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Preface

The desire to write a book on Objective Caml sprang from the authors’ pedagogical
experience in teaching programming concepts through the Objective Caml language.
The students in various majors and the engineers in continuing education at Pierre
and Marie Curie University have, through their dynamism and their critiques, caused
our presentation of the Objective Caml language to evolve greatly. Several examples
in this book are directly inspired by their projects.

The implementation of the Caml language has been ongoing for fifteen years. Its devel-
opment comes from the Formel and then Cristal projects at INRIA, in collaboration
with Denis Diderot University and the Ecole Normale Supérieure. The continuous
efforts of the researchers on these teams, as much to develop the theoretical underpin-
nings as the implementation itself, have produced over the span of years a language
of very high quality. They have been able to keep pace with the constant evolution of
the field while integrating new programming paradigms into a formal framework. We
hope through this exposition to contribute to the widespread diffusion which this work
deserves.

The form and the foundation of this book wouldn’t be what they are without the help
of numerous colleagues. They were not put off by rereading our first manuscripts. Their
remarks and their comments have allowed this exposition to improve throughout the
course of its development. We wish particularly to thank Maria-Virginia Aponte, Syl-
vain Baro, Christian Codognet, Hélene Cottier, Guy Cousineau, Pierre Crégut, Titou
Durand, Christophe Gonzales, Michelle Morcrette, Christian Queinnec, Attila Raksany
and Didier Rémy.

The HTML version of this book would not have seen the light of day without the
tools hevea and VideoC. A big thank you to their respective authors, Luc Maranget
and Christian Queinnec, who have always responded in the briefest intervals to our
questions and our demands for changes.
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Introduction

Objective Caml is a programming language. One might ask why yet another lan-
guage is needed. Indeed there are already numerous existing languages with new ones
constantly appearing. Beyond their differences, the conception and genesis of each one
of them proceeds from a shared motivation: the desire to abstract.

To abstract from the machine In the first place, a programming language permits
one to neglect the “mechanical” aspect of the computer; it even lets one forget
the microprocessor model or the operating system on which the program will be
executed.

To abstract from the operational model The notion of function which most lan-
guages possess in one form or another is borrowed from mathematics and not
from electronics. In a general way, languages substitute formal models for purely
computational viewpoints. Thus they gain expressivity.

To abstract errors This has to do with the attempt to guarantee execution safety; a
program shouldn’t terminate abruptly or become inconsistent in case of an error.
One of the means of attaining this is strong static typing of programs and having
an exception mechanism in place.

To abstract components (1) Programming languages make it possible to subdivide
an application into different software components which are more or less indepen-
dent and autonomous. Modularity permits higher-level structuring of the whole
of a complex application.

To abstract components (11) The existence of programming units has opened up
the possibility of their reuse in contexts other than the ones for which they were
developed. Object-oriented languages constitute another approach to reusability
permitting rapid prototyping.

Objective Caml is a recent language which takes its place in the history of program-
ming languages as a distant descendant of Lisp, having been able to draw on the lessons
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of its cousins while incorporating the principal characteristics of other languages. It is
developed at INRIA! and is supported by long experience with the conception of the
languages in the ML family. Objective Caml is a general-purpose language for the
expression of symbolic and numeric algorithms. It is object-oriented and has a param-
eterized module system. It supports the development of concurrent and distributed
applications. It has excellent execution safety thanks to its static typing, its exception
mechanism and its garbage collector. It is high-performance while still being portable.
Finally, a rich development environment is available.

Objective Caml has never been the subject of a presentation to the “general public”.
This is the task to which the authors have set themselves, giving this exposition three
objectives:

1. To describe in depth the Objective Caml language, its libraries and its develop-
ment environment.

2. To show and explain what are the concepts hidden behind the programming
styles which can be used with Objective Caml.

3. To illustrate through numerous examples how Objective Caml can serve as the
development language for various classes of applications.

The authors’ goal is to provide insight into how to choose a programming style and
structure a program, consistent with a given problem, so that it is maintainable and
its components are reusable.

Description of the language

Objective Caml is a functional language: it manipulates functions as values in
the language. These can in turn be passed as arguments to other functions or returned
as the result of a function call.

Objective Caml is statically typed: verification of compatibility between the
types of formal and actual parameters is carried out at program compilation time.
From then on it is not necessary to perform such verification during the execution of
the program, which increases its efficiency. Moreover, verification of typing permits the
elimination of most errors introduced by typos or thoughtlessness and contributes to
execution safety.

Objective Caml has parametric polymorphism: a function which does not tra-
verse the totality of the structure of one of its arguments accepts that the type of this
argument is not fully determined. In this case this parameter is said to be polymorphic.
This feature permits development of generic code usable for different data structures,

1. Institut National de Recherche en Informatique et Automatique (National Institute for Research
in Automation and Information Technology).
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such that the exact representation of this structure need not be known by the code in
question. The typing algorithm is in a position to make this distinction.

Objective Caml has type inference: the programmer need not give any type
information within the program. The language alone is in charge of deducing from the
code the most general type of the expressions and declarations therein. This inference
is carried out jointly with verification, during program compilation.

Objective Caml is equipped with an exception mechanism: it is possible to
interrupt the normal execution of a program in one place and resume at another place
thanks to this facility. This mechanism allows control of exceptional situations, but it
can also be adopted as a programming style.

Objective Caml has imperative features: I/O, physical modification of values
and iterative control structures are possible without having recourse to functional pro-
gramming features. Mixture of the two styles is acceptable, and offers great develop-
ment flexibility as well as the possibility of defining new data structures.

Objective Caml executes (threads): the principal tools for creation, synchroniza-
tion, management of shared memory, and interthread communication are predefined.

Objective Caml communicates on the Internet: the support functions needed
to open communication channels between different machines are predefined and permit
the development of client-server applications.

Numerous libraries are available for Objective Caml: classic data structures,
I/0, interfacing with system resources, lexical and syntactic analysis, computation with
large numbers, persistent values, etc.

A programming environment is available for Objective Caml: including in-
teractive toplevel, execution trace, dependency calculation and profiling.

Objective Caml interfaces with the C language: by calling C functions from
an Objective Caml program and vice versa, thus permitting access to numerous C
libraries.

Three execution modes are available for Objective Caml: interactive by
means of an interactive toplevel, compilation to bytecodes interpreted by a virtual ma-
chine, compilation to native machine code. The programmer can thus choose between
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flexibility of development, portability of object code between different architectures, or
performance on a given architecture.

Structure of a program

Development of important applications requires the programmer or the development
team to consider questions of organization and structure. In Objective Caml, two mod-
els are available with distinct advantages and features.

The parameterized module model: data and procedures are gathered within a
single entity with two facets: the code proper, and its interface. Communication be-
tween modules takes place via their interface. The description of a type may be hidden,
not appearing in the module interface. These abstract data types facilitate modifica-
tions of the internal implementation of a module without affecting other modules which
use it. Moreover, modules can be parameterized by other modules, thus increasing their
reusability.

The object model: descriptions of procedures and data are gathered into enti-
ties called classes; an object is an instance (value) of a class. Interobject communica-
tion is implemented through “message passing”, the receiving object determines upon
execution (late binding) the procedure corresponding to the message. In this way,
object-oriented programming is “data-driven”. The program structure comes from the
relationships between classes; in particular inheritance lets one class be defined by
extending another. This model allows concrete, abstract and parameterized classes.
Furthermore, it introduces polymorphism of inclusion by defining the subtyping rela-
tionship between classes.

The choice between these two models allows great flexibility in the logical organization
of an application and facilitates its maintenance and evolution. There is a duality
between these two models. One cannot add data fields to a module type (no extensibility
of data), but one can add new procedures (extensibility of procedures) acting on data.
In the object model, one can add subclasses of a class (extensibility of data) for dealing
with new cases, but one cannot add new procedures visible from the ancestor class
(no extensibility of procedures). Nevertheless the combination of the two offers new
possibilities for extending data and procedures.

Safety and efficiency of execution

Objective Caml bestows excellent execution safety on its programs without sacrificing
their efficiency. Fundamentally, static typing is a guarantee of the absence of run-
time type errors and makes useful static information available to the compiler without
burdening performance with dynamic type tests. These benefits also extend to the
object-oriented language features. Moreover, the built-in garbage collector adds to the
safety of the language system. Objective Caml’s is particularly efficient. The exception
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mechanism guarantees that the program will not find itself in an inconsistent state
after a division by zero or an access outside the bounds of an array.

Outline of the book

The present work consists of four main parts, bracketed by two chapters and enhanced
by two appendices, a bibliography, an index of language elements and an index of
programming concepts.

Chapter 1 : This chapter describes how to install version 2.04 of the Objective Caml
language on the most current systems (Windows, Unix and MacOS).

Part I: Core of the language The first part is a complete presentation of the basic
elements of the Objective Caml language. Chapter 2 is a dive into the func-
tional core of the language. Chapter 3 is a continuation of the previous one and
describes the imperative part of the language. Chapter 4 compares the “pure”
functional and imperative styles, then presents their joint use. Chapter 5 presents
the graphics library. Chapter 6 exhibits three applications: management of a
simple database, a mini-Basic interpreter and a well-known single-player game,
minesweeper.

Part II: Development tools The second part of the book describes the various tools
for application development. Chapter 7 compares the various compilation modes,
which are the interactive toplevel and command-line bytecode and native code
compilers. Chapter 8 presents the principal libraries provided with the language
distribution. Chapter 9 explains garbage collection mechanisms and details the
one used by Objective Caml. Chapter 10 explains the use of tools for debug-
ging and profiling programs. Chapter 11 addresses lexical and syntactic tools.
Chapter 12 shows how to interface Objective Caml programs with C. Chapter
13 constructs a library and an application. This library offers tools for the con-
struction of GUIs. The application is a search for least-cost paths within a graph,
whose GUI uses the preceding library.

Part III: Organization of applications The third part describes the two ways of
organizing a program: with modules, and with objects. Chapter 14 is a presenta-
tion of simple and parameterized language modules. Chapter 15 introduces Ob-
jective Caml object-oriented extension. Chapter 16 compares these two types of
organization and indicates the usefulness of mixing them to increase the extensi-
bility of programs. Chapter 17 describes two substantial applications: two-player
games which put to work several parameterized modules used for two different
games, and a simulation of a robot world demonstrating interobject communica-
tion.

Part IV: Concurrence and distribution The fourth part introduces concurrent
and distributed programs while detailing communication between processes, lightweight
or not, and on the Internet. Chapter 18 demonstrates the direct link between
the language and the system libraries, in particular the notions of process and
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communication. Chapter 19 leads to the lack of determinism of concurrent pro-
gramming while presenting Objective Caml’s threads. Chapter 20 discusses in-
terprocess communication via sockets in the distributed memory model. Chapter
21 presents first of all a toolbox for client-server applications. It is subsequently
used to extend the robots of the previous part to the client-server model. Finally,
we adapt some of the programs already encountered in the form of an HTTP
server.

Chapter 22 This last chapter takes stock of application development in Objective
Caml and presents the best-known applications of the ML language family.

Appendices The first appendix explains the notion of cyclic types used in the typ-
ing of objects. The second appendix describes the language changes present in
the new version 3.00. These have been integrated in all following versions of
Objective Caml (3.xx).

Each chapter consists of a general presentation of the subject being introduced, a
chapter outline, the various sections thereof, statements of exercises to carry out, a
summary, and a final section entitled “To learn more” which indicates bibliographic
references for the subject which has been introduced.



How to obtain
Objective Caml

The various programs used in this work are “free” software . They can be found either
on the CD-ROM accompanying this work, or by downloading them from the Internet.
This is the case for Objective Caml, developed at INRIA.

Description of the CD-ROM

The CD-ROM is provided as a hierarchy of files. At the root can be found the file
index.html which presents the CD-ROM, as well as the five subdirectories below:

° book: root of the HTML version of the book along with the solutions to the
exercises;

° apps: applications described in the book;

° exercises: independent solutions to the proposed exercises;

. distrib: set of distributions provided by INRIA, as described in the next section;

. tools: set of tools for development in Objective Caml,

. docs: online documentation of the distribution and the tools.

To read the CD-ROM, start by opening the file index.html in the root using your

browser of choice. To access directly the hypertext version of the book, open the file

book/index.html. This file hierarchy, updated in accordance with readers’ remarks,
can be found posted on the editor’s site:

Link: ’ http://www.oreilly.fr

1. “Free software” is not to be confused with “freeware”. “Freeware” is software which costs nothing,
whereas “free software” is software whose source is also freely available. In the present case, all the
programs used cost nothing and their source is available.
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Downloading

Objective Caml can be downloaded via web browser at the following address:

Link: ’ http://caml.inria.fr/ocaml/distrib.html ‘

There one can find binary distributions for Linux (INTEL and PPC), for Windows (NT,
95, 98) and for MacOS (7, 8), as well as documentation, in English, in different formats
(PDF, PosTScrIPT and HTML). The source code for the three systems is available
for download as well. Once the desired distribution is copied to one’s machine, it’s time
to install it. This procedure varies according to the operating system used.

Installation

Installing Objective Caml requires about 10MB of free space on one’s hard disk drive.
The software can easily be uninstalled without corrupting the system.

Installation under Windows

The file containing the binary distribution is called: ocaml-2.04-win.zip, indicating
the version number (here 2.04) and the operating system.

Objective Caml only works under recent versions of
Warning | Windows : Windows 95, 98 and NT. Don’t try to in-
stall it under Windows 3.x or OS2/Warp.

1. The file is in compressed (.zip) format; the first thing to do is decompress it.
Use your favorite decompression software for this. You obtain in this way a file
hierarchy whose root is named ocaml. You can place this directory at any location
on your hard disk. It is denoted by <caml-dir> in what follows.

2. This directory includes:

e  two subdirectories: bin for binaries and 1ib for libraries;

e two “text” files: License.txt and Changes.txt containing the license to
use the software and the changes relative to previous versions;

) an application: 0CamlWin corresponding to the main application;

e a configuration file: Ocamlwin.ini which will need to be modified (see the
following point);

e two files of version notes: the first, Readme.gen, for this version and the
second, Readme.win, for the version under Windows.

3.  If you have chosen a directory other than c:\ocaml as the root of your file
hierarchy, then it is necessary to indicate this in the configuration file. Edit it
with Wordpad and change the line defining CmdLine which is of the form:
CmdLine=ocamlrun c:\ocaml\bin\ocaml.exe -I c:\ocaml\lib
to
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CmdLine=ocamlrun <caml-dir>\bin\ocaml.exe -I <caml-dir>\1lib

You have to replace the names of the search paths for binaries and libraries with
the name of the Objective Caml root directory. If we have chosen C:\Lang\ocaml
as the root directory (<caml-dir>), the modification becomes:
CmdLine=ocamlrun C:\Lang\ocaml\bin\ocaml.exe -I C:\Lang\ocaml\lib

4. Copy the file OCamlWin.ini to the main system directory, that is, C:\windows
or C:\win95 or C:\winnt according to the installation of your system.

Now it’s time to test the 0CamlWin application by double-clicking on it. You'll get the
window in figure 1.1.

1 CAML for Windows - Terminal

5 2¥)

Figure 1.1: Objective Caml window under Windows.

The configuration of command-line executables, launched from a DOS window, is done
by modifying the PATH variable and the Objective Caml library search path vari-
able (CAMLLIB), as follows:

PATH=Y%PATHY; <caml-dir>\bin
set CAMLLIB=<caml-dir>\1lib

where <caml-dir> is replaced by the path where Objective Caml is installed.
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These two commands can be included in the autoexec.bat file which every good DOS
has. To test the command-line executables, type the command ocaml in a DOS window.
This executes the file:

<caml-dir>/bin/ocaml.exe

corresponding to the Objective Caml. text mode toplevel. To exit from this command,
type #quit;;.

To install Objective Caml from source under Windows is not so easy, because it requires
the use of commercial software, in particular the Microsoft C compiler. Refer to the
file Readme.win of the binary distribution to get the details.

Installation under LINUX

The LINUX installation also has an easy-to-install binary distribution in the form of an
rpm. package. Installation from source is described in section 1. The file to download
is: ocaml-2.04-2.1386.rpm which will be used as follows with root privileges:

rpm -i ocaml-2.04-2.i386.rpm

which installs the executables in the /usr/bin directory and the libraries in the
/usr/lib/ocaml directory.

To test the installation, type: ocamlc -v which prints the version of Objective Caml
installed on the machine.

ocamlc -v
The Objective Caml compiler, version 2.04

Standard library directory: /usr/lib/ocaml

You can also execute the command ocaml which prints the header of the interactive
toplevel.

Objective Caml version 2.04
#
The # character is the prompt in the interactive toplevel. This interactive toplevel can

be exited by the #quit;; directive, or by typing CTRL-D. The two semi-colons indicate
the end of an Objective Caml phrase.

Installation under MacOS

The MacOS distribution is also in the form of a self-extracting binary. The file to
download is: ocam1-2.04-mac.sea.bin which is compressed. Use your favorite software
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to decompress it. Then all you have to do to install it is launch the self-extracting
archive and follow the instructions printed in the dialog box to choose the location
of the distribution. For the MacOS X server distribution, follow the installation from
source under Unix.

Installation from source under Unix

Objective Caml can be installed on systems in the Unix family from the source dis-
tribution. Indeed it will be necessary to compile the Objective Caml system. To do
this, one must either have a C compiler on one’s Unix, machine, which is generally
the case, or download one such as gcc which works on most Unix. systems. The Ob-
jective Caml distribution file containing the source is: ocaml-2.04.tar.gz. The file
INSTALL describes, in a very clear way, the various stages of configuring, making, and
then installing the binaries.

Installation of the HTMIL documentation

Objective Caml’s English documentation is present also in the form of a hierarchy of
HTML files which can be found in the docs directory of the CD-ROM.

This documentation is a reference manual. It is not easy reading for the beginner.
Nevertheless it is quite useful as a description of the language, its tools, and its libraries.
It will soon become indispensable for anyone who hopes to write a program of more
than ten lines.

Testing the installation

Once installation of the Objective Caml development environment is done, it is nec-
essary to test it, mainly to verify the search paths for executables and libraries. The
simplest way is to launch the interactive toplevel of the system and write the first little
program that follows:

String.concat "/" ["a"; "path"; "here"] ;;

This expression concatenates several character strings, inserting the “/” character be-
tween each word. The notation String.concat indicates use of the function concat
from the String. If the library search path is not correct, the system will print an error.
It will be noted that the system indicates that the computation returns a character
string and prints the result.

The documentation of this function String. concat can be found in the online reference
manual by following the links “The standard library” then “Module String: string
operations”.

2

To exit the interactive toplevel, the user must type the directive “#quit ;;”.
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Part 1

Language Core






The first part of this book is a complete introduction to the core of the Objective
Caml language, in particular the expression evaluation mechanism, static typing and
the data memory model.

An expression is the description of a computation. Evaluation of an expression returns
a value at the end of the computation. The execution of an Objective Caml program
corresponds to the computation of an expression. Functions, program execution control
structures, even conditions or loops, are themselves also expressions.

Static typing guarantees that the computation of an expression cannot cause a run-time
type error. In fact, application of a function to some arguments (or actual parameters)
isn’t accepted unless they all have types compatible with the formal parameters indi-
cated in the definition of the function. Furthermore, the Objective Caml language has
type infererence: the compiler automatically determines the most general type of an
expression.

Finally a minimal knowledge of the representation of data is indispensable to the
programmer in order to master the effects of physical modifications to the data.

Outline

Chapter 2 contains a complete presentation of the purely functional part of the lan-
guage and the constraints due to static typing. The notion of expression evaluation is
illustrated there at length. The following control structures are detailed: conditional,
function application and pattern matching. The differences between the type and the
domain of a function are discussed in order to introduce the exception mechanism. This
feature of the language goes beyond the functional context and allows management of
computational breakdowns.

Chapter 3 exhibits the imperative style. The constructions there are closer to classic
languages. Associative control structures such as sequence and iteration are presented
there, as well as mutable data structures. The interaction between physical modifica-
tions and sharing of data is then detailed. Type inference is described there in the
context of these new constructions.

Chapter 4 compares the two preceding styles and especially presents different mixed
styles. This mixture supports in particular the construction of lazy data structures,
including mutable ones.

Chapter 5 demonstrates the use of the Graphics library included in the language
distribution. The basic notions of graphics programming are exhibited there and im-
mediately put into practice. There’s even something about GUI construction thanks
to the minimal event control provided by this library.

These first four chapters are illustrated by a complete example, the implementation
of a calculator, which evolves from chapter to chapter.

Chapter 6 presents three complete applications: a little database, a mini-BASIC inter-
preter and the game Minesweeper. The first two examples are constructed mainly in a
functional style, while the third is done in an imperative style.
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The rudiments of syntax

Before beginning we indicate the first elements of the syntax of the language. A program
is a sequence of phrases in the language. A phrase is a complete, directly executable
syntactic element (an expression, a declaration). A phrase is terminated with a double
semi-colon (;;). There are three different types of declarations which are each marked
with a different keyword:

value declaration : let
exception declaration : exception
type declaration : type

All the examples given in this part are to be input into the interactive toplevel of the
language.

Here’s a first (little) Objective Caml program, to be entered into the toplevel, whose
prompt is the pound character (#), in which a function fact computing the factorial
of a natural number, and its application to a natural number 8, are defined.

# let rec fact m = if n < 2 then 1 else n * fact(n-1) ;;

val fact : int -> int = <fun>

# fact 8 ;;

- : int = 40320

This program consists of two phrases. The first is the declaration of a function value
and the second is an expression. One sees that the toplevel prints out three pieces
of information which are: the name being declared, or a dash (-) in the case of an
expression; the inferred type; and the return value. In the case of a function value, the
system prints <fun>.

The following example demonstrates the manipulation of functions as values in the
language. There we first of all define the function succ which calculates the successor
of an integer, then the function compose which composes two functions. The latter will
be applied to fact and succ.

# let succ = = z+1 ;;

val succ : int -> int = <fun>

# let compose f g z = f(g ) ;;

val compose : (’a -> ’b) -> (’c -> ’a) -> ’c -> ’b = <fun>

# compose fact succ 8 ;;

- : int = 362880

This last call carries out the computation fact(succ 8) and returns the expected
result. Let us note that the functions fact and succ are passed as parameters to
compose in the same way as the natural number 8.



Functional
programming

The first functional language, Lisp, appeared at the end of the 1950’s. That is, at
the same time as Fortran, the first representative of the imperative languages. These
two languages still exist, although both have evolved greatly. They are used widely for
numerical programming (in the case of Fortran) and symbolic applications in the case of
Lisp. Interest in functional programming arises from the great ease of writing programs
and specifying the values which they manipulate. A program is a function applied to its
arguments. It computes a result which is returned (when the computation terminates)
as the output of the program. In this way it becomes easy to combine programs: the
output of one program becomes an input argument to another, in the sense of function
composition.

Functional programming is based on a simple computation model with three construc-
tions: variables, function definitions, and applications of a function to an argument.
This model is called the A-calculus and it was introduced by Alonzo Church in 1932,
thus before the first computer. It was created to offer a general theoretical model of
the notion of computability. In the A-calculus, all functions are values which can be
manipulated. They can be used as arguments to other functions, or returned as the
result of a call to another function. The theory of A-calculus asserts that everything
which is computable (i.e., programmable) can be written in this formalism. Its syntax
is too limited to make its use as a programming language practical, so primitive values
(such as integers or character strings), operations on these primitive values, control
structures, and declarations which allow the naming of values or functions and, in
particular, recursive functions, have all been added to the A-calculus to make it more
palatable.

There are several classifications of functional languages. For our part, we will distin-
guish them according to two characteristics which seem to us most salient:

. Without side effects (pure) or with side effects (impure): a pure functional lan-
guage is a language in which there is no change of state. There everything is
simply a computation and the way it is carried out is unimportant. Impure func-
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tional languages, such as Lisp or ML, integrate imperative traits such as change
of state. They permit the writing of algorithms in a style closer to languages like
Fortran, where the order of evaluation of expressions is significant.

° Dynamically typed or statically typed: typing permits verification of whether
an argument passed to a function is indeed of the type of the function’s formal
parameter. This verification can be made during program execution. In that case
this verification is called dynamic typing. If type errors occur the program will
halt in a consistent state. This is the case in the language Lisp. This verification
can also be done before program execution, that is, at compilation time. This a
priori verification is called static typing. Having been carried out once and for all,
it won’t slow down program execution. This is the case in the ML language and
its dialects such as Objective Caml. Only correctly typed programs, i.e., those
accepted by the type verifier, will be able to be compiled and then executed.

Chapter outline

This chapter presents the basic elements of the functional part of the Objective Caml
language, namely its syntactic elements, its language of types and its exception mech-
anism. This will lead us to the development of a first example of a complete program.

The first section describes the core of the language, beginning with primitive values
and the functions which manipulate them. We then go on to structured values and to
function values. The basic control structures are introduced as well as local and global
value declarations. The second section deals with type definitions for the construction
of structured values and with pattern matching to access these structures. The third
section compares the inferred type of functions and their domain of definition, which
leads us to introduce the exception mechanism. The fourth section illustrates all these
notions put together, by describing a simple application: a desktop calculator.

Functional core of Objective Caml

Like all functional languages, Objective Caml is an expression oriented language, where
programming consists mainly of creating functions and applying them. The result of
the evaluation of one of these expressions is a value in the language and the execution
of a program is the evaluation of all the expressions which comprise it.

Primitive values, functions, and types

Integers and floating-point numbers, characters, character strings, and booleans are
predefined in Objective Caml.
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Numbers

There are two kinds of numbers: integers' of type 4nt and floating-point numbers of
type float. Objective Caml follows the IEEE 754 standard? for representing double-
precision floating-point numbers. The operations on integers and floating-point num-
bers are described in figure 2.1. Let us note that when the result of an integer operation
is outside the interval on which values of type 4nt are defined, this does not produce
an error, but the result is an integer within the system’s interval of integers. In other
words, all integer operations are operations modulo the boundaries of the interval.

integer numbers floating-point numbers
+ addition +. addition
- subtraction and unary negation|| -. subtraction and unary negation
*  multiplication *x.  multiplication
/ integer division /. division
mod remainder of integer division **%  exponentiation
# 135 # 2.0 35
- :int =1 - : float = 2
# 1+ 2;; # 1.1 +. 2.2 ;;
- : int = 3 - : float = 3.3
# 9/ 2;; # 9.1 /. 2.2 ;;
- : int = 4 - : float = 4.13636363636
# 11 mod 3 ;; # 1. /. 0. ;;
- :int = 2 - : float = inf
(* limits of the representation *) (* limits of the representation *)
(* of integers *) (x of floating-point numbers *)
# 2147483650 ;; # 222222222222.11111 ;;
- ¢ int = 2 - : float = 222222222222

Figure 2.1: Operations on numbers.

Differences between integers and floating-point numbers Values having dif-
ferent types such as float and int can never be compared directly. But there are
functions for conversion (float_of_int and int_of_float) between one and the other.

# 2=2.0;;

Characters 5-8:

This expression has type float but is here used with type int
# 3.0 = float_of-int 3 ;;

1. In the interval [—239 230 — 1] on 32-bit machines and in the interval [—262 262 — 1] on 64-bit
machines

2. The floating point number m x 10™ is represented with a 53-bit mantissa m and an exponent n in
the interval [—1022,1023].
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- : bool = true

In the same way, operations on floating-point numbers are distinct from those on
integers.

# 3+ 25

- :int =5

# 3.0 +. 2.0 ;;

- : float =5

# 3.0 + 2.0 ;;

Characters 0-3:

This expression has type float but is here used with type int
# sin 3.14159 ;;

- : float = 2.65358979335e-06

An ill-defined computation, such as a division by zero, will raise an exception (see page
54) which interrupts the computation. Floating-point numbers have a representation
for infinite values (printed as Inf) and ill-defined computations (printed as NaN®). The
main functions on floating-point numbers are described in figure 2.2.

functions on floats trigonometric functions

ceil cos cosine

floor sin  sine

sqrt square root tan tangent

exp exponential acos arccosine

log natural log asin arcsine

logl0 log base 10 atan arctangent
# ceil 3.4 ;; # sin 1.57078 ;;

- : float = 4 - : float = 0.999999999867
# floor 3.4 ;; # sin (asin 0.707) ;;

- : float = 3 - : float = 0.707

# ceil (-.3.4) ;; # acos 0.0 ;;

- : float = -3 - : float = 1.57079632679
# floor (-.3.4) ;; # asin 3.14 ;;

- : float = -4 - : float = nan

Figure 2.2: Functions on floats.

3. Not a Number
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Characters and Strings

Characters, type char, correspond to integers between 0 and 255 inclusive, following
the ASCII encoding for the first 128. The functions char_of_int and int_of_char
support conversion between integers and characters. Character strings, type string,
are sequences of characters of definite length (less than 224 — 6). The concatenation
operator is ~ . The functions int_of_string, string of_int, string of float and
float_of_string carry out the various conversions between numbers and character

strings.

# B’ 55

- : char = ’B’

# int_of_char ’B’ ;;

- : int = 66

# "is a string" ;;

- : string = "is a string"

# (string_of_int 1987) ~ " is the year Caml was created" ;;
- : string = "1987 is the year Caml was created"

Even if a string contains the characters of a number, it won’t be possible to use it in
operations on numbers without carrying out an explicit conversion.

# "1999" + 1 ;;

Characters 1-7:

This expression has type string but is here used with type int

# (dint_of_string "1999") + 1 ;;

- : int = 2000

Numerous functions on character strings are gathered in the String module (see page
217).

Booleans

Booleans, of type bool, belong to a set consisting of two values: true and false. The
primitive operators are described in figure 2.3. For historical reasons, the “and” and
“or” operators each have two forms.

not negation
) & synonym for &&
&& sequential and
) or synonym for ||
|| sequential or

Figure 2.3: Operators on booleans.

# true ;;

- : bool = true
# not true ;;

- : bool = false
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# true && false ;;

- : bool = false

The operators && and | |, or their synonyms, evaluate their left argument and then,
depending on its value, evaluate their right argument. They can be rewritten in the
form of conditional constructs (see page 18).

= structural equality < less than

== physical equality > greater than

<> negation of = <= less than or equal to

'=  negation of == >= greater than or equal to

Figure 2.4: Equality and comparison operators.

The equality and comparison operators are described in figure 2.4. They are polymor-
phic, i.e., they can be used to compare two integers as well as two character strings.
The only constraint is that their two operands must be of the same type (see page 28).

# 1<=118 && (1=2 || not(1=2)) ;;

- : bool = true

# 1.0 <= 118.0 && (1.0 = 2.0 || not (1.0 = 2.0)) ;;

- : bool = true

# "one" < "two" ;;

- : bool = true

# 0<70

Characters 4-7:

This expression has type char but is here used with type int

Structural equality tests the equality of two values by traversing their structure, whereas
physical equality tests whether the two values occupy the same region in memory. These
two equality operators return the same result for simple values: booleans, characters,
integers and constant constructors (page 45).

Warni Floating-point numbers and character strings are con-
arning |
sidered structured values.
Unit
The unit type describes a set which possesses only a single element, denoted: ().
# 0 53
- : unit =

This value will often be used in imperative programs (see chapter 3, page 67) for
functions which carry out side effects. Functions whose result is the value () simulate
the notion of procedure, which doesn’t exist in Objective Caml, just as the type void
does in the C language.
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Cartesian product, tuple

Values of possibly different types can be gathered in pairs or more generally in tuples.
The values making up a tuple are separated by commas. The type constructor * in-
dicates a tuple. The type int * string is the type of pairs whose first element is an
integer (of type int) and whose second is a character string (of type string).

# ( 12 , "October" ) ;;

- : int * string = 12, "October"

When there is no ambiguity, it can be written more simply:

# 12 , "October" ;;

- : int * string = 12, "October"

The functions £st and snd allow access to the first and second elements of a pair.

# fst ( 12 , "October" ) ;;

- : int = 12
# snd ( 12 , "October" ) ;;
- : string = "October"

These two functions accept pairs whose components are of any type whatsoever. They
are polymorphic, in the same way as equality.

# fst;;

- : ’ax*x’b -> ’a = <fun>

# fst ( "October", 12 ) ;;

- : string = "October"

The type int * char * string is that of triplets whose first element is of type int,
whose second is of type char, and whose third is of type string. Its values are written

# (65, ’B’ , "ascii" ) ;;
- : int * char * string = 65, ’B’, "ascii"

The functions fst and snd applied to a tuple, other

Warning . .
than a pair, result in a type error.

# snd ( 65 , ’B’ , "ascii" ) ;;
Characters 7-25:
This expression has type int * char * string but is here used with type

’a *x ’b
There is indeed a difference between the type of a pair and that of a triplet. The type
int * int * 4nt is different from the types (int * int) * <nt and int * (int *
int). Functions to access a triplet (and other tuples) are not defined by the core library.
One can use pattern matching to define them if need be (see page 34).

Lists

Values of the same type can be gathered into a list. A list can either be empty or
consist of elements of the same type.
# 0 5

- : ’a list = []
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#[015;2;31;;

- : int list = [1; 2; 3]

# L1 "two" ;31 53

Characters 14-17:

This expression has type int list but is here used with type string list

The function which adds an element at the head of a list is the infix operator :: . It is
the analogue of Lisp’s cons.

#1 22 =3 = [ 5

- : int list = [1; 2; 3]

Concatenation of two lists is also an infix operator @.
#[11 e [2;31;;
- : int list = [1; 2; 3]
#[01;2]1 e [31;;
- : int list = [1; 2; 3]

The other list manipulation functions are defined in the List library. The functions
hd and t1 from this library give respectively the head and the tail of a list when these
values exist. These functions are denoted by List.hd and List.tl to indicate to the
system that they can be found in the module List?.

# List.hd [ 1 ;2 ;31 ;;

- :int =1

# List.hd [ ;;

Uncaught exception: Failure("hd")

In this last example, it is indeed problematic to request retrieval of the first element
of an empty list. It is for this reason that the system raises an ezception (see page 54).

Conditional control structure

One of the indispensable control structures in any programming language is the struc-
ture called conditional (or branch) which guides the computation as a function of a
condition.

Syntax : | if ezpr; then expry else exrpr;

The expression expr; is of type bool. The expressions expry and exprs must be of the
same type, whatever it may be.

# if 3=4 then 0 else 4 ;;
- : int = 4
# if 3=4 then "0" else "4" ;;

4. The List module is presented on page 217.
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- : string = "4"

# if 3=4 then 0 else "4";;

Characters 20-23:

This expression has type string but is here used with type int

A conditional construct is itself an expression and its evaluation returns a value.

# (if 3=5 then 8 else 10) + 5 ;;
- : int = 15

Note
The else branch can be omitted, but in this case it is implicitly replaced
by else (). Consequently, the type of the expression exprs must be unit
(see page 79).

Value declarations

A declaration binds a name to a value. There are two types: global declarations and
local declarations. In the first case, the declared names are known to all the expressions
following the declaration; in the second, the declared names are only known to one
expression. It is equally possible to simultaneously declare several name-value bindings.

Global declarations

Syntax : ’ let name = expr ;;

A global declaration defines the binding between the name name and the value of the
expression ezpr which will be known to all subsequent expressions.

# let yr = "1999" ;;

val yr : string = "1999"

# let z = int_of_string(yr) ;;

val x : int = 1999

# T3

- : int = 1999
# o+ 15

- : int = 2000

# let new.yr = string-of_int (z + 1) ;;
val new_yr : string = "2000"
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Simultaneous global declarations

let name; = expr,

and names = expry
Syntax :

and name, = expr, 3

A simultaneous declaration declares different symbols at the same level. They won’t
be known until the end of all the declarations.

# let z=1and y = 2 ;;

val x : int =1
val y : int = 2

# T+ Y

- :int =3

# let z = 3 and t
Characters 18-19:
Unbound value z

1
N
+
N

’

It is possible to gather several global declarations in the same phrase; then printing of
their types and their values does not take place until the end of the phrase, marked by
double “;3;”. These declarations are evaluated sequentially, in contrast with a simulta-
neous declaration.
# let z = 2

let y =z + 3 ;;
val x : int = 2
val y : int = 5
A global declaration can be masked by a new declaration of the same name (see page
26).

Local declarations

Syntax : ’ let name = expr; in expra;s;

The name name is only known during the evaluation of exprs. The local declaration
binds it to the value of expr;.

# let zl = 3 in zl * zl ;;

- :int =9

The local declaration binding x1 to the value 3 is only in effect during the evaluation
of zl * =zl.

