�ze

3
5 D

2
6666664

@xe

@�1

@xe

@�2
� � � @xe

@�n
@ye

@�1

@ye

@�2
� � � @ye

@�n
@ze
@�1

@ze
@�2

� � � @ze
@�n

3
7777775

2
666664

��1

��2
:::

��n

3
777775 (6.33)

From the above equation, it follows that

ve D PE D J P™ (6.34)
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Fig. 6.8 The Jacobian matrix can be constructed using the axis of rotation of each link and a vector
from that link to the end effector

where

PE D
2
4 Pxe

Pye
Pze

3
5 ; P™ D

2
6664

P�1P�2
:::
P�n

3
7775 (6.35)

The 3 � n matrix J is called the Jacobian of the transformation in Eq. 6.31.
As an example, consider the end effector position of a 3-link chain given in

Eq. 6.1. The Jacobian in this case is a 2 � 3 matrix containing the partial derivatives
of xe and ye with respect to the three joint angles. It can be easily verified that the
expressions for the velocity components obtained using Eq. 6.34 are the same as
those given in Eq. 6.17.

The ith column of the Jacobian in Eq. 6.33 can also be obtained using the axis of
rotation of the ith link and the vector from that link to the end effector. Figure 6.8
shows an example, where the second link’s general rotational transformation has an
equivalent axis of rotation given by the unit vector u. The vector from the second
link to the end effector is E � P2 denoted by s2.

The second column of the 3 � 4 Jacobian matrix for the above example can be
computed using the vector cross product u � s2. Note that s2 D r2 C r3 C r4.

6.4 Inverse Kinematics

Inverse kinematics (IK) deals with the process of computing the joint angles, given
the world coordinates of the end effector. Inverse kinematics solutions are needed
for animating an articulated figure using only the desired positions of end points as
inputs. Two examples are shown in Fig. 6.9, where the known end effector position
is indicated by the point E.



6.4 Inverse Kinematics 125

Fig. 6.9 Inverse kinematics
solutions try to find the joint
angles of a serial chain given
the position of the end
effector
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Fig. 6.10 (a) Multiple solutions may exist for the inverse kinematics problem for a 2-link chain.
(b) A solution exists only when the target point is between the inner and outer circles. (c) A simple
geometric construction used for an inverse kinematics solution

In the absence of joint angle constraints, multiple solutions may exist for a two
link joint chain as shown in Fig. 6.10a. On the other hand, a solution may not exist
for certain other positions of the end effector. In Fig. 6.10b, a solution cannot be
found if the target position is either inside the inner circle of radius d1 � d2, or
outside the outer circle of radius d1 C d2.

Without loss of generality, we can assume that the base of the joint chain A is
fixed at the origin. We can also assume that there are no joint angle constraints. In
the following sections, we will discuss methods for arriving at inverse kinematics
solutions with these assumptions.

6.4.1 2-Link Inverse Kinematics

We can easily develop an analytical solution for the 2-link inverse kinematics
problem for the configuration shown in Fig. 6.10c. If the coordinates (xe, ye) of
the end point E are given, the joint angles �1, �2 can be determined as follows:
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Let AE D k. Therefore, k2 D xe
2 C ye

2. From triangle ABE we get,

k2 D d1
2 C d2

2 � 2d1d2cos.� � �2/ (6.36)

Hence,

�2 D cos�1
�
x2e C y2e � d21 � d22

2d1d2

�
(6.37)

Also,

tan.� C �1/ D ye

xe
(6.38)

From triangle AEE0,

tan.�/ D d2 sin �2
d1 C d2 cos �2

(6.39)

From the previous two equations, we get

�1 D tan�1
�
ye

xe

�
� tan�1

�
d2 sin �2

d1 C d2 cos �2

�
(6.40)

Equation 6.37 is valid only if

.d1 � d2/2 � xe
2 C ye

2 � .d1 C d2/
2 (6.41)

The above condition corresponds to the situation shown in Fig. 6.10b.

6.4.2 n-Link Inverse Kinematics

For a general n-link configuration, the problem of estimating the joint angles
�1, �2, : : : , �n, given only the end effector coordinates (xe, ye, ze), clearly leads
to an under-determined system of equations when n> 3. Such a system is called
a redundant manipulator, implying that more than one set of joint angles could
possibly lead to the same end effector position. A non-redundant manipulator in
three-dimensional space contains only three links.

Suppose we are required to move the end effector from its current position E to a
desired target location given by T D (xt, yt, zt). The inverse kinematics problem can
be rephrased as follows: Determine the change in joint angles required to produce a
change in the end effector position from E to T. If we denote this displacement of
the end effector by the vector �E D T � E, and the joint angle perturbation vector
by �™, then from Eq. 6.33 we know that
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�E D J �™ (6.42)

where J is the 3 � n Jacobian matrix. J is invertible only for a non-redundant
manipulator (n D 3). Generally when n> 3, J is not a square invertible matrix, and
therefore we cannot directly obtain �™ from the above equation. However, pre-
multiplying both sides by the transpose JT, we can form a symmetric, square and
invertible matrix (JTJ), and then obtain a solution for�™ as

�™ D JC �E (6.43)

where

JC D .JTJ/�1 JT (6.44)

The above matrix is called the left pseudo-inverse of J. For an n-link chain,
(JTJ) is an n � n matrix. One could use Singular Value Decomposition (SVD) to
compute the pseudo-inverse of J. If J has a decomposition of the form USVT, then
the pseudo-inverse of J is given by

JC D VSCUT (6.45)

In the above matrix equation, U is a 3 � 3 orthogonal matrix, S is a 3 � n
diagonal matrix, and V is a n � n orthogonal matrix. Columns of U are orthonormal
eigenvectors of JJT, and the columns of V are orthonormal eigenvectors of JTJ. The
matrix S contains square-roots of eigenvalues of either JJT or JTJ. Its inverse SC
can be readily obtained by transposing S and taking the reciprocals of the diagonal
elements. Denoting the columns of U by vectors ui (i D 1..3), and the columns of V
by vectors vi (i D 1..n), we have

J D �
u1 u2 u3

�
2
664

p
�1 0 0 � � � 0
0

p
�2 0 � � � 0

0 0
p
�3 � � � 0

3
775
2
66664

vT1
vT2
:::

vTn

3
77775 (6.46)

and

JC D �
v1 v2 � � � vn

�
2
666666664

1p
�1

0 0

0 1p
�2

0

0 0 1p
�3

:::
:::

:::

0 0 0

3
777777775

2
4uT1

uT2
uT3

3
5 (6.47)
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where � i denotes the ith eigenvalue of the square matrix JJT, and �1 � �2 � �3.
Substituting the above expression in Eq. 6.43 and simplifying,

2
6664
��1
��2
:::

��n

3
7775 D

h
1p
�1

v1 1p
�2

v2 1p
�3

v3
i2664

uT1
uT2
uT3

3
775
2
4xt � xe
yt � ye
zt � ze

3
5 (6.48)

Note that the sizes of the three matrices on the right-hand side of the above
equation are n � 3, 3 � 3, and 3 � 1 respectively. In the following sections, we
discuss iterative numerical methods that try to move the end effector through a
sequence of points to the desired target position.

6.5 Gradient Descent

The inverse kinematics solution for computing �™ as outlined in the previous
section is based on an important assumption that both �E (the distance from
the current end effector position to the target) and �™ (joint angle perturbations)
are small. Many practical situations violate these conditions. The two-dimensional
analogue of the situation where the distance between the end effector and target is
large is shown in Fig. 6.11a. The y-axis represents the end effector position whose
dependency on the joint angle � is given by the function y D f (�). The desired target
position is indicated by the ordinate T.

y= f(q) y= f(q)

y

T

E

ΔE
λΔE

A B

y

T

E

A B

1

2

3

qq

Δq

a b

Fig. 6.11 (a) Computing�™ from the derivative alone can lead to significant errors if�E is large.
(b) The iterative convergence of the gradient descent algorithm
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Listing 6.1 Pseudo code for the gradient descent algorithm

The solution given in Eq. 6.43 is equivalent to computing �� in the above
example using the formula

�� D �E�
df .�/

d�

� (6.49)

As can be seen from Fig. 6.11a, there is a large error in the value obtained for
�� , the solution giving only a fraction of the required change in � given by the
distance AB. If �E is large, we will need to approach the target in smaller steps.
This is done by scaling �E by a factor œ (0<œ< 1), each time updating the end
effector position and the derivative. This approach is called the gradient descent
method, and is shown in Fig. 6.11b. The following equation computes the value of
incremental changes in � for each iteration step k, and updates the function value
and its derivative.

��k D � .T � f .�k//�
df .�/

d�

�
k

; �kC1 D �k C��k (6.50)

We can employ the gradient descent method for iteratively computing �™ after
introducing the scaling factor œ in Eq. 6.43. The modified equation is given below.

�™kD�JkC.T �Ek/; ™kC1D™kC�™k (6.51)

where ™k is a column vector of joint angles updated in the kth iteration. The gradient
descent algorithm for computing the joint angles for a n-link chain is given in
Listing 6.1.
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6.6 Cyclic Coordinate Descent

The Cyclic Coordinate Descent (CCD) algorithm is a well-known method used
for inverse kinematics solutions in computer graphics applications involving joint
chains and moving targets. CCD performs a series of rotations on the links of a joint
chain, starting with the last link, each time trying to move the end effector closer to
the target.

A sequence of rotations performed by the CCD algorithm for a 4-link chain on
a two-dimensional plane is shown in Fig. 6.12. The joints of the links are denoted
by P1, P2 : : : etc., the target by T, and the end effector position by E. The last
link is rotated first by an angle �4 about P4, where �4 is the angle between end
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Fig. 6.12 Sequence of rotations performed by CCD algorithm on a 4-link joint chain
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Listing 6.2 Pseudo code for the CCD algorithm

effector vector u4 D E � P4 and the target vector v4 D T � P4 (Fig. 6.12a). This
rotation brings the end effector E to a point on the target vector. The second rotation
is performed about the next link position P3, by an angle �3 between the end
effector and target vectors at that point (Fig. 6.12b). This process of rotating links
is continued till the first link P1 is reached (Fig. 6.12d), and then repeated over,
starting again from the last link P4 (Fig. 6.12e). In three-dimensional space, the axis
of rotation for the ith link at position Pi is calculated as

!i D ui � vi
jui � vi j (6.52)

where ui D E � Pi, and vi D T � Pi. The angle of rotation about the unit vector !i is

ıi D cos�1
�

ui � vi
jui j jvi j

�
(6.53)

The general algorithm for a n-link joint chain is given in Listing 6.2.
The terminating condition for the iterative algorithm can be defined based on the

distance TE between the end effector and the target, and also the number of iterations
performed. Physical systems using a set of joints, such as robotic manipulator arms,
have joint angle constraints and other physical limitations that should be taken into
account while designing an inverse kinematics solution. The CCD algorithm can
generate large angle rotations that may violate joint angle constraints. In some cases,
particularly when the target is located close to the base, the CCD algorithm causes
a chain to form a loop, intersecting itself (Fig. 6.13a). Similarly, for certain target
positions, the algorithm can take a large number of iterations resulting in a slow
zigzag motion of the end effector (Fig. 6.13b). The method discussed in the next
section is designed to overcome these drawbacks.
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Fig. 6.13 (a) Two examples showing entangled configurations of a 10-link joint chain generated
by the CCD algorithm. (b) The path showing the convergence of the end effector position towards
a target location

6.7 Circular Alignment Algorithm

The circular alignment algorithm tries to place the given joint chain along a circular
arc between the base and the target position, provided the target is reachable. With
such a placement of the chain, joint angles will automatically assume values in an
acceptable range, and there is no possibility of the chain to intersect itself. This
method has some key advantages over the CCD algorithm:

1. This algorithm is significantly faster than the CCD algorithm. All joint angles
have the same value based on a single solution.

2. The algorithm does not generate large angle rotations.
3. The algorithm does not generate entangled configurations of chains with large

number of links.

The algorithm, however, requires all links to have the same length in order to use
a simple inverse kinematics solution. The algorithm works on a two-dimensional
plane containing the base of the link and the target. A general three-dimensional
problem is thus reduced to two dimensions, assuming that the base link can be
rotated in such a way that the whole chain is reoriented towards the target with
all links constrained to move on a single plane. We will first consider the problem
on the xy-plane, and later discuss how it could be generalized into three dimensions.

We assume that each link of an n-link chain has length d, and the total length of
the chain is L D nd. The distance of the target T from the base P1 of the joint chain is
denoted by D (Fig. 6.13). If the target is reachable (0<D< L) then the joints of the
link can be made to align along a circular path such that the end effector coincides
with the target. There are two possible scenarios as shown in Fig. 6.13.

We first compute the angleˇ subtended by the arc P1T, and then derive the radius,
coordinates of the centre, and joint angle parameters from it. The angle ˇ is acute if
the length L of the chain is less than  D/2, otherwise it is obtuse. In either case, we
have
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sin
�
ˇ

2n

�
sin
�
ˇ

2

� D d

D
(6.54)

We seek the solution of the above equation for ˇ, by defining the function

f .ˇ/ D d sin

�
ˇ

2

�
�D sin

�
ˇ

2n

�
: (6.55)

The function has a derivative

f 0.ˇ/ D
�
d

2

�
cos

�
ˇ

2

�
�
�
D

2n

�
cos

�
ˇ

2n

�
(6.56)

The solution for ˇ can be obtained using Newton-Raphson iteration:

ˇkC1 D ˇk � f .ˇk/

f 0.ˇk/
; (6.57)

with the initial condition

ˇ0 D 2 =n: (6.58)

The Newton-Raphson method yields fast convergence for the parameter ˇ, from
which all joint angles can be computed as described below. The radius R of the circle
and the perpendicular distance S (Fig. 6.15) can be obtained as

R D D

2 sin
�
ˇ

2

� ; S D D

2 tan
�
ˇ

2

� (6.59)

Without loss of generality, we can assume that the base of the link P1 is located
at the origin of the coordinate system. If the target T has coordinates (xt, yt), the
centre of the circle is selected among two possible values (Fig. 6.15) as

C D .xc; yc/ D
�
xt

2
� ytS

D
;

yt

2
C xtS

D

�
; if L �  D=2

D
�
xt

2
C ytS

D
;

yt

2
� xtS

D

�
; if L >  D=2 (6.60)

The above choice causes the chain to orient along an anticlockwise circular path
towards the target, and to have positive values for the joint angles for both the cases
shown in Fig. 6.14.

The joint angles for the two-dimensional case are computed as follows. The base
link’s joint angle �1 is measured with respect to the x-axis, and is given by
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Fig. 6.14 Circular alignment of joints
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Fig. 6.15 (a) Two possible orientations of the joint chain for a given target position. (b) Extension
of the inverse kinematics solution to three dimensions

�1 D tan�1
�
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xc

�
C ˇ

2n
� �

2
(6.61)

All remaining joint angles have the same value given by

�i D ˇ=n; i D 2 : : : n: (6.62)

The approach detailed above can be extended to three dimensions where the
target position is given by T D (xt, yt, zt). The problem is first reduced to two
dimensions by transforming the target location to the xy-plane, and computing the
joint angles as described previously. The transformed target position is

x0
t D

q
x2t C z2t

y0
t Dyt (6.63)
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After computing the joint angles, the whole chain is rotated about the y-axis by an
angle �� as shown in Fig. 6.15b to achieve the desired configuration. The rotation
angle � can be computed as tan�1(zt/xt). This rotation can be combined with the
joint angle rotation of the base link P1. We can add one more degree of freedom to
the link by allowing the chain to rotate about the line joining the base and the target,
thus varying the direction in which the end effector approaches the target.

6.8 Summary

This chapter discussed forward and inverse kinematics equations for serial links
containing only revolute or spherical joints. Such joint chains are commonly used in
computer graphics for skeletal animation. Forward kinematics equations are used
to compute the position of the end effector, given the joint angles. The chapter
presented methods for computing the linear velocity of the end effector as a function
of angular velocities of the joints. Both Euler angle and quaternion based definitions
of rotations were considered. In the most general case, when the end effector
coordinates are expressed as functions of joint angles, the Jacobian matrix defines
the relationship between the linear and angular velocities.

Inverse kinematics (IK) solutions can have singularities for redundant manipu-
lators. The inverse Jacobian in the general IK solution is calculated in terms of the
pseudo-inverse obtained using methods such as the singular value decomposition. If
the distance between the end effector position and target is large, iterative numerical
techniques are often used for a more accurate solution that converges to the target
position. This chapter also outlined the cyclic coordinate descent and the circular
alignment algorithms that are useful for animating joint chains.

The next chapter introduces parametrically generated curves and surfaces and
discusses their applications in computer graphics.

6.9 Supplementary Material for Chap. 6

The folder Chapter6/Code on the companion website contains the following
programs demonstrating the working of inverse kinematics algorithms.

1. IK CCD.cpp
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The program shows the working of the cyclic coordinate descent algorithm
(Sect. 6.6) in transforming a 4-link chain. Target positions can be interactively
specified using mouse clicks. Pressing the space bar updates the display, showing
the next step in the sequence of rotations performed on the joint chain. The target
vector and the end effector vectors are also drawn to show the amount of rotation
in each step.

2. IK CAA.cpp

The program displays a 10-link joint chain that aligns along a circular path
to reach a target position. Target positions can be interactively specified using
mouse clicks. The circular alignment algorithm was discussed in Sect. 6.7.

6.10 Bibliographical Notes

Kinematic analysis is an integral part of robotic systems, and most of the important
references on the topic can be found in the area of serial manipulators and multi-
body systems. Bottema and Roth (1979), Crane and Duffy (1998), and Jazar (2010)
are just a few among many excellent books that provide a detailed description of the
theory of kinematic manipulators, forward kinematics equations, and several types
of inverse kinematic solutions. Orin and Schrader (1984), Maciejewski and Klein
(1989) discuss the solutions based on Jacobian inverses.

In early 1980s, Korein and Badler (1982) proposed inverse kinematics solutions
for goal directed motion of articulated character models. A comprehensive coverage
of kinematics algorithms that are useful in computer animation of character models
can be found in Parent (2002) and Yamane (2010). The cyclic coordinate descent
(CCD) algorithm was introduced by Chris Welman in his Masters thesis (Welman
1989). An overview of this algorithm and its implementation can also be found in
Lander (1998). An fast iterative solver for animating character models was recently
introduced by A. Aristidou (2011). The circular alignment algorithm was also
recently introduced by O. Cardwell (2011).
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Chapter 7
Curves and Surfaces

Overview

In computer graphics, blending curves and surfaces are widely used for both
interpolation and approximation. We have previously seen the application of
Hermite polynomials in vertex blending, and Catmull-Rom splines for keyframe
interpolation. Spline curves and surfaces also find applications in the interactive
design of three-dimensional models.

This chapter gives an overview of polynomial interpolation methods, and the
construction of splines using different types of piecewise cubic polynomial curves.
Design aspects such as local control, flexibility and parametric continuity are
discussed in detail. Surface design techniques using two-dimensional Bezier and
B-spline surface patches are also presented. Extensions of these methods using
rational basis functions are then outlined.

7.1 Polynomial Interpolation

Suppose we are given n points (xi, yi), i D 1 : : : n, on the xy-plane where all xis
are distinct. The polynomial interpolation theorem states that there is a unique
polynomial f (x) of degree n � 1 such that

f .xi / D yi ; i D 1:::n: (7.1)

The above equation shows that the polynomial curve given by y D f (x) passes
through all the n points. Such a curve that passes through all input points is called
an interpolating curve. On the other hand, a curve that passes through only a few of
the input points is called an approximating curve. The Bezier spline (see Box 2.4,
Sect. 2.7) is an example of an approximating curve.

R. Mukundan, Advanced Methods in Computer Graphics: With examples in OpenGL,
DOI 10.1007/978-1-4471-2340-8 7, © Springer-Verlag London Limited 2012
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Fig. 7.1 Polynomial interpolation curves of (a) degree 3, and (b) degree 6

Consider the polynomial of degree n � 1 given by

c1.x/ D .x � x2/.x � x3/:::.x � xn/

.x1 � x2/.x1 � x3/:::.x1 � xn/
(7.2)

The above function attains a value 1 if x D x1, and 0 if x D x2, : : : , xn. We
can therefore combine such polynomials to form the required interpolating
polynomial f (x):

f .x/ D c1.x/y1 C c2.x/y2 C ::: C cn.x/yn (7.3)

The polynomials ci(x) are the Lagrange polynomials of degree n � 1 given by

ci .x/ D
nY

k D 1

k ¤ i

.x � xk/

.xi � xk/
(7.4)

As an example, four points (3, 4), (5, 5), (8, 0), (13, 7) are used to construct
a cubic polynomial curve in Fig. 7.1a. Another interpolating curve through seven
points is shown in Fig. 7.1b.

Interpolation curves of degree higher than three can potentially have large
overshoots (marked ‘A’ in Fig. 7.1b), or undesirable oscillations (marked ‘B’ in
Fig. 7.1b). Such curves, even though they pass through all the user input points, may
not describe the shape represented by those points. Piecewise polynomial curves of
a low degree are therefore commonly used for approximating shapes.

The system of equations in Eq. 7.1 can also be written as a matrix equation
Y D VA:
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2
6666664

y1

y2

:::

yn

3
7777775

D

2
6666664

1 x1 � � � xn�1
1

1 x2 : : : xn�1
2

:::
::: : : :

:::

1 xn : : : xn�1
n

3
7777775

2
6666664

a0

a1

:::

an�1

3
7777775

(7.5)

where the polynomial is assumed to have the form

f .x/ D a0 C a1x C a2x2 C ::: C an�1x
n�1 (7.6)

The coefficients ai of the polynomial can be obtained by taking the matrix
inverse: A D V � 1Y. The n � n matrix V is called the Vandermonde matrix. Since
xis are all distinct, this matrix is invertible.

We now look at a simple and efficient method for evaluating polynomials of the
form in Eq. 7.6. If we use the formula xk D x.xk � 1 to compute the powers of x
for evaluating the terms of the polynomial from left to right, we need to perform
2(n � 1) multiplications and n � 1 additions. The Horner’s method is used to
reduce the number of multiplications by rearranging the polynomial as a nested
set of expressions:

f .x/ D a0 C x.a1 C x.a2 C : : : C x.an�2 C xan�1/ : : :// (7.7)

Each nested sub-expression in the above equation requires one multiplication and
one addition. Evaluating the polynomial from the innermost expression requires a
total of only n � 1 multiplications.

7.2 Cubic Parametric Curves

Cubic polynomials have the advantage that they can be easily evaluated and used to
generate small curve segments of an interpolating spline with sufficient flexibility.
A cubic polynomial curve can meet four constraints simultaneously such as the
requirement to pass through four distinct points, or a requirement to pass through
two points and have user specified tangent directions at those points. Splines
commonly use parametric representations of piecewise cubic curves defined using
three polynomials in a single parameter t:

x.t/ D a0 C a1t C a2t2 C a3t
3

y.t/ D b0 C b1t C b2t
2 C b3t

3

z.t/ D c0 C c1t C c2t
2 C c3t

3 (7.8)
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The above polynomials are called the x-polynomial, y-polynomial and
z-polynomial respectively. The parameter t usually varies from 0 to 1, with
each value of t corresponding to a single point P(t) D (x(t), y(t), z(t)) on the
curve. The polynomials thus define a mapping from an interval in the one-
dimensional parameter space to a set of points in the three-dimensional space.
A common example is where t represents time, and P(t) the position of a moving
point at that instant. The equation for x(t) given above can be re-written as
follows:

x.t/ D �
1 t t2 t3

�

2

664

a0

a1

a2

a3

3

775 D TA (7.9)

The polynomial coefficients ai, bi, ci are computed using a set of control
points and continuity constraints. As an example, consider the requirement that the
cubic curve needs to pass through four distinct points Pi D (xi, yi, zi), i D 1 : : : 4.
If ti denotes the values of the parameter t corresponding to the four control points,
we have

2

6666664

x1

x2

x3

x4

3

7777775
D

2

6666664

1 t1 t2
1 t3

1

1 t2 t2
2 t3

2

1 t3 t2
3 t3

3

1 t4 t2
4 t3

4

3

7777775

2

6666664

a0

a1

a2

a3

3

7777775
(7.10)

This equation is the cubic version of Eq. 7.5. The 4 � 4 Vandermonde matrix is
invertible if all tis are distinct. We write this equation in a concise form as Gx D VA,
or equivalently as A D V � 1Gx, where Gx is a column vector containing only the
x-coordinates of the control points. The inverse V � 1 of the Vandermonde matrix
can be computed as the product UL, where U is the following upper triangular
matrix

U D

2
6666664

1 �t1 t1t2 �t1t2t3

0 1 �.t1 C t2/ t1t2 C t2t3 C t3t1

0 0 1 �.t1 C t2 C t3/

0 0 0 1

3
7777775

(7.11)
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and L is a lower triangular matrix given by

LD
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(7.12)

For example, if the parametric values are equally spaced in the interval [0, 1],
so that t1 D 0, t2 D 1/3, t3 D 2/3, t4 D 1, then we have the following values for
V and V � 1:
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� �
27
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� �
9

2

�

3
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(7.13)

From Eq. 7.9, we now have

x.t/ D TV�1 Gx (7.14)

The product TV � 1 is a row vector containing four functions of the parameter t.
Thus the above equation can be rewritten as

x.t/ D Œf1.t/; f2.t/; f3.t/; f4.t/�Gx (7.15)
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Fig. 7.2 Piecewise cubic interpolation polynomials constructed using groups of four points

For the example in Eq. 7.13, we have
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�
t C 9t2 �

�
9

2

�
t3
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t C 18t2 �

�
27

2

�
t3

f4.t/ D t �
�

9

2

�
t2 C

�
9

2

�
t3 (7.16)

The functions fi(t) are called blending polynomials. Note that the sum of the
above functions is 1 for all values of t. Generalising Eq. 7.15, and since the blending
polynomials are common for x, y, and z axes, we find that

P.t/ D Œf1.t/; f2.t/; f3.t/; f4.t/�

2
664

P1

P2

P 3

P4

3
775 (7.17)

We can thus write the parametric equation for the cubic curve as a combination
of the control points:

P.t/ D f1.t/P1 C f2.t/P2 C f3.t/P3 C f4.t/P4; 0 � t � 1: (7.18)

Figure 7.2 shows a set of points joined together using piecewise cubic polynomial
curves through groups of four points, constructed using the above equation. Each
cubic polynomial curve is called a segment.

The matrix V � 1 is sometimes denoted by M, and referred to as the basis matrix.
With this notation, the blending functions and the basis matrix are related as follows:

Œf1.t/; f2.t/; f3.t/; f4.t/� D TM (7.19)
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The points where the polynomial curves meet are called knots. It is often
desirable to have tangential and higher order continuity at the knots. Such curves
are called splines. In the next section, we discuss different orders of continuity
constraints that can be used in the design of interpolating curves and surfaces.

7.3 Parametric Continuity

In the previous section we saw an example (Fig. 7.2) of a set of piecewise cubic
curves joined together to form a single “continuous” curve. Clearly we require
higher levels of continuity at the points where two curves meet, in order to get a
smooth transition from one polynomial curve on to another.

A parametric curve defined using cubic polynomials as in Eq. 7.8 has the property
that the first and second order derivatives exist and are continuous over the interval
in which the curve is defined. Two parametric curves PA(t) D (xA(t), yA(t), zA(t)) and
PB(t) D (xB(t), yB(t), zB(t)) are said to have C0 continuity if they meet at a common
point M (Fig. 7.3). That is, there exits valid parametric values t1, t2 such that

M D .xA.t1/; yA.t1/; zA.t1// D .xB.t2/; yB.t2/; zB.t2// (7.20)

If the tangents to the two curves at M also coincide, then the curves have
C1 continuity. The tangent direction at M is obtained by differentiating the cubic
polynomials with respect to t, and substituting the parametric value for the knot M.
We use the following notation for the derivatives of the x-polynomial in Eq. 7.8:

xA
0.t1/ D

�
dxA.t/

dt

�

tDt1

D a1 C 2a2t1 C 3a3t1
2

xA
00.t1/ D

�
d 2xA.t/

dt2

�

tDt1

D 2a2 C 6a3t1 (7.21)

with similar notations for the y-polynomial and the z-polynomial. The vector (xA
0(t),

yA
0(t), zA

0(t)) gives the tangent direction on the curve A at point P(t). If t denotes
time, then this vector represents the velocity of the point P as it moves along the
curve A. C1 continuity implies that the velocity of P considered as a point on
the curve A at the knot M is the same as its velocity when considered as a point
on the curve B:

.xA
0.t1/; yA

0.t1/; zA
0.t1// D .xB

0.t2/; yB
0.t2/; zB

0.t2// (7.22)

If two curves are joined with C1 continuity, the point P(t) will have at most finite
acceleration as it crosses the knot M. Second order continuity denoted by C2 requires
that the second derivatives of both curves at M are equal. That is,

.xA
00.t1/; yA

00.t1/; zA
00.t1// D .xB

00.t2/; yB
00.t2/; zB

00.t2// (7.23)
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Fig. 7.3 Examples of piecewise cubic curves with different orders of parametric and geometric
continuity

The above vectors represent the curvature at M, or equivalently acceleration
of the point P(t) if t denotes time. The continuity constraints discussed above
are often relaxed to just smoothness constraints that define only the important
shape characteristics used for constructing splines. For example, the requirement in
Eq. 7.22 to have the same tangent vector for both curves at the joint can be relaxed
to the condition that the tangent vectors are just parallel, with possibly unequal
magnitudes. The modified constraint can be written as

.xA
0.t1/; yA

0.t1/; zA
0.t1// D ˇ.xB

0.t2/; yB
0.t2/; zB

0.t2// (7.24)

for some constant ˇ. Two curves satisfying the above equation are said to have
a geometric continuity G1 at the common point M. Note that we can always
re-parameterize the curve A by substituting t D ˇu in its equation, and the resultant
tangent vectors at M would still be equal, satisfying the C1 continuity constraint.
The geometric continuity G2 is also similarly defined by introducing a constant
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of proportionality in Eq. 7.23. The difference between parametric and geometric
continuity is illustrated through an example in Fig. 7.3.

In column (a) of Fig. 7.3, the curves A and B meet at M with C0 continuity.
The first and the second derivatives of the curves do not meet at the corresponding
point. Column (b) shows the curves with C1 continuity at M where the tangent
vectors are equal. Correspondingly, the first derivatives of the curves meet at a point.
The curves formed using second derivatives are discontinuous. Column (c) shows
the curves with G1 continuity where the tangent vectors at M are only parallel but
unequal in magnitude. The first derivatives of the curves therefore do not meet at
the corresponding point. In column (d), the curves meet with C2 continuity at M.
In this case, the first derivatives meet at a common point with C1 continuity. The
second derivatives of the curves also meet with C0 continuity. Note that the second
derivatives of cubic polynomial curves are always straight lines.

7.4 Hermite Splines

Hermite splines are cubic polynomial interpolation curves passing through two
control points P1 D (x1, y1, z1) and P2 D (x2, y2, z2), with the additional requirement
that the curve is tangential to the specified directions at the two end points (Fig. 7.4).

In Fig. 7.4a, the required tangent directions at the end points are denoted by
m1 and m2 with components (x1

0, y1
0, z1

0) and (x2
0, y2

0, z2
0) respectively. For the

interpolating curve, we use the parametric equation given in Eq. 7.8. The control
point P1 corresponds to the parameter value of 0, and P2 corresponds to t D 1. The
tangent vector components at t are given by

x0.t/ D a1 C 2a2t C 3a3t
2

y0.t/ D b1 C 2b2t C 3b3t
2

z0.t/ D c1 C 2c2t C 3c3t
2 (7.25)

P1

P2

m1

m2

t = 1

t = 0

a = 10

a = 5

a = 3

a = 1

a b

Fig. 7.4 Hermite polynomial
interpolation
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Similar to Eq. 7.10, we can now write an equation using position coordinates and
tangent vector components:

2
666664

x1

x2

x0
1

x0
2

3
777775

D

2
666664

1 t1 t2
1 t3

1

1 t2 t2
2 t3

2

0 1 2t1 3t2
1

0 1 2t2 3t2
2

3
777775

2
666664

a0

a1

a2

a3

3
777775

(7.26)

Substituting the parameter values for the end points in the above equation,
we have

2
666664

x1

x2

x0
1

x0
2

3
777775

D

2
666664

1 0 0 0

1 1 1 1

0 1 0 0

0 1 2 3

3
777775

2
666664

a0

a1

a2

a3

3
777775

(7.27)

The basis matrix for Hermite polynomial interpolation is the inverse of the
4 � 4 matrix in the above equation, and is given by

MH D

2
664

1 0 0 0

0 0 1 0

�3 3 �2 �1

2 �2 1 1

3
775 (7.28)

Pre-multiplying the above matrix by T D [1, t, t2, t3], we get the blending
functions fi(t) (see Eq. 7.19):

f1.t/ D 1 � 3t2 C 2t3

f2.t/ D 3t2 � 2t3

f3.t/ D t � 2t2 C t3

f4.t/ D � t2 C t3 (7.29)

From the above expressions, we get the parametric equation for the Hermite
polynomial curve:

P.t/D.1 � 3t2 C 2t3/ P1 C .3t2 � 2t3/ P2 C .t � 2t2 C t3/ m1

C .�t2 C t3/m2; .0 � t � 1/: (7.30)
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Fig. 7.5 Hermite interpolation spline

The tangent vectors m1 and m2 can have arbitrary magnitude if we require only
G1 continuity at the end points when two curves are joined together. Increasing
the magnitude causes the curve to align closer to the tangent direction. A scale
parameter ˛ > 0 for the tangents is introduced into this equation to control the shape
of the cubic curve:

P.t/ D.1 � 3t2 C 2t3/P1 C .3t2 � 2t3/P2 C .t � 2t2 C t3/˛m1

C .�t2 C t3/˛m2 (7.31)

˛ is sometimes referred to as the tension parameter of the curve. An example
with four different values of ˛ is shown in Fig. 7.4b. Note that when ˛ D 0, the
above equation represents a linear interpolation between P1 and P2.

