
unix system programming in
objective caml

Xavier Leroy and Didier Rémy

April 4, 2010

© 1991, 1992, 2003, 2004, 2005, 2006, 2008, 2009, 2010
Xavier Leroy and Didier Rémy, inria Rocquencourt.
Rights reserved. Distributed under the Creative Commons Attribution – Non commercial –
Share alike 2.0 France license. See http://creativecommons.org/licenses/by-nc-sa/2.0/fr/ for
the legal terms.

Translation by Daniel C. Bünzli, Eric Cooper, Eliot Handelman, Priya Hattiangdi, Thad Meyer,
Prashanth Mundkur, Richard Paradies, Till Varoquaux, Mark Wong-VanHaren

Proofread by David Allsopp, Erik de Castro Lopo, John Clements, Anil Madhavapeddy, Prashanth
Mundkur

Translation coordination & layout by Daniel C. Bünzli.

Please send corrections to daniel.buenzl i@erratique.ch.

Abstract This document is an introductory course on Unix system program-
ming, with an emphasis on communications between processes. The main novelty
of this work is the use of the Objective Caml language, a dialect of the ML lan-
guage, instead of the C language that is customary in systems programming.
This gives an unusual perspective on systems programming and on the ML lan-
guage.

http://creativecommons.org/licenses/by-nc-sa/2.0/fr/

Contents

Introduction 1

1 Generalities 3

1.1 Modules Sys and Unix 3

1.2 Interface with the calling program 4

1.3 Error handling 5

1.4 Library functions 6

2 Files 9

2.1 The file system 9

2.2 File names and file descriptors 11

2.3 Meta-attributes, types and permissions 11

2.4 Operations on directories 15

2.5 Complete example: search in a file hierarchy 16

2.6 Opening a file 18

2.7 Reading and writing 20

2.8 Closing a descriptor 22

2.9 Complete example: file copy 22

2.10 The cost of system calls and buffers 23

2.11 Complete example: a small input/output library 25

2.12 Positioning 28

2.13 Operations specific to certain file types 29

2.14 Locks on files 32

2.15 Complete example: recursive copy of files 32

2.16 Complete example: Tape ARchive 34

3 Processes 41

3.1 Creation of processes 41

3.2 Complete Example: the command leave 41

3.3 Awaiting the termination of a process 42

3.4 Launching a program 44

3.5 Complete example: a mini-shell 46

4 Signals 49

4.1 Default behavior 49

4.2 Using signals 50

4.3 Changing the effect of a signal 51

4.4 How to mask signals 53

4.5 Signals and system calls 53

4.6 The passage of time 55

4.7 Problems with signals 57

5 Classical inter-process communication: pipes 59

5.1 Pipes 59

i

Contents

5.2 Complete example: parallel sieve of Eratosthenes 61
5.3 Named pipes 64
5.4 Descriptor redirections 64
5.5 Complete example: composing N commands 67
5.6 Input/output multiplexing 68
5.7 Miscellaneous: write 73

6 Modern communication: sockets 77
6.1 Sockets 78
6.2 Socket creation 79
6.3 Addresses 80
6.4 Connection to a server 81
6.5 Disconnecting sockets 81
6.6 Complete example: the universal client 81
6.7 Establishing a service 83
6.8 Tuning sockets 86
6.9 Complete example: the universal server 86
6.10 Communication in connectionless mode 88
6.11 Low level reads and writes 89
6.12 High-level primitives 89
6.13 Examples of protocols 90
6.14 Complete example: http requests 94

7 Threads 101
7.1 Introduction 101
7.2 Creation and termination of threads 102
7.3 Waiting 103
7.4 Synchronization among threads: locks 106
7.5 Complete example: http relay 108
7.6 Conditions 110
7.7 Event-based synchronous communication 112
7.8 Implementation details 115

Going further 119

Exercise answers 121

References 135

Index 137

ii

Introduction

These course notes originate from a system programming course Xavier Leroy
taught in 1994 to the first year students of the Master’s program in fundamental
and applied mathematics and computer science at the École Normale Supérieure.
This earliest version used the Caml-Light [1] language. For a Master’s course in
computer science at the École Polytechnique taught from 2003 to 2006, Didier
Rémy adapted the notes to use the OCaml language. During these years, Gilles
Roussel, Fabrice Le Fessant and Maxence Guesdon helped to teach the course
and also contributed to this document. The new version also brought additions
and updates. In ten years, some orders of magnitude have shifted by a digit
and the web has left its infancy. For instance, the http relay example, now
commonplace, may have been a forerunner in 1994. But, most of all, the OCaml
language gained maturity and was used to program real system applications like
Unison [18].

Tradition dictates that Unix system programming must be done in C. For
this course we found it more interesting to use a higher-level language, namely
OCaml, to explain the fundamentals of Unix system programming.

The OCaml interface to Unix system calls is more abstract. Instead of en-
coding everything in terms of integers and bit fields as in C, OCaml uses the
whole power of the ML type system to clearly represent the arguments and re-
turn values of system calls. Hence, it becomes easier to explain the semantics of
the calls instead of losing oneself explaining how the arguments and the results
have to be en/decoded. (See, for example, the presentation of the system call
wait, page 42.)

Furthermore, due to the static type system and the clarity of its primitives, it
is safer to program in OCaml than in C. The experienced C programmer may see
these benefits as useless luxury, however they are crucial for the inexperienced
audience of this course.

A second goal of this exposition of system programming is to show OCaml
performing in a domain out of its usual applications in theorem proving, com-
pilation and symbolic computation. The outcome of the experiment is rather
positive, thanks to OCaml’s solid imperative kernel and its other novel aspects
like parametric polymorphism, higher-order functions and exceptions. It also
shows that instead of applicative and imperative programming being mutually
exclusive, their combination makes it possible to integrate in the same program
complex symbolic computations and a good interface with the operating system.

These notes assume the reader is familiar with OCaml and Unix shell com-
mands. For any question about the language, consult the Objective Caml System
documentation [2] and for questions about Unix, read section 1 of the Unix manual
or introductory books on Unix like [5, 6].

This document describes only the programmatic interface to the Unix sys-
tem. It presents neither its implementation, neither its internal architecture.
The internal architecture of bsd 4.3 is described in [8] and of System v in [9].
Tanenbaum’s books [13, 14] give an overall view of network and operating system
architecture.

The Unix interface presented in this document is part of the Objective Caml
System available as free software at http://caml.inria.fr/ocaml/.

1

http://caml.inria.fr/ocaml/

1 Generalities

1.1 Modules Sys and Unix

Functions that give access to the system from OCaml are grouped into two
modules. The first module, Sys, contains those functions common to Unix and
other operating systems under which OCaml runs. The second module, Unix,
contains everything specific to Unix.

In what follows, we will refer to identifiers from the Sys and Unix modules
without specifying which modules they come from. That is, we will suppose that
we are within the scope of the directives open Sys and open Unix. In complete
examples, we explicitly write open, in order to be truly complete.

The Sys and Unix modules can redefine certain identifiers of the Pervasives

module, hiding previous definitions. For example, Pervasives.stdin is different
from Unix.stdin. The previous definitions can always be obtained through a
prefix.

To compile an OCaml program that uses the Unix library, do this:

ocamlc -o prog unix.cma mod1.ml mod2.ml mod3.ml

where the program prog is assumed to comprise of the three modules mod1, mod2
and mod3. The modules can also be compiled separately:

ocamlc -c mod1.ml

ocamlc -c mod2.ml

ocamlc -c mod3.ml

and linked with:

ocamlc -o prog unix.cma mod1.cmo mod2.cmo mod3.cmo

In both cases, the argument unix.cma is the Unix library written in OCaml. To
use the native-code compiler rather than the bytecode compiler, replace ocamlc

with ocamlopt and unix.cma with unix.cmxa.
If the compilation tool ocamlbuild is used, simply add the following line to

the _tags file:

<prog.{native,byte}> : use_unix

The Unix system can also be accessed from the interactive system, also known
as the “toplevel”. If your platform supports dynamic linking of C libraries, start
an ocaml toplevel and type in the directive:

#load "unix.cma";;

Otherwise, you will need to create an interactive system containing the pre-loaded
system functions:

ocamlmktop -o ocamlunix unix.cma

This toplevel can be started by:

./ocamlunix

3

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Sys.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html

Generalities

1.2 Interface with the calling program

When running a program from a shell (command interpreter), the shell passes
arguments and an environment to the program. The arguments are words on
the command line that follow the name of the command. The environment is
a set of strings of the form variable=value, representing the global bindings of
environment variables: bindings set with setenv var=val for the csh shell, or
with var=val; export var for the sh shell.

The arguments passed to the program are in the string array Sys.argv:
val argv : string array

The environment of the program is obtained by the function Unix.environment:
val environment : unit -> string array

A more convenient way of looking up the environment is to use the function
Sys.getenv:
val getenv : string -> string

Sys.getenv v returns the value associated with the variable name v in the envi-
ronment, raising the exception Not_found if this variable is not bound.

Example As a first example, here is the echo program, which prints a list of
its arguments, as does the Unix command of the same name.
let echo () =

let len = Array.length Sys.argv in

if len > 1 then

begin

print_string Sys.argv.(1);

for i = 2 to len - 1 do

print_char ' ';

print_string Sys.argv.(i);

done;

print_newline ();

end;;

echo ();;

* * *
A program can be terminated at any point with a call to exit:

val exit : int -> 'a

The argument is the return code to send back to the calling program. The
convention is to return 0 if all has gone well, and to return a non-zero code to
signal an error. In conditional constructions, the sh shell interprets the return
code 0 as the boolean “true”, and all non-zero codes as the boolean “false”. When
a program terminates normally after executing all of the expressions of which it
is composed, it makes an implicit call to exit 0. When a program terminates
prematurely because an exception was raised but not caught, it makes an implicit
call to exit 2. The function exit always flushes the buffers of all channels open
for writing. The function at_exit lets one register other actions to be carried
out when the program terminates.

4

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Sys.html#VALargv
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALenvironment
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Sys.html#VALgetenv
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Pervasives.html#VALexit

Error handling

val at_exit : (unit -> unit) -> unit

The last function to be registered is called first. A function registered with
at_exit cannot be unregistered. However, this is not a real restriction: we can
easily get the same effect with a function whose execution depends on a global
variable.

1.3 Error handling

Unless otherwise indicated, all functions in the Unix module raise the exception
Unix_error in case of error.

exception Unix_error of error * string * string

The second argument of the Unix_error exception is the name of the system call
that raised the error. The third argument identifies, if possible, the object on
which the error occurred; for example, in the case of a system call taking a file
name as an argument, this file name will be in the third position in Unix_error.
Finally, the first argument of the exception is an error code indicating the nature
of the error. It belongs to the variant type error:

type error = E2BIG | EACCES | EAGAIN | ... | EUNKNOWNERR of int

Constructors of this type have the same names and meanings as those used in
the posix convention and certain errors from unix98 and bsd. All other errors
use the constructor EUNKOWNERR.

Given the semantics of exceptions, an error that is not specifically foreseen
and intercepted by a try propagates up to the top of a program and causes it to
terminate prematurely. In small applications, treating unforeseen errors as fatal
is a good practice. However, it is appropriate to display the error clearly. To do
this, the Unix module supplies the handle_unix_error function:

val handle_unix_error : ('a -> 'b) -> 'a -> 'b

The call handle_unix_error f x applies function f to the argument x. If this
raises the exception Unix_error, a message is displayed describing the error, and
the program is terminated with exit 2. A typical use is

handle_unix_error prog ();;

where the function prog : unit -> unit executes the body of the program. For
reference, here is how handle_unix_error is implemented.

1 open Unix;;

2 let handle_unix_error f arg =

3 try

4 f arg

5 with Unix_error(err, fun_name, arg) ->

6 prerr_string Sys.argv.(0);

7 prerr_string ": \"";

8 prerr_string fun_name;

9 prerr_string "\" failed";

10 if String.length arg > 0 then begin

11 prerr_string " on \"";

5

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Pervasives.html#VALat_exit
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#EXCEPTIONUnix_error
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#TYPEerror
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALhandle_unix_error

Generalities

12 prerr_string arg;

13 prerr_string "\""

14 end;

15 prerr_string ": ";

16 prerr_endline (error_message err);

17 exit 2;;

Functions of the form prerr_xxx are like the functions print_xxx, except that they
write on the error channel stderr rather than on the standard output channel
stdout. Furthermore, prerr_endline flushes stderr (whereas print_endline does
not).

The primitive error_message, of type error -> string, returns a message
describing the error given as an argument (line 16). The argument number zero
of the program, namely Sys.argv.(0), contains the name of the command that
was used to invoke the program (line 6).

The function handle_unix_error handles fatal errors, i.e. errors that stop the
program. An advantage of OCaml is that it requires all errors to be handled, if
only at the highest level by halting the program. Indeed, any error in a system
call raises an exception, and the execution thread in progress is interrupted up
to the level where the exception is explicitly caught and handled. This avoids
continuing the program in an inconsistent state.

Errors of type Unix_error can, of course, be selectively matched. We will
often see the following function later on:

let rec restart_on_EINTR f x =

try f x with Unix_error (EINTR, _, _) -> restart_on_EINTR f x

which is used to execute a function and to restart it automatically when it exe-
cutes a system call that is interrupted (see section 4.5).

1.4 Library functions

As we will see throughout the examples, system programming often repeats the
same patterns. To reduce the code of each application to its essentials, we will
want to define library functions that factor out the common parts.

Whereas in a complete program one knows precisely which errors can be
raised (and these are often fatal, resulting in the program being stopped), we
generally do not know the execution context in the case of library functions. We
cannot suppose that all errors are fatal. It is therefore necessary to let the error
return to the caller, which will decide on a suitable course of action (e.g. stop
the program, or handle or ignore the error). However, the library function in
general will not allow the error to simply pass through, since it must maintain
the system in a consistent state. For example, a library function that opens a file
and then applies an operation to its file descriptor must take care to close the
descriptor in all cases, including those where the processing of the file causes an
error. This is in order to avoid a file descriptor leak, leading to the exhaustion
of file descriptors.

Furthermore, the operation applied to a file may be defined by a function
that was received as an argument, and we don’t know precisely when or how it
can fail (but the caller in general will know). We are thus often led to protect

6

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALerror_message

Library functions

the body of the processing with “finalization” code, which must be executed just
before the function returns, whether normally or exceptionally.

There is no built-in finalize construct try . . . finalize in the OCaml language,
but it can be easily defined1:

let try_finalize f x finally y =

let res = try f x with exn -> finally y; raise exn in

finally y;

res

This function takes the main body f and the finalizer finally, each in the form
of a function, and two parameters x and y, which are passed to their respective
functions. The body of the program f x is executed first, and its result is kept
aside to be returned after the execution of the finalizer finally. In case the
program fails, i.e. raises an exception exn, the finalizer is run and the exception
exn is raised again. If both the main function and the finalizer fail, the finalizer’s
exception is raised (one could choose to have the main function’s exception raised
instead).

Note In the rest of this course, we use an auxiliary library Misc which contains
several useful functions like try_finalize that are often used in the examples.
We will introduce them as they are needed. To compile the examples of the
course, the definitions of the Misc module need to be collected and compiled.

The Misc module also contains certain functions, added for illustration pur-
poses, that will not be used in the course. These simply enrich the Unix library,
sometimes by redefining the behavior of certain functions. The Misc module
must thus take precedence over the Unix module.

Examples The course provides numerous examples. They can be compiled
with OCaml, version 3.11.2. Some programs will have to be slightly modified in
order to work with older versions.

There are two kinds of examples: “library functions” (very general functions
that can be reused) and small applications. It is important to distinguish between
the two. In the case of library functions, we want their context of use to be as
general as possible. We will thus carefully specify their interface and attentively
treat all particular cases. In the case of small applications, an error is often fatal
and causes the program to stop executing. It is sufficient to report the cause of
an error, without needing to return to a consistent state, since the program is
stopped immediately thereafter.

1A built-in construct would not be less useful.

7

2 Files

The term “file” in Unix covers several types of objects:

• standard files: finite sets of bytes containing text or binary information, often
referred to as “ordinary” files,

• directories,

• symbolic links,

• special files (devices), which primarily provide access to computer peripherals,

• named pipes,

• sockets named in the Unix domain.

The file concept includes both the data contained in the file and information
about the file itself (also called meta-data) like its type, its access rights, the
latest access times, etc.

2.1 The file system

To a first approximation, the file system can be considered to be a tree. The
root is represented by '/'. The branches are labeled by (file) names, which
are strings of any characters excluding '\000' and '/' (but it is good practice
to also avoid non-printing characters and spaces). The non-terminal nodes are
directories: these nodes always contain two branches . and .. which respectively
represent the directory itself and the directory’s parent. The other nodes are
sometimes called files, as opposed to directories, but this is ambiguous, as we
can also designate any node as a “file”. To avoid all ambiguity we refer to them
as non-directory files.

The nodes of the tree are addressed by paths. If the start of the path is the
root of the file hierarchy, the path is absolute, whereas if the start is a directory
it is relative. More precisely, a relative path is a string of file names separated
by the character '/'. An absolute path is a relative path preceded by the the
character '/' (note the double use of this character both as a separator and as
the name of the root node).

The Filename module handles paths in a portable manner. In particular,
concat concatenates paths without referring to the character '/', allowing the
code to function equally well on other operating systems (for example, the path
separator character under Windows is '\'). Similarly, the Filename module
provides the string values current_dir_name and parent_dir_name to represent
the branches . and .. The functions basename and dirname return the prefix d

and the suffix b from a path p such that the paths p and d/b refer to the same
file, where d is the directory in which the file is found and b is the name of the
file. The functions defined in Filename operate only on paths, independently of
their actual existence within the file hierarchy.

In fact, strictly speaking, the file hierarchy is not a tree. First the directories
. and .. allow a directory to refer to itself and to move up in the hierarchy to

9

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Filename.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Filename.html#VALconcat
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Filename.html#VALcurrent_dir_name
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Filename.html#VALparent_dir_name
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Filename.html#VALbasename
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Filename.html#VALdirname

Files

1

2

5

9

3

4

6

8

10

11

7

?

/

bin

usr

tmp

ls

cd

cc

bin

lib

foo

bar

gcc

/usr

../gnu

• Reverse links omitted

• Hard Links
7 has two ancestors 2 and 6.

• Symbolic links
10 represents 5
11 does not represent any node.

• Equivalent file paths from 9 to 8:
../usr/lib

./../usr/lib, etc.
foo/lib

Figure 1 — An example of a file hierarchy

define paths leading from a directory to itself. Moreover, non-directory files can
have many parents (we say that they have many hard links). Finally, there are
also symbolic links which can be seen as non-directory files containing a path.
Conceptually, this path can be obtained by reading the contents of the symbolic
link like an ordinary file. Whenever a symbolic link occurs in the middle of a
path we have to follow its path transparently. If s is a symbolic link whose value
is the path l, then the path p/s/q represents the file l/q if l is an absolute path
or the file p/l/q if l is a relative path.

Figure 1 gives an example of a file hierarchy. The symbolic link 11 corre-
sponding to the path /tmp/bar whose path value is the relative path ../gnu,
does not refer to any existing file in the hierarchy (at the moment).

In general, a recursive traversal of the hierarchy will terminate if the following
rules are respected:

• the directories . and .. are ignored.

• symbolic links are not followed.

But if symbolic links are followed we are traversing a graph and we need to keep
track of the nodes we have already visited to avoid loops.

Each process has a current working directory. It is returned by the function
getcwd and can be changed with chdir. It is also possible to constrict the view
of the file hierarchy by calling chroot p. This makes the node p, which should be
a directory, the root of the restricted view of the hierarchy. Absolute file paths
are then interpreted according to this new root p (and of course .. at the new
root is p itself).

10

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALgetcwd
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALchdir
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALchroot

File names and file descriptors

2.2 File names and file descriptors

There are two ways to access a file. The first is by its file name (or path name)
in the file system hierarchy. Due to hard links, a file can have many different
names. Names are values of type string. For example the system calls unlink,
link, symlink and rename all operate at the file name level.

val unlink : string -> unit

val link : string -> string -> unit

val symlink : string -> string -> unit

val rename : string -> string -> unit

Their effect is as follows:

• unlink f erases the file f like the Unix command rm -f f.

• link f1 f2 creates a hard link named f2 to the file f1 like the command ln f1 f2.

• symlink f1 f2 creates a symbolic link named f2 to the file f1 like the command
ln -s f1 f2.

• rename f1 f2 renames the file f1 to f2 like the command mv f1 f2.

The second way of accessing a file is by a file descriptor. A descriptor rep-
resents a pointer to a file along with other information like the current read-
/write position in the file, the access rights of the file (is it possible to read?
write?) and flags which control the behavior of reads and writes (blocking or
non-blocking, overwrite, append, etc.). File descriptors are values of the ab-
stract type file_descr.

Access to a file via its descriptor is independent from the access via its name.
In particular whenever we get a file descriptor, the file can be destroyed or
renamed but the descriptor still points on the original file.

When a program is executed, three descriptors are allocated and tied to the
variables stdin, stdout and stderr of the Unix module:

val stdin : file_descr

val stdout : file_descr

val stderr : file_descr

They correspond, respectively, to the standard input, standard output and stan-
dard error of the process.

When a program is executed on the command line without any redirections,
the three descriptors refer to the terminal. But if, for example, the input has
been redirected using the shell expression cmd < f, then the descriptor stdin

refers to the file named f during the execution of the command cmd. Similarly,
cmd > f and cmd 2> f respectively bind the descriptors stdout and stderr to the
file named f during the execution of the command.

2.3 Meta-attributes, types and permissions

The system calls stat, lstat and fstat return the meta-attributes of a file; that
is, information about the node itself rather than its content. Among other things,
this information contains the identity of the file, the type of file, the access rights,
the time and date of last access and other information.

11

http://www.opengroup.org/onlinepubs/009696799/functions/unlink.html
http://www.opengroup.org/onlinepubs/009696799/functions/link.html
http://www.opengroup.org/onlinepubs/009696799/functions/symlink.html
http://www.opengroup.org/onlinepubs/009696799/functions/rename.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALunlink
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALlink
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALsymlink
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALrename
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#TYPEfile_descr
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALstdin
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALstdout
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALstderr
http://www.opengroup.org/onlinepubs/009696799/functions/stat.html
http://www.opengroup.org/onlinepubs/009696799/functions/lstat.html
http://www.opengroup.org/onlinepubs/009696799/functions/fstat.html

Files

val stat : string -> stats

val lstat : string -> stats

val fstat : file_descr -> stats

The system calls stat and lstat take a file name as an argument while fstat

takes a previously opened descriptor and returns information about the file it
points to. stat and lstat differ on symbolic links : lstat returns information
about the symbolic link itself, while stat returns information about the file that
the link points to. The result of these three calls is a record of type stats whose
fields are described in table 1.

Identification

A file is uniquely identified by the pair made of its device number (typically the
disk partition where it is located) st_dev and its inode number st_ino.

Owners

A file has one user owner st_uid and one group owner st_gid. All the users and
groups on the machine are usually described in the /etc/passwd and /etc/groups

files. We can look up them by name in a portable manner with the functions
getpwnam and getgrnam or by id with getpwuid and getgrgid.

val getpwnam : string -> passwd_entry

val getgrnam : string -> group_entry

val getpwuid : int -> passwd_entry

val getgrgid : int -> group_entry

The name of the user of a running process and all the groups to which it
belongs can be retrieved with the commands getlogin and getgroups.

val getlogin : unit -> string

val getgroups : unit -> int array

The call chown changes the owner (second argument) and the group (third
argument) of a file (first argument). If we have a file descriptor, fchown can be
used instead. Only the super user can change this information arbitrarily.

val chown : string -> int -> int -> unit

val fchown : file_descr -> int -> int -> unit

Access rights

Access rights are encoded as bits in an integer, and the type file_perm is just
an abbreviation for the type int. They specify special bits and read, write and
execution rights for the user owner, the group owner and the other users as vector
of bits:

Special︷ ︸︸ ︷
−−−

User︷ ︸︸ ︷
−−−

Group︷ ︸︸ ︷
−−−

Other︷ ︸︸ ︷
−−−︸ ︷︷ ︸

0oSUGO

where in each of the user, group and other fields, the order of bits indicates read
(r), write (w) and execute (x) rights. The permissions on a file are the union of
all these individual rights, as shown in table 2.

12

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALstat
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALlstat
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALfstat
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#TYPEstats
http://www.opengroup.org/onlinepubs/009696799/functions/getpwnam.html
http://www.opengroup.org/onlinepubs/009696799/functions/getgrnam.html
http://www.opengroup.org/onlinepubs/009696799/functions/getpwuid.html
http://www.opengroup.org/onlinepubs/009696799/functions/getgrgid.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALgetpwnam
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALgetgrnam
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALgetpwuid
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALgetgrgid
http://www.opengroup.org/onlinepubs/009696799/functions/getlogin.html
http://www.opengroup.org/onlinepubs/009696799/functions/getgroups.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALgetlogin
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALgetgroups
http://www.opengroup.org/onlinepubs/009696799/functions/chown.html
http://www.opengroup.org/onlinepubs/009696799/functions/fchown.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALchown
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALfchown
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#TYPEfile_perm

Meta-attributes, types and permissions

Field name Description

st_dev : int The id of the device on which the file is stored.

st_ino : int The id of the file (inode number) in its partition.
The pair (st_dev, st_ino) uniquely identifies the file
within the file system.

st_kind : file_kind The file type. The type file_kind is an enumerated
type whose constructors are:

S_REG Regular file

S_DIR Directory

S_CHR Character device

S_BLK Block device

S_LNK Symbolic link

S_FIFO Named pipe

S_SOCK Socket

st_perm : int Access rights for the file

st_nlink : int For a directory: the number of entries in the directory.
For others: the number of hard links to this file.

st_uid : int The id of the file’s user owner.

st_gid : int The id of the file’s group owner.

st_rdev : int The id of the associated peripheral (for special files).

st_size : int The file size, in bytes.

st_atime : int Last file content access date (in seconds from January
1st 1970, midnight, gmt).

st_mtime : int Last file content modification date (idem).

st_ctime : int Last file state modification date: either a write to the
file or a change in access rights, user or group owner,
or number of links.

Table 1 — Fields of the stats structure

13

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#TYPEfile_kind

Files

Bit (octal) Notation ls -l Access right

0o100 --x------ executable by the user owner

0o200 -w------- writable by the user owner

0o400 r-------- readable by the user owner

0o10 -----x--- executable by members of the group owner

0o20 ----w---- writable by members of the group owner

0o40 ---r---- readable by members of the group owner

0o1 --------x executable by other users

0o2 -------w- writable by other users

0o4 ------r-- readable by other users

0o1000 --------t the bit t on the group (sticky bit)

0o2000 -----s--- the bit s on the group (set-gid)

0o4000 --s------ the bit s on the user (set-uid)

Table 2 — Permission bits

For files, the meaning of read, write and execute permissions is obvious. For
a directory, the execute permission means the right to enter it (to chdir to it)
and read permission the right to list its contents. Read permission on a directory
is however not needed to read its files or sub-directories (but we then need to
know their names).

The special bits do not have meaning unless the x bit is set (if present without
x set, they do not give additional rights). This is why their representation is
superimposed on the bit x and the letters S and T are used instead of s and t

whenever x is not set. The bit t allows sub-directories to inherit the permissions
of the parent directory. On a directory, the bit s allows the use of the directory’s
uid or gid rather than the user’s to create directories. For an executable file,
the bit s allows the changing at execution time of the user’s effective identity or
group with the system calls setuid and setgid.

val setuid : int -> unit

val setgid : int -> unit

The process also preserves its original identities unless it has super user privi-
leges, in which case setuid and setgid change both its effective and original user
and group identities. The original identity is preserved to allow the process to
subsequently recover it as its effective identity without needing further privileges.
The system calls getuid and getgid return the original identities and geteuid

and getegid return the effective identities.

val getuid : unit -> int

val geteuid : unit -> int

val getgid : unit -> int

val getegid : unit -> int

14

http://www.opengroup.org/onlinepubs/009696799/functions/setuid.html
http://www.opengroup.org/onlinepubs/009696799/functions/setgid.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALsetuid
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALsetgid
http://www.opengroup.org/onlinepubs/009696799/functions/getuid.html
http://www.opengroup.org/onlinepubs/009696799/functions/getgid.html
http://www.opengroup.org/onlinepubs/009696799/functions/geteuid.html
http://www.opengroup.org/onlinepubs/009696799/functions/getegid.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALgetuid
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALgeteuid
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALgetgid
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALgetegid

Operations on directories

A process also has a file creation mask encoded the same way file permissions
are. As its name suggests, the mask specifies prohibitions (rights to remove):
during file creation a bit set to 1 in the mask is set to 0 in the permissions of the
created file. The mask can be consulted and changed with the system call umask:
val umask : int -> int

Like many system calls that modify system variables, the modifying function
returns the old value of the variable. Thus, to just look up the value we need
to call the function twice. Once with an arbitrary value to get the mask and a
second time to put it back. For example:
let m = umask 0 in ignore (umask m); m

File access permissions can be modified with the system calls chmod and
fchmod:
val chmod : string -> file_perm -> unit

val fchmod : file_descr -> file_perm -> unit

and they can be tested “dynamically” with the system call access:
type access_permission = R_OK | W_OK | X_OK | F_OK

val access : string -> access_permission list -> unit

where requested access rights to the file are specified by a list of values of type
access_permission whose meaning is obvious except for F_OK which just checks
for the file’s existence (without checking for the other rights). The function raises
an error if the access rights are not granted.

Note that the information inferred by access may be more restrictive than
the information returned by lstat because a file system may be mounted with
restricted rights — for example in read-only mode. In that case access will deny
a write permission on a file whose meta-attributes would allow it. This is why
we distinguish between “dynamic” (what a process can actually do) and “static”
(what the file system specifies) information.

2.4 Operations on directories

Only the kernel can write in directories (when files are created). Thus opening a
directory in write mode is prohibited. In certain versions of Unix a directory may
be opened in read only mode and read with read, but other versions prohibit it.
However, even if this is possible, it is preferable not to do so because the format of
directory entries vary between Unix versions and is often complex. The following
functions allow reading a directory sequentially in a portable manner:
val opendir : string -> dir_handle

val readdir : dir_handle -> string

val rewinddir : dir_handle -> unit

val closedir : dir_handle -> unit

The system call opendir returns a directory descriptor for a directory. readdir

reads the next entry of a descriptor, and returns a file name relative to the di-
rectory or raises the exception End_of_file if the end of the directory is reached.
rewinddir repositions the descriptor at the beginning of the directory and closedir

closes the directory descriptor.

15

http://www.opengroup.org/onlinepubs/009696799/functions/umask.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALumask
http://www.opengroup.org/onlinepubs/009696799/functions/chmod.html
http://www.opengroup.org/onlinepubs/009696799/functions/fchmod.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALchmod
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALfchmod
http://www.opengroup.org/onlinepubs/009696799/functions/access.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#TYPEaccess_permission
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALaccess
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#TYPEaccess_permission
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALopendir
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALreaddir
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALrewinddir
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALclosedir
http://www.opengroup.org/onlinepubs/009696799/functions/opendir.html
http://www.opengroup.org/onlinepubs/009696799/functions/readdir.html
http://www.opengroup.org/onlinepubs/009696799/functions/rewinddir.html
http://www.opengroup.org/onlinepubs/009696799/functions/closedir.html

Files

Example The following library function, in Misc, iterates a function f over the
entries of the directory dirname.

let iter_dir f dirname =

let d = opendir dirname in

try while true do f (readdir d) done

with End_of_file -> closedir d

* * *
To create a directory or remove an empty directory, we have mkdir and rmdir:

val mkdir : string -> file_perm -> unit

val rmdir : string -> unit

The second argument of mkdir determines the access rights of the new directory.
Note that we can only remove a directory that is already empty. To remove
a directory and its contents, it is thus necessary to first recursively empty the
contents of the directory and then remove the directory.