# zl 3

Characters 1-3:

Unbound value x1

A local declaration masks all previous declarations of the same name, but the previous
value is reinstated upon leaving the scope of the local declaration:

# let z = 2 ;;
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val x : int = 2
# let =3 in z * z ;;

- :int =9
# T * T
- : int = 4

A local declaration is an expression and can thus be used to construct other expressions:

# (let z =3 in z *x ) + 1 ;;
- : int = 10

Local declarations can also be simultaneous.

let name; = expr
and namey = expra
Syntax :
and name, = expry
in expr 33

# let a = 3.0 and b = 4.0 in sqrt (ax.a +. b*.b) ;;
- : float = 5

# b5

Characters 0-1:

Unbound value b

Function expressions, functions

A function expression consists of a parameter and a body. The formal parameter is a
variable name and the body an expression. The parameter is said to be abstract. For
this reason, a function expression is also called an abstraction.

Syntax : | function p > expr

Thus the function which squares its argument is written:

# function z — z*z ;;

- : int -> int = <fun>

The Objective Caml system deduces its type. The function type int -> 4int indicates
a function expecting a parameter of type 4nt and returning a value of type 4nt.

Application of a function to an argument is written as the function followed by the
argument.

# (function z — z *x z) 5 ;;

- : int = 25

The evaluation of an application amounts to evaluating the body of the function, here
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z * z, where the formal parameter, x, is replaced by the value of the argument (or the
actual parameter), here 5.

In the construction of a function expression, ezpr is any expression whatsoever. In
particular, ezpr may itself be a function expression.

# function z — (function y — 3%z + y) ;;
- : int -> int -> int = <fun>

The parentheses are not required. One can write more simply:

# function z — function y — 3*z + y ;;

- : int -> int -> int = <fun>

The type of this expression can be read in the usual way as the type of a function which
expects two integers and returns an integer value. But in the context of a functional
language such as Objective Caml we are dealing more precisely with the type of a
function which expects an integer and returns a function value of type int -> int:
# (function z — function y — 3%z + y) 5 ;;

- : int -> int = <fun>

One can, of course, use the function expression in the usual way by applying it to two
arguments. One writes:

# (function z — function y — 3%z + y) 4 5 ;;

- : int = 17

When one writes f a b, there is an implicit parenthesization on the left which makes
this expression equivalent to: (f a) b.

Let’s examine the application
(function z — function y — 3%z + y) 4 5

in detail. To compute the value of this expression, it is necessary to compute the value
of

(function z — function y — 3%z + y) 4
which is a function expression equivalent to
function y — 3*%4 + y

obtained by replacing z by 4 in 3*z + y. Applying this value (which is a function) to
5 we get the final value 3*x4+5 = 17:

# (function z — function y — 3%z + y) 4 5 ;;

- : int = 17
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Arity of a function

The number of arguments of a function is called its arity. Usage inherited from math-
ematics demands that the arguments of a function be given in parentheses after the
name of the function. One writes: f(4,5). We’ve just seen that in Objective Caml, one
more usually writes: f 4 5. One can, of course, write a function expression in Objective
Caml which can be applied to (4,5):

# function (z,y) — 3%z + y ;;

- : int * int -> int = <fun>

But, as its type indicates, this last expression expects not two, but only one argument:
a pair of integers. Trying to pass two arguments to a function which expects a pair or
trying to pass a pair to a function which expects two arguments results in a type error:

# (function (z,y) — 3*z + y) 4 5 ;;

Characters 29-30:

This expression has type int but is here used with type int * int
# (function z — function y — 3%z + y) (4, 5) ;;

Characters 39-43:

This expression has type int * int but is here used with type int

Alternative syntax

There is a more compact way of writing function expressions with several parameters.
It is a legacy of former versions of the Caml language. Its form is as follows:

Syntax : | fun p; ...p, = expr

It allows one to omit repetitions of the function keyword and the arrows. It is equiv-
alent to the following translation:

function p; = ...—> function p, > expr

# fun z y — 3%z + y ;5

- : int -> int -> int = <fun>

# (fun z y — 3*z + y) 4 5 ;;

- ¢ int = 17

This form is still encountered often, in particular in the libraries provided with the
Objective Caml distribution.

Closure
Objective Caml treats a function expression like any other expression and is able to

compute its value. The value returned by the computation is a function expression and
is called a closure. Every Objective Caml expression is evaluated in an environment
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consisting of name-value bindings coming from the declarations preceding the expres-
sion being computed. A closure can be described as a triplet consisting of the name
of the formal parameter, the body of the function, and the environment of the expres-
sion. This environment needs to be preserved because the body of a function expression
may use, in addition to the formal parameters, every other variable declared previously.
These variables are said to be “free” in the function expression. Their values will be
needed when the function expression is applied.

# let m = 3 ;;

val m : int = 3

# function z — z + m ;;

- : int -> int = <fun>

# (function z — z + m) 5 ;;

- : int =8

When application of a closure to an argument returns a new closure, the latter pos-
sesses within its environment all the bindings necessary for a future application. The
subsection on the scope of variables (see page 26) details this notion. We will return
to the memory representation of a closure in chapter 4 (page 103) as well as chapter
12 (page 332).

The function expressions used until now are anonymous. It is rather useful to be able
to name them.

Function value declarations

Function values are declared in the same way as other language values, by the let
construct.

# let succ = function z — z + 1 ;;

val succ : int -> int = <fun>

# succ 420 ;;

- : int = 421

# let g = function z — function y — 2%z + 3%y ;;

val g : int -> int -> int = <fun>

#912;

- : int = 8

To simplify writing, the following notation is allowed:

Syntax : | let name py ... p, = expr

which is equivalent to the following form:
let name = function p; = ...—> function p, > expr

The following declarations of succ and g are equivalent to their previous declaration.
# let succz =z + 1 ;;
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val succ : int -> int = <fun>
# let g ¢ y = 2%z + 3%y ;;
val g : int -> int -> int = <fun>

The completely functional character of Objective Caml is brought out by the following
example, in which the function h1 is obtained by the application of g to a single integer.
In this case one speaks of partial application:

# let hl1 =g 1 ;;

val hl : int -> int = <fun>

# hi 23

- : int = 8

One can also, starting from g, define a function h2 by fixing the value of the second
parameter, y, of g:

# let h2 = function z — g z 2 ;;

val h2 : int -> int = <fun>

# h2 13

- : int = 8

Declaration of infix functions

Certain functions taking two arguments can be applied in infix form. This is the case
with addition of integers. One writes 3 + 5 for the application of + to 3 and 5. To
use the symbol + as a regular function value, this must be syntactically indicated by
surrounding the infix symbol with parentheses. The syntax is as follows:

Syntax : | (op)

The following example defines the function succ using ( + ).
# (+) 5

- : int -> int -> int = <fun>

# let succ = (+) 1 ;
val succ : int -> int
# succ 3 ;;

- : int = 4

<fun>

It is also possible to define new operators. We define an operator ++, addition on pairs
of integers

# let ( ++ ) cl c2 = (fst c1)+(fst c2), (snd ci)+(snd c2) ;;

val ++ : int * int -> int * int -> int * int = <fun>

# let ¢ = (2,3) ;;

val ¢ : int * int = 2, 3

# ¢+t oci;

- : int * int = 4, 6
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There is an important limitation on the possible operators. They must contain only
symbols (such as *, +, @, etc. ) and not letters or digits. Certain functions predefined as
infixes are exceptions to the rule. They are listed as follows: or mod land lor 1lxor
1sl 1sr asr.

Higher order functions

A function value (a closure) can be returned as a result. It can equally well be passed as
an argument to a function. Functions taking function values as arguments or returning
them as results are called higher order.

# let h = function f — function y — (f y) + y ;;

val h : (int -> int) -> int -> int = <fun>

Note
Application is implicitly parenthesized to the left, but function types are
implicitly parenthesized to the right. Thus the type of the function h can
be written

(int -> 4nt) -> 4int -> int or (int -> int) -> (int -> int)

Higher order functions offer elegant possibilities for dealing with lists. For example the
function List.map can apply a function to all the elements of a list and return the
results in a list.

# List.map ;;

- : (Pa =>’b) -> ’a list -> ’b list = <fun>

# let square z = string.of_int (zxx) ;;

val square : int -> string = <fun>

# List.map square [1; 2; 3; 4] ;;

- : string list = ["1"; "4"; "9"; "16"]

As another example, the function List.for_all can find out whether all the elements
of a list satisfy a given criterion.

# List.for_all ;;

- : (Pa -> bool) -> ’a list -> bool = <fun>

# List.for_all (function n — n<>0) [-3; -2; -1; 1; 2; 3] ;;

- : bool = true

# List.for-all (function n — n<>0) [-3; -2; 0; 1; 2; 3] ;;

- : bool = false

Scope of variables

In order for it to be possible to evaluate an expression, all the variables appearing
therein must be defined. This is the case in particular for the expression e in the dec-
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laration 1et p = e. But since p is not yet known within this expression, this variable
can only be present if it refers to another value issued by a previous declaration.

# let p = p =~ "-suffix" ;;

Characters 9-10:

Unbound value p

# let p = "prefix" ;;

val p : string = "prefix"
# let p = p = "-suffix" ;;
val p : string = "prefix-suffix"

In Objective Caml, variables are statically bound. The environment used to execute
the application of a closure is the one in effect at the moment of its declaration (static
scope) and not the one in effect at the moment of application (dynamic scope).

# let p = 10 ;;

val p : int = 10

# let k z = (z, p, =+p) ;;

val k : int -> int * int * int = <fun>

# kps;

- : int * int * int = 10, 10, 20

# let p = 1000 ;;

val p : int = 1000

# kps;

- : int * int * int = 1000, 10, 1010

The function k contains a free variable: p. Since the latter is defined in the global
environment, the definition of k is legal. The binding between the name p and the
value 10 in the environment of the closure k is static, i.e., does not depend on the most
recent definition of p.

Recursive declarations

A variable declaration is called recursive if it uses its own identifier in its definition.
This facility is used mainly for functions, notably to simulate a definition by recurrence.
We have just seen that the let declaration does not support this. To declare a recursive
function we will use a dedicated syntactic construct.

Syntax : ’ let rec name = expr ;; ‘

We can equally well use the syntactic facility for defining function values while indi-
cating the function parameters:

Syntax : ’ let rec name py ...p, = €Ipr ;3 ‘

By way of example, here is the function sigma which computes the sum of the (non-
negative) integers between 0 and the value of its argument, inclusive.

# let rec sigma z = if z = O then O else z + sigma (z-1) ;;

val sigma : int -> int = <fun>
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# sigma 10 ;;
- : int = b5
It may be noted that this function does not terminate if its argument is strictly negative.

A recursive value is in general a function. The compiler rejects some recursive decla-
rations whose values are not functions:

# let rec z =z + 1 ;;

Characters 13-18:

This kind of expression is not allowed as right-hand side of ‘let rec’

We will see however that in certain cases such declarations are allowed (see page 52).

The let rec declaration may be combined with the and construction for simultaneous
declarations. In this case, all the functions defined at the same level are known within
the bodies of each of the others. This permits, among other things, the declaration of
mutually recursive functions.
# let rec even n = (n<>1) && ((n=0) or (odd (n-1)))
and odd n = (n<>0) && ((n=1) or (even (n-1))) 33
val even : int -> bool = <fun>
val odd : int -> bool = <fun>
# even 4 ;;
- : bool = true
# odd 5 ;;
- : bool = true

In the same way, local declarations can be recursive. This new definition of sigma tests
the validity of its argument before carrying out the computation of the sum defined by
a local function sigma_rec.
# let sigma T =

let rec sigma_rec £ = if z = O then O else = + sigma_rec (z-1) in

if (z<0) then "error: negative argument"

else "sigma = " ~ (string_of-int (sigma_rec z)) ;;
val sigma : int -> string = <fun>

Note
The need to give a return value of the same type, whether the argument is
negative or not, has forced us to give the result in the form of a character
string. Indeed, what value should be returned by sigma when its argument
is negative? We will see the proper way to manage this problem, using
exceptions (see page 54).

Polymorphism and type constraints

Some functions execute the same code for arguments having different types. For exam-
ple, creation of a pair from two values doesn’t require different functions for each type
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known to the system®. In the same way, the function to access the first field of a pair
doesn’t have to be differentiated according to the type of the value of this first field.
# let make_pair a b = (a,b) ;;

val make_pair : ’a -> ’b -> ’a * ’b = <fun>

# let p = make_pair "paper" 451 ;;

val p : string * int = "paper", 451
# let a = make_pair ’B’ 65 ;;

val a : char * int = ’B’, 65

# fst p s

- : string = "paper"

# fst a;;

- : char = ’B’

Functions are called polymorphic if their return value or one of their parameters is of
a type which need not be specified. The type synthesizer contained in the Objective
Caml compiler finds the most general type for each expression. In this case, Objective
Caml uses variables, here ’a and ’b, to designate these general types. These variables
are instantiated to the type of the argument during application of the function.

With Objective Caml’s polymorphic functions, we get the advantages of being able
to write generic code usable for values of every type, while still preserving the exe-
cution safety of static typing. Indeed, although make pair is polymorphic, the value
created by (make_pair B’ 65) has a well-specified type which is different from that of
(make_pair "paper" 451). Moreover, type verification is carried out on compilation,
so the generality of the code does not hamper the efficiency of the program.

Examples of polymorphic functions and values

The following examples of polymorphic functions have functional parameters whose
type is parameterized.

The app function applies a function to an argument.

# let app = function f — function z — [ z ;;

val app : (’a => ’b) -> ’a -> ’b = <fun>

So it can be applied to the function odd defined previously:
# app odd 2;;

- : bool = false

The identity function (id ) takes a parameter and returns it as is.
# let id z = z ;;

val id : ’a -> ’a = <fun>
# app id 1 ;;
- : int =1

5. Fortunately since the number of types is only limited by machine memory
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The compose function takes two functions and another value and composes the appli-
cation of these two functions to this value.

# let compose f g z=f (g 2 ;;

val compose : (’a -> ’b) -> (’c -> ’a) -> ’c -> ’b = <fun>

# let addl z = z+1 and mul5 = = z*5 in compose mulb5 addl 9 ;;

- : int = B0

It can be seen that the result of g must be of the same type as the argument of £.

Values other than functions can be polymorphic as well. For example, this is the case
for the empty list:

4106 1= [ 5

val 1 : ’a list = []

The following example demonstrates that type synthesis indeed arises from resolution
of the constraints coming from function application and not from the value obtained
upon execution.

# let t = List.tl [2] ;;

val t : int list = []

The type of List.tl is ’a list -> ’a list, so this function applied to a list of
integers returns a list of integers. The fact that upon execution it is the empty list
which is obtained doesn’t change its type at all.

Objective Caml generates parameterized types for every function which doesn’t use
the form of its arguments. This polymorphism is called parametric polymorphism®.
Type constraint

As the Caml type synthesizer generates the most general type, it may be useful or
necessary to specify the type of an expression.

The syntactic form of a type constraint is as follows:
Syntax : | (expr: t)

When it runs into such a constraint, the type synthesizer will take it into account while
constructing the type of the expression. Using type constraints lets one:

° make the type of the parameters of a function visible;
° forbid the use of a function outside its intended context;
° specify the type of an expression, which will be particularly useful for mutable

values (see page 68).

The following examples demonstrate the use of such type constraints
# let add (z:int) (y:int) = z + y ;;

6. Some predefined functions do not obey this rule, in particular the structural equality function (=)
which is polymorphic (its type is ’a -> ’a -> bool) but which explores the structure of its arguments
to test their equality.
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val add : int -> int -> int = <fun>

# let make_pair_int (z:int) (y:int) = z,v;;

val make_pair_int : int -> int -> int * int = <fun>

# let compose_fn_int (f : int — 4nt) (g : int — int) (z:int) =
compose f g w;;

val compose_fn_int : (int -> int) -> (int -> int) -> int -> int = <fun>

# let nil = ([ : string list);;
val nil : string list = []
# ’H’ :inil;;

Characters 5-8:
This expression has type string list but is here used with type char list

Restricting polymorphism this way lets us control the type of an expression better by
constraining the polymorphism of the type deduced by the system. Any defined type
whatsoever may be used, including ones containing type variables, as the following
example shows:

# let llnil = ([ : ’a list list) ;;

val 11nil : ’a list list = []

# [1;2;3]1:: 1lnil ;;

- : int list list = [[1; 2; 3]1]

The symbol 11nil is a list of lists of any type whatsoever.

Here we are dealing with constraints, and not replacing Objective Caml’s type synthesis
with explicit typing. In particular, one cannot generalize types beyond what inference
permits.

# let add_general (z:’a) (y:’b) = add = y ;;

val add_general : int -> int -> int = <fun>

Type constraints will be used in module interfaces (see chapter 14) as well as in class
declarations (see chapter 15).

Examples

In this section we will give several somewhat elaborate examples of functions. Most of
these functions are predefined in Objective Caml. We will redefine them for the sake
of “pedagogy”.

Here, the test for the terminal case of recursive functions is implemented by a condi-
tional. Hence a programming style closer to Lisp. We will see how to give a more ML
character to these definitions when we present another way of defining functions by
case (see page 34).

Length of a list

Let’s start with the function null which tests whether a list is empty.
# let null L= (1= [) ;;
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val null : ’a list -> bool = <fun>
Next, we define the function size to compute the length of a list (i.e., the number of
its elements).
# let rec size | =
if null 1 then O
else 1 + (size (List.tl 1)) ;;

val size : ’a list -> int = <fun>
# size || ;;

- :int =0

# size [1;2;18;22] ;;

- : int = 4

The function size tests whether the list argument is empty. If so it returns 0, if not it
returns 1 plus the value resulting from computing the length of the tail of the list.

Iteration of composition

The expression iterate n f computes the value f iterated n times.
# let rec iterate n f =
if n = 0 then (function z — z)
else compose f (iterate (n-1) f) ;;
val iterate : int -> (’a -> ’a) -> ’a -> ’a = <fun>
The iterate function tests whether n is 0, if yes it returns the identity function, if not
it composes £ with the iteration of f n-1 times.

Using iterate, one can define exponentiation as iteration of multiplication.
# let rec power it n =
let i_times = ( * ) % in
iterate n i_times 1 ;;
val power : int -> int -> int = <fun>
# power 2 8 ;;
- : int = 256
The power function iterates n times the function expression i_times, then applies this
result to 1, which does indeed compute the nth power of an integer.

Multiplication table

We want to write a function multaeb which computes the multiplication table of an
integer passed as an argument.

First we define the function apply_fun_list such that, if f_l4st is a list of functions,
apply_fun_list z f_listreturns the list of results of applying each element of f_list
to z.
# let rec apply_fun_list = f-list =

if null f_list then ||

else ((List.hd f-list) z) :: (apply_fun_list z (List.tl f_list)) ;;
val apply_fun_list : ’a -> (’a -> ’b) list -> ’b list = <fun>
# apply fun_list 1 [C+ ) ;C+ ) 2;C + ) 3] ;3
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- : int list = [2; 3; 4]

The function mk_mult_fun_list returns the list of functions multiplying their argument
by 4, for ¢ varying from 0 to n.
# let mk_mult_fun_list n =
let rec mmfl_aux p =
if p=nthen [ ( x) n]
else (( * ) p) 1 (mmfl_auz (p+1))
in (mmfl_auz 1) ;;
val mk_mult_fun_list : int -> (int -> int) list = <fun>

We obtain the multiplication table of 7 by:

# let multab n = apply_fun_list n (mk_mult_fun_list 10) ;;
val multab : int -> int list = <fun>

# multab 7 ;;

- : int list = [7; 14; 21; 28; 35; 42; 49; 56; 63; 70]

Iteration over lists

The function call fold_left f a [el; e2; ... ; en]Jreturns f ... (f (f a el) e2)
en. So there are n applications.

# let rec fold left f a l =
if null 1 then a
else fold left f ( f a (List.hd 1)) (List.tl 1) ;;

val fold_left : (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a = <fun>

The function fold_left permits the compact definition of a function to compute the
sum of the elements of a list of integers:

# let sum_list = fold_left (+) 0 ;;

val sum_list : int list -> int = <fun>

# sum_list [2;4;7] ;;

- : int = 13

Or else, the concatenation of the elements of a list of strings:
# let concat_list = fold_left (°) "" ;;
val concat_list : string list -> string
# concat_list ["Hello "; "world" ; "!"] ;;
- : string = "Hello world!"

<fun>
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Type declarations and pattern matching

Although Objective Caml’s predefined types permit the construction of data structures
from tuples and lists, one needs to be able to define new types to describe certain data
structures. In Objective Caml, type declarations are recursive and may be parameter-
ized by type variables, in the same vein as the type ’a list already encountered. Type
inference takes these new declarations into account to produce the type of an expres-
sion. The construction of values of these new types uses the constructors described in
their definition. A special feature of languages in the ML family is pattern matching. It
allows simple access to the components of complex data structures. A function defini-
tion most often corresponds to pattern matching over one of its parameters, allowing
the function to be defined by cases.

First of all we present pattern matching over the predefined types, and then go on to
describe the various ways to declare structured types and how to construct values of
such types, as well as how to access their components through pattern matching.

Pattern matching

A pattern is not strictly speaking an Objective Caml expression. It’s more like a correct
(syntactically, and from the point of view of types) arrangement of elements such as
constants of the primitive types (int, bool, char, ..), variables, constructors, and the
symbol _ called the wildcard pattern. Other symbols are used in writing patterns. We
will introduce them to the extent needed.

Pattern matching applies to values. It is used to recognize the form of this value and lets
the computation be guided accordingly, associating with each pattern an expression to
compute.

match exzpr with
Syntax : .I b= empn
| pp = expr,
The expression expris matched sequentially to the various patterns p1, ..., p,. If one of

the patterns (for example p;) is consistent with the value of ezpr then the corresponding
computation branch (expr;) is evaluated. The various patterns p; are of the same type.
The same goes for the various expressions ezpr;. The vertical bar preceding the first
pattern is optional.

Examples

Here are two ways to define by pattern matching a function imply of type (bool *
bool) = bool implementing logical implication. A pattern which matches pairs has
the form ( , ).
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The first version of imply enumerates all possible cases, as a truth table would:
# let imply v = match v with
(true,true) — true
| (true,false) — false
| (false,true) — true
| (false,false) — true;;
val imply : bool * bool -> bool = <fun>

By using variables which group together several cases, we obtain a more compact
definition.
# let imply v = match v with
(true,z) — =z

| (false,z) — true;;
val imply : bool * bool -> bool = <fun>
These two versions of imply compute the same function. That is, they return the same
values for the same inputs.

Linear pattern

A pattern must necessarily be linear, that is, no given variable can occur more than
once inside the pattern being matched. Thus, we might have hoped to be able to write:

# let equal c = match c with
(z,z) — true

| (z,y) — false;;
Characters 35-36:
This variable is bound several times in this matching
But this would have required the compiler to know how to carry out equality tests.
Yet this immediately raises numerous problems. If we accept physical equality between
values, we get a system which is too weak, incapable of recognizing the equality be-
tween two occurrences of the list [1; 2], for example. If we decide to use structural
equality, we run the risk of having to traverse, ad infinitum, circular structures. Re-
cursive functions, for example, are circular structures, but we can construct recursive,
hence circular, values which are not functions as well (see page 52).

Wildcard pattern

The symbol _ matches all possible values. It is called a wildcard pattern. It can be used
to match complex types. We use it, for example, to further simplify the definition of
the function imply:
# let tmply v = match v with
(true,false) — false
| _ — true;;
val imply : bool * bool -> bool = <fun>
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A definition by pattern matching must handle the entire set of possible cases of the
values being matched. If this is not the case, the compiler prints a warning message:
# let is_zero m = match n with 0 — true ;;

Characters 17-40:

Warning: this pattern-matching is not exhaustive.

Here is an example of a value that is not matched:

1

val is_zero : int -> bool = <fun>

Indeed if the actual parameter is different from 0 the function doesn’t know what value
to return. So the case analysis can be completed using the wildcard pattern.
# let is_zero m = match n with
0 — true
| _ — false ;;

val is_zero : int -> bool = <fun>

If, at run-time, no pattern is selected, then an exception is raised. Thus, one can write:

# let f z = match z with 1 — 3 ;;

Characters 11-30:

Warning: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:

0

val £ : int -> int = <fun>
# f1s;

- : int = 3

# f4s;

Uncaught exception: Match_failure("", 11, 30)
The Match Failure exception is raised by the call to £ 4, and if it is not handled
induces the computation in progress to halt (see 54)

Combining patterns

Combining several patterns lets us obtain a new pattern which can match a value
according to one or another of the original patterns. The syntactic form is as follows:

Syntax: | p1 | ... | p,

It constructs a new pattern by combining the patterns pi, ...and p,. The only strong
constraint is that all naming is forbidden within these patterns. So each one of them
must contain only constant values or the wildcard pattern. The following example
demonstrates how to verify that a character is a vowel.
# let is_a_vowel ¢ = match c with
’a’ | e’ | ’i’ | o’ | ’u’ | ’y’ — true

| _ — false ;;

val is_a_vowel : char -> bool = <fun>
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# is_a_vowel ’i’ ;;
- : bool = true
# is_a_vowel ’j’ ;;
- : bool = false

Pattern matching of a parameter

Pattern matching is used in an essential way for defining functions by cases. To make
writing these definitions easier, the syntactic construct function allows pattern match-
ing of a parameter:

function | p; > expn

| po = expry
Syntax : )

| p, = expr,

The vertical bar preceding the first pattern is optional here as well. In fact, like Mr.
Jourdain, each time we define a function, we use pattern matching”. Indeed, the con-
struction function x —> expression, is a definition by pattern matching using a
single pattern reduced to one variable. One can make use of this detail with simple
patterns as in:

# let f = function (z,y) — 2%z + 3%y + 4 ;;

val £ : int * int -> int = <fun>

In fact the form
function p; > expry | ... | p, > expr,
is equivalent to
function ezpr —> match expr with p; > expry | ... | p, > expr,

Using the equivalence of the declarations mentioned on page 24, we write:

# let f (z,y) = 2%z + 3%y + 4 ;;

val £ : int * int -> int = <fun>

But this natural way of writing is only possible if the value being matched belongs to

7. Translator’s note: In Moliere’s play Le Bourgeois Gentilhomme (The Bourgeois Gentleman), the
character Mr. Jourdain is amazed to discover that he has been speaking prose all his life. The play
can be found at

Link: | http://www.site-moliere.com/pieces/bourgeoi.htm ‘

and
Link: ’ http://moliere-in-english.com/bourgeois.html ‘

gives an excerpt from an English translation, including this part.
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a type having only a single constructor. If such is not the case, the pattern matching
is not exhaustive:

# let is_zero 0 = true ;;

Characters 13-21:

Warning: this pattern-matching is not exhaustive.

Here is an example of a value that is not matched:

1

val is_zero : int -> bool = <fun>

Naming a value being matched

During pattern matching, it is sometimes useful to name part or all of the pattern. The
following syntactic form introduces the keyword as which binds a name to a pattern.

Syntax : | ( p as name )

This is useful when one needs to take apart a value while still maintaining its integrity.
In the following example, the function min_rat gives the smaller rational of a pair of
rationals. The latter are each represented by a numerator and denominator in a pair.

# let min_rat pr = match pr with
((_,0),p2) — p2
| (p1,(_,0)) — pi
| (((n1,d1) as r1), ((n2,d2) as r2)) —
if (n1 * d2 ) < (n2 *x d1) then rl else 72;;

val min_rat : (int * int) * (int * int) -> int * int = <fun>
To compare two rationals, it is necessary to take them apart in order to name their
numerators and denominators (n1, n2, d1 and d2), but the initial pair (r1 or r2) must
be returned. The as construct allows us to name the parts of a single value in this way.
This lets us avoid having to reconstruct the rational returned as the result.

Pattern matching with guards

Pattern matching with guards corresponds to the evaluation of a conditional expression
immediately after the pattern is matched. If this expression comes back true, then
the expression associated with that pattern is evaluated, otherwise pattern matching
continues with the following pattern.

match czpr with

Syntax :
| p; when cond; —> expr;

The following example uses two guards to test equality of two rationals.
# let eg_rat cr = match cr with
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((_,0),(_,0)) — true
| ((_,0),_) — false

I (_,(_,0)) — false

| ((n1,1), (n2,1)) when nl1 = n2 — true
| ((n1,d1), (n2,d2)) when ((nl1 * d2) = (n2 * di)) — true
| _ — false;;

val eq_rat : (int * int) * (int * int) -> bool = <fun>

If the guard fails when the fourth pattern is matched, matching continues with the
fifth pattern.

Note
The verification carried out by Objective Caml as to whether the pattern
matching is exhaustive assumes that the conditional expression in the
guard may be false. Consequently, it does not count this pattern since it is
not possible to know, before execution, whether the guard will be satisfied
or not.

It won’t be possible to detect that the pattern matching in the following example is
exhaustive.

# 1let f = function z when z = ¢ — true;;

Characters 10-40:

Warning: this pattern-matching is not exhaustive.

Here is an example of a value that is not matched:

val £ : ’a -> bool = <fun>

Pattern matching on character intervals

In the context of pattern matching on characters, it is tedious to construct the combi-
nation of all the patterns corresponding to a character interval. Indeed, if one wishes
to test a character or even a letter, one would need to write 26 patterns at a minimum
and combine them. For characters, Objective Caml permits writing patterns of the
form:

Syntax : | ’cy’ .. ’cp’

It is equivalent to the combination: ¢y’ | ¢’ | ...| ’¢c,’.

For example the pattern >0’ .. ’9’ corresponds to the pattern °0° | ’1° | ’2°
| 3> | °4> | °5° | 67 | >7’ | ’8’ | ’9°. The first form is nicer to read and

quicker to write.

This feature is among the extensions to the language

Warning . '
and may change in future versions.

Using combined patterns and intervals, we define a function categorizing characters
according to several criteria.
# let char_discriminate ¢ = match c with
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’a’ | ’e’ | ’i | vo’ | Pw | 7y
| >A> | PE” | °I> | ’0” | ’U’ | Y’ — "Vowel"
| ’a’>..’z”> | A’..°Z> — "Consonant"
| 70°..79> — "Digit"
| _ — "Other" ;;

79

val char_discriminate : char -> string = <fun>

It should be noted that the order of the groups of patterns has some significance.
Indeed, the second set of patterns includes the first, but it is not examined until after
the check on the first.

Pattern matching on lists

As we have seen, a list can be:

o either empty (the list is of the form [1),

. or composed of a first element (its head) and a sublist (its tail). The list is then
of the form h: :t.

These two possible ways of writing a list can be used as patterns and allow pattern
matching on a list.
# let rec size z = match z with
I —o
| _::tail.x — 1 + (size tail_z) ;;

val size : ’a list -> int = <fun>
# size [|;;

- :int =0

# size [7;9;2;6];;

- : int = 4

So we can redo the examples described previously (see page 31) using pattern matching,
such as iteration over lists for example.
# let rec fold_left f a = function

] —a

| head: tail — fold_left f (f a head) tail ;;

val fold_left : (a -> ’b -> ’a) -> ’a -> ’b list -> ’a = <fun>
# fold_left (+) 0 [8;4;101;;
- : int = 22

Value declaration through pattern matching

Value declaration in fact uses pattern matching. The declaration let z = 18 matches
the value 18 with the pattern z. Any pattern is allowed as the left-hand side of a
declaration; the variables in the pattern are bound to the values which they match.
# let (a,b,c) = (1, true, ’A’);;

val a : int =1
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val b : bool = true

val ¢ : char = ’A’
# let (d,c) =8, 3 in d + ¢;;
- : int = 11

The scope of pattern variables is the usual static scope for local declarations. Here, c
remains bound to the value ’A°.

# a + (int_of_char c);;

- : int = 66

As with any kind of pattern matching, value declaration may not be exhaustive.
# let [z;y;2] = [1;2;3];;

Characters 5-12:

Warning: this pattern-matching is not exhaustive.

Here is an example of a value that is not matched:

1

val x : int = 1
val y : int = 2
val z : int = 3

# let [z;y;2] = [1;2;3;4];;

Characters 4-11:

Warning: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
[

Uncaught exception: Match_failure("", 4, 11)

Any pattern is allowed, including constructors, wildcards and combined patterns.
# let head :: 2 :: _ = [1;2; 3] ;;

Characters 5-19:

Warning: this pattern-matching is not exhaustive.

Here is an example of a value that is not matched:

(]
val head : int = 1
# let _ = 3. +. 0.14 in "PI" ;;

- : string = "PI"

This last example is of little use in the functional world insofar as the computed value
3.14 is not named and so is lost.

Type declaration

Type declarations are another possible ingredient in an Objective Caml phrase. They
support the definition of new types corresponding to the original data structures used
in a program. There are two major families of types: product types for tuples or records;
and sum types for unions.
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Type declarations use the keyword type.

Syntax : | type name = typedef ;3

In contrast with variable declarations, type declarations are recursive by default. That
is, type declarations, when combined, support the declaration of mutually recursive
types.

type name; = typedefi
typedefo

and names
Syntax :

and name,

typedef, 33

Type declarations can be parameterized by type variables. A type variable name always
begins with an apostrophe (the ? character):

Syntax : ’ type ’a name = typedef ;;

When there are several of them, the type parameters are declared as a tuple in front
of the name of the type:

Syntax : ’ type (’a; ...%a,) name = typedef ;3

Only the type parameters defined on the left-hand side of the declaration may appear
on the right-hand side.

Note
Objective Caml’s type printer renames the type parameters encountered;
the first is called ’a, the second ’b and so forth.

One can always define a new type from one or more existing types.

Syntax : | type name = type expression

This is useful for constraining a type which one finds too general.
# type ’‘param paired_with_integer = int * ’‘param ;;

type ’a paired_with_integer = int * ’a

# type specific_pair = float paired_with_integer ;;

type specific_pair = float paired_with_integer

Nevertheless without type constraints, inference will produce the most general type.
# let z = (3, 3.14) ;;
val x : int * float = 3, 3.14

But one can use a type constraint to see the desired name appear:
# let (z:specific_pair) = (3, 3.14) ;;
val x : specific_pair = 3, 3.14
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Records

Records are tuples, each of whose fields is named in the same way as the Pascal record
or the C struct. A record always corresponds to the declaration of a new type. A record
type is defined by the declaration of its name and the names and types of each of its
fields.

Syntax : | type name = { name; : t13 ...; name, ¢ t, } 33

We can define a type representing complex numbers by:
# type complez = { re:float; im: float } ;;
type complex = { re: float; im: float }

The creation of a value of record type is done by giving a value to each of its fields (in
arbitrary order).

Syntax : ’ { name;, = expri,s ... name;, = expr;, } 33

For example, we create a complex number with real part 2. and imaginary part 3.:
# let c = {re=2.;im=3.} ;;

val ¢ : complex = {re=2; im=3}

# c = {im=3.;7e=2.} ;;

- : bool = true

In the case where some fields are missing, the following error is produced:
# let d = { im4. } ;;

Characters 9-18:

Some labels are undefined

A field can be accessed in two ways: by the dot notation or by pattern matching on
certain fields.

The dot notation syntax is as usual:
Syntax
The expression expr must be of a record type containing a field name.

Pattern matching a record lets one retrieve the value bound to several fields. A pattern
to match a record has the following syntax:

Syntax : ’ { name; = p; 5 ... 5 name; = p; } ‘

The patterns are to the right of the = sign (p;, ..., p;). It is not necessary to make all
the fields of a record appear in such a pattern.
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The function add_complex accesses fields through the dot notation, while the function
mult_complex accesses them through pattern matching.
# let add_complez cl c2 = {re=cl.ret+.c2.re; im=cl.im+.c2.im};;
val add_complex : complex -> complex -> complex = <fun>
# add_complez c c ;;
- : complex = {re=4; im=6}
# let mult_complexr cl c2 = match (c1,c2) with
{re=z1;im=y1},{re=z2;im=y2}) — {re=zi*.z2-.yl*.y2im=zl*.y2+.z2%. y1} ;;
val mult_complex : complex -> complex -> complex = <fun>
# mult_complez c c ;;
- : complex = {re=-5; im=12}

The advantages of records, as opposed to tuples, are at least twofold:

° descriptive and distinguishing information thanks to the field names: in particular
this allows pattern matching to be simplified;

° access in an identical way, by name, to any field of the record whatsoever: the
order of the fields no longer has significance, only their names count.

The following example shows the ease of accessing the fields of records as opposed to
tuples:

# let a = (1,2,3) ;;

val a : int * int * int = 1, 2, 3

# let f tr = match tr with =z,_,_ — z ;;
val £ : ’a * ’b * ’c -> ’a = <fun>

# fasy;

- :int =1

# type triplet = {zi:int; z2:int; x3:4int} ;;
type triplet = { x1: int; x2: int; x3: int }
# let b = {zi=1; z2=2; z3=3} ;;

val b : triplet = {x1=1; x2=2; x3=3}

# let g tr = tr.zl ;;

val g : triplet -> int = <fun>

# 905

- : int =1

For pattern matching, it is not necessary to indicate all the fields of the record being
matched. The inferred type is then that of the last field.