Given n points (n > 2), we can develop an interpolating spline that passes through
all the points by constructing Hermite cubic curves for every consecutive pair of
points. The tangent direction at each knot must be carefully specified by the user in
such a way that it corresponds to the tangents to curves on both sides of the knot.

In Fig. 7.5, piecewise Hermite polynomial curves are fitted through a set of
points. The points are the same as the knots of the interpolation curve shown in
Fig. 7.2. The common tangent vectors are all defined as parallel to negative y-axis.

7.5 Cardinal Splines

A cardinal spline is a smooth piecewise cubic polynomial curve that passes through
every point except the first and the last in a given set of control points, maintaining
first-order continuity at every point. A cardinal spline works very much like a
Hermite spline with the exception that the tangent directions are not specified by
the user but derived from the control points themselves.

Consider a set of four control points P0, P1, P2, P3 as shown in Fig. 7.6. The
tangent at P1 is specified in the direction of the vector P2 � P0, and the tangent at P2

in the direction of the vector P3 � P1. We can now use Eq. 7.31 with m1 D P2 � P0,
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P0 P0

P1 P1
P2 P2

P3 P3

m1 = (P2−P0)

m2 = (P3−P1)

a b

Fig. 7.6 A cardinal spline definition using four points

and m2 D P3 � P1 to generate a Hermite cubic polynomial curve between P1 and
P2. The scaling parameter ˛ controls the tension of the curve. Without any reference
to the tangent directions, the curve’s equation can be rewritten as a function of the
control points alone as below.

P.t/ D .�t C 2t2 � t3/˛P0 C .1 C .˛ � 3/t2 C .2 � ˛/t3/P1

C.˛t C .3 � 2˛/t2 C .˛ � 2/t3/P2 C .�t2 C t3/˛P3 (7.32)

Writing the coefficients of 1, t, t2, t3 of each blending function in the above
equation as columns of a 4 � 4 matrix, we obtain the basis matrix for cardinal
splines:

Mc D

2

664

0 1 0 0

�˛ 0 ˛ 0

2˛ ˛ � 3 3 � 2˛ �˛

�˛ 2 � ˛ ˛ � 2 ˛

3

775 ; ˛ > 0: (7.33)

Given a set of n C 2 control points fP0, P1, : : : , Pn, PnC1g, n > 1, we can fit
a cubic curve with the above basis matrix to every pair of consecutive control
points (Pk, PkC1), 1 � k < n, with tangent vectors defined as mk D PkC1 � Pk � 1,
and mkC1 D PkC2 � Pk. In other words we need to process overlapping blocks of
four control points [Pk � 1, Pk, PkC1, PkC2], with only the middle two points used
for interpolation at a time.

When ˛ D 0.5, we get a special case of cardinal splines called Catmull-Rom
splines. It directly follows from Eq. 7.33 that Catmull-Rom splines are given by the
parametric equation:

P.t/ D �
1 t t2 t3

�

2

664

0 1 0 0

�0:5 0 0:5 0

1 �2:5 2 �0:5

�0:5 1:5 �1:5 0:5

3

775

2

664

P0

P1

P 2

P3

3

775 (7.34)
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Fig. 7.7 A Catmull-Rom spline through a set of control points

Figure 7.7 shows a Catmull-Rom spline generated using a set of control points.
Compare this figure with the piecewise cubic spline in Fig. 7.2 where the same set
of control points was used.

7.6 Bezier Curves

Bezier splines are approximating curves generated using Bernstein polynomials as
the blending functions (see Box 2.4, Sect. 2.7). Denoting n C 1 control points by
P1 : : : PnC1, the parametric representation of the nth degree Bezier curve is given by

P.t/ D
nX

iD0

ˇi;n.t/PiC1: (7.35)

where, ˇi,n(t) denotes Bernstein polynomials of degree n. Since Bernstein polyno-
mials always yield non-negative values for 0 � t � 1, and form a partition of unity,
every point on a Bezier curve is a convex combination of the control points. In
this section, we discuss the construction of piecewise cubic splines using Bezier
curves, and outline an important algorithm that will be later extended to develop the
framework for B-splines.

7.6.1 Cubic Bezier Splines

The parametric equation of the cubic Bezier curve is given by

P.t/ D.1 � t/3P1 C 3t.1 � t/2P2 C 3t2.1 � t/P3 C t3P4; 0 � t � 1:

D.1 � 3t C 3t2 � t3/P1 C .3t � 6t2 C 3t3/P2 C .3t2 � 3t3/P3 C t3P4

(7.36)
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Fig. 7.8 Cubic Bezier curves

where P1 : : : P4 are the control points. The Bezier spline interpolates between the
first and the last control points. The two middle control points are used to define the
tangent directions at the end points. In the matrix form, the cubic Bezier curve is
given as

P.t/ D �
1 t t2 t3

�

2

664

1 0 0 0

�3 3 0 0

3 �6 3 0

�1 3 �3 1

3

775

2

664

P1

P2

P 3

P4

3

775 (7.37)

Differentiating Eq. 7.36 with respect to t, we get the tangent directions on the
Bezier curve:

P 0.t/ D .�3 C 6t � 3t2/P1 C .3 � 12t C 9t2/ P2 C .6t � 9t2/P3 C 3t2P4

(7.38)

From the above equation, the tangent directions at P1 and P4 are obtained as
follows:

P 0.0/ D 3.P2 � P1/

P 0.1/ D 3.P4 � P3/ (7.39)

The control points and the tangent directions are shown in Fig. 7.8a. Clearly,
the Bezier cubic curve is a special case of the Hermite polynomial curve where
m1 D 3(P2 � P1) and m2 D 3(P4 � P3). The following equation relates the input
vector [P1, P2, m1, m2] of a Hermite curve as given in Eq. 7.30, with the
input vector [P1, P2, P3, P4] of the Bezier curve, so that the resulting splines
coincide.
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Fig. 7.9 A Bezier spline passing through a set of control points

2

664

P1

P2

m1

m2

3

775

Hermite

D

2

664

1 0 0 0

0 0 0 1

�3 3 0 0

0 0 �3 3

3

775

2

664

P1

P2

P3

P4

3

775

Bezier

(7.40)

Given a set of n control points P1, : : : Pn, the Bezier spline consisting of piecewise
cubic polynomial curves can be made to pass through the first and every fourth
point P3kC1, k D 0, 1, 2 : : : . The remaining points are used for specifying tangent
directions. For G1 continuity of the spline, we need to make sure that the three
points P3k, P3kC1, P3kC2 are collinear for k D 1, 2, : : : . An example of a piecewise
cubic Bezier spline satisfying this condition is shown in Fig. 7.9. The knot positions
are the same as those used earlier in Figs. 7.2 and 7.5.

Bezier splines are widely used in computer graphics and therefore graphics
packages commonly support methods for creating Bezier curves of different orders.
We could also make use of the functionality provided by such libraries for
generating other types of splines (Hermite, Catmull-Rom etc.), if we can compute
the Bezier equivalent set of control points for the required spline. As an example,
by computing the inverse of the 4 � 4 matrix in Eq. 7.40, we can obtain the Bezier
control points for the required Hermite curve as follows:

2
664

P1

P2

P3

P4

3
775

Bezier

D

2
664

1 0 0 0

1 0
�

1
3

�
0

0 1 0 � �
1
3

�

0 1 0 0

3
775

2
664

P1

P2

m1

m2

3
775

Hermite

(7.41)

In a general case, we express the parametric curve P(t) in terms of the required
spline’s basis (denoted by MS) as well as the Bezier basis as

P.t/ D TMBez

2

664

P1

P2

P3

P4

3

775

Bezier

D TMS

2

664

P1

P2

P3

P4

3

775

S

(7.42)
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from which we obtain

2

664

P1

P2

P3

P4

3

775

Bezier

D M�1
BezMS

2

664

P1

P2

P3

P4

3

775

S

(7.43)

where

M�1
Bez D

2

664

1 0 0 0

1
�

1
3

�
0 0

1
�

2
3

� �
1
3

�
0

1 1 1 1

3

775 (7.44)

The above matrix is the inverse of the 4 � 4 matrix in Eq. 7.37.

7.6.2 de-Casteljau’s Algorithm

The de-Casteljau’s algorithm provides an alternative representation of a Bezier
curve in terms of a combination of linear interpolation functions. Given three control
points P1, P2, P3, we can construct parametric equations of two straight lines

P11.t/ D .1 � t/P1 C tP2

P21.t/ D .1 � t/P2 C tP3 (7.45)

For each parameter value t 2 [0, 1], the above equations give two points. We now
further interpolate between these two points using the same parameter value:

P.t/ D .1 � t/P11 C tP21 (7.46)

The resulting point will lie on the quadratic Bezier curve generated using the
control points P1, P2 and P3. This can be easily proved by substituting for P11 and
P21 from Eq. 7.45 in the above equation:

P.t/ D.1 � t/f.1 � t/P1 C tP2g C tf.1 � t/P2 C tP3g
D.1 � t/2P1 C 2t.1 � t/P2 C t2P3 (7.47)

Figure 7.10 shows the geometrical interpretation of the above equation. Using
the same method, we can obtain the cubic Bezier curve from four control points
(Fig. 7.8b). Using a parameter value in the range [0, 1], we interpolate between
consecutive pairs of control points to get three points, further interpolate between
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P3 P3

P11 P21
(t= 0.4)

P(t)
(t= 0.4)

(t= 0.4)

P1

P2

Fig. 7.10 Interpolation between three control points using de-Casteljau’s algorithm
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t t t

t t

t

P12

P11

P1 P2 P3 P4

P21 P31

P22

Fig. 7.11 Iteration sequence for de-Casteljau’s algorithm with four control points

them to get two points, and again interpolate between the two points to get a single
point on the cubic curve. This interpolation sequence is shown in Fig. 7.11. The
whole process is repeated for the next parameter value.

The de-Casteljau’s algorithm for a general n � 1 degree Bezier curve with control
points P1 : : : Pn can be written as follows:

Pk;d .t/ D .1 � t/Pk;d �1.t/ C tPkC1;d �1.t/ 0 � t � 1; k D 1::n � d:

Pk;0.t/ D Pk; k D 1::n:

P.t/ D P1;n�1: (7.48)

For the above iteration, the index d is varied from 1 to n � 1, and for each d the
index k is varied from 1 to n � d. After each level of iteration (see Fig. 7.11), the
number of points reduces by one. At level n � 1, we get a single point P1,n � 1 which
lies on the Bezier curve P(t) of degree n � 1.
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Fig. 7.12 (a) Effect of varying homogeneous coordinates on Bezier curve. (b) Conic sections
formed using rational Bezier curves

7.6.3 Rational Bezier Curves

Rational Bezier curves are formed using control points specified in homogeneous
coordinates. A three-dimensional point P D (x, y, z) has an equivalent homogeneous
representation (xh, yh, zh, h), h ¤ 0 (see Box 2.1). The Bezier curve equation in
Eq. 7.35 is applied to each of the components, and correspondingly every point P(t)
also gets a fourth component. The x, y, and z coordinates of P(t) are divided by
its fourth component to get the Cartesian coordinates. The additional parameter h
acts as a weight that can be adjusted to change the shape of the curve. An example
showing the variation of a cubic curve’s shape for three equivalent representations of
the control point P3 is given in Fig. 7.12a. In this 2-D example, the third component
is the homogeneous coordinate h.

The homogeneous coordinate system also allows the representation of points at
infinity, by setting the last component to zero. Defining a control point at infinity
causes the control polygonal line to have disjoint and parallel edges. This feature is
useful for the generation of conic sections using Bezier curves. Figure 7.12b shows
a semi-circular arc and a semi-ellipsoidal arc formed using quadratic Bezier curves.
Among the three control points P1, P2, P3, the point P2 is at infinity along the C y
direction. The control polygonal line therefore degenerates into two parallel vertical
lines meeting at P2.

7.7 Polynomial Interpolants

The parametric curves introduced in previous sections were all based on piecewise
cubic polynomials and the points on each segment were generated by varying
the parameter t from 0 to 1. In this section, we will develop the framework of a
more general class of interpolating splines where t can have an arbitrary range.
First, we consider interpolating polynomials of degree one, two and three, and then
generalize our results to an n � 1 degree polynomial passing through n control
points. The ability to specify parameter values at control points provides added
flexibility to the design of splines.
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Given two points P1 D (x1, y1, z1), P2 D (x2, y2, z2), and two values t1, t2 of the
parameter t such that t1 < t2, the linear equation of the interpolating line between the
points can be written as

P11.t/ D t2 � t

t2 � t1
P1 C t � t1

t2 � t1
P2; t1 � t < t2 (7.49)

We denote the above polynomial as g1(P1, P2; t1, t2; t) with the control points and
parameter values included in the function argument. The suffix of g indicates the
degree of the polynomial. The first suffix of P11(t) indicates the starting point on the
spline (P1), and the second suffix the degree of the polynomial. Using this notation,
the point P1 itself can be represented as P10 or a polynomial g0(P1; t1; t). If we now
add a third point P3 to the set of control points, with an associated parameter t3
(t1 < t2 < t3), we can construct a quadratic curve that passes through the three points
as follows: Similar to the previous equation, we first perform a linear interpolation
between P2 and P3:

g1.P2; P3I t2; t3I t/ D P21.t/ D t3 � t

t3 � t2
P2 C t � t2

t3 � t2
P3; t2 � t < t3 (7.50)

Then we combine the points P11(t) and P21(t) using a third interpolation formula
with t varying from t1 to t3:

P12.t/ D t3 � t

t3 � t1
P11 C t � t1

t3 � t1
P21; t1 � t < t3 (7.51)

Substituting the expressions for P11 and P21 in the above equation, we get a
quadratic polynomial which we denote as g2(P1, P2, P3; t1, t2, t3; t):

g2 .P1; P2; P3I t1; t2; t3I t/ D P12.t/; t1 � t < t3

D .t2 � t/ .t3 � t /

.t2 � t1/ .t3 � t1/
P1 C .t1 � t/ .t3 � t /

.t1 � t2/ .t3 � t2/
P2 C .t1 � t/ .t2 � t /

.t1 � t3/ .t2 � t3/
P3

(7.52)

Note that the above algorithm is a generalized version of the de-Casteljau’s
method outlined in the previous section. For Bezier curves, we used only values
between 0 and 1. In the above equation, however, the parameter is allowed to vary
over the range [t1, t3), which is the union of the two intervals [t1, t2) and [t2, t3) that
were used to generate the line segments. Since the intervals are disjoint, this would
mean that any value of the parameter will always be outside the range of one of the
intervals. This situation is shown in Fig. 7.13. Compare this process with that shown
in Fig. 7.10, where the parameter value is restricted to the range [0, 1] along each
interpolated direction.

Figure 7.14 shows three quadratic splines generated using Eq. 7.52, all with the
same set of control points P1 D (1, 4), P2 D (3, 1), P3 D (6, 2). For the first curve (a),
the parametric values used were t1 D 2, t2 D 5, and t3 D 8. Since the spacing of
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Fig. 7.13 A quadratic interpolating polynomial curve passing through three control points
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Fig. 7.14 Quadratic polynomial splines for different parameter values, but with the same control
points

values was uniform, the curve also has a nearly uniform tension across the points. In
the second figure (b), the parameters were changed to t1 D 2, t2 D 3, and t3 D 8. The
reduced spacing between t1 and t2 is seen as a higher tension of the curve between
P1 and P2, closely approximating a straight line. Similarly, in the third figure (c),
we reduced the spacing between t2 and t3 by choosing t1 D 2, t2 D 6.5, and t3 D 8.

The process outlined above can be extended to a larger set of n control
points P1 : : : Pn and n parameter values t1 : : : tn (t1 < t2 < : : : < tn). We start by
combining every consecutive pair of control points as shown in Eq. 7.49, to form
linear equations P11, P21, : : : Pn � 1,1. We then combine consecutive pairs of these
polynomials as in Eq. 7.51 to form quadratic polynomials P12, P22, : : : Pn � 2,2. This
process is iteratively continued till we get the polynomial P1,n � 1 of degree n � 1.
By evaluating this polynomial by varying t from t1 to tn, we get the coordinates
of points along the spline that passes through all the control points. The iterative
procedure for four control points is illustrated in Fig. 7.15.

Note that Pk,d(t) denotes a polynomial of degree d. There are n � d polynomials
of degree d on level d (Fig. 7.15). The polynomial Pk,d(t) is formed by combining
two polynomials from the previous level.
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Fig. 7.15 Computation of a third degree interpolating spline using four control points

Pk;d .t/ D tkCd � t

tkCd � tk
Pk;d�1 C t � tk

tkCd � tk
PkC1;d�1; tk � t < tkCd (7.53)

For the above iteration, d varies from 0 to n � 1, and for each d, k varies from 1
to n � d. The initial conditions are set as

Pk;0 D Pk; k D 1 : : : n: (7.54)

The n � 1 degree parametric curve generated as above passes through all control
points. Being a polynomial, it is differentiable up to order n � 1, and therefore has
Cn � 1 continuity at all points. However, the curve does not lie within the convex
hull of the control points, as clearly seen from Fig. 7.14. In the next section, we
introduce a popular approximating spline called B-spline, that satisfies the convex
hull property, but does not pass through all control points.

7.8 B-Splines

In Fig. 7.14 we observed that interpolating polynomial curves of degree d use a
union of parameter intervals used by the component polynomials of degree d � 1,
causing points to fall outside the convex hull of the control points. Basis splines or
B-splines are commonly used in CAD systems to create approximating splines that
are entirely contained in the convex hull of the control points. In addition, B-splines
of degree d provide Cd � 1 continuity at the knots.
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t1 t2 t3 t4

B1,0(t) B2,0(t) B3,0(t)

Fig. 7.16 Plot of Bi,o(t)

7.8.1 Basis Functions

B-splines are polynomials defined in the parameter space, where a sequence ftig,
i D 1, : : : m, of non-decreasing values (i.e., t1 � t2 � : : : � tm) of a parameter t are
given. The list of parameter values is called a knot vector. B-splines are used as
basis functions to combine a given set of control points to form an approximating
spline. First, we will look at some important characteristics of B-splines. B-splines
of the lowest degree are constant step functions defined using two parameter values
as below.

Bi;0.t/ D
(

1; if ti � t < tiC1

0; otherwise:
(7.55)

The plot of Bi,0(t) for the knot vector f3, 5, 9,10g is shown in Fig. 7.16.
The second subscript d of the B-spline Bi,d (t) denotes the degree of the

polynomial. Basis polynomials of degree 1 and higher are defined using the
following Cox de Boor recurrence formula:

Bi;d .t/ D t � ti

tiCd � ti
Bi;d�1.t/ C tiCdC1 � t

tiCdC1 � tiC1

BiC1;d�1.t/; ti � t � tiCdC1

(7.56)

To avoid division by zero, the conditions when tiCd D ti and tiCdC1 D tiC1 are
considered separately as follows:

Bi;d .t/D tiCdC1 � t

tiCdC1 � tiC1

BiC1;d�1.t/; if ti D tiCd

D t � ti

tiCd � ti
Bi;d�1.t/; if tiC1 D tiCdC1 (7.57)
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Fig. 7.17 Plot of Bi,1(t)

The above conditions do not arise in uniform B-splines where the knots are all
equally spaced. From Eq. 7.56, we obtain the definition of first degree basis splines
as follows:

Bi;1.t/ D

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

�
t � ti

tiC1 � ti

�
; if ti � t < tiC1

�
tiC2 � t

tiC2 � tiC1

�
; if tiC1 � t < tiC2

0; otherwise:

(7.58)

Note that Bi,1(t) requires three knot values for each i, and is non-zero only in the
interval [ti, tiC2). A plot of B-splines of degree one with the knot vector f3, 5, 9, 10g
is shown in Fig. 7.17.

From Eq. 7.56, we get the following equation for second degree B-splines:

Bi;2.t/ D t � ti

tiC2 � ti
Bi;1.t/ C tiC3 � t

tiC3 � tiC1

BiC1;1.t/ (7.59)

Substituting the values from Eq. 7.58 into the above equation, and taking into
account the intervals where Bi,1(t) and BiC1,1(t) are non-zero, we get

Bi;2.t/ D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
:

.t � ti /
2

.tiC2 � ti /.tiC1 � ti /
; if ti � t < tiC1

.t � ti /.tiC2 � t/

.tiC2 � ti /.tiC2 � tiC1/
C .t � tiC1/.tiC3 � t/

.tiC3 � tiC1/.tiC2 � tiC1/
; if tiC1 � t < tiC2

.tiC3 � t/2

.tiC3 � tiC1/.tiC3 � tiC2/
; if tiC2 � t < tiC3

0; otherwise:

(7.60)

The three non-zero sections of B1,2(t) as defined above, are shown in Fig. 7.18.
The knot vector used for generating this figure is again f3, 5, 9, 10g.
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B1,2(t)
(t2 ≤ t < t3)

B1,2(t)
(t3 ≤ t < t4)

B1,2(t)
(t1 ≤ t <t2)

t1 t2 t3 t4

Fig. 7.18 Plot of Bi,2(t)
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Fig. 7.19 Recursive computation of B1,4(t) in terms of B-splines of lower degrees

In general, a B-spline Bi,d of degree d is defined using a non-decreasing sequence
of d C 2 knots fti, tiC1, : : : , tiCdC1g and is non-zero only in the interval [ti, tiCdC1).
The interval in which a function is non-zero is called its support. The diagram in
Fig. 7.19 shows the recursive computation of Bi,4(t), and also the support of every
intermediate polynomial that is evaluated. Comparing this diagram with Fig. 7.15,
we see that the computations performed are very similar to those used by polynomial
interpolants.
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P1

P2

P3

P4

P5

P6

P7

P8

Fig. 7.20 Effect of movement of a control point on the approximating curve

7.8.2 Approximating Curves

We shall now look at ways of constructing approximating curves using a set of n
control points P1 : : : Pn, and B-splines as the blending functions. Since the curve is
not required to pass through all control points, we have a selection of polynomials
of different degrees for blending functions. A parametric curve of degree d can be
formed using n B-splines of degree d as follows:

P.t/ D
nX

iD1

Pi Bi:d .t/; tdC1 � t � tnC1 (7.61)

As seen earlier, the B-spline Bi,d(t) requires a knot vector consisting of a non-
decreasing sequence of d C 2 knots fti, tiC1, : : : , tiCdC1g. Therefore, the summation
in Eq. 7.61 requires n C d C 1 knots ft1, t2, : : : , tnCdC1g. Note that the parametric
curve is generated by varying t within the closed subinterval [tdC1, tnC1] only, even
though other knot values outside this range may be required for computing the
polynomial values. The end point of the parametric curve t D tnC1 is a special point
in the sense that the definition of Bn,0(t) is modified to accommodate the point as
follows:

Bn;0.tnC1/ D 1: (7.62)

The values of the knots can be adjusted while maintaining the non-decreasing
order, to make fine local changes to the shape of the resulting curve. Another
advantage of using B-splines as blending functions is that due to their local support,
changes made to a control point will affect the curve only in the neighbourhood of
the point. As an example, consider the situation when the control point P5 is changed
in Eq. 7.61. Since P5 is multiplied by B5,d which is zero outside the interval [t5,
t6Cd), any change in the position of P5 will not affect the curve outside this interval.
This property is depicted in Fig. 7.20, where a second degree approximating curve
is generated using eight control points, and the position of P5 is shifted vertically
downward by a small distance. The corresponding localized shift in the curve can
be clearly observed in the figure.
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P1 (2, 1)

P2 (1, 4)

P3 (5, 5)

P4 (7, 1)

P5 (10, 5)

t3

t4

t6t5

Fig. 7.21 A second degree approximating curve through five control points

We shall now look at the geometrical characteristics of shapes and the effects
produced by varying knot positions. Given two points P1 and P2, and setting d D 1,
Eq. 7.61 gives the following equation for the interpolating line:

P.t/ D
�

t � t1

t2 � t1
B1;0.t/ C t3 � t

t3 � t2
B2;0.t/

�
P1

C
�

t � t2

t3 � t2
B2;0.t/ C t4 � t

t4 � t3
B3;0.t/

�
P2 (7.63)

Note that the parameter t varies from t2 to t3 only (see Eq. 7.61). Therefore,
the first term containing B1,0(t) and the last term containing B3,0(t) vanish from the
above equation, and B2,0(t) D 1. Thus we get the desired equation of the straight line
connecting the two points:

P.t/ D t3 � t

t3 � t2
P1 C t � t2

t3 � t2
P2 (7.64)

In this case, the knots t2, t3 do not affect the shape of the parametric line. We
shall now consider another example with five control points P1 : : : P5 on a two-
dimensional plane as shown in Fig. 7.21, and an approximating spline generated
using second degree B-splines. Since we require a knot vector containing eight
values, let us choose a uniformly spaced knot vector f10, 20, : : : , 80g. The
parameter interval for the curve is [t3, t6] (see Eq. 7.61). The points where the
parameter t attains the knot values on the curve are also indicated in the figure.
These points are called knot points. Knot t2 is required for computing B1,2, and t7 is
needed for B5,2. The remaining knots t1 and t8 do not affect the shape of the curve.

A knot can be repeated multiple times in a knot vector. In the above example,
the curve does not pass through the first and the last control points. However, for a
closer approximation of the control polygonal line, it is often required to have the
curve pass through the end points, and also have the corresponding line segments
tangential to the curve. We saw earlier that Bezier curves satisfy this requirement. If
the first and the last knots have multiplicity d C 1, then the approximating curve of
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t1 =  t2 =  t3=  . . . .  =td+1      td+2   . . . .   tn tn+1 =   . . . . = tn+d = tn+d+1

Parameter range of curve

Internal knots

Fig. 7.22 Clamped knot vector

P1

P2

P3

P4

P5

t1=t2=t3

t6=t7=t8

t4

t5

Fig. 7.23 A second degree curve generated using a clamped knot vector. Compare this with the
curve in Fig. 7.21

degree d generated using B-splines also meets this requirement. The knot vector of
such a curve is said to be clamped (Fig. 7.22).

If the knots have values in the range [0, 1], then the first d C 1 values are usually
clamped to 0, and the last d C 1 values to 1. If the knot vector is clamped, it can be
easily verified that

B1;d .tdC1/ D B2;d�1.tdC1/ D : : : D BdC1;0.tdC1/ D 1 (7.65)

and hence P(tdC1) D P1. Similarly, making use of the special condition in Eq. 7.62
we can show that P(tnC1) D Pn. The curve therefore passes through the first and the
last control points. Figure 7.23 shows the modified version of the curve in Fig. 7.21,
generated using the clamped knot vector f30, 30, 30, 40, 50, 60, 60, 60g.

As the degree d of the curve is increased, it tends to move further away from
the control points. However, the curve always remains within the convex hull of the
control points. Figure 7.24 gives an example with eight control points and clamped
knot vectors for three different values of d. As d is increased, the number of internal
knots (n � d � 1) in the clamped knot vector reduces, and eventually becomes zero
when d D n � 1. At this point, the B-spline curve degenerates into a Bezier curve.
Specifically, a B-spline curve of degree d with d C 1 control points and 2(d C 1)
knots is actually a Bezier curve of degree d if the knot vector is clamped such that

ti D 0; if 1 � i � d C 1

D 1; if d C 2 � i � 2.d C 1/ (7.66)
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Fig. 7.24 Approximating curves of different degrees for the same set of control points

If a knot ti is repeated k times in the knot vector, then a spline function P(t) of
degree d has continuous derivatives up to order d � m at ti. Thus if an internal knot
has multiplicity d, then the curve will only have C0 continuity at that knot value. If
none of the knots has multiplicity greater than one, the curve has Cd � 1 continuity at
all points. This property and other features of B-spline curves such as local control,
convex hull property and affine invariance make them suitable for a wide range of
applications in computer graphics.

7.8.3 NURBS

Similar to rational Bezier curves (Sect. 7.6.3), the control points for a B-spline
curve can be expressed in the homogeneous coordinate system, each containing
an additional scale factor h. This modification causes the approximating curve’s
equation to have a rational form. Further, if the knot vector does not contain
uniformly spaced values, then we have a Non-Uniform Rational Basis Spline,
or NURBS, as it is commonly known in computer graphics literature. In the
homogeneous coordinate space, control points Pi D (xi, yi, zi) can be expressed
as (xihi, yihi, zihi, hi), hi ¤ 0. The term hi acts as a scalar weight for each point,
providing an extra level of control over the shape of the spline curve. The parametric
equation of the spline curve in Eq. 7.61 now becomes

P.t/ D

nP
iD1

hi Pi Bi:d .t/

nP
iD1

hi Bi:d .t/

; tdC1 � t � tnC1 (7.67)

If the knot vector is clamped as given in Eq. 7.66, then the above equation
yields a rational Bezier curve. As an example, a circular arc that subtends an angle
2� at the centre can be generated by representing the middle control point P2 in
homogeneous coordinates with h D cos� . Suppose we require an arc between two
points P1 D (1, 0) and P3 D (3, 0), so that the subtended angle is 60ı (� D 30ı). The
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P1
(1, 0, 1)

P3
(3, 0, 1)

P2 (1.732, 0.5, 0.866)

q

q

a b

Fig. 7.25 Generation of circular arcs using NURBS

Fig. 7.26 The surface of a
light bulb modelled by
revolving a B-spline curve
about the y-axis

second control point P2 must be at the position where the two tangents to the curve
meet. Therefore, in this case, P2 D (2, tan�). The NURBS curve in Fig. 7.25a is
generated by specifying the control points in homogeneous coordinates as (1, 0, 1),
(2cos� , sin� , cos�), and (3, 0, 1). Three circular arcs, each subtending an angle of
120ı at the centre, can be combined as shown in Fig. 7.25b to form a complete
circle.

B-splines and NURBS are widely used in the design of surfaces. A simple surface
design method is to first model a spline curve on the xy-plane, and then revolve the
curve about the y-axis to generate a surface of revolution (Fig. 7.26). The following
sections discuss some of the important spline based surface generation techniques
used in computer graphics.

7.9 Surface Patches

Surface patches are two-parameter analogues of curve segments that are defined
using blending functions in two independent parameters and a set of control
points. Linear, quadratic and cubic interpolation methods used for generating
curve segments can be extended to bilinear, biquadratic and bicubic polynomial
interpolation methods for constructing surface patches. Given four control points



168 7 Curves and Surfaces

Fig. 7.27 (a) A bilinear surface patch. (b) A bi-cubic patch formed using four control points

P00, P01, P10, P11 as in Fig. 7.27, a polygonal surface passing through them can be
obtained by a bilinear interpolation between the points using two parameters u and
v as follows:

L.u; v/ D.1 � v/..1 � u/P00 C uP10/ C v..1 � u/P01 C uP11/

D.1 � u/.1 � v/P00 C u.1 � v/P10 C .1 � u/vP01 C uvP11;

0 � u � 1; 0 � v � 1: (7.68)

The interpolating patch in this case is simply a quadrilateral surface element with
straight edges connecting the control points. Hence the above equation is not very
useful in surface design applications.