2.5 Complete example: search in a file hierarchy

The Unix command find lists the files of a hierarchy matching certain criteria
(file name, type and permissions etc.). In this section we develop a library
function Findlib.find which implements these searches and a command find

that provides a version of the Unix command find that supports the options
-follow and -maxdepth.

We specify the following interface for Findlib.find:

val find :

(Unix.error * string * string -> unit) ->

(string -> Unix.stats -> bool) -> bool -> int -> string list ->

unit

The function call

find handler action follow depth roots

traverses the file hierarchy starting from the roots specified in the list roots

(absolute or relative to the current directory of the process when the call is
made) up to a maximum depth depth and following symbolic links if the flag
follow is set. The paths found under the root r include r as a prefix. Each
found path p is given to the function action along with the data returned by
Unix.lstat p (or Unix.stat p if follow is true). The function action returns
a boolean indicating, for directories, whether the search should continue for its
contents (true) or not (false).

The handler function reports traversal errors of type Unix_error. Whenever
an error occurs the arguments of the exception are given to the handler function
and the traversal continues. However when an exception is raised by the func-
tions action or handler themselves, we immediately stop the traversal and let it
propagate to the caller. To propagate an Unix_error exception without catching
it like a traversal error, we wrap these exceptions in the Hidden exception (see
hide_exn and reveal_exn).

16

http://www.opengroup.org/onlinepubs/009696799/functions/mkdir.html
http://www.opengroup.org/onlinepubs/009696799/functions/rmdir.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALmkdir
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALrmdir

Complete example: search in a file hierarchy

1 open Unix;;

2

3 exception Hidden of exn

4 let hide_exn f x = try f x with exn -> raise (Hidden exn);;

5 let reveal_exn f x = try f x with Hidden exn -> raise exn;;

6

7 let find on_error on_path follow depth roots =

8 let rec find_rec depth visiting filename =

9 try

10 let infos = (if follow then stat else lstat) filename in

11 let continue = hide_exn (on_path filename) infos in

12 let id = infos.st_dev, infos.st_ino in

13 if infos.st_kind = S_DIR && depth > 0 && continue &&

14 (not follow || not (List.mem id visiting))

15 then

16 let process_child child =

17 if (child <> Filename.current_dir_name &&

18 child <> Filename.parent_dir_name) then

19 let child_name = Filename.concat filename child in

20 let visiting =

21 if follow then id :: visiting else visiting in

22 find_rec (depth-1) visiting child_name in

23 Misc.iter_dir process_child filename

24 with Unix_error (e, b, c) -> hide_exn on_error (e, b, c) in

25 reveal_exn (List.iter (find_rec depth [])) roots;;

A directory is identified by the id pair (line 12) made of its device and inode
number. The list visiting keeps track of the directories that have already been
visited. In fact this information is only needed if symbolic links are followed
(line 21).

It is now easy to program the find command. The essential part of the code
parses the command line arguments with the Arg module.
let find () =

let follow = ref false in

let maxdepth = ref max_int in

let roots = ref [] in

let usage_string =

("Usage: " ^ Sys.argv.(0) ^ " [files...] [options...]") in

let opt_list = [

"-maxdepth", Arg.Int ((:=) maxdepth), "max depth search";

"-follow", Arg.Set follow, "follow symbolic links";

] in

Arg.parse opt_list (fun f -> roots := f :: !roots) usage_string;

let action p infos = print_endline p; true in

let errors = ref false in

let on_error (e, b, c) =

errors := true; prerr_endline (c ^ ": " ^ Unix.error_message e) in

Findlib.find on_error action !follow !maxdepth

(if !roots = [] then [Filename.current_dir_name]

17

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Arg.html

Files

else List.rev !roots);

if !errors then exit 1;;

Unix.handle_unix_error find ();;

Although our find command is quite limited, the library function FindLib.find

is far more general, as the following exercise shows.

Exercise 1 Use the function FindLib.find to write a command find_but_CVS

equivalent to the Unix command:
find . -type d -name CVS -prune -o -print

which, starting from the current directory, recursively prints files without printing
or entering directories whose name is CVS. Answer page 121.

* * *

Exercise 2 The function getcwd is not a system call but is defined in the
Unix module. Give a “primitive” implementation of getcwd. First describe the
principle of your algorithm with words and then implement it (you should avoid
repeating the same system call). Answer page 121.

* * *

2.6 Opening a file

The openfile function allows us to obtain a descriptor for a file of a given name
(the corresponding system call is open, however open is a keyword in OCaml).
val openfile :

string -> open_flag list -> file_perm -> file_descr

The first argument is the name of the file to open. The second argument, a list
of flags from the enumerated type open_flag, describes the mode in which the
file should be opened and what to do if it does not exist. The third argument
of type file_perm defines the file’s access rights, should the file be created. The
result is a file descriptor for the given file name with the read/write position set
to the beginning of the file.

The flag list must contain exactly one of the following flags:

O_RDONLY Open in read-only mode.

O_WRONLY Open in write-only mode.

O_RDWR Open in read and write mode.

These flags determine whether read or write calls can be done on the descriptor.
The call openfile fails if a process requests an open in write (resp. read) mode
on a file on which it has no right to write (resp. read). For this reason O_RDWR

should not be used systematically.
The flag list can also contain one or more of the following values:

18

http://www.opengroup.org/onlinepubs/009696799/functions/open.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALopenfile
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#TYPEopen_flag
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#TYPEfile_perm

Opening a file

O_APPEND Open in append mode.

O_CREAT Create the file if it does not exist.

O_TRUNC Truncate the file to zero if it already exists.

O_EXCL Fail if the file already exists.

O_NONBLOCK Open in non-blocking mode.

O_NOCTTY Do not function in console mode.

O_SYNC Perform the writes in synchronous mode.

O_DSYNC Perform the data writes in synchronous mode.

O_RSYN Perform the reads in synchronous mode.

The first group defines the behavior to follow if the file exists or not. With:

• O_APPEND, the read/write position will be set at the end of the file before each
write. Consequently any written data will be added at the end of file. Without
O_APPEND, writes occur at the current read/write position (initially, the beginning
of the file).

• O_TRUNC, the file is truncated when it is opened. The length of the file is set to
zero and the bytes contained in the file are lost, and writes start from an empty
file. Without O_TRUNC, the writes are made at the start of the file overwriting
any data that may already be there.

• O_CREAT, creates the file if it does not exist. The created file is empty and its
access rights are specified by the third argument and the creation mask of the
process (the mask can be retrieved and changed with umask).

• O_EXCL, openfile fails if the file already exists. This flag, used in conjunction
with O_CREAT allows to use files as locks1. A process which wants to take the
lock calls openfile on the file with O_EXCL and O_CREAT. If the file already exists,
this means that another process already holds the lock and openfile raises an
error. If the file does not exist openfile returns without error and the file is
created, preventing other processes from taking the lock. To release the lock
the process calls unlink on it. The creation of a file is an atomic operation: if
two processes try to create the same file in parallel with the options O_EXCL and
O_CREAT, at most one of them can succeed. The drawbacks of this technique is
that a process must busy wait to acquire a lock that is currently held and the
abnormal termination of a process holding a lock may never release it.

Example Most programs use 0o666 for the third argument to openfile. This
means rw-rw-rw- in symbolic notation. With the default creation mask of 0o022,
the file is thus created with the permissions rw-r--r--. With a more lenient
mask of 0o002, the file is created with the permissions rw-rw-r--.

* * *

1This is not possible if the lock file is located on a nfs partition, because nfs does not
implement the option O_CREAT of open correctly.

19

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALumask

Files

Example To read from a file:

openfile filename [O_RDONLY] 0

The third argument can be anything as O_CREAT is not specified, 0 is usually
given.

To write to an empty a file without caring about any previous content:

openfile filename [O_WRONLY; O_TRUNC; O_CREAT] 0o666

If the file will contain executable code (e.g. files created by ld, scripts, etc.), we
create it with execution permissions:

openfile filename [O_WRONLY; O_TRUNC; O_CREAT] 0o777

If the file must be confidential (e.g. “mailbox” files where mail stores read mes-
sages), we create it with write permissions only for the user owner:

openfile filename [O_WRONLY; O_TRUNC; O_CREAT] 0o600

To append data at the end of an existing file or create it if it doesn’t exist:

openfile filename [O_WRONLY; O_APPEND; O_CREAT] 0o666

* * *
The O_NONBLOCK flag guarantees that if the file is a named pipe or a special

file then the file opening and subsequent reads and writes will be non-blocking.
The O_NOCTYY flag guarantees that if the file is a control terminal (keyboard,

window, etc.), it won’t become the controlling terminal of the calling process.
The last group of flags specifies how to synchronize read and write operations.

By default these operations are not synchronized. With:
• O_DSYNC, the data is written synchronously such that the process is blocked until

all the writes have been done physically on the media (usually a disk).

• O_SYNC, the file data and its meta-attributes are written synchronously.

• O_RSYNC, with O_DSYNC specifies that the data reads are also synchronized: it
is guaranteed that all current writes (requested but not necessarily performed)
to the file are really written to the media before the next read. If O_RSYNC is
provided with O_SYNC the above also applies to meta-attributes changes.

2.7 Reading and writing

The system calls read and write read and write bytes in a file. For historical rea-
sons, the system call write is provided in OCaml under the name single_write:

val read : file_descr -> string -> int -> int -> int

val single_write : file_descr -> string -> int -> int -> int

The two calls read and single_write have the same interface. The first argument
is the file descriptor to act on. The second argument is a string which will hold
the read bytes (for read) or the bytes to write (for single_write). The third
argument is the position in the string of the first byte to be written or read.
The fourth argument is the number of the bytes to be read or written. In fact
the third and fourth argument define a sub-string of the second argument (the
sub-string should be valid, read and single_write do not check this).

20

http://www.opengroup.org/onlinepubs/009696799/functions/read.html
http://www.opengroup.org/onlinepubs/009696799/functions/write.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALread
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALsingle_write

Reading and writing

fd

read fd s d n write fd s d n

s

d n

read and single_write return the number of bytes actually read or written.
Reads and write calls are performed from the file descriptor’s current read-

/write position (if the file was opened in O_APPEND mode, this position is set at
the end of the file prior to any write). After the system call, the current position
is advanced by the number of bytes read or written.

For writes, the number of bytes actually written is usually the number of
bytes requested. However there are exceptions: (i) if it is not possible to write
the bytes (e.g. if the disk is full) (ii) the descriptor is a pipe or a socket open in
non-blocking mode (iii) due to OCaml, if the write is too large.

The reason for (iii) is that internally OCaml uses auxiliary buffers whose
size is bounded by a maximal value. If this value is exceeded the write will be
partial. To work around this problem OCaml also provides the function write

which iterates the writes until all the data is written or an error occurs. The
problem is that in case of error there’s no way to know the number of bytes
that were actually written. Hence single_write should be preferred because it
preserves the atomicity of writes (we know exactly what was written) and it is
more faithful to the original Unix system call (note that the implementation of
single_write is described in section 5.7).

Example Assume fd is a descriptor open in write-only mode.
write fd "Hello world!" 3 7

writes the characters "lo worl" in the corresponding file, and returns 7.

* * *
For reads, it is possible that the number bytes actually read is smaller than

the number of requested bytes. For example when the end of file is near, that is
when the number of bytes between the current position and the end of file is less
than the number of requested bytes. In particular, when the current position is
at the end of file, read returns zero. The convention “zero equals end of file”
also holds for special files, pipes and sockets. For example, read on a terminal
returns zero if we issue a ctrl-D on the input.

Another example is when we read from a terminal. In that case, read blocks
until an entire line is available. If the line length is smaller than the requested
bytes read returns immediately with the line without waiting for more data to
reach the number of requested bytes. (This is the default behavior for terminals,
but it can be changed to read character-by-character instead of line-by-line, see
section 2.13 and the type terminal_io for more details.)
Example The following expression reads at most 100 characters from standard
input and returns them as a string.
let buffer = String.create 100 in

let n = read stdin buffer 0 100 in

String.sub buffer 0 n

21

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALwrite
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#TYPEterminal_io

Files

* * *

Example The function really_read below has the same interface as read, but
makes additional read attempts to try to get the number of requested bytes. It
raises the exception End_of_file if the end of file is reached while doing this.

let rec really_read fd buffer start length =

if length <= 0 then () else

match read fd buffer start length with

| 0 -> raise End_of_file

| r -> really_read fd buffer (start + r) (length - r);;

* * *

2.8 Closing a descriptor

The system call close closes a file descriptor.

val close : file_descr -> unit

Once a descriptor is closed, all attempts to read, write, or do anything else
with the descriptor will fail. Descriptors should be closed when they are no longer
needed; but it is not mandatory. In particular, and in contrast to Pervasives’
channels, a file descriptor doesn’t need to be closed to ensure that all pending
writes have been performed as write requests made with write are immediately
transmitted to the kernel. On the other hand, the number of descriptors allocated
by a process is limited by the kernel (from several hundreds to thousands). Doing
a close on an unused descriptor releases it, so that the process does not run out
of descriptors.

2.9 Complete example: file copy

We program a command file_copy which, given two arguments f1 and f2, copies
to the file f2 the bytes contained in f1.

open Unix;;

let buffer_size = 8192;;

let buffer = String.create buffer_size;;

let file_copy input_name output_name =

let fd_in = openfile input_name [O_RDONLY] 0 in

let fd_out = openfile output_name [O_WRONLY; O_CREAT; O_TRUNC] 0o666 in

let rec copy_loop () = match read fd_in buffer 0 buffer_size with

| 0 -> ()

| r -> ignore (write fd_out buffer 0 r); copy_loop ()

in

copy_loop ();

close fd_in;

close fd_out;;

22

http://www.opengroup.org/onlinepubs/009696799/functions/close.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALclose

The cost of system calls and buffers

let copy () =

if Array.length Sys.argv = 3 then begin

file_copy Sys.argv.(1) Sys.argv.(2);

exit 0

end else begin

prerr_endline

("Usage: " ^ Sys.argv.(0) ^ " <input_file> <output_file>");

exit 1

end;;

handle_unix_error copy ();;

The bulk of the work is performed by the the function file_copy. First we
open a descriptor in read-only mode on the input file and another in write-only
mode on the output file.

If the output file already exists, it is truncated (option O_TRUNC) and if it does
not exist it is created (option O_CREAT) with the permissions rw-rw-rw- modified
by the creation mask. (This is unsatisfactory: if we copy an executable file, we
would like the copy to be also executable. We will see later how to give a copy
the same permissions as the original.)

In the copy_loop function we do the copy by blocks of buffer_size bytes. We
request buffer_size bytes to read. If read returns zero, we have reached the end
of file and the copy is over. Otherwise we write the r bytes we have read in the
output file and start again.

Finally, we close the two descriptors. The main program copy verifies that the
command received two arguments and passes them to the function file_copy.

Any error occurring during the copy results in a Unix_error caught and dis-
played by handle_unix_error. Example of errors include inability to open the
input file because it does not exist, failure to read because of restricted permis-
sions, failure to write because the disk is full, etc.

Exercise 3 Add an option -a to the program, such that file_copy -a f1 f2

appends the contents of f1 to the end of the file f2. Answer page 121.

* * *

2.10 The cost of system calls and buffers

In the example file_copy, reads were made in blocks of 8192 bytes. Why not
read byte per by byte, or megabyte per by megabyte? The reason is efficiency.

Figure 2 shows the copy speed of file_copy, in bytes per second, against the
size of blocks (the value buffer_size). The amount of data transferred is the
same regardless of the size of the blocks. For small block sizes, the copy speed
is almost proportional to the block size. Most of the time is spent not in data
transfers but in the execution of the loop copy_loop and in the calls to read and
write. By profiling more carefully we can see that most of the time is spent in
the calls to read and write. We conclude that a system call, even if it has not
much to do, takes a minimum of about 4 micro-seconds (on the machine that was

23

Files

1 10 100 103 104 105 106 107 Size (bytes)
0.1

1

10

100

103

Speed (MB/s)

Figure 2 — Copy speed as a function of block size

used for the test — a 2.8 GHz Pentium 4), let us say from 1 to 10 microseconds.
For small input/output blocks, the duration of the system call dominates.

For larger blocks, between 4KB and 1MB, the copy speed is constant and
maximal. Here, the time spent in system calls and the loop is small relative to
the time spent on the data transfer. Also, the buffer size becomes bigger than
the cache sizes used by the system and the time spent by the system to make
the transfer dominates the cost of a system call2.

Finally, for very large blocks (8MB and more) the speed is slightly under the
maximum. Coming into play here is the time needed to allocate the block and
assign memory pages to it as it fills up.

The moral of the story is that, a system call, even if it does very little work,
costs dearly — much more than a normal function call: roughly, 2 to 20 mi-
croseconds for each system call, depending on the architecture. It is therefore
important to minimize the number of system calls. In particular, read and write
operations should be made in blocks of reasonable size and not character by
character.

In examples like file_copy, it is not difficult to do input/output with large
blocks. But other types of programs are more naturally written with character
by character input or output (e.g. reading a line from a file, lexical analysis,
displaying a number etc.). To satisfy the needs of these programs, most systems
provide input/output libraries with an additional layer of software between the
application and the operating system. For example, in OCaml the Pervasives

module defines the abstract types in_channel and out_channel, similar to file de-
scriptors, and functions on these types like input_char, input_line, output_char,
or output_string. This layer uses buffers to group sequences of character by char-
acter reads or writes into a single system call to read or write. This results in
better performance for programs that proceed character by character. Moreover
this additional layer makes programs more portable: we just need to implement

2In fact, OCaml limits the size of data transfers to 16KB (in the current version) and repeats
write system calls to make the complete transfer — see the discussion in section 5.7. But this
limit is bigger than the size of system caches and it is not observable.

24

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Pervasives.html#TYPEin_channel
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Pervasives.html#TYPEout_channel
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Pervasives.html#VALinput_char
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Pervasives.html#VALinput_line
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Pervasives.html#VALoutput_char
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Pervasives.html#VALoutput_string

Complete example: a small input/output library

this layer with the system calls provided by another operating system to port all
the programs that use this library on this new platform.

2.11 Complete example: a small input/output
library

To illustrate the buffered input/output techniques, we implement a fragment of
OCaml Pervasives library. Here is the interface:
exception End_of_file

type in_channel

val open_in : string -> in_channel

val input_char : in_channel -> char

val close_in : in_channel -> unit

type out_channel

val open_out : string -> out_channel

val output_char : out_channel -> char -> unit

val close_out : out_channel -> unit

We start with the “input” part. The abstract type in_channel is defined as
follows:
open Unix;;

type in_channel =

{ in_buffer: string;

in_fd: file_descr;

mutable in_pos: int;

mutable in_end: int };;

exception End_of_file

The character string of the in_buffer field is, literally, the buffer. The field
in_fd is a (Unix) file descriptor, opened on the file to read. The field in_pos is
the current read position in the buffer. The field in_end is the number of valid
characters preloaded in the buffer.

in_fd

characters
read

buffered
characters
to read

in_buffer

read position of in_fd

in_pos in_end

The fields in_pos and in_end will be modified in place during read operations;
we therefore declare them as mutable.

25

Files

let buffer_size = 8192;;

let open_in filename =

{ in_buffer = String.create buffer_size;

in_fd = openfile filename [O_RDONLY] 0;

in_pos = 0;

in_end = 0 };;

When we open a file for reading, we create a buffer of reasonable size (large
enough so as not to make too many system calls; small enough so as not to waste
memory). We then initialize the field in_fd with a Unix file descriptor opened
in read-only mode on the given file. The buffer is initially empty (it does not
contain any character from the file); the field in_end is therefore initialized to
zero.

let input_char chan =

if chan.in_pos < chan.in_end then begin

let c = chan.in_buffer.[chan.in_pos] in

chan.in_pos <- chan.in_pos + 1;

c

end else begin

match read chan.in_fd chan.in_buffer 0 buffer_size

with 0 -> raise End_of_file

| r -> chan.in_end <- r;

chan.in_pos <- 1;

chan.in_buffer.[0]

end;;

To read a character from an in_channel, we do one of two things. Either there
is at least one unread character in the buffer; that is to say, the field in_pos is
less than the field in_end. We then return this character located at in_pos, and
increment in_pos. Or the buffer is empty and we call read to refill the buffer. If
read returns zero, we have reached the end of the file and we raise the exception
End_of_file. Otherwise, we put the number of characters read in the field in_end

(we may receive less characters than we requested, thus the buffer may be only
partially refilled) and we return the first character read.

let close_in chan =

close chan.in_fd;;

Closing an in_channel just closes the underlying Unix file descriptor.
The “output” part is very similar to the “input” part. The only asymmetry

is that the buffer now contains incomplete writes (characters that have already
been buffered but not written to the file descriptor), and not reads in advance
(characters that have buffered, but not yet read).

26

Complete example: a small input/output library

out_fd

written
characters

buffered
characters
to write

out_buffer

write position of out_fd

out_pos

type out_channel =

{ out_buffer: string;

out_fd: file_descr;

mutable out_pos: int };;

let open_out filename =

{ out_buffer = String.create 8192;

out_fd = openfile filename [O_WRONLY; O_TRUNC; O_CREAT] 0o666;

out_pos = 0 };;

let output_char chan c =

if chan.out_pos < String.length chan.out_buffer then begin

chan.out_buffer.[chan.out_pos] <- c;

chan.out_pos <- chan.out_pos + 1

end else begin

ignore (write chan.out_fd chan.out_buffer 0 chan.out_pos);

chan.out_buffer.[0] <- c;

chan.out_pos <- 1

end;;

let close_out chan =

ignore (write chan.out_fd chan.out_buffer 0 chan.out_pos);

close chan.out_fd;;

To write a character on an out_channel, we do one of two things. Either the
buffer is not full and we just store the character in the buffer at the position
out_pos and increment that value. Or the buffer is full and we empty it with a
call to write and then store the character at the beginning of the buffer.

When we close an out_channel, we must not forget to write the buffer contents
(the characters from 0 to out_pos - 1) to the file otherwise the writes made on
the channel since the last time the buffer was emptied would be lost.

Exercise 4 Implement the function:
val output_string : out_channel -> string -> unit

which behaves like a sequence of output_char on each character of the string,
but is more efficient. Answer page 121.

* * *

27

Files

2.12 Positioning

The system call lseek allows to set the current read/write position of a file
descriptor.

val lseek : file_descr -> int -> seek_command -> int

The first argument is the file descriptor and the second one the desired position.
The latter is interpreted according to the value of the third argument of type
seek_command. This enumerated type specifies the kind of position:

SEEK_SET Absolute position. The second argument specifies the character
number to point to. The first character of a file is at position
zero.

SEEK_CUR Position relative to the current position. The second argument is
an offset relative to the current position. A positive value moves
forward and a negative value moves backwards.

SEEK_END Position relative to the end of file. The second argument is an
offset relative to the end of file. As for SEEK_CUR, the offset may
be positive or negative.

The value returned by lseek is the resulting absolute read/write position.
An error is raised if a negative absolute position is requested. The requested

position can be located after the end of file. In that case, a read returns zero
(end of file reached) and a write extends the file with zeros until that position
and then writes the supplied data.

Example To position the cursor on the 1000th character of a file:

lseek fd 1000 SEEK_SET

To rewind by one character:

lseek fd (-1) SEEK_CUR

To find out the size of a file:

let file_size = lseek fd 0 SEEK_END in ...

* * *
For descriptors opened in O_APPEND mode, the read/write position is auto-

matically set at the end of the file before each write. Thus a call lseek is useless
to set the write position, it may however be useful to set the read position.

The behavior of lseek is undefined on certain type of files for which absolute
access is meaningless: communication devices (pipes, sockets) but also many
special files like the terminal. In most Unix implementations a call to lseek

on these files is simply ignored: the read/write position is set but read/write
operations ignore it. In some implementations, lseek on a pipe or a socket
triggers an error.
Exercise 5 The command tail displays the last n lines of a file. How can it
be implemented efficiently on regular files? What can we do for the other kind of
files? How can the option -f be implemented (cf. man tail)? Answer page 122.

* * *
28

http://www.opengroup.org/onlinepubs/009696799/functions/lseek.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALlseek
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#TYPEseek_command

Operations specific to certain file types

2.13 Operations specific to certain file types

In Unix, data communication is done via file descriptors representing either per-
manent files (files, peripherals) or volatile ones (pipes and sockets, see chapters 5
and 6). File descriptors provide a uniform and media-independent interface for
data communication. Of course the actual implementation of the operations on
a file descriptor depends on the underlying media.

However this uniformity breaks when we need to access all the features pro-
vided by a given media. General operations (opening, writing, reading, etc.)
remain uniform on most descriptors but even, on certain special files, these may
have an ad hoc behavior defined by the kind of peripheral and its parameters.
There are also operations that work only with certain kind of media.

Normal files

We can shorten a normal file with the system calls truncate and ftruncate.

val truncate : string -> int -> unit

val ftruncate : file_descr -> int -> unit

The first argument is the file to truncate and the second the desired size. All the
data after this position is lost.

Symbolic links

Most operations on files “follow” symbolic links in the sense that they do not
apply to the link itself but to the file on which the link points (for example
openfile, stat, truncate, opendir, etc.).

The two system calls symlink and readlink operate specifically on symbolic
links:

val symlink : string -> string -> unit

val readlink : string -> string

The call symlink f1 f2 creates the file f2 as a symbolic link to f1 (like the Unix
command ln -s f1 f2). The call readlink returns the content of a symbolic
link, i.e. the name of the file to which the link points.

Special files

Special files can be of “character” or “block” type. The former are character
streams: we can read or write characters only sequentially. These are the termi-
nals, sound devices, printers, etc. The latter, typically disks, have a permanent
medium: characters can be read by blocks and even seeked relative to the current
position.

Among the special files, we may distinguish:

29

http://www.opengroup.org/onlinepubs/009696799/functions/truncate.html
http://www.opengroup.org/onlinepubs/009696799/functions/ftruncate.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALtruncate
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALftruncate
http://www.opengroup.org/onlinepubs/009696799/functions/symlink.html
http://www.opengroup.org/onlinepubs/009696799/functions/readlink.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALsymlink
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALreadlink

Files

/dev/null This is the black hole which swallows everything we put into
and from which nothing comes out. This is extremely useful
for ignoring the results of a process: we redirect its output to
/dev/null (see chapter 5).

/dev/tty* These are the control terminals.

/dev/pty* These are the pseudo-terminals: they are not real terminals but
simulate them (they provide the same interface).

/dev/hd* These are the disks.

/proc Under Linux, system parameters organized as a file system. They
allow reads and writes.

The usual file system calls on special files can behave differently. However,
most special files (terminals, tape drives, disks, etc.) respond to read and write

in the obvious manner (but sometimes with restrictions on the number of bytes
written or read), but many ignore lseek.

In addition to the usual file system calls, special files which represent pe-
ripherals must be commanded and/or configured dynamically. For example, for
a tape drive, rewind or fast forward the tape; for a terminal, choice of the line
editing mode, behavior of special characters, serial connection parameters (speed,
parity, etc.). These operations are made in Unix with the system call ioctl which
group together all the particular cases. However, this system call is not provided
by OCaml; it is ill-defined and cannot be treated in a uniform way.

Terminals

Terminals and pseudo-terminals are special files of type character which can be
configured from OCaml. The system call tcgetattr takes a file descriptor open
on a special file and returns a structure of type terminal_io which describes the
status of the terminal according to the posix standard.

type terminal_io =

{ c_ignbrk : bool; c_brk_int : bool; ...; c_vstop : char }

val tcgetattr : file_descr -> terminal_io

This structure can be modified and given to the function tcsetattr to change
the attributes of the peripheral.

val tcsetattr : file_descr -> setattr_when -> terminal_io -> unit

The first argument is the file descriptor of the peripheral. The last argu-
ment is a structure of type terminal_io describing the parameters of the pe-
ripheral as we want them. The second argument is a value of the enumerated
type setattr_when that indicates when the change must be done: immediately
(TCSANOW), after having transmitted all written data (TCSADRAIN) or after having
read all the received data (TCAFLUSH). TCSADRAIN is recommended for changing
write parameters and TCSAFLUSH for read parameters.

Example When a password is read, characters entered by the user should not
be echoed if the standard input is connected to a terminal or a pseudo-terminal.

30

http://www.opengroup.org/onlinepubs/009696799/functions/ioctl.html
http://www.opengroup.org/onlinepubs/009696799/functions/tcgetattr.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#TYPEterminal_io
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#TYPEterminal_io
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALtcgetattr
http://www.opengroup.org/onlinepubs/009696799/functions/tcsetattr.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALtcsetattr
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#TYPEsetattr_when

Operations specific to certain file types

let read_passwd message =

match

try

let default = tcgetattr stdin in

let silent =

{ default with

c_echo = false;

c_echoe = false;

c_echok = false;

c_echonl = false;

} in

Some (default, silent)

with _ -> None

with

| None -> input_line Pervasives.stdin

| Some (default, silent) ->

print_string message;

flush Pervasives.stdout;

tcsetattr stdin TCSANOW silent;

try

let s = input_line Pervasives.stdin in

tcsetattr stdin TCSANOW default; s

with x ->

tcsetattr stdin TCSANOW default; raise x;;

The read_passwd function starts by getting the current settings of the terminal
connected to stdin. Then it defines a modified version of these in which char-
acters are not echoed. If this fails the standard input is not a control terminal
and we just read a line. Otherwise we display a message, change the terminal
settings, read the password and put the terminal back in its initial state. Care
must be taken to set the terminal back to its initial state even after a read failure.

* * *
Sometimes a program needs to start another and connect its standard input

to a terminal (or pseudo-terminal). OCaml does not provide any support for
this3. To achieve that, we must manually look among the pseudo-terminals (in
general, they are files with names in the form of /dev/tty[a-z][a-f0-9]) and find
one that is not already open. We can then open this file and start the program
with this file on its standard input.

Four other functions control the stream of data of a terminal (flush waiting
data, wait for the end of transmission and restart communication).

val tcsendbreak : file_descr -> int -> unit

The function tcsendbreak sends an interrupt to the peripheral. The second
argument is the duration of the interrupt (0 is interpreted as the default value
for the peripheral).

3The Cash library [3] supplies such functions.

31

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALtcsendbreak
http://www.opengroup.org/onlinepubs/009696799/functions/tcsendbreak.html

Files

val tcdrain : file_descr -> unit

The function tcdrain waits for all written data to be transmitted.

val tcflush : file_descr -> flush_queue -> unit

Depending on the value of the second argument, a call to the function tcflush

discards the data written but not yet transmitted (TCIFLUSH), or the data received
but not yet read (TCOFLUSH) or both (TCIOFLUSH).

val tcflow : file_descr -> flow_action -> unit

Depending on the value of the second argument, a call to the function tcflow

suspends the data transmission (TCOOFF), restarts the transmission (TCOON), sends
a control character stop or start to request the transmission to be suspended
(TCIOFF) or restarted (TCION).

val setsid : unit -> int

The function setsid puts the process in a new session and detaches it from the
terminal.