# let h tr = match tr with {zIl=z} — z;;

val h : triplet -> int = <fun>

# h b

- : int =1

There is a construction which lets one create a record identical to another except for
some fields. It is often useful for records containing many fields.



Type declarations and pattern matching 45

Syntax : ’ { name with name;= expr; 3 ...; namej=eacprj} ‘

# let c = {b with z1=0} ;;
val ¢ : triplet = {x1=0; x2=2; x3=3}
A new copy of the value of b is created where only the field x1 has a new value.

Warni This feature is among the extensions to the language
arning . .

and may change in future versions.
Sum types

In contrast with tuples or records, which correspond to a Cartesian product, the dec-
laration of a sum type corresponds to a union of sets. Different types (for example
integers or character strings) are gathered into a single type. The various members of
the sum are distinguished by constructors, which support on the one hand, as their
name indicates, construction of values of this type and on the other hand, thanks to
pattern matching, access to the components of these values. To apply a constructor to
an argument is to indicate that the value returned belongs to this new type.

A sum type is declared by giving the names of its constructors and the types of their
eventual arguments.

type name=...
Syntax : | Name; ...
| Name; of t; ...

| Namey of t;, * ...* t; ...

A constructor name is a particular identifier:

The names of constructors always begin with a capital

Warning letter

Constant constructors

A constructor which doesn’t expect an argument is called a constant constructor. Con-
stant constructors can subsequently be used directly as a value in the language, as a
constant.

# type coin = Heads | Tails;;

type coin = | Heads | Tails

# Tails;;

- : coin = Tails

The type bool can be defined in this way.
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Constructors with arguments

Constructors can have arguments. The keyword of indicates the type of the construc-
tor’s arguments. This supports the gathering into a single type of objects of different
types, each one being introduced with a particular constructor.

Here is a classic example of defining a datatype to represent the cards in a game, here
Tarot®. The types suit and card are defined in the following way:
# type suit = Spades | Hearts | Diamonds | Clubs ;;

# type card =

King of suit

Queen of sutt

Knight of suit

Knave of suit

Minor_card of suit * int

Trump of int

Joker ;;

The creation of a value of type card is carried out through the application of a con-
structor to a value of the appropriate type.

# King Spades ;;

- : card = King Spades

# Minor_card(Hearts, 10) ;;

- : card = Minor_card (Hearts, 10)

# Trump 21 ;;

- : card = Trump 21

And here, for example, is the function all_cards which constructs a list of all the
cards of a suit passed as a parameter.
# let rec interval a b = if a = b then [b] else a:: (interval (a+l) b) ;;
val interval : int -> int -> int list = <fun>
# let all_cards s =
let face_cards = [ Knave s; Knight s; Queen s; King s ]
and other_cards = List.map (function n — Minor_card(s,n)) (interval 1 10)
in face_cards @ other_cards ;;
val all_cards : suit -> card list = <fun>
# all_cards Hearts ;;
- : card list =
[Knave Hearts; Knight Hearts; Queen Hearts; King Hearts;
Minor_card (Hearts, 1); Minor_card (Hearts, 2); Minor_card (Hearts, 3);
Minor_card (Hearts, ...); ...]

8. Translator’s note: The rules for French Tarot can be found, for example, at

Link: | http://www.pagat.com/tarot/frtarot.html
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To handle values of sum types, we use pattern matching. The following example con-
structs conversion functions from values of type suit and of type card to character
strings (type string):
# let string.of_suit = function
Spades  — "spades"

| Diamonds — "diamonds"

| Hearts — "hearts"

| Clubs — "clubs" ;;
val string_of_suit : suit -> string = <fun>
# let string_of_card = function

King c — "king of " ~ (string-of_suit c)
|  Queen c — "queen of " ~ (string_of_suit c)
| Knave c — "knave of " ~ (string_of_suit c)
| Knight c — "knight of " ~ (string-of_suit c)
|  Minor_card (c, n) — (string.of-int n) ~ " of "“(string_of-suit c)
| Trump n — (string.of-int n) ~ " of trumps"
|  Joker — "joker" ;;

val string_of_card : card -> string = <fun>
Lining up the patterns makes these functions easy to read.

The constructor Minor_card is treated as a constructor with two arguments. Pattern
matching on such a value requires naming its two components.
# let is_minor_card c = match c with
Minor_card v — true

| _ — false;;
Characters 41-53:
The constructor Minor_card expects 2 argument(s),
but is here applied to 1 argument(s)

To avoid having to name each component of a constructor, one declares it to have a
single argument by parenthesizing the corresponding tuple type. The two constructors
which follow are pattern-matched differently.
# type t =
C of int * bool
| D of (int * bool) ;;
# let access v = match v with
¢ (i, b) — 1,b
| Dz — z;
val access : t -> int * bool = <fun>

Recursive types

Recursive type definitions are indispensable in any algorithmic language for describing
the usual data structures (lists, heaps, trees, graphs, etc.). To this end, in Objective
Caml type definition is recursive by default, in contrast with value declaration (let).
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Objective Caml’s predefined type of lists only takes a single parameter. One may wish
to store values of belonging to two different types in a list structure, for example,
integers (int) or characters (char). In this case, one defines:
# type int_or_char_list =
N3l
|  Int_cons of int * int_or_char_list
|  Char_cons of char * int_or_char_list ;;

# let 11 = Char_cons ( ’=’, Int_cons(5, Nil) ) in
Int_cons ( 2, Char_cons ( ’+’, Int_cons(3, 11) ) ) ;;
- : int_or_char_list =
Int_cons (2, Char_cons (°+’, Int_cons (3, Char_cons (’=’, Int_cons (...)))))

Parametrized types

A user can equally well declare types with parameters. This lets us generalize the
example of lists containing values of two different types.
# type (‘a, 'b) list2 =
N3l
| Acons of ‘a * (‘a, b)) list2
| Bcons of b x (a, 'b) list2 ;;

# Acons(2, Bcons(’+’, Acons(3, Bcons(’=’, Acons(5, Nil))))) ;;
- : (int, char) list2 =
Acons (2, Bcons (’+’, Acons (3, Bcons (’=’, Acons (...)))))

One can, obviously, instantiate the parameters ’a and ’b with the same type.
# Acons(1, Bcons(2, Acons(3, Bcons(4, Nil)))) ;;
- : (int, int) 1list2 = Acomns (1, Bcons (2, Acons (3, Bcons (4, Nil))))

This use of the type l4st2 can, as in the preceding example, serve to mark even
integers and odd integers. In this way we extract the sublist of even integers in order
to construct an ordinary list.
# let rec extract_odd = function
Vit — ]

| Adcons(_, =) — eztract_odd z

| Bcons(n, ) — n: (extract_odd z) ;;
val extract_odd : (’a, ’b) list2 -> ’b list = <fun>
The definition of this function doesn’t give a single clue as to the nature of the values
stored in the structure. That is why its type is parameterized.
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Scope of declarations

Constructor names obey the same scope discipline as global declarations: a redefini-
tion masks the previous one. Nevertheless values of the masked type still exist. The
interactive toplevel does not distinguish these two types in its output. Whence some
unclear error messages.

In this first example, the constant constructor Nil of type <nt_or_char has been

masked by the constructor declarations of the type (’a, ’b) list2.

# Int_cons(0, Nil) ;;

Characters 13-16:

This expression has type (’a, ’b) 1list2 but is here used with type
int_or_char_list

This second example provokes a rather baffling error message, at least the first time it
appears. Let the little program be as follows:

# type t1 = Empty | Full;;

type t1 = | Empty | Full

# let empty_-tl z = match z with Empty — true | Full — false ;;

val empty_tl : t1 -> bool = <fun>

# empty_tl Empty;;

- : bool = true

Then, we redeclare the type t1:

# type t1 = {u : int; v : int} ;;
type t1 = { u: int; v: int }

# 1ot y = { w2 w3 } i

val y : t1 = {u=2; v=3}

Now if we apply the function empty_t1 to a value of the new type t1, we get the
following error message:

# empty-t1 y;;

Characters 10-11:

This expression has type tl but is here used with type ti1

The first occurrence of t1 represents the first type defined, while the second corresponds
to the second type.

Function types

The type of the argument of a constructor may be arbitrary. In particular, it may very
well contain a function type. The following type constructs lists, all of whose elements
except the last are function values.
# type ’‘a listf =
Val of ’a
| Fun of (Ca — ’a) * ’a listf ;;
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type ’a listf = | Val of ’a | Fun of (’a -> ’a) * ’a listf

Since function values are values which can be manipulated in the language, we can
construct values of type listjf:
# let eight_div = (/) 8 ;;
val eight_div : int -> int = <fun>
# let gl = Fun (succ, (Fun (eight_div, Val 4))) ;;
val gl : int listf = Fun (<fun>, Fun (<fun>, Val 4))
and functions which pattern-match such values:
# let rec compute = function
Val v — v

| Fun(f, ) — f (compute z) ;;
val compute : ’a listf -> ’a = <fun>
# compute gl;;
- :int = 3

Example: representing trees

Tree structures come up frequently in programming. Recursive types make it easy to
define and manipulate such structures. In this subsection, we give two examples of tree
structures.

Binary trees We define a binary tree structure whose nodes are labelled with values
of a single type by declaring:
# type ’‘a bin_tree =
Empty
| Node of ’a bin_tree * ’a * ’a bin_tree ;;

We use this structure to define a little sorting program using binary search trees. A
binary search tree has the property that all the values in the left branch are less than
that of the root, and all those of the right branch are greater. Figure 2.5 gives an
example of such a structure over the integers. The empty nodes (constructor Empty)
are represented there by little squares; the others (constructor Node), by a circle in
which is inscribed the stored value.

A sorted list is extracted from a binary search tree via an inorder traversal carried out
by the following function:

# let rec list_of_ tree = function
Empty — ||
| Node(lb, 7, ) — (list_of-tree 1b) @ (r :: (list_of_tree rb)) ;;
val list_of_tree : ’a bin_tree -> ’a list = <fun>
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Figure 2.5: Binary search tree.

To obtain a binary search tree from a list, we define an insert function.
# let rec insert z = function
Empty — Node(Empty, z, Empty)
| Node(ldb, r, 7») — if z < r then Node(imnsert z= lb, 7, 7Tb)
else Node(lb, r, insert z rb) ;;
val insert : ’a -> ’a bin_tree -> ’a bin_tree = <fun>

The function to transform a list into a tree is obtained by iterating the function insert.

7# let rec tree_of_ list = function

[  — Empty
| Rt — dnsert h (tree_of_-list t) ;;
val tree_of_list : ’a list -> ’a bin_tree = <fun>

The sort function is then simply the composition of the functions tree_of list and
list_of_tree.

# let sort z = list_of tree (tree_of_list z) ;;

val sort : ’a list -> ’a list = <fun>

# sort [5; 8; 2; 7; 1; 0; 3; 6; 9; 4] ;;

- : int list = [0; 1; 2; 3; 4; 5; 6; 7; 8; 9]

General planar trees In this part, we use the following predefined functions from
the List module (see page 217):

° List.map: which applies a function to all the elements of a list and returns the
list of results;
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. List.fold left: which is an equivalent version of the function fold_left defined
on page 33;

. List.exists: which applies a boolean-valued function to all the elements of a
list; if one of these applications yields true then the result is true, otherwise the
function returns false.

A general planar tree is a tree whose number of branches is not fixed a priori; to each
node is associated a list of branches whose length may vary.
# type ’‘a tree = Empty

| Node of ’a * ’a tree list ;;
The empty tree is represented by the value Empty. A leaf is a node without branches
either of the form Node(x, []1), or of the degenerate form Node(x, [Empty;Empty;
..1). It is then relatively easy to write functions to manipulate these trees, e.g., to
determine whether an element belongs to a tree or compute the height of the tree.

To test membership of an element e, we use the following algorithm: if the tree is empty
then e does not belong to this tree, otherwise e belongs to the tree if and only if either
it is equal to the label of the root, or it belongs to one of its branches.
# let rec belongs e = function
Empty — false
| Node(v, bs) — (e=v) or (List.exists (belongs e) bs) ;;
val belongs : ’a -> ’a tree -> bool = <fun>

To compute the height of a tree, we use the following definition: an empty tree has
height 0, otherwise the height of the tree is equal to the height of its highest subtree
plus 1.
# let rec height =

let maz_list 1 = List.fold left maz O 1 in

function

Empty — O
| Node (_, bs) — 1 + (maz_list (List.map height bs)) ;;

val height : ’a tree -> int = <fun>

Recursive values which are not functions

Recursive declaration of non-function values allows the construction of circular data
structures.

The following declaration constructs a circular list with one element.
# let rec 1 = 1::1 ;;
val 1 : int list =

[1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; ...]

Application of a recursive function to such a list risks looping until memory overflows.
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# size 1 ;;
Stack overflow during evaluation (looping recursion?).

Structural equality remains usable with such lists only when physical equality is first
verified:
# 1=t

- : bool = true

In short, if you define a new list, even an equal one, you must not use the structural
equality test on pain of seeing your program loop indefinitely. So we don’t recommend
attempting to evaluate the following example:

let rec 12 = 1::12 in 1=12 ;;

On the other hand, physical equality always remains possible.
# let rec 12 = 1: 12 in 1==12 ;;
- : bool = false

The predicate == tests equality of an immediate value or sharing of a structured object
(equality of the address of the value). We will use it to verify that in traversing a list
we don’t retraverse a sublist which was already examined. First of all, we define the
function memq, which verifies the presence of an element in the list by relying on physical
equality. It is the counterpart to the function mem which tests structural equality; these
two functions belong to the module List.
# let rec memq a 1 = match 1 with
[ — false

| b::1 — (a==b) or (memq a 1) ;;

val memq : ’a -> ’a list -> bool = <fun>

The size computation function is redefined, storing the list of lists already examined
and halting if a list is encountered a second time.
# let special_size | =
let rec size_auxr previous l = match | with
I —o
| _::11 — if memq 1 previous then 0
else 1 + (size_auz (1: previous) l1)

in size_auz [| 1 ;;
val special_size : ’a list -> int = <fun>
# special_size [1;2;3;4] ;;
- : int = 4

# special_size 1 ;;

- :int =1

# let rec 11 =1::2::12 and 12 = 1:2: 11 in special_size 11 ;;
- : int = 4
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Typing, domain of definition, and
exceptions

The inferred type of a function corresponds to a subset of its domain of definition. Just
because a function takes a parameter of type 4nt doesn’t mean it will know how to
compute a value for all integers passed as parameters. In general this problem is dealt
with using Objective Caml’s exception mechanism. Raising an exception results in a
computational interruption which can be intercepted and handled by the program. For
this to happen program execution must have registered an exception handler before
the computation of the expression which raises this exception.

Partial functions and exceptions

The domain of definition of a function corresponds to the set of values on which the
function carries out its computation. There are many mathematical functions which
are partial; we might mention division or taking the natural log. This problem also
arises for functions which manipulate more complex data structures. Indeed, what is
the result of computing the first element of an empty list? In the same way, evaluation
of the factorial function on a negative integer can lead to an infinite recursion.

Several exceptional situations may arise during execution of a program, for example
an attempt to divide by zero. Trying to divide a number by zero will provoke at best a
program halt, at worst an inconsistent machine state. The safety of a programming lan-
guage comes from the guarantee that such a situation will not arise for these particular
cases. Exceptions are a way of responding to them.

Division of 1 by 0 will cause a specific exception to be raised:

# 1/0;;

Uncaught exception: Division_by_zero

The message Uncaught exception: Division_by_zero indicates on the one hand
that the Division_by_zero exception has been raised, and on the other hand that it
has not been handled. This exception is among the core declarations of the language.

Often, the type of a function does not correspond to its domain of definition when a
pattern-matching is not exhaustive, that is, when it does not match all the cases of a
given expression. To prevent such an error, Objective Caml prints a message in such a
case.

# let head | = match I with h::t — h ;;

Characters 14-36:

Warning: this pattern-matching is not exhaustive.

Here is an example of a value that is not matched:

1

val head : ’a list -> ’a = <fun>



Typing, domain of definition, and exceptions 55

If the programmer nevertheless keeps the incomplete definition, Objective Caml will
use the exception mechanism in the case of an erroneous call to the partial function:
# head [| ;;

Uncaught exception: Match_failure("", 14, 36)

Finally, we have already met with another predefined exception: Failure. It takes an
argument of type string. One can raise this exception using the function failwith.
We can use it in this way to complete the definition of our head:
# let head = function

[ — failwith "Empty list"

| h:it — b,
val head : ’a list -> ’a = <fun>
# head [| ;;

Uncaught exception: Failure("Empty list")

Definition of an exception

In Objective Caml, exceptions belong to a predefined type ezn. This type is very
special since it is an extensible sum type: the set of values of the type can be extended
by declaring new constructors’. This detail lets users define their own exceptions by
adding new constructors to the type ezn.

The syntax of an exception declaration is as follows:

Syntax : ’ exception Name ;3
or
Syntax : ’ exception Name of t ;;

Here are some examples of exception declarations:
# exception MY_EXN;;

exception MY_EXN

# MY_EXN;;

- : exn = MY_EXN

# exception Depth of int;;

exception Depth of int

# Depth 4;;

- : exn = Depth(4)

Thus an exception is a full-fledged language value.

9. Translator’s note: Thanks to the new “polymorphic variants” feature of Objective Caml 3.00, some
other sum types can now be extended as well
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The names of exceptions are constructors. So they nec-

Warnin,
& essarily begin with a capital letter.

# exception lowercase ;;
Characters 11-20:
Syntax error

Exceptions are monomorphic: they do not have type
Warning | parameters in the declaration of the type of their argu-
ment.

# exception Value of ’a ;;

Characters 20-22:

Unbound type parameter ’a

A polymorphic exception would permit the definition of functions with an arbitrary
return type as we will see further on, page 58.

Raising an exception

The function raise is a primitive function of the language. It takes an exception as an
argument and has a completely polymorphic return type.

# raise ;;

- : exn —-> ’a = <fun>

# raise MY_EXN;;

Uncaught exception: MY_EXN

# 1+(raise MY_EXN);;

Uncaught exception: MY_EXN

# raise (Depth 4);;

Uncaught exception: Depth(4)

It is not possible to write the function raise in Objective Caml. It must be predefined.

Exception handling

The whole point of raising exceptions lies in the ability to handle them and to direct
the sequence of computation according to the value of the exception raised. The order
of evaluation of an expression thus becomes important for determining which exception
is raised. We are leaving the purely functional context, and entering a domain where
the order of evaluation of arguments can change the result of a computation, as will
be discussed in the following chapter (see page 85).

The following syntactic construct, which computes the value of an expression, permits
the handling of an exception raised during this computation:
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try erpr with

| p1 > expry
Syntax : )

| p, > expr,

If the evaluation of expr does not raise any exception, then the result is that of the
evaluation of expr. Otherwise, the value of the exception which was raised is pattern-
matched; the value of the expression corresponding to the first matching pattern is
returned. If none of the patterns corresponds to the value of the exception then the
latter is propagated up to the next outer try-with entered during the execution of the
program. Thus pattern matching an exception is always considered to be exhaustive.
Implicitly, the last pattern is | e => raise e. If no matching exception handler is
found in the program, the system itself takes charge of intercepting the exception and
terminates the program while printing an error message.

One must not confuse computing an exception (that is, a value of type ezn) with raising
an exception which causes computation to be interrupted. An exception being a value
like others, it can be returned as the result of a function.

# let return z = Failure z ;;

val return : string -> exn = <fun>

# return "test" ;;

- : exn = Failure("test")

# let my_-raise z = raise (Failure z) ;;

val my_raise : string -> ’a = <fun>

# my_raise "test" ;;

Uncaught exception: Failure("test")

We note that applying my_raise does not return any value while applying return
returns one of type ezn.

Computing with exceptions

Beyond their use for handling exceptional values, exceptions also support a specific
programming style and can be the source of optimizations. The following example
finds the product of all the elements of a list of integers. We use an exception to
interrupt traversal of the list and return the value 0 when we encounter it.
# exception Found_zero ;;
exception Found_zero
# let rec mult_rec 1 = match 1 with
[ -1

| 0 =t _ — raise Found_zero

| n & 2 — nx*x (mult_rec z) ;;
val mult_rec : int list -> int = <fun>
# let mult_list 1 =

try mult_rec 1 with Found_zero — 0 ;;
val mult_list : int list -> int = <fun>
# mult_list [1;2;3;0;5;6] ;;
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- :int =0

So all the computations standing by, namely the multiplications by n which follow each
of the recursive calls, are abandoned. After encountering raise, computation resumes
from the pattern-matching under with.

Polymorphism and return values of
functions

Objective Caml’s parametric polymorphism permits the definition of functions whose
return type is completely unspecified. For example:

# let id z = z ;;

val id : ’a -> ’a = <fun>

However, the return type depends on the type of the argument. Thus, when the function
id is applied to an argument, the type inference mechanism knows how to instantiate
the type variable ’a. So for each particular use, the type of id can be determined.

If this were not so, it would no longer make sense to use strong static typing, entrusted
with ensuring execution safety. Indeed, a function of completely unspecified type such
as ’a -> ’b would allow any type conversion whatsoever, which would inevitably lead
to a run-time error since the physical representations of values of different types are
not the same.

Apparent contradiction

However, it is possible in the Objective Caml language to define a function whose return
type contains a type variable which does not appear in the types of its arguments. We
will consider several such examples and see why such a possibility is not contradictory
to strong static typing.

Here is a first example:

# let fa= [ ;;

val £ : ’a -> ’b list = <fun>

This function lets us construct a polymorphic value from anything at all:

#7505

- : ’_alist = []

# f "anything at all" ;;
- : ’_a list = []

Nevertheless, the value obtained isn’t entirely unspecified: we're dealing with a list. So
it can’t be used just anywhere.
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Here are three examples whose type is the dreaded ’a -> ’b:
# let rec f1 z = f1 z ;;

val f1 : ’a -> ’b = <fun>
# let f2 =z = failwith "anything at all" ;;
val f2 : ’a -> ’b = <fun>
# let f3 z = List.hd [ ;;
val £3 : ’a -> ’b = <fun>

These functions are not, in fact, dangerous vis-a-vis execution safety, since it isn’t
possible to use them to construct a value: the first one loops forever, the latter two
raise an exception which interrupts the computation.

Similarly, it is in order to prevent functions of type ’a -> ’b from being defined that
new exception constructors are forbidden from having arguments whose type contains
a variable.

Indeed, if one could declare a polymorphic exception Poly_exn of type ’a -> ezn, one
could then write the function:
let f = function
0 — raise (Poly_exn false)
| n — n+l ;;

The function f being of type 4nt -> 4nt and Poly_exn being of type ’a -> ezn, one
could then define:

let g n = try f n with Poly_exn z — z+l ;;

This function is equally well-typed (since the argument of Poly_exn may be arbitrary)
and now, evaluation of (g 0) would end up in an attempt to add an integer and a
boolean!

Desktop Calculator

To understand how a program is built in Objective Caml, it is necessary to develop one.
The chosen example is a desktop calculator—that is, the simplest model, which only
works on whole numbers and only carries out the four standard arithmetic operations.

To begin, we define the type key to represent the keys of a pocket calculator. The latter
has fifteen keys, namely: one for each operation, one for each digit, and the = key.

# type key = Plus | Minus | Times | Div | Equals | Digit of int ;;

We note that the numeric keys are gathered under a single constructor Digst taking
an integer argument. In fact, some values of type key don’t actually represent a key.
For example, (Digit 32) is a possible value of type key, but doesn’t represent any of
the calculator’s keys.

So we write a function valid which verifies that its argument corresponds to a calcu-
lator key. The type of this function is key -> bool, that is, it takes a value of type
key as argument and returns a value of type bool.
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The first step is to define a function which verifies that an integer is included between
0 and 9. We declare this function under the name is_digit:

# let is_digit = function z — (2>=0) && (2<=9) ;;

val is_digit : int -> bool = <fun>

We then define the function valid by pattern-matching over its argument of type key:

# let walid ky = match ky with
Digit n — is_digit n

| _ — true ;;
val valid : key -> bool = <fun>
The first pattern is applied when the argument of valid is a value made with the Digit
constructor; in this case, the argument of Digit is tested by the function is_digit.
The second pattern is applied to every other kind of value of type key. Recall that
thanks to typing, the value being matched is necessarily of type key.

Before setting out to code the calculator mechanism, we will specify a model allowing
us to describe from a formal point of view the reaction to the activation of one of the
device’s keys. We will consider a pocket calculator to have four registers in which are
stored respectively the last computation done, the last key activated, the last operator
activated, and the number printed on the screen. The set of these four registers is
called the state of the calculator; it is modified by each keypress on the keypad. This
modification is called a transition and the theory governing this kind of mechanism is
that of automata. A state will be represented in our program by a record type:
# type state = {

led : int; (* last computation done  *)

lka : key; (* last key activated *)

loa : key; (x last operator activated *)

vpr : int (% value printed *)

b

Figure 2.6 gives an example of a sequence of transitions.

state key

3
+
3,4,+,3) 2
1
X
2

[\
-
J[\')
\.*

[\
~

Il

Figure 2.6: Transitions for 3 +21 %2 = .
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In what follows we need the function evaluate which takes two integers and a value
of type key containing an operator and which returns the result of the operation
corresponding to the key, applied to the integers. This function is defined by pattern-
matching over its last argument, of type key:

# let evaluate = y ky = match ky with

Plus — T+ y
| Minus — z - y
| Times — z * y
| Div —z/y
| Equals — y

| Digit _ — failwith "evaluate : no op";;
val evaluate : int -> int -> key -> int = <fun>

Now we give the definition of the transition function by enumerating all possible cases.
We assume that the current state is the quadruplet (a, b, ®, d):

° a key with digit = is pressed, then there are two cases to consider:

—  the last key pressed was also a digit. So it is a number which the user of the
pocket calculator is in the midst of entering; consequently the digit z must
be affixed to the printed value, i.e., replacing it with d x 10 4+ x. The new
state is:

(a, (Digit x),®,d x 10+ x)

—  the last key pressed was not a digit. So it is the start of a new number which
is being entered. The new state is:

(a, (Digit x),D,x)

° a key with operator ® has been pressed, the second operand of the operation has
thus been completely entered and the calculator has to deal with carrying out
this operation. It is to this end that the last operation (here @) is stored. The
new state is:

(Bd, ®,®,a® d)

To write the function transition, it suffices to translate the preceding definition word
for word into Objective Caml: the definition by cases becomes a definition by pattern-
matching over the key passed as an argument. The case of a key, which itself is made up
of two cases, is handled by the local function digit_transition by pattern-matching
over the last key activated.
# let transition st ky =
let digit_transition n = function
Digit _ — { st with lka=ky; vpr=st.uvpr*10+n }
I — { st with lka=ky; vpr=n }
in
match ky with
Digit p — digit_transition p st.lka
| — let res = evaluate st.lcd st.vpr st.loa

in { lcd=res; lka=ky; loa=ky; vpr=res } ;;
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val transition : state -> key -> state = <fun>
This function takes a state and a key and computes the new state.

We can now test this program on the previous example:

# let initial_state = { lcd=0; lka=Equals; loa=Equals; vpr=0 } ;;
val initial_state : state = {lcd=0; lka=Equals; loa=Equals; vpr=0}
# let state2 = transition initial_state (Digit 3) ;;

val state2 : state = {lcd=0; lka=Digit 3; loa=Equals; vpr=3}

# let state3 = transition state2 Plus ;;

val state3 : state = {lcd=3; lka=Plus; loa=Plus; vpr=3}

# let state = transition state3 (Digit 2) ;;

val state4 : state = {lcd=3; lka=Digit 2; loa=Plus; vpr=2}

# let state5 = transition stateq (Digit 1) ;;

val stateb : state = {lcd=3; lka=Digit 1; loa=Plus; vpr=21}

# let stateb6 = transition stateb Times ;;

val state6 : state = {lcd=24; lka=Times; loa=Times; vpr=24}

# let state7 = transition state6 (Digit 2) ;;

val state7 : state = {lcd=24; lka=Digit 2; loa=Times; vpr=2}

# let state8 = transition state7 Equals ;;

val state8 : state = {lcd=48; lka=Equals; loa=Equals; vpr=48}

This run can be written in a more concise way using a function applying a sequence of
transitions corresponding to a list of keys passed as an argument.

# let transition_list st ls = List.fold_left transition st ls ;;

val transition_list : state -> key list -> state = <fun>

# let ezample = [ Digit 3; Plus; Digit 2; Digit 1; Times; Digit 2; Equals ]
in transition_list initial_state example ;;

- : state = {1cd=48; lka=Equals; loa=Equals; vpr=48}

Exercises

Merging two lists

1.  Write a function merge_i which takes as input two integer lists sorted in in-
creasing order and returns a new sorted list containing the elements of the first
two.

2. Write a general function merge which takes as argument a comparison function

and two lists sorted in this order and returns the list merged in the same order.
The comparison function will be of type a — ’a — bool.

3. Apply this function to two integer lists sorted in decreasing order, then to two
string lists sorted in decreasing order.

4. What happens if one of the lists is not in the required decreasing order?
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Write a new list type in the form of a record containing three fields: the
conventional list, an order function and a boolean indicating whether the list is
in that order.

Write the function insert which adds an element to a list of this type.
Write a function sort which insertion sorts the elements of a list.

Write a new function merge for these lists.

Lexical trees

Lexical trees (or tries) are used for the representation of dictionaries.
# type lex_node = Letter of char * bool * lexz_tree

and lex_tree = lex_node list;;

# type word = string;;

The boolean value in lez_node marks the end of a word when it equals true. In such
a structure, the sequence of words “fa, false, far, fare, fried, frieze” is stored in the
following way:

An asterisk (*) marks the end of a word.

1.

Write the function exists which tests whether a word belongs to a dictionary
of type lez_tree.

Write a function insert which takes a word and a dictionary and returns a new
dictionary which additionally contains this word. If the word is already in the
dictionary, it is not necessary to insert it.

Write a function construct which takes a list of words and constructs the
corresponding dictionary.

Write a function verify which takes a list of words and a dictionary and returns
the list of words not belonging to this dictionary.

Write a function select which takes a dictionary and a length and returns the
set of words of this length.
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Graph traversal

We define a type ’a graph representing directed graphs by adjacency lists containing
for each vertex the list of its successors:
# type ‘a graph = ( ’a * ’a list) list ;;

1. Write a function insert_vtx which inserts a vertex into a graph and returns the
new graph.
2. Write a function insert_edge which adds an edge to a graph already possessing

these two vertices.

3. Write a function has_edges_to which returns all the vertices following directly
from a given vertex.

4.  Write a function has_edges_from which returns the list of all the vertices leading
directly to a given vertex.

Summary

This chapter has demonstrated the main features of functional programming and para-
metric polymorphism, which are two essential features of the Objective Caml language.
The syntax of the expressions in the functional core of the language as well as those of
the types which have been described allowed us to develop our first programs. More-
over, the profound difference between the type of a function and its domain of defini-
tion was underlined. Introducing the exception mechanism allowed us to resolve this
problem and already introduces a new programming style in which one specifies how
computations should unfold.

To learn more

The computation model for functional languages is A-calculus, which was invented by
Alonzo Church in 1932. Church’s goal was to define a notion of effective computability
through the medium of A-definability. Later, it became apparent that the notion thus
introduced was equivalent to the notions of computability in the sense of Turing (Tur-
ing machine) and Goédel-Herbrand (recursive functions). This coincidence leads one to
think that there exists a universal notion of computability, independent of particular
formalisms: this is Church’s thesis. In this calculus, the only two constructions are ab-
straction and application. Data structures (integers, booleans, pairs, ...) can be coded
by A-termes.

Functional languages, of which the first representative was Lisp, implement this model
and extend it mainly with more efficient data structures. For the sake of efficiency, the
first functional languages implemented physical modifications of memory, which among
other things forced the evaluation strategy to be immediate, or strict, evaluation. In
this strategy, the arguments of functions are evaluated before being passed to the
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function. It is in fact later, for other languages such as Miranda, Haskell, or LML, that
the strategy of delayed (lazy, or call-by-need) evaluation was implemented for pure
functional languages.

Static typing, with type inference, was promoted by the ML family at the start of the
80’s. The web page

Link: ’ http://www.pps.jussieu.fr/~cousinea/Caml/caml_history.html

presents a historical overview of the ML language. Its computation model is typed
A-calculus, a subset of A-calculus. It guarantees that no type error will occur during
program execution. Nevertheless “completely correct” programs can be rejected by
ML’s type system. These cases seldom arise and these programs can always be rewritten
in such a way as to conform to the type system.

The two most-used functional languages are Lisp and ML, representatives of impure
functional languages. To deepen the functional approach to programming, the books
[ASS96] and [CM98] each present a general programming course using the languages
Scheme (a dialect of Lisp) and Caml-Light, respectively.
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Imperative
Programming

In contrast to functional programming, in which you calculate a value by applying a
function to its arguments without caring how the operations are carried out, imperative
programming is closer to the machine representation, as it introduces memory state
which the execution of the program’s actions will modify. We call these actions of
programs instructions, and an imperative program is a list, or sequence, of instructions.
The execution of each operation can alter the memory state. We consider input-output
actions to be modifications of memory, video memory, or files.

This style of programming is directly inspired by assembly programming. You find it
in the earliest general-purpose programming languages (Fortran, C, Pascal, etc.). In
Objective Caml the following elements of the language fit into this model:

) modifiable data structures, such as arrays, or records with mutable fields;
° input-output operations;
° control structures such as loops and exceptions.

Certain algorithms are easier to write in this programming style. Take for instance
the computation of the product of two matrices. Even though it is certainly possible
to translate it into a purely functional version, in which lists replace vectors, this is
neither natural nor efficient compared to an imperative version.

The motivation for the integration of imperative elements into a functional language
is to be able to write certain algorithms in this style when it is appropriate. The two
principal disadvantages, compared to the purely functional style, are:

° complicating the type system of the language, and rejecting certain programs
which would otherwise be considered correct;

. having to keep track of the memory representation and of the order of calcula-
tions.
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Nevertheless, with a few guidelines in writing programs, the choice between several
programming styles offers the greatest flexibility for writing algorithms, which is the
principal objective of any programming language. Besides, a program written in a style
which is close to the algorithm used will be simpler, and hence will have a better chance
of being correct (or at least, rapidly correctable).

For these reasons, the Objective Caml language has some types of data structures whose
values are physically modifiable, structures for controlling the execution of programs,
and an I/0O library in an imperative style.

Plan of the Chapter

This chapter continues the presentation of the basic elements of the Objective Caml
language begun in the previous chapter, but this time focusing on imperative construc-
tions. There are five sections. The first is the most important; it presents the different
modifiable data structures and describes their memory representation. The second de-
scribes the basic I/O of the language, rather briefly. The third section is concerned
with the new iterative control structures. The fourth section discusses the impact of
imperative features on the execution of a program, and in particular on the order of
evaluation of the arguments of a function. The final section returns to the calculator
example from the last chapter, to turn it into a calculator with a memory.

Modifiable Data Structures

Values of the following types: vectors, character strings, records with mutable fields,
and references are the data structures whose parts can be physically modified.

We have seen that an Objective Caml variable bound to a value keeps this value to
the end of its lifetime. You can only modify this binding with a redefinition—in which
case we are not really talking about the “same” variable; rather, a new variable of the
same name now masks the old one, which is no longer directly accessible, but which
remains unchanged. With modifiable values, you can change the value associated with
a variable without having to redeclare the latter. You have access to the value of a
variable for writing as well as for reading.

Vectors

Vectors, or one dimensional arrays, collect a known number of elements of the same
type. You can write a vector directly by listing its values between the symbols [| and
|1, separated by semicolons as for lists.

# let v = [| 3.14; 6.28; 9.42 |] ;;

val v : float array = [[3.14; 6.28; 9.42]|]

The creation function Array.create takes the number of elements in the vector and
an initial value, and returns a new vector.
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# let v = Array.create 3 3.14;;
val v : float array = [|3.14; 3.14; 3.14|]

To access or modify a particular element, you give the index of that element:

Syntax : ’ expry « ( expry ) ‘

Syntax : ’ expry . ( expry ) <= exprs ‘

expry should be a vector (type array) whose values have type exprs. The expression
expro must, of course, have type int. The modification is an expression of type unit.
The first element of a vector has index 0 and the index of the last element is the length
of the vector minus 1. The parentheses around the index expression are required.

# v.(1) 3

- : float = 3.14
# v.(0) <- 100.0 ;;
- : unit = O

# Ui

- : float array = [|100; 3.14; 3.14]]

If the index used to access an element in an array is outside the range of indices of the
array, an exception is raised at the moment of access.

# v.(-1) +. 4.0;;

Uncaught exception: Invalid_argument("Array.get")

This check is done during program execution, which can slow it down. Nevertheless
it is essential, in order to avoid writing to memory outside the space allocated to a
vector, which would cause serious execution errors.