We can use a general bi-cubic polynomial equation as given below for construct-
ing an interpolating surface that passes through four control points:

P.u; v/ D
3X

iD0

3X

j D0

cij uivj ; 0 � u � 1; 0 � v � 1: (7.69)

The above equation has 16 unknowns cij, and requires 16 boundary conditions to
provide a unique solution for the coefficients. These boundary conditions are formed
using the four control points, the four tangent vectors along the u-direction at the
points, the four tangent vectors along the v-direction, and the four twist vectors.
We use the following notations for the partial derivatives of P(u, v). The first two
derivatives give the tangent vectors along parametric directions, and the third gives
the twist vector at any point (a, b):

Pu.a; b/ D
�

@P

@u

�

u D a

v D b

; Pv.a; b/ D
�

@P

@v

�

u D a

v D b

; Puv.a; b/ D
�

@2P

@u@v

�

u D a

v D b

(7.70)



7.9 Surface Patches 169

With the above notation, the boundary conditions can be written as follows:

P.0; 0/ D c00 D P00

P.0; 1/ D c00 C c01 C c02 C c03 D P01

P.1; 0/ D c00 C c10 C c20 C c30 D P10

P.1; 1/ D
3X

iD0

3X

j D0

cij D P11

Pu.0; 0/ D c10

Pu.0; 1/ D c10 C c11 C c12 C c13

Pu.1; 0/ D c10 C 2c20 C 3c30

Pu.1; 1/ D
3X

iD0

c1i C 2

3X

iD0

c2i C 3

3X

iD0

c3i

Pv.0; 0/ D c01

Pv.0; 1/ D c01 C 2c02 C 3c03

Pv.1; 0/ D c01 C c11 C c21 C c31

Pv.1; 1/ D
3X

iD0

ci1 C 2

3X

iD0

ci2 C 3

3X

iD0

ci3

Puv.0; 0/ D c11

Puv.0; 1/ D c11 C 2c12 C 3c13

Puv.1; 0/ D c11 C 2c21 C 3c31

Puv.1; 1/ D c11 C 4c22 C 9c33 C 2c21 C 2c12 C 3c31 C 3c13 C 6c23 C 6c32

(7.71)

The bi-cubic surface patch obtained by solving the above linear system of
equations is given by

P.u; v/ D �
f1.u/ f2.u/ f3.u/ f4.u/

�
2
64

P.0; 0/ P.0; 1/ Pv.0; 0/ Pv.0; 1/

P.1; 0/ P.1; 1/ Pv.1; 0/ Pv.1; 1/

Pu.0; 0/ Pu.0; 1/ Puv.0; 0/ Puv.0; 1/

Pu.1; 0/ Pu.1; 1/ Puv.1; 0/ Puv.1; 1/

3
75

2
64

f1.v/

f2.v/

f3.v/

f4.v/

3
75

(7.72)

where the blending functions fi(u) are the Hermite polynomials given in Eq. 7.29.
Figure 7.27b shows an example of a bi-cubic surface patch.
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7.10 Coons Patches

The interpolation methods discussed in the previous section use positions and
derivatives defined at the control points as boundary conditions. A surface patch
may be required to have curves with known equations along its four edges. Suppose
four edge curves forming the boundary of a region are given by parametric functions
C1(u), C2(u), D1(v), D2(v) as shown in Fig. 7.28. All four curves are defined over
the same interval [0, 1].

At the corner points, the curves satisfy the conditions P00 D C1(0) D D1(0),
P10 D C1(1) D D2(0), P01 D C2(0) D D1(1), and P11 D C2(1) D D2(1). By linearly
interpolating between corresponding points of C1(u) and C2(u) using the second
parameter v, we get the following ruled surface:

RC .u; v/ D .1 � v/C1.u/ C vC2.u/; 0 � v � 1 (7.73)

Similarly, interpolating between D1(v) and D2(v) using the parameter u, we get
another ruled surface:

RD.u; v/ D .1 � u/D1.v/ C uD2.v/; 0 � u � 1 (7.74)

Figure 7.29a shows four Bezier curves surrounding a region in three-dimensional
space. The corresponding ruled surfaces generated by the two equations given above
are shown in Fig. 7.29b, c. Each ruled surface follows the shape of the bounding
curves along one parametric direction.

The bilinear Coons patch bounded by the four parametric curves is obtained by
adding together the above two ruled surfaces and subtracting the surface obtained
from Eq. 7.68:

P.u; v/ D RC .u; v/ C RD.u; v/ � L.u; v/; 0 � u � 1; 0 � v � 1 (7.75)

Figure 7.30 shows the surface patch produced by applying the above equation in
the example given in Fig. 7.29.

P00

P01

P10 P11

D1(v)

D2(v)

C1(u)

C2(u)

Fig. 7.28 A region for a
surface patch specified using
four bounding curves



7.10 Coons Patches 171

Fig. 7.29 (a) A region specified by four bounding curves. (b) Ruled surface RC(u,v). (c) Ruled
surface RD(u,v)

Fig. 7.30 Bilinear Coons
patch corresponding to the set
of curves in Fig. 7.29a

It can be easily verified that the surface patch P(u, v) satisfies the desired
boundary conditions:

P.u; 0/ D C1.u/; P.u; 1/ D C2.u/; P.0; v/ D D1.v/; P.1; v/ D D2.v/ (7.76)

Generally the derivatives along the parametric directions of bilinear Coons
patches are not always continuous, and hence the surface patches do not join
smoothly along a common edge curve. Bi-cubic interpolants are used to obtain first
order geometric continuity along joining curves. A bi-cubic Coons patch is a smooth
blending surface created by using Hermite polynomials (see Eq. 7.29) instead of
linear interpolants:

P.u; v/ Df1.v/C1.u/ C f2.v/C2.u/ C f1.u/D1.v/ C f2.u/D2.v/;

� f1.v/ .f1.u/P11 C f2.u/P12/ � f2.v/ .f1.u/P21 C f2.u/P22/

(7.77)

where, f1(u) D 1 � 3u2 C 2u3, and f2(u) D 3u2 � 2u3.
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7.11 Bi-Cubic Bezier Patches

In this section, we consider the extension of cubic Bezier curve segments to Bezier
surface patches. The general Bezier equation in Eq. 7.35 can be extended to a two-
parameter surface equation as

P.u; v/ D
nX

iD0

mX

j D0

ˇi;n.u/ˇj;m.v/PiC1;j C1; 0 � u � 1; 0 � v � 1: (7.78)

The two-dimensional array of points Pij, i D 1 : : : n C 1, j D 1 : : : m C 1 forms a
control polygonal surface. As a special case of the above, the bi-cubic Bezier patch
is defined using a topologically quadrilateral arrangement of 16 control points Pij,
i D 1 : : : 4, j D 1 : : : 4 (Fig. 7.31):

Setting m D n D 3 in Eq. 7.78, we get

P.u; v/ D
3X

iD0

3X

j D0

ˇi;3.u/ˇj;3.v/PiC1;j C1 (7.79)

where, ˇ0,3(u) D (1 � u)3, ˇ1,3(u) D 3u(1 � u)2, ˇ2,3(u) D 3u2(1 � u) and
ˇ3,3(u) D u3.

A bi-cubic Bezier patch has several desirable properties that makes it suitable
for surface design applications (Fig. 7.32). From Eq. 7.78, it can be seen that
P(0, 0) D P11, P(1, 0) D P41, P(0, 1) D P14, and P(1, 1) D P44. Thus, the four corner
points of the control polygonal surface lie on the Bezier patch. It can also be
observed that

P.u; 0/ D
3X

iD0

ˇi;3.u/PiC1;1; 0 � u � 1: (7.80)

The above equation shows that P(u, 0) is a cubic Bezier curve formed using the
control points P11, P21, P31 and P41. Similarly, we can prove that the remaining edge
curves of the surface patch are also Bezier curves. In fact, for any constant c, both
P(u, c) and P(c, v) are cubic Bezier curves.

P11

P12
P13 P14

P21 P22 P23

P24

P31 P32 P33

P34

P42 P43

P44

P41

u

v

Fig. 7.31 A control polygonal surface for a bi-cubic Bezier patch
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Fig. 7.32 A Bezier control
polygonal surface and
wireframe model of its cubic
Bezier patch

Fig. 7.33 (a) Polygonal elements along a common edge must be coplanar to ensure first-order
continuity. (b) Control polygonal surfaces joined together to form a closed surface. (c) The
resulting Bezier patches have first order continuity

Since Eq. 7.78 defines a convex combination of the control points, the Bezier
surface patch lies within the convex hull of the control points. Another important
property useful in computer graphics is the affine invariance of Bezier patches. For
any affine transformation given by a matrix T, the transformed Bezier surface can
be obtained as

P.u; v/ D T P.u; v/ D
nX

iD0

mX

j D0

ˇi;n.u/ˇj;m.v/.TPiC1;j C1/ (7.81)

which shows that the transformed patch can also be obtained by computing the
Bezier surface of the transformed control points.

When several Bezier patches are joined together to form complex shapes, it
becomes necessary to have at least first-order geometric continuity along the edges
where two patches join. A sufficient condition for meeting this requirement is the
co-planarity of polygonal elements of the corresponding control surfaces that share
a common edge (Fig. 7.33a).

The surface of the Utah Teapot is specified using 32 control polygonal surfaces.
A section of the main body consisting of four control surfaces is shown in Fig. 7.33b.
The bold lines show the edges where the surfaces meet. The Bezier patches form a
continuous surface as shown in Fig. 7.33c.
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7.12 Summary

This chapter has outlined some of the fundamental curve and surface generation
techniques used in computer graphics. Polynomial interpolation curves of high
orders do not provide the flexibility and shape control needed in many applications.
Piecewise cubic curves provide a computationally simple solution where convex
combinations of four control points are generated using a set of blending functions.
When a set of piecewise curves are joined together, parametric continuity at the
points where the curve segments meet becomes important. Tangential continuity is
generally achieved by adding end-point constraints for the first order derivatives.
Hermite curves, cardinal splines and cubic Bezier curves are all generated in this
fashion. Piecewise curves with higher order continuity can be generated using B-
splines. Rational Bezier curves and rational B-spline curves are constructed using
the homogeneous coordinate representation of the control points.

This chapter has also introduced important spline based surface design tech-
niques using blending polynomials in two independent parameters. Bi-cubic surface
patches can be seamlessly joined together to form complex three-dimensional
shapes.

7.13 Supplementary Material for Chap. 7

The section Chapter7/Code on the companion website contains the following
programs demonstrating the curve and surface generation techniques discussed in
this chapter.

1. PolyInterp.cpp

The program generates an interpolating polynomial curve (Sect. 7.1) through
a set of points. The points are specified using mouse input (left button). The
maximum number of points (and hence the maximum order of the polynomial)
is set to 7. After defining the points, press ‘p’ to draw the polynomial curve, or
‘c’ to clear the screen and start over again.



7.13 Supplementary Material for Chap. 7 175

2. CatmullRom.cpp

The program generates a Catmull-Rom spline (Sect. 7.5) through a set of
points interactively specified using mouse input (left button). The curve is
updated as and when a new point is input. The tangent directions at each input
point are also shown. A point’s position can be changed by clicking on it and
dragging it with the right mouse button pressed. Press ‘c’ to clear the screen and
start over.

3. Bezier2D.cpp

The program uses the OpenGL evaluator functions for drawing a two-
dimensional Bezier curve (Sect. 7.6) for a given set of points specified inter-
actively using mouse input. The control polygonal line and the corresponding
Bezier curve are updated as and when a new point is input. Press ‘c’ to clear the
screen and start over.

4. Bezier3D.cpp

The program uses OpenGL evaluator functions to generate three-dimensional
Bezier patches for the control polyhedra stored in an input file. The program
reads three input files that contain polyhedral data for the Utah teapot, teacup and
teaspoon. Select ‘1’ for the teapot, ‘2’ for the teacup and ‘3’ for the teaspoon.
Pressing the space bar toggles between the displays of the control polyhedral
surface and the Bezier surface. Pressing ‘n’ increases the number of subdivisions.
The arrow keys are used to change the view direction.
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5. Bicubic.cpp

The program generates a bi-cubic patch (Sect. 7.9) on a set of 4 control points.
The control points and the boundary conditions for the patch are read in from the
file “boundary.dat”. Use left or right arrow keys to change the view direction.

6. Coons.cpp

The program generates a Coons patch (Sect. 7.10) using four parametric
curves. The curves C1(u), C2(u), D1(v), D2(v) are specified using the coefficients
stored in the file “CurveCoeffs.dat”. Use left or right arrow keys to change the
view direction.

7. SurfRevln.cpp

The program uses OpenGL evaluator functions to generate a two-dimensional
NURBS curve through a set of user defined points. The points are interactively
specified using mouse clicks. Pressing ‘s’ key generates a surface by revolving
the curve about the y-axis. Press ‘c’ to clear the screen and start over again.
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7.14 Bibliographical Notes

Curve and surface design techniques are generally discussed in detail in text books
on computer-aided design and geometric modelling (e.g., Farin (2001), Goldman
(2009), Olfe (1995)). Some computer graphics texts also give an excellent coverage
of the mathematical and implementation aspects of spline curves and parametric
surfaces (e.g., Buss (2003), McConnell (2006), Watt and Watt (1992), Salomon
(2006)).

The notions of parametric and geometric continuity are clearly explained in the
fundamental paper by Barsky and Tony (1989). Surface construction techniques
using NURBS, Coons patches and ruled surfaces are covered in Piegl and Tiller
(1997). A comprehensive analysis of rational Bezier curves and surfaces, and
quadric surfaces can be found in Farin (1999). Bezier and B-spline curves and
surfaces are also discussed in detail in Prautzsch et al. (2002).
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Chapter 8
Mesh Processing

Overview

In computer graphics applications, three-dimensional models are almost always
represented using polygonal meshes. A mesh in its simplest form consists of a set
of vertices, polygons, and optionally a number of additional vertex and polygonal
attributes. The complexity of a mesh can vary from low to very high depending
on requirements such as rendering quality, speed and resolution. A wide spectrum
of mesh processing algorithms is used by graphics and game developers for a
variety of applications such as generating, simplifying, smoothing, remapping and
transforming meshes. Several types of data structures and file formats are also used
to store mesh data.

This chapter discusses the geometrical and topological aspects related to three-
dimensional meshes and their processing. It also presents important data structures
and algorithms used for operations such as mesh simplification, mesh subdivision,
planar embedding, and polygon triangulation.

8.1 Mesh Representation

A polygonal mesh is a set of vertices and polygonal elements that collectively
define a three-dimensional geometrical shape. The simplest mesh representation
thus consists of a vertex list and a polygon list as shown in Fig. 8.1. Polygons are
often defined in terms of triangular elements. Since triangles are always both planar
and convex, they can be conveniently used in several geometrical computations such
as point inclusion tests, area and normal calculations and interpolation of vertex
attributes.

The vertex list contains the three-dimensional coordinates of the mesh vertices
defined in a suitable coordinate frame, and the polygon list contains integer values
that index into the vertex list. An anticlockwise ordering of vertices with respect
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Fig. 8.1 A cube and its mesh definition using vertex and polygon lists
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Fig. 8.2 The cut-open view of the cube in Fig. 8.1 showing its representation as a triangle strip

to the outward face normal direction is commonly used to indicate the front facing
side of each polygon. The distinction between the front and the back faces of a
polygon becomes important in lighting computations and culling operations. If the
polygon list represents a set of connected triangles as in Fig. 8.1, a more efficient
and compact data structure called a triangle strip may be used. The first three indices
in a triangle strip specify the first triangle. The fourth index along with the previous
two indices represents the second triangle. In this fashion, each remaining index
represents a triangle that is defined by that index and the previous two indices.

The representation of a cube as a triangle strip is given in Fig. 8.2. The triangle
strip is decoded as the set of 12 triangles f012, 123, 237, 371, 715, 154, 547,
476, 762, 624, 240, 401g. Note that the orientation of triangles alternates between
clockwise and anticlockwise in this representation. The change of orientation is
corrected by reversing the direction of every alternate triangle in the list, starting
from the second triangle. Thus the above list would be correctly interpreted as f012,
213, 237, 731, 715, 514, 547, 746, 762, 264, 240, 041g. If the first triangle is defined
in the anticlockwise sense, then all triangles in the corrected list will have the same
orientation.

Several file formats are used in graphics applications for storing and sharing mesh
data. A number of such file formats represent values in binary and compressed forms
for minimizing storage space. In this section, we review some of the popular ASCII
file formats that allows easy viewing and editing of mesh data. The Object (.OBJ)
format was developed by Wavefront technologies. This format allows the definition
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Box 8.1 OBJ File Format

Comments start with the symbol #

e.g., # 3D Model definition

A vertex definition starts with the symbol v and is followed by 3 or 4 floating
point values. Each vertex is implicitly assigned an index. The first vertex has
an index 1.
e.g., v �1.53 2.06 3.82

v 6.98 -11.3 -0.008 1.0

Texture coordinates are specified by the symbol vt followed by two or three
floating point values in the range [0, 1]. Texture coordinates are mapped to
vertex coordinates through the face (‘f’) command. The first set of texture
coordinates have an index 1.
e.g., vt 0.25 0.90

vt 0.0 0.5 0.5

Vertex normals are specified using the vn command. The normal components
are assigned to a vertex through the face (‘f’) command. The first set of normal
components is assigned an index 1.

e.g., vn �0.256 0.1888 -0.756

A polygon definition uses a face command that starts with the symbol f
and followed by a list of positive integers that are valid vertex indices.

e.g., f 2 3 6
f 15 8 1 22

The above face command has a more general form f v/vt/vn v/vt/vn v/vt/vn
: : : that can be used to combine texture and normal attributes with vertices.
Both/vt and/vn fields are optional.

e.g., f 2/3/1 3/5/2 6/1/7
f 15/2 8/3 1/5 22/9
f 6//1 7//6 2//12

The first example above defines a triangle including references to the texture
and normal coordinates at the vertices. The second example attaches only
texture coordinate references to each vertex, while the third example uses
only the normal vectors.

of vertices in terms of either three-dimensional Cartesian coordinates or four-
dimensional homogeneous coordinates. Polynomials can have more than three
vertices. In addition to the basic set of commands supporting simple polygonal mesh
data (Box 8.1), the .OBJ format also supports a number of advanced features such as
grouping of polygons, material definitions and the specification of free-form surface
geometries including curves and surfaces.
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Box 8.2 OFF File Format

The first line should contain the header keyword OFF
This line can be followed by optional comment lines starting with the
character #
e.g., # Model file for a cube

The first non-comment line should have three integer values nv, nf , ne denoting
the total number of vertices, faces and edges. The number of edges (ne) is
always set to 0

e.g., 8 6 0

The above line is followed by the vertex list. The number of vertices in the list
must match the number nv. The first vertex is assigned the index 0, and the
last vertex the index nv�1.

e.g., -1.2 -1.5 -1.3
1.1 -1.9 -1.7
: : :

Vertices can also be specified using four coordinates in homogeneous form.
In this case, the header keyword should be changed to 4OFF.
The vertex list is followed by the face list. Each line contains a set of
integers n, i1, i2, : : : in, where the first integer n gives the number of
vertices of that face and the remaining integers give the face indices.

e.g., 3 2 0 1
4 1021 558 632 717

Color values in either RGB or RGBA representation can be optionally added
to each face as 3 or 4 integer values in the range [0, 255] or floating point
values in the range [0, 1].

e.g., 3 1 0 5 255 255 0 0
4 15 26 78 9 0.5 0.1 0.25

The Object File Format (.OFF) is another convenient ASCII format for storing
3D model definitions. It uses simple vertex-list and face-list structures for specifying
a polygonal model. Unlike the .OBJ format, this format does not intersperse
commands with values on every line, and therefore can be easily parsed to extract
vertex coordinates and face indices. This format also allows users to specify vertices
in homogeneous coordinates, faces with more than three vertex indices, and optional
colour values for every vertex or face (Box 8.2).

The Polygon File Format (.PLY) also organises mesh data as a vertex list and
a face list with the addition of several optional elements. The format is also called
the Stanford Triangle Format. Elements can be assigned a type (int, float,
double, uint etc.), and a number of values that are stored against each element.
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Box 8.3 PLY File Format

The first line in the header should contain the keyword ply. The second line
specifies the file format using the format keyword.

e.g., format ascii 1.0

Comments begin with the keyword comment
e.g., comment Model definition for a cube

The total number of vertices, polygons etc. in the model definition is specified
using the element keyword.

e.g., element vertex 8
element face 6

The type of each element is specified using the property key-
word. The following commands specify the types of vertex coordinates.

e.g., property float x
property float y
property float z

The polygon data is usually defined using a set of vertex indices. The type
specification is included in the header as

property int vertex index

The keyword end header is used to delimit the header information. The
vertex and face lists follow this keyword. The first vertex has the index 0.

e.g.,
end header
0.5 0.5 0.5
1.0 0.5 0.5
..
0 1 2 3
1 0 4 5
....

Such information is specified using a list of properties as part of the header
(Box 8.3). This file format supports several types of elements and data, and the
complete specification is included in the header. Parsing a PLY file is therefore
considerably complex than parsing an OBJ or OFF file.

8.2 Polygonal Manifolds

The model definition files introduced in the previous section contain information
about vertices, polygons, colour values, texture coordinates and possibly many other
vertex and face related attributes that collectively specify the mesh geometry. As
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Fig. 8.3 Examples of manifold meshes

Fig. 8.4 Examples of
non-manifold meshes

seen from the examples, list based mesh definitions often do not store any neigh-
bourhood or connectivity information. The adjacency and incidence relationships
between mesh elements define the topology of the mesh and are heavily used by
several mesh processing algorithms. This section introduces some of the general
and desirable topological characteristics of meshes.

A common assumption in the construction of mesh data structures and related
algorithms is that the given mesh is a polygonal manifold. A polygonal manifold is
defined as a mesh that satisfies two conditions: (i) no edge is shared by more than
two faces, and (ii) the faces sharing a vertex can be ordered in such a way that their
vertices excluding the shared vertex form a simple chain (Fig. 8.3).

A non-manifold mesh may contain edges shared by more than two polygons,
or vertices with more than one chain of neighbouring vertices (Fig. 8.4). In a non-
manifold mesh, the neighbourhood of a point may not be topologically equivalent
to a disc, which makes local adjustments surrounding that vertex difficult in many
mesh processing algorithms. The methods discussed in this chapter assume that the
given mesh satisfies the conditions of a polygonal manifold.

The chain of vertices surrounding a vertex in a polygonal manifold is closed if the
vertex is an interior vertex, otherwise the vertex is a boundary vertex. In a triangular
mesh, the triangles sharing a common vertex form a closed triangle fan for interior
vertices, and an open triangle fan for boundary vertices (Fig. 8.5). An interior vertex



8.2 Polygonal Manifolds 185

Interior vertex Boundary vertex

Fig. 8.5 An interior and a
boundary vertex on a
polygonal manifold

Fig. 8.6 One-ring and two-ring neighbours of a vertex on a manifold mesh

is also commonly called a simple vertex. A closed manifold that does not contain
any boundary vertices is called a polyhedron.

Two vertices are adjacent if they are connected by an edge of a polygon. As seen
in Fig. 8.5, the set of vertices that are adjacent to a vertex v in a closed manifold
forms a ring. This set is called the one-ring neighbourhood of the vertex v. The
union of one-ring neighbourhoods of every vertex in this set is called the two-ring
neighbourhood of v (Fig. 8.6).

The orientation of the faces of a polygonal manifold is determined by the way
in which its vertices are ordered. An anticlockwise ordering of vertices generally
corresponds to the front face of a polygon. If two adjacent faces have the same
orientation, they are said to be compatible. In this case, a common edge will have
opposite directions in the two faces that share the edge (Fig. 8.7a). If every pair of
adjacent faces is compatible, the mesh is said to be orientable.

The number of edges incident on a vertex is called its valence. A mesh in which
every face has the same number of edges, and every vertex has the same valence
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a b

Fig. 8.7 (a) Compatible faces in an orientable mesh. (b) The Möbius strip is an example of a
non-orientable mesh

is called a regular mesh. The number of vertices (V), edges (E), and faces (F) in a
closed polygonal mesh are related by the Euler-Poincare formula

V C F � E D 2.1� g/ (8.1)

where g, the genus, denotes the number of holes/handles in the mesh. The right-
hand side of the above equation is called the Euler Characteristic. For the torus
in Fig. 8.3 and the Möbius strip in Fig. 8.7b, g D 1, and hence V C F D E. For
polyhedral objects without any holes, V C F D E C 2. This equation is generally
referred to as the Euler’s formula. In a triangular mesh without holes, the average
valence of a vertex is six, and we can get an estimate of the number of faces and
edges in terms of the vertices as

F � 2V

E � 3V (8.2)

Also in a triangular mesh, every face has three edges, and every edge is counted
twice while counting the number of faces. Therefore the number of faces and edges
are connected by the equation E D 3 F/2.

8.3 Mesh Data Structures

Mesh data structures are designed to provide information about both mesh geometry
and topology so that they could be used for fast traversal and processing of
meshes. A large number of mesh operations extensively use information about mesh
connectivity and local orientation around vertices. Mesh data structures also support
efficient processing of incidence and adjacency queries. In this section, we consider
one face-based and two edge-based data structures.
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struct Triangle
{

Vertex *p1, *p2, *p3;
Triangle *t1, *t2, *t3;

};

P1

P2 P3

T1

T2

T3

Fig. 8.8 A face based data structure for a triangle showing references to its neighbouring faces

v

Fig. 8.9 Traversal of the
one-ring neighbourhood of a
vertex using a face-based data
structure

8.3.1 Face-Based Data Structure

Face-based data structures are primarily used for triangular meshes where both the
number of edges and number of vertices per face have a constant value 3. In an
ordinary mesh file, each triangle is defined using the indices of its three vertices.
A face-based data structure additionally stores references to its three neighbouring
triangles (Fig. 8.8). Because of its simple structure, a face data structure can be
easily constructed from a vertex list and a face list. This data structure does not
store any edge related information, and hence is not particularly suitable for edge
operations such as edge collapse, edge flipping or edge traversal.

Assuming that every polygonal face in a mesh is a triangle, the face-based data
structure provides a convenient mechanism to obtain information about all triangles
surrounding a vertex. Using this information, we could perform the traversal of the
one-ring neighbourhood of a vertex in constant time. The inputs for the algorithm
are a vertex v and a triangle containing that vertex. The algorithm iteratively visits
the neighbouring triangles, each time checking if the triangle has v as one of its
vertices and has not been visited previously. In Fig. 8.9, the triangles indicated by
dotted arrows are not visited as they do not have v as a vertex. The vertices of the
visited triangles are added to the set of one-ring neighbours of v. A pseudo-code of
this method is given in Listing 8.1.
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Listing 8.1 Pseudo code for the one-ring neighbourhood traversal
algorithm

Table 8.1 Components of the wing-edge structure for the same edge in opposite
directions

Edge start end left right left prev left next right prev right next

PQ P Q L R a b c d
QP Q P R L c d a b

8.3.2 Winged-Edge Data Structure

The winged-edge data structure is one of the powerful representations of an
orientable mesh that could be used for a variety of edge-based query processing and
manipulation of a mesh. In this representation, each face has a clockwise ordering
of its vertices and edges. The structure stores several interconnected information
pertaining to the neighbourhood of every edge in the form of three substructures: an
edge table, a vertex table and a face table.

An edge PQ and its adjacent faces are shown in Fig. 8.10. The direction of the
edge is specified by the start and end vertices, and it enables us to define the left
and right sides of the edge. The corresponding references to the polygon L on its
left, and R on its right are stored. The edge structure also stores the preceding and
succeeding edges of PQ with respect to each of these faces. The preceding edge on
the left is the edge a, and the succeeding edge on the left is the edge b. Similarly, the
preceding edge on the right is c, and the succeeding edge on the right d. Note that
on each face, a clockwise ordering of the edges is used. Table 8.1 shows how the
component values change when the direction of the same edge is reversed.

The winged-edge structure also requires two additional tables or structures, as
shown in Fig. 8.10. The vertex table stores the coordinates of each vertex and one of
the edges incident to that vertex. The face table maps each face to one of the edges
of that face. These tables provide the entry points to the edge structure via either a
vertex or a face. For example, if we are required to find all edges that end at a given
vertex v, we first use the vertex table to find one of the edges incident at v, and then
use the winged-edge structure to iteratively find the remaining edges. Care must be
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P

Q

Left Face
L

Right Face
R

struct W_edge
{

Vertex *start, *end;
Face   *left,  *right;
W_edge *left_prev,  *left_next;
W_edge *right_prev, *right_next;};

struct Vertex
{

float x, y, z;
W_edge *edge;

};
struct Face
{

W_edge *edge;
};

a

b c

d

Fig. 8.10 The winged-edge data structure

v

edge= v->edge
edge->right_next

v

edge= v->edge
edge->left_next

Fig. 8.11 Computation of all edges incident at a vertex. Both directions of an edge should be
considered in algorithms using the winged-edge data structure

Listing 8.2 Pseudo code for finding all edges through a vertex in anti-
clockwise order

taken to use the right orientation of an edge; the edge entry for a vertex v in the
vertex table may have v as the either the start vertex or the end vertex. Similarly an
edge in the face table may have the face as either its left face or the right face of
the edge.

The algorithm to find all edges incident at a vertex v considers both the cases
discussed above, and enumerates the edges surrounding v in an anticlockwise order
(Fig. 8.11). The pseudo-code for the algorithm is given in Listing 8.2.
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Listing 8.3 Pseudo code for finding all faces that share a vertex in anticlockwise
order

face->edge

face

edge->right_prev
face->edge

face

edge->left_prev

Fig. 8.12 Computation of edges around a polygonal face

Listing 8.4 Pseudo code for finding all edges of a face in anticlockwise order

A slight modification of the above algorithm can yield a method to output all
faces sharing a common vertex v in an anticlockwise order (Listing 8.3).

The algorithm to compute all edges of a given polygonal face in anticlockwise
order uses an approach similar to the ones given above. The iteration starts from the
initial edge retrieved from the face table, and proceeds to the next edge based on the
orientation of the current edge (Fig. 8.12). The pseudo-code for the algorithm is in
Listing 8.4.

8.3.3 Half-Edge Data Structure

The algorithm implementations discussed in the previous section show a limitation
of the winged-edge data structure – the ambiguity regarding the direction of an edge
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P

Q

Face
L

a

struct H_edge
{

Vertex *vert;
Face  *face;
H_edge *prev, *next ;
H_edge *pair;

};
struct Vertex
{

float x, y, z;
H_edge  *edge;

};
struct Face
{

H_edge *edge;
};

b

Fig. 8.13 The half-edge data structure

will need to be resolved every time an edge is processed, and this is commonly done
using an if-else block to deal with the two possible directions of every edge. The
half-edge data structure resolves the ambiguity by splitting every edge and storing it
as two half-edges, each with a unique direction. A half-edge belongs to only a single
face, which is the face on its left side. A half-edge structure stores references to the
unique vertex the edge points to, the unique face it belongs to, the successor of the
edge belonging to the same face, and the pair of the half-edge having the opposite
direction and belonging to the adjacent face (Fig. 8.13). The half-edge structure is
essentially a doubly linked list and hence is also known as the Doubly Connected
Edge List (DCEL).

The components of the half-edge PQ in Fig. 8.13 are the references to the
ending vertex Q, the face L on its left side, the next edge b on the same face,
and the pair which is the half-edge QP in the opposite direction. Edge processing
algorithms often use references to the previous edge (e.g., the method shown in
Fig. 8.14), and this information may also be stored in the edge structure. As in
the case of the winged-edge structure, two additional tables/structures are used
to obtain a half-edge from either a vertex or a face. The vertex table contains for
each vertex, its coordinates and a half-edge incident at that vertex. The face table
contains for each face, a half-edge that belongs to that face. From the definition
of the half-edge structure, it is clear that for a given half-edge edge, the end and
start points are given by edge->vert, and edge->pair->vert respectively.
Similarly, the two faces that border an edge are given by edge->face and
edge->pair->face.

We will now consider the algorithm for computing all edges incident at a given
vertex v. Using a half-edge data structure, the edges can be unambiguously retrieved
using a simple iteration (Fig. 8.14). The modified version of the pseudo-code in
Listing 8.2 using the half-edge data structure is given in Listing 8.5. In this case, the
algorithm is simpler without any case distinction, and returns edges that end at the
given vertex in anticlockwise order.
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v

edge= v->edge
edge->pair->prev

edge->next->pair v

edge= v->edge

Fig. 8.14 Computation of incident edges at a vertex in anticlockwise and clockwise orders using
the half-edge structure

Listing 8.5 Pseudo code for finding all edges that end at a vertex in
anticlockwise order

Listing 8.6 Pseudo code for finding all faces adjacent to a face

In Listing 8.5, if we replace the output statement with output
(edge->pair->vert), we get all the vertices in the one-ring neighbourhood
of the given vertex. Likewise, the method with output(edge->face) returns
all faces that share the vertex. The half-edge data structure provides a convenient
tool for enumerating all faces that are adjacent to a given face (Listing 8.6).