2.14 Locks on files

Two processes can modify the same file in parallel; however, their writes may
collide and result in inconsistent data. In some cases data is always written at
the end and opening the file with O_APPEND prevents this. This is fine for log files
but it does not work for files that store, for example, a database because writes
are performed at arbitrary positions. In that case processes using the file must
collaborate in order not to step on each others toes. A lock on the whole file can
be implemented with an auxiliary file (see page 19) but the system call lockf
allows for finer synchronization patterns by locking only parts of a file.

val lockf : file_descr -> lock_command -> int -> unit

2.15 Complete example: recursive copy of files

We extend the function file_copy (section 2.9) to support symbolic links and
directories in addition to normal files. For directories, we recursively copy their
contents.

To copy normal files we reuse the function file_copy we already defined.

open Unix

...

let file_copy input_name output_name =

...

The function set_infos below modifies the owner, the access rights and the last
dates of access/modification of a file. We use it to preserve this information for
copied files.

let set_infos filename infos =

utimes filename infos.st_atime infos.st_mtime;

chmod filename infos.st_perm;

32

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALtcdrain
http://www.opengroup.org/onlinepubs/009696799/functions/tcdrain.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALtcflush
http://www.opengroup.org/onlinepubs/009696799/functions/tcflush.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALtcflow
http://www.opengroup.org/onlinepubs/009696799/functions/tcflow.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALsetsid
http://www.opengroup.org/onlinepubs/009696799/functions/setsid.html
http://www.opengroup.org/onlinepubs/009696799/functions/lockf.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALlockf

Complete example: recursive copy of files

try

chown filename infos.st_uid infos.st_gid

with Unix_error(EPERM,_,_) -> ()

The system call utimemodifies the dates of access and modification. We use chmod
and chown to re-establish the access rights and the owner. For normal users, there
are a certain number of cases where chown will fail with a “permission denied”
error. We catch this error and ignore it.

Here’s the main recursive function.

let rec copy_rec source dest =

let infos = lstat source in

match infos.st_kind with

| S_REG ->

file_copy source dest;

set_infos dest infos

| S_LNK ->

let link = readlink source in

symlink link dest

| S_DIR ->

mkdir dest 0o200;

Misc.iter_dir

(fun file ->

if file <> Filename.current_dir_name

&& file <> Filename.parent_dir_name

then

copy_rec

(Filename.concat source file)

(Filename.concat dest file))

source;

set_infos dest infos

| _ ->

prerr_endline ("Can't cope with special file " ^ source)

We begin by reading the information of the source file. If it is a normal file, we
copy its contents with file_copy and its information with set_infos. If it is a
symbolic link, we read where it points to and create a link pointing to the same
object. If it is a directory, we create a destination directory, then we read the
directory’s entries (ignoring the entries about the directory itself or its parent)
and recursively call copy_rec for each entry. All other file types are ignored, with
a warning.

The main program is straightforward:

let copyrec () =

if Array.length Sys.argv <> 3 then begin

prerr_endline ("Usage: " ^Sys.argv.(0)^ " <source> <destination>");

exit 2

end else begin

copy_rec Sys.argv.(1) Sys.argv.(2);

exit 0

end

33

http://www.opengroup.org/onlinepubs/009696799/functions/utime.html

Files

;;

handle_unix_error copyrec ();;

Exercise 6 Copy hard links cleverly. As written above copy_rec creates n
duplicates of the same file whenever a file occurs under n different names in the
hierarchy to copy. Try to detect this situation, copy the file only once and make
hard links in the destination hierarchy. Answer page 122.

* * *

2.16 Complete example: Tape ARchive

The tar file format (for tape archive) can store a file hierarchy into a single file.
It can be seen as a mini file system.

In this section we define functions to read and write tar files. We also program
a command readtar such that readtar a displays the name of the files contained
in the archive a and readtar a f extracts the contents of the file f contained in
a. Extracting the whole file hierarchy of an archive and generating an archive
for a file hierarchy is left as an exercise.

File format specification A tar archive is a set of records. Each record
represents a file; it starts with a header which encodes the information about the
file (its name, type, size, owners, etc.) and is followed by the contents of the file.
The header is a block of 512 bytes structured as shown in table 3.

The file contents is stored right after the header, its size is rounded to a
multiple of 512 bytes (the extra space is filled with zeros). Records are stored
one after the other. If needed, the file is padded with empty blocks to reach at
least 20 blocks.

Since tar archives are also designed to be written on brittle media and reread
many years later, the header contains a checksum field which allows to detect
when the header is damaged. Its value is the sum of all the bytes of the header
(to compute that sum we assume that the checksum field itself is made of zeros).

The kind header field encodes the file type in a byte as follows4:

'\0' or '0' '1' '2' '3' '4' '5' '6' '7'

REG LINK LNK CHR BLK DIR FIFO CONT

Most of the cases correspond to the values of the Unix file type file_kind stored
in the st_kind field of the stats structure. LINK is for hard links which must lead
to another file already stored within the archive. CONT is for ordinary file, but
stored in a contiguous area of memory (this is a feature of some file systems, we
can treat it like an ordinary file).

The link header field stores the link when kind is LNK or LINK. The fields
major and minor contain the major and minor numbers of the peripheral when
kind is CHR or BLK. These three fields are not used in other cases.

4This field can also take different values to encode pathological cases, for example when the
value of a field exceeds its size or in extensions of the tar format.

34

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#TYPEfile_kind
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#TYPEstats

Complete example: Tape ARchive

Offset Length Code Type Name Description

0 100 string name File name

100 8 octal perm File permissions

108 8 octal uid Id of user owner

116 8 octal gid Id of group owner

124 12 octal size File size (in bytes)

136 12 octal mtime Date of last modification

148 8 octal checksum Header checksum

156 1 character kind File type

157 100 octal link Link

257 8 string magic Signature ("ustar\032\032\0")

265 32 string user Name of user owner

297 32 string group Name of group owner

329 8 octal major Peripheral major number

337 8 octal minor Peripheral minor number

345 167 Padding

Note. Field lengths are in number of bytes. All fields are encoded with character
strings terminated with the null character '\000'; except the fields kind and size in
which '\000' optional.

Table 3 — Header structure

The value of the kind field is naturally represented by a variant type and the
header by a record:

type kind =

| REG | LNK of string | LINK of string | CHR of int * int

| BLK of int * int | DIR | FIFO | CONT

type header =

{ name : string; perm : int; uid : int; gid : int; size : int;

mtime : int; kind : kind; user : string; group : string }

Reading a header Reading a header is not very interesting, but it cannot be
ignored.

exception Error of string * string

let error err mes = raise (Error (err, mes));;

let handle_error f s =

try f s with

| Error (err, mes) ->

35

Files

Printf.eprintf "Error: %s: %s" err mes;

exit 2

let substring s offset len =

let max_length = min (offset + len + 1) (String.length s) in

let rec real_length j =

if j < max_length && s.[j] <> '\000' then real_length (succ j)

else j - offset in

String.sub s offset (real_length offset);;

let integer_of_octal nbytes s offset =

let i = int_of_string ("0o" ^ substring s offset nbytes) in

if i < 0 then error "Corrupted archive" "integer too large" else i;;

let kind s i = match s.[i] with

| '\000' | '0' -> REG

| '1' -> LINK (substring s (succ i) 99)

| '2' -> LNK (substring s (succ i) 99)

| '3' -> CHR (integer_of_octal 8 s 329, integer_of_octal 8 s 329)

| '4' -> BLK (integer_of_octal 8 s 329, integer_of_octal 8 s 337)

| '5' -> DIR | '6' -> FIFO | '7' -> CONT

| _ -> error "Corrupted archive" "kind"

let header_of_string s =

{ name = substring s 0 99;

perm = integer_of_octal 8 s 100;

uid = integer_of_octal 8 s 108;

gid = integer_of_octal 8 s 116;

size = integer_of_octal 12 s 124;

mtime = integer_of_octal 12 s 136;

kind = kind s 156;

user = substring s 265 32;

group = substring s 297 32; }

let block_size = 512;;

let total_size size =

block_size + ((block_size -1 + size) / block_size) * block_size;;

An archive ends either at the end of file where a new record would start or on a
complete, but empty, block. To read a header we thus try to read a block which
must be either empty or complete. For that we reuse the really_read function
defined earlier. The end of file should not be reached when we try to read a
block.

let buffer_size = block_size;;

let buffer = String.create buffer_size;;

let end_of_file_error () =

error "Corrupted archive" "unexpected end of file"

let without_end_of_file f x =

36

Complete example: Tape ARchive

try f x with End_of_file -> end_of_file_error ()

let read_header fd =

let len = read fd buffer 0 buffer_size in

if len = 0 || buffer.[0] = '\000' then None

else begin

if len < buffer_size then

without_end_of_file (really_read fd buffer len) (buffer_size - len);

Some (header_of_string buffer)

end;;

Reading an archive To perform an operation in an archive, we need to read
the records sequentially until we find the target of the operation. Usually we
just need to read the header of each record without its contents but sometimes
we also need to get back to a previous one to read its contents. As such we keep,
for each record, its header and its location in the archive:

type record = { header : header; offset : int; descr : file_descr };;

We define a general iterator that reads and accumulates the records of an archive
(without their contents). To remain general, the accumulating function f is
abstracted. This allows to use the same iterator function to display records,
destroy them, etc.

let fold f initial fd =

let rec fold_aux offset accu =

ignore (without_end_of_file (lseek fd offset) SEEK_SET);

match without_end_of_file read_header fd with

Some h ->

let r =

{ header = h; offset = offset + block_size; descr = fd } in

fold_aux (offset + total_size h.size) (f r accu)

| None -> accu in

fold_aux 0 initial;;

The function fold_aux starts from a position offset with a partial result accu.
It moves to offset where a record should start, reads a header, constructs the
record r and starts again at the end of the record with the new (less partial)
result f r accu. It stops when there’s no header: the end of the archive was
reached.

Display the record names We just display the name of records without
keeping them:

let list tarfile =

let fd = openfile tarfile [O_RDONLY] 0o0 in

let add r () = print_string r.header.name; print_newline () in

fold add () fd;

close fd

37

Files

Display the contents of a record The command readtar a f must look for
the file f in the archive and, if it is a regular file, display its contents. If f is a
hard link on g in the archive, we follow the link and display g since even though
f and g are represented differently in the archive they represent the same file.
The fact that g or f is a link on the other or vice versa depends only on the order
in which the files were traversed when the archive was created. For now we do
not follow symbol links.

Hard link resolution is done by the following mutually recursive functions:

let rec find_regular r list = match r.header.kind with

| REG | CONT -> r

| LINK name -> find_file name list

| _ -> error r.header.name "Not a regular file"

and find_file name list = match list with

| r :: rest ->

if r.header.name = name then find_regular r rest

else find_file name rest

| [] -> error name "Link not found (corrupted archive)";;

The function find_regular finds the regular file corresponding to the record r.
If r is a regular file itself, r is returned. If r is a hard link the function looks for
the regular file in the archive’s previous records stored in list with the function
find_file. In all other cases, the function aborts.

Once the record is found we just need to display its contents. After posi-
tioning the descriptor at the start of the record’s contents this operation is very
similar to the file_copy example.

let copy_file file output =

ignore (lseek file.descr file.offset SEEK_SET);

let rec copy_loop len =

if len > 0 then

match read file.descr buffer 0 (min buffer_size len) with

| 0 -> end_of_file_error ()

| r -> ignore (write output buffer 0 r); copy_loop (len-r) in

copy_loop file.header.size

We now just need to combine these functions correctly.

exception Done

let find_and_copy tarfile filename =

let fd = openfile tarfile [O_RDONLY] 0o0 in

let found_or_collect r accu =

if r.header.name = filename then begin

copy_file (find_regular r accu) stdout;

raise Done

end else r :: accu in

try

ignore (fold found_or_collect [] fd);

error "File not found" filename

with

| Done -> close fd

38

Complete example: Tape ARchive

We read the records in the archive (but not their contents) until we find the
record with the target name. We then call the function find_regular to find
the record that actually contains the file. This second, backward, search must
succeed if the archive is well-formed. The first search may however fail if the
target name is not in the archive. In case of failure, the program takes care to
distinguish between these two cases.

Here is the main function which implements the command readtar:

let readtar () =

let nargs = Array.length Sys.argv in

if nargs = 2 then list Sys.argv.(1)

else if nargs = 3 then find_and_copy Sys.argv.(1) Sys.argv.(2)

else

prerr_endline ("Usage: " ^Sys.argv.(0)^ " <tarfile> [<source>]");;

handle_unix_error (handle_error readtar) ();;

Exercise 7 Extend the command readtar so that it follows symbolic links in
the sense that if the link points to a file of the archive that file’s contents should
be extracted. Answer page 123.

* * *

Exercise 8 Write a command untar such that untar a extracts and creates all
the files in the archive a (except special files) restoring if possible the information
about the files (owners, permissions) as found in the archive.

The file hierarchy should be reconstructed in the current working directory
of the untar command. If the archive tries to create files outside a sub-directory
of the current working directory this should be detected and prohibited. Nonex-
istent directories not explicitly mentioned in the archive should be created with
the user’s default permissions. Answer page 125.

* * *

Exercise 9 Write a program tar such that tar -xvf a f1 f2 ... constructs
the archive a containing the list of files f1, f2, etc. and their sub-directories.
Answer page 127.

* * *

39

3 Processes

A process is a program executing on the operating system. It consists of a pro-
gram (machine code) and a state of the program (current control point, variable
values, call stack, open file descriptors, etc.).

This section presents the Unix system calls to create new processes and make
them run other programs.

3.1 Creation of processes

The system call fork creates a process.

val fork : unit -> int

The new child process is a nearly perfect clone of the parent process which called
fork. Both processes execute the same code, are initially at the same control
point (the return from fork), attribute the same values to all variables, have
identical call stacks, and hold open the same file descriptors to the same files.
The only thing which distinguishes the two processes is the return value from
fork: zero in the child process, and a non-zero integer in the parent. By checking
the return value from fork, a program can thus determine if it is in the parent
process or the child and behave accordingly:

match fork () with

| 0 -> (* code run only in the child *)

| pid -> (* code run only in the parent *)

The non-zero integer returned by fork in the parent process is the process id of
the child. The process id is used by the kernel to uniquely identify each process.
A process can obtain its process id by calling getpid.

The child process is initially in the same state as the parent process (same
variable values, same open file descriptors). This state is not shared between
the parent and the child, but merely duplicated at the moment of the fork. For
example, if one variable is bound to a reference before the fork, a copy of that
reference and its current contents is made at the moment of the fork; after the
fork, each process independently modifies its “own” reference without affecting
the other process.

Similarly, the open file descriptors are copied at the moment of the fork: one
may be closed and the other kept open. On the other hand, the two descriptors
designate the same entry in the file table (residing in system memory) and share
their current position: if one reads and then the other, each will read a different
part of the file; likewise, changes in the read/write position by one process with
lseek are immediately visible to the other.

3.2 Complete Example: the command leave

The command leave hhmm exits immediately, but forks a background process
which, at the time hhmm, reports that it is time to leave.

41

http://www.opengroup.org/onlinepubs/009696799/functions/fork.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALfork
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALgetpid

Processes

1 open Sys;;

2 open Unix;;

3

4 let leave () =

5 let hh = int_of_string (String.sub Sys.argv.(1) 0 2)

6 and mm = int_of_string (String.sub Sys.argv.(1) 2 2) in

7 let now = localtime(time ()) in

8 let delay = (hh - now.tm_hour) * 3600 + (mm - now.tm_min) * 60 in

9

10 if delay <= 0 then begin

11 print_endline "Hey! That time has already passed!";

12 exit 0

13 end;

14 if fork () <> 0 then exit 0;

15 sleep delay;

16 print_endline "\007\007\007Time to leave!";

17 exit 0;;

18

19 handle_unix_error leave ();;

The program begins with a rudimentary parsing of the command line, in order
to extract the time provided. It then calculates the delay in seconds (line 9).
The time call returns the current date, in seconds from the epoch (January 1st
1970, midnight). The function localtime splits this duration into years, months,
days, hours, minutes and seconds. It then creates a new process using fork. The
parent process (whose return value from fork is a non-zero integer) terminates
immediately. The shell which launched leave thereby returns control to the user.
The child process (whose return value from fork is zero) continues executing. It
does nothing during the indicated time (the call to sleep), then displays its
message and terminates.

3.3 Awaiting the termination of a process

The system call wait waits for one of the child processes created by fork to
terminate and returns information about how it did. It provides a parent-child
synchronization mechanism and a very rudimentary form of communication from
the child to the parent.

val wait : unit -> int * process_status

val waitpid : wait_flag list -> int -> int * process_status

The primitive system call is waitpid and the function wait () is merely a shortcut
for the expression waitpid [] (-1). The behavior of waitpid [] p depends on
the value of p:

• If p > 0, it awaits the termination of the child with id equal to p.

• If p = 0, it awaits any child with the same group id as the calling process.

• If p = −1, it awaits any process.

• If p < −1, it awaits a child process with group id equal to -p.

42

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALtime
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALlocaltime
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALwait
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALwaitpid
http://www.opengroup.org/onlinepubs/009696799/functions/waitpid.html

Awaiting the termination of a process

The first component of the result is the process id of the child caught by wait.
The second component of the result is a value of type process_status:

WEXITED r The child process terminated normally via exit or by reaching
the end of the program; r is the return code (the argument passed
to exit).

WSIGNALED s The child process was killed by a signal (ctrl-C, kill, etc., see
chapter 4 for more information about signals); s identifies the
signal.

WSTOPPED s The child process was halted by the signal s; this occurs only in
very special cases where a process (typically a debugger) is cur-
rently monitoring the execution of another (by calling ptrace).

If one of the child processes has already terminated by the time the parent calls
wait, the call returns immediately. Otherwise, the parent process blocks until
some child process terminates (a behavior called “rendezvous”). To wait for n
child processes, one must call wait n times.

The command waitpid accepts two optional flags for its first argument: the
flag WNOHANG indicates not to wait if there is a child that responds to the request
but has not yet terminated. In that case, the first result is 0 and the second
undefined. The flag WUNTRACED returns the child processes that have been halted
by the signal sigstop. The command raises the exception ECHILD if no child
processes match p (in particular, if p is -1 and the current process has no more
children).

Example The function fork_search below performs a linear search in an array
with two processes. It relies on the function simple_search to perform the linear
search.

1 open Unix;;

2 exception Found;;

3

4 let simple_search cond v =

5 try

6 for i = 0 to Array.length v - 1 do

7 if cond v.(i) then raise Found

8 done;

9 false

10 with Found -> true;;

11

12 let fork_search cond v =

13 let n = Array.length v in

14 match fork () with

15 | 0 ->

16 let found = simple_search cond (Array.sub v (n/2) (n-n/2)) in

17 exit (if found then 0 else 1)

18 | _ ->

19 let found = simple_search cond (Array.sub v 0 (n/2)) in

20 match wait () with

43

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#TYPEprocess_status

Processes

21 | (pid, WEXITED retcode) -> found || (retcode = 0)

22 | (pid, _) -> failwith "fork_search";;

After the fork, the child process traverses the upper half of the table, and exits
with the return code 1 if it found an element satisfying the predicate cond, or 0
otherwise (lines 16 and 17). The parent process traverses the lower half of the
table, then calls wait to sync with the child process (lines 21 and 22). If the child
terminated normally, it combines its return code with the boolean result of the
search in the lower half of the table. Otherwise, something horrible happened,
and the function fork_search fails.

* * *

In addition to the synchronization between processes, the wait call also en-
sures recovery of all resources used by the child processes. When a process ter-
minates, it moves into a “zombie” state, where most, but not all, of its resources
(memory, etc.) have been freed. It continues to occupy a slot in the process table
to transmit its return value to the parent via the wait call. Once the parent calls
wait, the zombie process is removed from the process table. Since this table is
of fixed size, it is important to call wait on each forked process to avoid leaks.

If the parent process terminates before the child, the child is given the process
number 1 (usually init) as parent. This process contains an infinite loop of wait
calls, and will therefore make the child process disappear once it finishes. This
leads to the useful “double fork” technique if you cannot easily call wait on each
process you create (because you cannot afford to block on termination of the
child process, for example).

match fork () with

| 0 -> if fork () <> 0 then exit 0;

(* do whatever the child should do *)

| _ -> wait ();

(* do whatever the parent should do *)

The child terminates via exit just after the second fork. The grandson becomes
an orphan, and is adopted by init. In this way, it leaves no zombie processes.
The parent immediately calls wait to reap the child. This wait will not block for
long since the child terminates very quickly.

3.4 Launching a program

The system calls execve, execv, and execvp launch a program within the current
process. Except in case of error, these calls never return: they halt the progress
of the current program and switch to the new program.

val execve : string -> string array -> string array -> unit

val execv : string -> string array -> unit

val execvp : string -> string array -> unit

The first argument is the name of the file containing the program to execute. In
the case of execvp, this name is looked for in the directories of the search path
(specified in the environment variable PATH).

44

http://www.opengroup.org/onlinepubs/009696799/functions/execve.html
http://www.opengroup.org/onlinepubs/009696799/functions/execv.html
http://www.opengroup.org/onlinepubs/009696799/functions/execvp.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALexecve
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALexecv
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALexecvp

Launching a program

The second argument is the array of command line arguments with which
to execute the program; this array will be the Sys.argv array of the executed
program.

In the case of execve, the third argument is the environment given to the
executed program; execv and execvp give the current environment unchanged.

The calls execve, execv, and execvp never return a result: either everything
works without errors and the process starts the requested program or an error
occurs (file not found, etc.), and the call raises the exception Unix_error in the
calling program.

Example The following three forms are equivalent:

execve "/bin/ls" [|"ls"; "-l"; "/tmp"|] (environment ())

execv "/bin/ls" [|"ls"; "-l"; "/tmp"|]

execvp "ls" [|"ls"; "-l"; "/tmp"|]

* * *

Example Here is a “wrapper” around the command grep which adds the option
-i (to ignore case) to the list of arguments:

open Sys;;

open Unix;;

let grep () =

execvp "grep"

(Array.concat

[[|"grep"; "-i"|];

(Array.sub Sys.argv 1 (Array.length Sys.argv - 1))])

;;

handle_unix_error grep ();;

* * *

Example Here’s a “wrapper” around the command emacs which changes the
terminal type:

open Sys;;

open Unix;;

let emacs () =

execve "/usr/bin/emacs" Sys.argv

(Array.concat [[|"TERM=hacked-xterm"|]; (environment ())]);;

handle_unix_error emacs ();;

* * *

The process which calls exec is the same one that executes the new program.
As a result, the new program inherits some features of the execution environment
of the program which called exec:

• the same process id and parent process

• same standard input, standard output and standard error

• same ignored signals (see chapter 4)

45

Processes

3.5 Complete example: a mini-shell

The following program is a simplified command interpreter: it reads lines from
standard input, breaks them into words, launches the corresponding command,
and repeats until the end of file on the standard input. We begin with the
function which splits a string into a list of words. Please, no comments on this
horror.

open Unix;;

open Printf;;

let split_words s =

let rec skip_blanks i =

if i < String.length s & s.[i] = ' '

then skip_blanks (i+1)

else i in

let rec split start i =

if i >= String.length s then

[String.sub s start (i-start)]

else if s.[i] = ' ' then

let j = skip_blanks i in

String.sub s start (i-start) :: split j j

else

split start (i+1) in

Array.of_list (split 0 0);;

We now move on to the main loop of the interpreter.

let exec_command cmd =

try execvp cmd.(0) cmd

with Unix_error(err, _, _) ->

printf "Cannot execute %s : %s\n%!"

cmd.(0) (error_message err);

exit 255

let print_status program status =

match status with

| WEXITED 255 -> ()

| WEXITED status ->

printf "%s exited with code %d\n%!" program status;

| WSIGNALED signal ->

printf "%s killed by signal %d\n%!" program signal;

| WSTOPPED signal ->

printf "%s stopped (???)\n%!" program;;

The function exec_command executes a command and handles errors. The return
code 255 indicates that the command could not be executed. (This is not a stan-
dard convention; we just hope that few commands terminate with a return code
of 255.) The function print_status decodes and prints the status information
returned by a process, ignoring the return code of 255.

46

Complete example: a mini-shell

let minishell () =

try

while true do

let cmd = input_line Pervasives.stdin in

let words = split_words cmd in

match fork () with

| 0 -> exec_command words

| pid_son ->

let pid, status = wait () in

print_status "Program" status

done

with End_of_file -> ()

;;

handle_unix_error minishell ();;

Each time through the loop, we read a line from stdin with the function input_line.
This function raises the End_of_file exception when the end of file is reached,
causing the loop to exit. We split the line into words, and then call fork. The
child process uses exec_command to execute the command. The parent process
calls wait to wait for the command to finish and prints the status information
returned by wait.

Exercise 10 Add the ability to execute commands in the background if they
are followed by &. Answer page 131.

* * *

47

4 Signals

Signals, or software interrupts, are external, asynchronous events used to alter
the course of a program. These may occur at any time during the execution of a
program. Because of this, they differ from other methods of inter-process com-
munication, where two processes must be explicitly directed to wait for external
messages; for example, by calling read on a pipe (see chapter 5).

The amount of information transmitted via a signal is minimal, just the type
of signal, and although they were not originally intended for communication
between processes, they do make it possible to transmit atomic information about
the state of an external entity (e.g. the state of the system or another process).

4.1 Default behavior

When a process receives a signal, there are four possible outcomes:

• The signal terminates the process. Additionally, the system may write an image
of the process state in a core file (a core dump, which may be later examined
with a debugger).

• The signal suspends process execution, but retains it in memory. The parent
process (usually the shell) is not terminated, and so may choose to continue the
process or restart it in the background by sending the process additional signals.

• Nothing occurs: the signal is completely ignored.

• The signal triggers the execution of an associated function in the receiving pro-
cess. Normal execution of the process resumes after the function returns.

There are several types of signals, each associated with a particular event.
Table 4 lists some of them with their default behaviors.

The signals received by a process come from several possible sources:

• The user may send signals via the keyboard. By typing ctrl-C, the console
operator sends the sigint signal to the processes controlled by her terminal
(that were not already put in the background). In the same way, the sigquit

signal is sent by typing ctrl-\1. When the terminal is closed (either through
voluntary disconnection or owing to a disconnected network link), the sighup

signal is sent.

• The user may issue the shell command kill. This makes it possible to send
a specific signal to a specific process. For example, kill -KILL 194 sends the
sigkill signal to the process with id 194, which causes the process to be killed.

• Another program may invoke the system call kill (the preceding example being
a specific case).

• The system, for misbehaving processes. For example, a process attempting to
divide by zero will receive a sigfpe signal.

1These are the default keystrokes, but it is possible to change them by modifying the
properties of the terminal, see section 2.13.

49

Signals

Name Event Default Behavior

sighup Hang-up (end of connection) Termination

sigint Interruption (ctrl-C) Termination

sigquit Strong interruption (ctrl-\) Term. & core dump

sigfpe Arithmetic error (division by zero) Term. & core dump

sigkill Very strong interruption (cannot be ignored) Termination

sigsegv Memory protection violation Term. & core dump

sigpipe Writing to a pipe without readers Termination

sigalrm Timer interrupt Ignored

sigtstp Temporary halt (ctrl-Z) Suspension

sigcont Resuming a stopped process Ignored

sigchld A child process died or was stopped Ignored

Table 4 — Some signals and their default behaviors

• The system, to notify a process that its execution environment has been changed.
For example, when a child process terminates, its parent will receive a sigchld

signal.

4.2 Using signals

The system call kill makes it possible to send a signal to a process.

val kill : int -> int -> unit

The first parameter is the process id of the destination process and the second
the signal number to send. An error occurs if we attempt to send a signal to a
process not owned by the user. A process may send signals to itself. When the
kill system call returns, it is guaranteed that the signal was delivered to the
destination process. If a process receives the same signal in rapid succession it
will execute the code associated with the signal only once. Therefore a program
cannot count the number of times it receives a signal, rather only the number of
times it responds to it.

The system call alarm makes it possible to schedule interruptions based on
the system clock.

val alarm : int -> int

The call alarm s returns immediately but causes the sigalrm signal to be sent
to the calling process at least s seconds later (note that there is no guarantee on
the maximum wait time). The call returns the number of seconds remaining to
an alarm scheduled by a previous call. If s is 0, the effect is simply to cancel an
earlier alarm.

50

http://www.opengroup.org/onlinepubs/009696799/functions/kill.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALkill
http://www.opengroup.org/onlinepubs/009696799/functions/alarm.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALalarm

Changing the effect of a signal

4.3 Changing the effect of a signal

The system call signal makes it possible to modify the behavior of a process
when it receives a signal of a certain type.

val signal : int -> signal_behavior -> signal_behavior

The first argument is the signal number and the second argument, a value of
type signal_behavior, indicates the desired behavior for the signal. With:

Signal_ignore The signal is ignored.

Signal_default The default behavior occurs.

Signal_handle f The function f is invoked each time the signal is received.

Forking a process with the system call fork preserves signal behavior: the
initial definitions for the child are those of the parent at the time when fork

was executed. The execve system call sets all the behaviors to Signal_default

except that signals ignored before are still ignored afterward.

Example Occasionally we want to log-off or end a session while allowing back-
ground tasks (large calculations, “spyware” programs, etc.) to continue to run.
If this is desired, processes which normally exit on receiving sighup (sent at
the time the user disconnects) should be prevented from doing so. The Unix
command nohup does exactly this:

nohup cmd arg1 ... argn

executes the command cmd arg1 ... argn in a way unaffected by the signal
sighup (certain shells execute nohup automatically for all processes launched as
background tasks). Here’s how to implement this in three lines:

open Sys;;

signal sighup Signal_ignore;;

Unix.execvp argv.(1) (Array.sub argv 1 (Array.length argv - 1));;

The system call execvp preserves the fact that sighup is ignored.

* * *
Example Carefully exiting when a program is misbehaving. For example, a
program like tar can try to save important information in a file or destroy the
corrupted file before terminating. For this it is possible to include the following
lines at the beginning of the program:

signal sigquit (Signal_handle quit);

signal sigsegv (Signal_handle quit);

signal sigfpe (Signal_handle quit);

where the function quit is of the form:

let quit _ =

(* Try to save important information in a file *);

exit 100;;

51

http://www.opengroup.org/onlinepubs/009696799/functions/signal.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Sys.html#VALsignal
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Sys.html#TYPEsignal_behavior
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALfork
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALexecve
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALexecvp

Signals

* * *

Example Capturing user-initiated interruptions. Some interactive programs
need to return to a main control loop when a user presses ctrl-C. For this we
just need to raise an exception when the sigint signal is received.

exception Break;;

let break _ = raise Break;;

...

let main_loop () =

signal sigint (Signal_handle break);

while true do

try (* Read and evaluate user commands *)

with Break -> (* Display "stopped" *)

done;;

* * *

Example To carry out periodic tasks (animations, etc.) interleaved with the
execution of the main program. For example, here is how to create “beep” sounds
every 30 seconds, regardless of the activity of the main program (calculations or
input/output).

let beep _ =

output_char stdout '\007'; flush stdout;

ignore (alarm 30);;

...

signal sigalrm (Signal_handle beep); ignore (alarm 30);;

* * *

Checkpoints

Signals are useful for asynchronous communication — indeed, it is their raison
d’être — but this asynchronous nature also makes them one of the major diffi-
culties of system programming.