The functions for manipulating arrays are part of the Array module in the standard
library. We'll describe them in chapter 8 (page 217). In the examples below, we will
use the following three functions from the Array module:

° create which creates an array of the given size with the given initial value;

° length which gives the length of a vector;

° append which concatenates two vectors.

Sharing of Values in a Vector

All the elements of a vector contain the value that was passed in when it was created.
This implies a sharing of this value, if it is a structured value. For example, let’s create
a matrix as a vector of vectors using the function create from the Array module.

# let v = Array.create 3 O;;

val v : int array = [|0; 0; 0l]

# let m = Array.create 3 v;;
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val m : int array array = [|[|0; 0; Ol]; [l0; O0; Ol1; [lo; O; OI11]

Vé

0 0 0

Figure 3.1: Memory representation of a vector sharing its elements.

If you modify one of the fields of vector v, which was used in the creation of m, then
you automatically modify all the “rows” of the matrix together (see figures 3.1 and

3.2).
# v.(0) <= 1;;
- : unit = O
# m;

- : int array array = [|[l1; 0; Ol1; [l1; 0; Ol1; [l1; 0; OI11]

v —=>=> 1 0 0

Figure 3.2: Modification of shared elements of a vector.

Duplication occurs if the initialization value of the vector (the second argument passed
to Array.create) is an atomic value and there is sharing if this value is a structured
value.

Values whose size does not exceed the standard size of Objective Caml values—that
is, the memory word—are called atomic values. These are the integers, characters,
booleans, and constant constructors. The other values—structured values—are repre-
sented by a pointer into a memory area. This distinction is detailed in chapter 9 (page
247).

Vectors of floats are a special case. Although floats are structured values, the creation
of a vector of floats causes the the initial value to be copied. This is for reasons of
optimization. Chapter 12, on the interface with the C language (page 315), describes
this special case.
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Non-Rectangular Matrices

A matrix, a vector of vectors, does not need not to be rectangular. In fact, nothing
stops you from replacing one of the vector elements with a vector of a different length.
This is useful to limit the size of such a matrix. The following value t constructs a
triangular matrix for the coeflicients of Pascal’s triangle.

# let t = [|
[111];
(115 1175
[l1; 25 117;
[l1; 3; 3; 111;
[11; 4; 6; 4; 1]71;
[11; 5; 10; 10; 5; 1]
115
val t : int array array =
CICILnd; Cigs 2135 i 25 1135 OlL; 35 35 1115 [11; 45 6; 45 ... 115 ... 1]
# t.(3) 3;

- : int array = [|1; 3; 3; 1]]

In this example, the element of vector t with index 7 is a vector of integers with size
i + 1. To manipulate such matrices, you have to calculate the size of each element
vector.

Copying Vectors

When you copy a vector, or when you concatenate two vectors, the result obtained is
a new vector. A modification of the original vectors does not result in the modification
of the copies, unless, as usual, there are shared values.

# let v2 = Array.copy v ;;

val v2 : int array = [|1; 0; Ol]

# let m2 = Array.copy m ;;

val m2 : int array array = [I[I1; O; Ol1; [I1; O; ol1; [I1; 0; 0l]1I]

# wv.(1)<- 352;;

- : unit = O

# 3

- : int array = [|1; 0; 0l]
# m2 ;;

- : int array array = [I[l1; 352; 0l1; [l1; 352; 0l1; [I1; 352; 01111
We notice in this example that copying m only copies the pointers to v. If one of the
elements of v is modified, m2 is modified too.

Concatenation creates a new vector whose size is equal to the sum of the sizes of the
two others.
# let mm = Array.append m m ;;
val mm : int array array =
CI011; 852; 0l1; [I1; 3525 0l1; [l1; 352; 0l1; [l1; 352; 0I1;
[I1; 352; ...11; ...1]
# Array.length mm ;;
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- :int = 6

# m.(0) <- Array.create 3 0 ;;
- : unit = Q)

#oms;

- : int array array = [|[10; 0; 0l1; [l1; 352; 0l1; [I1; 352; 0[11]
# mm 5
- : int array array =
[ICI1; 362; 0l1; [I1; 352; 0l1; [l1; 352; Ol1; [I1; 352; 011;
[11; 352; ...11; ...1]

On the other hand, modification of v, a value shared by m and mm, does affect both
these matrices.
# v.(1) <= 18 ;;

- : unit = ()

# mm;;

- : int array array =

CIcit; 18; ol1; [I1; 18; ol1; [I1; 18; 011; [I1; 18; 011; [I1; 18; ...1]1;
]

Character Strings

Character strings can be considered a special case of vectors of characters. Nevertheless,
for efficient memory usage' their type is specialized. Moreover, access to their elements
has a special syntax:

Syntax : ’ expry .« Lexprs] ‘

The elements of a character string can be physically modified:

Syntax : ’ expry . Lexprs] <= exprs ‘

# let s = "hello";;

val s : string = "hello"
# s.[2];;

- : char =1’

# s.[2]<=22;;

- : unit = Q)

# 855

- : string = "heZlo"

1. A 32-bit word contains four characters coded as bytes
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Mutable Fields of Records

Fields of a record can be declared mutable. All you have to do is to show this in the
declaration of the type of the record using the keyword mutable.

Syntax : ’ type name = { ... ; mutable name; : ¢ ; ...} ‘

Here is a small example defining a record type for points in the plane:
# type point = { mutable zc : float; mutable yc : float } ;;

type point = { mutable xc: float; mutable yc: float }

# let p = { zc =1.0; yc = 0.0 } ;;

val p : point = {xc=1; yc=0}

Thus the value of a field which is declared mutable can be modified using the syntax:

Syntax : | ezpr; . name <= expry

The expression ezpr; should be a record type which has the field name. The modifica-
tion operator returns a value of type unit.

# p.zc <- 3.0 ;;

- : unit = Q)

# P

- : point = {xc=3; yc=0}

We can write a function for moving a point by modifying its components. We use a
local declaration with pattern matching in order to sequence the side-effects.
# let moveto p dx dy =
let () = p.zc <~ p.zc +. dz
in p.yc <- p.yc +. dy ;;
val moveto : point -> float -> float -> unit = <fun>
# moveto p 1.1 2.2 ;;
- : unit =
# P
- : point = {xc=4.1; yc=2.2}

It is possible to mix mutable and non-mutable fields in the definition of a record. Only
those specified as mutable may be modified.

# type t = { cl : int; mutable c2 : int } ;;
type t = { cl: int; mutable c2: int }

# let r={ cl1=0; c2=0} ;;

val r : t = {c1=0; c2=0}

# r.cl <=1 ;;

Characters 0-9:

The label cl is not mutable

# r.c2<-1;;

- : unit = O
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# 7T
- : t = {c1=0; c2=1}

On page 82 we give an example of using records with modifiable fields and arrays to
implement a stack structure.

References

Objective Caml provides a polymorphic type ref which can be seen as the type of a
pointer to any value; in Objective Caml terminology we call it a reference to a value.
A referenced value can be modified. The type ref is defined as a record with one
modifiable field:

type ’a ref = {mutable contents:’a}

This type is provided as a syntactic shortcut. We construct a reference to a value using
the function ref. The referenced value can be reached using the prefix function (!).
The function modifying the content of a reference is the infix function (:=).

# let z = ref 3 ;;

val x : int ref = {contents=3}

# x5

- : int ref = {contents=3}
# 'z

- : int =3
# o= 4

- : unit = O
# 'z

- : int = 4
# z = lz+l ;;
- : unit = O
# 'z

- :int =5

Polymorphism and Modifiable Values

The type ref is parameterized. This is what lets us use it to create references to values
of any type whatever. However, it is necessary to place certain restrictions on the type
of referenced values; we cannot allow the creation of a reference to a value with a
polymorphic type without taking some precautions.

Let us suppose that there were no restriction; then someone could declare:

let x = ref [] ;;
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Then the variable x would have type ’a list ref and its value could be modified in
a way which would be inconsistent with the strong static typing of Objective Caml:
z:=1 = lz;;

Tz = true : !z ;;

Thus we would have one and the same variable having type int l4ist at one moment
and bool list the next.

In order to avoid such a situation, Objective Caml’s type inference mechanism uses
a new category of type variables: weak type variables. Syntactically, they are distin-
guished by the underscore character which prefixes them.

# let z = ref [ ;;

val x : ’_a list ref = {contents=[]}

The type variable ’_a is not a type parameter, but an unknown type awaiting instan-
tiation; the first use of x after its declaration fixes the value that ’_a will take in all
types that depend on it, permanently.

# z :=0::1z ;;

- : unit =

# T

- : int list ref = {contents=[0]}

From here onward, the variable x has type int list ref.

A type containing an unknown is in fact monomorphic even though its type has not
been specified. It is not possible to instantiate this unknown with a polymorphic type.

# let z = ref [| ;;

val x : ’_a list ref = {contents=[]}

# z := (function y — ())::!z ;;

- : unit = O

# T

- : (’_a -> unit) list ref = {contents=[<fun>]}

In this example, even though we have instantiated the unknown type with a type which
is a priori polymorphic (’a -> unit), the type has remained monomorphic with a new
unknown type.

This restriction of polymorphism applies not only to references, but to any value con-
taining a modifiable part: vectors, records having at least one field declared mutable,
etc. Thus all the type parameters, even those which have nothing to do with a modifi-
able part, are weak type variables.

# type (‘a,’d) t = { chl :’a list ; mutable ch2 : b list } ;;

type (a, ’b) t = { chl: ’a list; mutable ch2: ’b list }

# let z={ chli =1 ;ch2=[ };;

val x : (°_a, ’_b) t = {ch1=[]; ch2=[]}

This modification of the typing of application has con-

Warning .
sequences for pure functional programs.
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Likewise, when you apply a polymorphic value to a polymorphic function, you get a
weak type variable, because you must not exclude the possibility that the function may
construct physically modifiable values. In other words, the result of the application is
always monomorphic.

# (function z — z) [ ;;

- : ’_alist = []

You get the same result with partial application:
# let fab=a;;

val £ : ’a -> ’b -> ’a = <fun>

# let g = f1;;

val g : ’_a -> int = <fun>

To get a polymorphic type back, you have to abstract the second argument of £ and
then apply it:

# let hz = f1 z;;

val h : ’a -> int = <fun>

In effect, the expression which defines h is the functional expression function =z —
f 1 z. Its evaluation produces a closure which does not risk producing a side effect,
because the body of the function is not evaluated.

In general, we distinguish so-called “non-expansive” expressions, whose calculation we
are sure carries no risk of causing a side effect, from other expressions, called “expan-
sive.” Objective Caml’s type system classifies expressions of the language according to
their syntactic form:

. “non-expansive” expressions include primarily variables, constructors of non-
mutable values, and abstractions;

° “expansive” expressions include primarily applications and constructors of mod-
ifiable values. We can also include here control structures like conditionals and
pattern matching.

Input-Output

Input-output functions do calculate a value (often of type unit) but during their
calculation they cause a modification of the state of the input-output peripherals:
modification of the state of the keyboard buffer, outputting to the screen, writing
in a file, or modification of a read pointer. The following two types are predefined:
in_channel and out_channel for, respectively, input channels and output channels.
When an end of file is met, the exception End_of _file is raised. Finally, the following
three constants correspond to the standard channels for input, output, and error in
Unix fashion: stdin, stdout, and stderr.
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Channels

The input-output functions from the Objective Caml standard library manipulate com-
munication channels: values of type in_channel or out_channel. Apart from the three
standard predefined values, the creation of a channel uses one of the following func-
tions:

# open_in;;

- : string -> in_channel = <fun>

# open_out;;

- : string -> out_channel = <fun>

open_in opens the file if it exists?, and otherwise raises the exception Sys_error.
open_out creates the specified file if it does not exist or truncates it if it does.

# let ic = open_in "koala";;

val ic : in_channel = <abstr>

# let oc = open_out "koala";;

val oc : out_channel = <abstr>

The functions for closing channels are:

# close_in ;;

- : in_channel -> unit = <fun>

# close_out ;;

- : out_channel -> unit = <fun>

Reading and Writing

The most general functions for reading and writing are the following:
# input_line ;;

- : in_channel -> string = <fun>

# dnput ;;

- : in_channel -> string -> int -> int -> int = <fun>

# output ;;

- : out_channel -> string -> int -> int -> unit = <fun>

. input_line <c: reads from input channel ic all the characters up to the first
carriage return or end of file, and returns them in the form of a list of characters
(excluding the carriage return).

. input ic s p l: attempts to read 1 characters from an input channel ic and
stores them in the list s starting from the p*? character. The number of characters
actually read is returned.

) output oc s p L: writes on an output channel oc part of the list s, starting at
the p-th character, with length 1.

2. With appropriate read permissions, that is.
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The following functions read from standard input or write to standard output:
# read_line ;;
- : unit -> string = <fun>

# print_string ;;

- : string -> unit = <fun>
# print_newline ;;

- : unit -> unit = <fun>

Other values of simple types can also be read directly or appended. These are the
values of types which can be converted into lists of characters.

Local declarations and order of evaluation We can simulate a sequence of print-
outs with expressions of the form let x = e; in es. Knowing that, in general, x is
a local variable which can be used in es, we know that e; is evaluated first and then
comes the turn of e,. If the two expressions are imperative functions whose results
are () but which have side effects, then we have executed them in the right order. In
particular, since we know the return value of e;—the constant () of type unit—we get
a sequence of printouts by writing the sequence of nested declarations which pattern
match on ().

# let () = print_string "and one," in
let () = print_string " and two," in
let ()

print_string " zero";;

print_string " and three" in

and one, and two, and three zero- : unit = ()

Example: Higher/Lower
The following example concerns the game “Higher/Lower” which consists of choosing

a number which the user must guess at. The program indicates at each turn whether
the chosen number is smaller or bigger than the proposed number.

# 1let rec hilo n =

let () = print_string "type a number: " in
let % = read_int ()
in

if 7 = n then
let () = print_string "BRAVO" in
let () = print_newline ()
in print_newline ()
else
let () =
if 72 < n then
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let () = print_string "Higher"
in print_newline ()
else
let () = print_string "Lower"
in print_newline ()
in hilo n ;;
val hilo : int -> unit = <fun>

Here is an example session:

# hilo 64;;

type a number: 88
Lower

type a number: 44
Higher

type a number: 64
BRAVO

- : unit = O

Control Structures

Input-output and modifiable values produce side-effects. Their use is made easier by
an imperative programming style furnished with new control structures. We present in
this section the sequence and iteration structures.

We have already met the conditional control structure on page 18, whose abbreviated
form if then patterns itself on the imperative world. We will write, for example:

# let n = ref 1 ;;

val n : int ref = {contents=1}

# if 'n > 0 then n := !n - 1 ;;

- ¢ unit =

Sequence

The first of the typically imperative structures is the sequence. This permits the left-
to-right evaluation of a sequence of expressions separated by semicolons.

Syntax : ’ expry 3 ...3 €rpry ‘

A sequence of expressions is itself an expression, whose value is that of the last expres-
sion in the sequence (here, expr,). Nevertheless, all the expressions are evaluated, and
in particular their side-effects are taken into account.

# print_string "2 = "; 1+1 ;;
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2=-1:1dnt =2

With side-effects, we get back the usual construction of imperative languages.
# let =z = ref 1 ;;

val x : int ref = {contents=1}

# x:=lg+l ; z:=lzxd ; 'z

- : int =8

As the value preceding a semicolon is discarded, Objective Caml gives a warning when
it is not of type untt.

# print_int 1; 2 ; 3 ;;

Characters 14-15:

Warning: this expression should have type unit.

1- : int = 3

To avoid this message, you can use the function ignore:
# print_int 1; ignore 2; 3 ;;
1- : int = 3

A different message is obtained if the value has a functional type, as Objective Caml
suspects that you have forgotten a parameter of a function.

# let g y=1z:=y;;

val g : ’a ref -> ’a -> unit = <fun>

# let a = ref 10;;

val a : int ref = {contents=10}

#let u=1in g a; g a u ;;

Characters 13-16:

Warning: this function application is partial,

maybe some arguments are missing.

- : unit = O
# let u = !a in ignore (g a) ; g a u ;;
- : unit = O

As a general rule we parenthesize sequences to clarify their scope. Syntactically, paren-
thesizing can take two forms:

Syntax : ’ begin expr end ‘

We can now write the Higher/Lower program from page 78 more naturally:
# let rec hilo n =

print_string "type a number: ";

let 7 = read_int () imn
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if 4 = n then print_string "BRAVO\n\n"
else
begin
if ¢ < n then print_string "Higher\n" else print_string "Lower\n"
hilo n
end ;;
val hilo : int -> unit = <fun>

Loops

The iterative control structures are also from outside the functional world. The condi-
tional expression for repeating, or leaving, a loop does not make sense unless there can
be a physical modification of the memory which permits its value to change. There are
two iterative control structures in Objective Caml: the for loop for a bounded iteration
and the while loop for a non-bounded iteration. The loop structures themselves are
expressions of the language. Thus they return a value: the constant () of type unit.

The for loop can be rising (to) or falling (downto) with a step of one.

for name = expr; to expro do exprs done

Syntax :
for name = expr; downto exprp do exprs done

The expressions expr; and exprs are of type int. If exprs is not of type unit, the
compiler produces a warning message.

# for i=1 to 10 do print_int %; print_string " " done; print,newline() NN
12345678910

- : unit =

# for ¢=10 downto 1 do print_int 4; print_string " " done; print_newline() ;;
10987654321

- : unit = O

The non-bounded loop is the “while” loop whose syntax is:

Syntax : | while expr; do expr, done

The expression expr; should be of type bool. And, as for the for loop, if exprs is not
of type unit, the compiler produces a warning message.
# let r = ref 1
in while !7 < 11 do

print_int !r ;

print_string " " ;

r o= Ir+l

done ;;

123456789 10 - : unit = O
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It is important to understand that loops are expressions like the previous ones which
calculate the value () of type unit.

# let f () = print_string "-- end\n" ;;

val f : unit -> unit = <fun>

# f (for %=1 to 10 do print_int %; print_string " " dome) ;;
123456789 10 -- end

- : unit = O

Note that the string "-- end\n" is output after the integers from 1 to 10 have been

printed: this is a demonstration that the arguments (here the loop) are evaluated before
being passed to the function.

In imperative programming, the body of a loop (exzprs) does not calculate a value, but
advances by side effects. In Objective Caml, when the body of a loop is not of type
unit the compiler prints a warning, as for the sequence:

# let s = [5; 4; 3; 2; 1; 0] ;;

val s : int list = [5; 4; 3; 2; 1; 0]

# for 4=0 to 5 do List.tl s dome ;;

Characters 17-26:

Warning: this expression should have type unit.

- : unit = O

Example: Implementing a Stack

The data structure ’a stack will be implemented in the form of a record containing
an array of elements and the first free position in this array. Here is the corresponding
type:

# type ’a stack = { mutable ind:int; size:int; mutable elts : ‘a array } ;;

The field size contains the maximal size of the stack.

The operations on these stacks will be init_stack for the initialization of a stack,
push for pushing an element onto a stack, and pop for returning the top of the stack
and popping it off.

# let init_stack n = {ind=0; size=n; elts =[|[1} ;;

val init_stack : int -> ’a stack = <fun>

This function cannot create a non-empty array, because you would have to provide it
with the value with which to construct it. This is why the field elts gets an empty
array.

Two exceptions are declared to guard against attempts to pop an empty stack or to
add an element to a full stack. They are used in the functions pop and push.

# exception Stack_empty ;;

# exception Stack_full ;;

# 1let pop p =
if p.ind = 0 then raise Stack_empty
else (p.ind <- p.ind - 1; p.elts.(p.ind)) ;;
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val pop : ’a stack -> ’a = <fun>
# let push e p =
if p.elts = [||] then
(p.elts <- Array.create p.size e
p.ind <- 1)
else if p.ind >= p.size then raise Stack_full
else (p.elts.(p.ind) <- e; p.ind <- p.ind + 1) ;;
val push : ’a -> ’a stack -> unit = <fun>

Here is a small example of the use of this data structure:
# let p = init_stack 4 ;;

val p : ’_a stack = {ind=0; size=4; elts=[|[]}

# push 1 p 3

- : unit =

# for ¢ = 2 to 5 do push % p dome ;;

Uncaught exception: Stack_full

# P

- : int stack = {ind=4; size=4; elts=[Il1; 2; 3; 4|1}
# pop p ;;

- : int = 4

# pop p ;;

- : int = 3

If we want to prevent raising the exception Stack_full when attempting to add an
element to the stack, we can enlarge the array. To do this the field size must be
modifiable too:
# type ’‘a stack =
{mutable <nd:int ; mutable size:int ; mutable elts : ’a array} ;;
# let init_stack n = {ind=0; size=maz n 1; elts = [||1} ;;
# let n_push e p =
if p.elts = [I1]
then
begin
p.elts <- Array.create p.size e;
p.ind <- 1
end
else if p.ind >= p.size then
begin
let nt = 2 * p.size in
let nv = Array.create nt e in
for 5=0 to p.size-1 do nv.(j) <- p.elts.(y) donme ;
p.elts <- nv
p.size <- nt;
p.ind <- p.ind + 1
end
else
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begin
p.elts.(p.ind) <- e ;
p.ind <- p.ind + 1
end ;;
val n_push : ’a -> ’a stack -> unit = <fun>

All the same, you have to be careful with data structures which can expand without
bound. Here is a small example where the initial stack grows as needed.
# let p = init_stack 4 ;;

val p : ’_a stack = {ind=0; size=4; elts=[|[]}

# for i = 1 to 5 do n_push ¢ p donme ;;

- : unit = O

#p5s

- : int stack = {ind=5; size=8; elts=[|1; 2; 3; 4; 5; 5; 5; 5|1}
# p.stack ;;

Characters 0-7:

Unbound label stack

It might also be useful to allow pop to decrease the size of the stack, to reclaim unused
memory.

Example: Calculations on Matrices

In this example we aim to define a type for matrices, two-dimensional arrays containing
floating point numbers, and to write some operations on the matrices. The monomor-
phic type mat is a record containing the dimensions and the elements of the matrix.
The functions create _mat, access_mat, and mod_mat are respectively the functions for
creation, accessing an element, and modification of an element.

# type mat = { n:int; m:int; t: float array array };;

type mat = { n: int; m: int; t: float array array }

# let create_mat m m = { n=n; m=m; t = Array.create_matriz n m 0.0 } i

val create_mat : int -> int -> mat = <fun>

# let access.mat m i j = m.t.(3).( ;;

val access_mat : mat -> int -> int -> float = <fun>

# let mod_mat m i j e = m.t.(3).(j5) <= e ;;

val mod_mat : mat -> int -> int -> float -> unit = <fun>

# let a = create_mat 3 3 ;;

val a : mat = {n=3; m=3; t=[I[l0; 0; O0l]; [l0; 0; Ol1; [lo; O; OI1I1}

# mod_mat a 1 1 2.0; mod_mat a 1 2 1.0; mod_mat a 2 1 1.0 ;;

- : unit = O

# a;;

- : mat = {n=3; m=3; t=[|[l0; 0; Ol1; [l0; 2; 111; [lo; 1; Ol111%}
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The sum of two matrices a and b is a matrix ¢ such that c¢;; = ai; + by;.
# let add_mat p q =
if p.n = gq.n & p.m = g.m then
let r = create_mat p.n p.m in
for 2 = 0 to p.n-1 do
for 5 =0 to p.m1 do
mod_mat r i j (p.t.(3).(5 +. q.t.(2).(7)
done
done ;
r
else failwith "add_mat : dimensions incompatible";;
val add_mat : mat -> mat -> mat = <fun>
# add_mat a a ;;
- : mat = {n=3; m=3; t=[I[10; 0; O0l1; [l0; 4; 211; [l0; 2; 0l111}

The product of two matrices a and b is a matrix ¢ such that ¢;; = ’,:;n“ ik by

# let mul_mat p q =
if p.m = q.n then

let r = create_mat p.n g.m in
for 2 = 0 to p.n-1 do
for 7 =0 to g.m1 do

let ¢ = ref 0.0 in
for k = 0 to p.m1 do

c:=lc+. (p.t.().(k) *. q.t.(B).(7)
done;

mod_mat T % j !c
done
done;
r
else fatlwith "mul_mat : dimensions incompatible" ;;

val mul_mat : mat -> mat -> mat = <fun>
# mul_mat a a;;
- @ mat = {n=3; m=3; t=[1[10; 0; 0I1; [l0; 5; 2115 [l0; 2; 11111}

Order of Evaluation of Arguments

In a pure functional language, the order of evaluation of the arguments does not matter.
As there is no modification of memory state and no interruption of the calculation, there
is no risk of the calculation of one argument influencing another. On the other hand, in
Objective Caml, where there are physically modifiable values and exceptions, there is
a danger in not taking account of the order of evaluation of arguments. The following
example is specific to version 2.04 of Objective Caml for Linux on Intel hardware:

# let new_print_string s = print_string s; String.length s ;;

val new_print_string : string -> int = <fun>
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# (+) (newprint_string "Hello ") (new_print_string "World!") ;;
World!Hello - : int = 12
The printing of the two strings shows that the second string is output before the first.

It is the same with exceptions:
# try (failwith "function") (failwith "argument") with Failure s — s;;
- : string = "argument"

If you want to specify the order of evaluation of arguments, you have to make local
declarations forcing this order before calling the function. So the preceding example
can be rewritten like this:
# let el = (newprint_string "Hello ")

in let e2 = (new.print_string "World!")

in (+) el e2 ;;
Hello World!- : int = 12

In Objective Caml, the order of evaluation of arguments is not specified. As it happens,
today all implementations of Objective Caml evaluate arguments from left to right. All
the same, making use of this implementation feature could turn out to be dangerous
if future versions of the language modify the implementation.

We come back to the eternal debate over the design of languages. Should certain fea-
tures of the language be deliberately left unspecified—should programmers be asked
not to use them, on pain of getting different results from their program according to
the compiler implementation? Or should everything be specified—should programmers
be allowed to use the whole language, at the price of complicating compiler implemen-
tation, and forbidding certain optimizations?

Calculator With Memory

We now reuse the calculator example described in the preceding chapter, but this
time we give it a user interface, which makes our program more usable as a desktop
calculator. This loop allows entering operations directly and seeing results displayed
without having to explicitly apply a transition function for each keypress.

We attach four new keys: C, which resets the display to zero, M, which memorizes a
result, m, which recalls this memory and OFF, which turns off the calculator. This
corresponds to the following type:
# type key = Plus | Minus | Times | Div | Equals | Digit of int

| Store | Recall | Clear | Off ;;

It is necessary to define a translation function from characters typed on the keyboard
to values of type key. The exception Invalid_key handles the case of characters that
do not represent any key of the calculator. The function code of module Char translates
a character to its ASCII-code.
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# exception Invalid_key ;;

exception Invalid_key

# let translation ¢ = match c with

14

y_»

)%
1/
’=)
ok
)M}
Jm)
07

I
I
|
|
|
I
I
|
| ’0°.
|

val translation :

— Plus

— Minus

— Times

— Div

— Equals

| e

— Clear

— Store

— Recall

| °0° — Off

.’9” as ¢ — Digit ((Char.code c) - (Char.code ’0°))
_ — ratse Invalid_key ;;

char -> key = <fun>

In imperative style, the translation function does not calculate a new state, but physi-
cally modifies the state of the calculator. Therefore, it is necessary to redefine the type
state such that the fields are modifiable. Finally, we define the exception Key_off for
treating the activation of the key OFF.

# type state =
lcd :
lka :
loa :

mutable
mutable
mutable
mutable
mutable

b

{

upr

mem :

int; (* last computation done  *)
bool; (x last key activated *)
key; (* last operator activated *)
int; (x value printed *)
int  (* memory of calculator *)

# exception Key_off ;;
exception Key_off

# let transition s key = match key with

Clear —

| Digit n —

| Store —

| Recall —

S

| Off — raise
— let lcd = match s.loa with

S
S
S.
S
S
S

.upr
.upr
. lka

lka

. mem
. lka
.upr
Key_

<- 0

<- ( if s.lka then s.vpr*10+n else n );
<- true

<- false ;

<- s.vpr

<- false ;

<- s.mem

off

Plus — s.lcd + s.vpr
Minus — s.lcd - s.vpr
Times — s.lcd * s.vpr
Div — s.lcd / s.vpr
Equals — s.vpr
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| - — fatlwith "transition: impossible match"

in
s.lcd <= lcd ;
s.lka <- false ;
s.loa <- key ;
s.upr <- s.lcd;;

val transition : state -> key -> unit = <fun>

We define the function go, which starts the calculator. Its return value is (), because
we are only concerned about effects produced by the execution on the environment
(start/end, modification of state). Its argument is also the constant (), because the
calculator is autonomous (it defines its own initial state) and interactive (the arguments
of the computation are entered on the keyboard as required). The transitions are
performed within an infinite loop (while true do) so we can quit with the exception
Key_off.

# let go () =
let state = { lcd=0; lka=false; loa=Equals; vpr=0; mem=0 }
in try

while true do
try

let input = translation (input_char stdin)

in transtition state input ;
print_newline () ;
print_string "result: " ;
print_int state.vpr ;
print_newline ()

with
Invalid_-key — () (* no effect *)
done
with
Key.off — () 3;

val go : unit -> unit = <fun>

We note that the initial state must be either passed as a parameter or declared locally
within the function go, because it needs to be initialized at every application of this
function. If we had used a value initial_state as in the functional program, the
calculator would start in the same state as the one it had when it was terminated. This
would make it difficult to use two calculators in the same program.
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Exercises

Doubly Linked Lists

Functional programming lends itself well to the manipulation of non-cyclic data struc-
tures, such as lists for example. For cyclic structures, on the other hand, there are real
implementation difficulties. Here we propose to define doubly linked lists, i.e., where
each element of a list knows its predecessor and its successor.

1. Define a parameterized type for doubly linked lists, using at least one record
with mutable fields.
2. Write the functions add and remove which add and remove an element of a

doubly linked list.

Solving linear systems

This exercise has to do with matrix algebra. It solves a system of equations by Gaussian
elimination (i.e., pivoting). We write the system of equations A X = Y with A, a
square matrix of dimension n, Y, a vector of constants of dimension n and X, a vector
of unknowns of the same dimension.

This method consists of transforming the system A X =Y into an equivalent system
C X = Z such that the matrix C' is upper triangular. We diagonalize C' to obtain the
solution.

Define a type vect, a type mat, and a type syst .

2. Write utility functions for manipulating vectors: to display a system on screen,
to add two vectors, to multiply a vector by a scalar.
3. Write utility functions for matrix computations: multiplication of two matrices,
product of a matrix with a vector.
4. Write utility functions for manipulating systems: division of a row of a system
by a pivot, (A4;;), swapping two rows.
5. Write a function to diagonalize a system. From this, obtain a function solving
a linear system.
6.  Test your functions on the following systems:
100 7 8 7 1 32
AX — 7 5 6 5 R 23 | _ v
8§ 6 10 9 x3 33
7T 5 9 10 Ty 31
10 7 8 7 1 32.1
AX — 7 5 6 5 B R 229 | _ v
8 6 10 9 x3 33.1
7 5 9 10 T4 30.9
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10 7 81 7.2 1 32

AX — 708 504 6 ) N . 23 | _ v
8§ 598 989 9 T3 33
6.99 499 9 998 T4 31

7.  What can you say about the results you got?

Summary

This chapter has shown the integration of the main features of imperative program-
ming (mutable values, I/O, iterative control structures) into a functional language.
Only mutable values, such as strings, arrays, and records with mutable fields, can be
physically modified. Other values, once created, are immutable. In this way we ob-
tain read-only (RO) values for the functional part and read-write (RW) values for the
imperative part.

It should be noted that, if we don’t make use of the imperative features of the language,
this extension to the functional core does not change the functional part, except for
typing considerations which we can get around.

To Learn More

Imperative programming is the style of programming which has been most widely
used since the first computer languages such as Fortran, C, or Pascal. For this reason
numerous algorithms are described in this style, often using some kind of pseudo-Pascal.
While they could be implemented in a functional style, the use of arrays promotes the
use of an imperative style. The data structures and algorithms presented in classic
algorithms books, such as [AHU83] and [Sed88], can be carried over directly in the
appropriate style. An additional advantage of including these two styles in a single
language is being able to define new programming models by mixing the two. This is
precisely the subject of the next chapter.



Functional and
Imperative Styles

Functional and imperative programming languages are primarily distinguished by the
control over program execution and the data memory management.

° A functional program computes an expression. This computation results in a
value. The order in which the operations needed for this computation occur does
not matter, nor does the physical representation of the data manipulated, because
the result is the same anyway. In this setting, deallocation of memory is managed
implicitly by the language itself: it relies on an automatic garbage collector or
GC; see chapter 9.

° An imperative program is a sequence of instructions modifying a memory state.
Each execution step is enforced by rigid control structures that indicate the
next instruction to be executed. Imperative programs manipulate pointers or
references to values more often than the values themselves. Hence, the memory
space needed to store values must be allocated and reclaimed explicitly, which
sometimes leads to errors in accessing memory. Nevertheless, nothing prevents
use of a GC.

Imperative languages provide greater control over execution and the memory represen-
tation of data. Being closer to the actual machine, the code can be more efficient, but
loses in execution safety. Functional programming, offering a higher level of abstrac-
tion, achieves a better level of execution safety: Typing (dynamic or static) may be
stricter in this case, thus avoiding operations on incoherent values. Automatic storage
reclamation, in exchange for giving up efficiency, ensures the current existence of the
values being manipulated.

Historically, the two programming paradigms have been seen as belonging to differ-
ent universes: symbolic applications being suitable for the former, and numerical ap-
plications being suitable for the latter. But certain things have changed, especially
techniques for compiling functional programming languages, and the efficiency of GCs.
From another side, execution safety has become an important, sometimes the predom-
inant criterion in the quality of an application. Also familiar is the “selling point” of
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the Java language, according to which efficiency need not preempt assurance, espe-
cially if efficiency remains reasonably good. And this idea is spreading among software
producers.

Objective Caml belongs to this class. It combines the two programming paradigms,
thus enlarging its domain of application by allowing algorithms to be written in either
style. It retains, nevertheless, a good degree of execution safety because of its static
typing, its GC, and its exception mechanism. Exceptions are a first explicit execution
control structure; they make it possible to break out of a computation or restart it. This
trait is at the boundary of the two models, because although it does not replace the
result of a computation, it can modify the order of execution. Introducing physically
mutable data can alter the behavior of the purely functional part of the language.
For instance, the order in which the arguments to a function are evaluated can be
determined, if that evaluation causes side effects. For this reason, such languages are
called “impure functional languages.” One loses in level of abstraction, because the
programmer must take account of the memory model, as well as the order of events
in running the program. This is not always negative, especially for the efficiency of
the code. On the other hand, the imperative aspects change the type system of the
language: some functional programs, correctly typed in theory, are no longer in fact
correctly typed because of the introduction of references. However, such programs can
easily be rewritten.

Plan of the Chapter

This chapter provides a comparison between the functional and imperative models in
the Objective Caml language, at the level both of control structure and of the memory
representation of values. The mixture of these two styles allows new data structures to
be created. The first section studies this comparison by example. The second section
discusses the ingredients in the choice between composition of functions and sequencing
of instructions, and in the choice between sharing and copying values. The third section
brings out the interest of mixing these two styles to create mutable functional data,
thus permitting data to be constructed without being completely evaluated. The fourth
section describes streams, potentially infinite sequences of data, and their integration
into the language via pattern-matching.

Comparison between Functional and
Imperative

Character strings (of Objective Caml type string) and linked lists (of Objective Caml
type ’a list) will serve as examples to illustrate the differences between “functional”
and “imperative.”
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The Functional Side

The function map (see page 26) is a classic ingredient in functional languages. In a
purely functional style, it is written:
# let rec map f 1 = match 1 with
0 - 10

| hiig — (FR) =2 (map f @ ;;
val map : (’a -> ’b) -> ’a list -> ’b list = <fun>
It recursively constructs a list by applying £ to the elements of the list given as argu-
ment, independently specifying its head (f h) and its tail (map f ¢). In particular,
the program does not stipulate which of the two will be computed first.