An edge data structure links together adjacency information pertaining to
vertices, faces and neighbouring edges. The removal of an edge from a polygon
calls for an update of this information by way of readjusting references to the deleted
edge and adjacent faces. As an example, if the edge PQ of the polygonal face shown
in Fig. 8.15 is removed, several edges along the boundary of the resulting polygon
will need to be updated. Listing 8.7 provides the list of “tidy-up” operations required
after removing PQ. Even though the edges marked ‘a’, ‘b’, ‘c’, ‘d’ in Fig. 8.15 can
be indirectly referenced through either e1 or e2, separate variable declarations for
each of these edges are used in Listing 8.7 for better clarity.
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F1 F2

e1
e2

P

Q

F1

a

b

c

d

a c

b

d

Fig. 8.15 Readjustments to pointers/references are required when an edge is removed

Listing 8.7 Pseudo code for finding all edges through a vertex in anticlockwise
order

We now consider the inverse of the process discussed above, where a new edge
is introduced into a polygon, splitting the polygon into two separate polygons. This
process is commonly used for incrementally triangulating an arbitrary polygon.
With reference to Fig. 8.15, the sequence of operations required for adding a new
edge PQ is given in Listing 8.8.

In the following sections, we consider more complex mesh processing algorithms
that use different types of adjacency information.
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Listing 8.8 Procedure for adding a new edge PQ to a polygon

8.4 Mesh Simplification

Mesh simplification algorithms aim to reduce the geometric complexity of a mesh
without altering the essential shape characteristics. These methods are designed to
take meshes containing a large number of polygons and convert them into meshes
with a relatively smaller number of polygons. Mesh simplification is commonly
used in the construction of level-of-detail representations of objects with a high
polygon count. Most of the algorithms try to preserve the topology of the mesh by
making sure that the resulting mesh has the same Euler characteristic (Eq. 8.1). In
this section, we outline two important methods based on the local simplification
strategy that progressively remove vertices or edges until the required level of
simplification is achieved. In general, simplification methods will use a cost function
to select the most appropriate vertex or edge for removal, and also have a set of
constraints which the selected item is required to satisfy.

8.4.1 Vertex Decimation

The vertex decimation algorithm iteratively removes vertices from a triangular
mesh, at the same time trying to preserve the topology and the shape of the
original mesh. When a vertex is removed, its one-ring neighbourhood will need
to be re-triangulated. The selection of a vertex for removal is generally based on a
decimation criterion that ensures that important shape features of the mesh are not
affected.
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pi

ni

Average Plane

v

D

Fig. 8.16 Definition of the average plane of a set of triangles sharing a vertex

One of the commonly used criteria for vertex decimation is the near-planarity
of the neighbourhood of a vertex. A nearly planar region could be represented
by a few large triangular elements covering the region instead of several small
triangles. Consider an interior vertex v surrounded by a closed triangle fan as shown
in Fig. 8.16. The planarity of the surface region around the vertex can be measured as
a distance d of the vertex from an average plane of its neighbourhood. The average
plane is formed by the local area-weighted average of the surface normal vectors
ni and the centroids pi of all triangles sharing the vertex v. If there are k triangles
that have a common vertex v, and if Ai, ni, pi denote the area, normal vector and the
centroid respectively of the ith triangle, then the area-weighted average normal and
point are computed as follows:

navg D

kP

iD1
Aini

kP

iD1
Ai

(8.3)

pavg D

kP

iD1
Aipi

kP

iD1
Ai

(8.4)

The average plane is then defined as the plane passing through the point pavg,
having a normal direction navg. Its equation can be obtained as given in Eq. 2.21,
and the shortest distance D of the vertex v to the plane can be computed using Eq.
2.24. The value of D can be used as the cost function for selecting a vertex.

If v is a boundary vertex, the deviation of the boundary segments containing v
from a straight line can be used as the error function (Fig. 8.17). This is measured
as the shortest distance D of the vertex from an imaginary line connecting the two
opposite neighbours of the vertex along the boundary. These neighbouring vertices
are connected to v by edges that have only one bordering face, and can be identified
using either a winged-edge or half-edge based ring traversal algorithm. The shortest
distance D can then be obtained using Eq. 2.16. D is the altitude of the triangle
formed by v and its two neighbours (Fig. 8.17).
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D
D

Fig. 8.17 The error metric for a boundary vertex can be defined as the distance of the vertex from
the dotted line connecting its neighbours on the boundary

The vertex decimation algorithm uses a greedy approach, iteratively selecting
the vertex with the current minimum value of the error metric D for decimation.
An upper threshold for D prevents all vertices with values greater than the threshold
from being deleted. When a vertex is removed, all edges that end at the vertex are
also removed and the components of the edges of the resulting polygon are adjusted
as previously shown in Fig. 8.15 and Listing 8.7. Two important steps remain in
the vertex decimation process before proceeding to the next iteration where another
vertex is chosen: the polygon resulting from the removal of the current vertex must
to be triangulated (Fig. 8.18), and the error metrics for its vertices must be updated.
The one-ring neighbourhood of the deleted vertex will in general form the boundary
of a star-shaped polygon. Algorithms for the triangulation of such polygons are
discussed later in this chapter. Convex polygons are special types of star-shaped
polygons where every internal angle is at most 180ı. Convex polygons can be
easily triangulated from any vertex, but such a triangulation may not always give
the optimal value for the minimum angle of the triangles.

8.4.2 Edge Collapse Operation

An edge collapse is a relatively simpler operation compared to vertex decimation.
Here, a local curvature based cost function is associated with every edge, and used
for selecting an edge for removal. The edge and its two incident faces are removed
by moving one of the edge’s end points towards the other, and deleting the second
vertex. The result of an edge collapse operation is illustrated in Fig. 8.19, where the
edge PQ is collapsed and the vertex Q deleted. Note that the new position of P may
in general be somewhere in between the original positions of P and Q. Commonly
adopted methods for positioning P are: (a) keep P in its original position, (b) move
P to coincide with Q (c) move P to the midpoint of PQ.

An edge collapse operation can be implemented using an edge-based data
structure such as the winged-edge or the half-edge. We use the half-edge struc-
ture, as it helps in minimizing the amount of restructuring operations needed to
the surrounding mesh elements. All references to the vertex P are retained, while
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Fig. 8.18 Removal of internal and boundary vertices and the triangulation of the resulting
polygons

P

Q
P

Fig. 8.19 An edge collapse operation performed by moving the vertex P towards Q

those to Q are replaced with P. The sequence of steps required by the edge collapse
operations are given in Listing 8.9. The references to edges and faces used in the
code are shown in Fig. 8.20. The new position of P is indicated by the point P0.

An interesting aspect of the edge collapse operation is that it is totally invertible.
With reference to Fig. 8.20b, given the original positions of P, Q and also the
locations of R, S, we can reconstruct the edge PQ and its two adjacent triangles
as in Fig. 8.20a. The inverse process is called the vertex split operation.

The main topological restrictions used by the edge collapse algorithm in selecting
edges are shown in Fig. 8.21. The bottom row of the figure shows the result of the
edge collapse operation in each of the following cases:

(a) The edge belongs to a triangle whose other two edges are boundary edges.
Collapsing this edge results in a topologically inconsistent configuration that
contains an isolated vertex.
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Fig. 8.20 Edge references used by the edge collapse algorithm in Listing 8.9

Listing 8.9 Procedure for collapsing the edge PQ in
Figs. 8.18 and 8.19.

(b) Both vertices of the edge are boundary vertices, but the edge is not a boundary
edge. Collapsing this edge results in a non-manifold vertex.

(c) The intersection of the one-ring neighbourhoods of vertices P and Q normally
contains only the opposite vertices A, B of the edge PQ. In the special case
shown in the figure, the intersection contains vertices A, B, C, D. Collapsing the
edge PQ removes six faces instead of just two. In a more general case, when
AC or BD is not perpendicular to PQ, the operation results in the folding of
triangles.
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Fig. 8.21 Configurations not suitable for the edge collapse operation

As with the vertex decimation algorithm, we require a cost function for assigning
a priority value to edges for removal. The cost function is often designed as a mea-
sure of the local curvature and represents the geometric error introduced by the edge
collapse operation. A simple cost function is a linear combination of the dihedral
angle between the two triangles bordering the edge and the length of the edge:

Cost.P; Q/ D k1cos�1.m1 � m2/C k2jP �Qj (8.5)

where m1, m2 are the unit normal vectors of the two triangles and k1, k2 are user
specified constants. The computation of inverse cosine in the above equation can be
eliminated by replacing the function with a mapping of the value of m1• m2 from
the range [�1, C1] to [C1, 0]:

Cost.P; Q/ D k1

�
1 � m1 � m2

2

�

C k2 jP �Qj (8.6)

The cost function proposed by Melax (1998) uses the product of the edge length
and the local curvature. The local curvature here is defined as the largest dihedral
angle between the triangles incident at P and the face of the edge PQ that is on the
same side as the triangle. The mapping in the above equation is again used as the
approximation of the dihedral angle. If the unit surface normal vectors of the faces
incident at P are denoted by ni, i D 1..N, and m1, m2 denote the unit normal vectors
of the two triangles adjacent to the edge PQ, then

Cost.P; Q/ D jP �Qj : max
iD1::N

�

min
jD1;2

�
1 � mj � ni

2

��

(8.7)

Another cost function that has been found particularly useful for edge collapse
operations is the quadric error metric (QEM). The primary advantage of this method
is that the error function parameters can be pre-computed for the original vertices of
the mesh, and later used to obtain the cost associated with any edge PQ. This cost
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ni
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P´

ni

a b

Fig. 8.22 The quadric error metric is defined using the equations of planes incident at each vertex

function is simply the sum of the error metrics at the end points P, Q evaluated using
the new position of the vertex P. The following paragraphs describe the computation
of this cost function.

Consider an edge PQ as in Fig. 8.22, and assume that this edge is collapsed and
P moved to a new position P0. The value of the cost function at P0 is the sum of
squares of the distances of P0 to the planes adjacent to both P and Q (Fig. 8.22b). If
ni denotes the unit surface normal vector of a triangle incident at the point P (xp, yp,
zp), then the equation of the plane of that triangle can be written as (see Eq. 2.22)

aix C biy C ci z C di D 0; (8.8)

where (ai, bi, ci) D ni, and di D �aixp � biyp � cizp. The shortest distance of a point
V(xv, yv, zv) to this plane is given by (see Eq. 2.25)

Di.V / D aixv C biyv C ci zv C di D Ai
TV (8.9)

where,

Ai D

2

6
6
4

ai
bi
ci
di

3

7
7
5 ; and V D

2

6
6
4
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yv

zv

1

3

7
7
5 :

The square of the distance of V to the plane is therefore

Di
2.V / D .Ai

TV/T.Ai
TV/ D VT.AiAi

T/V (8.10)

Thus the sum of squares of distances of V to all planes adjacent to P is given by

Dp
2.V / D VT

0

@
X

i2Np
AiAT

i

1

AV (8.11)
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In the above equation Np denotes the set of all triangles incident at P. The right-
hand side of the equation is a quadratic polynomial, hence the name Quadric Error
Metric (Garland 1999). The summation within the brackets can be pre-computed for
every vertex P and stored. We are now in a position to define the cost function using
QEM. If the edge PQ is removed, and if P0 is the new position of P, then

Cost.P ; Q/ D Dp
2.P 0/CDQ

2.P 0/ (8.12)

In the next section we consider the inverse problem of mesh simplification, and
look at a few important subdivision algorithms.

8.5 Mesh Subdivision

Mesh subdivision methods increase the polygon density of a mesh by iteratively
splitting polygons and applying a set of rules for repositioning the vertices. Every
subdivision step increases the number of edges, vertices and polygons in a mesh
without grossly distorting the overall shape or topological characteristics. Mesh
subdivision algorithms are used for geometric modelling of complex surfaces from
simple coarse meshes through successive refinement, smoothing and approximation.
Subdivision algorithms provide us the capability to alter the level of detail of a
polygonal mesh from very coarse to highly tessellated and smooth object models.
Such methods are therefore also called scalable geometry techniques.

Before considering subdivision algorithms for polygonal meshes, we review the
fundamental aspects of iterative polygonal line subdivision.

8.5.1 Subdivision Curves

An iterative refinement of a control polygon can be made to converge to a parametric
curve by suitably defining the transformations associated with points at each level.
Consider a polygonal line formed using four control points as shown in Fig. 8.23.
We denote this set as S0 D fP0

0, P1
0, P2

0, P3
0g. The superscript indicates the

subdivision level, and the subscript the index of the point within the set. At the
next level, this set is refined into S1 D fP0

1, P1
1, : : : P6

1g by adding a new point
in between every consecutive pair of points, and also transforming the existing
points. Points P2i

1 2 S1 with an even index correspond to existing points Pi
0 2

S0 at the previous level, while points with an odd index in S1 are newly inserted
points. Figure 8.23 also shows the next level of subdivision S2. The points at a level
j C 1 are generated from the points belonging to the previous level according to the
following equations, also known as refinement rules:
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Transformation of existing points:

p
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j
i C
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8

�

p
j
iC1; i D 1; :::Nj � 2: (8.13)

Insertion of new points:

p
jC1
2iC1 D

�
1

2

�

p
j
i C

�
1

2

�

p
j
iC1; i D 0; ::: Nj � 2; (8.14)

where Nj is the number of points in Sj. The number of points in SjC1 is then 2Nj�1.
For the example in Fig. 8.23, N0 D 4, N1 D 7, and N2 D 13. The end points of the
polygonal line are kept fixed throughout the subdivision process:

p
jC1
0 D p

j
0 ; p

jC1
2.Nj�1/ D p

j
Nj�1: (8.15)

As can be seen from Fig. 8.23, when the level number increases, the set of points
converges to a continuous parametric curve.

Figure 8.24 shows how three consecutive points at level j C 1 are computed using
three points at level j. The dotted lines correspond to the transformation in Eq. 8.13,
and the solid lines to Eq. 8.14. This correspondence between three points can be
expressed as the following equation:
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5 (8.16)

The above transformation matrix can be extended to a 5 � 5 matrix for five con-
secutive points. In the above example, each of the existing points was transformed
using a convex combination of three points. The transformations can be further
generalized using convex combinations of k points:

S0
S1 S2

S1S0

P0
0

P1
0 P1

0P2
0

P3
0

Fig. 8.23 A control polygonal line and the next two levels of its subdivision
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pi-1 
j

p2i-1 
j+1 p2i+1 

j+1p2i 
j+1

pi+1 
jpi 

jFig. 8.24 Correspondence
between three consecutive
points at levels j and j C 1

p
jC1
2i D

kX

uD�k
aup

j
iCu;

p
jC1
2iC1 D

kX

uD�k
bup

j
iCu: (8.17)

The coefficient sets faug, fbug are called subdivision masks. A subdivision mask
is said to be stationary if its values do not vary with the subdivision level j. Each set
also forms a partition of unity:

kX

uD�k
au D 1:;

kX

uD�k
bu D 1: (8.18)

In the next section, we extend the concepts outlined above to subdivision
surfaces.

8.5.2 The Loop Subdivision Algorithm

The subdivision of a triangular polygonal manifold can be performed in a manner
similar to the method given in the previous section, by adding a new vertex at
the midpoint of each edge, and transforming the existing vertices. The triangular
subdivision scheme without the coordinate transformation is shown in the Fig. 8.25.
As the subdivision level increases, the mesh immediately tends to become a regular
mesh where the valence of every internal vertex is 6. Internal vertices where the
valence is not equal to 6 are called extraordinary vertices.

The coordinates of the subdivided mesh vertices are computed using two
subdivision masks as seen in the previous section. The first mask computes the
coordinates of a new vertex based on a convex combination of existing neighbouring
vertices. The second mask transforms every existing vertex using another convex
combination of its one-ring neighbours. The Loop subdivision scheme is primarily
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Fig. 8.25 Triangular subdivision scheme
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Fig. 8.26 Masks used by the Loop subdivision algorithm

designed for triangular meshes and it uses the subdivision masks shown in Fig. 8.26.
Correspondingly, the update equations for points at subdivision level j C 1 can be
written as follows:

Insertion of new vertices:

p
jC1
H D

�
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8

�

p
j
A C
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p
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B C
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8
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p
j
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8
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p
j
D (8.19)

Transformation of existing vertices:

p
jC1
G D .1 � n�/pjG C �

nX

iD1
p
j
Gi

(8.20)

where Gi, i D 1,..n are the one-ring neighbours (at level j) of an existing vertex G.
The factor � is chosen such that

� <
1

2n
: (8.21)
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Fig. 8.27 Loop subdivision masks for boundary vertices

Fig. 8.28 Subdivision of a tetrahedron using the Loop algorithm

The above condition ensures that the weight (1�n�) assigned to the current
vertex is greater than the sum of weights n� assigned to its one-ring neighbours.

For a regular vertex (n D 6), � is given a value 1/16. Equation 8.20 then becomes

p
jC1
G D

�
10

16

�

p
j
G C

�
1

16

� 6X

iD1
p
j
Gi

(8.22)

For boundary vertices, the subdivision masks in Fig. 8.26 are appropriately
modified as shown in Fig. 8.27.

The Loop subdivision algorithm can be implemented using a model definition
based on vertex and face lists, and a data structure such as the half-edge for
obtaining the one-ring neighbours of vertices. The result of the application of the
Loop subdivision algorithm on a tetrahedral object is shown in Fig. 8.28. Note that
the original vertices of the tetrahedron are the only extraordinary vertices of the
mesh as they have a constant valence 3 throughout the subdivision process. All new
vertices are regular vertices with valence 6.

8.5.3 Catmull-Clark Subdivision

The Catmull-Clark subdivision scheme can be applied to meshes with arbitrary
topology, but unlike the previous method, it produces a mesh that consists primarily
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= New face point
= Vertices of the face

= New edge point

= Updated vertex
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Fig. 8.29 In each iteration of the Catmull-Clark algorithm, new face and edge points are added
and existing vertex positions are updated

of quadrilaterals containing vertices of valence 4. In each subdivision step of the
algorithm, the following mesh operations are performed in a sequence:

• A new face point is added to each face by computing the average of all vertices
of the face (Fig. 8.29a). In the following equation, j denotes the subdivision level,
f a face, and nf the number of vertices of that face, and vi the vertices of the face.
vf denotes the new face point.

vjC1
f D 1

nf

nfX

iD1
vji (8.23)

• A new edge point is added to each edge by computing the average of the end
points of the edge and the new face points of the edge’s neighbouring faces
(Fig. 8.29b). In the following equation, the new edge point is denoted by ve.
The edge has end points vA, vB, and adjacent faces f and g.

vjC1
e D vjC1

f C vjC1
g C vjA C vjB
4

(8.24)

• After adding new face and edge points, the position of every old vertex is updated
as follows. Let nv be the number of edges incident at a vertex v, vi the one-ring
neighbours of the vertex v, and vfi the new face points on the faces surrounding
v (Fig. 8.29c). Qv and Rv denote the average of the new face points and the edge
midpoints respectively. The superscript j denotes the subdivision level.



8.5 Mesh Subdivision 207

=New edge point

=New face point

=Updated vertex

Fig. 8.30 Mesh tessellation after one iteration of the Catmull-Clark algorithm

Qv D 1
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iD1
vjC1
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Rv D 1
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vj C vji
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!

vjC1 D QC 2RC .nv � 3/vj
nv

(8.25)

The vertex update equation in Eq. 8.25 can be viewed as a convex combination
of three points Q, R and vj, with weights 0.25, 0.5, 0.25 for a regular vertex. For a
vertex of valence 3, the weights are 0.33, 0.67 and 0.

On completion of the steps outlined above, the mesh is re-tessellated. New faces
and edges are added to the mesh by connecting each new face point to every new
edge point located around that face (Fig. 8.30a). Insertion of new edge points also
splits existing edges. Coordinates of existing vertices as well as the definitions of
edges incident at those vertices are updated (Fig. 8.30b).

As seen in Fig. 8.30b, the newly added faces are all quadrilaterals, and all new
edge points will have valence 4. Vertices that have a valence other than 4 after the
first iteration will continue to have a valence other than 4 in subsequent iterations,
and will therefore become extraordinary vertices. The Catmull-Clark subdivision of
a cube is shown in Fig. 8.31. The original vertices of the cube always have a valence
3, while all other vertices have a valence 4.

8.5.4 Root-3 Subdivision

The
p

3-subdivision scheme combines a triangle split operation and an edge flip
operation to generate a smooth surface from a triangular mesh. The iterative
algorithm performs the following two steps in every iteration.
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Fig. 8.31 Catmull-Clark subdivision of a cube
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Fig. 8.32 The
p

3-subdivision algorithm divides every triangle into three triangles and flips every
old edge

• For each triangle, insert a new vertex at its centroid, and split the triangle into
three triangles as in Fig. 8.32a. This operation performs the subdivision of
the mesh, increasing the number of triangles by a factor of three in a single
subdivision step. The operation also introduces three new edges, one from each
vertex to the centroid, along the direction of a median.

• Flip the old edges as shown in Fig. 8.32b. This operation contributes to the
smoothing of the mesh.

Applying the subdivision operator twice causes the tri-section of every original
edge. The method is therefore referred to as the

p
3-subdivision scheme. An edge

data structure which is both non-recursive and much simpler compared to the
half-edge structure, containing only references to the incident vertices v1, v2, and
adjacent triangles f1, f2, is particularly useful for this algorithm (Listing 8.10). The
edge flip operation can be implemented by simply traversing the edge list, and for
each edge (edge) creating two new faces (faceNew1, faceNew2) as in Listing
8.11. After traversing the list of edges, the old face list is deleted and replaced with
the list of new faces.
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Listing 8.10 Data structure for the
p

3-Subdivision algorithm.

Listing 8.11 The edge-flip operation.

Fig. 8.33 Three iterations of the application of
p

3-subdivision algorithm on a cube model

The application of the
p

3-subdivision method on the triangular mesh model of
a cube is shown in Fig. 8.33.

8.6 Mesh Parameterization

Mesh parameterization can be broadly defined as the process of generating a
mapping of points in a three-dimensional mesh to points belonging to a sim-
pler parametric domain. A parameterization typically associates a unique two-
dimensional point to every vertex, thus establishing a mapping from a subset of
<3 to a subset of <2. The two-dimensional domain could simply be a region of a



210 8 Mesh Processing

plane, or in a more general case a set of parametric coordinates defined on another
surface such as a sphere. The mesh is then said to be parametrically embedded in
that domain. Mesh parameterization finds several applications in computer graphics
such as texture mapping, mesh morphing and re-meshing.

One of the primary goals of parameterization is to achieve a one-to-one and
invertible mapping (a bijection). Some parameterizations additionally preserve
angles and areas. Angle preserving mappings are called conformal, while
area preserving mappings are known as authalic. Triangular meshes that are
topologically equivalent to a disc have a simple planar parameterization using
piecewise linear mappings. If we can find a one-one correspondence of the vertices
Pi D (xi, yi, zi), i D 1..3, of a triangle to points Si D (ui, vi), i D 1..3 in a plane, then
the map f of any point (x, y, z) within the triangle is given by the linear function

f .x; y; z/ D �1S1 C �2S2 C �3S3 (8.26)

where (œ1, œ2, œ3) are the barycentric coordinates of the point (x, y, z) with respect to
the triangle P1P2P3 (Eq. 2.48). The above linear mapping is also shown in Fig. 2.12.
The problem of planar embedding for a triangular mesh therefore reduces to the
problem of determining the mapping for just the vertices of the triangles. We con-
sider below a physics-based method for obtaining this mapping for an open mesh.

8.6.1 Barycentric Embedding

Imagine a three-dimensional triangular mesh fitted with springs along each edge,
and rigid links at each vertex where the springs meet. The springs are assumed to
have a zero rest length. If we stretch this network of springs and place it on a plane
so that the boundary vertices of the mesh are firmly attached to points around a
convex polygon, the interior vertices will settle in a minimum energy configuration
(Fig. 8.34). We then have a planar embedding of the mesh without any fold-over of
triangles.

We denote the map of a vertex Vi (xi, yi, zi) on the mesh by Pi (ui, vi), i D 1..n.
The potential energy of the spring attached to the edge PiPj is proportional to the
square of the displacement:

Eij D 1

2
Kij

�
�Pi � Pj

�
�2 (8.27)

where Kij is the spring constant. For any point Pi, if Ni denotes the set of indices of
its one-ring neighbours, the sum of potential energies of all edges incident at Pi is
given by

E.Pi / D 1

2

X

j2Ni
Kij

�
�Pi � Pj

�
�2; i D 1 : : : n: (8.28)
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Fig. 8.34 Planar embedding of a mesh

The total potential energy of the system is obtained by adding up the above values
for every vertex. We note that every edge is counted twice in the summation and
therefore we further multiply the result by half.

E D 1

4

X

i

X

j2Ni
Kij

�
�Pi � Pj

�
�2 (8.29)

For the minimum energy configuration, the partial derivatives of the above
expression with respect to the variable Pi must be zero. Hence

X

j2Ni
Kij .Pi � Pj / D 0: (8.30)

From the above equation, we get

Pi D
X

j2Ni
ˇijPj ; i D 1 : : : n: (8.31)

where

ˇij D Kij
P

r2Ni
Kir

(8.32)

Since Kijs are all positive and there are at least two edges incident at a vertex, we
have 0<ˇij < 1 for all j 2 Ni. Thus Eq. 8.31 expresses Pi as a convex combination
of its one-ring neighbours in the planar domain. Let the boundary vertices be
given by PmC1, : : : Pn for some value of m< n. Since these vertices are fixed at



212 8 Mesh Processing

known positions around a convex polygon, the only unknowns to be determined are
the locations of the interior vertices P1 : : :Pm. Equation 8.31 can be re-written as
follows:

Pi �
X

j 2 Ni
j � m

ˇij Pj D
X

j 2 Ni
j > m

ˇij Pj D Qi; i D 1; ::m: (8.33)

If we set ˇij D 0 if j 62 Ni, then the above set of linear equations can be written as
a single matrix equation:
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(8.34)

The above equation in fact represents two equations in u and v coordinates of
the interior points Pi. Since 0 �ˇij < 1, the m � m matrix in the above equation is
diagonally dominant as well as non-singular. The planar locations of the interior
points are therefore given by
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(8.35)

Box 8.4 Commonly Used Expressions for Spring Constants (Edge
Weights) Kij

Wachspress Metric:

Kij D cot ji C cot�ij
r2ij

Discrete Harmonic Metric:

Kij D cotıij C cotıji
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Mean Value Metric:

Kij D
tan
�
 ij
2

�
C tan

�
�j i
2

�

rij

The values of Q1, : : :Qm can be pre-computed using Eq. 8.33. A simple choice
for ˇij is

ˇij

(
0; if j … Ni
1

jNi j ; if j 2 Ni (8.36)

The above setting is equivalent to assigning a unit value for all spring constants
(Kij D 1, for j 2 Ni, for all i). This also implies that for a given i, the value of ˇijs
are all equal and independent of j. The position of a vertex relative to its neighbours
is thus ignored. In fact, Eq. 8.31 places Pi at the barycentric centre of the closed
polygon formed by its one-ring neighbours. Also note that the definition of ˇij is
not symmetric, i.e., ˇij ¤ˇji. A few other commonly used metrics for Kij are listed
in Box 8.4. These metrics capture information about the geometry of the mesh
surrounding an edge using distances and angles within the triangles that border the
edge. For each metric, the values of Kij are further normalized using Eq. 8.32 to
obtain the corresponding values of ˇij. The metrics are defined using the angles
within the adjacent triangles of the edge ViVj of the original mesh.

The inverse of the matrix in Eq. 8.35 can be computed easily for simple meshes
only, when m is small. For large values of m, we can solve the system iteratively
by either Jacobi or Gauss-Seidel methods. Rewriting Eq. 8.33 as an update equation
for Pi in the (k C 1)th iteration in terms of the values of Pj in the previous iteration
k, we have the following solution based on the Jacobi method:

P
.kC1/
i D Qi C

X

j 2 Ni
j � m

ˇij P
.k/
j ; i D 1; ::m; k D 0; 1; : : : (8.37)

The Gauss-Seidel method uses the updated values of P1, : : : , Pi�1 and the
previous values PiC1, : : :Pm to update Pi:

P
.kC1/
i DQi C

X

j 2 Ni
j < i � m

ˇij P
.kC1/
j

C
X

j 2 Ni
i < j � m

ˇij P
.k/
j ; i D 1; ::m; k D 0; 1; : : : (8.38)
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Fig. 8.35 Spherical embedding of a triangular mesh

The advantage of the Gauss-Seidel method over Jacobi method is that the values
of Pi can be sequentially updated in place within the same list without having to
maintain two separate lists for the previous and the updated values. In both the above
cases, a convergence criterion is used to determine when the iteration must stop:

ˇ
ˇ
ˇP

.kC1/
i � P .k/

i

ˇ
ˇ
ˇ < " i D 1; ::m; k D 0; 1; : : : (8.39)

where " is a user specified threshold that is independent of i.

8.6.2 Spherical Embedding

The methods presented in the previous section are suitable for open manifold
meshes. A closed manifold mesh, on the other hand, is topologically equivalent
to a sphere, and therefore the natural parameterization domain for such meshes is a
sphere. A spherical embedding generates a mapping of vertices of a closed mesh to
points on a sphere. As a consequence, triangles of the mesh get mapped to spherical
triangles (Fig. 8.35). For a triangular mesh, the mapped set of spherical triangles
must form a partition of the sphere. The embedding associates a pair of spherical
coordinates (˛, ı), 0 �˛� 2 , � /2 � ı� /2, with every three-dimensional vertex
of the mesh.

For geometrically simple closed meshes centred at the origin, the vertices can
be directly projected to the surface of a unit sphere using coordinate normalization.
The spherical coordinates are then extracted from the normalized coordinates (ui,
vi, wi) using the following equations:



8.7 Polygon Triangulation 215

˛i D tan�1
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wi

�

ıi D tan�1

0
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u2i C w2i

1

C
A (8.40)

The above values can be further transformed into the range [0, 1] if they are to
be used as texture coordinates. For a general triangular mesh, the iterative solution
for the minimum energy equation in Eq. 8.31 can be extended for a mapping onto a
unit sphere as follows:

P
.kC1/
i D .1 � �/P .k/

i C �
X

j2Ni
ˇij Pj ; jPi jj D 1: (8.41)

where Pi D (ui, vi, wi), i D 1.. n are points on the unit sphere, and � is a damping
parameter. The value of œ is usually set to 0.5. The weights ˇij are computed using
Eq. 8.36. The Gauss-Seidel solver provides the following iterative solution for the
above equation:

Si D .1 � �/P .k/
i C �

X

j 2 Ni
j < i

“ij P
.kC1/
j C �

X

j 2 Ni
j < i

“ij P
.k/
j ; P

.kC1/
i D Si

jSi j :

(8.42)

In the next section, we give an outline of another important class of mesh
processing algorithms, namely polygon triangulation.

8.7 Polygon Triangulation

Triangles have the property of being the simplest convex and planar polygonal
regions. For this reason, triangular meshes are generally preferred to more com-
plex polygonal meshes by applications involving both processing and rendering
of meshes. In this section, we consider two important classes of triangulation
algorithms:

• Polygon triangulation.
• Point set triangulation.

Polygon triangulation is the process of decomposing a polygon into a set of
triangles such that the vertices of the triangles are the same as the vertices of the
polygon, and no two triangles intersect. In a triangulation of a polygon, the union
of all triangles is the complete polygon. An implicit assumption in all polygon



216 8 Mesh Processing

triangulation algorithms is the fact that every simple polygon (see next section) can
be triangulated. Indeed, every simple polygon with n vertices can be decomposed
into a set of n�2 triangles.

Point set triangulation is a relatively complex problem of triangulating the convex
hull of a given set of points on a two-dimensional plane. The vertices of the convex
hull as well as the interior points of the hull are included in the triangulation. We
impose the planar restriction here since in a general three-dimensional space, four
points can be connected together to form tetrahedral regions that enclose a volume.

8.7.1 Polygon Types

Polygons are the most fundamental blocks in the construction and processing of
meshes. The geometric operations that can be performed on a mesh heavily depend
on the type of polygons used. In this section, we look at some of the important
polygon classes and their commonly used properties.

As mentioned in the previous section, mesh algorithms often restrict polygons
to simple polygons. A simple polygon is defined as a closed polygon without self-
intersections, and is thus topologically equivalent to a circle. A convex polygon is a
simple polygon that satisfies several properties. Every line segment connecting two
points within a convex polygon lies entirely within the polygon. The interior angles
of a convex polygon are all less than or equal to 180ı. Every anticlockwise traversal
of a convex polygon either continues straight, or turns left at every vertex. Point
inclusion tests and convex hull algorithms use this property. Convex polygons admit
simple and straightforward solutions to many processing algorithms. For example, a
convex polygon can be easily triangulated from any vertex (the resulting triangula-
tion may not be angle-optimal, though). A regular polygon is a special type of con-
vex polygon that is both equiangular (all angles are equal) and equilateral (all sides
are equal). A regular polygon is an approximation of a circle in the sense that as the
number of sides is increased, the shape of the polygon tends to that of a circle.