The signal handling function is executed asynchronously and thus pseudo-
concurrently with the main program of the process. As signal handling functions
cannot return a value, they usually modify global variables. This can result in
race conditions between the signal handler and the main program if they try to
modify the same variable. As explained in the next section one solution is to
temporarily block signals when this variable is accessed by the main program.

In fact, OCaml does not treat signals in a strictly asynchronous fashion. On
receiving a signal, OCaml records the receipt of the signal but the signal handling
function will only be executed at certain checkpoints. These are frequent enough
to provide the illusion of asynchronous execution. The checkpoints typically
occur during allocations, loop controls, or interactions with the system (particu-
larly system calls). OCaml guarantees that a program that does not loop, does
not allocate, and does not interact with the system will not have its execution
interleaved with that of a signal handler. In particular, storing an unallocated
value (integer, boolean, etc. — but not a float!) in a reference cell cannot result
in the race condition described above.

52

How to mask signals

4.4 How to mask signals

Signals may be blocked. Blocked signals are not ignored, but put on standby,
generally to be delivered later. The sigprocmask system call makes it possible to
change the mask for incoming signals:

val sigprocmask : sigprocmask_command -> int list -> int list

sigprocmask cmd sigs changes the list of blocked signals and returns the list of
signals that were blocked before the execution of the function. This makes it
possible to later reset the mask to its previous state. The argument sigs is a
list of signals and cmd a value of type sigprocmask_command which determines the
effect of the call:

SIG_BLOCK The signals sigs are added to the list of blocked signals.

SIG_UNBLOCK The signals sigs are removed from the set of blocked signals.

SIG_SETMASK The signals sigs are exactly the signals to be blocked.

A typical usage of sigprocmask is to mask certain signals temporarily.

let old_mask = sigprocmask cmd sigs in

(* do something *)

let _ = sigprocmask SIG_SETMASK old_mark

Often, one has to guard against possible errors by using the following pattern:

let old_mask = sigprocmask cmd sigs in

let treat () = ((* do something *)) in

let reset () = ignore (sigprocmask SIG_SETMASK old_mask) in

Misc.try_finalize treat () reset ()

4.5 Signals and system calls

Certain system calls can be interrupted by unignored signals. These system
calls are known as slow calls, which can take an arbitrary amount of time (for
example terminal i/o, select, system, etc.). If an interruption occurs, the system
call is not completed and raises the exception EINTR. However file i/o is not
interruptible: although these operations can suspend the running process to
execute another process for disk i/o, when this occurs the interruption will always
be brief if the disk functions correctly. In particular, the throughput of data
depends only on the system, and not another user’s process.

Ignored signals are never delivered and a masked signal is not delivered until
unmasked. But in all other cases we must protect our system calls against un-
wanted interruptions. A typical example is a parent waiting for the termination
of a child. In this case, the parent executes waitpid [] pid where pid is the
process id of the child. This is a blocking system call, it is thus slow and could
be interrupted by the arrival of a signal, especially since the sigchld signal is
sent to the parent when a child process dies.

The module Misc define the function restart_on_EINTR which makes it pos-
sible to repeat a system call when it is interrupted by a signal, i.e. when the
EINTR exception is raised.

53

http://www.opengroup.org/onlinepubs/009696799/functions/sigprocmask.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALsigprocmask
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#TYPEsigprocmask_command
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALselect
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALsystem

Signals

let rec restart_on_EINTR f x =

try f x with Unix_error (EINTR, _, _) -> restart_on_EINTR f x

To wait on a child correctly, call restart_on_EINTR (waitpid flags) pid.

Example Children can also be recovered asynchronously in the signal handler
of sigchld, especially when their return value does not matter to the parent.
But when the process receives the sigchld signal, it is not possible to know the
exact number of terminated processes, since if the signal is received several times
within a short period of time the handler is invoked only once. This leads to the
library function Misc.free_children function to handle the sigchld signal.

let free_children _ =

try while fst (waitpid [WNOHANG] (-1)) > 0 do () done

with Unix_error (ECHILD, _, _) -> ()

free_children executes waitpid in non-blocking mode (option WNOHANG) to re-
cover any dead children and repeats until either there are only live children (zero
is returned instead of a child id) or there are no children (ECHILD exception).

Note that it is not important to guard against the EINTR exception because
waitpid is non-blocking when called with the WNOHANG option.

* * *
Example The function system in the Unix module is simply defined as:

let system cmd = match fork () with

| 0 -> begin try

execv "/bin/sh" [| "/bin/sh"; "-c"; cmd |]

with _ -> exit 127

end

| id -> snd (waitpid [] id);;

The specification of the system function in the C standard library states that the
parent ignores sigint and sigquit signals and masks the sigchld signal during
the command’s execution. This makes it possible to stop or kill the child process
without affecting the main program’s execution.

We prefer to define the function system as a specialization of the more general
function exec_as_system which does not necessarily go through the shell.

1 let exec_as_system exec args =

2 let old_mask = sigprocmask SIG_BLOCK [sigchld] in

3 let old_int = signal sigint Signal_ignore in

4 let old_quit = signal sigquit Signal_ignore in

5 let reset () =

6 ignore (signal sigint old_int);

7 ignore (signal sigquit old_quit);

8 ignore (sigprocmask SIG_SETMASK old_mask) in

9 let system_call () = match fork () with

10 | 0 ->

11 reset ();

12 (try exec args with _ -> exit 127)

13 | k ->

54

The passage of time

14 snd (restart_on_EINTR (waitpid []) k) in

15 try_finalize system_call () reset ();;

16

17 let system cmd =

18 exec_as_system (execv "/bin/sh") [| "/bin/sh"; "-c"; cmd |];;

Note that the signal changes must be made before the call to fork is executed
because the parent could receive signals (e.g. sigchld if the child were to finish
immediately) before it proceeds. These changes are reset for the child on line 11
before executing the command. Indeed, all ignored signals are preserved by fork

and exec and their behavior is preserved by fork. The exec system call uses the
default behavior of signals except if the calling process ignores a signal in which
case it also does.

Finally, the parent must also reset the changes immediately after the call,
even if an error occurs. This is why try_finalize is used on line 15.

* * *

4.6 The passage of time

Legacy approach to time

Since the earliest versions of Unix, time has been counted in seconds. For compat-
ibility reasons, therefore, one can always measure time in seconds. The current
time is defined as the number of seconds since January 1st, 1970 at 00:00:00

gmt. It is returned by the function:

val time : unit -> float

The sleep system call can pause the execution of a program for the number
of seconds specified in its argument:

val sleep : int -> unit

However, this function is not primitive. It is programmable with more ele-
mentary system calls using the function alarm (see above) and sigsuspend:

val sigsuspend : int list -> unit

The sigsuspend l system call temporarily suspends the signals in the list l

and then halts the execution of the program until the reception of a signal which
is not ignored or suspended (on return, the signal mask is reset to its old value).

Example Now we may program the sleep function:

1 let sleep s =

2 let old_alarm = signal sigalrm (Signal_handle (fun s -> ())) in

3 let old_mask = sigprocmask SIG_UNBLOCK [sigalrm] in

4 let _ = alarm s in

5 let new_mask = List.filter (fun x -> x <> sigalrm) old_mask in

6 sigsuspend new_mask;

7 let _ = alarm 0 in

8 ignore (signal sigalrm old_alarm);

9 ignore (sigprocmask SIG_SETMASK old_mask);;

55

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALtime
http://www.opengroup.org/onlinepubs/009696799/functions/sleep.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALsleep
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALsigsuspend

Signals

Initially, the behavior of the sigalrm signal does nothing. Note that “doing
nothing” is the same as ignoring the signal. To ensure that the process will be
awakened by the reception of the signal, the sigalrm signal is put in an unblocked
state. Then the process is put on standby by suspending all other signals which
were not already suspended (old_mask). After the alarm is signaled, the preceding
modifications are erased. (Note that line 9 could be placed immediately after
line 2 because the call to sigsuspend preserves the signal mask.)

* * *
Modern times

In more modern versions of Unix, time can also be measured in microseconds. In
OCaml, time measured in microseconds is represented by a float. The gettimeofday
function is the equivalent of the time function for modern systems.

val gettimeofday : unit -> float

Timers

In present-day Unix each process is equipped with three timers, each measuring
time from a different perspective. The timers are identified by a value of type
interval_timer :

ITIMER_REAL Real time (sigalrm).

ITIMER_VIRTUAL User time (sigvtalrm).

ITIMER_PROF User time and system time (sigprof).

The state of a timer is described by the interval_timer_status type which is a
record with two fields (each a float) representing time:

• The field it_interval is the period of the timer.

• The field it_value is the current value of the timer; when it turns 0 the signal
sigvtalrm is sent and the timer is reset to the value in it_interval.

A timer is therefore inactive when its two fields are 0. The timers can be queried
or modified with the following functions:

val getitimer : interval_timer -> interval_timer_status

val setitimer :

interval_timer -> interval_timer_status -> interval_timer_status

The value returned by setitimer is the old value of the timer at the time of the
modification.

Exercise 11 To manage several timers, write a module with the following
interface:

module type Timer = sig

open Unix

type t

val new_timer : interval_timer -> (unit -> unit) -> t

val get_timer : t -> interval_timer_status

56

http://www.opengroup.org/onlinepubs/009696799/functions/gettimeofday.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALgettimeofday
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#TYPEinterval_timer
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#TYPEinterval_timer_status
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALgetitimer
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALsetitimer

Problems with signals

val set_timer : t -> interval_timer_status -> interval_timer_status

end

The function new_timer k f should create a new timer of the timer-type k start-
ing the action f, and inactive on creation; the function set_timer t should set
the value of the timer t (and return the old value).

* * *
Date calculations

Modern versions of Unix also provide functions to handle dates, see the structure
tm which allows dates and times to be expressed according to a calendar (year,
month, etc.) and the conversion functions: gmtime, localtime, mktime, etc.

4.7 Problems with signals

Owing to their asynchronous nature, the use of signals for inter-process commu-
nication presents some limitations and difficulties:

• Very little information is transmitted — the signal’s type and nothing else.
• A signal may occur at any point during the execution of the program. Therefore,

a signal handling function that accesses global variables must cooperate with the
main program to avoid race conditions.

• The use of signals by the main program entails that long system calls made by
the program may be interrupted, even if the signals keep their default behavior.

• Library functions must always consider the possibility of signal use and guard
against system call interruption.

Signals offer only a limited form of asynchronous communication but carry
all the difficulties and problems associated with it. If possible, it is therefore
better not to use them. For example, to wait for a small amount of time, select
can be used instead of alarms. But in certain situations signals must be taken
into account (for example in command line interpreters).

Signals are possibly the least useful concept in the Unix system. On cer-
tain older versions of Unix (System V, in particular) the behavior of a signal is
automatically reset to Signal_default when it is received. The signal handling
function can of course register itself again. For example in the “beep” example
on page 52, it would be necessary to write:
let rec beep _ =

set_signal sigalrm (Signal_handle beep);

output_char stdout '\007'; flush stdout;

ignore (alarm 30);;

However the problem is that the signals that are received between the instant
were the behavior is automatically reset to Signal_default and the moment were
set_signal is invoked are not treated correctly and depending on the type of the
signal they may be ignored or cause the process to die instead of invoking the
signal handling function.

Other flavors of Unix (bsd or Linux) provide better support: the behavior
associated with a signal is not altered when it is received, and during the handling
of a signal other signals of the same type are put on hold.

57

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#TYPEtm
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALgmtime
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALlocaltime
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALmktime

5 Classical inter-process
communication: pipes

So far, we have learned how to manage processes and how they can communicate
with the environment by using files. In the remainder of the course we see how
processes running in parallel can cooperate by communicating among themselves.

5.1 Pipes

Regular files are not a satisfactory communication medium for processes running
in parallel. Take for example a reader/writer situation in which one process writes
data and the other reads them. If a file is used as the communication medium,
the reader can detect that the file does not grow any more (read returns zero),
but it does not know whether the writer is finished or simply busy computing
more data. Moreover, the file keeps track of all the data transmitted, requiring
needless disk space.

Pipes provide a mechanism suitable for this kind of communication. A pipe
is made of two file descriptors. The first one represents the pipe’s output. The
second one represents the pipe’s input. Pipes are created by the system call pipe:
val pipe : unit -> file_descr * file_descr

The call returns a pair (fd_in, fd_out) where fd_in is a file descriptor open in
read mode on the pipe’s output and fd_out is file descriptor open in write mode
on the pipe’s input. The pipe itself is an internal object of the kernel that can
only be accessed via these two descriptors. In particular, it has no name in the
file system.

fd_out fd_in

A pipe behaves like a queue (first-in, first-out). The first thing written to
the pipe is the first thing read from the pipe. Writes (calls to write on the
pipe’s input descriptor) fill the pipe and block when the pipe is full. They block
until another process reads enough data at the other end of the pipe and return
when all the data given to write have been transmitted. Reads (calls to read

on the pipe’s output descriptor) drain the pipe. If the pipe is empty, a call to
read blocks until at least a byte is written at the other end. It then returns
immediately without waiting for the number of bytes requested by read to be
available.

Pipes are useless if they are written and read by the same process (such a
process will likely block forever on a substantial write or on a read on the empty
pipe). Hence they are usually read and written by different processes. Since a
pipe has no name, one of these processes must be created by forking the process
that created the pipe. Indeed, the two file descriptors of the pipe, like any other
file descriptors, are duplicated by the call to fork and thus refer to the same pipe
in the parent and the child process.

59

http://www.opengroup.org/onlinepubs/009696799/functions/pipe.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALpipe

Classical inter-process communication: pipes

Example The following snippet of code is typical.

let (fd_in, fd_out) = pipe () in

match fork () with

| 0 -> close fd_in; ... write fd_out buffer1 offset1 count1 ...

| pid -> close fd_out; ... read fd_in buffer2 offset2 count2 ...

After the fork there are two descriptors open on the pipe’s input, one in the
parent and the other in the child. The same holds for the pipe’s output.

fd_out

parent

fd_out

child

fd_in

parent

fd_in

child

In this example the child becomes the writer and the parent the reader. Conse-
quently the child closes its descriptor fd_in on the pipe’s output (to save descrip-
tors and to avoid programming errors). This leaves the descriptor fd_in of the
parent unchanged as descriptors are allocated in process memory and after the
fork the parent’s and child’s memory are disjoint. The pipe, allocated in system
memory, still lives as there’s still the descriptor fd_in of the parent open in read
mode on the pipe’s output. Following the same reasoning the parent closes its
descriptor on the pipe’s input. The result is as follows:

fd_out

child

fd_in

parent

Data written by the child on fd_out is transmitted to fd_in in the parent.

* * *
When all the descriptors on a pipe’s input are closed and the pipe is empty, a

call to read on its output returns zero: end of file. And when all the descriptors
on a pipe’s output are closed, a call to write on its input kills the writing process.
More precisely the kernel sends the signal sigpipe to the process calling write

and the default handler of this signal terminates the process. If the signal handler
of sigpipe is changed, the call to write fails with an EPIPE error.

60

Complete example: parallel sieve of Eratosthenes

5.2 Complete example: parallel sieve of
Eratosthenes

This is a classic example of parallel programming. The task of the program is to
enumerate the prime numbers and display them interactively as they are found.
The idea of the algorithm is as follows. A process enumerates on its output the
integers from 2 onwards. We connect this process to a “filter” process that reads
an integer p on its input and displays it.

ints read p
2, 3, 4, . . .

Therefore, the first filter process reads p = 2. Then it creates a new filter process
connected to its output and filters out the multiples of p it gets on its input; all
numbers it reads that are not a multiple of p are rewritten on its output.

ints filter
2n

read p
2, 3, 4, . . . 3, 5, 7, . . .

Hence the next process reads p = 3, which it displays and then starts to filter
multiples of 3, and so on.

ints filter
2n

filter
3n

. . . read p
2, 3, 4, . . . 3, 5, 7, . . . 5, 7, 11, . . .

This algorithm cannot be directly implemented in Unix because it creates too
many processes (the number of primes already found plus one). Most Unix
systems limit the number of process to a few dozens. Moreover, on a uniprocessor
machine, too many processes active simultaneously can bring the system to its
knees because of the high costs incurred by switching process contexts. In the
following implementation each process first reads n primes p1, . . . , pn on its input
before transforming itself in a filter that eliminate the multiples of p1, . . . , pn. In
practice n = 1000 gives a reasonable slowdown on process creation.

We start with the process that enumerates integers from 2 to k.

open Unix;;

let input_int = input_binary_int

let output_int = output_binary_int

let generate k output =

let rec gen m =

output_int output m;

if m < k then gen (m+1)

in

gen 2;;

To output and input the integers, the following functions are used:

61

Classical inter-process communication: pipes

val output_binary_int : out_channel -> int -> unit

val input_binary_int : in_channel -> int

The function output_binary_int from the standard library writes a four-byte
binary representation of an integer on an out_channel. The integer can be read
back by the function input_binary_int on an in_channel. Using these functions
from the standard library has two advantages: first, there is no need to code the
function converting integers to a bytewise representation1; second, since these
functions use buffered i/o, fewer system calls are performed, which results in
better performance. The following functions create an in_channel or out_channel
to buffer the i/o on the given descriptor:

val in_channel_of_descr : file_descr -> in_channel

val out_channel_of_descr : file_descr -> out_channel

They allow a program to perform buffered i/o on descriptors acquired indirectly
or that are not the result of opening a file. These functions are not here to mix
buffered i/o with non-buffered i/o; this is possible but very brittle and highly
discouraged — particularly for input. Note also that it is possible but very risky
to create more than one in_channel (for example) on the same descriptor.

We now continue with the filter process. It uses the auxiliary function
read_first_primes. A call to read_first_primes input count reads count prime
numbers on input (an in_channel) and eliminates multiples of the primes already
read. These count primes are displayed as soon as they are read and we return
them in a list.

1 let print_prime n = print_int n; print_newline ()

2

3 let read_first_primes input count =

4 let rec read_primes first_primes count =

5 if count <= 0 then first_primes else

6 let n = input_int input in

7 if List.exists (fun m -> n mod m = 0) first_primes then

8 read_primes first_primes count

9 else begin

10 print_prime n;

11 read_primes (n :: first_primes) (count - 1)

12 end

13 in

14 read_primes [] count;;

And here is the concrete filter function:

1 let rec filter input =

2 try

3 let first_primes = read_first_primes input 1000 in

4 let (fd_in, fd_out) = pipe () in

5 match fork () with

6 | 0 ->

7 close fd_out;

1The representation used by these functions is unspecified but it is guaranteed to be
platform-independent for a particular version of the language.

62

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Pervasives.html#VALoutput_binary_int
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Pervasives.html#VALinput_binary_int
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALin_channel_of_descr
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALout_channel_of_descr

Complete example: parallel sieve of Eratosthenes

8 filter (in_channel_of_descr fd_in)

9 | p ->

10 close fd_in;

11 let output = out_channel_of_descr fd_out in

12 while true do

13 let n = input_int input in

14 if List.exists (fun m -> n mod m = 0) first_primes then ()

15 else output_int output n

16 done

17 with End_of_file -> ();;

The filter starts by calling read_first_primes to read the first 1000 prime num-
bers on its input (the input argument of type in_channel). Then we create a
pipe and clone the process with fork. The child starts to filter the output of this
pipe. The parent reads numbers on its input and writes each one to the pipe if
it is not a multiple of one of the 1000 primes it initially read.

Finally, the main program just connects the integer generator to the first
filter process with a pipe. Invoking the program sieve k enumerates the primes
smaller than k. If k is omitted (or not an integer), it defaults to max_int.

1 let sieve () =

2 let len = try int_of_string Sys.argv.(1) with _ -> max_int in

3 let (fd_in, fd_out) = pipe () in

4 match fork () with

5 | 0 ->

6 close fd_out;

7 filter (in_channel_of_descr fd_in)

8 | p ->

9 close fd_in;

10 generate len (out_channel_of_descr fd_out);;

11

12 handle_unix_error sieve ();;

In this example we do not wait for the child before stopping the parent. The
reason is that parent processes are generators for their children.

When k is given, the parent will terminate first and close the descriptor on
the input of the pipe connected to its child. Since OCaml empties the buffers
of descriptors open in write mode when a process stops, the child process will
read the last integer provided by the parent. After that the child also stops etc.
Thus, in this program children become orphaned and are temporarily attached
to the process init before they die in turn.

If k is not given, all processes continue indefinitely until one or more are
killed. The death of a process results in the death of its child as described above.
It also closes the output of the pipe connected to its parent. This will in turn
kill the parent at the next write on the pipe (the parent will receive a sigpipe

signal whose default handler terminates the process).

Exercise 12 What needs to be changed so that the parent waits on the termi-
nation of its children? Answer page 131.

* * *

63

Classical inter-process communication: pipes

Exercise 13 Whenever a prime is found, the function print_prime evaluates
print_newline (). This performs a system call to empty the standard out-
put buffer and artificially limits the execution speed of the program. In fact
print_newline () executes print_char '\n' followed by flush Pervasives.stdout.
What can happen if print_newline () is replaced by print_char '\n'? What
needs to be added to solve the problem? Answer page 132.

* * *

5.3 Named pipes

On some Unix systems (System V, SunOS, Ultrix, Linux, bsd) pipes with a name
in the file system can be created. These named pipes (also known as fifo) allow
processes to communicate even if they are not in a parent/child relationship.
This contrasts with regular pipes that limit communication between the pipe
creator and its descendants.

The system call mkfifo creates a named pipe:

val mkfifo : string -> file_perm -> unit

The first argument is the name of the pipe, and the second one represents the
requested access permissions.

Named pipes are opened with a call to openfile like any regular file. Reads
and writes on a named pipe have the same semantics as those on regular ones.
Opening a named pipe in read-only mode (resp. write-only mode) blocks until the
pipe is opened by another process for writing (resp. reading); if this has already
happened, there’s no blocking. Blocking can be avoided altogether by opening the
pipe with the flag O_NONBLOCK, but in this case reads and writes on the pipe won’t
block either. After the pipe is opened, the function clear_nonblock will change
this flag to make further reads or writes on the pipe blocking. Alternatively,
set_nonblock will make reads and writes non-blocking.

val clear_nonblock : file_descr -> unit

val set_nonblock : file_descr -> unit

5.4 Descriptor redirections

So far, we still do not know how to connect the standard input and output of
processes with a pipe as the shell does to execute commands like cmd1 | cmd2.
Indeed, the descriptors we get on the ends of a pipe with a call to pipe (or to
openfile on a named pipe) are new descriptors, distinct from stdin, stdout or
stderr.

To address this problem, Unix provides the system call dup2 (read: “duplicate
a descriptor to another descriptor”) that gives one file descriptor another one’s
meaning. This can be done because there is a level of indirection between a file
descriptor (an object of type file_descr) and the object in the kernel called a

64

http://www.opengroup.org/onlinepubs/009696799/functions/mkfifo.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALmkfifo
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALopenfile
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALclear_nonblock
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALset_nonblock
http://www.opengroup.org/onlinepubs/009696799/functions/dup2.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#TYPEfile_descr

Descriptor redirections

file table entry that points to the actual file or pipe and maintains its current
read/write position.

val dup2 : file_descr -> file_descr -> unit

The effect of dup2 fd1 fd2 is to update the descriptor fd2 to refer to the file
table entry pointed to by fd1. After the call, these two descriptors refer to same
file or pipe, at the same read/write position.

Before dup2 fd1 fd2

fd1

fd2

file table
entry 1

file table
entry 2

After dup2 fd1 fd2

fd1

fd2

file table
entry 1

file table
entry 2

Example Standard input redirection.

let fd = openfile "foo" [O_RDONLY] 0 in

dup2 fd stdin;

close fd;

execvp "bar" [|"bar"|]

After the call to dup2, the descriptor stdin points to the file foo. Any read on
stdin will read from the file foo (so does any read on fd; but since we won’t use
it, we close it immediately). This setting on stdin is preserved by execvp and
the program bar will execute with its standard input connected to the file foo.
This is the way the shell executes commands like bar < foo.

* * *
Example Standard output redirection.

let fd = openfile "foo" [O_WRONLY; O_TRUNC; O_CREAT] 0o666 in

dup2 fd stdout;

close fd;

execvp "bar" [|"bar"|]

After the call to dup2, the descriptor stdout points to the file foo. Any write on
stdout will write to the file foo (so does any write on fd; but since we won’t use
it we close it immediately). This setting on stdout is preserved by execvp and
the program bar will execute with its standard output connected to the file foo.
This is the way the shell executes commands like bar > foo.

* * *
Example Connecting the output of a program to the input of another.

let (fd_in, fd_out) = pipe () in

match fork () with

| 0 ->

65

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALdup2

Classical inter-process communication: pipes

dup2 fd_in stdin;

close fd_out;

close fd_in;

execvp "cmd2" [|"cmd2"|]

| _ ->

dup2 fd_out stdout;

close fd_out;

close fd_in;

execvp "cmd1" [|"cmd1"|]

The program cmd2 is executed with its standard input connected to the output of
the pipe. In parallel, the program cmd1 is executed with its standard output con-
nected to the input of the pipe. Therefore whatever cmd1 writes on its standard
output is read by cmd2 on its standard input.

What happens if cmd1 terminates before cmd2? When cmd1 terminates, all its
open descriptors are closed. This means that there’s no open descriptor on the
input of the pipe. When cmd2 has read all the data waiting in the pipe, the next
read returns an end of file; cmd2 will then do what it is assigned to do when it
reaches the end of its standard input — for example, terminate.

Now, if cmd2 terminates before cmd1, the last descriptor on the output of the
pipe is closed and cmd1 will get a signal (which by default kills the process) the
next time it tries to write on its standard output.

* * *
Exercise 14 Implement some of the other redirections provided by the shell
sh. Namely:
>> 2> 2>> 2>1 <<

Answer page 132.

* * *

Swapping two descriptors requires care. The naive sequence dup2 fd1 fd2;

dup2 fd2 fd1 does not work. Indeed, the second redirection has no effect since
after the first one both descriptors fd1 and fd2 already point to the same file
table entry. The initial value pointed by fd2 was lost. This is like swapping the
contents of two reference cells: a temporary variable is needed to save one of
the two values. Here we can save one of the descriptors by copying it with the
system call dup.
val dup : file_descr -> file_descr

The call to dup fd returns a new descriptor pointing on the same file table entry
as fd. For example we can swap stdout and stderr with:
let tmp = dup stdout in

dup2 stderr stdout;

dup2 tmp stderr;

close tmp;;

After the swap, do not forget to close the temporary descriptor tmp to prevent a
descriptor leak.

66

http://www.opengroup.org/onlinepubs/009696799/functions/dup.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALdup

Complete example: composing N commands

5.5 Complete example: composing N commands

We program a command compose such that

compose cmd1 cmd2 ... cmdn

behaves like the shell command:

cmd1 | cmd2 | ... | cmdn

1 open Sys;;

2 open Unix;;

3

4 let compose () =

5 let n = Array.length Sys.argv - 1 in

6 for i = 1 to n - 1 do

7 let (fd_in, fd_out) = pipe () in

8 match fork () with

9 | 0 ->

10 dup2 fd_out stdout;

11 close fd_out;

12 close fd_in;

13 execv "/bin/sh" [| "/bin/sh"; "-c"; Sys.argv.(i) |]

14 | _ ->

15 dup2 fd_in stdin;

16 close fd_out;

17 close fd_in

18 done;

19 match fork () with

20 | 0 -> execv "/bin/sh" [|"/bin/sh"; "-c"; Sys.argv.(n) |]

21 | _ ->

22 let rec wait_for_children retcode =

23 try

24 match wait () with

25 | (pid, WEXITED n) -> wait_for_children (retcode lor n)

26 | (pid, _) -> wait_for_children 127

27 with

28 Unix_error(ECHILD, _, _) -> retcode in

29 exit (wait_for_children 0)

30 ;;

31 handle_unix_error compose ();;

The bulk of the work is done by the for loop starting at line 6. For each command
except the last one, we create a new pipe and a child process. The child connects
the pipe’s input to its standard output and executes the command. After the
fork it inherits the standard input of its parent. The main process (the parent)
connects the pipe’s output to its standard input and continues the loop. Suppose
(induction hypothesis) that at the beginning of the ith iteration, the situation is
as follows:

67

Classical inter-process communication: pipes

stdin cmd1 cmd2 . . .

. . . cmdi−1 compose stdout

Rounded boxes represent processes. Their standard input is on the left, their
standard output on the right. The ellipses represent the initial standard input
and output of the compose process. Just after the call to pipe and fork we have:

. . . cmdi−1
compose

(child)
compose

(parent) stdout

When the parent calls dup2, we get:

. . . cmdi−1
compose

(child)
compose

(parent) stdout

When the child calls dup2 and execv, we get:

. . . cmdi−1 cmdi compose stdout

and everything is ready for the next iteration.
The last command is forked after the loop because there’s no need to create a

new pipe: the process compose already has the right standard input (the output
of the next to last command) and output (the one initially given to the command
compose) for the child. Hence it is sufficient to fork and exec. The parent then
waits for its children to terminate: it calls wait repeatedly until the error ECHILD
(no child to wait for) is raised. The children’s return codes are combined with a
bitwise “or” (lor operator) to create a meaningful return code for compose : zero
if all the children returned zero, different from zero otherwise.

Note that we execute commands through the shell /bin/sh. This prevents us
from having to parse complex commands into tokens as in the following invoca-
tion:

compose "grep foo" "wc -l"

Adding this functionality to our program would complicate it needlessly.

5.6 Input/output multiplexing

In all the examples so far, processes communicate linearly: each process reads
data coming from at most one other process. In this section we highlight and
solve the problems occurring whenever a process needs to read data coming from
many processes.

68

Input/output multiplexing

Consider the example of a multi-windowed terminal emulator. Suppose we
have a computer, called the client, connected to a Unix machine by a serial port.
We want to emulate, on the client, many terminal windows connected to different
user processes on the Unix machine. For example, one window can be connected
to a shell and another to a text editor. Outputs from the shell are displayed in
the first window and those from the editor in the other. If the first window is
active, keystrokes from the client’s keyboard are sent to the input of the shell
and if the second window is active they are sent to the input of the editor.

Since there’s only a single physical link between the client and the Unix
machine, we need to multiplex the virtual connections between windows and
processes by interleaving the data transmissions. Here’s the protocol we are going
to use. On the serial port, we send messages with the following structure:

• One byte indicating the process number or window number of the receiver.

• One byte indicating the number N of bytes that are following.

• N bytes of data to send to the receiver.

On the Unix machine, user processes (shell, editor, etc.) are connected by a pipe
to one or more auxiliary processes that read and write on the serial port and
(de)multiplex the data. The serial port is a special file (/dev/ttya, for example),
on which the auxiliary processes read and write to communicate with the client.

Demultiplexing (transmission from the client to the user processes) does not
pose any particular problem. We just need a process that reads messages on the
serial port and writes the extracted data on the pipe connected to the standard
input of the receiving user process.

/dev/ttya
demulti-
plexer

shell

emacs

Multiplexing (transmission from user processes to the client) is more tricky. Let
us try to mimic the demultiplexer: a process reads sequentially the output of
the pipes connected to the standard output of the user processes and then writes
the data it reads as message on the serial port by adding the receiving window
number and the length of the data.