Moreover, the physical representation of lists need not be known to the programmer
to write such a function. In particular, problems of allocating and sharing data are
managed implicitly by the system and not by the programmer. An example illustrating
this follows:

# let ezample = [ "one" ; "two" ; "three" ] ;;

val example : string list = ["one"; "two"; "three"]

# let result = map (function z — z) ezample ;;

val result : string list = ["one"; "two"; "three"]

The lists example and result contain equal values:
# exzample = result ;;
- : bool = true

These two values have exactly the same structure even though their representation in
memory is different, as one learns by using the test for physical equality:

# exzample == result ;;

- : bool = false

# (List.tl example) == (List.tl result) ;;

- : bool = false

The Imperative Side

Let us continue the previous example, and modify a string in the list result.
# (List.hd result).[1] <- ’s’ ;;

- : unit = O

# result ;;

- : string list = ["ose"; "two"; "three"]
# exzample ;;

- : string list = ["ose"; "two"; "three"]

Evidently, this operation has modified the list example. Hence, it is necessary to know
the physical structure of the two lists being manipulated, as soon as we use imperative
aspects of the language.
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Let us now observe how the order of evaluating the arguments of a function can amount
to a trap in an imperative program. We define a mutable list structure with primitive
functions for creation, modification, and access:
# type ’a ilist = { mutable c : 'a list } ;;
type ’a ilist = { mutable c: ’a list }
# let icreate () ={ c= [ }
let iempty 1 = (l.c = [])
let icons ¢ y = y.c <- ziy.c; ¥y
let ihd =z = List.hd z.c
let itl =z = z.c <- List.tl z.c ; z ;;
val icreate : unit -> ’a ilist = <fun>
val iempty : ’a ilist -> bool = <fun>

val icons : ’a -> ’a ilist -> ’a ilist = <fun>
val ihd : ’a ilist -> ’a = <fun>
val itl : ’a ilist -> ’a ilist = <fun>

# let rec imap f L =
if Zempty 1 them icreate()
else icons (f (ihd 1)) (imap f (itl 1)) ;;
val imap : (’a -> ’b) -> ’a ilist -> ’b ilist = <fun>

Despite having reproduced the general form of the map of the previous paragraph, with
imap we get a distinctly different result:

# let ezample = icons "one" (icons "two" (icons "three" (icreate()))) ;;

val example : string ilist = {c=["one"; "two"; "three"]}

# imap (function =z — z) example ;;

Uncaught exception: Failure("hd")

What has happened? Just that the evaluation of (Z¢1 1) has taken place before the
evaluation of (4hd 1), so that on the last iteration of imap, the list referenced by 1
became the empty list before we examined its head. The list example is henceforth
definitely empty even though we have not obtained any result:

# exzample ;;

- : string ilist = {c=[1}

The flaw in the function imap arises from a mixing of the genres that has not been
controlled carefully enough. The choice of order of evaluation has been left to the
system. We can reformulate the function imap, making explicit the order of evaluation,
by using the syntactic construction let .. in ..
# let rec imap f 1 =

if dempty 1 then icreate()

else let h = ihd 1 in <cons (f h) (imap f (4tl 1)) ;;
val imap : (’a -> ’b) -> ’a ilist -> ’b ilist = <fun>
# let ezample = icons "one" (icons "two" (icons "three" (icreate()))) ;;
val example : string ilist = {c=["one"; "two"; "three"]}

# imap (function =z — z) example ;;
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- : string ilist = {c=["one"; "two"; "three"]}

However, the original list has still been lost:
# exzample ;;
- : string ilist = {c=[1}

Another way to make the order of evaluation explicit is to use the sequencing operator
and a looping structure.
# let imap f 1l =
let l_res = icreate ()
in while not (iempty 1) do
ignore (icons (f (ihd 1)) l_res) ;
ignore (4tl 1)
done ;
{ l-res with ¢ = List.rev l.res.c } ;;
val imap : (’a -> ’b) -> ’a ilist -> ’b ilist = <fun>
# let ezample = icons "one" (icons "two" (icons "three" (icreate()))) ;;
val example : string ilist = {c=["one"; "two"; "three"]}
# imap (function =z — z) example ;;
- : string ilist = {c=["one"; "two"; "three"]}
The presence of ignore emphasizes the fact that it is not the result of the functions
that counts here, but their side effects on their argument. In addition, we had to put
the elements of the result back in the right order (using the function List.rev).

Recursive or Iterative

People often mistakenly associate recursive with functional and iterative with impera-
tive. A purely functional program cannot be iterative because the value of the condition
of a loop never varies. By contrast, an imperative program may be recursive: the orig-
inal version of the function imap is an example.

Calling a function conserves the values of its arguments during its computation. If it
calls another function, the latter conserves its own arguments in addition. These values
are conserved on the execution stack. When the call returns, these values are popped
from the stack. The memory space available for the stack being bounded, it is possible
to encounter the limit when using a recursive function with calls too deeply nested. In
this case, Objective Caml raises the exception Stack_overflow.

# let rec succ n = if n = 0 then 1 else 1 + succ (n-1) ;;
val succ : int -> int = <fun>

# succ 100000 ;;

Stack overflow during evaluation (looping recursion?).
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In the iterative version succ_iter, the stack space needed for a call does not depend
on its argument.
# let succ_iter n =
let 2 = ref 0 in

for 5=0 to n do <ncr 7 dome ;

Y7 55
val succ_iter : int -> int = <fun>
# succ_iter 100000 ;;
- : int = 100001

The following recursive version has a priori the same depth of calls, yet it executes
successfully with the same argument.
# let succ_tr n =
let rec succ_auz n accu =
if n = 0 then accu else succ_auz (n-1) (accu+l)
in
succ_auxz 1 n ;;
val succ_tr : int -> int = <fun>
# succ_tr 100000 ;;
- : int = 100001

This function has a special form of recursive call, called tail recursion, in which the
result of this call will be the result of the function without further computation. It
is therefore unnecessary to have stored the values of the arguments to the function
while computing the recursive call. When Objective Caml can observe that a call is
tail recursive, it frees the arguments on the stack before making the recursive call. This
optimization allows recursive functions that do not increase the size of the stack.

Many languages detect tail recursive calls, but it is indispensable in a functional lan-
guage, where naturally many tail recursive calls are used.

Which Style to Choose?

This is no matter of religion or esthetics; a priori neither style is prettier or holier than
the other. On the contrary, one style may be more adequate than the other depending
on the problem to be solved.

The first rule to apply is the rule of simplicity. Whether the algorithm to use imple-
mented is written in a book, or whether its seed is in the mind of the programmer, the
algorithm is itself described in a certain style. It is natural to use the same style when
implementing it.

The second criterion of choice is the efficiency of the program. One may say that an
imperative program (if well written) is more efficient that its functional analogue, but
in very many cases the difference is not enough to justify complicating the code to
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adopt an imperative style where the functional style would be natural. The function
map in the previous section is a good example of a problem naturally expressed in the
functional style, which gains nothing from being written in the imperative style.

Sequence or Composition of Functions

We have seen that as soon as a program causes side effects, it is necessary to determine
precisely the order of evaluation for the elements of the program. This can be done in
both styles:

functional: using the fact that Objective Caml is a strict language, which means
that the argument is evaluated before applying the function. The expression (f
(g ®)) is computed by first evaluating (g =), and then passing the result as
argument to £. With more complex expressions, we can name an intermediate
result with the 1et in construction, but the idea remains the same: 1et auz=(g
z) in (f auz).

imperative: using sequences or other control structures (loops). In this case, the
result is not the value returned by a function, but its side effects on memory:
avz:=(g z) ; (f lauzm).

Let us examine this choice of style on an example. The quick sort algorithm, applied
to a vector, is described recursively as follows:

1. Choose a pivot: This is the index of an element of the vector;

2. Permute around the pivot: Permute the elements of the vector so elements less
than the value at the pivot have indices less than the pivot, and vice versa;

3. sort the subvectors obtained on each side of the pivot, using the same algorithm:
The subvector preceding the pivot and the subvector following the pivot.

The choice of algorithm, namely to modify a vector so that its elements are sorted,
incites us to use an imperative style at least to manipulate the data.

First, we define a function to permute two elements of a vector:
# let permute_element vec n p =

let auz = wvec.(n) in wec.(n) <- wvec.(p) ; vec.(p) <- auz ;;
val permute_element : ’a array -> int -> int -> unit = <fun>

The choice of a good pivot determines the efficiency of the algorithm, but we will use the
simplest possible choice here: return the index of the first element of the (sub)vector.
# let choose_pivot vec start finish = start ;;

val choose_pivot : ’a -> ’b -> ’c -> ’b = <fun>

Let us write the algorithm that we would like to use to permute the elements of the
vector around the pivot.
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Place the pivot at the beginning of the vector to be permuted;
Initialize ¢ to the index of the second element of the vector;

Initialize j to the index of the last element of the vector;

Ll O

If the element at index j is greater than the pivot, permute it with the element
at index 7 and increment ¢; otherwise, decrement j;

o

While ¢ < j, repeat the previous operation;

At this stage, every element with index < i (or equivalently, j) is less than the
pivot, and all others are greater; if the element with index i is less than the pivot,
permute it with the pivot; otherwise, permute its predecessor with the pivot.

In implementing this algorithm, it is natural to adopt imperative control structures.
# let permute_pivot wvec start finish ind_pivot =
permute_element vec start ind_pivot ;
let 7 = ref (start+l) and j = ref finish and pivot = wvec.(start) in
while !%2 < !5 do
if wvec.(!7) >= pivot themn decr j
else
begin
permute_element vec '7 !j ;
iner 1
end
done ;
if vec.(!%) > pivot then decr 1 ;
permute_element vec start !7 ;
g
35
val permute_pivot : ’a array -> int -> int -> int -> int = <fun>
In addition to its effects on the vector, this function returns the index of the pivot as
its result.

All that remains is to put together the different stages and add the recursion on the
sub-vectors.
# let rec quick vec start finish =
if start < finish
then
let pivot = choose_pivot vec start finish in
let place_pivot = permute_pivot vec start finish pivot in
quick (quick vec start (place_pivot-1)) (place_pivot+l) finish
else wvec ;;
val quick : ’a array -> int -> int -> ’a array = <fun>

We have used the two styles here. The chosen pivot serves as argument to the per-
mutation around this pivot, and the index of the pivot after the permutation is an
argument to the recursive call. By contrast, the vector obtained after the permutation
is not returned by the permute_pivot function; instead, this result is produced by side
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effect. However, the quick function returns a vector, and the sorting of sub-vectors is
obtained by composition of recursive calls.

The main function is:
# let quicksort vec = quick vec 0 ((4Array.length wvec)-1) ;;

val quicksort : ’a array -> ’a array = <fun>
It is a polymorphic function because the order relation < on vector elements is itself
polymorphic.

# let t1 = [14;8;1;12;7;3;1;91] ;;

val t1 : int array = [l4; 8; 1; 12; 7; 3; 1; 9]

# quicksort t1 ;;

- : int array = [|1; 1; 3; 4; 7; 8; 9; 12]]

# 13

- : int array = [|1; 1; 3; 4; 7; 8; 9; 12]]

# let t2 = [|"the"; "little"; "cat"; "is"; "dead"|] ;;

val t2 : string array = [[|"the"; "little"; "cat"; "is"; "dead"|]
# quicksort t2 ;;

- : string array = [|"cat"; "dead"; "is"; "little"; "the"|]
# 125

- : string array = [|"cat"; "dead"; "is"; "little"; "the"|]

Shared or Copy Values

When the values that we manipulate are not mutable, it does not matter whether they
are shared or not.

# let id z = z ;;

val id : ’a -> ’a = <fun>

# let a=1[1;2;,31]3;

val a : int list = [1; 2; 3]

# let b = id a ;;

val b : int list = [1; 2; 3]

Whether b is a copy of the list a or the very same list makes no difference, because
these are intangible values anyway. But if we put modifiable values in place of integers,
we need to know whether modifying one value causes a change in the other.

The implementation of polymorphism in Objective Caml causes immediate values to be
copied, and structured values to be shared. Even though arguments are always passed
by value, only the pointer to a structured value is copied. This is the case even in the
function id:

# let a=[l 1;2;31];;

val a : int array = [|1; 2; 3]]

# let b = id a ;;

val b : int array = [|1; 2; 3]]

# a.(1) <-4 ;;

- : unit = O

# a;;
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- : int array = [|1; 4; 3I]

# b5

- : int array = [|1; 4; 3I]

We have here a genuine programming choice to decide which is the most efficient way
to represent a data structure. On one hand, using mutable values allows manipulations
in place, which means without allocation, but requires us to make copies sometimes
when immutable data would have allowed sharing. We illustrate this here with two
ways to implement lists.

# type ’‘a list_immutable = LInil | LIcons of ’a * ’a list_immutable ;;

# type ‘a list_mutable = LMnil | LMcons of ’a * ’a list_mutable ref ;;

The immutable lists are strictly equivalent to lists built into Objective Caml, while
the mutable lists are closer to the style of C, in which a cell is a value together with a
reference to the following cell.

With immutable lists, there is only one way to write concatenation, and it requires
duplicating the structure of the first list; by contrast, the second list may be shared
with the result.

# let rec concat 11 12 = match 11 with

LInil — 12
| LIcons (a,111) — LIcons(a, (concat 111 12)) ;;
val concat : ’a list_immutable -> ’a list_immutable -> ’a list_immutable =
<fun>

# let 141 = LIcons(l, LIcons(2, LInil))
and 142 = LIcons(3, LIcons(4, LInil)) ;;
val 1il : int list_immutable = LIcons (1, LIcomns (2, LInil))
val 1i2 : int list_immutable = LIcons (3, LIcons (4, LInil))
# let 143 = concat 171 122 ;;
val 1i3 : int list_immutable =
LIcons (1, LIcons (2, LIcons (3, LIcons (4, LInil))))
# 141==143 ;;
- : bool = false
# let tILI 1 = match | with

LInzl — failwith "Liste vide"
| LIcons(_,z) — z ;;
val tlLI : ’a list_immutable -> ’a list_immutable = <fun>

# tILI(LILI(143)) == 132 ;;

- : bool = true

From these examples, we see that the first cells of 1i1 and 1i3 are distinct, while the
second half of 1i3 is exactly 1i2.

With mutable lists, we have a choice between modifying arguments (function concat_share)
and creating a new value (function concat_copy).
# let rec concat_copy 11 12 = match 11 with
LMnil — 12
| LMcons (xz,111) — LMcons(z, ref (concat_copy !'111 12)) ;;
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val concat_copy : ’a list_mutable -> ’a list_mutable -> ’a list_mutable =
<fun>
This first solution, concat_copy, gives a result similar to the previous function, concat.
A second solution shares its arguments with its result fully:
# let concat_share 11 12 =
match 11 with
LMnil — 12
| _ — let rec set_last = function
LMnil — fatlwith "concat_share : impossible case!!"
| LMcons(_,1) — if !'1=LMnil then 1:=12 else set_last !l
in
set_last 11 ;
1153
val concat_share : ’a list_mutable -> ’a list_mutable -> ’a list_mutable =
<fun>
Concatenation with sharing does not require any allocation, and therefore does not
use the constructor LMcons. Instead, it suffices to cause the last cell of the first list
to point to the second list. However, this version of concatenation has the potential
weakness that it alters arguments passed to it.
# let lml = LMcons(1l, ref (LMcons(2, ref LMnil)))
and Im2 = LMcons(3, ref (LMcons(4, ref LMnil))) ;;
val 1ml : int list_mutable =
LMcons (1, {contents=LMcons (2, {contents=LMnil})})
val 1m2 : int list_mutable =
LMcons (3, {contents=LMcons (4, {contents=LMnil})})
# let lm3 = concat_share lml Im2 ;;
val 1m3 : int list_mutable =
LMcons (1, {contents=LMcons (2, {contents=LMcons (...)})})
We do indeed obtain the expected result for 1m3. However, the value bound to 1m1 has
been modified.
# Iml
- : int list_mutable =
LMcons (1, {contents=LMcons (2, {contents=LMcons (...)})})
This may therefore have consequences on the rest of the program.

How to Choose your Style

In a purely functional program, side effects are forbidden, and this excludes mutable
data structures, exceptions, and input/output. We prefer, though, a less restrictive
definition of the functional style, saying that functions that do not modify their global
environment may be used in a functional style. Such a function may manipulate mu-
table values locally, and may therefore be written in an imperative style, but must
not modify global variables, nor its arguments. We permit them to raise exceptions in
addition. Viewed from outside, these functions may be considered “black boxes.” Their
behavior matches a function written in a purely functional style, apart from being able
of breaking control flow by raising an exception. In the same spirit, a mutable value
which can no longer be modified after initialization may be used in a functional style.
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On the other hand, a program written in an imperative style still benefits from the
advantages provided by Objective Caml: static type safety, automatic memory man-
agement, the exception mechanism, parametric polymorphism, and type inference.

The choice between the imperative and functional styles depends on the application to
be developed. We may nevertheless suggest some guidelines based on the character of
the application, and the criteria considered important in the development process.

° choice of data structures: The choice whether to use mutable data structures
follows from the style of programming adopted. Indeed, the functional style is es-
sentially incompatible with modifying mutable values. By contrast, constructing
and traversing objects are the same whatever their status. This touches the same
issue as “modification in place vs copying” on page 99; we return to it again in
discussing criteria of efficiency.

° required data structures: If a program must modify mutable data structures,

then the imperative style is the only one possible. If, on the other hand, you
just have to traverse values, then adopting the functional style guarantees the
integrity of the data.
Using recursive data structures requires the use of functions that are themselves
recursive. Recursive functions may be defined using either of the two styles, but
it is often easier to understand the creation of a value following a recursive defi-
nition, which corresponds to a functional approach, than to repeat the recursive
processing on this element. The functional style allows us to define generic iter-
ators over the structure of data, which factors out the work of development and
makes it faster.

° criteria of efficiency: Modification in place is far more efficient than creating a

value. When code efficiency is the preponderant criterion, it will usually tip the
balance in favor of the imperative style. We note however that the need to avoid
sharing values may turn out to be a very hard task, and in the end costlier than
copying the values to begin with.
Being purely functional has a cost. Partial application and using functions passed
as arguments from other functions has an execution cost greater than total appli-
cation of a function whose declaration is visible. Using this eminently functional
feature must thus be avoided in those portions of a program where efficiency is
crucial.

° development criteria: the higher level of abstraction of functional programs
permits them to be written more quickly, leading to code that is more compact
and contains fewer errors than the equivalent imperative code, which is generally
more verbose. The functional style is better suited to the constraints imposed by
developing substantial applications. Since each function is not dependent upon
its evaluation context, functional can be easily divided into small units that can
be examined separately; as a consequence, the code is easier to read.

Programs written using the functional style are more easily reusable because of
its better modularity, and because functions may be passed as arguments to other
functions.
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These remarks show that it is often a good idea to mix the two programming styles
within the same application. The functional programming style is faster to develop and
confers a simpler organization to an application. However, portions whose execution
time is critical repay being developed in a more efficient imperative style.

Mixing Styles

As we have mentioned, a language offering both functional and imperative character-
istics allows the programmer to choose the more appropriate style for each part of the
implementation of an algorithm. One can indeed use both aspects in the same function.
This is what we will now illustrate.

Closures and Side Effects

The convention, when a function causes a side effect, is to treat it as a procedure and
to return the value (), of type unit. Nevertheless, in some cases, it can be useful to
cause the side effect within a function that returns a useful value. We have already
used this mixture of the styles in the function permute_pivot of quicksort.

The next example is a symbol generator that creates a new symbol each time that it
is called. It simply uses a counter that is incremented at every call.
# let ¢ = ref 0;;

val ¢ : int ref = {contents=0}

# let reset_symb = function () — c:=0 ;;

val reset_symb : unit -> unit = <fun>

# let new.symb = function s — c:=lctl ; s™(string.of_int !'c) ;;
val new_symb : string -> string = <fun>

# new_symb "VAR" ;;

- : string = "VAR1"

# mew_symb "VAR" ;;

- : string = "VAR2"

reset_symb () ;;

:unit =

new_symb "WAR" ;;

: string = "WAR1"

new_symb "WAR" ;;

: string = "WAR2"

IR S S

T

The reference ¢ may be hidden from the rest of the program by writing:
# let (reset.s , new.s) =
let c = ref O
in let f1 () = ¢
and f2 s = c :
in (f1,f2) ;;

0
letl 5 s™(string_of-int !c)
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val reset_s : unit -> unit = <fun>
val new_s : string -> string = <fun>

This declaration creates a pair of functions that share the variable ¢, which is local to
this declaration. Using these two functions produces the same behavior as the previous
definitions.

# new.s "VAR";;

- : string = "VAR1"

# new.s "VAR";;

- : string = "VAR2"

reset_s();;

T

: unit = ()

new.s "WAR";;

: string = "WAR1"
new-s "WAR";;

: string = "WAR2"

R S S

This example permits us to illustrate the way that closures are represented. A closure
may be considered as a pair containing the code (that is, the function part) as one
component and the local envoronment containing the values of the free variables of
the function. Figure 4.1 shows the memory representation of the closures reset_s and

new_s.
/\ reset_s

¢ ~ fun()->c=0
\

l environment code

{ contents=0}

T new _s

! _ o funs->..

C

\/i ronment code

Figure 4.1: Memory representation of closures.

These two closures share the same environment, containing the value of c. When either
one modifies the reference c, it modifies the contents of an area of memory that is shared
with the other closure.
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Physical Modifications and Exceptions

Exceptions make it possible to escape from situations in which the computation cannot
proceed. In this case, an exception handler allows the calculation to continue, knowing
that one branch has failed. The problem with side effects comes from the state of the
modifiable data when the exception was raised. One cannot be sure of this state if
there have been physical modifications in the branch of the calculation that has failed.

Let us define the increment function (++) analogous to the operator in C:

# let (++) z = z:=!z+l; z;;

val ++ : int ref -> int ref = <fun>

The following example shows a little computation where division by zero occurs to-
gether with

# let = = ref 2;;

val x : int ref = {contents=2}

(x 1 %)

# V((++) z) * (1/0) ;;

Uncaught exception: Division_by_zero

# T

- : int ref = {contents=2}

(x 2 %)

# (1/0) * 1((++) =) 3;

Uncaught exception: Division_by_zero

# T

- : int ref = {contents=3}

The variable x is not modified during the computation of the expression in (x1x), while
it is modified in the computation of (x2x). Unless one saves the initial values, the form
try .. with .. must not have a with .. part that depends on modifiable variables
implicated in the expression that raised the exception.

Modifiable Functional Data Structures

In functional programming a program (in particular, a function expression) may also
serve as a data object that may be manipulated, and one way to see this is to write
association lists in the form of function expressions. In fact, one may view association
lists of type (’a * ’b) list as partial functions taking a key chosen from the set ’a
and returning a value in the set of associated values ’b. Each association list is then a
function of type ’a -> ’b.

The empty list is the everywhere undefined function, which one simulates by raising
an exception:

# let nil_assoc = function z — raise Not_found ;;

val nil_assoc : ’a -> ’b = <fun>

We next write the function add_assoc which adds an element to a list, meaning that
it extends the function for a new entry:
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# let add_assoc (k,v) 1 = function z — if = = k then v else | z ;;
val add_assoc : ’a * ’b -> (’a -> ’b) -> ’a -> ’b = <fun>

# let 1 = add_assoc (°1°, 1) (add_assoc (’2’, 2) nil_assoc) ;;

val 1 : char -> int = <fun>

# 12 5

- ¢ int = 2

# 1% 5

Uncaught exception: Not_found

We may now re-write the function mem_assoc:

# let mem_assoc k 1 = try (1l k) ; true with WNot_found — false ;;
val mem_assoc : ’a -> (’a -> ’b) -> bool = <fun>

# mem_assoc ’2° 1 ;;

- : bool = true

# mem_assoc ’x’ 1 ;;

- : bool = false

By contrast, writing a function to remove an element from a list is not trivial, because
one no longer has access to the values captured by the closures. To accomplish the
same purpose we mask the former value by raising the exception Not_found.

# let rem.assoc k 1 = function z — if z=k then raise Not_found else 1l z ;;

val rem_assoc : ’a -> (’a -> ’b) -> ’a -> ’b = <fun>

# let 1l = rem.assoc ’2° 1 ;;

val 1 : char -> int = <fun>

# 12 5

Uncaught exception: Not_found

Clearly, one may also create references and work by side effect on such values. However,
one must take some care.

# let add_assoc_again (k,v) 1 = 1 := (function z — if z=k then v else !l z) ;;
val add_assoc_again : ’a * ’b -> (a -> ’b) ref -> unit = <fun>

The resulting value for 1 is a function that points at itself and therefore loops. This
annoying side effect is due to the fact that the dereferencing ! 1 is within the scope of
the closure function =z —. The value of !l is not evaluated during compilation, but
at run-time. At that time, 1 points to the value that has already been modified by
add_assoc. We must therefore correct our definition using the closure created by our
original definition of add_assoc:

# let add_assoc_again (k, v) 1 = 1 := add_assoc (k, v) !l ;;

val add_assoc_again : ’a * ’b -> (’a -> ’b) ref -> unit = <fun>

# let 1l = ref nil_assoc ;;

val 1 : (’_a -> ’_b) ref = {contents=<fun>}

# add_assoc_again (°1°,1) 1 ;;

- : unit = O
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# add_assoc_again (’°2°,2) 1 ;;

- ¢ unit = ()
#0101
- :int =1
#1100

Uncaught exception: Not_found

Lazy Modifiable Data Structures

Combining imperative characteristics with a functional language produces good tools
for implementing computer languages. In this subsection, we will illustrate this idea by
implementing data structures with deferred evaluation. A data structure of this kind
is not completely evaluated. Its evaluation progresses according to the use made of it.

Deferred evaluation, which is often used in purely functional languages, is simulated
using function values, possibly modifiable. There are at least two purposes for manip-
ulating incompletely evaluated data structures: first, so as to calculate only what is
effectively needed in the computation; and second, to be able to work with potentially
infinite data structures.

We define the type vm, whose members contain either an already calculated value
(constructor Imm) or else a value to be calculated (constructor Deferred):
# type ‘a v =
Imm of ’a
| Deferred of (unit — ’a);;
# type ‘a vm = {mutable c : ‘a v };;

A computation is deferred by encapsulating it in a closure. The evaluation function for
deferred values must return the value if it has already been calculated, and otherwise,
if the value is not already calculated, it must evaluate it and then store the result.
# let eval e = match e.c with
Imm a — a
| Deferred f — let u = f () in e.c <= Imm u ; u ;;
val eval : ’a vm -> ’a = <fun>

The operations of deferring evaluation and activating it are also called freezing and
thawing a value.

We could also write the conditional control structure in the form of a function:
# let if_deferred c el e2 =

if eval c then eval el else eval eZ;;
val if_deferred : bool vm -> ’a vm -> ’a vm -> ’a = <fun>
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Here is how to use it in a recursive function such as factorial:
# let rec facr n =
1f_deferred
{c=Deferred(fun () — n = 0)}
{c=Deferred(fun () — 1)}
{c=Deferred(fun () — nx(facr(n-1)))};;
val facr : int -> int = <fun>
# facr 5;;
- : int = 120

The classic form of if can not be written in the form of a function. In fact, if we define
a function if_function this way:

# let if_function c el e2 = if c then el else eZ;

val if_function : bool -> ’a -> ’a -> ’a = <fun>

then the three arguments of if function are evaluated at the time they are passed
to the function. So the function fact loops, because the recursive call fact(n-1) is
always evaluated, even when n has the value 0.

# let rec fact n = if_function (n=0) 1 (n*fact(n-1)) ;;

val fact : int -> int = <fun>

# fact 5 ;;

Stack overflow during evaluation (looping recursion?).

Module Lazy

The implementation difficulty for frozen values is due to the conflict between the eager
evaluation strategy of Objective Caml and the need to leave expressions unevaluated.
Our attempt to redefine the conditional illustrated this. More generally, it is impossible
to write a function that freezes a value in producing an object of type vm:

# let freeze e = { ¢ = Deferred (fun () — e) };;

val freeze : ’a -> ’a vm = <fun>

When this function is applied to arguments, the Objective Caml evaluation strategy
evaluates the expression e passed as argument before constructing the closure fun ()
— e. The next example shows this:

# freeze (print_string "trace"; print_newline(); 4%5);

trace

- : int vm = {c=Deferred <fun>}

This is why the following syntactic form was introduced.

This form is a language extension that may evolve in
future versions.

Warning
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When the keyword lazy is applied to an expression, it constructs a value of a type
declared in the module Lazy:

# let z = lazy (print_string "Hello"; 3x4) ;;

val x : int Lazy.status ref = {contents=Lazy.Delayed <fun>}

The expression (print_string "Hello") has not been evaluated, because no message
has been printed. The function force of module Lazy allows one to force evaluation:
# Lazy. force z ;;

Hello- : int = 12

Now the value x has altered:

# T

- : int Lazy.t = {contents=Lazy.Value 12}

It has become the value of the expression that had been frozen, namely 12.

For another call to the function force, it’s enough to return the value already calcu-
lated:

# Lazy. force z ;;

- : int = 12

The string "Hello" is no longer prefixed.

“Infinite” Data Structures

The second reason to defer evaluation is to be able to construct potentially infinite
data structures such as the set of natural numbers. Because it might take a long time
to construct them all, the idea here is to compute only the first one and to know how
to pass to the next element.

We define a generic data structure ’a enum which will allow us to enumerate the
elements of a set.

# type ’a enum = { mutable ¢ : a; f :’a — ’a } ;;

type ’a enum = { mutable i: ’a; f: ’a -> ’a }

# let next e = let © = e. ¢ in e.7 <~ (e.f e. %) ; © ;;

val next : ’a enum -> ’a = <fun>

Now we can get the set of natural numbers by instantiating the fields of this structure:

# let nat = { i=0; f=fun z — z + 1 };;

val nat : int enum = {i=0; f=<fun>}

# nezt nat;;

- :int =0

# next nat;;

- :int =1

# next nat;;

- :int =2

Another example gives the elements of the Fibonnacci sequence, which has the defini-
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tion:
Ug = 1
U7 =1
Up4+2 = Unp + Un 41

The function to compute the successor must take account of the current value, (u,—1),
but also of the preceding one (u,—_2). For this, we use the state ¢ in the following
closure:
# let fib = let fr = let ¢ = ref O in fun v — let 7 = lc + v in c:=v ; r
in { =1 ; f=fz } ;;
val fib : int enum = {i=1; f=<fun>}
# for =0 to 10 do print_int (next fib); print_string " " dome ;;
1 1 2 3 5 8 13 21 34 55 89 - : unit = O

Streams of Data

Streams are (potentially infinite) sequences containing elements of the same kind. The
evaluation of a part of a stream is done on demand, whenever it is needed by the
current computation. A stream is therefore a lazy data structure.

The stream type is an abstract data type; one does not need to know how it is imple-
mented. We manipulate objects of this type using constructor functions and destructor
(or selector) functions. For the convenience of the user, Objective Caml has simple syn-
tactic constructs to construct streams and to access their elements.

Warning Streams are an extension of the language, not part of
the stable core of Objective Caml.
Construction

The syntactic sugar to construct streams is inspired by that for lists and arrays. The
empty stream is written:
# [<>1 55

- : ’a Stream.t = <abstr>

One may construct a stream by enumerating its elements, preceding each one with an
with a single quote (character *):

# [<°0; 225 74 >] 5

- : int Stream.t = <abstr>

Expressions not preceded by an apostrophe are considered to be sub-streams:
# [<°0; [<’1; 725 23 >1; °4 >] 5

- : int Stream.t = <abstr>

# let s1 = [< ’1; ’2; ’3 >] in [< s1; ’4 >] ;;
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- : int Stream.t = <abstr>

# let concat_stream a b = [< a ; b >] ;;

val concat_stream : ’a Stream.t -> ’a Stream.t -> ’a Stream.t = <fun>
# concat_stream [< ’"if"; >"c";’"then";’"1" >] [< ’"else";’"2" >] ;;

- : string Stream.t = <abstr>

The Stream module also provides other construction functions. For instance, the func-
tions of _channel and of _string return a stream containing a sequence of characters,
received from an input stream or a string.

# Stream.of_channel ;;

- : in_channel -> char Stream.t = <fun>

# Stream.of_string ;;

- : string -> char Stream.t = <fun>

The deferred computation of streams makes it possible to manipulate infinite data
structures in a way similar to the type ’a enum defined on page 109. We define the
stream of natural numbers by its first element and a function calculating the stream
of elements to follow:

# let rec nat_stream m = [< ’n ; nat_stream (n+l) >] ;;

val nat_stream : int -> int Stream.t = <fun>

# let nat = nat_stream 0 ;;

val nat : int Stream.t = <abstr>

Destruction and Matching of Streams

The primitive next permits us to evaluate, retrieve, and remove the first element of a
stream, all at once:
# for =0 to 10 do

print_int (Stream.next nat) ;

print_string " "

done ;;
01 2 3 4 5 6 7 8 9 10 - : unit = ()
# Stream.next nat ;;
- :int = 11

When the stream is exhausted, an exception is raised.
# Stream.next [< >] ;;
Uncaught exception: Stream.Failure

To manipulate streams, Objective Caml offers a special-purpose matching construct
called destructive matching. The value matched is calculated and removed from the
stream. There is no notion of exhaustive match for streams, and, since the data type
is lazy and potentially infinite, one may match less than the whole stream. The syntax
for matching is:
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Syntax : | match ezpr with parser [< ’p; ...>]1 => expry | ...

The function next could be written:
# let next s = match s with parser [< 'z >] — =z ;;

val next : ’a Stream.t -> ’a = <fun>
# next nat;;
- : int = 12

Note that the enumeration of natural numbers picks up where we left it previously.

As with function abstraction, there is a syntactic form matching a function parameter
of type Stream. t.

Syntax : ’ parser p -/, ...

The function next can thus be rewritten:
# let next = parser [<’z>] — z ;;

val next : ’a Stream.t -> ’a = <fun>
# nexzt nat ;;
- : int = 13

It is possible to match the empty stream, but take care: the stream pattern [<>]
matches every stream. In fact, a stream s is always equal to the stream [< [<>]; s
>]. For this reason, one must reverse the usual order of matching:
# let rec it_stream [ s =

match s with parser

[< ’z; ss>] — f z; it_stream [ ss

I ] = 0 53
val it_stream : (’a -> ’b) -> ’a Stream.t -> unit = <fun>
# let print_intl n = print_int n ; print_string" " ;;
val print_intl : int -> unit = <fun>
# it_stream print_intl [<’1; ’2; °3>] ;;
123 - :unit = O
Since matching is destructive, one can equivalently write:
# let rec it_stream f s =

match s with parser

[< ’2>] — fa; it_stream f s

I [ = () 53
val it_stream : (’a -> ’b) -> ’a Stream.t -> unit = <fun>
# it_stream print_intl [<’1; °2; ’3>] ;;
123 - :unit = O

Although streams are lazy, they want to be helpful, and never refuse to furnish a first
element; when it has been supplied once it is lost. This has consequences for matching.
The following function is an attempt (destined to fail) to display pairs from a stream
of integers, except possibly for the last element.
# let print_int2 nl

ne =
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print_string "(" ; print_int nl ; print_string "," ;
print_int n2 ; print_string ")" ;;
val print_int2 : int -> int -> unit = <fun>
# let rec print_stream s =
match s with parser
[< ’z; ’y >] — print_int2 z y; print_stream s
| [< ’2z >] — print_intl z; print_stream s
| [<>] — print_newline() ;;
val print_stream : int Stream.t -> unit = <fun>
# print_stream [<’1; ’2; ’3>];;
(1,2)Uncaught exception: Stream.Error("")

The first two two members of the stream were displayed properly, but during the
evaluation of the recursive call (print_stream [<3>]), the first pattern found a value
for x, which was thereby consumed. There remained nothing more for y. This was what
caused the error. In fact, the second pattern is useless, because if the stream is not
empty, then first pattern always begins evaluation.

To obtain the desired result, we must sequentialize the matching:
# let rec print_stream s =
match s with parser
[< ’z >]
— (match s with parser
[< ’y >] — print_int2 z y; print_stream s
| [<>] — print_intl z; print_stream s)
| [<>] — print_newline() ;;
val print_stream : int Stream.t -> unit = <fun>
# print_stream [<’1; ’2; ’3>];;
(1,2)3
- : unit = O

If matching fails on the first element of a pattern however, then we again have the
familiar behavior of matching:
# let rec print_stream s =
match s with parser
[< ’1; ’y >] — print_int2 1 y; print_stream s
| [< ’2 >] — print_intl z; print_stream s
| [<>] — print_newline() ;;
val print_stream : int Stream.t -> unit = <fun>
# print_stream [<’1; ’2; ’3>] ;;
(1,2)3
- : unit = ()
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The Limits of Matching

Because it is destructive, matching streams differs from matching on sum types. We
will now illustrate how radically different it can be.

We can quite naturally write a function to compute the sum of the elements of a stream:

# let rec sum s =
match s with parser
[< ’n; ss >] — n+(sum ss)
| [<>] — 0 3;
val sum : int Stream.t -> int = <fun>
# sum [<°1; °2; 73; °4>]
- : int = 10
However, we can just as easily consume the stream from the inside, naming the partial
result:
# let rec sum s =
match s with parser
[< ’n; » = sum >] — n+r
| [<>] — 0 3;
val sum : int Stream.t -> int = <fun>
# sum [<’1; °2; ’3; ’4>] ;;
- : int = 10

We will examine some other important uses of streams in chapter 11, which is devoted
to lexical and syntactic analysis. In particular, we will see how consuming a stream
from the inside may be profitably used.