A star-shaped polygon is characterized by the property that there exists at least
one point within or on the polygon which is visible to every other point inside the
polygon. Specifically, if � is a polygon and if there exists a point Q either on or
inside � , such that for every other point P2� , the line segment PQ lies entirely
within� , then the polygon is star-shaped. The set of all points Q satisfying the above
condition is called the kernel of the polygon (Fig. 8.36a). A star-shaped polygon can
thus be defined as a polygon with a non-empty kernel. The kernel of a star-shaped
polygon is always a convex polygon formed by the intersection of the half-planes of
all the edges directed towards the interior of the polygon. If the kernel is the interior
of the whole polygon, then the polygon is obviously convex. Conversely, for every
convex polygon, the kernel is the interior of polygon itself.

We saw earlier in Sect. 8.4.1 that the vertex decimation algorithm generates star-
shaped polygons that require triangulation after the removal of a vertex (Fig. 8.18).
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Fig. 8.36 (a) The kernel of a star-shaped polygon and (b) its triangulation from a vertex inside the
kernel. (c) An edge visible polygon
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Fig. 8.37 (a) A monotone polygonal chain with respect to the line L. (b) A x-monotone polygon

If the kernel of a polygon contains a vertex, then the polygon can be triangulated
from that vertex (Fig. 8.36b). A convex polygon can therefore be triangulated from
any of its vertices. A polygon is said to be edge-visible if there exists an edge E of
the polygon such that for any point P within the polygon, there exists a point Q 2 E
such that the line segment PQ lies entirely within the polygon (Fig. 8.36c).

A polygonal line is called a monotone polygonal chain with respect to a line L if
every line perpendicular to L intersects the chain at most once (Fig. 8.37a). A simple
polygon is monotone with respect to L if any line orthogonal to L intersects the
polygon at most twice. A convex polygon is always monotone with respect to any
line on the plane of the polygon. An x-monotone polygon can be subdivided into
upper and lower x-monotone chains. The two chains meet at the leftmost and the
rightmost points of the polygon (Fig. 8.37b). Starting from the leftmost point, the
x-coordinates of the vertices monotonically increase along each chain.

A polygon is called a weakly externally visible (WEV) polygon if and only if
for every point P on the boundary of the polygon, there exists a semi-half line Lp

that does not intersect the polygon anywhere else. In other words, every point on
the boundary of a WEV polygon is visible to some point at infinity (Fig. 8.38).
Star-shaped and monotone polygons are clearly externally visible.
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Fig. 8.39 The edge flip operation can be used for producing locally angle-optimal triangulation

8.7.2 Edge-Flip Algorithm

A quadrilateral can be triangulated in at most two possible ways. The triangulation
that gives the maximum value for the minimum angle among the two triangles is
called angle-optimal (Fig. 8.39a). One triangulation can be obtained from the other
by flipping the dividing edge while making sure that the quadrilateral does not
contain a reflex vertex. If a vertex is reflex, flipping the edge results in an invalid
triangulation (Fig. 8.39b). We saw earlier that a convex polygon can be triangulated
from any vertex. To obtain an angle-optimal triangulation we consider every pair of
adjacent triangles and flip the common edge if the resulting configuration gives a
higher value for the minimum angle (Fig. 8.39c).

In an angle-optimal triangulation, the sum of opposite angles ˛C ı is always
less than 180ı (Fig. 8.39a, b). Such a pair of triangles is said to meet the
Delaunay condition. Then, the triangles also satisfy the condition that interiors of
the circumcircles of both triangles are point-free. The edge flipping method outlined
above can be extended to get an optimal triangulation (known as the Delaunay
triangulation) of a set of points. The algorithm incrementally adds points to a set and
re-triangulates the set using the edge-flip operation. If a point is added to the interior
of an existing triangle, the triangle is split into three, and all adjacent triangles are
checked if they satisfy the Delaunay condition (Fig. 8.40a). If the new point falls
on the edge of an existing triangle, it is connected to its opposite vertices and the
Delaunay condition is checked for the four pairs of triangles surrounding the vertex
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a b c

Fig. 8.40 Three different cases of the incremental Delaunay triangulation algorithm

(Fig. 8.40b). If the new point is outside all existing triangles, it is joined to the visible
vertices of the convex hull of the set and the affected regions are re-triangulated
(Fig. 8.40c). At any stage, the algorithm thus produces the convex hull of the points
added so far, along with an angle-optimal triangulation of the hull.

8.7.3 Three Coins Algorithm

The Three Coins algorithm is a versatile and easy to implement method that can be
used for finding both the convex hull and the triangulation of a star-shaped polygon.
The iterative backtracking algorithm is based on the orientation of three vertices
(hence the name “three coins”) of a polygon. In a general three-dimensional space,
the orientation of three points A, B, C is defined according to Eq. 2.10. On the other
hand, if the points are two-dimensional, we use Eq. 2.11 to determine if three points
make a left turn.

Let us first consider the algorithm for obtaining the convex hull of a star-shaped
polygon with n vertices v0, v1, : : : , vn�1 (Fig. 8.41). Assume that the vertices
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Fig. 8.41 (a) A star-shaped polygon with anticlockwise ordering of vertices. (b) The output of the
Three Coins algorithm

are given in the counter-clockwise order, and that v0 is a convex vertex (whose
interior angle is less than 180ı). We can always choose the vertex with minimum
y-coordinate as v0, since vertices with minimum or maximum coordinate values are
guaranteed to be convex. The Three Coins algorithm uses the fact that on the convex
hull, any three consecutive vertices must make a left turn when the hull is traversed
in the anticlockwise direction. Starting with the first three points A D v0, B D v1,
C D v2, the algorithm checks if A, B, C form a left turn. If so, we move forward in
the list of vertices by one step by replacing A with B, B with C, and C with the next
vertex in the list. If the three vertices do not make a left turn, the middle point B
is deleted from the list, and we move one step backward. This is done by replacing
A with its predecessor, and B with A. For this particular case, before updating the
values of A, B, C, we also add a new edge AC. The algorithm can be implemented
using a stack S as given in the pseudo code below (Listing 8.12).

The edges added by the Three Coins algorithm are shown as dotted lines in
Fig. 8.41b. As seen in the figure, the algorithm finds the convex hull of the star-
shaped polygon, and also triangulates each of its pockets. A pocket is an exterior
portion of the polygon that lies within its convex hull. Each pocket is a star-shaped
polygon bounded by an edge of the convex hull. This bounding edge is called a lid.
A pocket is always edge-visible with respect to its lid. It may also be noted that
the Three Coins algorithm traverses each pocket in the clockwise direction while
triangulating it. We can therefore apply the algorithm for triangulating a polygon
that is edge-visible with respect to an edge E, by ordering its vertices in clockwise
direction, and initiating the traversal from the second end point of E in the clockwise
ordering of vertices (Fig. 8.42a). We denote this vertex as v0. Initiating the algorithm
from a different vertex can lead to an invalid triangulation (Fig. 8.42b).

We saw earlier in Sect. 8.7.1 that a star-shaped polygon can be triangulated from
a vertex that lies within the kernel of the polygon. In the most general case, however,
the kernel may not contain any of the vertices. Also, it may not be possible to directly
apply the Three Coins algorithm, since a star-shaped polygon may not be edge-
visible. Before applying the Three Coins algorithm, a star-shaped polygon is split
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Listing 8.12 Procedure for the Three Coins algorithm

E

E

v0

v1

v1

v0

v2

v3

v2

v3

vn-1

a b

Fig. 8.42 (a) Triangulation of an edge-visible polygon using Three Coins algorithm. (b) An
invalid triangulation resulting from an improper choice of the starting vertex.

into two by adding an edge from one of the vertices and passing through some point
in the kernel. In Fig. 8.43a, this edge is shown as the line VP, where V is a vertex
and P a point in the kernel. This edge intersects the polygon on the other side of
the point where a temporary extra vertex Q is added. For the vertex decimation
algorithm, the vertex selected for removal is connected to every vertex in its one-
ring neighbourhood, and therefore belongs to its kernel (Fig. 8.18). Thus the point P
is readily obtained. The extra point Q and the edge PQ are removed once both sides
of the edge are triangulated.

Since the point P belongs to the kernel, the sub-polygons �1, �2 on either side
of the edge VQ are edge-visible polygons (Fig. 8.43a). By ordering the vertices
in the clockwise sense, the polygon �1 can be triangulated using the Three Coin
algorithm, starting from vertex V. Similarly �2 can be triangulated starting from
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Fig. 8.43 (a) A star-shaped polygon is split into two by adding an edge though a vertex V and a
point P in the kernel. (b) Each sub-polygon bounded by the new edge is triangulated. (c) The new
edge is removed and the resulting hole is triangulated

vertex Q (Fig. 8.43b). The splitting edge VQ, the temporary vertex Q, and all edges
incident at Q are now removed. The hole formed by this operation is actually an
edge-visible polygon with respect to the edge to which Q belonged. This is because
Q was previously connected to all vertices of the hole. We can therefore invoke
the Three Coin algorithm again to triangulate the hole, and this process completes
the triangulation of the whole star-shaped polygon (Fig. 8.43c).

8.7.4 Triangulation of Monotone Polygons

In this section, we consider the triangulation of x-monotone polygons. Any mono-
tone polygon can be converted to an x-monotone polygon by a single rotational
transformation of all its vertices. The vertices of the polygon are sorted in the
ascending order of x coordinates. Let the sorted set be V D fv0, v1, : : : , vn�1g.
The left-most vertex v0 is a convex vertex where the upper and lower monotone
chains meet (Fig. 8.44a). Similar to the Three Coins algorithm, the algorithm
for triangulating a monotone polygon P also uses a stack S of vertices which is
initialized with v0 and v1. Vertices are processed in the increasing order of x, and
triangulation is done by adding edges from these vertices and splitting off triangles
from the polygon wherever possible. The un-triangulated part of the polygon is
labelled P0. The vertices stored in the stack at any stage of the algorithm are denoted
by s0, s1, : : : , st, where st is at the top of the stack. These are vertices that have been
examined, but could not be fully processed, i.e., edges could not be generated from
these vertices yet.

The vertices stored on the stack satisfy the following properties:

• s0 is the left-most vertex of the polygon P0 (Fig. 8.44b).
• s0, s1, : : : , st are consecutive vertices on either the lower chain (Fig. 8.44c) or

the upper chain (Fig. 8.44d) of the polygon P0.
• s1, : : : , st�1 are reflex vertices in P0.
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Fig. 8.44 (a) Ordering of vertices on an x-monotone polygon. (b) Stack vertices form a
boundary of the untriangulated polygon P0. (c) A sequence of stack vertices on the lower chain.
(d) A sequence of stack vertices on the upper chain
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Fig. 8.45 (a) None of the stack vertices is removed and v is pushed onto the stack. (b) The updated
stack contains elements so : : : sk, v. (c) The updated stack contains only elements st and v

Since st is the last examined vertex, the next vertex v2V in the lexical ordering
will always be on the right of st. Depending on the relative position of v with respect
to the stack vertices, it will be either stored in the stack (becoming the next top of
stack vertex), or used to create edges thereby removing some vertices from the stack.
Three possible cases are shown in Fig. 8.45.

• Case 1: v is a adjacent to st, and st is a reflex vertex in P0 (Fig. 8.45a). In this
case, edges cannot be created from v, and therefore v is pushed onto the stack.

• Case 2: v is a adjacent to st, and st is a convex vertex in P0 (Fig. 8.45b). At least
one stack vertex can be connected to v by an edge. If the angle sk�1skv is less than
180ı for some k such that 0< k< t, then vertices sk : : : st�1 can all be connected
to v. The vertices skC1 : : : st are removed from the stack, and v is pushed onto
the stack.

• Case 3: v is adjacent to s0 in P0 (Fig. 8.45c). In this case, v lies on the opposite
chain as the stack vertices and is therefore visible to every stack vertex. v is
connected to vertices s1, .., st, and all stack vertices are removed from the stack.
st and v are then pushed onto the stack, with v now on the top of the stack.
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Fig. 8.46 Some of the intermediate stages in the triangulation of a x-monotone polygon. The dot
indicates the current vertex. S represents the stack after update, with the rightmost element on top
of stack

In all the three cases above, the current vertex v becomes the next top of stack
element. The algorithm stops when the last vertex vn�1 is pushed onto the stack.
The process of triangulation of an x-monotone polygon using the above algorithm
is shown in Fig. 8.46.

The sorting of the vertices in the pre-processing stage of the algorithm requires
O(n logn) time. After that, each vertex is examined only once and the algorithm
performs n iterations. The total number edges added is n�3. Thus the triangulation
algorithm alone (without considering the pre-processing stage) runs in O(n) time.
A pseudo-code of the algorithm is given in Listing 8.13.

8.8 Summary

This chapter outlined the fundamental properties of polynomial manifold meshes,
important mesh operations and related algorithms. The chapter began with an
outline of ASCII mesh file formats that are easy to create, read and modify. Such
file formats are useful for developing and testing mesh processing algorithms with
the help of simple polygonal models. Commonly used geometrical and topological
properties of meshes were then introduced. The winged-edge and half-edge data
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Listing 8.13 Pseudo-code for the triangulation algorithm

structures provide convenient representations of mesh neighbourhood information
required for processing adjacency queries and localized geometry operations. The
usefulness of both face based and edge based data structures has been demonstrated
using examples.

Mesh simplification algorithms are heavily used in applications requiring mul-
tiple levels of detail for rendering objects. The vertex decimation and the edge
collapse algorithms are iterative methods that progressively simplify a mesh based
on a user-specified cost function. These algorithms could be used to reduce the
number of vertices, edges and polygons in a mesh while preserving essential
topological and shape characteristics. The quadric error metric is commonly used
as the cost function for edge collapse operations. Mesh subdivision algorithms
iteratively subdivide each triangle or quadrilateral of a mesh and re-adjust the
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positions of vertices using blending functions. They are used for modelling ob-
jects from a base mesh by applying a series of smoothing and approximation
operations. The Loop subdivision algorithm is designed for triangular meshes,
while the Catmull-Clark algorithm is particularly suitable for quadrilateral meshes.
The

p
3 algorithm relies on an edge-flip operation for generating a smooth

surface.
This chapter also gave an overview of the process of mesh parameterization using

both planar and spherical embedding. Both methods use physics-based models and
require iterative solutions of linear systems in the mesh vertex coordinates to obtain
the embedding of a mesh in a different domain. The chapter concluded with an
outline of polygon triangulation algorithms that could be applied to star-shaped and
monotone polygons.

8.9 Supplementary Material for Chap. 8

The section Chapter8/Code on the companion website contains the following
programs implementing and demonstrating the working of key algorithms discussed
in this chapter.

1. Mesh.cpp

Here you will find the header and implementation files for a mesh class.
Mesh data can be read from files stored in OFF and OBJ formats and internally
represented using a vertex list and a polygon list. The class supports triangular
and quadrilateral polygonal manifold meshes, and a half-edge data structure for
storing the connectivity information.

2. EdgeCollapse.cpp
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The program shows the working of the edge collapse algorithm described in
Sect. 8.4.2. Mesh data is read from the file “mesh.off”. The mesh is assumed to be
a closed triangular mesh. The edge with the minimum error metric is highlighted
in each step. Press space bar to advance to the next iteration.

3. LoopSubdivision.cpp

The program demonstrates the working of the Loop subdivision algorithm
given in Sect. 8.5.2. Mesh data is read from the file “mesh.off”. The mesh is
assumed to be a closed triangular mesh. Press space bar to advance to the next
iteration. The maximum number of iterations is set at 4. Pressing ‘w’ displays
the wireframe model (default), and ‘s’ displays the solid model.

4. CatmullClark.cpp

The program performs Catmull Clark subdivision on an input quadrilateral
mesh, as described in Sect. 8.5.3. Mesh data is read from the file “mesh.off”. The
mesh is assumed to be a closed quadrilateral mesh. Press space bar to advance
to the next iteration. The maximum number of iterations is set at 4. Pressing ‘w’
displays the wireframe model (default), and ‘s’ displays the solid model.

5. Delaunay.cpp
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The program generates an incremental Delaunay triangulation of a set of
user specified points using the edge flip operation (Sect. 8.7.2). The points are
specified interactively using mouse input (left button). The maximum number of
points is set at 20.

6. ThreeCoins.cpp

The program demonstrates the Three Coins algorithm by triangulating an edge
visible polygon. The polygon definition is read into the program from the file
“polygon.dat”. The algorithm always starts from the first point in the input vertex
list. The user should therefore ensure that the polygon is edge visible, and the
first vertex is the correct initial vertex on the visible edge. The vertices are also
assumed to be ordered in the clockwise sense. The algorithm may not generate a
valid triangulation if any of these conditions is not satisfied.

8.10 Bibliographical Notes

Several books on computer graphics such as Foley (1996), Nielsen (2005) and
Shirley and Ashikhmin (2007) give a good coverage of fundamental mesh pro-
cessing algorithms. There have been a few recent publications (e.g., Botsch 2010;
Edelsbrunner 2001; De Loera et al. 2010) that primarily deal with mesh algorithms
and therefore serve as excellent references for development and research in this area.

The winged edge data structure was introduced by Baumgart (1972), and
several enhancements have since been proposed by researchers for various types
of mesh operations. Kettner (1998) gives a detailed description and comparison of
edge-based representations of polyhedral meshes. Schroeder et al. (1992) presents
the vertex decimation algorithm and its implementation aspects. A simple imple-
mentation of the edge collapse algorithm is given in Melax (1998). The quadric
error metric (QEM) for the edge collapse operation was introduced by Michael
Garland in his Ph.D thesis (Garland 1999). The Loop algorithm for the subdivision
of triangular meshes was proposed by Charles Loop (1987). Details of the Catmull-
Clark algorithm can be found in Catmull and Clark (1978). The

p
3 subdivision

algorithm is discussed at length in Kobbelt (2000). A comprehensive analysis of
subdivision algorithms can be found in Zorin (2006).

An introductory paper on mesh parameterization methods can be found in Bennis
et al. (1991). Recent papers by Floater and Hormann (2005) and Saba et al. (2005)
give an in-depth analysis of mesh parameterization algorithms.
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Chapter 9
Collision Detection

Overview

Collision detection is an integral component of game engines that are designed to
provide realistic animations of object interactions with the player and the game
environment. Physically realistic dynamic simulations such as flight simulators
and mobile robot simulators also require efficient collision detection algorithms.
Intersection tests form the backbone of collision detection algorithms. They are also
used in ray tracing algorithms, acceleration algorithms such as view frustum culling
and portal culling, and in real-time animations. This chapter gives an extensive
coverage of methods used for testing if primitives and bounding volumes overlap.

Collision detection in a large scene consisting of several objects requires efficient
methods to minimize the number of intersection tests. This chapter discusses the
usefulness of bounding volume hierarchies and spatial partitioning trees such as
octrees, k-d trees and bounding interval hierarchies, and includes a coverage of
important algorithms in each category.

9.1 Bounding Volumes

Bounding volumes provide a convenient approximation of the space occupied by
a mesh object or a collection of objects for the purpose of intersection testing and
collision detection. A set of objects represented by a bounding volume must be
contained entirely within the volume, so that if another object does not intersect
this volume, it can be readily concluded that the object does not intersect anything
within it. Commonly used bounding volumes are axis aligned bounding boxes
(AABB), oriented bounding boxes (OBB), spheres, convex hulls and discrete
oriented polytopes (k-DOP). All of these are closed volumes and have a convex
shape. AABBs and spheres were introduced in Sect. 3.4 and their computation
was given in Box 3.1 (Sect. 3.4). In this section, we will explore additional
properties of these bounding volumes and also consider other relatively more

R. Mukundan, Advanced Methods in Computer Graphics: With examples in OpenGL,
DOI 10.1007/978-1-4471-2340-8 9, © Springer-Verlag London Limited 2012
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{xmin, xmax, ymin, ymax, zmin, zmax}

P (xmin, ymin, zmin)

Q (xmax, ymax, zmax)

{xmid, ymid, zmid, xr, yr, zr}

C (xmid, ymid, zmid)

Fig. 9.1 Two different representations of an axis-aligned bounding box

complex geometries. It should be noted that mesh models of bounding volumes
are not needed for collision detection algorithms, and therefore only mathematical
representations of the regions they enclose are generally used. A mesh model is
sometimes created only for the purpose of visualizing an algorithm.

9.1.1 Axis Aligned Bounding Box (AABB)

An axis aligned bounding box is given by six parameters (xmin, ymin, zmin), (xmax,
ymax, zmax) representing the coordinates of two diagonally opposite vertices of the
box. The bounding volume can also be defined by its mid point (xmid, ymid, zmid) and
the three half-width extents xr, yr, zr along the principal axes directions (Fig. 9.1).
The advantage of this representation over the former is that any translation of the box
can be modelled by updating only the three coordinates of the midpoint, whereas in
the former representation all six coordinates would need to be updated.

Given a set of mesh vertices with coordinates fxi, yi, zig, i D 0 : : : n�1, we can
compute the AABB parameters for the mesh object as follows:

xmid D1

2
.xmax C xmin/; ymid D 1

2
.ymax C ymin/; zmid D 1

2
.zmax C zmin/

xr D1

2
.xmax � xmin/; yr D 1

2
.ymax � ymin/; zr D 1

2
.zmax � zmin/ (9.1)

where xmin, xmax etc., are computed as given in Box 3.1 (Sect. 3.4).

9.1.2 Minimal Bounding Sphere

A sphere enclosing a set of vertices can be readily obtained by computing the
centroid of the points and finding the maximum distance of the points from the
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A+ B+

Bounding circle with
centre at the centroid of
the vertices (A)

Bounding circle with
centre at the midpoint of
the AABB (B)

Minimal bounding circle

Fig. 9.2 A configuration of vertices for which neither the centroid of the points nor the centre of
the AABB gives the minimal bounding circle

Pi

Di

Pi

Di+1

Fig. 9.3 The minimal
bounding circle is updated to
contain the new point on the
boundary

centre. Such a computation can lead to a larger than required bounding volume
if the points are distributed unevenly or concentrated at one end of a mesh.
Computation of the sphere from the AABB (see Box 3.1, Sect. 3.4) often gives a
better approximation of the volume occupied by the mesh vertices. However, the
method also does not give the optimal sphere that has the minimum volume. A two-
dimensional version of this situation is illustrated in Fig. 9.2.

The Welzl’s algorithm is an incremental method for the computation of the
optimal bounding sphere of a given set of n points Sn D fP0, P1, : : : , Pn�1g. The
algorithm is based on the fact that if the smallest bounding sphere Di for the points
Si D fP0, P1, : : : , Pi�1g is updated to include another point Pi that lies outside Di, the
new minimal bounding sphere DiC1 must have Pi on its surface. A two-dimensional
example is given in Fig. 9.3.

The implementation of the Welzl’s algorithm as a recursive function is given
as a pseudo-code in Listing 9.1. The function is invoked as minSphere(S, n,
B, 0); where the variable S represents the set Sn, and B is a set of boundary
points which is initially empty. As shown below, the minimum sphere Dk is defined
in terms of the minimum sphere Dk�1 for k�1 points, with the point Pk�1 removed.
The initial value of k is n.
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Listing 9.1 Pseudo code for 2D Welzl’s algorithm

Dk DDk�1; if Pk�1 2 Dk�1

DDmin.Sk�1; Pk�1/ (9.2)

where Dmin(Sk�1, Pk�1) is the smallest disc enclosing the set of points Sk�1 with Pk�1

on the boundary. The minimal sphere at any stage of the algorithm is represented by
the pair fc, rg where c is the centre and r the radius. The spheres for the base cases
are defined by the functions Sphere1pt(), Sphere2pts() etc., as follows.

Sphere1pt(P): centre c D P, radius r D 0
Sphere2pts(P, Q): centre c D (P C Q)/2, radius D jc�Pj
Sphere3pts(P, Q, R): centre c, radius r as given in Eqs. 9.4 and 9.6.
Sphere4pts(P, Q, R, T)): centre c, radius r as given in Eq. 9.16.

As noted above, the minimal bounding sphere passing through two points is
simply a sphere that has the two points at opposite ends of a diameter. The pair
of points that are located diametrically opposite on a sphere are called antipodes.
For three points P, Q, R, the sphere has the circle passing through the points as one
of its great circles. In this case, the sphere’s centre and radius are the same as that
of the circle passing through the points. The interior angle at the vertex R of the
triangle PQR is given by

sin � D ja � bj
jaj jbj (9.3)

where a D P � R, and b D Q � R.
The radius of the circle (and therefore the sphere) through the three points can

now be obtained as

r D jb � aj
2 sin �

D jb � aj jaj jbj
2 ja � bj (9.4)
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P

Q

R

a

b

b-a

na

nb

Fig. 9.4 Minimum sphere
passing through three points

The directions along the perpendicular bisectors of the sides a and b towards the
centre of the circle are given by (see Fig. 9.4)

na D .a � b/ � a

nb D b � .a � b/ (9.5)

The position of the centre can be concisely expressed in terms of the above
vectors as

c D jbj2na C jaj2nb

2ja � bj2 C s (9.6)

where s D (xs, ys, zs) denotes the position of the point R.
Four non-coplanar points P, Q, R, T uniquely determine a sphere in three

dimensions. The parameters of the sphere are obtained from the most general form
of a sphere given in terms of its centre c D (xc, yc, zc) and radius r:

.x � xc/2 C .y � yc/2 C .z � zc/
2 D r2; or equivalently;

.x2 C y2 C z2/ C ux C vy C wz C k D 0 (9.7)

where u D �2xc, v D �2yc, w D �2zc, and k D xc
2 C yc

2 C zc
2 � r2. Since the four

points P, Q, R, T are required to lie on the above sphere, we can substitute the
coordinates of each point and obtain the following simultaneous equations:

�
xp

2 C yp
2 C zp

2
� C uxp C vyp C wzp C k D 0

�
xq

2 C yq
2 C zq

2
� C uxq C vyq C wzq C k D 0

�
xs

2 C ys
2 C zs

2
� C uxs C vys C wzs C k D 0

�
xt

2 C yt
2 C zt

2
� C uxt C vyt C wzt C k D 0 (9.8)
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Treating the above set as a system of linear equations in the unknowns u, v, w,
and k, we get the following equation in the coefficients:

ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

.x2 C y2 C z2/ x y z 1
�
x2

p C y2
p C z2

p

�
xp yp zp 1

�
x2

q C y2
q C z2

q

�
xq yq zq 1

�
x2

s C y2
s C z2

s

�
xs ys zs 1

�
x2

t C y2
t C z2

t

�
xt yt zt 1

ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

D 0: (9.9)

The equation of the sphere can be directly obtained by expanding the above
determinant as follows:

M11.x2 C y2 C z2/ � M12x C M13y � M14z C M15 D 0 (9.10)

where Mij are the minors given by

M11 D

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

xp yp zp 1

xq yq zq 1

xs ys zs 1

xt yt zt 1

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

(9.11)

M12 D

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

�
x2

p C y2
p C z2

p

�
yp zp 1

�
x2

q C y2
q C z2

q

�
yq zq 1

�
x2

s C y2
s C z2

s

�
ys zs 1

�
x2

t C y2
t C z2

t

�
yt zt 1

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

(9.12)

M13 D

ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
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ˇ

�
x2

p C y2
p C z2

p

�
xp zp 1

�
x2

q C y2
q C z2

q

�
xq zq 1
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s

�
xs zs 1

�
x2

t C y2
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t

�
xt zt 1

ˇ̌
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ˇ
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ˇ
ˇ
ˇ
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ˇ

(9.13)

M14 D

ˇ
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ˇ̌
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ˇ̌
ˇ
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ˇ

�
x2

p C y2
p C z2

p

�
xp yp 1

�
x2

q C y2
q C z2

q
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xq yq 1
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x2

s C y2
s C z2

s

�
xs ys 1
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t C y2
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t

�
xt yt 1
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ˇ
ˇ
ˇ
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ˇ
ˇ
ˇ

(9.14)
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M15 D

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ

�
x2

p C y2
p C z2

p

�
xp yp zp

�
x2

q C y2
q C z2

q

�
xq yq zq

�
x2

s C y2
s C z2

s

�
xs ys zs

�
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t C y2
t C z2

t

�
xt yt zt

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ

(9.15)

Since the four points are non-coplanar, from Eq. 9.11 we find that M11 ¤ 0. The
centre and the radius of the minimal sphere are now readily obtained as follows:

c D
�

M12

2M11
;

�M13

2M11
;

M14

2M11

�

r D
s

x2
c C y2

c C z2
c �

�
M15

M11

�
(9.16)

9.1.3 Oriented Bounding Box (OBB)

The oriented bounding box (OBB) gives a closer approximation of the underlying
mesh geometry compared to the AABB and the sphere. An OBB can be thought
of as a rotated AABB, whose axes are aligned along mutually orthogonal principal
directions of variance of the points with respect to the centroid. If the vertices of a
mesh object are given by fxi, yi, zig, i D 0 : : : n�1, we can compute their centroid
. Nx; Ny; Nz/, and form the following matrix:

V D
2

4
x0 � Nx x1 � Nx : : : xn�1 � Nx
y0 � Ny y1 � Ny : : : yn�1 � Ny
z0 � Nz z1 � Nz : : : zn�1 � Nz

3

5 (9.17)

The scatter (or covariance) matrix C is a 3 � 3 symmetric matrix given by

C D 1

n

�
VVT

�
D 1

n

2

6
6
6
6
6
66
4

n�1P

kD0

.xk � Nx/2
n�1P

kD0

.xk � Nx/.yk � Ny/
n�1P

kD0

.xk � Nx/.zk � Nz/
n�1P

kD0

.xk � Nx/.yk � Ny/
n�1P

kD0

.yk � Ny/2
n�1P

kD0

.yk � Ny/.zk � Nz/
n�1P

kD0

.xk � Nx/.zk � Nz/
n�1P

kD0

.yk � Ny/.zk � Nz/
n�1P

kD0

.zk � Nz/2

3

7
7
7
7
7
77
5

D

2

6
6
4

�2
x �xy �xz

�xy �2
y �yz

�xz �yz �2
z

3

7
7
5 (9.18)
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e1

e2
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w1

w2

w3

a b

Fig. 9.5 (a) The eigenvalues and the eigenvectors of the covariance matrix can be used to compute
an ellipse with axes along directions of maximum and minimum variance. (b) The oriented
bounding box uses the ellipse’s parameters

where �x
2 denotes the variance of the vector fxig, �xy the covariance between the

vectors fxig, fyig, and so on. The above matrix therefore has real eigenvalues �1,
�2, �3 and a mutually orthogonal set of eigenvectors v1, v2, v3. The normalization
of each of these vectors yields an orthonormal basis e1, e2, e3. Treating the set of
mesh vertices fxi, yi, zig, i D 0 : : : n�1, as a point cloud, the unit vectors e1, e2, e3

define the principal axes directions of an ellipsoid with corresponding semi-axis
lengths

p
�1,

p
�2 and

p
�3 (Fig. 9.5a). The OBB also has the same axis directions

and half-width extents (Fig. 9.5b). The OBB can thus be completely specified by its
centre . Nx; Ny; Nz/, its half-width extents w1 (Dp

�1), w2 (Dp
�2), w3 (Dp

�3), and
unit vectors e1, e2, e3 along its axes.

The matrix M with e1, e2, e3 as the column vectors gives the rotational
transformation of the OBB with respect to the coordinate reference frame. The
OBB does not always provide a tight fitting bounding box for the point cloud. This
is because the covariance matrix depends on the distribution of the whole set of
points, not just the points on the boundary that define the shape. Even changes in
the locations of vertices that are inside the point cloud can affect the orientation of
the OBB. One possible solution to this problem is to consider only the vertices on
the convex hull of the mesh for the computation of the OBB. Another method that
is used for the construction of the optimal OBB is to select the axis of the smallest
eigenvalue, project all points on a plane perpendicular to this axis, and to compute
the minimum area bounding rectangle of the projection. The chosen axis and the
axes of the rectangle together define the orientation of the OBB. If we assume that
�1 � �2 � �3, then e3 is the axis of projection. The points are then projected onto
a plane orthogonal to e3, and the minimal rectangle of this set gives the other two
axes e1

0 and e2
0 (Fig. 9.6a).