/dev/ttya
demulti-
plexer

shell

emacs

multi-
plexer /dev/ttya

This does not work, because reading a pipe can block. For example, if we try
to read the output of the shell but it has nothing to display at that moment,
the multiplexer process will block, and waiting characters from the editor will
be ignored. There’s no way to know in advance on which pipes there is data

69

Classical inter-process communication: pipes

waiting to be displayed (in parallel algorithms, the situation where a process is
perpetually denied access to a shared resource is called starvation).

Here is another approach: we associate with each user process a repeater
process. The repeater reads the output of the pipe connected to the standard
output of the user process, transforms the data into messages and writes the
result directly on the serial port (each repeater process opens /dev/ttya in write
mode).

/dev/ttya
demulti-
plexer

shell

emacs

repeater

repeater

/dev/ttya

Since each user process has its output transmitted independently, blocking
problems are solved. However the protocol may not be respected. Two repeaters
may try to write a message at the same time and the Unix kernel does not
guarantee the atomicity of writes, i.e. that they are performed in a single un-
interruptible operation. Thus the kernel may choose to write only a part of a
message from a repeater to /dev/ttya, then write a full message from another
repeater and finally write the remaining part of the first message. This will ut-
terly confuse the demultiplexer on the client: it will interpret the second message
as part of the data of the first and then interpret the rest of the data as a new
message header.

To avoid this, repeater processes must synchronize so that at anytime at
most one of them is writing on the serial port (in parallel algorithms we say that
we need to enforce the mutual exclusion of repeaters on the access to the serial
link). Technically, this can be done with concepts we have already seen so far:
repeaters can create a specific file (the “lock”) with the O_EXCL flag before sending
a message and destroy it after they are done writing to the serial port. However
this technique is not very efficient because the lock creation and destruction costs
are too high.

A better solution is to take the first approach (a single multiplexer process)
and set the output of the pipes connected to the standard output of user processes
in non-blocking mode with set_nonblock. A read on an empty pipe will not
block but return immediately by raising the error EAGAIN or EWOULDBLOCK. We
just ignore this error and try to read the output of the next user process. This
will prevent starvation and avoid any mutual exclusion problem. However it is
a very inefficient solution, the multiplexer process performs what is called “busy
waiting”: it uses processing time even if no process is sending data. This can be
alleviated by introducing calls to sleep in the reading loop; unfortunately, it is
very difficult to find the right frequency. Short sleeps cause needless processor
load when there is little data, and long sleeps introduce perceptible delays when
there is a lot of data.

This is a serious problem. To solve it, the designers of bsd Unix introduced a
new system call, select, which is now available on most Unix variants. A call to
select allows a process to wait (passively) on one or more input/output events.
An event can be:

70

Input/output multiplexing

• A read event: there is data to read on that descriptor.

• A write event: it is possible to write on that descriptor without blocking.

• An exceptional event: an exceptional condition is true on that descriptor. For
example, on certain network connections high-priority data (out-of-band data)
can be sent that overtakes normal data waiting to be sent. Receiving this kind
of high-priority data is an exceptional condition.

The system call select has the following signature:

val select :

file_descr list -> file_descr list -> file_descr list ->

float -> file_descr list * file_descr list * file_descr list

The first three arguments are sets of descriptors represented by lists: the first
argument is the set of descriptors to watch for read events; the second argument
is the set of descriptors to watch for write events; the third argument is the set
of descriptors to watch for exceptional events. The fourth argument is a timeout
in seconds. If it is positive or zero, the call to select will return after that time,
even if no event occurred. If it is negative, the call to select waits indefinitely
until one of the requested events occurs.

The select call returns a triplet of descriptor lists: the first component is
the list of descriptors ready for reading, the second component those ready for
writing and the third one those on which an exceptional condition occurred. If
the timeout expires before any event occurs, the three lists are empty.

Example The code below watches read events on the descriptors fd1 and fd2

and returns after 0.5 seconds.

match select [fd1; fd2] [] [] 0.5 with

| [], [], [] -> (* the 0,5s timeout expired *)

| fdl, [], [] ->

if List.mem fd1 fdl then

(* read from fd1 *);

if List.mem fd2 fdl then

(* read from fd2 *)

* * *

Example The following multiplex function is central to the multiplexer/de-
multiplexer of the multi-windowed terminal emulator described above.

To simplify, the multiplexer just sets the receiver of messages according to
their provenance and the demultiplexer redirects data directly to the receiver
number. In other words, we assume that either each sender talks to a receiver
with the same number, or that the correspondence between them is magically
established in the middle of the serial link by rewriting the receiver number.

The multiplex function takes a descriptor open on the serial port and two
arrays of descriptors of the same size, one containing pipes connected to the
standard input of the user processes, the other containing pipes connected to
their standard output.

71

http://www.opengroup.org/onlinepubs/009696799/functions/select.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALselect

Classical inter-process communication: pipes

open Unix;;

let rec really_read fd buff start length =

if length <= 0 then () else

match read fd buff start length with

| 0 -> raise End_of_file

| n -> really_read fd buff (start+n) (length-n);;

let buffer = String.create 258;;

let multiplex channel inputs outputs =

let input_fds = channel :: Array.to_list inputs in

try

while true do

let (ready_fds, _, _) = select input_fds [] [] (-1.0) in

for i = 0 to Array.length inputs - 1 do

if List.mem inputs.(i) ready_fds then begin

let n = read inputs.(i) buffer 2 255 in

buffer.[0] <- char_of_int i;

buffer.[1] <- char_of_int n;

ignore (write channel buffer 0 (n+2));

()

end

done;

if List.mem channel ready_fds then begin

really_read channel buffer 0 2;

let i = int_of_char(buffer.[0])

and n = int_of_char(buffer.[1]) in

if n = 0 then close outputs.(i) else

begin

really_read channel buffer 0 n;

ignore (write outputs.(i) buffer 0 n);

()

end

end

done

with End_of_file -> () ;;

The multiplex function starts by constructing a set of descriptors (input_fds)
that contain the input descriptors (those connected to the standard output of
the user processes) and the descriptor of the serial port. On each iteration of
the while loop we call select to watch for pending reads in input_fds. We do
not watch for any write or exceptional event and we do not limit the waiting
time. When select returns, we test whether there is data waiting on an input
descriptor or on the serial port.

If there is data on an input descriptor we read this input into a buffer, add a
message header and write the result on the serial port. If read returns zero this
indicates that the corresponding pipe was closed. The terminal emulator on the
client will receive a message with zero bytes, signaling that the user process with

72

Miscellaneous: write

that number died; it can then close the corresponding window.
If there is data on the serial port, we read the two-byte message header which

gives us the number i of the receiver and the number n of bytes to read. We then
read n bytes on the channel and write them on the output i connected to the
standard input of the corresponding user process. However, if n is 0, we close the
output i. The idea is that the terminal emulator at the other end sends a message
with n = 0 to indicate an end of file on the standard input of the receiving user
process.

We get out of the loop when really_read raises the exception End_of_file,
which indicates an end of file on the serial port.

* * *

5.7 Miscellaneous: write

The function write of the Unix module iterates the system call write until all
the requested bytes are effectively written.
val write : file_descr -> string -> int -> int -> int

However, when the descriptor is a pipe (or a socket, see chapter 6), writes may
block and the system call write may be interrupted by a signal. In this case
the OCaml call to Unix.write is interrupted and the error EINTR is raised. The
problem is that some of the data may already have been written by a previous
system call to write but the actual size that was transferred is unknown and
lost. This renders the function write of the Unix module useless in the presence
of signals.

To address this problem, the Unix module also provides the “raw” system call
write under the name single_write.
val single_write : file_descr -> string -> int -> int -> int

With single_write, if an error is raised it is guaranteed that no data is written.
The rest of this section shows how to implement this function. Fundamen-

tally, it is just a matter of interfacing OCaml with C (more information about
this topic can be found in the relevant section of the OCaml manual). The
following code is written in the file single_write.c:

1 #include <errno.h>

2 #include <string.h>

3 #include <caml/mlvalues.h>

4 #include <caml/memory.h>

5 #include <caml/signals.h>

6 #include <caml/unixsupport.h>

7

8 CAMLprim value caml_single_write

9 (value fd, value buf, value vofs, value vlen) {

10 CAMLparam4(fd, buf, vofs, vlen);

11 long ofs, len;

12 int numbytes, ret;

13 char iobuf[UNIX_BUFFER_SIZE];

14 ofs = Long_val(vofs)

15 len = Long_val(vlen)

73

http://www.opengroup.org/onlinepubs/009696799/functions/write.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALwrite
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALsingle_write

Classical inter-process communication: pipes

16 ret = 0;

17 if (len > 0) {

18 numbytes = len > UNIX_BUFFER_SIZE ? UNIX_BUFFER_SIZE : len;

19 memmove (iobuf, &Byte(buf, ofs), numbytes);

20 caml_enter_blocking_section ();

21 ret = write(Int_val(fd), iobuf, numbytes);

22 caml_leave_blocking_section ();

23 if (ret == -1) uerror("single_write", Nothing);

24 }

25 CAMLreturn (Val_int(ret));

26 }

The first two lines include standard C headers. The following four lines include
C headers specific to OCaml installed by the distribution. The unixsupport.h

header defines reusable C functions of the OCaml Unix library.
The most important line is the call to write. Since the call may block (if the

descriptor is a pipe or a socket) we need to release the global lock on the OCaml
runtime immediately before the call (line 20) and reacquire it right after (line 22).
This makes the function compatible with the Thread module (see chapter 7): it
allows other threads to execute during the blocking call.

During the system call OCaml may perform a garbage collection and the
address of the OCaml string buf may move in memory. To solve this problem
we copy buf into the C string iobuf. This has an additional cost, but only in the
order of magnitude of 10% (and not 50% as one might think) because the overall
cost of the function is dominated by the system call. The size of this C string is
defined in unix_support.h. If an error occurs during the system call (indicated
by a negative return value) it is propagated to OCaml by the function uerror,
defined in the OCaml Unix library.

To access this code from OCaml, the file unix.mli declares:

external unsafe_single_write :

file_descr -> string -> int -> int -> int = "caml_single_write"

But in practice we verify the arguments before calling the function:

let single_write fd buf ofs len =

if ofs < 0 || len < 0 || ofs > String.length buf - len

then invalid_arg "Unix.write"

else unsafe_single_write fd buf ofs len

This function has been available in the Unix module since version 3.08. But if we
had written the program above ourselves we would need to compile it as follows
to use it (assuming the OCaml code is in the files write.mli and write.ml):

ocamlc -c single_write.c write.ml

ocamlc -custom -o prog unix.cma single_write.o write.cmo mod1.ml mod2.ml

It is often more practical to build a library write.cma containing both the C and
the OCaml code:

ocamlc -custom -a -o write.cma single_write.o write.cmo

The library write.cma can then be used like unix.cma:

ocamlc -o main.byte unix.cma write.cma main.ml

74

Miscellaneous: write

The semantics of single_write is as close as possible to the system call write.
The only remaining difference is when the original string is very long (greater
than UNIX_BUFFER_SIZE); the call may then not write all the data and must
be iterated. The atomicity of write (guaranteed for regular files) is thus not
guaranteed for long writes. This difference is generally insignificant but one
should be aware of it.

On top of this function we can implement a higher-level function really_write,
analogous to the function really_read of the multiplexer example, that writes
exactly the requested amount of data (but not atomically).

let rec really_write fd buffer offset len =

let n = restart_on_EINTR (single_write fd buffer offset) len in

if n < len then really_write fd buffer (offset + n) (len - n);;

75

6 Modern communication: sockets

Communication with pipes has some limitations. First, it is local to a machine:
with named pipes, communicating processes must run on the same machine and
what’s more, with anonymous pipes, they must share a common ancestor. Fur-
thermore, pipes are not very suitable for a particularly useful model of commu-
nication: the client-server model. In this model, only one program, the server,
has direct access to a shared resource. The other programs, the clients, access
the resource by connecting to the server. The server serializes and controls the
access to the shared resource. (Example: the x-window windowing system — the
shared resources are the screen, the keyboard and the mouse.)

The client-server model is difficult to implement with pipes. The major dif-
ficulty is to establish the connection between a client and the server. With
anonymous pipes, it is impossible: the server and the client would need a com-
mon ancestor that allocated an arbitrarily large number of pipes in advance.
With named pipes, the server could read connection requests on a particular
pipe. These requests would contain the name of another named pipe created
and used by the client to communicate with the server. The problem is to ensure
the mutual exclusion of simultaneous connection requests performed by multiple
clients.

Sockets are a generalization of pipes addressing these issues. The client-server
model is shown in figure 3.

1. The server U creates a socket s on a port p known to the clients and waits for
connections on it (1).

2. The client A creates a socket and connects to the server on the port p (2). On
the server, the system allocates a new socket to communicate privately with the
client A (3). In this example, the server forks off an auxiliary server V (4), closes
its connection with the client A (represented by the dashed line) and lets its child
V handle the connection with A (5).

Server V

Server U
(1)

Server W

Client A

Client B

(2)

(3)

(5)

(6)

(4)

Figure 3 — Client-Server model

77

Modern communication: sockets

3. The server can then accept a new client B, establish another connection handled
in parallel by another clone W (6), and so on.

4. The server can close its service by closing the file descriptor associated with the
socket s. After a while the system frees the port p which can then be reused, for
example to install another service.

In the model described above, the server U and the client A establish a private
connection (3) to communicate without interference from other clients. For that
reason, this mode of communication is referred to as the connection-oriented
mode. If the transaction is short the server can handle the request directly
(without forking) through the connection (3). In this case, the next client must
wait for the server to be available, either because it is handling the connection
(3), or because it explicitly manages several connections via multiplexing.

Sockets also allow a connectionless communication mode. In this mode, less
frequently used, the server does not establish a private connection with the client,
but responds directly to the client’s requests. We will briefly comment on this
model in section 6.10 but in the remainder of this chapter, we mainly describe
connection-oriented communication.

6.1 Sockets

Sockets, an extension of pipes, were introduced in bsd 4.2. They are now found
on all Unix machines connected to a network. Special system calls are provided
to establish connections following the client-server model; they enable local and
remote communication between processes in a (nearly) transparent way.

The communication domain of a socket limits the processes (and the for-
mat of their address) with which we can communicate on the socket. Different
communication domains are available, for example:

• the Unix domain: an address is a name in the file system of a machine. Com-
munication is limited to processes running on that machine (like with pipes).

• the Internet domain: an address is an address of a machine on the Internet
network (addresses of the form 129.199.129.1, for example) and a port number
on that machine. Communication is possible between processes running on any
two machines connected to Internet.1

The communication type of a socket indicates whether communication is re-
liable (no loss or duplication of data) and the way the data is sent and received
(a stream of bytes, or a sequence of packets — small blocks of bytes). The
communication type constrains the protocol used to transmit data. Different
communication types are available, here are three of them with their properties:

1 The Internet network is made of local networks, usually Ethernet networks, connected by
specialized links. It connects millions of machines world-wide. In the Internet domain, there is
no difference between programs that communicate with a neighboring machine, connected to
the same Ethernet cable, and those that communicate with a machine on the other side of the
planet, through a dozen routers and a satellite link.

78

Socket creation

Type Reliable Data representation

Stream yes byte stream

Datagram no packets

Segmented packets yes packets

The “stream” type is very similar to communication with pipes. It is used most
frequently, in particular to transmit unstructured byte sequences (e.g. rsh).
The “segmented packets” type transmits data as packets: each write delimits a
packet, each read returns at most a packet. It is well suited for message-oriented
communication. The “datagram” type is the closest to the hardware properties of
an Ethernet network: data is transmitted with packets and there is no guarantee
that they reach their destination. It is the most economical type in terms of
network resources. Some programs use it to transmit data that is not of crucial
importance (e.g. biff); others, to get more network performance but with the
burden of managing data losses manually.

6.2 Socket creation

The socket system creates a new socket:

val socket : socket_domain -> socket_type -> int -> file_descr

The result is a file descriptor that represents the new socket. Initially, this
descriptor is “disconnected”, it is not ready to accept any read or write.

The first argument is a value of type socket_domain, it specifies the socket’s
communication domain:

PF_UNIX The Unix domain.

PF_INET The Internet domain.

The second argument, a value of type socket_type, specifies the desired commu-
nication type:

SOCK_STREAM Byte streams, reliable.

SOCK_DGRAM Packets, unreliable.

SOCK_RAW Direct access to the lower layers of the network.

SOCK_SEQPACKET Packets, reliable.

The third argument is the communication protocol to use. It is usually 0 which
selects the default protocol for the given communication domain and type (e.g.
udp for SOCK_DGRAM or tcp for SOCK_STREAM). Other values allow to use spe-
cial protocols, for example icmp (Internet Control Message Protocol) used by
the ping command to send packets which return automatically to the sender.
The numbers for these special protocols are in the /etc/protocols file or in the
protocols table of the nis (Network Information Service) database, if any. The
system call getprotobyname returns information about a protocol in a portable
manner:

79

http://www.opengroup.org/onlinepubs/009696799/functions/socket.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALsocket
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#TYPEsocket_domain
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#TYPEsocket_type
http://www.opengroup.org/onlinepubs/009696799/functions/getprotobyname.html

Modern communication: sockets

val getprotobyname : string -> protocol_entry

Given the name of a protocol the result is a record of type protocol_entry. The
p_proto field of this record has the protocol number.

6.3 Addresses

Several socket operations use socket addresses, represented by the variant type
sockaddr:
type sockaddr =

| ADDR_UNIX of string

| ADDR_INET of inet_addr * int

ADDR_UNIX f is an address in the Unix domain, f is the name of the corresponding
file in the machine’s file system. ADDR_INET (a,p) is an address in the Internet
domain, a is the Internet address of a machine and p a port number on this
machine.

Internet addresses are represented by the abstract type inet_addr. The
following functions convert strings of the form 128.93.8.2 to values of type
inet_addr, and vice versa:
val inet_addr_of_string : string -> inet_addr

val string_of_inet_addr : inet_addr -> string

Another way to obtain internet addresses is to look them up by host name in
the /etc/hosts table, the nis database or in domain name servers. The system
call gethostbyname does that. On modern machines, the domain name servers
are consulted first and /etc/hosts is only used as a fallback but in general that
may depend on the machine’s configuration.
val gethostbyname : string -> host_entry

The argument is the host name to look for and the result a record of type
host_entry. The h_addr_list field of this record is an array of Internet addresses
corresponding to the machine (the same machine can be connected to multiple
networks under different addresses).

Regarding port numbers, the most common services are listed in the table
/etc/services which can be read in a portable manner using the getservbyname

function:
val getservbyname : string -> string -> service_entry

The first argument is the service name ("ftp" for ftp servers, "smtp" for email,
"nntp" for news servers, "talk" and "ntalk" for commands of that name, etc.)
and the second argument is the name of the protocol: usually "tcp" if the service
is using the stream connection type or "udp" for the datagram type. The result
of getservbyname is a record of type service_entry whose s_port field contains
the desired number.

Example To obtain the address of the ftp server pauillac.inria.fr:
ADDR_INET((gethostbyname "pauillac.inria.fr").h_addr_list.(0),

(getservbyname "ftp" "tcp").s_port)

* * *

80

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALgetprotobyname
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#TYPEprotocol_entry
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#TYPEsockaddr
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALinet_addr_of_string
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALstring_of_inet_addr
http://www.opengroup.org/onlinepubs/009696799/functions/gethostbyname.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALgethostbyname
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#TYPEhost_entry
http://www.opengroup.org/onlinepubs/009696799/functions/getservbyname.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALgetservbyname
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#TYPEservice_entry

Connection to a server

6.4 Connection to a server

The system call connect establishes a connection with a server on a socket.

val connect : file_descr -> sockaddr -> unit

The first argument is a socket descriptor and the second argument is the server’s
address.

Once the connection is established, calls to write on the socket descriptor
send data to the server and calls to read receive data from the server. Sockets
behave like pipes for read and write operations. First, read blocks if no data
is available and can return fewer bytes than requested. Second, whenever the
server closes the connection read returns 0 and write sends a sigpipe signal to
the calling process.

connect binds the socket to a local address chosen by the system. Sometimes,
it is preferable to manually choose this address. This can be done by calling the
function bind (see section 6.7) before connect.

The netstat Unix command lists the current connections on the machine and
their status.

6.5 Disconnecting sockets

There are two ways to disconnect a socket. The first is to call close on the
socket. This closes the read and write sides of the connection, and deallocates
the socket. But sometimes this is too brutal, for example we may want to close
the connection from the client to the server to indicate an end of file but keep
the connection open in the other direction to get remaining data from the server.
The system call shutdown allows to close the connection gradually.

val shutdown : file_descr -> shutdown_command -> unit

The first argument is the descriptor of the socket to close and the second a value
of type shutdown_command indicating which direction to close:

SHUTDOWN_RECEIVE Closes the socket for reading; write on the other end of
the connection will send a sigpipe signal to the caller.

SHUTDOWN_SEND Closes the socket for writing; read on the other end of
the connection returns an end of file.

SHUTDOWN_ALL Closes the socket for reading and writing; unlike close,
the socket descriptor is not deallocated.

Note that disconnecting a socket can take some time whether done with close

or shutdown.

6.6 Complete example: the universal client

We program a client command such that client host port establishes a con-
nection on the port port of the machine named host, sends on the resulting
socket the data it reads on its standard input and writes the data it receives on
its standard output. For instance, the command

81

http://www.opengroup.org/onlinepubs/009696799/functions/connect.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALconnect
http://www.opengroup.org/onlinepubs/009696799/functions/shutdown.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALshutdown
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#TYPEshutdown_command

Modern communication: sockets

echo -e 'GET /~remy/ HTTP/1.0\r\n\r\n' | ./client pauillac.inria.fr 80

connects to the port 80 of pauillac.inria.fr and sends an http request for the
web page /~remy/.

This command is a “universal” client application in the sense that it factors
out the code to establish a connection common to many clients and delegates
the implementation of the specific protocol to the program that calls client.

The library function Misc.retransmit fdin fdout reads data on the descrip-
tor fdin and writes it on fdout. It terminates, without closing the descriptors,
when the end of file is reached on the input descriptor. Note that retransmit

may be interrupted by a signal.

let retransmit fdin fdout =

let buffer_size = 4096 in

let buffer = String.create buffer_size in

let rec copy () = match read fdin buffer 0 buffer_size with

| 0 -> ()

| n -> ignore (write fdout buffer 0 n); copy ()

in

copy ();;

The serious matter starts here.

1 open Sys;;

2 open Unix;;

3

4 let client () =

5 if Array.length Sys.argv < 3 then begin

6 prerr_endline "Usage: client <host> <port>";

7 exit 2;

8 end;

9 let server_name = Sys.argv.(1)

10 and port_number = int_of_string Sys.argv.(2) in

11 let server_addr =

12 try (gethostbyname server_name).h_addr_list.(0)

13 with Not_found ->

14 prerr_endline (server_name ^ ": Host not found");

15 exit 2 in

16 let sock = socket PF_INET SOCK_STREAM 0 in

17 connect sock (ADDR_INET(server_addr, port_number));

18 match fork () with

19 | 0 ->

20 Misc.retransmit stdin sock;

21 shutdown sock SHUTDOWN_SEND;

22 exit 0

23 | _ ->

24 Misc.retransmit sock stdout;

25 close stdout;

26 wait ();;

27

28 handle_unix_error client ();;

82

Establishing a service

We start by determining the Internet address of the machine to which we
want to connect. It can be specified by a host name or in numerical form,
gethostbyname correctly handles both cases. Then, we create a socket of type
stream in the Internet domain with the default protocol and connect it to the
address of the machine.

The process is then cloned with fork. The child process copies the data from
its standard input to the socket. Once the end of standard input is reached it
closes the connection in the sending direction and terminates. The parent process
copies the data it reads on the socket to its standard output. Once the end of
file is reached on the socket, it closes the standard output, synchronizes with the
child process and terminates.

The connection is closed either by the client or by the server:

• If the child client receives an end of file on its standard input, it closes the connec-
tion in the client to server direction and terminates. The server upon receiving
the end of file on its socket should, possibly after some further processing, close
the connection in the other direction. Thus the parent client eventually receives
an end of file on the socket and terminates normally.

• If the server closes the connection. The parent client receives an end of file on
the socket and waits on the child. The child client is killed by a sigpipe signal
the next time it tries to write on the socket. This does not however report that
the connection was lost. If that is needed we can ignore the sigpipe signal by
inserting the following line after line 19:

ignore (signal sigpipe Signal_ignore)

and the write will raise an EPIPE error instead.

• If the parent or child client exits prematurely the socket will be closed for reading
or writing. Whenever the server detects this information, it closes its side of the
connection, which is eventually detected by the other part of the client.

6.7 Establishing a service

Having seen how a client connects to a server, we now show how a server can
provide a service for clients. First we need to associate a particular address to a
socket to make it reachable from the network. The system call bind does this:

val bind : file_descr -> sockaddr -> unit

The first argument is the socket descriptor and the second the address to bind.
The constant Internet address inet_addr_any can be used to bind all the Internet
addresses that the machine has (it may be on multiple sub-networks).

We then indicate that the socket can accept connections with the system call
listen:

val listen : file_descr -> int -> unit

The first argument is the socket descriptor and the second is the number of
request that can be be put on hold while the server is busy (ranges from a few
dozen to several hundreds for large servers). When the number of waiting clients
exceeds this number, additional client connection requests fail.

83

http://www.opengroup.org/onlinepubs/009696799/functions/bind.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALbind
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALinet_addr_any
http://www.opengroup.org/onlinepubs/009696799/functions/listen.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALlisten

Modern communication: sockets

Finally, connection requests on a socket descriptor are received via the system
call accept:

val accept : file_descr -> file_descr * sockaddr

When the call returns the socket given in argument is still free and can accept
more connection request. The first component of the result is a new descriptor
connected to the client, everything written (resp. read) on that socket can be
read (resp. is written) on the socket the client gave to connect. The second
component of the result is the address of the client. It can be used to check that
the client is authorized to connect (for example this is what the x server does,
xhost can be used to add new authorizations), or to establish a second connection
from the server to the client (as ftp does for each file transfer request).

The general structure of a tcp server is as follows.

let install_tcp_server_socket addr =

let s = socket PF_INET SOCK_STREAM 0 in

try

bind s addr;

listen s 10;

s

with z -> close s; raise z;;

The library function Misc.install_tcp_server addr creates a socket of type
stream in the Internet domain with the default protocol and prepares it to accept
new connection requests on the address addr with bind and listen. Given that
this is a library function, we close the socket in case of an error.

let tcp_server treat_connection addr =

ignore (signal sigpipe Signal_ignore);

let server_sock = install_tcp_server_socket addr in

while true do

let client = restart_on_EINTR accept server_sock in

treat_connection server_sock client

done;;

The library function Misc.tcp_server creates a socket with install_tcp_server

and enters an infinite loop. At each iteration of the loop it waits for a connection
request with accept and treats it with the function treat_connection. Since this
is a library function we restart the accept call if it is interrupted. We also ignore
the signal sigpipe so that unexpected disconnection raise an EPIPE exception
that can be caught by treat_connection rather than killing the server. Note
that it in any case it is treat_connection’s duty to close the client descriptor
at the end of the connection.

The function treat_connection is also given the descriptor of the server so
that if it forks or or double_forks it can be closed by the child.

Now suppose we have the following, application specific, service function
that talks to the client end ends by closing the connection:

let service (client_sock, client_addr) =

(* Handle the client on the descriptor client_sock *)

(* And when we are done: *)

close client_sock;;

84

http://www.opengroup.org/onlinepubs/009696799/functions/accept.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALaccept

Establishing a service

The server itself can treat each connection sequentially. The following library
function, in Misc, captures this pattern:

let sequential_treatment server service client = service client

However as the server cannot handle any other requests while serving a client,
this scheme is only appropriate for quick services, where the service function
always runs in a short, bounded, amount of time (for instance, a date server).

Most servers delegate the service to a child process: fork is called immediately
after accept returns. The child process handles the connection and the parent
process immediately retries to accept. We obtain the following library function
in Misc:

let fork_treatment server service (client_sock, _ as client) =

let treat () = match fork () with

| 0 -> close server; service client; exit 0

| k -> ()

in

try_finalize treat () close client_sock;;

Note that it is essential that the parent closes client_sock otherwise the close
made by the child will not terminate the connection (besides the parent would
also quickly run out of descriptors). The descriptor is also closed if the fork
fails, for the server may eventually decide the error is not fatal and continue to
operate.

Similarly, the child immediately closes the server descriptor on which the
connection request was received. First, it does not need it. Second, the server
may stop accepting new connections before the child has terminated. The call to
exit 0 is important since it ensures that the child terminates after the execution
of the service and that it does not start to execute the server loop.

So far we ignored the fact that children will become zombie processes and
that we need to recover them. There are two ways to to so. The simple approach
is to have a grandchild process handle the connection using a double fork (see
page 44). This gives the following library function, also in Misc:

let double_fork_treatment server service (client_descr, _ as client) =

let treat () = match fork () with

| 0 ->

if fork () <> 0 then exit 0;

close server; service client; exit 0

| k ->

ignore (restart_on_EINTR (waitpid []) k)

in

try_finalize treat () close client_descr;;

However with this approach the server loses all control on the grandchild process.
It is better to have the processes handling services and the server in the same
process group so that the whole group can be killed at once to terminate the
service. For this reason servers usually keep the fork treatment but add children
recovering code, for example in the handler of the sigchld signal (see the function
Misc.free_children on page 54).

85

Modern communication: sockets

6.8 Tuning sockets

Sockets have numerous internal parameters that can be tuned: the size of the
transfer buffer, the size of the minimum transfer, the behavior on closing, etc.

These parameters have different types, for this reason there are as many
getsockopt and setsockopt OCaml functions as there are types. Consult the
OCaml documentation of the function getsockopt and its variants to get a de-
tailed list of those options and the posix reference for getsockopt and setsockopt

for their exact meaning.

Example The following two parameters apply only to sockets of type stream
in the Internet domain.

In the tcp protocol, the disconnection of a socket is negotiated and hence
takes some time. Normally a call to close returns immediately, and lets the
system negotiates the disconnection. The code below turns close on the socket
sock into a blocking operation. It blocks either until all the sent data has been
transmitted or until 5 seconds have passed.

setsockopt_optint sock SO_LINGER (Some 5);;

The SO_REUSEADDR option allows the bind system call to allocate a new socket
on a local address immediately after the socket sock bound on that address is
closed (there is however the risk to get packets intended for the old connection).
This option allows to stop a server and restart it immediately, very useful for
testing purposes.

setsockopt sock SO_REUSEADDR;;

* * *

6.9 Complete example: the universal server

We program a server command such that:

./server port cmd arg1 ... argn

receives connection requests on the port port and, for each connection, executes
cmd with the arguments arg1 ... argn and the socket connection as its standard
input and output. For example, if we execute:

./server 8500 grep foo

on the pomerol machine and the universal client (see section 6.6) on an other
machine as follows:

./client pomerol 8500 < /etc/passwd

the client displays the same result as if we had typed:

grep foo < /etc/passwd

except that grep is executed on pomerol, and not on the local machine.
This command is a “universal” server in the sense that it factors out the code

common to many server and delegates the implementation of the specific service
and communication protocol to the cmd program it launches.