Exercises

Binary Trees

We represent binary trees in the form of vectors. If a tree a has height h, then the
length of the vector will be 2(#+1) — 1. If a node has position i, then the left subtree of
this node lies in the interval of indices [i +1 , i +1+2"], and its right subtree lies in the
interval [i +1+42" 41, 2(#+1) —1]. This representation is useful when the tree is almost
completely filled. The type ’a of labels for nodes in the tree is assumed to contain a
special value indicating that the node does not exist. Thus, we represent labeled trees
by the by vectors of type ’a array.

1. Write a function , taking as input a binary tree of type ’a bin_tree (defined
on page 50) and an array (which one assumes to be large enough). The function
stores the labels contained in the tree in the array, located according to the
discipline described above.

2. Write a function to create a leaf (tree of height 0).
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Write a function to construct a new tree from a label and two other trees.
Write a conversion function from the type ’a bin_tree to an array.
Define an infix traversal function for these trees.

Use it to display the tree.

What can you say about prefix traversal of these trees?

Spelling Corrector

The exercise uses the lexical tree , from the exercise of chapter 2, page 63, to build a
spelling corrector.

1.

Construct a dictionary from a file in ASCII in which each line contains one word.
For this, one will write a function which takes a file name as argument and
returns the corresponding dictionary.

Write a function words that takes a character string and constructs the list
of words in this string. The word separators are space, tab, apostrophe, and
quotation marks.

Write a function verify that takes a dictionary and a list of words, and returns
the list of words that do not occur in the dictionary.

Write a function occurrences that takes a list of words and returns a list of
pairs associating each word with the number of its occurrences.

Write a function spellcheck that takes a dictionary and the name of a file con-
taining the text to analyze. It should return the list of incorrect words, together
with their number of occurrences.

Set of Prime Numbers

We would like now to construct the infinite set of prime numbers (without calculating
it completely) using lazy data structures.

1. Define the predicate divisible which takes an integer and an initial list of prime
numbers, and determines whether the number is divisible by one of the integers
on the list.

2. Given an initial list of prime numbers, write the function next that returns the
smallest number not on the list.

3. Define the value setprime representing the set of prime numbers, in the style of
the type ’a enumon page 109. It will be useful for this set to retain the integers
already found to be prime.

Summary

This chapter has compared the functional and imperative programming styles. They
differ mainly in the control of execution (implicit in functional and explicit in impera-
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tive programming), and in the representation in memory of data (sharing or explicitly
copied in the imperative case, irrelevant in the functional case). The implementation
of algorithms must take account of these differences. The choice between the two styles
leads in fact to mixing them. This mixture allows us to clarify the representation of clo-
sures, to optimize crucial parts of applications, and to create mutable functional data.
Physical modification of values in the environment of a closure permits us to better
understand what a functional value is. The mixture of the two styles gives powerful
implementation tools. We used them to construct potentially infinite values.

To Learn More

The principal consequences of adding imperative traits to a functional language are:

. To determine the evaluation strategy (strict evaluation);

) to add implementation constraints, especially for the GC (see Chapter 9);

. For statically typed languages, to make their type system more complex;

. To offer different styles of programming in the same language, permitting us to
program in the style appropriate to the algorithm at hand, or possibly in a mixed
style.

This last point is important in Objective Caml where we need the same parametric
polymorphism for functions written in either style. For this, certain purely functional
programs are no longer typable after the addition. Wright’s article ([Wri95]) explains
the difficulties of polymorphism in languages with imperative aspects. Objective Caml
adopts the solution that he advocates. The classification of different kinds of poly-
morphism in the presence of physical modification is described well in the thesis of
Emmanuel Engel ([Eng98]).

These consequences make the job of programming a bit harder, and learning the lan-
guage a bit more difficult. But because the language is richer for this reason and above
all offers the choice of style, the game is worth the candle. For example, strict evalua-
tion is the rule, but it is possible to implement basic mechanisms for lazy evaluation,
thanks to the mixture of the two styles. Most purely functional languages use a lazy
evaluation style. Among languages close to ML, we would mention Miranda, LazyML,
and Haskell. The first two are used at universities for teaching and research. By con-
trast, there are significant applications written in Haskell. The absence of controllable
side effects necessitates an additional abstraction for input/output called monads. One
can read works on Haskell (such as [Tho99]) to learn more about this subject. Streams
are a good example of the mixture of functional and imperative styles. Their use in
lexical and syntactic analysis is described in Chapter 11.



The Graphics
Interface

This chapter presents the Graphics library, which is included in the distribution of
the Objective Caml-language. This library is designed in such a way that it works
identically under the main graphical interfaces of the most commonly used operating
systems: Windows, MacOS, Unix with X-Windows. Graphics permits the realization
of drawings which may contain text and images, and it handles basic events like mouse
clicks or pressed keys.

The model of programming graphics applied is the “painter’s model:” the last touch of
color erases the preceding one. This is an imperative model where the graphics window
is a table of points which is physically modified by each graphics primitive. The inter-
actions with the mouse and the keyboard are a model of event-driven programming:
the primary function of the program is an infinite loop waiting for user interaction.
An event starts execution of a special handler, which then returns to the main loop to
wait for the next event.

Although the Graphics library is very simple, it is sufficient for introducing basic
concepts of graphical interfaces, and it also contains basic elements for developing
graphical interfaces that are rich and easy to use by the programmer.

Chapter overview

The first section explains how to make use of this library on different systems. The
second section introduces the basic notions of graphics programming: reference point,
plotting, filling, colors, bitmaps. The third section illustrates these concepts by describ-
ing and implementing functions for creating and drawing “boxes.” The fourth section
demonstrates the animation of graphical objects and their interaction with the back-
ground of the screen or other animated objects. The fifth section presents event-driven
programming, in other terms the skeleton of all graphical interfaces. Finally, the last
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section uses the library Graphics to construct a graphical interface for a calculator
(see page 86).

Using the Graphics Module

Utilization of the library Graphics differs depending on the system and the compilation
mode used. We will not cover applications other than usable under the interactive
toplevel of Objective Caml. Under the Windows and MacOS systems the interactive
working environment already preloads this library. To make it available under Unix, it
is necessary to create a new toplevel. This depends on the location of the X11 library.
If this library is placed in one of the usual search paths for C language libraries, the
command line is the following:

ocamlmktop -custom -o mytoplevel graphics.cma -cclib -1X11

It generates a new executablemytoplevel into which the library Graphics is integrated.
Starting the executable works as follows:

./mytoplevel

If, however, as under Linux, the library X11 is placed in another directory, this has to
be indicated to the command ocamlmktop:

ocamlmktop -custom -o mytoplevel graphics.cma -cclib \
-L/usr/X11/1ib -cclib -1X11

In this example, the file 1ibX11.a is searched in the directory /usr/X11/1ib.

A complete description of the command ocamlmktop can be found in chapter 7.

Basic notions

Graphics programming is tightly bound to the technological evolution of hardware, in
particular to that of screens and graphics cards. In order to render images in sufficient
quality, it is necessary that the drawing be refreshed (redrawn) at regular and short
intervals, somewhat like in a cinema. There are basically two techniques for drawing on
the screen: the first makes use of a list of visible segments where only the useful part
of the drawing is drawn, the second displays all points of the screen (bitmap screen).
It is the last technique which is used on ordinary computers.

Bitmap screens can be seen as rectangles of accessible, in other terms, displayable
points. These points are called pizels, a word derived from picture element. They are
the basic elements for constructing images. The height and width of the main bitmap
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is the resolution of the screen. The size of this bitmap therefore depends on the size
of each pixel. In monochrome (black/white) displays, a pixel can be encoded in one
bit. For screens that allow gray scales or for color displays, the size of a pixel depends
on the number of different colors and shades that a pixel may take. In a bitmap of
320x640 pixels with 256 colors per pixel, it is therefore necessary to encode a pixel in 8
bits, which requires video memory of: 480 * 640 bytes = 307200 bytes ~ 300KB. This
resolution is still used by certain MS-DOS programs.

The basic operations on bitmaps which one can find in the Graphics library are:

) coloration of pixels,

° drawing of pixels,

° drawing of forms: rectangles, ellipses,

° filling of closed forms: rectangles, ellipses, polygons,
° displaying text: as bitmap or as vector,

. manipulation or displacement of parts of the image.

All these operations take place at a reference point, the one of the bitmap. A certain
number of characteristics of these graphical operations like the width of strokes, the
joints of lines, the choice of the character font, the style and the motive of filling define
what we call a graphical context. A graphical operation always happens in a particular
graphical context, and its result depends on it. The graphical context of the Graphics
library does not contain anything except for the current point, the current color, the
current font and the size of the image.

Graphical display

The elements of the graphical display are: the reference point and the graphical context,
the colors, the drawings, the filling pattern of closed forms, the texts and the bitmaps.

Reference point and graphical context

The Graphics library manages a unique main window. The coordinates of the reference
point of the window range from point (0, 0) at the bottom left to the upper right corner
of the window. The main functions on this window are:

° open_graph, of type string -> unit, which opens a window;
) close_graph, of type unit -> untt, which closes it;
. clear_graph, of type unit -> unit, which clears it.

The dimensions of the graphical window are given by the functions size x and size_y.

The string argument of the function open_graph depends on the window system of the
machine on which the program is executed and is therefore not platform independent.
The empty string, however, opens a window with default settings. It is possible to
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specify the size of the window: under X-Windows, " 200x300" yields a window which
is 200 pixels wide and 300 pixels high. Beware, the space at the beginning of the string
" 200x300" is required!

The graphical context contains a certain number of readable and /or modifiable param-
eters:
the current point: current_point : untt -> int * <nt
moveto : ent -> int -> unit
the current color: set_color : color -> untt
the width of lines: set_line_width : int -> unit
the current character font: set_font : string -> unit

the size of characters: set_text_size: int -> unit

Colors

Colors are represented by three bytes: each stands for the intensity value of a main color
in the RGB-model (red, green, blue), ranging from a minimum of 0 to a maximum of
255. The function rgb (of type int -> int -> int -> color) allows the generation
of a new color from these three components. If the three components are identical,
the resulting color is a gray which is more or less intense depending on the intensity
value. Black corresponds to the minimum intensity of each component (0 0 0) and
white is the maximum (255 255 255). Certain colors are predefined: black, white,
red, green, blue, yellow, cyan and magenta.

The variables foreground and background correspond to the color of the fore- and
the background respectively. Clearing the screen is equivalent to filling the screen with
the background color.

A color (a value of type color) is in fact an integer which can be manipulated to,
for example, decompose the color into its three components (from_rgb) or to apply a
function to it that inverts it (inv_color).
(¥ color == R * 256 * 266 + G *x 266 + B *)
# let from.rgb (c : Graphics.color) =
let = c / 65536 and g = c / 256 mod 256 and b = c mod 256
in (r,g,b);;
val from_rgb : Graphics.color -> int * int * int = <fun>
# let inv_color (c : Graphics.color) =
let (r,g,b) = fromrgdb c
in Graphics.rgb (255-r) (255-g) (255-b);;
val inv_color : Graphics.color -> Graphics.color = <fun>

The function point_color, of type int -> 4nt -> color, returns the color of a point
when given its coordinates.
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Drawing and filling

A drawing function draws a line on the screen. The line is of the current width and
color. A filling function fills a closed form with the current color. The various line- and
filling functions are presented in figure 5.1.

drawing filling type
plot tnt -> int -> unit
lineto tnt -> int -> unit

fill rect tnt -> int -> tnt -> int -> unit

£ill poly ( int * 4nt) array -> untit
draw_arc fill arc int -> wnt -> int -> int -> int -> untt
draw_ellipse | fill_ellipse wnt -> int -> int -> int -> unit
draw_circle fill circle wnt -> int -> int -> unit

Figure 5.1: Drawing- and filling functions.

Beware, the function lineto changes the position of the current point to make drawing
of vertices more convenient.

Drawing polygons To give an example, we add drawing primitives which are not
predefined. A polygon is described by a table of its vertices.
# let draw_rect z0 yO w h =
let (a,b) = Graphics.current_point()
and z1 = z0+w and yI = yO+h
in
Graphics.moveto =0 y0;
Graphics.lineto z0 yl1; Graphics.lineto z1 yI;
Graphics.lineto z1 y0; Graphics.lineto z0 yO.
Graphics.moveto a b;;
val draw_rect : int -> int -> int -> int -> unit = <fun>

# let draw.poly r =
let (a,b) = Graphics.current_point () in
let (z0,y0) = r.(0) in Graphics.moveto z0 YO0,
for 7 = 1 to (4rray.length r)-1 do
let (z,y) = r.(4) in Graphics.lineto z y
done;
Graphics. lineto =0 y0;
Graphics.moveto a b;;
val draw_poly : (int * int) array -> unit = <fun>
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Please note that these functions take the same arguments as the predefined ones for
filling forms. Like the other functions for drawing forms, they do not change the current
point.

Illustrations in the painter’s model This example generates an illustration of a
token ring network (figure 5.2). Each machine is represented by a small circle. We place
the set of machines on a big circle and draw a line between the connected machines.
The current position of the token in the network is indicated by a small black disk.

The function net_points generates the coordinates of the machines in the network.
The resulting data is stored in a table.
# let pi = 3.1415927;;
val pi : float = 3.1415927
# let net_points (z,y) 1l n =
let a = 2. *x. pi /. (float n) in
let rec auz (za,ya) < =
if ¢ > n then ||
else
let na = (float %) *. a in
let z1 = za + (int_of_float ( cos(na) *. 1))
ya + (int_of_float ( sin(na) *. 1)) in
let np = (z1,y1) in

and yI

np :: (auz np (i+1))
in Array.of-list (auz (z,y) 1);;
val net_points : int * int -> float -> int -> (int * int) array = <fun>

The function draw_net displays the connections, the machines and the token.
# let draw.mnet (z,y) 1 n sc st =
let r = net_points (z,y) 1 n in
draw_poly
let draw_machine (z,y) =
Graphics.set_color Graphics.background,
Graphics. fill_circle = y sc;
Graphics.set_color Graphics. foreground;
Graphics.draw_circle T y sc
in
Array.iter draw_machine T
Graphics. fill_circle = y st;;
val draw_net : int * int -> float -> int -> int -> int -> unit = <fun>

The following function call corresponds to the left drawing in figure 5.2.
# draw_net (140,20) 60.0 10 10 3;;
- : unit = ()

# save_screen "IMAGES/tokenring.caa';;
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- ¢ unit = ()
We note that the order of drawing objects is important. We first plot the connections

Figure 5.2: Tokenring network.

then the nodes. The drawing of network nodes erases some part of the connecting lines.
Therefore, there is no need to calculate the point of intersection between the connection
segments and the circles of the vertices. The right illustration of figure 5.2 inverts the
order in which the objects are displayed. We see that the segments appear inside of
the circles representing the nodes.

Text

The functions for displaying texts are rather simple. The two functions draw_char (of
type char -> unit) and draw_string (of type string -> wnit) display a character
and a character string respectively at the current point. After displaying, the latter is
modified. These functions do not change the current font and its current size.

Note
The displaying of strings may differ depending on the graphical interface.

The function text_size takes a string as input and returns a pair of integers that
correspond to the dimensions of this string when it is displayed in the current font and
size.

Displaying strings vertically This example describes the function draw_string. v,
which displays a character string vertically at the current point. It is used in figure 5.3.
Each letter is displayed separately by changing the vertical coordinate.

# let draw_string.v s =
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let (zi,y%) = Graphics.current_point()
and | = String.length s
and (_,h) = Graphics.text_size s
in
Graphics.draw_char s.[0];
for <=1 to 1-1 do
let (_,b) = Graphics.current_point()
in Graphics.moveto zi (b-h);
Graphics.draw_char s.[%]
done;
let (a,_) = Graphics.current_point() in Graphics.moveto a yi;;
val draw_string_v : string -> unit = <fun>
This function modifies the current point. After displaying, the point is placed at the
initial position offset by the width of one character.

The following program permits displaying a legend around the axes (figure 5.3)
#

Graphics.moveto 0 150; Graphics.lineto 300 150;

Graphics.moveto 2 130; Graphics.draw_string "abscissa';

Graphics.moveto 150 0; Graphics.lineto 150 300;

Graphics.moveto 135 280; draw_string_v "ordinate";;
- : unit = ()

Mot I o= 050

absciszsa

Figure 5.3: Legend around axes.

If we wish to realize vertical displaying of text, it is necessary to account for the
fact that the current point is modified by the function draw_string v. To do this, we
define the function draw_text_v, which accepts the spacing between columns and a list
of words as parameters.
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# let draw_tezxt v n 1 =
let f s = let (a,b) = Graphics.current_point()
in draw_string_v s;
Graphics.moveto (a+n) b
in List.iter f 1;;
val draw_text_v : int -> string list -> unit = <fun>

If we need further text transformations like, for example, rotation, we will have to take
the bitmap of each letter and perform the rotation on this set of pixels.

Bitmaps

A bitmap may be represented by either a color matrix (color array array) or a value
of abstract type ! image, which is declared in library Graphics. The names and types
of the functions for manipulating bitmaps are given in figure 5.4.

function type

make_image color array array —> image
dump_image tmage —> color array array
draw_image tmage —> int -> int -> unit
get_image tnt -> int -> int -> int -> image
blit_image tmage —> int -> int -> untt
create_image || int -> int -> image

Figure 5.4: Functions for manipulating bitmaps.

The functions make_image and dump_image are conversion functions between types
image and color array array. The function draw_image displays a bitmap starting
at the coordinates of its bottom left corner.

The other way round, one can capture a rectangular part of the screen to create an
image using the function get_image and by indicating the bottom left corner and the
upper right one of the area to be captured. The function blit_image modifies its first
parameter (of type image) and captures the region of the screen where the lower left
corner is given by the point passed as parameter. The size of the captured region is
the one of the image argument. The function create_image allows initializing images
by specifying their size to use them with blit_image.

The predefined color transp can be used to create transparent points in an image. This
makes it possible to display an image within a rectangular area only; the transparent
points do not modify the initial screen.

1. Abstract types hide the internal representation of their values. The declaration of such types will
be presented in chapter 14.
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Polarization of Jussieu This example inverts the color of points of a bitmap. To
do this, we use the function for color inversion presented on page 120, applying it to
each pixel of a bitmap.
# let inv_image © =
let inv_vec = Array.map (fun ¢ — inv_color ¢) in
let inv_mat = Array.map inv_vec in
let inverted_matriz = inv_mat (Graphics.dump_image ) in
Graphics.make_image inverted_matriz;;
val inv_image : Graphics.image -> Graphics.image = <fun>

Given the bitmap jussieu, which is displayed in the left half of figure 5.5, we use the
function inv_image and obtain a new “solarized” bitmap, which is displayed in the
right half of the same figure.

# let f_jussieu2 () = inv_image jussieul;;
val f_jussieu2 : unit -> Graphics.image = <fun>

Figure 5.5: Inversion of Jussieu.

Example: drawing of boxes with relief patterns

In this example we will define a few utility functions for drawing boxes that carry relief
patterns. A box is a generic object that is useful in many cases. It is inscribed in a
rectangle which is characterized by a point of origin, a height and a width.
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color 1
To give an impression of a box with a relief
pattern, it is sufficient to surround it with two
trapezoids in a light color and two others in a
somewhat darker shade.
OlI0

Inverting the colors, one can give the im-
pression that the boxes are on top or at the
bottom.

Implementation We add the border width, the display mode (top, bottom, flat)
and the colors of its edges and of its bottom. This information is collected in a record.
# type relief = Top | Bot | Flat;;
# type boz_config =
{ z:int; y:int; w:int; h:int; bw:int; mutable r:relief;

bl_col : Graphics.colorm;

b2_col : Graphics.colorm;

b_col : Graphics.color};;
Only field r can be modified. We use the function draw_rect defined at page 121,
which draws a rectangle.

For convenience, we define a function for drawing the outline of a box.
# let draw_boz_outline bef col =

Graphics.set_color col;

draw_rect bef.xz bef.y bef.w bef.h;;
val draw_box_outline : box_config -> Graphics.color -> unit = <fun>

The function of displaying a box consists of three parts: drawing the first edge, drawing
the second edge and drawing the interior of the box.
# let draw-boz bef =

let z1 = becf.z and yI = bef.y in

let z2 = zl+bcf.w and y2 = yl+bcf.h in

let izl = zi+bcf.bw and iz2 = z2-bef.dw

and <yl = yl+bcf.bw and 2y2 = y2-bcf.bw in

let borderl g =

Graphics.set_color g;
Graphics. fill_poly
[l (z1,y1);(iz1,1y1);(iz2, iy1); (32, 1y2);(z2,y2);(z2,y1) |]
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in
let border2 g =
Graphics.set_color g;
Graphics. fill_poly
[l (z1,y1);(izl, 4y1);(ial, 1y2);(ia2, iy2);(22,y2);(x1,y2) 1]
in
Graphics.set_color becf.b_col;
( match bef.r with
Top —
Graphics.fill_rect izl 4yl (diz2-izl) (dy2-iyl);
borderl becf.bl col;
border2 bcf.b2_col
| Bot —
Graphics. fill_rect <zl syl (dz2-1izl) (iy2-iyl);
borderl bcf.b2_col;
border2 becf.bl_col
| Flat —
Graphics. fill_rect 1 y1 bef.w bef.h );
draw_boz_outline bcf Graphics.black;;
val draw_box : box_config -> unit = <fun>

The outline of boxes is highlighted in black. Erasing a box fills the area it covers with
the background color.
# let erase_boz bef =
Graphics.set_color bcf.b_col;
Graphics. fill_rect (bef.z+bef.bw) (bef.y+bef. bw)
(bef.u-(2*%bef.bw)) (bef.h-(2xbef.bw));;
val erase_box : box_config -> unit = <fun>

Finally, we define a function for displaying a character string at the left, right or in the
middle of the box. We use the type position to describe the placement of the string.
# type position = Left | Center | Right;;
type position = | Left | Center | Right
# let draw_string_in_box pos str bef col =
let (w, h) = Graphics.text_size str in
let ty = bef.y + (bef.h-h)/2 in
( match pos with
Center — Graphics.moveto (bef.z + (bef.w-w)/2) ty
| Right — let tz = bef.z + bef.w - w - bef.bw - 1 in
Graphics.moveto tz ty
| Left — let tz = bef.z + bef.bw + 1 in Graphics.moveto tz ty );
Graphics.set_color col;
Graphics.draw_string str;;
val draw_string_in_box :
position -> string -> box_config -> Graphics.color -> unit = <fun>
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Example: drawing of a game We illustrate the use of boxes by displaying the
position of a game of type “tic-tac-toe” as shown in figure 5.6. To simplify the creation
of boxes, we predefine colors.

# let set_gray = = (Graphics.rgb z z x);;

val set_gray : int -> Graphics.color = <fun>

# let grayl= set_gray 100 and gray2= set_gray 170 and gray3= set_gray 240;;

val grayl : Graphics.color = 6579300
11184810
15790320

val gray2 : Graphics.color

val gray3 : Graphics.color

We define a function for creating a grid of boxes of same size.
7# let rec create_grid nb_col n sep b =
if n < 0 then []
else
let pz = n mod nb_col and py = n / nb_col in
let nz = b.z +sep + px*x(b.wtsep)
and ny = b.y +sep + pyx(b.ht+sep) in
let bl = {b with z=nz; y=ny} in
b1:: (create_grid nb_col (n-1) sep b);;
val create_grid : int -> int -> int -> box_config -> box_config list = <fun>

And we create the vector of boxes:
# let vb =
let b = {z=0; y=0; w=20;h=20; bu=2;
bl_col=grayl; b2_col=gray3, b_col=gray2; r=Top} in
Array.of_list (create_grid 5 24 2 b);;
val vb : box_config array =
[1{x=90; y=90; w=20; h=20; bw=2; r=Top; bl_col=6579300; b2_col=15790320;
b_col=11184810};
{x=68; y=90; w=20; h=20; bw=2; r=Top; bl_col=6579300; b2_col=15790320;
b_col=...};
.1

Figure 5.6 corresponds to the following function calls:

# Array.iter draw_boxz ub;
draw_string_in_box Center "X" wvb.(5) Graphics.black;
draw_string_in_box Center "X" vb.(8) Graphics.black;
draw_string_in_box Center "0" vdb.(12) Graphics.yellow;
draw_string_in_box Center "0O" wvb.(11) Graphics.yellouw;;
- : unit = ()
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Figure 5.6: Displaying of boxes with text.
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Animation

The animation of graphics on a screen reuses techniques of animated drawings. The
major part of a drawing does not change, only the animated part must modify the
color of its constituent pixels. One of the immediate problems we meet is the speed
of animation. It can vary depending on the computational complexity and on the
execution speed of the processor. Therefore, to be portable, an application containing
animated graphics must take into account the speed of the processor. To get smooth
rendering, it is advisable to display the animated object at the new position, followed
by the erasure of the old one and taking special care with the intersection of the old
and new regions.

Moving an object We simplify the problem of moving an object by choosing ob-
jects of a simple shape, namely rectangles. The remaining difficulty is knowing how to
redisplay the background of the screen once the object has been moved.

We try to make a rectangle move around in a closed space. The object moves at a
certain speed in directions X and Y. When it encounters a border of the graphical
window, it bounces back depending on the angle of impact. We assume a situation
without overlapping of the new and old positions of the object. The function calc_pv
computes the new position and the new velocity from an old position (z, y), the size of
the object (sz,sy) and from the old speed (dz, dy), taking into account the borders
of the window.
# let calcpv (z,y) (sz,sy) (dz,dy) =

let nzl = z+dz and nyl = y + dy

and nz2 = z+sztdr and ny2 = y+sy+dy

and ndz = ref dr and ndy = ref dy

in
( if (nz! < 0) || (nz2 >= Graphics.size_z()) then ndz := -dz );
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( if (ny? < 0) || (ny2 >= Graphics.size_y()) then ndy := -dy );
((zt+ !'ndz, y+ !ndy), (Indz, !'ndy));;
val calc_pv :
int * int -> int * int -> int * int -> (int * int) * (int * int) = <fun>
The function move_rect moves the rectangle given by pos and size n times, the
trajectory being indicated by its speed and by taking into account the borders of the
space. The trace of movement which one can see in figure 5.7 is obtained by inversion
of the corresponding bitmap of the displaced rectangle.
# let move_rect pos size speed n =
let (z, y) = pos and (sz,sy) = size in
let mem = ref (Graphics.get_image = y sz sy) in
let rec move_auz = y speed n =
if n = 0 then Graphics.moveto = y
else
let ((nz,ny),n_speed) = calc_pv (z,y) (sz,sy) speed
and old_-mem = !mem in
mem := Graphics.get_image nx ny ST SY;
Graphics.set_color Graphics.blue;
Graphics. fill_rect nz ny sz sy;
Graphics.draw_tmage (inv_image old_mem) z v;
move_auz nx ny n_speed (n-1)
in move_aur T Yy speed n;;
val move_rect : int * int -> int * int -> int * int -> int -> unit = <fun>

The following code corresponds to the drawings in figure 5.7. The first is obtained on
a uniformly red background, the second by moving the rectangle across the image of
Jussieu.

# let animrect () =
Graphics.moveto 105 120;
Graphics.set_color Graphics.white;
Graphics.draw_string "Start";
move_rect (140,120) (8,8) (8,4) 150;
let (z,y) = Graphics.current_point() in
Graphics.moveto (z+13) w;
Graphics.set_color Graphics.white;
Graphics.draw_string "End";;

val anim_rect : unit -> unit = <fun>

# animrect();;

- : unit = ()

The problem was simplified, because there was no intersection between two successive
positions of the moved object. If this is not the case, it is necessary to write a function
that computes this intersection, which can be more or less complicated depending on
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Figure 5.7: Moving an object.

the form of the object. In the case of a square, the intersection of two squares yields a
rectangle. This intersection has to be removed.

Events

The handling of events produced in the graphical window allows interaction between
the user and the program. Graphics supports the treating of events like keystrokes,
mouse clicks and movements of the mouse.

The programming style therefore changes the organization of the program. It becomes
an infinite loop waiting for events. After handling each newly triggered event, the pro-
gram returns to the infinite loop except for events that indicate program termination.

Types and functions for events

The main function for waiting for events is wait_next_event of type event list ->
status.

The different events are given by the sum type event.
type event = Button_down | Button_up | Key_pressed | Mouse_motion | Poll;;
The four main values correspond to pressing and to releasing a mouse button, to
movement of the mouse and to keystrokes. Waiting for an event is a blocking operation
except if the constructor Poll is passed in the event list. This function returns a value
of type status:
type status =

{ mouse_z : int;

mouse_y : 1int;



FEvents 133

button : bool;
keypressed : bool;
key : char};;

This is a record containing the position of the mouse, a Boolean which indicates whether
a mouse button is being pressed, another Boolean for the keyboard and a character
which corresponds to the pressed key. The following functions exploit the data con-
tained in the event record:

° mouse_pos: unit -> int * int: returns the position of the mouse with respect
to the window. If the mouse is placed elsewhere, the coordinates are outside the
borders of the window.

° button_down: unit -> bool: indicates pressing of a mouse button.

° read key: unit -> char: fetches a character typed on the keyboard; this oper-
ation blocks.

° key_pressed: unit -> bool: indicates whether a key is being pressed on the
keyboard; this operation does not block.

The handling of events supported by Graphics is indeed minimal for developing inter-
active interfaces. Nevertheless, the code is portable across various graphical systems
like Windows, MacOS or X-Windows. This is the reason why this library does not take
into account different mouse buttons. In fact, the Mac does not even possess more than
one. Other events, such as exposing a window or changing its size are not accessible
and are left to the control of the library.

Program skeleton

All programs implementing a graphical user interface make use of a potentially infinite
loop waiting for user interaction. As soon as an action arrives, the program executes
the job associated with this action. The following function possesses five parameters
of functionals. The first two serve for starting and closing the application. The next
two arguments handle keyboard and mouse events. The last one permits handling of
exceptions that escape out of the different functions of the application. We assume that
the events associated with terminating the application raise the exception End.
# exception End;;
exception End
# let skel f init f_end f key f-mouse f_except =
foinit ();
try
while true do
try
let s = Graphics.watit_next_event
[Graphics.Button_down; Graphics.Key_pressed]
in if s.Graphics.keypressed then f_key s.Graphics.key
else if s.Graphics.button
then f_mouse s.Graphics.mouse_x s.Graphics.mouse_y
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with
End — ratse End
| e — fezcept e
done
with
End — f-end ();;
val skel :
(unit -> ’a) ->
(unit -> unit) ->
(char -> unit) -> (int -> int -> unit) -> (exn -> unit) -> unit = <fun>

Here, we use the skeleton to implement a mini-editor. Touching a key displays the
typed character. A mouse click changes the current point. The character ’&’ exits the
program. The only difficulty in this program is line breaking. We assume as simplifi-
cation that the height of characters does not exceed twelve pixels.
# let nezt_line () =

let (z,y) = Graphics.current_point()

in if y>12 then Graphics.moveto 0 (y-12)

else Graphics.moveto 0 y;;
val next_line : unit -> unit = <fun>
# let handle_char c = match c with
’%’ — raise End

| ’\n’ — nezt_line ()

| ’\r’ — next_line ()

| _ — Graphics.draw_char c;;
val handle_char : char -> unit = <fun>
# let go () = skel

(fun () — Graphics.clear_graph ();

Graphics.moveto 0 (Graphics.size y() -12) )

(fun () — Graphics.clear_graph())

handle_char

(fun z y — Graphics.moveto z y)

(fun e — ());;
val go : unit -> unit = <fun>

This program does not handle deletion of characters by pressing the key DEL.

Example: telecran

Telecran is a little drawing game for training coordination of movements. A point
appears on a slate. This point can be moved in directions X and Y by using two
control buttons for these axes without ever releasing the pencil. We try to simulate
this behavior to illustrate the interaction between a program and a user. To do this
we reuse the previously described skeleton. We will use certain keys of the keyboard
to indicate movement along the axes.



FEvents 135

We first define the type state, which is a record describing the size of the slate in
terms of the number of positions in X and Y, the current position of the point and the
scaling factor for visualization, the color of the trace, the background color and the
color of the current point.
# type state = {mazz:int; mazy:int; mutable z : int; mutable y :int;

scale: int;

bc : Graphics.color;

fe: Graphics.color; pc : Graphics.color};;

The function draw_point displays a point given its coordinates, the scaling factor and
its color.
# let draw_point ¢ y s ¢ =
Graphics.set_color c;
Graphics. fill_rect (sxxz) (s*y) s s;;
val draw_point : int -> int -> int -> Graphics.color -> unit = <fun>

All these functions for initialization, handling of user interaction and exiting the pro-
gram receive a parameter corresponding to the state. The first four functions are defined
as follows:
# let t_init s () =

Graphics.open_graph (" " = (string_of_int (s.scalexs.mazz)) ~

"x" ~ (string-of-int (s.scalexs.mazy)));

Graphics.set_color s.bc;

Graphics. fill_-rect 0 0 (s.scalexs.mazz+l) (s.scale*xs.mazy+l);

draw_point s.x s.y s.scale s.pc;;
val t_init : state -> unit -> unit = <fun>
# let tend s () =

Graphics.close_graph();

print_string "Good bye..."; print_newline();;
val t_end : ’a -> unit -> unit = <fun>
# let t_mouse sz y = ();;
val t_mouse : ’a -> ’b -> ’c -> unit = <fun>
# let t_ezcept s ez = ();;
val t_except : ’a -> ’b -> unit = <fun>

The function t_init opens the graphical window and displays the current point, t_end
closes this window and displays a message, t_mouse and t_except do not do anything.
The program handles neither mouse events nor exceptions which may accidentally arise
during program execution. The important function is the one for handling the keyboard
t_key:
# let t_key s c =
draw_point s.x s.y s.scale s. fc;
(match ¢ with
’8’ — if s.y < s.mazy then s.y <- s.y + 1;
| °2> — if s.y > O then s.y <- s.y - 1
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| 4’ — if s.z > 0 then s.z <- s.z - 1

| ’6” — if s.z < s.mazz then s.z <- s.z + 1

| ¢’ — Graphics.set_color s.bg;
Graphics. fill_rect 0 0 (s.scalexs.mazz+l) (s.scalexs.mazy+l);
Graphics.clear_graph()

| e’ — raise End

.k

draw_point s.x s.y s.scale s.pc;;

val t_key : state -> char -> unit = <fun>

It displays the current point in the color of the trace. Depending on the character
passed, it modifies, if possible, the coordinates of the current point (characters: '2’,
4’0’67, ’8’), clears the screen (character: ’c’) or raises the exception End (character:
’e’), then it displays the new current point. Other characters are ignored. The choice
of characters for moving the cursor comes from the layout of the numeric keyboard:
the chosen keys correspond to the indicated digits and to the direction arrows. It is
therefore useful to activate the numeric keyboard for the ergonomics of the program.

We finally define a state and apply the skeleton function in the following way:
# let stel = {ma,ma:=120; mazy=120; z=60; y=60;
scale=4; bc=Graphics.rgb 130 130 130;
fc=Graphics.black; pc=Graphics.red};;
val stel : state =
{maxx=120; maxy=120; x=60; y=60; scale=4; bc=8553090; fc=0; pc=16711680}
# let slate () =
skel (t_init stel) (t_end stel) (t_key stel)
(t-mouse stel) (t_except stel);;
val slate : unit -> unit = <fun>

Calling function slate displays the graphical window, then it waits for user interaction
on the keyboard. Figure 5.8 shows a drawing created with this program.

A Graphical Calculator

Let’s consider the calculator example as described in the preceding chapter on imper-
ative programming (see page 86). We will give it a graphical interface to make it more
usable as a desktop calculator.

The graphical interface materializes the set of keys (digits and functions) and an area
for displaying results. Keys can be activated using the graphical interface (and the
mouse) or by typing on the keyboard. Figure 5.9 shows the interface we are about to
construct.

We reuse the functions for drawing boxes as described on page 126. We define the
following type:
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Figure 5.8: Telecran.
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Figure 5.9: Graphical calculator.