The minimal rectangle of a set of points on a plane can be obtained using the
rotating calipers method. The method uses the convex hull of the points and two
orthogonal pairs of support lines (Fig. 9.6b) such that one of the lines is always
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Fig. 9.6 (a) Computation of the optimal OBB using a projection of the vertices orthogonal to the
axis of minimum eigenvalue. (b) The rotating calipers method

aligned with an edge of the convex hull. The remaining three lines pass through
the vertices of the convex hull. The angles � i (i D 1 : : : 4) made by each support
line with the edge of the convex hull in anticlockwise order are computed and the
minimum angle is found. All four support lines are rotated about the corresponding
vertices of the hull by the minimum angle, and this step aligns one of the lines with
another edge of the convex hull. The area of the newly formed rectangle is computed
and the minimum area updated. The process is repeated until all edges of the convex
hull have been processed. The computation of the convex hull using algorithms such
as the Graham’s Scan algorithm takes O(nlogn) time. The rotating calipers method
visits all edges of the hull in O(n) time. The overall complexity of the optimal OBB
computation algorithm is therefore O(nlogn).

9.1.4 Discrete Oriented Polytope (k-DOP)

A polytope is a general term for a polyhedron in any arbitrary dimension. It is
defined as a geometrical object with flat surfaces. Points, line segments, polygons
and polyhedrons are respectively zero-, one-, two- and three-dimensional polytopes.
In a three-dimensional space, a discrete oriented polytope is a closed convex
polyhedron bounded by k/2 pairs of parallel planes, where k is an even integer and
k � 6. Each pair of planes has a fixed orientation. Such a polyhedron is often referred
to as a k-DOP. An AABB and an OBB are both bounded by three pairs of parallel
planes, and are therefore 6-DOPs. A 10-DOP and the associated normal directions
are shown in Fig. 9.7a. A k-DOP need not always have k sides. The example in
Fig. 9.7b is a 8-DOP with only six sides, with two sides degenerating into points.

The components of the surface normal vectors of a k-DOP are usually chosen
from the set f�1, 0, C1g. Each pair of parallel sides of a k-DOP has a fixed normal
direction nj, j D 0, : : : (k/2)�1. Their positions are determined such that the region
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(0, 1, 0)

(0, 0, 1)

(1, 0, 1)

(1, 0, -1)

a b

Fig. 9.7 (a) A 10-DOP and the normal directions of five of its sides. The remaining five sides are
parallel to these and have opposite normal directions. (b) An 8-DOP with degenerate edges
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p2vi
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dij

Γ1

Γ2

a b

Fig. 9.8 (a) The positions of the planes are determined such that the vertices are tightly packed
within each slab. (b) A slab formed by two parallel planes

between them tightly encloses the mesh vertices (Fig. 9.8a). Now consider two
parallel planes �1, �2 having a normal direction nj and passing through points p1,
p2 respectively. The region between the parallel planes is called a slab. If a vertex vi

belongs to the slab formed by �1, �2, then vi satisfies the equations

.vi � p1/ � nj � 0; and .vi � p2/ � nj � 0: (9.19)

In a k-DOP, the values of p1, p2 are determined by the minimum and the
maximum positions of the projections of mesh vertices vi, i D 0 : : : n�1, on the
vector ni (Fig. 9.8b):

dij D vi � nj

dminj D mini .dij /

dmaxj D maxi .dij /

p1 D .dminj /nj I p2 D .dmaxj /nj (9.20)
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The k-DOP can be represented by the set fdminj, dmaxj, njg, j D 0 : : : (k/2)�1,
that gives the k/2 intervals and direction vectors. The points p1, p2 were used only
for the purpose of explaining the construction of the intervals, and are not stored. For
fast overlap tests, it is desirable to have all k-DOPs in an application share surface
normal directions from the same set. If the normal directions are pre-defined, then
only the minimum and maximum values fdminj, dmaxjg, j D 0 : : : (k/2)�1, need be
stored. A point p belongs to a k-DOP if and only if the following conditions are
simultaneously satisfied:

dminj � .p � nj / � dmaxj; for all j: (9.21)

9.1.5 Convex Hulls

The key properties of a convex polygon were outlined in Sect. 8.7.1. A convex
hull of a set of points in two dimensions is defined as the unique convex polygon
containing all the points and whose vertices are only points in the set. It is
the minimal convex polygon formed by the intersection of all convex polygons
containing the points. The convex hull therefore is the tightest fitting bounding
volume. The convex hull can also be defined as the union of all triangles that
can be formed using only points of the set. In this section, we will first outline
the construction of two-dimensional convex hulls using an incremental hull update
algorithm, and then extend the method to three-dimensional hulls.

The 2D incremental hull algorithm builds the hull starting with a triangle formed
by joining the first three points in the set (provided they are non-collinear), and then
iteratively adds one point at a time to the existing hull and updates it if necessary.
If the vertices of the initial triangle are oriented in the anticlockwise sense, then the
vertices of the convex hulls constructed in subsequent steps will also be oriented
in the anticlockwise sense. Assume that the given set of points is Sn D fP0, P1, : : : ,
Pn�1g, and the algorithm has constructed the convex hull of the first i points Si D fP0,
P1, : : : , Pi�1g (3 � i < n). We denote this convex hull by Ci D fQ0, : : : Qk�1g � Si.
When the next point Pi is added, the convex hull Ci is traversed to check if the point
is within the hull. This can be done by computing the signed area of the triangle
QjQjC1Pi, j D 0 : : : k�1, (Qk D Q0) is positive (Eq. 2.9) for all j. If the point Pi is
inside or on the hull, it is not updated, i.e., CiC1 D Ci. If the point is outside the hull,
the signed area changes sign from positive to negative at some vertex on the hull,
and from negative back to positive at some other vertex. These vertices are called
the split vertex and the merge vertex respectively (Fig. 9.9). Existing edges between
these vertices are removed, and the point Pi are connected to these vertices to form
the new convex hull CiC1. The vertex set Ci is updated to CiC1 by removing the
vertices between the split and the merge vertices and adding Pi.

At each step, the algorithm requires the traversal of the hull vertices to determine
the locations of the split and merge vertices. The overall time complexity of the
algorithm is therefore O(n2) for a naive implementation. O(nlogn) implementations
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Fig. 9.9 Incremental construction of a two-dimensional convex hull

Pi
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Pi

Ci Ci+1

Fig. 9.10 Incremental construction of a three-dimensional convex hull

exist, but they cannot be directly extended to the three-dimensional convex hull
algorithm. One of the popular algorithms in this class is the Graham Scan, which
is the same as the Three-Coins algorithm (Sect. 8.7.3) with a pre-processing phase
where the points Pi are initially sorted in the ascending order of the angles between
the vectors pi D Pi�P0 and the x-axis.

A natural extension of the incremental algorithm described above to a three-
dimensional data set Sn consisting of n mesh vertices can be easily formulated.
The algorithm begins with the construction of a tetrahedron from four non-coplanar
points of the set Sn. The point inclusion test in the three-dimensional case uses
signed distances (Eq. 2.24) instead of signed areas to determine if a new point Pi

is within the existing convex hull. If the surface normal vectors of the triangles of
the convex hull are all specified in the outward direction, then for any point inside
the hull, the signed distance with respect to every triangle of the hull is negative.
Otherwise, the point is outside the hull, and we can determine the edges between
triangles where the transition from negative to positive takes place. These edges are
called silhouette edges. Every triangle for which the signed distance is positive is
visible with respect to the point Pi. These triangles are removed, and the point Pi

is connected to the end points of every silhouette edge to form new triangles of the
updated convex hull (Fig. 9.10).

At each step, the point inclusion step and the hull update step take O(n) time. The
total time complexity of the 3D incremental hull discussed above is thus O(n2).



9.2 Intersection Testing 243

9.2 Intersection Testing

The bounding volumes introduced in the previous section are often associated with
methods that determine if two bounding volumes intersect. In this section, we will
consider three different types of intersection tests using bounding volumes:

• Intersection between a bounding volume and a ray. Such intersection tests are
used in advanced ray tracing algorithms where bounding volumes are employed
to minimize the computation of ray intersections.

• Intersection between a bounding volume and a plane. Intersection testing of
objects with planes is used in acceleration algorithms such as view frustum
culling.

• Intersection between two bounding volumes of the same type. Collision detection
algorithms often require the testing of intersections between bounding volumes.

A ray can be represented by the pair fp, mg, where p D (xp, yp, zp) denotes the
origin of the ray, and m D (xm, ym, zm) a unit vector along the ray’s direction. In
parametric form (see also Eq. 2.13), the ray is given by the following equations:

x D xp C txm

y D yp C tym

z D zp C tzm; t � 0: (9.22)

A plane always has a linear representation ax C by C cz C d D 0, where the
vector n D (a, b, c) is along the direction of its normal vector. As shown in Eq.
2.22, the equivalent vector representation of a plane is r•n D �d. If we assume that
n is a unit normal vector, then the signed distance D of a point v to this plane is
simply given by the expression v•nC d (see Eq. 2.24).

The following sections discuss methods of testing whether a bounding volume
with a given representation intersects these primitive geometrical elements.

9.2.1 AABB Intersection

We first consider the intersection of an AABB given by the parameter set fxmin,
xmax, ymin, ymax, zmin, zmaxg with a ray fp, mg as in Eq. 9.22. A naı̈ve approach is to
check if the ray intersects any of the six sides of the AABB. For example, one of
the sides parallel to the xy-plane is given by the equation z D zmin. We first compute
the value of t from Eq. 9.22 by substituting z D zmin, and then use this value to find
x and y. The value of t is denoted as t

.z/
min. The ray intersects this plane if and only if

the following three conditions are simultaneously satisfied:
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zmin
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zmax
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Fig. 9.11 AABB intervals along the principal axes, and a non-intersecting ray

t
.z/
min D zmin � zp

zm

� 0;

xmin �
�
xp C t

.z/
minxm

�
� xmax;

ymin �
�
yp C t

.z/
minym

�
� ymax (9.23)

Similarly, the ray can be tested against the other planes of the AABB. A
moment’s thought will reveal that it is not always necessary to test all six planes
for intersection with the ray. At most three sides of the AABB will be visible to the
point p if the point is outside the box (which is usually the case). We can also make
use of the axis-aligned nature of the sides to determine if the ray is directed away
from the AABB and therefore would not intersect the volume (Fig. 9.11). If a ray
satisfies any of the following six conditions, it will not intersect the AABB.

.xp < xmin/ and .xm � 0/

.yp < ymin/ and .ym � 0/

.zp < zmin/ and .zm � 0/

.xp > xmax/ and .xm � 0/

.yp > ymax/ and .ym � 0/

.zp > zmax/ and .zm � 0/ (9.24)

If none of the above conditions is true, then we can identify the three faces visible
to p by comparing its coordinates against the corresponding intervals of the AABB.
As an example, if (xp > xmax) and (yp < ymin) and (zp > zmax), then the ray need be
compared only with the planes x D xmax, y D ymin, and z D zmax.
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intersection test using the
projected distances along the
normal vector

The testing of intersection of an AABB with a plane r•n D �d, jnj D 1, can be
done by computing the signed distances of the vertices vi, i D 1..8, of the AABB with
respect to the plane. If some vertices are on or above the plane, and some below the
plane, then the plane intersects the AABB. In other words, if Di D vi•n C d is non-
zero and has a positive value for all i, then the AABB is entirely above the plane;
if Di is non-zero and has a negative value for all i, then the AABB is below the
plane; otherwise the plane intersects the AABB. The amount of computation can be
reduced by first determining the diagonal of the AABB that is closely aligned with
the normal vector n, and then using only the two opposite endpoints of this diagonal
to check if they are on either sides of the plane. Note that an AABB has only four
principal diagonals, and the selection of the diagonal closest to n is done by using
the dot-product between n and the unit vectors along the four diagonals.

Another AABB-plane intersection test (which will be extended to OBBs in the
next section) uses the projection of diagonal vectors (vectors from the centre of the
AABB to the vertices) on the normal vector n of the plane (Fig. 9.12). For this
method, we use the representation of the AABB given by the centre c D (xmid, ymid,
zmid) and the three half-width extents xr, yr, zr . The largest projected distance by any
vertex of the AABB on the unit normal vector n D (xn, yn, zn) is given by

� D jxrxnj C jyrynj C jzr znj (9.25)

The shortest distance of the centre from the plane is Dc D c•n C d. The plane
intersects the AABB if and only if

Dc � � (9.26)

The overlap test using two AABBs can be easily performed taking advantage
of their axis-aligned property. Since the respective axes are always parallel, two
AABBs overlap only if their projected intervals (see Fig. 9.11) along each axis
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overlap. Thus, two AABBs represented as fx.1/
min; x

.1/
max; y

.1/
min; y

.1/
max; z.1/

min; z.1/
maxg, and

fx.2/

min; x
.2/
max; y

.2/

min; y
.2/
max; z.2/

min; z.2/
maxg do not overlap if any of the following conditions

is satisfied:

x
.1/

min > x.2/
max

x.1/
max < x

.2/

min

y
.1/
min > y.2/

max

y.1/
max < y

.2/

min

z.1/
min > z.2/

max

z.1/
max < z.2/

min (9.27)

If the AABBs are represented using their midpoint and half-width extents
as fx.1/

mid ; y
.1/

mid ; z.1/

mid ; x
.1/
r ; y

.1/
r ; z.1/

r g and fx.2/

mid ; y
.2/

mid ; z.2/

mid ; x
.2/
r ; y

.2/
r ; z.2/

r g, then the
overlap test can be suitably modified as follows. In this case, the requirement for
bounding volume overlap is that the projected distance between the centres must
be less than or equal to the sum of the corresponding half-width extents along each
axis. Conversely, if any of the following conditions is satisfied, the two AABBs do
not overlap.

ˇ
ˇ
ˇx.1/

mid � x
.2/

mid

ˇ
ˇ
ˇ >

�
x.1/

r C x.2/
r

�

ˇ
ˇ
ˇy.1/

mid � y
.2/

mid

ˇ
ˇ
ˇ >

�
y.1/

r C y.2/
r

�

ˇ
ˇ
ˇz.1/

mid � z.2/

mid

ˇ
ˇ
ˇ >

�
z.1/
r C z.2/

r

�
(9.28)

Since an AABB is also an OBB, the intersection tests given in the next section
can also be applied to an AABB.

9.2.2 OBB Intersection

If an OBB is given by the parameters f Nx; Ny; Nz, w1, w2, w3, e1, e2, e3g, the eight
vertices of the bounding volume are given by

v D c ˙ w1e1 ˙ w2e2 ˙ w3e3 (9.29)
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where c D ( Nx; Ny; Nz). The six faces of the OBB have the following equations:

.r � c/ � e1 D ˙ w1

.r � c/ � e2 D ˙ w2

.r � c/ � e3 D ˙ w3 (9.30)

To test the intersection of a ray fp, mg (see Eq. 9.22) with the above OBB, a
brute force algorithm would first identify the faces visible to the point p by taking
the dot-product of m with the unit vectors e1, e2, e3. For example, the positive side
of e1 is not in the direction of (and therefore will not intersect) the ray if any of the
following two conditions is satisfied.

.p � c/ � e1 < w1

m � e1 > 0 (9.31)

The point of intersection is obtained by the value of the ray parameter t by
substituting the ray equation r D p C t m in the equations of the planes that are
visible to the ray. The point of intersection is further checked if it is within the
corresponding faces, with the help of their vertex coordinates.

A faster ray intersection test was introduced by Kay and Kajiya (1986) based
on the representation of the OBB using three slabs, where each slab is bounded
by a pair of planes given in Eq. 9.30. The parameter values t

.i/

min; t
.i/
maxfor each slab

(i D 1..3) are computed as shown in the example for i D 1 below:

If m � e1 > 0; t
.1/

min D �w1 � .p � e1/

.m � e1/
; t .1/

max D w1 � .p � e1/

.m � e1/

If m � e1 < 0; t
.1/
min D w1 � .p � e1/

.m � e1/
; t .1/

max D �w1 � .p � e1/

.m � e1/
(9.32)

After computing the minimum and maximum values for all three slabs, the
following values are obtained:

umin D max
n

t
.1/
min; t

.2/
min; t

.3/
min

o

umax D min
˚

t .1/
max; t .2/

max; t .3/
max

�
(9.33)

The ray intersects the OBB if umin � umax. This condition means that the
intersection of the three [tmin, tmax] intervals on the ray is non-zero. The two-
dimensional version of the above method is depicted using an intersecting and a
non-intersecting ray in Fig. 9.13.

The testing of intersection of an OBB with a plane r•n D �d, jnj D 1, can be
done exactly like the methods outlined for a AABB in the previous section. The
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Fig. 9.13 The intersection of rays with the slabs of an OBB

first method computes the signed distances of the vertices vi, i D 1..8, of the OBB
with respect to the plane, and if some vertices are found to be on or above the
plane, while others below the plane, then it is concluded that the plane intersects the
OBB. This method could be further simplified using only the two end-vertices of
the principal diagonal that is closely aligned to n. We can also extend the method
based on projected distances (Fig. 9.12) to OBBs. The longest projected distance on
n generated by vectors from the centre of the OBB to its vertices is given by

� D w1je1 � nj C w2je2 � nj C w3je3 � nj (9.34)

The above quantity is then compared with the shortest distance of the centre c of
the OBB from the plane given by Dc D c•n C d. As previously shown in the case of
an AABB, the plane intersects the OBB if Dc � �.

A naı̈ve algorithm for overlap test between two OBBs would compare every edge
of one OBB with every face of the other OBB. In total, such a method would require
12 � 6 � 2 D 144 edge-face intersection tests. The number of intersection tests
can be considerably reduced if we use the separating axis theorem. The theorem
states that if two OBBs do not overlap, then there exists a separating plane between
them, and equivalently, the vertices of the OBBs project into disjoint intervals on
any axis perpendicular to the separating plane. The direction perpendicular to the
separating plane is called the separating axis direction. The theorem further states
that the separating plane, if it exists, is parallel to either a face of one of the OBBs,
or a plane formed by two edges, one from each OBB. The 15 possible directions for
the separating axis are: e1

(1), e2
(1), e3

(1), e1
(2), e2

(2), e3
(2), e1

(1) � e1
(2), e1

(1) � e2
(2),

e1
(1) � e3

(2), e2
(1) � e1

(2), e2
(1) � e2

(2), e2
(1) � e3

(2), e3
(1) � e1

(2), e3
(1) � e2

(2), e3
(1)
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Fig. 9.14 Computation of projected distances on a separating axis

� e3
(2). We denote these directions by li (i D 1..15). Note that some of these vectors

are not unit vectors.
In Fig. 9.14, r1 denotes a vector from the centre of the first OBB to one of its

vertices that give the largest projection on the separating axis li. Let us momentarily
assume that li is a unit vector. Then, the projected distance is given by �i

(1) D jr1•lij.
From Eq. 9.29, the eight possible values for r1 are ˙ w1e1 ˙ w2e2 ˙ w3e3. The
maximum projected distance is obtained by taking the positive values for each
projected component. Noting that w1, w2 and w3 are always positive, we can define

�i
.1/ D w1je1 � l i j C w2je2 � l i j C w3je3 � l i j (9.35)

Similarly, for the second OBB we obtain �i
(2) D jr2•lij. In the following, we use

superscripts in the summation to distinguish between parameters associated with the
first and the second OBBs.

�i
.1/ D

3X

kD1

w.1/

k

ˇ
ˇ
ˇe.1/

k � l i

ˇ
ˇ
ˇ

�i
.2/ D

3X

kD1

w.2/

k

ˇ
ˇ
ˇe.2/

k � l i

ˇ
ˇ
ˇ (9.36)

The projected distance of the line of centres on li is Di D j(c(2)� c(1)) •lij. The two
OBBs are separated if, for some i,

Di > �i
.1/ C �i

.2/; i D 1::15: (9.37)

The above inequality remains unchanged if we multiply both sides by a constant
jlij. This means that the separating axis directions li can be used in the above
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equations without converting them to unit vectors. From Fig. 9.14, we observe
that the vector (c(2)� c(1)) represents the translation of OBB2 with respect to the
coordinate frame of OBB1. We therefore denote this vector by T. Similarly, let

R D
2

4
r00 r01 r02

r10 r11 r12

r20 r21 r22

3

5 (9.38)

denote the rotational transformation of OBB2 relative to the coordinate frame of
OBB1. We can now represent all OBB axes directions relative to the coordinate
system of OBB1 with the origin at its centre:

e1
.1/ D .1; 0; 0/; e2

.1/ D .0; 1; 0/; e3
.1/ D .0; 0; 1/

e1
.2/ D .r00; r10; r20/; e2

.2/ D .r01; r11; r21/; e3
.2/ D .r02; r12; r22/ (9.39)

In this reference system, we can also write T D t1e1
(1) C t2e2

(1) C t3e3
(1) where

t1 D .c.2/ � c.1// � e1
.1/; t2 D .c.2/ � c.1// � e2

.1/; t3 D .c.2/ � c.1// � e3
.1/

(9.40)

It can be seen that with the above selection of the reference frame, the expressions
for Di, �(1), �(2) get highly simplified, reducing the number of operations needed to
evaluate the inequality in Eq. 9.37. For example, when li D e1

(1) � e1
(2), we get the

following expressions for the projected distances:

Di D jT � l i j D ˇ̌
t2e2

.1/ � .e1
.1/ � e1

.2// C t3e3
.1/ � .e1

.1/ � e1
.2//

ˇ̌

D j � t2r20 C t3r10j
�i

.1/ Dw2
.1/

ˇ
ˇe2

.1/ � .e1
.1/ � e1

.2//
ˇ
ˇ C w3

.1/
ˇ
ˇe3

.1/ � �
e1

.1/ � e1
.2/

�ˇˇ

D w2
.1/jr20j C w3

.1/jr10j

�i
.2/ D w2

.2/
ˇ
ˇe2

.2/ � �
e1

.1/ � e1
.2/

�ˇˇ C w3
.2/

ˇ
ˇe3

.2/ � �
e1

.1/ � e1
.2/

�ˇˇ

D w2
.2/j � r11r20 C r21r10j C w3

.2/j � r12r20 C r22r10j
D w2

.2/jr02j C w3
.2/jr01j (9.41)

The last expression given above is derived based on the fact that e1
(2) �

e2
(2) D e3

(2) and e1
(2) � e3

(2) D �e2
(2). The complete set of expressions for the above

quantities for the 15 possible choices of li is given in Table 9.1.
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Table 9.1 Formulae for computing projected distances of OBB radii and the line of
centres for 15 separating axis directions

li Di �i
(1) �i

(2)

e1
(1) jt1j w1

(1) w1
(2)jr00j C w2

(2)jr01j
C w3

(2)jr02j
e2

(1) jt2j w2
(1) w1

(2)jr10j C w2
(2)jr11j

C w3
(2)jr12j

e3
(1) jt3j w3

(1) w1
(2)jr20j C w2

(2)jr21j
C w3

(2)jr22j
e1

(2) jt1r00 C t2r10 C t3r20j w1
(1)jr00j C w2

(1)jr10j
C w3

(1)jr20j
w1

(2)

e2
(2) jt1r01 C t2r11 C t3r21j w1

(1)jr01j C w2
(1)jr11j

C w3
(1)jr21j

w2
(2)

e3
(2) jt1r02 C t2r12 C t3r22j w1

(1)jr02j C w2
(1)jr12j

C w3
(1)jr22j

w3
(2)

e1
(1) � e1

(2) j�t2r20 C t3r10j w2
(1)jr20j C w3

(1)jr10j w2
(2)jr02j C w3

(2)jr01j
e1

(1) � e2
(2) j�t2r21 C t3r11j w2

(1)jr21j C w3
(1)jr11j w1

(2)jr02j C w3
(2)jr00j

e1
(1) � e3

(2) j�t2r22 C t3r12j w2
(1)jr22j C w3

(1)jr12j w1
(2)jr01j C w2

(2)jr00j
e2

(1) � e1
(2) jt1r20 � t3r00j w1

(1)jr20j C w3
(1)jr00j w2

(2)jr12j C w3
(2)jr11j

e2
(1) � e2

(2) jt1r21 � t3r01j w1
(1)jr21j C w3

(1)jr01j w1
(2)jr12j C w3

(2)jr10j
e2

(1) � e3
(2) jt1r22 � t3r02j w1

(1)jr22j C w3
(1)jr02j w1

(2)jr11j C w2
(2)jr10j

e3
(1) � e1

(2) j�t1r10 C t2r00j w1
(1)jr10j C w2

(1)jr00j w2
(2)jr22j C w3

(2)jr21j
e3

(1) � e2
(2) j�t1r11 C t2r01j w1

(1)jr11j C w2
(1)jr01j w1

(2)jr22j C w3
(2)jr20j

e3
(1) � e3

(2) j�t1r12 C t2r02j w1
(1)jr12j C w2

(1)jr02j w1
(2)jr21j C w2

(2)jr20j

9.2.3 Sphere Intersection

Sphere intersection tests are relatively simpler than the tests required for other types
of bounding volumes. Collision detection algorithms often use spheres as the first
level of bounding volumes so that intersection tests could be quickly carried out. In
such situations, more accurate computations using tighter bounding volumes are
performed only if necessary. The condition for the intersection of a ray fp, mg
with a sphere fc, rg can be easily obtained by substituting the ray’s parametric
representation (see Eq. 9.22) into the sphere’s equation:

.p C t m � c/ � .p C t m � c/ D r2 (9.42)

Since m is a unit vector, the above equation can be re-written as follows:

t2 C 2t m � .p � c/ C .p � c/ � .p � c/ � r2 D 0: (9.43)

The above quadratic in t will have real roots only if

fm � .p � c/g2 � .p � c/ � .p � c/ C r2 � 0: (9.44)
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The above inequality gives the necessary condition for the intersection of the ray.
Depending on the signs of the real roots of the equation (if the above condition is
satisfied), we can classify the solution into four different categories:

• Roots are equal and positive. The ray is tangential to the sphere.
• Roots are unequal and positive. The ray intersects the sphere at two distinct

points. The minimum value of t gives the point closest to the origin of the ray.
• One root is positive and the other negative. The origin of the ray is inside the

sphere.
• Both roots are negative. The ray is directed away from the sphere and the points

of intersection are behind the origin of the ray.

The last condition mentioned above can also be checked using a simple test. If
m•(c � p) < 0, then the sphere is behind the ray.

A plane given by r•n D �d intersects the sphere fc, rg if the distance of the centre
of the sphere from the plane is less than the sphere’s radius r. Assuming that jnj D 1,
the necessary condition for intersection is (see also Eq. 2.24)

.c � n/ C d � r (9.45)

Two spheres fc1, r1g and fc2, r2g intersect if and only if the distance between
their centres is less than the sum of their radii:

jc1 � c2j � r1 C r2: (9.46)

9.2.4 k-DOP Intersection

We saw in Sect. 9.1.4 that a k-DOP can be represented by k/2 slabs fdminj, dmaxj,
njg, j D 0 : : : (k/2)�1, where njs are unit normal directions associated with the slabs.
The slab-based intersection test outlined in Sect. 9.2.2 can be directly extended for
a k-DOP as shown below. For a given ray fp, mg, the interval of intersection on each
slab can be obtained using the following equations (see Eq. 9.32):

If m � nj > 0; t
.j /
min D �wj � .p � nj /

.m � nj /
; t .j /

max D wj � .p � nj /

.m � nj /

If m � nj < 0; t
.j /

min D wj � .p � nj /

.m � nj /
; t .j /

max D �wj � .p � nj /

.m � nj /
(9.47)

where wj D (dmaxj � dminj)/2. After computing the minimum and maximum values
for all the slabs, the following values are obtained:

umin D maxj

n
t
.j /
min

o

umax D minj

˚
t .j /
max

�
(9.48)
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The ray intersects the k-DOP if and only if the intersection of the slab intervals
is non-empty. The necessary and sufficient condition for intersection is umin � umax.

An overlap test involving a k-DOP and a plane can be implemented by first
computing the vertices of the k-DOP and comparing them with the plane to
determine if some of them are located either on the plane or on either sides of
the plane. The vertex positions are obtained by taking three planes of the k-DOP
at a time and computing their point of intersection using the method described in
Sect. 2.4.

The complexity of intersection tests using only k-DOPs can be significantly
reduced if they are all constructed using the same set of normal directions. Two such
k-DOPs fdminj

(1), dmaxj
(1), njg, fdminj

(2), dmaxj
(2), njg, j D 0 : : : (k/2)�1, overlap

if and only if all corresponding pairs of intervals [dminj
(1), dmaxj

(1)], [dminj
(2),

dmaxj
(2)] overlap. Thus, if the following condition is satisfied for any j, then the

two k-DOPs do not overlap.

�
dminj

.1/ > dmaxj
.2/

�
or

�
dmaxj

.1/ < dminj
.2/

�
(9.49)

9.2.5 Triangle Intersection

Bounding volume hierarchies (detailed in the next section) have to facilitate overlap
tests using not only bounding volumes but also primitives at the lowermost levels
of the tree. Since triangles are the most widely used mesh primitives, we discuss
below the intersection tests using triangles. A triangle T will be represented by its
three vertices as fp1, p2, p3g. The unit normal vector of the plane of the triangle will
be denoted by n. In the following, we assume that the triangle and the primitive it is
tested against are both defined in a common reference frame.

The intersection of a ray fq, mg with the triangle T is computed by first checking
if the ray intersects the plane of the triangle, and then determining if the point of
intersection lies within the triangle. If the ray is not parallel to the plane of the
triangle (m•n ¤ 0), the intersection point is given by the value of the parameter t
in Eq. 2.23. If t � 0, the ray intersects the plane of the triangle, and the point of
intersection given by s D q C tm. If the three vector scalar triple products ((p2 � p1)
� (s � p1))•m, ((p3 � p2) � (s � p2))•m and ((p1 � p3) � (s � p3))•m all have the
same sign (see Eq. 2.10), then the point of intersection lies inside the triangle. If
any of the cross product is zero, the intersection point lies on the boundary of the
triangle. If it is not necessary to compute the actual point of intersection with the
triangle, then the above test can be simplified into the condition that the values of
((p1 � q) � (p2 � q))•m, ((p2 � q) � (p3 � q))•m, ((p3 � q) � (p1 � q))•m have the
same sign for a valid intersection. We now deal with the case m•n D 0 separately.
In this case, the ray must also lie on the plane of the triangle in order to possibly
intersect it. The necessary condition for this is (q � p1)•n D 0. If the condition is
satisfied, then we compare the ray with the edges of the triangle to determine the

http://dx.doi.org/10.1007/978-1-4471-2340-2


254 9 Collision Detection

q

m

p1

p2

u

w

Fig. 9.15 Intersection of a ray with an edge of a triangle given by the line segment p1p2

intersection points. As an example, we consider the intersection of the ray fq, mg
with the line segment p1p2 (Fig. 9.15), assuming that both lines are coplanar. Let
u D p2 � p1, and w D q � p1.

If the ray intersects the line segment, then their projections on to any of the
principal planes must also intersect. The intersection test can thus be reduced to a
two-dimensional problem, by selecting only two coordinates for which both u and m
are non-zero and non-coincident vectors. In this two-dimensional space, let u D (u1,
u2), m D (m1, m2), and w D (w1, w2). Any point on the line segment p1p2 is given
in parametric form as p1 C su (0 � s � 1), and any point on the ray as q C t m. At a
valid intersection point, we must have p1 C su D q C t m. This equation leads to the
following two simultaneous linear equations in s and t:

s u1 � tm1 Dw1

s u2 � tm2 Dw2 (9.50)

from which we get

s D w1m2 � w2m1

u1m2 � u2m1

t D w1u2 � w2u1

u1m2 � u2m1

(9.51)

If the above values for s and t satisfy the conditions 0 � s � 1, t � 0, then the ray
intersects the edge p1p2 of the triangle. The denominators in the above expressions
become zero when the vectors u and m become parallel, in which case, the ray does
not intersect the triangle.

Intersection tests with a triangle and a plane r•n D �d can be performed as
previously discussed in the context of AABB intersections, by computing the signed
distances Di of the vertices of the triangle from the plane as Di D pi•n C d, i D 1,2,3.
If any of the signed distances is zero, or if any two distances have opposite signs,
then the plane intersects the triangle.

We now consider the problem of computing the intersection of one triangle
with another. Here, we assume that the triangles are on two different planes, and
as previously done for the ray intersection test, we will deal with the intersection
of two coplanar triangles separately. Let the two triangles be T1 D fp1, p2, p3g,
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Fig. 9.16 An example showing the configuration of two triangles where the plane containing one
intersects the other

and T2 D fq1, q2, q3g. The plane �1 containing the first triangle is given by
r•n1 D �d1, where n1 is obtained by normalizing the vector (p2 � p1) � (p3 � p1),
and d1 D �p1•n1. Similarly the plane �2 containing the second triangle is also
obtained as r•n2 D �d2. We then use the procedure outlined in the previous
paragraph to determine if the first triangle T1 is intersected by the plane �2, and
if the second triangle T2 is intersected by the plane �1. If any of these tests fails,
then the triangles do not intersect. Otherwise, the plane of each triangle intersects
the other triangle as shown in Fig. 9.16. The line of intersection L of the planes also
intersects both triangles.