86

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALgetsockopt
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALsetsockopt
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALgetsockopt
http://www.opengroup.org/onlinepubs/009696799/functions/getsockopt.html
http://www.opengroup.org/onlinepubs/009696799/functions/setsockopt.html

Complete example: the universal server

1 open Sys;;

2 open Unix;;

3

4 let server () =

5 if Array.length Sys.argv < 2 then begin

6 prerr_endline "Usage: client <port> <command> [arg1 ... argn]";

7 exit 2;

8 end;

9 let port = int_of_string Sys.argv.(1) in

10 let args = Array.sub Sys.argv 2 (Array.length Sys.argv - 2) in

11 let host = (gethostbyname(gethostname ())).h_addr_list.(0) in

12 let addr = ADDR_INET (host, port) in

13 let treat sock (client_sock, client_addr as client) =

14 (* log information *)

15 begin match client_addr with

16 | ADDR_INET(caller, _) ->

17 prerr_endline ("Connection from " ^ string_of_inet_addr caller);

18 | ADDR_UNIX _ ->

19 prerr_endline "Connection from the Unix domain (???)";

20 end;

21 (* connection treatment *)

22 let service (s, _) =

23 dup2 s stdin; dup2 s stdout; dup2 s stderr; close s;

24 execvp args.(0) args

25 in

26 Misc.double_fork_treatment sock service client in

27 Misc.tcp_server treat addr;;

28

29 handle_unix_error server ();;

The address given to tcp_server contains the Internet address of the machine
running the program; the usual way to get it (line 11) is by calling gethostname.
But in general many addresses are referencing the same machine. For instance,
the address of the pauillac machine is 128.93.11.35, it can also be accessed
locally (provided we are already on the pauillac machine) with the address
127.0.0.1. To provide a service on all the addresses pointing to this machine,
we can use the constant Internet address inet_addr_any.

The service is handled by a “double fork”. The service function, executed by
the child, redirects standard input and the two standard output on the connection
socket and executes the requested command (note that the handling of the service
cannot be done sequentially).

The connection is closed without any intervention of the server program.
One of the following cases occurs:

• The client closes the connection in the client to server direction. The command
launched by the server receives an end of file on its standard input. It finishes
what it has to do, and calls exit when it is done. This closes the standard
outputs which are the last descriptors open for writing on the connection and
the client receives an end of file on its socket.

• The client ends prematurely and closes the connection in the server to client

87

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALgethostname
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALinet_addr_any

Modern communication: sockets

direction. The command launched by the server may then receive a sigpipe

signal the next time it tries to write data on the connection. This may kill the
process but is perfectly acceptable since nothing is now reading the output of
this command.

• The command launched by the server exits before having read the end of file on
its input. The client receives a sigpipe signal (or an EPIPE exception) when it
tries to write on the connection.

Precautions

Writing a server requires more care than writing a client. While the client usually
knows the server to which it connects, the server knows nothing about its clients
and particularly if the service is public, the client can be “hostile”. The server
must therefore guard itself against all pathological cases.

A typical attack is to open connections and leave them open without trans-
mitting requests. After accepting the connection the server is blocked on the
socket as long as the client stays connected. An attacker can saturate the ser-
vice by opening a lot of unused connections. The server must be robust against
these attacks: it must only accept a limited number of simultaneous connections
to avoid system resources exhaustion and it must terminate connections that
remain inactive for too long.

A sequential server handling connections without forking is immediately ex-
posed to this blocking issue. It will be unresponsive for further request even
though it does nothing. A solution for a sequential server is to multiplex the
connections, but it can be tricky to implement. The solution with a parallel
server is more elegant, but it still needs a timeout, for example by programming
an alarm (see section 4.2).

6.10 Communication in connectionless mode

The tcp protocol used by most connections of type SOCK_STREAM works only
in connection-oriented mode. Conversely, the udp protocol used by most con-
nections of type SOCK_DGRAM always works in connectionless mode, there is no
established connection between the two machines. For this type of sockets, data
is transmitted with the system calls recvfrom and sendto.

val recvfrom :

file_descr -> string -> int -> int -> msg_flag list -> int * sockaddr

val sendto :

file_descr -> string -> int -> int -> msg_flag list -> sockaddr -> int

Their interface is similar to read and write, they return the size of the transferred
data. The call recvfrom also returns the address of the sending machine.

We can call connect on a socket of type SOCK_DGRAM to obtain a pseudo-
connection. This pseudo-connection is just an illusion, the only effect is that the
address passed in argument is memorized by the socket and becomes the address
used for sending and receiving data (messages coming from other addresses are
ignored). It is possible to call connect more than once to change the address or

88

http://www.opengroup.org/onlinepubs/009696799/functions/recvfrom.html
http://www.opengroup.org/onlinepubs/009696799/functions/sendto.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALrecvfrom
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALsendto

Low level reads and writes

disconnect the pseudo-connection by connecting to an invalid address like 0. In
contrast, doing this with a socket of type stream would generally issue an error.

6.11 Low level reads and writes

The system calls recv and send respectively generalize read and write but they
work only on socket descriptors.

val recv : file_descr -> string -> int -> int -> msg_flag list -> int

val send : file_descr -> string -> int -> int -> msg_flag list -> int

Their interface is similar to read and write but they add a list of flags of type
msg_flag whose semantics is:

MSG_OOB Process out-of-band data.

MSG_DONTROUTE Short-circuit the default routing table.

MSG_PEEK Examines the data without reading it.

These primitives can be used in connection-oriented mode instead of read and
write or in pseudo-connected mode instead of recvfrom and sendto.

6.12 High-level primitives

Examples like the universal client-server are so frequent that the Unix module
provides higher-level functions to establish or use network services.

val open_connection : sockaddr -> in_channel * out_channel

val shutdown_connection : Pervasives.in_channel -> unit

The open_connection function opens a connection to the given address and cre-
ates a pair of Pervasives input/output channels on the resulting socket. Reads
and writes on these channels communicate with the server but since the output
channel is buffered we must flush it to ensure that a request has been really sent.
The client can shutdown the connection abruptly by closing either of the channels
(this will close the socket) or more “cleanly” by calling shutdown_connection. If
the server closes the connection, the client receives an end of file on the input
channel.

A service can be established with the establish_server function.

val establish_server :

(in_channel -> out_channel -> unit) -> sockaddr -> unit

The function establish_server f addr establishes a service on the address addr
and handles requests with the function f. Each connection to the server creates
a new socket and forks. The child creates a pair of Pervasives input/output
channels on the socket to communicate with the client and gives them to f to
provide the service. Once f returns the child closes the socket and exits. If the
client closes the connection cleanly, the child gets and end of file on the input
channel and if it doesn’t it may receive a sigpipe signal when f writes on the
output channel. As for the parent, it has probably already handled another
request! The establish_server function never terminates, except in case of

89

http://www.opengroup.org/onlinepubs/009696799/functions/recv.html
http://www.opengroup.org/onlinepubs/009696799/functions/send.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALrecv
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALsend
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#TYPEmsg_flag
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALopen_connection
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALshutdown_connection
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#VALestablish_server

Modern communication: sockets

error (e.g. of the OCaml runtime or the system during the establishment of
the service).

6.13 Examples of protocols

In simple cases (rsh, rlogin, . . .), the data transmitted between a client and a
server is naturally represented by two streams of bytes, one from the client to the
server and the other in the reverse direction. In other cases, the data to transmit
is more complex, and requires to be encoded and decoded to/from the streams
of bytes. The client and the server must then agree on a precise transmission
protocol, which specifies the format of requests and responses exchanged on the
connection. Most protocols used by Unix commands are specified in documents
called “rfc” (request for comments): these documents start as proposals open
for discussion, and gradually become standards over time, as users adopt the
described protocol.2

“Binary” protocols

Most binary protocols transmit data in a compact format, as close as possible
to the in-memory representation, in order to minimize the encoding/decoding
work needed for transmission and save network bandwidth. Typical examples
of protocols of this type are the x-window protocol, which governs exchanges
between the x server and x applications, and the nfs protocol (rfc 1094).

Binary protocols usually encode data as follows. An integer or floating point
number is represented by its 1, 2, 4, or 8 bytes binary representation. A string
by its length as an integer followed by its contents as bytes. A structured object
(tuple, record) by the representation of its fields in order. A variable size struc-
ture (array, list) by its length as an integer followed by the representation of its
elements. If the exact type of data being transmitted in known to a process it
can easily recreate it in its memory. When different type of data is exchanged
on a socket the data encoding can be preceded by an integer to identify the data
that follows.

Example The XFillPolygon call of the x library, which draws and fills a poly-
gon, sends a message with the following structure to the x server:

• the byte 69 (the code of the FillPoly command)
• a padding byte
• a 16 bit integer specifying the number n of vertices of the polygon
• a 32 bit integer identifying the window on which to draw
• a 32 bit integer identifying the “graphic context”
• a “form” byte, indicating whether the polygon is convex, etc.
• a byte indicating whether the coordinates of the vertices are absolute or relative
• 4n bytes encoding the coordinates of the polygon’s vertices by two 16 bit integers

* * *
2rfcs are available via anonymous ftp on numerous sites. In France: ftp.inria.fr, in the

directory rfc. The reference site is http://www.faqs.org/rfcs/.

90

http://www.faqs.org/rfcs/rfc1094.html
ftp://ftp.inria.fr
ftp://ftp.inria.fr/pub/rfc/
http://www.faqs.org/rfcs/

Examples of protocols

With binary protocols we must pay attention to the computer architecture
of the communicating machines. In particular for multi-byte integers, big-endian
machines store the most significant byte first (that is, in memory, at the lower-
address) and little-endian machines store the least significant byte first. For
instance, the 16 bit integer 12345 = 48× 256 + 57 is represented by the byte 48
at the address n and the byte 57 at the address n+ 1 on a big-endian machine,
and by the byte 57 at the address n and the byte 48 at the address n + 1 on a
little-endian machine. Hence protocols must precisely specify which convention
they use when multi-bytes integers are transmitted. Another option is to allow
both and have it specified in the header of the transmitted message.

The OCaml system helps to encode and decode data structures (a procedure
called marshalling, serialization or pickling in the literature) by providing two
functions to convert an OCaml value into a sequence of bytes and vice versa:

val output_value : out_channel -> 'a -> unit

val input_value : in_channel -> 'a

These function are defined to save values to a disk file and get them back but they
can also be used to transmit any value on a pipe or a socket. They handle any
OCaml values except functions, preserve sharing and circularities inside values
and work correctly between machines of different endianness. More information
can be found in the Marshal module.

Note that semantically, the type of input_value is incorrect. It is too general,
it is not true that the result of input_value is of type 'a for any type 'a. The
value returned by input_value belongs to a precise type, and not to all possible
types. But this type cannot be determined at compile time, it depends on the
content of the channel read at runtime. Type-checking input_value correctly
requires an extension to the ML language known as dynamic objects: values
are paired with a representation of their type allowing to perform runtime type
checks. Consult [15] for a detailed presentation.

Example If the x-window protocol was written in OCaml, we would define a
variant type request for requests sent to the server and a reply type for server
responses:

type request =

| FillPolyReq of (int * int) array * drawable * graphic_context

* poly_shape * coord_mode

| GetAtomNameReq of atom

| ...

and reply =

| GetAtomNameReply of string

| ...

The core of the server would be a loop that reads and decodes a request and
responds by writing a reply:

(* Get a connection request on the descriptor s *)

let requests = in_channel_of_descr s

and replies = out_channel_of_descr s in

try

while true do

91

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Pervasives.html#VALoutput_value
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Pervasives.html#VALinput_value
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Marshal.html

Modern communication: sockets

match input_value requests with

...

| FillPoly(vertices, drawable, gc, shape, mode) ->

fill_poly vertices drawable gc shape mode

| GetAtomNameReq atom ->

output_value replies (GetAtomNameReply(get_atom_name atom))

| ...

done

with End_of_file -> (* end of the connection *)

The functions of the x library, linked with each application would have the
following structure:

(* First establish a connection with the server on the descriptor s *)

...

let requests = out_channel_of_descr s

and replies = in_channel_of_descr s;;

let fill_poly vertices drawable gc shape mode =

output_value requests

(FillPolyReq(vertices, drawable, gc, shape, mode));;

let get_atom_name atom =

output_value requests (GetAtomNameReq atom);

match input_value replies with

| GetAtomNameReply name -> name

| _ -> fatal_protocol_error "get_atom_name";;

* * *

Remote procedure call Another typical incarnation of binary protocols is
remote procedure calls (rpc). A user on machine A wants to call a function f

on a machine B. This is obviously not directly possible. It can be programmed
on a case by case basis using the system to open a connection to the machine B,
execute the call and send the result back to the machine A.

But since this is a common situation, an rpc service can handle that (see
figure 4). An rpc server runs on both machine A and B. A user on machine
A requests the rpc server on the machine to execute a function on the distant
machine B. The server on A relays the request to the rpc server on machine B
which executes the call to f, sends the result back to the server on A which gives
the result to the user. The point is that another user can call another function
on B by going through the same server on A. The connection work is shared by
the rpc service installed on the machines A and B and from the perspective of
the users, everything happens as if these calls were simple function calls (dashed
arrows).

“Text” protocols

Network services where the efficiency of the protocol is not crucial are often “text”
protocols. A “text” protocol is in fact a small command language. Requests
are command lines, the first word identifies the request type and the possible
remaining words the command’s arguments. Responses are also made of one or

92

Examples of protocols

System

RPC Server

User 1

User 2

Machine A

System

RPC Server

Call f

Call g

Machine B

Figure 4 — Remote procedure call

more lines of text, often starting with a numerical code to identify the kind of
response. Here are some “text” protocols:

Name Descr. Purpose

smtp (Simple Mail Transfer Protocol) rfc 821 Electronic mail

ftp (File Transfer Protocol) rfc 959 File transfer

nttp (Network News Transfer Protocol) rfc 977 News reading

http/1.0 (HyperText Transfer Protocol) rfc 1945 Web navigation

http/1.1 (HyperText Transfer Protocol) rfc 2068 Web navigation

The great advantage of these protocols is that the exchanges between the server
and the client are human readable. For example we can just use the telnet

command to talk directly to the server. Invoke telnet host service where host

is the host name on which the server is running the service service (e.g. http,
smtp, nntp, etc.) and then type in the requests as a client would, the server’s
responses will be printed on standard output. This makes it easier to understand
the protocol. However coding and decoding requests and responses is more in-
volved than for binary protocols and the message size also tends to be larger
which is less efficient.

Example Here is an example of an interactive dialog, in the shell, to send an
email on an smtp server. The lines preceded by → go from the client to the
server, and are typed in by the user. The lines preceded by← go from the server
to the client.

telnet margaux smtp

Trying 128.93.8.2 ...

Connected to margaux.inria.fr.

Escape character is '^]'.

← 220 margaux.inria.fr Sendmail 5.64+/AFUU-3 ready at Wed, 15 Apr 92 17:40:59

93

http://www.faqs.org/rfcs/rfc821.html
http://www.faqs.org/rfcs/rfc959.html
http://www.faqs.org/rfcs/rfc977.html
http://www.faqs.org/rfcs/rfc1945.html
http://www.faqs.org/rfcs/rfc2068.html

Modern communication: sockets

→ HELO pomerol.inria.fr

← 250 Hello pomerol.inria.fr, pleased to meet you

→ MAIL From:<god@heavens.sky.com>

← 250 <god@heavens.sky.com>... Sender ok

→ RCPT To:<xleroy@margaux.inria.fr>

← 250 <xleroy@margaux.inria.fr>... Recipient ok

→ DATA

← 354 Enter mail, end with "." on a line by itself

→ From: god@heavens.sky.com (Himself)

→ To: xleroy@margaux.inria.fr

→ Subject: Hello!

→
→ Is everything ok down there?

→ .

← 250 Ok

→ QUIT

← 221 margaux.inria.fr closing connection

Connection closed by foreign host.

The commands HELO, MAIL and RCPT respectively send to the server: the name
of the client machine, the address of the sender and the address of the recipient.
The DATA command asks to send the body of the email. The body of the message
is then entered and ended by a line containing the single character '.' (would
the body of the email contain such a line, we just double the initial '.' on that
line, this additional period is then suppressed by the server).

The responses from the server are all made of a 3 digit numerical code followed
by a comment. Responses of the form 5xx indicate an error and those with 2xx,
that everything is fine. When the client is a real program it only interprets the
response code, the comment is only to help the person who develops the mail
system.

* * *

6.14 Complete example: http requests

The http protocol (HyperText Transfer Protocol) is primarily used to read
documents over the famous “world wide web”. This domain is a niche area of
client-server examples: between the client that reads a page and the server that
writes it there is a myriad of intermediary relays that act as virtual servers for
the real client or delegated clients for the real server. These relay often provide
additional service like caching, filtering, etc..

There are several versions of the http protocol. To allow us to focus on the
essentials, namely the architecture of clients or relays, we use the simple protocol
inherited from the very first versions of the protocol. Even if dust-covered it is
still understood by most servers. At the end of the section we describe a more
modern, but also more complex, version which is needed to make real tools to
explore the web. We do however leave the translation of the examples to this
new version as an exercise.

Version 1.0 of the http protocol specified in rfc 1945 defines simple requests
of the form:

94

http://www.faqs.org/rfcs/rfc1945.html

Complete example: http requests

GET sp uri crlf

where sp represents a space and crlf the string "\r\n" (“return” followed by
“linefeed”). The response to a simple request is also simple: the content of the
url is sent directly, without any headers and the end of the request is signaled
by the end of file, which closes the connection. This form of request, inherited
from version 0.9 of the protocol, limits the connection to a single request.

Fetching a url

We write a geturl program that takes a single argument, a url, retrieves the
resource it denotes on the web and displays it.

The first task is to parse the url to extract the name of the protocol (here,
necessarily "http"), the address of the server, the optional port and the absolute
path of the document on the server. This is done with Str, OCaml’s regular
expression library.

open Unix;;

exception Error of string

let error err mes = raise (Error (err ^ ": " ^ mes));;

let handle_error f x = try f x with Error err -> prerr_endline err; exit 2

let default_port = "80";;

type regexp = { regexp : Str.regexp; fields : (int * string option) list; }

let regexp_match r string =

let get (pos, default) =

try Str.matched_group pos string

with Not_found ->

match default with Some s -> s | _ -> raise Not_found in

try

if Str.string_match r.regexp string 0 then

Some (List.map get r.fields)

else None

with Not_found -> None;;

let host_regexp =

{ regexp = Str.regexp "\\([^/:]*\\)\\(:\\([0-9]+\\)\\)?";

fields = [1, None; 3, Some default_port;] };;

let url_regexp =

{ regexp = Str.regexp "http://\\([^/:]*\\(:[0-9]+\\)?\\)\\(/.*\\)";

fields = [1, None; 3, None] };;

let parse_host host = match regexp_match host_regexp host with

| Some (host :: port :: _) -> host, int_of_string port

| _ -> error host "Ill formed host";;

95

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Str.html

Modern communication: sockets

let parse_url url = match regexp_match url_regexp url with

| Some (host :: path :: _) -> parse_host host, path

| _ -> error url "Ill formed url";;

Sending a simple request is a trivial task, as the following function shows.
let send_get url sock =

let s = Printf.sprintf "GET %s\r\n" url in

ignore (write sock s 0 (String.length s));;

Note that the url can be complete, with the address and port of the server, or
just contain the requested path on the server.

Reading the response is even easier, since only the document is returned,
without any additional information. If there’s an error in the request, the error
message returned by the server as an html document. Thus we just print the
response with the function Misc.retransmit without indicating whether this is an
error or the desired document. The rest of the program establishes the connection
with the server.
let get_url proxy url fdout =

let (hostname, port), path = match proxy with

| None -> parse_url url

| Some host -> parse_host host, url

in

let hostaddr =

try inet_addr_of_string hostname

with Failure _ ->

try (gethostbyname hostname).h_addr_list.(0)

with Not_found -> error hostname "Host not found"

in

let sock = socket PF_INET SOCK_STREAM 0 in

Misc.try_finalize

begin function () ->

connect sock (ADDR_INET (hostaddr, port));

send_get path sock;

Misc.retransmit sock fdout

end ()

close sock;;

We conclude, as usual, by parsing the command line.
let geturl () =

let len = Array.length Sys.argv in

if len < 2 then

error "Usage:" (Sys.argv.(0) ^ " [proxy [:<port>]] <url>")

else

let proxy, url =

if len > 2 then Some Sys.argv.(1), Sys.argv.(2) else

None, Sys.argv.(1)

in

get_url proxy url stdout;;

handle_unix_error (handle_error geturl) ();;

96

Complete example: http requests

pauillac.inria.fr

www.inria.fr

kelen.polytechnique.fr

Relay

Browser

Other client

Figure 5 — http relay

http relay

We program an http relay (or proxy), which is a server that redirects http
requests from a client to another server (or relay. . .) and forwards responses
from that server back to the client.

The role of a relay is shown in in figure 5. When a client uses a relay, it
addresses its requests to the relay rather than to the individual http servers
located around the world. A relay has multiple advantages. It can store the re-
sponses to the most recent or frequent requests and serve them without querying
the remote server (e.g. to avoid network overload or if the server is down). It
can filter the responses (e.g. to remove advertisements or image, etc.). It can
also simplify the development of a program by making it see the whole world
wide web through a single server.

The proxy port command launches the server on the port port (or if omitted,
on the default port for http). We reuse the code of the get_url function (we
assume that the functions above are available in a Url module). It only remains
to write the code to analyze the requests and set up the server.

open Unix

open Url

let get_regexp =

{ regexp = Str.regexp "^[Gg][Ee][Tt][\t]+\\(.*[^ \t]\\)[\t]*\r";

fields = [1, None] }

let parse_request line = match regexp_match get_regexp line with

| Some (url :: _) -> url

| _ -> error line "Ill formed request"

We establish the service with the establish_server function, thus we just need
to define the function to handle a connection:

let proxy_service (client_sock, _) =

let service () =

try

let in_chan = in_channel_of_descr client_sock in

let line = input_line in_chan in

97

Modern communication: sockets

let url = parse_request line in

get_url None url client_sock

with End_of_file ->

error "Ill formed request" "End_of_file encountered"

in

Misc.try_finalize

(handle_error service) ()

close client_sock

and the rest of the program just establishes the service:

let proxy () =

let http_port =

if Array.length Sys.argv > 1 then

try int_of_string Sys.argv.(1)

with Failure _ -> error Sys.argv.(1) "Incorrect port"

else

try (getservbyname "http" "tcp").s_port

with Not_found -> error "http" "Unknown service"

in

let treat_connection s = Misc.double_fork_treatment s proxy_service in

let addr = ADDR_INET(inet_addr_any, http_port) in

Misc.tcp_server treat_connection addr;;

handle_unix_error (handle_error proxy) ();;

The http/1.1 protocol

Simple http requests need one connection per request. This is inefficient because
most requests on a server are followed by others (e.g. if a client gets a web page
with images, it will subsequently request the images) and the time to establish a
connection can easily exceed the time spent in handling the request itself (chap-
ter 7 show how we can reduce this by handling the requests with threads rather
than processes). Version 1.1 of the http described in rfc 2068 uses complex
requests that allow to make multiple requests on a single connection3.

In complex requests, the server precedes every response with a header describ-
ing the format of the response and possibly the size of the document transmitted.
The end of the document is no longer indicated by an end of file, since we know its
size. The connection can therefore stay open to handle more requests. Complex
requests have the following form:

GET sp uri sp HTTP/1.1 crlf

header crlf

The header part defines a list of key-value fields with the following syntax:

field : value crlf

Superfluous spaces are allowed around the ':' separator and any space can always
be replaced by a tab or a sequence of spaces. The header fields can also span

3The http/1.0 protocol already allows complex requests but we prefer to describe the
http/1.1 protocol which deals exclusively with these.

98

http://www.faqs.org/rfcs/rfc2068.html

Complete example: http requests

several lines: in this case, and in this case only, the crlf end of line lexeme is
immediately followed by a space sp. Finally, uppercase and lowercase letters are
equivalent in the keyword of fields and in the values of certain fields.

Mandatory and optional fields depend on the type of request. For instance,
a GET request must have a field indicating the destination machine:

Host : hostname crlf

For this type of request, we may also request, using the optional field If-Modified,
that the document be returned only if it has been modified since a given date.

If-Modified : date crlf

The number of fields in the header is not fixed in advance but indicated by the
end of the header: a line containing only the characters crlf.

Here is a complete request (on each line an implicit \n follows the \r):

GET /~remy/ HTTP/1.1\r

Host:pauillac.inria.fr\r

\r

A response to a complex request is also a complex response. It contains a status
line, a header, and the body of the response, if any.

HTTP/1.1 sp status sp message crlf

header crlf

body

The fields of a response header have a syntax similar to that of a request but the
required and optional fields are different (they depend on type of request and
the status of the response — see the full documentation of the protocol).

The body of the response can be transmitted in a single block, in chunks or
be empty:

• If the body is a single block the header contains a Content-Length field specifying
in decimal ascii notation the number of bytes in the body.

• If the body is transmitted in chunks, the header contains a Transfer-Encoding

field with the value “chunked”. The body is then a set of chunks and ends with
an empty chunk. A chunk is of the form:

size [; arg] crlf

chunk crlf

where size is the size of the chunk in hexadecimal notation and chunk is a chunk
of the response body of the given size (the part between [and] is optional and
can safely be ignored). The last, empty, chunk is always of the following form:

0 crlf

header crlf crlf

• If the response does not contain a Content-Length field and that it is not chunked,
the body is empty (for instance, a response to a request of type HEAD contains
only a header).

Here is an example of a single block response:

99

Modern communication: sockets

HTTP/1.1 200 OK\r

Date: Sun, 10 Nov 2002 09:14:09 GMT\r

Server: Apache/1.2.6\r

Last-Modified: Mon, 21 Oct 2002 13:06:21 GMT\r

ETag: "359-e0d-3db3fbcd"\r

Content-Length: 3597\r

Accept-Ranges: bytes\r

Content-Type: text/html\r

\r

<html>

...

</html>

The status 200 indicates that the request was successful. A 301 means the url
was redirected to another url defined in the Location field of the response. The
4XX statuses indicate errors on the client side while 5XX errors on the server side.

Exercise 15 Write a relay that works with the http/1.1 protocol.

* * *
Exercise 16 Add a cache to the relay. Pages are saved on the hard drive and
when a requested page is available in the cache, it is served unless too old. In
that case the server is queried again and the cache updated.

* * *
Exercise 17 Write a program wget such that wget u1 u2 ... un makes the
requests u1, u2, . . . , un and saves the responses in the files ./m1/p1, ./m2/p2, . . . ,
./mn/pn where mi and pi are respectively the name of the server and the absolute
path of the request ui. The program should take advantage of the protocol to
establish a single connection to a machine m when it is the same for consecutive
requests. Permanent url redirections should be followed. The following options
can also be added:

-N Do not download the url if the file ./mi/ui does not exist or is
older than the url.

-r Download recursively all the urls embedded in the responses
which are documents in html format.

* * *

100

7 Threads

A thread, also called a lightweight process, is a flow of control that can execute
in parallel with other threads in the same program.

This chapter describes the functions that allow a program to create threads
(Thread module) and synchronize by means of locks (Mutex module), conditions
(Condition module), and synchronous events (Event module).

7.1 Introduction

The creation of a thread is very different from the fork operation that creates
a copy of the current process (and therefore a copy of the program). After a
fork, the address spaces of the parent and child are totally disjoint, and the two
processes can communicate only through system calls (like reading or writing a
file or a pipe).

In contrast, all the threads within a program share the same address space.
The only information that is not shared, and differentiates one thread from an-
other, is the thread’s identity and its execution stack (along with certain system
information such as the signal mask, the state of locks and conditions, etc.) From
this viewpoint, threads resemble coroutines. The threads within a given program
are all treated in the same fashion, except for the initial thread that was created
when the program started. When this thread terminates, so do all the other
threads and therefore the program as a whole. (Whenever we speak of multiple
threads, we will implicitly mean threads within a given program.)

But unlike coroutines, which pass control explicitly from one to another and
cannot execute in parallel, threads can execute in parallel and can be scheduled
preemptively by the system. From this viewpoint, threads resemble processes.

The common address space permits threads to communicate directly among
themselves using shared memory. The fact that threads can execute in parallel
means that they must synchronize their access to shared data, so that one finishes
writing before the other begins reading. Although not necessary in principle, in
practice this requires going through the operating system. Synchronization is
often a difficult part of programming with threads. It can be done with locks
and conditions, or in a higher-level fashion with events.

The advantages of threads over processes are the lower cost of creation and
the ability to exchange large data structures simply by passing pointers rather
than copying.

On the other hand, using threads incurs the cost of managing the synchro-
nization among them, including the case of a fatal error in one of the threads. In
particular, a thread must be careful to release its locks and preserve its invariant
before stopping. Processes may also be preferable to threads when we cannot
really benefit from the latter’s advantages.

Implementation in OCaml To compile an application using native threads,
use the following:

ocamlc -thread unix.cma threads.cma -o prog mod1.ml mod2.ml mod3.ml

101

Threads

ocamlopt -thread unix.cmxa threads.cmxa -o prog mod1.ml mod2.ml mod3.ml

If the ocamlbuild tool is used, all that is needed is to add the following to the
_tags file:

<mod{1,2,3}.ml> : thread

<prog.{native,byte}> : use_unix, thread

If your installation does not support native threads, you can refer to section 7.8
or the manual for instructions how to use simulated “vm-level” threads. The
text and examples in this chapter assume native threads and do not apply, in
general, to vm-level threads.

7.2 Creation and termination of threads

The functions described in this section are defined in the Thread module.

The system call create f v creates a new thread that executes the function
application f v and returns a thread id that the caller can use to control the
newly-created thread.

val create : ('a -> 'b) -> 'a -> t

The function application executes concurrently with the other threads in the
program. The thread terminates when the application returns and its result
is simply ignored. If the thread terminates with an uncaught exception, the
exception is not propagated to any other thread: a message is printed on the
standard error output and the exception is otherwise ignored. (The other threads
have proceeded independently and would not be able to receive the exception.)

A thread can also terminate prematurely with the system call exit of the
Thread module, not to be confused with Pervasives.exit that terminates the
entire program, i.e. all its threads.

val exit : unit -> unit

The initial thread of a program implicitly calls the Pervasives.exit function
when it terminates.

When another thread terminates before the initial thread, it is deallocated
immediately by the OCaml runtime library. It does not become a zombie as in
the case of a Unix process created by fork.

The system call self returns the thread id of the calling thread.

val self : unit -> t

We already know enough to propose an alternative to the preceding model
for the concurrent server that used “fork” (or “double fork”) — by using a thread
rather than a child process. To establish such a server, we introduce a variant
Misc.co_treatment of the function Misc.fork_treatment defined in section 6.7.

let co_treatment server_sock service (client_descr, _ as client) =

try ignore (Thread.create service client)

with exn -> close client_descr; raise exn;;

If the thread was successfully created, the treatment is handled entirely by
the service function, including closing client_descr. Otherwise, we close the

102

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Thread.html
http://www.opengroup.org/onlinepubs/009696799/functions/pthread_create.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Thread.html#VALcreate
http://www.opengroup.org/onlinepubs/009696799/functions/pthread_exit.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Pervasives.html#VALexit
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Thread.html#VALexit
http://www.opengroup.org/onlinepubs/009696799/functions/pthread_self.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Thread.html#VALself

Waiting

client_descr descriptor, the client is abandoned, and we let the main program
handle the error.