# type calc_state =

{ s : state; k : (boz_config * key * string ) list; v : boz_config } ;;
It contains the state of the calculator, the list of boxes corresponding to the keys
and the visualization box. We plan to construct a calculator that is easily modifiable.
Therefore, we parameterize the construction of the interface with an association list:
# let descr_calc =

[ (Digit 0,"0"); (Digst 1,"1"); (Digit 2,"2"); (Equals, "=");

(Digit 3,"3"); (Digit 4,"4"); (Digit 5,"5"); (Plus, "+");
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(Digit 6,"6"); (Digit 7,"7"); (Digit 8,"8"); (Minus, "-");
(Digit 9,"9"); (Recall,"RCL"); (Diw, "/"); (Times, "*");

(off,"AC"); (Store, "STO"); (Clear,"CE/C")
15

Generation of key boxes At the beginning of this description we construct a list
of key boxes. The function gen_boxes takes as parameters the description (descr),
the number of the column (n), the separation between boxes (wsep), the separation
between the text and the borders of the box (wsepint) and the size of the board
(wbord). This function returns the list of key boxes as well as the visualization box.
To calculate these placements, we define the auxiliary functions max_xy for calculating
the maximal size of a list of complete pairs and max_1box for calculating the maximal
positions of a list of boxes.
# let gen_zy wvals comp o =

List.fold_left (fun a (z,y) — comp (fst a) xz,comp (snd a) y) o wals ;;
val gen_xy : (Pa * ’a) list -> (°b -> ’a -> ’b) => ’b * ’b -> ’b * ’b = <fun>
# let maz_zy vals = gen_zy vals max (min_int,min_int);;
val max_xy : (int * int) list -> int * int = <fun>
# let maz_boxl 1 =

let bmaz (mz,my) b = max mz b.z, maz my b.y

in List. fold_left bmaxz (min_int,min_int) 1 ;;
val max_boxl : box_config list -> int * int = <fun>

Here is the principal function gen boxes for creating the interface.
# let gen_bozxes descr n wsep wsepint wbord =
let 1.1 = List.length descr in
let nb_lig = if 1.l mod n = O then 1.1 / n else 1.1 / n+ 1 in
let ls = List.map (fun (z,y) — Graphics.tezt_size y) descr in
let sz,sy = maz_zy ls in
let sz,sy= sztwsepint ,sytwsepint in
let r = ref [] in
for =0 to I_1-1 do
let pz = i mod n and py = 2 / n in
let b = { = = wsep * (pz+l) + (sz+2xwbord) * pz
y = wsep * (py+l) + (sy+2*xwbord) * py ;

w= sxT; h = sy ; bw = wbord;
r=Top;
bl_col = grayl; b2.col = gray3; b_col =gray2}
in 7:= b::lr

done;

let mpz,mpy = maz_boxl !'7T in

let upz,upy = mpzt+sctwbordtwsep,mpy+sytwbordtwsep in

let (wa,ha) = Graphics.text_size " 0" in

let v = { z=(upz-(watwsepint +wbord))/2 ; y= upy+ wsep;
w=watwsepint; h = ha +wsepint; bw = wbord *2; r=Flat ;
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bil_col = grayl; b2.col = gray3, b_col =Graphics.black}
in
upz, (upy+wsep+hatwsepint+wsep+2*wbord) , v,
List.map2 (fun b (z,y) — b,z,y ) (List.rev !7) descr;;
val gen_boxes :

(’a * string) list ->
int ->
int ->
int -> int -> int * int * box_config * (box_config * ’a * string) list =
<fun>

Interaction Since we would also like to reuse the skeleton proposed on page 133
for interaction, we define the functions for keyboard and mouse control, which are
integrated in this skeleton. The function for controlling the keyboard is very simple. It
passes the translation of a character value of type key to the function transition of
the calculator and then displays the text associated with the calculator state.
# let f key cs c =

transition cs.s (translation c);

erase_box cs.v;

draw_string_in_boxz Right (string_of-int cs.s.vpr) cs.v Graphics.uwhite ;;

val f_key : calc_state -> char -> unit = <fun>

The control of the mouse is a bit more complex. It requires verification that the position
of the mouse click is actually in one of the key boxes. For this we first define the auxiliary
function mem, which verifies membership of a position within a rectangle.
# let mem (z,y) (z0,y0,w,h) =
(z >= z0) & (z< z0+w) && (y>=y0) && ( y<yO+h);;
val mem : int * int -> int * int * int * int -> bool = <fun>
# let f_mouse cs ¢ y =
try
let b,t,s =
List. find (fun (b,_,_) —
mem (z,y) (b.z+b.bw,b.y+b.bw,b.w,b.h)) cs.k
in
transttion cs.s t;
erase_box cs.v
draw_string_in_box Right (string_of_int cs.s.upr ) cs.v Graphics.white
with Not_found — ();;
val f_mouse : calc_state -> int -> int -> unit = <fun>

The function f_mouse looks whether the position of the mouse during the click is really-
dwell within one of the boxes corresponding to a key. If it is, it passes the corresponding
key to the transition function and displays the result, otherwise it will not do anything.
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The function f_exc handles the exceptions which can arise during program execution.
# let f_exc cs ex =
match ez with
Division_by_zero —
transttion cs.s Clear;
erase_bozx cs.v;
draw_string_in_box Right "Div 0" cs.v (Graphics.red)
| Invalid_key — ()
| Key_off — raise End
| _ — 7raise exz;;

val f_exc : calc_state -> exn -> unit = <fun>

In the case of a division by zero, it restarts in the initial state of the calculator and
displays an error message on its screen. Invalid keys are simply ignored. Finally, the
exception Key_off raises the exception End to terminate the loop of the skeleton.

Initialization and termination The initialization of the calculator requires calcu-
lation of the window size. The following function creates the graphical information of
the boxes from a key/text association and returns the size of the principal window.
# let create.e k =

Graphics.close_graph ();

Graphics.open_graph " 10x10";

let mz,my,v,lb = gen_boxes k4 4 5 2 in

let s = {lcd=0; lka = false; loa = Equals; vpr = 0; mem = 0} in

mz,my,{s=s; k=1bjv=v};;

val create_e : (key * string) list -> int * int * calc_state = <fun>

The initialization function makes use of the result of the preceding function.
# let f_init mx my cs () =
Graphics.close_graph();
Graphics.open_graph (" "~ (string_of_int mz)~"x"" (string_of_int my));
Graphics.set_color grayz;
Graphics. fill_-rect 0 0 (mz+1l) (my+l);
List.iter (fun (b,_,_) — draw_ boz b) cs.k;
List.iter
(fun (b,_,s) — draw_string_in_boz Center s b Graphics.black) cs.k ;
draw_bozx cs.v;
erase_boxr cs.v;
draw_string_in_box Right "hello" cs.v (Graphics.white);;
val f_init : int -> int -> calc_state -> unit -> unit = <fun>

Finally the termination function closes the graphical window.
# let f.end e () = Graphics.close_graph();;
val f_end : ’a -> unit -> unit = <fun>
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The function go is parameterized by a description and starts the interactive loop.
# let go descr =
let mz,my,e = create_e descr in
skel (f_init mz my e) (f_end e) (f-key e) (f-mouse e) (f_exc e);;
val go : (key * string) list -> unit = <fun>

The call to go descr_calc corresponds to the figure 5.9.

Exercises

Polar coordinates

Coordinates as used in the library Graphics are Cartesian. There a line segment is
represented by its starting point (x0,y0) and its end point (x1,y1). It can be useful
to use polar coordinates instead. Here a line segment is described by its point of origin
(x0,y0), a length (radius) (r) and an angle (a). The relation between Cartesian and
Polar coordinates is defined by the following equations:

X1 = xo+r#*cos(a)
y1 = Yo+ r=*sin(a)

The following type defines the polar coordinates of a line segment:
# type seg.pol = {z:float; y:float; 7: float; a:float};;
type seg_pol = { x: float; y: float; r: float; a: float }

Write the function to_cart that converts polar coordinates to Cartesian ones.

2. Write the function draw_seg which displays a line segment defined by polar
coordinates in the reference point of Graphics.

3. One of the motivations behind polar coordinates is to be able to easily apply
transformations to line segments. A translation only modifies the point of origin,
a rotation only affects the angle field and modifying the scale only changes the
length field. Generally, one can represent a transformation as a triple of floats:
the first represents the translation (we do not consider the case of translating
the second point of the line segment here), the second the rotation and the third
the scaling factor. Define the function app_trans which takes a line segment in
polar coordinates and a triple of transformations and returns the new segment.

4. One can construct recursive drawings by iterating transformations. Write the
function draw_r which takes as arguments a line segment s, a number of itera-
tions n, a list of transformations and displays all the segments resulting from the
transformations on s iterated up to n.

5. Verify that the following program does produce the images in figure 5.10.
let p7i = 3.1415927 ;;
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let s = {z=100.; y= 0.; a= pi /. 2.; r = 100.} ;;
drawr s 6 [ (-.pi/.2.),0.6,1.; (pi/.2.), 0.6,1.0] ;;
Graphics.clear_graph();;
draw.r s 6 [(-.pz /. 6.), 0.6, 0.766;

(-.pi /. 4.), 0.55, 0.333;

(pi /. 3.), 0.4, 0.5 1 ;;

HA4 —

H
| I ]

Figure 5.10: Recursive drawings.

Bitmap editor

We will attempt to write a small bitmap editor (similar to the command bitmap in
X-window). For this we represent a bitmap by its dimensions (width and height), the
pixel size and a two-dimensional table of booleans.

1. Define a type bitmap_state describing the information necessary for containing
the values of the pixels, the size of the bitmap and the colors of displayed and
erased points.

2. Write a function for creating bitmaps (create_bitmap) and for displaying bitmaps
(draw_bitmap) .

3. Write the functions read bitmap and write_bitmap which respectively read
and write in a file passed as parameter following the ASCII format of X-window.
If the file does not exist, the function for reading creates a new bitmap using the
function create_bitmap. A displayed pixel is represented by the character #, the
absence of a pixel by the character —. Each line of characters represents a line of
the bitmap. One can test the program using the functions atobm and bmtoa of
X-window, which convert between this ASCII format and the format of bitmaps
created by the command bitmap. Here is an example.
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We reuse the skeleton for interactive loops on page 133 to construct the graph-

ical interface of the editor. The human-computer interface is very simple. The
bitmap is permanently displayed in the graphical window. A mouse click in one
of the slots of the bitmap inverts its color. This change is reflected on the screen.
Pressing the key 'S’ saves the bitmap in a file. The key 'Q’ terminates the pro-

Write a function start of type bitmap_state -> unit -> unit which
opens a graphical window and displays the bitmap passed as parameter.
Write a function stop that closes the graphical window and exits the pro-
gram.

Write a function mouse of type bitmap_state -> int -> int -> unit
which modifies the pixel state corresponding to the mouse click and displays
the change.

Write a function key of type string -> bitmap_state -> char -> unit
which takes as arguments the name of a file, a bitmap and the char of the
pressed key and executes the associated actions: saving to a file for the key
'S’ and raising of the exception End for the key 'Q’.

4.
gram.
[ ]
[ ]
[ ]
[ ]
d.

Write a function go which takes the name of a file as parameter, loads the

bitmap, displays it and starts the interactive loop.

FEarth worm

The earth worm is a small, longish organism of a certain size which grows over time
while eating objects in a world. The earth worm moves constantly in one direction.
The only actions allowing a player to control it are changes in direction. The earth
worm vanishes if it touches a border of the world or if it passes over a part of its body.
It is most often represented by a vector of coordinates with two principal indices: its
head and its tail. A move will therefore be computed from the new coordinates of its
head, will display it and erase the tail. A growth step only modifies its head without
affecting the tail of the earth worm.

1. Write the Objective Caml type or types for representing an earth worm and
the world where it evolves. One can represent an earth worm by a queue of its
coordinates.
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Write a function for initialization and displaying an earth worm in a world.

Modify the function skel of the skeleton of the program which causes an ac-
tion at each execution of the interactive loop, parameterized by a function. The
treatment of keyboard events must not block.

4.  Write a function run which advances the earth worm in the game. This function
raises the exception Victory (if the worm reaches a certain size) and Loss if it
hits a full slot or a border of the world.

5. Write a function for keyboard interaction which modifies the direction of the
earth worm.

6.  Write the other utility functions for handling interaction and pass them to the
new skeleton of the program.

7. Write the initiating function which starts the application.

Summary

This chapter has presented the basic notions of graphics programming and event-driven
programming using the Graphics library in the distribution of Objective Caml. Af-
ter having explained the basic graphical elements (colors, drawing, filling, text and
bitmaps) we have approached the problem of animating them. The mechanism of han-
dling events in Graphics was then described in a way that allowed the introduction of
a general method of handling user interaction. This was accomplished by taking a game
as model for event-driven programming. To improve user interactions and to provide
interactive graphical components to the programmer, we have developed a new library
called Awi, which facilitates the construction of graphical interfaces. This library was
used for writing the interface to the imperative calculator.

To learn more

Although graphics programming is naturally event-driven, the associated style of pro-
gramming being imperative, it is not only possible but also often useful to introduce
more functional operators to manipulate graphical objects. A good example comes
from the use of the MLgraph library,

Link: ’ http://www.pps.jussieu.fr/ cousinea/MLgraph /mlgraph.html ‘

which implements the graphical model of PostScript and proposes functional operators
to manipulate images. It is described in [CC92, CS94] and used later in [CM98] for the
optimized placement of trees to construct drawings in the style of Escher.

One interesting characteristic of the Graphics library is that it is portable to the
graphical interfaces of Windows, MacOS and Unix. The notion of virtual bitmaps can
be found in several languages like Le_Lisp and more recently in Java. Unfortunately,
the Graphics library in Objective Caml does not possess interactive components for
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the construction of interfaces. One of the applications described in part II of this book
contains the first bricks of the Awi library. It is inspired by the Abstract Windowing
Toolkit of the first versions of Java. One can perceive that it is relatively easy to extend
the functionality of this library thanks to the existence of functional values in the lan-
guage. Therefore chapter 16 compares the adaptation of object oriented programming
and functional and modular programming for the construction of graphical interfaces.
The example of Awi is functional and imperative, but it is also possible to only use
the functional style. This is typically the case for purely functional languages. We cite
the systems Fran and Fudget developed in Haskell and derivatives. The system Fran
permits construction of interactive animations in 2D and 3D, which means with events
between animated objects and the user.

Link: ’ http://www.research.microsoft.com/ conal/fran/ ‘

The Fudget library is intended for the construction of graphical interfaces.

Link: ’ http://www.cs.chalmers.se/ ComputingScience/Research/Functional /Fudgets/ ‘

One of the difficulties when one wants to program a graphical interface for ones appli-
cation is to know which of the numerous existing libraries to choose. It is not sufficient
to determine the language and the system to fix the choice of the tool. For Objective
Caml there exist several more or less complete ones:

° the encapsulation of 1ibX, for X-Windows;

) the librt library, also for X-Windows;

° ocamltk, an adaptation of Tc1l/Tk, portable;

° mlgtk, an adaptation of Gtk, portable.

We find the links to these developments in the “Caml Hump”:

Link: ’ http://caml.inria.fr/hump.html

Finally, we have only discussed programming in 2D. The tendency is to add one dimen-
sion. Functional languages must also respond to this necessity, perhaps in the model
of VRML or the Java 3D-extension. In purely functional languages the system Fran
offers interesting possibilities of interaction between sprites. More closely to Objective
Caml one can use the VRcaML library or the development environment SCOL.

The VRcaML library was developed in the manner of MLgraph and integrates a part of
the graphical model of VRML in Objective Caml.

Link: ’ http://www.pps.jussieu.fr/“emmanuel /Public/enseignement /VRcaML ‘

One can therefore construct animated scenes in 3D. The result is a VRML-file that
can be directly visualized.

Still in the line of Caml, the language SCOL is a functional communication language
with important libraries for 2D and 3D manipulations, which is intended as environ-
ment for people with little knowledge in computer science.
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Link: ’ http://www.cryo-networks.com

The interest in the language SCOL and its development environment is to be able
to create distributed applications, e.g. client-server, thus facilitating the creation of
Internet sites. We present distributed programming in Objective Caml in chapter 20.



Applications

The reason to prefer one programming language over another lies in the ease of de-
veloping and maintaining robust applications. Therefore, we conclude the first part of
this book, which dealt with a general presentation of the Objective Caml language, by
demonstrating its use in a number of applications.

The first application implements a few functions which are used to write database
queries. We emphasize the use of list manipulations and the functional programming
style. The user has access to a set of functions with which it is easy to write and
run queries using the Objective Caml language directly. This application shows the
programmer how he can easily provide the user with most of the query tools that the
user should need.

The second application is an interpreter for a tiny BASIC'. This kind of imperative
language fueled the success of the first microcomputers. Twenty years later, they seem
to be very easy to design. Although BASIC is an imperative language, the implemen-
tation of the interpreter uses the functional features of Objective Caml, especially for
the evaluation of commands. Nevertheless, the lexer and parser for the language use a
mutable structure.

The third application is a one-player game, Minesweeper, which is fairly well-known
since it is bundled with the standard installation of Windows systems. The goal of
the game is to uncover a bunch of hidden mines by repeatedly uncovering a square,
which then indicates the number of mines around itself. The implementation uses the
imperative features of the language, since the data structure used is a two-dimensional
array which is modified after each turn of the game. This application uses the Graphics
module to draw the game board and to interact with the player. However, the automatic
uncovering of some squares will be written in a more functional style.

This latter application uses functions from the Graphics module described in chapter

1. which means “Beginner’s All purpose Symbolic Instruction Code”.
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5 (see page 117) as well as some functions from the Random and Sys modules (see
chapter 8, pages 216 and 234).

Database queries

The implementation of a database, its interface, and its query language is a project far
too ambitious for the scope of this book and for the Objective Caml knowledge of the
reader at this point. However, restricting the problem and using the functional pro-
gramming style at its best allows us to create an interesting tool for query processing.
For instance, we show how to use iterators as well as partial application to formulate
and execute queries. We also show the use of a data type encapsulating functional
values.

For this application, we use as an example a database on the members of an association.
It is presumed to be stored in the file association.dat.

Data format

Most database programs use a “proprietary” format to store the data they manipulate.
However, it is usually possible to store the data as some text that has the following
structure:

° the database is a list of cards separated by carriage-returns;
° each card is a list of fields separated by some given character, ’:’ in our case;
. a field is a string which contains no carriage-return nor the character ’:’;

. the first card is the list of the names associated with the fields, separated by the
character ’ | .

The association data file starts with:

Num|Lastname |Firstname|Address|Tel|Email |Pref |Date|Amount
0:Chailloux:Emmanuel:Université P6:0144274427:ec@lip6.fr:email:25.12.1998:100.00
1:Manoury:Pascal:Laboratoire PPS::pm@lip6.fr:mail:03.03.1997:150.00
2:Pagano:Bruno:Cristal:0139633963::mail:25.12.1998:150.00

3:Baro:Sylvain: :0144274427 :baro@pps.fr:email:01.03.1999:50.00

The meaning of the fields is the following:

° Num is the member number;
° Lastname, Firstname, Address, Tel, and Email are obvious;
. Pref indicates the means by which the member wishes to be contacted: by mail

(mail), by email (email), or by phone (tel);

° Date and Amount are the date and the amount of the last membership fee received,
respectively.
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We need to decide what represention the program should use internally for a database.
We could use either a list of cards or an array of cards. On the one hand, a list has
the nice property of being easily modified: adding and removing a card are simple
operations. On the other hand, an array allows constant access time to any card. Since
our goal is to work on all the cards and not on some of them, each query accesses
all the cards. Thus a list is a good choice. The same issue arises concerning the cards
themselves: should they be lists or arrays of strings? This time an array is a good
choice, since the format of a card is fixed for the whole database. It not possible to add
a new field. Since a query might access only a few fields, it is important for this access
to be fast.

The most natural solution for a card would be to use an array indexed by the names
of the fields. Since such a type is not available in Objective Caml, we can use an array
(indexed by integers) and a function associating a field name with the array index
corresponding to the field.

# type data_card = string array ;;

# type data base = { card_inder : string — int ; data : data_card list } ;;

Access to the field named n of a card dc of the database db is implemented by the
function:

# let field db n (dc : data_card) = dc.(db.card_index n) ;;

val field : data_base -> string -> data_card -> string = <fun>

The type of dc has been set to data_card to constrain the function field to only
accept string arrays and not arrays of other types.

Here is a small example:
# let base ez =
{ data = [ [|"Chailloux"; "Emmanuel"|] ; [|"Manoury"; "Pascal"|] 1 ;
card_indez = function "Lastname"—O0 | "Firstname"—1
| _->raise Not_found } ;;

val base_ex : data_base =

{card_index=<fun>;

data=[[|"Chailloux"; "Emmanuel"|]; [|"Manoury"; "Pascal"|]]}
# List.map (field base_ex "Lastname") base_ex.data ;;
- : string list = ["Chailloux"; "Manoury"]

The expression field base_ex "Lastname" evaluates to a function which takes a card
and returns the value of its "Lastname" field. The library function List.map applies
the function to each card of the database base_ex, and returns the list of the results:
a list of the "Lastname" fields of the database.

This example shows how we wish to use the functional style in our program. Here, the
partial application of field allows us to define an access function for a given field,
which we can use on any number of cards. This also shows us that the implementation
of the field function is not very efficient, since although we are always accessing the
same field, its index is computed for each access. The following implementation is
better:
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# let field base name =
let 7 = base.card_indexz name in fun (card : data_card) — card.(%) ;;
val field : data_base -> string -> data_card -> string = <fun>
Here, after applying the function to two arguments, the index of the field is computed
and is used for any subsequent application.

Reading a database from a file

As seen from Objective Caml, a file containing a database is just a list of lines. The
first work that needs to be done is to read each line as a string, split it into smaller
parts according to the separating character, and then extract the corresponding data
as well as the field indexing function.

Tools for processing a line

We need a function split that splits a string at every occurrence of some separating
character. This function uses the function suffix which returns the suffix of a string
s after some position i. To do this, we use three predefined functions:

° String.length returns the length of a string;
. String.sub returns the substring of s starting at position i and of length 1;

° String.index_from computes the position of the first occurrence of character c
in the string s, starting at position n.

# let suffix s ¢ = try String.sub s i ((String.length s)-1)
with Invalid_argument("String.sub") — "" ;;
val suffix : string -> int -> string = <fun>
# let split ¢ s =
let rec split_from n =
try let p = String.indexz_from s n c
in (String.sub s n (p-n)) = (split_from (p+1))
with Not_found — [ suffiz s n ]
in if s="" then [| else split_from O ;;
val split : char -> string -> string list = <fun>

The only remarkable characteristic in this implementation is the use of exceptions,
specifically the exception Not_found.

Computing the data_base structure There is no difficulty in creating an array
of strings from a list of strings, since this is what the of list function in the Array
module does. It might seem more complicated to compute the index function from a
list of field names, but the List module provides all the needed tools.
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Starting from a list of strings, we need to code a function that associates each string
with an index corresponding to its position in the list.
# let mk_index list_names =

let rec make_enum a b = if a > b then [| else a:: (make_enum (a+l1) b) in

let list_index = (make_enum O ((List.length list_mames) - 1)) in

let assoc_index_name = List.combine list_names list_index in

function name — List.assoc name assoc_indexr_name ;;

val mk_index : ’a list -> ’a -> int = <fun>
To create the association function between field names and indexes, we combine
the list of indexes and the list of names to obtain a list of associations of the type
string * int list. To look up the index associated with a name, we use the func-
tion assoc from the List library. The function mk_index returns a function that takes
a name and calls assoc on this name and the previously built association list.

It is now possible to create a function that reads a file of the given format.
# let read_base filename =
let channel = open_in filename in
let split_line = splet ’:’ in
let list_names = split |’ (input_line channel) in
let rec read_file () =
try
let data = Array.of-list (split_line (input_line channel )) in
data :: (read_file ())
with End_of_file — close_in channel ; ||
in
{ card_indez = mk_indez list_names ; data = read_file () } ;;
val read_base : string -> data_base = <fun>
The auxiliary function read_file reads records from the file, and works recursively on
the input channel. The base case of the recursion corresponds to the end of the file,
signaled by the End_of _file exception. In this case, the empty list is returned after
closing the channel.

The association’s file can now be loaded:
# let base_ex = read_base "association.dat" ;
val base_ex : data_base =
{card_index=<fun>;
data=
[[I"0"; "Chailloux"; "Emmanuel"; "Universit\233 P6"; "0144274427";
"ec@lip6.fr"; "email"; "25.12.1998"; "100.00"|];
[I"1"; "Manoury"; "Pascal"; "Laboratoire PPS"; ...[|]; ...1}

General principles for database processing

The effectiveness and difficulty of processing the data in a database is proportional to
the power and complexity of the query language. Since we want to use Objective Caml
as query language, there is no limit a priori on the requests we can express! However,
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we also want to provide some simple tools to manipulate cards and their data. This
desire for simplicity requires us to limit the power of the Objective Caml language,
through the use of general goals and principles for database processing.

The goal of database processing is to obtain a state of the database. Building such a
state may be decomposed into three steps:

1. selecting, according to some given criterion, a set of cards;
2. processing each of the selected cards;
3. processing all the data collected on the cards.

Figure 6.1 illustrates this decomposition.

Selection of
cardsto process

Processing
acard

U bt Hin

Processing the results

]

Figure 6.1: Processing a request.

According to this decomposition, we need three functions of the following types:

1. (data_card -> bool) —> data_card list -> data_card list
2. (data_card -> ’a) -> data_card list -> ’a list
3. (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b

Objective Caml provides us with three higher-order function, also known as iterators,
introduced page 219, that satisfy our specification:

# List.find_all ;;

- : (’a => bool) -> ’a list -> ’a list = <fun>

# List.map ;;

- : (’a => ’b) -> ’a list -> ’b list = <fun>

# List.fold_right ;;

- : (Ca->"’b->"’b) > ’a list -> ’b -> ’b = <fun>

We will be able to use them to implement the three steps of building a state by choosing
the functions they take as an argument.
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For some special requests, we will also use:

# List.iter ;;

- : (Pa -> unit) -> ’a list -> unit = <fun>

Indeed, if the required processing consists only of displaying some data, there is nothing
to compute.

In the next paragraphs, we are going to see how to define functions expressing simple
selection criteria, as well as simple queries. We conclude this section with a short
example using these functions according to the principles stated above.

Selection criteria

Concretely, the boolean function corresponding to the selection criterion of a card is
a boolean combination of properties of some or all of the fields of the card. Each field
of a card, even though it is a string, can contain some information of another type: a
float, a date, etc.

Selection criteria on a field

Selecting on some field is usually done using a function of the type data_base -> ’a
-> string -> data_card -> bool. The ’a type parameter corresponds to the type
of the information contained in the field. The string argument corresponds to the
name of the field.

String fields We define two simple tests on strings: equality with another string,
and non-emptiness.

# let eq.sfield db s n dc = (s = (field db n dco)) ;;

val eq_sfield : data_base -> string -> string -> data_card -> bool = <fun>

# let nonempty_sfield db n dc = ("" <> (field db n dc)) ;;

val nonempty_sfield : data_base -> string -> data_card -> bool = <fun>

Float fields To implement tests on data of type float, it is enough to translate
the string representation of a decimal number into its float value. Here are some
examples obtained from a generic function tst_ffield:
# let tst_ffield r db v n dc = r v (float_of_string (field db n dc)) ;;
val tst_ffield :
(’a -> float -> ’b) -> data_base -> ’a -> string -> data_card -> ’b = <fun>
# let eq ffield = tst_ffield (=) ;;
# let lt_ffield = tst_ffield (<) ;;
# let le_ffield = tst_ffield (=) ;;
(x etc. *)
These three functions have type:

data_base -> float -> string -> data_card -> bool.
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Dates This kind of information is a little more complex to deal with, as it depends
on the representation format of dates, and requires that we define date comparison.

We decide to represent dates in a card as a string with format dd.mm.yyyy. In order
to be able to define additional comparisons, we also allow the replacement of the
day, month or year part with the underscore character (>_?). Dates are compared
according to the lexicographic order of lists of integers of the form [year; month; day/.
To express queries such as: “is before July 1998”, we use the date pattern: "_.07.1998".
Comparing a date with a pattern is accomplished with the function tst_dfield which
analyses the pattern to create the ad hoc comparison function. To define this generic
test function on dates, we need a few auxiliary functions.

We first code two conversion functions from dates (ints_of _string) and date patterns
(ints_of dpat) to lists of ints. The character ’_’ of a pattern will be replaced by the
integer 0:
# let split_date = split ’.° ;;
val split_date : string -> string list = <fun>
# let ints_of_string d =
try match split_date d with
[d;myl — [int_of_string y; int_of-string m; int_of_string d]
| _ — failwith "Bad date format"
with FmiZu'r‘e("int_of_string") — fatlwith "Bad date format" ;;

val ints_of_string : string -> int list = <fun>

# let ints_of_dpat d =

let int_of stringpat = function "_" — 0 | s — <int_of_string s

in try match split_date d with

[d;myl — [ int_of_stringpat y; int_of_stringpat m
int_of_stringpat d ]
| _ — farlwith "Bad date format"
with Failure("int_of_string") — failwith "Bad date pattern" ;;

val ints_of_dpat : string -> int list = <fun>

Given a relation r on integers, we now code the test function. It simply consists of
implementing the lexicographic order, taking into account the particular case of 0:
# let rec app_dtst r dl d2 = match di, d2 with
[ , [] — false

| (0::d1) , (_::d2) — app-dtst r d1 d2

| (n1::d1) , (n2:d2) — (r nl n2) || ((n1 = n2) && (app_dtst r d1 d2))

| _, _ — fatlwith "Bad date pattern or format" ;;
val app_dtst : (int -> int -> bool) -> int list -> int list -> bool = <fun>

We finally define the generic function tst_dfield which takes as arguments a relation
r, a database db, a pattern dp, a field name nm, and a card dc. This function checks
that the pattern and the field from the card satisfy the relation.

# let tst_dfield r db dp nm dc =
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r (ints_of_dpat dp) (ints_of_string (field db nm dc)) ;;
val tst_dfield :
(int 1list -> int list -> ’a) ->
data_base -> string -> string -> data_card -> ’a = <fun>

We now apply it to three relations.

# let eq dfield = tst_dfield (=) ;;

# let le_dfield = tst_dfield (=) ;;

# let ge_dfield = tst.dfield (>=) ;;

These three functions have type:

data_base -> string -> string -> data_card -> bool.

Composing criteria

The tests we have defined above all take as first arguments a database, a value, and
the name of a field. When we write a query, the value of these three arguments are
known. For instance, when we work on the database base_ex, the test “is before July
1998” is written

# ge_dfield base_ex "_.07.1998" "Date" ;;

- : data_card -> bool = <fun>

Thus, we can consider a test as a function of type data_card -> bool. We want to
obtain boolean combinations of the results of such functions applied to a given card.
To this end, we implement the iterator:
# let fold_funs b ¢ fs dc =

List.fold right (fun f — fun r — ¢ (f de) ) fs b ;;
val fold_funs : ’a -> (°’b -> ’a -> ’a) -> (’c -> ’b) list -> ’c -> ’a = <fun>
Where b is the base value, the function c is the boolean operator, fs is the list of test
functions on a field, and dc is a card.

We can obtain the conjunction and the disjunction of a list of tests with:
# let and_fold fs = fold_funs true (&) fs ;;

val and_fold : (’a -> bool) list -> ’a -> bool = <fun>

# let or_fold fs = fold_funs false (or) fs ;;

val or_fold : (’a -> bool) list -> ’a -> bool = <fun>

We easily define the negation of a test:
# let not_fun f dc = not (f dc) ;;
val not_fun : (’a -> bool) -> ’a -> bool = <fun>

For instance, we can use these combinators to define a selection function for cards
whose date field is included in a given range:
# let date_interval db dl d2 =
and_fold [(le_dfield db d1 "Date"); (ge_dfield db d2 "Date")] ;;
val date_interval : data_base -> string -> string -> data_card -> bool =
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<fun>

Processing and computation

It is difficult to guess how a card might be processed, or the data that would result
from that processing. Nevertheless, we can consider two common cases: numerical com-
putation and data formatting for printing. Let’s take an example for each of these two
cases.

Data formatting

In order to print, we wish to create a string containing the name of a member of the
association, followed by some information.

We start with a function that reverses the splitting of a line using a given separating
character:
# let format_list c =
let s = String.make 1 c in
List.fold_left (fun ¢ y — if z="" then y else z"s~y) "" ;;
val format_list : char -> string list -> string = <fun>

In order to build the list of fields we are interested in, we code the function extract
that returns the fields associated with a given list of names in a given card:
# let eztract db ns dc =
List.map (fun n — field db n dc) ns ;;
val extract : data_base -> string list -> data_card -> string list = <fun>

We can now write the line formatting function:
# let format_line db ns dc =
(String.uppercase (field db "Lastname" dc))
v "~ (field db "Firstname" dc)
“"\t""(format_list ’\t’ (exztract db ns dc))
“"\n" ;;
val format_line : data_base -> string list -> data_card -> string = <fun>
The argument ns is the list of requested fields. In the resulting string, fields are sepa-
rated by a tab (’\t’) and the string is terminated with a newline character.

We display the list of last and first names of all members with:

# List.iter print_string (List.map (format_line base_ex []) base_ex.data) ;;
CHAILLOUX Emmanuel

MANOURY Pascal

PAGANO Bruno

BARO Sylvain

- : unit =
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Numerical computation

We want to compute the total amount of received fees for a given set of cards. This is
easily done by composing the extraction and conversion of the correct field with the
addition. To get nicer code, we define an infix composition operator:
# let (++) f gz =g (f 2 ;;
val ++ : (’a -> ’b) -> (b -> ’¢c) -> ’a -> ’c¢ = <fun>
We use this operator in the following definition:
# let total db dcs =
List. fold_right ((field db "Amount") ++ float_of string ++ (+.)) dcs 0.0 ;;
val total : data_base -> data_card list -> float = <fun>
We can now apply it to the whole database:
# total base_ex base_ex.data ;;
- : float = 450

An example

To conclude, here is a small example of an application that uses the principles described
in the paragraphs above.

We expect two kinds of queries on our database:

° a query returning two lists, the elements of the first containing the name of a
member followed by his mail address, the elements of the other containing the
name of the member followed by his email address, according to his preferences.

° another query returning the state of received fees for a given period of time. This
state is composed of the list of last and first names, dates and amounts of the
fees as well as the total amount of the received fees.

List of addresses

To create these lists, we first select the relevant cards according to the field "Pref",
then we use the formatting function format_line:
# let mail_addresses db =
let dcs = List.find_all (eq_sfield db "mail" "Pref") db.data in
List.map (format_line db ["Mail"]) dcs ;;
val mail_addresses : data_base -> string list = <fun>

# let ematil_addresses db =
let dcs = List.find-all (eq-sfield db "email" "Pref") db.data in
List.map (format_line db ["Email"]) dcs ;;

val email_addresses : data_base -> string list = <fun>
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State of received fees

Computing the state of the received fees uses the same technique: selection then pro-
cessing. In this case however the processing part is twofold: line formatting followed by
the computation of the total amount.
# let fees_state db d1 d2 =

let dcs = List.find_all (date_interval db d1 d2) db.data in

let 1ls = List.map (format_line db ["Date";"Amount"]) dcs in

let t = total db dcs in

ls, t;;

val fees_state : data_base -> string -> string -> string list * float = <fun>
The result of this query is a tuple containing a list of strings with member information,
and the total amount of received fees.

Main program

The main program is essentially an interactive loop that displays the result of queries
asked by the user through a menu. We use here an imperative style, except for the
display of the results which uses an iterator.
# let main() =
let db = read_base "association.dat" in
let finished = ref false in
while not !finished do
print_string" 1: List of mail addresses\n";
print_string" 2: List of email addresses\n",
print_string" 3: Received fees\n";
print_string" 0: Exit\n";
print_string"Your choice: ";
match read_int() with
0 — finished := true
| 1 — (List.iter print_string (mail_addresses db))
| 2 — (List.iter print_string (email_addresses db))

| 3
— (let d1 = print_string"Start date: "; read_line() in
let d2 = print_string"End date: "; read_line() in
let ls, t = fees_state db dl d2 in
List.iter print_string ls;
print_string"Total: "; print_float t; print_newline())
- =0
done;

print_string"bye\n" ;;

)

b
val main : unit -> unit = <fun>

This example will be extended in chapter 21 with an interface using a web browser.
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Further work

A natural extension of this example would consist of adding type information to every
field of the database. This information would be used to define generic comparison
operators with type data_base -> ’a -> string -> data_card -> bool where the
name of the field (the third argument) would trigger the correct conversion and test
functions.

BASIC interpreter

The application described in this section is a program interpreter for Basic. Thus, it is
a program that can run other programs written in Basic. Of course, we will only deal
with a restricted language, which contains the following commands:

° PRINT expression
Prints the result of the evaluation of the expression.

. INPUT wvariable
Prints a prompt (?), reads an integer typed in by the user, and

assigns its value to the variable.
° LET wvariable = expression
Assigns the result of the evaluation of expression to the variable.

. GOTO line number
Continues execution at the given line.

° IF condition THEN line number
Continues execution at the given line if the condition is true.

° REM any string
One-line comment.