The two triangles overlap if the intervals of the triangles on the line L overlap.
The equation of the line L is given by

r D v C t.n1 � n2/ (9.52)

where, v is a point on the line. To determine this point, we first select a component
of n1 � n2 which is non-zero. If the x component of n1 � n2 is non-zero, we will be
able to find a point v D (0, y, z) on L by solving the following two equations obtained
from the fact that this point lies on both the planes.

yn1y C zn1z C d1 D 0

yn2y C zn2z C d2 D 0 (9.53)

Having obtained the parameters defining the equation of the line L, the next step
is to find the points of intersection of the line with the triangles. Consider an edge
of the triangle T2 that intersects the line L as shown in Fig. 9.17. Such an edge
can be identified as having vertices that give opposite signs for signed distances
with respect to the plane �1. Let the vertices be qi, qj, with jDij, jDjj denoting the
magnitudes of the respective signed distances.
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Fig. 9.17 Computation of the point of intersection of an edge of triangle T2 with the line L

The point of intersection w of the edge with the line L can be computed as
follows:

w D qi C jw � qi j
jqj � qi j

.qj � qi /

D qi C jDi j�jDi j C jDj j� .qj � qi / (9.54)

The position of w corresponds to a value of the parameter t on the line L. This
value can be obtained from Eq. 9.52, by substituting w for r, and choosing any
component that has a non-zero value for n1 � n2. Similarly, we can obtain another
value of the parameter t for the other edge of T2 that intersects L. Thus we have
the interval [t1, t2] of the line segment on L obtained by its intersection with T2.
Repeating the whole process for the triangle T1, and computing the signed distances
of its vertices with respect to �2, we can find the interval [s1, s2] intersected by the
triangle on L. If both intervals overlap, then the two triangles intersect.

Another approach to determining if the triangles overlap in three dimensions was
recently proposed by Raabe et al. (2009). It uses the separating axis theorem (see
Sect. 9.2.2), considering triangles as degenerate polytopes. If u1, u2, u3 and v1, v2,
v3 denote the vectors along the sides of the two triangles (e.g., u1 D p2�p1) then 9
separating axes directions can be formed as l D ui � vj (i, j D 1, 2, 3). The vertices
pi and qi are projected on to each separating axis l, and intervals [t1, t2], [s1, s2]
computed as follows:

t1 D mini fpi � lg; t2 D maxi fpi � lg
s1 D mini fqi � lg; s2 D maxi fqi � lg (9.55)

If the intervals do not overlap for any of the separating axes directions, then
the triangles do not overlap. We now consider the problem of determining if two
triangles on the same plane intersect. Here we can use a simplified version of the
separating axis theorem. Two non-overlapping triangles lying on a common plane
can be separated by a line parallel to one of the six sides. This means that if the
triangles do not overlap, their vertices can be projected on to disjoint intervals on a
line orthogonal to one of the sides (Fig. 9.18).
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Line of projection
(Separating axis)

Fig. 9.18 The separating
axis theorem applied to a pair
of co-planar triangles

We need to consider only six separating axis directions given by ui � n and
vi � n (i D 1,2,3). The vertices of each triangle are projected on to the separating
axis vector, and the projected intervals for the triangles computed as outlined above
(Eq. 9.55). If any of the interval pairs are disjoint, then the triangles do not overlap.

9.3 Bounding Volume Hierarchies

Bounding volume hierarchies (BVH) were briefly introduced in Sect. 3.4 in the
context of scene graphs. Using a BVH, the space enclosed by a collection of objects
that are located close to each other in a scene can be hierarchically represented in
terms of bounding volumes of subgroups within the collection, with the leaf nodes
containing sufficiently small object parts and optionally their bounding volumes.
In this representation, a parent node stores the combined bounding volume of a set
of objects in the child nodes. A bounding volume for a single complex mesh object
may also be subdivided into groups of bounding volumes of smaller components
or parts of the mesh. A bounding volume hierarchy can therefore be viewed as a
multi-scale representation of an object using bounding volumes. The hierarchical
tree structure of bounding volumes is useful in significantly reducing the amount of
pair-wise overlap tests. Bounding volume overlap tests are performed from the root
of the tree to determine if the overall bounding volume intersects another primitive
or another bounding volume. If the intersection test fails at this point, further tests
using smaller sub-volumes stored in child nodes are not carried out. The complexity
of intersection tests can thus be reduced using a well designed hierarchy. Some of
the design considerations are

• the efficiency and speed of computing the bounding volume parameters
• the optimality of the computed bounding volumes
• the amount of overlap between bounding volumes of sibling nodes
• the frequency of updates

The following two sections describe commonly used strategies for the construc-
tion and traversal of bounding volume hierarchies.
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Fig. 9.19 A bounding volume hierarchy using AABBs formed using top-down construction

9.3.1 Top-Down Design

The top-down construction of a bounding volume hierarchy starts with the formation
of the bounding volume of an object, then recursively subdivides the mesh object
into two nearly equal parts and stores their bounding volumes in the child nodes.
The partitioning of the mesh is usually done by axis aligned splitting planes. Mesh
primitives are assigned to either the left or the right child node based on the
location of their centroids with respect to the splitting plane of the current node. The
bounding volumes of the mesh sections stored in the child nodes are then computed.
This process is repeated until a maximum level for the binary tree is reached, or until
a node contains only a sufficiently small number of primitives.

A bounding volume hierarchy constructed using AABB in the top-down fashion
is shown in Fig. 9.19. At each node, the longest axis of the AABB is chosen, and the
plane perpendicular to this axis passing through the centre of the AABB is selected
as the splitting plane. For example, if the AABB is given by its mid point (xmid, ymid,
zmid) and the three half-width extents xr, yr, zr , and if xr > yr, and xr > zr, then the
plane parallel to the yz-plane through the midpoint is chosen as the splitting plane.
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Fig. 9.20 An agglomerative clustering algorithm forms small cluster groups and merges them
recursively based on pair-wise distances between existing clusters

The triangles of the mesh whose centres have the x-coordinate less than xmid are
assigned to the left child, and the remaining triangles to the right child. In Fig. 9.19,
the yz-plane was chosen as the splitting plane at nodes 0 and 1, and the xz-plane at
node 2.

The top-down approach is particularly suitable for run-time construction of
bounding volume hierarchies of large mesh objects using simple mesh partitioning
strategies as outlined above. Therefore, most of the BVH algorithms use this
method.

9.3.2 Bottom-Up Design

The bottom-up design approach is suitable for creating bounding volume hierarchies
of a group of small objects that are located near each other. The construction of
the tree starts with the bounding volumes of each object in the group which are
then combined pair-wise, based on a distance measure. The bounding volume of the
combined object is recomputed. This process is repeated until the bounding volume
of the entire group is constructed at the root node. It is easy to see that methods
like this run in parallel with agglomerative (bottom-up) hierarchical clustering
algorithms that use pair-wise distances to form larger and larger groups of objects
(Fig. 9.20).

The bottom-up construction has the advantage that the bounding volume updates
at a parent node can be done by simply merging together the bounding volumes
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of the child nodes. Vertex data for objects or primitives stored in the leaf nodes
therefore need not be copied to the parent nodes. This mechanism is ideally suited
for a scene graph based implementation where object data is stored only in leaf
nodes (see Sect. 3.4). The main drawback of this approach is that the merged
volume may not be the minimal volume for geometries such as the sphere (see
Fig. 3.15). For AABBs and k-DOPs however, merging two minimal volumes
does yield a minimal volume. Accurate computation of bounding volume requires
merged primitive/object information also to be stored at internal nodes. Some of
the commonly used methods for computing the parameters of the merged bounding
volumes are discussed below.

Given two AABBs fx.1/

min; x
.1/
max; y

.1/

min; y
.1/
max; z.1/

min; z.1/
maxg, and fx.2/

min; x
.2/
max; y

.2/

min; y
.2/
max;

z.2/
min; z.2/

maxg, the AABB for the combined set of points is given by fxa, xb, ya, yb,

za, zbg where xa D min.x
.1/

min; x
.2/

min/, xb D max.x
.1/
max; x

.2/
max/, ya D min.y

.1/

min; y
.2/

min/,

yb D max.y
.1/
max; y

.2/
max/, za D min.z.1/

min; z.2/
min/, and zb D max.z.1/

max; z.2/
max/. If the AABBs

are given in terms of their midpoints and half-width extents, the corresponding min-
max values are computed and the merged volume parameters obtained as above.
These parameters could then be converted back to the midpoint coordinates and
half-width extents.

The equations for computing the parameters of a sphere formed by merging
together two spheres were given in Eq. 3.3. Merging two OBBs is done by collecting
the vertices (Eq. 9.29) of both OBBs and computing a new OBB for these 16 points
using the methods outlined in Sect. 9.1.3.

Two k-DOPs can be easily merged if they share the same set of normal vectors.
The method is exactly the same as that used for AABBs. If the k-DOPs are
given by fdminj

(1), dmaxj
(1), njg, fdminj

(2), dmaxj
(2), njg, j D 0 : : : (k/2)�1, then the

combined volume is fdmnj, dmxj, njg, where dmnj D min(dminj
(1), dminj

(2)) and
dmxj D max(dmaxj

(1), dmaxj
(2)), for all j.

9.3.3 Collision Testing Using Hierarchy Traversal

Collision between a primitive (e.g., a ray) and an object (or a group of objects)
can be detected by traversing the bounding volume hierarchy of the object(s) from
the root node in a recursive manner. At each step, an overlap test is performed by
comparing the bounding volume stored at a node of the tree with the primitive.
Such a method is useful in reducing the number of ray-object intersection tests in
ray tracing algorithms and also in games, where for instance, a ray represents the
direction of flight of a bullet. A recursive ray intersection algorithm is given as a
pseudo code in Listing 9.2. In this code, node.volume represents a structure that
stores bounding volume parameters at a node, and overlap() is a method that
tests if the given ray intersects the volume. At a leaf node, the ray is tested with the
object primitive stored at that node.
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Listing 9.2 Ray-object intersection testing using a BVH

Listing 9.3 Collision testing using two BVHs (Simultaneous descent)

Object-object intersection tests can be done using their respective bounding
volume hierarchies. This process will require a systematic procedure that specifies
how the trees must be traversed. A commonly used technique is to descend both
hierarchies simultaneously using a depth-first approach. If the objects represented
by the hierarchies intersect, the recursion will terminate at the leaf nodes of both
trees. A pseudo-code for the method is given in Listing 9.3. In this code, node
‘a’ belongs to the first tree, and ‘b’ belongs to the second tree. The procedure is
called by passing the root nodes of the trees as parameters. It is assumed that the
leaf nodes contain both primitive data (e.g., vertices of a triangle) as well as the
bounding volume.

An example showing two binary trees and the sequence of node comparisons
used by the above method is given in Fig. 9.21. In this example, the primitives at
nodes a3 and b8 intersect.
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Fig. 9.21 An example showing the simultaneous descend of two bounding volume hierarchies

9.3.4 Cost Function

The evaluation of the performance of a BVH-based method for collision detection
is usually done with the help of a cost function. There are primarily three types of
important operations performed:

• Bounding volume updates are often required when the object undergoes transla-
tional and rotational transformations.

• Bounding volume overlap tests are performed when an internal node of a BVH
is compared with an internal node of another BVH.

• Primitive intersection tests are performed at the leaf nodes of a bounding volume
hierarchy.

The cost function is the aggregate of the costs for each of the above operations,
and is defined as

F D nuCu C nvCv C npCp (9.56)

where Cu is the average cost of updating a bounding volume, nu the number of
bounding volumes updated, Cv the average cost of testing if a pair of bounding
volumes overlap, nv the number of bounding volume overlap tests performed, Cp is
average cost of testing if a pair of primitives intersect, and np the number of primitive
intersection tests performed. The value of nv will be large if several bounding
volume overlap tests are done at internal nodes even when the primitives at the
leaves do not intersect. Therefore, selecting a tight fitting bounding volume for the
construction of the BVH helps in bringing down the value of nv. However, tight
fitting bounding volumes such as convex hulls generally have a higher value of Cv

compared to AABBs and spheres. Reducing the number of internal nodes results
in a reduction in nu. The cost functions Cu, Cv, and Cp may be defined based on
the number of geometrical computations such as vector products involved in each
operation.
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9.4 Spatial Partitioning

In this section, we will look at some of the important spatial partitioning tree
structures useful for collision detection. If a scene consists of n objects that
can move and potentially collide with each other, the number of pair-wise tests
required is n(n�1)/2. Spatial partitioning techniques help to subdivide the entire
three-dimensional space occupied by the objects into a set of regions. Using
such techniques we can quickly determine if objects in a group are not likely to
intersect objects in another group (because they belong to disjoint regions), and
thus eliminate the need for performing pair-wise tests between members of the
two groups. A region based grouping of objects such that a member within any
group is guaranteed not to intersect any member belonging to any of the other
groups is called broad-phase collision detection. The grouping also suggests that
objects within the same group may potentially collide. Pair-wise intersection tests
using methods discussed in the previous section are used only to detect collision
between objects within each group. Pair-wise tests using both bounding volumes
and primitives are collectively called the narrow phase collision detection methods.
Figure 9.22 provides an example showing the reduction in pair-wise tests achieved
by a grid-based partitioning of the space into disjoint regions.

9.4.1 Octrees

An octree defines a regular partitioning of an axis-aligned cube into eight equally
sized sub-cubes (octants) by dividing the cube by half along each of the axis.
Each sub-cube is again divided into eight sub-cubes in a similar manner. The process
of recursively subdividing the cube continues until a pre-specified maximum for
the depth of the tree has been reached, or the cube size has become smaller than a

Number of pair-wise tests = 28 Number of pair-wise tests = 7

(6)

(1)

Fig. 9.22 An example showing the reduction in the number of pair-wise tests using spatial
partitioning
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Fig. 9.23 A subdivision of a cube into octants. Cube indices are assigned based on the positions
of the sub-cubes relative to the midpoint of the parent

pre-specified minimum value. If the number of primitives within a cube is less than a
threshold value, and in particular, if a cube is empty, it is not subdivided further. The
initial cube encloses the whole three-dimensional space occupied by the objects, and
forms the root node of the octree. Each internal node of an octree has exactly eight
children corresponding to the sub-cubes of the parent node. A node is subdivided
only when necessary.

The geometrical information about a cube is stored in terms of the position of its
midpoint and size. Each cube is also assigned a unique index (Fig. 9.23). The root
node has index 0, and its children have indices 1–8. We use the notation i:(xc, yc,
zc, s) to denote the cube with index i, centre (xc, yc, zc) and side length s. When the
cube is subdivided into eight octants, its children are stored as follows:

8i C 1 W .xc � .s=4/; yc � .s=4/; zc � .s=4/; s=2/

8i C 2 W .xc � .s=4/; yc � .s=4/; zcC.s=4/; s=2/

8i C 3 W .xc � .s=4/; ycC.s=4/; zc�.s=4/; s=2/

8i C 4 W .xc � .s=4/; ycC.s=4/; zcC.s=4/; s=2/

8i C 5 W .xcC.s=4/; yc�.s=4/; zc�.s=4/; s=2/

8i C 6 W .xcC.s=4/; yc�.s=4/; zcC.s=4/; s=2/

8i C 7 W .xcC.s=4/; ycC.s=4/; zc�.s=4/; s=2/

8i C 8 W .xcC.s=4/; ycC.s=4/; zcC.s=4/; s=2/ (9.57)

Using the above index representation, a node among a group of child nodes has
an index k D 8i C j, j D 1..8. The parent’s index i can be obtained from k using the
integer division (k�1)/8. Applying the transformation b D (k �1) mod 8, we get
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Fig. 9.24 Space partitioning using octrees

a value between 0 and 7 which can be represented using 3 bits. If the lowermost
bit of b is 1, it indicates that the node is located towards the positive z direction
from its parent. A bit value 0 indicates that the node is in negative z direction. The
middle bit similarly gives the node’s relative location along y direction (1: positive,
0: negative). The highest bit gives the x-direction. As an example, if a node’s index
is 30, its parent has the index 3, and b D 5 (D101 binary). The x and z coordinates
of the node’s centre are greater than that of its parent, while the y-coordinate is
less. We can also use the index information to compute the bounding planes of a
cube. Every cube except the root is bounded on three sides by axis-aligned splitting
planes through the centre of its parent. These planes are x D xc, y D yc, z D zc, where
(xc, yc, zc) is the midpoint of the parent cube. The remaining three bounding planes
are given by the bit values of b. For the example given above, where b has a binary
value 101, the three remaining bounding planes are x D xc C (s/2), y D yc � (s/2)
and z D zc C (s/2). Note that s is the size of the parent, not the sub-cube under
consideration. A cube’s six bounding planes can also be directly obtained from its
own centre and size, but the former method uses three common planes for every
child of a given parent node, and requires only three additional planes for each
child.

Figure 9.24 shows the subdivision of a three-dimensional volume containing a
cylindrical object. The indexing of this volume using an octree is also shown in the
figure. The initial volume is divided into eight octants as the volume is non-empty.
In the next step, the non-empty volume with index 4 is further subdivided into eight
octants. The indices of the children of node 4 have values from 33 to 40 (8*4 C j,
j D 1..8). The object intersects the sub-cubes 35 and 36, and is therefore included in
both these nodes. Further subdivision of these nodes is likely to produce intersection
of the object with all sub-cubes, and therefore may not be carried out.

A top-down traversal of the octree from the root node is often performed to locate
the smallest cube of the tree that contains a given point P D (xp, yp, zp). If the current
node is i:(xc, yc, zc, s), we can identify the next node containing P using its index k
computed as given in Listing 9.4.
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Listing 9.4 Computation of the index of a child node that contains a
point P

0

1 2 3 4

9 10 11 12

45 46 47 48

PQ
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Fig. 9.25 An example showing quadtree subdivision and traversal

The two-dimensional equivalent of an octree is called a quadtree. A quadtree
represents subdivisions of a square using four child nodes. For a quadtree, the
computation of the index k in Listing 9.4 will use only the x and y coordinates. The
corresponding formula for the index of the child node is k D 4*i C 2*b1 C b2 C 1.
A group of four child nodes will thus have indices of the form 4i C j (j D 1..4). The
position of a square relative to its parent is south-west if j D 1, north-west if j D 2,
south-east if j D 3, and north-east if j D 4. This subdivision scheme establishes the
method for quadtree descent, illustrated in Fig. 9.25. Note that a point on a vertical
splitting line gets assigned to the square on its left, and a point on a horizontal
splitting line gets assigned to the square below it. Note also that empty squares are
not subdivided further. A similar traversal algorithm can be formulated for an octree.

We now use the octree traversal algorithm for finding the leaf nodes where a
three-dimensional object is stored (as in Fig. 9.24). The object is stored in every
leaf node it overlaps. To simplify the problem, we use the AABB of the object
given in terms of the parameters fxmin, xmax, ymin, ymax, zmin, zmaxg. We descend the
octree using the points P D (xmin, ymin, zmin) and Q D (xmax, ymax, zmax) as discussed
in the previous paragraph, and find the lowest node containing both P and Q. This
internal node represents the minimum volume of the subdivision that contains the
entire AABB, and hence the entire object. The children of this node are recursively
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examined to check if any of the sub-cubes overlap the given AABB. Since a cube
itself is an AABB, we can use the AABB intersection test in Sect. 9.2.1 for this
purpose. If a node does not overlap the given AABB, its children need not be tested.
This process is repeated until we reach the leaf nodes and return the indices of
those leaf nodes that overlap the AABB. This information is vital for the broad-
phase collision detection of the object. The object can potentially intersect only
other objects or primitives stored at these leaf nodes.

A bounding sphere enclosing an object can also be stored in an octree using a
procedure similar to that described above. An octree node i:(xc, yc, zc, s) overlaps a
bounding sphere with centre at position p D (xp, yp, zp) and radius r if and only if
the distance between the centre of the sphere and the centre of node (cube) is less
than or equal to the radius of the sphere. To avoid the square-root computation, this
condition is usually expressed as follows:

.xc � xp/2 C .yc � yp/2 C .zc � zp/2 � r2 (9.58)

In the next section, we will look at a recursive binary partitioning tree that is
comparatively easier to traverse than an octree.

9.4.2 k-d Trees

A k-dimensional tree, also known as a k-d tree, represents a subdivision hierarchy
that is generated by splitting a volume along one axis at a time, and changing the
axis in a cyclic fashion at each subdivision step. A three-dimensional volume is
commonly split first along the x-axis using a plane parallel to the yz-plane, then
along the y-axis using a splitting plane parallel to the xz-plane, and then along the
z-axis. The process continues in the next step by again splitting along the x-axis. In
our discussion we will assume that the splitting planes are chosen in the x-y-z order.
A k-d tree is a special case of a binary space partitioning (BSP) tree where splitting
planes can have arbitrary normal directions.

At the root level, every point that has the x-coordinate less than or equal to
a chosen value x00 is put into the left child node, and points with x-coordinate
greater than x00 goes to the right child. The points in the child nodes are split using
y-coordinate values y01 and y11. Choosing the splitting values x00, y01, y11, etc., as
the median values of the points within the node gives nearly equal number of points
in both child nodes, and results in a well balanced tree. An example showing the
binary space partitioning of a planar region using a 2-d tree is shown in Fig. 9.26.
The splitting values are shown inside the nodes. The first subscript gives the node’s
position within the same level, starting from 0 for the leftmost node. The second
subscript indicates the level the node is in.

A three-dimensional k-d tree stores the minimum and maximum extents of the
volume it represents at the root using the six coordinate values fxmn, xmx, ymn, ymx,
zmn, zmxg. The root node also stores the value x00 of the splitting plane used at
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Fig. 9.26 A binary partition of a two-dimensional region using a 2-d tree

Listing 9.5 Sequential traversal of a k-d tree for locating a point P

that level. The AABB of the left child is given by fxmn, x00, ymn, ymx, zmn, zmxg
and that of the right child by fx00, xmx, ymn, ymx, zmn, zmxg. Child nodes generally
store only splitting plane values, but algorithms such as the ray intersection test
discussed below require AABB parameters of leaf nodes. Both the construction and
the traversal of a k-d tree are done in a top-down fashion, starting from the root node
that either represents a three-dimensional scene or the axis-aligned bounding box of
a group of objects. The traversal of a k-d tree to leaf node where a point P can be
either inserted or located, follows the pattern of the well-known sequential binary
tree search algorithm. The pseudo-code for the method is given in Listing 9.5.
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Fig. 9.27 Ray intersections with a volume represented by a k-d tree

The broad-phase collision detection of objects is done by first identifying the
leaf nodes of the k-d tree where an object’s bounding volume is stored. Every node
of a k-d tree represents an axis-aligned box, and therefore the methods given in the
previous section can be directly used locate the positions of an AABB or a bounding
sphere (see Eq. 9.58) within a k-d tree.

A k-d tree is also used for ray tracing acceleration, as it can effectively restrict
the computation of ray intersection tests along the direction of the ray. The root
of the k-d tree represents the AABB of the scene of objects to be ray traced. The
primary ray typically originates from a view point outside the scene. A secondary
ray, on the other hand may originate from a point inside the scene. In Fig. 9.27,
ray-1 originates at P0, enters the AABB of the root node of the k-d tree at P1 and
exits the scene at P4. Ray-2 originates at a point Q1 within the scene and exits the
volume at Q3. In the case of ray-1, we can compute the position of P1 as well as
the entry and exit distances P0P1, P0P4 using the parametric equation of the ray
and the equations of the bounding planes of the AABB (see Sect. 9.2.1). Using the
method in Listing 9.5, we can identify the leaf node of the k-d tree where P1 (or Q1

for ray-2) is located. The ray is tested for intersection with the objects stored at this
leaf node. If an intersection occurs, the point of intersection closest to the origin of
the ray is returned. Otherwise, the ray is compared with the AABB of the leaf node
and the next intersection point P2 with the current node is computed. This point is
extended further by a small amount " along the direction of the ray to get a point P2

0

that lies well within another node of the k-d tree:

P2
0 D P2 C "d (9.59)

where d is the unit vector along the ray direction. The k-d tree is traversed again
from the root to identify the leaf node to which P2

0 belongs. The objects in this
node are then compared with the ray to determine if there is an intersection, and if
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Listing 9.6 Sequential ray intersection test using a k-d tree

there is no intersection, the process is continued by extending the ray to the next
cell, and so on until the ray exits the AABB of the root node. The algorithm visits
all leaf nodes intersected by the ray in a near to far order. Objects and primitives in
the remaining leaf nodes are not compared with the ray. The pseudo-code for this
method of sequential ray intersection test is given in Listing 9.6.

A k-d tree based spatial partitioning is useful in finding the point closest to a
given point P within a three-dimensional volume. The location of the closest point
gives information about the object which could most likely collide with the object
or the bounding volume containing P.

As shown in the two-dimensional example in Fig. 9.28, the algorithm for finding
the nearest neighbour of P begins with the traversal of the k-d tree to the leaf node
containing P and finding the closest point to P within that leaf node. The squared
value of the distance between the two points is stored as the current minimum value
of r2. The position of P and the value of r2 together are used to compare the sphere
centred at P with the AABBs of other leaf nodes of the k-d tree using Eq. 9.58 for
possible overlap. If a leaf node overlaps the sphere, the squared distances of points
in that node from P are computed and if a value lower than the current minimum
is found, then the value of r2 is updated with the lowest found in that node. The
process continues as shown in Fig. 9.28, until all nodes that overlap the sphere have
been examined. The point that generated the minimum value for r2 is selected as the
nearest neighbour of P. The sphere-AABB overlap test excludes a large number of
points that are separated from P by a distance greater than r from being compared.

We saw earlier that both an octree and a k-d tree may store the same object in
several leaf nodes if the object overlaps the volume of those nodes. For an octree, the
splitting planes are fixed, but in a k-d tree, we can select the position of the splitting
plane. Several heuristics, such as the surface area heuristics have been proposed
in the literature to minimize the amount of object overlap at leaf nodes. The next
section introduces a subdivision structure that combines the desirable attributes of a
k-d tree and a bounding volume hierarchy.



9.4 Spatial Partitioning 271

P

P P

1. 2.

3. 4.

r
r

r r

P

Fig. 9.28 A sequence of computations performed on a k-d tree to find the nearest neighbour of a
point P

9.4.3 Boundary Interval Hierarchy

A bounding interval hierarchy is a structure similar to a k-d tree, but uses two parallel
partitioning planes for each node. For a given node, the plane perpendicular to and
passing through the midpoint of the longest axis of the node’s AABB is first chosen
as the splitting plane. Assume that this axis is in the x-direction, and the position
of the splitting plane is x0. The AABBs of the objects within the node’s volume
are then sorted along this axis. The objects whose AABBs have all x-coordinates
less than or equal to x0 are assigned to the left child. AABBs that are entirely
on the right of the splitting plane are assigned to the right child. Objects whose
AABBs intersect the splitting plane are classified as belonging to the left or right
child depending on which side of the splitting plane the AABBs have maximum
overlap. The left partitioning plane is then defined using the maximum value of
the x-coordinates of the AABBs belonging to the left child, and the right plane is
defined using the minimum value of the x-coordinates of the AABBs belonging to
the right (Fig. 9.29). The process continues by splitting each child node along the
longest axis and defining two partitioning planes along that axis. A node containing
only a single object is not subdivided further.
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Fig. 9.29 Partitioning of objects into “left” and “right” using two parallel partitioning planes

The primary differences between a k-d tree and a bounding interval hierarchy are
listed below.

• A k-d tree selects axes cyclically and defines a perpendicular splitting plane at the
median point along the current axis direction, or alternatively uses a heuristic to
position the splitting plane. A bounding interval hierarchy uses the longest axis
of the current AABB, and the splitting plane is always positioned at the midpoint.

• In a k-d tree, the AABBs of the objects in a node are not sorted. A bounding
interval hierarchy sorts AABBs along each axis. This speeds up the process of
repeated classification of objects as left or right of splitting planes along the same
axis.

• A k-d tree stores only the splitting plane position and optionally the parameters
of the node AABB. A bounding interval hierarchy requires the positions of two
partitioning planes and the axis information to be stored.

By using two partitioning planes, a bounding interval hierarchy is able to classify
each object in a node volume uniquely as either “left” or “right”, without the
need for placing an object that overlaps the splitting plane in both child nodes. A
clear separation of objects is thus achieved, and the AABBs of the child nodes are
closely aligned with the object AABBs within the nodes. The interval hierarchy
thus provides a hierarchy of axis aligned bounding volumes and also a spatial
ordering similar to that of the k-d tree. Bounding interval hierarchies have been
found particularly useful for real-time ray tracing.
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9.5 Summary

This chapter has covered the main aspects of collision detection algorithms includ-
ing the representation of objects using bounding volumes, intersection tests between
primitives and bounding volumes (BV) and hierarchical structures that are useful
for minimizing the amount of pair-wise object/primitive comparisons required in
overlap tests.

The important methods discussed in the context of bounding volume construction
are the Welzl’s algorithm for computing the minimum bounding sphere, the
computation of oriented bounding boxes, and the incremental construction of
three-dimensional convex hulls. Algorithms for primitive-BV intersection tests and
BV-BV intersection tests have been presented in detail. The separating axis theorem
and the slab-based method are extremely useful for intersection tests involving
oriented bounding boxes.

The chapter also presented methods for the construction and traversal of bound-
ing volume hierarchies. Spatial partitioning structures such as the octree and the k-d
tree are useful for broad-phase collision detection as well as ray tracing algorithms.
Both structures use axis aligned splitting planes to facilitate efficient computation of
ray intersection tests. The bounding interval hierarchy is a structure that combines
the features of a bounding volume hierarchy and a k-d tree.

9.6 Supplementary Material for Chap. 9

The section Chapter9/Code on the companion website contains the following
programs implementing and demonstrating the working of key algorithms discussed
in this chapter.

1. BoundingCircle.cpp

The program demonstrates the working of Welzl’s algorithm for computing
the minimum bounding circle for a set of points on the plane of display. Points
are inserted by the user interactively using left mouse clicks. As each point is
added, the minimum bounding circle is updated as discussed in Sect. 9.1.2. Press
‘c’ to refresh the screen.
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2. InsertionHull.cpp

The program demonstrates the insertion hull algorithm for incrementally
constructing the convex hull of a set of points. Points are added interactively
using left mouse clicks. As each point is added, the convex hull is updated using
the algorithm discussed in Sect. 9.1.5. Press ‘c’ to refresh the screen and to start
over again.

3. BVH AABB.cpp

The program loads a mesh file “object.off” and displays the bounding volume
hierarchy constructed using AABBs (Sect. 9.3.1). It also shows the position of a
ray (whose parameters are defined in the program) relative to the AABB, and the
intersection points if the ray intersects the AABB. Press the ‘z’ key to go to left
child of the current node and ‘x’ to the right child. Use left and right arrow keys
to change the view direction.

4. BVH Sphere.cpp

The program uses a cluster of triangles to demonstrate the bottom-up con-
struction of a bounding volume hierarchy of spheres (Sect. 9.3.2). Clicking the
left mouse button anywhere within the window causes the intersected bounding
circles to be highlighted. Triangles that are excluded from intersection tests are
also highlighted in grey color.
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5. KdTree.cpp

The program generates a set of randomly distributed points and displays
the k-d tree partitioning of the two-dimensional space. The program also
demonstrates the nearest neighbour algorithm using the traversal of the k-d tree.
The user inputs a point using left mouse click, and presses space bar to initiate the
k-d tree search for the closest point. All points visited by the traversal algorithm
are highlighted. The point found closest to the input point is also marked by a red
coloured line segment connecting the two points.

9.7 Bibliographical Notes

Two important reference books for learning and developing collision detection
algorithms are Ericson (2005) and van den Bergen (2003). These books deal with
all aspects of collision detection including primitive tests, bounding volumes and
acceleration algorithms. Books on real-time rendering (Moller et al. 2008) and
game engine design (Eberly 2007; Eberly 2010) also give an extensive coverage of
collision detection techniques. Collision detection is an area where a large number
of computational geometry algorithms are used. Methods for pair-wise intersection
tests, point inclusion tests, proximity tests and the construction of convex hulls
are discussed in detail in de Berg (2000), O’Rourke (1998) and similar books on
computational geometry.

Early development in collision detection methods were based mainly on prim-
itive intersection tests and spatial partitioning. Samet’s books (1990a, b) provided
a comprehensive guide to spatial data structures. Toussaint (1983) introduced the
rotating calipers algorithm, and Welzl (1991) the method for computing the smallest
bounding disc. In the late 1990s some fundamental papers on bounding volume
hierarchies using AABBs (van den Bergen 1997), OBBs (Gottschalk et al. 1996),
triangle intersection tests (Moller 1997), and k-DOPs (Klosowski et al. 1998)
appeared.