Note that all the difficulty of the co-server is hidden in the service function,
which must handle the connection robustly until disconnection. In the case of
a concurrent server where the service is executed by another process, premature
termination of the service due to a fatal error produces by default the desired
behavior — closing the connection — because the system closes the file descrip-
tors when a process exits. But in the case where the service is executed by a
thread, the descriptors of the different threads are shared by default and not
closed at the termination of the thread. It is therefore up to the thread to close
its descriptors before exiting. In addition, a thread cannot call Pervasives.exit
in the case of a fatal error during the handling of a service, because it would stop
not only the service but also the entire server. Calling Thread.exit is often not
a solution either, because we risk not having properly deallocated the thread’s
open resources, and in particular the connection.

One solution consists of raising an exception to signify a fatal stop (for exam-
ple an Exit exception), causing finalization code to be executed as it is handled.
For similar reasons, it is essential to block the sigpipe signal during the handling
of a service by a thread, replacing the immediate termination of the thread by
the raising of an EPIPE exception.

7.3 Waiting

The functions described in this section are defined in the Thread module.

The system call join allows one thread to wait for another to finish.

val join : t -> unit

The calling thread is suspended until the thread with the given thread id has ter-
minated its execution. This function can also be used by the principal thread to
wait for all the other threads to finish before terminating itself and the program.
(The default behavior is to kill the other threads without waiting for them to
terminate.)

Although this call is blocking and therefore “long”, it is restarted automat-
ically when a signal is received: it is effectively interrupted by the signal, the
handler is invoked, then the call is restarted. The call therefore does not return
until the thread has really terminated, and the call never raises the EINTR excep-
tion. From the viewpoint of the OCaml programmer, it behaves as if the signal
was received at the moment when the call returns.

A thread does not return, since it is executed asynchronously. But its action
can be observed — luckily! — by its side effects. For example, one thread can
place the result of a computation in a reference that another thread will consult
after making sure that the calculation has finished. We illustrate this in the
following example.

exception Exited

type 'a result = Value of 'a | Exception of exn

let eval f x = try Value (f x) with z -> Exception z

let coexec (f : 'a -> 'b) (x : 'a) : unit -> 'b =

let result = ref (Exception Exited) in

103

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Thread.html
http://www.opengroup.org/onlinepubs/009696799/functions/pthread_join.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Thread.html#VALjoin

Threads

let p = Thread.create (fun x -> result := eval f x) x in

function () -> match (join p; !result) with

| Value v -> v

| Exception exn -> raise exn;;

let v1 = coexec succ 4 and v2 = coexec succ 5 in v1 () + v2 ();;

The system can suspend one thread in order to give control temporarily to
another, or because it is waiting for a resource being used by another thread
(locks and conditions, for example) or by another process (file descriptors, for
example). A thread can also suspend itself voluntarily. The yield function
allows a thread to give up control explicitly, without waiting for preemption by
the system.
val yield : unit -> unit

It is a hint for the thread scheduler, but it may have no effect, for example if no
other thread can execute immediately, the system may give control back to the
same thread.

Conversely, it is not necessary to execute yield to permit other threads to
execute, because the system reserves the right to execute the yield command
itself at any moment. In fact, it exercises this right sufficiently often to permit
other threads to execute and to give the illusion that the threads are running in
parallel, even on a uniprocessor machine.

Example We can revisit the example of section 3.3 and modify it to use threads
rather than processes.

1 let rec psearch k cond v =

2 let n = Array.length v in

3 let slice i = Array.sub v (i * k) (min k (n - i * k)) in

4 let slices = Array.init (n/k) slice in

5 let found = ref false in

6 let pcond v = if !found then Thread.exit (); cond v in

7 let search v = if simple_search pcond v then found := true in

8 let proc_list = Array.map (Thread.create search) slices in

9 Array.iter Thread.join proc_list;

10 !found;;

The function psearch k f v searches with k threads in parallel for an array el-
ement satisfying the function f. The function pcond allows the search to be
interrupted when an answer has been found. All the threads share the same
reference found: they can therefore access it concurrently. No critical section is
required, because if different threads write to this resource in parallel, they write
the same value. It is important that the threads do not write the result of the
search when it is false! For example, replacing line 7 by
let search v = found := !found && simple_search pcond v

or even:
let search v = let r = simple_search pcond v in found := !found && r

would be incorrect.

* * *

104

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Thread.html#VALyield

Waiting

The parallel search is interesting even on a uniprocessor machine if the com-
parison of elements could be blocked temporarily (for example by disk accesses
or network connections). In this case, the thread performing the search passes
control to another and the machine can therefore continue the computation on
another part of the array and return to the blocked thread when its resource is
free.

Access to certain elements can have significant latency, on the order of a
second if information must be retrieved over the network. In this case, the
difference in behavior between a sequential search and a parallel search becomes
obvious.

Exercise 18 Parallelize quicksort on arrays. Answer page 132.

* * *

The other forms of suspension are tied to operating system resources. A
thread can be suspended for a certain time by calling delay s. Once s seconds
elapse, it can be restarted.

val delay : float -> unit

This primitive is provided for portability with vm-level threads, but delay s is
simply an abbreviation for ignore (Unix.select [] [] [] s). This call, unlike
join, is not restarted when it is interrupted by a signal.

To synchronize a thread with an external operation, we can use the select

command. Note that this will block only the calling thread and not the entire
program. (The Thread module redefines this function, because in the case of
simulated threads calling the one in the Unix module would block the whole
program and therefore all the threads. It is therefore necessary to use select

from the Thread module and not Unix.select, even if the two are equivalent in
the case of native threads.)

Example To make the Sieve of Eratosthenes example of section 5.2 work with
threads instead of by duplication of Unix processes, it suffices to replace the
lines 5–16 of the function filter by:

let p = Thread.create filter (in_channel_of_descr fd_in) in

let output = out_channel_of_descr fd_out in

try

while true do

let n = input_int input in

if List.exists (fun m -> n mod m = 0) first_primes then ()

else output_int output n

done;

with End_of_file ->

close_out output;

Thread.join p

and the lines 4–10 of the function sieve by:

105

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Thread.html#VALdelay
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Thread.html#VALselect

Threads

Thread p

Thread q

Value of c

read k

k

read k

k

write k + 1

k + 1

write k + 1

k + 1
time

Figure 6 — Competition for access to a shared resource.

let k = Thread.create filter (in_channel_of_descr fd_in) in

let output = out_channel_of_descr fd_out in

generate len output;

close_out output;

Thread.join k;;

However, we cannot expect any significant gain from this example, which uses
few processes relative to computation time.

* * *

7.4 Synchronization among threads: locks

The functions in this section are defined in the Mutex module (as in Mutual
exclusion).

We mentioned above a problem of concurrent access to mutable resources.
In particular, the following scenario illustrates the problem of access to shared
resources. Consider a counter c and two processes p and q, each incrementing
the counter in parallel.

Assume the scenario described in figure 6. Thread p reads the value of counter
c, then gives control to q. In its turn, q reads the value of c, then writes the
value k + 1 to c. The thread p resumes control and writes the value k + 1 to c.
The final value of c is therefore k + 1 instead of k + 2.

This classic problem can be resolved by using locks that prevent arbitrary
interleaving of p and q.

Locks are shared objects that can be held by at most a single thread within
a program at a time. A lock is created by the function create.

val create : unit -> t

This function returns a new lock, initially not held by any thread. To acquire
an existing lock, it is necessary to use the system call lock with the lock as
argument. If the lock is held by another thread, the caller is frozen until the lock
is released. A lock must be released explicitly by the thread that holds it with
the system call unlock.

val lock : t -> unit

val unlock : t -> unit

The lock call behaves like Thread.join with respect to signals: if the thread
receives a signal while executing lock, the signal will be noted (i.e. the OCaml

106

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Mutex.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Mutex.html#VALcreate
http://www.opengroup.org/onlinepubs/009696799/functions/pthread_mutex_lock.html
http://www.opengroup.org/onlinepubs/009696799/functions/pthread_mutex_unlock.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Mutex.html#VALlock
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Mutex.html#VALunlock

Synchronization among threads: locks

runtime will be notified that the signal has arrived), but the thread will continue
to wait so that lock effectively returns only when the lock has been acquired,
and never raises the EINTR exception. The real treatment of the signal by OCaml
will happen only upon the return from lock.

We can also try to acquire a lock without blocking with the system call
trylock

val try_lock : t -> bool

This function returns true if the lock has been acquired and false otherwise. In
the latter case, execution is not suspended since the lock is not acquired. The
thread can therefore do something else and eventually return and try its luck
later.

Example Incrementing a global counter used by several threads poses a syn-
chronization problem: the instants between reading the value of the counter and
writing the incremented value are in a critical region, i.e. two threads cannot
be in this region at the same time. The synchronization can easily be managed
with a lock.

type counter = { lock : Mutex.t; mutable counter : int }

let newcounter () = { lock = Mutex.create (); counter = 0 }

let addtocounter c k =

Mutex.lock c.lock;

c.counter <- c.counter + k;

Mutex.unlock c.lock;;

The sole read operation on the counter poses no problem. It can be performed
in parallel with a modification of the counter: the result will simply be the
value of the counter just before or just after the modification, both results being
consistent.

* * *
A common pattern is to hold a lock temporarily during a function call. It

is of course necessary to make sure to release the lock at the end of the call,
whether the call succeeded or failed. We can abstract this behavior in a library
function:

let run_with_lock l f x =

Mutex.lock l; try_finalize f x Mutex.unlock l

In the preceding example, we could also have written:

let addtocounter c =

Misc.run_with_lock c.lock (fun k -> c.counter <- c.counter + k)

Example An alternative to the model of the server with threads is to start a
number of threads in advance which handle requests in parallel.

val tcp_farm_server :

int -> (file_descr -> file_descr * sockaddr -> 'a) -> sockaddr -> unit

The tcp_farm_server function behaves like tcp_server but takes an additional
argument which is the number of threads to start, each of which will become a

107

http://www.opengroup.org/onlinepubs/009696799/functions/pthread_mutex_trylock.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Mutex.html#VALtry_lock

Threads

server at the same address. The advantage of a pool of threads is to reduce the
time to handle each connection by eliminating the cost of creating a thread for
it, since they are created once and for all.

let tcp_farm_server n treat_connection addr =

let server_sock = Misc.install_tcp_server_socket addr in

let mutex = Mutex.create () in

let rec serve () =

let client =

Misc.run_with_lock mutex

(Misc.restart_on_EINTR accept) server_sock in

treat_connection server_sock client;

serve () in

for i = 1 to n-1 do ignore (Thread.create serve ()) done;

serve ();;

The only precaution to take is to ensure mutual exclusion around the accept so
that only one of the threads accepts a connection at a time. The idea is that
the treat_connection function performs a sequential treatment, but it is not a
requirement — we can effectively combine a pool of threads with the creation of
new threads, which can be dynamically adjusted depending on the load.

* * *
Acquisition of a lock is an inexpensive operation when it succeeds without

blocking. It is generally implemented with a single “test-and-set” instruction
provided by all modern processors (plus other small costs that are involved, such
as updating caches). However, when the lock is not available, the process must
be suspended and rescheduled later, which involves a significant additional cost.
We must therefore incur this penalty only for a real suspension of a process in
order to give control to another, and not for its potential suspension during the
acquisition of a lock. Consequently, we will almost always want to release a lock
as soon as possible and take it back later if necessary, rather than simply holding
onto the lock. Avoiding these two operations would have the effect of enlarging
the critical region and therefore the frequency with which another thread finds
itself effectively in competition for the lock and in need of suspension.

Locks reduce interleaving. In return, they increase the risk of deadlock. For
example, there is a deadlock if a thread p waits for a lock v held by a thread q
which itself waits for a lock u held by p. (In the worst case, a thread waits for
a lock that it holds itself.) Concurrent programming is difficult, and guarding
against deadlock is not always easy. A simple way of avoiding this situation that
is often possible consists of defining a hierarchy among the locks and ensuring
that the order in which the locks are acquired dynamically respects the hierarchy:
a thread never acquires a lock unless that lock is dominated by all the other locks
that the thread already holds.
7.5 Complete example: http relay

We modify the http relay developed in section 6.14 so that it services requests
using threads.

Intuitively, it suffices to replace the establish_server function that creates a
process clone with a function that creates a thread. We must however take certain

108

Complete example: http relay

precautions. The challenge with threads is that they share the entire memory
space. We must therefore ensure that the threads are not “stepping on each
other’s toes” with one undoing what was just done by another. That typically
happens when two threads modify the same mutable structure in parallel.

In the case of the http server, there are several changes to make. Let us
start by resolving problems with access to resources. The proxy_service func-
tion, described in section 6.14, handles the treatment of connections. Via the
intermediary functions parse_host, parse_url and parse_request, it calls the
regexp_match function which uses the Str library. However, this library is not
re-entrant (the result of the last search is stored in a global variable). This exam-
ple shows that we must beware of calls to innocent-looking functions that hide
potential collisions. In this case we will not rewrite the Str library but simply
sequentialize its use. It suffices to protect calls to this library with locks (and
there is really no other choice). We must still take the precaution of releasing
the lock when returning from the function abnormally due to an exception.

To modify the existing code as little as possible, we can just rename the
definition of regexp_match in the Url module as unsafe_regexp_match and then
define regexp_match as a protected version of unsafe_regexp_match.
let strlock = Mutex.create ();;

let regexp_match r string =

Misc.run_with_lock strlock (unsafe_regexp_match r) string;;

The change is rather minimal. It should be noted that the regexp_match

function includes both the expression matching and the extraction of the matched
groups. It would definitely have been incorrect to protect the Str.string_match

and Str.matched_group functions individually.
Another solution would be to rewrite the analysis functions without using

the Str library. But there is no reason for such a choice, since synchronizing the
library primitives is easy to do and does not turn out to be a source of inefficiency.
Obviously, a better solution would be for the Str library to be re-entrant in the
first place.

The other functions that are called are already re-entrant, in particular the
Misc.retransmit function that allocates different buffers for each call.

However, there are still some precautions to take regarding error handling.
The handling of a connection by a thread must be robust, as explained above.
In particular, in case of error, the other threads must not be affected. In other
words, the thread must terminate “normally”, properly closing the connection in
question and going back to accepting other pending connections. We must first
of all replace the call to exit in handle_error because it is essential not to kill
the whole process. A call to Thread.exit would not be correct either, because
thread termination does not close its (shared) descriptors, the way the system
does for process termination. An error in the handling of a connection would
leave the connection open. The solution consists of raising an Exit exception
that allows the finalization code to do what is required. We must now protect
treat_connection by catching all errors, in particular Exit but also EPIPE, which
can be raised if the client closes the connection prematurely. We will take care
of this by using a protected function.
let allow_connection_errors f s =

try f s with Exit | Unix_error(EPIPE,_,_) -> ()

109

Threads

let treat_connection s =

Misc.co_treatment s (allow_connection_errors proxy_service) in

Exercise 19 Rewrite the proxy for the http/1.1 protocol using threads.

* * *
Exercise 20 Coroutines can be seen as a very particular kind of threads where
each process must surrender control explicitly before another can execute. Give
an implementation of coroutines using threads.

* * *

7.6 Conditions

The functions described in this section are defined in the Condition module.
Synchronization with locks is very simple, but it is not sufficient: locks allow

waiting for shared data to be free, but do not allow waiting for the data to
have a particular state. Let us replace the example of a counter by a (first-
in/first-out) queue shared among several threads. Adding a value to the queue
can be synchronized by using a lock as above, since no matter what the state
of the queue, we can always add an element. But what about removing an
element from the queue? What should be done when the queue is empty? We
cannot hold the lock while waiting for the queue to be filled, because that would
completely prevent another thread from filling the queue. So it must be released.
But how can we know when the queue is no longer empty, except by testing it
periodically? This solution, called “busy-waiting”, is definitely not satisfactory.
Either it consumes computing cycles unnecessarily (period too short) or else it
it is not reactive enough (period too long).

Conditions provide a solution to this problem. A thread that holds a lock can
wait for a condition object until another thread sends a signal on that condition.
As with locks, conditions are passive structures that can be manipulated by
synchronization functions. They can be created by the create function.

val create : unit -> t

A process p that already holds a lock v can wait on a condition c and the lock v

with the system call wait. The process p informs the system that it is waiting
on the condition c and the lock v, then releases the lock v and goes to sleep. It
will not be woken up by the system until another thread q signals a change on
the condition c and the lock v is available; the process p will then hold the lock
v again.

val wait : t -> Mutex.t -> unit

Note: it is an error to call wait c v without holding the lock v. The behavior of
wait c v with respect to signals is the same as for Mutex.lock.

When a thread signals a change on a condition, it can either ask for all threads
waiting on that condition to be woken up (system call broadcast), or else for just
one of them to be woken up (system call signal).

val signal : t -> unit

val broadcast : t -> unit

110

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Condition.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Condition.html#VALcreate
http://www.opengroup.org/onlinepubs/009696799/functions/pthread_cond_wait.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Condition.html#VALwait
http://www.opengroup.org/onlinepubs/009696799/functions/pthread_cond_broadcast.html
http://www.opengroup.org/onlinepubs/009696799/functions/pthread_cond_signal.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Condition.html#VALsignal
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Condition.html#VALbroadcast

Conditions

Sending a signal or a broadcast on a condition does not require holding a lock
(unlike waiting), in the sense that it will not trigger a “system” error. However,
it can sometimes be a programming error.

The choice between waking up one thread or all the threads depends on the
problem. To consider the example of the queue again, if a thread adds an element
to an empty queue, there is no need to wake up all the others, since only one
will effectively be able to remove that element. On the other hand, if it adds
a number of elements that is either not statically known or very large, it must
wake up all the threads. Note that if adding an element to a non-empty queue
does not send a signal, then adding an element to an empty queue must send a
broadcast, since it could be followed immediately by another addition (without
a signal) and therefore behave like a multiple addition. In summary, either send
a signal on every addition, or send a broadcast only when adding to an empty
queue. The choice between these two strategies is a bet on whether the queue is
usually empty (first solution) or usually non-empty (second solution).

Often, one thread knows only an approximation of the reason why another
thread is waiting on a condition. It will therefore signal the condition whenever
the situation might be what the other thread is waiting for. An awakened thread,
therefore, cannot assume that the condition it was waiting is now satisfied. It
must, in general, re-test the state of its shared data, and if necessary wait on the
condition again. This does not constitute busy-waiting, because it only happens
when another thread signals the condition.

Here is another justification for this approach: when a thread has just pro-
duced a lot of some resource and wakes all the others using a broadcast, nothing
prevents the first one that wakes up from being greedy and exhausting the entire
resource. The second one to wake up must go back to sleep, hoping to be luckier
next time.

We can now give a concrete solution for shared queues. The queue structure
defined in the Queue module is extended with a lock and a non_empty condition.

1 type 'a t =

2 { queue : 'a Queue.t; lock : Mutex.t; non_empty : Condition.t }

3 let create () =

4 { queue = Queue.create ();

5 lock = Mutex.create (); non_empty = Condition.create () }

6

7 let add e q =

8 Mutex.lock q.lock;

9 if Queue.length q.queue = 0 then Condition.broadcast q.non_empty;

10 Queue.add e q.queue;

11 Mutex.unlock q.lock;;

12

13 let take q =

14 Mutex.lock q.lock;

15 while Queue.length q.queue = 0

16 do Condition.wait q.non_empty q.lock done;

17 let x = Queue.take q.queue in

18 Mutex.unlock q.lock; x;;

Addition never blocks, but we must not forget to signal the non_empty condition

111

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Queue.html

Threads

when the list is empty beforehand, because it is possible that someone is waiting
on the condition.

Removal is a little more complicated: after acquiring the lock, we must try to
remove an element from the queue. If the queue is empty, we must wait on the
non_empty condition. When awakened, we try again, knowing that we already
have the lock.

As explained above, the broadcast q.non_empty signal (line 9) is executed by
a thread p already in possession of the lock q.lock. This implies that a reader
thread q executing the take function cannot be between line 15 and 16 where it
would have verified that the queue is empty but not yet have gone to sleep. In
this case, the signal sent by p would be ineffective and ignored, since q has not
gone to sleep yet; but q would then go to sleep and not be woken up, because p
has already sent its signal. The lock therefore guarantees that either q is already
asleep or else has not yet tested the state of the queue.

Exercise 21 Implement a variant in which the queue is bounded: addition to
the queue becomes blocking when the size of the queue reaches a fixed value. (In
a concurrent world, we might need this scheme to avoid having a producer that
produces endlessly while the consumer is blocked.) Answer page 133.

* * *

7.7 Event-based synchronous communication

The functions described in this section are defined in the Event module.
Locks and conditions together allow all forms of synchronization to be ex-

pressed. However, their use is not always easy, as shown by the example of the
initially simple queue whose synchronization code subsequently turned out to be
subtle.

Event-based synchronous communication is a collection of higher-level com-
munication primitives that tend to facilitate concurrent programming. The prim-
itives in the Event module were initially developed by John Reppy as an exten-
sion of the Standard ML language called Concurrent ML [16]. In OCaml, these
primitives are located above the more elementary synchronization of locks and
conditions.

Communication occurs by sending events along channels. Channels are like
“lightweight pipes”: they allow communication among threads in the same pro-
gram and take care of synchronization between producers and consumers. A
channel carrying values of type 'a has the type 'a Event.channel. Channels are
homogeneous and therefore always carry values of the same type. A channel is
created with the new_channel function.
val new_channel : unit -> 'a channel

Sending or receiving a message is not done directly, but through the intermediary
of an event. An elementary event is “sending a message” or “receiving a message”.
They are constructed by means of the following primitives:
val send : 'a channel -> 'a -> unit event

val receive : 'a channel -> 'a event

112

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Event.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Event.html#VALnew_channel
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Event.html#VALsend
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Event.html#VALreceive

Event-based synchronous communication

Construction of a message does not have an immediate effect: it just creates a
data structure describing the action to be done. To make an event happen, the
thread must synchronize with another thread wishing to make the complemen-
tary event happen. The sync primitive allows a thread to wait for the occurrence
of the event passed as argument.

val sync : 'a event -> 'a

Thus, to send a value v on the channel c, we can execute sync (send c v). The
thread is suspended until the event occurs, that is to say until another thread is
ready to receive a value on the channel c. In a symmetric fashion, a thread can
wait for a message on channel c by performing sync (receive c).

There is a competition among all the producers on one hand and all the
consumers on the other. For example, if several threads try to send a message on
a channel but only one is ready to read it, it is clear that only one producer will
make the event occur. The others will remain suspended, without even noticing
that another was “served” ahead of them.

The competition can also occur within the same thread. Multiple events can
be combined by the choose primitive.

val choose : 'a event list -> 'a event

The resulting event is an offer, in parallel, of the events passed as arguments,
and occurs when exactly one of them occurs. We distinguish between the offer
of an event and its occurrence. The call sync (choose [e1; e2]) synchronizes
by offering a choice of two events e1 and e2, but only one of the two events will
effectively occur (the offer of the other event will be simultaneously canceled).
The wrap_abort primitive allows to handle an event being canceled.

val wrap_abort : 'a event -> (unit -> unit) -> 'a event

The call wrap_abort e f creates an event that is equivalent to e, but if it is not
chosen during synchronization, then the function f is executed. (This is only
interesting when it is part of a complex event.)

A thread can try to synchronize on an event without blocking (somewhat like
Mutex.try_lock) with poll.

val poll : 'a event -> 'a option

The call poll e offers the event e but if it cannot occur immediately, it cancels
the offer rather than blocking and has no effect (or more exactly, behaves as if
the expression poll e had been replaced by the value None). By contrast, if the
event can happen immediately, then it behaves as if the thread had done sync e,
except that the value Some v is returned rather than v.

Example In section 7.3 the example of the Sieve of Eratosthenes, the commu-
nication between different threads is done with pipes as in the original program,
using system memory (the pipe) as intermediary. We may think that it is more
efficient to communicate directly by using the memory of the process. A simple
solution consists of replacing the pipe by a channel on which integers are sent.

Sending integers on the channel is not sufficient, because we must also be
able to detect the end of the stream. The simplest is therefore to pass elements
of the form Some n and to terminate by sending the value None. To minimize the

113

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Event.html#VALsync
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Event.html#VALchoose
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Event.html#VALwrap_abort
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Event.html#VALpoll

Threads

changes, we use the code of the example in section 5.2. We simulate pipes and
the functions for reading and writing pipes by channels and functions for reading
and writing channels.

It is sufficient to take the previous version of the program and change the
input/output functions to ones that read and write a channel, rather than an
input/output buffer from the Pervasives library. For example, we can insert
the following code at the beginning of the program just after the open Unix;;

directive:
let pipe () = let c = Event.new_channel () in c, c

let out_channel_of_descr x = x

let in_channel_of_descr x = x

let input_int chan =

match Event.sync (Event.receive chan) with

| Some v -> v

| None -> raise End_of_file

let output_int chan x = Event.sync (Event.send chan (Some x))

let close_out chan = Event.sync (Event.send chan None);;

However, if we compare the efficiency of this version with the previous one,
we find that it is twice as slow. Communication of each integer requires a syn-
chronization between two threads and therefore several system calls for acquiring
and releasing locks. On the other hand, communication via pipes uses buffered
i/o that allows several thousand integers to be exchanged with each system call.

To be fair, one should also provide buffered communication on channels, us-
ing the channel only to exchange a packet of integers. The child can accumulate
the results in a private queue, to which it can therefore write without synchro-
nization. When the queue is full, or upon an explicit request, it is emptied by
synchronizing on the channel. The parent has its own queue that it receives by
synchronizing and empties gradually.

Here is a solution:
type 'a buffered =

{ c : 'a Queue.t Event.channel;

mutable q : 'a Queue.t;

size : int }

let pipe () = let c = Event.new_channel () in c, c;;

let size = 1024;;

let out_channel_of_descr chan =

{ c = chan; q = Queue.create (); size = size };;

let in_channel_of_descr = out_channel_of_descr;;

let input_int chan =

if Queue.length chan.q = 0 then begin

let q = Event.sync (Event.receive chan.c) in

if Queue.length q > 0 then chan.q <- q

else raise End_of_file

end;

114

Implementation details

Queue.take chan.q;;

let flush_out chan =

if Queue.length chan.q > 0 then Event.sync (Event.send chan.c chan.q);

chan.q <- Queue.create ();;

let output_int chan x =

if Queue.length chan.q = size then flush_out chan;

Queue.add x chan.q

let close_out chan =

flush_out chan;

Event.sync (Event.send chan.c chan.q);;

This version allows us to regain efficiency comparable to (but not better than)
the version with pipes.

Compared to the original version with processes and pipes, there are two po-
tential advantages. First, threads are more lightweight and less costly to launch.
Second, communication on a channel merely passes a pointer, without copying.
But these advantages are not noticeable here, because the number of threads cre-
ated and the data exchanged are not big enough compared to the cost of system
calls and compute time.

In conclusion, we can say that communication between threads has a cost of
up to one system call (if the process must be suspended) and the cost can be
significantly reduced by buffering communication and sending larger structures
less often.

* * *

Exercise 22 An http server can be subjected to a high, bursty load. To
improve response time, we can refine the architecture of an http server by
always keeping a dozen threads ready to handle new requests. This means that
a thread does not handle only a single request, but a potentially infinite series
of requests that it reads from a queue.

To avoid overloading the machine, we can limit the number of threads to
a reasonable value beyond which the overhead of managing tasks exceeds the
latency for servicing requests (time spent waiting for data on disk, etc.). After
that, we can keep some connections waiting to be handled, and then finally we
can refuse connections. When the load diminishes and the number of threads is
above the “ideal” value, some of them are allowed to die and the others remain
ready for the next requests.

Transform the example of section 7.5 into this architecture.

* * *

7.8 Implementation details

Implementation of threads in Unix The Unix system was not originally
designed to provide support for threads. However, most modern Unix implemen-
tations now offer such support. Nevertheless, threads remain an add-on that is
sometimes apparent. For example, when using threads it is strongly discouraged

115

Threads

to use fork except when doing exec immediately afterward. In effect, fork copies
the current thread, which becomes a crippled process that runs believing it has
threads when in fact they do not exist. The parent continues to run normally as
before. The special case of a call to fork where the child immediately launches
another program does not cause the parent any problem. Luckily, since that is
the only way to start other programs!

Inversely, one can do fork (not followed by exec), and then launch several
threads in the child and the parent, without any problem.

Native and simulated implementation in OCaml When the underlying
operating system has threads, OCaml can provide a native implementation of
threads, leaving their management to the operating system as much as possible.
Each thread then lives in a different Unix process but shares the same address
space.

When the system does not provide support for threads, OCaml can emulate
them. All the threads then execute in the same Unix process, and their man-
agement, including their scheduling, is handled by the OCaml runtime system.
However, this implementation is only available when compiling to bytecode.

The OCaml system provides the same programming interface for the native
and simulated versions of threads. The implementation of threads is therefore
split: one implementation for the emulated version that includes its own task
controller, and another implementation that is based on posix (1003.1c) threads
and lifts the corresponding library functions to the level of the OCaml language.
In the process, the OCaml language handles certain simple administrative tasks
and ensures an interface identical to the emulated version. This guarantees that
a program compilable on one Unix architecture remains compilable on another
Unix architecture. However, whether threads are emulated or native can change
the synchronization of calls to the C library, and therefore change, despite ev-
erything, the semantics of the program. It is therefore necessary to take certain
precautions before believing that a program will behave the same way in these
two versions. In this chapter, the discussion mainly concern these two imple-
mentations, but recall that by default, we have taken the viewpoint of a native
implementation.

To use emulated threads, one must pass the -vmthreads option instead of
-threads to the ocamlc compiler. This option is not accepted by the ocamlopt

compiler.

Sequentialization of OCaml code The implementation of threads in OCaml
must face one of the peculiarities of the OCaml language: the automatic man-
agement of memory and its high consumption of allocated data. The solution
adopted, which is the simplest and also generally the most efficient, is to se-
quentialize the execution of OCaml code in all threads: a lock in the runtime
system prevents two threads from executing OCaml code simultaneously. This
seems contrary to the whole idea of threads, but it is not, since the lock is re-
leased before blocking system calls and reacquired upon return. Other threads
can therefore take control at that moment. A special case of such a system call
is the call to sched_yield, performed at regular intervals to suspend the running
thread and give control to another.

On a multiprocessor machine, the only source of true parallelism comes from

116

http://www.opengroup.org/onlinepubs/007908799/xsh/sched_yield.html

Implementation details

the execution of C code and system calls. On a uniprocessor machine, the fact
that the OCaml code is sequentialized is not really noticeable.

The programmer cannot rely on this sequentialization, because one thread
can give control to another at almost any moment. With one exception, the
sequentialization guarantees memory coherence: two threads always have the
same view of memory, except perhaps when they execute C code. In effect, the
passing of the lock implies a synchronization of the memory: a read operation
by one thread occurring after a write operation to the same address by another
thread will always return the freshly-written value, with no need for additional
synchronization.

Threads and signals Generally speaking, using signals is already delicate
with a single thread due to their asynchronous character. It is even more so
in the presence of multiple threads because of the addition of new difficulties:
which thread should a signal be sent to? To all, to the primary one, or to the one
currently running? What happens if one thread sends a signal to another? In
fact, threads were implemented before answering these questions, and different
implementations can behave differently with respect to signals.

The Thread.join, Mutex.lock, and Condition.wait functions despite being
long system calls, are not interruptible by a signal. (They cannot therefore fail
with the EINTR error.) If a signal is sent while waiting, it will be received and
handled when the call returns.