Every line of a Basic program is labelled with a line number, and contains only one
command. For instance, a program that computes and then prints the factorial of an
integer given by the user is written:

5 REM inputting the argument
10 PRINT " factorial of:"
20 INPUT A
30 LET B =1
35 REM beginning of the loop
40 1IF A <= 1 THEN 80
50 LET B =B * A
60 LET A=A-1

70 GOTO 40
75 REM prints the result
80 PRINT B

We also wish to write a small text editor, working as a toplevel interactive loop. It
should be able to add new lines, display a program, execute it, and display the result.
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Execution of the program is started with the RUN command. Here is an example of the
evaluation of this program:

> RUN
factorial of: 7 5
120

The interpreter is implemented in several distinct parts:

Description of the abstract syntax : describes the definition of data types to rep-
resent Basic programs, as well as their components (lines, commands, expressions,
etc.).

Program pretty printing : consists of transforming the internal representation of
Basic programs to strings, in order to display them.

Lexing and parsing : accomplish the inverse transformation, that is, transform a
string into the internal representation of a Basic program (the abstract syntax).

Evaluation : is the heart of the interpreter. It controls and runs the program. As
we will see, functional languages, such as Objective Caml, are particularly well
adapted for this kind of problem.

Toplevel interactive loop : glues together all the previous parts.

Abstract syntax

Figure 6.2 introduces the concrete syntax, as a BNF grammar, of the Basic we will
implement. This kind of description for language syntaxes is described in chapter 11,
page 295.

We can see that the way expressions are defined does not ensure that a well formed
expression can be evaluated. For instance, 1+"hello" is an expression, and yet it is
not possible to evaluate it. This deliberate choice lets us simplify both the abstract
syntax and the parsing of the Basic language. The price to pay for this choice is that
a syntactically correct Basic program may generate a runtime error because of a type
mismatch.

Defining Objective Caml data types for this abstract syntax is easy, we simply translate
the concrete syntax into a sum type:
# type unr_op = UMINUS | NOT ;;
# type bin_op = PLUS | MINUS | MULT | DIV | MOD
| EQUAL | LESS | LESSEQ | GREAT | GREATEQ | DIFF
| AND | OR 3,
# type ezpression =
EzpInt of int
| EzpVar of string
| EzpStr of string
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LINE

PROGRAM

PHRASE
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integer
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"string"

UNARY_OP EXPRESSION
EXPRESSION  BINARY_OP
( EXPRESSION )

EXPRESSION

REM string

GOTO integer

LET wariable = EXPRESSION
PRINT EXPRESSION

INPUT wariable

IF ExpreEssioN THEN integer

integer COMMAND

LINE
LINE PROGRAM

LINE | RUN | LIST | END

Figure 6.2: BASIC Grammar.

EzpUnr of unr_op * expression
EzpBin of exzpression * bin_op * expression ;;

# type command =

# type line = { num : int ; cmd :

Rem of string

Goto of int

Print of expression

Input of string

If of expression * int

Let of string * expression ;;

command } ;;

# type program = line list ;;
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We also define the abstract syntax for the commands for the small program editor:
# type phrase = Line of line | List | Run | PEnd ;;

It is convenient to allow the programmer to skip some parentheses in arithmetic ex-
pressions. For instance, the expression 14 3 x4 is usually interpreted as 14 (3x4). To
this end, we associate an integer with each operator of the language:
# let priority-uop = function NOT — 1 | UMINUS — 7
let priority_-binop = function
MULT | DIV — 6

| PLUS | MINUS — 5

| MOD — 4

| EQUAL | LESS | LESSEQ | GREAT | GREATEQ | DIFF — 3

| AND | OR — 2 ;;
val priority_uop : unr_op -> int = <fun>
val priority_binop : bin_op -> int = <fun>
These integers indicate the priority of the operators. They will be used to print and
parse programs.

Program pretty printing

To print a program, one needs to be able to convert abstract syntax program lines into
strings.

Converting operators is easy:
# let pp_binop = function
PLUS — "+" | MULT — "x" | MOD — "%" | MINUS — "-"

| pIV — "/ | EQUAL — " =" | LESS — " < "

| LESSEQ — " <= " | GREAT — " > "

| GREATEQ — " >= " | DIFF — " <> " | AND - " & " | OR — " "
let pp_unrop = function UMINUS — "-" | NOT — "!" ;

val pp_binop : bin_op -> string = <fun>

val pp_unrop : unr_op -> string = <fun>

Expression printing needs to take into account operator priority to print as few paren-
theses as possible. For instance, parentheses are put around a subexpression at the right
of an operator only if the subexpression’s main operator has a lower priority that the
main operator of the whole expression. Also, arithmetic operators are left-associative,
thus the expression 1 — 2 — 3 is interpreted as (1 — 2) — 3.

To deal with this, we use two auxiliary functions ppl and ppr to print left and right
subtrees, respectively. These functions take two arguments: the tree to print and the
priority of the enclosing operator, which is used to decide if parentheses are necessary.
Left and right subtrees are distinguished to deal with associativity. If the current
operator priority is the same than the enclosing operator priority, left trees do not
need parentheses whereas right ones may require them, asin 1 —(2—3) or 1 — (2+3).

The initial tree is taken as a left subtree with minimal priority (0). The expression
pretty printing function pp_expression is:
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# let parenthesis z = "(" "~z =~ ")";;
val parenthesis : string -> string = <fun>
# let pp_expression =
let rec ppl pr = function
EzpInt n — (string_of-int n)
| EzpVar v — v
| EzpStr s — "\"" =~ s = "\""
| EzpUnr (op,e) —
let res = (pp_unrop op)~ (ppl (priority_uop op) e)
in if pr=0 then res else parenthesis res
| EzpBin (el,op,e2) —
let pr2 = priority_binop op
in let res = (ppl pr2 el)  (pp_binop op)  (ppr pr2 e2)
(* parenthesis if priority is not greater *)
in if pr2 >= pr then res else parenthesis res
and ppr pr exp = match exp with
(* right subtrees only differ for binary operators *)
EzpBin (el,op,e2) —
let pr2 = priority_binop op
in let res = (ppl pr2 el)  (pp-binop op)  (ppr pr2 e2)
in if pr2 > pr then res else parenthesis res
| _ — ppl pr exp
in ppl 0 ;;
val pp_expression : expression -> string = <fun>

Command pretty printing uses the expression pretty printing function. Printing a line
consists of printing the line number before the command.
# let pp_command = function

Rem s — "REM " ~ s
| Goto n —  "GOTO " ~ (string-of-int n)
| Print e — "PRINT " "~ (pp_ezpression e)
| Input v — "INPUT " "~ w
| If (e,n) — "IF ""(pp_expression e)~" THEN "~ (string_of_int n)
| Let (v,e) — M"LET " ~ v =~ " =" " (pp_exzpression e) ;;

val pp_command : command -> string = <fun>
et pp_line 1 = (string.of_in . num _comman .cm -
let pp_line 1 = (string int 1 ) St T (pp d 1.cmd)
val pp_line : line -> string = <fun>

Lexing

Lexing and parsing do the inverse transformation of printing, going from a string to
a syntax tree. Lexing splits the text of a command line into independent lexical units
called lexemes, with Objective Caml type:
# type lexeme = Lint of int

| Lident of string
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| Lsymbol of string

| Lstring of string

| Lend ;;
A particular lexeme denotes the end of an expression: Lend. It is not present in the
text of the expression, but is created by the lexing function (see the lexer function,
page 165).

The string being lexed is kept in a record that contains a mutable field indicating the
position after which lexing has not been done yet. Since the size of the string is used
several times and does not change, it is also stored in the record:

# type string_lezer = {string:string;mutable current: int; size:int } NN

This representation lets us define the lexing of a string as the application of a function
to a value of type string_lezer returning a value of type lezeme. Modifying the
current position in the string is done as a side effect.

# let init_lex s = { string=s; current=0 ; size=String.length s } ;;
val init_lex : string -> string_lexer = <fun>
# let forward cl = cl.current <- cl.current+l ;;
val forward : string_lexer -> unit = <fun>
# let forwardm cl n = cl.current <- cl.current+n ;;
val forward_n : string_lexer -> int -> unit = <fun>
# let exztract pred cl =
let st = cl.string and pos = cl.current in
let rec ext n = if n<cl.size && (pred st.[n]) then ezt (nt+l) else 7 in
let res = ezt pos
in cl.current <- res ; String.sub cl.string pos (res-pos) ;;
val extract : (char -> bool) -> string_lexer -> string = <fun>

The following functions extract a lexeme from the string and modify the current po-
sition. The two functions extract_int and extract_ident extract an integer and an
identifier, respectively.
# let extract_int =

let is_int = function ’0’..°9° — true | _ — false

in function cl — int_of_string (extract ts_int cl)

let extract_ident =
let is_alpha_num = function
’a’. .’z | AL 0’72 | 00 .. 97 |’ — true

| _ — false

in eztract is_alpha_num ;;
val extract_int : string_lexer -> int = <fun>

val extract_ident : string_lexer -> string = <fun>

The lexer function uses the two previous functions to extract a lexeme.
# exception LezerError ;;
exception LexerError
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# let rec lezer cl =
let lezer_char c = match c with
) J
AN A — forward cl ; lezer cl
| ’a’..’z’
| ’A>..°Z°> — Lident (extract_ident cl)
| °0°..°9° — Lint (extract_int cl)
|

o — forward cl ;

let res = Lstring (extract ((<>) ’"’) cl)
in forward cl ; res

| 242 ] o= |k | 2 Y & ] = 2] ) —
forward cl; Lsymbol (String.make 1 c)

| 1)

| 2> — forward cl;

if cl.current >= cl.size then Lsymbol (String.make 1 c)
else let cs = cl.string.[cl.current]
in ( match (c,cs) with
(’<?,’=?) — forward cl; Lsymbol "<="
| (°>*,°=?) — forward cl; Lsymbol ">="
| (°<’,’>’) — forward cl; Lsymbol "<>"
| _ — Lsymbol (String.make 1 ¢) )
| _ — raise LexerError
in
if cl.current >= cl.size then Lend
else lezer_char cl.string.[cl.current] ;;
val lexer : string_lexer -> lexeme = <fun>

The lexer function is very simple: it matches the current character of a string and,
based on its value, extracts the corresponding lexeme and modifies the current position
to the start of the next lexeme. The code is simple because, for all characters except
two, the current character defines which lexeme to extract. In the more complicated
cases of ’<’, we need to look at the next character, which might be a =’ or a >>’,
producing two different lexemes. The same problem arises with >>’.

Parsing

The only difficulty in parsing our language comes from expressions. Indeed, knowing
the beginning of an expression is not enough to know its structure. For instance, having
parsed the beginning of an expression as being 1 + 2 4 3, the resulting syntax tree for
this part depends on the rest of the expression: its structure is different when it is
followed by +4 or x4 (see figure 6.3). However, since the tree structure for 1+ 2 is the
same in both cases, it can be built. As the position of +3 in the structure is not fully
known, it is temporarily stored.

To build the abstract syntax tree, we use a pushdown automaton similar to the one
built by yacc (see page 303). Lexemes are read one by one and put on a stack until
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Figure 6.3: Basic: abstract syntax tree examples.

there is enough information to build the expression. They are then removed from the
stack and replaced by the expression. This latter operation is called reduction.

The stack elements have type:
# type ezp_elem =

Texp of ezpression  (* expression *)
| Tbin of bin_op (* binary operator *)
| Tunr of unr_op (* unary operator  *)
| Tip (* left parenthesis *) ;;

Right parentheses are not stored on the stack as only left parentheses matter for
reduction.

Figure 6.4 illustrates the way the stack is used to parse the expression (1 4 2% 3) 4 4.
The character above the arrow is the current character of the string.

We define an exception for syntax errors.

# exception ParseError ;;

The first step consists of transforming symbols into operators:
# let unr_symb = function

"1 NOT | "-" — UMINUS | _ — raise ParseError
let bin_symb = function
"t" s PLUS | "-" — MINUS | "x" — MULT | "/" — DIV | "%" — MOD
| "=" — EQUAL | "<" — LESS | "<=" — LESSEQ | ">" — GREAT
| ">=" — GREATEQ | "<>" — DIFF | "&" — AND | "|" — OR

| _ — raise ParseError
let tsymb s = try Tbin (bin_symb s) with ParseError — Tunr (unr_symb s) ;;
val unr_symb : string -> unr_op = <fun>
val bin_symb : string -> bin_op = <fun>
val tsymb : string -> exp_elem = <fun>

The reduce function implements stack reduction. There are two cases to consider,
whether the stack starts with:
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3
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Figure 6.4: Basic: abstract syntax tree construction example.

° an expression followed by a unary operator,

° an expression followed by a binary operator and an expression.

Moreover, reduce takes an argument indicating the minimal priority that an operator
should have to trigger reduction. To avoid this reduction condition, it suffices to give
the minimal value, zero, as the priority.
# let reduce pr = function
(Texp e) :: (Tunr op) :: st when (priority_uop op) >= pr
— (Tezp (EzpUnr (op,e))) :: st
| (Texp el) :: (Tbin op) :: (Texp e2) :: st when (priority_-binop op) >= pr
— (Tezp (EzpBin (e2,o0p,el))) :: st
| _ — raise ParseError ;;
val reduce : int -> exp_elem list -> exp_elem list = <fun>

Notice that expression elements are stacked as they are read. Thus it is necessary to
swap them when they are arguments of a binary operator.

The main function of our parser is stack_or_reduce that, according to the lexeme
given in argument, puts it on the stack or triggers a reduction.
# let rec stack_or_reduce lex stack = match lex , stack with

Lint n , _ —  (Texp (ExpInt n)) :: stack

| Lident v , —  (Texp (ExpVar v)) :: stack
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Lstring s , _ —  (Texp (ExpStr s)) :: stack
Lsymbol " ("
Lsymbol ")" , (Texp e) :: Tlp::st — (Texp e) :: st

— Tlp:: stack

Lsymbol ")" , _ — stack_or_reduce lex (reduce 0 stack)

Lsymbol s ,
— let symbol =
if s<>"-" then tsymb s

(* remove the ambiguity of the ‘¢

-77 symbol *)
(* according to the last exp element put on the stack *)
else match stack

with (Texp _)::_ — Tbin MINUS
| _ — Tunr UMINUS
in ( match symbol with
Tunr op — (Tunr op) :: stack
| Tbin op —
( try stack-or_reduce lex (reduce (priority-binop op)
stack )
with ParseError — (Tbin op) :: stack )
| _ — raise ParseError )
| _ , _ — raise ParseError ;;
val stack_or_reduce : lexeme -> exp_elem list -> exp_elem list = <fun>

Once all lexemes are defined and stacked, the function reduce_all builds the abstract
syntax tree with the elements remaining in the stack. If the expression being parsed is
well formed, only one element should remain in the stack, containing the tree for this
expression.
# let rec reduce_all = function

| [| — raise ParseError

| [Texp ] — =

| st — reduce_all (reduce 0 st) ;;
val reduce_all : exp_elem list -> expression = <fun>

The parse_exp function is the main expression parsing function. It reads a string,
extracts its lexemes and passes them to the stack_or_reduce function. Parsing stops
when the current lexeme satisfies a predicate that is given as an argument.
# let parse_exzp stop cl =
let p = ref 0 in
let rec parse_one stack =
let 1 = ( p:=cl.current ; lezer cl)
in if not (stop 1) then parse_ one (stack_or_reduce l stack)
else ( cl.current <- !p ; reduce_all stack )
in parse_one [ ;;
val parse_exp : (lexeme -> bool) -> string_lexer -> expression = <fun>
Notice that the lexeme that made the parsing stop is not used to build the expression.
It is thus necessary to modify the current position to its beginning (variable p) to parse
it later.
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We can now parse a command line:
# let parse_cmd cl = match lezer cl with
Lident s — ( match s with
"REM" — Rem (eztract (fun _ — true) cl)
| "GOTO" — Goto (match lezer cl with
Lint p — p
| _ — ratse ParseError)
| "INPUT" — Input (match lezer cl with
Lident v — v
| _ — raise ParseError)
| "PRINT" — Print (parse_ezp ((=) Lend) cl)
| "LET" —
let 12 = lezer cl and 13 = lezer cl
in ( match 12 ,13 with
(Lident wv,Lsymbol "=") — Let (v,parse_exp ((=) Lend) cl)
| _ — raise ParseError )
| "IF" —
let test = parse_exp ((=) (Lident "THEN")) cl
in ( match ignore (lexer cl) ; lexer cl with
Lint n — If (test,n)
| _ — raise ParseError )
| _ — ratise ParseError )
| _ — raise ParseError ;;
val parse_cmd : string_lexer -> command = <fun>

Finally, we implement the function to parse commands typed by the user:
# let parse str =
let cl = init_lex str
in match lezer cl with
Lint n — Line { num=n ; cmd=parse_cmd cl }
| Lident "LIST" — List
| Lident "RUN" — Run
| Lident "END" — PEnd
| _ — raise ParseError ;;
val parse : string -> phrase = <fun>

Evaluation

A Basic program is a list of lines. Execution starts at the first line. Interpreting a
program line consists of executing the task corresponding to its command. There are
three different kinds of commands: input-output (PRINT and INPUT), variable dec-
laration or modification (LET), and flow control (GOTO and IF... THEN). Input-
output commands interact with the user and use the corresponding Objective Caml
functions.
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Variable declaration and modification commands need to know how to compute the
value of an arithmetic expression and the memory location to store the result. Expres-
sion evaluation returns an integer, a boolean, or a string. Their type is value.

# type wvalue = Vint of int | Vstr of string | Vbool of bool ;;

Variable declaration should allocate some memory to store the associated value. Sim-
ilarly, variable modification requires the modification of the associated value. Thus,
evaluation of a Basic program uses an environment that stores the association be-
tween a variable name and its value. It is represented by an association list of tuples
(name,value):

# type environment = (string * value) list ;;

The variable name is used to access its value. Variable modification modifies the asso-
ciation.

Flow control commands, conditional or unconditional, specify the number of the next
line to execute. By default, it is the next line. To do this, it is necessary to remember
the number of the current line.

The list of commands representing the program being edited under the toplevel is not
an efficient data structure for running the program. Indeed, it is then necessary to look
at the whole list of lines to find the line indicated by a flow control command (If and
goto). Replacing the list of lines with an array of commands allows direct access to the
command following a flow control command, using the array index instead of the line
number in the flow control command. This solution requires some preprocessing called
assembly before executing a RUN command. For reasons that will be detailed shortly, a
program after assembly is not represented as an array of commands but as an array of
lines:

# type code = line array ;;

As in the calculator example of previous chapters, the interpreter uses a state that is
modified for each command evaluation. At each step, we need to remember the whole
program, the next line to interpret and the values of the variables. The program being
interpreted is not exactly the one that was entered in the toplevel: instead of a list of
commands, it is an array of commands. Thus the state of a program during execution
is:

# type state_ezec = { line:int ; xTprog:code ; xTenv:environment } NN

Two different reasons may lead to an error during the evaluation of a line: an error
while computing an expression, or branching to an absent line. They must be dealt with
so that the interpreter exits nicely, printing an error message. We define an exception
as well as a function to raise it, indicating the line where the error occurred.
# exception RunError of int

let runerr n = raise (RunError n) ;;
exception RunError of int
val runerr : int -> ’a = <fun>
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Assembly

in the array,

Assembling a program that is a list of numbered lines (type program) con-
sists of transforming this list into an array and modifying the flow control commands.
This last modification only needs an association table between line numbers and array
indexes. This is easily provided by storing lines (with their line numbers), instead of
commands, in the array: to find the association between a line number and the index
we look the line number up in the array and return the corresponding

index. If no line is found with this number, the index returned is -1.

# exception
exception Re

Result_lookup_index of int ;;
sult_lookup_index of int

# let lookup_index tprog num_line =

try

for i=0 to (4Array.length tprog)-1 do

let

num_t = tprog. (%) .num

in if num_t=num_line then raise (Result_lookup_indez %)
else if num_i>num_line then raise (Result_lookup_index (-1))

done ;

(-1)

with Result_lookup_indexr 2 — 1% ;;

val lookup_index : line array -> int -> int = <fun>

# let assemble prog =

let tprog = Array.of_list prog in
for =0 to (4rray.length tprog)-1 do
match tprog.(7).cmd with

I
done ;

tprog ;;

val assemble :

Expression evaluation The evaluation function does a depth-first traversal on the

Goto n — let index = lookup_index tprog n
in tprog. (i) <- { tprog.(%) with cmd = Goto indez }
If(c,n) — let index = lookup_index tprog n

in tprog. (i) <- { tprog.(i) with cmd = If (c,indez) }

-—= 0

line list -> line array = <fun>

abstract syntax tree, and executes the operations indicated at each node.

The RunError exception is raised in case of type inconsistency, division by zero, or an

undeclared variable.
# let rec eval_ezp n envt exzpr = match ezpr with
EzpInt p — Vint p
| EzpVar v — ( try List.assoc v envt with Not_found — runerr n )
| EzpUnr (UMINUS,e) —
( match eval_ezp n envt e with

Vint p — Vint (-p)
— runerr n )

| EzpUnr (NOT,e) —
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( match eval_ezp n envt e with
Vbool p — Vbool (mot p)
| - — runerr n )
| ExpStr s — Vstr s
| EzpBin (el,op,e2)
— match eval_exp n envt el , op , eval_exp n envt e2 with
Vint w1 , PLUS , Vint v2 —  Vint (vl + 22)
| Vint v1 , MINUS , Vint v2 — Vint (vi - v2)
| Vint v1 , MULT , Vint v2 — Vint (vl * v2)
| Vint w1 , DIV , Vint v2 when v2<>0 — Vint (vl / v2)
| Vint w1 , MOD , Vint v2 when v2<>0 — Vint (vl mod v2)

Vint vl , EQUAL , Vint v2 Vbool (w1l = v2)
Vint v1 , DIFF , Vint v2 Vbool (w1 <> v2)
Vint vl , LESS , Vint v2 Vbool (w1 < w2)

Vint vl , GREAT , Vint v2
Vint w1 , LESSEQ , Vint v2
Vint vl , GREATEQR , Vint v2

Vbool (w1 > wv2)
Vbool (w1l <= v2)
Vbool (w1l >= v2)

Ll

| Vbool w1 , AND , Vbool v2 — Vbool (vl && v2)
| Vbool w1 , OR , Vbool v2 — Vbool (vl || v2)

| Vstr w1 , PLUS , Vstr v2 — Vstr (vl = 22)
| _, _, _ — runerr n ;;
val eval_exp : int -> (string * value) list -> expression -> value = <fun>

Command evaluation To evaluate a command, we need a few additional functions.

We add an association to an environment by removing a previous association for the
same variable name if there is one:
# let rec add v e env = match env with

| — [v,el
| (w,f) 21 — if w=v then (v,e) :: 1l else (w,f) :: (add v e 1) ;;
val add : ’a -> ’b -> (’a * ’b) list -> (’a * ’b) list = <fun>

A function that prints the value of an integer or string is useful for evaluation of the
PRINT command.
# let print_value v = match v with
Vint n — print_int n

| Vbool true — print_string "true"

| Vbool false — print_string "false"

| Vstr s — print_string s ;;
val print_value : value -> unit = <fun>
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The execution of a command corresponds to a transition from one state to another.
More precisely, the environment is modified if the command is an assignment. Further-
more, the next line to execute is always modified. As a convention, if the next line to
execute does not exist, we set its value to -1
# let nexzt_line state =
let n = state.linet+l in
if n < Array.length state.zprog then n else -1 ;;
val next_line : state_exec -> int = <fun>
# let ewal_cmd state =
match state.zprog.(state.line).cmd with
Rem _ — { state with line = next_line state }
| Print e — print_value (eval_ezp state.line state.zenv e)
print_newline () ;
{ state with line = nezt_line state }
| Let(v,e) — 1let ev = eval_exp state.line state.zenv e
in { state with line = next_line state ;
zenv = add v ev state.zenv }
| Goton — { state with line = n }
| Input v — 1let z = try read_int ()
with Failure "int_of_string" — O
in { state with line = nezt_line state;
zenv = add v (Vint z) state.zenv }
| If (¢t,n) — match eval_exp state.line state.zenv t with
n
}

| Vbool false — { state with line = nezt_line state }

Vbool true — { state with line

| — runerr state.line ;;

val eval_cmd : state_exec -> state_exec = <fun>

On each call of the transition function eval_cmd, we look up the current line, run it,
then set the number of the next line to run as the current line. If the last line of the
program is reached, the current line is given the value -1. This will tell us when to
stop.

Program evaluation We recursively apply the transition function until we reach a
state where the current line number is -1.
# let rec run state =
if state.line = -1 then state else 7Tun (ewval_cmd state) ;;
val run : state_exec -> state_exec = <fun>

Finishing touches

The only thing left to do is to write a small editor and to plug together all the functions
we wrote in the previous sections.
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The insert function adds a new line in the program at the requested place.
# let rec insert line p = match p with
[ — [linel
| 1:prog —

if l.num < line.num then 1: (insert line prog)

else if l.num=line.num then line: prog

else line:: l: prog ;;
val insert : line -> line list -> line list = <fun>

The print_prog function prints the source code of a program.
# let print_prog prog =
let print_line = = print_string (pp_line z) ; print_newline () in
print_newline () ;
List.iter print_line prog ;
print_newline () ;;
val print_prog : line list -> unit = <fun>

The one_command function processes the insertion of a line or the execution of a com-
mand. It modifies the state of the toplevel loop, which consists of a program and an
environment. This state, represented by the loop_state type, is different from the
evaluation state.

# type loop_state = { prog:program, env:environment } ;;

# exception End ;;

# let one_command state =
print_string "> " ; flush stdout ;
try
match parse (input_line stdin) with
Line 1 — { state with prog = insert 1 state.prog }
| List — (print_prog state.prog ; state )
| Run
— let tprog = assemble state.prog in
let zstate = run { line = 0; zprog = tprog; cenv = state.env } in
{state with env = zstate.zenv }
| PEnd — raise End
with
LezerError — print_string "Illegal character\n"; state
| ParseError — print_string "syntax error\n"; state
| RunError n —
print_string "runtime error at line ";
print_int n ;
print_string "\n";
state ;;
val one_command : loop_state -> loop_state = <fun>
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The main function is the go function, which starts the toplevel loop of our Basic.
# lot go () =
try
print_string "Mini-BASIC version 0.1\n\n";
let rec loop state = loop (one_command state) in
toop { prog = [|; env = || }
with End — print_string "See you later...\n";;
val go : unit -> unit = <fun>
The loop is implemented by the local function loop. It stops when the End exception
is raised by the one_command function.

Example: C+/C-

We return to the example of the C+/C- game described in chapter 3, page 78. Here is
the Basic program corresponding to that Objective Caml program:

10 PRINT "Give the hidden number: "
20 INPUT N

30 PRINT "Give a number: "
40 INPUT R

50 IF R = N THEN 110

60 IF R < N THEN 90

70 PRINT "C-"

80 GOTO 30

90 PRINT "C+"

100 GOTO 30

110 PRINT "CONGRATULATIONS"

And here is a sample run of this program.

> RUN

Give the hidden number:
64

Give a number:
88

C_

Give a number:
44

C+

Give a number:
64
CONGRATULATIONS
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Further work

The Basic we implemented is minimalist. If you want to go further, the following
exercises hint at some possible extensions.

1. Floating-point numbers: as is, our language only deals with integers, strings and
booleans. Add floats, as well as the corresponding arithmetic operations in the
language grammar. We need to modify not only parsing, but also evaluation,
taking into account the implicit conversions between integers and floats.

2. Arrays: Add to the syntax the command DIM var [x] that declares an array var
of size x, and the expression var[i] that references the ith element of the array
var.

3. Toplevel directives: Add the toplevel directives SAVE "file_name" and LOAD
"file name" that save a Basic program to the hard disk, and load a Basic pro-
gram from the hard disk, respectively.

4. Sub-program: Add sub-programs. The GOSUB line number command calls a sub-
program by branching to the given line number while storing the line from where
the call is made. The RETURN command resumes execution at the line following
the last GOSUB call executed, if there is one, or exits the program otherwise.
Adding sub-programs requires evaluation to manage not only the environement
but also a stack containing the return addresses of the current GOSUB calls. The
GOSUB command adds the possibility of defining recursive sub-programs.

Minesweeper

Let us briefly recall the object of this game: to explore a mine field without stepping
on one. A mine field is a two dimensional array (a matrix) where some cells contain
hidden mines while others are empty. At the beginning of the game, all the cells are
closed and the player must open them one after another. The player wins when he
opens all the cells that are empty.

Every turn, the player may open a cell or flag it as containing a mine. If he opens
a cell that contains a mine, it blows up and the player loses. If the cell is empty, its
appearance is modified and the number of mines in the 8 neighbor cells is displayed
(thus at most 8). If the player decides to flag a cell, he cannot open it until he removes
the flag.

We split the implementation of the game into three parts.

1. The abstract game, including the internal representation of the mine field as well
as the functions manipulating this representation.
2. The graphical part of the game, including the function for displaying cells.

The interaction between the program and the player.
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Figure 6.5: Screenshot.

The abstract mine field

This part deals with the mine field as an abstraction only, and does not address its
display.

Configuration A mine field is defined by its dimensions and the number of mines it
contains. We group these three pieces of data in a record and define a default configu-
ration: 10 x 10 cells and 15 mines.
# type config = {

nbcols : wnt ;

nbrows : int ;

nbmines : int };;
# let default_config = { nbcols=10; nbrows=10; nbmines=15 } ;;

The mine field It is natural to represent the mine field as a two dimensional array.
However, it is still necessary to specify what the cells are, and what information their
encoding should provide. The state of a cell should answer the following questions:
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° is there a mine in this cell?
. is this cell opened (has it been seen)?
) is this cell flagged?

° how many mines are there in neighbor cells?

The last item is not mandatory, as it is possible to compute it when it is needed.
However, it is simpler to do this computation once at the beginning of the game.

We represent a cell with a record that contains these four pieces of data.
# type cell = {

mutable mined : bool ;

mutable seen : bool ;

mutable flag : bool ;

mutable nbm : int

b

The two dimensional array is an array of arrays of cells:
# type board = cell array array ;;

An iterator In the rest of the program, we often need to iterate a function over all
the cells of the mine field. To do it generically, we define the operator iter_cells that
applies the function £, given as an argument, to each cell of the board defined by the
configuration cf.
# let iter_cells cf f =

for =0 to cf.nbcols-1 do for j5=0 to cf.nbrows-1 do f (%,j) donme done ;;
val iter_cells : config -> (int * int -> ’a) -> unit = <fun>

This is a good example of a mix between functional and imperative programming styles,
as we use a higher order function (a function taking another function as an argument)
to iterate a function that operates through side effects (as it returns no value).

Initialization We randomly choose which cells are mines. If ¢ and r are respectively
the number of columns and rows of the mine field, and m the number of mines, we
need to generate m different numbers between 1 and ¢ x r. We suppose that m < c¢xr
to define the algorithm, but the program using it will need to check this condition.

The straightforward algorithm consists of starting with an empty list, picking a random
number and putting it in the list if it is not there already, and repeating this until the
list contains m numbers. We use the following functions from the Random and Sys
modules:

° Random.int: 4nt -> 4nt, picks a number between 0 and n—1 (n is the argument)
according to a random number generator;

) Random.init: ¢nt -> unit, initializes the random number generator;
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. Sys.time: unit -> float, returns the number of milliseconds of processor time
the program used since it started. This function will be used to initialize the
random number generator with a different seed for each game.

The modules containing these functions are described in more details in chapter 8,
pages 216 and 234.

The random mine placement function receives the number of cells (cr) and the number
of mines to place (m), and returns a list of linear positions for the m mines.
# let random_list_mines cr m =
let cell_list = ref ||
in while (List.length !'cell_list) < m do
let n = Random.int cr in

if not (List.mem n 'cell_list) then cell_list := n :: !cell_list
done ;
lcell_list ;;

val random_list_mines : int -> int -> int list = <fun>

With such an implementation, there is no upper bound on the number of steps the
function takes to terminate. If the random number generator is reliable, we can only
insure that the probability it does not terminate is zero. However, all experimental uses
of this function have never failed to terminate. Thus, even though it is not guaranteed
that it will terminate, we will use it to generate the list of mined cells.

We need to initialize the random number generator so that each run of the game does
not use the same mine field. We use the processor time since the beginning of the
program execution to initialize the random number generator.
# let generate_seed () =

let ¢t = Sys.time () in

let n = int_of_float (t*.1000.0)

in Random.init(n mod 100000) ;;
val generate_seed : unit -> unit = <fun>
In practice, a given program very often takes the same execution time, which results
in a similar result for generate_seed for each run. We ought to use the Unix.time
function (see chapter 18).

We very often need to know the neighbors of a given cell, during the initialization of
the mine field as well as during the game. Thus we write a neighbors function. This
function must take into account the side and corner cells that have fewer neighbors
than the middle ones (function valid).
# let walid cf (4,7) = ©>=0 && i<cf.nbcols && j5>=0 && j<cf.nbrows ;;
val valid : config -> int * int -> bool = <fun>
# let neighbors cf (z,y) =

let ngb = [z-1,y-1; z-1,y; z-1,y+1; z,y-1; z,y+l; =+l,y-1; z+l,y; a+1,y+1]

in List.filter (valid cf) ngb ;;
val neighbors : config -> int * int -> (int * int) list = <fun>
The initialize board function creates the initial mine field. It proceeds in four steps:
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generation of the list of mined cells;
creation of a two dimensional array containing different cells;

setting of mined cells in the board;

Ll

computation of the number of mines in neighbor cells for each cell that is not
mined.

The function initialize board uses a few local functions that we briefly describe.

cell_init : creates an initial cell value;

copy_cell_init : puts a copy of the initial cell value in a cell of the board;
set_mined : puts a mine in a cell;

count_mined _adj : computes the number of mines in the neighbors of a given cell;

set_count : updates the number of mines in the neighbors of a cell if it is not mined.

# let initialize board cf =
let cell_init () = { mined=false; seen=false; flag=false; nbm=0 } in
let copy-cell_init b (%,7) = b.(4).(5) <- cell_init() in
let set_mined b n = b.(n / cf.nbrows).(n mod cf.nbrows).mined <- true
in
let count_mined_adj b (%,75) =
let z = ref 0 in
let inc_if-mined (%,75) = if b.(%).(j).mined then incr z
in List.iter inc_if-mined (neighbors cf (i,7)) ;
'z
in
let set_count b (%,7) =
if not b.(%).(j).mined
then b.(%).(j).nbm <~ count_mined_adj b (%, 7)
in
let list_mined = random_list_mines (cf.nbcolsxcf.nbrows) cf.nbmines in
let board = Array.make_matriz cf.nbcols cf.nbrows (cell_init ())
in dter_cells cf (copy-cell_init board) ;
List.iter (set_mined board) list_mined ;
iter_cells cf (set_count board) ;
board ;;
val initialize_board : config -> cell array array = <fun>

Opening a cell During a game, when the player opens a cell whose neighbors are
empty (none contains a mine), he knows that he can open the neighboring cells without
risk, and he can keep opening cells as long as he opens cells without any mined neighbor.
In order to relieve the player of this boring process (as it is not challenging at all), our
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Minesweeper opens all these cells itself. To this end, we write the function cells_to_see
that returns a list of all the cells to open when a given cell is opened.

The algorithm needed is simple to state: if the opened cell has some neighbors that
contain a mine, then the list of cells to see consists only of the opened cell; otherwise,
the list of cells to see consists of the neighbors of the opened cell, as well as the lists of
cells to see of these neighbors. The difficulty is in writing a program that does not loop,
as every cell is a neighbor of any of its neighbors. We thus need to avoid processing
the same cell twice.

To remember which cells were processed, we use the array of booleans visited. Its
size is the same as the mine field. The value true for a cell of this array denotes that
it was already visited. We recurse only on cells that were not visited.

We use the auxiliary function relevant that computes two sublists from the list of
neighbors of a cell. Each one of these lists only contains cells that do not contain a mine,
that are not opened, that are not flagged by the player, and that were not visited. The
first sublist is the list of neighboring cells who have at least one neighbor containing a
mine; the second sublist is the list of neighboring cells whose neighbors are all empty.
As these lists are computed, all these cells are marked as visited. Notice that flagged
cells are not processed, as a flag is meant to prevent opening a cell.

The local function cells_to_see_rec implements the recursive search loop. It takes as
an argument the list of cells to visit, updates it, and returns the list of cells to open.
This function is called with the list consisting only of the cell being opened, after it is
marked as visited.
# let cells_to_see bd cf (3,7 =
let visited = Array.make_matriz cf.nbcols cf.nbrows false in
let rec relevant = function
0 — a1,
| ((z,y) as ¢) =t —
let cell=bd.(z).(y)
in if cell.mined || cell.flag || cell.seen || wvisited. (x).(y)
then relevant t
else let (11,12) = relevant t
in vistted. (z).(y) <- true ;
if cell.nbm=0 then (11,c: 12) else (c: 11,12)
in