Three recent publications on the use of hierarchical structures for ray tracing
are Wald and Havran (2006), Cline et al. (2006), and Hapala and Havran (2011).
Bounding interval hierarchies are introduced and their applications to real-time ray
tracing discussed in Wachter and Keller (2006).
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Appendix A: Geometry Classes

This section gives a description of the methods in Point3, Vec3, Triangle and
Matrix classes. The static relationships between the classes are shown in Fig. A.1.

Triangle Point3

Vec3

Matrix
3

Fig. A.1 Relationships
between geometry classes

A.1 Point3 Class

Fields

Description:
The data members of the class store the coordinates of a point. For
programming convenience, the coordinates are declared as public,
so that they can be directly accessed without the need for getter
methods. The fourth component h is initialized to 1 for points and
0 for vectors. This component is not used for computing the norm,
scalar product, and other operations such as addition, subtraction and
negation.
The static field EPS is a threshold used for checking if a floating point
value is close enough to zero. Its value is set to 1.E-6.

R. Mukundan, Advanced Methods in Computer Graphics: With examples in OpenGL,
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Constructors

Description:
The first constructor sets the values of x, y, z coordinates using its
arguments. The h value is initialized separately to a default value 1.0.
The second no-argument constructor initializes a point to the origin.

Distance computation

Description:
This method computes the distance to a point from the origin or the
length of a vector.

Addition and subtraction

Description:
The add method adds the x, y, z coordinates of the current point with
the corresponding coordinate values of p, and produces a new point.
The h coordinate values are not added. The resulting point is assigned
an h value 1.0. This method is overridden in the subclass Vec3 which
sets the h value to 0. The subtract method similarly subtracts the
coordinates of p from that of the current point and produces a vector
originating at p.

Negation

Description:
This method negates the x, y, z coordinates of the current point. The h
coordinate value is not negated.

Scalar multiplication

Description:
This method scales the x, y, z coordinates of the current point by the
constant factor c, and produces a new point. The resulting point is
assigned an h value 1.0.
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Conversion to standard form

Description:
This method converts the current point to standard form by applying
the transformation: (x, y, z, h) ) (x/h, y/h, z/h, 1), provided h ¤ 0.

Output

Description:
This method prints the x, y, z, h coordinates of the current point or
vector.

A.2 Vec3 Class

The Vec3 class is a subclass of Point3.
Fields

Description:
The static field RADTODEG stores the multiplication factor (D  /180)
for conversion from radians to degrees.
The static fields X AXIS, Y AXIS, Z AXIS store respectively the
orthogonal basis vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1).

Constructors

Description:
The constructors invoke the base class constructors and additionally
set the value of h to 0.

Dot and cross products

Description:
The dot method returns the dot product of the current vector and v.
The cross method returns a vector as the result of the cross product
between the current vector and v.
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Vector normalization

Description:
The method converts the current vector to a unit vector by dividing its
components by the length of the vector.

Reflection of a vector

Description:
The method computes the reflection of the current vector with respect
to n using the formula in Eq. 2.5.

Computation of angles

Description:
The method angle first converts the current vector and the input
vector v to unit vectors, and then computes the angle between them
using the inverse cosine of the dot product of the two vectors. The
value is returned in degrees in the range [0, 180]. The method angle2
uses both dot and cross products to compute the angle using the
formula � D tan�1(ju � vj, u • v). The singedAngle method uses
Eq. 2.6. to compute the signed angle between the current vector and v
with respect to a given view direction w.

A.3 Triangle Class

Fields

Description:
The data members of the class store references to the three vertices of
a triangle.

Constructors

Description:
The non-default constructor requires three references to objects of the
Point3 class. Methods of the class use these points as vertices of the
triangle.



A.3 Triangle Class 283

Computation of area

Description:
The method area computes the area of the current triangle using
the cross product of vectors along two edges as given in Eq. 2.3.
The method signedArea2D returns the area of the triangle which
has a negative sign if the angle between the normal direction and
the z-axis is greater than 90ı. The function signedArea3D uses
a similar approach by using a user specified vector w instead of the
z-axis (Eq. 2.8).

Computation of barycentric coordinates

Description:
This method computes the barycentric coordinates of the point p with
respect to the current triangle using area ratios as given in Eq. 2.48.

Barycentric mapping

Description:
A point p and a triangle t containing p are given. This method
computes the image of p in the current triangle as shown in Fig. 2.12.

Point inclusion test

Description:
This function uses barycentric coordinates to determine if a point p
lies within and on the plane of the current triangle.

Bilinear interpolation

Description:
This method returns a point computed using the bilinear interpolation
formula in Eq. 2.45. The arguments k1 and k2 must satisfy the
condition that k1, k2, and k1 C k2, all have values in the range [0, 1].

OpenGL drawing

Description:
This method draws the current triangle using OpenGL functions.
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A.4 Matrix Class

Fields

Description:
The Matrix class represents the data structure for a 4 � 4 matrix,
with its values stored in the two-dimensional array v.

Constructors

Description:
The default constructor initializes the matrix with the identity matrix.
The second constructor initializes the matrix using a two-dimensional
array of values. The values are stored in row-major order. The third
constructor forms the matrix using three vectors u, v, w as the first
three columns of the matrix. The last column has values 0, 0, 0, 1.

Identity matrix

Description:
This method resets the current matrix to the identity matrix.

Accessing matrix elements

Description:
This is a getter method that returns the value of v[i][j].

Setting matrix elements

Description:
This is a setter method that replaces the value of v[i][j]with
value.

Transpose and inverse

Description:
The method transpose modifies the current matrix by replacing
it with its transpose. Similarly inverse replaces the current matrix
with its inverse, provided the matrix is invertible. If the determinant of
the current matrix is 0, it is not changed.
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Point transformation

Description:
This method returns a new point computed by pre-multiplying the
point p by the current matrix.

Matrix copy

Description:
Often it is required to keep a copy of the current matrix before
computing its transpose or inverse. This method returns a reference
to a new matrix object that contains the same values as the current
matrix.

Output

Description:
This method prints the values of the current matrix in 4 � 4 format.
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This section gives an outline of the methods in the scene graph classes. A description
of these classes can be found in Sect. 3.5. The static relationships between the
classes are shown in Fig. B.1.

GroupNode

ObjectNode CameraNode LightNode

Fig. B.1 Relationships
between scene graph classes

B.1 GroupNode Class

Fields

Description:
The list variable children stores references to the children of the
current group node, in an STL list structure. The access level for this
variable is declared as private since all subclasses are leaf nodes
that do not have children. Each group node also stores a reference to its
parent node in the variable parent. It has a value NULL for the root
node. Every group node also stores the translation parameters tx,
ty, tz and rotation angles angleX, angleY, angleZ which

define the transformation of the current node to the coordinate frame
of the parent node.

R. Mukundan, Advanced Methods in Computer Graphics: With examples in OpenGL,
DOI 10.1007/978-1-4471-2340-8, © Springer-Verlag London Limited 2012
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Constructors

Description:
The class contains only one no-argument constructor that initializes
the parent node to NULL and the transformation parameters to zeros.

Add/remove child

Description:
The method addChild includes the specified node as a child
node of the current node. The method removeChild removes the
specified node, if it exists, from the list of children of the current
node.

Node transformation

Description:
The above methods set the transformation parameters of the current
node. The node transformation is always assumed to be of the form
TR.

Inverse transformation

Description:
This method uses OpenGL functions to push the matrices for the
inverse transformation (TR)�1 D R�1T�1 of the current node to the
transformation stack. Note that this function does not explicitly
generate the inverse transformation matrix.

Scene rendering

Description:
This method gets the singleton object of the CameraNode, sets up
the view transformation matrix and calls the method draw. A scene is
rendered by invoking this method on the root node.The draw method
is not directly invoked by the application. It is indirectly invoked
on a group node via the method render. The draw method uses
OpenGL functions to push the current node’s transformation matrix to
the transformation stack, and recursively calls itself on all child nodes.
This polymorphic method causes objects to be drawn when invoked on
leaf nodes.
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Parent node

Description:
This getter method returns the reference to the parent of the current
node.

B.2 ObjectNode Class

The ObjectNode class is a subclass of GroupNode.

Fields

Description:
The enumerated type ObjType defines a collection of GLUT objects
which users can specify in the constructor to display an object. At the
time of construction, the user can specify its scale factors scaleX,
scaleY, scaleZ, and also its material colour using the normalized

values in the range [0, 1] for colorR, colorG, colorB.

Constructors

Description:
The constructor initializes the object type to CUBE, the scale factors
to 1, and the object material colour to white.

Setter methods

Description:
The method setObject is used to change the parameters of the
current object, including its type and scale factors. The setColor
method modifies the material colour of the current object.
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B.3 CameraNode Class

The CameraNode class is a subclass of GroupNode.

Fields

Description:
The data members fov, aspect, near, far define the perspec-
tive view frustum of the camera in terms of the field of view, aspect
ratio, near plane distance and the far plane distance. The Boolean
variable flag ensures that at most one instance of the class is created.

Constructors

Description:
The CameraNode class is a singleton class with a private con-
structor. The only instance of the class is available through the static
method getInstance(). By default, the camera view frustum has
60ı field of view, aspect ratio 1, near plane distance 1, and far plane
distance 1,000.

Setter method

Description:
This setter method allows you to change the default frustum parame-
ters of the camera object.

View transformation and projection

Description:
The viewTransform method traverses the scene graph from the
camera node towards the root node, and pushes the inverse transfor-
mation matrices of each node onto the transformation stack using
OpenGL functions. The method calls the inverseTransform
method of the GroupNode class for this operation.
The method projection sets up the projection matrix using
OpenGL functions. Both the above methods are not usually invoked
directly by the user. The render method of the GroupNode class
invokes both the methods to set up the view and projective
transformations for the rendering pipeline.
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B.4 LightNode Class

The LightNode class is a subclass of GroupNode.

Fields

Description:
This integer field can be assigned a value between 0 and 7. A
value i corresponds to the named light source GL LIGHTi defined in
OpenGL.

Constructors

Description:
The constructor specifies the index of the OpenGL light source
to be used for the current object of the LightNode class. The
default position of the light node is (0, 0, 0). The position can be
changed by specifying transformation parameters for the node using
the translate method. Note that all other light source parameters
will have to be defined separately by the user with the help of OpenGL
functions.

Setter Method

Description:
This setter method allows the user to change the current light source
used by the object.



Appendix C: Vertex Skinning Classes

This section gives an outline of the methods in the SkinnedMesh,Skeleton and
SkeletonNode classes used for vertex skinning. A description of these classes
can be found in Sect. 4.8. A class diagram showing the relationships between the
classes is given in Fig. C.1.

Skinned
Mesh

Point3

Skeleton Skeleton
Node

Matrix
21

Fig. C.1 Relationships between the classes used for vertex skinning

C.1 SkeletonNode Class

The structure of the SkeletonNode class is similar to that of the GroupNode
class.

Fields

Description:
Every skeleton node is implicitly a group node, and can store refer-
ences to a number of children in the list children. A skeleton node
represents a bone. It also stores a pair of indices firstIndex and
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lastIndex defining a range of mesh vertices that are attached to
the bone. The translation parameters are stored in variables tx, ty,
tz, and the Euler angles in angleX, angleY, angleZ. The

overall transformation matrix and its inverse are updated whenever
any of the joint angles is changed. Each node is assigned a unique
index starting form 1. The index 0 is reserved for the root node which
represents the origin of the world coordinate system. The parent index
parentIndex establishes the link between the current node and its

parent node.

Constructors

Description:
The non-default constructor uses the parameters read in from the input
file to initialise each node. Note that each node contains two instances
of the matrix class. Both the transformation matrix and its inverse are
updated using the input parameters. There is also a default constructor
that initializes all transformation parameters to 0.

Add/remove child:

Description:
These methods are exactly the same as the corresponding methods in
the GroupNode class (Appendix B).

Bone transformations: translation

Description:
The translation parameters of the bones are set at the time of con-
struction, and do not change afterwards. Only the translation of the
base node (with respect to the world coordinate frame) is defined in
the animation phase. This method is therefore usually invoked by the
translateBase method of the Skeleton class.
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Bone transformations: rotation

Description:
These methods are used to set the rotation angle(s) of a bone during the
animation phase. The methods are normally invoked by the rotate
method of the Skeleton class.

Setter methods

Description:
These methods alter the vertex indices and the parent index of the
current bone.

Getter methods

Description:
These methods allow you to examine the transformation matrices,
vertex indices, the parent index and the number of children of the
current node.

Transformation update

Description:
This method updates the transformation matrix and its inverse, and is
invoked whenever any of the transformation parameters is changed.

Pre-processing phase

Description:
The pre-processing phase builds the product matrix given in Eq. 4.9
and transforms the mesh vertex list to create a new list of vertices V 0.
The method preprocessPhase returns this new vertex list. The
method in turn invokes transform1 which traverses the skeleton
tree from the root, visits every node, combines the inverse translation
components, and applies the transformation on the node’s vertex list.
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Animation phase

Description:
In the animation phase, the updated matrices incorporating joint
angle rotations are gathered in the form of a product matrix given
in Eq. 4.10. The vertex list obtained from the pre-processing phase
is transformed using the matrix. The transformed vertex coordinates
returned by animationPhase are used for rendering the mesh
for that particular frame. This method invokes transform2 which
traverses the skeleton tree from the root, post-multiplies the product
matrix with the matrix at the current node, and transforms the node’s
vertices obtained from the pre-processing phase.

C.2 Skeleton Class

Fields

Description:
Each skeleton tree is referenced by its root node, stored in the
variable root. This node is created by the constructor. The base node
( base) is a special node in the skeleton tree that has the root node
as its parent. The transformations of the base node define the position
and the orientation of the entire mesh in the world coordinate frame.
The class also maintains a list of references to the skeleton nodes as
they are created by the loadSkeleton method.

Constructors

Description:
The constructor creates the root node of the skeleton and initializes it
with the default transformation parameters.

Getter method

Description:
The getter method returns the reference to the root node.
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Loading skeleton data

Description:
This method loads skeleton data from a file formatted as shown in
Fig. 4.18, and creates an instance of the SkeletonNode class for
each bone. The method also calls attachBones that creates the
hierarchical relationships between nodes (bones).

Bone transformations

Description:
The translation parameters specifying the spatial offsets of each
bone relative to its parent are assigned to the nodes through the
constructor. These parameters are used for transforming vertices in
the pre-processing phase. In the animation phase, only the joint
angle rotations and the translation of the base node can change.
The rotate method specifies the joint angles of the ith bone. The
translateBase method changes the translation parameters of the
base node. These two methods are usually called within the display
loop of the application.

C.3 SkinnedMesh Class

Fields

Description: The vertex lists verticesV, verticesVT, verticesW
represent the lists V, V 0, W shown in Fig. 4.11. The lists contain the
mesh coordinates in the bind pose, after the pre-processing phase, and
after the animation phase respectively. The polygon list polygons
store the vertex indices of the mesh polygons. For the sake of
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simplicity, each mesh is assigned a single material colour given by
colorR, colorG, colorB. A mesh can be either a triangular

or a quad mesh. The variable skeleton stores the reference to the
skeleton associated with the mesh.

Constructors

Description:
The constructor specifies only the polygon type of the mesh using
the enumerated types TRIANGLE, and QUAD. Mesh data is loaded
using loadMesh method. The application must also load skeleton
data using an instance of the Skeleton class, and attach the skeleton
object using the attachSkeleton method.

Loading a mesh

Description:
This method loads mesh data from a file formatted as shown in Fig.
4.19. The number of vertices per polygon in the file should match the
polygon type provided to the constructor. The method also populates
the vertex lists verticesV and verticesWwith the initial vertex
coordinates obtained from the file. The polygon list polygons is
also populated with polygon data.

Getter method

Description:
The getter method returns the reference to the skeleton object attached
to the current SkinnedMesh object.

Setting mesh colour

Description:
The method sets a material colour for the entire mesh.

Attaching a skeleton

Description:
This method associates a skeleton object with the current mesh. The
pre-processing of mesh vertices V to obtain an intermediate set of
vertices V 0 (Eq. 4.9) is also initiated at this stage.
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Rendering a mesh

Description:
This method is usually called inside the display loop of the application
for redrawing the mesh with the updated joint angle configuration.
Typically, this method is called after specifying the bone transforma-
tions using the rotate method of the Skeleton class.



Appendix D: Quaternion Classes

This section gives an outline of methods in the classes that represent quaternion
and dual quaternion numbers. Figure D.1 shows the static relationships between the
classes and the geometry classes.

Point3

DualQuat Quat Matrix
12

Fig. D.1 Relationships
between the quaternion
classes and the geometry
classes

D.1 Quaternion Class

Fields

Description:
Every quaternion object has an associated 4 � 4 transformation ma-
trix mat. The matrix elements are not automatically updated. The
user needs to call updateMatrix to compute the values of the
matrix elements. The constants RADTODEG and DEGTORAD store
the conversion factors from radians to degrees and degrees to radians
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respectively. The quaternion components q0, q1, q2, q3 are
declared as public as they are frequently accessed. EPS stores the
constant value 1.E-6 used as a threshold for checking if a value is
close to zero.

Constructors

Description:
The first constructor initializes an object with four quaternion com-
ponents. The second constructor takes a point P D (x, y, z) as the
argument, and forms the pure quaternion (0, x, y, z). The third
constructor forms a unit quaternion using the angle and axis of a three-
dimensional rotation as parameters. The quaternion is constructed
as per Eq. 5.44. The fourth no-argument constructor initializes the
quaternion components to (1, 0, 0, 0).

Getter methods

Description:
The first getter method given above returns the current matrix mat.
The second getter method returns the last three components q1,
q2, q3 of the current quaternion as a point. The third and fourth

getter methods return respectively the angle and axis of the equivalent
rotation given by Eqs. 5.45 and 5.46. The method getEuler extracts
the Euler angles from the quaternion components using Eq. 5.56.

Quaternion operations

Description:
The methods listed above perform algebraic operations of addition,
subtraction, multiplication, scalar multiplication, conjugation and
negation, and return the resulting quaternion.
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Quaternion norm

Description:
The above method returns the magnitude of the current quaternion
(Eq. 5.17).

Quaternion matrix

Description:
Each quaternion object has an associated transformation matrix as
given in Eq. 5.23. The above method must be called whenever a
quaternion component has changed, in order to update this matrix.

Quaternion transformation

Description:
The above method transforms a point using the current quaternion
according to the formula P0 D QPQ*.

Conversion to unit quaternion

Description:
The method normalize converts the current quaternion to a unit
quaternion.

Quaternion interpolation

Description:
The above methods perform linear (lerp) and spherical linear
(slerp) interpolations between the current quaternion and the sup-
plied quaternion q, and return an intermediate quaternion for the
parameter value given by t.

Output

Description:
The above method prints the component values of the current quater-
nion.
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D.2 Dual Quaternion Class

Fields

Description:
Each dual quaternion is composed using two quaternions quat1,
quat2 as described in Sect. 5.9.2.

Constructors

Description:
The first constructor shown above forms a dual quaternion using
two quaternion components. The second constructor using the rigid-
body transformation parameters (angle and axis of rotation, and
translation vector) to construct the equivalent dual quaternion. The
third constructor creates the dual quaternion (1, 0, 0, 0, 0, x, y, z) using
the coordinates (x, y, z) of the specified point.

Getter methods

Description:
The first two methods shown above return respectively the first and
the second quaternion components of the current dual quaternion. The
third method returns the last three elements (of the second quaternion
component) as the coordinates of a point.

Product of two dual quaternions

Description:
The above method returns the product of the current dual quaternion
and the specified dual quaternion (q). The product is computed using
the formula in Eq. 5.85.

Product of a dual quaternion and a quaternion

Description:
The above method returns the product of the current dual quaternion
and the specified quaternion (q). The product is computed using the
formula in Eq. 5.86.
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Dual quaternion transformation

Description:
The above method transforms a point using the current quaternion
according to the formula in Eq. 5.97.

Output

Description:
The above method prints the component values of the current dual
quaternion.
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A
AABB. See Axis aligned bounding box

(AABB)
Adjacency queries, 186
Affine transform, 19
Agglomerative clustering, 259
Algorithm

circular alignment, 132
closest point, 270
cyclic coordinate descent, 130
de-Casteljau, 154
Graham Scan, 239
incremental hull, 241
Newton-Raphson, 133
rotating calipers, 238
three-coins, 219
Welzl’s, 233

Angle-axis transformation, 86
equivalent angle, 88
equivalent axis, 88
interpolation, 97
matrix equation, 87
non-uniform motion, 97
vector equation, 87

Angle between vectors, 7
Angle-optimal, triangulation, 218
Angular velocity, 119
Approximating curve, 163
Articulated character mode, 35
Average plane, 195
Axis aligned bounding box (AABB), 232

B
Ball and socket joint, 114
Barycentre, 22
Barycentric coordinates, 22

Barycentric embedding, 210
Basis functions, 160
Bernstein polynomials, 20
Bezier basis, conversion to, 153
Bezier curve, 21, 55, 151, 154, 165,

170
as a B-spline curve, 165
rational, 156

Bezier polynomials
cubic, 55, 151
geometrical interpretation, 154
quadratic, 154

Bilinear interpolation, 21
Binary space partitioning (BSP) tree,

267
Bind pose, 60
Blending functions, 148, 169
Blending polynomials, 144
Blinn’s approximation, 26
Bounding interval hierarchy, 271
Bounding volume hierarchies, 41, 257

using AABB, 258
bottom-up design, 259
cost function, 262
top-down construction, 258
traversal, 261

Bounding volume intersection
AABB-AABB, 245
kDOP-kDOP, 253
plane-kDOP, 253
plane-OBB, 247
plane-sphere, 252
ray-AABB, 243
ray-kDOP, 253
ray-OBB, 247
ray-sphere, 251
sphere-sphere, 252
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Bounding volumes
AABB, 232, 260
convex hull, 241
k-DOP, 239, 260
merging, 260
minimal, 41
multi-scale representation, 257
OBB, 237
sphere, 233, 260

B-splines, 159, 163
BSP tree. See Binary space partitioning (BSP)

tree

C
Candy-wrapper effect, 66
Cardinal splines, 149
Catmull-Clark subdivision, 205
Catmull-Rom spline, 150
CCD. See Cyclic coordinate descent (CCD)
Circle through three points, 24
Circular alignment algorithm, 132
Collapsing elbow effect, 66
Collinearity of points, 12
Collision detection

broad-phase, 263
narrow phase, 263

Collision testing, 260
Compatible faces, 186
Complex numbers

addition, 77
conjugate, 78
multiplication, 77
multiplicative inverse, 78
orthogonal basis for, 77
representation of, 77
as rotation operators, 78
subtraction, 77
tuple notation, 77

Conjugate transformation, 19
Continuity constraints, 146
Convex combination of points, 20, 173
Convex hull, 241
Convex polygon, 196, 241
Coons patch, 170
Coplanarity of four points, 12
Coplanar vectors, 13
Cost function, edge collapse operation, 199
Covariance matrix, 237
Cox de Boor formula, 160
Cubic polynomials, 141
Curvature, 16
Curve

approximating, 139
bi-normal vector, 17

interpolating, 139
normal direction at a point, 16
normal plane, 17
orthonormal basis at a point, 16
osculating plane, 17
tangent vector, 16
tension, 157, 158
torsion, 17

Cyclic coordinate descent (CCD), 130
drawbacks, 131

D
DCEL. See Doubly Connected Edge List

(DCEL)
De-Casteljau’s method, 154, 157
Delaunay triangulation, 218
Diffuse reflection, 25
Direction cosines, 9
Discrete harmonic metric, 212
Discrete oriented polytope, 239
Doubly Connected Edge List (DCEL), 191
Dual numbers, 104

algebra of, 104
conjugate, 105
multiplication rule, 105
multiplicative inverse, 105
square-root, 105

Dual quaternion, 104, 105
basis, 106
conjugates, 107
multiplication table, 106
product, 105
rigid-body transformation, 108
transformations using, 108
unit, 108

E
Edge-based data structure

half-edge, 190
winged-edge, 188

Edge collapse operation, 196
Edge flip operation, 208, 218
Edge, silhouette, 242
Edge-visible polygon, 217
End effector, 113

linear velocity, 120
Error metric

for edge collapse, 199
quadric, 199
for vertex decimation, 196

Euler angles
angular velocity vector using, 120
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interpolation, 96
proper, 84
from quaternions, 92
sequence, 84
transformation matrix, 84

Euler characteristic, 186
Euler-Poincare formula, 185
Euler’s formula, 101, 186
Euler’s theorem of rotations, 84
Exponential function for quaternions,

102
Extraordinary vertices, 203
Extrinsic composition of rotations, 85

F
Face-based data structure, 186
First-person view, 47
Forward kinematics, 115
Frenet frame, 17

G
Gauss-Seidel iteration, 213, 214
Geometric continuity, 146
Gradient descent, 128
Graham Scan algorithm, 242

H
Half-edge data structure, 190
Half-way vector, 25
Hermite interpolation, 57
Hermite polynomials, 148, 169, 171
Hermite splines, 147
Homogeneous coordinates, 5
Horner’s method, 141

I
Incremental hull algorithm, 241
Interpolating curve, 139
Interpolating patch, 168
Interpolation

basis matrix for, 144
Euler angle, 96
Hermite, 57
linear, 20
quaternion, 98
trigonometric, 20

Intrinsic composition of rotations, 85
Inverse kinematics, 124

using circular alignment algorithm,
132

using cyclic coordinate descent,
130

using gradient descent, 128
using Jacobian inverse, 127
2-link, 125
n-link, 126

J
Jacobian matrix, 124, 127

inverse, 127
Jacobi method, 213
Joint

Hooke’s, 114
prismatic, 114
revolute, 114
spherical, 114

Joint chains, 57
planar, 115
scene graph representation, 118
transformations, 116, 117

K
k-DOP, 239
K-d tree, 267

closest point algorithm, 270
for ray tracing, 269
sequential traversal, 268
three-dimensional, 267

Keyframe animation, 66
Kinematics, 113

forward, 115
inverse, 124

Knot points, 164
Knots, 145
Knot vector, 160

clamped, 165
multiplicity, 166

L
Lagrange polynomials, 140
Lambertian reflectance, 25
LCA. See Lowest Common Ancestor (LCA)
Left pseudo-inverse, 127
Line

equation in standard form, 11
shortest distance to, 12

Linear transformations, 19
Linear velocity, 119
Logarithm of unit quaternion, 101
Loop subdivision, 203
Lowest Common Ancestor (LCA), 39
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M
Matrix

angle axis transformation, 87
covariance, 237
Euler angle transformation, 84
Jacobian, 124
model transformation, 38
model-view, 38
quaternion, 79
quaternion transformation, 82
Vandermonde, 141

Mean value metric, 212
Mesh

closed manifold, 214
data structures, 186
manifold, 184
non-manifold, 184
parameterization, 209
regular, 186
representation, 179
simplification, 194
subdivision, 201, 206

Mesh file format, 180
OBJ, 180
OFF, 182
PLY, 182, 183

Mesh vertex transformation, 60
Minimal bounding sphere, 233
Minimum energy configuration, 210
Möbius strip, 186
Model transformation matrix, 38
Model-view matrix, 38
Monotone polygonal chain, 217

N
Nearest neighbor algorithm, 270
Newton-Raphson method, 133
Node

base, 59
root, 59

Non-manifold, mesh, 184
Non-uniform rational basis spline, 166
Normal plane, 17

O
OBB. See Oriented bounding box (OBB)
Octree, 263

index representation, 264
top-down traversal, 265

One-ring neighbourhood, 185, 211
traversal, 187

Orientable mesh, 185
Orientation of 3 points, 11

Oriented bounding box (OBB), 237
projected distances of radii, 250
representation using three slabs, 247

Osculating plane, 17

P
Parametric continuity, 145
Perp-vector, 7
Phong-Blinn illumination model, 26
Pitch rotation, 85
Planar embedding, 210
Plane

equation, 243
equation using three points, 12
intersection, 14
normal vector, 13
parametric equation, 14
point-normal form, 13
point of intersection with ray, 13
shortest distance of a point, 13
vector equation, 13

Point inclusion test, 242
Points

addition, 6
affine combination, 20
collinearity, 12
convex combination, 20
coplanarity, 12
linear interpolation of, 20
subtraction, 6
trigonometric interpolation, 20

Point set triangulation, 215
Polygon

convex, 216
edge-visible, 217
kernel of, 216
monotone, 217, 222
regular, 216
simple, 216
star-shaped, 216, 219
triangulation, 215
types, 216
weakly externally visible, 217

Polygonal manifold, 184
Polynomial interpolation, 156
Polynomial interpolation theorem, 139
Polynomials

Bernstein, 20
blending, 144
cubic, 141
evaluation using Horner’s method,

141
Lagrange, 140
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Polytope, 239
Pose, 93
Prismatic joint, 114

Q
QEM. See Quadric error metric (QEM)
Quadric error metric (QEM), 199
Quadtree, 266
Quaternion

using Euler angles, 91
exponentiation, 101
inverse, 81
linear interpolation, 98
logarithm, 101
magnitude, 80
negative, 93
norm, 80
orthogonal basis, 79
product, 79
pure, 81
real, 81
relative, 103
representation of 3D rotation, 89
scalar part, 79
vector part, 79
velocity, 122

Quaternion transformation, 81
fixed point of, 82
inverse, 82
matrix, 82, 90

R
Rational Bezier curve, 156
Ray

equation, 243, 269
parametric equation, 11

Ray tracing, using k-d tree, 269
Real quaternion, 81
Rectifying plane, 17
Redundant manipulator, 126
Reflection vector, 9
Regular polygon, 216
Relative transformation, 38
Revolute joint, 114
Robot manipulator arm, 113
Rodrigues rotation formula, 87
Roll rotation, 85
Root-3 subdivision, 207
Rotating calipers method, 238
Rotation

angle-axis, 86
general three-dimensional, 84

pitch, 85
quaternion, 89
roll, 85
yaw, 85

S
Scatter matrix, 237
Scene graph

camera node, 46
light node, 47
nodes, 32
object node, 32, 45
standard form, 38
world node, 31

Separating axis theorem, 248, 256
Separating plane, 248
Sequential binary tree search, 268
Signed angle between vectors, 9
Signed area, 10
Signed distance, 13
Silhouette edges, 242
Simple polygon, 216
Singular value decomposition (SVD),

127
Skeleton

bone, 57
skin, 58

Smoothness constraints, 146
Spatial partitioning trees, 263
Specular reflection, 25
Sphere

antipodes of, 234
minimal, 234

Spherical coordinates, 214
Spherical embedding, 214
Spherical joint, 114
Splines, 145

basis, 159
Bezier, 151
cardinal, 149
Catmull-Rom, 150
cubic Bezier, 152
Hermite, 147
interpolating, 156
segment, 144
support of, 162

Spring constants, 212
Spring displacement, 210
Standard triangle format, 182
Star-shaped polygon, 196, 216
Subdivision curve, 201
Subdivision masks, 203
Surface design, 167
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Surface normal vector, 13
Surface of revolution, 167
Surface patches, 167

bi-cubic, 169
bi-cubic Bezier, 172
bi-cubic coons, 171

SVD. See Singular value decomposition
(SVD)

T
Taylor’s approximation, 123
Three-Coins algorithm, 219, 242
Torsion of a curve, 17
Transformation

angle-axis rotation, 86
conjugate, 19
dual-quaternion, 109
Euler angle, 84
hierarchy, 33
quaternion, 81
rigid-body, 83
translation, 19

Transformation blending, 65
Triangle

area, 7
intersection with another triangle,

254
intersection with ray, 253
signed area, 10
strip, 180

Triangular subdivision, 204
Triangulation

angle-optimal, 218
Delaunay, 218

Trilinear coordinates, 22
Twist vector, 168

U
Uniform B-splines, 161
Unit complex numbers, 78
Upper triangular matrix, 142

V
Valence, 185
Vandermonde matrix, 141, 142
Vector

addition, 6
cross-product, 7
dot-product, 7
magnitude, 7
normal, 8
projections, 9
reflection, 9
resolving components, 9
scalar triple product, 8
unit, 7
vector triple product, 8

Velocity
angular, 119
Euler angle rates, 120

Vertex
decimation algorithm, 194
blending, 55
boundary, 195
extraordinary, 203
list, 179
one-ring neighbourhood of, 185
split operation, 197
valence, 185

View transformation matrix, 45
Visualizing 3D rotations, 95

W
Wachspress metric, 212
Walk sequence, 67
Weakly externally visible (WEV) polygon, 217
Welzl’s algorithm, 233
Winged-edge data structure, 188

X
X-monotone polygons, 222

Y
Yaw rotation, 85
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