The posix standard specifies that the signal handler is shared among all the
threads and in contrast the signal mask is private to each thread and inherited
upon creation of a thread. But the behavior of threads with respect to signals
remains largely underspecified and therefore non-portable.

It is therefore preferable to avoid as much as possible the use of asynchronous
signals (such as sigalrm, sigvtalrm, sigchld, etc.) with threads. These can
be blocked and examined with Thread.wait_signal. We can dedicate a thread
to signal handling and nothing else: it can wait for the reception of signals,
undertake the necessary actions, and update certain information examined by
other threads.

In addition, OCaml threads (since version 3.08) use the sigvtalarm signal
internally to implement preemption of threads. This signal is therefore reserved
and must not be used by the program itself, since there is a risk of interference.

117

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Thread.html#VALwait_signal

Going further

We have shown how OCaml’s Sys, Unix, and Threads modules can be used to
program applications that interact with the operating system.

These modules allow the invocation of the most important Unix system calls
directly from OCaml. Some of these calls were replaced by higher-level functions,
either to facilitate programming or to maintain invariants needed by OCaml’s
runtime system. In any case, this higher-level access to the Unix system stream-
lines the development of applications.

Not every feature of the Unix system is available through these modules,
however it is still possible to access the missing ones by writing C bindings.

Another useful library is Cash [3] which focuses on writing scripts directly in
OCaml. This library completes the Unix module in two different ways. First, in
addition to a few helper functions to write scripts, it provides, on top of the Unix

module, a few system call variations to assist the programmer in process and
pipe management. Second, it offers additional entry points to the Unix system.

119

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Sys.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Threads.html

Exercise answers

Exercise 1 (page 18)
let main () =

let action p infos =

let b = not (infos.st_kind = S_DIR || Filename.basename p = "CVS") in

if b then print_endline p; b in

let errors = ref false in

let error (e,c,b) =

errors:= true; prerr_endline (b ^ ": " ^ error_message e) in

Findlib.find error action false max_int ["."];;

handle_unix_error main ()

Exercise 2 (page 18) Here are some hints. We move up from the current
position towards the root and construct backwards the path we are looking for.
The root can be detected as the only directory node whose parent is equal to
itself (relative to the root . and .. are equal). To find the name of a directory
r we need to list the contents of its parent directory and detect the file that
corresponds to r.

Exercise 3 (page 23) If the option -a is supplied, we need to do

openfile output_name [O_WRONLY; O_CREAT; O_APPEND] 0o666

instead of

openfile output_name [O_WRONLY; O_CREAT; O_TRUNC] 0o666

Parsing the new option from the command line is left to the reader.

Exercise 4 (page 27) The idea is to copy the string to output into the buffer.
We need to take into account the case where there is not enough space in the
buffer (in that case the buffer needs to emptied), and also the case where the
string is longer than the buffer (in that case it can be written directly). Here is
a possible solution.

let output_string chan s =

let avail = String.length chan.out_buffer - chan.out_pos in

if String.length s <= avail then begin

String.blit s 0 chan.out_buffer chan.out_pos (String.length s);

chan.out_pos <- chan.out_pos + String.length s

end

else if chan.out_pos = 0 then begin

ignore (write chan.out_fd s 0 (String.length s))

end

else begin

String.blit s 0 chan.out_buffer chan.out_pos avail;

let out_buffer_size = String.length chan.out_buffer in

ignore (write chan.out_fd chan.out_buffer 0 out_buffer_size);

121

Exercise answers

let remaining = String.length s - avail in

if remaining < out_buffer_size then begin

String.blit s avail chan.out_buffer 0 remaining;

chan.out_pos <- remaining

end else begin

ignore (write chan.out_fd s avail remaining);

chan.out_pos <- 0

end

end;;

Exercise 5 (page 28) A naive implementation of tail is to read the file
sequentially from the beginning, keeping the last n lines read in a circular buffer.
When we reach the end of file, we display the buffer. When the data comes from
a pipe or a special file which does not implement lseek, there is no better way.

However if the data is coming from a normal file, it is better to read the
file from the end. With lseek, we read the last 4096 characters. We scan them
for the end of lines. If there are at least n of them, we output and display the
corresponding lines. Otherwise, we start again by adding the next preceding
4096 characters, etc.

To add the option -f, we first proceed as above and then we go back at the
end of the file and try to read from there. If read returns data we display it
immediately and start again. If it returns 0 we wait some time (sleep 1) and
try again.

Exercise 6 (page 34) For the files that have already been copied we keep a
map from their identity (st_dev, st_ino) to their destination file name. Before
each copy we consult the map to see if a file with the same identity was already
copied. If that’s the case we do a hard link on the destination file name instead
of redoing the copy. To minimize the size of the map we remember only the files
which have more than one name, i.e. those for which st_nlink > 1.

let copied_files = (Hashtbl.create 53 : ((int * int), string) Hashtbl.t)

let rec copy source dest =

let infos = lstat source in

match infos.st_kind with

S_REG ->

if infos.st_nlink > 1 then begin

try

let dest' =

Hashtbl.find copied_files (infos.st_dev, infos.st_ino)

in link dest' dest

with Not_found ->

Hashtbl.add copied_files (infos.st_dev, infos.st_ino) dest;

file_copy source dest;

set_infos dest infos

end else begin

file_copy source dest;

set_infos dest infos

122

end

| S_LNK -> ...

Exercise 7 (page 39) Behind this apparently trivial requirement are hidden
difficulties. Symbolic links are arbitrary paths, they can point on directories
(which is not allowed for hard links) and they may not correspond to files con-
tained in the archive.

A simple solution is to recreate, in memory, the file hierarchy contained in
the archive.

type info = File | Link of string list | Dir of (string * inode) list

and inode = { mutable record : record option; mutable info : info;}

Nodes of this in-memory file system are described by the inode type. The info

field describes the file type, limited to ordinary files, symbolic links and direc-
tories. Paths are represented by lists of strings and directories by lists that
associate a node to each file name in the directory. The record field stores the
tar record associated to the node. This field is optional because intermediate
directories are not always present in the archive; it is mutable because a file may
appear more than once in the archive and the last occurrence takes precedence
over the other.

let root () =

let rec i =

{ record = None; info = Dir [Filename.current_dir_name, i] }

in i

let link inode name nod = match inode.info with

| File | Link _ -> error name "Not a directory"

| Dir list ->

try let _ = List.assoc name list in error name "Already exists"

with Not_found -> inode.info <- Dir ((name, nod) :: list)

let mkfile inode name r =

let f = { record = r; info = File } in

link inode name f; f

let symlink inode name r path =

let s = { record = r; info = Link path } in

link inode name s; s

let mkdir inode name r =

let d = mkfile inode name r in

d.info <-

Dir [Filename.current_dir_name, d; Filename.parent_dir_name, inode];

d

As in Unix, each directory contains a link to itself and to its parent, except for
the root directory (in contrast to Unix where it is its own parent). This allows
us to detect and forbid any access outside the hierarchy contained in the archive.

let rec find link inode path = match inode.info, path with

| _, [] -> inode

123

Exercise answers

| Dir list, name :: rest ->

let subnode = List.assoc name list in

let subnode =

match subnode.info with

Link q ->

if link && rest = [] then subnode else find false inode q

| _ -> subnode in

find link subnode rest

| _, _ -> raise Not_found;;

The function find finds in the archive the node corresponding to path by starting
from the initial node inode. If the search result is a link, the flag link indicates
whether the link itself should be returned (true) or the file pointed by the link
(false).

let rec mkpath inode path =

match inode.info, path with

| _, [] -> inode

| Dir list, name :: rest ->

let subnode =

try List.assoc name list

with Not_found -> mkdir inode name None in

mkpath subnode rest

| _, _ -> raise Not_found;;

The function mkpath traverses the path path creating missing nodes along the
path.

let explode f =

let rec dec f p =

if f = Filename.current_dir_name then p

else dec (Filename.dirname f) (Filename.basename f :: p) in

dec (if Filename.basename f = "" then Filename.dirname f else f) [];;

The function explode parses a Unix path into a list of strings. It removes the
end “/” of directory names which are allowed in archives.

let add archive r =

match r.header.kind with

| CHR (_,_) | BLK (_,_) | FIFO -> ()

| kind ->

match List.rev (explode r.header.name) with

| [] -> ()

| name :: parent_rev ->

let inode = mkpath archive (List.rev parent_rev) in

match kind with

| DIR -> ignore (mkdir inode name (Some r))

| REG | CONT -> ignore (mkfile inode name (Some r))

| LNK f -> ignore (symlink inode name (Some r) (explode f))

| LINK f -> link inode name (find true archive (explode f))

| _ -> assert false;;

124

The function add adds the record r to the archive. The archive, represented by
its root node, is modified by a side effect.

let find_and_copy tarfile filename =

let fd = openfile tarfile [O_RDONLY] 0 in

let records = List.rev (fold (fun x y -> x :: y) [] fd) in

let archive = root () in

List.iter (add archive) records;

let inode =

try find false archive (explode filename)

with Not_found -> error filename "File not found" in

begin match inode.record with

| Some ({ header = { kind = (REG | CONT) }} as r) -> copy_file r stdout

| Some _ -> error filename "Not a regular file"

| None -> error filename "Not found"

end;

close fd;;

We end as before.

let readtar () =

let nargs = Array.length Sys.argv in

if nargs = 2 then list Sys.argv.(1)

else if nargs = 3 then find_and_copy Sys.argv.(1) Sys.argv.(2)

else prerr_endline ("Usage: " ^Sys.argv.(0)^ " <tarfile> [<source>]");;

Printexc.print (handle_unix_error (handle_error readtar)) ();;

Exercise 8 (page 39) This exercise combines the previous exercise (exer-
cise 2.16) and the recursive file copy (exercise 2.15).

One small difficulty is the management of permissions: we must create the
archive’s directories with write permission and set them to their actual value
only after all the files were extracted.

Let us first write an auxiliary function for mkpath p m that creates the miss-
ing directories along the path p with permissions m (and such that p may be
terminated by a superfluous “/”).

let warning mes = prerr_string mes;prerr_newline ();;

open Filename

let mkpath p perm =

let normal_path =

if basename p = "" then dirname p else p in

let path_to_dir = dirname normal_path in

let rec make p =

try ignore (stat p)

with Unix_error (ENOENT, _, _) ->

if p = current_dir_name then ()

else if p = parent_dir_name then

warning "Ill formed archive: path contains \"..\""

else begin

make (dirname p);

125

Exercise answers

mkdir p perm

end in

make path_to_dir;;

We also define a function set_infos similar to the one used to copy files (sec-
tion 2.15):

let set_infos header =

chmod header.name header.perm;

let mtime = float header.mtime in

utimes header.name mtime mtime;

begin match header.kind with

| LNK f -> ()

| _ -> chmod header.name header.perm

end;

try chown header.name header.uid header.gid

with Unix_error(EPERM,_,_) -> ();;

The main function of the program is untar_file_collect_dirs which processes
a single record and accumulates directories explicitly created by the archive:

let verbose = ref true;;

let default_dir_perm = 0o777;;

let default_file_perm = 0o666;;

let protect f x g y = try f x; g y with z -> g y; raise z

let file_exists f = try ignore (stat f); true with _ -> false;;

let untar_file_collect_dirs file dirs =

let fh = file.header in

if !verbose then begin print_string fh.name; print_newline () end;

match fh.kind with

| CHR (_,_) | BLK(_,_) | FIFO ->

warning (fh.name ^ "Ignoring special files");

dirs

| DIR ->

mkpath fh.name default_dir_perm;

if file_exists fh.name then dirs

else begin mkdir fh.name default_dir_perm; fh :: dirs end

| x ->

mkpath fh.name default_dir_perm;

begin match x with

| REG | CONT ->

let flags = [O_WRONLY; O_TRUNC; O_CREAT;] in

let out = openfile fh.name flags default_file_perm in

protect (copy_file file) out close out

| LNK f ->

symlink f fh.name

| LINK f ->

begin

try if (stat fh.name).st_kind = S_REG then unlink fh.name

126

with Unix_error(_,_,_) -> ();

end;

Unix.link f fh.name;

| _ -> assert false

end;

set_infos fh;

dirs;;

The body of the program just iterates untar_file_collect_dirs on the records
and finally updates the directories with the correct access rights.

let extract tarfile =

let fd = openfile tarfile [O_RDONLY] 0 in

let new_directories =

fold untar_file_collect_dirs [] fd in

List.iter set_infos new_directories;

close fd;;

let untar () =

let nargs = Array.length Sys.argv in

if nargs = 2 then extract Sys.argv.(1)

else prerr_endline ("Usage: " ^ Sys.argv.(0) ^ " <tarfile>");;

handle_unix_error untar ();;

Exercise 9 (page 39) We reuse the data structures already defined above and
collect them in a Tarlib module. We define a warning function which does not
stop the program or alter the return code of the program.

open Sys

open Unix

open Tarlib

let warning path message = prerr_endline (path ^ ": " ^ message)

We start with the function that writes a record header in a buffer. It’s a tedious
function but it must be done with care as a single error in a header can corrupt
the entire archive. In particular we must pay attention to the limits imposed
by the file format. For example the size of paths is limited to 99 bytes (There
are extensions to the format to handle longer path but it’s not the goal of this
project).

let write_header_to_buffer source infos kind =

let size = if kind = REG then infos.st_size else 0 in

String.fill buffer 0 block_size '\000';

let put len string offset =

String.blit string 0 buffer offset (min (String.length string) len) in

let put_int8 x = put 7 (Printf.sprintf "%07o" x) in

let put_int12 x = put 11 (Printf.sprintf "%011o" x) in

let put_char c offset = buffer.[offset] <- c in

let put_path s offset =

if String.length s <= 99 then put 99 s offset

127

Exercise answers

else raise (Error ("path too long", s)) in

put_path (if kind = DIR then source ^ "/" else source) 0;

put_int8 infos.st_perm 100;

put_int8 infos.st_uid 108;

put_int8 infos.st_gid 116;

put_int12 size 124;

put_int12 (int_of_float infos.st_mtime) 136;

put 7 "ustar " 257;

put 31 (getpwuid infos.st_uid).pw_name 265;

put 31 (getgrgid infos.st_gid).gr_name 297;

(* Fields dev and rdev are only used for special files, which we omit *)

put_char

begin match kind with

| REG -> '0'

| LINK s -> put_path s 157; '1'

| LNK s -> put_path s 157; '2'

| DIR -> '5'

| _ -> failwith "Special files not implemented"

end 156;

let rec sum s i =

if i < 0 then s else sum (s + Char.code buffer.[i]) (pred i) in

let checksum = sum (Char.code ' ' * 8) (block_size - 1) in

put 8 (Printf.sprintf "%06o\000 " checksum) 148;;

The following function creates a record header for a file. source is the file name,
infos is the stats information of the file and kind is the type of file.

let header source infos kind = {

name = source;

size = if kind = REG then infos.st_size else 0;

perm = infos.st_perm;

mtime = int_of_float infos.st_mtime;

uid = infos.st_uid;

gid = infos.st_gid;

user = (getpwuid infos.st_uid).pw_name;

group = (getgrgid infos.st_gid).gr_name;

kind = kind }

To write a file in the archive, we define a variant of file_copy which takes as an
argument the number of bytes to copy and verifies that the end of file corresponds
to that size. Otherwise, an error is raised: this handles the abnormal case where
a file is modified during the archival process. To limit the archive’s corruption
to a single file we do not write beyond that size.

let write_file len source fdout =

let fdin = openfile source [O_RDONLY] 0 in

let error () = raise (Error ("File changed size", source)) in

let rec copy_loop len =

match read fdin buffer 0 buffer_size with

0 ->

close fdin; if len > 0 then error ()

128

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Unix.html#TYPEstats

| r ->

let len = len - r in

if len < 0 then (close fdin; error ());

ignore (write fdout buffer 0 r); copy_loop len in

copy_loop len;;

let padding fd len =

if len > 0 then ignore (write fd (String.make len '\000') 0 len);;

We now tackle the creation of the archive. The files already written in the archive
are stored in a hashtable with their path so that they are not copied more than
once. We also store the directories that were already written so as not to copy
them again: it can happen that the archival root is already contained in another
and we don’t want to copy it again (even though that would be harmless).

The data needed to write an archive is a file descriptor pointing on the file to
write, the file and directory cache (see above) and a size variable that remembers
the current archive size (to pad it to a minimal size if needed). The archive type
collects all this information in a record:

type archive =

{ regfiles : (int * int, string) Hashtbl.t;

dirfiles : (int * int, bool) Hashtbl.t;

fd : file_descr; st : stats; mutable size : int }

let try_new_dir archive dir =

try Hashtbl.find archive.dirfiles dir

with Not_found -> Hashtbl.add archive.dirfiles dir false; true

Here is the main function that writes an entire hierarchy starting from a file

path given on the command line. This function is not difficult but needs some
care with pathological cases. In particular we saw how to detect when a file
is modified the archival. A sub case of this when the archive is being archived
itself. . .

let verbose = ref true;;

let write_from archive file =

if not (Filename.is_relative file) then

raise (Error ("absolute path", file));

let rec write_rec archive file =

let source =

if Filename.basename file = "" then Filename.dirname file else file in

if !verbose then begin prerr_endline source end;

let st = lstat source in

if st.st_ino = archive.st.st_ino && st.st_dev = archive.st.st_dev

then warning source "Skipping archive itself!"

else

let write_header kind =

write_header_to_buffer source st kind;

ignore (write archive.fd buffer 0 block_size) in

match st.st_kind with

129

Exercise answers

S_REG ->

begin try

if st.st_nlink = 1 then raise Not_found;

let path =

Hashtbl.find archive.regfiles (st.st_ino, st.st_dev) in

write_header (LINK path);

with Not_found ->

if st.st_nlink > 1 then

Hashtbl.add archive.regfiles (st.st_ino, st.st_dev) source;

write_header REG;

write_file st.st_size source archive.fd;

let t =

(block_size-1 + st.st_size) / block_size * block_size in

padding archive.fd (t - st.st_size);

archive.size <- archive.size + t + block_size;

end

| S_LNK ->

write_header (LNK (readlink source));

| S_DIR when try_new_dir archive (st.st_ino, st.st_dev) ->

write_header DIR;

Misc.iter_dir

begin

fun file ->

if file = Filename.current_dir_name then ()

else if file = Filename.parent_dir_name then ()

else write_rec archive (source ^ "/" ^ file)

end

source

| S_DIR ->

warning source "Ignoring directory already in archive."

| _ ->

prerr_endline ("Can't cope with special file " ^ source) in

write_rec archive file;;

We keep track of regular files that may have hard links in the regfiles table.
It’s not necessary for files that have a single link.

Here’s the main function. In case of error, it is better to remove the erroneous
archive.

let min_archive_size = 20 * block_size;;

let build tarfile files =

let fd, remove =

if tarfile = "-" then stdout, ignore

else openfile tarfile [O_WRONLY; O_CREAT; O_TRUNC] 0o666, unlink in

try

let arch =

{ regfiles = Hashtbl.create 13; dirfiles = Hashtbl.create 13;

st = fstat fd; fd = fd; size =0 } in

Array.iter (write_from arch) files;

130

padding fd (min_archive_size - arch.size);

close fd

with z ->

remove tarfile; close fd; raise z;;

We end by parsing the command line arguments.

let usage () =

prerr_endline "Usage: tar -cvf tarfile file1 [file2 ...] ";

exit 2;;

let tar () =

let argn = Array.length Sys.argv in

if argn > 3 && Sys.argv.(1) = "-cvf" then

build Sys.argv.(2) (Array.sub Sys.argv 3 (argn-3))

else usage ();;

let _ =

try handle_unix_error tar ()

with Error (mes, s) ->

prerr_endline ("Error: " ^ mes ^ ": " ^ s); exit 1;;

Exercise 10 (page 47) If the command line ends with &, we do not call wait in
the parent process and immediately continue with the next iteration of the loop.
But there is one difficulty: the parent may now have multiple children executing
at the same time (the commands in the background which haven’t terminated
yet, plus the last synchronous command), and wait could synchronize with any
of these children. Thus, for synchronous command, wait must be repeated until
the recovered child is the one actually executing that command.

while true do

let cmd = input_line Pervasives.stdin in

let words, ampersand = parse_command_line cmd in

match fork () with

| 0 -> exec_command words

| pid_son ->

if ampersand then ()

else

let rec wait_for_son () =

let pid, status = wait () in

if pid = pid_son then

print_status "Program" status

else

let p = "Background program " ^ (string_of_int pid) in

print_status p status;

wait_for_son () in

wait_for_son ()

done

131

Exercise answers

Exercise 12 (page 63) Of course the parent must wait on its child. However,
before that the input of the pipe on which the child reads must be closed by
the parent, otherwise the child will wait indefinitely for new integers from the
parent. This leads to a deadlock (closing the channel empties the buffer before
closing the corresponding descriptor, therefore no data is lost). Concretely, the
line 10 of the sieve function needs to be replaced by:

let output = out_channel_of_descr fd_out in

generate len output;

close_out output;

ignore(waitpid [] p);;

Accordingly, we enclose the lines 12–16 of the filter function (represented by
... below) with the following lines:

try

...

with End_of_file ->

close_out output;

ignore (waitpid [] p)

Exercise 13 (page 64) Since the child process is an exact copy of the parent,
i/o buffers of the standard library are duplicated when fork is executed. If the
buffers are not emptied after each write, they must be emptied explicitly just
before the call to fork. All is needed is to add flush Pervasives.stdout after
the line 14 of the function read_first_prime.

Exercise 14 (page 66)

• For >>, the answer is similar to the > redirection, except that the file is opened
with the flags [O_WRONLY; O_APPEND; O_CREAT].

• For 2>, the answer is similar to the > redirection, except that dup2 fd stderr is
executed instead of dup2 fd stdout

• For 2>1, we must call dup2 stderr stdout before executing the command.

• For <<, the shell sh must create a temporary file in /tmp containing the lines that
follow << and execute the command with its standard input redirected from this
file. Another solution is to connect the command’s standard input to the output
of a pipe and let a child process write the lines following << on the input of that
pipe.

Exercise 18 (page 105) Quicksort lends itself well to parallelization, because
the sorting is done recursively on independent sub-arrays. This can be delegated
to threads whose only synchronization is to wait for all the threads to finish their
sorting, in order for the sub-array to be sorted.

1 let qsort cmp arr =

2 let rec qsort lo hi =

3 if hi - lo > 0 then

4 begin

5 let mid = (lo + hi) lsr 1 in

132

6 if cmp arr.(mid) arr.(lo) then swap arr mid lo;

7 if cmp arr.(hi) arr.(mid) then

8 begin

9 swap arr mid hi;

10 if cmp arr.(mid) arr.(lo) then swap arr mid lo

11 end;

12 let pivot = arr.(mid) in

13 let i = ref (lo + 1) and j = ref (hi - 1) in

14 while !i < !j do

15 while not (cmp pivot arr.(!i)) do incr i done;

16 while not (cmp arr.(!j) pivot) do decr j done;

17 if !i < !j then swap arr !i !j;

18 done;

19 let u = Thread.create (qsort lo) (!i-1) in

20 let v = Thread.create (qsort (!i+1)) hi in

21 Thread.join u;

22 Thread.join v

23 end in

24 qsort 0 (Array.length arr - 1);;

It would be correct, but uninteresting, to exchange lines 20 and 21. In effect,
that would wait for the lower portion of the array to be sorted before starting
the sort of the upper portion. We would thus obtain the behavior of a sequential
program, with the additional cost of threads but without obtaining any benefit.

In practice, we should limit parallelization to a reasonable factor and continue
sequentially after that.

Exercise 21 (page 112) We must introduce an additional non_full condition.
We also add a size field to allow queues of different sizes.

type 'a t =

{ queue : 'a Queue.t; size : int; lock : Mutex.t;

non_empty : Condition.t; non_full : Condition.t; }

let create k =

if k > 0 then

{ queue = Queue.create (); size = k; lock = Mutex.create ();

non_empty = Condition.create (); non_full = Condition.create () }

else failwith "Tqueue.create: empty size";;

Addition is a combination of the preceding versions of the add and take functions
above.

let add x q =

Mutex.lock q.lock;

while Queue.length q.queue = q.size

do Condition.wait q.non_full q.lock done;

if Queue.is_empty q.queue then Condition.broadcast q.non_empty;

Queue.add q x;

Mutex.unlock q.lock;;

133

Exercise answers

Removal is symmetric to addition (and must now signal non_full when the queue
is full beforehand), and is left to the reader. We get the behavior of unbounded
queues by choosing max_int for size.

134

References

Objective Caml
[1] Xavier Leroy, Michel Mauny. The Caml Light system, release 0.5. Documen-

tation and user’s manual. L-5 software, distributed by inria.
[2] Xavier Leroy, Didier Rémy, Jacques Garrigue, Jérôme Vouillon and Damien

Doligez. The Objective Caml system, documentation and user’s manual –
release 3.06. Documentation distributed by inria with the Objective Caml
system, August 2002. http://caml.inria.fr/pub/docs/manual-ocaml/.

[3] Bruno Verlyck. Cash, the Caml Shell – release 0.20. Documentation dis-
tributed by inria with the Cash system, 2002. http://pauillac.inria.fr/
cash/.

Unix system programming
[4] The Unix manual, sections 2 and 3.
[5] Brian Kernighan, Rob Pike. The Unix programming environment, Addison-

Wesley.
[6] Jean-Marie Rifflet. La programmation sous Unix. McGraw-Hill.
[7] Jean-Marie Rifflet. La communication sous Unix. McGraw-Hill.
Unix kernel architecture
[8] Samuel Leffler, Marshall McKusick, Michael Karels, John Quarterman. The

design and implementation of the 4.3 bsd Unix operating system, Addison-
Wesley.

[9] Maurice Bach. The design and implementation of the Unix operating system,
Prentice-Hall.

[10] Richard W. Stevens. Advanced Programming in the Unix Environment.
Addison-Wesley, 1992.

[11] Kay A. Robbins and Steven Robbins. Practical Unix Programming. A Guide
to Concurrency, Communication, and Multithreading. Prentice Hall, 1996.

General knowledge on operating systems
[12] Andrew Tanenbaum. Modern Operating Systems, Second Edition, Prentice-

Hall, 2001.
[13] Andrew Tanenbaum. Operating systems, design and implementation,

Prentice-Hall.
[14] Andrew Tanenbaum. Computer Networks, Prentice-Hall.
Typed communication of structured objects
[15] Xavier Leroy, Michel Mauny. Dynamics in ML. Actes de fpca 91, lncs 523,

Springer-Verlag.
[16] John H. Reppy. Concurrent Programming in ML. Cambridge University

Press, 1999.
Threads programming

135

http://caml.inria.fr/pub/docs/manual-ocaml/
http://pauillac.inria.fr/cash/
http://pauillac.inria.fr/cash/

References

[17] David R. Butenhof. Programming with posix Threads. Addison-Wesley,
1997.

Applications
[18] Pierce et al. Unison File Synchronizer. Version 2.9.1. User Manual and Ref-

erence. Free software available from http://www.cis.upenn.edu/~bcpierce/

unison/.

136

http://www.cis.upenn.edu/~bcpierce/unison/
http://www.cis.upenn.edu/~bcpierce/unison/

Index

Pages in bold refer to the description of a posix system call.

accept, 84
access, 15
alarm, 50
argv, 4
at_exit, 5
bind, 83, 86
broadcast, 110
chdir, 10
chmod, 15
choose, 113
chown, 12
chroot, 10
clear_nonblock, 64
closedir, 15
close, 22, 81, 86
connect, 81, 88
create, 102
delay, 105
dup2, 64
dup, 66
environment, 4
error_message, 6
establish_server, 89
execve, 44, 51
execvp, 44, 51
execv, 44
exit, 4, 102, 102
fchmod, 15
fchown, 12
fork, 41, 51, 59, 101, 116
fstat, 11
ftruncate, 29
getcwd, 10
getegid, 14
getenv, 4
geteuid, 14
getgid, 14
getgrgid, 12
getgrnam, 12
getgroups, 12
gethostbyname, 80

gethostname, 87
getitimer, 56
getlogin, 12
getpid, 41
getprotobyname, 79
getpwnam, 12
getpwuid, 12
getservbyname, 80
getsockopt, 86
gettimeofday, 56
getuid, 14
gmtime, 57
handle_unix_error, 5
in_channel_of_descr, 62
inet_addr_of_string, 80
input_value, 91
ioctl, 30
join, 103
kill, 50
link, 11
listen, 83
localtime, 42, 57
lockf, 32
lock, 106
lseek, 28, 30
lstat, 11
mkdir, 16
mkfifo, 64
mktime, 57
new_channel, 112
open_connection, 89
opendir, 15, 29
openfile, 29
open, 18
out_channel_of_descr, 62
output_value, 91
pipe, 59
poll, 113
readdir, 15
readlink, 29
read, 15, 20, 49, 59, 81, 89

137

Index

receive, 112
recvfrom, 88
recv, 89
rename, 11
rewinddir, 15
rmdir, 16
select, 53, 57, 71, 105
self, 102
sendto, 88
send, 89, 112
set_nonblock, 64
setgid, 14
setitimer, 56
setsid, 32
setsockopt, 86
setuid, 14
shutdown_connection, 89
shutdown, 81
signal, 51, 110
sigprocmask, 53
sleep, 55
socket, 79
stat, 11, 29
stderr, 11
stdin, 11
stdout, 11
string_of_inet_addr, 80
symlink, 11, 29
sync, 113
system, 53
tcdrain, 32
tcflow, 32
tcflush, 32
tcgetattr, 30
tcsendbreak, 31
tcsetattr, 30
time, 42, 55
truncate, 29, 29
trylock, 107
umask, 15
unlink, 11
unlock, 106
utime, 33
waitpid, 42, 53
wait, 42, 110
wrap_abort, 113
write, 20, 59, 73, 81, 89
yield, 104

138

	Introduction
	Generalities
	Modules Sys and Unix
	Interface with the calling program
	Error handling
	Library functions

	Files
	The file system
	File names and file descriptors
	Meta-attributes, types and permissions
	Operations on directories
	Complete example: search in a file hierarchy
	Opening a file
	Reading and writing
	Closing a descriptor
	Complete example: file copy
	The cost of system calls and buffers
	Complete example: a small input/output library
	Positioning
	Operations specific to certain file types
	Locks on files
	Complete example: recursive copy of files
	Complete example: Tape ARchive

	Processes
	Creation of processes
	Complete Example: the command leave
	Awaiting the termination of a process
	Launching a program
	Complete example: a mini-shell

	Signals
	Default behavior
	Using signals
	Changing the effect of a signal
	How to mask signals
	Signals and system calls
	The passage of time
	Problems with signals

	Classical inter-process communication: pipes
	Pipes
	Complete example: parallel sieve of Eratosthenes
	Named pipes
	Descriptor redirections
	Complete example: composing N commands
	Input/output multiplexing
	Miscellaneous: write

	Modern communication: sockets
	Sockets
	Socket creation
	Addresses
	Connection to a server
	Disconnecting sockets
	Complete example: the universal client
	Establishing a service
	Tuning sockets
	Complete example: the universal server
	Communication in connectionless mode
	Low level reads and writes
	High-level primitives
	Examples of protocols
	Complete example: http requests

	Threads
	Introduction
	Creation and termination of threads
	Waiting
	Synchronization among threads: locks
	Complete example: http relay
	Conditions
	Event-based synchronous communication
	Implementation details

	Going further
	Exercise answers
	References
	Index

